vmscan.c 127.4 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
L
Linus Torvalds 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14
/*
 *  linux/mm/vmscan.c
 *
 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 *
 *  Swap reorganised 29.12.95, Stephen Tweedie.
 *  kswapd added: 7.1.96  sct
 *  Removed kswapd_ctl limits, and swap out as many pages as needed
 *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
 *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
 *  Multiqueue VM started 5.8.00, Rik van Riel.
 */

15 16
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

L
Linus Torvalds 已提交
17
#include <linux/mm.h>
18
#include <linux/sched/mm.h>
L
Linus Torvalds 已提交
19
#include <linux/module.h>
20
#include <linux/gfp.h>
L
Linus Torvalds 已提交
21 22 23 24 25
#include <linux/kernel_stat.h>
#include <linux/swap.h>
#include <linux/pagemap.h>
#include <linux/init.h>
#include <linux/highmem.h>
26
#include <linux/vmpressure.h>
27
#include <linux/vmstat.h>
L
Linus Torvalds 已提交
28 29 30 31 32 33 34 35 36 37 38
#include <linux/file.h>
#include <linux/writeback.h>
#include <linux/blkdev.h>
#include <linux/buffer_head.h>	/* for try_to_release_page(),
					buffer_heads_over_limit */
#include <linux/mm_inline.h>
#include <linux/backing-dev.h>
#include <linux/rmap.h>
#include <linux/topology.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
39
#include <linux/compaction.h>
L
Linus Torvalds 已提交
40 41
#include <linux/notifier.h>
#include <linux/rwsem.h>
42
#include <linux/delay.h>
43
#include <linux/kthread.h>
44
#include <linux/freezer.h>
45
#include <linux/memcontrol.h>
46
#include <linux/delayacct.h>
47
#include <linux/sysctl.h>
48
#include <linux/oom.h>
49
#include <linux/prefetch.h>
50
#include <linux/printk.h>
51
#include <linux/dax.h>
52
#include <linux/psi.h>
L
Linus Torvalds 已提交
53 54 55 56 57

#include <asm/tlbflush.h>
#include <asm/div64.h>

#include <linux/swapops.h>
58
#include <linux/balloon_compaction.h>
L
Linus Torvalds 已提交
59

60 61
#include "internal.h"

62 63 64
#define CREATE_TRACE_POINTS
#include <trace/events/vmscan.h>

L
Linus Torvalds 已提交
65
struct scan_control {
66 67 68
	/* How many pages shrink_list() should reclaim */
	unsigned long nr_to_reclaim;

69 70 71 72 73
	/*
	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
	 * are scanned.
	 */
	nodemask_t	*nodemask;
74

75 76 77 78 79
	/*
	 * The memory cgroup that hit its limit and as a result is the
	 * primary target of this reclaim invocation.
	 */
	struct mem_cgroup *target_mem_cgroup;
80

81
	/* Writepage batching in laptop mode; RECLAIM_WRITE */
82 83 84 85 86 87 88 89
	unsigned int may_writepage:1;

	/* Can mapped pages be reclaimed? */
	unsigned int may_unmap:1;

	/* Can pages be swapped as part of reclaim? */
	unsigned int may_swap:1;

90 91 92
	/* e.g. boosted watermark reclaim leaves slabs alone */
	unsigned int may_shrinkslab:1;

93 94 95 96 97 98 99
	/*
	 * Cgroups are not reclaimed below their configured memory.low,
	 * unless we threaten to OOM. If any cgroups are skipped due to
	 * memory.low and nothing was reclaimed, go back for memory.low.
	 */
	unsigned int memcg_low_reclaim:1;
	unsigned int memcg_low_skipped:1;
100

101 102 103 104 105
	unsigned int hibernation_mode:1;

	/* One of the zones is ready for compaction */
	unsigned int compaction_ready:1;

G
Greg Thelen 已提交
106 107 108 109 110 111 112 113 114 115 116 117
	/* Allocation order */
	s8 order;

	/* Scan (total_size >> priority) pages at once */
	s8 priority;

	/* The highest zone to isolate pages for reclaim from */
	s8 reclaim_idx;

	/* This context's GFP mask */
	gfp_t gfp_mask;

118 119 120 121 122
	/* Incremented by the number of inactive pages that were scanned */
	unsigned long nr_scanned;

	/* Number of pages freed so far during a call to shrink_zones() */
	unsigned long nr_reclaimed;
123 124 125 126 127 128 129 130 131 132

	struct {
		unsigned int dirty;
		unsigned int unqueued_dirty;
		unsigned int congested;
		unsigned int writeback;
		unsigned int immediate;
		unsigned int file_taken;
		unsigned int taken;
	} nr;
L
Linus Torvalds 已提交
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
};

#ifdef ARCH_HAS_PREFETCH
#define prefetch_prev_lru_page(_page, _base, _field)			\
	do {								\
		if ((_page)->lru.prev != _base) {			\
			struct page *prev;				\
									\
			prev = lru_to_page(&(_page->lru));		\
			prefetch(&prev->_field);			\
		}							\
	} while (0)
#else
#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
#endif

#ifdef ARCH_HAS_PREFETCHW
#define prefetchw_prev_lru_page(_page, _base, _field)			\
	do {								\
		if ((_page)->lru.prev != _base) {			\
			struct page *prev;				\
									\
			prev = lru_to_page(&(_page->lru));		\
			prefetchw(&prev->_field);			\
		}							\
	} while (0)
#else
#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
#endif

/*
 * From 0 .. 100.  Higher means more swappy.
 */
int vm_swappiness = 60;
167 168 169 170 171
/*
 * The total number of pages which are beyond the high watermark within all
 * zones.
 */
unsigned long vm_total_pages;
L
Linus Torvalds 已提交
172 173 174 175

static LIST_HEAD(shrinker_list);
static DECLARE_RWSEM(shrinker_rwsem);

176
#ifdef CONFIG_MEMCG
177 178 179 180 181 182 183 184 185 186 187 188 189
/*
 * We allow subsystems to populate their shrinker-related
 * LRU lists before register_shrinker_prepared() is called
 * for the shrinker, since we don't want to impose
 * restrictions on their internal registration order.
 * In this case shrink_slab_memcg() may find corresponding
 * bit is set in the shrinkers map.
 *
 * This value is used by the function to detect registering
 * shrinkers and to skip do_shrink_slab() calls for them.
 */
#define SHRINKER_REGISTERING ((struct shrinker *)~0UL)

190 191 192 193 194 195 196 197 198
static DEFINE_IDR(shrinker_idr);
static int shrinker_nr_max;

static int prealloc_memcg_shrinker(struct shrinker *shrinker)
{
	int id, ret = -ENOMEM;

	down_write(&shrinker_rwsem);
	/* This may call shrinker, so it must use down_read_trylock() */
199
	id = idr_alloc(&shrinker_idr, SHRINKER_REGISTERING, 0, 0, GFP_KERNEL);
200 201 202
	if (id < 0)
		goto unlock;

203 204 205 206 207 208
	if (id >= shrinker_nr_max) {
		if (memcg_expand_shrinker_maps(id)) {
			idr_remove(&shrinker_idr, id);
			goto unlock;
		}

209
		shrinker_nr_max = id + 1;
210
	}
211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
	shrinker->id = id;
	ret = 0;
unlock:
	up_write(&shrinker_rwsem);
	return ret;
}

static void unregister_memcg_shrinker(struct shrinker *shrinker)
{
	int id = shrinker->id;

	BUG_ON(id < 0);

	down_write(&shrinker_rwsem);
	idr_remove(&shrinker_idr, id);
	up_write(&shrinker_rwsem);
}

229 230
static bool global_reclaim(struct scan_control *sc)
{
231
	return !sc->target_mem_cgroup;
232
}
233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253

/**
 * sane_reclaim - is the usual dirty throttling mechanism operational?
 * @sc: scan_control in question
 *
 * The normal page dirty throttling mechanism in balance_dirty_pages() is
 * completely broken with the legacy memcg and direct stalling in
 * shrink_page_list() is used for throttling instead, which lacks all the
 * niceties such as fairness, adaptive pausing, bandwidth proportional
 * allocation and configurability.
 *
 * This function tests whether the vmscan currently in progress can assume
 * that the normal dirty throttling mechanism is operational.
 */
static bool sane_reclaim(struct scan_control *sc)
{
	struct mem_cgroup *memcg = sc->target_mem_cgroup;

	if (!memcg)
		return true;
#ifdef CONFIG_CGROUP_WRITEBACK
254
	/* Cloud Kernel has cgroup writeback support for v1 */
255 256
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) ||
	    cgwb_v1)
257 258 259 260
		return true;
#endif
	return false;
}
261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281

static void set_memcg_congestion(pg_data_t *pgdat,
				struct mem_cgroup *memcg,
				bool congested)
{
	struct mem_cgroup_per_node *mn;

	if (!memcg)
		return;

	mn = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
	WRITE_ONCE(mn->congested, congested);
}

static bool memcg_congested(pg_data_t *pgdat,
			struct mem_cgroup *memcg)
{
	struct mem_cgroup_per_node *mn;

	mn = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
	return READ_ONCE(mn->congested);
282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310
}

static void set_memcg_dirty(pg_data_t *pgdat,
				struct mem_cgroup *memcg,
				bool dirty)
{
	struct mem_cgroup_per_node *mn;

	if (!memcg)
		return;

	mn = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
	WRITE_ONCE(mn->dirty, dirty);
}

static bool memcg_dirty(pg_data_t *pgdat,
			struct mem_cgroup *memcg)
{
	struct mem_cgroup_per_node *mn;

	mn = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
	return READ_ONCE(mn->dirty);
}

static void set_memcg_writeback(pg_data_t *pgdat,
				struct mem_cgroup *memcg,
				bool writeback)
{
	struct mem_cgroup_per_node *mn;
311

312 313 314 315 316 317 318 319 320 321 322 323 324 325
	if (!memcg)
		return;

	mn = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
	WRITE_ONCE(mn->writeback, writeback);
}

static bool memcg_writeback(pg_data_t *pgdat,
				struct mem_cgroup *memcg)
{
	struct mem_cgroup_per_node *mn;

	mn = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
	return READ_ONCE(mn->writeback);
326
}
327
#else
328 329 330 331 332 333 334 335 336
static int prealloc_memcg_shrinker(struct shrinker *shrinker)
{
	return 0;
}

static void unregister_memcg_shrinker(struct shrinker *shrinker)
{
}

337 338 339 340
static bool global_reclaim(struct scan_control *sc)
{
	return true;
}
341 342 343 344 345

static bool sane_reclaim(struct scan_control *sc)
{
	return true;
}
346 347 348 349 350 351 352 353 354 355

static inline void set_memcg_congestion(struct pglist_data *pgdat,
				struct mem_cgroup *memcg, bool congested)
{
}

static inline bool memcg_congested(struct pglist_data *pgdat,
			struct mem_cgroup *memcg)
{
	return false;
356 357 358 359 360 361 362 363 364 365 366 367
}

static inline void set_memcg_dirty(struct pglist_data *pgdat,
				struct mem_cgroup *memcg, bool dirty)
{
}

static inline bool memcg_dirty(struct pglist_data *pgdat,
			struct mem_cgroup *memcg)
{
	return false;
}
368

369 370 371 372 373 374 375 376 377
static inline void set_memcg_writeback(struct pglist_data *pgdat,
				struct mem_cgroup *memcg, bool writeback)
{
}

static inline bool memcg_writeback(struct pglist_data *pgdat,
			struct mem_cgroup *memcg)
{
	return false;
378
}
379 380
#endif

381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398
/*
 * This misses isolated pages which are not accounted for to save counters.
 * As the data only determines if reclaim or compaction continues, it is
 * not expected that isolated pages will be a dominating factor.
 */
unsigned long zone_reclaimable_pages(struct zone *zone)
{
	unsigned long nr;

	nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
		zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
	if (get_nr_swap_pages() > 0)
		nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
			zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);

	return nr;
}

399 400 401 402 403 404 405
/**
 * lruvec_lru_size -  Returns the number of pages on the given LRU list.
 * @lruvec: lru vector
 * @lru: lru to use
 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
 */
unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx)
406
{
407 408 409
	unsigned long lru_size;
	int zid;

410
	if (!mem_cgroup_disabled())
411 412 413
		lru_size = mem_cgroup_get_lru_size(lruvec, lru);
	else
		lru_size = node_page_state(lruvec_pgdat(lruvec), NR_LRU_BASE + lru);
414

415 416 417
	for (zid = zone_idx + 1; zid < MAX_NR_ZONES; zid++) {
		struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
		unsigned long size;
418

419 420 421 422 423 424 425 426 427 428 429 430
		if (!managed_zone(zone))
			continue;

		if (!mem_cgroup_disabled())
			size = mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
		else
			size = zone_page_state(&lruvec_pgdat(lruvec)->node_zones[zid],
				       NR_ZONE_LRU_BASE + lru);
		lru_size -= min(size, lru_size);
	}

	return lru_size;
431 432 433

}

L
Linus Torvalds 已提交
434
/*
G
Glauber Costa 已提交
435
 * Add a shrinker callback to be called from the vm.
L
Linus Torvalds 已提交
436
 */
437
int prealloc_shrinker(struct shrinker *shrinker)
L
Linus Torvalds 已提交
438
{
G
Glauber Costa 已提交
439 440 441 442 443 444 445 446
	size_t size = sizeof(*shrinker->nr_deferred);

	if (shrinker->flags & SHRINKER_NUMA_AWARE)
		size *= nr_node_ids;

	shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
	if (!shrinker->nr_deferred)
		return -ENOMEM;
447 448 449 450 451 452

	if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
		if (prealloc_memcg_shrinker(shrinker))
			goto free_deferred;
	}

453
	return 0;
454 455 456 457 458

free_deferred:
	kfree(shrinker->nr_deferred);
	shrinker->nr_deferred = NULL;
	return -ENOMEM;
459 460 461 462
}

void free_prealloced_shrinker(struct shrinker *shrinker)
{
463 464 465 466 467 468
	if (!shrinker->nr_deferred)
		return;

	if (shrinker->flags & SHRINKER_MEMCG_AWARE)
		unregister_memcg_shrinker(shrinker);

469 470 471
	kfree(shrinker->nr_deferred);
	shrinker->nr_deferred = NULL;
}
G
Glauber Costa 已提交
472

473 474
void register_shrinker_prepared(struct shrinker *shrinker)
{
475 476
	down_write(&shrinker_rwsem);
	list_add_tail(&shrinker->list, &shrinker_list);
477
#ifdef CONFIG_MEMCG_KMEM
478 479
	if (shrinker->flags & SHRINKER_MEMCG_AWARE)
		idr_replace(&shrinker_idr, shrinker, shrinker->id);
480
#endif
481
	up_write(&shrinker_rwsem);
482 483 484 485 486 487 488 489 490
}

int register_shrinker(struct shrinker *shrinker)
{
	int err = prealloc_shrinker(shrinker);

	if (err)
		return err;
	register_shrinker_prepared(shrinker);
G
Glauber Costa 已提交
491
	return 0;
L
Linus Torvalds 已提交
492
}
493
EXPORT_SYMBOL(register_shrinker);
L
Linus Torvalds 已提交
494 495 496 497

/*
 * Remove one
 */
498
void unregister_shrinker(struct shrinker *shrinker)
L
Linus Torvalds 已提交
499
{
500 501
	if (!shrinker->nr_deferred)
		return;
502 503
	if (shrinker->flags & SHRINKER_MEMCG_AWARE)
		unregister_memcg_shrinker(shrinker);
L
Linus Torvalds 已提交
504 505 506
	down_write(&shrinker_rwsem);
	list_del(&shrinker->list);
	up_write(&shrinker_rwsem);
507
	kfree(shrinker->nr_deferred);
508
	shrinker->nr_deferred = NULL;
L
Linus Torvalds 已提交
509
}
510
EXPORT_SYMBOL(unregister_shrinker);
L
Linus Torvalds 已提交
511 512

#define SHRINK_BATCH 128
G
Glauber Costa 已提交
513

514
static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
515
				    struct shrinker *shrinker, int priority)
G
Glauber Costa 已提交
516 517 518 519
{
	unsigned long freed = 0;
	unsigned long long delta;
	long total_scan;
520
	long freeable;
G
Glauber Costa 已提交
521 522 523 524 525
	long nr;
	long new_nr;
	int nid = shrinkctl->nid;
	long batch_size = shrinker->batch ? shrinker->batch
					  : SHRINK_BATCH;
526
	long scanned = 0, next_deferred;
G
Glauber Costa 已提交
527

528 529 530
	if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
		nid = 0;

531
	freeable = shrinker->count_objects(shrinker, shrinkctl);
532 533
	if (freeable == 0 || freeable == SHRINK_EMPTY)
		return freeable;
G
Glauber Costa 已提交
534 535 536 537 538 539 540 541 542

	/*
	 * copy the current shrinker scan count into a local variable
	 * and zero it so that other concurrent shrinker invocations
	 * don't also do this scanning work.
	 */
	nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);

	total_scan = nr;
543 544 545
	delta = freeable >> priority;
	delta *= 4;
	do_div(delta, shrinker->seeks);
546

G
Glauber Costa 已提交
547 548
	total_scan += delta;
	if (total_scan < 0) {
549
		pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n",
D
Dave Chinner 已提交
550
		       shrinker->scan_objects, total_scan);
551
		total_scan = freeable;
552 553 554
		next_deferred = nr;
	} else
		next_deferred = total_scan;
G
Glauber Costa 已提交
555 556 557 558 559 560 561

	/*
	 * We need to avoid excessive windup on filesystem shrinkers
	 * due to large numbers of GFP_NOFS allocations causing the
	 * shrinkers to return -1 all the time. This results in a large
	 * nr being built up so when a shrink that can do some work
	 * comes along it empties the entire cache due to nr >>>
562
	 * freeable. This is bad for sustaining a working set in
G
Glauber Costa 已提交
563 564 565 566 567
	 * memory.
	 *
	 * Hence only allow the shrinker to scan the entire cache when
	 * a large delta change is calculated directly.
	 */
568 569
	if (delta < freeable / 4)
		total_scan = min(total_scan, freeable / 2);
G
Glauber Costa 已提交
570 571 572 573 574 575

	/*
	 * Avoid risking looping forever due to too large nr value:
	 * never try to free more than twice the estimate number of
	 * freeable entries.
	 */
576 577
	if (total_scan > freeable * 2)
		total_scan = freeable * 2;
G
Glauber Costa 已提交
578 579

	trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
580
				   freeable, delta, total_scan, priority);
G
Glauber Costa 已提交
581

582 583 584 585 586 587 588 589 590 591 592
	/*
	 * Normally, we should not scan less than batch_size objects in one
	 * pass to avoid too frequent shrinker calls, but if the slab has less
	 * than batch_size objects in total and we are really tight on memory,
	 * we will try to reclaim all available objects, otherwise we can end
	 * up failing allocations although there are plenty of reclaimable
	 * objects spread over several slabs with usage less than the
	 * batch_size.
	 *
	 * We detect the "tight on memory" situations by looking at the total
	 * number of objects we want to scan (total_scan). If it is greater
593
	 * than the total number of objects on slab (freeable), we must be
594 595 596 597
	 * scanning at high prio and therefore should try to reclaim as much as
	 * possible.
	 */
	while (total_scan >= batch_size ||
598
	       total_scan >= freeable) {
D
Dave Chinner 已提交
599
		unsigned long ret;
600
		unsigned long nr_to_scan = min(batch_size, total_scan);
G
Glauber Costa 已提交
601

602
		shrinkctl->nr_to_scan = nr_to_scan;
603
		shrinkctl->nr_scanned = nr_to_scan;
D
Dave Chinner 已提交
604 605 606 607
		ret = shrinker->scan_objects(shrinker, shrinkctl);
		if (ret == SHRINK_STOP)
			break;
		freed += ret;
G
Glauber Costa 已提交
608

609 610 611
		count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
		total_scan -= shrinkctl->nr_scanned;
		scanned += shrinkctl->nr_scanned;
G
Glauber Costa 已提交
612 613 614 615

		cond_resched();
	}

616 617 618 619
	if (next_deferred >= scanned)
		next_deferred -= scanned;
	else
		next_deferred = 0;
G
Glauber Costa 已提交
620 621 622 623 624
	/*
	 * move the unused scan count back into the shrinker in a
	 * manner that handles concurrent updates. If we exhausted the
	 * scan, there is no need to do an update.
	 */
625 626
	if (next_deferred > 0)
		new_nr = atomic_long_add_return(next_deferred,
G
Glauber Costa 已提交
627 628 629 630
						&shrinker->nr_deferred[nid]);
	else
		new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);

631
	trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
G
Glauber Costa 已提交
632
	return freed;
633 634
}

635
#ifdef CONFIG_MEMCG
636 637 638 639
static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
			struct mem_cgroup *memcg, int priority)
{
	struct memcg_shrinker_map *map;
640 641
	unsigned long ret, freed = 0;
	int i;
642

