vmscan.c 109.2 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/*
 *  linux/mm/vmscan.c
 *
 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 *
 *  Swap reorganised 29.12.95, Stephen Tweedie.
 *  kswapd added: 7.1.96  sct
 *  Removed kswapd_ctl limits, and swap out as many pages as needed
 *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
 *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
 *  Multiqueue VM started 5.8.00, Rik van Riel.
 */

#include <linux/mm.h>
#include <linux/module.h>
16
#include <linux/gfp.h>
L
Linus Torvalds 已提交
17 18 19 20 21
#include <linux/kernel_stat.h>
#include <linux/swap.h>
#include <linux/pagemap.h>
#include <linux/init.h>
#include <linux/highmem.h>
22
#include <linux/vmpressure.h>
23
#include <linux/vmstat.h>
L
Linus Torvalds 已提交
24 25 26 27 28 29 30 31 32 33 34
#include <linux/file.h>
#include <linux/writeback.h>
#include <linux/blkdev.h>
#include <linux/buffer_head.h>	/* for try_to_release_page(),
					buffer_heads_over_limit */
#include <linux/mm_inline.h>
#include <linux/backing-dev.h>
#include <linux/rmap.h>
#include <linux/topology.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
35
#include <linux/compaction.h>
L
Linus Torvalds 已提交
36 37
#include <linux/notifier.h>
#include <linux/rwsem.h>
38
#include <linux/delay.h>
39
#include <linux/kthread.h>
40
#include <linux/freezer.h>
41
#include <linux/memcontrol.h>
42
#include <linux/delayacct.h>
43
#include <linux/sysctl.h>
44
#include <linux/oom.h>
45
#include <linux/prefetch.h>
L
Linus Torvalds 已提交
46 47 48 49 50

#include <asm/tlbflush.h>
#include <asm/div64.h>

#include <linux/swapops.h>
51
#include <linux/balloon_compaction.h>
L
Linus Torvalds 已提交
52

53 54
#include "internal.h"

55 56 57
#define CREATE_TRACE_POINTS
#include <trace/events/vmscan.h>

L
Linus Torvalds 已提交
58 59 60 61
struct scan_control {
	/* Incremented by the number of inactive pages that were scanned */
	unsigned long nr_scanned;

62 63 64
	/* Number of pages freed so far during a call to shrink_zones() */
	unsigned long nr_reclaimed;

65 66 67
	/* How many pages shrink_list() should reclaim */
	unsigned long nr_to_reclaim;

68 69
	unsigned long hibernation_mode;

L
Linus Torvalds 已提交
70
	/* This context's GFP mask */
A
Al Viro 已提交
71
	gfp_t gfp_mask;
L
Linus Torvalds 已提交
72 73 74

	int may_writepage;

75 76
	/* Can mapped pages be reclaimed? */
	int may_unmap;
77

78 79 80
	/* Can pages be swapped as part of reclaim? */
	int may_swap;

A
Andy Whitcroft 已提交
81
	int order;
82

83 84 85
	/* Scan (total_size >> priority) pages at once */
	int priority;

86 87 88 89 90
	/*
	 * The memory cgroup that hit its limit and as a result is the
	 * primary target of this reclaim invocation.
	 */
	struct mem_cgroup *target_mem_cgroup;
91

92 93 94 95 96
	/*
	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
	 * are scanned.
	 */
	nodemask_t	*nodemask;
L
Linus Torvalds 已提交
97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
};

#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))

#ifdef ARCH_HAS_PREFETCH
#define prefetch_prev_lru_page(_page, _base, _field)			\
	do {								\
		if ((_page)->lru.prev != _base) {			\
			struct page *prev;				\
									\
			prev = lru_to_page(&(_page->lru));		\
			prefetch(&prev->_field);			\
		}							\
	} while (0)
#else
#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
#endif

#ifdef ARCH_HAS_PREFETCHW
#define prefetchw_prev_lru_page(_page, _base, _field)			\
	do {								\
		if ((_page)->lru.prev != _base) {			\
			struct page *prev;				\
									\
			prev = lru_to_page(&(_page->lru));		\
			prefetchw(&prev->_field);			\
		}							\
	} while (0)
#else
#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
#endif

/*
 * From 0 .. 100.  Higher means more swappy.
 */
int vm_swappiness = 60;
133
unsigned long vm_total_pages;	/* The total number of pages which the VM controls */
L
Linus Torvalds 已提交
134 135 136 137

static LIST_HEAD(shrinker_list);
static DECLARE_RWSEM(shrinker_rwsem);

A
Andrew Morton 已提交
138
#ifdef CONFIG_MEMCG
139 140
static bool global_reclaim(struct scan_control *sc)
{
141
	return !sc->target_mem_cgroup;
142
}
143
#else
144 145 146 147
static bool global_reclaim(struct scan_control *sc)
{
	return true;
}
148 149
#endif

150
static unsigned long zone_reclaimable_pages(struct zone *zone)
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
{
	int nr;

	nr = zone_page_state(zone, NR_ACTIVE_FILE) +
	     zone_page_state(zone, NR_INACTIVE_FILE);

	if (get_nr_swap_pages() > 0)
		nr += zone_page_state(zone, NR_ACTIVE_ANON) +
		      zone_page_state(zone, NR_INACTIVE_ANON);

	return nr;
}

bool zone_reclaimable(struct zone *zone)
{
	return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
}

169
static unsigned long get_lru_size(struct lruvec *lruvec, enum lru_list lru)
170
{
171
	if (!mem_cgroup_disabled())
172
		return mem_cgroup_get_lru_size(lruvec, lru);
173

174
	return zone_page_state(lruvec_zone(lruvec), NR_LRU_BASE + lru);
175 176
}

L
Linus Torvalds 已提交
177
/*
G
Glauber Costa 已提交
178
 * Add a shrinker callback to be called from the vm.
L
Linus Torvalds 已提交
179
 */
G
Glauber Costa 已提交
180
int register_shrinker(struct shrinker *shrinker)
L
Linus Torvalds 已提交
181
{
G
Glauber Costa 已提交
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
	size_t size = sizeof(*shrinker->nr_deferred);

	/*
	 * If we only have one possible node in the system anyway, save
	 * ourselves the trouble and disable NUMA aware behavior. This way we
	 * will save memory and some small loop time later.
	 */
	if (nr_node_ids == 1)
		shrinker->flags &= ~SHRINKER_NUMA_AWARE;

	if (shrinker->flags & SHRINKER_NUMA_AWARE)
		size *= nr_node_ids;

	shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
	if (!shrinker->nr_deferred)
		return -ENOMEM;

199 200 201
	down_write(&shrinker_rwsem);
	list_add_tail(&shrinker->list, &shrinker_list);
	up_write(&shrinker_rwsem);
G
Glauber Costa 已提交
202
	return 0;
L
Linus Torvalds 已提交
203
}
204
EXPORT_SYMBOL(register_shrinker);
L
Linus Torvalds 已提交
205 206 207 208

/*
 * Remove one
 */
209
void unregister_shrinker(struct shrinker *shrinker)
L
Linus Torvalds 已提交
210 211 212 213
{
	down_write(&shrinker_rwsem);
	list_del(&shrinker->list);
	up_write(&shrinker_rwsem);
214
	kfree(shrinker->nr_deferred);
L
Linus Torvalds 已提交
215
}
216
EXPORT_SYMBOL(unregister_shrinker);
L
Linus Torvalds 已提交
217 218

#define SHRINK_BATCH 128
G
Glauber Costa 已提交
219 220 221 222 223 224 225 226

static unsigned long
shrink_slab_node(struct shrink_control *shrinkctl, struct shrinker *shrinker,
		 unsigned long nr_pages_scanned, unsigned long lru_pages)
{
	unsigned long freed = 0;
	unsigned long long delta;
	long total_scan;
227
	long freeable;
G
Glauber Costa 已提交
228 229 230 231 232 233
	long nr;
	long new_nr;
	int nid = shrinkctl->nid;
	long batch_size = shrinker->batch ? shrinker->batch
					  : SHRINK_BATCH;

234 235
	freeable = shrinker->count_objects(shrinker, shrinkctl);
	if (freeable == 0)
G
Glauber Costa 已提交
236 237 238 239 240 241 242 243 244 245 246
		return 0;

	/*
	 * copy the current shrinker scan count into a local variable
	 * and zero it so that other concurrent shrinker invocations
	 * don't also do this scanning work.
	 */
	nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);

	total_scan = nr;
	delta = (4 * nr_pages_scanned) / shrinker->seeks;
247
	delta *= freeable;
G
Glauber Costa 已提交
248 249 250 251 252
	do_div(delta, lru_pages + 1);
	total_scan += delta;
	if (total_scan < 0) {
		printk(KERN_ERR
		"shrink_slab: %pF negative objects to delete nr=%ld\n",
D
Dave Chinner 已提交
253
		       shrinker->scan_objects, total_scan);
254
		total_scan = freeable;
G
Glauber Costa 已提交
255 256 257 258 259 260 261 262
	}

	/*
	 * We need to avoid excessive windup on filesystem shrinkers
	 * due to large numbers of GFP_NOFS allocations causing the
	 * shrinkers to return -1 all the time. This results in a large
	 * nr being built up so when a shrink that can do some work
	 * comes along it empties the entire cache due to nr >>>
263
	 * freeable. This is bad for sustaining a working set in
G
Glauber Costa 已提交
264 265 266 267 268
	 * memory.
	 *
	 * Hence only allow the shrinker to scan the entire cache when
	 * a large delta change is calculated directly.
	 */
269 270
	if (delta < freeable / 4)
		total_scan = min(total_scan, freeable / 2);
G
Glauber Costa 已提交
271 272 273 274 275 276

	/*
	 * Avoid risking looping forever due to too large nr value:
	 * never try to free more than twice the estimate number of
	 * freeable entries.
	 */
277 278
	if (total_scan > freeable * 2)
		total_scan = freeable * 2;
G
Glauber Costa 已提交
279 280 281

	trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
				nr_pages_scanned, lru_pages,
282
				freeable, delta, total_scan);
G
Glauber Costa 已提交
283

284 285 286 287 288 289 290 291 292 293 294
	/*
	 * Normally, we should not scan less than batch_size objects in one
	 * pass to avoid too frequent shrinker calls, but if the slab has less
	 * than batch_size objects in total and we are really tight on memory,
	 * we will try to reclaim all available objects, otherwise we can end
	 * up failing allocations although there are plenty of reclaimable
	 * objects spread over several slabs with usage less than the
	 * batch_size.
	 *
	 * We detect the "tight on memory" situations by looking at the total
	 * number of objects we want to scan (total_scan). If it is greater
295
	 * than the total number of objects on slab (freeable), we must be
296 297 298 299
	 * scanning at high prio and therefore should try to reclaim as much as
	 * possible.
	 */
	while (total_scan >= batch_size ||
300
	       total_scan >= freeable) {
D
Dave Chinner 已提交
301
		unsigned long ret;
302
		unsigned long nr_to_scan = min(batch_size, total_scan);
G
Glauber Costa 已提交
303

304
		shrinkctl->nr_to_scan = nr_to_scan;
D
Dave Chinner 已提交
305 306 307 308
		ret = shrinker->scan_objects(shrinker, shrinkctl);
		if (ret == SHRINK_STOP)
			break;
		freed += ret;
G
Glauber Costa 已提交
309

310 311
		count_vm_events(SLABS_SCANNED, nr_to_scan);
		total_scan -= nr_to_scan;
G
Glauber Costa 已提交
312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328

		cond_resched();
	}

	/*
	 * move the unused scan count back into the shrinker in a
	 * manner that handles concurrent updates. If we exhausted the
	 * scan, there is no need to do an update.
	 */
	if (total_scan > 0)
		new_nr = atomic_long_add_return(total_scan,
						&shrinker->nr_deferred[nid]);
	else
		new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);

	trace_mm_shrink_slab_end(shrinker, freed, nr, new_nr);
	return freed;
329 330
}

L
Linus Torvalds 已提交
331 332 333 334 335 336 337 338
/*
 * Call the shrink functions to age shrinkable caches
 *
 * Here we assume it costs one seek to replace a lru page and that it also
 * takes a seek to recreate a cache object.  With this in mind we age equal
 * percentages of the lru and ageable caches.  This should balance the seeks
 * generated by these structures.
 *
S
Simon Arlott 已提交
339
 * If the vm encountered mapped pages on the LRU it increase the pressure on
L
Linus Torvalds 已提交
340 341 342 343 344 345 346
 * slab to avoid swapping.
 *
 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
 *
 * `lru_pages' represents the number of on-LRU pages in all the zones which
 * are eligible for the caller's allocation attempt.  It is used for balancing
 * slab reclaim versus page reclaim.
347 348
 *
 * Returns the number of slab objects which we shrunk.
L
Linus Torvalds 已提交
349
 */
D
Dave Chinner 已提交
350
unsigned long shrink_slab(struct shrink_control *shrinkctl,
351
			  unsigned long nr_pages_scanned,
352
			  unsigned long lru_pages)
L
Linus Torvalds 已提交
353 354
{
	struct shrinker *shrinker;
D
Dave Chinner 已提交
355
	unsigned long freed = 0;
L
Linus Torvalds 已提交
356

357 358
	if (nr_pages_scanned == 0)
		nr_pages_scanned = SWAP_CLUSTER_MAX;
L
Linus Torvalds 已提交
359

360
	if (!down_read_trylock(&shrinker_rwsem)) {
D
Dave Chinner 已提交
361 362 363 364 365 366 367
		/*
		 * If we would return 0, our callers would understand that we
		 * have nothing else to shrink and give up trying. By returning
		 * 1 we keep it going and assume we'll be able to shrink next
		 * time.
		 */
		freed = 1;
368 369
		goto out;
	}
L
Linus Torvalds 已提交
370 371

	list_for_each_entry(shrinker, &shrinker_list, list) {
372 373
		if (!(shrinker->flags & SHRINKER_NUMA_AWARE)) {
			shrinkctl->nid = 0;
G
Glauber Costa 已提交
374
			freed += shrink_slab_node(shrinkctl, shrinker,
375 376 377 378 379 380 381 382
					nr_pages_scanned, lru_pages);
			continue;
		}

		for_each_node_mask(shrinkctl->nid, shrinkctl->nodes_to_scan) {
			if (node_online(shrinkctl->nid))
				freed += shrink_slab_node(shrinkctl, shrinker,
						nr_pages_scanned, lru_pages);
L
Linus Torvalds 已提交
383 384 385 386

		}
	}
	up_read(&shrinker_rwsem);
387 388
out:
	cond_resched();
D
Dave Chinner 已提交
389
	return freed;
L
Linus Torvalds 已提交
390 391 392 393
}

static inline int is_page_cache_freeable(struct page *page)
{
394 395 396 397 398
	/*
	 * A freeable page cache page is referenced only by the caller
	 * that isolated the page, the page cache radix tree and
	 * optional buffer heads at page->private.
	 */
399
	return page_count(page) - page_has_private(page) == 2;
L
Linus Torvalds 已提交
400 401
}

402 403
static int may_write_to_queue(struct backing_dev_info *bdi,
			      struct scan_control *sc)
L
Linus Torvalds 已提交
404
{
405
	if (current->flags & PF_SWAPWRITE)
L
Linus Torvalds 已提交
406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428
		return 1;
	if (!bdi_write_congested(bdi))
		return 1;
	if (bdi == current->backing_dev_info)
		return 1;
	return 0;
}

/*
 * We detected a synchronous write error writing a page out.  Probably
 * -ENOSPC.  We need to propagate that into the address_space for a subsequent
 * fsync(), msync() or close().
 *
 * The tricky part is that after writepage we cannot touch the mapping: nothing
 * prevents it from being freed up.  But we have a ref on the page and once
 * that page is locked, the mapping is pinned.
 *
 * We're allowed to run sleeping lock_page() here because we know the caller has
 * __GFP_FS.
 */
static void handle_write_error(struct address_space *mapping,
				struct page *page, int error)
{
J
Jens Axboe 已提交
429
	lock_page(page);
430 431
	if (page_mapping(page) == mapping)
		mapping_set_error(mapping, error);
L
Linus Torvalds 已提交
432 433 434
	unlock_page(page);
}

435 436 437 438 439 440 441 442 443 444 445 446
/* possible outcome of pageout() */
typedef enum {
	/* failed to write page out, page is locked */
	PAGE_KEEP,
	/* move page to the active list, page is locked */
	PAGE_ACTIVATE,
	/* page has been sent to the disk successfully, page is unlocked */
	PAGE_SUCCESS,
	/* page is clean and locked */
	PAGE_CLEAN,
} pageout_t;

L
Linus Torvalds 已提交
447
/*
A
Andrew Morton 已提交
448 449
 * pageout is called by shrink_page_list() for each dirty page.
 * Calls ->writepage().
L
Linus Torvalds 已提交
450
 */
451
static pageout_t pageout(struct page *page, struct address_space *mapping,
452
			 struct scan_control *sc)
L
Linus Torvalds 已提交
453 454 455 456 457 458 459 460
{
	/*
	 * If the page is dirty, only perform writeback if that write
	 * will be non-blocking.  To prevent this allocation from being
	 * stalled by pagecache activity.  But note that there may be
	 * stalls if we need to run get_block().  We could test
	 * PagePrivate for that.
	 *
461
	 * If this process is currently in __generic_file_aio_write() against
L
Linus Torvalds 已提交
462 463 464 465 466 467 468 469 470 471 472 473 474 475 476
	 * this page's queue, we can perform writeback even if that
	 * will block.
	 *
	 * If the page is swapcache, write it back even if that would
	 * block, for some throttling. This happens by accident, because
	 * swap_backing_dev_info is bust: it doesn't reflect the
	 * congestion state of the swapdevs.  Easy to fix, if needed.
	 */
	if (!is_page_cache_freeable(page))
		return PAGE_KEEP;
	if (!mapping) {
		/*
		 * Some data journaling orphaned pages can have
		 * page->mapping == NULL while being dirty with clean buffers.
		 */
477
		if (page_has_private(page)) {
L
Linus Torvalds 已提交
478 479
			if (try_to_free_buffers(page)) {
				ClearPageDirty(page);
480
				printk("%s: orphaned page\n", __func__);
L
Linus Torvalds 已提交
481 482 483 484 485 486 487
				return PAGE_CLEAN;
			}
		}
		return PAGE_KEEP;
	}
	if (mapping->a_ops->writepage == NULL)
		return PAGE_ACTIVATE;
488
	if (!may_write_to_queue(mapping->backing_dev_info, sc))
L
Linus Torvalds 已提交
489 490 491 492 493 494 495
		return PAGE_KEEP;

	if (clear_page_dirty_for_io(page)) {
		int res;
		struct writeback_control wbc = {
			.sync_mode = WB_SYNC_NONE,
			.nr_to_write = SWAP_CLUSTER_MAX,
496 497
			.range_start = 0,
			.range_end = LLONG_MAX,
L
Linus Torvalds 已提交
498 499 500 501 502 503 504
			.for_reclaim = 1,
		};

