vmscan.c 111.7 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
/*
 *  linux/mm/vmscan.c
 *
 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 *
 *  Swap reorganised 29.12.95, Stephen Tweedie.
 *  kswapd added: 7.1.96  sct
 *  Removed kswapd_ctl limits, and swap out as many pages as needed
 *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
 *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
 *  Multiqueue VM started 5.8.00, Rik van Riel.
 */

14 15
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

L
Linus Torvalds 已提交
16
#include <linux/mm.h>
17
#include <linux/sched/mm.h>
L
Linus Torvalds 已提交
18
#include <linux/module.h>
19
#include <linux/gfp.h>
L
Linus Torvalds 已提交
20 21 22 23 24
#include <linux/kernel_stat.h>
#include <linux/swap.h>
#include <linux/pagemap.h>
#include <linux/init.h>
#include <linux/highmem.h>
25
#include <linux/vmpressure.h>
26
#include <linux/vmstat.h>
L
Linus Torvalds 已提交
27 28 29 30 31 32 33 34 35 36 37
#include <linux/file.h>
#include <linux/writeback.h>
#include <linux/blkdev.h>
#include <linux/buffer_head.h>	/* for try_to_release_page(),
					buffer_heads_over_limit */
#include <linux/mm_inline.h>
#include <linux/backing-dev.h>
#include <linux/rmap.h>
#include <linux/topology.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
38
#include <linux/compaction.h>
L
Linus Torvalds 已提交
39 40
#include <linux/notifier.h>
#include <linux/rwsem.h>
41
#include <linux/delay.h>
42
#include <linux/kthread.h>
43
#include <linux/freezer.h>
44
#include <linux/memcontrol.h>
45
#include <linux/delayacct.h>
46
#include <linux/sysctl.h>
47
#include <linux/oom.h>
48
#include <linux/prefetch.h>
49
#include <linux/printk.h>
50
#include <linux/dax.h>
L
Linus Torvalds 已提交
51 52 53 54 55

#include <asm/tlbflush.h>
#include <asm/div64.h>

#include <linux/swapops.h>
56
#include <linux/balloon_compaction.h>
L
Linus Torvalds 已提交
57

58 59
#include "internal.h"

60 61 62
#define CREATE_TRACE_POINTS
#include <trace/events/vmscan.h>

L
Linus Torvalds 已提交
63
struct scan_control {
64 65 66
	/* How many pages shrink_list() should reclaim */
	unsigned long nr_to_reclaim;

L
Linus Torvalds 已提交
67
	/* This context's GFP mask */
A
Al Viro 已提交
68
	gfp_t gfp_mask;
L
Linus Torvalds 已提交
69

70
	/* Allocation order */
A
Andy Whitcroft 已提交
71
	int order;
72

73 74 75 76 77
	/*
	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
	 * are scanned.
	 */
	nodemask_t	*nodemask;
78

79 80 81 82 83
	/*
	 * The memory cgroup that hit its limit and as a result is the
	 * primary target of this reclaim invocation.
	 */
	struct mem_cgroup *target_mem_cgroup;
84

85 86 87
	/* Scan (total_size >> priority) pages at once */
	int priority;

88 89 90
	/* The highest zone to isolate pages for reclaim from */
	enum zone_type reclaim_idx;

91
	/* Writepage batching in laptop mode; RECLAIM_WRITE */
92 93 94 95 96 97 98 99
	unsigned int may_writepage:1;

	/* Can mapped pages be reclaimed? */
	unsigned int may_unmap:1;

	/* Can pages be swapped as part of reclaim? */
	unsigned int may_swap:1;

100 101 102 103 104 105 106
	/*
	 * Cgroups are not reclaimed below their configured memory.low,
	 * unless we threaten to OOM. If any cgroups are skipped due to
	 * memory.low and nothing was reclaimed, go back for memory.low.
	 */
	unsigned int memcg_low_reclaim:1;
	unsigned int memcg_low_skipped:1;
107

108 109 110 111 112 113 114 115 116 117
	unsigned int hibernation_mode:1;

	/* One of the zones is ready for compaction */
	unsigned int compaction_ready:1;

	/* Incremented by the number of inactive pages that were scanned */
	unsigned long nr_scanned;

	/* Number of pages freed so far during a call to shrink_zones() */
	unsigned long nr_reclaimed;
L
Linus Torvalds 已提交
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
};

