page_alloc.c 224.0 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
/*
 *  linux/mm/page_alloc.c
 *
 *  Manages the free list, the system allocates free pages here.
 *  Note that kmalloc() lives in slab.c
 *
 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 *  Swap reorganised 29.12.95, Stephen Tweedie
 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
 *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
 *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
 *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
 *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
 *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
 */

#include <linux/stddef.h>
#include <linux/mm.h>
#include <linux/swap.h>
#include <linux/interrupt.h>
#include <linux/pagemap.h>
22
#include <linux/jiffies.h>
L
Linus Torvalds 已提交
23
#include <linux/bootmem.h>
24
#include <linux/memblock.h>
L
Linus Torvalds 已提交
25
#include <linux/compiler.h>
26
#include <linux/kernel.h>
27
#include <linux/kasan.h>
L
Linus Torvalds 已提交
28 29 30 31 32
#include <linux/module.h>
#include <linux/suspend.h>
#include <linux/pagevec.h>
#include <linux/blkdev.h>
#include <linux/slab.h>
33
#include <linux/ratelimit.h>
34
#include <linux/oom.h>
L
Linus Torvalds 已提交
35 36 37 38
#include <linux/topology.h>
#include <linux/sysctl.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
39
#include <linux/memory_hotplug.h>
L
Linus Torvalds 已提交
40 41
#include <linux/nodemask.h>
#include <linux/vmalloc.h>
42
#include <linux/vmstat.h>
43
#include <linux/mempolicy.h>
44
#include <linux/memremap.h>
45
#include <linux/stop_machine.h>
46 47
#include <linux/sort.h>
#include <linux/pfn.h>
48
#include <linux/backing-dev.h>
49
#include <linux/fault-inject.h>
K
KAMEZAWA Hiroyuki 已提交
50
#include <linux/page-isolation.h>
51
#include <linux/page_ext.h>
52
#include <linux/debugobjects.h>
53
#include <linux/kmemleak.h>
54
#include <linux/compaction.h>
55
#include <trace/events/kmem.h>
56
#include <trace/events/oom.h>
57
#include <linux/prefetch.h>
58
#include <linux/mm_inline.h>
59
#include <linux/migrate.h>
60
#include <linux/hugetlb.h>
61
#include <linux/sched/rt.h>
62
#include <linux/sched/mm.h>
63
#include <linux/page_owner.h>
64
#include <linux/kthread.h>
65
#include <linux/memcontrol.h>
66
#include <linux/ftrace.h>
67
#include <linux/lockdep.h>
68
#include <linux/nmi.h>
69
#include <linux/psi.h>
L
Linus Torvalds 已提交
70

71
#include <asm/sections.h>
L
Linus Torvalds 已提交
72
#include <asm/tlbflush.h>
73
#include <asm/div64.h>
L
Linus Torvalds 已提交
74 75
#include "internal.h"

76 77
/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
static DEFINE_MUTEX(pcp_batch_high_lock);
78
#define MIN_PERCPU_PAGELIST_FRACTION	(8)
79

80 81 82 83 84
#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
DEFINE_PER_CPU(int, numa_node);
EXPORT_PER_CPU_SYMBOL(numa_node);
#endif

85 86
DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);

87 88 89 90 91 92 93 94 95
#ifdef CONFIG_HAVE_MEMORYLESS_NODES
/*
 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
 * defined in <linux/topology.h>.
 */
DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
EXPORT_PER_CPU_SYMBOL(_numa_mem_);
96
int _node_numa_mem_[MAX_NUMNODES];
97 98
#endif

99 100 101 102
/* work_structs for global per-cpu drains */
DEFINE_MUTEX(pcpu_drain_mutex);
DEFINE_PER_CPU(struct work_struct, pcpu_drain);

103
#ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
104
volatile unsigned long latent_entropy __latent_entropy;
105 106 107
EXPORT_SYMBOL(latent_entropy);
#endif

L
Linus Torvalds 已提交
108
/*
109
 * Array of node states.
L
Linus Torvalds 已提交
110
 */
111 112 113 114 115 116 117
nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
	[N_POSSIBLE] = NODE_MASK_ALL,
	[N_ONLINE] = { { [0] = 1UL } },
#ifndef CONFIG_NUMA
	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
#ifdef CONFIG_HIGHMEM
	[N_HIGH_MEMORY] = { { [0] = 1UL } },
118 119
#endif
	[N_MEMORY] = { { [0] = 1UL } },
120 121 122 123 124
	[N_CPU] = { { [0] = 1UL } },
#endif	/* NUMA */
};
EXPORT_SYMBOL(node_states);

125 126 127
/* Protect totalram_pages and zone->managed_pages */
static DEFINE_SPINLOCK(managed_page_count_lock);

128
unsigned long totalram_pages __read_mostly;
129
unsigned long totalreserve_pages __read_mostly;
130
unsigned long totalcma_pages __read_mostly;
131

132
int percpu_pagelist_fraction;
133
gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
L
Linus Torvalds 已提交
134

135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
/*
 * A cached value of the page's pageblock's migratetype, used when the page is
 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
 * Also the migratetype set in the page does not necessarily match the pcplist
 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
 * other index - this ensures that it will be put on the correct CMA freelist.
 */
static inline int get_pcppage_migratetype(struct page *page)
{
	return page->index;
}

static inline void set_pcppage_migratetype(struct page *page, int migratetype)
{
	page->index = migratetype;
}

153 154 155 156 157
#ifdef CONFIG_PM_SLEEP
/*
 * The following functions are used by the suspend/hibernate code to temporarily
 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
 * while devices are suspended.  To avoid races with the suspend/hibernate code,
158 159 160 161
 * they should always be called with system_transition_mutex held
 * (gfp_allowed_mask also should only be modified with system_transition_mutex
 * held, unless the suspend/hibernate code is guaranteed not to run in parallel
 * with that modification).
162
 */
163 164 165 166

static gfp_t saved_gfp_mask;

void pm_restore_gfp_mask(void)
167
{
168
	WARN_ON(!mutex_is_locked(&system_transition_mutex));
169 170 171 172
	if (saved_gfp_mask) {
		gfp_allowed_mask = saved_gfp_mask;
		saved_gfp_mask = 0;
	}
173 174
}

175
void pm_restrict_gfp_mask(void)
176
{
177
	WARN_ON(!mutex_is_locked(&system_transition_mutex));
178 179
	WARN_ON(saved_gfp_mask);
	saved_gfp_mask = gfp_allowed_mask;
180
	gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
181
}
182 183 184

bool pm_suspended_storage(void)
{
185
	if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
186 187 188
		return false;
	return true;
}
189 190
#endif /* CONFIG_PM_SLEEP */

191
#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
192
unsigned int pageblock_order __read_mostly;
193 194
#endif

195
static void __free_pages_ok(struct page *page, unsigned int order);
196

L
Linus Torvalds 已提交
197 198 199 200 201 202
/*
 * results with 256, 32 in the lowmem_reserve sysctl:
 *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
 *	1G machine -> (16M dma, 784M normal, 224M high)
 *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
 *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
Y
Yaowei Bai 已提交
203
 *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
A
Andi Kleen 已提交
204 205 206
 *
 * TBD: should special case ZONE_DMA32 machines here - in those we normally
 * don't need any ZONE_NORMAL reservation
L
Linus Torvalds 已提交
207
 */
208
int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
209
#ifdef CONFIG_ZONE_DMA
210
	[ZONE_DMA] = 256,
211
#endif
212
#ifdef CONFIG_ZONE_DMA32
213
	[ZONE_DMA32] = 256,
214
#endif
215
	[ZONE_NORMAL] = 32,
216
#ifdef CONFIG_HIGHMEM
217
	[ZONE_HIGHMEM] = 0,
218
#endif
219
	[ZONE_MOVABLE] = 0,
220
};
L
Linus Torvalds 已提交
221 222 223

EXPORT_SYMBOL(totalram_pages);

224
static char * const zone_names[MAX_NR_ZONES] = {
225
#ifdef CONFIG_ZONE_DMA
226
	 "DMA",
227
#endif
228
#ifdef CONFIG_ZONE_DMA32
229
	 "DMA32",
230
#endif
231
	 "Normal",
232
#ifdef CONFIG_HIGHMEM
M
Mel Gorman 已提交
233
	 "HighMem",
234
#endif
M
Mel Gorman 已提交
235
	 "Movable",
236 237 238
#ifdef CONFIG_ZONE_DEVICE
	 "Device",
#endif
239 240
};

241 242 243 244 245 246 247 248 249 250 251 252 253
char * const migratetype_names[MIGRATE_TYPES] = {
	"Unmovable",
	"Movable",
	"Reclaimable",
	"HighAtomic",
#ifdef CONFIG_CMA
	"CMA",
#endif
#ifdef CONFIG_MEMORY_ISOLATION
	"Isolate",
#endif
};

254 255 256 257 258 259
compound_page_dtor * const compound_page_dtors[] = {
	NULL,
	free_compound_page,
#ifdef CONFIG_HUGETLB_PAGE
	free_huge_page,
#endif
260 261 262
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
	free_transhuge_page,
#endif
263 264
};

L
Linus Torvalds 已提交
265
int min_free_kbytes = 1024;
266
int user_min_free_kbytes = -1;
267
int watermark_scale_factor = 10;
L
Linus Torvalds 已提交
268

269 270 271
static unsigned long nr_kernel_pages __meminitdata;
static unsigned long nr_all_pages __meminitdata;
static unsigned long dma_reserve __meminitdata;
L
Linus Torvalds 已提交
272

T
Tejun Heo 已提交
273
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
274 275 276
static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __meminitdata;
static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __meminitdata;
static unsigned long required_kernelcore __initdata;
277
static unsigned long required_kernelcore_percent __initdata;
278
static unsigned long required_movablecore __initdata;
279
static unsigned long required_movablecore_percent __initdata;
280 281
static unsigned long zone_movable_pfn[MAX_NUMNODES] __meminitdata;
static bool mirrored_kernelcore __meminitdata;
T
Tejun Heo 已提交
282 283 284 285 286

/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
int movable_zone;
EXPORT_SYMBOL(movable_zone);
#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
287

M
Miklos Szeredi 已提交
288 289
#if MAX_NUMNODES > 1
int nr_node_ids __read_mostly = MAX_NUMNODES;
290
int nr_online_nodes __read_mostly = 1;
M
Miklos Szeredi 已提交
291
EXPORT_SYMBOL(nr_node_ids);
292
EXPORT_SYMBOL(nr_online_nodes);
M
Miklos Szeredi 已提交
293 294
#endif

295 296
int page_group_by_mobility_disabled __read_mostly;

297
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
/*
 * During boot we initialize deferred pages on-demand, as needed, but once
 * page_alloc_init_late() has finished, the deferred pages are all initialized,
 * and we can permanently disable that path.
 */
static DEFINE_STATIC_KEY_TRUE(deferred_pages);

/*
 * Calling kasan_free_pages() only after deferred memory initialization
 * has completed. Poisoning pages during deferred memory init will greatly
 * lengthen the process and cause problem in large memory systems as the
 * deferred pages initialization is done with interrupt disabled.
 *
 * Assuming that there will be no reference to those newly initialized
 * pages before they are ever allocated, this should have no effect on
 * KASAN memory tracking as the poison will be properly inserted at page
 * allocation time. The only corner case is when pages are allocated by
 * on-demand allocation and then freed again before the deferred pages
 * initialization is done, but this is not likely to happen.
 */
static inline void kasan_free_nondeferred_pages(struct page *page, int order)
{
	if (!static_branch_unlikely(&deferred_pages))
		kasan_free_pages(page, order);
}

324
/* Returns true if the struct page for the pfn is uninitialised */
325
static inline bool __meminit early_page_uninitialised(unsigned long pfn)
326
{
327 328 329
	int nid = early_pfn_to_nid(pfn);

	if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
330 331 332 333 334 335 336 337 338 339 340 341 342
		return true;

	return false;
}

/*
 * Returns false when the remaining initialisation should be deferred until
 * later in the boot cycle when it can be parallelised.
 */
static inline bool update_defer_init(pg_data_t *pgdat,
				unsigned long pfn, unsigned long zone_end,
				unsigned long *nr_initialised)
{
343
	/* Always populate low zones for address-constrained allocations */
344 345 346
	if (zone_end < pgdat_end_pfn(pgdat))
		return true;
	(*nr_initialised)++;
347
	if ((*nr_initialised > pgdat->static_init_pgcnt) &&
348 349 350 351 352 353 354 355
	    (pfn & (PAGES_PER_SECTION - 1)) == 0) {
		pgdat->first_deferred_pfn = pfn;
		return false;
	}

	return true;
}
#else
356 357
#define kasan_free_nondeferred_pages(p, o)	kasan_free_pages(p, o)

358 359 360 361 362 363 364 365 366 367 368 369 370
static inline bool early_page_uninitialised(unsigned long pfn)
{
	return false;
}

static inline bool update_defer_init(pg_data_t *pgdat,
				unsigned long pfn, unsigned long zone_end,
				unsigned long *nr_initialised)
{
	return true;
}
#endif

371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470
/* Return a pointer to the bitmap storing bits affecting a block of pages */
static inline unsigned long *get_pageblock_bitmap(struct page *page,
							unsigned long pfn)
{
#ifdef CONFIG_SPARSEMEM
	return __pfn_to_section(pfn)->pageblock_flags;
#else
	return page_zone(page)->pageblock_flags;
#endif /* CONFIG_SPARSEMEM */
}

static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
{
#ifdef CONFIG_SPARSEMEM
	pfn &= (PAGES_PER_SECTION-1);
	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
#else
	pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
#endif /* CONFIG_SPARSEMEM */
}

/**
 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
 * @page: The page within the block of interest
 * @pfn: The target page frame number
 * @end_bitidx: The last bit of interest to retrieve
 * @mask: mask of bits that the caller is interested in
 *
 * Return: pageblock_bits flags
 */
static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
					unsigned long pfn,
					unsigned long end_bitidx,
					unsigned long mask)
{
	unsigned long *bitmap;
	unsigned long bitidx, word_bitidx;
	unsigned long word;

	bitmap = get_pageblock_bitmap(page, pfn);
	bitidx = pfn_to_bitidx(page, pfn);
	word_bitidx = bitidx / BITS_PER_LONG;
	bitidx &= (BITS_PER_LONG-1);

	word = bitmap[word_bitidx];
	bitidx += end_bitidx;
	return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
}

unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
					unsigned long end_bitidx,
					unsigned long mask)
{
	return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
}

static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
{
	return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
}

/**
 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
 * @page: The page within the block of interest
 * @flags: The flags to set
 * @pfn: The target page frame number
 * @end_bitidx: The last bit of interest
 * @mask: mask of bits that the caller is interested in
 */
void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
					unsigned long pfn,
					unsigned long end_bitidx,
					unsigned long mask)
{
	unsigned long *bitmap;
	unsigned long bitidx, word_bitidx;
	unsigned long old_word, word;

	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);

	bitmap = get_pageblock_bitmap(page, pfn);
	bitidx = pfn_to_bitidx(page, pfn);
	word_bitidx = bitidx / BITS_PER_LONG;
	bitidx &= (BITS_PER_LONG-1);

	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);

	bitidx += end_bitidx;
	mask <<= (BITS_PER_LONG - bitidx - 1);
	flags <<= (BITS_PER_LONG - bitidx - 1);

	word = READ_ONCE(bitmap[word_bitidx]);
	for (;;) {
		old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
		if (word == old_word)
			break;
		word = old_word;
	}
}
471

472
void set_pageblock_migratetype(struct page *page, int migratetype)
473
{
474 475
	if (unlikely(page_group_by_mobility_disabled &&
		     migratetype < MIGRATE_PCPTYPES))
476 477
		migratetype = MIGRATE_UNMOVABLE;

478 479 480 481
	set_pageblock_flags_group(page, (unsigned long)migratetype,
					PB_migrate, PB_migrate_end);
}

N
Nick Piggin 已提交
482
#ifdef CONFIG_DEBUG_VM
483
static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
L
Linus Torvalds 已提交
484
{
485 486 487
	int ret = 0;
	unsigned seq;
	unsigned long pfn = page_to_pfn(page);
488
	unsigned long sp, start_pfn;
489

490 491
	do {
		seq = zone_span_seqbegin(zone);
492 493
		start_pfn = zone->zone_start_pfn;
		sp = zone->spanned_pages;
494
		if (!zone_spans_pfn(zone, pfn))
495 496 497
			ret = 1;
	} while (zone_span_seqretry(zone, seq));

498
	if (ret)
499 500 501
		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
			pfn, zone_to_nid(zone), zone->name,
			start_pfn, start_pfn + sp);
502

503
	return ret;
504 505 506 507
}

static int page_is_consistent(struct zone *zone, struct page *page)
{
508
	if (!pfn_valid_within(page_to_pfn(page)))
509
		return 0;
L
Linus Torvalds 已提交
510
	if (zone != page_zone(page))
511 512 513 514 515 516 517
		return 0;

	return 1;
}
/*
 * Temporary debugging check for pages not lying within a given zone.
 */
518
static int __maybe_unused bad_range(struct zone *zone, struct page *page)
519 520
{
	if (page_outside_zone_boundaries(zone, page))
L
Linus Torvalds 已提交
521
		return 1;
522 523 524
	if (!page_is_consistent(zone, page))
		return 1;

L
Linus Torvalds 已提交
525 526
	return 0;
}
N
Nick Piggin 已提交
527
#else
528
static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
N
Nick Piggin 已提交
529 530 531 532 533
{
	return 0;
}
#endif

534 535
static void bad_page(struct page *page, const char *reason,
		unsigned long bad_flags)
L
Linus Torvalds 已提交
536
{
537 538 539 540 541 542 543 544 545 546 547 548 549 550
	static unsigned long resume;
	static unsigned long nr_shown;
	static unsigned long nr_unshown;

	/*
	 * Allow a burst of 60 reports, then keep quiet for that minute;
	 * or allow a steady drip of one report per second.
	 */
	if (nr_shown == 60) {
		if (time_before(jiffies, resume)) {
			nr_unshown++;
			goto out;
		}
		if (nr_unshown) {
551
			pr_alert(
552
			      "BUG: Bad page state: %lu messages suppressed\n",
553 554 555 556 557 558 559 560
				nr_unshown);
			nr_unshown = 0;
		}
		nr_shown = 0;
	}
	if (nr_shown++ == 0)
		resume = jiffies + 60 * HZ;

561
	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
562
		current->comm, page_to_pfn(page));
563 564 565 566 567
	__dump_page(page, reason);
	bad_flags &= page->flags;
	if (bad_flags)
		pr_alert("bad because of flags: %#lx(%pGp)\n",
						bad_flags, &bad_flags);
568
	dump_page_owner(page);
569

570
	print_modules();
L
Linus Torvalds 已提交
571
	dump_stack();
572
out:
573
	/* Leave bad fields for debug, except PageBuddy could make trouble */
574
	page_mapcount_reset(page); /* remove PageBuddy */
575
	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
L
Linus Torvalds 已提交
576 577 578 579 580
}

/*
 * Higher-order pages are called "compound pages".  They are structured thusly:
 *
581
 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
L
Linus Torvalds 已提交
582
 *
583 584
 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
L
Linus Torvalds 已提交
585
 *
586 587
 * The first tail page's ->compound_dtor holds the offset in array of compound
 * page destructors. See compound_page_dtors.
L
Linus Torvalds 已提交
588
 *
589
 * The first tail page's ->compound_order holds the order of allocation.
590
 * This usage means that zero-order pages may not be compound.
L
Linus Torvalds 已提交
591
 */
592

593
void free_compound_page(struct page *page)
594
{
595
	__free_pages_ok(page, compound_order(page));
596 597
}

598
void prep_compound_page(struct page *page, unsigned int order)
599 600 601 602
{
	int i;
	int nr_pages = 1 << order;

603
	set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
604 605 606 607
	set_compound_order(page, order);
	__SetPageHead(page);
	for (i = 1; i < nr_pages; i++) {
		struct page *p = page + i;
608
		set_page_count(p, 0);
609
		p->mapping = TAIL_MAPPING;
610
		set_compound_head(p, page);
611
	}
612
	atomic_set(compound_mapcount_ptr(page), -1);
613 614
}

615 616
#ifdef CONFIG_DEBUG_PAGEALLOC
unsigned int _debug_guardpage_minorder;
617 618
bool _debug_pagealloc_enabled __read_mostly
			= IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
619
EXPORT_SYMBOL(_debug_pagealloc_enabled);
620 621
bool _debug_guardpage_enabled __read_mostly;

622 623 624 625
static int __init early_debug_pagealloc(char *buf)
{
	if (!buf)
		return -EINVAL;
626
	return kstrtobool(buf, &_debug_pagealloc_enabled);
627 628 629
}
early_param("debug_pagealloc", early_debug_pagealloc);

630 631
static bool need_debug_guardpage(void)
{
632 633 634 635
	/* If we don't use debug_pagealloc, we don't need guard page */
	if (!debug_pagealloc_enabled())
		return false;

636 637 638
	if (!debug_guardpage_minorder())
		return false;

639 640 641 642 643
	return true;
}

static void init_debug_guardpage(void)
{
644 645 646
	if (!debug_pagealloc_enabled())
		return;

647 648 649
	if (!debug_guardpage_minorder())
		return;

650 651 652 653 654 655 656
	_debug_guardpage_enabled = true;
}

struct page_ext_operations debug_guardpage_ops = {
	.need = need_debug_guardpage,
	.init = init_debug_guardpage,
};
657 658 659 660 661 662

static int __init debug_guardpage_minorder_setup(char *buf)
{
	unsigned long res;

	if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) {
663
		pr_err("Bad debug_guardpage_minorder value\n");
664 665 666
		return 0;
	}
	_debug_guardpage_minorder = res;
667
	pr_info("Setting debug_guardpage_minorder to %lu\n", res);
668 669
	return 0;
}
670
early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
671

672
static inline bool set_page_guard(struct zone *zone, struct page *page,
673
				unsigned int order, int migratetype)
674
{
675 676 677
	struct page_ext *page_ext;

	if (!debug_guardpage_enabled())
678 679 680 681
		return false;

	if (order >= debug_guardpage_minorder())
		return false;
682 683

	page_ext = lookup_page_ext(page);
684
	if (unlikely(!page_ext))
685
		return false;
686

687 688
	__set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);

689 690 691 692
	INIT_LIST_HEAD(&page->lru);
	set_page_private(page, order);
	/* Guard pages are not available for any usage */
	__mod_zone_freepage_state(zone, -(1 << order), migratetype);
693 694

	return true;
695 696
}

697 698
static inline void clear_page_guard(struct zone *zone, struct page *page,
				unsigned int order, int migratetype)
699
{
700 701 702 703 704 705
	struct page_ext *page_ext;

	if (!debug_guardpage_enabled())
		return;

	page_ext = lookup_page_ext(page);
706 707 708
	if (unlikely(!page_ext))
		return;

709 710
	__clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);

711 712 713
	set_page_private(page, 0);
	if (!is_migrate_isolate(migratetype))
		__mod_zone_freepage_state(zone, (1 << order), migratetype);
714 715
}
#else
716
struct page_ext_operations debug_guardpage_ops;
717 718
static inline bool set_page_guard(struct zone *zone, struct page *page,
			unsigned int order, int migratetype) { return false; }
719 720
static inline void clear_page_guard(struct zone *zone, struct page *page,
				unsigned int order, int migratetype) {}
721 722
#endif

723
static inline void set_page_order(struct page *page, unsigned int order)
724
{
H
Hugh Dickins 已提交
725
	set_page_private(page, order);
726
	__SetPageBuddy(page);
L
Linus Torvalds 已提交
727 728 729 730
}

static inline void rmv_page_order(struct page *page)
{
731
	__ClearPageBuddy(page);
H
Hugh Dickins 已提交
732
	set_page_private(page, 0);
L
Linus Torvalds 已提交
733 734 735 736
}

/*
 * This function checks whether a page is free && is the buddy
737
 * we can coalesce a page and its buddy if
738
 * (a) the buddy is not in a hole (check before calling!) &&
739
 * (b) the buddy is in the buddy system &&
740 741
 * (c) a page and its buddy have the same order &&
 * (d) a page and its buddy are in the same zone.
742
 *
743 744
 * For recording whether a page is in the buddy system, we set PageBuddy.
 * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
L
Linus Torvalds 已提交
745
 *
746
 * For recording page's order, we use page_private(page).
L
Linus Torvalds 已提交
747
 */
748
static inline int page_is_buddy(struct page *page, struct page *buddy,
749
							unsigned int order)
L
Linus Torvalds 已提交
750
{
751
	if (page_is_guard(buddy) && page_order(buddy) == order) {
752 753 754
		if (page_zone_id(page) != page_zone_id(buddy))
			return 0;

755 756
		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);

757 758 759
		return 1;
	}

760
	if (PageBuddy(buddy) && page_order(buddy) == order) {
761 762 763 764 765 766 767 768
		/*
		 * zone check is done late to avoid uselessly
		 * calculating zone/node ids for pages that could
		 * never merge.
		 */
		if (page_zone_id(page) != page_zone_id(buddy))
			return 0;

769 770
		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);

771
		return 1;
772
	}
773
	return 0;
L
Linus Torvalds 已提交
774 775 776 777 778 779 780 781 782 783 784 785 786 787 788
}

/*
 * Freeing function for a buddy system allocator.
 *
 * The concept of a buddy system is to maintain direct-mapped table
 * (containing bit values) for memory blocks of various "orders".
 * The bottom level table contains the map for the smallest allocatable
 * units of memory (here, pages), and each level above it describes
 * pairs of units from the levels below, hence, "buddies".
 * At a high level, all that happens here is marking the table entry
 * at the bottom level available, and propagating the changes upward
 * as necessary, plus some accounting needed to play nicely with other
 * parts of the VM system.
 * At each level, we keep a list of pages, which are heads of continuous
789 790
 * free pages of length of (1 << order) and marked with PageBuddy.
 * Page's order is recorded in page_private(page) field.
L
Linus Torvalds 已提交
791
 * So when we are allocating or freeing one, we can derive the state of the
792 793
 * other.  That is, if we allocate a small block, and both were
 * free, the remainder of the region must be split into blocks.
L
Linus Torvalds 已提交
794
 * If a block is freed, and its buddy is also free, then this
795
 * triggers coalescing into a block of larger size.
L
Linus Torvalds 已提交
796
 *
797
 * -- nyc
L
Linus Torvalds 已提交
798 799
 */

N
Nick Piggin 已提交
800
static inline void __free_one_page(struct page *page,
801
		unsigned long pfn,
802 803
		struct zone *zone, unsigned int order,
		int migratetype)
L
Linus Torvalds 已提交
804
{
805 806
	unsigned long combined_pfn;
	unsigned long uninitialized_var(buddy_pfn);
807
	struct page *buddy;
808 809 810
	unsigned int max_order;

	max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
L
Linus Torvalds 已提交
811

812
	VM_BUG_ON(!zone_is_initialized(zone));
813
	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
L
Linus Torvalds 已提交
814

815
	VM_BUG_ON(migratetype == -1);
816
	if (likely(!is_migrate_isolate(migratetype)))
817
		__mod_zone_freepage_state(zone, 1 << order, migratetype);
818

819
	VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
820
	VM_BUG_ON_PAGE(bad_range(zone, page), page);
L
Linus Torvalds 已提交
821

822
continue_merging:
823
	while (order < max_order - 1) {
824 825
		buddy_pfn = __find_buddy_pfn(pfn, order);
		buddy = page + (buddy_pfn - pfn);
826 827 828

		if (!pfn_valid_within(buddy_pfn))
			goto done_merging;
829
		if (!page_is_buddy(page, buddy, order))
830
			goto done_merging;
831 832 833 834 835
		/*
		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
		 * merge with it and move up one order.
		 */
		if (page_is_guard(buddy)) {
836
			clear_page_guard(zone, buddy, order, migratetype);
837 838 839 840 841
		} else {
			list_del(&buddy->lru);
			zone->free_area[order].nr_free--;
			rmv_page_order(buddy);
		}
842 843 844
		combined_pfn = buddy_pfn & pfn;
		page = page + (combined_pfn - pfn);
		pfn = combined_pfn;
L
Linus Torvalds 已提交
845 846
		order++;
	}
847 848 849 850 851 852 853 854 855 856 857 858
	if (max_order < MAX_ORDER) {
		/* If we are here, it means order is >= pageblock_order.
		 * We want to prevent merge between freepages on isolate
		 * pageblock and normal pageblock. Without this, pageblock
		 * isolation could cause incorrect freepage or CMA accounting.
		 *
		 * We don't want to hit this code for the more frequent
		 * low-order merging.
		 */
		if (unlikely(has_isolate_pageblock(zone))) {
			int buddy_mt;

859 860
			buddy_pfn = __find_buddy_pfn(pfn, order);
			buddy = page + (buddy_pfn - pfn);
861 862 863 864 865 866 867 868 869 870 871 872
			buddy_mt = get_pageblock_migratetype(buddy);

			if (migratetype != buddy_mt
					&& (is_migrate_isolate(migratetype) ||
						is_migrate_isolate(buddy_mt)))
				goto done_merging;
		}
		max_order++;
		goto continue_merging;
	}

done_merging:
L
Linus Torvalds 已提交
873
	set_page_order(page, order);
874 875 876 877 878 879 880 881 882

	/*
	 * If this is not the largest possible page, check if the buddy
	 * of the next-highest order is free. If it is, it's possible
	 * that pages are being freed that will coalesce soon. In case,
	 * that is happening, add the free page to the tail of the list
	 * so it's less likely to be used soon and more likely to be merged
	 * as a higher order page
	 */
883
	if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)) {
884
		struct page *higher_page, *higher_buddy;
885 886 887 888
		combined_pfn = buddy_pfn & pfn;
		higher_page = page + (combined_pfn - pfn);
		buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
		higher_buddy = higher_page + (buddy_pfn - combined_pfn);
889 890
		if (pfn_valid_within(buddy_pfn) &&
		    page_is_buddy(higher_page, higher_buddy, order + 1)) {
891 892 893 894 895 896 897 898
			list_add_tail(&page->lru,
				&zone->free_area[order].free_list[migratetype]);
			goto out;
		}
	}

	list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
out:
L
Linus Torvalds 已提交
899 900 901
	zone->free_area[order].nr_free++;
}

902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923
/*
 * A bad page could be due to a number of fields. Instead of multiple branches,
 * try and check multiple fields with one check. The caller must do a detailed
 * check if necessary.
 */
static inline bool page_expected_state(struct page *page,
					unsigned long check_flags)
{
	if (unlikely(atomic_read(&page->_mapcount) != -1))
		return false;

	if (unlikely((unsigned long)page->mapping |
			page_ref_count(page) |
#ifdef CONFIG_MEMCG
			(unsigned long)page->mem_cgroup |
#endif
			(page->flags & check_flags)))
		return false;

	return true;
}

924
static void free_pages_check_bad(struct page *page)
L
Linus Torvalds 已提交
925
{
926 927 928 929 930
	const char *bad_reason;
	unsigned long bad_flags;

	bad_reason = NULL;
	bad_flags = 0;
931

932
	if (unlikely(atomic_read(&page->_mapcount) != -1))
933 934 935
		bad_reason = "nonzero mapcount";
	if (unlikely(page->mapping != NULL))
		bad_reason = "non-NULL mapping";
936
	if (unlikely(page_ref_count(page) != 0))
937
		bad_reason = "nonzero _refcount";
938 939 940 941
	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
		bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
		bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
	}
942 943 944 945
#ifdef CONFIG_MEMCG
	if (unlikely(page->mem_cgroup))
		bad_reason = "page still charged to cgroup";
#endif
946
	bad_page(page, bad_reason, bad_flags);
947 948 949 950
}

static inline int free_pages_check(struct page *page)
{
951
	if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
952 953 954 955
		return 0;

	/* Something has gone sideways, find it */
	free_pages_check_bad(page);
956
	return 1;
L
Linus Torvalds 已提交
957 958
}

959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974
static int free_tail_pages_check(struct page *head_page, struct page *page)
{
	int ret = 1;

	/*
	 * We rely page->lru.next never has bit 0 set, unless the page
	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
	 */
	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);

	if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
		ret = 0;
		goto out;
	}
	switch (page - head_page) {
	case 1:
975
		/* the first tail page: ->mapping may be compound_mapcount() */
976 977 978 979 980 981 982 983
		if (unlikely(compound_mapcount(page))) {
			bad_page(page, "nonzero compound_mapcount", 0);
			goto out;
		}
		break;
	case 2:
		/*
		 * the second tail page: ->mapping is
M
Matthew Wilcox 已提交
984
		 * deferred_list.next -- ignore value.
985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008
		 */
		break;
	default:
		if (page->mapping != TAIL_MAPPING) {
			bad_page(page, "corrupted mapping in tail page", 0);
			goto out;
		}
		break;
	}
	if (unlikely(!PageTail(page))) {
		bad_page(page, "PageTail not set", 0);
		goto out;
	}
	if (unlikely(compound_head(page) != head_page)) {
		bad_page(page, "compound_head not consistent", 0);
		goto out;
	}
	ret = 0;
out:
	page->mapping = NULL;
	clear_compound_head(page);
	return ret;
}

1009 1010
static __always_inline bool free_pages_prepare(struct page *page,
					unsigned int order, bool check_free)
1011
{
1012
	int bad = 0;
1013 1014 1015

	VM_BUG_ON_PAGE(PageTail(page), page);

1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026
	trace_mm_page_free(page, order);

	/*
	 * Check tail pages before head page information is cleared to
	 * avoid checking PageCompound for order-0 pages.
	 */
	if (unlikely(order)) {
		bool compound = PageCompound(page);
		int i;

		VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1027

1028 1029
		if (compound)
			ClearPageDoubleMap(page);
1030 1031 1032 1033 1034 1035 1036
		for (i = 1; i < (1 << order); i++) {
			if (compound)
				bad += free_tail_pages_check(page, page + i);
			if (unlikely(free_pages_check(page + i))) {
				bad++;
				continue;
			}
G
Gavin Shan 已提交
1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047

			/*
			 * The page age information is stored in page flags
			 * or node's page array. We need to explicitly clear
			 * it in both cases. Otherwise, the stale age will
			 * be provided when it's allocated again. Also, we
			 * maintain age information for each page in the
			 * compound page, So we have to clear them one by one.
			 */
			kidled_set_page_age(page_pgdat(page + i),
					    page_to_pfn(page + i), 0);
1048 1049 1050
			(page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
		}
	}
1051
	if (PageMappingFlags(page))
1052
		page->mapping = NULL;
1053
	if (memcg_kmem_enabled() && PageKmemcg(page))
1054
		memcg_kmem_uncharge(page, order);
1055 1056 1057 1058
	if (check_free)
		bad += free_pages_check(page);
	if (bad)
		return false;
1059