643
	if (!mem_cgroup_online(memcg))
644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662
		return 0;

	if (!down_read_trylock(&shrinker_rwsem))
		return 0;

	map = rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_map,
					true);
	if (unlikely(!map))
		goto unlock;

	for_each_set_bit(i, map->map, shrinker_nr_max) {
		struct shrink_control sc = {
			.gfp_mask = gfp_mask,
			.nid = nid,
			.memcg = memcg,
		};
		struct shrinker *shrinker;

		shrinker = idr_find(&shrinker_idr, i);
663 664 665
		if (unlikely(!shrinker || shrinker == SHRINKER_REGISTERING)) {
			if (!shrinker)
				clear_bit(i, map->map);
666 667 668
			continue;
		}

669 670 671 672 673
		/* Call non-slab shrinkers even though kmem is disabled */
		if (!memcg_kmem_enabled() &&
		    !(shrinker->flags & SHRINKER_NONSLAB))
			continue;

674
		ret = do_shrink_slab(&sc, shrinker, priority);
675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698
		if (ret == SHRINK_EMPTY) {
			clear_bit(i, map->map);
			/*
			 * After the shrinker reported that it had no objects to
			 * free, but before we cleared the corresponding bit in
			 * the memcg shrinker map, a new object might have been
			 * added. To make sure, we have the bit set in this
			 * case, we invoke the shrinker one more time and reset
			 * the bit if it reports that it is not empty anymore.
			 * The memory barrier here pairs with the barrier in
			 * memcg_set_shrinker_bit():
			 *
			 * list_lru_add()     shrink_slab_memcg()
			 *   list_add_tail()    clear_bit()
			 *   <MB>               <MB>
			 *   set_bit()          do_shrink_slab()
			 */
			smp_mb__after_atomic();
			ret = do_shrink_slab(&sc, shrinker, priority);
			if (ret == SHRINK_EMPTY)
				ret = 0;
			else
				memcg_set_shrinker_bit(memcg, nid, i);
		}
699 700 701 702 703 704 705 706 707 708 709
		freed += ret;

		if (rwsem_is_contended(&shrinker_rwsem)) {
			freed = freed ? : 1;
			break;
		}
	}
unlock:
	up_read(&shrinker_rwsem);
	return freed;
}
710
#else /* CONFIG_MEMCG */
711 712 713 714 715
static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
			struct mem_cgroup *memcg, int priority)
{
	return 0;
}
716
#endif /* CONFIG_MEMCG */
717

718
/**
719
 * shrink_slab - shrink slab caches
720 721
 * @gfp_mask: allocation context
 * @nid: node whose slab caches to target
722
 * @memcg: memory cgroup whose slab caches to target
723
 * @priority: the reclaim priority
L
Linus Torvalds 已提交
724
 *
725
 * Call the shrink functions to age shrinkable caches.
L
Linus Torvalds 已提交
726
 *
727 728
 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
 * unaware shrinkers will receive a node id of 0 instead.
L
Linus Torvalds 已提交
729
 *
730 731
 * @memcg specifies the memory cgroup to target. Unaware shrinkers
 * are called only if it is the root cgroup.
732
 *
733 734
 * @priority is sc->priority, we take the number of objects and >> by priority
 * in order to get the scan target.
735
 *
736
 * Returns the number of reclaimed slab objects.
L
Linus Torvalds 已提交
737
 */
738 739
static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
				 struct mem_cgroup *memcg,
740
				 int priority)
L
Linus Torvalds 已提交
741
{
742
	unsigned long ret, freed = 0;
L
Linus Torvalds 已提交
743 744
	struct shrinker *shrinker;

745 746 747 748 749 750 751 752
	/*
	 * The root memcg might be allocated even though memcg is disabled
	 * via "cgroup_disable=memory" boot parameter.  This could make
	 * mem_cgroup_is_root() return false, then just run memcg slab
	 * shrink, but skip global shrink.  This may result in premature
	 * oom.
	 */
	if (!mem_cgroup_disabled() && !mem_cgroup_is_root(memcg))
753
		return shrink_slab_memcg(gfp_mask, nid, memcg, priority);
754

755
	if (!down_read_trylock(&shrinker_rwsem))
756
		goto out;
L
Linus Torvalds 已提交
757 758

	list_for_each_entry(shrinker, &shrinker_list, list) {
759 760 761
		struct shrink_control sc = {
			.gfp_mask = gfp_mask,
			.nid = nid,
762
			.memcg = memcg,
763
		};
764

765 766 767 768
		ret = do_shrink_slab(&sc, shrinker, priority);
		if (ret == SHRINK_EMPTY)
			ret = 0;
		freed += ret;
769 770 771 772 773 774 775 776 777
		/*
		 * Bail out if someone want to register a new shrinker to
		 * prevent the regsitration from being stalled for long periods
		 * by parallel ongoing shrinking.
		 */
		if (rwsem_is_contended(&shrinker_rwsem)) {
			freed = freed ? : 1;
			break;
		}
L
Linus Torvalds 已提交
778
	}
779

L
Linus Torvalds 已提交
780
	up_read(&shrinker_rwsem);
781 782
out:
	cond_resched();
D
Dave Chinner 已提交
783
	return freed;
L
Linus Torvalds 已提交
784 785
}

786 787 788 789 790 791 792 793
void drop_slab_node(int nid)
{
	unsigned long freed;

	do {
		struct mem_cgroup *memcg = NULL;

		freed = 0;
794
		memcg = mem_cgroup_iter(NULL, NULL, NULL);
795
		do {
796
			freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
797 798 799 800 801 802 803 804 805 806 807 808
		} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
	} while (freed > 10);
}

void drop_slab(void)
{
	int nid;

	for_each_online_node(nid)
		drop_slab_node(nid);
}

L
Linus Torvalds 已提交
809 810
static inline int is_page_cache_freeable(struct page *page)
{
811 812 813 814 815
	/*
	 * A freeable page cache page is referenced only by the caller
	 * that isolated the page, the page cache radix tree and
	 * optional buffer heads at page->private.
	 */
816 817 818
	int radix_pins = PageTransHuge(page) && PageSwapCache(page) ?
		HPAGE_PMD_NR : 1;
	return page_count(page) - page_has_private(page) == 1 + radix_pins;
L
Linus Torvalds 已提交
819 820
}

821
static int may_write_to_inode(struct inode *inode, struct scan_control *sc)
L
Linus Torvalds 已提交
822
{
823
	if (current->flags & PF_SWAPWRITE)
L
Linus Torvalds 已提交
824
		return 1;
825
	if (!inode_write_congested(inode))
L
Linus Torvalds 已提交
826
		return 1;
827
	if (inode_to_bdi(inode) == current->backing_dev_info)
L
Linus Torvalds 已提交
828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846
		return 1;
	return 0;
}

/*
 * We detected a synchronous write error writing a page out.  Probably
 * -ENOSPC.  We need to propagate that into the address_space for a subsequent
 * fsync(), msync() or close().
 *
 * The tricky part is that after writepage we cannot touch the mapping: nothing
 * prevents it from being freed up.  But we have a ref on the page and once
 * that page is locked, the mapping is pinned.
 *
 * We're allowed to run sleeping lock_page() here because we know the caller has
 * __GFP_FS.
 */
static void handle_write_error(struct address_space *mapping,
				struct page *page, int error)
{
J
Jens Axboe 已提交
847
	lock_page(page);
848 849
	if (page_mapping(page) == mapping)
		mapping_set_error(mapping, error);
L
Linus Torvalds 已提交
850 851 852
	unlock_page(page);
}

853 854 855 856 857 858 859 860 861 862 863 864
/* possible outcome of pageout() */
typedef enum {
	/* failed to write page out, page is locked */
	PAGE_KEEP,
	/* move page to the active list, page is locked */
	PAGE_ACTIVATE,
	/* page has been sent to the disk successfully, page is unlocked */
	PAGE_SUCCESS,
	/* page is clean and locked */
	PAGE_CLEAN,
} pageout_t;

L
Linus Torvalds 已提交
865
/*
A
Andrew Morton 已提交
866 867
 * pageout is called by shrink_page_list() for each dirty page.
 * Calls ->writepage().
L
Linus Torvalds 已提交
868
 */
869
static pageout_t pageout(struct page *page, struct address_space *mapping,
870
			 struct scan_control *sc)
L
Linus Torvalds 已提交
871 872 873 874 875 876 877 878
{
	/*
	 * If the page is dirty, only perform writeback if that write
	 * will be non-blocking.  To prevent this allocation from being
	 * stalled by pagecache activity.  But note that there may be
	 * stalls if we need to run get_block().  We could test
	 * PagePrivate for that.
	 *
879
	 * If this process is currently in __generic_file_write_iter() against
L
Linus Torvalds 已提交
880 881 882 883 884 885 886 887 888 889 890 891 892 893 894
	 * this page's queue, we can perform writeback even if that
	 * will block.
	 *
	 * If the page is swapcache, write it back even if that would
	 * block, for some throttling. This happens by accident, because
	 * swap_backing_dev_info is bust: it doesn't reflect the
	 * congestion state of the swapdevs.  Easy to fix, if needed.
	 */
	if (!is_page_cache_freeable(page))
		return PAGE_KEEP;
	if (!mapping) {
		/*
		 * Some data journaling orphaned pages can have
		 * page->mapping == NULL while being dirty with clean buffers.
		 */
895
		if (page_has_private(page)) {
L
Linus Torvalds 已提交
896 897
			if (try_to_free_buffers(page)) {
				ClearPageDirty(page);
898
				pr_info("%s: orphaned page\n", __func__);
L
Linus Torvalds 已提交
899 900 901 902 903 904 905
				return PAGE_CLEAN;
			}
		}
		return PAGE_KEEP;
	}
	if (mapping->a_ops->writepage == NULL)
		return PAGE_ACTIVATE;
906
	if (!may_write_to_inode(mapping->host, sc))
L
Linus Torvalds 已提交
907 908 909 910
		return PAGE_KEEP;

	if (clear_page_dirty_for_io(page)) {
		int res;
911
		u64 start = 0;
L
Linus Torvalds 已提交
912 913 914
		struct writeback_control wbc = {
			.sync_mode = WB_SYNC_NONE,
			.nr_to_write = SWAP_CLUSTER_MAX,
915 916
			.range_start = 0,
			.range_end = LLONG_MAX,
L
Linus Torvalds 已提交
917 918 919 920
			.for_reclaim = 1,
		};

		SetPageReclaim(page);
921
		if (!current_is_kswapd())
922
			memcg_lat_stat_start(&start);
L
Linus Torvalds 已提交
923
		res = mapping->a_ops->writepage(page, &wbc);
924
		if (!current_is_kswapd())
925
			memcg_lat_stat_end(global_reclaim(sc) ?
926 927
					      MEM_LAT_GLOBAL_DIRECT_SWAPOUT :
					      MEM_LAT_MEMCG_DIRECT_SWAPOUT,
928
					      start);
L
Linus Torvalds 已提交
929 930
		if (res < 0)
			handle_write_error(mapping, page, res);
931
		if (res == AOP_WRITEPAGE_ACTIVATE) {
L
Linus Torvalds 已提交
932 933 934
			ClearPageReclaim(page);
			return PAGE_ACTIVATE;
		}
935

L
Linus Torvalds 已提交
936 937 938 939
		if (!PageWriteback(page)) {
			/* synchronous write or broken a_ops? */
			ClearPageReclaim(page);
		}
940
		trace_mm_vmscan_writepage(page);
941
		inc_node_page_state(page, NR_VMSCAN_WRITE);
L
Linus Torvalds 已提交
942 943 944 945 946 947
		return PAGE_SUCCESS;
	}

	return PAGE_CLEAN;
}

948
/*
N
Nick Piggin 已提交
949 950
 * Same as remove_mapping, but if the page is removed from the mapping, it
 * gets returned with a refcount of 0.
951
 */
952 953
static int __remove_mapping(struct address_space *mapping, struct page *page,
			    bool reclaimed)
954
{
955
	unsigned long flags;
956
	int refcount;
957

958 959
	BUG_ON(!PageLocked(page));
	BUG_ON(mapping != page_mapping(page));
960

M
Matthew Wilcox 已提交
961
	xa_lock_irqsave(&mapping->i_pages, flags);
962
	/*
N
Nick Piggin 已提交
963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981
	 * The non racy check for a busy page.
	 *
	 * Must be careful with the order of the tests. When someone has
	 * a ref to the page, it may be possible that they dirty it then
	 * drop the reference. So if PageDirty is tested before page_count
	 * here, then the following race may occur:
	 *
	 * get_user_pages(&page);
	 * [user mapping goes away]
	 * write_to(page);
	 *				!PageDirty(page)    [good]
	 * SetPageDirty(page);
	 * put_page(page);
	 *				!page_count(page)   [good, discard it]
	 *
	 * [oops, our write_to data is lost]
	 *
	 * Reversing the order of the tests ensures such a situation cannot
	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
982
	 * load is not satisfied before that of page->_refcount.
N
Nick Piggin 已提交
983 984
	 *
	 * Note that if SetPageDirty is always performed via set_page_dirty,
M
Matthew Wilcox 已提交
985
	 * and thus under the i_pages lock, then this ordering is not required.
986
	 */
987 988 989 990 991
	if (unlikely(PageTransHuge(page)) && PageSwapCache(page))
		refcount = 1 + HPAGE_PMD_NR;
	else
		refcount = 2;
	if (!page_ref_freeze(page, refcount))
992
		goto cannot_free;
993
	/* note: atomic_cmpxchg in page_ref_freeze provides the smp_rmb */
N
Nick Piggin 已提交
994
	if (unlikely(PageDirty(page))) {
995
		page_ref_unfreeze(page, refcount);
996
		goto cannot_free;
N
Nick Piggin 已提交
997
	}
998 999 1000

	if (PageSwapCache(page)) {
		swp_entry_t swap = { .val = page_private(page) };
1001
		mem_cgroup_swapout(page, swap);
1002
		__delete_from_swap_cache(page);
M
Matthew Wilcox 已提交
1003
		xa_unlock_irqrestore(&mapping->i_pages, flags);
1004
		put_swap_page(page, swap);
N
Nick Piggin 已提交
1005
	} else {
1006
		void (*freepage)(struct page *);
1007
		void *shadow = NULL;
1008 1009

		freepage = mapping->a_ops->freepage;
1010 1011 1012 1013 1014 1015 1016 1017 1018
		/*
		 * Remember a shadow entry for reclaimed file cache in
		 * order to detect refaults, thus thrashing, later on.
		 *
		 * But don't store shadows in an address space that is
		 * already exiting.  This is not just an optizimation,
		 * inode reclaim needs to empty out the radix tree or
		 * the nodes are lost.  Don't plant shadows behind its
		 * back.
1019 1020 1021 1022 1023
		 *
		 * We also don't store shadows for DAX mappings because the
		 * only page cache pages found in these are zero pages
		 * covering holes, and because we don't want to mix DAX
		 * exceptional entries and shadow exceptional entries in the
M
Matthew Wilcox 已提交
1024
		 * same address_space.
1025 1026
		 */
		if (reclaimed && page_is_file_cache(page) &&
1027
		    !mapping_exiting(mapping) && !dax_mapping(mapping))
1028
			shadow = workingset_eviction(mapping, page);
J
Johannes Weiner 已提交
1029
		__delete_from_page_cache(page, shadow);
M
Matthew Wilcox 已提交
1030
		xa_unlock_irqrestore(&mapping->i_pages, flags);
1031 1032 1033

		if (freepage != NULL)
			freepage(page);
1034 1035 1036 1037 1038
	}

	return 1;

cannot_free:
M
Matthew Wilcox 已提交
1039
	xa_unlock_irqrestore(&mapping->i_pages, flags);
1040 1041 1042
	return 0;
}

N
Nick Piggin 已提交
1043 1044 1045 1046 1047 1048 1049 1050
/*
 * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
 * someone else has a ref on the page, abort and return 0.  If it was
 * successfully detached, return 1.  Assumes the caller has a single ref on
 * this page.
 */
int remove_mapping(struct address_space *mapping, struct page *page)
{
1051
	if (__remove_mapping(mapping, page, false)) {
N
Nick Piggin 已提交
1052 1053 1054 1055 1056
		/*
		 * Unfreezing the refcount with 1 rather than 2 effectively
		 * drops the pagecache ref for us without requiring another
		 * atomic operation.
		 */
1057
		page_ref_unfreeze(page, 1);
N
Nick Piggin 已提交
1058 1059 1060 1061 1062
		return 1;
	}
	return 0;
}

L
Lee Schermerhorn 已提交
1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073
/**
 * putback_lru_page - put previously isolated page onto appropriate LRU list
 * @page: page to be put back to appropriate lru list
 *
 * Add previously isolated @page to appropriate LRU list.
 * Page may still be unevictable for other reasons.
 *
 * lru_lock must not be held, interrupts must be enabled.
 */
void putback_lru_page(struct page *page)
{
1074
	lru_cache_add(page);
L
Lee Schermerhorn 已提交
1075 1076 1077
	put_page(page);		/* drop ref from isolate */
}

1078 1079 1080
enum page_references {
	PAGEREF_RECLAIM,
	PAGEREF_RECLAIM_CLEAN,
1081
	PAGEREF_KEEP,
1082 1083 1084 1085 1086 1087
	PAGEREF_ACTIVATE,
};

static enum page_references page_check_references(struct page *page,
						  struct scan_control *sc)
{
1088
	int referenced_ptes, referenced_page;
1089 1090
	unsigned long vm_flags;

1091 1092
	referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
					  &vm_flags);
1093
	referenced_page = TestClearPageReferenced(page);
1094 1095 1096 1097 1098 1099 1100 1101

	/*
	 * Mlock lost the isolation race with us.  Let try_to_unmap()
	 * move the page to the unevictable list.
	 */
	if (vm_flags & VM_LOCKED)
		return PAGEREF_RECLAIM;

1102
	if (referenced_ptes) {
1103
		if (PageSwapBacked(page))
1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120
			return PAGEREF_ACTIVATE;
		/*
		 * All mapped pages start out with page table
		 * references from the instantiating fault, so we need
		 * to look twice if a mapped file page is used more
		 * than once.
		 *
		 * Mark it and spare it for another trip around the
		 * inactive list.  Another page table reference will
		 * lead to its activation.
		 *
		 * Note: the mark is set for activated pages as well
		 * so that recently deactivated but used pages are
		 * quickly recovered.
		 */
		SetPageReferenced(page);

1121
		if (referenced_page || referenced_ptes > 1)
1122 1123
			return PAGEREF_ACTIVATE;

1124 1125 1126 1127 1128 1129
		/*
		 * Activate file-backed executable pages after first usage.
		 */
		if (vm_flags & VM_EXEC)
			return PAGEREF_ACTIVATE;

1130 1131
		return PAGEREF_KEEP;
	}
1132 1133

	/* Reclaim if clean, defer dirty pages to writeback */
1134
	if (referenced_page && !PageSwapBacked(page))
1135 1136 1137
		return PAGEREF_RECLAIM_CLEAN;

	return PAGEREF_RECLAIM;
1138 1139
}

1140 1141 1142 1143
/* Check if a page is dirty or under writeback */
static void page_check_dirty_writeback(struct page *page,
				       bool *dirty, bool *writeback)
{
1144 1145
	struct address_space *mapping;

1146 1147 1148 1149
	/*
	 * Anonymous pages are not handled by flushers and must be written
	 * from reclaim context. Do not stall reclaim based on them
	 */
S
Shaohua Li 已提交
1150 1151
	if (!page_is_file_cache(page) ||
	    (PageAnon(page) && !PageSwapBacked(page))) {
1152 1153 1154 1155 1156 1157 1158 1159
		*dirty = false;
		*writeback = false;
		return;
	}

	/* By default assume that the page flags are accurate */
	*dirty = PageDirty(page);
	*writeback = PageWriteback(page);
1160 1161 1162 1163 1164 1165 1166 1167

	/* Verify dirty/writeback state if the filesystem supports it */
	if (!page_has_private(page))
		return;

	mapping = page_mapping(page);
	if (mapping && mapping->a_ops->is_dirty_writeback)
		mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
1168 1169
}

1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187
static bool pgdat_memcg_congested(pg_data_t *pgdat, struct mem_cgroup *memcg)
{
	return test_bit(PGDAT_CONGESTED, &pgdat->flags) ||
		(memcg && memcg_congested(pgdat, memcg));
}

static bool pgdat_memcg_dirty(pg_data_t *pgdat, struct mem_cgroup *memcg)
{
	return test_bit(PGDAT_DIRTY, &pgdat->flags) ||
		(memcg && memcg_dirty(pgdat, memcg));
}

static bool pgdat_memcg_writeback(pg_data_t *pgdat, struct mem_cgroup *memcg)
{
	return test_bit(PGDAT_WRITEBACK, &pgdat->flags) ||
		(memcg && memcg_writeback(pgdat, memcg));
}