		SetPageReclaim(page);
		res = mapping->a_ops->writepage(page, &wbc);
		if (res < 0)
			handle_write_error(mapping, page, res);
505
		if (res == AOP_WRITEPAGE_ACTIVATE) {
L
Linus Torvalds 已提交
506 507 508
			ClearPageReclaim(page);
			return PAGE_ACTIVATE;
		}
509

L
Linus Torvalds 已提交
510 511 512 513
		if (!PageWriteback(page)) {
			/* synchronous write or broken a_ops? */
			ClearPageReclaim(page);
		}
M
Mel Gorman 已提交
514
		trace_mm_vmscan_writepage(page, trace_reclaim_flags(page));
515
		inc_zone_page_state(page, NR_VMSCAN_WRITE);
L
Linus Torvalds 已提交
516 517 518 519 520 521
		return PAGE_SUCCESS;
	}

	return PAGE_CLEAN;
}

522
/*
N
Nick Piggin 已提交
523 524
 * Same as remove_mapping, but if the page is removed from the mapping, it
 * gets returned with a refcount of 0.
525
 */
526 527
static int __remove_mapping(struct address_space *mapping, struct page *page,
			    bool reclaimed)
528
{
529 530
	BUG_ON(!PageLocked(page));
	BUG_ON(mapping != page_mapping(page));
531

N
Nick Piggin 已提交
532
	spin_lock_irq(&mapping->tree_lock);
533
	/*
N
Nick Piggin 已提交
534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556
	 * The non racy check for a busy page.
	 *
	 * Must be careful with the order of the tests. When someone has
	 * a ref to the page, it may be possible that they dirty it then
	 * drop the reference. So if PageDirty is tested before page_count
	 * here, then the following race may occur:
	 *
	 * get_user_pages(&page);
	 * [user mapping goes away]
	 * write_to(page);
	 *				!PageDirty(page)    [good]
	 * SetPageDirty(page);
	 * put_page(page);
	 *				!page_count(page)   [good, discard it]
	 *
	 * [oops, our write_to data is lost]
	 *
	 * Reversing the order of the tests ensures such a situation cannot
	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
	 * load is not satisfied before that of page->_count.
	 *
	 * Note that if SetPageDirty is always performed via set_page_dirty,
	 * and thus under tree_lock, then this ordering is not required.
557
	 */
N
Nick Piggin 已提交
558
	if (!page_freeze_refs(page, 2))
559
		goto cannot_free;
N
Nick Piggin 已提交
560 561 562
	/* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
	if (unlikely(PageDirty(page))) {
		page_unfreeze_refs(page, 2);
563
		goto cannot_free;
N
Nick Piggin 已提交
564
	}
565 566 567 568

	if (PageSwapCache(page)) {
		swp_entry_t swap = { .val = page_private(page) };
		__delete_from_swap_cache(page);
N
Nick Piggin 已提交
569
		spin_unlock_irq(&mapping->tree_lock);
570
		swapcache_free(swap, page);
N
Nick Piggin 已提交
571
	} else {
572
		void (*freepage)(struct page *);
573
		void *shadow = NULL;
574 575

		freepage = mapping->a_ops->freepage;
576 577 578 579 580 581 582 583 584 585 586 587 588 589
		/*
		 * Remember a shadow entry for reclaimed file cache in
		 * order to detect refaults, thus thrashing, later on.
		 *
		 * But don't store shadows in an address space that is
		 * already exiting.  This is not just an optizimation,
		 * inode reclaim needs to empty out the radix tree or
		 * the nodes are lost.  Don't plant shadows behind its
		 * back.
		 */
		if (reclaimed && page_is_file_cache(page) &&
		    !mapping_exiting(mapping))
			shadow = workingset_eviction(mapping, page);
		__delete_from_page_cache(page, shadow);
N
Nick Piggin 已提交
590
		spin_unlock_irq(&mapping->tree_lock);
591
		mem_cgroup_uncharge_cache_page(page);
592 593 594

		if (freepage != NULL)
			freepage(page);
595 596 597 598 599
	}

	return 1;

cannot_free:
N
Nick Piggin 已提交
600
	spin_unlock_irq(&mapping->tree_lock);
601 602 603
	return 0;
}

N
Nick Piggin 已提交
604 605 606 607 608 609 610 611
/*
 * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
 * someone else has a ref on the page, abort and return 0.  If it was
 * successfully detached, return 1.  Assumes the caller has a single ref on
 * this page.
 */
int remove_mapping(struct address_space *mapping, struct page *page)
{
612
	if (__remove_mapping(mapping, page, false)) {
N
Nick Piggin 已提交
613 614 615 616 617 618 619 620 621 622 623
		/*
		 * Unfreezing the refcount with 1 rather than 2 effectively
		 * drops the pagecache ref for us without requiring another
		 * atomic operation.
		 */
		page_unfreeze_refs(page, 1);
		return 1;
	}
	return 0;
}

L
Lee Schermerhorn 已提交
624 625 626 627 628 629 630 631 632 633 634
/**
 * putback_lru_page - put previously isolated page onto appropriate LRU list
 * @page: page to be put back to appropriate lru list
 *
 * Add previously isolated @page to appropriate LRU list.
 * Page may still be unevictable for other reasons.
 *
 * lru_lock must not be held, interrupts must be enabled.
 */
void putback_lru_page(struct page *page)
{
635
	bool is_unevictable;
636
	int was_unevictable = PageUnevictable(page);
L
Lee Schermerhorn 已提交
637

638
	VM_BUG_ON_PAGE(PageLRU(page), page);
L
Lee Schermerhorn 已提交
639 640 641 642

redo:
	ClearPageUnevictable(page);

643
	if (page_evictable(page)) {
L
Lee Schermerhorn 已提交
644 645 646 647 648 649
		/*
		 * For evictable pages, we can use the cache.
		 * In event of a race, worst case is we end up with an
		 * unevictable page on [in]active list.
		 * We know how to handle that.
		 */
650
		is_unevictable = false;
651
		lru_cache_add(page);
L
Lee Schermerhorn 已提交
652 653 654 655 656
	} else {
		/*
		 * Put unevictable pages directly on zone's unevictable
		 * list.
		 */
657
		is_unevictable = true;
L
Lee Schermerhorn 已提交
658
		add_page_to_unevictable_list(page);
659
		/*
660 661 662
		 * When racing with an mlock or AS_UNEVICTABLE clearing
		 * (page is unlocked) make sure that if the other thread
		 * does not observe our setting of PG_lru and fails
663
		 * isolation/check_move_unevictable_pages,
664
		 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
665 666
		 * the page back to the evictable list.
		 *
667
		 * The other side is TestClearPageMlocked() or shmem_lock().
668 669
		 */
		smp_mb();
L
Lee Schermerhorn 已提交
670 671 672 673 674 675 676
	}

	/*
	 * page's status can change while we move it among lru. If an evictable
	 * page is on unevictable list, it never be freed. To avoid that,
	 * check after we added it to the list, again.
	 */
677
	if (is_unevictable && page_evictable(page)) {
L
Lee Schermerhorn 已提交
678 679 680 681 682 683 684 685 686 687
		if (!isolate_lru_page(page)) {
			put_page(page);
			goto redo;
		}
		/* This means someone else dropped this page from LRU
		 * So, it will be freed or putback to LRU again. There is
		 * nothing to do here.
		 */
	}

688
	if (was_unevictable && !is_unevictable)
689
		count_vm_event(UNEVICTABLE_PGRESCUED);
690
	else if (!was_unevictable && is_unevictable)
691 692
		count_vm_event(UNEVICTABLE_PGCULLED);

L
Lee Schermerhorn 已提交
693 694 695
	put_page(page);		/* drop ref from isolate */
}

696 697 698
enum page_references {
	PAGEREF_RECLAIM,
	PAGEREF_RECLAIM_CLEAN,
699
	PAGEREF_KEEP,
700 701 702 703 704 705
	PAGEREF_ACTIVATE,
};

static enum page_references page_check_references(struct page *page,
						  struct scan_control *sc)
{
706
	int referenced_ptes, referenced_page;
707 708
	unsigned long vm_flags;

709 710
	referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
					  &vm_flags);
711
	referenced_page = TestClearPageReferenced(page);
712 713 714 715 716 717 718 719

	/*
	 * Mlock lost the isolation race with us.  Let try_to_unmap()
	 * move the page to the unevictable list.
	 */
	if (vm_flags & VM_LOCKED)
		return PAGEREF_RECLAIM;

720
	if (referenced_ptes) {
721
		if (PageSwapBacked(page))
722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738
			return PAGEREF_ACTIVATE;
		/*
		 * All mapped pages start out with page table
		 * references from the instantiating fault, so we need
		 * to look twice if a mapped file page is used more
		 * than once.
		 *
		 * Mark it and spare it for another trip around the
		 * inactive list.  Another page table reference will
		 * lead to its activation.
		 *
		 * Note: the mark is set for activated pages as well
		 * so that recently deactivated but used pages are
		 * quickly recovered.
		 */
		SetPageReferenced(page);

739
		if (referenced_page || referenced_ptes > 1)
740 741
			return PAGEREF_ACTIVATE;

742 743 744 745 746 747
		/*
		 * Activate file-backed executable pages after first usage.
		 */
		if (vm_flags & VM_EXEC)
			return PAGEREF_ACTIVATE;

748 749
		return PAGEREF_KEEP;
	}
750 751

	/* Reclaim if clean, defer dirty pages to writeback */
752
	if (referenced_page && !PageSwapBacked(page))
753 754 755
		return PAGEREF_RECLAIM_CLEAN;

	return PAGEREF_RECLAIM;
756 757
}

758 759 760 761
/* Check if a page is dirty or under writeback */
static void page_check_dirty_writeback(struct page *page,
				       bool *dirty, bool *writeback)
{
762 763
	struct address_space *mapping;

764 765 766 767 768 769 770 771 772 773 774 775 776
	/*
	 * Anonymous pages are not handled by flushers and must be written
	 * from reclaim context. Do not stall reclaim based on them
	 */
	if (!page_is_file_cache(page)) {
		*dirty = false;
		*writeback = false;
		return;
	}

	/* By default assume that the page flags are accurate */
	*dirty = PageDirty(page);
	*writeback = PageWriteback(page);
777 778 779 780 781 782 783 784

	/* Verify dirty/writeback state if the filesystem supports it */
	if (!page_has_private(page))
		return;

	mapping = page_mapping(page);
	if (mapping && mapping->a_ops->is_dirty_writeback)
		mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
785 786
}

L
Linus Torvalds 已提交
787
/*
A
Andrew Morton 已提交
788
 * shrink_page_list() returns the number of reclaimed pages
L
Linus Torvalds 已提交
789
 */
A
Andrew Morton 已提交
790
static unsigned long shrink_page_list(struct list_head *page_list,
791
				      struct zone *zone,
792
				      struct scan_control *sc,
793
				      enum ttu_flags ttu_flags,
794
				      unsigned long *ret_nr_dirty,
795
				      unsigned long *ret_nr_unqueued_dirty,
796
				      unsigned long *ret_nr_congested,
797
				      unsigned long *ret_nr_writeback,
798
				      unsigned long *ret_nr_immediate,
799
				      bool force_reclaim)
L
Linus Torvalds 已提交
800 801
{
	LIST_HEAD(ret_pages);
802
	LIST_HEAD(free_pages);
L
Linus Torvalds 已提交
803
	int pgactivate = 0;
804
	unsigned long nr_unqueued_dirty = 0;
805 806
	unsigned long nr_dirty = 0;
	unsigned long nr_congested = 0;
807
	unsigned long nr_reclaimed = 0;
808
	unsigned long nr_writeback = 0;
809
	unsigned long nr_immediate = 0;
L
Linus Torvalds 已提交
810 811 812

	cond_resched();

813
	mem_cgroup_uncharge_start();
L
Linus Torvalds 已提交
814 815 816 817
	while (!list_empty(page_list)) {
		struct address_space *mapping;
		struct page *page;
		int may_enter_fs;
818
		enum page_references references = PAGEREF_RECLAIM_CLEAN;
819
		bool dirty, writeback;
L
Linus Torvalds 已提交
820 821 822 823 824 825

		cond_resched();

		page = lru_to_page(page_list);
		list_del(&page->lru);

N
Nick Piggin 已提交
826
		if (!trylock_page(page))
L
Linus Torvalds 已提交
827 828
			goto keep;

829 830
		VM_BUG_ON_PAGE(PageActive(page), page);
		VM_BUG_ON_PAGE(page_zone(page) != zone, page);
L
Linus Torvalds 已提交
831 832

		sc->nr_scanned++;
833

834
		if (unlikely(!page_evictable(page)))
N
Nick Piggin 已提交
835
			goto cull_mlocked;
L
Lee Schermerhorn 已提交
836

837
		if (!sc->may_unmap && page_mapped(page))
838 839
			goto keep_locked;

L
Linus Torvalds 已提交
840 841 842 843
		/* Double the slab pressure for mapped and swapcache pages */
		if (page_mapped(page) || PageSwapCache(page))
			sc->nr_scanned++;

844 845 846
		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));

847 848 849 850 851 852 853 854 855 856 857 858 859
		/*
		 * The number of dirty pages determines if a zone is marked
		 * reclaim_congested which affects wait_iff_congested. kswapd
		 * will stall and start writing pages if the tail of the LRU
		 * is all dirty unqueued pages.
		 */
		page_check_dirty_writeback(page, &dirty, &writeback);
		if (dirty || writeback)
			nr_dirty++;

		if (dirty && !writeback)
			nr_unqueued_dirty++;

860 861 862 863 864 865
		/*
		 * Treat this page as congested if the underlying BDI is or if
		 * pages are cycling through the LRU so quickly that the
		 * pages marked for immediate reclaim are making it to the
		 * end of the LRU a second time.
		 */
866
		mapping = page_mapping(page);
867 868
		if ((mapping && bdi_write_congested(mapping->backing_dev_info)) ||
		    (writeback && PageReclaim(page)))
869 870
			nr_congested++;

871 872 873 874 875 876 877 878 879 880 881
		/*
		 * If a page at the tail of the LRU is under writeback, there
		 * are three cases to consider.
		 *
		 * 1) If reclaim is encountering an excessive number of pages
		 *    under writeback and this page is both under writeback and
		 *    PageReclaim then it indicates that pages are being queued
		 *    for IO but are being recycled through the LRU before the
		 *    IO can complete. Waiting on the page itself risks an
		 *    indefinite stall if it is impossible to writeback the
		 *    page due to IO error or disconnected storage so instead
882 883
		 *    note that the LRU is being scanned too quickly and the
		 *    caller can stall after page list has been processed.
884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907
		 *
		 * 2) Global reclaim encounters a page, memcg encounters a
		 *    page that is not marked for immediate reclaim or
		 *    the caller does not have __GFP_IO. In this case mark
		 *    the page for immediate reclaim and continue scanning.
		 *
		 *    __GFP_IO is checked  because a loop driver thread might
		 *    enter reclaim, and deadlock if it waits on a page for
		 *    which it is needed to do the write (loop masks off
		 *    __GFP_IO|__GFP_FS for this reason); but more thought
		 *    would probably show more reasons.
		 *
		 *    Don't require __GFP_FS, since we're not going into the
		 *    FS, just waiting on its writeback completion. Worryingly,
		 *    ext4 gfs2 and xfs allocate pages with
		 *    grab_cache_page_write_begin(,,AOP_FLAG_NOFS), so testing
		 *    may_enter_fs here is liable to OOM on them.
		 *
		 * 3) memcg encounters a page that is not already marked
		 *    PageReclaim. memcg does not have any dirty pages
		 *    throttling so we could easily OOM just because too many
		 *    pages are in writeback and there is nothing else to
		 *    reclaim. Wait for the writeback to complete.
		 */
908
		if (PageWriteback(page)) {
909 910 911 912
			/* Case 1 above */
			if (current_is_kswapd() &&
			    PageReclaim(page) &&
			    zone_is_reclaim_writeback(zone)) {
913 914
				nr_immediate++;
				goto keep_locked;
915 916 917

			/* Case 2 above */
			} else if (global_reclaim(sc) ||
918 919 920 921 922 923 924 925 926 927 928 929 930
			    !PageReclaim(page) || !(sc->gfp_mask & __GFP_IO)) {
				/*
				 * This is slightly racy - end_page_writeback()
				 * might have just cleared PageReclaim, then
				 * setting PageReclaim here end up interpreted
				 * as PageReadahead - but that does not matter
				 * enough to care.  What we do want is for this
				 * page to have PageReclaim set next time memcg
				 * reclaim reaches the tests above, so it will
				 * then wait_on_page_writeback() to avoid OOM;
				 * and it's also appropriate in global reclaim.
				 */
				SetPageReclaim(page);
931
				nr_writeback++;
932

933
				goto keep_locked;
934 935 936 937

			/* Case 3 above */
			} else {
				wait_on_page_writeback(page);
938
			}
939
		}
L
Linus Torvalds 已提交
940

941 942 943
		if (!force_reclaim)
			references = page_check_references(page, sc);