1060
	page_cpupid_reset_last(page);
G
Gavin Shan 已提交
1061
	kidled_set_page_age(page_pgdat(page), page_to_pfn(page), 0);
1062 1063
	page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
	reset_page_owner(page, order);
1064 1065 1066

	if (!PageHighMem(page)) {
		debug_check_no_locks_freed(page_address(page),
1067
					   PAGE_SIZE << order);
1068
		debug_check_no_obj_freed(page_address(page),
1069
					   PAGE_SIZE << order);
1070
	}
1071 1072 1073
	arch_free_page(page, order);
	kernel_poison_pages(page, 1 << order, 0);
	kernel_map_pages(page, 1 << order, 0);
1074
	kasan_free_nondeferred_pages(page, order);
1075 1076 1077 1078

	return true;
}

1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094
#ifdef CONFIG_DEBUG_VM
static inline bool free_pcp_prepare(struct page *page)
{
	return free_pages_prepare(page, 0, true);
}

static inline bool bulkfree_pcp_prepare(struct page *page)
{
	return false;
}
#else
static bool free_pcp_prepare(struct page *page)
{
	return free_pages_prepare(page, 0, false);
}

1095 1096 1097 1098 1099 1100
static bool bulkfree_pcp_prepare(struct page *page)
{
	return free_pages_check(page);
}
#endif /* CONFIG_DEBUG_VM */

1101 1102 1103 1104 1105 1106 1107 1108 1109
static inline void prefetch_buddy(struct page *page)
{
	unsigned long pfn = page_to_pfn(page);
	unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0);
	struct page *buddy = page + (buddy_pfn - pfn);

	prefetch(buddy);
}

L
Linus Torvalds 已提交
1110
/*
1111
 * Frees a number of pages from the PCP lists
L
Linus Torvalds 已提交
1112
 * Assumes all pages on list are in same zone, and of same order.
1113
 * count is the number of pages to free.
L
Linus Torvalds 已提交
1114 1115 1116 1117 1118 1119 1120
 *
 * If the zone was previously in an "all pages pinned" state then look to
 * see if this freeing clears that state.
 *
 * And clear the zone's pages_scanned counter, to hold off the "all pages are
 * pinned" detection logic.
 */
1121 1122
static void free_pcppages_bulk(struct zone *zone, int count,
					struct per_cpu_pages *pcp)
L
Linus Torvalds 已提交
1123
{
1124
	int migratetype = 0;
1125
	int batch_free = 0;
1126
	int prefetch_nr = 0;
1127
	bool isolated_pageblocks;
1128 1129
	struct page *page, *tmp;
	LIST_HEAD(head);
1130

1131
	while (count) {
1132 1133 1134
		struct list_head *list;

		/*
1135 1136 1137 1138 1139
		 * Remove pages from lists in a round-robin fashion. A
		 * batch_free count is maintained that is incremented when an
		 * empty list is encountered.  This is so more pages are freed
		 * off fuller lists instead of spinning excessively around empty
		 * lists
1140 1141
		 */
		do {
1142
			batch_free++;
1143 1144 1145 1146
			if (++migratetype == MIGRATE_PCPTYPES)
				migratetype = 0;
			list = &pcp->lists[migratetype];
		} while (list_empty(list));
N
Nick Piggin 已提交
1147

1148 1149
		/* This is the only non-empty list. Free them all. */
		if (batch_free == MIGRATE_PCPTYPES)
1150
			batch_free = count;
1151

1152
		do {
1153
			page = list_last_entry(list, struct page, lru);
1154
			/* must delete to avoid corrupting pcp list */
1155
			list_del(&page->lru);
1156
			pcp->count--;
1157

1158 1159 1160
			if (bulkfree_pcp_prepare(page))
				continue;

1161
			list_add_tail(&page->lru, &head);
1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173

			/*
			 * We are going to put the page back to the global
			 * pool, prefetch its buddy to speed up later access
			 * under zone->lock. It is believed the overhead of
			 * an additional test and calculating buddy_pfn here
			 * can be offset by reduced memory latency later. To
			 * avoid excessive prefetching due to large count, only
			 * prefetch buddy for the first pcp->batch nr of pages.
			 */
			if (prefetch_nr++ < pcp->batch)
				prefetch_buddy(page);
1174
		} while (--count && --batch_free && !list_empty(list));
L
Linus Torvalds 已提交
1175
	}
1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194

	spin_lock(&zone->lock);
	isolated_pageblocks = has_isolate_pageblock(zone);

	/*
	 * Use safe version since after __free_one_page(),
	 * page->lru.next will not point to original list.
	 */
	list_for_each_entry_safe(page, tmp, &head, lru) {
		int mt = get_pcppage_migratetype(page);
		/* MIGRATE_ISOLATE page should not go to pcplists */
		VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
		/* Pageblock could have been isolated meanwhile */
		if (unlikely(isolated_pageblocks))
			mt = get_pageblock_migratetype(page);

		__free_one_page(page, page_to_pfn(page), zone, 0, mt);
		trace_mm_page_pcpu_drain(page, 0, mt);
	}
1195
	spin_unlock(&zone->lock);
L
Linus Torvalds 已提交
1196 1197
}

1198 1199
static void free_one_page(struct zone *zone,
				struct page *page, unsigned long pfn,
1200
				unsigned int order,
1201
				int migratetype)
L
Linus Torvalds 已提交
1202
{
1203
	spin_lock(&zone->lock);
1204 1205 1206 1207
	if (unlikely(has_isolate_pageblock(zone) ||
		is_migrate_isolate(migratetype))) {
		migratetype = get_pfnblock_migratetype(page, pfn);
	}
1208
	__free_one_page(page, pfn, zone, order, migratetype);
1209
	spin_unlock(&zone->lock);
N
Nick Piggin 已提交
1210 1211
}

1212
static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1213
				unsigned long zone, int nid)
1214
{
1215
	mm_zero_struct_page(page);
1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228
	set_page_links(page, zone, nid, pfn);
	init_page_count(page);
	page_mapcount_reset(page);
	page_cpupid_reset_last(page);

	INIT_LIST_HEAD(&page->lru);
#ifdef WANT_PAGE_VIRTUAL
	/* The shift won't overflow because ZONE_NORMAL is below 4G. */
	if (!is_highmem_idx(zone))
		set_page_address(page, __va(pfn << PAGE_SHIFT));
#endif
}

1229
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1230
static void __meminit init_reserved_page(unsigned long pfn)
1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246
{
	pg_data_t *pgdat;
	int nid, zid;

	if (!early_page_uninitialised(pfn))
		return;

	nid = early_pfn_to_nid(pfn);
	pgdat = NODE_DATA(nid);

	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
		struct zone *zone = &pgdat->node_zones[zid];

		if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
			break;
	}
1247
	__init_single_page(pfn_to_page(pfn), pfn, zid, nid);
1248 1249 1250 1251 1252 1253 1254
}
#else
static inline void init_reserved_page(unsigned long pfn)
{
}
#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */

1255 1256 1257 1258 1259 1260
/*
 * Initialised pages do not have PageReserved set. This function is
 * called for each range allocated by the bootmem allocator and
 * marks the pages PageReserved. The remaining valid pages are later
 * sent to the buddy page allocator.
 */
1261
void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1262 1263 1264 1265
{
	unsigned long start_pfn = PFN_DOWN(start);
	unsigned long end_pfn = PFN_UP(end);

1266 1267 1268 1269 1270
	for (; start_pfn < end_pfn; start_pfn++) {
		if (pfn_valid(start_pfn)) {
			struct page *page = pfn_to_page(start_pfn);

			init_reserved_page(start_pfn);
1271 1272 1273 1274

			/* Avoid false-positive PageTail() */
			INIT_LIST_HEAD(&page->lru);

1275 1276 1277
			SetPageReserved(page);
		}
	}
1278 1279
}

1280 1281
static void __free_pages_ok(struct page *page, unsigned int order)
{
1282
	unsigned long flags;
M
Minchan Kim 已提交
1283
	int migratetype;
1284
	unsigned long pfn = page_to_pfn(page);
1285

1286
	if (!free_pages_prepare(page, order, true))
1287 1288
		return;

1289
	migratetype = get_pfnblock_migratetype(page, pfn);
1290 1291
	local_irq_save(flags);
	__count_vm_events(PGFREE, 1 << order);
1292
	free_one_page(page_zone(page), page, pfn, order, migratetype);
1293
	local_irq_restore(flags);
L
Linus Torvalds 已提交
1294 1295
}

1296
static void __init __free_pages_boot_core(struct page *page, unsigned int order)
1297
{
1298
	unsigned int nr_pages = 1 << order;
1299
	struct page *p = page;
1300
	unsigned int loop;
1301

1302 1303 1304
	prefetchw(p);
	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
		prefetchw(p + 1);
1305 1306
		__ClearPageReserved(p);
		set_page_count(p, 0);
1307
	}
1308 1309
	__ClearPageReserved(p);
	set_page_count(p, 0);
1310

1311
	page_zone(page)->managed_pages += nr_pages;
1312 1313
	set_page_refcounted(page);
	__free_pages(page, order);
1314 1315
}

1316 1317
#if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
	defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1318

1319 1320 1321 1322
static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;

int __meminit early_pfn_to_nid(unsigned long pfn)
{
1323
	static DEFINE_SPINLOCK(early_pfn_lock);
1324 1325
	int nid;

1326
	spin_lock(&early_pfn_lock);
1327
	nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1328
	if (nid < 0)
1329
		nid = first_online_node;
1330 1331 1332
	spin_unlock(&early_pfn_lock);

	return nid;
1333 1334 1335 1336
}
#endif

#ifdef CONFIG_NODES_SPAN_OTHER_NODES
1337 1338 1339
static inline bool __meminit __maybe_unused
meminit_pfn_in_nid(unsigned long pfn, int node,
		   struct mminit_pfnnid_cache *state)
1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360
{
	int nid;

	nid = __early_pfn_to_nid(pfn, state);
	if (nid >= 0 && nid != node)
		return false;
	return true;
}

/* Only safe to use early in boot when initialisation is single-threaded */
static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
{
	return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
}

#else

static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
{
	return true;
}
1361 1362 1363
static inline bool __meminit  __maybe_unused
meminit_pfn_in_nid(unsigned long pfn, int node,
		   struct mminit_pfnnid_cache *state)
1364 1365 1366 1367 1368 1369
{
	return true;
}
#endif


1370
void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
1371 1372 1373 1374
							unsigned int order)
{
	if (early_page_uninitialised(pfn))
		return;
1375
	return __free_pages_boot_core(page, order);
1376 1377
}

1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406
/*
 * Check that the whole (or subset of) a pageblock given by the interval of
 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
 * with the migration of free compaction scanner. The scanners then need to
 * use only pfn_valid_within() check for arches that allow holes within
 * pageblocks.
 *
 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
 *
 * It's possible on some configurations to have a setup like node0 node1 node0
 * i.e. it's possible that all pages within a zones range of pages do not
 * belong to a single zone. We assume that a border between node0 and node1
 * can occur within a single pageblock, but not a node0 node1 node0
 * interleaving within a single pageblock. It is therefore sufficient to check
 * the first and last page of a pageblock and avoid checking each individual
 * page in a pageblock.
 */
struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
				     unsigned long end_pfn, struct zone *zone)
{
	struct page *start_page;
	struct page *end_page;

	/* end_pfn is one past the range we are checking */
	end_pfn--;

	if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
		return NULL;

1407 1408 1409
	start_page = pfn_to_online_page(start_pfn);
	if (!start_page)
		return NULL;
1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448

	if (page_zone(start_page) != zone)
		return NULL;

	end_page = pfn_to_page(end_pfn);

	/* This gives a shorter code than deriving page_zone(end_page) */
	if (page_zone_id(start_page) != page_zone_id(end_page))
		return NULL;

	return start_page;
}

void set_zone_contiguous(struct zone *zone)
{
	unsigned long block_start_pfn = zone->zone_start_pfn;
	unsigned long block_end_pfn;

	block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
	for (; block_start_pfn < zone_end_pfn(zone);
			block_start_pfn = block_end_pfn,
			 block_end_pfn += pageblock_nr_pages) {

		block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));

		if (!__pageblock_pfn_to_page(block_start_pfn,
					     block_end_pfn, zone))
			return;
	}

	/* We confirm that there is no hole */
	zone->contiguous = true;
}

void clear_zone_contiguous(struct zone *zone)
{
	zone->contiguous = false;
}

1449
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1450 1451
static void __init deferred_free_range(unsigned long pfn,
				       unsigned long nr_pages)
1452
{
1453 1454
	struct page *page;
	unsigned long i;
1455

1456
	if (!nr_pages)
1457 1458
		return;

1459 1460
	page = pfn_to_page(pfn);

1461
	/* Free a large naturally-aligned chunk if possible */
1462 1463
	if (nr_pages == pageblock_nr_pages &&
	    (pfn & (pageblock_nr_pages - 1)) == 0) {
1464
		set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1465
		__free_pages_boot_core(page, pageblock_order);
1466 1467 1468
		return;
	}

1469 1470 1471
	for (i = 0; i < nr_pages; i++, page++, pfn++) {
		if ((pfn & (pageblock_nr_pages - 1)) == 0)
			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1472
		__free_pages_boot_core(page, 0);
1473
	}
1474 1475
}

1476 1477 1478 1479 1480 1481 1482 1483 1484
/* Completion tracking for deferred_init_memmap() threads */
static atomic_t pgdat_init_n_undone __initdata;
static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);

static inline void __init pgdat_init_report_one_done(void)
{
	if (atomic_dec_and_test(&pgdat_init_n_undone))
		complete(&pgdat_init_all_done_comp);
}
1485

1486
/*
1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498
 * Returns true if page needs to be initialized or freed to buddy allocator.
 *
 * First we check if pfn is valid on architectures where it is possible to have
 * holes within pageblock_nr_pages. On systems where it is not possible, this
 * function is optimized out.
 *
 * Then, we check if a current large page is valid by only checking the validity
 * of the head pfn.
 *
 * Finally, meminit_pfn_in_nid is checked on systems where pfns can interleave
 * within a node: a pfn is between start and end of a node, but does not belong
 * to this memory node.
1499
 */
1500 1501 1502
static inline bool __init
deferred_pfn_valid(int nid, unsigned long pfn,
		   struct mminit_pfnnid_cache *nid_init_state)
1503
{
1504 1505 1506 1507 1508 1509 1510 1511
	if (!pfn_valid_within(pfn))
		return false;
	if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
		return false;
	if (!meminit_pfn_in_nid(pfn, nid, nid_init_state))
		return false;
	return true;
}
1512

1513 1514 1515 1516 1517 1518 1519 1520 1521 1522
/*
 * Free pages to buddy allocator. Try to free aligned pages in
 * pageblock_nr_pages sizes.
 */
static void __init deferred_free_pages(int nid, int zid, unsigned long pfn,
				       unsigned long end_pfn)
{
	struct mminit_pfnnid_cache nid_init_state = { };
	unsigned long nr_pgmask = pageblock_nr_pages - 1;
	unsigned long nr_free = 0;
1523

1524 1525 1526 1527 1528 1529 1530
	for (; pfn < end_pfn; pfn++) {
		if (!deferred_pfn_valid(nid, pfn, &nid_init_state)) {
			deferred_free_range(pfn - nr_free, nr_free);
			nr_free = 0;
		} else if (!(pfn & nr_pgmask)) {
			deferred_free_range(pfn - nr_free, nr_free);
			nr_free = 1;
1531
			touch_nmi_watchdog();
1532 1533 1534 1535 1536 1537
		} else {
			nr_free++;
		}
	}
	/* Free the last block of pages to allocator */
	deferred_free_range(pfn - nr_free, nr_free);
1538 1539
}

1540 1541 1542 1543 1544 1545 1546 1547
/*
 * Initialize struct pages.  We minimize pfn page lookups and scheduler checks
 * by performing it only once every pageblock_nr_pages.
 * Return number of pages initialized.
 */
static unsigned long  __init deferred_init_pages(int nid, int zid,
						 unsigned long pfn,
						 unsigned long end_pfn)
1548 1549 1550 1551 1552 1553
{
	struct mminit_pfnnid_cache nid_init_state = { };
	unsigned long nr_pgmask = pageblock_nr_pages - 1;
	unsigned long nr_pages = 0;
	struct page *page = NULL;

1554 1555 1556
	for (; pfn < end_pfn; pfn++) {
		if (!deferred_pfn_valid(nid, pfn, &nid_init_state)) {
			page = NULL;
1557
			continue;
1558
		} else if (!page || !(pfn & nr_pgmask)) {
1559
			page = pfn_to_page(pfn);
1560
			touch_nmi_watchdog();
1561 1562
		} else {
			page++;
1563
		}
1564
		__init_single_page(page, pfn, zid, nid);
1565
		nr_pages++;
1566
	}
1567
	return (nr_pages);
1568 1569
}

1570
/* Initialise remaining memory on a node */
1571
static int __init deferred_init_memmap(void *data)
1572
{
1573 1574
	pg_data_t *pgdat = data;
	int nid = pgdat->node_id;
1575 1576
	unsigned long start = jiffies;
	unsigned long nr_pages = 0;
1577
	unsigned long spfn, epfn, first_init_pfn, flags;
1578 1579
	phys_addr_t spa, epa;
	int zid;
1580
	struct zone *zone;
1581
	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1582
	u64 i;
1583

1584 1585 1586 1587 1588 1589
	/* Bind memory initialisation thread to a local node if possible */
	if (!cpumask_empty(cpumask))
		set_cpus_allowed_ptr(current, cpumask);

	pgdat_resize_lock(pgdat, &flags);
	first_init_pfn = pgdat->first_deferred_pfn;
1590
	if (first_init_pfn == ULONG_MAX) {
1591
		pgdat_resize_unlock(pgdat, &flags);
1592
		pgdat_init_report_one_done();
1593 1594 1595
		return 0;
	}

1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606
	/* Sanity check boundaries */
	BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
	BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
	pgdat->first_deferred_pfn = ULONG_MAX;

	/* Only the highest zone is deferred so find it */
	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
		zone = pgdat->node_zones + zid;
		if (first_init_pfn < zone_end_pfn(zone))
			break;
	}
1607
	first_init_pfn = max(zone->zone_start_pfn, first_init_pfn);
1608

1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619
	/*
	 * Initialize and free pages. We do it in two loops: first we initialize
	 * struct page, than free to buddy allocator, because while we are
	 * freeing pages we can access pages that are ahead (computing buddy
	 * page in __free_one_page()).
	 */
	for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
		spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
		epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));
		nr_pages += deferred_init_pages(nid, zid, spfn, epfn);
	}
1620 1621 1622
	for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
		spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
		epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));
1623
		deferred_free_pages(nid, zid, spfn, epfn);
1624
	}
1625
	pgdat_resize_unlock(pgdat, &flags);
1626 1627 1628 1629

	/* Sanity check that the next zone really is unpopulated */
	WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));

1630
	pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
1631
					jiffies_to_msecs(jiffies - start));
1632 1633

	pgdat_init_report_one_done();
1634 1635
	return 0;
}
1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739

/*
 * If this zone has deferred pages, try to grow it by initializing enough
 * deferred pages to satisfy the allocation specified by order, rounded up to
 * the nearest PAGES_PER_SECTION boundary.  So we're adding memory in increments
 * of SECTION_SIZE bytes by initializing struct pages in increments of
 * PAGES_PER_SECTION * sizeof(struct page) bytes.
 *
 * Return true when zone was grown, otherwise return false. We return true even
 * when we grow less than requested, to let the caller decide if there are
 * enough pages to satisfy the allocation.
 *
 * Note: We use noinline because this function is needed only during boot, and
 * it is called from a __ref function _deferred_grow_zone. This way we are
 * making sure that it is not inlined into permanent text section.
 */
static noinline bool __init
deferred_grow_zone(struct zone *zone, unsigned int order)
{
	int zid = zone_idx(zone);
	int nid = zone_to_nid(zone);
	pg_data_t *pgdat = NODE_DATA(nid);
	unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
	unsigned long nr_pages = 0;
	unsigned long first_init_pfn, spfn, epfn, t, flags;
	unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
	phys_addr_t spa, epa;
	u64 i;

	/* Only the last zone may have deferred pages */
	if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
		return false;

	pgdat_resize_lock(pgdat, &flags);

	/*
	 * If deferred pages have been initialized while we were waiting for
	 * the lock, return true, as the zone was grown.  The caller will retry
	 * this zone.  We won't return to this function since the caller also
	 * has this static branch.
	 */
	if (!static_branch_unlikely(&deferred_pages)) {
		pgdat_resize_unlock(pgdat, &flags);
		return true;
	}

	/*
	 * If someone grew this zone while we were waiting for spinlock, return
	 * true, as there might be enough pages already.
	 */
	if (first_deferred_pfn != pgdat->first_deferred_pfn) {
		pgdat_resize_unlock(pgdat, &flags);
		return true;
	}

	first_init_pfn = max(zone->zone_start_pfn, first_deferred_pfn);

	if (first_init_pfn >= pgdat_end_pfn(pgdat)) {
		pgdat_resize_unlock(pgdat, &flags);
		return false;
	}

	for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
		spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
		epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));

		while (spfn < epfn && nr_pages < nr_pages_needed) {
			t = ALIGN(spfn + PAGES_PER_SECTION, PAGES_PER_SECTION);
			first_deferred_pfn = min(t, epfn);
			nr_pages += deferred_init_pages(nid, zid, spfn,
							first_deferred_pfn);
			spfn = first_deferred_pfn;
		}

		if (nr_pages >= nr_pages_needed)
			break;
	}

	for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
		spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
		epfn = min_t(unsigned long, first_deferred_pfn, PFN_DOWN(epa));
		deferred_free_pages(nid, zid, spfn, epfn);

		if (first_deferred_pfn == epfn)
			break;
	}
	pgdat->first_deferred_pfn = first_deferred_pfn;
	pgdat_resize_unlock(pgdat, &flags);

	return nr_pages > 0;
}

/*
 * deferred_grow_zone() is __init, but it is called from
 * get_page_from_freelist() during early boot until deferred_pages permanently
 * disables this call. This is why we have refdata wrapper to avoid warning,
 * and to ensure that the function body gets unloaded.
 */
static bool __ref
_deferred_grow_zone(struct zone *zone, unsigned int order)
{
	return deferred_grow_zone(zone, order);
}

1740
#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1741 1742 1743

void __init page_alloc_init_late(void)
{
1744 1745 1746
	struct zone *zone;

#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1747 1748
	int nid;

1749 1750
	/* There will be num_node_state(N_MEMORY) threads */
	atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
1751 1752 1753 1754 1755
	for_each_node_state(nid, N_MEMORY) {
		kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
	}

	/* Block until all are initialised */
1756
	wait_for_completion(&pgdat_init_all_done_comp);
1757

1758 1759 1760 1761 1762 1763
	/*
	 * We initialized the rest of the deferred pages.  Permanently disable
	 * on-demand struct page initialization.
	 */
	static_branch_disable(&deferred_pages);

1764 1765
	/* Reinit limits that are based on free pages after the kernel is up */
	files_maxfiles_init();
1766
#endif
P
Pavel Tatashin 已提交
1767 1768 1769 1770
#ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
	/* Discard memblock private memory */
	memblock_discard();
#endif
1771 1772 1773

	for_each_populated_zone(zone)
		set_zone_contiguous(zone);
1774 1775
}

1776
#ifdef CONFIG_CMA
1777
/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1778 1779 1780 1781 1782 1783 1784 1785
void __init init_cma_reserved_pageblock(struct page *page)
{
	unsigned i = pageblock_nr_pages;
	struct page *p = page;

	do {
		__ClearPageReserved(p);
		set_page_count(p, 0);
1786
	} while (++p, --i);
1787 1788

	set_pageblock_migratetype(page, MIGRATE_CMA);
1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802

	if (pageblock_order >= MAX_ORDER) {
		i = pageblock_nr_pages;
		p = page;
		do {
			set_page_refcounted(p);
			__free_pages(p, MAX_ORDER - 1);
			p += MAX_ORDER_NR_PAGES;
		} while (i -= MAX_ORDER_NR_PAGES);
	} else {
		set_page_refcounted(page);
		__free_pages(page, pageblock_order);
	}

1803
	adjust_managed_page_count(page, pageblock_nr_pages);
1804 1805
}
#endif
L
Linus Torvalds 已提交
1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818

/*
 * The order of subdivision here is critical for the IO subsystem.
 * Please do not alter this order without good reasons and regression
 * testing. Specifically, as large blocks of memory are subdivided,
 * the order in which smaller blocks are delivered depends on the order
 * they're subdivided in this function. This is the primary factor
 * influencing the order in which pages are delivered to the IO
 * subsystem according to empirical testing, and this is also justified
 * by considering the behavior of a buddy system containing a single
 * large block of memory acted on by a series of small allocations.
 * This behavior is a critical factor in sglist merging's success.
 *
1819
 * -- nyc
L
Linus Torvalds 已提交
1820
 */
N
Nick Piggin 已提交
1821
static inline void expand(struct zone *zone, struct page *page,
1822 1823
	int low, int high, struct free_area *area,
	int migratetype)
L
Linus Torvalds 已提交
1824 1825 1826 1827 1828 1829 1830
{
	unsigned long size = 1 << high;

	while (high > low) {
		area--;
		high--;
		size >>= 1;
1831
		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1832

1833 1834 1835 1836 1837 1838 1839
		/*
		 * Mark as guard pages (or page), that will allow to
		 * merge back to allocator when buddy will be freed.
		 * Corresponding page table entries will not be touched,
		 * pages will stay not present in virtual address space
		 */
		if (set_page_guard(zone, &page[size], high, migratetype))
1840
			continue;
1841

1842
		list_add(&page[size].lru, &area->free_list[migratetype]);
L
Linus Torvalds 已提交
1843 1844 1845 1846 1847
		area->nr_free++;
		set_page_order(&page[size], high);
	}
}

1848
static void check_new_page_bad(struct page *page)
L
Linus Torvalds 已提交
1849
{
1850 1851
	const char *bad_reason = NULL;
	unsigned long bad_flags = 0;
1852

1853
	if (unlikely(atomic_read(&page->_mapcount) != -1))
1854 1855 1856
		bad_reason = "nonzero mapcount";
	if (unlikely(page->mapping != NULL))
		bad_reason = "non-NULL mapping";
1857
	if (unlikely(page_ref_count(page) != 0))
1858
		bad_reason = "nonzero _count";
1859 1860 1861
	if (unlikely(page->flags & __PG_HWPOISON)) {
		bad_reason = "HWPoisoned (hardware-corrupted)";
		bad_flags = __PG_HWPOISON;
1862 1863 1864
		/* Don't complain about hwpoisoned pages */
		page_mapcount_reset(page); /* remove PageBuddy */
		return;
1865
	}
1866 1867 1868 1869
	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
		bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
		bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
	}
1870 1871 1872 1873
#ifdef CONFIG_MEMCG
	if (unlikely(page->mem_cgroup))
		bad_reason = "page still charged to cgroup";
#endif
1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887
	bad_page(page, bad_reason, bad_flags);
}

/*
 * This page is about to be returned from the page allocator
 */
static inline int check_new_page(struct page *page)
{
	if (likely(page_expected_state(page,
				PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
		return 0;

	check_new_page_bad(page);
	return 1;
1888 1889
}

1890
static inline bool free_pages_prezeroed(void)
1891 1892
{
	return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
1893
		page_poisoning_enabled();
1894 1895
}

1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929
#ifdef CONFIG_DEBUG_VM
static bool check_pcp_refill(struct page *page)
{
	return false;
}

static bool check_new_pcp(struct page *page)
{
	return check_new_page(page);
}
#else
static bool check_pcp_refill(struct page *page)
{
	return check_new_page(page);
}
static bool check_new_pcp(struct page *page)
{
	return false;
}
#endif /* CONFIG_DEBUG_VM */

static bool check_new_pages(struct page *page, unsigned int order)
{
	int i;
	for (i = 0; i < (1 << order); i++) {
		struct page *p = page + i;

		if (unlikely(check_new_page(p)))
			return true;
	}

	return false;
}

1930 1931 1932 1933 1934 1935 1936 1937 1938
inline void post_alloc_hook(struct page *page, unsigned int order,
				gfp_t gfp_flags)
{
	set_page_private(page, 0);
	set_page_refcounted(page);

	arch_alloc_page(page, order);
	kernel_map_pages(page, 1 << order, 1);
	kasan_alloc_pages(page, order);
Q
Qian Cai 已提交
1939
	kernel_poison_pages(page, 1 << order, 1);
1940 1941 1942
	set_page_owner(page, order, gfp_flags);
}

1943
static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1944
							unsigned int alloc_flags)
1945 1946
{
	int i;
1947

1948
	post_alloc_hook(page, order, gfp_flags);
N
Nick Piggin 已提交
1949

1950
	if (!free_pages_prezeroed() && (gfp_flags & __GFP_ZERO))
1951 1952
		for (i = 0; i < (1 << order); i++)
			clear_highpage(page + i);
N
Nick Piggin 已提交
1953 1954 1955 1956

	if (order && (gfp_flags & __GFP_COMP))
		prep_compound_page(page, order);

1957
	/*
1958
	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1959 1960 1961 1962
	 * allocate the page. The expectation is that the caller is taking
	 * steps that will free more memory. The caller should avoid the page
	 * being used for !PFMEMALLOC purposes.
	 */
1963 1964 1965 1966
	if (alloc_flags & ALLOC_NO_WATERMARKS)
		set_page_pfmemalloc(page);
	else
		clear_page_pfmemalloc(page);
L
Linus Torvalds 已提交
1967 1968
}

1969 1970 1971 1972
/*
 * Go through the free lists for the given migratetype and remove
 * the smallest available page from the freelists
 */
1973
static __always_inline
1974
struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1975 1976 1977
						int migratetype)
{
	unsigned int current_order;
1978
	struct free_area *area;
1979 1980 1981 1982 1983
	struct page *page;

	/* Find a page of the appropriate size in the preferred list */
	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
		area = &(zone->free_area[current_order]);
1984
		page = list_first_entry_or_null(&area->free_list[migratetype],
1985
							struct page, lru);
1986 1987
		if (!page)
			continue;
1988 1989 1990 1991
		list_del(&page->lru);
		rmv_page_order(page);
		area->nr_free--;
		expand(zone, page, order, current_order, area, migratetype);
1992
		set_pcppage_migratetype(page, migratetype);
1993 1994 1995 1996 1997 1998 1999
		return page;
	}

	return NULL;
}


2000 2001 2002 2003
/*
 * This array describes the order lists are fallen back to when
 * the free lists for the desirable migrate type are depleted
 */
2004
static int fallbacks[MIGRATE_TYPES][4] = {
2005 2006 2007
	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_TYPES },
	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_TYPES },
	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
2008
#ifdef CONFIG_CMA
2009
	[MIGRATE_CMA]         = { MIGRATE_TYPES }, /* Never used */
2010
#endif
2011
#ifdef CONFIG_MEMORY_ISOLATION
2012
	[MIGRATE_ISOLATE]     = { MIGRATE_TYPES }, /* Never used */
2013
#endif
2014 2015
};

2016
#ifdef CONFIG_CMA
2017
static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2018 2019 2020 2021 2022 2023 2024 2025 2026
					unsigned int order)
{
	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
}
#else
static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
					unsigned int order) { return NULL; }
#endif

2027 2028
/*
 * Move the free pages in a range to the free lists of the requested type.
2029
 * Note that start_page and end_pages are not aligned on a pageblock
2030 2031
 * boundary. If alignment is required, use move_freepages_block()
 */
2032
static int move_freepages(struct zone *zone,
A
Adrian Bunk 已提交
2033
			  struct page *start_page, struct page *end_page,
2034
			  int migratetype, int *num_movable)
2035 2036
{
	struct page *page;
2037
	unsigned int order;
2038
	int pages_moved = 0;
2039 2040 2041 2042 2043 2044 2045

#ifndef CONFIG_HOLES_IN_ZONE
	/*
	 * page_zone is not safe to call in this context when
	 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
	 * anyway as we check zone boundaries in move_freepages_block().
	 * Remove at a later date when no bug reports exist related to
M
Mel Gorman 已提交
2046
	 * grouping pages by mobility
2047
	 */
2048 2049 2050
	VM_BUG_ON(pfn_valid(page_to_pfn(start_page)) &&
	          pfn_valid(page_to_pfn(end_page)) &&
	          page_zone(start_page) != page_zone(end_page));
2051 2052
#endif

2053 2054 2055
	if (num_movable)
		*num_movable = 0;

2056 2057 2058 2059 2060 2061
	for (page = start_page; page <= end_page;) {
		if (!pfn_valid_within(page_to_pfn(page))) {
			page++;
			continue;
		}

2062 2063 2064
		/* Make sure we are not inadvertently changing nodes */
		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);

2065
		if (!PageBuddy(page)) {
2066 2067 2068 2069 2070 2071 2072 2073 2074
			/*
			 * We assume that pages that could be isolated for
			 * migration are movable. But we don't actually try
			 * isolating, as that would be expensive.
			 */
			if (num_movable &&
					(PageLRU(page) || __PageMovable(page)))
				(*num_movable)++;

2075 2076 2077 2078 2079
			page++;
			continue;
		}

		order = page_order(page);
2080 2081
		list_move(&page->lru,
			  &zone->free_area[order].free_list[migratetype]);
2082
		page += 1 << order;
2083
		pages_moved += 1 << order;
2084 2085
	}

2086
	return pages_moved;
2087 2088
}

2089
int move_freepages_block(struct zone *zone, struct page *page,
2090
				int migratetype, int *num_movable)
2091 2092 2093 2094 2095
{
	unsigned long start_pfn, end_pfn;
	struct page *start_page, *end_page;

	start_pfn = page_to_pfn(page);
2096
	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
2097
	start_page = pfn_to_page(start_pfn);
2098 2099
	end_page = start_page + pageblock_nr_pages - 1;
	end_pfn = start_pfn + pageblock_nr_pages - 1;
2100 2101

	/* Do not cross zone boundaries */
2102
	if (!zone_spans_pfn(zone, start_pfn))
2103
		start_page = page;
2104
	if (!zone_spans_pfn(zone, end_pfn))
2105 2106
		return 0;

2107 2108
	return move_freepages(zone, start_page, end_page, migratetype,
								num_movable);
2109 2110
}

2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121
static void change_pageblock_range(struct page *pageblock_page,
					int start_order, int migratetype)
{
	int nr_pageblocks = 1 << (start_order - pageblock_order);

	while (nr_pageblocks--) {
		set_pageblock_migratetype(pageblock_page, migratetype);
		pageblock_page += pageblock_nr_pages;
	}
}

