tree.c 128.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/*
 * Read-Copy Update mechanism for mutual exclusion
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
15 16
 * along with this program; if not, you can access it online at
 * http://www.gnu.org/licenses/gpl-2.0.html.
17 18 19 20 21 22 23 24 25 26 27
 *
 * Copyright IBM Corporation, 2008
 *
 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
 *	    Manfred Spraul <manfred@colorfullife.com>
 *	    Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
 *
 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
 *
 * For detailed explanation of Read-Copy Update mechanism see -
28
 *	Documentation/RCU
29 30 31 32 33 34 35 36 37
 */
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/spinlock.h>
#include <linux/smp.h>
#include <linux/rcupdate.h>
#include <linux/interrupt.h>
#include <linux/sched.h>
38
#include <linux/nmi.h>
39
#include <linux/atomic.h>
40
#include <linux/bitops.h>
41
#include <linux/export.h>
42 43
#include <linux/completion.h>
#include <linux/moduleparam.h>
44
#include <linux/module.h>
45 46 47 48 49
#include <linux/percpu.h>
#include <linux/notifier.h>
#include <linux/cpu.h>
#include <linux/mutex.h>
#include <linux/time.h>
50
#include <linux/kernel_stat.h>
51 52
#include <linux/wait.h>
#include <linux/kthread.h>
53
#include <linux/prefetch.h>
54 55
#include <linux/delay.h>
#include <linux/stop_machine.h>
56
#include <linux/random.h>
57
#include <linux/trace_events.h>
58
#include <linux/suspend.h>
59

60
#include "tree.h"
61
#include "rcu.h"
62

63 64 65 66 67 68
MODULE_ALIAS("rcutree");
#ifdef MODULE_PARAM_PREFIX
#undef MODULE_PARAM_PREFIX
#endif
#define MODULE_PARAM_PREFIX "rcutree."

69 70
/* Data structures. */

71
static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
72
static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
73
static struct lock_class_key rcu_exp_class[RCU_NUM_LVLS];
74

75 76 77 78 79 80 81 82
/*
 * In order to export the rcu_state name to the tracing tools, it
 * needs to be added in the __tracepoint_string section.
 * This requires defining a separate variable tp_<sname>_varname
 * that points to the string being used, and this will allow
 * the tracing userspace tools to be able to decipher the string
 * address to the matching string.
 */
83 84
#ifdef CONFIG_TRACING
# define DEFINE_RCU_TPS(sname) \
85
static char sname##_varname[] = #sname; \
86 87 88 89 90 91 92 93 94
static const char *tp_##sname##_varname __used __tracepoint_string = sname##_varname;
# define RCU_STATE_NAME(sname) sname##_varname
#else
# define DEFINE_RCU_TPS(sname)
# define RCU_STATE_NAME(sname) __stringify(sname)
#endif

#define RCU_STATE_INITIALIZER(sname, sabbr, cr) \
DEFINE_RCU_TPS(sname) \
95
static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, sname##_data); \
96
struct rcu_state sname##_state = { \
97
	.level = { &sname##_state.node[0] }, \
98
	.rda = &sname##_data, \
99
	.call = cr, \
100
	.fqs_state = RCU_GP_IDLE, \
P
Paul E. McKenney 已提交
101 102
	.gpnum = 0UL - 300UL, \
	.completed = 0UL - 300UL, \
103
	.orphan_lock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.orphan_lock), \
104 105
	.orphan_nxttail = &sname##_state.orphan_nxtlist, \
	.orphan_donetail = &sname##_state.orphan_donelist, \
106
	.barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
107
	.name = RCU_STATE_NAME(sname), \
108
	.abbr = sabbr, \
109
}
110

111 112
RCU_STATE_INITIALIZER(rcu_sched, 's', call_rcu_sched);
RCU_STATE_INITIALIZER(rcu_bh, 'b', call_rcu_bh);
113

114
static struct rcu_state *const rcu_state_p;
115
static struct rcu_data __percpu *const rcu_data_p;
116
LIST_HEAD(rcu_struct_flavors);
117

118 119 120
/* Dump rcu_node combining tree at boot to verify correct setup. */
static bool dump_tree;
module_param(dump_tree, bool, 0444);
121 122 123
/* Control rcu_node-tree auto-balancing at boot time. */
static bool rcu_fanout_exact;
module_param(rcu_fanout_exact, bool, 0444);
124 125
/* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */
static int rcu_fanout_leaf = RCU_FANOUT_LEAF;
126
module_param(rcu_fanout_leaf, int, 0444);
127
int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
128 129
/* Number of rcu_nodes at specified level. */
static int num_rcu_lvl[] = NUM_RCU_LVL_INIT;
130 131
int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */

132 133 134 135
/*
 * The rcu_scheduler_active variable transitions from zero to one just
 * before the first task is spawned.  So when this variable is zero, RCU
 * can assume that there is but one task, allowing RCU to (for example)
136
 * optimize synchronize_sched() to a simple barrier().  When this variable
137 138 139 140
 * is one, RCU must actually do all the hard work required to detect real
 * grace periods.  This variable is also used to suppress boot-time false
 * positives from lockdep-RCU error checking.
 */
141 142 143
int rcu_scheduler_active __read_mostly;
EXPORT_SYMBOL_GPL(rcu_scheduler_active);

144 145 146 147 148 149 150 151 152 153 154 155 156 157
/*
 * The rcu_scheduler_fully_active variable transitions from zero to one
 * during the early_initcall() processing, which is after the scheduler
 * is capable of creating new tasks.  So RCU processing (for example,
 * creating tasks for RCU priority boosting) must be delayed until after
 * rcu_scheduler_fully_active transitions from zero to one.  We also
 * currently delay invocation of any RCU callbacks until after this point.
 *
 * It might later prove better for people registering RCU callbacks during
 * early boot to take responsibility for these callbacks, but one step at
 * a time.
 */
static int rcu_scheduler_fully_active __read_mostly;

158 159
static void rcu_init_new_rnp(struct rcu_node *rnp_leaf);
static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf);
T
Thomas Gleixner 已提交
160
static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
161 162
static void invoke_rcu_core(void);
static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
163

164
/* rcuc/rcub kthread realtime priority */
165
#ifdef CONFIG_RCU_KTHREAD_PRIO
166
static int kthread_prio = CONFIG_RCU_KTHREAD_PRIO;
167 168 169
#else /* #ifdef CONFIG_RCU_KTHREAD_PRIO */
static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0;
#endif /* #else #ifdef CONFIG_RCU_KTHREAD_PRIO */
170 171
module_param(kthread_prio, int, 0644);

172
/* Delay in jiffies for grace-period initialization delays, debug only. */
173 174 175 176 177 178 179 180

#ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT
static int gp_preinit_delay = CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT_DELAY;
module_param(gp_preinit_delay, int, 0644);
#else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT */
static const int gp_preinit_delay;
#endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT */

181 182
#ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT
static int gp_init_delay = CONFIG_RCU_TORTURE_TEST_SLOW_INIT_DELAY;
183
module_param(gp_init_delay, int, 0644);
184 185 186
#else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT */
static const int gp_init_delay;
#endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT */
187

188 189 190 191 192 193 194
#ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP
static int gp_cleanup_delay = CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP_DELAY;
module_param(gp_cleanup_delay, int, 0644);
#else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP */
static const int gp_cleanup_delay;
#endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP */

195 196 197 198 199 200 201 202 203 204
/*
 * Number of grace periods between delays, normalized by the duration of
 * the delay.  The longer the the delay, the more the grace periods between
 * each delay.  The reason for this normalization is that it means that,
 * for non-zero delays, the overall slowdown of grace periods is constant
 * regardless of the duration of the delay.  This arrangement balances
 * the need for long delays to increase some race probabilities with the
 * need for fast grace periods to increase other race probabilities.
 */
#define PER_RCU_NODE_PERIOD 3	/* Number of grace periods between delays. */
205

206 207 208 209 210 211 212 213 214 215 216 217
/*
 * Track the rcutorture test sequence number and the update version
 * number within a given test.  The rcutorture_testseq is incremented
 * on every rcutorture module load and unload, so has an odd value
 * when a test is running.  The rcutorture_vernum is set to zero
 * when rcutorture starts and is incremented on each rcutorture update.
 * These variables enable correlating rcutorture output with the
 * RCU tracing information.
 */
unsigned long rcutorture_testseq;
unsigned long rcutorture_vernum;

218 219 220 221 222 223 224 225
/*
 * Compute the mask of online CPUs for the specified rcu_node structure.
 * This will not be stable unless the rcu_node structure's ->lock is
 * held, but the bit corresponding to the current CPU will be stable
 * in most contexts.
 */
unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp)
{
226
	return READ_ONCE(rnp->qsmaskinitnext);
227 228
}

229
/*
230
 * Return true if an RCU grace period is in progress.  The READ_ONCE()s
231 232 233 234 235
 * permit this function to be invoked without holding the root rcu_node
 * structure's ->lock, but of course results can be subject to change.
 */
static int rcu_gp_in_progress(struct rcu_state *rsp)
{
236
	return READ_ONCE(rsp->completed) != READ_ONCE(rsp->gpnum);
237 238
}

239
/*
240
 * Note a quiescent state.  Because we do not need to know
241
 * how many quiescent states passed, just if there was at least
242
 * one since the start of the grace period, this just sets a flag.
243
 * The caller must have disabled preemption.
244
 */
245
void rcu_sched_qs(void)
246
{
247 248 249 250 251 252
	if (!__this_cpu_read(rcu_sched_data.passed_quiesce)) {
		trace_rcu_grace_period(TPS("rcu_sched"),
				       __this_cpu_read(rcu_sched_data.gpnum),
				       TPS("cpuqs"));
		__this_cpu_write(rcu_sched_data.passed_quiesce, 1);
	}
253 254
}

255
void rcu_bh_qs(void)
256
{
257 258 259 260 261 262
	if (!__this_cpu_read(rcu_bh_data.passed_quiesce)) {
		trace_rcu_grace_period(TPS("rcu_bh"),
				       __this_cpu_read(rcu_bh_data.gpnum),
				       TPS("cpuqs"));
		__this_cpu_write(rcu_bh_data.passed_quiesce, 1);
	}
263
}
264

265 266 267 268 269 270 271 272 273 274 275
static DEFINE_PER_CPU(int, rcu_sched_qs_mask);

static DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
	.dynticks_nesting = DYNTICK_TASK_EXIT_IDLE,
	.dynticks = ATOMIC_INIT(1),
#ifdef CONFIG_NO_HZ_FULL_SYSIDLE
	.dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE,
	.dynticks_idle = ATOMIC_INIT(1),
#endif /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
};

276 277 278
DEFINE_PER_CPU_SHARED_ALIGNED(unsigned long, rcu_qs_ctr);
EXPORT_PER_CPU_SYMBOL_GPL(rcu_qs_ctr);

279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
/*
 * Let the RCU core know that this CPU has gone through the scheduler,
 * which is a quiescent state.  This is called when the need for a
 * quiescent state is urgent, so we burn an atomic operation and full
 * memory barriers to let the RCU core know about it, regardless of what
 * this CPU might (or might not) do in the near future.
 *
 * We inform the RCU core by emulating a zero-duration dyntick-idle
 * period, which we in turn do by incrementing the ->dynticks counter
 * by two.
 */
static void rcu_momentary_dyntick_idle(void)
{
	unsigned long flags;
	struct rcu_data *rdp;
	struct rcu_dynticks *rdtp;
	int resched_mask;
	struct rcu_state *rsp;

	local_irq_save(flags);

	/*
	 * Yes, we can lose flag-setting operations.  This is OK, because
	 * the flag will be set again after some delay.
	 */
	resched_mask = raw_cpu_read(rcu_sched_qs_mask);
	raw_cpu_write(rcu_sched_qs_mask, 0);

	/* Find the flavor that needs a quiescent state. */
	for_each_rcu_flavor(rsp) {
		rdp = raw_cpu_ptr(rsp->rda);
		if (!(resched_mask & rsp->flavor_mask))
			continue;
		smp_mb(); /* rcu_sched_qs_mask before cond_resched_completed. */
313 314
		if (READ_ONCE(rdp->mynode->completed) !=
		    READ_ONCE(rdp->cond_resched_completed))
315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331
			continue;

		/*
		 * Pretend to be momentarily idle for the quiescent state.
		 * This allows the grace-period kthread to record the
		 * quiescent state, with no need for this CPU to do anything
		 * further.
		 */
		rdtp = this_cpu_ptr(&rcu_dynticks);
		smp_mb__before_atomic(); /* Earlier stuff before QS. */
		atomic_add(2, &rdtp->dynticks);  /* QS. */
		smp_mb__after_atomic(); /* Later stuff after QS. */
		break;
	}
	local_irq_restore(flags);
}

332 333 334
/*
 * Note a context switch.  This is a quiescent state for RCU-sched,
 * and requires special handling for preemptible RCU.
335
 * The caller must have disabled preemption.
336
 */
337
void rcu_note_context_switch(void)
338
{
339
	trace_rcu_utilization(TPS("Start context switch"));
340
	rcu_sched_qs();
341
	rcu_preempt_note_context_switch();
342 343
	if (unlikely(raw_cpu_read(rcu_sched_qs_mask)))
		rcu_momentary_dyntick_idle();
344
	trace_rcu_utilization(TPS("End context switch"));
345
}
346
EXPORT_SYMBOL_GPL(rcu_note_context_switch);
347

348
/*
349
 * Register a quiescent state for all RCU flavors.  If there is an
350 351
 * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight
 * dyntick-idle quiescent state visible to other CPUs (but only for those
352
 * RCU flavors in desperate need of a quiescent state, which will normally
353 354 355 356 357 358 359 360 361 362 363
 * be none of them).  Either way, do a lightweight quiescent state for
 * all RCU flavors.
 */
void rcu_all_qs(void)
{
	if (unlikely(raw_cpu_read(rcu_sched_qs_mask)))
		rcu_momentary_dyntick_idle();
	this_cpu_inc(rcu_qs_ctr);
}
EXPORT_SYMBOL_GPL(rcu_all_qs);

E
Eric Dumazet 已提交
364 365 366
static long blimit = 10;	/* Maximum callbacks per rcu_do_batch. */
static long qhimark = 10000;	/* If this many pending, ignore blimit. */
static long qlowmark = 100;	/* Once only this many pending, use blimit. */
367

E
Eric Dumazet 已提交
368 369 370
module_param(blimit, long, 0444);
module_param(qhimark, long, 0444);
module_param(qlowmark, long, 0444);
371

372 373
static ulong jiffies_till_first_fqs = ULONG_MAX;
static ulong jiffies_till_next_fqs = ULONG_MAX;
374 375 376 377

module_param(jiffies_till_first_fqs, ulong, 0644);
module_param(jiffies_till_next_fqs, ulong, 0644);

378 379 380 381 382 383 384
/*
 * How long the grace period must be before we start recruiting
 * quiescent-state help from rcu_note_context_switch().
 */
static ulong jiffies_till_sched_qs = HZ / 20;
module_param(jiffies_till_sched_qs, ulong, 0644);

385
static bool rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
386
				  struct rcu_data *rdp);
387 388 389 390
static void force_qs_rnp(struct rcu_state *rsp,
			 int (*f)(struct rcu_data *rsp, bool *isidle,
				  unsigned long *maxj),
			 bool *isidle, unsigned long *maxj);
391
static void force_quiescent_state(struct rcu_state *rsp);
392
static int rcu_pending(void);
393 394

/*
395
 * Return the number of RCU batches started thus far for debug & stats.
396
 */
397 398 399 400 401 402 403 404
unsigned long rcu_batches_started(void)
{
	return rcu_state_p->gpnum;
}
EXPORT_SYMBOL_GPL(rcu_batches_started);

/*
 * Return the number of RCU-sched batches started thus far for debug & stats.
405
 */
406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431
unsigned long rcu_batches_started_sched(void)
{
	return rcu_sched_state.gpnum;
}
EXPORT_SYMBOL_GPL(rcu_batches_started_sched);

/*
 * Return the number of RCU BH batches started thus far for debug & stats.
 */
unsigned long rcu_batches_started_bh(void)
{
	return rcu_bh_state.gpnum;
}
EXPORT_SYMBOL_GPL(rcu_batches_started_bh);

/*
 * Return the number of RCU batches completed thus far for debug & stats.
 */
unsigned long rcu_batches_completed(void)
{
	return rcu_state_p->completed;
}
EXPORT_SYMBOL_GPL(rcu_batches_completed);

/*
 * Return the number of RCU-sched batches completed thus far for debug & stats.
432
 */
433
unsigned long rcu_batches_completed_sched(void)
434
{
435
	return rcu_sched_state.completed;
436
}
437
EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
438 439

/*
440
 * Return the number of RCU BH batches completed thus far for debug & stats.
441
 */
442
unsigned long rcu_batches_completed_bh(void)
443 444 445 446 447
{
	return rcu_bh_state.completed;
}
EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);

448 449 450 451 452
/*
 * Force a quiescent state.
 */
void rcu_force_quiescent_state(void)
{
453
	force_quiescent_state(rcu_state_p);
454 455 456
}
EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);

457 458 459 460 461
/*
 * Force a quiescent state for RCU BH.
 */
void rcu_bh_force_quiescent_state(void)
{
462
	force_quiescent_state(&rcu_bh_state);
463 464 465
}
EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);

466 467 468 469 470 471 472 473 474
/*
 * Force a quiescent state for RCU-sched.
 */
void rcu_sched_force_quiescent_state(void)
{
	force_quiescent_state(&rcu_sched_state);
}
EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);

475 476 477 478 479 480 481 482 483 484 485 486 487 488 489
/*
 * Show the state of the grace-period kthreads.
 */
void show_rcu_gp_kthreads(void)
{
	struct rcu_state *rsp;

	for_each_rcu_flavor(rsp) {
		pr_info("%s: wait state: %d ->state: %#lx\n",
			rsp->name, rsp->gp_state, rsp->gp_kthread->state);
		/* sched_show_task(rsp->gp_kthread); */
	}
}
EXPORT_SYMBOL_GPL(show_rcu_gp_kthreads);

490 491 492 493 494 495 496 497 498 499 500 501 502 503
/*
 * Record the number of times rcutorture tests have been initiated and
 * terminated.  This information allows the debugfs tracing stats to be
 * correlated to the rcutorture messages, even when the rcutorture module
 * is being repeatedly loaded and unloaded.  In other words, we cannot
 * store this state in rcutorture itself.
 */
void rcutorture_record_test_transition(void)
{
	rcutorture_testseq++;
	rcutorture_vernum = 0;
}
EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);

504 505 506 507 508 509 510 511 512 513
/*
 * Send along grace-period-related data for rcutorture diagnostics.
 */
void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
			    unsigned long *gpnum, unsigned long *completed)
{
	struct rcu_state *rsp = NULL;

	switch (test_type) {
	case RCU_FLAVOR:
514
		rsp = rcu_state_p;
515 516 517 518 519 520 521 522 523 524 525
		break;
	case RCU_BH_FLAVOR:
		rsp = &rcu_bh_state;
		break;
	case RCU_SCHED_FLAVOR:
		rsp = &rcu_sched_state;
		break;
	default:
		break;
	}
	if (rsp != NULL) {
526 527 528
		*flags = READ_ONCE(rsp->gp_flags);
		*gpnum = READ_ONCE(rsp->gpnum);
		*completed = READ_ONCE(rsp->completed);
529 530 531 532 533 534 535 536
		return;
	}
	*flags = 0;
	*gpnum = 0;
	*completed = 0;
}
EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);

537 538 539 540 541 542 543 544 545 546 547
/*
 * Record the number of writer passes through the current rcutorture test.
 * This is also used to correlate debugfs tracing stats with the rcutorture
 * messages.
 */
void rcutorture_record_progress(unsigned long vernum)
{
	rcutorture_vernum++;
}
EXPORT_SYMBOL_GPL(rcutorture_record_progress);

548 549 550 551 552 553
/*
 * Does the CPU have callbacks ready to be invoked?
 */
static int
cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
{
P
Paul E. McKenney 已提交
554 555
	return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL] &&
	       rdp->nxttail[RCU_DONE_TAIL] != NULL;
556 557
}

558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573
/*
 * Return the root node of the specified rcu_state structure.
 */
static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
{
	return &rsp->node[0];
}

/*
 * Is there any need for future grace periods?
 * Interrupts must be disabled.  If the caller does not hold the root
 * rnp_node structure's ->lock, the results are advisory only.
 */
static int rcu_future_needs_gp(struct rcu_state *rsp)
{
	struct rcu_node *rnp = rcu_get_root(rsp);
574
	int idx = (READ_ONCE(rnp->completed) + 1) & 0x1;
575 576
	int *fp = &rnp->need_future_gp[idx];