944 945
		switch (references) {
		case PAGEREF_ACTIVATE:
L
Linus Torvalds 已提交
946
			goto activate_locked;
947 948
		case PAGEREF_KEEP:
			goto keep_locked;
949 950 951 952
		case PAGEREF_RECLAIM:
		case PAGEREF_RECLAIM_CLEAN:
			; /* try to reclaim the page below */
		}
L
Linus Torvalds 已提交
953 954 955 956 957

		/*
		 * Anonymous process memory has backing store?
		 * Try to allocate it some swap space here.
		 */
N
Nick Piggin 已提交
958
		if (PageAnon(page) && !PageSwapCache(page)) {
959 960
			if (!(sc->gfp_mask & __GFP_IO))
				goto keep_locked;
961
			if (!add_to_swap(page, page_list))
L
Linus Torvalds 已提交
962
				goto activate_locked;
963
			may_enter_fs = 1;
L
Linus Torvalds 已提交
964

965 966 967
			/* Adding to swap updated mapping */
			mapping = page_mapping(page);
		}
L
Linus Torvalds 已提交
968 969 970 971 972 973

		/*
		 * The page is mapped into the page tables of one or more
		 * processes. Try to unmap it here.
		 */
		if (page_mapped(page) && mapping) {
974
			switch (try_to_unmap(page, ttu_flags)) {
L
Linus Torvalds 已提交
975 976 977 978
			case SWAP_FAIL:
				goto activate_locked;
			case SWAP_AGAIN:
				goto keep_locked;
N
Nick Piggin 已提交
979 980
			case SWAP_MLOCK:
				goto cull_mlocked;
L
Linus Torvalds 已提交
981 982 983 984 985 986
			case SWAP_SUCCESS:
				; /* try to free the page below */
			}
		}

		if (PageDirty(page)) {
987 988
			/*
			 * Only kswapd can writeback filesystem pages to
989 990
			 * avoid risk of stack overflow but only writeback
			 * if many dirty pages have been encountered.
991
			 */
992
			if (page_is_file_cache(page) &&
993
					(!current_is_kswapd() ||
994
					 !zone_is_reclaim_dirty(zone))) {
995 996 997 998 999 1000 1001 1002 1003
				/*
				 * Immediately reclaim when written back.
				 * Similar in principal to deactivate_page()
				 * except we already have the page isolated
				 * and know it's dirty
				 */
				inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
				SetPageReclaim(page);

1004 1005 1006
				goto keep_locked;
			}

1007
			if (references == PAGEREF_RECLAIM_CLEAN)
L
Linus Torvalds 已提交
1008
				goto keep_locked;
1009
			if (!may_enter_fs)
L
Linus Torvalds 已提交
1010
				goto keep_locked;
1011
			if (!sc->may_writepage)
L
Linus Torvalds 已提交
1012 1013 1014
				goto keep_locked;

			/* Page is dirty, try to write it out here */
1015
			switch (pageout(page, mapping, sc)) {
L
Linus Torvalds 已提交
1016 1017 1018 1019 1020
			case PAGE_KEEP:
				goto keep_locked;
			case PAGE_ACTIVATE:
				goto activate_locked;
			case PAGE_SUCCESS:
1021
				if (PageWriteback(page))
1022
					goto keep;
1023
				if (PageDirty(page))
L
Linus Torvalds 已提交
1024
					goto keep;
1025

L
Linus Torvalds 已提交
1026 1027 1028 1029
				/*
				 * A synchronous write - probably a ramdisk.  Go
				 * ahead and try to reclaim the page.
				 */
N
Nick Piggin 已提交
1030
				if (!trylock_page(page))
L
Linus Torvalds 已提交
1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049
					goto keep;
				if (PageDirty(page) || PageWriteback(page))
					goto keep_locked;
				mapping = page_mapping(page);
			case PAGE_CLEAN:
				; /* try to free the page below */
			}
		}

		/*
		 * If the page has buffers, try to free the buffer mappings
		 * associated with this page. If we succeed we try to free
		 * the page as well.
		 *
		 * We do this even if the page is PageDirty().
		 * try_to_release_page() does not perform I/O, but it is
		 * possible for a page to have PageDirty set, but it is actually
		 * clean (all its buffers are clean).  This happens if the
		 * buffers were written out directly, with submit_bh(). ext3
L
Lee Schermerhorn 已提交
1050
		 * will do this, as well as the blockdev mapping.
L
Linus Torvalds 已提交
1051 1052 1053 1054 1055 1056 1057 1058 1059 1060
		 * try_to_release_page() will discover that cleanness and will
		 * drop the buffers and mark the page clean - it can be freed.
		 *
		 * Rarely, pages can have buffers and no ->mapping.  These are
		 * the pages which were not successfully invalidated in
		 * truncate_complete_page().  We try to drop those buffers here
		 * and if that worked, and the page is no longer mapped into
		 * process address space (page_count == 1) it can be freed.
		 * Otherwise, leave the page on the LRU so it is swappable.
		 */
1061
		if (page_has_private(page)) {
L
Linus Torvalds 已提交
1062 1063
			if (!try_to_release_page(page, sc->gfp_mask))
				goto activate_locked;
N
Nick Piggin 已提交
1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079
			if (!mapping && page_count(page) == 1) {
				unlock_page(page);
				if (put_page_testzero(page))
					goto free_it;
				else {
					/*
					 * rare race with speculative reference.
					 * the speculative reference will free
					 * this page shortly, so we may
					 * increment nr_reclaimed here (and
					 * leave it off the LRU).
					 */
					nr_reclaimed++;
					continue;
				}
			}
L
Linus Torvalds 已提交
1080 1081
		}

1082
		if (!mapping || !__remove_mapping(mapping, page, true))
1083
			goto keep_locked;
L
Linus Torvalds 已提交
1084

N
Nick Piggin 已提交
1085 1086 1087 1088 1089 1090 1091 1092
		/*
		 * At this point, we have no other references and there is
		 * no way to pick any more up (removed from LRU, removed
		 * from pagecache). Can use non-atomic bitops now (and
		 * we obviously don't have to worry about waking up a process
		 * waiting on the page lock, because there are no references.
		 */
		__clear_page_locked(page);
N
Nick Piggin 已提交
1093
free_it:
1094
		nr_reclaimed++;
1095 1096 1097 1098 1099 1100

		/*
		 * Is there need to periodically free_page_list? It would
		 * appear not as the counts should be low
		 */
		list_add(&page->lru, &free_pages);
L
Linus Torvalds 已提交
1101 1102
		continue;

N
Nick Piggin 已提交
1103
cull_mlocked:
1104 1105
		if (PageSwapCache(page))
			try_to_free_swap(page);
N
Nick Piggin 已提交
1106 1107 1108 1109
		unlock_page(page);
		putback_lru_page(page);
		continue;

L
Linus Torvalds 已提交
1110
activate_locked:
1111 1112
		/* Not a candidate for swapping, so reclaim swap space. */
		if (PageSwapCache(page) && vm_swap_full())
1113
			try_to_free_swap(page);
1114
		VM_BUG_ON_PAGE(PageActive(page), page);
L
Linus Torvalds 已提交
1115 1116 1117 1118 1119 1120
		SetPageActive(page);
		pgactivate++;
keep_locked:
		unlock_page(page);
keep:
		list_add(&page->lru, &ret_pages);
1121
		VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
L
Linus Torvalds 已提交
1122
	}
1123

1124
	free_hot_cold_page_list(&free_pages, 1);
1125

L
Linus Torvalds 已提交
1126
	list_splice(&ret_pages, page_list);
1127
	count_vm_events(PGACTIVATE, pgactivate);
1128
	mem_cgroup_uncharge_end();
1129 1130
	*ret_nr_dirty += nr_dirty;
	*ret_nr_congested += nr_congested;
1131
	*ret_nr_unqueued_dirty += nr_unqueued_dirty;
1132
	*ret_nr_writeback += nr_writeback;
1133
	*ret_nr_immediate += nr_immediate;
1134
	return nr_reclaimed;
L
Linus Torvalds 已提交
1135 1136
}

1137 1138 1139 1140 1141 1142 1143 1144
unsigned long reclaim_clean_pages_from_list(struct zone *zone,
					    struct list_head *page_list)
{
	struct scan_control sc = {
		.gfp_mask = GFP_KERNEL,
		.priority = DEF_PRIORITY,
		.may_unmap = 1,
	};
1145
	unsigned long ret, dummy1, dummy2, dummy3, dummy4, dummy5;
1146 1147 1148 1149
	struct page *page, *next;
	LIST_HEAD(clean_pages);

	list_for_each_entry_safe(page, next, page_list, lru) {
1150 1151
		if (page_is_file_cache(page) && !PageDirty(page) &&
		    !isolated_balloon_page(page)) {
1152 1153 1154 1155 1156 1157
			ClearPageActive(page);
			list_move(&page->lru, &clean_pages);
		}
	}

	ret = shrink_page_list(&clean_pages, zone, &sc,
1158 1159
			TTU_UNMAP|TTU_IGNORE_ACCESS,
			&dummy1, &dummy2, &dummy3, &dummy4, &dummy5, true);
1160
	list_splice(&clean_pages, page_list);
1161
	mod_zone_page_state(zone, NR_ISOLATED_FILE, -ret);
1162 1163 1164
	return ret;
}

A
Andy Whitcroft 已提交
1165 1166 1167 1168 1169 1170 1171 1172 1173 1174
/*
 * Attempt to remove the specified page from its LRU.  Only take this page
 * if it is of the appropriate PageActive status.  Pages which are being
 * freed elsewhere are also ignored.
 *
 * page:	page to consider
 * mode:	one of the LRU isolation modes defined above
 *
 * returns 0 on success, -ve errno on failure.
 */
1175
int __isolate_lru_page(struct page *page, isolate_mode_t mode)
A
Andy Whitcroft 已提交
1176 1177 1178 1179 1180 1181 1182
{
	int ret = -EINVAL;

	/* Only take pages on the LRU. */
	if (!PageLRU(page))
		return ret;

M
Minchan Kim 已提交
1183 1184
	/* Compaction should not handle unevictable pages but CMA can do so */
	if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
L
Lee Schermerhorn 已提交
1185 1186
		return ret;

A
Andy Whitcroft 已提交
1187
	ret = -EBUSY;
K
KAMEZAWA Hiroyuki 已提交
1188

1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221
	/*
	 * To minimise LRU disruption, the caller can indicate that it only
	 * wants to isolate pages it will be able to operate on without
	 * blocking - clean pages for the most part.
	 *
	 * ISOLATE_CLEAN means that only clean pages should be isolated. This
	 * is used by reclaim when it is cannot write to backing storage
	 *
	 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
	 * that it is possible to migrate without blocking
	 */
	if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
		/* All the caller can do on PageWriteback is block */
		if (PageWriteback(page))
			return ret;

		if (PageDirty(page)) {
			struct address_space *mapping;

			/* ISOLATE_CLEAN means only clean pages */
			if (mode & ISOLATE_CLEAN)
				return ret;

			/*
			 * Only pages without mappings or that have a
			 * ->migratepage callback are possible to migrate
			 * without blocking
			 */
			mapping = page_mapping(page);
			if (mapping && !mapping->a_ops->migratepage)
				return ret;
		}
	}
1222

1223 1224 1225
	if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
		return ret;

A
Andy Whitcroft 已提交
1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238
	if (likely(get_page_unless_zero(page))) {
		/*
		 * Be careful not to clear PageLRU until after we're
		 * sure the page is not being freed elsewhere -- the
		 * page release code relies on it.
		 */
		ClearPageLRU(page);
		ret = 0;
	}

	return ret;
}

L
Linus Torvalds 已提交
1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249
/*
 * zone->lru_lock is heavily contended.  Some of the functions that
 * shrink the lists perform better by taking out a batch of pages
 * and working on them outside the LRU lock.
 *
 * For pagecache intensive workloads, this function is the hottest
 * spot in the kernel (apart from copy_*_user functions).
 *
 * Appropriate locks must be held before calling this function.
 *
 * @nr_to_scan:	The number of pages to look through on the list.
1250
 * @lruvec:	The LRU vector to pull pages from.
L
Linus Torvalds 已提交
1251
 * @dst:	The temp list to put pages on to.
H
Hugh Dickins 已提交
1252
 * @nr_scanned:	The number of pages that were scanned.
1253
 * @sc:		The scan_control struct for this reclaim session
A
Andy Whitcroft 已提交
1254
 * @mode:	One of the LRU isolation modes
1255
 * @lru:	LRU list id for isolating
L
Linus Torvalds 已提交
1256 1257 1258
 *
 * returns how many pages were moved onto *@dst.
 */
1259
static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1260
		struct lruvec *lruvec, struct list_head *dst,
1261
		unsigned long *nr_scanned, struct scan_control *sc,
1262
		isolate_mode_t mode, enum lru_list lru)
L
Linus Torvalds 已提交
1263
{
H
Hugh Dickins 已提交
1264
	struct list_head *src = &lruvec->lists[lru];
1265
	unsigned long nr_taken = 0;
1266
	unsigned long scan;
L
Linus Torvalds 已提交
1267

1268
	for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
A
Andy Whitcroft 已提交
1269
		struct page *page;
1270
		int nr_pages;
A
Andy Whitcroft 已提交
1271

L
Linus Torvalds 已提交
1272 1273 1274
		page = lru_to_page(src);
		prefetchw_prev_lru_page(page, src, flags);

1275
		VM_BUG_ON_PAGE(!PageLRU(page), page);
N
Nick Piggin 已提交
1276

1277
		switch (__isolate_lru_page(page, mode)) {
A
Andy Whitcroft 已提交
1278
		case 0:
1279 1280
			nr_pages = hpage_nr_pages(page);
			mem_cgroup_update_lru_size(lruvec, lru, -nr_pages);
A
Andy Whitcroft 已提交
1281
			list_move(&page->lru, dst);
1282
			nr_taken += nr_pages;
A
Andy Whitcroft 已提交
1283 1284 1285 1286 1287 1288
			break;

		case -EBUSY:
			/* else it is being freed elsewhere */
			list_move(&page->lru, src);
			continue;
1289

A
Andy Whitcroft 已提交
1290 1291 1292
		default:
			BUG();
		}
L
Linus Torvalds 已提交
1293 1294
	}

H
Hugh Dickins 已提交
1295
	*nr_scanned = scan;
H
Hugh Dickins 已提交
1296 1297
	trace_mm_vmscan_lru_isolate(sc->order, nr_to_scan, scan,
				    nr_taken, mode, is_file_lru(lru));
L
Linus Torvalds 已提交
1298 1299 1300
	return nr_taken;
}

1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311
/**
 * isolate_lru_page - tries to isolate a page from its LRU list
 * @page: page to isolate from its LRU list
 *
 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
 * vmstat statistic corresponding to whatever LRU list the page was on.
 *
 * Returns 0 if the page was removed from an LRU list.
 * Returns -EBUSY if the page was not on an LRU list.
 *
 * The returned page will have PageLRU() cleared.  If it was found on
L
Lee Schermerhorn 已提交
1312 1313 1314
 * the active list, it will have PageActive set.  If it was found on
 * the unevictable list, it will have the PageUnevictable bit set. That flag
 * may need to be cleared by the caller before letting the page go.
1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329
 *
 * The vmstat statistic corresponding to the list on which the page was
 * found will be decremented.
 *
 * Restrictions:
 * (1) Must be called with an elevated refcount on the page. This is a
 *     fundamentnal difference from isolate_lru_pages (which is called
 *     without a stable reference).
 * (2) the lru_lock must not be held.
 * (3) interrupts must be enabled.
 */
int isolate_lru_page(struct page *page)
{
	int ret = -EBUSY;

1330
	VM_BUG_ON_PAGE(!page_count(page), page);
1331

1332 1333
	if (PageLRU(page)) {
		struct zone *zone = page_zone(page);
1334
		struct lruvec *lruvec;
1335 1336

		spin_lock_irq(&zone->lru_lock);
1337
		lruvec = mem_cgroup_page_lruvec(page, zone);
1338
		if (PageLRU(page)) {
L
Lee Schermerhorn 已提交
1339
			int lru = page_lru(page);
1340
			get_page(page);
1341
			ClearPageLRU(page);
1342 1343
			del_page_from_lru_list(page, lruvec, lru);
			ret = 0;
1344 1345 1346 1347 1348 1349
		}
		spin_unlock_irq(&zone->lru_lock);
	}
	return ret;
}

1350
/*
F
Fengguang Wu 已提交
1351 1352 1353 1354 1355
 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
 * then get resheduled. When there are massive number of tasks doing page
 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
 * the LRU list will go small and be scanned faster than necessary, leading to
 * unnecessary swapping, thrashing and OOM.
1356 1357 1358 1359 1360 1361 1362 1363 1364
 */
static int too_many_isolated(struct zone *zone, int file,
		struct scan_control *sc)
{
	unsigned long inactive, isolated;

	if (current_is_kswapd())
		return 0;

1365
	if (!global_reclaim(sc))
1366 1367 1368 1369 1370 1371 1372 1373 1374 1375
		return 0;

	if (file) {
		inactive = zone_page_state(zone, NR_INACTIVE_FILE);
		isolated = zone_page_state(zone, NR_ISOLATED_FILE);
	} else {
		inactive = zone_page_state(zone, NR_INACTIVE_ANON);
		isolated = zone_page_state(zone, NR_ISOLATED_ANON);
	}

1376 1377 1378 1379 1380 1381 1382 1383
	/*
	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
	 * won't get blocked by normal direct-reclaimers, forming a circular
	 * deadlock.
	 */
	if ((sc->gfp_mask & GFP_IOFS) == GFP_IOFS)
		inactive >>= 3;

1384 1385 1386
	return isolated > inactive;
}

1387
static noinline_for_stack void
H
Hugh Dickins 已提交
1388
putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1389
{
1390 1391
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
	struct zone *zone = lruvec_zone(lruvec);
1392
	LIST_HEAD(pages_to_free);
1393 1394 1395 1396 1397

	/*
	 * Put back any unfreeable pages.
	 */
	while (!list_empty(page_list)) {
1398
		struct page *page = lru_to_page(page_list);
1399
		int lru;
1400