2122
/*
2123 2124 2125 2126 2127 2128 2129 2130 2131 2132
 * When we are falling back to another migratetype during allocation, try to
 * steal extra free pages from the same pageblocks to satisfy further
 * allocations, instead of polluting multiple pageblocks.
 *
 * If we are stealing a relatively large buddy page, it is likely there will
 * be more free pages in the pageblock, so try to steal them all. For
 * reclaimable and unmovable allocations, we steal regardless of page size,
 * as fragmentation caused by those allocations polluting movable pageblocks
 * is worse than movable allocations stealing from unmovable and reclaimable
 * pageblocks.
2133
 */
2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157
static bool can_steal_fallback(unsigned int order, int start_mt)
{
	/*
	 * Leaving this order check is intended, although there is
	 * relaxed order check in next check. The reason is that
	 * we can actually steal whole pageblock if this condition met,
	 * but, below check doesn't guarantee it and that is just heuristic
	 * so could be changed anytime.
	 */
	if (order >= pageblock_order)
		return true;

	if (order >= pageblock_order / 2 ||
		start_mt == MIGRATE_RECLAIMABLE ||
		start_mt == MIGRATE_UNMOVABLE ||
		page_group_by_mobility_disabled)
		return true;

	return false;
}

/*
 * This function implements actual steal behaviour. If order is large enough,
 * we can steal whole pageblock. If not, we first move freepages in this
2158 2159 2160 2161
 * pageblock to our migratetype and determine how many already-allocated pages
 * are there in the pageblock with a compatible migratetype. If at least half
 * of pages are free or compatible, we can change migratetype of the pageblock
 * itself, so pages freed in the future will be put on the correct free list.
2162 2163
 */
static void steal_suitable_fallback(struct zone *zone, struct page *page,
2164
					int start_type, bool whole_block)
2165
{
2166
	unsigned int current_order = page_order(page);
2167
	struct free_area *area;
2168 2169 2170 2171
	int free_pages, movable_pages, alike_pages;
	int old_block_type;

	old_block_type = get_pageblock_migratetype(page);
2172

2173 2174 2175 2176
	/*
	 * This can happen due to races and we want to prevent broken
	 * highatomic accounting.
	 */
2177
	if (is_migrate_highatomic(old_block_type))
2178 2179
		goto single_page;

2180 2181 2182
	/* Take ownership for orders >= pageblock_order */
	if (current_order >= pageblock_order) {
		change_pageblock_range(page, current_order, start_type);
2183
		goto single_page;
2184 2185
	}

2186 2187 2188 2189
	/* We are not allowed to try stealing from the whole block */
	if (!whole_block)
		goto single_page;

2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213
	free_pages = move_freepages_block(zone, page, start_type,
						&movable_pages);
	/*
	 * Determine how many pages are compatible with our allocation.
	 * For movable allocation, it's the number of movable pages which
	 * we just obtained. For other types it's a bit more tricky.
	 */
	if (start_type == MIGRATE_MOVABLE) {
		alike_pages = movable_pages;
	} else {
		/*
		 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
		 * to MOVABLE pageblock, consider all non-movable pages as
		 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
		 * vice versa, be conservative since we can't distinguish the
		 * exact migratetype of non-movable pages.
		 */
		if (old_block_type == MIGRATE_MOVABLE)
			alike_pages = pageblock_nr_pages
						- (free_pages + movable_pages);
		else
			alike_pages = 0;
	}

2214
	/* moving whole block can fail due to zone boundary conditions */
2215
	if (!free_pages)
2216
		goto single_page;
2217

2218 2219 2220 2221 2222
	/*
	 * If a sufficient number of pages in the block are either free or of
	 * comparable migratability as our allocation, claim the whole block.
	 */
	if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2223 2224
			page_group_by_mobility_disabled)
		set_pageblock_migratetype(page, start_type);
2225 2226 2227 2228 2229 2230

	return;

single_page:
	area = &zone->free_area[current_order];
	list_move(&page->lru, &area->free_list[start_type]);
2231 2232
}

2233 2234 2235 2236 2237 2238 2239 2240
/*
 * Check whether there is a suitable fallback freepage with requested order.
 * If only_stealable is true, this function returns fallback_mt only if
 * we can steal other freepages all together. This would help to reduce
 * fragmentation due to mixed migratetype pages in one pageblock.
 */
int find_suitable_fallback(struct free_area *area, unsigned int order,
			int migratetype, bool only_stealable, bool *can_steal)
2241 2242 2243 2244 2245 2246 2247 2248 2249 2250
{
	int i;
	int fallback_mt;

	if (area->nr_free == 0)
		return -1;

	*can_steal = false;
	for (i = 0;; i++) {
		fallback_mt = fallbacks[migratetype][i];
2251
		if (fallback_mt == MIGRATE_TYPES)
2252 2253 2254 2255
			break;

		if (list_empty(&area->free_list[fallback_mt]))
			continue;
2256

2257 2258 2259
		if (can_steal_fallback(order, migratetype))
			*can_steal = true;

2260 2261 2262 2263 2264
		if (!only_stealable)
			return fallback_mt;

		if (*can_steal)
			return fallback_mt;
2265
	}
2266 2267

	return -1;
2268 2269
}

2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295
/*
 * Reserve a pageblock for exclusive use of high-order atomic allocations if
 * there are no empty page blocks that contain a page with a suitable order
 */
static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
				unsigned int alloc_order)
{
	int mt;
	unsigned long max_managed, flags;

	/*
	 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
	 * Check is race-prone but harmless.
	 */
	max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
	if (zone->nr_reserved_highatomic >= max_managed)
		return;

	spin_lock_irqsave(&zone->lock, flags);

	/* Recheck the nr_reserved_highatomic limit under the lock */
	if (zone->nr_reserved_highatomic >= max_managed)
		goto out_unlock;

	/* Yoink! */
	mt = get_pageblock_migratetype(page);
2296 2297
	if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
	    && !is_migrate_cma(mt)) {
2298 2299
		zone->nr_reserved_highatomic += pageblock_nr_pages;
		set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2300
		move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311
	}

out_unlock:
	spin_unlock_irqrestore(&zone->lock, flags);
}

/*
 * Used when an allocation is about to fail under memory pressure. This
 * potentially hurts the reliability of high-order allocations when under
 * intense memory pressure but failed atomic allocations should be easier
 * to recover from than an OOM.
2312 2313 2314
 *
 * If @force is true, try to unreserve a pageblock even though highatomic
 * pageblock is exhausted.
2315
 */
2316 2317
static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
						bool force)
2318 2319 2320 2321 2322 2323 2324
{
	struct zonelist *zonelist = ac->zonelist;
	unsigned long flags;
	struct zoneref *z;
	struct zone *zone;
	struct page *page;
	int order;
2325
	bool ret;
2326 2327 2328

	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
								ac->nodemask) {
2329 2330 2331 2332 2333 2334
		/*
		 * Preserve at least one pageblock unless memory pressure
		 * is really high.
		 */
		if (!force && zone->nr_reserved_highatomic <=
					pageblock_nr_pages)
2335 2336 2337 2338 2339 2340
			continue;

		spin_lock_irqsave(&zone->lock, flags);
		for (order = 0; order < MAX_ORDER; order++) {
			struct free_area *area = &(zone->free_area[order]);

2341 2342 2343 2344
			page = list_first_entry_or_null(
					&area->free_list[MIGRATE_HIGHATOMIC],
					struct page, lru);
			if (!page)
2345 2346 2347
				continue;

			/*
2348 2349 2350 2351 2352
			 * In page freeing path, migratetype change is racy so
			 * we can counter several free pages in a pageblock
			 * in this loop althoug we changed the pageblock type
			 * from highatomic to ac->migratetype. So we should
			 * adjust the count once.
2353
			 */
2354
			if (is_migrate_highatomic_page(page)) {
2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365
				/*
				 * It should never happen but changes to
				 * locking could inadvertently allow a per-cpu
				 * drain to add pages to MIGRATE_HIGHATOMIC
				 * while unreserving so be safe and watch for
				 * underflows.
				 */
				zone->nr_reserved_highatomic -= min(
						pageblock_nr_pages,
						zone->nr_reserved_highatomic);
			}
2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376

			/*
			 * Convert to ac->migratetype and avoid the normal
			 * pageblock stealing heuristics. Minimally, the caller
			 * is doing the work and needs the pages. More
			 * importantly, if the block was always converted to
			 * MIGRATE_UNMOVABLE or another type then the number
			 * of pageblocks that cannot be completely freed
			 * may increase.
			 */
			set_pageblock_migratetype(page, ac->migratetype);
2377 2378
			ret = move_freepages_block(zone, page, ac->migratetype,
									NULL);
2379 2380 2381 2382
			if (ret) {
				spin_unlock_irqrestore(&zone->lock, flags);
				return ret;
			}
2383 2384 2385
		}
		spin_unlock_irqrestore(&zone->lock, flags);
	}
2386 2387

	return false;
2388 2389
}

2390 2391 2392 2393 2394
/*
 * Try finding a free buddy page on the fallback list and put it on the free
 * list of requested migratetype, possibly along with other pages from the same
 * block, depending on fragmentation avoidance heuristics. Returns true if
 * fallback was found so that __rmqueue_smallest() can grab it.
2395 2396 2397 2398
 *
 * The use of signed ints for order and current_order is a deliberate
 * deviation from the rest of this file, to make the for loop
 * condition simpler.
2399
 */
2400
static __always_inline bool
2401
__rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
2402
{
2403
	struct free_area *area;
2404
	int current_order;
2405
	struct page *page;
2406 2407
	int fallback_mt;
	bool can_steal;
2408

2409 2410 2411 2412 2413
	/*
	 * Find the largest available free page in the other list. This roughly
	 * approximates finding the pageblock with the most free pages, which
	 * would be too costly to do exactly.
	 */
2414
	for (current_order = MAX_ORDER - 1; current_order >= order;
2415
				--current_order) {
2416 2417
		area = &(zone->free_area[current_order]);
		fallback_mt = find_suitable_fallback(area, current_order,
2418
				start_migratetype, false, &can_steal);
2419 2420
		if (fallback_mt == -1)
			continue;
2421

2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432
		/*
		 * We cannot steal all free pages from the pageblock and the
		 * requested migratetype is movable. In that case it's better to
		 * steal and split the smallest available page instead of the
		 * largest available page, because even if the next movable
		 * allocation falls back into a different pageblock than this
		 * one, it won't cause permanent fragmentation.
		 */
		if (!can_steal && start_migratetype == MIGRATE_MOVABLE
					&& current_order > order)
			goto find_smallest;
2433

2434 2435
		goto do_steal;
	}
2436

2437
	return false;
2438

2439 2440 2441 2442 2443 2444 2445 2446
find_smallest:
	for (current_order = order; current_order < MAX_ORDER;
							current_order++) {
		area = &(zone->free_area[current_order]);
		fallback_mt = find_suitable_fallback(area, current_order,
				start_migratetype, false, &can_steal);
		if (fallback_mt != -1)
			break;
2447 2448
	}

2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465
	/*
	 * This should not happen - we already found a suitable fallback
	 * when looking for the largest page.
	 */
	VM_BUG_ON(current_order == MAX_ORDER);

do_steal:
	page = list_first_entry(&area->free_list[fallback_mt],
							struct page, lru);

	steal_suitable_fallback(zone, page, start_migratetype, can_steal);

	trace_mm_page_alloc_extfrag(page, order, current_order,
		start_migratetype, fallback_mt);

	return true;

2466 2467
}

2468
/*
L
Linus Torvalds 已提交
2469 2470 2471
 * Do the hard work of removing an element from the buddy allocator.
 * Call me with the zone->lock already held.
 */
2472 2473
static __always_inline struct page *
__rmqueue(struct zone *zone, unsigned int order, int migratetype)
L
Linus Torvalds 已提交
2474 2475 2476
{
	struct page *page;

2477
retry:
2478
	page = __rmqueue_smallest(zone, order, migratetype);
2479
	if (unlikely(!page)) {
2480 2481 2482
		if (migratetype == MIGRATE_MOVABLE)
			page = __rmqueue_cma_fallback(zone, order);

2483 2484
		if (!page && __rmqueue_fallback(zone, order, migratetype))
			goto retry;
2485 2486
	}

2487
	trace_mm_page_alloc_zone_locked(page, order, migratetype);
2488
	return page;
L
Linus Torvalds 已提交
2489 2490
}

2491
/*
L
Linus Torvalds 已提交
2492 2493 2494 2495
 * Obtain a specified number of elements from the buddy allocator, all under
 * a single hold of the lock, for efficiency.  Add them to the supplied list.
 * Returns the number of new pages which were placed at *list.
 */
2496
static int rmqueue_bulk(struct zone *zone, unsigned int order,
2497
			unsigned long count, struct list_head *list,
M
Mel Gorman 已提交
2498
			int migratetype)
L
Linus Torvalds 已提交
2499
{
2500
	int i, alloced = 0;
2501

2502
	spin_lock(&zone->lock);
L
Linus Torvalds 已提交
2503
	for (i = 0; i < count; ++i) {
2504
		struct page *page = __rmqueue(zone, order, migratetype);
N
Nick Piggin 已提交
2505
		if (unlikely(page == NULL))
L
Linus Torvalds 已提交
2506
			break;
2507

2508 2509 2510
		if (unlikely(check_pcp_refill(page)))
			continue;

2511
		/*
2512 2513 2514 2515 2516 2517 2518 2519
		 * Split buddy pages returned by expand() are received here in
		 * physical page order. The page is added to the tail of
		 * caller's list. From the callers perspective, the linked list
		 * is ordered by page number under some conditions. This is
		 * useful for IO devices that can forward direction from the
		 * head, thus also in the physical page order. This is useful
		 * for IO devices that can merge IO requests if the physical
		 * pages are ordered properly.
2520
		 */
2521
		list_add_tail(&page->lru, list);
2522
		alloced++;
2523
		if (is_migrate_cma(get_pcppage_migratetype(page)))
2524 2525
			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
					      -(1 << order));
L
Linus Torvalds 已提交
2526
	}
2527 2528 2529 2530 2531 2532 2533

	/*
	 * i pages were removed from the buddy list even if some leak due
	 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
	 * on i. Do not confuse with 'alloced' which is the number of
	 * pages added to the pcp list.
	 */
2534
	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2535
	spin_unlock(&zone->lock);
2536
	return alloced;
L
Linus Torvalds 已提交
2537 2538
}

2539
#ifdef CONFIG_NUMA
2540
/*
2541 2542 2543 2544
 * Called from the vmstat counter updater to drain pagesets of this
 * currently executing processor on remote nodes after they have
 * expired.
 *
2545 2546
 * Note that this function must be called with the thread pinned to
 * a single processor.
2547
 */
2548
void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2549 2550
{
	unsigned long flags;
2551
	int to_drain, batch;
2552

2553
	local_irq_save(flags);
2554
	batch = READ_ONCE(pcp->batch);
2555
	to_drain = min(pcp->count, batch);
2556
	if (to_drain > 0)
2557
		free_pcppages_bulk(zone, to_drain, pcp);
2558
	local_irq_restore(flags);
2559 2560 2561
}
#endif

2562
/*
2563
 * Drain pcplists of the indicated processor and zone.
2564 2565 2566 2567 2568
 *
 * The processor must either be the current processor and the
 * thread pinned to the current processor or a processor that
 * is not online.
 */
2569
static void drain_pages_zone(unsigned int cpu, struct zone *zone)
L
Linus Torvalds 已提交
2570
{
N
Nick Piggin 已提交
2571
	unsigned long flags;
2572 2573
	struct per_cpu_pageset *pset;
	struct per_cpu_pages *pcp;
L
Linus Torvalds 已提交
2574

2575 2576
	local_irq_save(flags);
	pset = per_cpu_ptr(zone->pageset, cpu);
L
Linus Torvalds 已提交
2577

2578
	pcp = &pset->pcp;
2579
	if (pcp->count)
2580 2581 2582
		free_pcppages_bulk(zone, pcp->count, pcp);
	local_irq_restore(flags);
}
2583

2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596
/*
 * Drain pcplists of all zones on the indicated processor.
 *
 * The processor must either be the current processor and the
 * thread pinned to the current processor or a processor that
 * is not online.
 */
static void drain_pages(unsigned int cpu)
{
	struct zone *zone;

	for_each_populated_zone(zone) {
		drain_pages_zone(cpu, zone);
L
Linus Torvalds 已提交
2597 2598 2599
	}
}

2600 2601
/*
 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2602 2603 2604
 *
 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
 * the single zone's pages.
2605
 */
2606
void drain_local_pages(struct zone *zone)
2607
{
2608 2609 2610 2611 2612 2613
	int cpu = smp_processor_id();

	if (zone)
		drain_pages_zone(cpu, zone);
	else
		drain_pages(cpu);
2614 2615
}

2616 2617
static void drain_local_pages_wq(struct work_struct *work)
{
2618 2619 2620 2621 2622 2623 2624 2625
	/*
	 * drain_all_pages doesn't use proper cpu hotplug protection so
	 * we can race with cpu offline when the WQ can move this from
	 * a cpu pinned worker to an unbound one. We can operate on a different
	 * cpu which is allright but we also have to make sure to not move to
	 * a different one.
	 */
	preempt_disable();
2626
	drain_local_pages(NULL);
2627
	preempt_enable();
2628 2629
}

2630
/*
2631 2632
 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
 *
2633 2634
 * When zone parameter is non-NULL, spill just the single zone's pages.
 *
2635
 * Note that this can be extremely slow as the draining happens in a workqueue.
2636
 */
2637
void drain_all_pages(struct zone *zone)
2638
{
2639 2640 2641 2642 2643 2644 2645 2646
	int cpu;

	/*
	 * Allocate in the BSS so we wont require allocation in
	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
	 */
	static cpumask_t cpus_with_pcps;

2647 2648 2649 2650 2651 2652 2653
	/*
	 * Make sure nobody triggers this path before mm_percpu_wq is fully
	 * initialized.
	 */
	if (WARN_ON_ONCE(!mm_percpu_wq))
		return;

2654 2655 2656 2657 2658 2659 2660 2661 2662 2663
	/*
	 * Do not drain if one is already in progress unless it's specific to
	 * a zone. Such callers are primarily CMA and memory hotplug and need
	 * the drain to be complete when the call returns.
	 */
	if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
		if (!zone)
			return;
		mutex_lock(&pcpu_drain_mutex);
	}
2664

2665 2666 2667 2668 2669 2670 2671
	/*
	 * We don't care about racing with CPU hotplug event
	 * as offline notification will cause the notified
	 * cpu to drain that CPU pcps and on_each_cpu_mask
	 * disables preemption as part of its processing
	 */
	for_each_online_cpu(cpu) {
2672 2673
		struct per_cpu_pageset *pcp;
		struct zone *z;
2674
		bool has_pcps = false;
2675 2676

		if (zone) {
2677
			pcp = per_cpu_ptr(zone->pageset, cpu);
2678
			if (pcp->pcp.count)
2679
				has_pcps = true;
2680 2681 2682 2683 2684 2685 2686
		} else {
			for_each_populated_zone(z) {
				pcp = per_cpu_ptr(z->pageset, cpu);
				if (pcp->pcp.count) {
					has_pcps = true;
					break;
				}
2687 2688
			}
		}
2689

2690 2691 2692 2693 2694
		if (has_pcps)
			cpumask_set_cpu(cpu, &cpus_with_pcps);
		else
			cpumask_clear_cpu(cpu, &cpus_with_pcps);
	}
2695

2696 2697 2698
	for_each_cpu(cpu, &cpus_with_pcps) {
		struct work_struct *work = per_cpu_ptr(&pcpu_drain, cpu);
		INIT_WORK(work, drain_local_pages_wq);
2699
		queue_work_on(cpu, mm_percpu_wq, work);
2700
	}
2701 2702 2703 2704
	for_each_cpu(cpu, &cpus_with_pcps)
		flush_work(per_cpu_ptr(&pcpu_drain, cpu));

	mutex_unlock(&pcpu_drain_mutex);
2705 2706
}

2707
#ifdef CONFIG_HIBERNATION
L
Linus Torvalds 已提交
2708

2709 2710 2711 2712 2713
/*
 * Touch the watchdog for every WD_PAGE_COUNT pages.
 */
#define WD_PAGE_COUNT	(128*1024)

L
Linus Torvalds 已提交
2714 2715
void mark_free_pages(struct zone *zone)
{
2716
	unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
2717
	unsigned long flags;
2718
	unsigned int order, t;
2719
	struct page *page;
L
Linus Torvalds 已提交
2720

2721
	if (zone_is_empty(zone))
L
Linus Torvalds 已提交
2722 2723 2724
		return;

	spin_lock_irqsave(&zone->lock, flags);
2725

2726
	max_zone_pfn = zone_end_pfn(zone);
2727 2728
	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
		if (pfn_valid(pfn)) {
2729
			page = pfn_to_page(pfn);
2730

2731 2732 2733 2734 2735
			if (!--page_count) {
				touch_nmi_watchdog();
				page_count = WD_PAGE_COUNT;
			}

2736 2737 2738
			if (page_zone(page) != zone)
				continue;

2739 2740
			if (!swsusp_page_is_forbidden(page))
				swsusp_unset_page_free(page);
2741
		}
L
Linus Torvalds 已提交
2742

2743
	for_each_migratetype_order(order, t) {
2744 2745
		list_for_each_entry(page,
				&zone->free_area[order].free_list[t], lru) {
2746
			unsigned long i;
L
Linus Torvalds 已提交
2747

2748
			pfn = page_to_pfn(page);
2749 2750 2751 2752 2753
			for (i = 0; i < (1UL << order); i++) {
				if (!--page_count) {
					touch_nmi_watchdog();
					page_count = WD_PAGE_COUNT;
				}
2754
				swsusp_set_page_free(pfn_to_page(pfn + i));
2755
			}
2756
		}
2757
	}
L
Linus Torvalds 已提交
2758 2759
	spin_unlock_irqrestore(&zone->lock, flags);
}
2760
#endif /* CONFIG_PM */
L
Linus Torvalds 已提交
2761

2762
static bool free_unref_page_prepare(struct page *page, unsigned long pfn)
L
Linus Torvalds 已提交
2763
{
2764
	int migratetype;
L
Linus Torvalds 已提交
2765

2766
	if (!free_pcp_prepare(page))
2767
		return false;
2768

2769
	migratetype = get_pfnblock_migratetype(page, pfn);
2770
	set_pcppage_migratetype(page, migratetype);
2771 2772 2773
	return true;
}

2774
static void free_unref_page_commit(struct page *page, unsigned long pfn)
2775 2776 2777 2778 2779 2780
{
	struct zone *zone = page_zone(page);
	struct per_cpu_pages *pcp;
	int migratetype;

	migratetype = get_pcppage_migratetype(page);
2781
	__count_vm_event(PGFREE);
2782

2783 2784 2785
	/*
	 * We only track unmovable, reclaimable and movable on pcp lists.
	 * Free ISOLATE pages back to the allocator because they are being
2786
	 * offlined but treat HIGHATOMIC as movable pages so we can get those
2787 2788 2789 2790
	 * areas back if necessary. Otherwise, we may have to free
	 * excessively into the page allocator
	 */
	if (migratetype >= MIGRATE_PCPTYPES) {
2791
		if (unlikely(is_migrate_isolate(migratetype))) {
2792
			free_one_page(zone, page, pfn, 0, migratetype);
2793
			return;
2794 2795 2796 2797
		}
		migratetype = MIGRATE_MOVABLE;
	}

2798
	pcp = &this_cpu_ptr(zone->pageset)->pcp;
2799
	list_add(&page->lru, &pcp->lists[migratetype]);
L
Linus Torvalds 已提交
2800
	pcp->count++;
N
Nick Piggin 已提交
2801
	if (pcp->count >= pcp->high) {
2802
		unsigned long batch = READ_ONCE(pcp->batch);
2803
		free_pcppages_bulk(zone, batch, pcp);
N
Nick Piggin 已提交
2804
	}
2805
}
2806

2807 2808 2809
/*
 * Free a 0-order page
 */
2810
void free_unref_page(struct page *page)
2811 2812 2813 2814
{
	unsigned long flags;
	unsigned long pfn = page_to_pfn(page);

2815
	if (!free_unref_page_prepare(page, pfn))
2816 2817 2818
		return;

	local_irq_save(flags);
2819
	free_unref_page_commit(page, pfn);
2820
	local_irq_restore(flags);
L
Linus Torvalds 已提交
2821 2822
}

2823 2824 2825
/*
 * Free a list of 0-order pages
 */
2826
void free_unref_page_list(struct list_head *list)
2827 2828
{
	struct page *page, *next;
2829
	unsigned long flags, pfn;
2830
	int batch_count = 0;
2831 2832 2833 2834

	/* Prepare pages for freeing */
	list_for_each_entry_safe(page, next, list, lru) {
		pfn = page_to_pfn(page);
2835
		if (!free_unref_page_prepare(page, pfn))
2836 2837 2838
			list_del(&page->lru);
		set_page_private(page, pfn);
	}
2839

2840
	local_irq_save(flags);
2841
	list_for_each_entry_safe(page, next, list, lru) {
2842 2843 2844
		unsigned long pfn = page_private(page);

		set_page_private(page, 0);
2845 2846
		trace_mm_page_free_batched(page);
		free_unref_page_commit(page, pfn);
2847 2848 2849 2850 2851 2852 2853 2854 2855 2856

		/*
		 * Guard against excessive IRQ disabled times when we get
		 * a large list of pages to free.
		 */
		if (++batch_count == SWAP_CLUSTER_MAX) {
			local_irq_restore(flags);
			batch_count = 0;
			local_irq_save(flags);
		}
2857
	}
2858
	local_irq_restore(flags);
2859 2860
}

N
Nick Piggin 已提交
2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872
/*
 * split_page takes a non-compound higher-order page, and splits it into
 * n (1<<order) sub-pages: page[0..n]
 * Each sub-page must be freed individually.
 *
 * Note: this is probably too low level an operation for use in drivers.
 * Please consult with lkml before using this in your driver.
 */
void split_page(struct page *page, unsigned int order)
{
	int i;

2873 2874
	VM_BUG_ON_PAGE(PageCompound(page), page);
	VM_BUG_ON_PAGE(!page_count(page), page);
2875

2876
	for (i = 1; i < (1 << order); i++)
2877
		set_page_refcounted(page + i);
2878
	split_page_owner(page, order);
N
Nick Piggin 已提交
2879
}
K
K. Y. Srinivasan 已提交
2880
EXPORT_SYMBOL_GPL(split_page);
N
Nick Piggin 已提交
2881

2882
int __isolate_free_page(struct page *page, unsigned int order)
2883 2884 2885
{
	unsigned long watermark;
	struct zone *zone;
2886
	int mt;
2887 2888 2889 2890

	BUG_ON(!PageBuddy(page));

	zone = page_zone(page);
2891
	mt = get_pageblock_migratetype(page);
2892

2893
	if (!is_migrate_isolate(mt)) {
2894 2895 2896 2897 2898 2899 2900
		/*
		 * Obey watermarks as if the page was being allocated. We can
		 * emulate a high-order watermark check with a raised order-0
		 * watermark, because we already know our high-order page
		 * exists.
		 */
		watermark = min_wmark_pages(zone) + (1UL << order);
2901
		if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2902 2903
			return 0;

2904
		__mod_zone_freepage_state(zone, -(1UL << order), mt);
2905
	}
2906 2907 2908 2909 2910

	/* Remove page from free list */
	list_del(&page->lru);
	zone->free_area[order].nr_free--;
	rmv_page_order(page);
2911

2912 2913 2914 2915
	/*
	 * Set the pageblock if the isolated page is at least half of a
	 * pageblock
	 */
2916 2917
	if (order >= pageblock_order - 1) {
		struct page *endpage = page + (1 << order) - 1;
2918 2919
		for (; page < endpage; page += pageblock_nr_pages) {
			int mt = get_pageblock_migratetype(page);
M
Minchan Kim 已提交
2920
			if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
2921
			    && !is_migrate_highatomic(mt))
2922 2923 2924
				set_pageblock_migratetype(page,
							  MIGRATE_MOVABLE);
		}
2925 2926
	}

2927

2928
	return 1UL << order;
2929 2930
}

2931 2932 2933 2934 2935
/*
 * Update NUMA hit/miss statistics
 *
 * Must be called with interrupts disabled.
 */
M
Michal Hocko 已提交
2936
static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
2937 2938
{
#ifdef CONFIG_NUMA
2939
	enum numa_stat_item local_stat = NUMA_LOCAL;
2940

2941 2942 2943 2944
	/* skip numa counters update if numa stats is disabled */
	if (!static_branch_likely(&vm_numa_stat_key))
		return;

2945
	if (zone_to_nid(z) != numa_node_id())
2946 2947
		local_stat = NUMA_OTHER;

2948
	if (zone_to_nid(z) == zone_to_nid(preferred_zone))
2949
		__inc_numa_state(z, NUMA_HIT);
2950
	else {
2951 2952
		__inc_numa_state(z, NUMA_MISS);
		__inc_numa_state(preferred_zone, NUMA_FOREIGN);
2953
	}
2954
	__inc_numa_state(z, local_stat);
2955 2956 2957
#endif
}

2958 2959
/* Remove page from the per-cpu list, caller must protect the list */
static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
M
Mel Gorman 已提交
2960
			struct per_cpu_pages *pcp,
2961 2962 2963 2964 2965 2966 2967 2968
			struct list_head *list)
{
	struct page *page;

	do {
		if (list_empty(list)) {
			pcp->count += rmqueue_bulk(zone, 0,
					pcp->batch, list,
M
Mel Gorman 已提交
2969
					migratetype);
2970 2971 2972 2973
			if (unlikely(list_empty(list)))
				return NULL;
		}

M
Mel Gorman 已提交
2974
		page = list_first_entry(list, struct page, lru);
2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989
		list_del(&page->lru);
		pcp->count--;
	} while (check_new_pcp(page));

	return page;
}

/* Lock and remove page from the per-cpu list */
static struct page *rmqueue_pcplist(struct zone *preferred_zone,
			struct zone *zone, unsigned int order,
			gfp_t gfp_flags, int migratetype)
{
	struct per_cpu_pages *pcp;
	struct list_head *list;
	struct page *page;
2990
	unsigned long flags;
2991

2992
	local_irq_save(flags);
2993 2994
	pcp = &this_cpu_ptr(zone->pageset)->pcp;
	list = &pcp->lists[migratetype];
M
Mel Gorman 已提交
2995
	page = __rmqueue_pcplist(zone,  migratetype, pcp, list);
2996 2997 2998 2999
	if (page) {
		__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
		zone_statistics(preferred_zone, zone);
	}
3000
	local_irq_restore(flags);
3001 3002 3003
	return page;
}

L
Linus Torvalds 已提交
3004
/*
3005
 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
L
Linus Torvalds 已提交
3006
 */
3007
static inline
3008
struct page *rmqueue(struct zone *preferred_zone,
3009
			struct zone *zone, unsigned int order,
3010 3011
			gfp_t gfp_flags, unsigned int alloc_flags,
			int migratetype)
L
Linus Torvalds 已提交
3012 3013
{
	unsigned long flags;
3014
	struct page *page;
L
Linus Torvalds 已提交
3015

3016
	if (likely(order == 0)) {
3017 3018 3019 3020
		page = rmqueue_pcplist(preferred_zone, zone, order,
				gfp_flags, migratetype);
		goto out;
	}
3021

3022 3023 3024 3025 3026 3027
	/*
	 * We most definitely don't want callers attempting to
	 * allocate greater than order-1 page units with __GFP_NOFAIL.
	 */
	WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
	spin_lock_irqsave(&zone->lock, flags);
3028

3029 3030 3031 3032 3033 3034 3035
	do {
		page = NULL;
		if (alloc_flags & ALLOC_HARDER) {
			page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
			if (page)
				trace_mm_page_alloc_zone_locked(page, order, migratetype);
		}
N
Nick Piggin 已提交
3036
		if (!page)
3037 3038 3039 3040 3041 3042 3043
			page = __rmqueue(zone, order, migratetype);
	} while (page && check_new_pages(page, order));
	spin_unlock(&zone->lock);
	if (!page)
		goto failed;
	__mod_zone_freepage_state(zone, -(1 << order),
				  get_pcppage_migratetype(page));
L
Linus Torvalds 已提交
3044

3045
	__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
M
Michal Hocko 已提交
3046
	zone_statistics(preferred_zone, zone);
N
Nick Piggin 已提交
3047
	local_irq_restore(flags);
L
Linus Torvalds 已提交
3048

3049 3050
out:
	VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
L
Linus Torvalds 已提交
3051
	return page;
N
Nick Piggin 已提交
3052 3053 3054 3055

failed:
	local_irq_restore(flags);
	return NULL;
L
Linus Torvalds 已提交
3056 3057
}

3058 3059
#ifdef CONFIG_FAIL_PAGE_ALLOC

3060
static struct {
3061 3062
	struct fault_attr attr;

3063
	bool ignore_gfp_highmem;
3064
	bool ignore_gfp_reclaim;
3065
	u32 min_order;
3066 3067
} fail_page_alloc = {
	.attr = FAULT_ATTR_INITIALIZER,
3068
	.ignore_gfp_reclaim = true,
3069
	.ignore_gfp_highmem = true,
3070
	.min_order = 1,
3071 3072 3073 3074 3075 3076 3077 3078
};

static int __init setup_fail_page_alloc(char *str)
{
	return setup_fault_attr(&fail_page_alloc.attr, str);
}
__setup("fail_page_alloc=", setup_fail_page_alloc);

3079
static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3080
{
3081
	if (order < fail_page_alloc.min_order)
3082
		return false;
3083
	if (gfp_mask & __GFP_NOFAIL)
3084
		return false;
3085
	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
3086
		return false;
3087 3088
	if (fail_page_alloc.ignore_gfp_reclaim &&
			(gfp_mask & __GFP_DIRECT_RECLAIM))
3089
		return false;
3090 3091 3092 3093 3094 3095 3096 3097

	return should_fail(&fail_page_alloc.attr, 1 << order);
}

#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS

static int __init fail_page_alloc_debugfs(void)
{
3098
	umode_t mode = S_IFREG | 0600;
3099 3100
	struct dentry *dir;

3101 3102 3103 3104
	dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
					&fail_page_alloc.attr);
	if (IS_ERR(dir))
		return PTR_ERR(dir);
3105

3106
	if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
3107
				&fail_page_alloc.ignore_gfp_reclaim))
3108 3109 3110 3111 3112 3113 3114 3115 3116 3117
		goto fail;
	if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
				&fail_page_alloc.ignore_gfp_highmem))
		goto fail;
	if (!debugfs_create_u32("min-order", mode, dir,
				&fail_page_alloc.min_order))
		goto fail;

	return 0;
fail:
3118
	debugfs_remove_recursive(dir);
3119

3120
	return -ENOMEM;
3121 3122 3123 3124 3125 3126 3127 3128
}

late_initcall(fail_page_alloc_debugfs);

#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */

#else /* CONFIG_FAIL_PAGE_ALLOC */

3129
static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3130
{
3131
	return false;
3132 3133 3134 3135
}

#endif /* CONFIG_FAIL_PAGE_ALLOC */

L
Linus Torvalds 已提交
3136
/*
3137 3138 3139 3140
 * Return true if free base pages are above 'mark'. For high-order checks it
 * will return true of the order-0 watermark is reached and there is at least
 * one free page of a suitable size. Checking now avoids taking the zone lock
 * to check in the allocation paths if no pages are free.
L
Linus Torvalds 已提交
3141
 */
3142 3143 3144
bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
			 int classzone_idx, unsigned int alloc_flags,
			 long free_pages)
L
Linus Torvalds 已提交
3145
{
3146
	long min = mark;
L
Linus Torvalds 已提交
3147
	int o;
3148
	const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
L
Linus Torvalds 已提交
3149

3150
	/* free_pages may go negative - that's OK */
3151
	free_pages -= (1 << order) - 1;
3152

R
Rohit Seth 已提交
3153
	if (alloc_flags & ALLOC_HIGH)
L
Linus Torvalds 已提交
3154
		min -= min / 2;
3155 3156 3157 3158 3159 3160