577
	return READ_ONCE(*fp);
578 579
}

580
/*
581 582 583
 * Does the current CPU require a not-yet-started grace period?
 * The caller must have disabled interrupts to prevent races with
 * normal callback registry.
584 585 586 587
 */
static int
cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
{
588
	int i;
P
Paul E. McKenney 已提交
589

590 591
	if (rcu_gp_in_progress(rsp))
		return 0;  /* No, a grace period is already in progress. */
592
	if (rcu_future_needs_gp(rsp))
593
		return 1;  /* Yes, a no-CBs CPU needs one. */
594 595 596 597 598 599
	if (!rdp->nxttail[RCU_NEXT_TAIL])
		return 0;  /* No, this is a no-CBs (or offline) CPU. */
	if (*rdp->nxttail[RCU_NEXT_READY_TAIL])
		return 1;  /* Yes, this CPU has newly registered callbacks. */
	for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++)
		if (rdp->nxttail[i - 1] != rdp->nxttail[i] &&
600
		    ULONG_CMP_LT(READ_ONCE(rsp->completed),
601 602 603
				 rdp->nxtcompleted[i]))
			return 1;  /* Yes, CBs for future grace period. */
	return 0; /* No grace period needed. */
604 605
}

606
/*
607
 * rcu_eqs_enter_common - current CPU is moving towards extended quiescent state
608 609 610 611 612
 *
 * If the new value of the ->dynticks_nesting counter now is zero,
 * we really have entered idle, and must do the appropriate accounting.
 * The caller must have disabled interrupts.
 */
613
static void rcu_eqs_enter_common(long long oldval, bool user)
614
{
615 616
	struct rcu_state *rsp;
	struct rcu_data *rdp;
617
	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
618

619
	trace_rcu_dyntick(TPS("Start"), oldval, rdtp->dynticks_nesting);
620 621
	if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
	    !user && !is_idle_task(current)) {
622 623
		struct task_struct *idle __maybe_unused =
			idle_task(smp_processor_id());
624

625
		trace_rcu_dyntick(TPS("Error on entry: not idle task"), oldval, 0);
626
		ftrace_dump(DUMP_ORIG);
627 628 629
		WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
			  current->pid, current->comm,
			  idle->pid, idle->comm); /* must be idle task! */
630
	}
631 632 633 634
	for_each_rcu_flavor(rsp) {
		rdp = this_cpu_ptr(rsp->rda);
		do_nocb_deferred_wakeup(rdp);
	}
635
	rcu_prepare_for_idle();
636
	/* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
637
	smp_mb__before_atomic();  /* See above. */
638
	atomic_inc(&rdtp->dynticks);
639
	smp_mb__after_atomic();  /* Force ordering with next sojourn. */
640 641
	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
		     atomic_read(&rdtp->dynticks) & 0x1);
642
	rcu_dynticks_task_enter();
643 644

	/*
645
	 * It is illegal to enter an extended quiescent state while
646 647 648 649 650 651 652 653
	 * in an RCU read-side critical section.
	 */
	rcu_lockdep_assert(!lock_is_held(&rcu_lock_map),
			   "Illegal idle entry in RCU read-side critical section.");
	rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map),
			   "Illegal idle entry in RCU-bh read-side critical section.");
	rcu_lockdep_assert(!lock_is_held(&rcu_sched_lock_map),
			   "Illegal idle entry in RCU-sched read-side critical section.");
654
}
655

656 657 658
/*
 * Enter an RCU extended quiescent state, which can be either the
 * idle loop or adaptive-tickless usermode execution.
659
 */
660
static void rcu_eqs_enter(bool user)
661
{
662
	long long oldval;
663 664
	struct rcu_dynticks *rdtp;

665
	rdtp = this_cpu_ptr(&rcu_dynticks);
666
	oldval = rdtp->dynticks_nesting;
667 668
	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
		     (oldval & DYNTICK_TASK_NEST_MASK) == 0);
669
	if ((oldval & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE) {
670
		rdtp->dynticks_nesting = 0;
671
		rcu_eqs_enter_common(oldval, user);
672
	} else {
673
		rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE;
674
	}
675
}
676 677 678 679 680 681 682 683 684 685 686 687 688 689 690

/**
 * rcu_idle_enter - inform RCU that current CPU is entering idle
 *
 * Enter idle mode, in other words, -leave- the mode in which RCU
 * read-side critical sections can occur.  (Though RCU read-side
 * critical sections can occur in irq handlers in idle, a possibility
 * handled by irq_enter() and irq_exit().)
 *
 * We crowbar the ->dynticks_nesting field to zero to allow for
 * the possibility of usermode upcalls having messed up our count
 * of interrupt nesting level during the prior busy period.
 */
void rcu_idle_enter(void)
{
691 692 693
	unsigned long flags;

	local_irq_save(flags);
694
	rcu_eqs_enter(false);
695
	rcu_sysidle_enter(0);
696
	local_irq_restore(flags);
697
}
698
EXPORT_SYMBOL_GPL(rcu_idle_enter);
699

700
#ifdef CONFIG_RCU_USER_QS
701 702 703 704 705 706 707 708 709 710
/**
 * rcu_user_enter - inform RCU that we are resuming userspace.
 *
 * Enter RCU idle mode right before resuming userspace.  No use of RCU
 * is permitted between this call and rcu_user_exit(). This way the
 * CPU doesn't need to maintain the tick for RCU maintenance purposes
 * when the CPU runs in userspace.
 */
void rcu_user_enter(void)
{
711
	rcu_eqs_enter(1);
712
}
713
#endif /* CONFIG_RCU_USER_QS */
714

715 716 717 718 719 720
/**
 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
 *
 * Exit from an interrupt handler, which might possibly result in entering
 * idle mode, in other words, leaving the mode in which read-side critical
 * sections can occur.
721
 *
722 723 724 725 726 727 728 729
 * This code assumes that the idle loop never does anything that might
 * result in unbalanced calls to irq_enter() and irq_exit().  If your
 * architecture violates this assumption, RCU will give you what you
 * deserve, good and hard.  But very infrequently and irreproducibly.
 *
 * Use things like work queues to work around this limitation.
 *
 * You have been warned.
730
 */
731
void rcu_irq_exit(void)
732 733
{
	unsigned long flags;
734
	long long oldval;
735 736 737
	struct rcu_dynticks *rdtp;

	local_irq_save(flags);
738
	rdtp = this_cpu_ptr(&rcu_dynticks);
739
	oldval = rdtp->dynticks_nesting;
740
	rdtp->dynticks_nesting--;
741 742
	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
		     rdtp->dynticks_nesting < 0);
743
	if (rdtp->dynticks_nesting)
744
		trace_rcu_dyntick(TPS("--="), oldval, rdtp->dynticks_nesting);
745
	else
746 747
		rcu_eqs_enter_common(oldval, true);
	rcu_sysidle_enter(1);
748 749 750 751
	local_irq_restore(flags);
}

/*
752
 * rcu_eqs_exit_common - current CPU moving away from extended quiescent state
753 754 755 756 757
 *
 * If the new value of the ->dynticks_nesting counter was previously zero,
 * we really have exited idle, and must do the appropriate accounting.
 * The caller must have disabled interrupts.
 */
758
static void rcu_eqs_exit_common(long long oldval, int user)
759
{
760 761
	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);

762
	rcu_dynticks_task_exit();
763
	smp_mb__before_atomic();  /* Force ordering w/previous sojourn. */
764 765
	atomic_inc(&rdtp->dynticks);
	/* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
766
	smp_mb__after_atomic();  /* See above. */
767 768
	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
		     !(atomic_read(&rdtp->dynticks) & 0x1));
769
	rcu_cleanup_after_idle();
770
	trace_rcu_dyntick(TPS("End"), oldval, rdtp->dynticks_nesting);
771 772
	if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
	    !user && !is_idle_task(current)) {
773 774
		struct task_struct *idle __maybe_unused =
			idle_task(smp_processor_id());
775

776
		trace_rcu_dyntick(TPS("Error on exit: not idle task"),
777
				  oldval, rdtp->dynticks_nesting);
778
		ftrace_dump(DUMP_ORIG);
779 780 781
		WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
			  current->pid, current->comm,
			  idle->pid, idle->comm); /* must be idle task! */
782 783 784
	}
}

785 786 787
/*
 * Exit an RCU extended quiescent state, which can be either the
 * idle loop or adaptive-tickless usermode execution.
788
 */
789
static void rcu_eqs_exit(bool user)
790 791 792 793
{
	struct rcu_dynticks *rdtp;
	long long oldval;

794
	rdtp = this_cpu_ptr(&rcu_dynticks);
795
	oldval = rdtp->dynticks_nesting;
796
	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && oldval < 0);
797
	if (oldval & DYNTICK_TASK_NEST_MASK) {
798
		rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
799
	} else {
800
		rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
801
		rcu_eqs_exit_common(oldval, user);
802
	}
803
}
804 805 806 807 808 809 810 811 812 813 814 815 816 817

/**
 * rcu_idle_exit - inform RCU that current CPU is leaving idle
 *
 * Exit idle mode, in other words, -enter- the mode in which RCU
 * read-side critical sections can occur.
 *
 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
 * allow for the possibility of usermode upcalls messing up our count
 * of interrupt nesting level during the busy period that is just
 * now starting.
 */
void rcu_idle_exit(void)
{
818 819 820
	unsigned long flags;

	local_irq_save(flags);
821
	rcu_eqs_exit(false);
822
	rcu_sysidle_exit(0);
823
	local_irq_restore(flags);
824
}
825
EXPORT_SYMBOL_GPL(rcu_idle_exit);
826

827
#ifdef CONFIG_RCU_USER_QS
828 829 830 831 832 833 834 835
/**
 * rcu_user_exit - inform RCU that we are exiting userspace.
 *
 * Exit RCU idle mode while entering the kernel because it can
 * run a RCU read side critical section anytime.
 */
void rcu_user_exit(void)
{
836
	rcu_eqs_exit(1);
837
}
838
#endif /* CONFIG_RCU_USER_QS */
839

840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865
/**
 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
 *
 * Enter an interrupt handler, which might possibly result in exiting
 * idle mode, in other words, entering the mode in which read-side critical
 * sections can occur.
 *
 * Note that the Linux kernel is fully capable of entering an interrupt
 * handler that it never exits, for example when doing upcalls to
 * user mode!  This code assumes that the idle loop never does upcalls to
 * user mode.  If your architecture does do upcalls from the idle loop (or
 * does anything else that results in unbalanced calls to the irq_enter()
 * and irq_exit() functions), RCU will give you what you deserve, good
 * and hard.  But very infrequently and irreproducibly.
 *
 * Use things like work queues to work around this limitation.
 *
 * You have been warned.
 */
void rcu_irq_enter(void)
{
	unsigned long flags;
	struct rcu_dynticks *rdtp;
	long long oldval;

	local_irq_save(flags);
866
	rdtp = this_cpu_ptr(&rcu_dynticks);
867 868
	oldval = rdtp->dynticks_nesting;
	rdtp->dynticks_nesting++;
869 870
	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
		     rdtp->dynticks_nesting == 0);
871
	if (oldval)
872
		trace_rcu_dyntick(TPS("++="), oldval, rdtp->dynticks_nesting);
873
	else
874 875
		rcu_eqs_exit_common(oldval, true);
	rcu_sysidle_exit(1);
876 877 878 879 880 881
	local_irq_restore(flags);
}

/**
 * rcu_nmi_enter - inform RCU of entry to NMI context
 *
882 883 884 885 886
 * If the CPU was idle from RCU's viewpoint, update rdtp->dynticks and
 * rdtp->dynticks_nmi_nesting to let the RCU grace-period handling know
 * that the CPU is active.  This implementation permits nested NMIs, as
 * long as the nesting level does not overflow an int.  (You will probably
 * run out of stack space first.)
887 888 889
 */
void rcu_nmi_enter(void)
{
890
	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
891
	int incby = 2;
892

893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913
	/* Complain about underflow. */
	WARN_ON_ONCE(rdtp->dynticks_nmi_nesting < 0);

	/*
	 * If idle from RCU viewpoint, atomically increment ->dynticks
	 * to mark non-idle and increment ->dynticks_nmi_nesting by one.
	 * Otherwise, increment ->dynticks_nmi_nesting by two.  This means
	 * if ->dynticks_nmi_nesting is equal to one, we are guaranteed
	 * to be in the outermost NMI handler that interrupted an RCU-idle
	 * period (observation due to Andy Lutomirski).
	 */
	if (!(atomic_read(&rdtp->dynticks) & 0x1)) {
		smp_mb__before_atomic();  /* Force delay from prior write. */
		atomic_inc(&rdtp->dynticks);
		/* atomic_inc() before later RCU read-side crit sects */
		smp_mb__after_atomic();  /* See above. */
		WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
		incby = 1;
	}
	rdtp->dynticks_nmi_nesting += incby;
	barrier();
914 915 916 917 918
}

/**
 * rcu_nmi_exit - inform RCU of exit from NMI context
 *
919 920 921 922
 * If we are returning from the outermost NMI handler that interrupted an
 * RCU-idle period, update rdtp->dynticks and rdtp->dynticks_nmi_nesting
 * to let the RCU grace-period handling know that the CPU is back to
 * being RCU-idle.
923 924 925
 */
void rcu_nmi_exit(void)
{
926
	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
927

928 929 930 931 932 933 934 935 936 937 938 939 940 941
	/*
	 * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks.
	 * (We are exiting an NMI handler, so RCU better be paying attention
	 * to us!)
	 */
	WARN_ON_ONCE(rdtp->dynticks_nmi_nesting <= 0);
	WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));

	/*
	 * If the nesting level is not 1, the CPU wasn't RCU-idle, so
	 * leave it in non-RCU-idle state.
	 */
	if (rdtp->dynticks_nmi_nesting != 1) {
		rdtp->dynticks_nmi_nesting -= 2;
942
		return;
943 944 945 946
	}

	/* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */
	rdtp->dynticks_nmi_nesting = 0;
947
	/* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
948
	smp_mb__before_atomic();  /* See above. */
949
	atomic_inc(&rdtp->dynticks);
950
	smp_mb__after_atomic();  /* Force delay to next write. */
951
	WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
952 953 954
}

/**
955 956 957 958 959 960 961
 * __rcu_is_watching - are RCU read-side critical sections safe?
 *
 * Return true if RCU is watching the running CPU, which means that
 * this CPU can safely enter RCU read-side critical sections.  Unlike
 * rcu_is_watching(), the caller of __rcu_is_watching() must have at
 * least disabled preemption.
 */
962
bool notrace __rcu_is_watching(void)
963 964 965 966 967 968
{
	return atomic_read(this_cpu_ptr(&rcu_dynticks.dynticks)) & 0x1;
}

/**
 * rcu_is_watching - see if RCU thinks that the current CPU is idle
969
 *
970
 * If the current CPU is in its idle loop and is neither in an interrupt
971
 * or NMI handler, return true.
972
 */
973
bool notrace rcu_is_watching(void)
974
{
975
	bool ret;
976 977

	preempt_disable();
978
	ret = __rcu_is_watching();
979 980
	preempt_enable();
	return ret;
981
}
982
EXPORT_SYMBOL_GPL(rcu_is_watching);
983

984
#if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
985 986 987 988 989 990 991

/*
 * Is the current CPU online?  Disable preemption to avoid false positives
 * that could otherwise happen due to the current CPU number being sampled,
 * this task being preempted, its old CPU being taken offline, resuming
 * on some other CPU, then determining that its old CPU is now offline.
 * It is OK to use RCU on an offline processor during initial boot, hence
992 993 994 995 996 997 998 999 1000 1001 1002
 * the check for rcu_scheduler_fully_active.  Note also that it is OK
 * for a CPU coming online to use RCU for one jiffy prior to marking itself
 * online in the cpu_online_mask.  Similarly, it is OK for a CPU going
 * offline to continue to use RCU for one jiffy after marking itself
 * offline in the cpu_online_mask.  This leniency is necessary given the
 * non-atomic nature of the online and offline processing, for example,
 * the fact that a CPU enters the scheduler after completing the CPU_DYING
 * notifiers.
 *
 * This is also why RCU internally marks CPUs online during the
 * CPU_UP_PREPARE phase and offline during the CPU_DEAD phase.
1003 1004 1005 1006 1007 1008
 *
 * Disable checking if in an NMI handler because we cannot safely report
 * errors from NMI handlers anyway.
 */
bool rcu_lockdep_current_cpu_online(void)
{
1009 1010
	struct rcu_data *rdp;
	struct rcu_node *rnp;
1011 1012 1013
	bool ret;

	if (in_nmi())
F
Fengguang Wu 已提交
1014
		return true;
1015
	preempt_disable();
1016
	rdp = this_cpu_ptr(&rcu_sched_data);
1017
	rnp = rdp->mynode;
1018
	ret = (rdp->grpmask & rcu_rnp_online_cpus(rnp)) ||
1019 1020 1021 1022 1023 1024
	      !rcu_scheduler_fully_active;
	preempt_enable();
	return ret;
}
EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);

1025
#endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
1026

1027
/**
1028
 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
1029
 *
1030 1031 1032
 * If the current CPU is idle or running at a first-level (not nested)
 * interrupt from idle, return true.  The caller must have at least
 * disabled preemption.
1033
 */
1034
static int rcu_is_cpu_rrupt_from_idle(void)
1035
{
1036
	return __this_cpu_read(rcu_dynticks.dynticks_nesting) <= 1;
1037 1038 1039 1040 1041
}

/*
 * Snapshot the specified CPU's dynticks counter so that we can later
 * credit them with an implicit quiescent state.  Return 1 if this CPU
1042
 * is in dynticks idle mode, which is an extended quiescent state.
1043
 */
1044 1045
static int dyntick_save_progress_counter(struct rcu_data *rdp,
					 bool *isidle, unsigned long *maxj)
1046
{
1047
	rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
1048
	rcu_sysidle_check_cpu(rdp, isidle, maxj);
1049 1050 1051 1052
	if ((rdp->dynticks_snap & 0x1) == 0) {
		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
		return 1;
	} else {
1053
		if (ULONG_CMP_LT(READ_ONCE(rdp->gpnum) + ULONG_MAX / 4,
1054
				 rdp->mynode->gpnum))
1055
			WRITE_ONCE(rdp->gpwrap, true);
1056 1057
		return 0;
	}
1058 1059 1060 1061 1062 1063
}

/*
 * Return true if the specified CPU has passed through a quiescent
 * state by virtue of being in or having passed through an dynticks
 * idle state since the last call to dyntick_save_progress_counter()
1064
 * for this same CPU, or by virtue of having been offline.
1065
 */
1066 1067
static int rcu_implicit_dynticks_qs(struct rcu_data *rdp,
				    bool *isidle, unsigned long *maxj)
1068
{
1069
	unsigned int curr;
1070
	int *rcrmp;
1071
	unsigned int snap;
1072

1073 1074
	curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks);
	snap = (unsigned int)rdp->dynticks_snap;
1075 1076 1077 1078 1079 1080 1081 1082 1083

	/*
	 * If the CPU passed through or entered a dynticks idle phase with
	 * no active irq/NMI handlers, then we can safely pretend that the CPU
	 * already acknowledged the request to pass through a quiescent
	 * state.  Either way, that CPU cannot possibly be in an RCU
	 * read-side critical section that started before the beginning
	 * of the current RCU grace period.
	 */
1084
	if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) {
1085
		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
1086 1087 1088 1089
		rdp->dynticks_fqs++;
		return 1;
	}

1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104
	/*
	 * Check for the CPU being offline, but only if the grace period
	 * is old enough.  We don't need to worry about the CPU changing
	 * state: If we see it offline even once, it has been through a
	 * quiescent state.
	 *
	 * The reason for insisting that the grace period be at least
	 * one jiffy old is that CPUs that are not quite online and that
	 * have just gone offline can still execute RCU read-side critical
	 * sections.
	 */
	if (ULONG_CMP_GE(rdp->rsp->gp_start + 2, jiffies))
		return 0;  /* Grace period is not old enough. */
	barrier();
	if (cpu_is_offline(rdp->cpu)) {
1105
		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("ofl"));
1106 1107 1108
		rdp->offline_fqs++;
		return 1;
	}
1109 1110