1401
		VM_BUG_ON_PAGE(PageLRU(page), page);
1402
		list_del(&page->lru);
1403
		if (unlikely(!page_evictable(page))) {
1404 1405 1406 1407 1408
			spin_unlock_irq(&zone->lru_lock);
			putback_lru_page(page);
			spin_lock_irq(&zone->lru_lock);
			continue;
		}
1409 1410 1411

		lruvec = mem_cgroup_page_lruvec(page, zone);

1412
		SetPageLRU(page);
1413
		lru = page_lru(page);
1414 1415
		add_page_to_lru_list(page, lruvec, lru);

1416 1417
		if (is_active_lru(lru)) {
			int file = is_file_lru(lru);
1418 1419
			int numpages = hpage_nr_pages(page);
			reclaim_stat->recent_rotated[file] += numpages;
1420
		}
1421 1422 1423
		if (put_page_testzero(page)) {
			__ClearPageLRU(page);
			__ClearPageActive(page);
1424
			del_page_from_lru_list(page, lruvec, lru);
1425 1426 1427 1428 1429 1430 1431

			if (unlikely(PageCompound(page))) {
				spin_unlock_irq(&zone->lru_lock);
				(*get_compound_page_dtor(page))(page);
				spin_lock_irq(&zone->lru_lock);
			} else
				list_add(&page->lru, &pages_to_free);
1432 1433 1434
		}
	}

1435 1436 1437 1438
	/*
	 * To save our caller's stack, now use input list for pages to free.
	 */
	list_splice(&pages_to_free, page_list);
1439 1440
}

L
Linus Torvalds 已提交
1441
/*
A
Andrew Morton 已提交
1442 1443
 * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
 * of reclaimed pages
L
Linus Torvalds 已提交
1444
 */
1445
static noinline_for_stack unsigned long
1446
shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1447
		     struct scan_control *sc, enum lru_list lru)
L
Linus Torvalds 已提交
1448 1449
{
	LIST_HEAD(page_list);
1450
	unsigned long nr_scanned;
1451
	unsigned long nr_reclaimed = 0;
1452
	unsigned long nr_taken;
1453 1454
	unsigned long nr_dirty = 0;
	unsigned long nr_congested = 0;
1455
	unsigned long nr_unqueued_dirty = 0;
1456
	unsigned long nr_writeback = 0;
1457
	unsigned long nr_immediate = 0;
1458
	isolate_mode_t isolate_mode = 0;
1459
	int file = is_file_lru(lru);
1460 1461
	struct zone *zone = lruvec_zone(lruvec);
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1462

1463
	while (unlikely(too_many_isolated(zone, file, sc))) {
1464
		congestion_wait(BLK_RW_ASYNC, HZ/10);
1465 1466 1467 1468 1469 1470

		/* We are about to die and free our memory. Return now. */
		if (fatal_signal_pending(current))
			return SWAP_CLUSTER_MAX;
	}

L
Linus Torvalds 已提交
1471
	lru_add_drain();
1472 1473

	if (!sc->may_unmap)
1474
		isolate_mode |= ISOLATE_UNMAPPED;
1475
	if (!sc->may_writepage)
1476
		isolate_mode |= ISOLATE_CLEAN;
1477

L
Linus Torvalds 已提交
1478
	spin_lock_irq(&zone->lru_lock);
1479

1480 1481
	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
				     &nr_scanned, sc, isolate_mode, lru);
1482 1483 1484 1485

	__mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);

1486
	if (global_reclaim(sc)) {
1487 1488
		zone->pages_scanned += nr_scanned;
		if (current_is_kswapd())
H
Hugh Dickins 已提交
1489
			__count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scanned);
1490
		else
H
Hugh Dickins 已提交
1491
			__count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scanned);
1492
	}
1493
	spin_unlock_irq(&zone->lru_lock);
1494

1495
	if (nr_taken == 0)
1496
		return 0;
A
Andy Whitcroft 已提交
1497

1498
	nr_reclaimed = shrink_page_list(&page_list, zone, sc, TTU_UNMAP,
1499 1500 1501
				&nr_dirty, &nr_unqueued_dirty, &nr_congested,
				&nr_writeback, &nr_immediate,
				false);
1502

1503 1504
	spin_lock_irq(&zone->lru_lock);

1505
	reclaim_stat->recent_scanned[file] += nr_taken;
1506

Y
Ying Han 已提交
1507 1508 1509 1510 1511 1512 1513 1514
	if (global_reclaim(sc)) {
		if (current_is_kswapd())
			__count_zone_vm_events(PGSTEAL_KSWAPD, zone,
					       nr_reclaimed);
		else
			__count_zone_vm_events(PGSTEAL_DIRECT, zone,
					       nr_reclaimed);
	}
N
Nick Piggin 已提交
1515

1516
	putback_inactive_pages(lruvec, &page_list);
1517

1518
	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1519 1520 1521 1522

	spin_unlock_irq(&zone->lru_lock);

	free_hot_cold_page_list(&page_list, 1);
1523

1524 1525 1526 1527 1528 1529 1530 1531 1532 1533
	/*
	 * If reclaim is isolating dirty pages under writeback, it implies
	 * that the long-lived page allocation rate is exceeding the page
	 * laundering rate. Either the global limits are not being effective
	 * at throttling processes due to the page distribution throughout
	 * zones or there is heavy usage of a slow backing device. The
	 * only option is to throttle from reclaim context which is not ideal
	 * as there is no guarantee the dirtying process is throttled in the
	 * same way balance_dirty_pages() manages.
	 *
1534 1535 1536
	 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
	 * of pages under pages flagged for immediate reclaim and stall if any
	 * are encountered in the nr_immediate check below.
1537
	 */
1538
	if (nr_writeback && nr_writeback == nr_taken)
1539
		zone_set_flag(zone, ZONE_WRITEBACK);
1540

1541
	/*
1542 1543
	 * memcg will stall in page writeback so only consider forcibly
	 * stalling for global reclaim
1544
	 */
1545
	if (global_reclaim(sc)) {
1546 1547 1548 1549 1550 1551 1552
		/*
		 * Tag a zone as congested if all the dirty pages scanned were
		 * backed by a congested BDI and wait_iff_congested will stall.
		 */
		if (nr_dirty && nr_dirty == nr_congested)
			zone_set_flag(zone, ZONE_CONGESTED);

1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570
		/*
		 * If dirty pages are scanned that are not queued for IO, it
		 * implies that flushers are not keeping up. In this case, flag
		 * the zone ZONE_TAIL_LRU_DIRTY and kswapd will start writing
		 * pages from reclaim context. It will forcibly stall in the
		 * next check.
		 */
		if (nr_unqueued_dirty == nr_taken)
			zone_set_flag(zone, ZONE_TAIL_LRU_DIRTY);

		/*
		 * In addition, if kswapd scans pages marked marked for
		 * immediate reclaim and under writeback (nr_immediate), it
		 * implies that pages are cycling through the LRU faster than
		 * they are written so also forcibly stall.
		 */
		if (nr_unqueued_dirty == nr_taken || nr_immediate)
			congestion_wait(BLK_RW_ASYNC, HZ/10);
1571
	}
1572

1573 1574 1575 1576 1577 1578 1579 1580
	/*
	 * Stall direct reclaim for IO completions if underlying BDIs or zone
	 * is congested. Allow kswapd to continue until it starts encountering
	 * unqueued dirty pages or cycling through the LRU too quickly.
	 */
	if (!sc->hibernation_mode && !current_is_kswapd())
		wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);

1581 1582 1583
	trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
		zone_idx(zone),
		nr_scanned, nr_reclaimed,
1584
		sc->priority,
M
Mel Gorman 已提交
1585
		trace_shrink_flags(file));
1586
	return nr_reclaimed;
L
Linus Torvalds 已提交
1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605
}

/*
 * This moves pages from the active list to the inactive list.
 *
 * We move them the other way if the page is referenced by one or more
 * processes, from rmap.
 *
 * If the pages are mostly unmapped, the processing is fast and it is
 * appropriate to hold zone->lru_lock across the whole operation.  But if
 * the pages are mapped, the processing is slow (page_referenced()) so we
 * should drop zone->lru_lock around each page.  It's impossible to balance
 * this, so instead we remove the pages from the LRU while processing them.
 * It is safe to rely on PG_active against the non-LRU pages in here because
 * nobody will play with that bit on a non-LRU page.
 *
 * The downside is that we have to touch page->_count against each page.
 * But we had to alter page->flags anyway.
 */
1606

1607
static void move_active_pages_to_lru(struct lruvec *lruvec,
1608
				     struct list_head *list,
1609
				     struct list_head *pages_to_free,
1610 1611
				     enum lru_list lru)
{
1612
	struct zone *zone = lruvec_zone(lruvec);
1613 1614
	unsigned long pgmoved = 0;
	struct page *page;
1615
	int nr_pages;
1616 1617 1618

	while (!list_empty(list)) {
		page = lru_to_page(list);
1619
		lruvec = mem_cgroup_page_lruvec(page, zone);
1620

1621
		VM_BUG_ON_PAGE(PageLRU(page), page);
1622 1623
		SetPageLRU(page);

1624 1625
		nr_pages = hpage_nr_pages(page);
		mem_cgroup_update_lru_size(lruvec, lru, nr_pages);
1626
		list_move(&page->lru, &lruvec->lists[lru]);
1627
		pgmoved += nr_pages;
1628

1629 1630 1631
		if (put_page_testzero(page)) {
			__ClearPageLRU(page);
			__ClearPageActive(page);
1632
			del_page_from_lru_list(page, lruvec, lru);
1633 1634 1635 1636 1637 1638 1639

			if (unlikely(PageCompound(page))) {
				spin_unlock_irq(&zone->lru_lock);
				(*get_compound_page_dtor(page))(page);
				spin_lock_irq(&zone->lru_lock);
			} else
				list_add(&page->lru, pages_to_free);
1640 1641 1642 1643 1644 1645
		}
	}
	__mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
	if (!is_active_lru(lru))
		__count_vm_events(PGDEACTIVATE, pgmoved);
}
1646

H
Hugh Dickins 已提交
1647
static void shrink_active_list(unsigned long nr_to_scan,
1648
			       struct lruvec *lruvec,
1649
			       struct scan_control *sc,
1650
			       enum lru_list lru)
L
Linus Torvalds 已提交
1651
{
1652
	unsigned long nr_taken;
H
Hugh Dickins 已提交
1653
	unsigned long nr_scanned;
1654
	unsigned long vm_flags;
L
Linus Torvalds 已提交
1655
	LIST_HEAD(l_hold);	/* The pages which were snipped off */
1656
	LIST_HEAD(l_active);
1657
	LIST_HEAD(l_inactive);
L
Linus Torvalds 已提交
1658
	struct page *page;
1659
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1660
	unsigned long nr_rotated = 0;
1661
	isolate_mode_t isolate_mode = 0;
1662
	int file = is_file_lru(lru);
1663
	struct zone *zone = lruvec_zone(lruvec);
L
Linus Torvalds 已提交
1664 1665

	lru_add_drain();
1666 1667

	if (!sc->may_unmap)
1668
		isolate_mode |= ISOLATE_UNMAPPED;
1669
	if (!sc->may_writepage)
1670
		isolate_mode |= ISOLATE_CLEAN;
1671

L
Linus Torvalds 已提交
1672
	spin_lock_irq(&zone->lru_lock);
1673

1674 1675
	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
				     &nr_scanned, sc, isolate_mode, lru);
1676
	if (global_reclaim(sc))
H
Hugh Dickins 已提交
1677
		zone->pages_scanned += nr_scanned;
1678

1679
	reclaim_stat->recent_scanned[file] += nr_taken;
1680

H
Hugh Dickins 已提交
1681
	__count_zone_vm_events(PGREFILL, zone, nr_scanned);
1682
	__mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
K
KOSAKI Motohiro 已提交
1683
	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
L
Linus Torvalds 已提交
1684 1685 1686 1687 1688 1689
	spin_unlock_irq(&zone->lru_lock);

	while (!list_empty(&l_hold)) {
		cond_resched();
		page = lru_to_page(&l_hold);
		list_del(&page->lru);
1690

1691
		if (unlikely(!page_evictable(page))) {
L
Lee Schermerhorn 已提交
1692 1693 1694 1695
			putback_lru_page(page);
			continue;
		}

1696 1697 1698 1699 1700 1701 1702 1703
		if (unlikely(buffer_heads_over_limit)) {
			if (page_has_private(page) && trylock_page(page)) {
				if (page_has_private(page))
					try_to_release_page(page, 0);
				unlock_page(page);
			}
		}

1704 1705
		if (page_referenced(page, 0, sc->target_mem_cgroup,
				    &vm_flags)) {
1706
			nr_rotated += hpage_nr_pages(page);
1707 1708 1709 1710 1711 1712 1713 1714 1715
			/*
			 * Identify referenced, file-backed active pages and
			 * give them one more trip around the active list. So
			 * that executable code get better chances to stay in
			 * memory under moderate memory pressure.  Anon pages
			 * are not likely to be evicted by use-once streaming
			 * IO, plus JVM can create lots of anon VM_EXEC pages,
			 * so we ignore them here.
			 */
1716
			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1717 1718 1719 1720
				list_add(&page->lru, &l_active);
				continue;
			}
		}
1721

1722
		ClearPageActive(page);	/* we are de-activating */
L
Linus Torvalds 已提交
1723 1724 1725
		list_add(&page->lru, &l_inactive);
	}

1726
	/*
1727
	 * Move pages back to the lru list.
1728
	 */
1729
	spin_lock_irq(&zone->lru_lock);
1730
	/*
1731 1732 1733 1734
	 * Count referenced pages from currently used mappings as rotated,
	 * even though only some of them are actually re-activated.  This
	 * helps balance scan pressure between file and anonymous pages in
	 * get_scan_ratio.
1735
	 */
1736
	reclaim_stat->recent_rotated[file] += nr_rotated;
1737

1738 1739
	move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
	move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
K
KOSAKI Motohiro 已提交
1740
	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1741
	spin_unlock_irq(&zone->lru_lock);
1742 1743

	free_hot_cold_page_list(&l_hold, 1);
L
Linus Torvalds 已提交
1744 1745
}

1746
#ifdef CONFIG_SWAP
1747
static int inactive_anon_is_low_global(struct zone *zone)
1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759
{
	unsigned long active, inactive;

	active = zone_page_state(zone, NR_ACTIVE_ANON);
	inactive = zone_page_state(zone, NR_INACTIVE_ANON);

	if (inactive * zone->inactive_ratio < active)
		return 1;

	return 0;
}

1760 1761
/**
 * inactive_anon_is_low - check if anonymous pages need to be deactivated
1762
 * @lruvec: LRU vector to check
1763 1764 1765 1766
 *
 * Returns true if the zone does not have enough inactive anon pages,
 * meaning some active anon pages need to be deactivated.
 */
1767
static int inactive_anon_is_low(struct lruvec *lruvec)
1768
{
1769 1770 1771 1772 1773 1774 1775
	/*
	 * If we don't have swap space, anonymous page deactivation
	 * is pointless.
	 */
	if (!total_swap_pages)
		return 0;

1776
	if (!mem_cgroup_disabled())
1777
		return mem_cgroup_inactive_anon_is_low(lruvec);
1778

1779
	return inactive_anon_is_low_global(lruvec_zone(lruvec));
1780
}
1781
#else
1782
static inline int inactive_anon_is_low(struct lruvec *lruvec)
1783 1784 1785 1786
{
	return 0;
}
#endif
1787

1788 1789
/**
 * inactive_file_is_low - check if file pages need to be deactivated
1790
 * @lruvec: LRU vector to check
1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801
 *
 * When the system is doing streaming IO, memory pressure here
 * ensures that active file pages get deactivated, until more
 * than half of the file pages are on the inactive list.
 *
 * Once we get to that situation, protect the system's working
 * set from being evicted by disabling active file page aging.
 *
 * This uses a different ratio than the anonymous pages, because
 * the page cache uses a use-once replacement algorithm.
 */
1802
static int inactive_file_is_low(struct lruvec *lruvec)
1803
{
1804 1805 1806 1807 1808
	unsigned long inactive;
	unsigned long active;

	inactive = get_lru_size(lruvec, LRU_INACTIVE_FILE);
	active = get_lru_size(lruvec, LRU_ACTIVE_FILE);
1809

1810
	return active > inactive;
1811 1812
}

H
Hugh Dickins 已提交
1813
static int inactive_list_is_low(struct lruvec *lruvec, enum lru_list lru)
1814
{
H
Hugh Dickins 已提交
1815
	if (is_file_lru(lru))
1816
		return inactive_file_is_low(lruvec);
1817
	else
1818
		return inactive_anon_is_low(lruvec);
1819 1820
}

1821
static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1822
				 struct lruvec *lruvec, struct scan_control *sc)
1823
{
1824
	if (is_active_lru(lru)) {
H
Hugh Dickins 已提交
1825
		if (inactive_list_is_low(lruvec, lru))
1826
			shrink_active_list(nr_to_scan, lruvec, sc, lru);
1827 1828 1829
		return 0;
	}

1830
	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
1831 1832
}

1833
static int vmscan_swappiness(struct scan_control *sc)
1834
{
1835
	if (global_reclaim(sc))
1836
		return vm_swappiness;
1837
	return mem_cgroup_swappiness(sc->target_mem_cgroup);
1838 1839
}

1840 1841 1842 1843 1844 1845 1846
enum scan_balance {
	SCAN_EQUAL,
	SCAN_FRACT,
	SCAN_ANON,
	SCAN_FILE,
};

1847 1848 1849 1850 1851 1852
/*
 * Determine how aggressively the anon and file LRU lists should be
 * scanned.  The relative value of each set of LRU lists is determined
 * by looking at the fraction of the pages scanned we did rotate back
 * onto the active list instead of evict.
 *
W
Wanpeng Li 已提交
1853 1854
 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
1855
 */
1856
static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
1857
			   unsigned long *nr)
1858
{
1859 1860 1861 1862
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
	u64 fraction[2];
	u64 denominator = 0;	/* gcc */
	struct zone *zone = lruvec_zone(lruvec);
1863
	unsigned long anon_prio, file_prio;
1864
	enum scan_balance scan_balance;
1865
	unsigned long anon, file;
1866
	bool force_scan = false;
1867
	unsigned long ap, fp;
H
Hugh Dickins 已提交
1868
	enum lru_list lru;
1869 1870
	bool some_scanned;
	int pass;
1871