L
Linus Torvalds 已提交
1188
/*
A
Andrew Morton 已提交
1189
 * shrink_page_list() returns the number of reclaimed pages
L
Linus Torvalds 已提交
1190
 */
A
Andrew Morton 已提交
1191
static unsigned long shrink_page_list(struct list_head *page_list,
M
Mel Gorman 已提交
1192
				      struct pglist_data *pgdat,
1193
				      struct scan_control *sc,
1194
				      enum ttu_flags ttu_flags,
1195
				      struct reclaim_stat *stat,
1196
				      bool ignore_references)
L
Linus Torvalds 已提交
1197 1198
{
	LIST_HEAD(ret_pages);
1199
	LIST_HEAD(free_pages);
L
Linus Torvalds 已提交
1200
	int pgactivate = 0;
1201 1202 1203 1204 1205 1206
	unsigned nr_unqueued_dirty = 0;
	unsigned nr_dirty = 0;
	unsigned nr_congested = 0;
	unsigned nr_reclaimed = 0;
	unsigned nr_writeback = 0;
	unsigned nr_immediate = 0;
1207 1208
	unsigned nr_ref_keep = 0;
	unsigned nr_unmap_fail = 0;
L
Linus Torvalds 已提交
1209 1210 1211 1212 1213 1214 1215

	cond_resched();

	while (!list_empty(page_list)) {
		struct address_space *mapping;
		struct page *page;
		int may_enter_fs;
1216
		enum page_references references = PAGEREF_RECLAIM;
1217
		bool dirty, writeback;
L
Linus Torvalds 已提交
1218 1219 1220 1221 1222 1223

		cond_resched();

		page = lru_to_page(page_list);
		list_del(&page->lru);

N
Nick Piggin 已提交
1224
		if (!trylock_page(page))
L
Linus Torvalds 已提交
1225 1226
			goto keep;

1227
		VM_BUG_ON_PAGE(PageActive(page), page);
L
Linus Torvalds 已提交
1228 1229

		sc->nr_scanned++;
1230

1231
		if (unlikely(!page_evictable(page)))
M
Minchan Kim 已提交
1232
			goto activate_locked;
L
Lee Schermerhorn 已提交
1233

1234
		if (!sc->may_unmap && page_mapped(page))
1235 1236
			goto keep_locked;

L
Linus Torvalds 已提交
1237
		/* Double the slab pressure for mapped and swapcache pages */
S
Shaohua Li 已提交
1238 1239
		if ((page_mapped(page) || PageSwapCache(page)) &&
		    !(PageAnon(page) && !PageSwapBacked(page)))
L
Linus Torvalds 已提交
1240 1241
			sc->nr_scanned++;

1242 1243 1244
		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));

1245
		/*
1246
		 * The number of dirty pages determines if a node is marked
1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257
		 * reclaim_congested which affects wait_iff_congested. kswapd
		 * will stall and start writing pages if the tail of the LRU
		 * is all dirty unqueued pages.
		 */
		page_check_dirty_writeback(page, &dirty, &writeback);
		if (dirty || writeback)
			nr_dirty++;

		if (dirty && !writeback)
			nr_unqueued_dirty++;

1258 1259 1260 1261 1262 1263
		/*
		 * Treat this page as congested if the underlying BDI is or if
		 * pages are cycling through the LRU so quickly that the
		 * pages marked for immediate reclaim are making it to the
		 * end of the LRU a second time.
		 */
1264
		mapping = page_mapping(page);
1265
		if (((dirty || writeback) && mapping &&
1266
		     inode_write_congested(mapping->host)) ||
1267
		    (writeback && PageReclaim(page)))
1268 1269
			nr_congested++;

1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280
		/*
		 * If a page at the tail of the LRU is under writeback, there
		 * are three cases to consider.
		 *
		 * 1) If reclaim is encountering an excessive number of pages
		 *    under writeback and this page is both under writeback and
		 *    PageReclaim then it indicates that pages are being queued
		 *    for IO but are being recycled through the LRU before the
		 *    IO can complete. Waiting on the page itself risks an
		 *    indefinite stall if it is impossible to writeback the
		 *    page due to IO error or disconnected storage so instead
1281 1282
		 *    note that the LRU is being scanned too quickly and the
		 *    caller can stall after page list has been processed.
1283
		 *
1284
		 * 2) Global or new memcg reclaim encounters a page that is
1285 1286 1287
		 *    not marked for immediate reclaim, or the caller does not
		 *    have __GFP_FS (or __GFP_IO if it's simply going to swap,
		 *    not to fs). In this case mark the page for immediate
1288
		 *    reclaim and continue scanning.
1289
		 *
1290 1291
		 *    Require may_enter_fs because we would wait on fs, which
		 *    may not have submitted IO yet. And the loop driver might
1292 1293 1294 1295 1296
		 *    enter reclaim, and deadlock if it waits on a page for
		 *    which it is needed to do the write (loop masks off
		 *    __GFP_IO|__GFP_FS for this reason); but more thought
		 *    would probably show more reasons.
		 *
1297
		 * 3) Legacy memcg encounters a page that is already marked
1298 1299 1300 1301
		 *    PageReclaim. memcg does not have any dirty pages
		 *    throttling so we could easily OOM just because too many
		 *    pages are in writeback and there is nothing else to
		 *    reclaim. Wait for the writeback to complete.
1302 1303 1304 1305 1306 1307 1308 1309 1310
		 *
		 * In cases 1) and 2) we activate the pages to get them out of
		 * the way while we continue scanning for clean pages on the
		 * inactive list and refilling from the active list. The
		 * observation here is that waiting for disk writes is more
		 * expensive than potentially causing reloads down the line.
		 * Since they're marked for immediate reclaim, they won't put
		 * memory pressure on the cache working set any longer than it
		 * takes to write them to disk.
1311
		 */
1312
		if (PageWriteback(page)) {
1313 1314 1315
			/* Case 1 above */
			if (current_is_kswapd() &&
			    PageReclaim(page) &&
1316
			    pgdat_memcg_writeback(pgdat, sc->target_mem_cgroup)) {
1317
				nr_immediate++;
1318
				goto activate_locked;
1319 1320

			/* Case 2 above */
1321
			} else if (sane_reclaim(sc) ||
1322
			    !PageReclaim(page) || !may_enter_fs) {
1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334
				/*
				 * This is slightly racy - end_page_writeback()
				 * might have just cleared PageReclaim, then
				 * setting PageReclaim here end up interpreted
				 * as PageReadahead - but that does not matter
				 * enough to care.  What we do want is for this
				 * page to have PageReclaim set next time memcg
				 * reclaim reaches the tests above, so it will
				 * then wait_on_page_writeback() to avoid OOM;
				 * and it's also appropriate in global reclaim.
				 */
				SetPageReclaim(page);
1335
				nr_writeback++;
1336
				goto activate_locked;
1337 1338 1339

			/* Case 3 above */
			} else {
1340
				unlock_page(page);
1341
				wait_on_page_writeback(page);
1342 1343 1344
				/* then go back and try same page again */
				list_add_tail(&page->lru, page_list);
				continue;
1345
			}
1346
		}
L
Linus Torvalds 已提交
1347

1348
		if (!ignore_references)
1349 1350
			references = page_check_references(page, sc);

1351 1352
		switch (references) {
		case PAGEREF_ACTIVATE:
L
Linus Torvalds 已提交
1353
			goto activate_locked;
1354
		case PAGEREF_KEEP:
1355
			nr_ref_keep++;
1356
			goto keep_locked;
1357 1358 1359 1360
		case PAGEREF_RECLAIM:
		case PAGEREF_RECLAIM_CLEAN:
			; /* try to reclaim the page below */
		}
L
Linus Torvalds 已提交
1361 1362 1363 1364

		/*
		 * Anonymous process memory has backing store?
		 * Try to allocate it some swap space here.
S
Shaohua Li 已提交
1365
		 * Lazyfree page could be freed directly
L
Linus Torvalds 已提交
1366
		 */
1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391
		if (PageAnon(page) && PageSwapBacked(page)) {
			if (!PageSwapCache(page)) {
				if (!(sc->gfp_mask & __GFP_IO))
					goto keep_locked;
				if (PageTransHuge(page)) {
					/* cannot split THP, skip it */
					if (!can_split_huge_page(page, NULL))
						goto activate_locked;
					/*
					 * Split pages without a PMD map right
					 * away. Chances are some or all of the
					 * tail pages can be freed without IO.
					 */
					if (!compound_mapcount(page) &&
					    split_huge_page_to_list(page,
								    page_list))
						goto activate_locked;
				}
				if (!add_to_swap(page)) {
					if (!PageTransHuge(page))
						goto activate_locked;
					/* Fallback to swap normal pages */
					if (split_huge_page_to_list(page,
								    page_list))
						goto activate_locked;
1392 1393 1394
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
					count_vm_event(THP_SWPOUT_FALLBACK);
#endif
1395 1396 1397
					if (!add_to_swap(page))
						goto activate_locked;
				}
1398

1399
				may_enter_fs = 1;
L
Linus Torvalds 已提交
1400

1401 1402 1403
				/* Adding to swap updated mapping */
				mapping = page_mapping(page);
			}
1404 1405 1406 1407
		} else if (unlikely(PageTransHuge(page))) {
			/* Split file THP */
			if (split_huge_page_to_list(page, page_list))
				goto keep_locked;
1408
		}
L
Linus Torvalds 已提交
1409 1410 1411 1412 1413

		/*
		 * The page is mapped into the page tables of one or more
		 * processes. Try to unmap it here.
		 */
S
Shaohua Li 已提交
1414
		if (page_mapped(page)) {
1415 1416 1417 1418 1419
			enum ttu_flags flags = ttu_flags | TTU_BATCH_FLUSH;

			if (unlikely(PageTransHuge(page)))
				flags |= TTU_SPLIT_HUGE_PMD;
			if (!try_to_unmap(page, flags)) {
1420
				nr_unmap_fail++;
L
Linus Torvalds 已提交
1421 1422 1423 1424 1425
				goto activate_locked;
			}
		}

		if (PageDirty(page)) {
1426
			/*
1427 1428 1429 1430 1431 1432 1433 1434
			 * Only kswapd can writeback filesystem pages
			 * to avoid risk of stack overflow. But avoid
			 * injecting inefficient single-page IO into
			 * flusher writeback as much as possible: only
			 * write pages when we've encountered many
			 * dirty pages, and when we've already scanned
			 * the rest of the LRU for clean pages and see
			 * the same dirty pages again (PageReclaim).
1435
			 */
1436
			if (page_is_file_cache(page) &&
1437
			    (!current_is_kswapd() || !PageReclaim(page) ||
1438
			     !pgdat_memcg_dirty(pgdat, sc->target_mem_cgroup))) {
1439 1440 1441 1442 1443 1444
				/*
				 * Immediately reclaim when written back.
				 * Similar in principal to deactivate_page()
				 * except we already have the page isolated
				 * and know it's dirty
				 */
1445
				inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
1446 1447
				SetPageReclaim(page);

1448
				goto activate_locked;
1449 1450
			}

1451
			if (references == PAGEREF_RECLAIM_CLEAN)
L
Linus Torvalds 已提交
1452
				goto keep_locked;
1453
			if (!may_enter_fs)
L
Linus Torvalds 已提交
1454
				goto keep_locked;
1455
			if (!sc->may_writepage)
L
Linus Torvalds 已提交
1456 1457
				goto keep_locked;

1458 1459 1460 1461 1462 1463
			/*
			 * Page is dirty. Flush the TLB if a writable entry
			 * potentially exists to avoid CPU writes after IO
			 * starts and then write it out here.
			 */
			try_to_unmap_flush_dirty();
1464
			switch (pageout(page, mapping, sc)) {
L
Linus Torvalds 已提交
1465 1466 1467 1468 1469
			case PAGE_KEEP:
				goto keep_locked;
			case PAGE_ACTIVATE:
				goto activate_locked;
			case PAGE_SUCCESS:
1470
				if (PageWriteback(page))
1471
					goto keep;
1472
				if (PageDirty(page))
L
Linus Torvalds 已提交
1473
					goto keep;
1474

L
Linus Torvalds 已提交
1475 1476 1477 1478
				/*
				 * A synchronous write - probably a ramdisk.  Go
				 * ahead and try to reclaim the page.
				 */
N
Nick Piggin 已提交
1479
				if (!trylock_page(page))
L
Linus Torvalds 已提交
1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498
					goto keep;
				if (PageDirty(page) || PageWriteback(page))
					goto keep_locked;
				mapping = page_mapping(page);
			case PAGE_CLEAN:
				; /* try to free the page below */
			}
		}

		/*
		 * If the page has buffers, try to free the buffer mappings
		 * associated with this page. If we succeed we try to free
		 * the page as well.
		 *
		 * We do this even if the page is PageDirty().
		 * try_to_release_page() does not perform I/O, but it is
		 * possible for a page to have PageDirty set, but it is actually
		 * clean (all its buffers are clean).  This happens if the
		 * buffers were written out directly, with submit_bh(). ext3
L
Lee Schermerhorn 已提交
1499
		 * will do this, as well as the blockdev mapping.
L
Linus Torvalds 已提交
1500 1501 1502 1503 1504 1505 1506 1507 1508 1509
		 * try_to_release_page() will discover that cleanness and will
		 * drop the buffers and mark the page clean - it can be freed.
		 *
		 * Rarely, pages can have buffers and no ->mapping.  These are
		 * the pages which were not successfully invalidated in
		 * truncate_complete_page().  We try to drop those buffers here
		 * and if that worked, and the page is no longer mapped into
		 * process address space (page_count == 1) it can be freed.
		 * Otherwise, leave the page on the LRU so it is swappable.
		 */
1510
		if (page_has_private(page)) {
L
Linus Torvalds 已提交
1511 1512
			if (!try_to_release_page(page, sc->gfp_mask))
				goto activate_locked;
N
Nick Piggin 已提交
1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528
			if (!mapping && page_count(page) == 1) {
				unlock_page(page);
				if (put_page_testzero(page))
					goto free_it;
				else {
					/*
					 * rare race with speculative reference.
					 * the speculative reference will free
					 * this page shortly, so we may
					 * increment nr_reclaimed here (and
					 * leave it off the LRU).
					 */
					nr_reclaimed++;
					continue;
				}
			}
L
Linus Torvalds 已提交
1529 1530
		}

S
Shaohua Li 已提交
1531 1532 1533 1534 1535 1536 1537 1538
		if (PageAnon(page) && !PageSwapBacked(page)) {
			/* follow __remove_mapping for reference */
			if (!page_ref_freeze(page, 1))
				goto keep_locked;
			if (PageDirty(page)) {
				page_ref_unfreeze(page, 1);
				goto keep_locked;
			}
L
Linus Torvalds 已提交
1539

S
Shaohua Li 已提交
1540
			count_vm_event(PGLAZYFREED);
1541
			count_memcg_page_event(page, PGLAZYFREED);
S
Shaohua Li 已提交
1542 1543
		} else if (!mapping || !__remove_mapping(mapping, page, true))
			goto keep_locked;
N
Nick Piggin 已提交
1544 1545 1546 1547 1548 1549 1550
		/*
		 * At this point, we have no other references and there is
		 * no way to pick any more up (removed from LRU, removed
		 * from pagecache). Can use non-atomic bitops now (and
		 * we obviously don't have to worry about waking up a process
		 * waiting on the page lock, because there are no references.
		 */
1551
		__ClearPageLocked(page);
N
Nick Piggin 已提交
1552
free_it:
1553
		nr_reclaimed++;
1554 1555 1556 1557 1558

		/*
		 * Is there need to periodically free_page_list? It would
		 * appear not as the counts should be low
		 */
1559
		if (unlikely(PageTransHuge(page)))
1560
			(*get_compound_page_dtor(page))(page);
1561
		else
1562
			list_add(&page->lru, &free_pages);
L
Linus Torvalds 已提交
1563 1564 1565
		continue;

activate_locked:
1566
		/* Not a candidate for swapping, so reclaim swap space. */
M
Minchan Kim 已提交
1567 1568
		if (PageSwapCache(page) && (mem_cgroup_swap_full(page) ||
						PageMlocked(page)))
1569
			try_to_free_swap(page);
1570
		VM_BUG_ON_PAGE(PageActive(page), page);
M
Minchan Kim 已提交
1571 1572 1573
		if (!PageMlocked(page)) {
			SetPageActive(page);
			pgactivate++;
1574
			count_memcg_page_event(page, PGACTIVATE);
M
Minchan Kim 已提交
1575
		}
L
Linus Torvalds 已提交
1576 1577 1578 1579
keep_locked:
		unlock_page(page);
keep:
		list_add(&page->lru, &ret_pages);
1580
		VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
L
Linus Torvalds 已提交
1581
	}
1582

1583
	mem_cgroup_uncharge_list(&free_pages);
1584
	try_to_unmap_flush();
1585
	free_unref_page_list(&free_pages);
1586

L
Linus Torvalds 已提交
1587
	list_splice(&ret_pages, page_list);
1588
	count_vm_events(PGACTIVATE, pgactivate);
1589

1590 1591 1592 1593 1594 1595
	if (stat) {
		stat->nr_dirty = nr_dirty;
		stat->nr_congested = nr_congested;
		stat->nr_unqueued_dirty = nr_unqueued_dirty;
		stat->nr_writeback = nr_writeback;
		stat->nr_immediate = nr_immediate;
1596 1597 1598
		stat->nr_activate = pgactivate;
		stat->nr_ref_keep = nr_ref_keep;
		stat->nr_unmap_fail = nr_unmap_fail;
1599
	}
1600
	return nr_reclaimed;
L
Linus Torvalds 已提交
1601 1602
}

1603 1604 1605 1606 1607 1608 1609 1610
unsigned long reclaim_clean_pages_from_list(struct zone *zone,
					    struct list_head *page_list)
{
	struct scan_control sc = {
		.gfp_mask = GFP_KERNEL,
		.priority = DEF_PRIORITY,
		.may_unmap = 1,
	};
1611
	unsigned long ret;
1612 1613 1614 1615
	struct page *page, *next;
	LIST_HEAD(clean_pages);

	list_for_each_entry_safe(page, next, page_list, lru) {
1616
		if (page_is_file_cache(page) && !PageDirty(page) &&
1617
		    !__PageMovable(page) && !PageUnevictable(page)) {
1618 1619 1620 1621 1622
			ClearPageActive(page);
			list_move(&page->lru, &clean_pages);
		}
	}

M
Mel Gorman 已提交
1623
	ret = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
S
Shaohua Li 已提交
1624
			TTU_IGNORE_ACCESS, NULL, true);
1625
	list_splice(&clean_pages, page_list);
M
Mel Gorman 已提交
1626
	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -ret);
1627 1628 1629
	return ret;
}

A
Andy Whitcroft 已提交
1630 1631 1632 1633 1634 1635 1636 1637 1638 1639
/*
 * Attempt to remove the specified page from its LRU.  Only take this page
 * if it is of the appropriate PageActive status.  Pages which are being
 * freed elsewhere are also ignored.
 *
 * page:	page to consider
 * mode:	one of the LRU isolation modes defined above
 *
 * returns 0 on success, -ve errno on failure.
 */
1640
int __isolate_lru_page(struct page *page, isolate_mode_t mode)
A
Andy Whitcroft 已提交
1641 1642 1643 1644 1645 1646 1647
{
	int ret = -EINVAL;

	/* Only take pages on the LRU. */
	if (!PageLRU(page))
		return ret;

M
Minchan Kim 已提交
1648 1649
	/* Compaction should not handle unevictable pages but CMA can do so */
	if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
L
Lee Schermerhorn 已提交
1650 1651
		return ret;

A
Andy Whitcroft 已提交
1652
	ret = -EBUSY;
K
KAMEZAWA Hiroyuki 已提交
1653

1654 1655 1656 1657 1658 1659 1660 1661
	/*
	 * To minimise LRU disruption, the caller can indicate that it only
	 * wants to isolate pages it will be able to operate on without
	 * blocking - clean pages for the most part.
	 *
	 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
	 * that it is possible to migrate without blocking
	 */
1662
	if (mode & ISOLATE_ASYNC_MIGRATE) {
1663 1664 1665 1666 1667 1668
		/* All the caller can do on PageWriteback is block */
		if (PageWriteback(page))
			return ret;

		if (PageDirty(page)) {
			struct address_space *mapping;
1669
			bool migrate_dirty;
1670 1671 1672 1673

			/*
			 * Only pages without mappings or that have a
			 * ->migratepage callback are possible to migrate
1674 1675 1676 1677 1678
			 * without blocking. However, we can be racing with
			 * truncation so it's necessary to lock the page
			 * to stabilise the mapping as truncation holds
			 * the page lock until after the page is removed
			 * from the page cache.
1679
			 */
1680 1681 1682
			if (!trylock_page(page))
				return ret;

1683
			mapping = page_mapping(page);
1684
			migrate_dirty = !mapping || mapping->a_ops->migratepage;
1685 1686
			unlock_page(page);
			if (!migrate_dirty)
1687 1688 1689
				return ret;
		}
	}
1690

1691 1692 1693
	if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
		return ret;

A
Andy Whitcroft 已提交
1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706
	if (likely(get_page_unless_zero(page))) {
		/*
		 * Be careful not to clear PageLRU until after we're
		 * sure the page is not being freed elsewhere -- the
		 * page release code relies on it.
		 */
		ClearPageLRU(page);
		ret = 0;
	}

	return ret;
}

1707 1708 1709 1710 1711 1712

/*
 * Update LRU sizes after isolating pages. The LRU size updates must
 * be complete before mem_cgroup_update_lru_size due to a santity check.
 */
static __always_inline void update_lru_sizes(struct lruvec *lruvec,
1713
			enum lru_list lru, unsigned long *nr_zone_taken)
1714 1715 1716 1717 1718 1719 1720 1721 1722
{
	int zid;