	/*
1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129
	 * A CPU running for an extended time within the kernel can
	 * delay RCU grace periods.  When the CPU is in NO_HZ_FULL mode,
	 * even context-switching back and forth between a pair of
	 * in-kernel CPU-bound tasks cannot advance grace periods.
	 * So if the grace period is old enough, make the CPU pay attention.
	 * Note that the unsynchronized assignments to the per-CPU
	 * rcu_sched_qs_mask variable are safe.  Yes, setting of
	 * bits can be lost, but they will be set again on the next
	 * force-quiescent-state pass.  So lost bit sets do not result
	 * in incorrect behavior, merely in a grace period lasting
	 * a few jiffies longer than it might otherwise.  Because
	 * there are at most four threads involved, and because the
	 * updates are only once every few jiffies, the probability of
	 * lossage (and thus of slight grace-period extension) is
	 * quite low.
	 *
	 * Note that if the jiffies_till_sched_qs boot/sysfs parameter
	 * is set too high, we override with half of the RCU CPU stall
	 * warning delay.
1130
	 */
1131 1132 1133
	rcrmp = &per_cpu(rcu_sched_qs_mask, rdp->cpu);
	if (ULONG_CMP_GE(jiffies,
			 rdp->rsp->gp_start + jiffies_till_sched_qs) ||
1134
	    ULONG_CMP_GE(jiffies, rdp->rsp->jiffies_resched)) {
1135 1136 1137
		if (!(READ_ONCE(*rcrmp) & rdp->rsp->flavor_mask)) {
			WRITE_ONCE(rdp->cond_resched_completed,
				   READ_ONCE(rdp->mynode->completed));
1138
			smp_mb(); /* ->cond_resched_completed before *rcrmp. */
1139 1140
			WRITE_ONCE(*rcrmp,
				   READ_ONCE(*rcrmp) + rdp->rsp->flavor_mask);
1141 1142 1143 1144 1145 1146 1147
			resched_cpu(rdp->cpu);  /* Force CPU into scheduler. */
			rdp->rsp->jiffies_resched += 5; /* Enable beating. */
		} else if (ULONG_CMP_GE(jiffies, rdp->rsp->jiffies_resched)) {
			/* Time to beat on that CPU again! */
			resched_cpu(rdp->cpu);  /* Force CPU into scheduler. */
			rdp->rsp->jiffies_resched += 5; /* Re-enable beating. */
		}
1148 1149
	}

1150
	return 0;
1151 1152 1153 1154
}

static void record_gp_stall_check_time(struct rcu_state *rsp)
{
1155
	unsigned long j = jiffies;
1156
	unsigned long j1;
1157 1158 1159

	rsp->gp_start = j;
	smp_wmb(); /* Record start time before stall time. */
1160
	j1 = rcu_jiffies_till_stall_check();
1161
	WRITE_ONCE(rsp->jiffies_stall, j + j1);
1162
	rsp->jiffies_resched = j + j1 / 2;
1163
	rsp->n_force_qs_gpstart = READ_ONCE(rsp->n_force_qs);
1164 1165
}

1166 1167 1168 1169 1170 1171 1172 1173 1174
/*
 * Complain about starvation of grace-period kthread.
 */
static void rcu_check_gp_kthread_starvation(struct rcu_state *rsp)
{
	unsigned long gpa;
	unsigned long j;

	j = jiffies;
1175
	gpa = READ_ONCE(rsp->gp_activity);
1176
	if (j - gpa > 2 * HZ)
1177
		pr_err("%s kthread starved for %ld jiffies! g%lu c%lu f%#x s%d ->state=%#lx\n",
1178
		       rsp->name, j - gpa,
1179 1180 1181
		       rsp->gpnum, rsp->completed,
		       rsp->gp_flags, rsp->gp_state,
		       rsp->gp_kthread ? rsp->gp_kthread->state : 0);
1182 1183
}

1184
/*
1185
 * Dump stacks of all tasks running on stalled CPUs.
1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203
 */
static void rcu_dump_cpu_stacks(struct rcu_state *rsp)
{
	int cpu;
	unsigned long flags;
	struct rcu_node *rnp;

	rcu_for_each_leaf_node(rsp, rnp) {
		raw_spin_lock_irqsave(&rnp->lock, flags);
		if (rnp->qsmask != 0) {
			for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
				if (rnp->qsmask & (1UL << cpu))
					dump_cpu_task(rnp->grplo + cpu);
		}
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
	}
}

1204
static void print_other_cpu_stall(struct rcu_state *rsp, unsigned long gpnum)
1205 1206 1207 1208
{
	int cpu;
	long delta;
	unsigned long flags;
1209 1210
	unsigned long gpa;
	unsigned long j;
1211
	int ndetected = 0;
1212
	struct rcu_node *rnp = rcu_get_root(rsp);
1213
	long totqlen = 0;
1214 1215 1216

	/* Only let one CPU complain about others per time interval. */

P
Paul E. McKenney 已提交
1217
	raw_spin_lock_irqsave(&rnp->lock, flags);
1218
	delta = jiffies - READ_ONCE(rsp->jiffies_stall);
1219
	if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
P
Paul E. McKenney 已提交
1220
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1221 1222
		return;
	}
1223 1224
	WRITE_ONCE(rsp->jiffies_stall,
		   jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
P
Paul E. McKenney 已提交
1225
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
1226

1227 1228 1229 1230 1231
	/*
	 * OK, time to rat on our buddy...
	 * See Documentation/RCU/stallwarn.txt for info on how to debug
	 * RCU CPU stall warnings.
	 */
1232
	pr_err("INFO: %s detected stalls on CPUs/tasks:",
1233
	       rsp->name);
1234
	print_cpu_stall_info_begin();
1235
	rcu_for_each_leaf_node(rsp, rnp) {
1236
		raw_spin_lock_irqsave(&rnp->lock, flags);
1237
		ndetected += rcu_print_task_stall(rnp);
1238 1239 1240 1241 1242 1243 1244 1245
		if (rnp->qsmask != 0) {
			for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
				if (rnp->qsmask & (1UL << cpu)) {
					print_cpu_stall_info(rsp,
							     rnp->grplo + cpu);
					ndetected++;
				}
		}
1246
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1247
	}
1248 1249

	print_cpu_stall_info_end();
1250 1251
	for_each_possible_cpu(cpu)
		totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
1252
	pr_cont("(detected by %d, t=%ld jiffies, g=%ld, c=%ld, q=%lu)\n",
1253
	       smp_processor_id(), (long)(jiffies - rsp->gp_start),
1254
	       (long)rsp->gpnum, (long)rsp->completed, totqlen);
1255
	if (ndetected) {
1256
		rcu_dump_cpu_stacks(rsp);
1257
	} else {
1258 1259
		if (READ_ONCE(rsp->gpnum) != gpnum ||
		    READ_ONCE(rsp->completed) == gpnum) {
1260 1261 1262
			pr_err("INFO: Stall ended before state dump start\n");
		} else {
			j = jiffies;
1263
			gpa = READ_ONCE(rsp->gp_activity);
1264
			pr_err("All QSes seen, last %s kthread activity %ld (%ld-%ld), jiffies_till_next_fqs=%ld, root ->qsmask %#lx\n",
1265
			       rsp->name, j - gpa, j, gpa,
1266 1267
			       jiffies_till_next_fqs,
			       rcu_get_root(rsp)->qsmask);
1268 1269 1270 1271
			/* In this case, the current CPU might be at fault. */
			sched_show_task(current);
		}
	}
1272

1273
	/* Complain about tasks blocking the grace period. */
1274 1275
	rcu_print_detail_task_stall(rsp);

1276 1277
	rcu_check_gp_kthread_starvation(rsp);

1278
	force_quiescent_state(rsp);  /* Kick them all. */
1279 1280 1281 1282
}

static void print_cpu_stall(struct rcu_state *rsp)
{
1283
	int cpu;
1284 1285
	unsigned long flags;
	struct rcu_node *rnp = rcu_get_root(rsp);
1286
	long totqlen = 0;
1287

1288 1289 1290 1291 1292
	/*
	 * OK, time to rat on ourselves...
	 * See Documentation/RCU/stallwarn.txt for info on how to debug
	 * RCU CPU stall warnings.
	 */
1293
	pr_err("INFO: %s self-detected stall on CPU", rsp->name);
1294 1295 1296
	print_cpu_stall_info_begin();
	print_cpu_stall_info(rsp, smp_processor_id());
	print_cpu_stall_info_end();
1297 1298
	for_each_possible_cpu(cpu)
		totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
1299 1300 1301
	pr_cont(" (t=%lu jiffies g=%ld c=%ld q=%lu)\n",
		jiffies - rsp->gp_start,
		(long)rsp->gpnum, (long)rsp->completed, totqlen);
1302 1303 1304

	rcu_check_gp_kthread_starvation(rsp);

1305
	rcu_dump_cpu_stacks(rsp);
1306

P
Paul E. McKenney 已提交
1307
	raw_spin_lock_irqsave(&rnp->lock, flags);
1308 1309 1310
	if (ULONG_CMP_GE(jiffies, READ_ONCE(rsp->jiffies_stall)))
		WRITE_ONCE(rsp->jiffies_stall,
			   jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
P
Paul E. McKenney 已提交
1311
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
1312

1313 1314 1315 1316 1317 1318 1319 1320
	/*
	 * Attempt to revive the RCU machinery by forcing a context switch.
	 *
	 * A context switch would normally allow the RCU state machine to make
	 * progress and it could be we're stuck in kernel space without context
	 * switches for an entirely unreasonable amount of time.
	 */
	resched_cpu(smp_processor_id());
1321 1322 1323 1324
}

static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
{
1325 1326 1327
	unsigned long completed;
	unsigned long gpnum;
	unsigned long gps;
1328 1329
	unsigned long j;
	unsigned long js;
1330 1331
	struct rcu_node *rnp;

1332
	if (rcu_cpu_stall_suppress || !rcu_gp_in_progress(rsp))
1333
		return;
1334
	j = jiffies;
1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352

	/*
	 * Lots of memory barriers to reject false positives.
	 *
	 * The idea is to pick up rsp->gpnum, then rsp->jiffies_stall,
	 * then rsp->gp_start, and finally rsp->completed.  These values
	 * are updated in the opposite order with memory barriers (or
	 * equivalent) during grace-period initialization and cleanup.
	 * Now, a false positive can occur if we get an new value of
	 * rsp->gp_start and a old value of rsp->jiffies_stall.  But given
	 * the memory barriers, the only way that this can happen is if one
	 * grace period ends and another starts between these two fetches.
	 * Detect this by comparing rsp->completed with the previous fetch
	 * from rsp->gpnum.
	 *
	 * Given this check, comparisons of jiffies, rsp->jiffies_stall,
	 * and rsp->gp_start suffice to forestall false positives.
	 */
1353
	gpnum = READ_ONCE(rsp->gpnum);
1354
	smp_rmb(); /* Pick up ->gpnum first... */
1355
	js = READ_ONCE(rsp->jiffies_stall);
1356
	smp_rmb(); /* ...then ->jiffies_stall before the rest... */
1357
	gps = READ_ONCE(rsp->gp_start);
1358
	smp_rmb(); /* ...and finally ->gp_start before ->completed. */
1359
	completed = READ_ONCE(rsp->completed);
1360 1361 1362 1363
	if (ULONG_CMP_GE(completed, gpnum) ||
	    ULONG_CMP_LT(j, js) ||
	    ULONG_CMP_GE(gps, js))
		return; /* No stall or GP completed since entering function. */
1364
	rnp = rdp->mynode;
1365
	if (rcu_gp_in_progress(rsp) &&
1366
	    (READ_ONCE(rnp->qsmask) & rdp->grpmask)) {
1367 1368 1369 1370

		/* We haven't checked in, so go dump stack. */
		print_cpu_stall(rsp);

1371 1372
	} else if (rcu_gp_in_progress(rsp) &&
		   ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
1373

1374
		/* They had a few time units to dump stack, so complain. */
1375
		print_other_cpu_stall(rsp, gpnum);
1376 1377 1378
	}
}

1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389
/**
 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
 *
 * Set the stall-warning timeout way off into the future, thus preventing
 * any RCU CPU stall-warning messages from appearing in the current set of
 * RCU grace periods.
 *
 * The caller must disable hard irqs.
 */
void rcu_cpu_stall_reset(void)
{
1390 1391 1392
	struct rcu_state *rsp;

	for_each_rcu_flavor(rsp)
1393
		WRITE_ONCE(rsp->jiffies_stall, jiffies + ULONG_MAX / 2);
1394 1395
}

1396
/*
1397 1398 1399
 * Initialize the specified rcu_data structure's default callback list
 * to empty.  The default callback list is the one that is not used by
 * no-callbacks CPUs.
1400
 */
1401
static void init_default_callback_list(struct rcu_data *rdp)
1402 1403 1404 1405 1406 1407 1408 1409
{
	int i;

	rdp->nxtlist = NULL;
	for (i = 0; i < RCU_NEXT_SIZE; i++)
		rdp->nxttail[i] = &rdp->nxtlist;
}

1410 1411 1412 1413 1414 1415 1416 1417 1418 1419
/*
 * Initialize the specified rcu_data structure's callback list to empty.
 */
static void init_callback_list(struct rcu_data *rdp)
{
	if (init_nocb_callback_list(rdp))
		return;
	init_default_callback_list(rdp);
}

1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448
/*
 * Determine the value that ->completed will have at the end of the
 * next subsequent grace period.  This is used to tag callbacks so that
 * a CPU can invoke callbacks in a timely fashion even if that CPU has
 * been dyntick-idle for an extended period with callbacks under the
 * influence of RCU_FAST_NO_HZ.
 *
 * The caller must hold rnp->lock with interrupts disabled.
 */
static unsigned long rcu_cbs_completed(struct rcu_state *rsp,
				       struct rcu_node *rnp)
{
	/*
	 * If RCU is idle, we just wait for the next grace period.
	 * But we can only be sure that RCU is idle if we are looking
	 * at the root rcu_node structure -- otherwise, a new grace
	 * period might have started, but just not yet gotten around
	 * to initializing the current non-root rcu_node structure.
	 */
	if (rcu_get_root(rsp) == rnp && rnp->gpnum == rnp->completed)
		return rnp->completed + 1;

	/*
	 * Otherwise, wait for a possible partial grace period and
	 * then the subsequent full grace period.
	 */
	return rnp->completed + 2;
}

1449 1450 1451 1452 1453
/*
 * Trace-event helper function for rcu_start_future_gp() and
 * rcu_nocb_wait_gp().
 */
static void trace_rcu_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1454
				unsigned long c, const char *s)
1455 1456 1457 1458 1459 1460 1461 1462 1463
{
	trace_rcu_future_grace_period(rdp->rsp->name, rnp->gpnum,
				      rnp->completed, c, rnp->level,
				      rnp->grplo, rnp->grphi, s);
}

/*
 * Start some future grace period, as needed to handle newly arrived
 * callbacks.  The required future grace periods are recorded in each
1464 1465
 * rcu_node structure's ->need_future_gp field.  Returns true if there
 * is reason to awaken the grace-period kthread.
1466 1467 1468
 *
 * The caller must hold the specified rcu_node structure's ->lock.
 */
1469 1470 1471
static bool __maybe_unused
rcu_start_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
		    unsigned long *c_out)
1472 1473 1474
{
	unsigned long c;
	int i;
1475
	bool ret = false;
1476 1477 1478 1479 1480 1481 1482
	struct rcu_node *rnp_root = rcu_get_root(rdp->rsp);

	/*
	 * Pick up grace-period number for new callbacks.  If this
	 * grace period is already marked as needed, return to the caller.
	 */
	c = rcu_cbs_completed(rdp->rsp, rnp);
1483
	trace_rcu_future_gp(rnp, rdp, c, TPS("Startleaf"));
1484
	if (rnp->need_future_gp[c & 0x1]) {
1485
		trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartleaf"));
1486
		goto out;
1487 1488 1489 1490 1491 1492 1493
	}

	/*
	 * If either this rcu_node structure or the root rcu_node structure
	 * believe that a grace period is in progress, then we must wait
	 * for the one following, which is in "c".  Because our request
	 * will be noticed at the end of the current grace period, we don't
1494 1495 1496 1497 1498 1499 1500
	 * need to explicitly start one.  We only do the lockless check
	 * of rnp_root's fields if the current rcu_node structure thinks
	 * there is no grace period in flight, and because we hold rnp->lock,
	 * the only possible change is when rnp_root's two fields are
	 * equal, in which case rnp_root->gpnum might be concurrently
	 * incremented.  But that is OK, as it will just result in our
	 * doing some extra useless work.
1501 1502
	 */
	if (rnp->gpnum != rnp->completed ||
1503
	    READ_ONCE(rnp_root->gpnum) != READ_ONCE(rnp_root->completed)) {
1504
		rnp->need_future_gp[c & 0x1]++;
1505
		trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleaf"));
1506
		goto out;
1507 1508 1509 1510 1511 1512 1513
	}

	/*
	 * There might be no grace period in progress.  If we don't already
	 * hold it, acquire the root rcu_node structure's lock in order to
	 * start one (if needed).
	 */
1514
	if (rnp != rnp_root) {
1515
		raw_spin_lock(&rnp_root->lock);
1516 1517
		smp_mb__after_unlock_lock();
	}
1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534

	/*
	 * Get a new grace-period number.  If there really is no grace
	 * period in progress, it will be smaller than the one we obtained
	 * earlier.  Adjust callbacks as needed.  Note that even no-CBs
	 * CPUs have a ->nxtcompleted[] array, so no no-CBs checks needed.
	 */
	c = rcu_cbs_completed(rdp->rsp, rnp_root);
	for (i = RCU_DONE_TAIL; i < RCU_NEXT_TAIL; i++)
		if (ULONG_CMP_LT(c, rdp->nxtcompleted[i]))
			rdp->nxtcompleted[i] = c;

	/*
	 * If the needed for the required grace period is already
	 * recorded, trace and leave.
	 */
	if (rnp_root->need_future_gp[c & 0x1]) {
1535
		trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartedroot"));
1536 1537 1538 1539 1540 1541 1542 1543
		goto unlock_out;
	}

	/* Record the need for the future grace period. */
	rnp_root->need_future_gp[c & 0x1]++;

	/* If a grace period is not already in progress, start one. */
	if (rnp_root->gpnum != rnp_root->completed) {
1544
		trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleafroot"));
1545
	} else {
1546
		trace_rcu_future_gp(rnp, rdp, c, TPS("Startedroot"));
1547
		ret = rcu_start_gp_advanced(rdp->rsp, rnp_root, rdp);
1548 1549 1550 1551
	}
unlock_out:
	if (rnp != rnp_root)
		raw_spin_unlock(&rnp_root->lock);
1552 1553 1554 1555
out:
	if (c_out != NULL)
		*c_out = c;
	return ret;
1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572
}

/*
 * Clean up any old requests for the just-ended grace period.  Also return
 * whether any additional grace periods have been requested.  Also invoke
 * rcu_nocb_gp_cleanup() in order to wake up any no-callbacks kthreads
 * waiting for this grace period to complete.
 */
static int rcu_future_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
{
	int c = rnp->completed;
	int needmore;
	struct rcu_data *rdp = this_cpu_ptr(rsp->rda);

	rcu_nocb_gp_cleanup(rsp, rnp);
	rnp->need_future_gp[c & 0x1] = 0;
	needmore = rnp->need_future_gp[(c + 1) & 0x1];
1573 1574
	trace_rcu_future_gp(rnp, rdp, c,
			    needmore ? TPS("CleanupMore") : TPS("Cleanup"));
1575 1576 1577
	return needmore;
}

1578 1579 1580 1581 1582 1583 1584 1585 1586 1587
/*
 * Awaken the grace-period kthread for the specified flavor of RCU.
 * Don't do a self-awaken, and don't bother awakening when there is
 * nothing for the grace-period kthread to do (as in several CPUs
 * raced to awaken, and we lost), and finally don't try to awaken
 * a kthread that has not yet been created.
 */
static void rcu_gp_kthread_wake(struct rcu_state *rsp)
{
	if (current == rsp->gp_kthread ||
1588
	    !READ_ONCE(rsp->gp_flags) ||
1589 1590 1591 1592 1593
	    !rsp->gp_kthread)
		return;
	wake_up(&rsp->gp_wq);
}

1594 1595 1596 1597 1598 1599 1600
/*
 * If there is room, assign a ->completed number to any callbacks on
 * this CPU that have not already been assigned.  Also accelerate any
 * callbacks that were previously assigned a ->completed number that has
 * since proven to be too conservative, which can happen if callbacks get
 * assigned a ->completed number while RCU is idle, but with reference to
 * a non-root rcu_node structure.  This function is idempotent, so it does
1601 1602
 * not hurt to call it repeatedly.  Returns an flag saying that we should
 * awaken the RCU grace-period kthread.
1603 1604 1605
 *
 * The caller must hold rnp->lock with interrupts disabled.
 */
1606
static bool rcu_accelerate_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1607 1608 1609 1610
			       struct rcu_data *rdp)
{
	unsigned long c;
	int i;
1611
	bool ret;
1612 1613 1614

	/* If the CPU has no callbacks, nothing to do. */
	if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
1615
		return false;
1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643