1872 1873 1874 1875 1876 1877 1878 1879 1880 1881
	/*
	 * If the zone or memcg is small, nr[l] can be 0.  This
	 * results in no scanning on this priority and a potential
	 * priority drop.  Global direct reclaim can go to the next
	 * zone and tends to have no problems. Global kswapd is for
	 * zone balancing and it needs to scan a minimum amount. When
	 * reclaiming for a memcg, a priority drop can cause high
	 * latencies, so it's better to scan a minimum amount there as
	 * well.
	 */
1882
	if (current_is_kswapd() && !zone_reclaimable(zone))
1883
		force_scan = true;
1884
	if (!global_reclaim(sc))
1885
		force_scan = true;
1886 1887

	/* If we have no swap space, do not bother scanning anon pages. */
1888
	if (!sc->may_swap || (get_nr_swap_pages() <= 0)) {
1889
		scan_balance = SCAN_FILE;
1890 1891
		goto out;
	}
1892

1893 1894 1895 1896 1897 1898 1899 1900
	/*
	 * Global reclaim will swap to prevent OOM even with no
	 * swappiness, but memcg users want to use this knob to
	 * disable swapping for individual groups completely when
	 * using the memory controller's swap limit feature would be
	 * too expensive.
	 */
	if (!global_reclaim(sc) && !vmscan_swappiness(sc)) {
1901
		scan_balance = SCAN_FILE;
1902 1903 1904 1905 1906 1907 1908 1909 1910
		goto out;
	}

	/*
	 * Do not apply any pressure balancing cleverness when the
	 * system is close to OOM, scan both anon and file equally
	 * (unless the swappiness setting disagrees with swapping).
	 */
	if (!sc->priority && vmscan_swappiness(sc)) {
1911
		scan_balance = SCAN_EQUAL;
1912 1913 1914
		goto out;
	}

1915 1916 1917 1918
	anon  = get_lru_size(lruvec, LRU_ACTIVE_ANON) +
		get_lru_size(lruvec, LRU_INACTIVE_ANON);
	file  = get_lru_size(lruvec, LRU_ACTIVE_FILE) +
		get_lru_size(lruvec, LRU_INACTIVE_FILE);
1919

1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937
	/*
	 * Prevent the reclaimer from falling into the cache trap: as
	 * cache pages start out inactive, every cache fault will tip
	 * the scan balance towards the file LRU.  And as the file LRU
	 * shrinks, so does the window for rotation from references.
	 * This means we have a runaway feedback loop where a tiny
	 * thrashing file LRU becomes infinitely more attractive than
	 * anon pages.  Try to detect this based on file LRU size.
	 */
	if (global_reclaim(sc)) {
		unsigned long free = zone_page_state(zone, NR_FREE_PAGES);

		if (unlikely(file + free <= high_wmark_pages(zone))) {
			scan_balance = SCAN_ANON;
			goto out;
		}
	}

1938 1939 1940 1941 1942
	/*
	 * There is enough inactive page cache, do not reclaim
	 * anything from the anonymous working set right now.
	 */
	if (!inactive_file_is_low(lruvec)) {
1943
		scan_balance = SCAN_FILE;
1944 1945 1946
		goto out;
	}

1947 1948
	scan_balance = SCAN_FRACT;

1949 1950 1951 1952
	/*
	 * With swappiness at 100, anonymous and file have the same priority.
	 * This scanning priority is essentially the inverse of IO cost.
	 */
1953
	anon_prio = vmscan_swappiness(sc);
H
Hugh Dickins 已提交
1954
	file_prio = 200 - anon_prio;
1955

1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966
	/*
	 * OK, so we have swap space and a fair amount of page cache
	 * pages.  We use the recently rotated / recently scanned
	 * ratios to determine how valuable each cache is.
	 *
	 * Because workloads change over time (and to avoid overflow)
	 * we keep these statistics as a floating average, which ends
	 * up weighing recent references more than old ones.
	 *
	 * anon in [0], file in [1]
	 */
1967
	spin_lock_irq(&zone->lru_lock);
1968 1969 1970
	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
		reclaim_stat->recent_scanned[0] /= 2;
		reclaim_stat->recent_rotated[0] /= 2;
1971 1972
	}

1973 1974 1975
	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
		reclaim_stat->recent_scanned[1] /= 2;
		reclaim_stat->recent_rotated[1] /= 2;
1976 1977 1978
	}

	/*
1979 1980 1981
	 * The amount of pressure on anon vs file pages is inversely
	 * proportional to the fraction of recently scanned pages on
	 * each list that were recently referenced and in active use.
1982
	 */
1983
	ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
1984
	ap /= reclaim_stat->recent_rotated[0] + 1;
1985

1986
	fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
1987
	fp /= reclaim_stat->recent_rotated[1] + 1;
1988
	spin_unlock_irq(&zone->lru_lock);
1989

1990 1991 1992 1993
	fraction[0] = ap;
	fraction[1] = fp;
	denominator = ap + fp + 1;
out:
1994 1995 1996 1997 1998 1999 2000
	some_scanned = false;
	/* Only use force_scan on second pass. */
	for (pass = 0; !some_scanned && pass < 2; pass++) {
		for_each_evictable_lru(lru) {
			int file = is_file_lru(lru);
			unsigned long size;
			unsigned long scan;
2001

2002 2003
			size = get_lru_size(lruvec, lru);
			scan = size >> sc->priority;
2004

2005 2006
			if (!scan && pass && force_scan)
				scan = min(size, SWAP_CLUSTER_MAX);
2007

2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030
			switch (scan_balance) {
			case SCAN_EQUAL:
				/* Scan lists relative to size */
				break;
			case SCAN_FRACT:
				/*
				 * Scan types proportional to swappiness and
				 * their relative recent reclaim efficiency.
				 */
				scan = div64_u64(scan * fraction[file],
							denominator);
				break;
			case SCAN_FILE:
			case SCAN_ANON:
				/* Scan one type exclusively */
				if ((scan_balance == SCAN_FILE) != file)
					scan = 0;
				break;
			default:
				/* Look ma, no brain */
				BUG();
			}
			nr[lru] = scan;
2031
			/*
2032 2033
			 * Skip the second pass and don't force_scan,
			 * if we found something to scan.
2034
			 */
2035
			some_scanned |= !!scan;
2036
		}
2037
	}
2038
}
2039

2040 2041 2042 2043 2044 2045
/*
 * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
 */
static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
{
	unsigned long nr[NR_LRU_LISTS];
2046
	unsigned long targets[NR_LRU_LISTS];
2047 2048 2049 2050 2051
	unsigned long nr_to_scan;
	enum lru_list lru;
	unsigned long nr_reclaimed = 0;
	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
	struct blk_plug plug;
2052
	bool scan_adjusted = false;
2053 2054 2055

	get_scan_count(lruvec, sc, nr);

2056 2057 2058
	/* Record the original scan target for proportional adjustments later */
	memcpy(targets, nr, sizeof(nr));

2059 2060 2061
	blk_start_plug(&plug);
	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
					nr[LRU_INACTIVE_FILE]) {
2062 2063 2064
		unsigned long nr_anon, nr_file, percentage;
		unsigned long nr_scanned;

2065 2066 2067 2068 2069 2070 2071 2072 2073
		for_each_evictable_lru(lru) {
			if (nr[lru]) {
				nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
				nr[lru] -= nr_to_scan;

				nr_reclaimed += shrink_list(lru, nr_to_scan,
							    lruvec, sc);
			}
		}
2074 2075 2076 2077

		if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
			continue;

2078
		/*
2079 2080 2081 2082
		 * For global direct reclaim, reclaim only the number of pages
		 * requested. Less care is taken to scan proportionally as it
		 * is more important to minimise direct reclaim stall latency
		 * than it is to properly age the LRU lists.
2083
		 */
2084
		if (global_reclaim(sc) && !current_is_kswapd())
2085
			break;
2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127

		/*
		 * For kswapd and memcg, reclaim at least the number of pages
		 * requested. Ensure that the anon and file LRUs shrink
		 * proportionally what was requested by get_scan_count(). We
		 * stop reclaiming one LRU and reduce the amount scanning
		 * proportional to the original scan target.
		 */
		nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
		nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];

		if (nr_file > nr_anon) {
			unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
						targets[LRU_ACTIVE_ANON] + 1;
			lru = LRU_BASE;
			percentage = nr_anon * 100 / scan_target;
		} else {
			unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
						targets[LRU_ACTIVE_FILE] + 1;
			lru = LRU_FILE;
			percentage = nr_file * 100 / scan_target;
		}

		/* Stop scanning the smaller of the LRU */
		nr[lru] = 0;
		nr[lru + LRU_ACTIVE] = 0;

		/*
		 * Recalculate the other LRU scan count based on its original
		 * scan target and the percentage scanning already complete
		 */
		lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
		nr_scanned = targets[lru] - nr[lru];
		nr[lru] = targets[lru] * (100 - percentage) / 100;
		nr[lru] -= min(nr[lru], nr_scanned);

		lru += LRU_ACTIVE;
		nr_scanned = targets[lru] - nr[lru];
		nr[lru] = targets[lru] * (100 - percentage) / 100;
		nr[lru] -= min(nr[lru], nr_scanned);

		scan_adjusted = true;
2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142
	}
	blk_finish_plug(&plug);
	sc->nr_reclaimed += nr_reclaimed;

	/*
	 * Even if we did not try to evict anon pages at all, we want to
	 * rebalance the anon lru active/inactive ratio.
	 */
	if (inactive_anon_is_low(lruvec))
		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
				   sc, LRU_ACTIVE_ANON);

	throttle_vm_writeout(sc->gfp_mask);
}

M
Mel Gorman 已提交
2143
/* Use reclaim/compaction for costly allocs or under memory pressure */
2144
static bool in_reclaim_compaction(struct scan_control *sc)
M
Mel Gorman 已提交
2145
{
2146
	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
M
Mel Gorman 已提交
2147
			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2148
			 sc->priority < DEF_PRIORITY - 2))
M
Mel Gorman 已提交
2149 2150 2151 2152 2153
		return true;

	return false;
}

2154
/*
M
Mel Gorman 已提交
2155 2156 2157 2158 2159
 * Reclaim/compaction is used for high-order allocation requests. It reclaims
 * order-0 pages before compacting the zone. should_continue_reclaim() returns
 * true if more pages should be reclaimed such that when the page allocator
 * calls try_to_compact_zone() that it will have enough free pages to succeed.
 * It will give up earlier than that if there is difficulty reclaiming pages.
2160
 */
2161
static inline bool should_continue_reclaim(struct zone *zone,
2162 2163 2164 2165 2166 2167 2168 2169
					unsigned long nr_reclaimed,
					unsigned long nr_scanned,
					struct scan_control *sc)
{
	unsigned long pages_for_compaction;
	unsigned long inactive_lru_pages;

	/* If not in reclaim/compaction mode, stop */
2170
	if (!in_reclaim_compaction(sc))
2171 2172
		return false;

2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194
	/* Consider stopping depending on scan and reclaim activity */
	if (sc->gfp_mask & __GFP_REPEAT) {
		/*
		 * For __GFP_REPEAT allocations, stop reclaiming if the
		 * full LRU list has been scanned and we are still failing
		 * to reclaim pages. This full LRU scan is potentially
		 * expensive but a __GFP_REPEAT caller really wants to succeed
		 */
		if (!nr_reclaimed && !nr_scanned)
			return false;
	} else {
		/*
		 * For non-__GFP_REPEAT allocations which can presumably
		 * fail without consequence, stop if we failed to reclaim
		 * any pages from the last SWAP_CLUSTER_MAX number of
		 * pages that were scanned. This will return to the
		 * caller faster at the risk reclaim/compaction and
		 * the resulting allocation attempt fails
		 */
		if (!nr_reclaimed)
			return false;
	}
2195 2196 2197 2198 2199 2200

	/*
	 * If we have not reclaimed enough pages for compaction and the
	 * inactive lists are large enough, continue reclaiming
	 */
	pages_for_compaction = (2UL << sc->order);
2201
	inactive_lru_pages = zone_page_state(zone, NR_INACTIVE_FILE);
2202
	if (get_nr_swap_pages() > 0)
2203
		inactive_lru_pages += zone_page_state(zone, NR_INACTIVE_ANON);
2204 2205 2206 2207 2208
	if (sc->nr_reclaimed < pages_for_compaction &&
			inactive_lru_pages > pages_for_compaction)
		return true;

	/* If compaction would go ahead or the allocation would succeed, stop */
2209
	switch (compaction_suitable(zone, sc->order)) {
2210 2211 2212 2213 2214 2215 2216 2217
	case COMPACT_PARTIAL:
	case COMPACT_CONTINUE:
		return false;
	default:
		return true;
	}
}

2218
static void shrink_zone(struct zone *zone, struct scan_control *sc)
L
Linus Torvalds 已提交
2219
{
2220
	unsigned long nr_reclaimed, nr_scanned;
L
Linus Torvalds 已提交
2221

2222 2223 2224 2225 2226 2227
	do {
		struct mem_cgroup *root = sc->target_mem_cgroup;
		struct mem_cgroup_reclaim_cookie reclaim = {
			.zone = zone,
			.priority = sc->priority,
		};
2228
		struct mem_cgroup *memcg;
2229

2230 2231
		nr_reclaimed = sc->nr_reclaimed;
		nr_scanned = sc->nr_scanned;
L
Linus Torvalds 已提交
2232

2233 2234
		memcg = mem_cgroup_iter(root, NULL, &reclaim);
		do {
2235
			struct lruvec *lruvec;
2236

2237
			lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2238

2239
			shrink_lruvec(lruvec, sc);
2240

2241
			/*
2242 2243
			 * Direct reclaim and kswapd have to scan all memory
			 * cgroups to fulfill the overall scan target for the
2244
			 * zone.
2245 2246 2247 2248 2249
			 *
			 * Limit reclaim, on the other hand, only cares about
			 * nr_to_reclaim pages to be reclaimed and it will
			 * retry with decreasing priority if one round over the
			 * whole hierarchy is not sufficient.
2250
			 */
2251 2252
			if (!global_reclaim(sc) &&
					sc->nr_reclaimed >= sc->nr_to_reclaim) {
2253 2254 2255
				mem_cgroup_iter_break(root, memcg);
				break;
			}
2256 2257
			memcg = mem_cgroup_iter(root, memcg, &reclaim);
		} while (memcg);
2258 2259 2260 2261 2262

		vmpressure(sc->gfp_mask, sc->target_mem_cgroup,
			   sc->nr_scanned - nr_scanned,
			   sc->nr_reclaimed - nr_reclaimed);

2263 2264
	} while (should_continue_reclaim(zone, sc->nr_reclaimed - nr_reclaimed,
					 sc->nr_scanned - nr_scanned, sc));
2265 2266
}

2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283
/* Returns true if compaction should go ahead for a high-order request */
static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
{
	unsigned long balance_gap, watermark;
	bool watermark_ok;

	/* Do not consider compaction for orders reclaim is meant to satisfy */
	if (sc->order <= PAGE_ALLOC_COSTLY_ORDER)
		return false;

	/*
	 * Compaction takes time to run and there are potentially other
	 * callers using the pages just freed. Continue reclaiming until
	 * there is a buffer of free pages available to give compaction
	 * a reasonable chance of completing and allocating the page
	 */
	balance_gap = min(low_wmark_pages(zone),
2284
		(zone->managed_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2285 2286 2287 2288 2289 2290 2291 2292
			KSWAPD_ZONE_BALANCE_GAP_RATIO);
	watermark = high_wmark_pages(zone) + balance_gap + (2UL << sc->order);
	watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0);

	/*
	 * If compaction is deferred, reclaim up to a point where
	 * compaction will have a chance of success when re-enabled
	 */
2293
	if (compaction_deferred(zone, sc->order))
2294 2295 2296 2297 2298 2299 2300 2301 2302
		return watermark_ok;

	/* If compaction is not ready to start, keep reclaiming */
	if (!compaction_suitable(zone, sc->order))
		return false;

	return watermark_ok;
}

L
Linus Torvalds 已提交
2303 2304 2305 2306 2307
/*
 * This is the direct reclaim path, for page-allocating processes.  We only
 * try to reclaim pages from zones which will satisfy the caller's allocation
 * request.
 *
2308 2309
 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
 * Because:
L
Linus Torvalds 已提交
2310 2311
 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
 *    allocation or
2312 2313 2314
 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
 *    must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
 *    zone defense algorithm.
L
Linus Torvalds 已提交
2315 2316 2317
 *
 * If a zone is deemed to be full of pinned pages then just give it a light
 * scan then give up on it.
2318 2319
 *
 * This function returns true if a zone is being reclaimed for a costly
2320
 * high-order allocation and compaction is ready to begin. This indicates to
2321 2322
 * the caller that it should consider retrying the allocation instead of
 * further reclaim.
L
Linus Torvalds 已提交
2323
 */
2324
static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
L
Linus Torvalds 已提交
2325
{
2326
	struct zoneref *z;
2327
	struct zone *zone;
2328 2329
	unsigned long nr_soft_reclaimed;
	unsigned long nr_soft_scanned;
2330
	unsigned long lru_pages = 0;
2331
	bool aborted_reclaim = false;
2332
	struct reclaim_state *reclaim_state = current->reclaim_state;
2333
	gfp_t orig_mask;
2334 2335 2336
	struct shrink_control shrink = {
		.gfp_mask = sc->gfp_mask,
	};
2337
	enum zone_type requested_highidx = gfp_zone(sc->gfp_mask);
2338

2339 2340 2341 2342 2343
	/*
	 * If the number of buffer_heads in the machine exceeds the maximum
	 * allowed level, force direct reclaim to scan the highmem zone as
	 * highmem pages could be pinning lowmem pages storing buffer_heads
	 */
2344
	orig_mask = sc->gfp_mask;
2345 2346 2347
	if (buffer_heads_over_limit)
		sc->gfp_mask |= __GFP_HIGHMEM;