	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
		if (!nr_zone_taken[zid])
			continue;

		__update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
#ifdef CONFIG_MEMCG
1723
		mem_cgroup_update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1724
#endif
1725 1726
	}

1727 1728
}

L
Linus Torvalds 已提交
1729
/*
1730
 * zone_lru_lock is heavily contended.  Some of the functions that
L
Linus Torvalds 已提交
1731 1732 1733 1734 1735 1736 1737 1738
 * shrink the lists perform better by taking out a batch of pages
 * and working on them outside the LRU lock.
 *
 * For pagecache intensive workloads, this function is the hottest
 * spot in the kernel (apart from copy_*_user functions).
 *
 * Appropriate locks must be held before calling this function.
 *
1739
 * @nr_to_scan:	The number of eligible pages to look through on the list.
1740
 * @lruvec:	The LRU vector to pull pages from.
L
Linus Torvalds 已提交
1741
 * @dst:	The temp list to put pages on to.
H
Hugh Dickins 已提交
1742
 * @nr_scanned:	The number of pages that were scanned.
1743
 * @sc:		The scan_control struct for this reclaim session
A
Andy Whitcroft 已提交
1744
 * @mode:	One of the LRU isolation modes
1745
 * @lru:	LRU list id for isolating
L
Linus Torvalds 已提交
1746 1747 1748
 *
 * returns how many pages were moved onto *@dst.
 */
1749
static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1750
		struct lruvec *lruvec, struct list_head *dst,
1751
		unsigned long *nr_scanned, struct scan_control *sc,
1752
		isolate_mode_t mode, enum lru_list lru)
L
Linus Torvalds 已提交
1753
{
H
Hugh Dickins 已提交
1754
	struct list_head *src = &lruvec->lists[lru];
1755
	unsigned long nr_taken = 0;
M
Mel Gorman 已提交
1756
	unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
1757
	unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
1758
	unsigned long skipped = 0;
1759
	unsigned long scan, total_scan, nr_pages;
1760
	LIST_HEAD(pages_skipped);
L
Linus Torvalds 已提交
1761

1762 1763 1764 1765
	scan = 0;
	for (total_scan = 0;
	     scan < nr_to_scan && nr_taken < nr_to_scan && !list_empty(src);
	     total_scan++) {
A
Andy Whitcroft 已提交
1766 1767
		struct page *page;

L
Linus Torvalds 已提交
1768 1769 1770
		page = lru_to_page(src);
		prefetchw_prev_lru_page(page, src, flags);

1771
		VM_BUG_ON_PAGE(!PageLRU(page), page);
N
Nick Piggin 已提交
1772

1773 1774
		if (page_zonenum(page) > sc->reclaim_idx) {
			list_move(&page->lru, &pages_skipped);
1775
			nr_skipped[page_zonenum(page)]++;
1776 1777 1778
			continue;
		}

1779 1780 1781 1782 1783 1784 1785
		/*
		 * Do not count skipped pages because that makes the function
		 * return with no isolated pages if the LRU mostly contains
		 * ineligible pages.  This causes the VM to not reclaim any
		 * pages, triggering a premature OOM.
		 */
		scan++;
1786
		switch (__isolate_lru_page(page, mode)) {
A
Andy Whitcroft 已提交
1787
		case 0:
M
Mel Gorman 已提交
1788 1789 1790
			nr_pages = hpage_nr_pages(page);
			nr_taken += nr_pages;
			nr_zone_taken[page_zonenum(page)] += nr_pages;
A
Andy Whitcroft 已提交
1791 1792 1793 1794 1795 1796 1797
			list_move(&page->lru, dst);
			break;

		case -EBUSY:
			/* else it is being freed elsewhere */
			list_move(&page->lru, src);
			continue;
1798

A
Andy Whitcroft 已提交
1799 1800 1801
		default:
			BUG();
		}
L
Linus Torvalds 已提交
1802 1803
	}

1804 1805 1806 1807 1808 1809 1810
	/*
	 * Splice any skipped pages to the start of the LRU list. Note that
	 * this disrupts the LRU order when reclaiming for lower zones but
	 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
	 * scanning would soon rescan the same pages to skip and put the
	 * system at risk of premature OOM.
	 */
1811 1812 1813
	if (!list_empty(&pages_skipped)) {
		int zid;

1814
		list_splice(&pages_skipped, src);
1815 1816 1817 1818 1819
		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
			if (!nr_skipped[zid])
				continue;

			__count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1820
			skipped += nr_skipped[zid];
1821 1822
		}
	}
1823
	*nr_scanned = total_scan;
1824
	trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
1825
				    total_scan, skipped, nr_taken, mode, lru);
1826
	update_lru_sizes(lruvec, lru, nr_zone_taken);
L
Linus Torvalds 已提交
1827 1828 1829
	return nr_taken;
}

1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840
/**
 * isolate_lru_page - tries to isolate a page from its LRU list
 * @page: page to isolate from its LRU list
 *
 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
 * vmstat statistic corresponding to whatever LRU list the page was on.
 *
 * Returns 0 if the page was removed from an LRU list.
 * Returns -EBUSY if the page was not on an LRU list.
 *
 * The returned page will have PageLRU() cleared.  If it was found on
L
Lee Schermerhorn 已提交
1841 1842 1843
 * the active list, it will have PageActive set.  If it was found on
 * the unevictable list, it will have the PageUnevictable bit set. That flag
 * may need to be cleared by the caller before letting the page go.
1844 1845 1846 1847 1848
 *
 * The vmstat statistic corresponding to the list on which the page was
 * found will be decremented.
 *
 * Restrictions:
1849
 *
1850 1851 1852 1853 1854 1855 1856 1857 1858 1859
 * (1) Must be called with an elevated refcount on the page. This is a
 *     fundamentnal difference from isolate_lru_pages (which is called
 *     without a stable reference).
 * (2) the lru_lock must not be held.
 * (3) interrupts must be enabled.
 */
int isolate_lru_page(struct page *page)
{
	int ret = -EBUSY;

1860
	VM_BUG_ON_PAGE(!page_count(page), page);
1861
	WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
1862

1863 1864
	if (PageLRU(page)) {
		struct zone *zone = page_zone(page);
1865
		struct lruvec *lruvec;
1866

1867
		spin_lock_irq(zone_lru_lock(zone));
M
Mel Gorman 已提交
1868
		lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
1869
		if (PageLRU(page)) {
L
Lee Schermerhorn 已提交
1870
			int lru = page_lru(page);
1871
			get_page(page);
1872
			ClearPageLRU(page);
1873 1874
			del_page_from_lru_list(page, lruvec, lru);
			ret = 0;
1875
		}
1876
		spin_unlock_irq(zone_lru_lock(zone));
1877 1878 1879 1880
	}
	return ret;
}

1881
/*
F
Fengguang Wu 已提交
1882 1883 1884 1885 1886
 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
 * then get resheduled. When there are massive number of tasks doing page
 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
 * the LRU list will go small and be scanned faster than necessary, leading to
 * unnecessary swapping, thrashing and OOM.
1887
 */
M
Mel Gorman 已提交
1888
static int too_many_isolated(struct pglist_data *pgdat, int file,
1889 1890 1891 1892 1893 1894 1895
		struct scan_control *sc)
{
	unsigned long inactive, isolated;

	if (current_is_kswapd())
		return 0;

1896
	if (!sane_reclaim(sc))
1897 1898 1899
		return 0;

	if (file) {
M
Mel Gorman 已提交
1900 1901
		inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
		isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
1902
	} else {
M
Mel Gorman 已提交
1903 1904
		inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
		isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
1905 1906
	}

1907 1908 1909 1910 1911
	/*
	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
	 * won't get blocked by normal direct-reclaimers, forming a circular
	 * deadlock.
	 */
1912
	if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
1913 1914
		inactive >>= 3;

1915 1916 1917
	return isolated > inactive;
}

1918
static noinline_for_stack void
H
Hugh Dickins 已提交
1919
putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1920
{
1921
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
M
Mel Gorman 已提交
1922
	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1923
	LIST_HEAD(pages_to_free);
1924 1925 1926 1927 1928

	/*
	 * Put back any unfreeable pages.
	 */
	while (!list_empty(page_list)) {
1929
		struct page *page = lru_to_page(page_list);
1930
		int lru;
1931

1932
		VM_BUG_ON_PAGE(PageLRU(page), page);
1933
		list_del(&page->lru);
1934
		if (unlikely(!page_evictable(page))) {
M
Mel Gorman 已提交
1935
			spin_unlock_irq(&pgdat->lru_lock);
1936
			putback_lru_page(page);
M
Mel Gorman 已提交
1937
			spin_lock_irq(&pgdat->lru_lock);
1938 1939
			continue;
		}
1940

M
Mel Gorman 已提交
1941
		lruvec = mem_cgroup_page_lruvec(page, pgdat);
1942

1943
		SetPageLRU(page);
1944
		lru = page_lru(page);
1945 1946
		add_page_to_lru_list(page, lruvec, lru);

1947 1948
		if (is_active_lru(lru)) {
			int file = is_file_lru(lru);
1949 1950
			int numpages = hpage_nr_pages(page);
			reclaim_stat->recent_rotated[file] += numpages;
1951
		}
1952 1953 1954
		if (put_page_testzero(page)) {
			__ClearPageLRU(page);
			__ClearPageActive(page);
1955
			del_page_from_lru_list(page, lruvec, lru);
1956 1957

			if (unlikely(PageCompound(page))) {
M
Mel Gorman 已提交
1958
				spin_unlock_irq(&pgdat->lru_lock);
1959
				(*get_compound_page_dtor(page))(page);
M
Mel Gorman 已提交
1960
				spin_lock_irq(&pgdat->lru_lock);
1961 1962
			} else
				list_add(&page->lru, &pages_to_free);
1963 1964 1965
		}
	}

1966 1967 1968 1969
	/*
	 * To save our caller's stack, now use input list for pages to free.
	 */
	list_splice(&pages_to_free, page_list);
1970 1971
}

1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984
/*
 * If a kernel thread (such as nfsd for loop-back mounts) services
 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
 * In that case we should only throttle if the backing device it is
 * writing to is congested.  In other cases it is safe to throttle.
 */
static int current_may_throttle(void)
{
	return !(current->flags & PF_LESS_THROTTLE) ||
		current->backing_dev_info == NULL ||
		bdi_write_congested(current->backing_dev_info);
}

L
Linus Torvalds 已提交
1985
/*
1986
 * shrink_inactive_list() is a helper for shrink_node().  It returns the number
A
Andrew Morton 已提交
1987
 * of reclaimed pages
L
Linus Torvalds 已提交
1988
 */
1989
static noinline_for_stack unsigned long
1990
shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1991
		     struct scan_control *sc, enum lru_list lru)
L
Linus Torvalds 已提交
1992 1993
{
	LIST_HEAD(page_list);
1994
	unsigned long nr_scanned;
1995
	unsigned long nr_reclaimed = 0;
1996
	unsigned long nr_taken;
1997
	struct reclaim_stat stat = {};
1998
	isolate_mode_t isolate_mode = 0;
1999
	int file = is_file_lru(lru);
M
Mel Gorman 已提交
2000
	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2001
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
2002
	bool stalled = false;
2003

M
Mel Gorman 已提交
2004
	while (unlikely(too_many_isolated(pgdat, file, sc))) {
2005 2006 2007 2008 2009 2010
		if (stalled)
			return 0;

		/* wait a bit for the reclaimer. */
		msleep(100);
		stalled = true;
2011 2012 2013 2014 2015 2016

		/* We are about to die and free our memory. Return now. */
		if (fatal_signal_pending(current))
			return SWAP_CLUSTER_MAX;
	}

L
Linus Torvalds 已提交
2017
	lru_add_drain();
2018 2019

	if (!sc->may_unmap)
2020
		isolate_mode |= ISOLATE_UNMAPPED;
2021

M
Mel Gorman 已提交
2022
	spin_lock_irq(&pgdat->lru_lock);
2023

2024 2025
	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
				     &nr_scanned, sc, isolate_mode, lru);
2026

M
Mel Gorman 已提交
2027
	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2028
	reclaim_stat->recent_scanned[file] += nr_taken;
2029

2030 2031
	if (current_is_kswapd()) {
		if (global_reclaim(sc))
M
Mel Gorman 已提交
2032
			__count_vm_events(PGSCAN_KSWAPD, nr_scanned);
2033 2034 2035 2036
		count_memcg_events(lruvec_memcg(lruvec), PGSCAN_KSWAPD,
				   nr_scanned);
	} else {
		if (global_reclaim(sc))
M
Mel Gorman 已提交
2037
			__count_vm_events(PGSCAN_DIRECT, nr_scanned);
2038 2039
		count_memcg_events(lruvec_memcg(lruvec), PGSCAN_DIRECT,
				   nr_scanned);
2040
	}
M
Mel Gorman 已提交
2041
	spin_unlock_irq(&pgdat->lru_lock);
2042

2043
	if (nr_taken == 0)
2044
		return 0;
A
Andy Whitcroft 已提交
2045

S
Shaohua Li 已提交
2046
	nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, 0,
2047
				&stat, false);
2048

M
Mel Gorman 已提交
2049
	spin_lock_irq(&pgdat->lru_lock);
2050

2051 2052
	if (current_is_kswapd()) {
		if (global_reclaim(sc))
M
Mel Gorman 已提交
2053
			__count_vm_events(PGSTEAL_KSWAPD, nr_reclaimed);
2054 2055 2056 2057
		count_memcg_events(lruvec_memcg(lruvec), PGSTEAL_KSWAPD,
				   nr_reclaimed);
	} else {
		if (global_reclaim(sc))
M
Mel Gorman 已提交
2058
			__count_vm_events(PGSTEAL_DIRECT, nr_reclaimed);
2059 2060
		count_memcg_events(lruvec_memcg(lruvec), PGSTEAL_DIRECT,
				   nr_reclaimed);
Y
Ying Han 已提交
2061
	}
N
Nick Piggin 已提交
2062

2063
	putback_inactive_pages(lruvec, &page_list);
2064

M
Mel Gorman 已提交
2065
	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2066

M
Mel Gorman 已提交
2067
	spin_unlock_irq(&pgdat->lru_lock);
2068

2069
	mem_cgroup_uncharge_list(&page_list);
2070
	free_unref_page_list(&page_list);
2071

2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085
	/*
	 * If dirty pages are scanned that are not queued for IO, it
	 * implies that flushers are not doing their job. This can
	 * happen when memory pressure pushes dirty pages to the end of
	 * the LRU before the dirty limits are breached and the dirty
	 * data has expired. It can also happen when the proportion of
	 * dirty pages grows not through writes but through memory
	 * pressure reclaiming all the clean cache. And in some cases,
	 * the flushers simply cannot keep up with the allocation
	 * rate. Nudge the flusher threads in case they are asleep.
	 */
	if (stat.nr_unqueued_dirty == nr_taken)
		wakeup_flusher_threads(WB_REASON_VMSCAN);

2086 2087 2088 2089 2090 2091 2092 2093
	sc->nr.dirty += stat.nr_dirty;
	sc->nr.congested += stat.nr_congested;
	sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
	sc->nr.writeback += stat.nr_writeback;
	sc->nr.immediate += stat.nr_immediate;
	sc->nr.taken += nr_taken;
	if (file)
		sc->nr.file_taken += nr_taken;
2094

M
Mel Gorman 已提交
2095
	trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
2096
			nr_scanned, nr_reclaimed, &stat, sc->priority, file);
2097
	return nr_reclaimed;
L
Linus Torvalds 已提交
2098 2099 2100 2101 2102 2103 2104 2105 2106
}

/*
 * This moves pages from the active list to the inactive list.
 *
 * We move them the other way if the page is referenced by one or more
 * processes, from rmap.
 *
 * If the pages are mostly unmapped, the processing is fast and it is
2107
 * appropriate to hold zone_lru_lock across the whole operation.  But if
L
Linus Torvalds 已提交
2108
 * the pages are mapped, the processing is slow (page_referenced()) so we
2109
 * should drop zone_lru_lock around each page.  It's impossible to balance
L
Linus Torvalds 已提交
2110 2111 2112 2113
 * this, so instead we remove the pages from the LRU while processing them.
 * It is safe to rely on PG_active against the non-LRU pages in here because
 * nobody will play with that bit on a non-LRU page.
 *
2114
 * The downside is that we have to touch page->_refcount against each page.
L
Linus Torvalds 已提交
2115
 * But we had to alter page->flags anyway.
2116 2117
 *
 * Returns the number of pages moved to the given lru.
L
Linus Torvalds 已提交
2118
 */
2119

2120
static unsigned move_active_pages_to_lru(struct lruvec *lruvec,
2121
				     struct list_head *list,
2122
				     struct list_head *pages_to_free,
2123 2124
				     enum lru_list lru)
{
M
Mel Gorman 已提交
2125
	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2126
	struct page *page;
2127
	int nr_pages;
2128
	int nr_moved = 0;
2129 2130 2131

	while (!list_empty(list)) {
		page = lru_to_page(list);
M
Mel Gorman 已提交
2132
		lruvec = mem_cgroup_page_lruvec(page, pgdat);
2133

2134
		VM_BUG_ON_PAGE(PageLRU(page), page);
2135 2136
		SetPageLRU(page);

2137
		nr_pages = hpage_nr_pages(page);
M
Mel Gorman 已提交
2138
		update_lru_size(lruvec, lru, page_zonenum(page), nr_pages);
2139
		list_move(&page->lru, &lruvec->lists[lru]);
2140

2141 2142 2143
		if (put_page_testzero(page)) {
			__ClearPageLRU(page);
			__ClearPageActive(page);
2144
			del_page_from_lru_list(page, lruvec, lru);
2145 2146

			if (unlikely(PageCompound(page))) {
M
Mel Gorman 已提交
2147
				spin_unlock_irq(&pgdat->lru_lock);
2148
				(*get_compound_page_dtor(page))(page);
M
Mel Gorman 已提交
2149
				spin_lock_irq(&pgdat->lru_lock);
2150 2151
			} else
				list_add(&page->lru, pages_to_free);
2152 2153
		} else {
			nr_moved += nr_pages;
2154 2155
		}
	}
2156

2157
	if (!is_active_lru(lru)) {
2158
		__count_vm_events(PGDEACTIVATE, nr_moved);
2159 2160 2161
		count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE,
				   nr_moved);
	}
2162 2163

	return nr_moved;
2164
}
2165

H
Hugh Dickins 已提交
2166
static void shrink_active_list(unsigned long nr_to_scan,
2167
			       struct lruvec *lruvec,
2168
			       struct scan_control *sc,
2169
			       enum lru_list lru)
L
Linus Torvalds 已提交
2170
{
2171
	unsigned long nr_taken;
H
Hugh Dickins 已提交
2172
	unsigned long nr_scanned;
2173
	unsigned long vm_flags;
L
Linus Torvalds 已提交
2174
	LIST_HEAD(l_hold);	/* The pages which were snipped off */
2175
	LIST_HEAD(l_active);
2176
	LIST_HEAD(l_inactive);
L
Linus Torvalds 已提交
2177
	struct page *page;
2178
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
2179 2180
	unsigned nr_deactivate, nr_activate;
	unsigned nr_rotated = 0;
2181
	isolate_mode_t isolate_mode = 0;
2182
	int file = is_file_lru(lru);
M
Mel Gorman 已提交
2183
	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
L
Linus Torvalds 已提交
2184 2185

	lru_add_drain();
2186 2187

	if (!sc->may_unmap)
2188
		isolate_mode |= ISOLATE_UNMAPPED;
2189

M
Mel Gorman 已提交
2190
	spin_lock_irq(&pgdat->lru_lock);
2191

2192 2193
	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
				     &nr_scanned, sc, isolate_mode, lru);
2194

M
Mel Gorman 已提交
2195
	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2196
	reclaim_stat->recent_scanned[file] += nr_taken;
2197

M
Mel Gorman 已提交
2198
	__count_vm_events(PGREFILL, nr_scanned);
2199
	count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
2200

M
Mel Gorman 已提交
2201
	spin_unlock_irq(&pgdat->lru_lock);
L
Linus Torvalds 已提交
2202 2203 2204 2205 2206

	while (!list_empty(&l_hold)) {
		cond_resched();
		page = lru_to_page(&l_hold);
		list_del(&page->lru);
2207

2208
		if (unlikely(!page_evictable(page))) {
L
Lee Schermerhorn 已提交
2209 2210 2211 2212
			putback_lru_page(page);
			continue;
		}

2213 2214 2215 2216 2217 2218 2219 2220
		if (unlikely(buffer_heads_over_limit)) {
			if (page_has_private(page) && trylock_page(page)) {
				if (page_has_private(page))
					try_to_release_page(page, 0);
				unlock_page(page);
			}
		}