	/*
	 * Starting from the sublist containing the callbacks most
	 * recently assigned a ->completed number and working down, find the
	 * first sublist that is not assignable to an upcoming grace period.
	 * Such a sublist has something in it (first two tests) and has
	 * a ->completed number assigned that will complete sooner than
	 * the ->completed number for newly arrived callbacks (last test).
	 *
	 * The key point is that any later sublist can be assigned the
	 * same ->completed number as the newly arrived callbacks, which
	 * means that the callbacks in any of these later sublist can be
	 * grouped into a single sublist, whether or not they have already
	 * been assigned a ->completed number.
	 */
	c = rcu_cbs_completed(rsp, rnp);
	for (i = RCU_NEXT_TAIL - 1; i > RCU_DONE_TAIL; i--)
		if (rdp->nxttail[i] != rdp->nxttail[i - 1] &&
		    !ULONG_CMP_GE(rdp->nxtcompleted[i], c))
			break;

	/*
	 * If there are no sublist for unassigned callbacks, leave.
	 * At the same time, advance "i" one sublist, so that "i" will
	 * index into the sublist where all the remaining callbacks should
	 * be grouped into.
	 */
	if (++i >= RCU_NEXT_TAIL)
1644
		return false;
1645 1646 1647 1648 1649 1650 1651 1652 1653 1654

	/*
	 * Assign all subsequent callbacks' ->completed number to the next
	 * full grace period and group them all in the sublist initially
	 * indexed by "i".
	 */
	for (; i <= RCU_NEXT_TAIL; i++) {
		rdp->nxttail[i] = rdp->nxttail[RCU_NEXT_TAIL];
		rdp->nxtcompleted[i] = c;
	}
1655
	/* Record any needed additional grace periods. */
1656
	ret = rcu_start_future_gp(rnp, rdp, NULL);
1657 1658 1659

	/* Trace depending on how much we were able to accelerate. */
	if (!*rdp->nxttail[RCU_WAIT_TAIL])
1660
		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccWaitCB"));
1661
	else
1662
		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccReadyCB"));
1663
	return ret;
1664 1665 1666 1667 1668 1669 1670 1671
}

/*
 * Move any callbacks whose grace period has completed to the
 * RCU_DONE_TAIL sublist, then compact the remaining sublists and
 * assign ->completed numbers to any callbacks in the RCU_NEXT_TAIL
 * sublist.  This function is idempotent, so it does not hurt to
 * invoke it repeatedly.  As long as it is not invoked -too- often...
1672
 * Returns true if the RCU grace-period kthread needs to be awakened.
1673 1674 1675
 *
 * The caller must hold rnp->lock with interrupts disabled.
 */
1676
static bool rcu_advance_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1677 1678 1679 1680 1681 1682
			    struct rcu_data *rdp)
{
	int i, j;

	/* If the CPU has no callbacks, nothing to do. */
	if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
1683
		return false;
1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706

	/*
	 * Find all callbacks whose ->completed numbers indicate that they
	 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
	 */
	for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++) {
		if (ULONG_CMP_LT(rnp->completed, rdp->nxtcompleted[i]))
			break;
		rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[i];
	}
	/* Clean up any sublist tail pointers that were misordered above. */
	for (j = RCU_WAIT_TAIL; j < i; j++)
		rdp->nxttail[j] = rdp->nxttail[RCU_DONE_TAIL];

	/* Copy down callbacks to fill in empty sublists. */
	for (j = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++, j++) {
		if (rdp->nxttail[j] == rdp->nxttail[RCU_NEXT_TAIL])
			break;
		rdp->nxttail[j] = rdp->nxttail[i];
		rdp->nxtcompleted[j] = rdp->nxtcompleted[i];
	}

	/* Classify any remaining callbacks. */
1707
	return rcu_accelerate_cbs(rsp, rnp, rdp);
1708 1709
}

1710
/*
1711 1712 1713
 * Update CPU-local rcu_data state to record the beginnings and ends of
 * grace periods.  The caller must hold the ->lock of the leaf rcu_node
 * structure corresponding to the current CPU, and must have irqs disabled.
1714
 * Returns true if the grace-period kthread needs to be awakened.
1715
 */
1716 1717
static bool __note_gp_changes(struct rcu_state *rsp, struct rcu_node *rnp,
			      struct rcu_data *rdp)
1718
{
1719 1720
	bool ret;

1721
	/* Handle the ends of any preceding grace periods first. */
1722
	if (rdp->completed == rnp->completed &&
1723
	    !unlikely(READ_ONCE(rdp->gpwrap))) {
1724

1725
		/* No grace period end, so just accelerate recent callbacks. */
1726
		ret = rcu_accelerate_cbs(rsp, rnp, rdp);
1727

1728 1729 1730
	} else {

		/* Advance callbacks. */
1731
		ret = rcu_advance_cbs(rsp, rnp, rdp);
1732 1733 1734

		/* Remember that we saw this grace-period completion. */
		rdp->completed = rnp->completed;
1735
		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuend"));
1736
	}
1737

1738
	if (rdp->gpnum != rnp->gpnum || unlikely(READ_ONCE(rdp->gpwrap))) {
1739 1740 1741 1742 1743 1744
		/*
		 * If the current grace period is waiting for this CPU,
		 * set up to detect a quiescent state, otherwise don't
		 * go looking for one.
		 */
		rdp->gpnum = rnp->gpnum;
1745
		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpustart"));
1746
		rdp->passed_quiesce = 0;
1747
		rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_qs_ctr);
1748 1749
		rdp->qs_pending = !!(rnp->qsmask & rdp->grpmask);
		zero_cpu_stall_ticks(rdp);
1750
		WRITE_ONCE(rdp->gpwrap, false);
1751
	}
1752
	return ret;
1753 1754
}

1755
static void note_gp_changes(struct rcu_state *rsp, struct rcu_data *rdp)
1756 1757
{
	unsigned long flags;
1758
	bool needwake;
1759 1760 1761 1762
	struct rcu_node *rnp;

	local_irq_save(flags);
	rnp = rdp->mynode;
1763 1764 1765
	if ((rdp->gpnum == READ_ONCE(rnp->gpnum) &&
	     rdp->completed == READ_ONCE(rnp->completed) &&
	     !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */
1766 1767 1768 1769
	    !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
		local_irq_restore(flags);
		return;
	}
1770
	smp_mb__after_unlock_lock();
1771
	needwake = __note_gp_changes(rsp, rnp, rdp);
1772
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
1773 1774
	if (needwake)
		rcu_gp_kthread_wake(rsp);
1775 1776
}

1777 1778 1779 1780 1781 1782 1783
static void rcu_gp_slow(struct rcu_state *rsp, int delay)
{
	if (delay > 0 &&
	    !(rsp->gpnum % (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay)))
		schedule_timeout_uninterruptible(delay);
}

1784
/*
1785
 * Initialize a new grace period.  Return 0 if no grace period required.
1786
 */
1787
static int rcu_gp_init(struct rcu_state *rsp)
1788
{
1789
	unsigned long oldmask;
1790
	struct rcu_data *rdp;
1791
	struct rcu_node *rnp = rcu_get_root(rsp);
1792

1793
	WRITE_ONCE(rsp->gp_activity, jiffies);
1794
	raw_spin_lock_irq(&rnp->lock);
1795
	smp_mb__after_unlock_lock();
1796
	if (!READ_ONCE(rsp->gp_flags)) {
1797 1798 1799 1800
		/* Spurious wakeup, tell caller to go back to sleep.  */
		raw_spin_unlock_irq(&rnp->lock);
		return 0;
	}
1801
	WRITE_ONCE(rsp->gp_flags, 0); /* Clear all flags: New grace period. */
1802

1803 1804 1805 1806 1807
	if (WARN_ON_ONCE(rcu_gp_in_progress(rsp))) {
		/*
		 * Grace period already in progress, don't start another.
		 * Not supposed to be able to happen.
		 */
1808 1809 1810 1811 1812
		raw_spin_unlock_irq(&rnp->lock);
		return 0;
	}

	/* Advance to a new grace period and initialize state. */
1813
	record_gp_stall_check_time(rsp);
1814 1815
	/* Record GP times before starting GP, hence smp_store_release(). */
	smp_store_release(&rsp->gpnum, rsp->gpnum + 1);
1816
	trace_rcu_grace_period(rsp->name, rsp->gpnum, TPS("start"));
1817 1818
	raw_spin_unlock_irq(&rnp->lock);

1819 1820 1821 1822 1823 1824 1825
	/*
	 * Apply per-leaf buffered online and offline operations to the
	 * rcu_node tree.  Note that this new grace period need not wait
	 * for subsequent online CPUs, and that quiescent-state forcing
	 * will handle subsequent offline CPUs.
	 */
	rcu_for_each_leaf_node(rsp, rnp) {
1826
		rcu_gp_slow(rsp, gp_preinit_delay);
1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867
		raw_spin_lock_irq(&rnp->lock);
		smp_mb__after_unlock_lock();
		if (rnp->qsmaskinit == rnp->qsmaskinitnext &&
		    !rnp->wait_blkd_tasks) {
			/* Nothing to do on this leaf rcu_node structure. */
			raw_spin_unlock_irq(&rnp->lock);
			continue;
		}

		/* Record old state, apply changes to ->qsmaskinit field. */
		oldmask = rnp->qsmaskinit;
		rnp->qsmaskinit = rnp->qsmaskinitnext;

		/* If zero-ness of ->qsmaskinit changed, propagate up tree. */
		if (!oldmask != !rnp->qsmaskinit) {
			if (!oldmask) /* First online CPU for this rcu_node. */
				rcu_init_new_rnp(rnp);
			else if (rcu_preempt_has_tasks(rnp)) /* blocked tasks */
				rnp->wait_blkd_tasks = true;
			else /* Last offline CPU and can propagate. */
				rcu_cleanup_dead_rnp(rnp);
		}

		/*
		 * If all waited-on tasks from prior grace period are
		 * done, and if all this rcu_node structure's CPUs are
		 * still offline, propagate up the rcu_node tree and
		 * clear ->wait_blkd_tasks.  Otherwise, if one of this
		 * rcu_node structure's CPUs has since come back online,
		 * simply clear ->wait_blkd_tasks (but rcu_cleanup_dead_rnp()
		 * checks for this, so just call it unconditionally).
		 */
		if (rnp->wait_blkd_tasks &&
		    (!rcu_preempt_has_tasks(rnp) ||
		     rnp->qsmaskinit)) {
			rnp->wait_blkd_tasks = false;
			rcu_cleanup_dead_rnp(rnp);
		}

		raw_spin_unlock_irq(&rnp->lock);
	}
1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882

	/*
	 * Set the quiescent-state-needed bits in all the rcu_node
	 * structures for all currently online CPUs in breadth-first order,
	 * starting from the root rcu_node structure, relying on the layout
	 * of the tree within the rsp->node[] array.  Note that other CPUs
	 * will access only the leaves of the hierarchy, thus seeing that no
	 * grace period is in progress, at least until the corresponding
	 * leaf node has been initialized.  In addition, we have excluded
	 * CPU-hotplug operations.
	 *
	 * The grace period cannot complete until the initialization
	 * process finishes, because this kthread handles both.
	 */
	rcu_for_each_node_breadth_first(rsp, rnp) {
1883
		rcu_gp_slow(rsp, gp_init_delay);
1884
		raw_spin_lock_irq(&rnp->lock);
1885
		smp_mb__after_unlock_lock();
1886
		rdp = this_cpu_ptr(rsp->rda);
1887 1888
		rcu_preempt_check_blocked_tasks(rnp);
		rnp->qsmask = rnp->qsmaskinit;
1889
		WRITE_ONCE(rnp->gpnum, rsp->gpnum);
1890
		if (WARN_ON_ONCE(rnp->completed != rsp->completed))
1891
			WRITE_ONCE(rnp->completed, rsp->completed);
1892
		if (rnp == rdp->mynode)
1893
			(void)__note_gp_changes(rsp, rnp, rdp);
1894 1895 1896 1897 1898
		rcu_preempt_boost_start_gp(rnp);
		trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
					    rnp->level, rnp->grplo,
					    rnp->grphi, rnp->qsmask);
		raw_spin_unlock_irq(&rnp->lock);
1899
		cond_resched_rcu_qs();
1900
		WRITE_ONCE(rsp->gp_activity, jiffies);
1901
	}
1902

1903 1904
	return 1;
}
1905

1906 1907 1908
/*
 * Do one round of quiescent-state forcing.
 */
1909
static int rcu_gp_fqs(struct rcu_state *rsp, int fqs_state_in)
1910 1911
{
	int fqs_state = fqs_state_in;
1912 1913
	bool isidle = false;
	unsigned long maxj;
1914 1915
	struct rcu_node *rnp = rcu_get_root(rsp);

1916
	WRITE_ONCE(rsp->gp_activity, jiffies);
1917 1918 1919
	rsp->n_force_qs++;
	if (fqs_state == RCU_SAVE_DYNTICK) {
		/* Collect dyntick-idle snapshots. */
1920
		if (is_sysidle_rcu_state(rsp)) {
1921
			isidle = true;
1922 1923
			maxj = jiffies - ULONG_MAX / 4;
		}
1924 1925
		force_qs_rnp(rsp, dyntick_save_progress_counter,
			     &isidle, &maxj);
1926
		rcu_sysidle_report_gp(rsp, isidle, maxj);
1927 1928 1929
		fqs_state = RCU_FORCE_QS;
	} else {
		/* Handle dyntick-idle and offline CPUs. */
1930
		isidle = true;
1931
		force_qs_rnp(rsp, rcu_implicit_dynticks_qs, &isidle, &maxj);
1932 1933
	}
	/* Clear flag to prevent immediate re-entry. */
1934
	if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
1935
		raw_spin_lock_irq(&rnp->lock);
1936
		smp_mb__after_unlock_lock();
1937 1938
		WRITE_ONCE(rsp->gp_flags,
			   READ_ONCE(rsp->gp_flags) & ~RCU_GP_FLAG_FQS);
1939 1940 1941 1942 1943
		raw_spin_unlock_irq(&rnp->lock);
	}
	return fqs_state;
}

1944 1945 1946
/*
 * Clean up after the old grace period.
 */
1947
static void rcu_gp_cleanup(struct rcu_state *rsp)
1948 1949
{
	unsigned long gp_duration;
1950
	bool needgp = false;
1951
	int nocb = 0;
1952 1953
	struct rcu_data *rdp;
	struct rcu_node *rnp = rcu_get_root(rsp);
1954

1955
	WRITE_ONCE(rsp->gp_activity, jiffies);
1956
	raw_spin_lock_irq(&rnp->lock);
1957
	smp_mb__after_unlock_lock();
1958 1959 1960
	gp_duration = jiffies - rsp->gp_start;
	if (gp_duration > rsp->gp_max)
		rsp->gp_max = gp_duration;
1961

1962 1963 1964 1965 1966 1967 1968 1969
	/*
	 * We know the grace period is complete, but to everyone else
	 * it appears to still be ongoing.  But it is also the case
	 * that to everyone else it looks like there is nothing that
	 * they can do to advance the grace period.  It is therefore
	 * safe for us to drop the lock in order to mark the grace
	 * period as completed in all of the rcu_node structures.
	 */
1970
	raw_spin_unlock_irq(&rnp->lock);
1971

1972 1973 1974 1975 1976 1977 1978 1979 1980 1981
	/*
	 * Propagate new ->completed value to rcu_node structures so
	 * that other CPUs don't have to wait until the start of the next
	 * grace period to process their callbacks.  This also avoids
	 * some nasty RCU grace-period initialization races by forcing
	 * the end of the current grace period to be completely recorded in
	 * all of the rcu_node structures before the beginning of the next
	 * grace period is recorded in any of the rcu_node structures.
	 */
	rcu_for_each_node_breadth_first(rsp, rnp) {
1982
		raw_spin_lock_irq(&rnp->lock);
1983
		smp_mb__after_unlock_lock();
1984 1985
		WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
		WARN_ON_ONCE(rnp->qsmask);
1986
		WRITE_ONCE(rnp->completed, rsp->gpnum);
1987 1988
		rdp = this_cpu_ptr(rsp->rda);
		if (rnp == rdp->mynode)
1989
			needgp = __note_gp_changes(rsp, rnp, rdp) || needgp;
1990
		/* smp_mb() provided by prior unlock-lock pair. */
1991
		nocb += rcu_future_gp_cleanup(rsp, rnp);
1992
		raw_spin_unlock_irq(&rnp->lock);
1993
		cond_resched_rcu_qs();
1994
		WRITE_ONCE(rsp->gp_activity, jiffies);
1995
		rcu_gp_slow(rsp, gp_cleanup_delay);
1996
	}
1997 1998
	rnp = rcu_get_root(rsp);
	raw_spin_lock_irq(&rnp->lock);
1999
	smp_mb__after_unlock_lock(); /* Order GP before ->completed update. */
2000
	rcu_nocb_gp_set(rnp, nocb);
2001

2002
	/* Declare grace period done. */
2003
	WRITE_ONCE(rsp->completed, rsp->gpnum);
2004
	trace_rcu_grace_period(rsp->name, rsp->completed, TPS("end"));
2005
	rsp->fqs_state = RCU_GP_IDLE;
2006
	rdp = this_cpu_ptr(rsp->rda);
2007 2008 2009
	/* Advance CBs to reduce false positives below. */
	needgp = rcu_advance_cbs(rsp, rnp, rdp) || needgp;
	if (needgp || cpu_needs_another_gp(rsp, rdp)) {
2010
		WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT);
2011
		trace_rcu_grace_period(rsp->name,
2012
				       READ_ONCE(rsp->gpnum),
2013 2014
				       TPS("newreq"));
	}
2015 2016 2017 2018 2019 2020 2021 2022
	raw_spin_unlock_irq(&rnp->lock);
}

/*
 * Body of kthread that handles grace periods.
 */
static int __noreturn rcu_gp_kthread(void *arg)
{
2023
	int fqs_state;
2024
	int gf;
2025
	unsigned long j;
2026
	int ret;
2027 2028 2029
	struct rcu_state *rsp = arg;
	struct rcu_node *rnp = rcu_get_root(rsp);

2030
	rcu_bind_gp_kthread();
2031 2032 2033 2034
	for (;;) {

		/* Handle grace-period start. */
		for (;;) {
2035
			trace_rcu_grace_period(rsp->name,
2036
					       READ_ONCE(rsp->gpnum),
2037
					       TPS("reqwait"));
2038
			rsp->gp_state = RCU_GP_WAIT_GPS;
2039
			wait_event_interruptible(rsp->gp_wq,
2040
						 READ_ONCE(rsp->gp_flags) &
2041
						 RCU_GP_FLAG_INIT);
2042
			rsp->gp_state = RCU_GP_DONE_GPS;
2043
			/* Locking provides needed memory barrier. */
2044
			if (rcu_gp_init(rsp))
2045
				break;
2046
			cond_resched_rcu_qs();
2047
			WRITE_ONCE(rsp->gp_activity, jiffies);
2048
			WARN_ON(signal_pending(current));
2049
			trace_rcu_grace_period(rsp->name,
2050
					       READ_ONCE(rsp->gpnum),
2051
					       TPS("reqwaitsig"));
2052
		}
2053

2054 2055
		/* Handle quiescent-state forcing. */
		fqs_state = RCU_SAVE_DYNTICK;
2056 2057 2058 2059 2060
		j = jiffies_till_first_fqs;
		if (j > HZ) {
			j = HZ;
			jiffies_till_first_fqs = HZ;
		}
2061
		ret = 0;
2062
		for (;;) {
2063 2064
			if (!ret)
				rsp->jiffies_force_qs = jiffies + j;
2065
			trace_rcu_grace_period(rsp->name,
2066
					       READ_ONCE(rsp->gpnum),
2067
					       TPS("fqswait"));
2068
			rsp->gp_state = RCU_GP_WAIT_FQS;
2069
			ret = wait_event_interruptible_timeout(rsp->gp_wq,
2070
					((gf = READ_ONCE(rsp->gp_flags)) &
2071
					 RCU_GP_FLAG_FQS) ||
2072
					(!READ_ONCE(rnp->qsmask) &&
2073
					 !rcu_preempt_blocked_readers_cgp(rnp)),
2074
					j);
2075
			rsp->gp_state = RCU_GP_DONE_FQS;
2076
			/* Locking provides needed memory barriers. */
2077
			/* If grace period done, leave loop. */
2078
			if (!READ_ONCE(rnp->qsmask) &&
2079
			    !rcu_preempt_blocked_readers_cgp(rnp))
2080
				break;
2081
			/* If time for quiescent-state forcing, do it. */
2082 2083
			if (ULONG_CMP_GE(jiffies, rsp->jiffies_force_qs) ||
			    (gf & RCU_GP_FLAG_FQS)) {
2084
				trace_rcu_grace_period(rsp->name,
2085
						       READ_ONCE(rsp->gpnum),
2086
						       TPS("fqsstart"));
2087
				fqs_state = rcu_gp_fqs(rsp, fqs_state);
2088
				trace_rcu_grace_period(rsp->name,
2089
						       READ_ONCE(rsp->gpnum),
2090
						       TPS("fqsend"));
2091
				cond_resched_rcu_qs();
2092
				WRITE_ONCE(rsp->gp_activity, jiffies);
2093 2094
			} else {
				/* Deal with stray signal. */
2095
				cond_resched_rcu_qs();
2096
				WRITE_ONCE(rsp->gp_activity, jiffies);
2097
				WARN_ON(signal_pending(current));
2098
				trace_rcu_grace_period(rsp->name,
2099
						       READ_ONCE(rsp->gpnum),
2100
						       TPS("fqswaitsig"));
2101
			}
2102 2103 2104 2105 2106 2107 2108 2109
			j = jiffies_till_next_fqs;
			if (j > HZ) {
				j = HZ;
				jiffies_till_next_fqs = HZ;
			} else if (j < 1) {
				j = 1;
				jiffies_till_next_fqs = 1;
			}
2110
		}
2111 2112