#ifdef ARCH_HAS_PREFETCH
#define prefetch_prev_lru_page(_page, _base, _field)			\
	do {								\
		if ((_page)->lru.prev != _base) {			\
			struct page *prev;				\
									\
			prev = lru_to_page(&(_page->lru));		\
			prefetch(&prev->_field);			\
		}							\
	} while (0)
#else
#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
#endif

#ifdef ARCH_HAS_PREFETCHW
#define prefetchw_prev_lru_page(_page, _base, _field)			\
	do {								\
		if ((_page)->lru.prev != _base) {			\
			struct page *prev;				\
									\
			prev = lru_to_page(&(_page->lru));		\
			prefetchw(&prev->_field);			\
		}							\
	} while (0)
#else
#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
#endif

/*
 * From 0 .. 100.  Higher means more swappy.
 */
int vm_swappiness = 60;
152 153 154 155 156
/*
 * The total number of pages which are beyond the high watermark within all
 * zones.
 */
unsigned long vm_total_pages;
L
Linus Torvalds 已提交
157 158 159 160

static LIST_HEAD(shrinker_list);
static DECLARE_RWSEM(shrinker_rwsem);

A
Andrew Morton 已提交
161
#ifdef CONFIG_MEMCG
162 163
static bool global_reclaim(struct scan_control *sc)
{
164
	return !sc->target_mem_cgroup;
165
}
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186

/**
 * sane_reclaim - is the usual dirty throttling mechanism operational?
 * @sc: scan_control in question
 *
 * The normal page dirty throttling mechanism in balance_dirty_pages() is
 * completely broken with the legacy memcg and direct stalling in
 * shrink_page_list() is used for throttling instead, which lacks all the
 * niceties such as fairness, adaptive pausing, bandwidth proportional
 * allocation and configurability.
 *
 * This function tests whether the vmscan currently in progress can assume
 * that the normal dirty throttling mechanism is operational.
 */
static bool sane_reclaim(struct scan_control *sc)
{
	struct mem_cgroup *memcg = sc->target_mem_cgroup;

	if (!memcg)
		return true;
#ifdef CONFIG_CGROUP_WRITEBACK
187
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
188 189 190 191
		return true;
#endif
	return false;
}
192
#else
193 194 195 196
static bool global_reclaim(struct scan_control *sc)
{
	return true;
}
197 198 199 200 201

static bool sane_reclaim(struct scan_control *sc)
{
	return true;
}
202 203
#endif

204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
/*
 * This misses isolated pages which are not accounted for to save counters.
 * As the data only determines if reclaim or compaction continues, it is
 * not expected that isolated pages will be a dominating factor.
 */
unsigned long zone_reclaimable_pages(struct zone *zone)
{
	unsigned long nr;

	nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
		zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
	if (get_nr_swap_pages() > 0)
		nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
			zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);

	return nr;
}

M
Mel Gorman 已提交
222 223 224 225 226 227 228
unsigned long pgdat_reclaimable_pages(struct pglist_data *pgdat)
{
	unsigned long nr;

	nr = node_page_state_snapshot(pgdat, NR_ACTIVE_FILE) +
	     node_page_state_snapshot(pgdat, NR_INACTIVE_FILE) +
	     node_page_state_snapshot(pgdat, NR_ISOLATED_FILE);
229 230

	if (get_nr_swap_pages() > 0)
M
Mel Gorman 已提交
231 232 233
		nr += node_page_state_snapshot(pgdat, NR_ACTIVE_ANON) +
		      node_page_state_snapshot(pgdat, NR_INACTIVE_ANON) +
		      node_page_state_snapshot(pgdat, NR_ISOLATED_ANON);
234 235 236 237

	return nr;
}

238 239 240 241 242 243 244
/**
 * lruvec_lru_size -  Returns the number of pages on the given LRU list.
 * @lruvec: lru vector
 * @lru: lru to use
 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
 */
unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx)
245
{
246 247 248
	unsigned long lru_size;
	int zid;

249
	if (!mem_cgroup_disabled())
250 251 252
		lru_size = mem_cgroup_get_lru_size(lruvec, lru);
	else
		lru_size = node_page_state(lruvec_pgdat(lruvec), NR_LRU_BASE + lru);
253

254 255 256
	for (zid = zone_idx + 1; zid < MAX_NR_ZONES; zid++) {
		struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
		unsigned long size;
257