2221 2222
		if (page_referenced(page, 0, sc->target_mem_cgroup,
				    &vm_flags)) {
2223
			nr_rotated += hpage_nr_pages(page);
2224 2225 2226 2227 2228 2229 2230 2231 2232
			/*
			 * Identify referenced, file-backed active pages and
			 * give them one more trip around the active list. So
			 * that executable code get better chances to stay in
			 * memory under moderate memory pressure.  Anon pages
			 * are not likely to be evicted by use-once streaming
			 * IO, plus JVM can create lots of anon VM_EXEC pages,
			 * so we ignore them here.
			 */
2233
			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
2234 2235 2236 2237
				list_add(&page->lru, &l_active);
				continue;
			}
		}
2238

2239
		ClearPageActive(page);	/* we are de-activating */
2240
		SetPageWorkingset(page);
L
Linus Torvalds 已提交
2241 2242 2243
		list_add(&page->lru, &l_inactive);
	}

2244
	/*
2245
	 * Move pages back to the lru list.
2246
	 */
M
Mel Gorman 已提交
2247
	spin_lock_irq(&pgdat->lru_lock);
2248
	/*
2249 2250 2251
	 * Count referenced pages from currently used mappings as rotated,
	 * even though only some of them are actually re-activated.  This
	 * helps balance scan pressure between file and anonymous pages in
2252
	 * get_scan_count.
2253
	 */
2254
	reclaim_stat->recent_rotated[file] += nr_rotated;
2255

2256 2257
	nr_activate = move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
	nr_deactivate = move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
M
Mel Gorman 已提交
2258 2259
	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
	spin_unlock_irq(&pgdat->lru_lock);
2260

2261
	mem_cgroup_uncharge_list(&l_hold);
2262
	free_unref_page_list(&l_hold);
2263 2264
	trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
			nr_deactivate, nr_rotated, sc->priority, file);
L
Linus Torvalds 已提交
2265 2266
}

M
Minchan Kim 已提交
2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322
unsigned long reclaim_pages(struct list_head *page_list)
{
	int nid = -1;
	unsigned long nr_reclaimed = 0;
	LIST_HEAD(node_page_list);
	struct reclaim_stat dummy_stat;
	struct page *page;
	struct scan_control sc = {
		.gfp_mask = GFP_KERNEL,
		.priority = DEF_PRIORITY,
		.may_writepage = 1,
		.may_unmap = 1,
		.may_swap = 1,
	};

	while (!list_empty(page_list)) {
		page = lru_to_page(page_list);
		if (nid == -1) {
			nid = page_to_nid(page);
			INIT_LIST_HEAD(&node_page_list);
		}

		if (nid == page_to_nid(page)) {
			ClearPageActive(page);
			list_move(&page->lru, &node_page_list);
			continue;
		}

		nr_reclaimed += shrink_page_list(&node_page_list,
						NODE_DATA(nid),
						&sc, 0,
						&dummy_stat, false);
		while (!list_empty(&node_page_list)) {
			page = lru_to_page(&node_page_list);
			list_del(&page->lru);
			putback_lru_page(page);
		}

		nid = -1;
	}

	if (!list_empty(&node_page_list)) {
		nr_reclaimed += shrink_page_list(&node_page_list,
						NODE_DATA(nid),
						&sc, 0,
						&dummy_stat, false);
		while (!list_empty(&node_page_list)) {
			page = lru_to_page(&node_page_list);
			list_del(&page->lru);
			putback_lru_page(page);
		}
	}

	return nr_reclaimed;
}

2323 2324 2325
/*
 * The inactive anon list should be small enough that the VM never has
 * to do too much work.
2326
 *
2327 2328 2329
 * The inactive file list should be small enough to leave most memory
 * to the established workingset on the scan-resistant active list,
 * but large enough to avoid thrashing the aggregate readahead window.
2330
 *
2331 2332
 * Both inactive lists should also be large enough that each inactive
 * page has a chance to be referenced again before it is reclaimed.
2333
 *
2334 2335
 * If that fails and refaulting is observed, the inactive list grows.
 *
2336
 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
2337
 * on this LRU, maintained by the pageout code. An inactive_ratio
2338
 * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
2339
 *
2340 2341 2342 2343 2344 2345 2346 2347 2348 2349
 * total     target    max
 * memory    ratio     inactive
 * -------------------------------------
 *   10MB       1         5MB
 *  100MB       1        50MB
 *    1GB       3       250MB
 *   10GB      10       0.9GB
 *  100GB      31         3GB
 *    1TB     101        10GB
 *   10TB     320        32GB
2350
 */
2351
static bool inactive_list_is_low(struct lruvec *lruvec, bool file,
2352
				 struct scan_control *sc, bool trace)
2353
{
2354
	enum lru_list active_lru = file * LRU_FILE + LRU_ACTIVE;
2355 2356 2357 2358 2359
	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
	enum lru_list inactive_lru = file * LRU_FILE;
	unsigned long inactive, active;
	unsigned long inactive_ratio;
	unsigned long refaults;
2360
	unsigned long gb;
2361

2362 2363 2364 2365 2366 2367
	/*
	 * If we don't have swap space, anonymous page deactivation
	 * is pointless.
	 */
	if (!file && !total_swap_pages)
		return false;
2368

2369 2370
	inactive = lruvec_lru_size(lruvec, inactive_lru, sc->reclaim_idx);
	active = lruvec_lru_size(lruvec, active_lru, sc->reclaim_idx);
2371

2372 2373 2374 2375 2376
	/*
	 * When refaults are being observed, it means a new workingset
	 * is being established. Disable active list protection to get
	 * rid of the stale workingset quickly.
	 */
2377
	refaults = lruvec_page_state(lruvec, WORKINGSET_ACTIVATE);
2378
	if (file && lruvec->refaults != refaults) {
2379 2380 2381 2382 2383 2384 2385 2386
		inactive_ratio = 0;
	} else {
		gb = (inactive + active) >> (30 - PAGE_SHIFT);
		if (gb)
			inactive_ratio = int_sqrt(10 * gb);
		else
			inactive_ratio = 1;
	}
2387

2388
	if (trace)
2389 2390 2391 2392
		trace_mm_vmscan_inactive_list_is_low(pgdat->node_id, sc->reclaim_idx,
			lruvec_lru_size(lruvec, inactive_lru, MAX_NR_ZONES), inactive,
			lruvec_lru_size(lruvec, active_lru, MAX_NR_ZONES), active,
			inactive_ratio, file);
2393

2394
	return inactive * inactive_ratio < active;
2395 2396
}

2397
static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2398
				 struct lruvec *lruvec, struct scan_control *sc)
2399
{
2400
	if (is_active_lru(lru)) {
2401
		if (inactive_list_is_low(lruvec, is_file_lru(lru), sc, true))
2402
			shrink_active_list(nr_to_scan, lruvec, sc, lru);
2403 2404 2405
		return 0;
	}

2406
	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2407 2408
}

2409 2410 2411 2412 2413 2414 2415
enum scan_balance {
	SCAN_EQUAL,
	SCAN_FRACT,
	SCAN_ANON,
	SCAN_FILE,
};

2416 2417 2418 2419 2420 2421
/*
 * Determine how aggressively the anon and file LRU lists should be
 * scanned.  The relative value of each set of LRU lists is determined
 * by looking at the fraction of the pages scanned we did rotate back
 * onto the active list instead of evict.
 *
W
Wanpeng Li 已提交
2422 2423
 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
2424
 */
2425
static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg,
2426 2427
			   struct scan_control *sc, unsigned long *nr,
			   unsigned long *lru_pages)
2428
{
2429
	int swappiness = mem_cgroup_swappiness(memcg);
2430 2431 2432
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
	u64 fraction[2];
	u64 denominator = 0;	/* gcc */
M
Mel Gorman 已提交
2433
	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2434
	unsigned long anon_prio, file_prio;
2435
	enum scan_balance scan_balance;
2436
	unsigned long anon, file;
2437
	unsigned long ap, fp;
H
Hugh Dickins 已提交
2438
	enum lru_list lru;
2439 2440

	/* If we have no swap space, do not bother scanning anon pages. */
2441
	if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
2442
		scan_balance = SCAN_FILE;
2443 2444
		goto out;
	}
2445

2446 2447 2448 2449 2450 2451 2452
	/*
	 * Global reclaim will swap to prevent OOM even with no
	 * swappiness, but memcg users want to use this knob to
	 * disable swapping for individual groups completely when
	 * using the memory controller's swap limit feature would be
	 * too expensive.
	 */
2453
	if (!global_reclaim(sc) && !swappiness) {
2454
		scan_balance = SCAN_FILE;
2455 2456 2457 2458 2459 2460 2461 2462
		goto out;
	}

	/*
	 * Do not apply any pressure balancing cleverness when the
	 * system is close to OOM, scan both anon and file equally
	 * (unless the swappiness setting disagrees with swapping).
	 */
2463
	if (!sc->priority && swappiness) {
2464
		scan_balance = SCAN_EQUAL;
2465 2466 2467
		goto out;
	}

2468 2469 2470 2471 2472 2473 2474 2475 2476 2477
	/*
	 * Prevent the reclaimer from falling into the cache trap: as
	 * cache pages start out inactive, every cache fault will tip
	 * the scan balance towards the file LRU.  And as the file LRU
	 * shrinks, so does the window for rotation from references.
	 * This means we have a runaway feedback loop where a tiny
	 * thrashing file LRU becomes infinitely more attractive than
	 * anon pages.  Try to detect this based on file LRU size.
	 */
	if (global_reclaim(sc)) {
M
Mel Gorman 已提交
2478 2479 2480 2481
		unsigned long pgdatfile;
		unsigned long pgdatfree;
		int z;
		unsigned long total_high_wmark = 0;
2482

M
Mel Gorman 已提交
2483 2484 2485 2486 2487 2488
		pgdatfree = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
		pgdatfile = node_page_state(pgdat, NR_ACTIVE_FILE) +
			   node_page_state(pgdat, NR_INACTIVE_FILE);

		for (z = 0; z < MAX_NR_ZONES; z++) {
			struct zone *zone = &pgdat->node_zones[z];
2489
			if (!managed_zone(zone))
M
Mel Gorman 已提交
2490 2491 2492 2493
				continue;

			total_high_wmark += high_wmark_pages(zone);
		}
2494

M
Mel Gorman 已提交
2495
		if (unlikely(pgdatfile + pgdatfree <= total_high_wmark)) {
2496 2497 2498 2499 2500
			/*
			 * Force SCAN_ANON if there are enough inactive
			 * anonymous pages on the LRU in eligible zones.
			 * Otherwise, the small LRU gets thrashed.
			 */
2501
			if (!inactive_list_is_low(lruvec, false, sc, false) &&
2502 2503 2504 2505 2506
			    lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, sc->reclaim_idx)
					>> sc->priority) {
				scan_balance = SCAN_ANON;
				goto out;
			}
2507 2508 2509
		}
	}

2510
	/*
2511 2512 2513 2514 2515 2516 2517
	 * If there is enough inactive page cache, i.e. if the size of the
	 * inactive list is greater than that of the active list *and* the
	 * inactive list actually has some pages to scan on this priority, we
	 * do not reclaim anything from the anonymous working set right now.
	 * Without the second condition we could end up never scanning an
	 * lruvec even if it has plenty of old anonymous pages unless the
	 * system is under heavy pressure.
2518
	 */
2519
	if (!inactive_list_is_low(lruvec, true, sc, false) &&
2520
	    lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, sc->reclaim_idx) >> sc->priority) {
2521
		scan_balance = SCAN_FILE;
2522 2523 2524
		goto out;
	}

2525 2526
	scan_balance = SCAN_FRACT;

2527 2528 2529 2530
	/*
	 * With swappiness at 100, anonymous and file have the same priority.
	 * This scanning priority is essentially the inverse of IO cost.
	 */
2531
	anon_prio = swappiness;
H
Hugh Dickins 已提交
2532
	file_prio = 200 - anon_prio;
2533

2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544
	/*
	 * OK, so we have swap space and a fair amount of page cache
	 * pages.  We use the recently rotated / recently scanned
	 * ratios to determine how valuable each cache is.
	 *
	 * Because workloads change over time (and to avoid overflow)
	 * we keep these statistics as a floating average, which ends
	 * up weighing recent references more than old ones.
	 *
	 * anon in [0], file in [1]
	 */
2545

2546 2547 2548 2549
	anon  = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON, MAX_NR_ZONES) +
		lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, MAX_NR_ZONES);
	file  = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE, MAX_NR_ZONES) +
		lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, MAX_NR_ZONES);
2550

M
Mel Gorman 已提交
2551
	spin_lock_irq(&pgdat->lru_lock);
2552 2553 2554
	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
		reclaim_stat->recent_scanned[0] /= 2;
		reclaim_stat->recent_rotated[0] /= 2;
2555 2556
	}

2557 2558 2559
	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
		reclaim_stat->recent_scanned[1] /= 2;
		reclaim_stat->recent_rotated[1] /= 2;
2560 2561 2562
	}

	/*
2563 2564 2565
	 * The amount of pressure on anon vs file pages is inversely
	 * proportional to the fraction of recently scanned pages on
	 * each list that were recently referenced and in active use.
2566
	 */
2567
	ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
2568
	ap /= reclaim_stat->recent_rotated[0] + 1;
2569

2570
	fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
2571
	fp /= reclaim_stat->recent_rotated[1] + 1;
M
Mel Gorman 已提交
2572
	spin_unlock_irq(&pgdat->lru_lock);
2573

2574 2575 2576 2577
	fraction[0] = ap;
	fraction[1] = fp;
	denominator = ap + fp + 1;
out:
2578 2579 2580 2581 2582
	*lru_pages = 0;
	for_each_evictable_lru(lru) {
		int file = is_file_lru(lru);
		unsigned long size;
		unsigned long scan;
2583

2584 2585 2586 2587 2588 2589 2590 2591
		size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
		scan = size >> sc->priority;
		/*
		 * If the cgroup's already been deleted, make sure to
		 * scrape out the remaining cache.
		 */
		if (!scan && !mem_cgroup_online(memcg))
			scan = min(size, SWAP_CLUSTER_MAX);
2592

2593 2594 2595 2596 2597
		switch (scan_balance) {
		case SCAN_EQUAL:
			/* Scan lists relative to size */
			break;
		case SCAN_FRACT:
2598
			/*
2599 2600
			 * Scan types proportional to swappiness and
			 * their relative recent reclaim efficiency.
2601 2602
			 * Make sure we don't miss the last page
			 * because of a round-off error.
2603
			 */
2604 2605
			scan = DIV64_U64_ROUND_UP(scan * fraction[file],
						  denominator);
2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617
			break;
		case SCAN_FILE:
		case SCAN_ANON:
			/* Scan one type exclusively */
			if ((scan_balance == SCAN_FILE) != file) {
				size = 0;
				scan = 0;
			}
			break;
		default:
			/* Look ma, no brain */
			BUG();
2618
		}
2619 2620 2621

		*lru_pages += size;
		nr[lru] = scan;
2622
	}
2623
}
2624

2625
/*
2626
 * This is a basic per-node page freer.  Used by both kswapd and direct reclaim.
2627
 */
2628
static void shrink_node_memcg(struct pglist_data *pgdat, struct mem_cgroup *memcg,
2629
			      struct scan_control *sc, unsigned long *lru_pages)
2630
{
2631
	struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
2632
	unsigned long nr[NR_LRU_LISTS];
2633
	unsigned long targets[NR_LRU_LISTS];
2634 2635 2636 2637 2638
	unsigned long nr_to_scan;
	enum lru_list lru;
	unsigned long nr_reclaimed = 0;
	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
	struct blk_plug plug;
2639
	bool scan_adjusted;
2640

2641
	get_scan_count(lruvec, memcg, sc, nr, lru_pages);
2642

2643 2644 2645
	/* Record the original scan target for proportional adjustments later */
	memcpy(targets, nr, sizeof(nr));

2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659
	/*
	 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
	 * event that can occur when there is little memory pressure e.g.
	 * multiple streaming readers/writers. Hence, we do not abort scanning
	 * when the requested number of pages are reclaimed when scanning at
	 * DEF_PRIORITY on the assumption that the fact we are direct
	 * reclaiming implies that kswapd is not keeping up and it is best to
	 * do a batch of work at once. For memcg reclaim one check is made to
	 * abort proportional reclaim if either the file or anon lru has already
	 * dropped to zero at the first pass.
	 */
	scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
			 sc->priority == DEF_PRIORITY);

2660 2661 2662
	blk_start_plug(&plug);
	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
					nr[LRU_INACTIVE_FILE]) {
2663 2664 2665
		unsigned long nr_anon, nr_file, percentage;
		unsigned long nr_scanned;

2666 2667 2668 2669 2670 2671
		for_each_evictable_lru(lru) {
			if (nr[lru]) {
				nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
				nr[lru] -= nr_to_scan;

				nr_reclaimed += shrink_list(lru, nr_to_scan,
2672
							    lruvec, sc);
2673 2674
			}
		}
2675

2676 2677
		cond_resched();

2678 2679 2680 2681 2682
		if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
			continue;

		/*
		 * For kswapd and memcg, reclaim at least the number of pages
2683
		 * requested. Ensure that the anon and file LRUs are scanned
2684 2685 2686 2687 2688 2689 2690
		 * proportionally what was requested by get_scan_count(). We
		 * stop reclaiming one LRU and reduce the amount scanning
		 * proportional to the original scan target.
		 */
		nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
		nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];

2691 2692 2693 2694 2695 2696 2697 2698 2699
		/*
		 * It's just vindictive to attack the larger once the smaller
		 * has gone to zero.  And given the way we stop scanning the
		 * smaller below, this makes sure that we only make one nudge
		 * towards proportionality once we've got nr_to_reclaim.
		 */
		if (!nr_file || !nr_anon)
			break;

2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730
		if (nr_file > nr_anon) {
			unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
						targets[LRU_ACTIVE_ANON] + 1;
			lru = LRU_BASE;
			percentage = nr_anon * 100 / scan_target;
		} else {
			unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
						targets[LRU_ACTIVE_FILE] + 1;
			lru = LRU_FILE;
			percentage = nr_file * 100 / scan_target;
		}

		/* Stop scanning the smaller of the LRU */
		nr[lru] = 0;
		nr[lru + LRU_ACTIVE] = 0;

		/*
		 * Recalculate the other LRU scan count based on its original
		 * scan target and the percentage scanning already complete
		 */
		lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
		nr_scanned = targets[lru] - nr[lru];
		nr[lru] = targets[lru] * (100 - percentage) / 100;
		nr[lru] -= min(nr[lru], nr_scanned);

		lru += LRU_ACTIVE;
		nr_scanned = targets[lru] - nr[lru];
		nr[lru] = targets[lru] * (100 - percentage) / 100;
		nr[lru] -= min(nr[lru], nr_scanned);

		scan_adjusted = true;
2731 2732 2733 2734 2735 2736 2737 2738
	}
	blk_finish_plug(&plug);
	sc->nr_reclaimed += nr_reclaimed;

	/*
	 * Even if we did not try to evict anon pages at all, we want to
	 * rebalance the anon lru active/inactive ratio.
	 */
2739
	if (inactive_list_is_low(lruvec, false, sc, true))
2740 2741 2742 2743
		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
				   sc, LRU_ACTIVE_ANON);
}

M
Mel Gorman 已提交
2744
/* Use reclaim/compaction for costly allocs or under memory pressure */
2745
static bool in_reclaim_compaction(struct scan_control *sc)
M
Mel Gorman 已提交
2746
{
2747
	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
M
Mel Gorman 已提交
2748
			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2749
			 sc->priority < DEF_PRIORITY - 2))
M
Mel Gorman 已提交
2750 2751 2752 2753 2754
		return true;

	return false;
}

2755
/*
M
Mel Gorman 已提交
2756 2757 2758 2759 2760
 * Reclaim/compaction is used for high-order allocation requests. It reclaims
 * order-0 pages before compacting the zone. should_continue_reclaim() returns
 * true if more pages should be reclaimed such that when the page allocator
 * calls try_to_compact_zone() that it will have enough free pages to succeed.
 * It will give up earlier than that if there is difficulty reclaiming pages.
2761
 */
2762
static inline bool should_continue_reclaim(struct pglist_data *pgdat,
2763 2764 2765 2766 2767 2768
					unsigned long nr_reclaimed,
					unsigned long nr_scanned,
					struct scan_control *sc)
{
	unsigned long pages_for_compaction;
	unsigned long inactive_lru_pages;
2769
	int z;
2770 2771

	/* If not in reclaim/compaction mode, stop */
2772
	if (!in_reclaim_compaction(sc))
2773 2774
		return false;