		/* Handle grace-period end. */
2113
		rsp->gp_state = RCU_GP_CLEANUP;
2114
		rcu_gp_cleanup(rsp);
2115
		rsp->gp_state = RCU_GP_CLEANED;
2116 2117 2118
	}
}

2119 2120 2121
/*
 * Start a new RCU grace period if warranted, re-initializing the hierarchy
 * in preparation for detecting the next grace period.  The caller must hold
2122
 * the root node's ->lock and hard irqs must be disabled.
2123 2124 2125 2126
 *
 * Note that it is legal for a dying CPU (which is marked as offline) to
 * invoke this function.  This can happen when the dying CPU reports its
 * quiescent state.
2127 2128
 *
 * Returns true if the grace-period kthread must be awakened.
2129
 */
2130
static bool
2131 2132
rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
		      struct rcu_data *rdp)
2133
{
2134
	if (!rsp->gp_kthread || !cpu_needs_another_gp(rsp, rdp)) {
2135
		/*
2136
		 * Either we have not yet spawned the grace-period
2137 2138
		 * task, this CPU does not need another grace period,
		 * or a grace period is already in progress.
2139
		 * Either way, don't start a new grace period.
2140
		 */
2141
		return false;
2142
	}
2143 2144
	WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT);
	trace_rcu_grace_period(rsp->name, READ_ONCE(rsp->gpnum),
2145
			       TPS("newreq"));
2146

2147 2148
	/*
	 * We can't do wakeups while holding the rnp->lock, as that
2149
	 * could cause possible deadlocks with the rq->lock. Defer
2150
	 * the wakeup to our caller.
2151
	 */
2152
	return true;
2153 2154
}

2155 2156 2157 2158 2159 2160
/*
 * Similar to rcu_start_gp_advanced(), but also advance the calling CPU's
 * callbacks.  Note that rcu_start_gp_advanced() cannot do this because it
 * is invoked indirectly from rcu_advance_cbs(), which would result in
 * endless recursion -- or would do so if it wasn't for the self-deadlock
 * that is encountered beforehand.
2161 2162
 *
 * Returns true if the grace-period kthread needs to be awakened.
2163
 */
2164
static bool rcu_start_gp(struct rcu_state *rsp)
2165 2166 2167
{
	struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
	struct rcu_node *rnp = rcu_get_root(rsp);
2168
	bool ret = false;
2169 2170 2171 2172 2173 2174 2175 2176 2177

	/*
	 * If there is no grace period in progress right now, any
	 * callbacks we have up to this point will be satisfied by the
	 * next grace period.  Also, advancing the callbacks reduces the
	 * probability of false positives from cpu_needs_another_gp()
	 * resulting in pointless grace periods.  So, advance callbacks
	 * then start the grace period!
	 */
2178 2179 2180
	ret = rcu_advance_cbs(rsp, rnp, rdp) || ret;
	ret = rcu_start_gp_advanced(rsp, rnp, rdp) || ret;
	return ret;
2181 2182
}

2183
/*
P
Paul E. McKenney 已提交
2184 2185 2186
 * Report a full set of quiescent states to the specified rcu_state
 * data structure.  This involves cleaning up after the prior grace
 * period and letting rcu_start_gp() start up the next grace period
2187 2188
 * if one is needed.  Note that the caller must hold rnp->lock, which
 * is released before return.
2189
 */
P
Paul E. McKenney 已提交
2190
static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
2191
	__releases(rcu_get_root(rsp)->lock)
2192
{
2193
	WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
2194
	WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS);
2195
	raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);
2196
	rcu_gp_kthread_wake(rsp);
2197 2198
}

2199
/*
P
Paul E. McKenney 已提交
2200 2201 2202
 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
 * Allows quiescent states for a group of CPUs to be reported at one go
 * to the specified rcu_node structure, though all the CPUs in the group
2203 2204 2205 2206 2207
 * must be represented by the same rcu_node structure (which need not be a
 * leaf rcu_node structure, though it often will be).  The gps parameter
 * is the grace-period snapshot, which means that the quiescent states
 * are valid only if rnp->gpnum is equal to gps.  That structure's lock
 * must be held upon entry, and it is released before return.
2208 2209
 */
static void
P
Paul E. McKenney 已提交
2210
rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
2211
		  struct rcu_node *rnp, unsigned long gps, unsigned long flags)
2212 2213
	__releases(rnp->lock)
{
2214
	unsigned long oldmask = 0;
2215 2216
	struct rcu_node *rnp_c;

2217 2218
	/* Walk up the rcu_node hierarchy. */
	for (;;) {
2219
		if (!(rnp->qsmask & mask) || rnp->gpnum != gps) {
2220

2221 2222 2223 2224
			/*
			 * Our bit has already been cleared, or the
			 * relevant grace period is already over, so done.
			 */
P
Paul E. McKenney 已提交
2225
			raw_spin_unlock_irqrestore(&rnp->lock, flags);
2226 2227
			return;
		}
2228
		WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */
2229
		rnp->qsmask &= ~mask;
2230 2231 2232 2233
		trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
						 mask, rnp->qsmask, rnp->level,
						 rnp->grplo, rnp->grphi,
						 !!rnp->gp_tasks);
2234
		if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
2235 2236

			/* Other bits still set at this level, so done. */
P
Paul E. McKenney 已提交
2237
			raw_spin_unlock_irqrestore(&rnp->lock, flags);
2238 2239 2240 2241 2242 2243 2244 2245 2246
			return;
		}
		mask = rnp->grpmask;
		if (rnp->parent == NULL) {

			/* No more levels.  Exit loop holding root lock. */

			break;
		}
P
Paul E. McKenney 已提交
2247
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
2248
		rnp_c = rnp;
2249
		rnp = rnp->parent;
P
Paul E. McKenney 已提交
2250
		raw_spin_lock_irqsave(&rnp->lock, flags);
2251
		smp_mb__after_unlock_lock();
2252
		oldmask = rnp_c->qsmask;
2253 2254 2255 2256
	}

	/*
	 * Get here if we are the last CPU to pass through a quiescent
P
Paul E. McKenney 已提交
2257
	 * state for this grace period.  Invoke rcu_report_qs_rsp()
2258
	 * to clean up and start the next grace period if one is needed.
2259
	 */
P
Paul E. McKenney 已提交
2260
	rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
2261 2262
}

2263 2264 2265 2266 2267 2268 2269
/*
 * Record a quiescent state for all tasks that were previously queued
 * on the specified rcu_node structure and that were blocking the current
 * RCU grace period.  The caller must hold the specified rnp->lock with
 * irqs disabled, and this lock is released upon return, but irqs remain
 * disabled.
 */
2270
static void rcu_report_unblock_qs_rnp(struct rcu_state *rsp,
2271 2272 2273
				      struct rcu_node *rnp, unsigned long flags)
	__releases(rnp->lock)
{
2274
	unsigned long gps;
2275 2276 2277
	unsigned long mask;
	struct rcu_node *rnp_p;

2278 2279
	if (rcu_state_p == &rcu_sched_state || rsp != rcu_state_p ||
	    rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
2280 2281 2282 2283 2284 2285 2286
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
		return;  /* Still need more quiescent states! */
	}

	rnp_p = rnp->parent;
	if (rnp_p == NULL) {
		/*
2287 2288
		 * Only one rcu_node structure in the tree, so don't
		 * try to report up to its nonexistent parent!
2289 2290 2291 2292 2293
		 */
		rcu_report_qs_rsp(rsp, flags);
		return;
	}

2294 2295
	/* Report up the rest of the hierarchy, tracking current ->gpnum. */
	gps = rnp->gpnum;
2296 2297 2298 2299
	mask = rnp->grpmask;
	raw_spin_unlock(&rnp->lock);	/* irqs remain disabled. */
	raw_spin_lock(&rnp_p->lock);	/* irqs already disabled. */
	smp_mb__after_unlock_lock();
2300
	rcu_report_qs_rnp(mask, rsp, rnp_p, gps, flags);
2301 2302
}

2303
/*
P
Paul E. McKenney 已提交
2304 2305 2306 2307 2308 2309 2310
 * Record a quiescent state for the specified CPU to that CPU's rcu_data
 * structure.  This must be either called from the specified CPU, or
 * called when the specified CPU is known to be offline (and when it is
 * also known that no other CPU is concurrently trying to help the offline
 * CPU).  The lastcomp argument is used to make sure we are still in the
 * grace period of interest.  We don't want to end the current grace period
 * based on quiescent states detected in an earlier grace period!
2311 2312
 */
static void
2313
rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp)
2314 2315 2316
{
	unsigned long flags;
	unsigned long mask;
2317
	bool needwake;
2318 2319 2320
	struct rcu_node *rnp;

	rnp = rdp->mynode;
P
Paul E. McKenney 已提交
2321
	raw_spin_lock_irqsave(&rnp->lock, flags);
2322
	smp_mb__after_unlock_lock();
2323 2324 2325 2326
	if ((rdp->passed_quiesce == 0 &&
	     rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr)) ||
	    rdp->gpnum != rnp->gpnum || rnp->completed == rnp->gpnum ||
	    rdp->gpwrap) {
2327 2328

		/*
2329 2330 2331 2332
		 * The grace period in which this quiescent state was
		 * recorded has ended, so don't report it upwards.
		 * We will instead need a new quiescent state that lies
		 * within the current grace period.
2333
		 */
2334
		rdp->passed_quiesce = 0;	/* need qs for new gp. */
2335
		rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_qs_ctr);
P
Paul E. McKenney 已提交
2336
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
2337 2338 2339 2340
		return;
	}
	mask = rdp->grpmask;
	if ((rnp->qsmask & mask) == 0) {
P
Paul E. McKenney 已提交
2341
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
2342 2343 2344 2345 2346 2347 2348
	} else {
		rdp->qs_pending = 0;

		/*
		 * This GP can't end until cpu checks in, so all of our
		 * callbacks can be processed during the next GP.
		 */
2349
		needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
2350

2351 2352
		rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags);
		/* ^^^ Released rnp->lock */
2353 2354
		if (needwake)
			rcu_gp_kthread_wake(rsp);
2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366
	}
}

/*
 * Check to see if there is a new grace period of which this CPU
 * is not yet aware, and if so, set up local rcu_data state for it.
 * Otherwise, see if this CPU has just passed through its first
 * quiescent state for this grace period, and record that fact if so.
 */
static void
rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
{
2367 2368
	/* Check for grace-period ends and beginnings. */
	note_gp_changes(rsp, rdp);
2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380

	/*
	 * Does this CPU still need to do its part for current grace period?
	 * If no, return and let the other CPUs do their part as well.
	 */
	if (!rdp->qs_pending)
		return;

	/*
	 * Was there a quiescent state since the beginning of the grace
	 * period? If no, then exit and wait for the next call.
	 */
2381 2382
	if (!rdp->passed_quiesce &&
	    rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr))
2383 2384
		return;

P
Paul E. McKenney 已提交
2385 2386 2387 2388
	/*
	 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
	 * judge of that).
	 */
2389
	rcu_report_qs_rdp(rdp->cpu, rsp, rdp);
2390 2391
}

2392
/*
2393 2394
 * Send the specified CPU's RCU callbacks to the orphanage.  The
 * specified CPU must be offline, and the caller must hold the
2395
 * ->orphan_lock.
2396
 */
2397 2398 2399
static void
rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp,
			  struct rcu_node *rnp, struct rcu_data *rdp)
2400
{
P
Paul E. McKenney 已提交
2401
	/* No-CBs CPUs do not have orphanable callbacks. */
2402
	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) || rcu_is_nocb_cpu(rdp->cpu))
P
Paul E. McKenney 已提交
2403 2404
		return;

2405 2406
	/*
	 * Orphan the callbacks.  First adjust the counts.  This is safe
2407 2408
	 * because _rcu_barrier() excludes CPU-hotplug operations, so it
	 * cannot be running now.  Thus no memory barrier is required.
2409
	 */
2410
	if (rdp->nxtlist != NULL) {
2411 2412 2413
		rsp->qlen_lazy += rdp->qlen_lazy;
		rsp->qlen += rdp->qlen;
		rdp->n_cbs_orphaned += rdp->qlen;
2414
		rdp->qlen_lazy = 0;
2415
		WRITE_ONCE(rdp->qlen, 0);
2416 2417 2418
	}

	/*
2419 2420 2421 2422 2423 2424 2425
	 * Next, move those callbacks still needing a grace period to
	 * the orphanage, where some other CPU will pick them up.
	 * Some of the callbacks might have gone partway through a grace
	 * period, but that is too bad.  They get to start over because we
	 * cannot assume that grace periods are synchronized across CPUs.
	 * We don't bother updating the ->nxttail[] array yet, instead
	 * we just reset the whole thing later on.
2426
	 */
2427 2428 2429 2430
	if (*rdp->nxttail[RCU_DONE_TAIL] != NULL) {
		*rsp->orphan_nxttail = *rdp->nxttail[RCU_DONE_TAIL];
		rsp->orphan_nxttail = rdp->nxttail[RCU_NEXT_TAIL];
		*rdp->nxttail[RCU_DONE_TAIL] = NULL;
2431 2432 2433
	}

	/*
2434 2435 2436
	 * Then move the ready-to-invoke callbacks to the orphanage,
	 * where some other CPU will pick them up.  These will not be
	 * required to pass though another grace period: They are done.
2437
	 */
2438
	if (rdp->nxtlist != NULL) {
2439 2440
		*rsp->orphan_donetail = rdp->nxtlist;
		rsp->orphan_donetail = rdp->nxttail[RCU_DONE_TAIL];
2441
	}
2442

2443 2444 2445 2446
	/*
	 * Finally, initialize the rcu_data structure's list to empty and
	 * disallow further callbacks on this CPU.
	 */
2447
	init_callback_list(rdp);
2448
	rdp->nxttail[RCU_NEXT_TAIL] = NULL;
2449 2450 2451 2452
}

/*
 * Adopt the RCU callbacks from the specified rcu_state structure's
2453
 * orphanage.  The caller must hold the ->orphan_lock.
2454
 */
2455
static void rcu_adopt_orphan_cbs(struct rcu_state *rsp, unsigned long flags)
2456 2457
{
	int i;
2458
	struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
2459

P
Paul E. McKenney 已提交
2460
	/* No-CBs CPUs are handled specially. */
2461 2462
	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
	    rcu_nocb_adopt_orphan_cbs(rsp, rdp, flags))
P
Paul E. McKenney 已提交
2463 2464
		return;

2465 2466 2467 2468
	/* Do the accounting first. */
	rdp->qlen_lazy += rsp->qlen_lazy;
	rdp->qlen += rsp->qlen;
	rdp->n_cbs_adopted += rsp->qlen;
2469 2470
	if (rsp->qlen_lazy != rsp->qlen)
		rcu_idle_count_callbacks_posted();
2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508
	rsp->qlen_lazy = 0;
	rsp->qlen = 0;

	/*
	 * We do not need a memory barrier here because the only way we
	 * can get here if there is an rcu_barrier() in flight is if
	 * we are the task doing the rcu_barrier().
	 */

	/* First adopt the ready-to-invoke callbacks. */
	if (rsp->orphan_donelist != NULL) {
		*rsp->orphan_donetail = *rdp->nxttail[RCU_DONE_TAIL];
		*rdp->nxttail[RCU_DONE_TAIL] = rsp->orphan_donelist;
		for (i = RCU_NEXT_SIZE - 1; i >= RCU_DONE_TAIL; i--)
			if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
				rdp->nxttail[i] = rsp->orphan_donetail;
		rsp->orphan_donelist = NULL;
		rsp->orphan_donetail = &rsp->orphan_donelist;
	}

	/* And then adopt the callbacks that still need a grace period. */
	if (rsp->orphan_nxtlist != NULL) {
		*rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxtlist;
		rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxttail;
		rsp->orphan_nxtlist = NULL;
		rsp->orphan_nxttail = &rsp->orphan_nxtlist;
	}
}

/*
 * Trace the fact that this CPU is going offline.
 */
static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
{
	RCU_TRACE(unsigned long mask);
	RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda));
	RCU_TRACE(struct rcu_node *rnp = rdp->mynode);

2509 2510 2511
	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
		return;

2512
	RCU_TRACE(mask = rdp->grpmask);
2513 2514
	trace_rcu_grace_period(rsp->name,
			       rnp->gpnum + 1 - !!(rnp->qsmask & mask),
2515
			       TPS("cpuofl"));
2516 2517
}

2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539
/*
 * All CPUs for the specified rcu_node structure have gone offline,
 * and all tasks that were preempted within an RCU read-side critical
 * section while running on one of those CPUs have since exited their RCU
 * read-side critical section.  Some other CPU is reporting this fact with
 * the specified rcu_node structure's ->lock held and interrupts disabled.
 * This function therefore goes up the tree of rcu_node structures,
 * clearing the corresponding bits in the ->qsmaskinit fields.  Note that
 * the leaf rcu_node structure's ->qsmaskinit field has already been
 * updated
 *
 * This function does check that the specified rcu_node structure has
 * all CPUs offline and no blocked tasks, so it is OK to invoke it
 * prematurely.  That said, invoking it after the fact will cost you
 * a needless lock acquisition.  So once it has done its work, don't
 * invoke it again.
 */
static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
{
	long mask;
	struct rcu_node *rnp = rnp_leaf;

2540 2541
	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
	    rnp->qsmaskinit || rcu_preempt_has_tasks(rnp))
2542 2543 2544 2545 2546 2547 2548 2549 2550
		return;
	for (;;) {
		mask = rnp->grpmask;
		rnp = rnp->parent;
		if (!rnp)
			break;
		raw_spin_lock(&rnp->lock); /* irqs already disabled. */
		smp_mb__after_unlock_lock(); /* GP memory ordering. */
		rnp->qsmaskinit &= ~mask;
2551
		rnp->qsmask &= ~mask;
2552 2553 2554 2555 2556 2557 2558 2559
		if (rnp->qsmaskinit) {
			raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
			return;
		}
		raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
	}
}

2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571
/*
 * The CPU is exiting the idle loop into the arch_cpu_idle_dead()
 * function.  We now remove it from the rcu_node tree's ->qsmaskinit
 * bit masks.
 */
static void rcu_cleanup_dying_idle_cpu(int cpu, struct rcu_state *rsp)
{
	unsigned long flags;
	unsigned long mask;
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
	struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */

2572 2573 2574
	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
		return;

2575 2576 2577 2578 2579 2580 2581 2582
	/* Remove outgoing CPU from mask in the leaf rcu_node structure. */
	mask = rdp->grpmask;
	raw_spin_lock_irqsave(&rnp->lock, flags);
	smp_mb__after_unlock_lock();	/* Enforce GP memory-order guarantee. */
	rnp->qsmaskinitnext &= ~mask;
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
}

2583
/*
2584
 * The CPU has been completely removed, and some other CPU is reporting
2585 2586
 * this fact from process context.  Do the remainder of the cleanup,
 * including orphaning the outgoing CPU's RCU callbacks, and also
2587 2588
 * adopting them.  There can only be one CPU hotplug operation at a time,
 * so no other CPU can be attempting to update rcu_cpu_kthread_task.
2589
 */
2590
static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
2591
{
2592
	unsigned long flags;
2593
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2594
	struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */
2595

2596 2597 2598
	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
		return;

2599
	/* Adjust any no-longer-needed kthreads. */
T
Thomas Gleixner 已提交
2600
	rcu_boost_kthread_setaffinity(rnp, -1);
2601