	/*
	 * If the caller does not have rights to ALLOC_HARDER then subtract
	 * the high-atomic reserves. This will over-estimate the size of the
	 * atomic reserve but it avoids a search.
	 */
3161
	if (likely(!alloc_harder)) {
3162
		free_pages -= z->nr_reserved_highatomic;
3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175
	} else {
		/*
		 * OOM victims can try even harder than normal ALLOC_HARDER
		 * users on the grounds that it's definitely going to be in
		 * the exit path shortly and free memory. Any allocation it
		 * makes during the free path will be small and short-lived.
		 */
		if (alloc_flags & ALLOC_OOM)
			min -= min / 2;
		else
			min -= min / 4;
	}

3176

3177 3178 3179 3180 3181 3182
#ifdef CONFIG_CMA
	/* If allocation can't use CMA areas don't use free CMA pages */
	if (!(alloc_flags & ALLOC_CMA))
		free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
#endif

3183 3184 3185 3186 3187 3188
	/*
	 * Check watermarks for an order-0 allocation request. If these
	 * are not met, then a high-order request also cannot go ahead
	 * even if a suitable page happened to be free.
	 */
	if (free_pages <= min + z->lowmem_reserve[classzone_idx])
3189
		return false;
L
Linus Torvalds 已提交
3190

3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208
	/* If this is an order-0 request then the watermark is fine */
	if (!order)
		return true;

	/* For a high-order request, check at least one suitable page is free */
	for (o = order; o < MAX_ORDER; o++) {
		struct free_area *area = &z->free_area[o];
		int mt;

		if (!area->nr_free)
			continue;

		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
			if (!list_empty(&area->free_list[mt]))
				return true;
		}

#ifdef CONFIG_CMA
3209 3210
		if ((alloc_flags & ALLOC_CMA) &&
		    !list_empty(&area->free_list[MIGRATE_CMA])) {
3211
			return true;
3212
		}
3213
#endif
3214 3215 3216
		if (alloc_harder &&
			!list_empty(&area->free_list[MIGRATE_HIGHATOMIC]))
			return true;
L
Linus Torvalds 已提交
3217
	}
3218
	return false;
3219 3220
}

3221
bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3222
		      int classzone_idx, unsigned int alloc_flags)
3223 3224 3225 3226 3227
{
	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
					zone_page_state(z, NR_FREE_PAGES));
}

3228 3229 3230 3231
static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
		unsigned long mark, int classzone_idx, unsigned int alloc_flags)
{
	long free_pages = zone_page_state(z, NR_FREE_PAGES);
3232 3233 3234 3235 3236 3237 3238
	long cma_pages = 0;

#ifdef CONFIG_CMA
	/* If allocation can't use CMA areas don't use free CMA pages */
	if (!(alloc_flags & ALLOC_CMA))
		cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
#endif
3239 3240 3241 3242 3243 3244 3245 3246

	/*
	 * Fast check for order-0 only. If this fails then the reserves
	 * need to be calculated. There is a corner case where the check
	 * passes but only the high-order atomic reserve are free. If
	 * the caller is !atomic then it'll uselessly search the free
	 * list. That corner case is then slower but it is harmless.
	 */
3247
	if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
3248 3249 3250 3251 3252 3253
		return true;

	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
					free_pages);
}

3254
bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3255
			unsigned long mark, int classzone_idx)
3256 3257 3258 3259 3260 3261
{
	long free_pages = zone_page_state(z, NR_FREE_PAGES);

	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);

3262
	return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
3263
								free_pages);
L
Linus Torvalds 已提交
3264 3265
}

3266
#ifdef CONFIG_NUMA
3267 3268
static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
{
3269
	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3270
				RECLAIM_DISTANCE;
3271
}
3272
#else	/* CONFIG_NUMA */
3273 3274 3275 3276
static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
{
	return true;
}
3277 3278
#endif	/* CONFIG_NUMA */

R
Rohit Seth 已提交
3279
/*
3280
 * get_page_from_freelist goes through the zonelist trying to allocate
R
Rohit Seth 已提交
3281 3282 3283
 * a page.
 */
static struct page *
3284 3285
get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
						const struct alloc_context *ac)
M
Martin Hicks 已提交
3286
{
3287
	struct zoneref *z = ac->preferred_zoneref;
3288
	struct zone *zone;
3289 3290
	struct pglist_data *last_pgdat_dirty_limit = NULL;

R
Rohit Seth 已提交
3291
	/*
3292
	 * Scan zonelist, looking for a zone with enough free.
3293
	 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
R
Rohit Seth 已提交
3294
	 */
3295
	for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3296
								ac->nodemask) {
3297
		struct page *page;
3298 3299
		unsigned long mark;

3300 3301
		if (cpusets_enabled() &&
			(alloc_flags & ALLOC_CPUSET) &&
3302
			!__cpuset_zone_allowed(zone, gfp_mask))
3303
				continue;
3304 3305
		/*
		 * When allocating a page cache page for writing, we
3306 3307
		 * want to get it from a node that is within its dirty
		 * limit, such that no single node holds more than its
3308
		 * proportional share of globally allowed dirty pages.
3309
		 * The dirty limits take into account the node's
3310 3311 3312 3313 3314
		 * lowmem reserves and high watermark so that kswapd
		 * should be able to balance it without having to
		 * write pages from its LRU list.
		 *
		 * XXX: For now, allow allocations to potentially
3315
		 * exceed the per-node dirty limit in the slowpath
3316
		 * (spread_dirty_pages unset) before going into reclaim,
3317
		 * which is important when on a NUMA setup the allowed
3318
		 * nodes are together not big enough to reach the
3319
		 * global limit.  The proper fix for these situations
3320
		 * will require awareness of nodes in the
3321 3322
		 * dirty-throttling and the flusher threads.
		 */
3323 3324 3325 3326 3327 3328 3329 3330 3331
		if (ac->spread_dirty_pages) {
			if (last_pgdat_dirty_limit == zone->zone_pgdat)
				continue;

			if (!node_dirty_ok(zone->zone_pgdat)) {
				last_pgdat_dirty_limit = zone->zone_pgdat;
				continue;
			}
		}
R
Rohit Seth 已提交
3332

3333
		mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
3334
		if (!zone_watermark_fast(zone, order, mark,
3335
				       ac_classzone_idx(ac), alloc_flags)) {
3336 3337
			int ret;

3338 3339 3340 3341 3342 3343 3344 3345 3346 3347
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
			/*
			 * Watermark failed for this zone, but see if we can
			 * grow this zone if it contains deferred pages.
			 */
			if (static_branch_unlikely(&deferred_pages)) {
				if (_deferred_grow_zone(zone, order))
					goto try_this_zone;
			}
#endif
3348 3349 3350 3351 3352
			/* Checked here to keep the fast path fast */
			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
			if (alloc_flags & ALLOC_NO_WATERMARKS)
				goto try_this_zone;

3353
			if (node_reclaim_mode == 0 ||
3354
			    !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3355 3356
				continue;

3357
			ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3358
			switch (ret) {
3359
			case NODE_RECLAIM_NOSCAN:
3360
				/* did not scan */
3361
				continue;
3362
			case NODE_RECLAIM_FULL:
3363
				/* scanned but unreclaimable */
3364
				continue;
3365 3366
			default:
				/* did we reclaim enough */
3367
				if (zone_watermark_ok(zone, order, mark,
3368
						ac_classzone_idx(ac), alloc_flags))
3369 3370 3371
					goto try_this_zone;

				continue;
3372
			}
R
Rohit Seth 已提交
3373 3374
		}

3375
try_this_zone:
3376
		page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3377
				gfp_mask, alloc_flags, ac->migratetype);
3378
		if (page) {
3379
			prep_new_page(page, order, gfp_mask, alloc_flags);
3380 3381 3382 3383 3384 3385 3386 3387

			/*
			 * If this is a high-order atomic allocation then check
			 * if the pageblock should be reserved for the future
			 */
			if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
				reserve_highatomic_pageblock(page, zone, order);

3388
			return page;
3389 3390 3391 3392 3393 3394 3395 3396
		} else {
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
			/* Try again if zone has deferred pages */
			if (static_branch_unlikely(&deferred_pages)) {
				if (_deferred_grow_zone(zone, order))
					goto try_this_zone;
			}
#endif
3397
		}
3398
	}
3399

3400
	return NULL;
M
Martin Hicks 已提交
3401 3402
}

3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416
/*
 * Large machines with many possible nodes should not always dump per-node
 * meminfo in irq context.
 */
static inline bool should_suppress_show_mem(void)
{
	bool ret = false;

#if NODES_SHIFT > 8
	ret = in_interrupt();
#endif
	return ret;
}

3417
static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3418 3419
{
	unsigned int filter = SHOW_MEM_FILTER_NODES;
3420
	static DEFINE_RATELIMIT_STATE(show_mem_rs, HZ, 1);
3421

3422
	if (should_suppress_show_mem() || !__ratelimit(&show_mem_rs))
3423 3424 3425 3426 3427 3428 3429 3430
		return;

	/*
	 * This documents exceptions given to allocations in certain
	 * contexts that are allowed to allocate outside current's set
	 * of allowed nodes.
	 */
	if (!(gfp_mask & __GFP_NOMEMALLOC))
3431
		if (tsk_is_oom_victim(current) ||
3432 3433
		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
			filter &= ~SHOW_MEM_FILTER_NODES;
3434
	if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3435 3436
		filter &= ~SHOW_MEM_FILTER_NODES;

3437
	show_mem(filter, nodemask);
3438 3439
}

3440
void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3441 3442 3443 3444 3445 3446
{
	struct va_format vaf;
	va_list args;
	static DEFINE_RATELIMIT_STATE(nopage_rs, DEFAULT_RATELIMIT_INTERVAL,
				      DEFAULT_RATELIMIT_BURST);

3447
	if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
3448 3449
		return;

3450 3451 3452
	va_start(args, fmt);
	vaf.fmt = fmt;
	vaf.va = &args;
M
Michal Hocko 已提交
3453 3454 3455
	pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl\n",
			current->comm, &vaf, gfp_mask, &gfp_mask,
			nodemask_pr_args(nodemask));
3456
	va_end(args);
J
Joe Perches 已提交
3457

3458
	cpuset_print_current_mems_allowed();
J
Joe Perches 已提交
3459

3460
	dump_stack();
3461
	warn_alloc_show_mem(gfp_mask, nodemask);
3462 3463
}

3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483
static inline struct page *
__alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
			      unsigned int alloc_flags,
			      const struct alloc_context *ac)
{
	struct page *page;

	page = get_page_from_freelist(gfp_mask, order,
			alloc_flags|ALLOC_CPUSET, ac);
	/*
	 * fallback to ignore cpuset restriction if our nodes
	 * are depleted
	 */
	if (!page)
		page = get_page_from_freelist(gfp_mask, order,
				alloc_flags, ac);

	return page;
}

3484 3485
static inline struct page *
__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3486
	const struct alloc_context *ac, unsigned long *did_some_progress)
3487
{
3488 3489 3490
	struct oom_control oc = {
		.zonelist = ac->zonelist,
		.nodemask = ac->nodemask,
3491
		.memcg = NULL,
3492 3493 3494
		.gfp_mask = gfp_mask,
		.order = order,
	};
3495 3496
	struct page *page;

3497 3498 3499
	*did_some_progress = 0;

	/*
3500 3501
	 * Acquire the oom lock.  If that fails, somebody else is
	 * making progress for us.
3502
	 */
3503
	if (!mutex_trylock(&oom_lock)) {
3504
		*did_some_progress = 1;
3505
		schedule_timeout_uninterruptible(1);
L
Linus Torvalds 已提交
3506 3507
		return NULL;
	}
3508

3509 3510 3511
	/*
	 * Go through the zonelist yet one more time, keep very high watermark
	 * here, this is only to catch a parallel oom killing, we must fail if
3512 3513 3514
	 * we're still under heavy pressure. But make sure that this reclaim
	 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
	 * allocation which will never fail due to oom_lock already held.
3515
	 */
3516 3517 3518
	page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
				      ~__GFP_DIRECT_RECLAIM, order,
				      ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
R
Rohit Seth 已提交
3519
	if (page)
3520 3521
		goto out;

3522 3523 3524 3525 3526 3527
	/* Coredumps can quickly deplete all memory reserves */
	if (current->flags & PF_DUMPCORE)
		goto out;
	/* The OOM killer will not help higher order allocs */
	if (order > PAGE_ALLOC_COSTLY_ORDER)
		goto out;
3528 3529 3530 3531 3532 3533 3534 3535
	/*
	 * We have already exhausted all our reclaim opportunities without any
	 * success so it is time to admit defeat. We will skip the OOM killer
	 * because it is very likely that the caller has a more reasonable
	 * fallback than shooting a random task.
	 */
	if (gfp_mask & __GFP_RETRY_MAYFAIL)
		goto out;
3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553
	/* The OOM killer does not needlessly kill tasks for lowmem */
	if (ac->high_zoneidx < ZONE_NORMAL)
		goto out;
	if (pm_suspended_storage())
		goto out;
	/*
	 * XXX: GFP_NOFS allocations should rather fail than rely on
	 * other request to make a forward progress.
	 * We are in an unfortunate situation where out_of_memory cannot
	 * do much for this context but let's try it to at least get
	 * access to memory reserved if the current task is killed (see
	 * out_of_memory). Once filesystems are ready to handle allocation
	 * failures more gracefully we should just bail out here.
	 */

	/* The OOM killer may not free memory on a specific node */
	if (gfp_mask & __GFP_THISNODE)
		goto out;
3554

3555
	/* Exhausted what can be done so it's blame time */
3556
	if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3557
		*did_some_progress = 1;
3558

3559 3560 3561 3562 3563 3564
		/*
		 * Help non-failing allocations by giving them access to memory
		 * reserves
		 */
		if (gfp_mask & __GFP_NOFAIL)
			page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3565 3566
					ALLOC_NO_WATERMARKS, ac);
	}
3567
out:
3568
	mutex_unlock(&oom_lock);
3569 3570 3571
	return page;
}

3572 3573 3574 3575 3576 3577
/*
 * Maximum number of compaction retries wit a progress before OOM
 * killer is consider as the only way to move forward.
 */
#define MAX_COMPACT_RETRIES 16

3578 3579 3580 3581
#ifdef CONFIG_COMPACTION
/* Try memory compaction for high-order allocations before reclaim */
static struct page *
__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3582
		unsigned int alloc_flags, const struct alloc_context *ac,
3583
		enum compact_priority prio, enum compact_result *compact_result)
3584
{
3585
	struct page *page;
3586
	unsigned long pflags;
3587
	unsigned int noreclaim_flag;
3588 3589

	if (!order)
3590 3591
		return NULL;

3592
	psi_memstall_enter(&pflags);
3593
	noreclaim_flag = memalloc_noreclaim_save();
3594

3595
	*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3596
									prio);
3597

3598
	memalloc_noreclaim_restore(noreclaim_flag);
3599
	psi_memstall_leave(&pflags);
3600

3601
	if (*compact_result <= COMPACT_INACTIVE)
3602
		return NULL;
3603

3604 3605 3606 3607 3608
	/*
	 * At least in one zone compaction wasn't deferred or skipped, so let's
	 * count a compaction stall
	 */
	count_vm_event(COMPACTSTALL);
3609

3610
	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3611

3612 3613
	if (page) {
		struct zone *zone = page_zone(page);
3614

3615 3616 3617 3618 3619
		zone->compact_blockskip_flush = false;
		compaction_defer_reset(zone, order, true);
		count_vm_event(COMPACTSUCCESS);
		return page;
	}
3620

3621 3622 3623 3624 3625
	/*
	 * It's bad if compaction run occurs and fails. The most likely reason
	 * is that pages exist, but not enough to satisfy watermarks.
	 */
	count_vm_event(COMPACTFAIL);
3626

3627
	cond_resched();
3628 3629 3630

	return NULL;
}
3631

3632 3633 3634 3635
static inline bool
should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
		     enum compact_result compact_result,
		     enum compact_priority *compact_priority,
3636
		     int *compaction_retries)
3637 3638
{
	int max_retries = MAX_COMPACT_RETRIES;
3639
	int min_priority;
3640 3641 3642
	bool ret = false;
	int retries = *compaction_retries;
	enum compact_priority priority = *compact_priority;
3643 3644 3645 3646

	if (!order)
		return false;

3647 3648 3649
	if (compaction_made_progress(compact_result))
		(*compaction_retries)++;

3650 3651 3652 3653 3654
	/*
	 * compaction considers all the zone as desperately out of memory
	 * so it doesn't really make much sense to retry except when the
	 * failure could be caused by insufficient priority
	 */
3655 3656
	if (compaction_failed(compact_result))
		goto check_priority;
3657 3658 3659 3660 3661 3662 3663

	/*
	 * make sure the compaction wasn't deferred or didn't bail out early
	 * due to locks contention before we declare that we should give up.
	 * But do not retry if the given zonelist is not suitable for
	 * compaction.
	 */
3664 3665 3666 3667
	if (compaction_withdrawn(compact_result)) {
		ret = compaction_zonelist_suitable(ac, order, alloc_flags);
		goto out;
	}
3668 3669

	/*
3670
	 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
3671 3672 3673 3674 3675 3676 3677 3678
	 * costly ones because they are de facto nofail and invoke OOM
	 * killer to move on while costly can fail and users are ready
	 * to cope with that. 1/4 retries is rather arbitrary but we
	 * would need much more detailed feedback from compaction to
	 * make a better decision.
	 */
	if (order > PAGE_ALLOC_COSTLY_ORDER)
		max_retries /= 4;
3679 3680 3681 3682
	if (*compaction_retries <= max_retries) {
		ret = true;
		goto out;
	}
3683

3684 3685 3686 3687 3688
	/*
	 * Make sure there are attempts at the highest priority if we exhausted
	 * all retries or failed at the lower priorities.
	 */
check_priority:
3689 3690
	min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
			MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3691

3692
	if (*compact_priority > min_priority) {
3693 3694
		(*compact_priority)--;
		*compaction_retries = 0;
3695
		ret = true;
3696
	}
3697 3698 3699
out:
	trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
	return ret;
3700
}
3701 3702 3703
#else
static inline struct page *
__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3704
		unsigned int alloc_flags, const struct alloc_context *ac,
3705
		enum compact_priority prio, enum compact_result *compact_result)
3706
{
3707
	*compact_result = COMPACT_SKIPPED;
3708 3709
	return NULL;
}
3710 3711

static inline bool
3712 3713
should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
		     enum compact_result compact_result,
3714
		     enum compact_priority *compact_priority,
3715
		     int *compaction_retries)
3716
{
3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734
	struct zone *zone;
	struct zoneref *z;

	if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
		return false;

	/*
	 * There are setups with compaction disabled which would prefer to loop
	 * inside the allocator rather than hit the oom killer prematurely.
	 * Let's give them a good hope and keep retrying while the order-0
	 * watermarks are OK.
	 */
	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
					ac->nodemask) {
		if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
					ac_classzone_idx(ac), alloc_flags))
			return true;
	}
3735 3736
	return false;
}
3737
#endif /* CONFIG_COMPACTION */
3738

3739
#ifdef CONFIG_LOCKDEP
3740
static struct lockdep_map __fs_reclaim_map =
3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751
	STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);

static bool __need_fs_reclaim(gfp_t gfp_mask)
{
	gfp_mask = current_gfp_context(gfp_mask);

	/* no reclaim without waiting on it */
	if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
		return false;

	/* this guy won't enter reclaim */
T
Tetsuo Handa 已提交
3752
	if (current->flags & PF_MEMALLOC)
3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764
		return false;

	/* We're only interested __GFP_FS allocations for now */
	if (!(gfp_mask & __GFP_FS))
		return false;

	if (gfp_mask & __GFP_NOLOCKDEP)
		return false;

	return true;
}

3765 3766 3767 3768 3769 3770 3771 3772 3773 3774
void __fs_reclaim_acquire(void)
{
	lock_map_acquire(&__fs_reclaim_map);
}

void __fs_reclaim_release(void)
{
	lock_map_release(&__fs_reclaim_map);
}

3775 3776 3777
void fs_reclaim_acquire(gfp_t gfp_mask)
{
	if (__need_fs_reclaim(gfp_mask))
3778
		__fs_reclaim_acquire();
3779 3780 3781 3782 3783 3784
}
EXPORT_SYMBOL_GPL(fs_reclaim_acquire);

void fs_reclaim_release(gfp_t gfp_mask)
{
	if (__need_fs_reclaim(gfp_mask))
3785
		__fs_reclaim_release();
3786 3787 3788 3789
}
EXPORT_SYMBOL_GPL(fs_reclaim_release);
#endif

3790 3791
/* Perform direct synchronous page reclaim */
static int
3792 3793
__perform_reclaim(gfp_t gfp_mask, unsigned int order,
					const struct alloc_context *ac)
3794 3795
{
	struct reclaim_state reclaim_state;
3796
	int progress;
3797
	unsigned int noreclaim_flag;
3798
	unsigned long pflags;
3799 3800 3801 3802 3803

	cond_resched();

	/* We now go into synchronous reclaim */
	cpuset_memory_pressure_bump();
3804
	psi_memstall_enter(&pflags);
3805
	fs_reclaim_acquire(gfp_mask);
3806
	noreclaim_flag = memalloc_noreclaim_save();
3807
	reclaim_state.reclaimed_slab = 0;
3808
	current->reclaim_state = &reclaim_state;
3809

3810 3811
	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
								ac->nodemask);
3812

3813
	current->reclaim_state = NULL;
3814
	memalloc_noreclaim_restore(noreclaim_flag);
3815
	fs_reclaim_release(gfp_mask);
3816
	psi_memstall_leave(&pflags);
3817 3818 3819

	cond_resched();

3820 3821 3822 3823 3824 3825
	return progress;
}

/* The really slow allocator path where we enter direct reclaim */
static inline struct page *
__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
3826
		unsigned int alloc_flags, const struct alloc_context *ac,
3827
		unsigned long *did_some_progress)
3828 3829 3830 3831
{
	struct page *page = NULL;
	bool drained = false;

3832
	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
3833 3834
	if (unlikely(!(*did_some_progress)))
		return NULL;
3835

3836
retry:
3837
	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3838 3839 3840

	/*
	 * If an allocation failed after direct reclaim, it could be because
3841 3842
	 * pages are pinned on the per-cpu lists or in high alloc reserves.
	 * Shrink them them and try again
3843 3844
	 */
	if (!page && !drained) {
3845
		unreserve_highatomic_pageblock(ac, false);
3846
		drain_all_pages(NULL);
3847 3848 3849 3850
		drained = true;
		goto retry;
	}

3851 3852 3853
	return page;
}

3854 3855
static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
			     const struct alloc_context *ac)
3856 3857 3858
{
	struct zoneref *z;
	struct zone *zone;
3859
	pg_data_t *last_pgdat = NULL;
3860
	enum zone_type high_zoneidx = ac->high_zoneidx;
3861

3862 3863
	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, high_zoneidx,
					ac->nodemask) {
3864
		if (last_pgdat != zone->zone_pgdat)
3865
			wakeup_kswapd(zone, gfp_mask, order, high_zoneidx);
3866 3867
		last_pgdat = zone->zone_pgdat;
	}
3868 3869
}

3870
static inline unsigned int
3871 3872
gfp_to_alloc_flags(gfp_t gfp_mask)
{
3873
	unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
L
Linus Torvalds 已提交
3874

3875
	/* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
3876
	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
3877

3878 3879 3880 3881
	/*
	 * The caller may dip into page reserves a bit more if the caller
	 * cannot run direct reclaim, or if the caller has realtime scheduling
	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
3882
	 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
3883
	 */
3884
	alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
L
Linus Torvalds 已提交
3885

3886
	if (gfp_mask & __GFP_ATOMIC) {
3887
		/*
3888 3889
		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
		 * if it can't schedule.
3890
		 */
3891
		if (!(gfp_mask & __GFP_NOMEMALLOC))
3892
			alloc_flags |= ALLOC_HARDER;
3893
		/*
3894
		 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
3895
		 * comment for __cpuset_node_allowed().
3896
		 */
3897
		alloc_flags &= ~ALLOC_CPUSET;
3898
	} else if (unlikely(rt_task(current)) && !in_interrupt())
3899 3900
		alloc_flags |= ALLOC_HARDER;

3901 3902 3903 3904
#ifdef CONFIG_CMA
	if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
		alloc_flags |= ALLOC_CMA;
#endif
3905 3906 3907
	return alloc_flags;
}

3908
static bool oom_reserves_allowed(struct task_struct *tsk)
3909
{
3910 3911 3912 3913 3914 3915 3916 3917
	if (!tsk_is_oom_victim(tsk))
		return false;

	/*
	 * !MMU doesn't have oom reaper so give access to memory reserves
	 * only to the thread with TIF_MEMDIE set
	 */
	if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
3918 3919
		return false;

3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930
	return true;
}

/*
 * Distinguish requests which really need access to full memory
 * reserves from oom victims which can live with a portion of it
 */
static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
{
	if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
		return 0;
3931
	if (gfp_mask & __GFP_MEMALLOC)
3932
		return ALLOC_NO_WATERMARKS;
3933
	if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3934 3935 3936 3937 3938 3939 3940
		return ALLOC_NO_WATERMARKS;
	if (!in_interrupt()) {
		if (current->flags & PF_MEMALLOC)
			return ALLOC_NO_WATERMARKS;
		else if (oom_reserves_allowed(current))
			return ALLOC_OOM;
	}
3941

3942 3943 3944 3945 3946 3947
	return 0;
}

bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
{
	return !!__gfp_pfmemalloc_flags(gfp_mask);
3948 3949
}

M
Michal Hocko 已提交
3950 3951 3952
/*
 * Checks whether it makes sense to retry the reclaim to make a forward progress
 * for the given allocation request.
3953 3954 3955 3956
 *
 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
 * without success, or when we couldn't even meet the watermark if we
 * reclaimed all remaining pages on the LRU lists.
M
Michal Hocko 已提交
3957 3958 3959 3960 3961 3962
 *
 * Returns true if a retry is viable or false to enter the oom path.
 */
static inline bool
should_reclaim_retry(gfp_t gfp_mask, unsigned order,
		     struct alloc_context *ac, int alloc_flags,
3963
		     bool did_some_progress, int *no_progress_loops)
M
Michal Hocko 已提交
3964 3965 3966 3967
{
	struct zone *zone;
	struct zoneref *z;

3968 3969 3970 3971 3972 3973 3974 3975 3976 3977
	/*
	 * Costly allocations might have made a progress but this doesn't mean
	 * their order will become available due to high fragmentation so
	 * always increment the no progress counter for them
	 */
	if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
		*no_progress_loops = 0;
	else
		(*no_progress_loops)++;

M
Michal Hocko 已提交
3978 3979 3980 3981
	/*
	 * Make sure we converge to OOM if we cannot make any progress
	 * several times in the row.
	 */
3982 3983
	if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
		/* Before OOM, exhaust highatomic_reserve */
3984
		return unreserve_highatomic_pageblock(ac, true);
3985
	}
M
Michal Hocko 已提交
3986

3987 3988 3989 3990 3991
	/*
	 * Keep reclaiming pages while there is a chance this will lead
	 * somewhere.  If none of the target zones can satisfy our allocation
	 * request even if all reclaimable pages are considered then we are
	 * screwed and have to go OOM.
M
Michal Hocko 已提交
3992 3993 3994 3995
	 */
	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
					ac->nodemask) {
		unsigned long available;
3996
		unsigned long reclaimable;
3997 3998
		unsigned long min_wmark = min_wmark_pages(zone);
		bool wmark;
M
Michal Hocko 已提交
3999

4000 4001
		available = reclaimable = zone_reclaimable_pages(zone);
		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
M
Michal Hocko 已提交
4002 4003

		/*
4004 4005
		 * Would the allocation succeed if we reclaimed all
		 * reclaimable pages?
M
Michal Hocko 已提交
4006
		 */
4007 4008 4009 4010 4011
		wmark = __zone_watermark_ok(zone, order, min_wmark,
				ac_classzone_idx(ac), alloc_flags, available);
		trace_reclaim_retry_zone(z, order, reclaimable,
				available, min_wmark, *no_progress_loops, wmark);
		if (wmark) {
4012 4013 4014 4015 4016 4017 4018
			/*
			 * If we didn't make any progress and have a lot of
			 * dirty + writeback pages then we should wait for
			 * an IO to complete to slow down the reclaim and
			 * prevent from pre mature OOM
			 */
			if (!did_some_progress) {
4019
				unsigned long write_pending;
4020

4021 4022
				write_pending = zone_page_state_snapshot(zone,
							NR_ZONE_WRITE_PENDING);
4023

4024
				if (2 * write_pending > reclaimable) {
4025 4026 4027 4028
					congestion_wait(BLK_RW_ASYNC, HZ/10);
					return true;
				}
			}
4029

4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043
			/*
			 * Memory allocation/reclaim might be called from a WQ
			 * context and the current implementation of the WQ
			 * concurrency control doesn't recognize that
			 * a particular WQ is congested if the worker thread is
			 * looping without ever sleeping. Therefore we have to
			 * do a short sleep here rather than calling
			 * cond_resched().
			 */
			if (current->flags & PF_WQ_WORKER)
				schedule_timeout_uninterruptible(1);
			else
				cond_resched();

M
Michal Hocko 已提交
4044 4045 4046 4047 4048 4049 4050
			return true;
		}
	}

	return false;
}

4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083
static inline bool
check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
{
	/*
	 * It's possible that cpuset's mems_allowed and the nodemask from
	 * mempolicy don't intersect. This should be normally dealt with by
	 * policy_nodemask(), but it's possible to race with cpuset update in
	 * such a way the check therein was true, and then it became false
	 * before we got our cpuset_mems_cookie here.
	 * This assumes that for all allocations, ac->nodemask can come only
	 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
	 * when it does not intersect with the cpuset restrictions) or the
	 * caller can deal with a violated nodemask.
	 */
	if (cpusets_enabled() && ac->nodemask &&
			!cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
		ac->nodemask = NULL;
		return true;
	}

	/*
	 * When updating a task's mems_allowed or mempolicy nodemask, it is
	 * possible to race with parallel threads in such a way that our
	 * allocation can fail while the mask is being updated. If we are about
	 * to fail, check if the cpuset changed during allocation and if so,
	 * retry.
	 */
	if (read_mems_allowed_retry(cpuset_mems_cookie))
		return true;

	return false;
}

4084 4085
static inline struct page *
__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4086
						struct alloc_context *ac)
4087
{
4088
	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4089
	const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4090
	struct page *page = NULL;
4091
	unsigned int alloc_flags;
4092
	unsigned long did_some_progress;
4093
	enum compact_priority compact_priority;
4094
	enum compact_result compact_result;
4095 4096 4097
	int compaction_retries;
	int no_progress_loops;
	unsigned int cpuset_mems_cookie;
4098
	int reserve_flags;
L
Linus Torvalds 已提交
4099

4100 4101 4102 4103 4104 4105 4106 4107
	/*
	 * We also sanity check to catch abuse of atomic reserves being used by
	 * callers that are not in atomic context.
	 */
	if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
				(__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
		gfp_mask &= ~__GFP_ATOMIC;

4108 4109 4110 4111 4112
retry_cpuset:
	compaction_retries = 0;
	no_progress_loops = 0;
	compact_priority = DEF_COMPACT_PRIORITY;
	cpuset_mems_cookie = read_mems_allowed_begin();
4113 4114 4115 4116 4117 4118 4119 4120

	/*
	 * The fast path uses conservative alloc_flags to succeed only until
	 * kswapd needs to be woken up, and to avoid the cost of setting up
	 * alloc_flags precisely. So we do that now.
	 */
	alloc_flags = gfp_to_alloc_flags(gfp_mask);

4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131
	/*
	 * We need to recalculate the starting point for the zonelist iterator
	 * because we might have used different nodemask in the fast path, or
	 * there was a cpuset modification and we are retrying - otherwise we
	 * could end up iterating over non-eligible zones endlessly.
	 */
	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
					ac->high_zoneidx, ac->nodemask);
	if (!ac->preferred_zoneref->zone)
		goto nopage;

4132
	if (gfp_mask & __GFP_KSWAPD_RECLAIM)
4133
		wake_all_kswapds(order, gfp_mask, ac);
4134 4135 4136 4137 4138 4139 4140 4141 4142

	/*
	 * The adjusted alloc_flags might result in immediate success, so try
	 * that first
	 */
	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
	if (page)
		goto got_pg;

4143 4144
	/*
	 * For costly allocations, try direct compaction first, as it's likely
4145 4146 4147 4148 4149 4150
	 * that we have enough base pages and don't need to reclaim. For non-
	 * movable high-order allocations, do that as well, as compaction will
	 * try prevent permanent fragmentation by migrating from blocks of the
	 * same migratetype.
	 * Don't try this for allocations that are allowed to ignore
	 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4151
	 */
4152 4153 4154 4155
	if (can_direct_reclaim &&
			(costly_order ||
			   (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
			&& !gfp_pfmemalloc_allowed(gfp_mask)) {
4156 4157
		page = __alloc_pages_direct_compact(gfp_mask, order,
						alloc_flags, ac,
4158
						INIT_COMPACT_PRIORITY,
4159 4160 4161 4162
						&compact_result);
		if (page)
			goto got_pg;

4163 4164 4165 4166
		/*
		 * Checks for costly allocations with __GFP_NORETRY, which
		 * includes THP page fault allocations
		 */
4167
		if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179
			/*
			 * If compaction is deferred for high-order allocations,
			 * it is because sync compaction recently failed. If
			 * this is the case and the caller requested a THP
			 * allocation, we do not want to heavily disrupt the
			 * system, so we fail the allocation instead of entering
			 * direct reclaim.
			 */
			if (compact_result == COMPACT_DEFERRED)
				goto nopage;

			/*
4180 4181
			 * Looks like reclaim/compaction is worth trying, but
			 * sync compaction could be very expensive, so keep
4182
			 * using async compaction.
4183
			 */
4184
			compact_priority = INIT_COMPACT_PRIORITY;
4185 4186
		}
	}
4187

4188
retry:
4189
	/* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4190
	if (gfp_mask & __GFP_KSWAPD_RECLAIM)
4191
		wake_all_kswapds(order, gfp_mask, ac);
4192

4193 4194 4195
	reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
	if (reserve_flags)
		alloc_flags = reserve_flags;
4196

4197
	/*
4198 4199 4200
	 * Reset the nodemask and zonelist iterators if memory policies can be
	 * ignored. These allocations are high priority and system rather than
	 * user oriented.
4201
	 */
4202
	if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4203
		ac->nodemask = NULL;
4204 4205 4206 4207
		ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
					ac->high_zoneidx, ac->nodemask);
	}

4208
	/* Attempt with potentially adjusted zonelist and alloc_flags */
4209
	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
R
Rohit Seth 已提交
4210 4211
	if (page)
		goto got_pg;
L
Linus Torvalds 已提交
4212

4213
	/* Caller is not willing to reclaim, we can't balance anything */
4214
	if (!can_direct_reclaim)
L
Linus Torvalds 已提交
4215 4216
		goto nopage;

4217 4218
	/* Avoid recursion of direct reclaim */
	if (current->flags & PF_MEMALLOC)
4219 4220
		goto nopage;

4221 4222 4223 4224 4225 4226 4227
	/* Try direct reclaim and then allocating */
	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
							&did_some_progress);
	if (page)
		goto got_pg;