2775
	/* Consider stopping depending on scan and reclaim activity */
2776
	if (sc->gfp_mask & __GFP_RETRY_MAYFAIL) {
2777
		/*
2778
		 * For __GFP_RETRY_MAYFAIL allocations, stop reclaiming if the
2779 2780
		 * full LRU list has been scanned and we are still failing
		 * to reclaim pages. This full LRU scan is potentially
2781
		 * expensive but a __GFP_RETRY_MAYFAIL caller really wants to succeed
2782 2783 2784 2785 2786
		 */
		if (!nr_reclaimed && !nr_scanned)
			return false;
	} else {
		/*
2787
		 * For non-__GFP_RETRY_MAYFAIL allocations which can presumably
2788 2789 2790 2791 2792 2793 2794 2795 2796
		 * fail without consequence, stop if we failed to reclaim
		 * any pages from the last SWAP_CLUSTER_MAX number of
		 * pages that were scanned. This will return to the
		 * caller faster at the risk reclaim/compaction and
		 * the resulting allocation attempt fails
		 */
		if (!nr_reclaimed)
			return false;
	}
2797 2798 2799 2800 2801

	/*
	 * If we have not reclaimed enough pages for compaction and the
	 * inactive lists are large enough, continue reclaiming
	 */
2802
	pages_for_compaction = compact_gap(sc->order);
2803
	inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
2804
	if (get_nr_swap_pages() > 0)
2805
		inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
2806 2807 2808 2809 2810
	if (sc->nr_reclaimed < pages_for_compaction &&
			inactive_lru_pages > pages_for_compaction)
		return true;

	/* If compaction would go ahead or the allocation would succeed, stop */
2811 2812
	for (z = 0; z <= sc->reclaim_idx; z++) {
		struct zone *zone = &pgdat->node_zones[z];
2813
		if (!managed_zone(zone))
2814 2815 2816
			continue;

		switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
2817
		case COMPACT_SUCCESS:
2818 2819 2820 2821 2822 2823
		case COMPACT_CONTINUE:
			return false;
		default:
			/* check next zone */
			;
		}
2824
	}
2825
	return true;
2826 2827
}

2828
static bool shrink_node(pg_data_t *pgdat, struct scan_control *sc)
L
Linus Torvalds 已提交
2829
{
2830
	struct reclaim_state *reclaim_state = current->reclaim_state;
2831
	unsigned long nr_reclaimed, nr_scanned;
2832
	bool reclaimable = false;
L
Linus Torvalds 已提交
2833

2834 2835 2836
	do {
		struct mem_cgroup *root = sc->target_mem_cgroup;
		struct mem_cgroup_reclaim_cookie reclaim = {
2837
			.pgdat = pgdat,
2838 2839
			.priority = sc->priority,
		};
2840
		unsigned long node_lru_pages = 0;
2841
		struct mem_cgroup *memcg;
2842

2843 2844
		memset(&sc->nr, 0, sizeof(sc->nr));

2845 2846
		nr_reclaimed = sc->nr_reclaimed;
		nr_scanned = sc->nr_scanned;
L
Linus Torvalds 已提交
2847

2848 2849
		memcg = mem_cgroup_iter(root, NULL, &reclaim);
		do {
2850
			unsigned long lru_pages;
2851
			unsigned long reclaimed;
2852
			unsigned long scanned;
2853

R
Roman Gushchin 已提交
2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867
			switch (mem_cgroup_protected(root, memcg)) {
			case MEMCG_PROT_MIN:
				/*
				 * Hard protection.
				 * If there is no reclaimable memory, OOM.
				 */
				continue;
			case MEMCG_PROT_LOW:
				/*
				 * Soft protection.
				 * Respect the protection only as long as
				 * there is an unprotected supply
				 * of reclaimable memory from other cgroups.
				 */
2868 2869
				if (!sc->memcg_low_reclaim) {
					sc->memcg_low_skipped = 1;
2870
					continue;
2871
				}
2872
				memcg_memory_event(memcg, MEMCG_LOW);
R
Roman Gushchin 已提交
2873 2874 2875
				break;
			case MEMCG_PROT_NONE:
				break;
2876 2877
			}

2878
			reclaimed = sc->nr_reclaimed;
2879
			scanned = sc->nr_scanned;
2880 2881
			shrink_node_memcg(pgdat, memcg, sc, &lru_pages);
			node_lru_pages += lru_pages;
2882

2883 2884
			if (sc->may_shrinkslab) {
				shrink_slab(sc->gfp_mask, pgdat->node_id,
2885
				    memcg, sc->priority);
2886
			}
2887

2888 2889 2890 2891 2892
			/* Record the group's reclaim efficiency */
			vmpressure(sc->gfp_mask, memcg, false,
				   sc->nr_scanned - scanned,
				   sc->nr_reclaimed - reclaimed);

2893
			/*
2894 2895
			 * Direct reclaim and kswapd have to scan all memory
			 * cgroups to fulfill the overall scan target for the
2896
			 * node.
2897 2898 2899 2900 2901
			 *
			 * Limit reclaim, on the other hand, only cares about
			 * nr_to_reclaim pages to be reclaimed and it will
			 * retry with decreasing priority if one round over the
			 * whole hierarchy is not sufficient.
2902 2903 2904
			 *
			 * Memcg background reclaim would break iter once water
			 * mark is satisfied.
2905
			 */
2906
			if (!global_reclaim(sc) &&
2907 2908
			    ((sc->nr_reclaimed >= sc->nr_to_reclaim) ||
			    (current_is_kswapd() && is_wmark_ok(root, false)))) {
2909 2910 2911
				mem_cgroup_iter_break(root, memcg);
				break;
			}
2912
		} while ((memcg = mem_cgroup_iter(root, memcg, &reclaim)));
2913

2914 2915 2916
		if (reclaim_state) {
			sc->nr_reclaimed += reclaim_state->reclaimed_slab;
			reclaim_state->reclaimed_slab = 0;
2917 2918
		}

2919 2920
		/* Record the subtree's reclaim efficiency */
		vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
2921 2922 2923
			   sc->nr_scanned - nr_scanned,
			   sc->nr_reclaimed - nr_reclaimed);

2924 2925 2926
		if (sc->nr_reclaimed - nr_reclaimed)
			reclaimable = true;

2927
		if (current_is_kswapd()) {
2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944
			/*
			 * If reclaim is isolating dirty pages under writeback,
			 * it implies that the long-lived page allocation rate
			 * is exceeding the page laundering rate. Either the
			 * global limits are not being effective at throttling
			 * processes due to the page distribution throughout
			 * zones or there is heavy usage of a slow backing
			 * device. The only option is to throttle from reclaim
			 * context which is not ideal as there is no guarantee
			 * the dirtying process is throttled in the same way
			 * balance_dirty_pages() manages.
			 *
			 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
			 * count the number of pages under pages flagged for
			 * immediate reclaim and stall if any are encountered
			 * in the nr_immediate check below.
			 */
2945 2946 2947 2948 2949 2950
			if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken) {
				if (global_reclaim(sc))
					set_bit(PGDAT_WRITEBACK, &pgdat->flags);
				else
					set_memcg_writeback(pgdat, root, true);
			}
2951 2952 2953 2954 2955 2956

			/*
			 * Tag a node as congested if all the dirty pages
			 * scanned were backed by a congested BDI and
			 * wait_iff_congested will stall.
			 */
2957 2958
			if (sc->nr.dirty && sc->nr.dirty == sc->nr.congested &&
			    global_reclaim(sc))
2959 2960 2961
				set_bit(PGDAT_CONGESTED, &pgdat->flags);

			/* Allow kswapd to start writing pages during reclaim.*/
2962 2963 2964 2965 2966 2967
			if (sc->nr.unqueued_dirty == sc->nr.file_taken) {
				if (global_reclaim(sc))
					set_bit(PGDAT_DIRTY, &pgdat->flags);
				else
					set_memcg_dirty(pgdat, root, true);
			}
2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978

			/*
			 * If kswapd scans pages marked marked for immediate
			 * reclaim and under writeback (nr_immediate), it
			 * implies that pages are cycling through the LRU
			 * faster than they are written so also forcibly stall.
			 */
			if (sc->nr.immediate)
				congestion_wait(BLK_RW_ASYNC, HZ/10);
		}

2979 2980 2981 2982 2983 2984 2985 2986
		/*
		 * Legacy memcg will stall in page writeback so avoid forcibly
		 * stalling in wait_iff_congested().
		 */
		if (!global_reclaim(sc) && sane_reclaim(sc) &&
		    sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
			set_memcg_congestion(pgdat, root, true);

2987 2988 2989 2990 2991 2992 2993
		/*
		 * Stall direct reclaim for IO completions if underlying BDIs
		 * and node is congested. Allow kswapd to continue until it
		 * starts encountering unqueued dirty pages or cycling through
		 * the LRU too quickly.
		 */
		if (!sc->hibernation_mode && !current_is_kswapd() &&
2994 2995
		   current_may_throttle() && pgdat_memcg_congested(pgdat, root))
			wait_iff_congested(BLK_RW_ASYNC, HZ/10);
2996

2997
	} while (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
2998
					 sc->nr_scanned - nr_scanned, sc));
2999

3000 3001 3002 3003 3004 3005 3006 3007 3008
	/*
	 * Kswapd gives up on balancing particular nodes after too
	 * many failures to reclaim anything from them and goes to
	 * sleep. On reclaim progress, reset the failure counter. A
	 * successful direct reclaim run will revive a dormant kswapd.
	 */
	if (reclaimable)
		pgdat->kswapd_failures = 0;

3009
	return reclaimable;
3010 3011
}

3012
/*
3013 3014 3015
 * Returns true if compaction should go ahead for a costly-order request, or
 * the allocation would already succeed without compaction. Return false if we
 * should reclaim first.
3016
 */
3017
static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
3018
{
M
Mel Gorman 已提交
3019
	unsigned long watermark;
3020
	enum compact_result suitable;
3021

3022 3023 3024 3025 3026 3027 3028
	suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
	if (suitable == COMPACT_SUCCESS)
		/* Allocation should succeed already. Don't reclaim. */
		return true;
	if (suitable == COMPACT_SKIPPED)
		/* Compaction cannot yet proceed. Do reclaim. */
		return false;
3029

3030
	/*
3031 3032 3033 3034 3035 3036 3037
	 * Compaction is already possible, but it takes time to run and there
	 * are potentially other callers using the pages just freed. So proceed
	 * with reclaim to make a buffer of free pages available to give
	 * compaction a reasonable chance of completing and allocating the page.
	 * Note that we won't actually reclaim the whole buffer in one attempt
	 * as the target watermark in should_continue_reclaim() is lower. But if
	 * we are already above the high+gap watermark, don't reclaim at all.
3038
	 */
3039
	watermark = high_wmark_pages(zone) + compact_gap(sc->order);
3040

3041
	return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
3042 3043
}

L
Linus Torvalds 已提交
3044 3045 3046 3047 3048 3049 3050 3051
/*
 * This is the direct reclaim path, for page-allocating processes.  We only
 * try to reclaim pages from zones which will satisfy the caller's allocation
 * request.
 *
 * If a zone is deemed to be full of pinned pages then just give it a light
 * scan then give up on it.
 */
M
Michal Hocko 已提交
3052
static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
L
Linus Torvalds 已提交
3053
{
3054
	struct zoneref *z;
3055
	struct zone *zone;
3056 3057
	unsigned long nr_soft_reclaimed;
	unsigned long nr_soft_scanned;
3058
	gfp_t orig_mask;
3059
	pg_data_t *last_pgdat = NULL;
3060

3061 3062 3063 3064 3065
	/*
	 * If the number of buffer_heads in the machine exceeds the maximum
	 * allowed level, force direct reclaim to scan the highmem zone as
	 * highmem pages could be pinning lowmem pages storing buffer_heads
	 */
3066
	orig_mask = sc->gfp_mask;
3067
	if (buffer_heads_over_limit) {
3068
		sc->gfp_mask |= __GFP_HIGHMEM;
3069
		sc->reclaim_idx = gfp_zone(sc->gfp_mask);
3070
	}
3071

3072
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
3073
					sc->reclaim_idx, sc->nodemask) {
3074 3075 3076 3077
		/*
		 * Take care memory controller reclaiming has small influence
		 * to global LRU.
		 */
3078
		if (global_reclaim(sc)) {
3079 3080
			if (!cpuset_zone_allowed(zone,
						 GFP_KERNEL | __GFP_HARDWALL))
3081
				continue;
3082

3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093
			/*
			 * If we already have plenty of memory free for
			 * compaction in this zone, don't free any more.
			 * Even though compaction is invoked for any
			 * non-zero order, only frequent costly order
			 * reclamation is disruptive enough to become a
			 * noticeable problem, like transparent huge
			 * page allocations.
			 */
			if (IS_ENABLED(CONFIG_COMPACTION) &&
			    sc->order > PAGE_ALLOC_COSTLY_ORDER &&
3094
			    compaction_ready(zone, sc)) {
3095 3096
				sc->compaction_ready = true;
				continue;
3097
			}
3098

3099 3100 3101 3102 3103 3104 3105 3106 3107
			/*
			 * Shrink each node in the zonelist once. If the
			 * zonelist is ordered by zone (not the default) then a
			 * node may be shrunk multiple times but in that case
			 * the user prefers lower zones being preserved.
			 */
			if (zone->zone_pgdat == last_pgdat)
				continue;

3108 3109 3110 3111 3112 3113 3114
			/*
			 * This steals pages from memory cgroups over softlimit
			 * and returns the number of reclaimed pages and
			 * scanned pages. This works for global memory pressure
			 * and balancing, not for a memcg's limit.
			 */
			nr_soft_scanned = 0;
3115
			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
3116 3117 3118 3119
						sc->order, sc->gfp_mask,
						&nr_soft_scanned);
			sc->nr_reclaimed += nr_soft_reclaimed;
			sc->nr_scanned += nr_soft_scanned;
3120
			/* need some check for avoid more shrink_zone() */
3121
		}
3122

3123 3124 3125 3126
		/* See comment about same check for global reclaim above */
		if (zone->zone_pgdat == last_pgdat)
			continue;
		last_pgdat = zone->zone_pgdat;
3127
		shrink_node(zone->zone_pgdat, sc);
L
Linus Torvalds 已提交
3128
	}
3129

3130 3131 3132 3133 3134
	/*
	 * Restore to original mask to avoid the impact on the caller if we
	 * promoted it to __GFP_HIGHMEM.
	 */
	sc->gfp_mask = orig_mask;
L
Linus Torvalds 已提交
3135
}
3136

3137 3138 3139 3140 3141 3142 3143 3144 3145 3146
static void snapshot_refaults(struct mem_cgroup *root_memcg, pg_data_t *pgdat)
{
	struct mem_cgroup *memcg;

	memcg = mem_cgroup_iter(root_memcg, NULL, NULL);
	do {
		unsigned long refaults;
		struct lruvec *lruvec;

		lruvec = mem_cgroup_lruvec(pgdat, memcg);
3147
		refaults = lruvec_page_state(lruvec, WORKINGSET_ACTIVATE);
3148 3149 3150 3151
		lruvec->refaults = refaults;
	} while ((memcg = mem_cgroup_iter(root_memcg, memcg, NULL)));
}

L
Linus Torvalds 已提交
3152 3153 3154 3155 3156 3157 3158 3159
/*
 * This is the main entry point to direct page reclaim.
 *
 * If a full scan of the inactive list fails to free enough memory then we
 * are "out of memory" and something needs to be killed.
 *
 * If the caller is !__GFP_FS then the probability of a failure is reasonably
 * high - the zone may be full of dirty or under-writeback pages, which this
3160 3161 3162 3163
 * caller can't do much about.  We kick the writeback threads and take explicit
 * naps in the hope that some of these pages can be written.  But if the
 * allocating task holds filesystem locks which prevent writeout this might not
 * work, and the allocation attempt will fail.
3164 3165 3166
 *
 * returns:	0, if no pages reclaimed
 * 		else, the number of pages reclaimed
L
Linus Torvalds 已提交
3167
 */
3168
static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
3169
					  struct scan_control *sc)
L
Linus Torvalds 已提交
3170
{
3171
	int initial_priority = sc->priority;
3172 3173 3174
	pg_data_t *last_pgdat;
	struct zoneref *z;
	struct zone *zone;
3175
retry:
3176 3177
	delayacct_freepages_start();

3178
	if (global_reclaim(sc))
3179
		__count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
L
Linus Torvalds 已提交
3180

3181
	do {
3182 3183 3184 3185
		if (current_is_kswapd() && !global_reclaim(sc) &&
		    is_wmark_ok(sc->target_mem_cgroup, false))
			break;

3186 3187
		vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
				sc->priority);
3188
		sc->nr_scanned = 0;
M
Michal Hocko 已提交
3189
		shrink_zones(zonelist, sc);
3190

3191
		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
3192 3193 3194 3195
			break;

		if (sc->compaction_ready)
			break;
L
Linus Torvalds 已提交
3196

3197 3198 3199 3200 3201 3202
		/*
		 * If we're getting trouble reclaiming, start doing
		 * writepage even in laptop mode.
		 */
		if (sc->priority < DEF_PRIORITY - 2)
			sc->may_writepage = 1;
3203
	} while (--sc->priority >= 0);
3204

3205 3206 3207 3208 3209 3210 3211
	last_pgdat = NULL;
	for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
					sc->nodemask) {
		if (zone->zone_pgdat == last_pgdat)
			continue;
		last_pgdat = zone->zone_pgdat;
		snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
3212
		set_memcg_congestion(last_pgdat, sc->target_mem_cgroup, false);
3213 3214 3215 3216 3217
		if (current_is_kswapd() && !global_reclaim(sc)) {
			set_memcg_dirty(last_pgdat, sc->target_mem_cgroup, false);
			set_memcg_writeback(last_pgdat, sc->target_mem_cgroup,
					    false);
		}
3218 3219
	}

3220 3221
	delayacct_freepages_end();

3222 3223 3224
	if (sc->nr_reclaimed)
		return sc->nr_reclaimed;

3225
	/* Aborted reclaim to try compaction? don't OOM, then */
3226
	if (sc->compaction_ready)
3227 3228
		return 1;

3229 3230 3231 3232 3233 3234
	/*
	 * Untapped cgroup reserves?  Don't OOM, retry.
	 *
	 * Memcg kswapd should not break low protection.
	 */
	if (sc->memcg_low_skipped && !current_is_kswapd()) {
3235
		sc->priority = initial_priority;
3236 3237
		sc->memcg_low_reclaim = 1;
		sc->memcg_low_skipped = 0;
3238 3239 3240
		goto retry;
	}

3241
	return 0;
L
Linus Torvalds 已提交
3242 3243
}

3244
static bool allow_direct_reclaim(pg_data_t *pgdat)
3245 3246 3247 3248 3249 3250 3251
{
	struct zone *zone;
	unsigned long pfmemalloc_reserve = 0;
	unsigned long free_pages = 0;
	int i;
	bool wmark_ok;

3252 3253 3254
	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
		return true;

3255 3256
	for (i = 0; i <= ZONE_NORMAL; i++) {
		zone = &pgdat->node_zones[i];
3257 3258 3259 3260
		if (!managed_zone(zone))
			continue;

		if (!zone_reclaimable_pages(zone))
3261 3262
			continue;

3263 3264 3265 3266
		pfmemalloc_reserve += min_wmark_pages(zone);
		free_pages += zone_page_state(zone, NR_FREE_PAGES);
	}

3267 3268 3269 3270
	/* If there are no reserves (unexpected config) then do not throttle */
	if (!pfmemalloc_reserve)
		return true;

3271 3272 3273 3274
	wmark_ok = free_pages > pfmemalloc_reserve / 2;

	/* kswapd must be awake if processes are being throttled */
	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
3275
		pgdat->kswapd_classzone_idx = min(pgdat->kswapd_classzone_idx,
3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286
						(enum zone_type)ZONE_NORMAL);
		wake_up_interruptible(&pgdat->kswapd_wait);
	}

	return wmark_ok;
}

/*
 * Throttle direct reclaimers if backing storage is backed by the network
 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
 * depleted. kswapd will continue to make progress and wake the processes
3287 3288 3289 3290
 * when the low watermark is reached.
 *
 * Returns true if a fatal signal was delivered during throttling. If this
 * happens, the page allocator should not consider triggering the OOM killer.
3291
 */
3292
static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
3293 3294
					nodemask_t *nodemask)
{
3295
	struct zoneref *z;
3296
	struct zone *zone;
3297
	pg_data_t *pgdat = NULL;
3298 3299 3300 3301 3302 3303 3304 3305 3306

	/*
	 * Kernel threads should not be throttled as they may be indirectly
	 * responsible for cleaning pages necessary for reclaim to make forward
	 * progress. kjournald for example may enter direct reclaim while
	 * committing a transaction where throttling it could forcing other
	 * processes to block on log_wait_commit().
	 */
	if (current->flags & PF_KTHREAD)
3307 3308 3309 3310 3311 3312 3313 3314
		goto out;

	/*
	 * If a fatal signal is pending, this process should not throttle.
	 * It should return quickly so it can exit and free its memory
	 */
	if (fatal_signal_pending(current))
		goto out;
3315

3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330
	/*
	 * Check if the pfmemalloc reserves are ok by finding the first node
	 * with a usable ZONE_NORMAL or lower zone. The expectation is that
	 * GFP_KERNEL will be required for allocating network buffers when
	 * swapping over the network so ZONE_HIGHMEM is unusable.
	 *
	 * Throttling is based on the first usable node and throttled processes
	 * wait on a queue until kswapd makes progress and wakes them. There
	 * is an affinity then between processes waking up and where reclaim
	 * progress has been made assuming the process wakes on the same node.
	 * More importantly, processes running on remote nodes will not compete
	 * for remote pfmemalloc reserves and processes on different nodes
	 * should make reasonable progress.
	 */
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
3331
					gfp_zone(gfp_mask), nodemask) {
3332 3333 3334 3335 3336
		if (zone_idx(zone) > ZONE_NORMAL)
			continue;