2602
	/* Orphan the dead CPU's callbacks, and adopt them if appropriate. */
2603
	raw_spin_lock_irqsave(&rsp->orphan_lock, flags);
2604
	rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp);
2605
	rcu_adopt_orphan_cbs(rsp, flags);
2606
	raw_spin_unlock_irqrestore(&rsp->orphan_lock, flags);
2607

2608 2609 2610
	WARN_ONCE(rdp->qlen != 0 || rdp->nxtlist != NULL,
		  "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, nxtlist=%p\n",
		  cpu, rdp->qlen, rdp->nxtlist);
2611 2612 2613 2614 2615 2616
}

/*
 * Invoke any RCU callbacks that have made it to the end of their grace
 * period.  Thottle as specified by rdp->blimit.
 */
2617
static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
2618 2619 2620
{
	unsigned long flags;
	struct rcu_head *next, *list, **tail;
E
Eric Dumazet 已提交
2621 2622
	long bl, count, count_lazy;
	int i;
2623

2624
	/* If no callbacks are ready, just return. */
2625
	if (!cpu_has_callbacks_ready_to_invoke(rdp)) {
2626
		trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0);
2627
		trace_rcu_batch_end(rsp->name, 0, !!READ_ONCE(rdp->nxtlist),
2628 2629
				    need_resched(), is_idle_task(current),
				    rcu_is_callbacks_kthread());
2630
		return;
2631
	}
2632 2633 2634 2635 2636 2637

	/*
	 * Extract the list of ready callbacks, disabling to prevent
	 * races with call_rcu() from interrupt handlers.
	 */
	local_irq_save(flags);
2638
	WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
2639
	bl = rdp->blimit;
2640
	trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl);
2641 2642 2643 2644
	list = rdp->nxtlist;
	rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
	*rdp->nxttail[RCU_DONE_TAIL] = NULL;
	tail = rdp->nxttail[RCU_DONE_TAIL];
2645 2646 2647
	for (i = RCU_NEXT_SIZE - 1; i >= 0; i--)
		if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
			rdp->nxttail[i] = &rdp->nxtlist;
2648 2649 2650
	local_irq_restore(flags);

	/* Invoke callbacks. */
2651
	count = count_lazy = 0;
2652 2653 2654
	while (list) {
		next = list->next;
		prefetch(next);
2655
		debug_rcu_head_unqueue(list);
2656 2657
		if (__rcu_reclaim(rsp->name, list))
			count_lazy++;
2658
		list = next;
2659 2660 2661 2662
		/* Stop only if limit reached and CPU has something to do. */
		if (++count >= bl &&
		    (need_resched() ||
		     (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
2663 2664 2665 2666
			break;
	}

	local_irq_save(flags);
2667 2668 2669
	trace_rcu_batch_end(rsp->name, count, !!list, need_resched(),
			    is_idle_task(current),
			    rcu_is_callbacks_kthread());
2670 2671 2672 2673 2674

	/* Update count, and requeue any remaining callbacks. */
	if (list != NULL) {
		*tail = rdp->nxtlist;
		rdp->nxtlist = list;
2675 2676 2677
		for (i = 0; i < RCU_NEXT_SIZE; i++)
			if (&rdp->nxtlist == rdp->nxttail[i])
				rdp->nxttail[i] = tail;
2678 2679 2680
			else
				break;
	}
2681 2682
	smp_mb(); /* List handling before counting for rcu_barrier(). */
	rdp->qlen_lazy -= count_lazy;
2683
	WRITE_ONCE(rdp->qlen, rdp->qlen - count);
2684
	rdp->n_cbs_invoked += count;
2685 2686 2687 2688 2689

	/* Reinstate batch limit if we have worked down the excess. */
	if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
		rdp->blimit = blimit;

2690 2691 2692 2693 2694 2695
	/* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
	if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
		rdp->qlen_last_fqs_check = 0;
		rdp->n_force_qs_snap = rsp->n_force_qs;
	} else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
		rdp->qlen_last_fqs_check = rdp->qlen;
2696
	WARN_ON_ONCE((rdp->nxtlist == NULL) != (rdp->qlen == 0));
2697

2698 2699
	local_irq_restore(flags);

2700
	/* Re-invoke RCU core processing if there are callbacks remaining. */
2701
	if (cpu_has_callbacks_ready_to_invoke(rdp))
2702
		invoke_rcu_core();
2703 2704 2705 2706 2707
}

/*
 * Check to see if this CPU is in a non-context-switch quiescent state
 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
2708
 * Also schedule RCU core processing.
2709
 *
2710
 * This function must be called from hardirq context.  It is normally
2711 2712 2713
 * invoked from the scheduling-clock interrupt.  If rcu_pending returns
 * false, there is no point in invoking rcu_check_callbacks().
 */
2714
void rcu_check_callbacks(int user)
2715
{
2716
	trace_rcu_utilization(TPS("Start scheduler-tick"));
2717
	increment_cpu_stall_ticks();
2718
	if (user || rcu_is_cpu_rrupt_from_idle()) {
2719 2720 2721 2722 2723

		/*
		 * Get here if this CPU took its interrupt from user
		 * mode or from the idle loop, and if this is not a
		 * nested interrupt.  In this case, the CPU is in
2724
		 * a quiescent state, so note it.
2725 2726
		 *
		 * No memory barrier is required here because both
2727 2728 2729
		 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
		 * variables that other CPUs neither access nor modify,
		 * at least not while the corresponding CPU is online.
2730 2731
		 */

2732 2733
		rcu_sched_qs();
		rcu_bh_qs();
2734 2735 2736 2737 2738 2739 2740

	} else if (!in_softirq()) {

		/*
		 * Get here if this CPU did not take its interrupt from
		 * softirq, in other words, if it is not interrupting
		 * a rcu_bh read-side critical section.  This is an _bh
2741
		 * critical section, so note it.
2742 2743
		 */

2744
		rcu_bh_qs();
2745
	}
2746
	rcu_preempt_check_callbacks();
2747
	if (rcu_pending())
2748
		invoke_rcu_core();
P
Paul E. McKenney 已提交
2749 2750
	if (user)
		rcu_note_voluntary_context_switch(current);
2751
	trace_rcu_utilization(TPS("End scheduler-tick"));
2752 2753 2754 2755 2756
}

/*
 * Scan the leaf rcu_node structures, processing dyntick state for any that
 * have not yet encountered a quiescent state, using the function specified.
2757 2758
 * Also initiate boosting for any threads blocked on the root rcu_node.
 *
2759
 * The caller must have suppressed start of new grace periods.
2760
 */
2761 2762 2763 2764
static void force_qs_rnp(struct rcu_state *rsp,
			 int (*f)(struct rcu_data *rsp, bool *isidle,
				  unsigned long *maxj),
			 bool *isidle, unsigned long *maxj)
2765 2766 2767 2768 2769
{
	unsigned long bit;
	int cpu;
	unsigned long flags;
	unsigned long mask;
2770
	struct rcu_node *rnp;
2771

2772
	rcu_for_each_leaf_node(rsp, rnp) {
2773
		cond_resched_rcu_qs();
2774
		mask = 0;
P
Paul E. McKenney 已提交
2775
		raw_spin_lock_irqsave(&rnp->lock, flags);
2776
		smp_mb__after_unlock_lock();
2777
		if (rnp->qsmask == 0) {
2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800
			if (rcu_state_p == &rcu_sched_state ||
			    rsp != rcu_state_p ||
			    rcu_preempt_blocked_readers_cgp(rnp)) {
				/*
				 * No point in scanning bits because they
				 * are all zero.  But we might need to
				 * priority-boost blocked readers.
				 */
				rcu_initiate_boost(rnp, flags);
				/* rcu_initiate_boost() releases rnp->lock */
				continue;
			}
			if (rnp->parent &&
			    (rnp->parent->qsmask & rnp->grpmask)) {
				/*
				 * Race between grace-period
				 * initialization and task exiting RCU
				 * read-side critical section: Report.
				 */
				rcu_report_unblock_qs_rnp(rsp, rnp, flags);
				/* rcu_report_unblock_qs_rnp() rlses ->lock */
				continue;
			}
2801
		}
2802
		cpu = rnp->grplo;
2803
		bit = 1;
2804
		for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
2805 2806 2807 2808
			if ((rnp->qsmask & bit) != 0) {
				if (f(per_cpu_ptr(rsp->rda, cpu), isidle, maxj))
					mask |= bit;
			}
2809
		}
2810
		if (mask != 0) {
2811 2812
			/* Idle/offline CPUs, report (releases rnp->lock. */
			rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags);
2813 2814 2815
		} else {
			/* Nothing to do here, so just drop the lock. */
			raw_spin_unlock_irqrestore(&rnp->lock, flags);
2816 2817 2818 2819 2820 2821 2822 2823
		}
	}
}

/*
 * Force quiescent states on reluctant CPUs, and also detect which
 * CPUs are in dyntick-idle mode.
 */
2824
static void force_quiescent_state(struct rcu_state *rsp)
2825 2826
{
	unsigned long flags;
2827 2828 2829 2830 2831
	bool ret;
	struct rcu_node *rnp;
	struct rcu_node *rnp_old = NULL;

	/* Funnel through hierarchy to reduce memory contention. */
2832
	rnp = __this_cpu_read(rsp->rda->mynode);
2833
	for (; rnp != NULL; rnp = rnp->parent) {
2834
		ret = (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) ||
2835 2836 2837 2838
		      !raw_spin_trylock(&rnp->fqslock);
		if (rnp_old != NULL)
			raw_spin_unlock(&rnp_old->fqslock);
		if (ret) {
2839
			rsp->n_force_qs_lh++;
2840 2841 2842 2843 2844
			return;
		}
		rnp_old = rnp;
	}
	/* rnp_old == rcu_get_root(rsp), rnp == NULL. */
2845

2846 2847
	/* Reached the root of the rcu_node tree, acquire lock. */
	raw_spin_lock_irqsave(&rnp_old->lock, flags);
2848
	smp_mb__after_unlock_lock();
2849
	raw_spin_unlock(&rnp_old->fqslock);
2850
	if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
2851
		rsp->n_force_qs_lh++;
2852
		raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
2853
		return;  /* Someone beat us to it. */
2854
	}
2855
	WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS);
2856
	raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
2857
	rcu_gp_kthread_wake(rsp);
2858 2859 2860
}

/*
2861 2862 2863
 * This does the RCU core processing work for the specified rcu_state
 * and rcu_data structures.  This may be called only from the CPU to
 * whom the rdp belongs.
2864 2865
 */
static void
2866
__rcu_process_callbacks(struct rcu_state *rsp)
2867 2868
{
	unsigned long flags;
2869
	bool needwake;
2870
	struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
2871

2872 2873
	WARN_ON_ONCE(rdp->beenonline == 0);

2874 2875 2876 2877
	/* Update RCU state based on any recent quiescent states. */
	rcu_check_quiescent_state(rsp, rdp);

	/* Does this CPU require a not-yet-started grace period? */
2878
	local_irq_save(flags);
2879
	if (cpu_needs_another_gp(rsp, rdp)) {
2880
		raw_spin_lock(&rcu_get_root(rsp)->lock); /* irqs disabled. */
2881
		needwake = rcu_start_gp(rsp);
2882
		raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);
2883 2884
		if (needwake)
			rcu_gp_kthread_wake(rsp);
2885 2886
	} else {
		local_irq_restore(flags);
2887 2888 2889
	}

	/* If there are callbacks ready, invoke them. */
2890
	if (cpu_has_callbacks_ready_to_invoke(rdp))
2891
		invoke_rcu_callbacks(rsp, rdp);
2892 2893 2894

	/* Do any needed deferred wakeups of rcuo kthreads. */
	do_nocb_deferred_wakeup(rdp);
2895 2896
}

2897
/*
2898
 * Do RCU core processing for the current CPU.
2899
 */
2900
static void rcu_process_callbacks(struct softirq_action *unused)
2901
{
2902 2903
	struct rcu_state *rsp;

2904 2905
	if (cpu_is_offline(smp_processor_id()))
		return;
2906
	trace_rcu_utilization(TPS("Start RCU core"));
2907 2908
	for_each_rcu_flavor(rsp)
		__rcu_process_callbacks(rsp);
2909
	trace_rcu_utilization(TPS("End RCU core"));
2910 2911
}

2912
/*
2913 2914 2915
 * Schedule RCU callback invocation.  If the specified type of RCU
 * does not support RCU priority boosting, just do a direct call,
 * otherwise wake up the per-CPU kernel kthread.  Note that because we
2916
 * are running on the current CPU with softirqs disabled, the
2917
 * rcu_cpu_kthread_task cannot disappear out from under us.
2918
 */
2919
static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
2920
{
2921
	if (unlikely(!READ_ONCE(rcu_scheduler_fully_active)))
2922
		return;
2923 2924
	if (likely(!rsp->boost)) {
		rcu_do_batch(rsp, rdp);
2925 2926
		return;
	}
2927
	invoke_rcu_callbacks_kthread();
2928 2929
}

2930
static void invoke_rcu_core(void)
2931
{
2932 2933
	if (cpu_online(smp_processor_id()))
		raise_softirq(RCU_SOFTIRQ);
2934 2935
}

2936 2937 2938 2939 2940
/*
 * Handle any core-RCU processing required by a call_rcu() invocation.
 */
static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp,
			    struct rcu_head *head, unsigned long flags)
2941
{
2942 2943
	bool needwake;

2944 2945 2946 2947
	/*
	 * If called from an extended quiescent state, invoke the RCU
	 * core in order to force a re-evaluation of RCU's idleness.
	 */
2948
	if (!rcu_is_watching())
2949 2950
		invoke_rcu_core();

2951
	/* If interrupts were disabled or CPU offline, don't invoke RCU core. */
2952
	if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2953
		return;
2954

2955 2956 2957 2958 2959 2960 2961
	/*
	 * Force the grace period if too many callbacks or too long waiting.
	 * Enforce hysteresis, and don't invoke force_quiescent_state()
	 * if some other CPU has recently done so.  Also, don't bother
	 * invoking force_quiescent_state() if the newly enqueued callback
	 * is the only one waiting for a grace period to complete.
	 */
2962
	if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
2963 2964

		/* Are we ignoring a completed grace period? */
2965
		note_gp_changes(rsp, rdp);
2966 2967 2968 2969 2970

		/* Start a new grace period if one not already started. */
		if (!rcu_gp_in_progress(rsp)) {
			struct rcu_node *rnp_root = rcu_get_root(rsp);

2971
			raw_spin_lock(&rnp_root->lock);
2972
			smp_mb__after_unlock_lock();
2973
			needwake = rcu_start_gp(rsp);
2974
			raw_spin_unlock(&rnp_root->lock);
2975 2976
			if (needwake)
				rcu_gp_kthread_wake(rsp);
2977 2978 2979 2980 2981
		} else {
			/* Give the grace period a kick. */
			rdp->blimit = LONG_MAX;
			if (rsp->n_force_qs == rdp->n_force_qs_snap &&
			    *rdp->nxttail[RCU_DONE_TAIL] != head)
2982
				force_quiescent_state(rsp);
2983 2984 2985
			rdp->n_force_qs_snap = rsp->n_force_qs;
			rdp->qlen_last_fqs_check = rdp->qlen;
		}
2986
	}
2987 2988
}

2989 2990 2991 2992 2993 2994 2995
/*
 * RCU callback function to leak a callback.
 */
static void rcu_leak_callback(struct rcu_head *rhp)
{
}

P
Paul E. McKenney 已提交
2996 2997 2998 2999 3000 3001
/*
 * Helper function for call_rcu() and friends.  The cpu argument will
 * normally be -1, indicating "currently running CPU".  It may specify
 * a CPU only if that CPU is a no-CBs CPU.  Currently, only _rcu_barrier()
 * is expected to specify a CPU.
 */
3002 3003
static void
__call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
P
Paul E. McKenney 已提交
3004
	   struct rcu_state *rsp, int cpu, bool lazy)
3005 3006 3007 3008
{
	unsigned long flags;
	struct rcu_data *rdp;

3009
	WARN_ON_ONCE((unsigned long)head & 0x1); /* Misaligned rcu_head! */
3010 3011
	if (debug_rcu_head_queue(head)) {
		/* Probable double call_rcu(), so leak the callback. */
3012
		WRITE_ONCE(head->func, rcu_leak_callback);
3013 3014 3015
		WARN_ONCE(1, "__call_rcu(): Leaked duplicate callback\n");
		return;
	}
3016 3017 3018 3019 3020 3021 3022 3023 3024 3025
	head->func = func;
	head->next = NULL;

	/*
	 * Opportunistically note grace-period endings and beginnings.
	 * Note that we might see a beginning right after we see an
	 * end, but never vice versa, since this CPU has to pass through
	 * a quiescent state betweentimes.
	 */
	local_irq_save(flags);
3026
	rdp = this_cpu_ptr(rsp->rda);
3027 3028

	/* Add the callback to our list. */
P
Paul E. McKenney 已提交
3029 3030 3031 3032 3033
	if (unlikely(rdp->nxttail[RCU_NEXT_TAIL] == NULL) || cpu != -1) {
		int offline;

		if (cpu != -1)
			rdp = per_cpu_ptr(rsp->rda, cpu);
3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046
		if (likely(rdp->mynode)) {
			/* Post-boot, so this should be for a no-CBs CPU. */
			offline = !__call_rcu_nocb(rdp, head, lazy, flags);
			WARN_ON_ONCE(offline);
			/* Offline CPU, _call_rcu() illegal, leak callback.  */
			local_irq_restore(flags);
			return;
		}
		/*
		 * Very early boot, before rcu_init().  Initialize if needed
		 * and then drop through to queue the callback.
		 */
		BUG_ON(cpu != -1);
3047
		WARN_ON_ONCE(!rcu_is_watching());
3048 3049
		if (!likely(rdp->nxtlist))
			init_default_callback_list(rdp);
3050
	}
3051
	WRITE_ONCE(rdp->qlen, rdp->qlen + 1);
3052 3053
	if (lazy)
		rdp->qlen_lazy++;
3054 3055
	else
		rcu_idle_count_callbacks_posted();
3056 3057 3058
	smp_mb();  /* Count before adding callback for rcu_barrier(). */
	*rdp->nxttail[RCU_NEXT_TAIL] = head;
	rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
3059

3060 3061
	if (__is_kfree_rcu_offset((unsigned long)func))
		trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
3062
					 rdp->qlen_lazy, rdp->qlen);
3063
	else
3064
		trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen);
3065

3066 3067
	/* Go handle any RCU core processing required. */
	__call_rcu_core(rsp, rdp, head, flags);
3068 3069 3070 3071
	local_irq_restore(flags);
}

/*
3072
 * Queue an RCU-sched callback for invocation after a grace period.
3073
 */
3074
void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
3075
{
P
Paul E. McKenney 已提交
3076
	__call_rcu(head, func, &rcu_sched_state, -1, 0);
3077
}
3078
EXPORT_SYMBOL_GPL(call_rcu_sched);
3079 3080

/*
3081
 * Queue an RCU callback for invocation after a quicker grace period.
3082 3083 3084
 */
void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
{
P
Paul E. McKenney 已提交
3085
	__call_rcu(head, func, &rcu_bh_state, -1, 0);
3086 3087 3088
}
EXPORT_SYMBOL_GPL(call_rcu_bh);

3089 3090 3091 3092 3093 3094 3095 3096 3097 3098
/*
 * Queue an RCU callback for lazy invocation after a grace period.
 * This will likely be later named something like "call_rcu_lazy()",
 * but this change will require some way of tagging the lazy RCU
 * callbacks in the list of pending callbacks. Until then, this
 * function may only be called from __kfree_rcu().
 */
void kfree_call_rcu(struct rcu_head *head,
		    void (*func)(struct rcu_head *rcu))
{
3099
	__call_rcu(head, func, rcu_state_p, -1, 1);
3100 3101 3102
}
EXPORT_SYMBOL_GPL(kfree_call_rcu);

3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113
/*
 * Because a context switch is a grace period for RCU-sched and RCU-bh,
 * any blocking grace-period wait automatically implies a grace period
 * if there is only one CPU online at any point time during execution
 * of either synchronize_sched() or synchronize_rcu_bh().  It is OK to
 * occasionally incorrectly indicate that there are multiple CPUs online
 * when there was in fact only one the whole time, as this just adds
 * some overhead: RCU still operates correctly.
 */
static inline int rcu_blocking_is_gp(void)
{
3114 3115
	int ret;

3116
	might_sleep();  /* Check for RCU read-side critical section. */
3117 3118 3119 3120
	preempt_disable();
	ret = num_online_cpus() <= 1;
	preempt_enable();
	return ret;
3121 3122
}