	/* Try direct compaction and then allocating */
4228
	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4229
					compact_priority, &compact_result);
4230 4231
	if (page)
		goto got_pg;
4232

4233 4234
	/* Do not loop if specifically requested */
	if (gfp_mask & __GFP_NORETRY)
4235
		goto nopage;
4236

M
Michal Hocko 已提交
4237 4238
	/*
	 * Do not retry costly high order allocations unless they are
4239
	 * __GFP_RETRY_MAYFAIL
M
Michal Hocko 已提交
4240
	 */
4241
	if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
4242
		goto nopage;
M
Michal Hocko 已提交
4243 4244

	if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4245
				 did_some_progress > 0, &no_progress_loops))
M
Michal Hocko 已提交
4246 4247
		goto retry;

4248 4249 4250 4251 4252 4253 4254
	/*
	 * It doesn't make any sense to retry for the compaction if the order-0
	 * reclaim is not able to make any progress because the current
	 * implementation of the compaction depends on the sufficient amount
	 * of free memory (see __compaction_suitable)
	 */
	if (did_some_progress > 0 &&
4255
			should_compact_retry(ac, order, alloc_flags,
4256
				compact_result, &compact_priority,
4257
				&compaction_retries))
4258 4259
		goto retry;

4260 4261 4262

	/* Deal with possible cpuset update races before we start OOM killing */
	if (check_retry_cpuset(cpuset_mems_cookie, ac))
4263 4264
		goto retry_cpuset;

4265 4266 4267 4268 4269
	/* Reclaim has failed us, start killing things */
	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
	if (page)
		goto got_pg;

4270
	/* Avoid allocations with no watermarks from looping endlessly */
4271 4272
	if (tsk_is_oom_victim(current) &&
	    (alloc_flags == ALLOC_OOM ||
4273
	     (gfp_mask & __GFP_NOMEMALLOC)))
4274 4275
		goto nopage;

4276
	/* Retry as long as the OOM killer is making progress */
M
Michal Hocko 已提交
4277 4278
	if (did_some_progress) {
		no_progress_loops = 0;
4279
		goto retry;
M
Michal Hocko 已提交
4280
	}
4281

L
Linus Torvalds 已提交
4282
nopage:
4283 4284
	/* Deal with possible cpuset update races before we fail */
	if (check_retry_cpuset(cpuset_mems_cookie, ac))
4285 4286
		goto retry_cpuset;

4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313
	/*
	 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
	 * we always retry
	 */
	if (gfp_mask & __GFP_NOFAIL) {
		/*
		 * All existing users of the __GFP_NOFAIL are blockable, so warn
		 * of any new users that actually require GFP_NOWAIT
		 */
		if (WARN_ON_ONCE(!can_direct_reclaim))
			goto fail;

		/*
		 * PF_MEMALLOC request from this context is rather bizarre
		 * because we cannot reclaim anything and only can loop waiting
		 * for somebody to do a work for us
		 */
		WARN_ON_ONCE(current->flags & PF_MEMALLOC);

		/*
		 * non failing costly orders are a hard requirement which we
		 * are not prepared for much so let's warn about these users
		 * so that we can identify them and convert them to something
		 * else.
		 */
		WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);

4314 4315 4316 4317 4318 4319 4320 4321 4322 4323
		/*
		 * Help non-failing allocations by giving them access to memory
		 * reserves but do not use ALLOC_NO_WATERMARKS because this
		 * could deplete whole memory reserves which would just make
		 * the situation worse
		 */
		page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
		if (page)
			goto got_pg;

4324 4325 4326 4327
		cond_resched();
		goto retry;
	}
fail:
4328
	warn_alloc(gfp_mask, ac->nodemask,
4329
			"page allocation failure: order:%u", order);
L
Linus Torvalds 已提交
4330
got_pg:
4331
	return page;
L
Linus Torvalds 已提交
4332
}
4333

4334
static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4335
		int preferred_nid, nodemask_t *nodemask,
4336 4337
		struct alloc_context *ac, gfp_t *alloc_mask,
		unsigned int *alloc_flags)
4338
{
4339
	ac->high_zoneidx = gfp_zone(gfp_mask);
4340
	ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4341 4342
	ac->nodemask = nodemask;
	ac->migratetype = gfpflags_to_migratetype(gfp_mask);
4343

4344
	if (cpusets_enabled()) {
4345 4346 4347
		*alloc_mask |= __GFP_HARDWALL;
		if (!ac->nodemask)
			ac->nodemask = &cpuset_current_mems_allowed;
4348 4349
		else
			*alloc_flags |= ALLOC_CPUSET;
4350 4351
	}

4352 4353
	fs_reclaim_acquire(gfp_mask);
	fs_reclaim_release(gfp_mask);
4354

4355
	might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
4356 4357

	if (should_fail_alloc_page(gfp_mask, order))
4358
		return false;
4359

4360 4361 4362
	if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE)
		*alloc_flags |= ALLOC_CMA;

4363 4364
	return true;
}
4365

4366
/* Determine whether to spread dirty pages and what the first usable zone */
4367
static inline void finalise_ac(gfp_t gfp_mask, struct alloc_context *ac)
4368
{
4369
	/* Dirty zone balancing only done in the fast path */
4370
	ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4371

4372 4373 4374 4375 4376
	/*
	 * The preferred zone is used for statistics but crucially it is
	 * also used as the starting point for the zonelist iterator. It
	 * may get reset for allocations that ignore memory policies.
	 */
4377 4378 4379 4380 4381 4382 4383 4384
	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
					ac->high_zoneidx, ac->nodemask);
}

/*
 * This is the 'heart' of the zoned buddy allocator.
 */
struct page *
4385 4386
__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
							nodemask_t *nodemask)
4387 4388 4389
{
	struct page *page;
	unsigned int alloc_flags = ALLOC_WMARK_LOW;
4390
	gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
4391 4392
	struct alloc_context ac = { };

4393 4394 4395 4396 4397 4398 4399 4400 4401
	/*
	 * There are several places where we assume that the order value is sane
	 * so bail out early if the request is out of bound.
	 */
	if (unlikely(order >= MAX_ORDER)) {
		WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
		return NULL;
	}

4402
	gfp_mask &= gfp_allowed_mask;
4403
	alloc_mask = gfp_mask;
4404
	if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
4405 4406
		return NULL;

4407
	finalise_ac(gfp_mask, &ac);
4408

4409
	/* First allocation attempt */
4410
	page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4411 4412
	if (likely(page))
		goto out;
4413

4414
	/*
4415 4416 4417 4418
	 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
	 * resp. GFP_NOIO which has to be inherited for all allocation requests
	 * from a particular context which has been marked by
	 * memalloc_no{fs,io}_{save,restore}.
4419
	 */
4420
	alloc_mask = current_gfp_context(gfp_mask);
4421
	ac.spread_dirty_pages = false;
4422

4423 4424 4425 4426
	/*
	 * Restore the original nodemask if it was potentially replaced with
	 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
	 */
4427
	if (unlikely(ac.nodemask != nodemask))
4428
		ac.nodemask = nodemask;
4429

4430
	page = __alloc_pages_slowpath(alloc_mask, order, &ac);
4431

4432
out:
4433 4434 4435 4436
	if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
	    unlikely(memcg_kmem_charge(page, gfp_mask, order) != 0)) {
		__free_pages(page, order);
		page = NULL;
4437 4438
	}

4439 4440
	trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);

4441
	return page;
L
Linus Torvalds 已提交
4442
}
4443
EXPORT_SYMBOL(__alloc_pages_nodemask);
L
Linus Torvalds 已提交
4444 4445

/*
4446 4447 4448
 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
 * address cannot represent highmem pages. Use alloc_pages and then kmap if
 * you need to access high mem.
L
Linus Torvalds 已提交
4449
 */
H
Harvey Harrison 已提交
4450
unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
L
Linus Torvalds 已提交
4451
{
4452 4453
	struct page *page;

4454
	page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
L
Linus Torvalds 已提交
4455 4456 4457 4458 4459 4460
	if (!page)
		return 0;
	return (unsigned long) page_address(page);
}
EXPORT_SYMBOL(__get_free_pages);

H
Harvey Harrison 已提交
4461
unsigned long get_zeroed_page(gfp_t gfp_mask)
L
Linus Torvalds 已提交
4462
{
4463
	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
L
Linus Torvalds 已提交
4464 4465 4466
}
EXPORT_SYMBOL(get_zeroed_page);

H
Harvey Harrison 已提交
4467
void __free_pages(struct page *page, unsigned int order)
L
Linus Torvalds 已提交
4468
{
N
Nick Piggin 已提交
4469
	if (put_page_testzero(page)) {
L
Linus Torvalds 已提交
4470
		if (order == 0)
4471
			free_unref_page(page);
L
Linus Torvalds 已提交
4472 4473 4474 4475 4476 4477 4478
		else
			__free_pages_ok(page, order);
	}
}

EXPORT_SYMBOL(__free_pages);

H
Harvey Harrison 已提交
4479
void free_pages(unsigned long addr, unsigned int order)
L
Linus Torvalds 已提交
4480 4481
{
	if (addr != 0) {
N
Nick Piggin 已提交
4482
		VM_BUG_ON(!virt_addr_valid((void *)addr));
L
Linus Torvalds 已提交
4483 4484 4485 4486 4487 4488
		__free_pages(virt_to_page((void *)addr), order);
	}
}

EXPORT_SYMBOL(free_pages);

4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499
/*
 * Page Fragment:
 *  An arbitrary-length arbitrary-offset area of memory which resides
 *  within a 0 or higher order page.  Multiple fragments within that page
 *  are individually refcounted, in the page's reference counter.
 *
 * The page_frag functions below provide a simple allocation framework for
 * page fragments.  This is used by the network stack and network device
 * drivers to provide a backing region of memory for use as either an
 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
 */
4500 4501
static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
					     gfp_t gfp_mask)
4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520
{
	struct page *page = NULL;
	gfp_t gfp = gfp_mask;

#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
	gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
		    __GFP_NOMEMALLOC;
	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
				PAGE_FRAG_CACHE_MAX_ORDER);
	nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
#endif
	if (unlikely(!page))
		page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);

	nc->va = page ? page_address(page) : NULL;

	return page;
}

4521
void __page_frag_cache_drain(struct page *page, unsigned int count)
4522 4523 4524 4525
{
	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);

	if (page_ref_sub_and_test(page, count)) {
4526 4527
		unsigned int order = compound_order(page);

4528
		if (order == 0)
4529
			free_unref_page(page);
4530 4531 4532 4533
		else
			__free_pages_ok(page, order);
	}
}
4534
EXPORT_SYMBOL(__page_frag_cache_drain);
4535

4536 4537
void *page_frag_alloc(struct page_frag_cache *nc,
		      unsigned int fragsz, gfp_t gfp_mask)
4538 4539 4540 4541 4542 4543 4544
{
	unsigned int size = PAGE_SIZE;
	struct page *page;
	int offset;

	if (unlikely(!nc->va)) {
refill:
4545
		page = __page_frag_cache_refill(nc, gfp_mask);
4546 4547 4548 4549 4550 4551 4552 4553 4554 4555
		if (!page)
			return NULL;

#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
		/* if size can vary use size else just use PAGE_SIZE */
		size = nc->size;
#endif
		/* Even if we own the page, we do not use atomic_set().
		 * This would break get_page_unless_zero() users.
		 */
4556
		page_ref_add(page, size);
4557 4558

		/* reset page count bias and offset to start of new frag */
4559
		nc->pfmemalloc = page_is_pfmemalloc(page);
4560
		nc->pagecnt_bias = size + 1;
4561 4562 4563 4564 4565 4566 4567
		nc->offset = size;
	}

	offset = nc->offset - fragsz;
	if (unlikely(offset < 0)) {
		page = virt_to_page(nc->va);

4568
		if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
4569 4570 4571 4572 4573 4574 4575
			goto refill;

#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
		/* if size can vary use size else just use PAGE_SIZE */
		size = nc->size;
#endif
		/* OK, page count is 0, we can safely set it */
4576
		set_page_count(page, size + 1);
4577 4578

		/* reset page count bias and offset to start of new frag */
4579
		nc->pagecnt_bias = size + 1;
4580 4581 4582 4583 4584 4585 4586 4587
		offset = size - fragsz;
	}

	nc->pagecnt_bias--;
	nc->offset = offset;

	return nc->va + offset;
}
4588
EXPORT_SYMBOL(page_frag_alloc);
4589 4590 4591 4592

/*
 * Frees a page fragment allocated out of either a compound or order 0 page.
 */
4593
void page_frag_free(void *addr)
4594 4595 4596 4597 4598 4599
{
	struct page *page = virt_to_head_page(addr);

	if (unlikely(put_page_testzero(page)))
		__free_pages_ok(page, compound_order(page));
}
4600
EXPORT_SYMBOL(page_frag_free);
4601

4602 4603
static void *make_alloc_exact(unsigned long addr, unsigned int order,
		size_t size)
A
Andi Kleen 已提交
4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617
{
	if (addr) {
		unsigned long alloc_end = addr + (PAGE_SIZE << order);
		unsigned long used = addr + PAGE_ALIGN(size);

		split_page(virt_to_page((void *)addr), order);
		while (used < alloc_end) {
			free_page(used);
			used += PAGE_SIZE;
		}
	}
	return (void *)addr;
}

4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636
/**
 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
 * @size: the number of bytes to allocate
 * @gfp_mask: GFP flags for the allocation
 *
 * This function is similar to alloc_pages(), except that it allocates the
 * minimum number of pages to satisfy the request.  alloc_pages() can only
 * allocate memory in power-of-two pages.
 *
 * This function is also limited by MAX_ORDER.
 *
 * Memory allocated by this function must be released by free_pages_exact().
 */
void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
{
	unsigned int order = get_order(size);
	unsigned long addr;

	addr = __get_free_pages(gfp_mask, order);
A
Andi Kleen 已提交
4637
	return make_alloc_exact(addr, order, size);
4638 4639 4640
}
EXPORT_SYMBOL(alloc_pages_exact);

A
Andi Kleen 已提交
4641 4642 4643
/**
 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
 *			   pages on a node.
4644
 * @nid: the preferred node ID where memory should be allocated
A
Andi Kleen 已提交
4645 4646 4647 4648 4649 4650
 * @size: the number of bytes to allocate
 * @gfp_mask: GFP flags for the allocation
 *
 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
 * back.
 */
4651
void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
A
Andi Kleen 已提交
4652
{
4653
	unsigned int order = get_order(size);
A
Andi Kleen 已提交
4654 4655 4656 4657 4658 4659
	struct page *p = alloc_pages_node(nid, gfp_mask, order);
	if (!p)
		return NULL;
	return make_alloc_exact((unsigned long)page_address(p), order, size);
}

4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678
/**
 * free_pages_exact - release memory allocated via alloc_pages_exact()
 * @virt: the value returned by alloc_pages_exact.
 * @size: size of allocation, same value as passed to alloc_pages_exact().
 *
 * Release the memory allocated by a previous call to alloc_pages_exact.
 */
void free_pages_exact(void *virt, size_t size)
{
	unsigned long addr = (unsigned long)virt;
	unsigned long end = addr + PAGE_ALIGN(size);

	while (addr < end) {
		free_page(addr);
		addr += PAGE_SIZE;
	}
}
EXPORT_SYMBOL(free_pages_exact);

4679 4680 4681 4682 4683 4684 4685
/**
 * nr_free_zone_pages - count number of pages beyond high watermark
 * @offset: The zone index of the highest zone
 *
 * nr_free_zone_pages() counts the number of counts pages which are beyond the
 * high watermark within all zones at or below a given zone index.  For each
 * zone, the number of pages is calculated as:
4686 4687
 *
 *     nr_free_zone_pages = managed_pages - high_pages
4688
 */
4689
static unsigned long nr_free_zone_pages(int offset)
L
Linus Torvalds 已提交
4690
{
4691
	struct zoneref *z;
4692 4693
	struct zone *zone;

4694
	/* Just pick one node, since fallback list is circular */
4695
	unsigned long sum = 0;
L
Linus Torvalds 已提交
4696

4697
	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
L
Linus Torvalds 已提交
4698

4699
	for_each_zone_zonelist(zone, z, zonelist, offset) {
4700
		unsigned long size = zone->managed_pages;
4701
		unsigned long high = high_wmark_pages(zone);
4702 4703
		if (size > high)
			sum += size - high;
L
Linus Torvalds 已提交
4704 4705 4706 4707 4708
	}

	return sum;
}

4709 4710 4711 4712 4713
/**
 * nr_free_buffer_pages - count number of pages beyond high watermark
 *
 * nr_free_buffer_pages() counts the number of pages which are beyond the high
 * watermark within ZONE_DMA and ZONE_NORMAL.
L
Linus Torvalds 已提交
4714
 */
4715
unsigned long nr_free_buffer_pages(void)
L
Linus Torvalds 已提交
4716
{
A
Al Viro 已提交
4717
	return nr_free_zone_pages(gfp_zone(GFP_USER));
L
Linus Torvalds 已提交
4718
}
4719
EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
L
Linus Torvalds 已提交
4720

4721 4722 4723 4724 4725
/**
 * nr_free_pagecache_pages - count number of pages beyond high watermark
 *
 * nr_free_pagecache_pages() counts the number of pages which are beyond the
 * high watermark within all zones.
L
Linus Torvalds 已提交
4726
 */
4727
unsigned long nr_free_pagecache_pages(void)
L
Linus Torvalds 已提交
4728
{
M
Mel Gorman 已提交
4729
	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
L
Linus Torvalds 已提交
4730
}
4731 4732

static inline void show_node(struct zone *zone)
L
Linus Torvalds 已提交
4733
{
4734
	if (IS_ENABLED(CONFIG_NUMA))
4735
		printk("Node %d ", zone_to_nid(zone));
L
Linus Torvalds 已提交
4736 4737
}

4738 4739 4740 4741 4742 4743 4744 4745 4746 4747
long si_mem_available(void)
{
	long available;
	unsigned long pagecache;
	unsigned long wmark_low = 0;
	unsigned long pages[NR_LRU_LISTS];
	struct zone *zone;
	int lru;

	for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
4748
		pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
4749 4750 4751 4752 4753 4754 4755 4756

	for_each_zone(zone)
		wmark_low += zone->watermark[WMARK_LOW];

	/*
	 * Estimate the amount of memory available for userspace allocations,
	 * without causing swapping.
	 */
4757
	available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771

	/*
	 * Not all the page cache can be freed, otherwise the system will
	 * start swapping. Assume at least half of the page cache, or the
	 * low watermark worth of cache, needs to stay.
	 */
	pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
	pagecache -= min(pagecache / 2, wmark_low);
	available += pagecache;

	/*
	 * Part of the reclaimable slab consists of items that are in use,
	 * and cannot be freed. Cap this estimate at the low watermark.
	 */
4772 4773 4774
	available += global_node_page_state(NR_SLAB_RECLAIMABLE) -
		     min(global_node_page_state(NR_SLAB_RECLAIMABLE) / 2,
			 wmark_low);
4775

4776 4777 4778 4779 4780 4781 4782
	/*
	 * Part of the kernel memory, which can be released under memory
	 * pressure.
	 */
	available += global_node_page_state(NR_INDIRECTLY_RECLAIMABLE_BYTES) >>
		PAGE_SHIFT;

4783 4784 4785 4786 4787 4788
	if (available < 0)
		available = 0;
	return available;
}
EXPORT_SYMBOL_GPL(si_mem_available);

L
Linus Torvalds 已提交
4789 4790 4791
void si_meminfo(struct sysinfo *val)
{
	val->totalram = totalram_pages;
4792
	val->sharedram = global_node_page_state(NR_SHMEM);
4793
	val->freeram = global_zone_page_state(NR_FREE_PAGES);
L
Linus Torvalds 已提交
4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804
	val->bufferram = nr_blockdev_pages();
	val->totalhigh = totalhigh_pages;
	val->freehigh = nr_free_highpages();
	val->mem_unit = PAGE_SIZE;
}

EXPORT_SYMBOL(si_meminfo);

#ifdef CONFIG_NUMA
void si_meminfo_node(struct sysinfo *val, int nid)
{
4805 4806
	int zone_type;		/* needs to be signed */
	unsigned long managed_pages = 0;
4807 4808
	unsigned long managed_highpages = 0;
	unsigned long free_highpages = 0;
L
Linus Torvalds 已提交
4809 4810
	pg_data_t *pgdat = NODE_DATA(nid);

4811 4812 4813
	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
		managed_pages += pgdat->node_zones[zone_type].managed_pages;
	val->totalram = managed_pages;
4814
	val->sharedram = node_page_state(pgdat, NR_SHMEM);
4815
	val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
4816
#ifdef CONFIG_HIGHMEM
4817 4818 4819 4820 4821 4822 4823 4824 4825 4826
	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
		struct zone *zone = &pgdat->node_zones[zone_type];

		if (is_highmem(zone)) {
			managed_highpages += zone->managed_pages;
			free_highpages += zone_page_state(zone, NR_FREE_PAGES);
		}
	}
	val->totalhigh = managed_highpages;
	val->freehigh = free_highpages;
4827
#else
4828 4829
	val->totalhigh = managed_highpages;
	val->freehigh = free_highpages;
4830
#endif
L
Linus Torvalds 已提交
4831 4832 4833 4834
	val->mem_unit = PAGE_SIZE;
}
#endif

4835
/*
4836 4837
 * Determine whether the node should be displayed or not, depending on whether
 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
4838
 */
4839
static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
4840 4841
{
	if (!(flags & SHOW_MEM_FILTER_NODES))
4842
		return false;
4843

4844 4845 4846 4847 4848 4849 4850 4851 4852
	/*
	 * no node mask - aka implicit memory numa policy. Do not bother with
	 * the synchronization - read_mems_allowed_begin - because we do not
	 * have to be precise here.
	 */
	if (!nodemask)
		nodemask = &cpuset_current_mems_allowed;

	return !node_isset(nid, *nodemask);
4853 4854
}

L
Linus Torvalds 已提交
4855 4856
#define K(x) ((x) << (PAGE_SHIFT-10))

4857 4858 4859 4860 4861
static void show_migration_types(unsigned char type)
{
	static const char types[MIGRATE_TYPES] = {
		[MIGRATE_UNMOVABLE]	= 'U',
		[MIGRATE_MOVABLE]	= 'M',
4862 4863
		[MIGRATE_RECLAIMABLE]	= 'E',
		[MIGRATE_HIGHATOMIC]	= 'H',
4864 4865 4866
#ifdef CONFIG_CMA
		[MIGRATE_CMA]		= 'C',
#endif
4867
#ifdef CONFIG_MEMORY_ISOLATION
4868
		[MIGRATE_ISOLATE]	= 'I',
4869
#endif
4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880
	};
	char tmp[MIGRATE_TYPES + 1];
	char *p = tmp;
	int i;

	for (i = 0; i < MIGRATE_TYPES; i++) {
		if (type & (1 << i))
			*p++ = types[i];
	}

	*p = '\0';
4881
	printk(KERN_CONT "(%s) ", tmp);
4882 4883
}

L
Linus Torvalds 已提交
4884 4885 4886 4887
/*
 * Show free area list (used inside shift_scroll-lock stuff)
 * We also calculate the percentage fragmentation. We do this by counting the
 * memory on each free list with the exception of the first item on the list.
4888 4889 4890 4891
 *
 * Bits in @filter:
 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
 *   cpuset.
L
Linus Torvalds 已提交
4892
 */
4893
void show_free_areas(unsigned int filter, nodemask_t *nodemask)
L
Linus Torvalds 已提交
4894
{
4895
	unsigned long free_pcp = 0;
4896
	int cpu;
L
Linus Torvalds 已提交
4897
	struct zone *zone;
M
Mel Gorman 已提交
4898
	pg_data_t *pgdat;
L
Linus Torvalds 已提交
4899

4900
	for_each_populated_zone(zone) {
4901
		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4902
			continue;
4903

4904 4905
		for_each_online_cpu(cpu)
			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
L
Linus Torvalds 已提交
4906 4907
	}

K
KOSAKI Motohiro 已提交
4908 4909
	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
4910 4911
		" unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
		" slab_reclaimable:%lu slab_unreclaimable:%lu\n"
4912
		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
4913
		" free:%lu free_pcp:%lu free_cma:%lu\n",
M
Mel Gorman 已提交
4914 4915 4916 4917 4918 4919 4920
		global_node_page_state(NR_ACTIVE_ANON),
		global_node_page_state(NR_INACTIVE_ANON),
		global_node_page_state(NR_ISOLATED_ANON),
		global_node_page_state(NR_ACTIVE_FILE),
		global_node_page_state(NR_INACTIVE_FILE),
		global_node_page_state(NR_ISOLATED_FILE),
		global_node_page_state(NR_UNEVICTABLE),
4921 4922 4923
		global_node_page_state(NR_FILE_DIRTY),
		global_node_page_state(NR_WRITEBACK),
		global_node_page_state(NR_UNSTABLE_NFS),
4924 4925
		global_node_page_state(NR_SLAB_RECLAIMABLE),
		global_node_page_state(NR_SLAB_UNRECLAIMABLE),
4926
		global_node_page_state(NR_FILE_MAPPED),
4927
		global_node_page_state(NR_SHMEM),
4928 4929 4930
		global_zone_page_state(NR_PAGETABLE),
		global_zone_page_state(NR_BOUNCE),
		global_zone_page_state(NR_FREE_PAGES),
4931
		free_pcp,
4932
		global_zone_page_state(NR_FREE_CMA_PAGES));
L
Linus Torvalds 已提交
4933

M
Mel Gorman 已提交
4934
	for_each_online_pgdat(pgdat) {
4935
		if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
4936 4937
			continue;

M
Mel Gorman 已提交
4938 4939 4940 4941 4942 4943 4944 4945
		printk("Node %d"
			" active_anon:%lukB"
			" inactive_anon:%lukB"
			" active_file:%lukB"
			" inactive_file:%lukB"
			" unevictable:%lukB"
			" isolated(anon):%lukB"
			" isolated(file):%lukB"
4946
			" mapped:%lukB"
4947 4948 4949 4950 4951 4952 4953 4954 4955 4956
			" dirty:%lukB"
			" writeback:%lukB"
			" shmem:%lukB"
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
			" shmem_thp: %lukB"
			" shmem_pmdmapped: %lukB"
			" anon_thp: %lukB"
#endif
			" writeback_tmp:%lukB"
			" unstable:%lukB"
M
Mel Gorman 已提交
4957 4958 4959 4960 4961 4962 4963 4964 4965 4966
			" all_unreclaimable? %s"
			"\n",
			pgdat->node_id,
			K(node_page_state(pgdat, NR_ACTIVE_ANON)),
			K(node_page_state(pgdat, NR_INACTIVE_ANON)),
			K(node_page_state(pgdat, NR_ACTIVE_FILE)),
			K(node_page_state(pgdat, NR_INACTIVE_FILE)),
			K(node_page_state(pgdat, NR_UNEVICTABLE)),
			K(node_page_state(pgdat, NR_ISOLATED_ANON)),
			K(node_page_state(pgdat, NR_ISOLATED_FILE)),
4967
			K(node_page_state(pgdat, NR_FILE_MAPPED)),
4968 4969
			K(node_page_state(pgdat, NR_FILE_DIRTY)),
			K(node_page_state(pgdat, NR_WRITEBACK)),
4970
			K(node_page_state(pgdat, NR_SHMEM)),
4971 4972 4973 4974 4975 4976 4977 4978
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
			K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
			K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
					* HPAGE_PMD_NR),
			K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
#endif
			K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
			K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
4979 4980
			pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
				"yes" : "no");
M
Mel Gorman 已提交
4981 4982
	}

4983
	for_each_populated_zone(zone) {
L
Linus Torvalds 已提交
4984 4985
		int i;

4986
		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4987
			continue;
4988 4989 4990 4991 4992

		free_pcp = 0;
		for_each_online_cpu(cpu)
			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;

L
Linus Torvalds 已提交
4993
		show_node(zone);
4994 4995
		printk(KERN_CONT
			"%s"
L
Linus Torvalds 已提交
4996 4997 4998 4999
			" free:%lukB"
			" min:%lukB"
			" low:%lukB"
			" high:%lukB"
M
Minchan Kim 已提交
5000 5001 5002 5003 5004
			" active_anon:%lukB"
			" inactive_anon:%lukB"
			" active_file:%lukB"
			" inactive_file:%lukB"
			" unevictable:%lukB"
5005
			" writepending:%lukB"
L
Linus Torvalds 已提交
5006
			" present:%lukB"
5007
			" managed:%lukB"
5008
			" mlocked:%lukB"
5009
			" kernel_stack:%lukB"
5010 5011
			" pagetables:%lukB"
			" bounce:%lukB"
5012 5013
			" free_pcp:%lukB"
			" local_pcp:%ukB"
5014
			" free_cma:%lukB"
L
Linus Torvalds 已提交
5015 5016
			"\n",
			zone->name,
5017
			K(zone_page_state(zone, NR_FREE_PAGES)),
5018 5019 5020
			K(min_wmark_pages(zone)),
			K(low_wmark_pages(zone)),
			K(high_wmark_pages(zone)),
M
Minchan Kim 已提交
5021 5022 5023 5024 5025
			K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
			K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
			K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
			K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
			K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
5026
			K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
L
Linus Torvalds 已提交
5027
			K(zone->present_pages),
5028
			K(zone->managed_pages),
5029
			K(zone_page_state(zone, NR_MLOCK)),
5030
			zone_page_state(zone, NR_KERNEL_STACK_KB),
5031 5032
			K(zone_page_state(zone, NR_PAGETABLE)),
			K(zone_page_state(zone, NR_BOUNCE)),
5033 5034
			K(free_pcp),
			K(this_cpu_read(zone->pageset->pcp.count)),
5035
			K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
L
Linus Torvalds 已提交
5036 5037
		printk("lowmem_reserve[]:");
		for (i = 0; i < MAX_NR_ZONES; i++)
5038 5039
			printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
		printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
5040 5041
	}

5042
	for_each_populated_zone(zone) {
5043 5044
		unsigned int order;
		unsigned long nr[MAX_ORDER], flags, total = 0;
5045
		unsigned char types[MAX_ORDER];
L
Linus Torvalds 已提交
5046

5047
		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5048
			continue;
L
Linus Torvalds 已提交
5049
		show_node(zone);
5050
		printk(KERN_CONT "%s: ", zone->name);
L
Linus Torvalds 已提交
5051 5052 5053

		spin_lock_irqsave(&zone->lock, flags);
		for (order = 0; order < MAX_ORDER; order++) {
5054 5055 5056 5057
			struct free_area *area = &zone->free_area[order];
			int type;

			nr[order] = area->nr_free;
5058
			total += nr[order] << order;
5059 5060 5061 5062 5063 5064

			types[order] = 0;
			for (type = 0; type < MIGRATE_TYPES; type++) {
				if (!list_empty(&area->free_list[type]))
					types[order] |= 1 << type;
			}
L
Linus Torvalds 已提交
5065 5066
		}
		spin_unlock_irqrestore(&zone->lock, flags);
5067
		for (order = 0; order < MAX_ORDER; order++) {
5068 5069
			printk(KERN_CONT "%lu*%lukB ",
			       nr[order], K(1UL) << order);
5070 5071 5072
			if (nr[order])
				show_migration_types(types[order]);
		}
5073
		printk(KERN_CONT "= %lukB\n", K(total));
L
Linus Torvalds 已提交
5074 5075
	}

5076 5077
	hugetlb_show_meminfo();

5078
	printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
5079

L
Linus Torvalds 已提交
5080 5081 5082
	show_swap_cache_info();
}

5083 5084 5085 5086 5087 5088
static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
{
	zoneref->zone = zone;
	zoneref->zone_idx = zone_idx(zone);
}

L
Linus Torvalds 已提交
5089 5090
/*
 * Builds allocation fallback zone lists.
5091 5092
 *
 * Add all populated zones of a node to the zonelist.
L
Linus Torvalds 已提交
5093
 */
5094
static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
L
Linus Torvalds 已提交
5095
{
5096
	struct zone *zone;
5097
	enum zone_type zone_type = MAX_NR_ZONES;
5098
	int nr_zones = 0;
5099 5100

	do {
5101
		zone_type--;
5102
		zone = pgdat->node_zones + zone_type;
5103
		if (managed_zone(zone)) {
5104
			zoneref_set_zone(zone, &zonerefs[nr_zones++]);
5105
			check_highest_zone(zone_type);
L
Linus Torvalds 已提交
5106
		}
5107
	} while (zone_type);
5108

5109
	return nr_zones;
L
Linus Torvalds 已提交
5110 5111 5112
}

#ifdef CONFIG_NUMA
5113 5114 5115

static int __parse_numa_zonelist_order(char *s)
{
5116 5117 5118 5119 5120 5121 5122 5123
	/*
	 * We used to support different zonlists modes but they turned
	 * out to be just not useful. Let's keep the warning in place
	 * if somebody still use the cmd line parameter so that we do
	 * not fail it silently
	 */
	if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
		pr_warn("Ignoring unsupported numa_zonelist_order value:  %s\n", s);
5124 5125 5126 5127 5128 5129 5130
		return -EINVAL;
	}
	return 0;
}

static __init int setup_numa_zonelist_order(char *s)
{
5131 5132 5133
	if (!s)
		return 0;

5134
	return __parse_numa_zonelist_order(s);
5135 5136 5137
}
early_param("numa_zonelist_order", setup_numa_zonelist_order);

5138 5139
char numa_zonelist_order[] = "Node";

5140 5141 5142
/*
 * sysctl handler for numa_zonelist_order
 */
5143
int numa_zonelist_order_handler(struct ctl_table *table, int write,
5144
		void __user *buffer, size_t *length,
5145 5146
		loff_t *ppos)
{
5147
	char *str;
5148 5149
	int ret;

5150 5151 5152 5153 5154
	if (!write)
		return proc_dostring(table, write, buffer, length, ppos);
	str = memdup_user_nul(buffer, 16);
	if (IS_ERR(str))
		return PTR_ERR(str);
5155

5156 5157
	ret = __parse_numa_zonelist_order(str);
	kfree(str);
5158
	return ret;
5159 5160 5161
}


5162
#define MAX_NODE_LOAD (nr_online_nodes)
5163 5164
static int node_load[MAX_NUMNODES];

L
Linus Torvalds 已提交
5165
/**
5166
 * find_next_best_node - find the next node that should appear in a given node's fallback list
L
Linus Torvalds 已提交
5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178
 * @node: node whose fallback list we're appending
 * @used_node_mask: nodemask_t of already used nodes
 *
 * We use a number of factors to determine which is the next node that should
 * appear on a given node's fallback list.  The node should not have appeared
 * already in @node's fallback list, and it should be the next closest node
 * according to the distance array (which contains arbitrary distance values
 * from each node to each node in the system), and should also prefer nodes
 * with no CPUs, since presumably they'll have very little allocation pressure
 * on them otherwise.
 * It returns -1 if no node is found.
 */
5179
static int find_next_best_node(int node, nodemask_t *used_node_mask)
L
Linus Torvalds 已提交
5180
{
5181
	int n, val;
L
Linus Torvalds 已提交
5182
	int min_val = INT_MAX;
D
David Rientjes 已提交
5183
	int best_node = NUMA_NO_NODE;
5184
	const struct cpumask *tmp = cpumask_of_node(0);
L
Linus Torvalds 已提交
5185