		/* Throttle based on the first usable node */
		pgdat = zone->zone_pgdat;
3337
		if (allow_direct_reclaim(pgdat))
3338 3339 3340 3341 3342 3343
			goto out;
		break;
	}

	/* If no zone was usable by the allocation flags then do not throttle */
	if (!pgdat)
3344
		goto out;
3345

3346 3347 3348
	/* Account for the throttling */
	count_vm_event(PGSCAN_DIRECT_THROTTLE);

3349 3350 3351 3352 3353 3354 3355 3356 3357 3358
	/*
	 * If the caller cannot enter the filesystem, it's possible that it
	 * is due to the caller holding an FS lock or performing a journal
	 * transaction in the case of a filesystem like ext[3|4]. In this case,
	 * it is not safe to block on pfmemalloc_wait as kswapd could be
	 * blocked waiting on the same lock. Instead, throttle for up to a
	 * second before continuing.
	 */
	if (!(gfp_mask & __GFP_FS)) {
		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
3359
			allow_direct_reclaim(pgdat), HZ);
3360 3361

		goto check_pending;
3362 3363 3364 3365
	}

	/* Throttle until kswapd wakes the process */
	wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
3366
		allow_direct_reclaim(pgdat));
3367 3368 3369 3370 3371 3372 3373

check_pending:
	if (fatal_signal_pending(current))
		return true;

out:
	return false;
3374 3375
}

3376
unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
3377
				gfp_t gfp_mask, nodemask_t *nodemask)
3378
{
3379
	unsigned long nr_reclaimed;
3380
	struct scan_control sc = {
3381
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
3382
		.gfp_mask = current_gfp_context(gfp_mask),
3383
		.reclaim_idx = gfp_zone(gfp_mask),
3384 3385 3386
		.order = order,
		.nodemask = nodemask,
		.priority = DEF_PRIORITY,
3387
		.may_writepage = !laptop_mode,
3388
		.may_unmap = 1,
3389
		.may_swap = 1,
3390
		.may_shrinkslab = 1,
3391 3392
	};

G
Greg Thelen 已提交
3393 3394 3395 3396 3397 3398 3399 3400
	/*
	 * scan_control uses s8 fields for order, priority, and reclaim_idx.
	 * Confirm they are large enough for max values.
	 */
	BUILD_BUG_ON(MAX_ORDER > S8_MAX);
	BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
	BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);

3401
	/*
3402 3403 3404
	 * Do not enter reclaim if fatal signal was delivered while throttled.
	 * 1 is returned so that the page allocator does not OOM kill at this
	 * point.
3405
	 */
3406
	if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
3407 3408
		return 1;

3409 3410
	trace_mm_vmscan_direct_reclaim_begin(order,
				sc.may_writepage,
3411
				sc.gfp_mask,
3412
				sc.reclaim_idx);
3413

3414
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3415 3416 3417 3418

	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);

	return nr_reclaimed;
3419 3420
}

A
Andrew Morton 已提交
3421
#ifdef CONFIG_MEMCG
3422

3423
unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
3424
						gfp_t gfp_mask, bool noswap,
3425
						pg_data_t *pgdat,
3426
						unsigned long *nr_scanned)
3427 3428
{
	struct scan_control sc = {
3429
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
3430
		.target_mem_cgroup = memcg,
3431 3432
		.may_writepage = !laptop_mode,
		.may_unmap = 1,
3433
		.reclaim_idx = MAX_NR_ZONES - 1,
3434
		.may_swap = !noswap,
3435
		.may_shrinkslab = 1,
3436
	};
3437
	unsigned long lru_pages;
3438

3439 3440
	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
3441

3442
	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
3443
						      sc.may_writepage,
3444 3445
						      sc.gfp_mask,
						      sc.reclaim_idx);
3446

3447 3448 3449
	/*
	 * NOTE: Although we can get the priority field, using it
	 * here is not a good idea, since it limits the pages we can scan.
3450
	 * if we don't reclaim here, the shrink_node from balance_pgdat
3451 3452 3453
	 * will pick up pages from other mem cgroup's as well. We hack
	 * the priority and make it zero.
	 */
3454
	shrink_node_memcg(pgdat, memcg, &sc, &lru_pages);
3455 3456 3457

	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);

3458
	*nr_scanned = sc.nr_scanned;
3459 3460 3461
	return sc.nr_reclaimed;
}

3462
unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
3463
					   unsigned long nr_pages,
K
KOSAKI Motohiro 已提交
3464
					   gfp_t gfp_mask,
3465
					   bool may_swap)
3466
{
3467
	struct zonelist *zonelist;
3468
	unsigned long nr_reclaimed;
3469
	unsigned long pflags;
3470
	int nid;
3471
	unsigned int noreclaim_flag;
3472
	struct scan_control sc = {
3473
		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3474
		.gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
3475
				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
3476
		.reclaim_idx = MAX_NR_ZONES - 1,
3477 3478 3479 3480
		.target_mem_cgroup = memcg,
		.priority = DEF_PRIORITY,
		.may_writepage = !laptop_mode,
		.may_unmap = 1,
3481
		.may_swap = may_swap,
3482
		.may_shrinkslab = 1,
3483
	};
3484

3485 3486 3487 3488 3489
	/*
	 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
	 * take care of from where we get pages. So the node where we start the
	 * scan does not need to be the current node.
	 */
3490
	nid = mem_cgroup_select_victim_node(memcg);
3491

3492
	zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK];
3493 3494 3495

	trace_mm_vmscan_memcg_reclaim_begin(0,
					    sc.may_writepage,
3496 3497
					    sc.gfp_mask,
					    sc.reclaim_idx);
3498

3499
	psi_memstall_enter(&pflags);
3500
	noreclaim_flag = memalloc_noreclaim_save();
3501

3502
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3503

3504
	memalloc_noreclaim_restore(noreclaim_flag);
3505
	psi_memstall_leave(&pflags);
3506 3507 3508 3509

	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);

	return nr_reclaimed;
3510 3511 3512
}
#endif

3513
static void age_active_anon(struct pglist_data *pgdat,
3514
				struct scan_control *sc)
3515
{
3516
	struct mem_cgroup *memcg;
3517

3518 3519 3520 3521 3522
	if (!total_swap_pages)
		return;

	memcg = mem_cgroup_iter(NULL, NULL, NULL);
	do {
3523
		struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
3524

3525
		if (inactive_list_is_low(lruvec, false, sc, true))
3526
			shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3527
					   sc, LRU_ACTIVE_ANON);
3528 3529 3530

		memcg = mem_cgroup_iter(NULL, memcg, NULL);
	} while (memcg);
3531 3532
}

3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556
static bool pgdat_watermark_boosted(pg_data_t *pgdat, int classzone_idx)
{
	int i;
	struct zone *zone;

	/*
	 * Check for watermark boosts top-down as the higher zones
	 * are more likely to be boosted. Both watermarks and boosts
	 * should not be checked at the time time as reclaim would
	 * start prematurely when there is no boosting and a lower
	 * zone is balanced.
	 */
	for (i = classzone_idx; i >= 0; i--) {
		zone = pgdat->node_zones + i;
		if (!managed_zone(zone))
			continue;

		if (zone->watermark_boost)
			return true;
	}

	return false;
}

3557 3558 3559 3560 3561
/*
 * Returns true if there is an eligible zone balanced for the request order
 * and classzone_idx
 */
static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
3562
{
3563 3564 3565
	int i;
	unsigned long mark = -1;
	struct zone *zone;
3566

3567 3568 3569 3570
	/*
	 * Check watermarks bottom-up as lower zones are more likely to
	 * meet watermarks.
	 */
3571 3572
	for (i = 0; i <= classzone_idx; i++) {
		zone = pgdat->node_zones + i;
3573

3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590
		if (!managed_zone(zone))
			continue;

		mark = high_wmark_pages(zone);
		if (zone_watermark_ok_safe(zone, order, mark, classzone_idx))
			return true;
	}

	/*
	 * If a node has no populated zone within classzone_idx, it does not
	 * need balancing by definition. This can happen if a zone-restricted
	 * allocation tries to wake a remote kswapd.
	 */
	if (mark == -1)
		return true;

	return false;
3591 3592
}

3593 3594 3595 3596 3597 3598 3599 3600
/* Clear pgdat state for congested, dirty or under writeback. */
static void clear_pgdat_congested(pg_data_t *pgdat)
{
	clear_bit(PGDAT_CONGESTED, &pgdat->flags);
	clear_bit(PGDAT_DIRTY, &pgdat->flags);
	clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
}

3601 3602 3603 3604 3605 3606
/*
 * Prepare kswapd for sleeping. This verifies that there are no processes
 * waiting in throttle_direct_reclaim() and that watermarks have been met.
 *
 * Returns true if kswapd is ready to sleep
 */
3607
static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3608
{
3609
	/*
3610
	 * The throttled processes are normally woken up in balance_pgdat() as
3611
	 * soon as allow_direct_reclaim() is true. But there is a potential
3612 3613 3614 3615 3616 3617 3618 3619 3620
	 * race between when kswapd checks the watermarks and a process gets
	 * throttled. There is also a potential race if processes get
	 * throttled, kswapd wakes, a large process exits thereby balancing the
	 * zones, which causes kswapd to exit balance_pgdat() before reaching
	 * the wake up checks. If kswapd is going to sleep, no process should
	 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
	 * the wake up is premature, processes will wake kswapd and get
	 * throttled again. The difference from wake ups in balance_pgdat() is
	 * that here we are under prepare_to_wait().
3621
	 */
3622 3623
	if (waitqueue_active(&pgdat->pfmemalloc_wait))
		wake_up_all(&pgdat->pfmemalloc_wait);
3624

3625 3626 3627 3628
	/* Hopeless node, leave it to direct reclaim */
	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
		return true;

3629 3630 3631
	if (pgdat_balanced(pgdat, order, classzone_idx)) {
		clear_pgdat_congested(pgdat);
		return true;
3632 3633
	}

3634
	return false;
3635 3636
}

3637
/*
3638 3639
 * kswapd shrinks a node of pages that are at or below the highest usable
 * zone that is currently unbalanced.
3640 3641
 *
 * Returns true if kswapd scanned at least the requested number of pages to
3642 3643
 * reclaim or if the lack of progress was due to pages under writeback.
 * This is used to determine if the scanning priority needs to be raised.
3644
 */
3645
static bool kswapd_shrink_node(pg_data_t *pgdat,
3646
			       struct scan_control *sc)
3647
{
3648 3649
	struct zone *zone;
	int z;
3650

3651 3652
	/* Reclaim a number of pages proportional to the number of zones */
	sc->nr_to_reclaim = 0;
3653
	for (z = 0; z <= sc->reclaim_idx; z++) {
3654
		zone = pgdat->node_zones + z;
3655
		if (!managed_zone(zone))
3656
			continue;
3657

3658 3659
		sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
	}
3660 3661

	/*
3662 3663
	 * Historically care was taken to put equal pressure on all zones but
	 * now pressure is applied based on node LRU order.
3664
	 */
3665
	shrink_node(pgdat, sc);
3666

3667
	/*
3668 3669 3670 3671 3672
	 * Fragmentation may mean that the system cannot be rebalanced for
	 * high-order allocations. If twice the allocation size has been
	 * reclaimed then recheck watermarks only at order-0 to prevent
	 * excessive reclaim. Assume that a process requested a high-order
	 * can direct reclaim/compact.
3673
	 */
3674
	if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
3675
		sc->order = 0;
3676

3677
	return sc->nr_scanned >= sc->nr_to_reclaim;
3678 3679
}

L
Linus Torvalds 已提交
3680
/*
3681 3682 3683
 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
 * that are eligible for use by the caller until at least one zone is
 * balanced.
L
Linus Torvalds 已提交
3684
 *
3685
 * Returns the order kswapd finished reclaiming at.
L
Linus Torvalds 已提交
3686 3687
 *
 * kswapd scans the zones in the highmem->normal->dma direction.  It skips
3688
 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3689 3690 3691
 * found to have free_pages <= high_wmark_pages(zone), any page is that zone
 * or lower is eligible for reclaim until at least one usable zone is
 * balanced.
L
Linus Torvalds 已提交
3692
 */
3693
static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx)
L
Linus Torvalds 已提交
3694 3695
{
	int i;
3696 3697
	unsigned long nr_soft_reclaimed;
	unsigned long nr_soft_scanned;
3698
	unsigned long pflags;
3699 3700 3701
	unsigned long nr_boost_reclaim;
	unsigned long zone_boosts[MAX_NR_ZONES] = { 0, };
	bool boosted;
3702
	struct zone *zone;
3703 3704
	struct scan_control sc = {
		.gfp_mask = GFP_KERNEL,
3705
		.order = order,
3706
		.may_unmap = 1,
3707
	};
3708

3709
	psi_memstall_enter(&pflags);
3710 3711
	__fs_reclaim_acquire();

3712
	count_vm_event(PAGEOUTRUN);
L
Linus Torvalds 已提交
3713

3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731
	/*
	 * Account for the reclaim boost. Note that the zone boost is left in
	 * place so that parallel allocations that are near the watermark will
	 * stall or direct reclaim until kswapd is finished.
	 */
	nr_boost_reclaim = 0;
	for (i = 0; i <= classzone_idx; i++) {
		zone = pgdat->node_zones + i;
		if (!managed_zone(zone))
			continue;

		nr_boost_reclaim += zone->watermark_boost;
		zone_boosts[i] = zone->watermark_boost;
	}
	boosted = nr_boost_reclaim;

restart:
	sc.priority = DEF_PRIORITY;
3732
	do {
3733
		unsigned long nr_reclaimed = sc.nr_reclaimed;
3734
		bool raise_priority = true;
3735
		bool balanced;
3736
		bool ret;
3737

3738
		sc.reclaim_idx = classzone_idx;
L
Linus Torvalds 已提交
3739

3740
		/*
3741 3742 3743 3744 3745 3746 3747 3748
		 * If the number of buffer_heads exceeds the maximum allowed
		 * then consider reclaiming from all zones. This has a dual
		 * purpose -- on 64-bit systems it is expected that
		 * buffer_heads are stripped during active rotation. On 32-bit
		 * systems, highmem pages can pin lowmem memory and shrinking
		 * buffers can relieve lowmem pressure. Reclaim may still not
		 * go ahead if all eligible zones for the original allocation
		 * request are balanced to avoid excessive reclaim from kswapd.
3749 3750 3751 3752
		 */
		if (buffer_heads_over_limit) {
			for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
				zone = pgdat->node_zones + i;
3753
				if (!managed_zone(zone))
3754
					continue;
3755

3756
				sc.reclaim_idx = i;
A
Andrew Morton 已提交
3757
				break;
L
Linus Torvalds 已提交
3758 3759
			}
		}
3760

3761
		/*
3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777
		 * If the pgdat is imbalanced then ignore boosting and preserve
		 * the watermarks for a later time and restart. Note that the
		 * zone watermarks will be still reset at the end of balancing
		 * on the grounds that the normal reclaim should be enough to
		 * re-evaluate if boosting is required when kswapd next wakes.
		 */
		balanced = pgdat_balanced(pgdat, sc.order, classzone_idx);
		if (!balanced && nr_boost_reclaim) {
			nr_boost_reclaim = 0;
			goto restart;
		}

		/*
		 * If boosting is not active then only reclaim if there are no
		 * eligible zones. Note that sc.reclaim_idx is not used as
		 * buffer_heads_over_limit may have adjusted it.
3778
		 */
3779
		if (!nr_boost_reclaim && balanced)
3780
			goto out;
A
Andrew Morton 已提交
3781

3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795
		/* Limit the priority of boosting to avoid reclaim writeback */
		if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2)
			raise_priority = false;

		/*
		 * Do not writeback or swap pages for boosted reclaim. The
		 * intent is to relieve pressure not issue sub-optimal IO
		 * from reclaim context. If no pages are reclaimed, the
		 * reclaim will be aborted.
		 */
		sc.may_writepage = !laptop_mode && !nr_boost_reclaim;
		sc.may_swap = !nr_boost_reclaim;
		sc.may_shrinkslab = !nr_boost_reclaim;

3796 3797 3798 3799 3800 3801
		/*
		 * Do some background aging of the anon list, to give
		 * pages a chance to be referenced before reclaiming. All
		 * pages are rotated regardless of classzone as this is
		 * about consistent aging.
		 */
3802
		age_active_anon(pgdat, &sc);
3803

3804 3805 3806 3807
		/*
		 * If we're getting trouble reclaiming, start doing writepage
		 * even in laptop mode.
		 */
3808
		if (sc.priority < DEF_PRIORITY - 2)
3809 3810
			sc.may_writepage = 1;

3811 3812 3813
		/* Call soft limit reclaim before calling shrink_node. */
		sc.nr_scanned = 0;
		nr_soft_scanned = 0;
3814
		nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
3815 3816 3817
						sc.gfp_mask, &nr_soft_scanned);
		sc.nr_reclaimed += nr_soft_reclaimed;

L
Linus Torvalds 已提交
3818
		/*
3819 3820 3821
		 * There should be no need to raise the scanning priority if
		 * enough pages are already being scanned that that high
		 * watermark would be met at 100% efficiency.
L
Linus Torvalds 已提交
3822
		 */
3823
		if (kswapd_shrink_node(pgdat, &sc))
3824
			raise_priority = false;
3825 3826 3827 3828 3829 3830 3831

		/*
		 * If the low watermark is met there is no need for processes
		 * to be throttled on pfmemalloc_wait as they should not be
		 * able to safely make forward progress. Wake them
		 */
		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3832
				allow_direct_reclaim(pgdat))
3833
			wake_up_all(&pgdat->pfmemalloc_wait);
3834

3835
		/* Check if kswapd should be suspending */
3836 3837 3838 3839
		__fs_reclaim_release();
		ret = try_to_freeze();
		__fs_reclaim_acquire();
		if (ret || kthread_should_stop())
3840
			break;
3841

3842
		/*
3843 3844
		 * Raise priority if scanning rate is too low or there was no
		 * progress in reclaiming pages
3845
		 */
3846
		nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
3847 3848 3849 3850 3851 3852 3853 3854 3855 3856
		nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed);

		/*
		 * If reclaim made no progress for a boost, stop reclaim as
		 * IO cannot be queued and it could be an infinite loop in
		 * extreme circumstances.
		 */
		if (nr_boost_reclaim && !nr_reclaimed)
			break;

3857
		if (raise_priority || !nr_reclaimed)
3858
			sc.priority--;
3859
	} while (sc.priority >= 1);
L
Linus Torvalds 已提交
3860

3861 3862 3863
	if (!sc.nr_reclaimed)
		pgdat->kswapd_failures++;

3864
out:
3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886
	/* If reclaim was boosted, account for the reclaim done in this pass */
	if (boosted) {
		unsigned long flags;

		for (i = 0; i <= classzone_idx; i++) {
			if (!zone_boosts[i])
				continue;

			/* Increments are under the zone lock */
			zone = pgdat->node_zones + i;
			spin_lock_irqsave(&zone->lock, flags);
			zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]);
			spin_unlock_irqrestore(&zone->lock, flags);
		}

		/*
		 * As there is now likely space, wakeup kcompact to defragment
		 * pageblocks.
		 */
		wakeup_kcompactd(pgdat, pageblock_order, classzone_idx);
	}

3887
	snapshot_refaults(NULL, pgdat);
3888
	__fs_reclaim_release();
3889
	psi_memstall_leave(&pflags);
3890
	/*
3891 3892 3893 3894
	 * Return the order kswapd stopped reclaiming at as
	 * prepare_kswapd_sleep() takes it into account. If another caller
	 * entered the allocator slow path while kswapd was awake, order will
	 * remain at the higher level.
3895
	 */
3896
	return sc.order;
L
Linus Torvalds 已提交
3897 3898
}

3899
/*
3900 3901 3902 3903 3904
 * The pgdat->kswapd_classzone_idx is used to pass the highest zone index to be
 * reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is not
 * a valid index then either kswapd runs for first time or kswapd couldn't sleep
 * after previous reclaim attempt (node is still unbalanced). In that case
 * return the zone index of the previous kswapd reclaim cycle.
3905 3906
 */
static enum zone_type kswapd_classzone_idx(pg_data_t *pgdat,
3907
					   enum zone_type prev_classzone_idx)
3908 3909
{
	if (pgdat->kswapd_classzone_idx == MAX_NR_ZONES)
3910 3911
		return prev_classzone_idx;
	return pgdat->kswapd_classzone_idx;
3912 3913
}

3914 3915
static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
				unsigned int classzone_idx)
3916 3917 3918 3919 3920 3921 3922 3923 3924
{
	long remaining = 0;
	DEFINE_WAIT(wait);

	if (freezing(current) || kthread_should_stop())
		return;