3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134
/**
 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
 *
 * Control will return to the caller some time after a full rcu-sched
 * grace period has elapsed, in other words after all currently executing
 * rcu-sched read-side critical sections have completed.   These read-side
 * critical sections are delimited by rcu_read_lock_sched() and
 * rcu_read_unlock_sched(), and may be nested.  Note that preempt_disable(),
 * local_irq_disable(), and so on may be used in place of
 * rcu_read_lock_sched().
 *
 * This means that all preempt_disable code sequences, including NMI and
3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156
 * non-threaded hardware-interrupt handlers, in progress on entry will
 * have completed before this primitive returns.  However, this does not
 * guarantee that softirq handlers will have completed, since in some
 * kernels, these handlers can run in process context, and can block.
 *
 * Note that this guarantee implies further memory-ordering guarantees.
 * On systems with more than one CPU, when synchronize_sched() returns,
 * each CPU is guaranteed to have executed a full memory barrier since the
 * end of its last RCU-sched read-side critical section whose beginning
 * preceded the call to synchronize_sched().  In addition, each CPU having
 * an RCU read-side critical section that extends beyond the return from
 * synchronize_sched() is guaranteed to have executed a full memory barrier
 * after the beginning of synchronize_sched() and before the beginning of
 * that RCU read-side critical section.  Note that these guarantees include
 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
 * that are executing in the kernel.
 *
 * Furthermore, if CPU A invoked synchronize_sched(), which returned
 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
 * to have executed a full memory barrier during the execution of
 * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but
 * again only if the system has more than one CPU).
3157 3158 3159 3160 3161 3162 3163 3164 3165
 *
 * This primitive provides the guarantees made by the (now removed)
 * synchronize_kernel() API.  In contrast, synchronize_rcu() only
 * guarantees that rcu_read_lock() sections will have completed.
 * In "classic RCU", these two guarantees happen to be one and
 * the same, but can differ in realtime RCU implementations.
 */
void synchronize_sched(void)
{
3166 3167 3168 3169
	rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
			   !lock_is_held(&rcu_lock_map) &&
			   !lock_is_held(&rcu_sched_lock_map),
			   "Illegal synchronize_sched() in RCU-sched read-side critical section");
3170 3171
	if (rcu_blocking_is_gp())
		return;
3172
	if (rcu_gp_is_expedited())
3173 3174 3175
		synchronize_sched_expedited();
	else
		wait_rcu_gp(call_rcu_sched);
3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186
}
EXPORT_SYMBOL_GPL(synchronize_sched);

/**
 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
 *
 * Control will return to the caller some time after a full rcu_bh grace
 * period has elapsed, in other words after all currently executing rcu_bh
 * read-side critical sections have completed.  RCU read-side critical
 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
 * and may be nested.
3187 3188 3189
 *
 * See the description of synchronize_sched() for more detailed information
 * on memory ordering guarantees.
3190 3191 3192
 */
void synchronize_rcu_bh(void)
{
3193 3194 3195 3196
	rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
			   !lock_is_held(&rcu_lock_map) &&
			   !lock_is_held(&rcu_sched_lock_map),
			   "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
3197 3198
	if (rcu_blocking_is_gp())
		return;
3199
	if (rcu_gp_is_expedited())
3200 3201 3202
		synchronize_rcu_bh_expedited();
	else
		wait_rcu_gp(call_rcu_bh);
3203 3204 3205
}
EXPORT_SYMBOL_GPL(synchronize_rcu_bh);

3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225
/**
 * get_state_synchronize_rcu - Snapshot current RCU state
 *
 * Returns a cookie that is used by a later call to cond_synchronize_rcu()
 * to determine whether or not a full grace period has elapsed in the
 * meantime.
 */
unsigned long get_state_synchronize_rcu(void)
{
	/*
	 * Any prior manipulation of RCU-protected data must happen
	 * before the load from ->gpnum.
	 */
	smp_mb();  /* ^^^ */

	/*
	 * Make sure this load happens before the purportedly
	 * time-consuming work between get_state_synchronize_rcu()
	 * and cond_synchronize_rcu().
	 */
3226
	return smp_load_acquire(&rcu_state_p->gpnum);
3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251
}
EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);

/**
 * cond_synchronize_rcu - Conditionally wait for an RCU grace period
 *
 * @oldstate: return value from earlier call to get_state_synchronize_rcu()
 *
 * If a full RCU grace period has elapsed since the earlier call to
 * get_state_synchronize_rcu(), just return.  Otherwise, invoke
 * synchronize_rcu() to wait for a full grace period.
 *
 * Yes, this function does not take counter wrap into account.  But
 * counter wrap is harmless.  If the counter wraps, we have waited for
 * more than 2 billion grace periods (and way more on a 64-bit system!),
 * so waiting for one additional grace period should be just fine.
 */
void cond_synchronize_rcu(unsigned long oldstate)
{
	unsigned long newstate;

	/*
	 * Ensure that this load happens before any RCU-destructive
	 * actions the caller might carry out after we return.
	 */
3252
	newstate = smp_load_acquire(&rcu_state_p->completed);
3253 3254 3255 3256 3257
	if (ULONG_CMP_GE(oldstate, newstate))
		synchronize_rcu();
}
EXPORT_SYMBOL_GPL(cond_synchronize_rcu);

3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311
/* Adjust sequence number for start of update-side operation. */
static void rcu_seq_start(unsigned long *sp)
{
	WRITE_ONCE(*sp, *sp + 1);
	smp_mb(); /* Ensure update-side operation after counter increment. */
	WARN_ON_ONCE(!(*sp & 0x1));
}

/* Adjust sequence number for end of update-side operation. */
static void rcu_seq_end(unsigned long *sp)
{
	smp_mb(); /* Ensure update-side operation before counter increment. */
	WRITE_ONCE(*sp, *sp + 1);
	WARN_ON_ONCE(*sp & 0x1);
}

/* Take a snapshot of the update side's sequence number. */
static unsigned long rcu_seq_snap(unsigned long *sp)
{
	unsigned long s;

	smp_mb(); /* Caller's modifications seen first by other CPUs. */
	s = (READ_ONCE(*sp) + 3) & ~0x1;
	smp_mb(); /* Above access must not bleed into critical section. */
	return s;
}

/*
 * Given a snapshot from rcu_seq_snap(), determine whether or not a
 * full update-side operation has occurred.
 */
static bool rcu_seq_done(unsigned long *sp, unsigned long s)
{
	return ULONG_CMP_GE(READ_ONCE(*sp), s);
}

/* Wrapper functions for expedited grace periods.  */
static void rcu_exp_gp_seq_start(struct rcu_state *rsp)
{
	rcu_seq_start(&rsp->expedited_sequence);
}
static void rcu_exp_gp_seq_end(struct rcu_state *rsp)
{
	rcu_seq_end(&rsp->expedited_sequence);
}
static unsigned long rcu_exp_gp_seq_snap(struct rcu_state *rsp)
{
	return rcu_seq_snap(&rsp->expedited_sequence);
}
static bool rcu_exp_gp_seq_done(struct rcu_state *rsp, unsigned long s)
{
	return rcu_seq_done(&rsp->expedited_sequence, s);
}

3312 3313 3314
/* Common code for synchronize_{rcu,sched}_expedited() work-done checking. */
static bool sync_exp_work_done(struct rcu_state *rsp, struct rcu_node *rnp,
			       atomic_long_t *stat, unsigned long s)
3315
{
3316
	if (rcu_exp_gp_seq_done(rsp, s)) {
3317 3318 3319 3320 3321 3322 3323 3324 3325 3326
		if (rnp)
			mutex_unlock(&rnp->exp_funnel_mutex);
		/* Ensure test happens before caller kfree(). */
		smp_mb__before_atomic(); /* ^^^ */
		atomic_long_inc(stat);
		return true;
	}
	return false;
}

3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346
/*
 * Funnel-lock acquisition for expedited grace periods.  Returns a
 * pointer to the root rcu_node structure, or NULL if some other
 * task did the expedited grace period for us.
 */
static struct rcu_node *exp_funnel_lock(struct rcu_state *rsp, unsigned long s)
{
	struct rcu_node *rnp0;
	struct rcu_node *rnp1 = NULL;

	/*
	 * Each pass through the following loop works its way
	 * up the rcu_node tree, returning if others have done the
	 * work or otherwise falls through holding the root rnp's
	 * ->exp_funnel_mutex.  The mapping from CPU to rcu_node structure
	 * can be inexact, as it is just promoting locality and is not
	 * strictly needed for correctness.
	 */
	rnp0 = per_cpu_ptr(rsp->rda, raw_smp_processor_id())->mynode;
	for (; rnp0 != NULL; rnp0 = rnp0->parent) {
3347
		if (sync_exp_work_done(rsp, rnp1, &rsp->expedited_workdone1, s))
3348 3349 3350 3351 3352 3353
			return NULL;
		mutex_lock(&rnp0->exp_funnel_mutex);
		if (rnp1)
			mutex_unlock(&rnp1->exp_funnel_mutex);
		rnp1 = rnp0;
	}
3354
	if (sync_exp_work_done(rsp, rnp1, &rsp->expedited_workdone2, s))
3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368
		return NULL;
	return rnp1;
}

static int synchronize_sched_expedited_cpu_stop(void *data)
{
	struct rcu_state *rsp = data;

	/* We are here: If we are last, do the wakeup. */
	if (atomic_dec_and_test(&rsp->expedited_need_qs))
		wake_up(&rsp->expedited_wq);
	return 0;
}

3369 3370 3371 3372 3373 3374 3375 3376 3377 3378
/**
 * synchronize_sched_expedited - Brute-force RCU-sched grace period
 *
 * Wait for an RCU-sched grace period to elapse, but use a "big hammer"
 * approach to force the grace period to end quickly.  This consumes
 * significant time on all CPUs and is unfriendly to real-time workloads,
 * so is thus not recommended for any sort of common-case code.  In fact,
 * if you are using synchronize_sched_expedited() in a loop, please
 * restructure your code to batch your updates, and then use a single
 * synchronize_sched() instead.
3379
 *
3380 3381 3382
 * This implementation can be thought of as an application of sequence
 * locking to expedited grace periods, but using the sequence counter to
 * determine when someone else has already done the work instead of for
3383
 * retrying readers.
3384 3385 3386
 */
void synchronize_sched_expedited(void)
{
3387
	int cpu;
3388
	unsigned long s;
3389
	struct rcu_node *rnp;
3390
	struct rcu_state *rsp = &rcu_sched_state;
3391

3392
	/* Take a snapshot of the sequence number.  */
3393
	s = rcu_exp_gp_seq_snap(rsp);
3394

3395 3396 3397 3398 3399 3400
	if (!try_get_online_cpus()) {
		/* CPU hotplug operation in flight, fall back to normal GP. */
		wait_rcu_gp(call_rcu_sched);
		atomic_long_inc(&rsp->expedited_normal);
		return;
	}
3401
	WARN_ON_ONCE(cpu_is_offline(raw_smp_processor_id()));
3402

3403
	rnp = exp_funnel_lock(rsp, s);
3404 3405
	if (rnp == NULL) {
		put_online_cpus();
3406
		return;  /* Someone else did our work for us. */
3407
	}
3408

3409
	rcu_exp_gp_seq_start(rsp);
3410

3411
	/* Stop each CPU that is online, non-idle, and not us. */
3412 3413
	init_waitqueue_head(&rsp->expedited_wq);
	atomic_set(&rsp->expedited_need_qs, 1); /* Extra count avoids race. */
3414
	for_each_online_cpu(cpu) {
3415
		struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3416 3417 3418 3419 3420 3421
		struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);

		/* Skip our CPU and any idle CPUs. */
		if (raw_smp_processor_id() == cpu ||
		    !(atomic_add_return(0, &rdtp->dynticks) & 0x1))
			continue;
3422 3423 3424
		atomic_inc(&rsp->expedited_need_qs);
		stop_one_cpu_nowait(cpu, synchronize_sched_expedited_cpu_stop,
				    rsp, &rdp->exp_stop_work);
3425
	}
3426

3427 3428 3429 3430 3431
	/* Remove extra count and, if necessary, wait for CPUs to stop. */
	if (!atomic_dec_and_test(&rsp->expedited_need_qs))
		wait_event(rsp->expedited_wq,
			   !atomic_read(&rsp->expedited_need_qs));

3432
	rcu_exp_gp_seq_end(rsp);
3433
	mutex_unlock(&rnp->exp_funnel_mutex);
3434
	smp_mb(); /* ensure subsequent action seen after grace period. */
3435 3436 3437 3438 3439

	put_online_cpus();
}
EXPORT_SYMBOL_GPL(synchronize_sched_expedited);

3440 3441 3442 3443 3444 3445 3446 3447 3448
/*
 * Check to see if there is any immediate RCU-related work to be done
 * by the current CPU, for the specified type of RCU, returning 1 if so.
 * The checks are in order of increasing expense: checks that can be
 * carried out against CPU-local state are performed first.  However,
 * we must check for CPU stalls first, else we might not get a chance.
 */
static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
{
3449 3450
	struct rcu_node *rnp = rdp->mynode;

3451 3452 3453 3454 3455
	rdp->n_rcu_pending++;

	/* Check for CPU stalls, if enabled. */
	check_cpu_stall(rsp, rdp);

3456 3457 3458 3459
	/* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */
	if (rcu_nohz_full_cpu(rsp))
		return 0;

3460
	/* Is the RCU core waiting for a quiescent state from this CPU? */
3461
	if (rcu_scheduler_fully_active &&
3462 3463
	    rdp->qs_pending && !rdp->passed_quiesce &&
	    rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr)) {
3464
		rdp->n_rp_qs_pending++;
3465 3466 3467
	} else if (rdp->qs_pending &&
		   (rdp->passed_quiesce ||
		    rdp->rcu_qs_ctr_snap != __this_cpu_read(rcu_qs_ctr))) {
3468
		rdp->n_rp_report_qs++;
3469
		return 1;
3470
	}
3471 3472

	/* Does this CPU have callbacks ready to invoke? */
3473 3474
	if (cpu_has_callbacks_ready_to_invoke(rdp)) {
		rdp->n_rp_cb_ready++;
3475
		return 1;
3476
	}
3477 3478

	/* Has RCU gone idle with this CPU needing another grace period? */
3479 3480
	if (cpu_needs_another_gp(rsp, rdp)) {
		rdp->n_rp_cpu_needs_gp++;
3481
		return 1;
3482
	}
3483 3484

	/* Has another RCU grace period completed?  */
3485
	if (READ_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
3486
		rdp->n_rp_gp_completed++;
3487
		return 1;
3488
	}
3489 3490

	/* Has a new RCU grace period started? */
3491 3492
	if (READ_ONCE(rnp->gpnum) != rdp->gpnum ||
	    unlikely(READ_ONCE(rdp->gpwrap))) { /* outside lock */
3493
		rdp->n_rp_gp_started++;
3494
		return 1;
3495
	}
3496

3497 3498 3499 3500 3501 3502
	/* Does this CPU need a deferred NOCB wakeup? */
	if (rcu_nocb_need_deferred_wakeup(rdp)) {
		rdp->n_rp_nocb_defer_wakeup++;
		return 1;
	}

3503
	/* nothing to do */
3504
	rdp->n_rp_need_nothing++;
3505 3506 3507 3508 3509 3510 3511 3512
	return 0;
}

/*
 * Check to see if there is any immediate RCU-related work to be done
 * by the current CPU, returning 1 if so.  This function is part of the
 * RCU implementation; it is -not- an exported member of the RCU API.
 */
3513
static int rcu_pending(void)
3514
{
3515 3516 3517
	struct rcu_state *rsp;

	for_each_rcu_flavor(rsp)
3518
		if (__rcu_pending(rsp, this_cpu_ptr(rsp->rda)))
3519 3520
			return 1;
	return 0;
3521 3522 3523
}

/*
3524 3525 3526
 * Return true if the specified CPU has any callback.  If all_lazy is
 * non-NULL, store an indication of whether all callbacks are lazy.
 * (If there are no callbacks, all of them are deemed to be lazy.)
3527
 */
3528
static bool __maybe_unused rcu_cpu_has_callbacks(bool *all_lazy)
3529
{
3530 3531 3532
	bool al = true;
	bool hc = false;
	struct rcu_data *rdp;
3533 3534
	struct rcu_state *rsp;

3535
	for_each_rcu_flavor(rsp) {
3536
		rdp = this_cpu_ptr(rsp->rda);
3537 3538 3539 3540
		if (!rdp->nxtlist)
			continue;
		hc = true;
		if (rdp->qlen != rdp->qlen_lazy || !all_lazy) {
3541
			al = false;
3542 3543
			break;
		}
3544 3545 3546 3547
	}
	if (all_lazy)
		*all_lazy = al;
	return hc;
3548 3549
}

3550 3551 3552 3553
/*
 * Helper function for _rcu_barrier() tracing.  If tracing is disabled,
 * the compiler is expected to optimize this away.
 */
3554
static void _rcu_barrier_trace(struct rcu_state *rsp, const char *s,
3555 3556 3557 3558 3559 3560
			       int cpu, unsigned long done)
{
	trace_rcu_barrier(rsp->name, s, cpu,
			  atomic_read(&rsp->barrier_cpu_count), done);
}

3561 3562 3563 3564
/*
 * RCU callback function for _rcu_barrier().  If we are last, wake
 * up the task executing _rcu_barrier().
 */
3565
static void rcu_barrier_callback(struct rcu_head *rhp)
3566
{
3567 3568 3569
	struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head);
	struct rcu_state *rsp = rdp->rsp;

3570
	if (atomic_dec_and_test(&rsp->barrier_cpu_count)) {
3571
		_rcu_barrier_trace(rsp, "LastCB", -1, rsp->barrier_sequence);
3572
		complete(&rsp->barrier_completion);
3573
	} else {
3574
		_rcu_barrier_trace(rsp, "CB", -1, rsp->barrier_sequence);
3575
	}
3576 3577 3578 3579 3580 3581 3582
}

/*
 * Called with preemption disabled, and from cross-cpu IRQ context.
 */
static void rcu_barrier_func(void *type)
{
3583
	struct rcu_state *rsp = type;
3584
	struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
3585

3586
	_rcu_barrier_trace(rsp, "IRQ", -1, rsp->barrier_sequence);
3587
	atomic_inc(&rsp->barrier_cpu_count);
3588
	rsp->call(&rdp->barrier_head, rcu_barrier_callback);
3589 3590 3591 3592 3593 3594
}

/*
 * Orchestrate the specified type of RCU barrier, waiting for all
 * RCU callbacks of the specified type to complete.
 */
3595
static void _rcu_barrier(struct rcu_state *rsp)
3596
{
3597 3598
	int cpu;
	struct rcu_data *rdp;
3599
	unsigned long s = rcu_seq_snap(&rsp->barrier_sequence);
3600

3601
	_rcu_barrier_trace(rsp, "Begin", -1, s);
3602

3603
	/* Take mutex to serialize concurrent rcu_barrier() requests. */
3604
	mutex_lock(&rsp->barrier_mutex);
3605

3606 3607 3608
	/* Did someone else do our work for us? */
	if (rcu_seq_done(&rsp->barrier_sequence, s)) {
		_rcu_barrier_trace(rsp, "EarlyExit", -1, rsp->barrier_sequence);
3609 3610 3611 3612 3613
		smp_mb(); /* caller's subsequent code after above check. */
		mutex_unlock(&rsp->barrier_mutex);
		return;
	}

3614 3615 3616
	/* Mark the start of the barrier operation. */
	rcu_seq_start(&rsp->barrier_sequence);
	_rcu_barrier_trace(rsp, "Inc1", -1, rsp->barrier_sequence);
3617

3618
	/*
3619 3620
	 * Initialize the count to one rather than to zero in order to
	 * avoid a too-soon return to zero in case of a short grace period
3621 3622
	 * (or preemption of this task).  Exclude CPU-hotplug operations
	 * to ensure that no offline CPU has callbacks queued.
3623
	 */
3624
	init_completion(&rsp->barrier_completion);
3625
	atomic_set(&rsp->barrier_cpu_count, 1);
3626
	get_online_cpus();
3627 3628