5186 5187 5188 5189 5190
	/* Use the local node if we haven't already */
	if (!node_isset(node, *used_node_mask)) {
		node_set(node, *used_node_mask);
		return node;
	}
L
Linus Torvalds 已提交
5191

5192
	for_each_node_state(n, N_MEMORY) {
L
Linus Torvalds 已提交
5193 5194 5195 5196 5197 5198 5199 5200

		/* Don't want a node to appear more than once */
		if (node_isset(n, *used_node_mask))
			continue;

		/* Use the distance array to find the distance */
		val = node_distance(node, n);

5201 5202 5203
		/* Penalize nodes under us ("prefer the next node") */
		val += (n < node);

L
Linus Torvalds 已提交
5204
		/* Give preference to headless and unused nodes */
5205 5206
		tmp = cpumask_of_node(n);
		if (!cpumask_empty(tmp))
L
Linus Torvalds 已提交
5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224
			val += PENALTY_FOR_NODE_WITH_CPUS;

		/* Slight preference for less loaded node */
		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
		val += node_load[n];

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

	if (best_node >= 0)
		node_set(best_node, *used_node_mask);

	return best_node;
}

5225 5226 5227 5228 5229 5230

/*
 * Build zonelists ordered by node and zones within node.
 * This results in maximum locality--normal zone overflows into local
 * DMA zone, if any--but risks exhausting DMA zone.
 */
5231 5232
static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
		unsigned nr_nodes)
L
Linus Torvalds 已提交
5233
{
5234 5235 5236 5237 5238 5239 5240 5241 5242
	struct zoneref *zonerefs;
	int i;

	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;

	for (i = 0; i < nr_nodes; i++) {
		int nr_zones;

		pg_data_t *node = NODE_DATA(node_order[i]);
5243

5244 5245 5246 5247 5248
		nr_zones = build_zonerefs_node(node, zonerefs);
		zonerefs += nr_zones;
	}
	zonerefs->zone = NULL;
	zonerefs->zone_idx = 0;
5249 5250
}

5251 5252 5253 5254 5255
/*
 * Build gfp_thisnode zonelists
 */
static void build_thisnode_zonelists(pg_data_t *pgdat)
{
5256 5257
	struct zoneref *zonerefs;
	int nr_zones;
5258

5259 5260 5261 5262 5263
	zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
	nr_zones = build_zonerefs_node(pgdat, zonerefs);
	zonerefs += nr_zones;
	zonerefs->zone = NULL;
	zonerefs->zone_idx = 0;
5264 5265
}

5266 5267 5268 5269 5270 5271 5272 5273 5274
/*
 * Build zonelists ordered by zone and nodes within zones.
 * This results in conserving DMA zone[s] until all Normal memory is
 * exhausted, but results in overflowing to remote node while memory
 * may still exist in local DMA zone.
 */

static void build_zonelists(pg_data_t *pgdat)
{
5275 5276
	static int node_order[MAX_NUMNODES];
	int node, load, nr_nodes = 0;
L
Linus Torvalds 已提交
5277
	nodemask_t used_mask;
5278
	int local_node, prev_node;
L
Linus Torvalds 已提交
5279 5280 5281

	/* NUMA-aware ordering of nodes */
	local_node = pgdat->node_id;
5282
	load = nr_online_nodes;
L
Linus Torvalds 已提交
5283 5284
	prev_node = local_node;
	nodes_clear(used_mask);
5285 5286

	memset(node_order, 0, sizeof(node_order));
L
Linus Torvalds 已提交
5287 5288 5289 5290 5291 5292
	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
		/*
		 * We don't want to pressure a particular node.
		 * So adding penalty to the first node in same
		 * distance group to make it round-robin.
		 */
5293 5294
		if (node_distance(local_node, node) !=
		    node_distance(local_node, prev_node))
5295 5296
			node_load[node] = load;

5297
		node_order[nr_nodes++] = node;
L
Linus Torvalds 已提交
5298 5299 5300
		prev_node = node;
		load--;
	}
5301

5302
	build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5303
	build_thisnode_zonelists(pgdat);
L
Linus Torvalds 已提交
5304 5305
}

5306 5307 5308 5309 5310 5311 5312 5313 5314
#ifdef CONFIG_HAVE_MEMORYLESS_NODES
/*
 * Return node id of node used for "local" allocations.
 * I.e., first node id of first zone in arg node's generic zonelist.
 * Used for initializing percpu 'numa_mem', which is used primarily
 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
 */
int local_memory_node(int node)
{
5315
	struct zoneref *z;
5316

5317
	z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5318
				   gfp_zone(GFP_KERNEL),
5319
				   NULL);
5320
	return zone_to_nid(z->zone);
5321 5322
}
#endif
5323

5324 5325
static void setup_min_unmapped_ratio(void);
static void setup_min_slab_ratio(void);
L
Linus Torvalds 已提交
5326 5327
#else	/* CONFIG_NUMA */

5328
static void build_zonelists(pg_data_t *pgdat)
L
Linus Torvalds 已提交
5329
{
5330
	int node, local_node;
5331 5332
	struct zoneref *zonerefs;
	int nr_zones;
L
Linus Torvalds 已提交
5333 5334 5335

	local_node = pgdat->node_id;

5336 5337 5338
	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
	nr_zones = build_zonerefs_node(pgdat, zonerefs);
	zonerefs += nr_zones;
L
Linus Torvalds 已提交
5339

5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350
	/*
	 * Now we build the zonelist so that it contains the zones
	 * of all the other nodes.
	 * We don't want to pressure a particular node, so when
	 * building the zones for node N, we make sure that the
	 * zones coming right after the local ones are those from
	 * node N+1 (modulo N)
	 */
	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
		if (!node_online(node))
			continue;
5351 5352
		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
		zonerefs += nr_zones;
L
Linus Torvalds 已提交
5353
	}
5354 5355 5356
	for (node = 0; node < local_node; node++) {
		if (!node_online(node))
			continue;
5357 5358
		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
		zonerefs += nr_zones;
5359 5360
	}

5361 5362
	zonerefs->zone = NULL;
	zonerefs->zone_idx = 0;
L
Linus Torvalds 已提交
5363 5364 5365 5366
}

#endif	/* CONFIG_NUMA */

5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383
/*
 * Boot pageset table. One per cpu which is going to be used for all
 * zones and all nodes. The parameters will be set in such a way
 * that an item put on a list will immediately be handed over to
 * the buddy list. This is safe since pageset manipulation is done
 * with interrupts disabled.
 *
 * The boot_pagesets must be kept even after bootup is complete for
 * unused processors and/or zones. They do play a role for bootstrapping
 * hotplugged processors.
 *
 * zoneinfo_show() and maybe other functions do
 * not check if the processor is online before following the pageset pointer.
 * Other parts of the kernel may not check if the zone is available.
 */
static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
5384
static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
5385

5386
static void __build_all_zonelists(void *data)
L
Linus Torvalds 已提交
5387
{
5388
	int nid;
5389
	int __maybe_unused cpu;
5390
	pg_data_t *self = data;
5391 5392 5393
	static DEFINE_SPINLOCK(lock);

	spin_lock(&lock);
5394

5395 5396 5397
#ifdef CONFIG_NUMA
	memset(node_load, 0, sizeof(node_load));
#endif
5398

5399 5400 5401 5402
	/*
	 * This node is hotadded and no memory is yet present.   So just
	 * building zonelists is fine - no need to touch other nodes.
	 */
5403 5404
	if (self && !node_online(self->node_id)) {
		build_zonelists(self);
5405 5406 5407
	} else {
		for_each_online_node(nid) {
			pg_data_t *pgdat = NODE_DATA(nid);
5408

5409 5410
			build_zonelists(pgdat);
		}
5411

5412 5413 5414 5415 5416 5417 5418 5419 5420
#ifdef CONFIG_HAVE_MEMORYLESS_NODES
		/*
		 * We now know the "local memory node" for each node--
		 * i.e., the node of the first zone in the generic zonelist.
		 * Set up numa_mem percpu variable for on-line cpus.  During
		 * boot, only the boot cpu should be on-line;  we'll init the
		 * secondary cpus' numa_mem as they come on-line.  During
		 * node/memory hotplug, we'll fixup all on-line cpus.
		 */
5421
		for_each_online_cpu(cpu)
5422
			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5423
#endif
5424
	}
5425 5426

	spin_unlock(&lock);
5427 5428
}

5429 5430 5431
static noinline void __init
build_all_zonelists_init(void)
{
5432 5433
	int cpu;

5434
	__build_all_zonelists(NULL);
5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451

	/*
	 * Initialize the boot_pagesets that are going to be used
	 * for bootstrapping processors. The real pagesets for
	 * each zone will be allocated later when the per cpu
	 * allocator is available.
	 *
	 * boot_pagesets are used also for bootstrapping offline
	 * cpus if the system is already booted because the pagesets
	 * are needed to initialize allocators on a specific cpu too.
	 * F.e. the percpu allocator needs the page allocator which
	 * needs the percpu allocator in order to allocate its pagesets
	 * (a chicken-egg dilemma).
	 */
	for_each_possible_cpu(cpu)
		setup_pageset(&per_cpu(boot_pageset, cpu), 0);

5452 5453 5454 5455
	mminit_verify_zonelist();
	cpuset_init_current_mems_allowed();
}

5456 5457
/*
 * unless system_state == SYSTEM_BOOTING.
5458
 *
5459
 * __ref due to call of __init annotated helper build_all_zonelists_init
5460
 * [protected by SYSTEM_BOOTING].
5461
 */
5462
void __ref build_all_zonelists(pg_data_t *pgdat)
5463 5464
{
	if (system_state == SYSTEM_BOOTING) {
5465
		build_all_zonelists_init();
5466
	} else {
5467
		__build_all_zonelists(pgdat);
5468 5469
		/* cpuset refresh routine should be here */
	}
5470
	vm_total_pages = nr_free_pagecache_pages();
5471 5472 5473 5474 5475 5476 5477
	/*
	 * Disable grouping by mobility if the number of pages in the
	 * system is too low to allow the mechanism to work. It would be
	 * more accurate, but expensive to check per-zone. This check is
	 * made on memory-hotadd so a system can start with mobility
	 * disabled and enable it later
	 */
5478
	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5479 5480 5481 5482
		page_group_by_mobility_disabled = 1;
	else
		page_group_by_mobility_disabled = 0;

5483
	pr_info("Built %i zonelists, mobility grouping %s.  Total pages: %ld\n",
J
Joe Perches 已提交
5484 5485 5486
		nr_online_nodes,
		page_group_by_mobility_disabled ? "off" : "on",
		vm_total_pages);
5487
#ifdef CONFIG_NUMA
5488
	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5489
#endif
L
Linus Torvalds 已提交
5490 5491 5492 5493 5494 5495 5496
}

/*
 * Initially all pages are reserved - free ones are freed
 * up by free_all_bootmem() once the early boot process is
 * done. Non-atomic initialization, single-pass.
 */
5497
void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
5498 5499
		unsigned long start_pfn, enum memmap_context context,
		struct vmem_altmap *altmap)
L
Linus Torvalds 已提交
5500
{
A
Andy Whitcroft 已提交
5501
	unsigned long end_pfn = start_pfn + size;
5502
	pg_data_t *pgdat = NODE_DATA(nid);
A
Andy Whitcroft 已提交
5503
	unsigned long pfn;
5504
	unsigned long nr_initialised = 0;
5505
	struct page *page;
5506 5507 5508
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
	struct memblock_region *r = NULL, *tmp;
#endif
L
Linus Torvalds 已提交
5509

5510 5511 5512
	if (highest_memmap_pfn < end_pfn - 1)
		highest_memmap_pfn = end_pfn - 1;

5513 5514 5515 5516 5517 5518 5519
	/*
	 * Honor reservation requested by the driver for this ZONE_DEVICE
	 * memory
	 */
	if (altmap && start_pfn == altmap->base_pfn)
		start_pfn += altmap->reserve;

5520
	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
D
Dave Hansen 已提交
5521
		/*
5522 5523
		 * There can be holes in boot-time mem_map[]s handed to this
		 * function.  They do not exist on hotplugged memory.
D
Dave Hansen 已提交
5524
		 */
5525 5526 5527
		if (context != MEMMAP_EARLY)
			goto not_early;

5528
		if (!early_pfn_valid(pfn))
5529 5530 5531 5532 5533
			continue;
		if (!early_pfn_in_nid(pfn, nid))
			continue;
		if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
			break;
5534 5535

#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552
		/*
		 * Check given memblock attribute by firmware which can affect
		 * kernel memory layout.  If zone==ZONE_MOVABLE but memory is
		 * mirrored, it's an overlapped memmap init. skip it.
		 */
		if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
			if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
				for_each_memblock(memory, tmp)
					if (pfn < memblock_region_memory_end_pfn(tmp))
						break;
				r = tmp;
			}
			if (pfn >= memblock_region_memory_base_pfn(r) &&
			    memblock_is_mirror(r)) {
				/* already initialized as NORMAL */
				pfn = memblock_region_memory_end_pfn(r);
				continue;
5553
			}
D
Dave Hansen 已提交
5554
		}
5555
#endif
5556

5557
not_early:
5558 5559 5560 5561 5562
		page = pfn_to_page(pfn);
		__init_single_page(page, pfn, zone, nid);
		if (context == MEMMAP_HOTPLUG)
			SetPageReserved(page);

5563 5564 5565 5566 5567
		/*
		 * Mark the block movable so that blocks are reserved for
		 * movable at startup. This will force kernel allocations
		 * to reserve their blocks rather than leaking throughout
		 * the address space during boot when many long-lived
5568
		 * kernel allocations are made.
5569 5570 5571 5572 5573
		 *
		 * bitmap is created for zone's valid pfn range. but memmap
		 * can be created for invalid pages (for alignment)
		 * check here not to call set_pageblock_migratetype() against
		 * pfn out of zone.
5574 5575 5576
		 *
		 * Please note that MEMMAP_HOTPLUG path doesn't clear memmap
		 * because this is done early in sparse_add_one_section
5577 5578 5579
		 */
		if (!(pfn & (pageblock_nr_pages - 1))) {
			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5580
			cond_resched();
5581
		}
L
Linus Torvalds 已提交
5582 5583 5584
	}
}

5585
static void __meminit zone_init_free_lists(struct zone *zone)
L
Linus Torvalds 已提交
5586
{
5587
	unsigned int order, t;
5588 5589
	for_each_migratetype_order(order, t) {
		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
L
Linus Torvalds 已提交
5590 5591 5592 5593 5594 5595
		zone->free_area[order].nr_free = 0;
	}
}

#ifndef __HAVE_ARCH_MEMMAP_INIT
#define memmap_init(size, nid, zone, start_pfn) \
5596
	memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY, NULL)
L
Linus Torvalds 已提交
5597 5598
#endif

5599
static int zone_batchsize(struct zone *zone)
5600
{
5601
#ifdef CONFIG_MMU
5602 5603 5604 5605
	int batch;

	/*
	 * The per-cpu-pages pools are set to around 1000th of the
5606
	 * size of the zone.
5607
	 */
5608
	batch = zone->managed_pages / 1024;
5609 5610 5611
	/* But no more than a meg. */
	if (batch * PAGE_SIZE > 1024 * 1024)
		batch = (1024 * 1024) / PAGE_SIZE;
5612 5613 5614 5615 5616
	batch /= 4;		/* We effectively *= 4 below */
	if (batch < 1)
		batch = 1;

	/*
5617 5618 5619
	 * Clamp the batch to a 2^n - 1 value. Having a power
	 * of 2 value was found to be more likely to have
	 * suboptimal cache aliasing properties in some cases.
5620
	 *
5621 5622 5623 5624
	 * For example if 2 tasks are alternately allocating
	 * batches of pages, one task can end up with a lot
	 * of pages of one half of the possible page colors
	 * and the other with pages of the other colors.
5625
	 */
5626
	batch = rounddown_pow_of_two(batch + batch/2) - 1;
5627

5628
	return batch;
5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645

#else
	/* The deferral and batching of frees should be suppressed under NOMMU
	 * conditions.
	 *
	 * The problem is that NOMMU needs to be able to allocate large chunks
	 * of contiguous memory as there's no hardware page translation to
	 * assemble apparent contiguous memory from discontiguous pages.
	 *
	 * Queueing large contiguous runs of pages for batching, however,
	 * causes the pages to actually be freed in smaller chunks.  As there
	 * can be a significant delay between the individual batches being
	 * recycled, this leads to the once large chunks of space being
	 * fragmented and becoming unavailable for high-order allocations.
	 */
	return 0;
#endif
5646 5647
}

5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674
/*
 * pcp->high and pcp->batch values are related and dependent on one another:
 * ->batch must never be higher then ->high.
 * The following function updates them in a safe manner without read side
 * locking.
 *
 * Any new users of pcp->batch and pcp->high should ensure they can cope with
 * those fields changing asynchronously (acording the the above rule).
 *
 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
 * outside of boot time (or some other assurance that no concurrent updaters
 * exist).
 */
static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
		unsigned long batch)
{
       /* start with a fail safe value for batch */
	pcp->batch = 1;
	smp_wmb();

       /* Update high, then batch, in order */
	pcp->high = high;
	smp_wmb();

	pcp->batch = batch;
}

5675
/* a companion to pageset_set_high() */
5676 5677
static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
{
5678
	pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
5679 5680
}

5681
static void pageset_init(struct per_cpu_pageset *p)
5682 5683
{
	struct per_cpu_pages *pcp;
5684
	int migratetype;
5685

5686 5687
	memset(p, 0, sizeof(*p));

5688
	pcp = &p->pcp;
5689
	pcp->count = 0;
5690 5691
	for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
		INIT_LIST_HEAD(&pcp->lists[migratetype]);
5692 5693
}

5694 5695 5696 5697 5698 5699
static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
{
	pageset_init(p);
	pageset_set_batch(p, batch);
}

5700
/*
5701
 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
5702 5703
 * to the value high for the pageset p.
 */
5704
static void pageset_set_high(struct per_cpu_pageset *p,
5705 5706
				unsigned long high)
{
5707 5708 5709
	unsigned long batch = max(1UL, high / 4);
	if ((high / 4) > (PAGE_SHIFT * 8))
		batch = PAGE_SHIFT * 8;
5710

5711
	pageset_update(&p->pcp, high, batch);
5712 5713
}

5714 5715
static void pageset_set_high_and_batch(struct zone *zone,
				       struct per_cpu_pageset *pcp)
5716 5717
{
	if (percpu_pagelist_fraction)
5718
		pageset_set_high(pcp,
5719 5720 5721 5722 5723 5724
			(zone->managed_pages /
				percpu_pagelist_fraction));
	else
		pageset_set_batch(pcp, zone_batchsize(zone));
}

5725 5726 5727 5728 5729 5730 5731 5732
static void __meminit zone_pageset_init(struct zone *zone, int cpu)
{
	struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);

	pageset_init(pcp);
	pageset_set_high_and_batch(zone, pcp);
}

5733
void __meminit setup_zone_pageset(struct zone *zone)
5734 5735 5736
{
	int cpu;
	zone->pageset = alloc_percpu(struct per_cpu_pageset);
5737 5738
	for_each_possible_cpu(cpu)
		zone_pageset_init(zone, cpu);
5739 5740
}

5741
/*
5742 5743
 * Allocate per cpu pagesets and initialize them.
 * Before this call only boot pagesets were available.
5744
 */
5745
void __init setup_per_cpu_pageset(void)
5746
{
5747
	struct pglist_data *pgdat;
5748
	struct zone *zone;
5749

5750 5751
	for_each_populated_zone(zone)
		setup_zone_pageset(zone);
5752 5753 5754 5755

	for_each_online_pgdat(pgdat)
		pgdat->per_cpu_nodestats =
			alloc_percpu(struct per_cpu_nodestat);
5756 5757
}

5758
static __meminit void zone_pcp_init(struct zone *zone)
5759
{
5760 5761 5762 5763 5764 5765
	/*
	 * per cpu subsystem is not up at this point. The following code
	 * relies on the ability of the linker to provide the
	 * offset of a (static) per cpu variable into the per cpu area.
	 */
	zone->pageset = &boot_pageset;
5766

5767
	if (populated_zone(zone))
5768 5769 5770
		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%u\n",
			zone->name, zone->present_pages,
					 zone_batchsize(zone));
5771 5772
}

5773
void __meminit init_currently_empty_zone(struct zone *zone,
5774
					unsigned long zone_start_pfn,
5775
					unsigned long size)
5776 5777
{
	struct pglist_data *pgdat = zone->zone_pgdat;
5778
	int zone_idx = zone_idx(zone) + 1;
5779

5780 5781
	if (zone_idx > pgdat->nr_zones)
		pgdat->nr_zones = zone_idx;
5782 5783 5784

	zone->zone_start_pfn = zone_start_pfn;

5785 5786 5787 5788 5789 5790
	mminit_dprintk(MMINIT_TRACE, "memmap_init",
			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
			pgdat->node_id,
			(unsigned long)zone_idx(zone),
			zone_start_pfn, (zone_start_pfn + size));

5791
	zone_init_free_lists(zone);
5792
	zone->initialized = 1;
5793 5794
}

T
Tejun Heo 已提交
5795
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5796
#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
5797

5798 5799 5800
/*
 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
 */
5801 5802
int __meminit __early_pfn_to_nid(unsigned long pfn,
					struct mminit_pfnnid_cache *state)
5803
{
5804
	unsigned long start_pfn, end_pfn;
5805
	int nid;
5806

5807 5808
	if (state->last_start <= pfn && pfn < state->last_end)
		return state->last_nid;
5809

5810 5811
	nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
	if (nid != -1) {
5812 5813 5814
		state->last_start = start_pfn;
		state->last_end = end_pfn;
		state->last_nid = nid;
5815 5816 5817
	}

	return nid;
5818 5819 5820 5821
}
#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */

/**
5822
 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
5823
 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
5824
 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
5825
 *
5826 5827 5828
 * If an architecture guarantees that all ranges registered contain no holes
 * and may be freed, this this function may be used instead of calling
 * memblock_free_early_nid() manually.
5829
 */
5830
void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
5831
{
5832 5833
	unsigned long start_pfn, end_pfn;
	int i, this_nid;
5834

5835 5836 5837
	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
		start_pfn = min(start_pfn, max_low_pfn);
		end_pfn = min(end_pfn, max_low_pfn);
5838

5839
		if (start_pfn < end_pfn)
5840 5841 5842
			memblock_free_early_nid(PFN_PHYS(start_pfn),
					(end_pfn - start_pfn) << PAGE_SHIFT,
					this_nid);
5843 5844 5845
	}
}

5846 5847
/**
 * sparse_memory_present_with_active_regions - Call memory_present for each active range
5848
 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
5849
 *
5850 5851
 * If an architecture guarantees that all ranges registered contain no holes and may
 * be freed, this function may be used instead of calling memory_present() manually.
5852 5853 5854
 */
void __init sparse_memory_present_with_active_regions(int nid)
{
5855 5856
	unsigned long start_pfn, end_pfn;
	int i, this_nid;
5857

5858 5859
	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
		memory_present(this_nid, start_pfn, end_pfn);
5860 5861 5862 5863
}

/**
 * get_pfn_range_for_nid - Return the start and end page frames for a node
5864 5865 5866
 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
5867 5868
 *
 * It returns the start and end page frame of a node based on information
5869
 * provided by memblock_set_node(). If called for a node
5870
 * with no available memory, a warning is printed and the start and end
5871
 * PFNs will be 0.
5872
 */
5873
void __meminit get_pfn_range_for_nid(unsigned int nid,
5874 5875
			unsigned long *start_pfn, unsigned long *end_pfn)
{
5876
	unsigned long this_start_pfn, this_end_pfn;
5877
	int i;
5878

5879 5880 5881
	*start_pfn = -1UL;
	*end_pfn = 0;

5882 5883 5884
	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
		*start_pfn = min(*start_pfn, this_start_pfn);
		*end_pfn = max(*end_pfn, this_end_pfn);
5885 5886
	}

5887
	if (*start_pfn == -1UL)
5888 5889 5890
		*start_pfn = 0;
}

M
Mel Gorman 已提交
5891 5892 5893 5894 5895
/*
 * This finds a zone that can be used for ZONE_MOVABLE pages. The
 * assumption is made that zones within a node are ordered in monotonic
 * increasing memory addresses so that the "highest" populated zone is used
 */
A
Adrian Bunk 已提交
5896
static void __init find_usable_zone_for_movable(void)
M
Mel Gorman 已提交
5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913
{
	int zone_index;
	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
		if (zone_index == ZONE_MOVABLE)
			continue;

		if (arch_zone_highest_possible_pfn[zone_index] >
				arch_zone_lowest_possible_pfn[zone_index])
			break;
	}

	VM_BUG_ON(zone_index == -1);
	movable_zone = zone_index;
}

/*
 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
L
Lucas De Marchi 已提交
5914
 * because it is sized independent of architecture. Unlike the other zones,
M
Mel Gorman 已提交
5915 5916 5917 5918 5919 5920 5921
 * the starting point for ZONE_MOVABLE is not fixed. It may be different
 * in each node depending on the size of each node and how evenly kernelcore
 * is distributed. This helper function adjusts the zone ranges
 * provided by the architecture for a given node by using the end of the
 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
 * zones within a node are in order of monotonic increases memory addresses
 */
A
Adrian Bunk 已提交
5922
static void __meminit adjust_zone_range_for_zone_movable(int nid,
M
Mel Gorman 已提交
5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936
					unsigned long zone_type,
					unsigned long node_start_pfn,
					unsigned long node_end_pfn,
					unsigned long *zone_start_pfn,
					unsigned long *zone_end_pfn)
{
	/* Only adjust if ZONE_MOVABLE is on this node */
	if (zone_movable_pfn[nid]) {
		/* Size ZONE_MOVABLE */
		if (zone_type == ZONE_MOVABLE) {
			*zone_start_pfn = zone_movable_pfn[nid];
			*zone_end_pfn = min(node_end_pfn,
				arch_zone_highest_possible_pfn[movable_zone]);

5937 5938 5939 5940 5941 5942
		/* Adjust for ZONE_MOVABLE starting within this range */
		} else if (!mirrored_kernelcore &&
			*zone_start_pfn < zone_movable_pfn[nid] &&
			*zone_end_pfn > zone_movable_pfn[nid]) {
			*zone_end_pfn = zone_movable_pfn[nid];

M
Mel Gorman 已提交
5943 5944 5945 5946 5947 5948
		/* Check if this whole range is within ZONE_MOVABLE */
		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
			*zone_start_pfn = *zone_end_pfn;
	}
}

5949 5950 5951 5952
/*
 * Return the number of pages a zone spans in a node, including holes
 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
 */
P
Paul Mundt 已提交
5953
static unsigned long __meminit zone_spanned_pages_in_node(int nid,
5954
					unsigned long zone_type,
5955 5956
					unsigned long node_start_pfn,
					unsigned long node_end_pfn,
5957 5958
					unsigned long *zone_start_pfn,
					unsigned long *zone_end_pfn,
5959 5960
					unsigned long *ignored)
{
5961 5962
	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
5963
	/* When hotadd a new node from cpu_up(), the node should be empty */
5964 5965 5966
	if (!node_start_pfn && !node_end_pfn)
		return 0;

5967
	/* Get the start and end of the zone */
5968 5969
	*zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
	*zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
M
Mel Gorman 已提交
5970 5971
	adjust_zone_range_for_zone_movable(nid, zone_type,
				node_start_pfn, node_end_pfn,
5972
				zone_start_pfn, zone_end_pfn);
5973 5974

	/* Check that this node has pages within the zone's required range */
5975
	if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
5976 5977 5978
		return 0;

	/* Move the zone boundaries inside the node if necessary */
5979 5980
	*zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
	*zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
5981 5982

	/* Return the spanned pages */
5983
	return *zone_end_pfn - *zone_start_pfn;
5984 5985 5986 5987
}

/*
 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
5988
 * then all holes in the requested range will be accounted for.
5989
 */
5990
unsigned long __meminit __absent_pages_in_range(int nid,
5991 5992 5993
				unsigned long range_start_pfn,
				unsigned long range_end_pfn)
{
5994 5995 5996
	unsigned long nr_absent = range_end_pfn - range_start_pfn;
	unsigned long start_pfn, end_pfn;
	int i;
5997

5998 5999 6000 6001
	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
		nr_absent -= end_pfn - start_pfn;
6002
	}
6003
	return nr_absent;
6004 6005 6006 6007 6008 6009 6010
}

/**
 * absent_pages_in_range - Return number of page frames in holes within a range
 * @start_pfn: The start PFN to start searching for holes
 * @end_pfn: The end PFN to stop searching for holes
 *
6011
 * It returns the number of pages frames in memory holes within a range.
6012 6013 6014 6015 6016 6017 6018 6019
 */
unsigned long __init absent_pages_in_range(unsigned long start_pfn,
							unsigned long end_pfn)
{
	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
}

/* Return the number of page frames in holes in a zone on a node */
P
Paul Mundt 已提交
6020
static unsigned long __meminit zone_absent_pages_in_node(int nid,
6021
					unsigned long zone_type,
6022 6023
					unsigned long node_start_pfn,
					unsigned long node_end_pfn,
6024 6025
					unsigned long *ignored)
{
6026 6027
	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
6028
	unsigned long zone_start_pfn, zone_end_pfn;
6029
	unsigned long nr_absent;
6030

6031
	/* When hotadd a new node from cpu_up(), the node should be empty */
6032 6033 6034
	if (!node_start_pfn && !node_end_pfn)
		return 0;

6035 6036
	zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
	zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
6037

M
Mel Gorman 已提交
6038 6039 6040
	adjust_zone_range_for_zone_movable(nid, zone_type,
			node_start_pfn, node_end_pfn,
			&zone_start_pfn, &zone_end_pfn);
6041 6042 6043 6044 6045 6046 6047
	nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);

	/*
	 * ZONE_MOVABLE handling.
	 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
	 * and vice versa.
	 */
6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064
	if (mirrored_kernelcore && zone_movable_pfn[nid]) {
		unsigned long start_pfn, end_pfn;
		struct memblock_region *r;

		for_each_memblock(memory, r) {
			start_pfn = clamp(memblock_region_memory_base_pfn(r),
					  zone_start_pfn, zone_end_pfn);
			end_pfn = clamp(memblock_region_memory_end_pfn(r),
					zone_start_pfn, zone_end_pfn);

			if (zone_type == ZONE_MOVABLE &&
			    memblock_is_mirror(r))
				nr_absent += end_pfn - start_pfn;

			if (zone_type == ZONE_NORMAL &&
			    !memblock_is_mirror(r))
				nr_absent += end_pfn - start_pfn;
6065 6066 6067 6068
		}
	}

	return nr_absent;
6069
}
6070

T
Tejun Heo 已提交
6071
#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
P
Paul Mundt 已提交
6072
static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
6073
					unsigned long zone_type,
6074 6075
					unsigned long node_start_pfn,
					unsigned long node_end_pfn,
6076 6077
					unsigned long *zone_start_pfn,
					unsigned long *zone_end_pfn,
6078 6079
					unsigned long *zones_size)
{
6080 6081 6082 6083 6084 6085 6086 6087
	unsigned int zone;

	*zone_start_pfn = node_start_pfn;
	for (zone = 0; zone < zone_type; zone++)
		*zone_start_pfn += zones_size[zone];

	*zone_end_pfn = *zone_start_pfn + zones_size[zone_type];

6088 6089 6090
	return zones_size[zone_type];
}

P
Paul Mundt 已提交
6091
static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
6092
						unsigned long zone_type,
6093 6094
						unsigned long node_start_pfn,
						unsigned long node_end_pfn,
6095 6096 6097 6098 6099 6100 6101
						unsigned long *zholes_size)
{
	if (!zholes_size)
		return 0;

	return zholes_size[zone_type];
}
6102

T
Tejun Heo 已提交
6103
#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6104

6105
static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
6106 6107 6108 6109
						unsigned long node_start_pfn,
						unsigned long node_end_pfn,
						unsigned long *zones_size,
						unsigned long *zholes_size)
6110
{
6111
	unsigned long realtotalpages = 0, totalpages = 0;
6112 6113
	enum zone_type i;

6114 6115
	for (i = 0; i < MAX_NR_ZONES; i++) {
		struct zone *zone = pgdat->node_zones + i;
6116
		unsigned long zone_start_pfn, zone_end_pfn;
6117
		unsigned long size, real_size;
6118

6119 6120 6121
		size = zone_spanned_pages_in_node(pgdat->node_id, i,
						  node_start_pfn,
						  node_end_pfn,
6122 6123
						  &zone_start_pfn,
						  &zone_end_pfn,
6124 6125
						  zones_size);
		real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
6126 6127
						  node_start_pfn, node_end_pfn,
						  zholes_size);
6128 6129 6130 6131
		if (size)
			zone->zone_start_pfn = zone_start_pfn;
		else
			zone->zone_start_pfn = 0;
6132 6133 6134 6135 6136 6137 6138 6139
		zone->spanned_pages = size;
		zone->present_pages = real_size;

		totalpages += size;
		realtotalpages += real_size;
	}

	pgdat->node_spanned_pages = totalpages;
6140 6141 6142 6143 6144
	pgdat->node_present_pages = realtotalpages;
	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
							realtotalpages);
}

6145 6146 6147
#ifndef CONFIG_SPARSEMEM
/*
 * Calculate the size of the zone->blockflags rounded to an unsigned long
6148 6149
 * Start by making sure zonesize is a multiple of pageblock_order by rounding
 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
6150 6151 6152
 * round what is now in bits to nearest long in bits, then return it in
 * bytes.
 */
6153
static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
6154 6155 6156
{
	unsigned long usemapsize;

6157
	zonesize += zone_start_pfn & (pageblock_nr_pages-1);
6158 6159
	usemapsize = roundup(zonesize, pageblock_nr_pages);
	usemapsize = usemapsize >> pageblock_order;
6160 6161 6162 6163 6164 6165
	usemapsize *= NR_PAGEBLOCK_BITS;
	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));

	return usemapsize / 8;
}

P
Pavel Tatashin 已提交
6166
static void __ref setup_usemap(struct pglist_data *pgdat,
6167 6168 6169
				struct zone *zone,
				unsigned long zone_start_pfn,
				unsigned long zonesize)
6170
{
6171
	unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
6172
	zone->pageblock_flags = NULL;
6173
	if (usemapsize)
6174 6175 6176
		zone->pageblock_flags =
			memblock_virt_alloc_node_nopanic(usemapsize,
							 pgdat->node_id);
6177 6178
}
#else
6179 6180
static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
				unsigned long zone_start_pfn, unsigned long zonesize) {}
6181 6182
#endif /* CONFIG_SPARSEMEM */

6183
#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
6184

6185
/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
6186
void __init set_pageblock_order(void)
6187
{
6188 6189
	unsigned int order;

6190 6191 6192 6193
	/* Check that pageblock_nr_pages has not already been setup */
	if (pageblock_order)
		return;

6194 6195 6196 6197 6198
	if (HPAGE_SHIFT > PAGE_SHIFT)
		order = HUGETLB_PAGE_ORDER;
	else
		order = MAX_ORDER - 1;