	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);

3925 3926 3927 3928 3929 3930 3931
	/*
	 * Try to sleep for a short interval. Note that kcompactd will only be
	 * woken if it is possible to sleep for a short interval. This is
	 * deliberate on the assumption that if reclaim cannot keep an
	 * eligible zone balanced that it's also unlikely that compaction will
	 * succeed.
	 */
3932
	if (prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944
		/*
		 * Compaction records what page blocks it recently failed to
		 * isolate pages from and skips them in the future scanning.
		 * When kswapd is going to sleep, it is reasonable to assume
		 * that pages and compaction may succeed so reset the cache.
		 */
		reset_isolation_suitable(pgdat);

		/*
		 * We have freed the memory, now we should compact it to make
		 * allocation of the requested order possible.
		 */
3945
		wakeup_kcompactd(pgdat, alloc_order, classzone_idx);
3946

3947
		remaining = schedule_timeout(HZ/10);
3948 3949 3950 3951 3952 3953 3954

		/*
		 * If woken prematurely then reset kswapd_classzone_idx and
		 * order. The values will either be from a wakeup request or
		 * the previous request that slept prematurely.
		 */
		if (remaining) {
3955
			pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3956 3957 3958
			pgdat->kswapd_order = max(pgdat->kswapd_order, reclaim_order);
		}

3959 3960 3961 3962 3963 3964 3965 3966
		finish_wait(&pgdat->kswapd_wait, &wait);
		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
	}

	/*
	 * After a short sleep, check if it was a premature sleep. If not, then
	 * go fully to sleep until explicitly woken up.
	 */
3967 3968
	if (!remaining &&
	    prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979
		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);

		/*
		 * vmstat counters are not perfectly accurate and the estimated
		 * value for counters such as NR_FREE_PAGES can deviate from the
		 * true value by nr_online_cpus * threshold. To avoid the zone
		 * watermarks being breached while under pressure, we reduce the
		 * per-cpu vmstat threshold while kswapd is awake and restore
		 * them before going back to sleep.
		 */
		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3980 3981 3982 3983

		if (!kthread_should_stop())
			schedule();

3984 3985 3986 3987 3988 3989 3990 3991 3992 3993
		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
	} else {
		if (remaining)
			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
		else
			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
	}
	finish_wait(&pgdat->kswapd_wait, &wait);
}

L
Linus Torvalds 已提交
3994 3995
/*
 * The background pageout daemon, started as a kernel thread
3996
 * from the init process.
L
Linus Torvalds 已提交
3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008
 *
 * This basically trickles out pages so that we have _some_
 * free memory available even if there is no other activity
 * that frees anything up. This is needed for things like routing
 * etc, where we otherwise might have all activity going on in
 * asynchronous contexts that cannot page things out.
 *
 * If there are applications that are active memory-allocators
 * (most normal use), this basically shouldn't matter.
 */
static int kswapd(void *p)
{
4009 4010
	unsigned int alloc_order, reclaim_order;
	unsigned int classzone_idx = MAX_NR_ZONES - 1;
L
Linus Torvalds 已提交
4011 4012
	pg_data_t *pgdat = (pg_data_t*)p;
	struct task_struct *tsk = current;
4013

L
Linus Torvalds 已提交
4014 4015 4016
	struct reclaim_state reclaim_state = {
		.reclaimed_slab = 0,
	};
4017
	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
L
Linus Torvalds 已提交
4018

R
Rusty Russell 已提交
4019
	if (!cpumask_empty(cpumask))
4020
		set_cpus_allowed_ptr(tsk, cpumask);
L
Linus Torvalds 已提交
4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034
	current->reclaim_state = &reclaim_state;

	/*
	 * Tell the memory management that we're a "memory allocator",
	 * and that if we need more memory we should get access to it
	 * regardless (see "__alloc_pages()"). "kswapd" should
	 * never get caught in the normal page freeing logic.
	 *
	 * (Kswapd normally doesn't need memory anyway, but sometimes
	 * you need a small amount of memory in order to be able to
	 * page out something else, and this flag essentially protects
	 * us from recursively trying to free more memory as we're
	 * trying to free the first piece of memory in the first place).
	 */
4035
	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
4036
	set_freezable();
L
Linus Torvalds 已提交
4037

4038 4039
	pgdat->kswapd_order = 0;
	pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
L
Linus Torvalds 已提交
4040
	for ( ; ; ) {
4041
		bool ret;
4042

4043 4044 4045
		alloc_order = reclaim_order = pgdat->kswapd_order;
		classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);

4046 4047 4048
kswapd_try_sleep:
		kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
					classzone_idx);
4049

4050 4051
		/* Read the new order and classzone_idx */
		alloc_order = reclaim_order = pgdat->kswapd_order;
4052
		classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
4053
		pgdat->kswapd_order = 0;
4054
		pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
L
Linus Torvalds 已提交
4055

4056 4057 4058 4059 4060 4061 4062 4063
		ret = try_to_freeze();
		if (kthread_should_stop())
			break;

		/*
		 * We can speed up thawing tasks if we don't call balance_pgdat
		 * after returning from the refrigerator
		 */
4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074
		if (ret)
			continue;

		/*
		 * Reclaim begins at the requested order but if a high-order
		 * reclaim fails then kswapd falls back to reclaiming for
		 * order-0. If that happens, kswapd will consider sleeping
		 * for the order it finished reclaiming at (reclaim_order)
		 * but kcompactd is woken to compact for the original
		 * request (alloc_order).
		 */
4075 4076
		trace_mm_vmscan_kswapd_wake(pgdat->node_id, classzone_idx,
						alloc_order);
4077 4078 4079
		reclaim_order = balance_pgdat(pgdat, alloc_order, classzone_idx);
		if (reclaim_order < alloc_order)
			goto kswapd_try_sleep;
L
Linus Torvalds 已提交
4080
	}
4081

4082
	tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
4083
	current->reclaim_state = NULL;
4084

L
Linus Torvalds 已提交
4085 4086 4087 4088
	return 0;
}

/*
4089 4090 4091 4092 4093
 * A zone is low on free memory or too fragmented for high-order memory.  If
 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
 * pgdat.  It will wake up kcompactd after reclaiming memory.  If kswapd reclaim
 * has failed or is not needed, still wake up kcompactd if only compaction is
 * needed.
L
Linus Torvalds 已提交
4094
 */
4095 4096
void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
		   enum zone_type classzone_idx)
L
Linus Torvalds 已提交
4097 4098 4099
{
	pg_data_t *pgdat;

4100
	if (!managed_zone(zone))
L
Linus Torvalds 已提交
4101 4102
		return;

4103
	if (!cpuset_zone_allowed(zone, gfp_flags))
L
Linus Torvalds 已提交
4104
		return;
4105
	pgdat = zone->zone_pgdat;
4106 4107 4108 4109 4110 4111

	if (pgdat->kswapd_classzone_idx == MAX_NR_ZONES)
		pgdat->kswapd_classzone_idx = classzone_idx;
	else
		pgdat->kswapd_classzone_idx = max(pgdat->kswapd_classzone_idx,
						  classzone_idx);
4112
	pgdat->kswapd_order = max(pgdat->kswapd_order, order);
4113
	if (!waitqueue_active(&pgdat->kswapd_wait))
L
Linus Torvalds 已提交
4114
		return;
4115

4116 4117
	/* Hopeless node, leave it to direct reclaim if possible */
	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
4118 4119
	    (pgdat_balanced(pgdat, order, classzone_idx) &&
	     !pgdat_watermark_boosted(pgdat, classzone_idx))) {
4120 4121 4122 4123 4124 4125 4126 4127 4128
		/*
		 * There may be plenty of free memory available, but it's too
		 * fragmented for high-order allocations.  Wake up kcompactd
		 * and rely on compaction_suitable() to determine if it's
		 * needed.  If it fails, it will defer subsequent attempts to
		 * ratelimit its work.
		 */
		if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
			wakeup_kcompactd(pgdat, order, classzone_idx);
4129
		return;
4130
	}
4131

4132 4133
	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, classzone_idx, order,
				      gfp_flags);
4134
	wake_up_interruptible(&pgdat->kswapd_wait);
L
Linus Torvalds 已提交
4135 4136
}

4137
#ifdef CONFIG_HIBERNATION
L
Linus Torvalds 已提交
4138
/*
4139
 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
4140 4141 4142 4143 4144
 * freed pages.
 *
 * Rather than trying to age LRUs the aim is to preserve the overall
 * LRU order by reclaiming preferentially
 * inactive > active > active referenced > active mapped
L
Linus Torvalds 已提交
4145
 */
4146
unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
L
Linus Torvalds 已提交
4147
{
4148 4149
	struct reclaim_state reclaim_state;
	struct scan_control sc = {
4150
		.nr_to_reclaim = nr_to_reclaim,
4151
		.gfp_mask = GFP_HIGHUSER_MOVABLE,
4152
		.reclaim_idx = MAX_NR_ZONES - 1,
4153
		.priority = DEF_PRIORITY,
4154
		.may_writepage = 1,
4155 4156
		.may_unmap = 1,
		.may_swap = 1,
4157
		.hibernation_mode = 1,
L
Linus Torvalds 已提交
4158
	};
4159
	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
4160 4161
	struct task_struct *p = current;
	unsigned long nr_reclaimed;
4162
	unsigned int noreclaim_flag;
L
Linus Torvalds 已提交
4163

4164
	fs_reclaim_acquire(sc.gfp_mask);
4165
	noreclaim_flag = memalloc_noreclaim_save();
4166 4167
	reclaim_state.reclaimed_slab = 0;
	p->reclaim_state = &reclaim_state;
4168

4169
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
4170

4171
	p->reclaim_state = NULL;
4172
	memalloc_noreclaim_restore(noreclaim_flag);
4173
	fs_reclaim_release(sc.gfp_mask);
4174

4175
	return nr_reclaimed;
L
Linus Torvalds 已提交
4176
}
4177
#endif /* CONFIG_HIBERNATION */
L
Linus Torvalds 已提交
4178 4179 4180 4181 4182

/* It's optimal to keep kswapds on the same CPUs as their memory, but
   not required for correctness.  So if the last cpu in a node goes
   away, we get changed to run anywhere: as the first one comes back,
   restore their cpu bindings. */
4183
static int kswapd_cpu_online(unsigned int cpu)
L
Linus Torvalds 已提交
4184
{
4185
	int nid;
L
Linus Torvalds 已提交
4186

4187 4188 4189
	for_each_node_state(nid, N_MEMORY) {
		pg_data_t *pgdat = NODE_DATA(nid);
		const struct cpumask *mask;
4190

4191
		mask = cpumask_of_node(pgdat->node_id);
4192

4193 4194 4195
		if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
			/* One of our CPUs online: restore mask */
			set_cpus_allowed_ptr(pgdat->kswapd, mask);
L
Linus Torvalds 已提交
4196
	}
4197
	return 0;
L
Linus Torvalds 已提交
4198 4199
}

4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214
/*
 * This kswapd start function will be called by init and node-hot-add.
 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
 */
int kswapd_run(int nid)
{
	pg_data_t *pgdat = NODE_DATA(nid);
	int ret = 0;

	if (pgdat->kswapd)
		return 0;

	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
	if (IS_ERR(pgdat->kswapd)) {
		/* failure at boot is fatal */
4215
		BUG_ON(system_state < SYSTEM_RUNNING);
4216 4217
		pr_err("Failed to start kswapd on node %d\n", nid);
		ret = PTR_ERR(pgdat->kswapd);
4218
		pgdat->kswapd = NULL;
4219 4220 4221 4222
	}
	return ret;
}

4223
/*
4224
 * Called by memory hotplug when all memory in a node is offlined.  Caller must
4225
 * hold mem_hotplug_begin/end().
4226 4227 4228 4229 4230
 */
void kswapd_stop(int nid)
{
	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;

4231
	if (kswapd) {
4232
		kthread_stop(kswapd);
4233 4234
		NODE_DATA(nid)->kswapd = NULL;
	}
4235 4236
}

L
Linus Torvalds 已提交
4237 4238
static int __init kswapd_init(void)
{
4239
	int nid, ret;
4240

L
Linus Torvalds 已提交
4241
	swap_setup();
4242
	for_each_node_state(nid, N_MEMORY)
4243
 		kswapd_run(nid);
4244 4245 4246 4247
	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
					"mm/vmscan:online", kswapd_cpu_online,
					NULL);
	WARN_ON(ret < 0);
L
Linus Torvalds 已提交
4248 4249 4250 4251
	return 0;
}

module_init(kswapd_init)
4252 4253 4254

#ifdef CONFIG_NUMA
/*
4255
 * Node reclaim mode
4256
 *
4257
 * If non-zero call node_reclaim when the number of free pages falls below
4258 4259
 * the watermarks.
 */
4260
int node_reclaim_mode __read_mostly;
4261

4262
#define RECLAIM_OFF 0
4263
#define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
4264
#define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
4265
#define RECLAIM_UNMAP (1<<2)	/* Unmap pages during reclaim */
4266

4267
/*
4268
 * Priority for NODE_RECLAIM. This determines the fraction of pages
4269 4270 4271
 * of a node considered for each zone_reclaim. 4 scans 1/16th of
 * a zone.
 */
4272
#define NODE_RECLAIM_PRIORITY 4
4273

4274
/*
4275
 * Percentage of pages in a zone that must be unmapped for node_reclaim to
4276 4277 4278 4279
 * occur.
 */
int sysctl_min_unmapped_ratio = 1;

4280 4281 4282 4283 4284 4285
/*
 * If the number of slab pages in a zone grows beyond this percentage then
 * slab reclaim needs to occur.
 */
int sysctl_min_slab_ratio = 5;

4286
static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
4287
{
4288 4289 4290
	unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
	unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
		node_page_state(pgdat, NR_ACTIVE_FILE);
4291 4292 4293 4294 4295 4296 4297 4298 4299 4300

	/*
	 * It's possible for there to be more file mapped pages than
	 * accounted for by the pages on the file LRU lists because
	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
	 */
	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
}

/* Work out how many page cache pages we can reclaim in this reclaim_mode */
4301
static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
4302
{
4303 4304
	unsigned long nr_pagecache_reclaimable;
	unsigned long delta = 0;
4305 4306

	/*
4307
	 * If RECLAIM_UNMAP is set, then all file pages are considered
4308
	 * potentially reclaimable. Otherwise, we have to worry about
4309
	 * pages like swapcache and node_unmapped_file_pages() provides
4310 4311
	 * a better estimate
	 */
4312 4313
	if (node_reclaim_mode & RECLAIM_UNMAP)
		nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
4314
	else
4315
		nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
4316 4317

	/* If we can't clean pages, remove dirty pages from consideration */
4318 4319
	if (!(node_reclaim_mode & RECLAIM_WRITE))
		delta += node_page_state(pgdat, NR_FILE_DIRTY);
4320 4321 4322 4323 4324 4325 4326 4327

	/* Watch for any possible underflows due to delta */
	if (unlikely(delta > nr_pagecache_reclaimable))
		delta = nr_pagecache_reclaimable;

	return nr_pagecache_reclaimable - delta;
}

4328
/*
4329
 * Try to free up some pages from this node through reclaim.
4330
 */
4331
static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4332
{
4333
	/* Minimum pages needed in order to stay on node */
4334
	const unsigned long nr_pages = 1 << order;
4335 4336
	struct task_struct *p = current;
	struct reclaim_state reclaim_state;
4337
	unsigned int noreclaim_flag;
4338
	struct scan_control sc = {
4339
		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
4340
		.gfp_mask = current_gfp_context(gfp_mask),
4341
		.order = order,
4342 4343 4344
		.priority = NODE_RECLAIM_PRIORITY,
		.may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
		.may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
4345
		.may_swap = 1,
4346
		.reclaim_idx = gfp_zone(gfp_mask),
4347
	};
4348 4349

	cond_resched();
4350
	fs_reclaim_acquire(sc.gfp_mask);
4351
	/*
4352
	 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
4353
	 * and we also need to be able to write out pages for RECLAIM_WRITE
4354
	 * and RECLAIM_UNMAP.
4355
	 */
4356 4357
	noreclaim_flag = memalloc_noreclaim_save();
	p->flags |= PF_SWAPWRITE;
4358 4359
	reclaim_state.reclaimed_slab = 0;
	p->reclaim_state = &reclaim_state;
4360

4361
	if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
4362
		/*
4363
		 * Free memory by calling shrink node with increasing
4364 4365 4366
		 * priorities until we have enough memory freed.
		 */
		do {
4367
			shrink_node(pgdat, &sc);
4368
		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
4369
	}
4370

4371
	p->reclaim_state = NULL;
4372 4373
	current->flags &= ~PF_SWAPWRITE;
	memalloc_noreclaim_restore(noreclaim_flag);
4374
	fs_reclaim_release(sc.gfp_mask);
4375
	return sc.nr_reclaimed >= nr_pages;
4376
}
4377

4378
int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4379
{
4380
	int ret;
4381 4382

	/*
4383
	 * Node reclaim reclaims unmapped file backed pages and
4384
	 * slab pages if we are over the defined limits.
4385
	 *
4386 4387
	 * A small portion of unmapped file backed pages is needed for
	 * file I/O otherwise pages read by file I/O will be immediately
4388 4389
	 * thrown out if the node is overallocated. So we do not reclaim
	 * if less than a specified percentage of the node is used by
4390
	 * unmapped file backed pages.
4391
	 */
4392
	if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
4393
	    node_page_state(pgdat, NR_SLAB_RECLAIMABLE) <= pgdat->min_slab_pages)
4394
		return NODE_RECLAIM_FULL;
4395 4396

	/*
4397
	 * Do not scan if the allocation should not be delayed.
4398
	 */
4399
	if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
4400
		return NODE_RECLAIM_NOSCAN;
4401 4402

	/*
4403
	 * Only run node reclaim on the local node or on nodes that do not
4404 4405 4406 4407
	 * have associated processors. This will favor the local processor
	 * over remote processors and spread off node memory allocations
	 * as wide as possible.
	 */
4408 4409
	if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
		return NODE_RECLAIM_NOSCAN;
4410

4411 4412
	if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
		return NODE_RECLAIM_NOSCAN;
4413

4414 4415
	ret = __node_reclaim(pgdat, gfp_mask, order);
	clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
4416

4417 4418 4419
	if (!ret)
		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);

4420
	return ret;
4421
}
4422
#endif
L
Lee Schermerhorn 已提交
4423 4424 4425 4426 4427 4428

/*
 * page_evictable - test whether a page is evictable
 * @page: the page to test
 *
 * Test whether page is evictable--i.e., should be placed on active/inactive
4429
 * lists vs unevictable list.
L
Lee Schermerhorn 已提交
4430 4431
 *
 * Reasons page might not be evictable:
4432
 * (1) page's mapping marked unevictable
N
Nick Piggin 已提交
4433
 * (2) page is part of an mlocked VMA
4434
 *
L
Lee Schermerhorn 已提交
4435
 */
4436
int page_evictable(struct page *page)
L
Lee Schermerhorn 已提交
4437
{
4438 4439 4440 4441 4442 4443 4444
	int ret;

	/* Prevent address_space of inode and swap cache from being freed */
	rcu_read_lock();
	ret = !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
	rcu_read_unlock();
	return ret;
L
Lee Schermerhorn 已提交
4445
}
4446

4447
#ifdef CONFIG_SHMEM
4448
/**
4449 4450 4451
 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
 * @pages:	array of pages to check
 * @nr_pages:	number of pages to check
4452
 *
4453
 * Checks pages for evictability and moves them to the appropriate lru list.
4454 4455
 *
 * This function is only used for SysV IPC SHM_UNLOCK.
4456
 */
4457
void check_move_unevictable_pages(struct page **pages, int nr_pages)
4458
{
4459
	struct lruvec *lruvec;
4460
	struct pglist_data *pgdat = NULL;
4461 4462 4463
	int pgscanned = 0;
	int pgrescued = 0;
	int i;
4464

4465 4466
	for (i = 0; i < nr_pages; i++) {
		struct page *page = pages[i];
4467
		struct pglist_data *pagepgdat = page_pgdat(page);
4468

4469
		pgscanned++;
4470 4471 4472 4473 4474
		if (pagepgdat != pgdat) {
			if (pgdat)
				spin_unlock_irq(&pgdat->lru_lock);
			pgdat = pagepgdat;
			spin_lock_irq(&pgdat->lru_lock);
4475
		}
4476
		lruvec = mem_cgroup_page_lruvec(page, pgdat);
4477

4478 4479
		if (!PageLRU(page) || !PageUnevictable(page))
			continue;
4480

4481
		if (page_evictable(page)) {
4482 4483
			enum lru_list lru = page_lru_base_type(page);

4484
			VM_BUG_ON_PAGE(PageActive(page), page);
4485
			ClearPageUnevictable(page);
4486 4487
			del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
			add_page_to_lru_list(page, lruvec, lru);
4488
			pgrescued++;
4489
		}
4490
	}
4491

4492
	if (pgdat) {
4493 4494
		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
4495
		spin_unlock_irq(&pgdat->lru_lock);
4496 4497
	}
}
4498
#endif /* CONFIG_SHMEM */