	/*
3629 3630 3631
	 * Force each CPU with callbacks to register a new callback.
	 * When that callback is invoked, we will know that all of the
	 * corresponding CPU's preceding callbacks have been invoked.
3632
	 */
P
Paul E. McKenney 已提交
3633
	for_each_possible_cpu(cpu) {
3634
		if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu))
P
Paul E. McKenney 已提交
3635
			continue;
3636
		rdp = per_cpu_ptr(rsp->rda, cpu);
3637
		if (rcu_is_nocb_cpu(cpu)) {
3638 3639
			if (!rcu_nocb_cpu_needs_barrier(rsp, cpu)) {
				_rcu_barrier_trace(rsp, "OfflineNoCB", cpu,
3640
						   rsp->barrier_sequence);
3641 3642
			} else {
				_rcu_barrier_trace(rsp, "OnlineNoCB", cpu,
3643
						   rsp->barrier_sequence);
3644
				smp_mb__before_atomic();
3645 3646 3647 3648
				atomic_inc(&rsp->barrier_cpu_count);
				__call_rcu(&rdp->barrier_head,
					   rcu_barrier_callback, rsp, cpu, 0);
			}
3649
		} else if (READ_ONCE(rdp->qlen)) {
3650
			_rcu_barrier_trace(rsp, "OnlineQ", cpu,
3651
					   rsp->barrier_sequence);
3652
			smp_call_function_single(cpu, rcu_barrier_func, rsp, 1);
3653
		} else {
3654
			_rcu_barrier_trace(rsp, "OnlineNQ", cpu,
3655
					   rsp->barrier_sequence);
3656 3657
		}
	}
3658
	put_online_cpus();
3659 3660 3661 3662 3663

	/*
	 * Now that we have an rcu_barrier_callback() callback on each
	 * CPU, and thus each counted, remove the initial count.
	 */
3664
	if (atomic_dec_and_test(&rsp->barrier_cpu_count))
3665
		complete(&rsp->barrier_completion);
3666 3667

	/* Wait for all rcu_barrier_callback() callbacks to be invoked. */
3668
	wait_for_completion(&rsp->barrier_completion);
3669

3670 3671 3672 3673
	/* Mark the end of the barrier operation. */
	_rcu_barrier_trace(rsp, "Inc2", -1, rsp->barrier_sequence);
	rcu_seq_end(&rsp->barrier_sequence);

3674
	/* Other rcu_barrier() invocations can now safely proceed. */
3675
	mutex_unlock(&rsp->barrier_mutex);
3676 3677 3678 3679 3680 3681 3682
}

/**
 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
 */
void rcu_barrier_bh(void)
{
3683
	_rcu_barrier(&rcu_bh_state);
3684 3685 3686 3687 3688 3689 3690 3691
}
EXPORT_SYMBOL_GPL(rcu_barrier_bh);

/**
 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
 */
void rcu_barrier_sched(void)
{
3692
	_rcu_barrier(&rcu_sched_state);
3693 3694 3695
}
EXPORT_SYMBOL_GPL(rcu_barrier_sched);

3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717
/*
 * Propagate ->qsinitmask bits up the rcu_node tree to account for the
 * first CPU in a given leaf rcu_node structure coming online.  The caller
 * must hold the corresponding leaf rcu_node ->lock with interrrupts
 * disabled.
 */
static void rcu_init_new_rnp(struct rcu_node *rnp_leaf)
{
	long mask;
	struct rcu_node *rnp = rnp_leaf;

	for (;;) {
		mask = rnp->grpmask;
		rnp = rnp->parent;
		if (rnp == NULL)
			return;
		raw_spin_lock(&rnp->lock); /* Interrupts already disabled. */
		rnp->qsmaskinit |= mask;
		raw_spin_unlock(&rnp->lock); /* Interrupts remain disabled. */
	}
}

3718
/*
3719
 * Do boot-time initialization of a CPU's per-CPU RCU data.
3720
 */
3721 3722
static void __init
rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
3723 3724
{
	unsigned long flags;
3725
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3726 3727 3728
	struct rcu_node *rnp = rcu_get_root(rsp);

	/* Set up local state, ensuring consistent view of global state. */
P
Paul E. McKenney 已提交
3729
	raw_spin_lock_irqsave(&rnp->lock, flags);
3730 3731
	rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
	rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
3732
	WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE);
3733
	WARN_ON_ONCE(atomic_read(&rdp->dynticks->dynticks) != 1);
3734
	rdp->cpu = cpu;
3735
	rdp->rsp = rsp;
P
Paul E. McKenney 已提交
3736
	rcu_boot_init_nocb_percpu_data(rdp);
P
Paul E. McKenney 已提交
3737
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
3738 3739 3740 3741 3742 3743 3744
}

/*
 * Initialize a CPU's per-CPU RCU data.  Note that only one online or
 * offline event can be happening at a given time.  Note also that we
 * can accept some slop in the rsp->completed access due to the fact
 * that this CPU cannot possibly have any RCU callbacks in flight yet.
3745
 */
3746
static void
3747
rcu_init_percpu_data(int cpu, struct rcu_state *rsp)
3748 3749 3750
{
	unsigned long flags;
	unsigned long mask;
3751
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3752 3753 3754
	struct rcu_node *rnp = rcu_get_root(rsp);

	/* Set up local state, ensuring consistent view of global state. */
P
Paul E. McKenney 已提交
3755
	raw_spin_lock_irqsave(&rnp->lock, flags);
3756
	rdp->beenonline = 1;	 /* We have now been online. */
3757 3758
	rdp->qlen_last_fqs_check = 0;
	rdp->n_force_qs_snap = rsp->n_force_qs;
3759
	rdp->blimit = blimit;
3760 3761
	if (!rdp->nxtlist)
		init_callback_list(rdp);  /* Re-enable callbacks on this CPU. */
3762
	rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
3763
	rcu_sysidle_init_percpu_data(rdp->dynticks);
3764 3765
	atomic_set(&rdp->dynticks->dynticks,
		   (atomic_read(&rdp->dynticks->dynticks) & ~0x1) + 1);
P
Paul E. McKenney 已提交
3766
	raw_spin_unlock(&rnp->lock);		/* irqs remain disabled. */
3767

3768 3769 3770 3771 3772
	/*
	 * Add CPU to leaf rcu_node pending-online bitmask.  Any needed
	 * propagation up the rcu_node tree will happen at the beginning
	 * of the next grace period.
	 */
3773 3774
	rnp = rdp->mynode;
	mask = rdp->grpmask;
3775 3776 3777 3778 3779 3780
	raw_spin_lock(&rnp->lock);		/* irqs already disabled. */
	smp_mb__after_unlock_lock();
	rnp->qsmaskinitnext |= mask;
	rdp->gpnum = rnp->completed; /* Make CPU later note any new GP. */
	rdp->completed = rnp->completed;
	rdp->passed_quiesce = false;
3781
	rdp->rcu_qs_ctr_snap = per_cpu(rcu_qs_ctr, cpu);
3782 3783 3784
	rdp->qs_pending = false;
	trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuonl"));
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
3785 3786
}

3787
static void rcu_prepare_cpu(int cpu)
3788
{
3789 3790 3791
	struct rcu_state *rsp;

	for_each_rcu_flavor(rsp)
3792
		rcu_init_percpu_data(cpu, rsp);
3793 3794 3795
}

/*
3796
 * Handle CPU online/offline notification events.
3797
 */
3798 3799
int rcu_cpu_notify(struct notifier_block *self,
		   unsigned long action, void *hcpu)
3800 3801
{
	long cpu = (long)hcpu;
3802
	struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
3803
	struct rcu_node *rnp = rdp->mynode;
3804
	struct rcu_state *rsp;
3805 3806 3807 3808

	switch (action) {
	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
P
Peter Zijlstra 已提交
3809 3810
		rcu_prepare_cpu(cpu);
		rcu_prepare_kthreads(cpu);
3811
		rcu_spawn_all_nocb_kthreads(cpu);
3812 3813
		break;
	case CPU_ONLINE:
3814
	case CPU_DOWN_FAILED:
T
Thomas Gleixner 已提交
3815
		rcu_boost_kthread_setaffinity(rnp, -1);
3816 3817
		break;
	case CPU_DOWN_PREPARE:
3818
		rcu_boost_kthread_setaffinity(rnp, cpu);
3819
		break;
3820 3821
	case CPU_DYING:
	case CPU_DYING_FROZEN:
3822 3823
		for_each_rcu_flavor(rsp)
			rcu_cleanup_dying_cpu(rsp);
3824
		break;
3825 3826 3827 3828 3829
	case CPU_DYING_IDLE:
		for_each_rcu_flavor(rsp) {
			rcu_cleanup_dying_idle_cpu(cpu, rsp);
		}
		break;
3830 3831 3832 3833
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
3834
		for_each_rcu_flavor(rsp) {
3835
			rcu_cleanup_dead_cpu(cpu, rsp);
3836 3837
			do_nocb_deferred_wakeup(per_cpu_ptr(rsp->rda, cpu));
		}
3838 3839 3840 3841
		break;
	default:
		break;
	}
3842
	return NOTIFY_OK;
3843 3844
}

3845 3846 3847 3848 3849 3850 3851
static int rcu_pm_notify(struct notifier_block *self,
			 unsigned long action, void *hcpu)
{
	switch (action) {
	case PM_HIBERNATION_PREPARE:
	case PM_SUSPEND_PREPARE:
		if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
3852
			rcu_expedite_gp();
3853 3854 3855
		break;
	case PM_POST_HIBERNATION:
	case PM_POST_SUSPEND:
3856 3857
		if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
			rcu_unexpedite_gp();
3858 3859 3860 3861 3862 3863 3864
		break;
	default:
		break;
	}
	return NOTIFY_OK;
}

3865
/*
3866
 * Spawn the kthreads that handle each RCU flavor's grace periods.
3867 3868 3869 3870
 */
static int __init rcu_spawn_gp_kthread(void)
{
	unsigned long flags;
3871
	int kthread_prio_in = kthread_prio;
3872 3873
	struct rcu_node *rnp;
	struct rcu_state *rsp;
3874
	struct sched_param sp;
3875 3876
	struct task_struct *t;

3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887
	/* Force priority into range. */
	if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1)
		kthread_prio = 1;
	else if (kthread_prio < 0)
		kthread_prio = 0;
	else if (kthread_prio > 99)
		kthread_prio = 99;
	if (kthread_prio != kthread_prio_in)
		pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n",
			 kthread_prio, kthread_prio_in);

3888
	rcu_scheduler_fully_active = 1;
3889
	for_each_rcu_flavor(rsp) {
3890
		t = kthread_create(rcu_gp_kthread, rsp, "%s", rsp->name);
3891 3892 3893 3894
		BUG_ON(IS_ERR(t));
		rnp = rcu_get_root(rsp);
		raw_spin_lock_irqsave(&rnp->lock, flags);
		rsp->gp_kthread = t;
3895 3896 3897 3898 3899
		if (kthread_prio) {
			sp.sched_priority = kthread_prio;
			sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
		}
		wake_up_process(t);
3900 3901
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
	}
3902
	rcu_spawn_nocb_kthreads();
3903
	rcu_spawn_boost_kthreads();
3904 3905 3906 3907
	return 0;
}
early_initcall(rcu_spawn_gp_kthread);

3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922
/*
 * This function is invoked towards the end of the scheduler's initialization
 * process.  Before this is called, the idle task might contain
 * RCU read-side critical sections (during which time, this idle
 * task is booting the system).  After this function is called, the
 * idle tasks are prohibited from containing RCU read-side critical
 * sections.  This function also enables RCU lockdep checking.
 */
void rcu_scheduler_starting(void)
{
	WARN_ON(num_online_cpus() != 1);
	WARN_ON(nr_context_switches() > 0);
	rcu_scheduler_active = 1;
}

3923 3924
/*
 * Compute the per-level fanout, either using the exact fanout specified
3925
 * or balancing the tree, depending on the rcu_fanout_exact boot parameter.
3926
 */
3927
static void __init rcu_init_levelspread(int *levelspread, const int *levelcnt)
3928 3929 3930
{
	int i;

3931
	if (rcu_fanout_exact) {
3932
		levelspread[rcu_num_lvls - 1] = rcu_fanout_leaf;
3933
		for (i = rcu_num_lvls - 2; i >= 0; i--)
3934
			levelspread[i] = RCU_FANOUT;
3935 3936 3937 3938 3939 3940
	} else {
		int ccur;
		int cprv;

		cprv = nr_cpu_ids;
		for (i = rcu_num_lvls - 1; i >= 0; i--) {
3941 3942
			ccur = levelcnt[i];
			levelspread[i] = (cprv + ccur - 1) / ccur;
3943 3944
			cprv = ccur;
		}
3945 3946 3947 3948 3949 3950
	}
}

/*
 * Helper function for rcu_init() that initializes one rcu_state structure.
 */
3951 3952
static void __init rcu_init_one(struct rcu_state *rsp,
		struct rcu_data __percpu *rda)
3953
{
3954 3955
	static const char * const buf[] = RCU_NODE_NAME_INIT;
	static const char * const fqs[] = RCU_FQS_NAME_INIT;
3956
	static const char * const exp[] = RCU_EXP_NAME_INIT;
3957
	static u8 fl_mask = 0x1;
3958 3959 3960

	int levelcnt[RCU_NUM_LVLS];		/* # nodes in each level. */
	int levelspread[RCU_NUM_LVLS];		/* kids/node in each level. */
3961 3962 3963 3964 3965
	int cpustride = 1;
	int i;
	int j;
	struct rcu_node *rnp;

3966
	BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf));  /* Fix buf[] init! */
3967

3968 3969 3970
	/* Silence gcc 4.8 false positive about array index out of range. */
	if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS)
		panic("rcu_init_one: rcu_num_lvls out of range");
3971

3972 3973
	/* Initialize the level-tracking arrays. */

3974
	for (i = 0; i < rcu_num_lvls; i++)
3975
		levelcnt[i] = num_rcu_lvl[i];
3976
	for (i = 1; i < rcu_num_lvls; i++)
3977 3978
		rsp->level[i] = rsp->level[i - 1] + levelcnt[i - 1];
	rcu_init_levelspread(levelspread, levelcnt);
3979 3980
	rsp->flavor_mask = fl_mask;
	fl_mask <<= 1;
3981 3982 3983

	/* Initialize the elements themselves, starting from the leaves. */

3984
	for (i = rcu_num_lvls - 1; i >= 0; i--) {
3985
		cpustride *= levelspread[i];
3986
		rnp = rsp->level[i];
3987
		for (j = 0; j < levelcnt[i]; j++, rnp++) {
P
Paul E. McKenney 已提交
3988
			raw_spin_lock_init(&rnp->lock);
3989 3990
			lockdep_set_class_and_name(&rnp->lock,
						   &rcu_node_class[i], buf[i]);
3991 3992 3993
			raw_spin_lock_init(&rnp->fqslock);
			lockdep_set_class_and_name(&rnp->fqslock,
						   &rcu_fqs_class[i], fqs[i]);
3994 3995
			rnp->gpnum = rsp->gpnum;
			rnp->completed = rsp->completed;
3996 3997 3998 3999
			rnp->qsmask = 0;
			rnp->qsmaskinit = 0;
			rnp->grplo = j * cpustride;
			rnp->grphi = (j + 1) * cpustride - 1;
4000 4001
			if (rnp->grphi >= nr_cpu_ids)
				rnp->grphi = nr_cpu_ids - 1;
4002 4003 4004 4005 4006
			if (i == 0) {
				rnp->grpnum = 0;
				rnp->grpmask = 0;
				rnp->parent = NULL;
			} else {
4007
				rnp->grpnum = j % levelspread[i - 1];
4008 4009
				rnp->grpmask = 1UL << rnp->grpnum;
				rnp->parent = rsp->level[i - 1] +
4010
					      j / levelspread[i - 1];
4011 4012
			}
			rnp->level = i;
4013
			INIT_LIST_HEAD(&rnp->blkd_tasks);
4014
			rcu_init_one_nocb(rnp);
4015 4016 4017
			mutex_init(&rnp->exp_funnel_mutex);
			lockdep_set_class_and_name(&rnp->exp_funnel_mutex,
						   &rcu_exp_class[i], exp[i]);
4018 4019
		}
	}
4020

4021
	init_waitqueue_head(&rsp->gp_wq);
4022
	rnp = rsp->level[rcu_num_lvls - 1];
4023
	for_each_possible_cpu(i) {
4024
		while (i > rnp->grphi)
4025
			rnp++;
4026
		per_cpu_ptr(rsp->rda, i)->mynode = rnp;
4027 4028
		rcu_boot_init_percpu_data(i, rsp);
	}
4029
	list_add(&rsp->flavors, &rcu_struct_flavors);
4030 4031
}

4032 4033
/*
 * Compute the rcu_node tree geometry from kernel parameters.  This cannot
4034
 * replace the definitions in tree.h because those are needed to size
4035 4036 4037 4038
 * the ->node array in the rcu_state structure.
 */
static void __init rcu_init_geometry(void)
{
4039
	ulong d;
4040
	int i;
4041
	int rcu_capacity[RCU_NUM_LVLS];
4042

4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055
	/*
	 * Initialize any unspecified boot parameters.
	 * The default values of jiffies_till_first_fqs and
	 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
	 * value, which is a function of HZ, then adding one for each
	 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
	 */
	d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
	if (jiffies_till_first_fqs == ULONG_MAX)
		jiffies_till_first_fqs = d;
	if (jiffies_till_next_fqs == ULONG_MAX)
		jiffies_till_next_fqs = d;

4056
	/* If the compile-time values are accurate, just leave. */
4057
	if (rcu_fanout_leaf == RCU_FANOUT_LEAF &&
4058
	    nr_cpu_ids == NR_CPUS)
4059
		return;
4060 4061
	pr_info("RCU: Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%d\n",
		rcu_fanout_leaf, nr_cpu_ids);
4062

4063 4064 4065 4066 4067 4068 4069 4070 4071
	/*
	 * The boot-time rcu_fanout_leaf parameter is only permitted
	 * to increase the leaf-level fanout, not decrease it.  Of course,
	 * the leaf-level fanout cannot exceed the number of bits in
	 * the rcu_node masks.  Complain and fall back to the compile-
	 * time values if these limits are exceeded.
	 */
	if (rcu_fanout_leaf < RCU_FANOUT_LEAF ||
	    rcu_fanout_leaf > sizeof(unsigned long) * 8) {
4072
		rcu_fanout_leaf = RCU_FANOUT_LEAF;
4073 4074 4075 4076
		WARN_ON(1);
		return;
	}

4077 4078
	/*
	 * Compute number of nodes that can be handled an rcu_node tree
4079
	 * with the given number of levels.
4080
	 */
4081
	rcu_capacity[0] = rcu_fanout_leaf;
4082
	for (i = 1; i < RCU_NUM_LVLS; i++)
4083
		rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT;
4084 4085

	/*
4086 4087
	 * The tree must be able to accommodate the configured number of CPUs.
	 * If this limit is exceeded than we have a serious problem elsewhere.
4088
	 */
4089
	if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1])
4090
		panic("rcu_init_geometry: rcu_capacity[] is too small");
4091

4092
	/* Calculate the number of levels in the tree. */
4093
	for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) {
4094
	}
4095
	rcu_num_lvls = i + 1;
4096

4097
	/* Calculate the number of rcu_nodes at each level of the tree. */
4098
	for (i = 0; i < rcu_num_lvls; i++) {
4099
		int cap = rcu_capacity[(rcu_num_lvls - 1) - i];
4100 4101
		num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap);
	}
4102 4103 4104

	/* Calculate the total number of rcu_node structures. */
	rcu_num_nodes = 0;
4105
	for (i = 0; i < rcu_num_lvls; i++)
4106 4107 4108
		rcu_num_nodes += num_rcu_lvl[i];
}

4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130
/*
 * Dump out the structure of the rcu_node combining tree associated
 * with the rcu_state structure referenced by rsp.
 */
static void __init rcu_dump_rcu_node_tree(struct rcu_state *rsp)
{
	int level = 0;
	struct rcu_node *rnp;

	pr_info("rcu_node tree layout dump\n");
	pr_info(" ");
	rcu_for_each_node_breadth_first(rsp, rnp) {
		if (rnp->level != level) {
			pr_cont("\n");
			pr_info(" ");
			level = rnp->level;
		}
		pr_cont("%d:%d ^%d  ", rnp->grplo, rnp->grphi, rnp->grpnum);
	}
	pr_cont("\n");
}

4131
void __init rcu_init(void)
4132
{
P
Paul E. McKenney 已提交
4133
	int cpu;
4134

4135 4136
	rcu_early_boot_tests();

4137
	rcu_bootup_announce();
4138
	rcu_init_geometry();
4139
	rcu_init_one(&rcu_bh_state, &rcu_bh_data);
4140
	rcu_init_one(&rcu_sched_state, &rcu_sched_data);
4141 4142
	if (dump_tree)
		rcu_dump_rcu_node_tree(&rcu_sched_state);
4143
	__rcu_init_preempt();
J
Jiang Fang 已提交
4144
	open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
4145 4146 4147 4148 4149 4150 4151

	/*
	 * We don't need protection against CPU-hotplug here because
	 * this is called early in boot, before either interrupts
	 * or the scheduler are operational.
	 */
	cpu_notifier(rcu_cpu_notify, 0);
4152
	pm_notifier(rcu_pm_notify, 0);
P
Paul E. McKenney 已提交
4153 4154
	for_each_online_cpu(cpu)
		rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
4155 4156
}

4157
#include "tree_plugin.h"