2348
	nodes_clear(shrink.nodes_to_scan);
2349

2350 2351
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
					gfp_zone(sc->gfp_mask), sc->nodemask) {
2352
		if (!populated_zone(zone))
L
Linus Torvalds 已提交
2353
			continue;
2354 2355 2356 2357
		/*
		 * Take care memory controller reclaiming has small influence
		 * to global LRU.
		 */
2358
		if (global_reclaim(sc)) {
2359 2360
			if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
				continue;
2361 2362

			lru_pages += zone_reclaimable_pages(zone);
2363
			node_set(zone_to_nid(zone), shrink.nodes_to_scan);
2364

2365 2366
			if (sc->priority != DEF_PRIORITY &&
			    !zone_reclaimable(zone))
2367
				continue;	/* Let kswapd poll it */
2368
			if (IS_ENABLED(CONFIG_COMPACTION)) {
2369
				/*
2370 2371 2372 2373 2374
				 * If we already have plenty of memory free for
				 * compaction in this zone, don't free any more.
				 * Even though compaction is invoked for any
				 * non-zero order, only frequent costly order
				 * reclamation is disruptive enough to become a
2375 2376
				 * noticeable problem, like transparent huge
				 * page allocations.
2377
				 */
2378 2379
				if ((zonelist_zone_idx(z) <= requested_highidx)
				    && compaction_ready(zone, sc)) {
2380
					aborted_reclaim = true;
2381
					continue;
2382
				}
2383
			}
2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395
			/*
			 * This steals pages from memory cgroups over softlimit
			 * and returns the number of reclaimed pages and
			 * scanned pages. This works for global memory pressure
			 * and balancing, not for a memcg's limit.
			 */
			nr_soft_scanned = 0;
			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
						sc->order, sc->gfp_mask,
						&nr_soft_scanned);
			sc->nr_reclaimed += nr_soft_reclaimed;
			sc->nr_scanned += nr_soft_scanned;
2396
			/* need some check for avoid more shrink_zone() */
2397
		}
2398

2399
		shrink_zone(zone, sc);
L
Linus Torvalds 已提交
2400
	}
2401

2402 2403 2404 2405 2406 2407 2408
	/*
	 * Don't shrink slabs when reclaiming memory from over limit cgroups
	 * but do shrink slab at least once when aborting reclaim for
	 * compaction to avoid unevenly scanning file/anon LRU pages over slab
	 * pages.
	 */
	if (global_reclaim(sc)) {
2409
		shrink_slab(&shrink, sc->nr_scanned, lru_pages);
2410 2411 2412 2413 2414 2415
		if (reclaim_state) {
			sc->nr_reclaimed += reclaim_state->reclaimed_slab;
			reclaim_state->reclaimed_slab = 0;
		}
	}

2416 2417 2418 2419 2420 2421
	/*
	 * Restore to original mask to avoid the impact on the caller if we
	 * promoted it to __GFP_HIGHMEM.
	 */
	sc->gfp_mask = orig_mask;

2422
	return aborted_reclaim;
2423 2424
}

2425
/* All zones in zonelist are unreclaimable? */
2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437
static bool all_unreclaimable(struct zonelist *zonelist,
		struct scan_control *sc)
{
	struct zoneref *z;
	struct zone *zone;

	for_each_zone_zonelist_nodemask(zone, z, zonelist,
			gfp_zone(sc->gfp_mask), sc->nodemask) {
		if (!populated_zone(zone))
			continue;
		if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
			continue;
2438
		if (zone_reclaimable(zone))
2439
			return false;
2440 2441
	}

2442
	return true;
L
Linus Torvalds 已提交
2443
}
2444

L
Linus Torvalds 已提交
2445 2446 2447 2448 2449 2450 2451 2452
/*
 * This is the main entry point to direct page reclaim.
 *
 * If a full scan of the inactive list fails to free enough memory then we
 * are "out of memory" and something needs to be killed.
 *
 * If the caller is !__GFP_FS then the probability of a failure is reasonably
 * high - the zone may be full of dirty or under-writeback pages, which this
2453 2454 2455 2456
 * caller can't do much about.  We kick the writeback threads and take explicit
 * naps in the hope that some of these pages can be written.  But if the
 * allocating task holds filesystem locks which prevent writeout this might not
 * work, and the allocation attempt will fail.
2457 2458 2459
 *
 * returns:	0, if no pages reclaimed
 * 		else, the number of pages reclaimed
L
Linus Torvalds 已提交
2460
 */
2461
static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2462
					  struct scan_control *sc)
L
Linus Torvalds 已提交
2463
{
2464
	unsigned long total_scanned = 0;
2465
	unsigned long writeback_threshold;
2466
	bool aborted_reclaim;
L
Linus Torvalds 已提交
2467

2468 2469
	delayacct_freepages_start();

2470
	if (global_reclaim(sc))
2471
		count_vm_event(ALLOCSTALL);
L
Linus Torvalds 已提交
2472

2473
	do {
2474 2475
		vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
				sc->priority);
2476
		sc->nr_scanned = 0;
2477
		aborted_reclaim = shrink_zones(zonelist, sc);
2478

2479
		total_scanned += sc->nr_scanned;
2480
		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
L
Linus Torvalds 已提交
2481 2482
			goto out;

2483 2484 2485 2486 2487 2488 2489
		/*
		 * If we're getting trouble reclaiming, start doing
		 * writepage even in laptop mode.
		 */
		if (sc->priority < DEF_PRIORITY - 2)
			sc->may_writepage = 1;

L
Linus Torvalds 已提交
2490 2491 2492 2493 2494 2495 2496
		/*
		 * Try to write back as many pages as we just scanned.  This
		 * tends to cause slow streaming writers to write data to the
		 * disk smoothly, at the dirtying rate, which is nice.   But
		 * that's undesirable in laptop mode, where we *want* lumpy
		 * writeout.  So in laptop mode, write out the whole world.
		 */
2497 2498
		writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
		if (total_scanned > writeback_threshold) {
2499 2500
			wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
						WB_REASON_TRY_TO_FREE_PAGES);
2501
			sc->may_writepage = 1;
L
Linus Torvalds 已提交
2502
		}
2503
	} while (--sc->priority >= 0 && !aborted_reclaim);
2504

L
Linus Torvalds 已提交
2505
out:
2506 2507
	delayacct_freepages_end();

2508 2509 2510
	if (sc->nr_reclaimed)
		return sc->nr_reclaimed;

2511 2512 2513 2514 2515 2516 2517 2518
	/*
	 * As hibernation is going on, kswapd is freezed so that it can't mark
	 * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
	 * check.
	 */
	if (oom_killer_disabled)
		return 0;

2519 2520
	/* Aborted reclaim to try compaction? don't OOM, then */
	if (aborted_reclaim)
2521 2522
		return 1;

2523
	/* top priority shrink_zones still had more to do? don't OOM, then */
2524
	if (global_reclaim(sc) && !all_unreclaimable(zonelist, sc))
2525 2526 2527
		return 1;

	return 0;
L
Linus Torvalds 已提交
2528 2529
}

2530 2531 2532 2533 2534 2535 2536 2537 2538 2539
static bool pfmemalloc_watermark_ok(pg_data_t *pgdat)
{
	struct zone *zone;
	unsigned long pfmemalloc_reserve = 0;
	unsigned long free_pages = 0;
	int i;
	bool wmark_ok;

	for (i = 0; i <= ZONE_NORMAL; i++) {
		zone = &pgdat->node_zones[i];
2540 2541 2542
		if (!populated_zone(zone))
			continue;

2543 2544 2545 2546
		pfmemalloc_reserve += min_wmark_pages(zone);
		free_pages += zone_page_state(zone, NR_FREE_PAGES);
	}

2547 2548 2549 2550
	/* If there are no reserves (unexpected config) then do not throttle */
	if (!pfmemalloc_reserve)
		return true;

2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566
	wmark_ok = free_pages > pfmemalloc_reserve / 2;

	/* kswapd must be awake if processes are being throttled */
	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
		pgdat->classzone_idx = min(pgdat->classzone_idx,
						(enum zone_type)ZONE_NORMAL);
		wake_up_interruptible(&pgdat->kswapd_wait);
	}

	return wmark_ok;
}

/*
 * Throttle direct reclaimers if backing storage is backed by the network
 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
 * depleted. kswapd will continue to make progress and wake the processes
2567 2568 2569 2570
 * when the low watermark is reached.
 *
 * Returns true if a fatal signal was delivered during throttling. If this
 * happens, the page allocator should not consider triggering the OOM killer.
2571
 */
2572
static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
2573 2574
					nodemask_t *nodemask)
{
2575
	struct zoneref *z;
2576
	struct zone *zone;
2577
	pg_data_t *pgdat = NULL;
2578 2579 2580 2581 2582 2583 2584 2585 2586

	/*
	 * Kernel threads should not be throttled as they may be indirectly
	 * responsible for cleaning pages necessary for reclaim to make forward
	 * progress. kjournald for example may enter direct reclaim while
	 * committing a transaction where throttling it could forcing other
	 * processes to block on log_wait_commit().
	 */
	if (current->flags & PF_KTHREAD)
2587 2588 2589 2590 2591 2592 2593 2594
		goto out;

	/*
	 * If a fatal signal is pending, this process should not throttle.
	 * It should return quickly so it can exit and free its memory
	 */
	if (fatal_signal_pending(current))
		goto out;
2595

2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623
	/*
	 * Check if the pfmemalloc reserves are ok by finding the first node
	 * with a usable ZONE_NORMAL or lower zone. The expectation is that
	 * GFP_KERNEL will be required for allocating network buffers when
	 * swapping over the network so ZONE_HIGHMEM is unusable.
	 *
	 * Throttling is based on the first usable node and throttled processes
	 * wait on a queue until kswapd makes progress and wakes them. There
	 * is an affinity then between processes waking up and where reclaim
	 * progress has been made assuming the process wakes on the same node.
	 * More importantly, processes running on remote nodes will not compete
	 * for remote pfmemalloc reserves and processes on different nodes
	 * should make reasonable progress.
	 */
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
					gfp_mask, nodemask) {
		if (zone_idx(zone) > ZONE_NORMAL)
			continue;

		/* Throttle based on the first usable node */
		pgdat = zone->zone_pgdat;
		if (pfmemalloc_watermark_ok(pgdat))
			goto out;
		break;
	}

	/* If no zone was usable by the allocation flags then do not throttle */
	if (!pgdat)
2624
		goto out;
2625

2626 2627 2628
	/* Account for the throttling */
	count_vm_event(PGSCAN_DIRECT_THROTTLE);

2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639
	/*
	 * If the caller cannot enter the filesystem, it's possible that it
	 * is due to the caller holding an FS lock or performing a journal
	 * transaction in the case of a filesystem like ext[3|4]. In this case,
	 * it is not safe to block on pfmemalloc_wait as kswapd could be
	 * blocked waiting on the same lock. Instead, throttle for up to a
	 * second before continuing.
	 */
	if (!(gfp_mask & __GFP_FS)) {
		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
			pfmemalloc_watermark_ok(pgdat), HZ);
2640 2641

		goto check_pending;
2642 2643 2644 2645 2646
	}

	/* Throttle until kswapd wakes the process */
	wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
		pfmemalloc_watermark_ok(pgdat));
2647 2648 2649 2650 2651 2652 2653

check_pending:
	if (fatal_signal_pending(current))
		return true;

out:
	return false;
2654 2655
}

2656
unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2657
				gfp_t gfp_mask, nodemask_t *nodemask)
2658
{
2659
	unsigned long nr_reclaimed;
2660
	struct scan_control sc = {
2661
		.gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
2662
		.may_writepage = !laptop_mode,
2663
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2664
		.may_unmap = 1,
2665
		.may_swap = 1,
2666
		.order = order,
2667
		.priority = DEF_PRIORITY,
2668
		.target_mem_cgroup = NULL,
2669
		.nodemask = nodemask,
2670 2671
	};

2672
	/*
2673 2674 2675
	 * Do not enter reclaim if fatal signal was delivered while throttled.
	 * 1 is returned so that the page allocator does not OOM kill at this
	 * point.
2676
	 */
2677
	if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask))
2678 2679
		return 1;

2680 2681 2682 2683
	trace_mm_vmscan_direct_reclaim_begin(order,
				sc.may_writepage,
				gfp_mask);

2684
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2685 2686 2687 2688

	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);

	return nr_reclaimed;
2689 2690
}

A
Andrew Morton 已提交
2691
#ifdef CONFIG_MEMCG
2692

2693
unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
2694
						gfp_t gfp_mask, bool noswap,
2695 2696
						struct zone *zone,
						unsigned long *nr_scanned)
2697 2698
{
	struct scan_control sc = {
2699
		.nr_scanned = 0,
2700
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2701 2702 2703 2704
		.may_writepage = !laptop_mode,
		.may_unmap = 1,
		.may_swap = !noswap,
		.order = 0,
2705
		.priority = 0,
2706
		.target_mem_cgroup = memcg,
2707
	};
2708
	struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2709

2710 2711
	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2712

2713
	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
2714 2715 2716
						      sc.may_writepage,
						      sc.gfp_mask);

2717 2718 2719 2720 2721 2722 2723
	/*
	 * NOTE: Although we can get the priority field, using it
	 * here is not a good idea, since it limits the pages we can scan.
	 * if we don't reclaim here, the shrink_zone from balance_pgdat
	 * will pick up pages from other mem cgroup's as well. We hack
	 * the priority and make it zero.
	 */
2724
	shrink_lruvec(lruvec, &sc);
2725 2726 2727

	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);

2728
	*nr_scanned = sc.nr_scanned;
2729 2730 2731
	return sc.nr_reclaimed;
}

2732
unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
K
KOSAKI Motohiro 已提交
2733
					   gfp_t gfp_mask,
2734
					   bool noswap)
2735
{
2736
	struct zonelist *zonelist;
2737
	unsigned long nr_reclaimed;
2738
	int nid;
2739 2740
	struct scan_control sc = {
		.may_writepage = !laptop_mode,
2741
		.may_unmap = 1,
2742
		.may_swap = !noswap,
2743
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2744
		.order = 0,
2745
		.priority = DEF_PRIORITY,
2746
		.target_mem_cgroup = memcg,
2747
		.nodemask = NULL, /* we don't care the placement */
2748 2749 2750
		.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
	};
2751

2752 2753 2754 2755 2756
	/*
	 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
	 * take care of from where we get pages. So the node where we start the
	 * scan does not need to be the current node.
	 */
2757
	nid = mem_cgroup_select_victim_node(memcg);
2758 2759

	zonelist = NODE_DATA(nid)->node_zonelists;
2760 2761 2762 2763 2764

	trace_mm_vmscan_memcg_reclaim_begin(0,
					    sc.may_writepage,
					    sc.gfp_mask);

2765
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2766 2767 2768 2769

	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);

	return nr_reclaimed;
2770 2771 2772
}
#endif

2773
static void age_active_anon(struct zone *zone, struct scan_control *sc)
2774
{
2775
	struct mem_cgroup *memcg;
2776

2777 2778 2779 2780 2781
	if (!total_swap_pages)
		return;

	memcg = mem_cgroup_iter(NULL, NULL, NULL);
	do {
2782
		struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2783

2784
		if (inactive_anon_is_low(lruvec))
2785
			shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2786
					   sc, LRU_ACTIVE_ANON);
2787 2788 2789

		memcg = mem_cgroup_iter(NULL, memcg, NULL);
	} while (memcg);
2790 2791
}

2792 2793 2794 2795 2796 2797 2798
static bool zone_balanced(struct zone *zone, int order,
			  unsigned long balance_gap, int classzone_idx)
{
	if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone) +
				    balance_gap, classzone_idx, 0))
		return false;

2799 2800
	if (IS_ENABLED(CONFIG_COMPACTION) && order &&
	    !compaction_suitable(zone, order))
2801 2802 2803 2804 2805
		return false;

	return true;
}

2806
/*
2807 2808 2809 2810 2811 2812 2813 2814 2815 2816
 * pgdat_balanced() is used when checking if a node is balanced.
 *
 * For order-0, all zones must be balanced!
 *
 * For high-order allocations only zones that meet watermarks and are in a
 * zone allowed by the callers classzone_idx are added to balanced_pages. The
 * total of balanced pages must be at least 25% of the zones allowed by
 * classzone_idx for the node to be considered balanced. Forcing all zones to
 * be balanced for high orders can cause excessive reclaim when there are
 * imbalanced zones.
2817 2818 2819 2820
 * The choice of 25% is due to
 *   o a 16M DMA zone that is balanced will not balance a zone on any
 *     reasonable sized machine
 *   o On all other machines, the top zone must be at least a reasonable
L
Lucas De Marchi 已提交
2821
 *     percentage of the middle zones. For example, on 32-bit x86, highmem
2822 2823 2824 2825
 *     would need to be at least 256M for it to be balance a whole node.
 *     Similarly, on x86-64 the Normal zone would need to be at least 1G
 *     to balance a node on its own. These seemed like reasonable ratios.
 */
2826
static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
2827
{
2828
	unsigned long managed_pages = 0;
2829
	unsigned long balanced_pages = 0;
2830 2831
	int i;

2832 2833 2834
	/* Check the watermark levels */
	for (i = 0; i <= classzone_idx; i++) {
		struct zone *zone = pgdat->node_zones + i;
2835

2836 2837 2838
		if (!populated_zone(zone))
			continue;

2839
		managed_pages += zone->managed_pages;
2840 2841 2842 2843 2844 2845 2846 2847

		/*
		 * A special case here:
		 *
		 * balance_pgdat() skips over all_unreclaimable after
		 * DEF_PRIORITY. Effectively, it considers them balanced so
		 * they must be considered balanced here as well!
		 */
2848
		if (!zone_reclaimable(zone)) {
2849
			balanced_pages += zone->managed_pages;
2850 2851 2852 2853
			continue;
		}

		if (zone_balanced(zone, order, 0, i))
2854
			balanced_pages += zone->managed_pages;
2855 2856 2857 2858 2859
		else if (!order)
			return false;
	}

	if (order)
2860
		return balanced_pages >= (managed_pages >> 2);
2861 2862
	else
		return true;
2863 2864
}