6199 6200
	/*
	 * Assume the largest contiguous order of interest is a huge page.
6201 6202
	 * This value may be variable depending on boot parameters on IA64 and
	 * powerpc.
6203 6204 6205 6206 6207
	 */
	pageblock_order = order;
}
#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */

6208 6209
/*
 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
6210 6211 6212
 * is unused as pageblock_order is set at compile-time. See
 * include/linux/pageblock-flags.h for the values of pageblock_order based on
 * the kernel config
6213
 */
6214
void __init set_pageblock_order(void)
6215 6216
{
}
6217 6218 6219

#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */

6220
static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
P
Pavel Tatashin 已提交
6221
						unsigned long present_pages)
6222 6223 6224 6225 6226 6227 6228 6229
{
	unsigned long pages = spanned_pages;

	/*
	 * Provide a more accurate estimation if there are holes within
	 * the zone and SPARSEMEM is in use. If there are holes within the
	 * zone, each populated memory region may cost us one or two extra
	 * memmap pages due to alignment because memmap pages for each
6230
	 * populated regions may not be naturally aligned on page boundary.
6231 6232 6233 6234 6235 6236 6237 6238 6239
	 * So the (present_pages >> 4) heuristic is a tradeoff for that.
	 */
	if (spanned_pages > present_pages + (present_pages >> 4) &&
	    IS_ENABLED(CONFIG_SPARSEMEM))
		pages = present_pages;

	return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
}

6240 6241 6242
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
static void pgdat_init_split_queue(struct pglist_data *pgdat)
{
6243 6244 6245 6246 6247
	struct deferred_split *ds_queue = &pgdat->deferred_split_queue;

	spin_lock_init(&ds_queue->split_queue_lock);
	INIT_LIST_HEAD(&ds_queue->split_queue);
	ds_queue->split_queue_len = 0;
6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261
}
#else
static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
#endif

#ifdef CONFIG_COMPACTION
static void pgdat_init_kcompactd(struct pglist_data *pgdat)
{
	init_waitqueue_head(&pgdat->kcompactd_wait);
}
#else
static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
#endif

6262
static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
L
Linus Torvalds 已提交
6263
{
6264
	pgdat_resize_init(pgdat);
6265 6266 6267 6268

	pgdat_init_split_queue(pgdat);
	pgdat_init_kcompactd(pgdat);

L
Linus Torvalds 已提交
6269
	init_waitqueue_head(&pgdat->kswapd_wait);
6270
	init_waitqueue_head(&pgdat->pfmemalloc_wait);
6271

6272
	pgdat_page_ext_init(pgdat);
6273
	spin_lock_init(&pgdat->lru_lock);
6274
	lruvec_init(node_lruvec(pgdat));
6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320
}

static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
							unsigned long remaining_pages)
{
	zone->managed_pages = remaining_pages;
	zone_set_nid(zone, nid);
	zone->name = zone_names[idx];
	zone->zone_pgdat = NODE_DATA(nid);
	spin_lock_init(&zone->lock);
	zone_seqlock_init(zone);
	zone_pcp_init(zone);
}

/*
 * Set up the zone data structures
 * - init pgdat internals
 * - init all zones belonging to this node
 *
 * NOTE: this function is only called during memory hotplug
 */
#ifdef CONFIG_MEMORY_HOTPLUG
void __ref free_area_init_core_hotplug(int nid)
{
	enum zone_type z;
	pg_data_t *pgdat = NODE_DATA(nid);

	pgdat_init_internals(pgdat);
	for (z = 0; z < MAX_NR_ZONES; z++)
		zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
}
#endif

/*
 * Set up the zone data structures:
 *   - mark all pages reserved
 *   - mark all memory queues empty
 *   - clear the memory bitmaps
 *
 * NOTE: pgdat should get zeroed by caller.
 * NOTE: this function is only called during early init.
 */
static void __init free_area_init_core(struct pglist_data *pgdat)
{
	enum zone_type j;
	int nid = pgdat->node_id;
6321

6322
	pgdat_init_internals(pgdat);
6323 6324
	pgdat->per_cpu_nodestats = &boot_nodestats;

L
Linus Torvalds 已提交
6325 6326
	for (j = 0; j < MAX_NR_ZONES; j++) {
		struct zone *zone = pgdat->node_zones + j;
6327
		unsigned long size, freesize, memmap_pages;
6328
		unsigned long zone_start_pfn = zone->zone_start_pfn;
L
Linus Torvalds 已提交
6329

6330
		size = zone->spanned_pages;
6331
		freesize = zone->present_pages;
L
Linus Torvalds 已提交
6332

6333
		/*
6334
		 * Adjust freesize so that it accounts for how much memory
6335 6336 6337
		 * is used by this zone for memmap. This affects the watermark
		 * and per-cpu initialisations
		 */
6338
		memmap_pages = calc_memmap_size(size, freesize);
6339 6340 6341 6342 6343 6344 6345 6346
		if (!is_highmem_idx(j)) {
			if (freesize >= memmap_pages) {
				freesize -= memmap_pages;
				if (memmap_pages)
					printk(KERN_DEBUG
					       "  %s zone: %lu pages used for memmap\n",
					       zone_names[j], memmap_pages);
			} else
6347
				pr_warn("  %s zone: %lu pages exceeds freesize %lu\n",
6348 6349
					zone_names[j], memmap_pages, freesize);
		}
6350

6351
		/* Account for reserved pages */
6352 6353
		if (j == 0 && freesize > dma_reserve) {
			freesize -= dma_reserve;
Y
Yinghai Lu 已提交
6354
			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
6355
					zone_names[0], dma_reserve);
6356 6357
		}

6358
		if (!is_highmem_idx(j))
6359
			nr_kernel_pages += freesize;
6360 6361 6362
		/* Charge for highmem memmap if there are enough kernel pages */
		else if (nr_kernel_pages > memmap_pages * 2)
			nr_kernel_pages -= memmap_pages;
6363
		nr_all_pages += freesize;
L
Linus Torvalds 已提交
6364

6365 6366 6367 6368 6369
		/*
		 * Set an approximate value for lowmem here, it will be adjusted
		 * when the bootmem allocator frees pages into the buddy system.
		 * And all highmem pages will be managed by the buddy system.
		 */
6370
		zone_init_internals(zone, j, nid, freesize);
6371

6372
		if (!size)
L
Linus Torvalds 已提交
6373 6374
			continue;

6375
		set_pageblock_order();
6376 6377
		setup_usemap(pgdat, zone, zone_start_pfn, size);
		init_currently_empty_zone(zone, zone_start_pfn, size);
6378
		memmap_init(size, nid, j, zone_start_pfn);
L
Linus Torvalds 已提交
6379 6380 6381
	}
}

6382
#ifdef CONFIG_FLAT_NODE_MEM_MAP
6383
static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
L
Linus Torvalds 已提交
6384
{
6385
	unsigned long __maybe_unused start = 0;
L
Laura Abbott 已提交
6386 6387
	unsigned long __maybe_unused offset = 0;

L
Linus Torvalds 已提交
6388 6389 6390 6391
	/* Skip empty nodes */
	if (!pgdat->node_spanned_pages)
		return;

6392 6393
	start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
	offset = pgdat->node_start_pfn - start;
L
Linus Torvalds 已提交
6394 6395
	/* ia64 gets its own node_mem_map, before this, without bootmem */
	if (!pgdat->node_mem_map) {
6396
		unsigned long size, end;
A
Andy Whitcroft 已提交
6397 6398
		struct page *map;

6399 6400 6401 6402 6403
		/*
		 * The zone's endpoints aren't required to be MAX_ORDER
		 * aligned but the node_mem_map endpoints must be in order
		 * for the buddy allocator to function correctly.
		 */
6404
		end = pgdat_end_pfn(pgdat);
6405 6406
		end = ALIGN(end, MAX_ORDER_NR_PAGES);
		size =  (end - start) * sizeof(struct page);
6407
		map = memblock_virt_alloc_node_nopanic(size, pgdat->node_id);
L
Laura Abbott 已提交
6408
		pgdat->node_mem_map = map + offset;
L
Linus Torvalds 已提交
6409
	}
6410 6411 6412
	pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
				__func__, pgdat->node_id, (unsigned long)pgdat,
				(unsigned long)pgdat->node_mem_map);
6413
#ifndef CONFIG_NEED_MULTIPLE_NODES
L
Linus Torvalds 已提交
6414 6415 6416
	/*
	 * With no DISCONTIG, the global mem_map is just set as node 0's
	 */
6417
	if (pgdat == NODE_DATA(0)) {
L
Linus Torvalds 已提交
6418
		mem_map = NODE_DATA(0)->node_mem_map;
L
Laura Abbott 已提交
6419
#if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
6420
		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
L
Laura Abbott 已提交
6421
			mem_map -= offset;
T
Tejun Heo 已提交
6422
#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6423
	}
L
Linus Torvalds 已提交
6424 6425
#endif
}
6426 6427 6428
#else
static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { }
#endif /* CONFIG_FLAT_NODE_MEM_MAP */
L
Linus Torvalds 已提交
6429

6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
{
	/*
	 * We start only with one section of pages, more pages are added as
	 * needed until the rest of deferred pages are initialized.
	 */
	pgdat->static_init_pgcnt = min_t(unsigned long, PAGES_PER_SECTION,
						pgdat->node_spanned_pages);
	pgdat->first_deferred_pfn = ULONG_MAX;
}
#else
static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
#endif

6445
void __init free_area_init_node(int nid, unsigned long *zones_size,
P
Pavel Tatashin 已提交
6446 6447
				   unsigned long node_start_pfn,
				   unsigned long *zholes_size)
L
Linus Torvalds 已提交
6448
{
6449
	pg_data_t *pgdat = NODE_DATA(nid);
6450 6451
	unsigned long start_pfn = 0;
	unsigned long end_pfn = 0;
6452

6453
	/* pg_data_t should be reset to zero when it's allocated */
6454
	WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
6455

L
Linus Torvalds 已提交
6456 6457
	pgdat->node_id = nid;
	pgdat->node_start_pfn = node_start_pfn;
6458
	pgdat->per_cpu_nodestats = NULL;
6459 6460
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
6461
	pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
6462 6463
		(u64)start_pfn << PAGE_SHIFT,
		end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
6464 6465
#else
	start_pfn = node_start_pfn;
6466 6467 6468
#endif
	calculate_node_totalpages(pgdat, start_pfn, end_pfn,
				  zones_size, zholes_size);
L
Linus Torvalds 已提交
6469 6470

	alloc_node_mem_map(pgdat);
6471
	pgdat_set_deferred_range(pgdat);
L
Linus Torvalds 已提交
6472

6473
	free_area_init_core(pgdat);
L
Linus Torvalds 已提交
6474 6475
}

6476
#if defined(CONFIG_HAVE_MEMBLOCK) && !defined(CONFIG_FLAT_NODE_MEM_MAP)
6477 6478 6479 6480 6481 6482 6483
/*
 * Only struct pages that are backed by physical memory are zeroed and
 * initialized by going through __init_single_page(). But, there are some
 * struct pages which are reserved in memblock allocator and their fields
 * may be accessed (for example page_to_pfn() on some configuration accesses
 * flags). We must explicitly zero those struct pages.
 */
6484
void __init zero_resv_unavail(void)
6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496
{
	phys_addr_t start, end;
	unsigned long pfn;
	u64 i, pgcnt;

	/*
	 * Loop through ranges that are reserved, but do not have reported
	 * physical memory backing.
	 */
	pgcnt = 0;
	for_each_resv_unavail_range(i, &start, &end) {
		for (pfn = PFN_DOWN(start); pfn < PFN_UP(end); pfn++) {
6497 6498 6499
			if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
				pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
					+ pageblock_nr_pages - 1;
6500
				continue;
6501
			}
6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516
			mm_zero_struct_page(pfn_to_page(pfn));
			pgcnt++;
		}
	}

	/*
	 * Struct pages that do not have backing memory. This could be because
	 * firmware is using some of this memory, or for some other reasons.
	 * Once memblock is changed so such behaviour is not allowed: i.e.
	 * list of "reserved" memory must be a subset of list of "memory", then
	 * this code can be removed.
	 */
	if (pgcnt)
		pr_info("Reserved but unavailable: %lld pages", pgcnt);
}
6517
#endif /* CONFIG_HAVE_MEMBLOCK && !CONFIG_FLAT_NODE_MEM_MAP */
6518

T
Tejun Heo 已提交
6519
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
M
Miklos Szeredi 已提交
6520 6521 6522 6523 6524

#if MAX_NUMNODES > 1
/*
 * Figure out the number of possible node ids.
 */
6525
void __init setup_nr_node_ids(void)
M
Miklos Szeredi 已提交
6526
{
6527
	unsigned int highest;
M
Miklos Szeredi 已提交
6528

6529
	highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
M
Miklos Szeredi 已提交
6530 6531 6532 6533
	nr_node_ids = highest + 1;
}
#endif

6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555
/**
 * node_map_pfn_alignment - determine the maximum internode alignment
 *
 * This function should be called after node map is populated and sorted.
 * It calculates the maximum power of two alignment which can distinguish
 * all the nodes.
 *
 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
 * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
 * shifted, 1GiB is enough and this function will indicate so.
 *
 * This is used to test whether pfn -> nid mapping of the chosen memory
 * model has fine enough granularity to avoid incorrect mapping for the
 * populated node map.
 *
 * Returns the determined alignment in pfn's.  0 if there is no alignment
 * requirement (single node).
 */
unsigned long __init node_map_pfn_alignment(void)
{
	unsigned long accl_mask = 0, last_end = 0;
6556
	unsigned long start, end, mask;
6557
	int last_nid = -1;
6558
	int i, nid;
6559

6560
	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583
		if (!start || last_nid < 0 || last_nid == nid) {
			last_nid = nid;
			last_end = end;
			continue;
		}

		/*
		 * Start with a mask granular enough to pin-point to the
		 * start pfn and tick off bits one-by-one until it becomes
		 * too coarse to separate the current node from the last.
		 */
		mask = ~((1 << __ffs(start)) - 1);
		while (mask && last_end <= (start & (mask << 1)))
			mask <<= 1;

		/* accumulate all internode masks */
		accl_mask |= mask;
	}

	/* convert mask to number of pages */
	return ~accl_mask + 1;
}

6584
/* Find the lowest pfn for a node */
A
Adrian Bunk 已提交
6585
static unsigned long __init find_min_pfn_for_node(int nid)
6586
{
6587
	unsigned long min_pfn = ULONG_MAX;
6588 6589
	unsigned long start_pfn;
	int i;
6590

6591 6592
	for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
		min_pfn = min(min_pfn, start_pfn);
6593

6594
	if (min_pfn == ULONG_MAX) {
6595
		pr_warn("Could not find start_pfn for node %d\n", nid);
6596 6597 6598 6599
		return 0;
	}

	return min_pfn;
6600 6601 6602 6603 6604 6605
}

/**
 * find_min_pfn_with_active_regions - Find the minimum PFN registered
 *
 * It returns the minimum PFN based on information provided via
6606
 * memblock_set_node().
6607 6608 6609 6610 6611 6612
 */
unsigned long __init find_min_pfn_with_active_regions(void)
{
	return find_min_pfn_for_node(MAX_NUMNODES);
}

6613 6614 6615
/*
 * early_calculate_totalpages()
 * Sum pages in active regions for movable zone.
6616
 * Populate N_MEMORY for calculating usable_nodes.
6617
 */
A
Adrian Bunk 已提交
6618
static unsigned long __init early_calculate_totalpages(void)
6619 6620
{
	unsigned long totalpages = 0;
6621 6622 6623 6624 6625
	unsigned long start_pfn, end_pfn;
	int i, nid;

	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
		unsigned long pages = end_pfn - start_pfn;
6626

6627 6628
		totalpages += pages;
		if (pages)
6629
			node_set_state(nid, N_MEMORY);
6630
	}
6631
	return totalpages;
6632 6633
}

M
Mel Gorman 已提交
6634 6635 6636 6637 6638 6639
/*
 * Find the PFN the Movable zone begins in each node. Kernel memory
 * is spread evenly between nodes as long as the nodes have enough
 * memory. When they don't, some nodes will have more kernelcore than
 * others
 */
6640
static void __init find_zone_movable_pfns_for_nodes(void)
M
Mel Gorman 已提交
6641 6642 6643 6644
{
	int i, nid;
	unsigned long usable_startpfn;
	unsigned long kernelcore_node, kernelcore_remaining;
6645
	/* save the state before borrow the nodemask */
6646
	nodemask_t saved_node_state = node_states[N_MEMORY];
6647
	unsigned long totalpages = early_calculate_totalpages();
6648
	int usable_nodes = nodes_weight(node_states[N_MEMORY]);
E
Emil Medve 已提交
6649
	struct memblock_region *r;
6650 6651 6652 6653 6654 6655 6656 6657 6658

	/* Need to find movable_zone earlier when movable_node is specified. */
	find_usable_zone_for_movable();

	/*
	 * If movable_node is specified, ignore kernelcore and movablecore
	 * options.
	 */
	if (movable_node_is_enabled()) {
E
Emil Medve 已提交
6659 6660
		for_each_memblock(memory, r) {
			if (!memblock_is_hotpluggable(r))
6661 6662
				continue;

E
Emil Medve 已提交
6663
			nid = r->nid;
6664

E
Emil Medve 已提交
6665
			usable_startpfn = PFN_DOWN(r->base);
6666 6667 6668 6669 6670 6671 6672
			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
				min(usable_startpfn, zone_movable_pfn[nid]) :
				usable_startpfn;
		}

		goto out2;
	}
M
Mel Gorman 已提交
6673

6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703
	/*
	 * If kernelcore=mirror is specified, ignore movablecore option
	 */
	if (mirrored_kernelcore) {
		bool mem_below_4gb_not_mirrored = false;

		for_each_memblock(memory, r) {
			if (memblock_is_mirror(r))
				continue;

			nid = r->nid;

			usable_startpfn = memblock_region_memory_base_pfn(r);

			if (usable_startpfn < 0x100000) {
				mem_below_4gb_not_mirrored = true;
				continue;
			}

			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
				min(usable_startpfn, zone_movable_pfn[nid]) :
				usable_startpfn;
		}

		if (mem_below_4gb_not_mirrored)
			pr_warn("This configuration results in unmirrored kernel memory.");

		goto out2;
	}

6704
	/*
6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716
	 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
	 * amount of necessary memory.
	 */
	if (required_kernelcore_percent)
		required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
				       10000UL;
	if (required_movablecore_percent)
		required_movablecore = (totalpages * 100 * required_movablecore_percent) /
					10000UL;

	/*
	 * If movablecore= was specified, calculate what size of
6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731
	 * kernelcore that corresponds so that memory usable for
	 * any allocation type is evenly spread. If both kernelcore
	 * and movablecore are specified, then the value of kernelcore
	 * will be used for required_kernelcore if it's greater than
	 * what movablecore would have allowed.
	 */
	if (required_movablecore) {
		unsigned long corepages;

		/*
		 * Round-up so that ZONE_MOVABLE is at least as large as what
		 * was requested by the user
		 */
		required_movablecore =
			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
6732
		required_movablecore = min(totalpages, required_movablecore);
6733 6734 6735 6736 6737
		corepages = totalpages - required_movablecore;

		required_kernelcore = max(required_kernelcore, corepages);
	}

6738 6739 6740 6741 6742
	/*
	 * If kernelcore was not specified or kernelcore size is larger
	 * than totalpages, there is no ZONE_MOVABLE.
	 */
	if (!required_kernelcore || required_kernelcore >= totalpages)
6743
		goto out;
M
Mel Gorman 已提交
6744 6745 6746 6747 6748 6749 6750

	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];

restart:
	/* Spread kernelcore memory as evenly as possible throughout nodes */
	kernelcore_node = required_kernelcore / usable_nodes;
6751
	for_each_node_state(nid, N_MEMORY) {
6752 6753
		unsigned long start_pfn, end_pfn;

M
Mel Gorman 已提交
6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769
		/*
		 * Recalculate kernelcore_node if the division per node
		 * now exceeds what is necessary to satisfy the requested
		 * amount of memory for the kernel
		 */
		if (required_kernelcore < kernelcore_node)
			kernelcore_node = required_kernelcore / usable_nodes;

		/*
		 * As the map is walked, we track how much memory is usable
		 * by the kernel using kernelcore_remaining. When it is
		 * 0, the rest of the node is usable by ZONE_MOVABLE
		 */
		kernelcore_remaining = kernelcore_node;

		/* Go through each range of PFNs within this node */
6770
		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
M
Mel Gorman 已提交
6771 6772
			unsigned long size_pages;

6773
			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
M
Mel Gorman 已提交
6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815
			if (start_pfn >= end_pfn)
				continue;

			/* Account for what is only usable for kernelcore */
			if (start_pfn < usable_startpfn) {
				unsigned long kernel_pages;
				kernel_pages = min(end_pfn, usable_startpfn)
								- start_pfn;

				kernelcore_remaining -= min(kernel_pages,
							kernelcore_remaining);
				required_kernelcore -= min(kernel_pages,
							required_kernelcore);

				/* Continue if range is now fully accounted */
				if (end_pfn <= usable_startpfn) {

					/*
					 * Push zone_movable_pfn to the end so
					 * that if we have to rebalance
					 * kernelcore across nodes, we will
					 * not double account here
					 */
					zone_movable_pfn[nid] = end_pfn;
					continue;
				}
				start_pfn = usable_startpfn;
			}

			/*
			 * The usable PFN range for ZONE_MOVABLE is from
			 * start_pfn->end_pfn. Calculate size_pages as the
			 * number of pages used as kernelcore
			 */
			size_pages = end_pfn - start_pfn;
			if (size_pages > kernelcore_remaining)
				size_pages = kernelcore_remaining;
			zone_movable_pfn[nid] = start_pfn + size_pages;

			/*
			 * Some kernelcore has been met, update counts and
			 * break if the kernelcore for this node has been
6816
			 * satisfied
M
Mel Gorman 已提交
6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829
			 */
			required_kernelcore -= min(required_kernelcore,
								size_pages);
			kernelcore_remaining -= size_pages;
			if (!kernelcore_remaining)
				break;
		}
	}

	/*
	 * If there is still required_kernelcore, we do another pass with one
	 * less node in the count. This will push zone_movable_pfn[nid] further
	 * along on the nodes that still have memory until kernelcore is
6830
	 * satisfied
M
Mel Gorman 已提交
6831 6832 6833 6834 6835
	 */
	usable_nodes--;
	if (usable_nodes && required_kernelcore > usable_nodes)
		goto restart;

6836
out2:
M
Mel Gorman 已提交
6837 6838 6839 6840
	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
	for (nid = 0; nid < MAX_NUMNODES; nid++)
		zone_movable_pfn[nid] =
			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
6841

6842
out:
6843
	/* restore the node_state */
6844
	node_states[N_MEMORY] = saved_node_state;
M
Mel Gorman 已提交
6845 6846
}

6847 6848
/* Any regular or high memory on that node ? */
static void check_for_memory(pg_data_t *pgdat, int nid)
6849 6850 6851
{
	enum zone_type zone_type;

6852 6853 6854 6855
	if (N_MEMORY == N_NORMAL_MEMORY)
		return;

	for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
6856
		struct zone *zone = &pgdat->node_zones[zone_type];
6857
		if (populated_zone(zone)) {
6858 6859 6860 6861
			node_set_state(nid, N_HIGH_MEMORY);
			if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
			    zone_type <= ZONE_NORMAL)
				node_set_state(nid, N_NORMAL_MEMORY);
6862 6863
			break;
		}
6864 6865 6866
	}
}

6867 6868
/**
 * free_area_init_nodes - Initialise all pg_data_t and zone data
6869
 * @max_zone_pfn: an array of max PFNs for each zone
6870 6871
 *
 * This will call free_area_init_node() for each active node in the system.
6872
 * Using the page ranges provided by memblock_set_node(), the size of each
6873 6874 6875 6876 6877 6878 6879 6880 6881
 * zone in each node and their holes is calculated. If the maximum PFN
 * between two adjacent zones match, it is assumed that the zone is empty.
 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
 * starts where the previous one ended. For example, ZONE_DMA32 starts
 * at arch_max_dma_pfn.
 */
void __init free_area_init_nodes(unsigned long *max_zone_pfn)
{
6882 6883
	unsigned long start_pfn, end_pfn;
	int i, nid;
6884

6885 6886 6887 6888 6889
	/* Record where the zone boundaries are */
	memset(arch_zone_lowest_possible_pfn, 0,
				sizeof(arch_zone_lowest_possible_pfn));
	memset(arch_zone_highest_possible_pfn, 0,
				sizeof(arch_zone_highest_possible_pfn));
6890 6891 6892 6893

	start_pfn = find_min_pfn_with_active_regions();

	for (i = 0; i < MAX_NR_ZONES; i++) {
M
Mel Gorman 已提交
6894 6895
		if (i == ZONE_MOVABLE)
			continue;
6896 6897 6898 6899 6900 6901

		end_pfn = max(max_zone_pfn[i], start_pfn);
		arch_zone_lowest_possible_pfn[i] = start_pfn;
		arch_zone_highest_possible_pfn[i] = end_pfn;

		start_pfn = end_pfn;
6902
	}
M
Mel Gorman 已提交
6903 6904 6905

	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
6906
	find_zone_movable_pfns_for_nodes();
6907 6908

	/* Print out the zone ranges */
6909
	pr_info("Zone ranges:\n");
M
Mel Gorman 已提交
6910 6911 6912
	for (i = 0; i < MAX_NR_ZONES; i++) {
		if (i == ZONE_MOVABLE)
			continue;
6913
		pr_info("  %-8s ", zone_names[i]);
6914 6915
		if (arch_zone_lowest_possible_pfn[i] ==
				arch_zone_highest_possible_pfn[i])
6916
			pr_cont("empty\n");
6917
		else
6918 6919 6920 6921
			pr_cont("[mem %#018Lx-%#018Lx]\n",
				(u64)arch_zone_lowest_possible_pfn[i]
					<< PAGE_SHIFT,
				((u64)arch_zone_highest_possible_pfn[i]
6922
					<< PAGE_SHIFT) - 1);
M
Mel Gorman 已提交
6923 6924 6925
	}

	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
6926
	pr_info("Movable zone start for each node\n");
M
Mel Gorman 已提交
6927 6928
	for (i = 0; i < MAX_NUMNODES; i++) {
		if (zone_movable_pfn[i])
6929 6930
			pr_info("  Node %d: %#018Lx\n", i,
			       (u64)zone_movable_pfn[i] << PAGE_SHIFT);
M
Mel Gorman 已提交
6931
	}
6932

6933
	/* Print out the early node map */
6934
	pr_info("Early memory node ranges\n");
6935
	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
6936 6937 6938
		pr_info("  node %3d: [mem %#018Lx-%#018Lx]\n", nid,
			(u64)start_pfn << PAGE_SHIFT,
			((u64)end_pfn << PAGE_SHIFT) - 1);
6939 6940

	/* Initialise every node */
6941
	mminit_verify_pageflags_layout();
6942
	setup_nr_node_ids();
6943
	zero_resv_unavail();
6944 6945
	for_each_online_node(nid) {
		pg_data_t *pgdat = NODE_DATA(nid);
6946
		free_area_init_node(nid, NULL,
6947
				find_min_pfn_for_node(nid), NULL);
6948 6949 6950

		/* Any memory on that node */
		if (pgdat->node_present_pages)
6951 6952
			node_set_state(nid, N_MEMORY);
		check_for_memory(pgdat, nid);
6953 6954
	}
}
M
Mel Gorman 已提交
6955

6956 6957
static int __init cmdline_parse_core(char *p, unsigned long *core,
				     unsigned long *percent)
M
Mel Gorman 已提交
6958 6959
{
	unsigned long long coremem;
6960 6961
	char *endptr;

M
Mel Gorman 已提交
6962 6963 6964
	if (!p)
		return -EINVAL;

6965 6966 6967 6968 6969
	/* Value may be a percentage of total memory, otherwise bytes */
	coremem = simple_strtoull(p, &endptr, 0);
	if (*endptr == '%') {
		/* Paranoid check for percent values greater than 100 */
		WARN_ON(coremem > 100);
M
Mel Gorman 已提交
6970

6971 6972 6973 6974 6975
		*percent = coremem;
	} else {
		coremem = memparse(p, &p);
		/* Paranoid check that UL is enough for the coremem value */
		WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
M
Mel Gorman 已提交
6976

6977 6978 6979
		*core = coremem >> PAGE_SHIFT;
		*percent = 0UL;
	}
M
Mel Gorman 已提交
6980 6981
	return 0;
}
M
Mel Gorman 已提交
6982

6983 6984 6985 6986 6987 6988
/*
 * kernelcore=size sets the amount of memory for use for allocations that
 * cannot be reclaimed or migrated.
 */
static int __init cmdline_parse_kernelcore(char *p)
{
6989 6990 6991 6992 6993 6994
	/* parse kernelcore=mirror */
	if (parse_option_str(p, "mirror")) {
		mirrored_kernelcore = true;
		return 0;
	}

6995 6996
	return cmdline_parse_core(p, &required_kernelcore,
				  &required_kernelcore_percent);
6997 6998 6999 7000 7001 7002 7003 7004
}

/*
 * movablecore=size sets the amount of memory for use for allocations that
 * can be reclaimed or migrated.
 */
static int __init cmdline_parse_movablecore(char *p)
{
7005 7006
	return cmdline_parse_core(p, &required_movablecore,
				  &required_movablecore_percent);
7007 7008
}

M
Mel Gorman 已提交
7009
early_param("kernelcore", cmdline_parse_kernelcore);
7010
early_param("movablecore", cmdline_parse_movablecore);
M
Mel Gorman 已提交
7011

T
Tejun Heo 已提交
7012
#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
7013

7014 7015 7016 7017 7018
void adjust_managed_page_count(struct page *page, long count)
{
	spin_lock(&managed_page_count_lock);
	page_zone(page)->managed_pages += count;
	totalram_pages += count;
7019 7020 7021 7022
#ifdef CONFIG_HIGHMEM
	if (PageHighMem(page))
		totalhigh_pages += count;
#endif
7023 7024
	spin_unlock(&managed_page_count_lock);
}
7025
EXPORT_SYMBOL(adjust_managed_page_count);
7026

7027
unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
7028
{
7029 7030
	void *pos;
	unsigned long pages = 0;
7031

7032 7033 7034
	start = (void *)PAGE_ALIGN((unsigned long)start);
	end = (void *)((unsigned long)end & PAGE_MASK);
	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045
		struct page *page = virt_to_page(pos);
		void *direct_map_addr;

		/*
		 * 'direct_map_addr' might be different from 'pos'
		 * because some architectures' virt_to_page()
		 * work with aliases.  Getting the direct map
		 * address ensures that we get a _writeable_
		 * alias for the memset().
		 */
		direct_map_addr = page_address(page);
7046
		if ((unsigned int)poison <= 0xFF)
7047 7048 7049
			memset(direct_map_addr, poison, PAGE_SIZE);

		free_reserved_page(page);
7050 7051 7052
	}

	if (pages && s)
7053 7054
		pr_info("Freeing %s memory: %ldK\n",
			s, pages << (PAGE_SHIFT - 10));
7055 7056 7057

	return pages;
}
7058
EXPORT_SYMBOL(free_reserved_area);
7059

7060 7061 7062 7063 7064
#ifdef	CONFIG_HIGHMEM
void free_highmem_page(struct page *page)
{
	__free_reserved_page(page);
	totalram_pages++;
7065
	page_zone(page)->managed_pages++;
7066 7067 7068 7069
	totalhigh_pages++;
}
#endif

7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091

void __init mem_init_print_info(const char *str)
{
	unsigned long physpages, codesize, datasize, rosize, bss_size;
	unsigned long init_code_size, init_data_size;

	physpages = get_num_physpages();
	codesize = _etext - _stext;
	datasize = _edata - _sdata;
	rosize = __end_rodata - __start_rodata;
	bss_size = __bss_stop - __bss_start;
	init_data_size = __init_end - __init_begin;
	init_code_size = _einittext - _sinittext;

	/*
	 * Detect special cases and adjust section sizes accordingly:
	 * 1) .init.* may be embedded into .data sections
	 * 2) .init.text.* may be out of [__init_begin, __init_end],
	 *    please refer to arch/tile/kernel/vmlinux.lds.S.
	 * 3) .rodata.* may be embedded into .text or .data sections.
	 */
#define adj_init_size(start, end, size, pos, adj) \
7092 7093 7094 7095
	do { \
		if (start <= pos && pos < end && size > adj) \
			size -= adj; \
	} while (0)
7096 7097 7098 7099 7100 7101 7102 7103 7104 7105

	adj_init_size(__init_begin, __init_end, init_data_size,
		     _sinittext, init_code_size);
	adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
	adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
	adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
	adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);

#undef	adj_init_size

J
Joe Perches 已提交
7106
	pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7107
#ifdef	CONFIG_HIGHMEM
J
Joe Perches 已提交
7108
		", %luK highmem"
7109
#endif
J
Joe Perches 已提交
7110 7111 7112 7113 7114 7115 7116
		"%s%s)\n",
		nr_free_pages() << (PAGE_SHIFT - 10),
		physpages << (PAGE_SHIFT - 10),
		codesize >> 10, datasize >> 10, rosize >> 10,
		(init_data_size + init_code_size) >> 10, bss_size >> 10,
		(physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
		totalcma_pages << (PAGE_SHIFT - 10),
7117
#ifdef	CONFIG_HIGHMEM
J
Joe Perches 已提交
7118
		totalhigh_pages << (PAGE_SHIFT - 10),
7119
#endif
J
Joe Perches 已提交
7120
		str ? ", " : "", str ? str : "");
7121 7122
}

7123
/**
7124 7125
 * set_dma_reserve - set the specified number of pages reserved in the first zone
 * @new_dma_reserve: The number of pages to mark reserved
7126
 *
7127
 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
7128 7129
 * In the DMA zone, a significant percentage may be consumed by kernel image
 * and other unfreeable allocations which can skew the watermarks badly. This
7130 7131 7132
 * function may optionally be used to account for unfreeable pages in the
 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
 * smaller per-cpu batchsize.
7133 7134 7135 7136 7137 7138
 */
void __init set_dma_reserve(unsigned long new_dma_reserve)
{
	dma_reserve = new_dma_reserve;
}

L
Linus Torvalds 已提交
7139 7140
void __init free_area_init(unsigned long *zones_size)
{
7141
	zero_resv_unavail();
7142
	free_area_init_node(0, zones_size,
L
Linus Torvalds 已提交
7143 7144 7145
			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
}

7146
static int page_alloc_cpu_dead(unsigned int cpu)
L
Linus Torvalds 已提交
7147 7148
{

7149 7150
	lru_add_drain_cpu(cpu);
	drain_pages(cpu);
7151

7152 7153 7154 7155 7156 7157 7158
	/*
	 * Spill the event counters of the dead processor
	 * into the current processors event counters.
	 * This artificially elevates the count of the current
	 * processor.
	 */
	vm_events_fold_cpu(cpu);
7159