2865 2866 2867 2868 2869 2870 2871
/*
 * Prepare kswapd for sleeping. This verifies that there are no processes
 * waiting in throttle_direct_reclaim() and that watermarks have been met.
 *
 * Returns true if kswapd is ready to sleep
 */
static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, long remaining,
2872
					int classzone_idx)
2873 2874 2875
{
	/* If a direct reclaimer woke kswapd within HZ/10, it's premature */
	if (remaining)
2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890
		return false;

	/*
	 * There is a potential race between when kswapd checks its watermarks
	 * and a process gets throttled. There is also a potential race if
	 * processes get throttled, kswapd wakes, a large process exits therby
	 * balancing the zones that causes kswapd to miss a wakeup. If kswapd
	 * is going to sleep, no process should be sleeping on pfmemalloc_wait
	 * so wake them now if necessary. If necessary, processes will wake
	 * kswapd and get throttled again
	 */
	if (waitqueue_active(&pgdat->pfmemalloc_wait)) {
		wake_up(&pgdat->pfmemalloc_wait);
		return false;
	}
2891

2892
	return pgdat_balanced(pgdat, order, classzone_idx);
2893 2894
}

2895 2896 2897
/*
 * kswapd shrinks the zone by the number of pages required to reach
 * the high watermark.
2898 2899
 *
 * Returns true if kswapd scanned at least the requested number of pages to
2900 2901
 * reclaim or if the lack of progress was due to pages under writeback.
 * This is used to determine if the scanning priority needs to be raised.
2902
 */
2903
static bool kswapd_shrink_zone(struct zone *zone,
2904
			       int classzone_idx,
2905
			       struct scan_control *sc,
2906 2907
			       unsigned long lru_pages,
			       unsigned long *nr_attempted)
2908
{
2909 2910
	int testorder = sc->order;
	unsigned long balance_gap;
2911 2912 2913 2914
	struct reclaim_state *reclaim_state = current->reclaim_state;
	struct shrink_control shrink = {
		.gfp_mask = sc->gfp_mask,
	};
2915
	bool lowmem_pressure;
2916 2917 2918

	/* Reclaim above the high watermark. */
	sc->nr_to_reclaim = max(SWAP_CLUSTER_MAX, high_wmark_pages(zone));
2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949

	/*
	 * Kswapd reclaims only single pages with compaction enabled. Trying
	 * too hard to reclaim until contiguous free pages have become
	 * available can hurt performance by evicting too much useful data
	 * from memory. Do not reclaim more than needed for compaction.
	 */
	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
			compaction_suitable(zone, sc->order) !=
				COMPACT_SKIPPED)
		testorder = 0;

	/*
	 * We put equal pressure on every zone, unless one zone has way too
	 * many pages free already. The "too many pages" is defined as the
	 * high wmark plus a "gap" where the gap is either the low
	 * watermark or 1% of the zone, whichever is smaller.
	 */
	balance_gap = min(low_wmark_pages(zone),
		(zone->managed_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
		KSWAPD_ZONE_BALANCE_GAP_RATIO);

	/*
	 * If there is no low memory pressure or the zone is balanced then no
	 * reclaim is necessary
	 */
	lowmem_pressure = (buffer_heads_over_limit && is_highmem(zone));
	if (!lowmem_pressure && zone_balanced(zone, testorder,
						balance_gap, classzone_idx))
		return true;

2950
	shrink_zone(zone, sc);
D
Dave Chinner 已提交
2951 2952
	nodes_clear(shrink.nodes_to_scan);
	node_set(zone_to_nid(zone), shrink.nodes_to_scan);
2953 2954

	reclaim_state->reclaimed_slab = 0;
2955
	shrink_slab(&shrink, sc->nr_scanned, lru_pages);
2956 2957
	sc->nr_reclaimed += reclaim_state->reclaimed_slab;

2958 2959 2960
	/* Account for the number of pages attempted to reclaim */
	*nr_attempted += sc->nr_to_reclaim;

2961 2962
	zone_clear_flag(zone, ZONE_WRITEBACK);

2963 2964 2965 2966 2967 2968
	/*
	 * If a zone reaches its high watermark, consider it to be no longer
	 * congested. It's possible there are dirty pages backed by congested
	 * BDIs but as pressure is relieved, speculatively avoid congestion
	 * waits.
	 */
2969
	if (zone_reclaimable(zone) &&
2970 2971 2972 2973 2974
	    zone_balanced(zone, testorder, 0, classzone_idx)) {
		zone_clear_flag(zone, ZONE_CONGESTED);
		zone_clear_flag(zone, ZONE_TAIL_LRU_DIRTY);
	}

2975
	return sc->nr_scanned >= sc->nr_to_reclaim;
2976 2977
}

L
Linus Torvalds 已提交
2978 2979
/*
 * For kswapd, balance_pgdat() will work across all this node's zones until
2980
 * they are all at high_wmark_pages(zone).
L
Linus Torvalds 已提交
2981
 *
2982
 * Returns the final order kswapd was reclaiming at
L
Linus Torvalds 已提交
2983 2984 2985 2986 2987 2988 2989 2990 2991 2992
 *
 * There is special handling here for zones which are full of pinned pages.
 * This can happen if the pages are all mlocked, or if they are all used by
 * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
 * What we do is to detect the case where all pages in the zone have been
 * scanned twice and there has been zero successful reclaim.  Mark the zone as
 * dead and from now on, only perform a short scan.  Basically we're polling
 * the zone for when the problem goes away.
 *
 * kswapd scans the zones in the highmem->normal->dma direction.  It skips
2993 2994 2995 2996 2997
 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
 * lower zones regardless of the number of free pages in the lower zones. This
 * interoperates with the page allocator fallback scheme to ensure that aging
 * of pages is balanced across the zones.
L
Linus Torvalds 已提交
2998
 */
2999
static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
3000
							int *classzone_idx)
L
Linus Torvalds 已提交
3001 3002
{
	int i;
3003
	int end_zone = 0;	/* Inclusive.  0 = ZONE_DMA */
3004 3005
	unsigned long nr_soft_reclaimed;
	unsigned long nr_soft_scanned;
3006 3007
	struct scan_control sc = {
		.gfp_mask = GFP_KERNEL,
3008
		.priority = DEF_PRIORITY,
3009
		.may_unmap = 1,
3010
		.may_swap = 1,
3011
		.may_writepage = !laptop_mode,
A
Andy Whitcroft 已提交
3012
		.order = order,
3013
		.target_mem_cgroup = NULL,
3014
	};
3015
	count_vm_event(PAGEOUTRUN);
L
Linus Torvalds 已提交
3016

3017
	do {
L
Linus Torvalds 已提交
3018
		unsigned long lru_pages = 0;
3019
		unsigned long nr_attempted = 0;
3020
		bool raise_priority = true;
3021
		bool pgdat_needs_compaction = (order > 0);
3022 3023

		sc.nr_reclaimed = 0;
L
Linus Torvalds 已提交
3024

3025 3026 3027 3028 3029 3030
		/*
		 * Scan in the highmem->dma direction for the highest
		 * zone which needs scanning
		 */
		for (i = pgdat->nr_zones - 1; i >= 0; i--) {
			struct zone *zone = pgdat->node_zones + i;
L
Linus Torvalds 已提交
3031

3032 3033
			if (!populated_zone(zone))
				continue;
L
Linus Torvalds 已提交
3034

3035 3036
			if (sc.priority != DEF_PRIORITY &&
			    !zone_reclaimable(zone))
3037
				continue;
L
Linus Torvalds 已提交
3038

3039 3040 3041 3042
			/*
			 * Do some background aging of the anon list, to give
			 * pages a chance to be referenced before reclaiming.
			 */
3043
			age_active_anon(zone, &sc);
3044

3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055
			/*
			 * If the number of buffer_heads in the machine
			 * exceeds the maximum allowed level and this node
			 * has a highmem zone, force kswapd to reclaim from
			 * it to relieve lowmem pressure.
			 */
			if (buffer_heads_over_limit && is_highmem_idx(i)) {
				end_zone = i;
				break;
			}

3056
			if (!zone_balanced(zone, order, 0, 0)) {
3057
				end_zone = i;
A
Andrew Morton 已提交
3058
				break;
3059
			} else {
3060 3061 3062 3063
				/*
				 * If balanced, clear the dirty and congested
				 * flags
				 */
3064
				zone_clear_flag(zone, ZONE_CONGESTED);
3065
				zone_clear_flag(zone, ZONE_TAIL_LRU_DIRTY);
L
Linus Torvalds 已提交
3066 3067
			}
		}
3068

3069
		if (i < 0)
A
Andrew Morton 已提交
3070 3071
			goto out;

L
Linus Torvalds 已提交
3072 3073 3074
		for (i = 0; i <= end_zone; i++) {
			struct zone *zone = pgdat->node_zones + i;

3075 3076 3077
			if (!populated_zone(zone))
				continue;

3078
			lru_pages += zone_reclaimable_pages(zone);
3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089

			/*
			 * If any zone is currently balanced then kswapd will
			 * not call compaction as it is expected that the
			 * necessary pages are already available.
			 */
			if (pgdat_needs_compaction &&
					zone_watermark_ok(zone, order,
						low_wmark_pages(zone),
						*classzone_idx, 0))
				pgdat_needs_compaction = false;
L
Linus Torvalds 已提交
3090 3091
		}

3092 3093 3094 3095 3096 3097 3098
		/*
		 * If we're getting trouble reclaiming, start doing writepage
		 * even in laptop mode.
		 */
		if (sc.priority < DEF_PRIORITY - 2)
			sc.may_writepage = 1;

L
Linus Torvalds 已提交
3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110
		/*
		 * Now scan the zone in the dma->highmem direction, stopping
		 * at the last zone which needs scanning.
		 *
		 * We do this because the page allocator works in the opposite
		 * direction.  This prevents the page allocator from allocating
		 * pages behind kswapd's direction of progress, which would
		 * cause too much scanning of the lower zones.
		 */
		for (i = 0; i <= end_zone; i++) {
			struct zone *zone = pgdat->node_zones + i;

3111
			if (!populated_zone(zone))
L
Linus Torvalds 已提交
3112 3113
				continue;

3114 3115
			if (sc.priority != DEF_PRIORITY &&
			    !zone_reclaimable(zone))
L
Linus Torvalds 已提交
3116 3117 3118
				continue;

			sc.nr_scanned = 0;
3119

3120 3121 3122 3123 3124 3125 3126 3127 3128
			nr_soft_scanned = 0;
			/*
			 * Call soft limit reclaim before calling shrink_zone.
			 */
			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
							order, sc.gfp_mask,
							&nr_soft_scanned);
			sc.nr_reclaimed += nr_soft_reclaimed;

3129
			/*
3130 3131 3132 3133
			 * There should be no need to raise the scanning
			 * priority if enough pages are already being scanned
			 * that that high watermark would be met at 100%
			 * efficiency.
3134
			 */
3135 3136 3137
			if (kswapd_shrink_zone(zone, end_zone, &sc,
					lru_pages, &nr_attempted))
				raise_priority = false;
L
Linus Torvalds 已提交
3138
		}
3139 3140 3141 3142 3143 3144 3145 3146 3147 3148

		/*
		 * If the low watermark is met there is no need for processes
		 * to be throttled on pfmemalloc_wait as they should not be
		 * able to safely make forward progress. Wake them
		 */
		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
				pfmemalloc_watermark_ok(pgdat))
			wake_up(&pgdat->pfmemalloc_wait);

L
Linus Torvalds 已提交
3149
		/*
3150 3151 3152 3153 3154 3155
		 * Fragmentation may mean that the system cannot be rebalanced
		 * for high-order allocations in all zones. If twice the
		 * allocation size has been reclaimed and the zones are still
		 * not balanced then recheck the watermarks at order-0 to
		 * prevent kswapd reclaiming excessively. Assume that a
		 * process requested a high-order can direct reclaim/compact.
L
Linus Torvalds 已提交
3156
		 */
3157 3158
		if (order && sc.nr_reclaimed >= 2UL << order)
			order = sc.order = 0;
3159

3160 3161 3162
		/* Check if kswapd should be suspending */
		if (try_to_freeze() || kthread_should_stop())
			break;
3163

3164 3165 3166 3167 3168 3169 3170
		/*
		 * Compact if necessary and kswapd is reclaiming at least the
		 * high watermark number of pages as requsted
		 */
		if (pgdat_needs_compaction && sc.nr_reclaimed > nr_attempted)
			compact_pgdat(pgdat, order);

3171
		/*
3172 3173
		 * Raise priority if scanning rate is too low or there was no
		 * progress in reclaiming pages
3174
		 */
3175 3176
		if (raise_priority || !sc.nr_reclaimed)
			sc.priority--;
3177
	} while (sc.priority >= 1 &&
3178
		 !pgdat_balanced(pgdat, order, *classzone_idx));
L
Linus Torvalds 已提交
3179

3180
out:
3181
	/*
3182
	 * Return the order we were reclaiming at so prepare_kswapd_sleep()
3183 3184 3185 3186
	 * makes a decision on the order we were last reclaiming at. However,
	 * if another caller entered the allocator slow path while kswapd
	 * was awake, order will remain at the higher level
	 */
3187
	*classzone_idx = end_zone;
3188
	return order;
L
Linus Torvalds 已提交
3189 3190
}

3191
static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3192 3193 3194 3195 3196 3197 3198 3199 3200 3201
{
	long remaining = 0;
	DEFINE_WAIT(wait);

	if (freezing(current) || kthread_should_stop())
		return;

	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);

	/* Try to sleep for a short interval */
3202
	if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
3203 3204 3205 3206 3207 3208 3209 3210 3211
		remaining = schedule_timeout(HZ/10);
		finish_wait(&pgdat->kswapd_wait, &wait);
		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
	}

	/*
	 * After a short sleep, check if it was a premature sleep. If not, then
	 * go fully to sleep until explicitly woken up.
	 */
3212
	if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223
		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);

		/*
		 * vmstat counters are not perfectly accurate and the estimated
		 * value for counters such as NR_FREE_PAGES can deviate from the
		 * true value by nr_online_cpus * threshold. To avoid the zone
		 * watermarks being breached while under pressure, we reduce the
		 * per-cpu vmstat threshold while kswapd is awake and restore
		 * them before going back to sleep.
		 */
		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3224

3225 3226 3227 3228 3229 3230 3231 3232
		/*
		 * Compaction records what page blocks it recently failed to
		 * isolate pages from and skips them in the future scanning.
		 * When kswapd is going to sleep, it is reasonable to assume
		 * that pages and compaction may succeed so reset the cache.
		 */
		reset_isolation_suitable(pgdat);

3233 3234 3235
		if (!kthread_should_stop())
			schedule();

3236 3237 3238 3239 3240 3241 3242 3243 3244 3245
		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
	} else {
		if (remaining)
			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
		else
			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
	}
	finish_wait(&pgdat->kswapd_wait, &wait);
}

L
Linus Torvalds 已提交
3246 3247
/*
 * The background pageout daemon, started as a kernel thread
3248
 * from the init process.
L
Linus Torvalds 已提交
3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260
 *
 * This basically trickles out pages so that we have _some_
 * free memory available even if there is no other activity
 * that frees anything up. This is needed for things like routing
 * etc, where we otherwise might have all activity going on in
 * asynchronous contexts that cannot page things out.
 *
 * If there are applications that are active memory-allocators
 * (most normal use), this basically shouldn't matter.
 */
static int kswapd(void *p)
{
3261
	unsigned long order, new_order;
3262
	unsigned balanced_order;
3263
	int classzone_idx, new_classzone_idx;
3264
	int balanced_classzone_idx;
L
Linus Torvalds 已提交
3265 3266
	pg_data_t *pgdat = (pg_data_t*)p;
	struct task_struct *tsk = current;
3267

L
Linus Torvalds 已提交
3268 3269 3270
	struct reclaim_state reclaim_state = {
		.reclaimed_slab = 0,
	};
3271
	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
L
Linus Torvalds 已提交
3272

3273 3274
	lockdep_set_current_reclaim_state(GFP_KERNEL);

R
Rusty Russell 已提交
3275
	if (!cpumask_empty(cpumask))
3276
		set_cpus_allowed_ptr(tsk, cpumask);
L
Linus Torvalds 已提交
3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290
	current->reclaim_state = &reclaim_state;

	/*
	 * Tell the memory management that we're a "memory allocator",
	 * and that if we need more memory we should get access to it
	 * regardless (see "__alloc_pages()"). "kswapd" should
	 * never get caught in the normal page freeing logic.
	 *
	 * (Kswapd normally doesn't need memory anyway, but sometimes
	 * you need a small amount of memory in order to be able to
	 * page out something else, and this flag essentially protects
	 * us from recursively trying to free more memory as we're
	 * trying to free the first piece of memory in the first place).
	 */
3291
	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3292
	set_freezable();
L
Linus Torvalds 已提交
3293

3294
	order = new_order = 0;
3295
	balanced_order = 0;
3296
	classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
3297
	balanced_classzone_idx = classzone_idx;
L
Linus Torvalds 已提交
3298
	for ( ; ; ) {
3299
		bool ret;
3300

3301 3302 3303 3304 3305
		/*
		 * If the last balance_pgdat was unsuccessful it's unlikely a
		 * new request of a similar or harder type will succeed soon
		 * so consider going to sleep on the basis we reclaimed at
		 */
3306 3307
		if (balanced_classzone_idx >= new_classzone_idx &&
					balanced_order == new_order) {
3308 3309 3310 3311 3312 3313
			new_order = pgdat->kswapd_max_order;
			new_classzone_idx = pgdat->classzone_idx;
			pgdat->kswapd_max_order =  0;
			pgdat->classzone_idx = pgdat->nr_zones - 1;
		}

3314
		if (order < new_order || classzone_idx > new_classzone_idx) {
L
Linus Torvalds 已提交
3315 3316
			/*
			 * Don't sleep if someone wants a larger 'order'
3317
			 * allocation or has tigher zone constraints
L
Linus Torvalds 已提交
3318 3319
			 */
			order = new_order;
3320
			classzone_idx = new_classzone_idx;
L
Linus Torvalds 已提交
3321
		} else {
3322 3323
			kswapd_try_to_sleep(pgdat, balanced_order,
						balanced_classzone_idx);
L
Linus Torvalds 已提交
3324
			order = pgdat->kswapd_max_order;
3325
			classzone_idx = pgdat->classzone_idx;
3326 3327
			new_order = order;
			new_classzone_idx = classzone_idx;
3328
			pgdat->kswapd_max_order = 0;
3329
			pgdat->classzone_idx = pgdat->nr_zones - 1;
L
Linus Torvalds 已提交
3330 3331
		}

3332 3333 3334 3335 3336 3337 3338 3339
		ret = try_to_freeze();
		if (kthread_should_stop())
			break;

		/*
		 * We can speed up thawing tasks if we don't call balance_pgdat
		 * after returning from the refrigerator
		 */
3340 3341
		if (!ret) {
			trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
3342 3343 3344
			balanced_classzone_idx = classzone_idx;
			balanced_order = balance_pgdat(pgdat, order,
						&balanced_classzone_idx);
3345
		}
L
Linus Torvalds 已提交
3346
	}
3347 3348

	current->reclaim_state = NULL;
L
Linus Torvalds 已提交
3349 3350 3351 3352 3353 3354
	return 0;
}

/*
 * A zone is low on free memory, so wake its kswapd task to service it.
 */
3355
void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
L
Linus Torvalds 已提交
3356 3357 3358
{
	pg_data_t *pgdat;

3359
	if (!populated_zone(zone))
L
Linus Torvalds 已提交
3360 3361
		return;

3362
	if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
L
Linus Torvalds 已提交
3363
		return;
3364
	pgdat = zone->zone_pgdat;
3365
	if (pgdat->kswapd_max_order < order) {
L
Linus Torvalds 已提交
3366
		pgdat->kswapd_max_order = order;
3367 3368
		pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
	}
3369
	if (!waitqueue_active(&pgdat->kswapd_wait))
L
Linus Torvalds 已提交
3370
		return;
3371
	if (zone_balanced(zone, order, 0, 0))
3372 3373 3374
		return;

	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
3375
	wake_up_interruptible(&pgdat->kswapd_wait);
L
Linus Torvalds 已提交
3376 3377
}

3378
#ifdef CONFIG_HIBERNATION
L
Linus Torvalds 已提交
3379
/*
3380
 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3381 3382 3383 3384 3385
 * freed pages.
 *
 * Rather than trying to age LRUs the aim is to preserve the overall
 * LRU order by reclaiming preferentially
 * inactive > active > active referenced > active mapped
L
Linus Torvalds 已提交
3386
 */
3387
unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
L
Linus Torvalds 已提交
3388
{
3389 3390
	struct reclaim_state reclaim_state;
	struct scan_control sc = {
3391 3392 3393
		.gfp_mask = GFP_HIGHUSER_MOVABLE,
		.may_swap = 1,
		.may_unmap = 1,
3394
		.may_writepage = 1,
3395 3396 3397
		.nr_to_reclaim = nr_to_reclaim,
		.hibernation_mode = 1,
		.order = 0,
3398
		.priority = DEF_PRIORITY,
L
Linus Torvalds 已提交
3399
	};
3400
	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3401 3402
	struct task_struct *p = current;
	unsigned long nr_reclaimed;
L
Linus Torvalds 已提交
3403

3404 3405 3406 3407
	p->flags |= PF_MEMALLOC;
	lockdep_set_current_reclaim_state(sc.gfp_mask);
	reclaim_state.reclaimed_slab = 0;
	p->reclaim_state = &reclaim_state;
3408

3409
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3410

3411 3412 3413
	p->reclaim_state = NULL;
	lockdep_clear_current_reclaim_state();
	p->flags &= ~PF_MEMALLOC;
3414

3415
	return nr_reclaimed;
L
Linus Torvalds 已提交
3416
}
3417
#endif /* CONFIG_HIBERNATION */
L
Linus Torvalds 已提交
3418 3419 3420 3421 3422

/* It's optimal to keep kswapds on the same CPUs as their memory, but
   not required for correctness.  So if the last cpu in a node goes
   away, we get changed to run anywhere: as the first one comes back,
   restore their cpu bindings. */
3423 3424
static int cpu_callback(struct notifier_block *nfb, unsigned long action,
			void *hcpu)
L
Linus Torvalds 已提交
3425
{
3426
	int nid;
L
Linus Torvalds 已提交
3427

3428
	if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
3429
		for_each_node_state(nid, N_MEMORY) {
3430
			pg_data_t *pgdat = NODE_DATA(nid);
3431 3432 3433
			const struct cpumask *mask;

			mask = cpumask_of_node(pgdat->node_id);
3434

3435
			if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
L
Linus Torvalds 已提交
3436
				/* One of our CPUs online: restore mask */
3437
				set_cpus_allowed_ptr(pgdat->kswapd, mask);
L
Linus Torvalds 已提交
3438 3439 3440 3441 3442
		}
	}
	return NOTIFY_OK;
}

3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458
/*
 * This kswapd start function will be called by init and node-hot-add.
 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
 */
int kswapd_run(int nid)
{
	pg_data_t *pgdat = NODE_DATA(nid);
	int ret = 0;

	if (pgdat->kswapd)
		return 0;

	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
	if (IS_ERR(pgdat->kswapd)) {
		/* failure at boot is fatal */
		BUG_ON(system_state == SYSTEM_BOOTING);
3459 3460
		pr_err("Failed to start kswapd on node %d\n", nid);
		ret = PTR_ERR(pgdat->kswapd);
3461
		pgdat->kswapd = NULL;
3462 3463 3464 3465
	}
	return ret;
}

3466
/*
3467
 * Called by memory hotplug when all memory in a node is offlined.  Caller must
3468
 * hold mem_hotplug_begin/end().
3469 3470 3471 3472 3473
 */
void kswapd_stop(int nid)
{
	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;

3474
	if (kswapd) {
3475
		kthread_stop(kswapd);
3476 3477
		NODE_DATA(nid)->kswapd = NULL;
	}
3478 3479
}

L
Linus Torvalds 已提交
3480 3481
static int __init kswapd_init(void)
{
3482
	int nid;
3483

L
Linus Torvalds 已提交
3484
	swap_setup();
3485
	for_each_node_state(nid, N_MEMORY)
3486
 		kswapd_run(nid);
L
Linus Torvalds 已提交
3487 3488 3489 3490 3491
	hotcpu_notifier(cpu_callback, 0);
	return 0;
}

module_init(kswapd_init)
3492 3493 3494 3495 3496 3497 3498 3499 3500 3501

#ifdef CONFIG_NUMA
/*
 * Zone reclaim mode
 *
 * If non-zero call zone_reclaim when the number of free pages falls below
 * the watermarks.
 */
int zone_reclaim_mode __read_mostly;

3502
#define RECLAIM_OFF 0
3503
#define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
3504 3505 3506
#define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
#define RECLAIM_SWAP (1<<2)	/* Swap pages out during reclaim */

3507 3508 3509 3510 3511 3512 3513
/*
 * Priority for ZONE_RECLAIM. This determines the fraction of pages
 * of a node considered for each zone_reclaim. 4 scans 1/16th of
 * a zone.
 */
#define ZONE_RECLAIM_PRIORITY 4

3514 3515 3516 3517 3518 3519
/*
 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
 * occur.
 */
int sysctl_min_unmapped_ratio = 1;

3520 3521 3522 3523 3524 3525
/*
 * If the number of slab pages in a zone grows beyond this percentage then
 * slab reclaim needs to occur.
 */
int sysctl_min_slab_ratio = 5;

3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567
static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
{
	unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
	unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
		zone_page_state(zone, NR_ACTIVE_FILE);

	/*
	 * It's possible for there to be more file mapped pages than
	 * accounted for by the pages on the file LRU lists because
	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
	 */
	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
}

/* Work out how many page cache pages we can reclaim in this reclaim_mode */
static long zone_pagecache_reclaimable(struct zone *zone)
{
	long nr_pagecache_reclaimable;
	long delta = 0;

	/*
	 * If RECLAIM_SWAP is set, then all file pages are considered
	 * potentially reclaimable. Otherwise, we have to worry about
	 * pages like swapcache and zone_unmapped_file_pages() provides
	 * a better estimate
	 */
	if (zone_reclaim_mode & RECLAIM_SWAP)
		nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
	else
		nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);

	/* If we can't clean pages, remove dirty pages from consideration */
	if (!(zone_reclaim_mode & RECLAIM_WRITE))
		delta += zone_page_state(zone, NR_FILE_DIRTY);

	/* Watch for any possible underflows due to delta */
	if (unlikely(delta > nr_pagecache_reclaimable))
		delta = nr_pagecache_reclaimable;

	return nr_pagecache_reclaimable - delta;
}

3568 3569 3570
/*
 * Try to free up some pages from this zone through reclaim.
 */
3571
static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3572
{
3573
	/* Minimum pages needed in order to stay on node */
3574
	const unsigned long nr_pages = 1 << order;
3575 3576
	struct task_struct *p = current;
	struct reclaim_state reclaim_state;
3577 3578
	struct scan_control sc = {
		.may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3579
		.may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
3580
		.may_swap = 1,
3581
		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3582
		.gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
3583
		.order = order,
3584
		.priority = ZONE_RECLAIM_PRIORITY,
3585
	};
3586 3587 3588
	struct shrink_control shrink = {
		.gfp_mask = sc.gfp_mask,
	};
3589
	unsigned long nr_slab_pages0, nr_slab_pages1;
3590 3591

	cond_resched();
3592 3593 3594 3595 3596 3597
	/*
	 * We need to be able to allocate from the reserves for RECLAIM_SWAP
	 * and we also need to be able to write out pages for RECLAIM_WRITE
	 * and RECLAIM_SWAP.
	 */
	p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3598
	lockdep_set_current_reclaim_state(gfp_mask);
3599 3600
	reclaim_state.reclaimed_slab = 0;
	p->reclaim_state = &reclaim_state;
3601

3602
	if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3603 3604 3605 3606 3607
		/*
		 * Free memory by calling shrink zone with increasing
		 * priorities until we have enough memory freed.
		 */
		do {
3608 3609
			shrink_zone(zone, &sc);
		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3610
	}
3611

3612 3613
	nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
	if (nr_slab_pages0 > zone->min_slab_pages) {
3614
		/*
3615
		 * shrink_slab() does not currently allow us to determine how
3616 3617 3618 3619
		 * many pages were freed in this zone. So we take the current
		 * number of slab pages and shake the slab until it is reduced
		 * by the same nr_pages that we used for reclaiming unmapped
		 * pages.
3620
		 */
D
Dave Chinner 已提交
3621 3622
		nodes_clear(shrink.nodes_to_scan);
		node_set(zone_to_nid(zone), shrink.nodes_to_scan);
3623 3624 3625 3626
		for (;;) {
			unsigned long lru_pages = zone_reclaimable_pages(zone);

			/* No reclaimable slab or very low memory pressure */
3627
			if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
3628 3629 3630 3631 3632 3633 3634 3635
				break;

			/* Freed enough memory */
			nr_slab_pages1 = zone_page_state(zone,
							NR_SLAB_RECLAIMABLE);
			if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
				break;
		}
3636 3637 3638 3639 3640

		/*
		 * Update nr_reclaimed by the number of slab pages we
		 * reclaimed from this zone.
		 */
3641 3642 3643
		nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
		if (nr_slab_pages1 < nr_slab_pages0)
			sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
3644 3645
	}

3646
	p->reclaim_state = NULL;
3647
	current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3648
	lockdep_clear_current_reclaim_state();
3649
	return sc.nr_reclaimed >= nr_pages;
3650
}
3651 3652 3653 3654

int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
{
	int node_id;
3655
	int ret;
3656 3657

	/*
3658 3659
	 * Zone reclaim reclaims unmapped file backed pages and
	 * slab pages if we are over the defined limits.
3660
	 *
3661 3662 3663 3664 3665
	 * A small portion of unmapped file backed pages is needed for
	 * file I/O otherwise pages read by file I/O will be immediately
	 * thrown out if the zone is overallocated. So we do not reclaim
	 * if less than a specified percentage of the zone is used by
	 * unmapped file backed pages.
3666
	 */
3667 3668
	if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
	    zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3669
		return ZONE_RECLAIM_FULL;
3670

3671
	if (!zone_reclaimable(zone))
3672
		return ZONE_RECLAIM_FULL;
3673

3674
	/*
3675
	 * Do not scan if the allocation should not be delayed.
3676
	 */
3677
	if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3678
		return ZONE_RECLAIM_NOSCAN;
3679 3680 3681 3682 3683 3684 3685

	/*
	 * Only run zone reclaim on the local zone or on zones that do not
	 * have associated processors. This will favor the local processor
	 * over remote processors and spread off node memory allocations
	 * as wide as possible.
	 */
3686
	node_id = zone_to_nid(zone);
3687
	if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3688
		return ZONE_RECLAIM_NOSCAN;
3689 3690

	if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
3691 3692
		return ZONE_RECLAIM_NOSCAN;

3693 3694 3695
	ret = __zone_reclaim(zone, gfp_mask, order);
	zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);

3696 3697 3698
	if (!ret)
		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);

3699
	return ret;
3700
}
3701
#endif
L
Lee Schermerhorn 已提交
3702 3703 3704 3705 3706 3707

/*
 * page_evictable - test whether a page is evictable
 * @page: the page to test
 *
 * Test whether page is evictable--i.e., should be placed on active/inactive
3708
 * lists vs unevictable list.
L
Lee Schermerhorn 已提交
3709 3710
 *
 * Reasons page might not be evictable:
3711
 * (1) page's mapping marked unevictable
N
Nick Piggin 已提交
3712
 * (2) page is part of an mlocked VMA
3713
 *
L
Lee Schermerhorn 已提交
3714
 */
3715
int page_evictable(struct page *page)
L
Lee Schermerhorn 已提交
3716
{
3717
	return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
L
Lee Schermerhorn 已提交
3718
}
3719

3720
#ifdef CONFIG_SHMEM
3721
/**
3722 3723 3724
 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
 * @pages:	array of pages to check
 * @nr_pages:	number of pages to check
3725
 *
3726
 * Checks pages for evictability and moves them to the appropriate lru list.
3727 3728
 *
 * This function is only used for SysV IPC SHM_UNLOCK.
3729
 */
3730
void check_move_unevictable_pages(struct page **pages, int nr_pages)
3731
{
3732
	struct lruvec *lruvec;
3733 3734 3735 3736
	struct zone *zone = NULL;
	int pgscanned = 0;
	int pgrescued = 0;
	int i;
3737

3738 3739 3740
	for (i = 0; i < nr_pages; i++) {
		struct page *page = pages[i];
		struct zone *pagezone;
3741

3742 3743 3744 3745 3746 3747 3748 3749
		pgscanned++;
		pagezone = page_zone(page);
		if (pagezone != zone) {
			if (zone)
				spin_unlock_irq(&zone->lru_lock);
			zone = pagezone;
			spin_lock_irq(&zone->lru_lock);
		}
3750
		lruvec = mem_cgroup_page_lruvec(page, zone);
3751

3752 3753
		if (!PageLRU(page) || !PageUnevictable(page))
			continue;
3754

3755
		if (page_evictable(page)) {
3756 3757
			enum lru_list lru = page_lru_base_type(page);

3758
			VM_BUG_ON_PAGE(PageActive(page), page);
3759
			ClearPageUnevictable(page);
3760 3761
			del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
			add_page_to_lru_list(page, lruvec, lru);
3762
			pgrescued++;
3763
		}
3764
	}
3765

3766 3767 3768 3769
	if (zone) {
		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
		spin_unlock_irq(&zone->lru_lock);
3770 3771
	}
}
3772
#endif /* CONFIG_SHMEM */
3773

3774
static void warn_scan_unevictable_pages(void)
3775
{
3776
	printk_once(KERN_WARNING
3777
		    "%s: The scan_unevictable_pages sysctl/node-interface has been "
3778
		    "disabled for lack of a legitimate use case.  If you have "
3779 3780
		    "one, please send an email to linux-mm@kvack.org.\n",
		    current->comm);
3781 3782 3783 3784 3785 3786 3787 3788 3789
}

/*
 * scan_unevictable_pages [vm] sysctl handler.  On demand re-scan of
 * all nodes' unevictable lists for evictable pages
 */
unsigned long scan_unevictable_pages;

int scan_unevictable_handler(struct ctl_table *table, int write,
3790
			   void __user *buffer,
3791 3792
			   size_t *length, loff_t *ppos)
{
3793
	warn_scan_unevictable_pages();
3794
	proc_doulongvec_minmax(table, write, buffer, length, ppos);
3795 3796 3797 3798
	scan_unevictable_pages = 0;
	return 0;
}

3799
#ifdef CONFIG_NUMA
3800 3801 3802 3803 3804
/*
 * per node 'scan_unevictable_pages' attribute.  On demand re-scan of
 * a specified node's per zone unevictable lists for evictable pages.
 */

3805 3806
static ssize_t read_scan_unevictable_node(struct device *dev,
					  struct device_attribute *attr,
3807 3808
					  char *buf)
{
3809
	warn_scan_unevictable_pages();
3810 3811 3812
	return sprintf(buf, "0\n");	/* always zero; should fit... */
}

3813 3814
static ssize_t write_scan_unevictable_node(struct device *dev,
					   struct device_attribute *attr,
3815 3816
					const char *buf, size_t count)
{
3817
	warn_scan_unevictable_pages();
3818 3819 3820 3821
	return 1;
}


3822
static DEVICE_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3823 3824 3825 3826 3827
			read_scan_unevictable_node,
			write_scan_unevictable_node);

int scan_unevictable_register_node(struct node *node)
{
3828
	return device_create_file(&node->dev, &dev_attr_scan_unevictable_pages);
3829 3830 3831 3832
}

void scan_unevictable_unregister_node(struct node *node)
{
3833
	device_remove_file(&node->dev, &dev_attr_scan_unevictable_pages);
3834
}
3835
#endif