7160 7161 7162 7163 7164 7165 7166 7167 7168
	/*
	 * Zero the differential counters of the dead processor
	 * so that the vm statistics are consistent.
	 *
	 * This is only okay since the processor is dead and cannot
	 * race with what we are doing.
	 */
	cpu_vm_stats_fold(cpu);
	return 0;
L
Linus Torvalds 已提交
7169 7170 7171 7172
}

void __init page_alloc_init(void)
{
7173 7174 7175 7176 7177 7178
	int ret;

	ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
					"mm/page_alloc:dead", NULL,
					page_alloc_cpu_dead);
	WARN_ON(ret < 0);
L
Linus Torvalds 已提交
7179 7180
}

7181
/*
7182
 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
7183 7184 7185 7186 7187 7188
 *	or min_free_kbytes changes.
 */
static void calculate_totalreserve_pages(void)
{
	struct pglist_data *pgdat;
	unsigned long reserve_pages = 0;
7189
	enum zone_type i, j;
7190 7191

	for_each_online_pgdat(pgdat) {
7192 7193 7194

		pgdat->totalreserve_pages = 0;

7195 7196
		for (i = 0; i < MAX_NR_ZONES; i++) {
			struct zone *zone = pgdat->node_zones + i;
7197
			long max = 0;
7198 7199 7200 7201 7202 7203 7204

			/* Find valid and maximum lowmem_reserve in the zone */
			for (j = i; j < MAX_NR_ZONES; j++) {
				if (zone->lowmem_reserve[j] > max)
					max = zone->lowmem_reserve[j];
			}

7205 7206
			/* we treat the high watermark as reserved pages. */
			max += high_wmark_pages(zone);
7207

7208 7209
			if (max > zone->managed_pages)
				max = zone->managed_pages;
7210

7211
			pgdat->totalreserve_pages += max;
7212

7213 7214 7215 7216 7217 7218
			reserve_pages += max;
		}
	}
	totalreserve_pages = reserve_pages;
}

L
Linus Torvalds 已提交
7219 7220
/*
 * setup_per_zone_lowmem_reserve - called whenever
7221
 *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
L
Linus Torvalds 已提交
7222 7223 7224 7225 7226 7227
 *	has a correct pages reserved value, so an adequate number of
 *	pages are left in the zone after a successful __alloc_pages().
 */
static void setup_per_zone_lowmem_reserve(void)
{
	struct pglist_data *pgdat;
7228
	enum zone_type j, idx;
L
Linus Torvalds 已提交
7229

7230
	for_each_online_pgdat(pgdat) {
L
Linus Torvalds 已提交
7231 7232
		for (j = 0; j < MAX_NR_ZONES; j++) {
			struct zone *zone = pgdat->node_zones + j;
7233
			unsigned long managed_pages = zone->managed_pages;
L
Linus Torvalds 已提交
7234 7235 7236

			zone->lowmem_reserve[j] = 0;

7237 7238
			idx = j;
			while (idx) {
L
Linus Torvalds 已提交
7239 7240
				struct zone *lower_zone;

7241
				idx--;
L
Linus Torvalds 已提交
7242
				lower_zone = pgdat->node_zones + idx;
7243 7244 7245 7246 7247 7248 7249 7250

				if (sysctl_lowmem_reserve_ratio[idx] < 1) {
					sysctl_lowmem_reserve_ratio[idx] = 0;
					lower_zone->lowmem_reserve[j] = 0;
				} else {
					lower_zone->lowmem_reserve[j] =
						managed_pages / sysctl_lowmem_reserve_ratio[idx];
				}
7251
				managed_pages += lower_zone->managed_pages;
L
Linus Torvalds 已提交
7252 7253 7254
			}
		}
	}
7255 7256 7257

	/* update totalreserve_pages */
	calculate_totalreserve_pages();
L
Linus Torvalds 已提交
7258 7259
}

7260
static void __setup_per_zone_wmarks(void)
L
Linus Torvalds 已提交
7261 7262 7263 7264 7265 7266 7267 7268 7269
{
	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
	unsigned long lowmem_pages = 0;
	struct zone *zone;
	unsigned long flags;

	/* Calculate total number of !ZONE_HIGHMEM pages */
	for_each_zone(zone) {
		if (!is_highmem(zone))
7270
			lowmem_pages += zone->managed_pages;
L
Linus Torvalds 已提交
7271 7272 7273
	}

	for_each_zone(zone) {
7274 7275
		u64 tmp;

7276
		spin_lock_irqsave(&zone->lock, flags);
7277
		tmp = (u64)pages_min * zone->managed_pages;
7278
		do_div(tmp, lowmem_pages);
L
Linus Torvalds 已提交
7279 7280
		if (is_highmem(zone)) {
			/*
N
Nick Piggin 已提交
7281 7282 7283 7284
			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
			 * need highmem pages, so cap pages_min to a small
			 * value here.
			 *
7285
			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
Y
Yaowei Bai 已提交
7286
			 * deltas control asynch page reclaim, and so should
N
Nick Piggin 已提交
7287
			 * not be capped for highmem.
L
Linus Torvalds 已提交
7288
			 */
7289
			unsigned long min_pages;
L
Linus Torvalds 已提交
7290

7291
			min_pages = zone->managed_pages / 1024;
7292
			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
7293
			zone->watermark[WMARK_MIN] = min_pages;
L
Linus Torvalds 已提交
7294
		} else {
N
Nick Piggin 已提交
7295 7296
			/*
			 * If it's a lowmem zone, reserve a number of pages
L
Linus Torvalds 已提交
7297 7298
			 * proportionate to the zone's size.
			 */
7299
			zone->watermark[WMARK_MIN] = tmp;
L
Linus Torvalds 已提交
7300 7301
		}

7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312
		/*
		 * Set the kswapd watermarks distance according to the
		 * scale factor in proportion to available memory, but
		 * ensure a minimum size on small systems.
		 */
		tmp = max_t(u64, tmp >> 2,
			    mult_frac(zone->managed_pages,
				      watermark_scale_factor, 10000));

		zone->watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
		zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
7313

7314
		spin_unlock_irqrestore(&zone->lock, flags);
L
Linus Torvalds 已提交
7315
	}
7316 7317 7318

	/* update totalreserve_pages */
	calculate_totalreserve_pages();
L
Linus Torvalds 已提交
7319 7320
}

7321 7322 7323 7324 7325 7326 7327 7328 7329
/**
 * setup_per_zone_wmarks - called when min_free_kbytes changes
 * or when memory is hot-{added|removed}
 *
 * Ensures that the watermark[min,low,high] values for each zone are set
 * correctly with respect to min_free_kbytes.
 */
void setup_per_zone_wmarks(void)
{
7330 7331 7332
	static DEFINE_SPINLOCK(lock);

	spin_lock(&lock);
7333
	__setup_per_zone_wmarks();
7334
	spin_unlock(&lock);
7335 7336
}

L
Linus Torvalds 已提交
7337 7338 7339 7340 7341 7342 7343
/*
 * Initialise min_free_kbytes.
 *
 * For small machines we want it small (128k min).  For large machines
 * we want it large (64MB max).  But it is not linear, because network
 * bandwidth does not increase linearly with machine size.  We use
 *
7344
 *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
L
Linus Torvalds 已提交
7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360
 *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
 *
 * which yields
 *
 * 16MB:	512k
 * 32MB:	724k
 * 64MB:	1024k
 * 128MB:	1448k
 * 256MB:	2048k
 * 512MB:	2896k
 * 1024MB:	4096k
 * 2048MB:	5792k
 * 4096MB:	8192k
 * 8192MB:	11584k
 * 16384MB:	16384k
 */
7361
int __meminit init_per_zone_wmark_min(void)
L
Linus Torvalds 已提交
7362 7363
{
	unsigned long lowmem_kbytes;
7364
	int new_min_free_kbytes;
L
Linus Torvalds 已提交
7365 7366

	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378
	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);

	if (new_min_free_kbytes > user_min_free_kbytes) {
		min_free_kbytes = new_min_free_kbytes;
		if (min_free_kbytes < 128)
			min_free_kbytes = 128;
		if (min_free_kbytes > 65536)
			min_free_kbytes = 65536;
	} else {
		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
				new_min_free_kbytes, user_min_free_kbytes);
	}
7379
	setup_per_zone_wmarks();
7380
	refresh_zone_stat_thresholds();
L
Linus Torvalds 已提交
7381
	setup_per_zone_lowmem_reserve();
7382 7383 7384 7385 7386 7387

#ifdef CONFIG_NUMA
	setup_min_unmapped_ratio();
	setup_min_slab_ratio();
#endif

L
Linus Torvalds 已提交
7388 7389
	return 0;
}
7390
core_initcall(init_per_zone_wmark_min)
L
Linus Torvalds 已提交
7391 7392

/*
7393
 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
L
Linus Torvalds 已提交
7394 7395 7396
 *	that we can call two helper functions whenever min_free_kbytes
 *	changes.
 */
7397
int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
7398
	void __user *buffer, size_t *length, loff_t *ppos)
L
Linus Torvalds 已提交
7399
{
7400 7401 7402 7403 7404 7405
	int rc;

	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
	if (rc)
		return rc;

7406 7407
	if (write) {
		user_min_free_kbytes = min_free_kbytes;
7408
		setup_per_zone_wmarks();
7409
	}
L
Linus Torvalds 已提交
7410 7411 7412
	return 0;
}

7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427
int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
	void __user *buffer, size_t *length, loff_t *ppos)
{
	int rc;

	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
	if (rc)
		return rc;

	if (write)
		setup_per_zone_wmarks();

	return 0;
}

7428
#ifdef CONFIG_NUMA
7429
static void setup_min_unmapped_ratio(void)
7430
{
7431
	pg_data_t *pgdat;
7432 7433
	struct zone *zone;

7434
	for_each_online_pgdat(pgdat)
7435
		pgdat->min_unmapped_pages = 0;
7436

7437
	for_each_zone(zone)
7438
		zone->zone_pgdat->min_unmapped_pages += (zone->managed_pages *
7439 7440
				sysctl_min_unmapped_ratio) / 100;
}
7441

7442 7443

int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
7444
	void __user *buffer, size_t *length, loff_t *ppos)
7445 7446 7447
{
	int rc;

7448
	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7449 7450 7451
	if (rc)
		return rc;

7452 7453 7454 7455 7456 7457 7458 7459 7460 7461
	setup_min_unmapped_ratio();

	return 0;
}

static void setup_min_slab_ratio(void)
{
	pg_data_t *pgdat;
	struct zone *zone;

7462 7463 7464
	for_each_online_pgdat(pgdat)
		pgdat->min_slab_pages = 0;

7465
	for_each_zone(zone)
7466
		zone->zone_pgdat->min_slab_pages += (zone->managed_pages *
7467
				sysctl_min_slab_ratio) / 100;
7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480
}

int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
	void __user *buffer, size_t *length, loff_t *ppos)
{
	int rc;

	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
	if (rc)
		return rc;

	setup_min_slab_ratio();

7481 7482
	return 0;
}
7483 7484
#endif

L
Linus Torvalds 已提交
7485 7486 7487 7488 7489 7490
/*
 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
 *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
 *	whenever sysctl_lowmem_reserve_ratio changes.
 *
 * The reserve ratio obviously has absolutely no relation with the
7491
 * minimum watermarks. The lowmem reserve ratio can only make sense
L
Linus Torvalds 已提交
7492 7493
 * if in function of the boot time zone sizes.
 */
7494
int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
7495
	void __user *buffer, size_t *length, loff_t *ppos)
L
Linus Torvalds 已提交
7496
{
7497
	proc_dointvec_minmax(table, write, buffer, length, ppos);
L
Linus Torvalds 已提交
7498 7499 7500 7501
	setup_per_zone_lowmem_reserve();
	return 0;
}

7502 7503
/*
 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
7504 7505
 * cpu.  It is the fraction of total pages in each zone that a hot per cpu
 * pagelist can have before it gets flushed back to buddy allocator.
7506
 */
7507
int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
7508
	void __user *buffer, size_t *length, loff_t *ppos)
7509 7510
{
	struct zone *zone;
7511
	int old_percpu_pagelist_fraction;
7512 7513
	int ret;

7514 7515 7516
	mutex_lock(&pcp_batch_high_lock);
	old_percpu_pagelist_fraction = percpu_pagelist_fraction;

7517
	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531
	if (!write || ret < 0)
		goto out;

	/* Sanity checking to avoid pcp imbalance */
	if (percpu_pagelist_fraction &&
	    percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
		percpu_pagelist_fraction = old_percpu_pagelist_fraction;
		ret = -EINVAL;
		goto out;
	}

	/* No change? */
	if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
		goto out;
7532

7533
	for_each_populated_zone(zone) {
7534 7535
		unsigned int cpu;

7536
		for_each_possible_cpu(cpu)
7537 7538
			pageset_set_high_and_batch(zone,
					per_cpu_ptr(zone->pageset, cpu));
7539
	}
7540
out:
7541
	mutex_unlock(&pcp_batch_high_lock);
7542
	return ret;
7543 7544
}

7545
#ifdef CONFIG_NUMA
7546
int hashdist = HASHDIST_DEFAULT;
L
Linus Torvalds 已提交
7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557

static int __init set_hashdist(char *str)
{
	if (!str)
		return 0;
	hashdist = simple_strtoul(str, &str, 0);
	return 1;
}
__setup("hashdist=", set_hashdist);
#endif

7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568
#ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
/*
 * Returns the number of pages that arch has reserved but
 * is not known to alloc_large_system_hash().
 */
static unsigned long __init arch_reserved_kernel_pages(void)
{
	return 0;
}
#endif

P
Pavel Tatashin 已提交
7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583
/*
 * Adaptive scale is meant to reduce sizes of hash tables on large memory
 * machines. As memory size is increased the scale is also increased but at
 * slower pace.  Starting from ADAPT_SCALE_BASE (64G), every time memory
 * quadruples the scale is increased by one, which means the size of hash table
 * only doubles, instead of quadrupling as well.
 * Because 32-bit systems cannot have large physical memory, where this scaling
 * makes sense, it is disabled on such platforms.
 */
#if __BITS_PER_LONG > 32
#define ADAPT_SCALE_BASE	(64ul << 30)
#define ADAPT_SCALE_SHIFT	2
#define ADAPT_SCALE_NPAGES	(ADAPT_SCALE_BASE >> PAGE_SHIFT)
#endif

L
Linus Torvalds 已提交
7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596
/*
 * allocate a large system hash table from bootmem
 * - it is assumed that the hash table must contain an exact power-of-2
 *   quantity of entries
 * - limit is the number of hash buckets, not the total allocation size
 */
void *__init alloc_large_system_hash(const char *tablename,
				     unsigned long bucketsize,
				     unsigned long numentries,
				     int scale,
				     int flags,
				     unsigned int *_hash_shift,
				     unsigned int *_hash_mask,
7597 7598
				     unsigned long low_limit,
				     unsigned long high_limit)
L
Linus Torvalds 已提交
7599
{
7600
	unsigned long long max = high_limit;
L
Linus Torvalds 已提交
7601 7602
	unsigned long log2qty, size;
	void *table = NULL;
7603
	gfp_t gfp_flags;
L
Linus Torvalds 已提交
7604 7605 7606 7607

	/* allow the kernel cmdline to have a say */
	if (!numentries) {
		/* round applicable memory size up to nearest megabyte */
A
Andrew Morton 已提交
7608
		numentries = nr_kernel_pages;
7609
		numentries -= arch_reserved_kernel_pages();
7610 7611 7612 7613

		/* It isn't necessary when PAGE_SIZE >= 1MB */
		if (PAGE_SHIFT < 20)
			numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
L
Linus Torvalds 已提交
7614

P
Pavel Tatashin 已提交
7615 7616 7617 7618 7619 7620 7621 7622 7623 7624
#if __BITS_PER_LONG > 32
		if (!high_limit) {
			unsigned long adapt;

			for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
			     adapt <<= ADAPT_SCALE_SHIFT)
				scale++;
		}
#endif

L
Linus Torvalds 已提交
7625 7626 7627 7628 7629
		/* limit to 1 bucket per 2^scale bytes of low memory */
		if (scale > PAGE_SHIFT)
			numentries >>= (scale - PAGE_SHIFT);
		else
			numentries <<= (PAGE_SHIFT - scale);
7630 7631

		/* Make sure we've got at least a 0-order allocation.. */
7632 7633 7634 7635 7636 7637 7638 7639
		if (unlikely(flags & HASH_SMALL)) {
			/* Makes no sense without HASH_EARLY */
			WARN_ON(!(flags & HASH_EARLY));
			if (!(numentries >> *_hash_shift)) {
				numentries = 1UL << *_hash_shift;
				BUG_ON(!numentries);
			}
		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
7640
			numentries = PAGE_SIZE / bucketsize;
L
Linus Torvalds 已提交
7641
	}
7642
	numentries = roundup_pow_of_two(numentries);
L
Linus Torvalds 已提交
7643 7644 7645 7646 7647 7648

	/* limit allocation size to 1/16 total memory by default */
	if (max == 0) {
		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
		do_div(max, bucketsize);
	}
7649
	max = min(max, 0x80000000ULL);
L
Linus Torvalds 已提交
7650

7651 7652
	if (numentries < low_limit)
		numentries = low_limit;
L
Linus Torvalds 已提交
7653 7654 7655
	if (numentries > max)
		numentries = max;

7656
	log2qty = ilog2(numentries);
L
Linus Torvalds 已提交
7657

7658
	gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
L
Linus Torvalds 已提交
7659 7660
	do {
		size = bucketsize << log2qty;
7661 7662 7663 7664 7665 7666
		if (flags & HASH_EARLY) {
			if (flags & HASH_ZERO)
				table = memblock_virt_alloc_nopanic(size, 0);
			else
				table = memblock_virt_alloc_raw(size, 0);
		} else if (hashdist) {
7667
			table = __vmalloc(size, gfp_flags, PAGE_KERNEL);
7668
		} else {
7669 7670
			/*
			 * If bucketsize is not a power-of-two, we may free
7671 7672
			 * some pages at the end of hash table which
			 * alloc_pages_exact() automatically does
7673
			 */
7674
			if (get_order(size) < MAX_ORDER) {
7675 7676
				table = alloc_pages_exact(size, gfp_flags);
				kmemleak_alloc(table, size, 1, gfp_flags);
7677
			}
L
Linus Torvalds 已提交
7678 7679 7680 7681 7682 7683
		}
	} while (!table && size > PAGE_SIZE && --log2qty);

	if (!table)
		panic("Failed to allocate %s hash table\n", tablename);

7684 7685
	pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
		tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
L
Linus Torvalds 已提交
7686 7687 7688 7689 7690 7691 7692 7693

	if (_hash_shift)
		*_hash_shift = log2qty;
	if (_hash_mask)
		*_hash_mask = (1 << log2qty) - 1;

	return table;
}
7694

K
KAMEZAWA Hiroyuki 已提交
7695
/*
7696 7697 7698
 * This function checks whether pageblock includes unmovable pages or not.
 * If @count is not zero, it is okay to include less @count unmovable pages
 *
7699
 * PageLRU check without isolation or lru_lock could race so that
7700 7701 7702
 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
 * check without lock_page also may miss some movable non-lru pages at
 * race condition. So you can't expect this function should be exact.
K
KAMEZAWA Hiroyuki 已提交
7703
 */
7704
bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
7705
			 int migratetype,
7706
			 bool skip_hwpoisoned_pages)
7707 7708
{
	unsigned long pfn, iter, found;
7709

7710
	/*
7711 7712 7713 7714 7715
	 * TODO we could make this much more efficient by not checking every
	 * page in the range if we know all of them are in MOVABLE_ZONE and
	 * that the movable zone guarantees that pages are migratable but
	 * the later is not the case right now unfortunatelly. E.g. movablecore
	 * can still lead to having bootmem allocations in zone_movable.
7716 7717
	 */

7718 7719 7720 7721 7722 7723 7724 7725 7726
	/*
	 * CMA allocations (alloc_contig_range) really need to mark isolate
	 * CMA pageblocks even when they are not movable in fact so consider
	 * them movable here.
	 */
	if (is_migrate_cma(migratetype) &&
			is_migrate_cma(get_pageblock_migratetype(page)))
		return false;

7727 7728 7729 7730
	pfn = page_to_pfn(page);
	for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
		unsigned long check = pfn + iter;

7731
		if (!pfn_valid_within(check))
7732
			continue;
7733

7734
		page = pfn_to_page(check);
7735

7736
		if (PageReserved(page))
7737
			goto unmovable;
7738

7739 7740 7741 7742 7743 7744 7745 7746
		/*
		 * If the zone is movable and we have ruled out all reserved
		 * pages then it should be reasonably safe to assume the rest
		 * is movable.
		 */
		if (zone_idx(zone) == ZONE_MOVABLE)
			continue;

7747 7748 7749 7750 7751 7752
		/*
		 * Hugepages are not in LRU lists, but they're movable.
		 * We need not scan over tail pages bacause we don't
		 * handle each tail page individually in migration.
		 */
		if (PageHuge(page)) {
7753 7754
			struct page *head = compound_head(page);
			unsigned int skip_pages;
7755

7756
			if (!hugepage_migration_supported(page_hstate(head)))
7757 7758
				goto unmovable;

7759 7760
			skip_pages = (1 << compound_order(head)) - (page - head);
			iter += skip_pages - 1;
7761 7762 7763
			continue;
		}

7764 7765 7766 7767
		/*
		 * We can't use page_count without pin a page
		 * because another CPU can free compound page.
		 * This check already skips compound tails of THP
7768
		 * because their page->_refcount is zero at all time.
7769
		 */
7770
		if (!page_ref_count(page)) {
7771 7772 7773 7774
			if (PageBuddy(page))
				iter += (1 << page_order(page)) - 1;
			continue;
		}
7775

7776 7777 7778 7779 7780 7781 7782
		/*
		 * The HWPoisoned page may be not in buddy system, and
		 * page_count() is not 0.
		 */
		if (skip_hwpoisoned_pages && PageHWPoison(page))
			continue;

7783 7784 7785
		if (__PageMovable(page))
			continue;

7786 7787 7788
		if (!PageLRU(page))
			found++;
		/*
7789 7790 7791
		 * If there are RECLAIMABLE pages, we need to check
		 * it.  But now, memory offline itself doesn't call
		 * shrink_node_slabs() and it still to be fixed.
7792 7793 7794 7795 7796 7797 7798 7799 7800 7801
		 */
		/*
		 * If the page is not RAM, page_count()should be 0.
		 * we don't need more check. This is an _used_ not-movable page.
		 *
		 * The problematic thing here is PG_reserved pages. PG_reserved
		 * is set to both of a memory hole page and a _used_ kernel
		 * page at boot.
		 */
		if (found > count)
7802
			goto unmovable;
7803
	}
7804
	return false;
7805 7806 7807
unmovable:
	WARN_ON_ONCE(zone_idx(zone) == ZONE_MOVABLE);
	return true;
7808 7809
}

7810
#if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824

static unsigned long pfn_max_align_down(unsigned long pfn)
{
	return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
			     pageblock_nr_pages) - 1);
}

static unsigned long pfn_max_align_up(unsigned long pfn)
{
	return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
				pageblock_nr_pages));
}

/* [start, end) must belong to a single zone. */
7825 7826
static int __alloc_contig_migrate_range(struct compact_control *cc,
					unsigned long start, unsigned long end)
7827 7828
{
	/* This function is based on compact_zone() from compaction.c. */
7829
	unsigned long nr_reclaimed;
7830 7831 7832 7833
	unsigned long pfn = start;
	unsigned int tries = 0;
	int ret = 0;

7834
	migrate_prep();
7835

7836
	while (pfn < end || !list_empty(&cc->migratepages)) {
7837 7838 7839 7840 7841
		if (fatal_signal_pending(current)) {
			ret = -EINTR;
			break;
		}

7842 7843
		if (list_empty(&cc->migratepages)) {
			cc->nr_migratepages = 0;
7844
			pfn = isolate_migratepages_range(cc, pfn, end);
7845 7846 7847 7848 7849 7850 7851 7852 7853 7854
			if (!pfn) {
				ret = -EINTR;
				break;
			}
			tries = 0;
		} else if (++tries == 5) {
			ret = ret < 0 ? ret : -EBUSY;
			break;
		}

7855 7856 7857
		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
							&cc->migratepages);
		cc->nr_migratepages -= nr_reclaimed;
7858

7859
		ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
7860
				    NULL, 0, cc->mode, MR_CONTIG_RANGE);
7861
	}
7862 7863 7864 7865 7866
	if (ret < 0) {
		putback_movable_pages(&cc->migratepages);
		return ret;
	}
	return 0;
7867 7868 7869 7870 7871 7872
}

/**
 * alloc_contig_range() -- tries to allocate given range of pages
 * @start:	start PFN to allocate
 * @end:	one-past-the-last PFN to allocate
7873 7874 7875 7876
 * @migratetype:	migratetype of the underlaying pageblocks (either
 *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
 *			in range must have the same migratetype and it must
 *			be either of the two.
7877
 * @gfp_mask:	GFP mask to use during compaction
7878 7879
 *
 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
7880
 * aligned.  The PFN range must belong to a single zone.
7881
 *
7882 7883 7884
 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
 * pageblocks in the range.  Once isolated, the pageblocks should not
 * be modified by others.
7885 7886 7887 7888 7889
 *
 * Returns zero on success or negative error code.  On success all
 * pages which PFN is in [start, end) are allocated for the caller and
 * need to be freed with free_contig_range().
 */
7890
int alloc_contig_range(unsigned long start, unsigned long end,
7891
		       unsigned migratetype, gfp_t gfp_mask)
7892 7893
{
	unsigned long outer_start, outer_end;
7894 7895
	unsigned int order;
	int ret = 0;
7896

7897 7898 7899 7900
	struct compact_control cc = {
		.nr_migratepages = 0,
		.order = -1,
		.zone = page_zone(pfn_to_page(start)),
7901
		.mode = MIGRATE_SYNC,
7902
		.ignore_skip_hint = true,
7903
		.no_set_skip_hint = true,
7904
		.gfp_mask = current_gfp_context(gfp_mask),
7905 7906 7907
	};
	INIT_LIST_HEAD(&cc.migratepages);

7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932
	/*
	 * What we do here is we mark all pageblocks in range as
	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
	 * have different sizes, and due to the way page allocator
	 * work, we align the range to biggest of the two pages so
	 * that page allocator won't try to merge buddies from
	 * different pageblocks and change MIGRATE_ISOLATE to some
	 * other migration type.
	 *
	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
	 * migrate the pages from an unaligned range (ie. pages that
	 * we are interested in).  This will put all the pages in
	 * range back to page allocator as MIGRATE_ISOLATE.
	 *
	 * When this is done, we take the pages in range from page
	 * allocator removing them from the buddy system.  This way
	 * page allocator will never consider using them.
	 *
	 * This lets us mark the pageblocks back as
	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
	 * aligned range but not in the unaligned, original range are
	 * put back to page allocator so that buddy can use them.
	 */

	ret = start_isolate_page_range(pfn_max_align_down(start),
7933 7934
				       pfn_max_align_up(end), migratetype,
				       false);
7935
	if (ret)
7936
		return ret;
7937

7938 7939
	/*
	 * In case of -EBUSY, we'd like to know which page causes problem.
7940 7941 7942 7943 7944 7945 7946
	 * So, just fall through. test_pages_isolated() has a tracepoint
	 * which will report the busy page.
	 *
	 * It is possible that busy pages could become available before
	 * the call to test_pages_isolated, and the range will actually be
	 * allocated.  So, if we fall through be sure to clear ret so that
	 * -EBUSY is not accidentally used or returned to caller.
7947
	 */
7948
	ret = __alloc_contig_migrate_range(&cc, start, end);
7949
	if (ret && ret != -EBUSY)
7950
		goto done;
7951
	ret =0;
7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970

	/*
	 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
	 * more, all pages in [start, end) are free in page allocator.
	 * What we are going to do is to allocate all pages from
	 * [start, end) (that is remove them from page allocator).
	 *
	 * The only problem is that pages at the beginning and at the
	 * end of interesting range may be not aligned with pages that
	 * page allocator holds, ie. they can be part of higher order
	 * pages.  Because of this, we reserve the bigger range and
	 * once this is done free the pages we are not interested in.
	 *
	 * We don't have to hold zone->lock here because the pages are
	 * isolated thus they won't get removed from buddy.
	 */

	lru_add_drain_all();
7971
	drain_all_pages(cc.zone);
7972 7973 7974 7975 7976

	order = 0;
	outer_start = start;
	while (!PageBuddy(pfn_to_page(outer_start))) {
		if (++order >= MAX_ORDER) {
7977 7978
			outer_start = start;
			break;
7979 7980 7981 7982
		}
		outer_start &= ~0UL << order;
	}

7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995
	if (outer_start != start) {
		order = page_order(pfn_to_page(outer_start));

		/*
		 * outer_start page could be small order buddy page and
		 * it doesn't include start page. Adjust outer_start
		 * in this case to report failed page properly
		 * on tracepoint in test_pages_isolated()
		 */
		if (outer_start + (1UL << order) <= start)
			outer_start = start;
	}

7996
	/* Make sure the range is really isolated. */
7997
	if (test_pages_isolated(outer_start, end, false)) {
7998
		pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
7999
			__func__, outer_start, end);
8000 8001 8002 8003
		ret = -EBUSY;
		goto done;
	}

8004
	/* Grab isolated pages from freelists. */
8005
	outer_end = isolate_freepages_range(&cc, outer_start, end);
8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018
	if (!outer_end) {
		ret = -EBUSY;
		goto done;
	}

	/* Free head and tail (if any) */
	if (start != outer_start)
		free_contig_range(outer_start, start - outer_start);
	if (end != outer_end)
		free_contig_range(end, outer_end - end);

done:
	undo_isolate_page_range(pfn_max_align_down(start),
8019
				pfn_max_align_up(end), migratetype);
8020 8021 8022 8023 8024
	return ret;
}

void free_contig_range(unsigned long pfn, unsigned nr_pages)
{
8025 8026 8027 8028 8029 8030 8031 8032 8033
	unsigned int count = 0;

	for (; nr_pages--; pfn++) {
		struct page *page = pfn_to_page(pfn);

		count += page_count(page) != 1;
		__free_page(page);
	}
	WARN(count != 0, "%d pages are still in use!\n", count);
8034 8035 8036
}
#endif

8037
#ifdef CONFIG_MEMORY_HOTPLUG
8038 8039 8040 8041
/*
 * The zone indicated has a new number of managed_pages; batch sizes and percpu
 * page high values need to be recalulated.
 */
8042 8043
void __meminit zone_pcp_update(struct zone *zone)
{
8044
	unsigned cpu;
8045
	mutex_lock(&pcp_batch_high_lock);
8046
	for_each_possible_cpu(cpu)
8047 8048
		pageset_set_high_and_batch(zone,
				per_cpu_ptr(zone->pageset, cpu));
8049
	mutex_unlock(&pcp_batch_high_lock);
8050 8051 8052
}
#endif

8053 8054 8055
void zone_pcp_reset(struct zone *zone)
{
	unsigned long flags;
8056 8057
	int cpu;
	struct per_cpu_pageset *pset;
8058 8059 8060 8061

	/* avoid races with drain_pages()  */
	local_irq_save(flags);
	if (zone->pageset != &boot_pageset) {
8062 8063 8064 8065
		for_each_online_cpu(cpu) {
			pset = per_cpu_ptr(zone->pageset, cpu);
			drain_zonestat(zone, pset);
		}
8066 8067 8068 8069 8070 8071
		free_percpu(zone->pageset);
		zone->pageset = &boot_pageset;
	}
	local_irq_restore(flags);
}

8072
#ifdef CONFIG_MEMORY_HOTREMOVE
K
KAMEZAWA Hiroyuki 已提交
8073
/*
8074 8075
 * All pages in the range must be in a single zone and isolated
 * before calling this.
K
KAMEZAWA Hiroyuki 已提交
8076 8077 8078 8079 8080 8081
 */
void
__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
{
	struct page *page;
	struct zone *zone;
8082
	unsigned int order, i;
K
KAMEZAWA Hiroyuki 已提交
8083 8084 8085 8086 8087 8088 8089 8090
	unsigned long pfn;
	unsigned long flags;
	/* find the first valid pfn */
	for (pfn = start_pfn; pfn < end_pfn; pfn++)
		if (pfn_valid(pfn))
			break;
	if (pfn == end_pfn)
		return;
8091
	offline_mem_sections(pfn, end_pfn);
K
KAMEZAWA Hiroyuki 已提交
8092 8093 8094 8095 8096 8097 8098 8099 8100
	zone = page_zone(pfn_to_page(pfn));
	spin_lock_irqsave(&zone->lock, flags);
	pfn = start_pfn;
	while (pfn < end_pfn) {
		if (!pfn_valid(pfn)) {
			pfn++;
			continue;
		}
		page = pfn_to_page(pfn);
8101 8102 8103 8104 8105 8106 8107 8108 8109 8110
		/*
		 * The HWPoisoned page may be not in buddy system, and
		 * page_count() is not 0.
		 */
		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
			pfn++;
			SetPageReserved(page);
			continue;
		}

K
KAMEZAWA Hiroyuki 已提交
8111 8112 8113 8114
		BUG_ON(page_count(page));
		BUG_ON(!PageBuddy(page));
		order = page_order(page);
#ifdef CONFIG_DEBUG_VM
8115 8116
		pr_info("remove from free list %lx %d %lx\n",
			pfn, 1 << order, end_pfn);
K
KAMEZAWA Hiroyuki 已提交
8117 8118 8119 8120 8121 8122 8123 8124 8125 8126 8127
#endif
		list_del(&page->lru);
		rmv_page_order(page);
		zone->free_area[order].nr_free--;
		for (i = 0; i < (1 << order); i++)
			SetPageReserved((page+i));
		pfn += (1 << order);
	}
	spin_unlock_irqrestore(&zone->lock, flags);
}
#endif
8128 8129 8130 8131 8132 8133

bool is_free_buddy_page(struct page *page)
{
	struct zone *zone = page_zone(page);
	unsigned long pfn = page_to_pfn(page);
	unsigned long flags;
8134
	unsigned int order;
8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146

	spin_lock_irqsave(&zone->lock, flags);
	for (order = 0; order < MAX_ORDER; order++) {
		struct page *page_head = page - (pfn & ((1 << order) - 1));

		if (PageBuddy(page_head) && page_order(page_head) >= order)
			break;
	}
	spin_unlock_irqrestore(&zone->lock, flags);

	return order < MAX_ORDER;
}
8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176

#ifdef CONFIG_MEMORY_FAILURE
/*
 * Set PG_hwpoison flag if a given page is confirmed to be a free page.  This
 * test is performed under the zone lock to prevent a race against page
 * allocation.
 */
bool set_hwpoison_free_buddy_page(struct page *page)
{
	struct zone *zone = page_zone(page);
	unsigned long pfn = page_to_pfn(page);
	unsigned long flags;
	unsigned int order;
	bool hwpoisoned = false;

	spin_lock_irqsave(&zone->lock, flags);
	for (order = 0; order < MAX_ORDER; order++) {
		struct page *page_head = page - (pfn & ((1 << order) - 1));

		if (PageBuddy(page_head) && page_order(page_head) >= order) {
			if (!TestSetPageHWPoison(page))
				hwpoisoned = true;
			break;
		}
	}
	spin_unlock_irqrestore(&zone->lock, flags);

	return hwpoisoned;
}
#endif