258 259 260 261 262 263 264 265 266 267 268 269
		if (!managed_zone(zone))
			continue;

		if (!mem_cgroup_disabled())
			size = mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
		else
			size = zone_page_state(&lruvec_pgdat(lruvec)->node_zones[zid],
				       NR_ZONE_LRU_BASE + lru);
		lru_size -= min(size, lru_size);
	}

	return lru_size;
270 271 272

}

L
Linus Torvalds 已提交
273
/*
G
Glauber Costa 已提交
274
 * Add a shrinker callback to be called from the vm.
L
Linus Torvalds 已提交
275
 */
G
Glauber Costa 已提交
276
int register_shrinker(struct shrinker *shrinker)
L
Linus Torvalds 已提交
277
{
G
Glauber Costa 已提交
278 279 280 281 282 283 284 285 286
	size_t size = sizeof(*shrinker->nr_deferred);

	if (shrinker->flags & SHRINKER_NUMA_AWARE)
		size *= nr_node_ids;

	shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
	if (!shrinker->nr_deferred)
		return -ENOMEM;

287 288 289
	down_write(&shrinker_rwsem);
	list_add_tail(&shrinker->list, &shrinker_list);
	up_write(&shrinker_rwsem);
G
Glauber Costa 已提交
290
	return 0;
L
Linus Torvalds 已提交
291
}
292
EXPORT_SYMBOL(register_shrinker);
L
Linus Torvalds 已提交
293 294 295 296

/*
 * Remove one
 */
297
void unregister_shrinker(struct shrinker *shrinker)
L
Linus Torvalds 已提交
298 299 300 301
{
	down_write(&shrinker_rwsem);
	list_del(&shrinker->list);
	up_write(&shrinker_rwsem);
302
	kfree(shrinker->nr_deferred);
L
Linus Torvalds 已提交
303
}
304
EXPORT_SYMBOL(unregister_shrinker);
L
Linus Torvalds 已提交
305 306

#define SHRINK_BATCH 128
G
Glauber Costa 已提交
307

308 309 310 311
static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
				    struct shrinker *shrinker,
				    unsigned long nr_scanned,
				    unsigned long nr_eligible)
G
Glauber Costa 已提交
312 313 314 315
{
	unsigned long freed = 0;
	unsigned long long delta;
	long total_scan;
316
	long freeable;
G
Glauber Costa 已提交
317 318 319 320 321
	long nr;
	long new_nr;
	int nid = shrinkctl->nid;
	long batch_size = shrinker->batch ? shrinker->batch
					  : SHRINK_BATCH;
322
	long scanned = 0, next_deferred;
G
Glauber Costa 已提交
323

324 325
	freeable = shrinker->count_objects(shrinker, shrinkctl);
	if (freeable == 0)
G
Glauber Costa 已提交
326 327 328 329 330 331 332 333 334 335
		return 0;

	/*
	 * copy the current shrinker scan count into a local variable
	 * and zero it so that other concurrent shrinker invocations
	 * don't also do this scanning work.
	 */
	nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);

	total_scan = nr;
336
	delta = (4 * nr_scanned) / shrinker->seeks;
337
	delta *= freeable;
338
	do_div(delta, nr_eligible + 1);
G
Glauber Costa 已提交
339 340
	total_scan += delta;
	if (total_scan < 0) {
341
		pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n",
D
Dave Chinner 已提交
342
		       shrinker->scan_objects, total_scan);
343
		total_scan = freeable;
344 345 346
		next_deferred = nr;
	} else
		next_deferred = total_scan;
G
Glauber Costa 已提交
347 348 349 350 351 352 353

	/*
	 * We need to avoid excessive windup on filesystem shrinkers
	 * due to large numbers of GFP_NOFS allocations causing the
	 * shrinkers to return -1 all the time. This results in a large
	 * nr being built up so when a shrink that can do some work
	 * comes along it empties the entire cache due to nr >>>
354
	 * freeable. This is bad for sustaining a working set in
G
Glauber Costa 已提交
355 356 357 358 359
	 * memory.
	 *
	 * Hence only allow the shrinker to scan the entire cache when
	 * a large delta change is calculated directly.
	 */
360 361
	if (delta < freeable / 4)
		total_scan = min(total_scan, freeable / 2);
G
Glauber Costa 已提交
362 363 364 365 366 367

	/*
	 * Avoid risking looping forever due to too large nr value:
	 * never try to free more than twice the estimate number of
	 * freeable entries.
	 */
368 369
	if (total_scan > freeable * 2)
		total_scan = freeable * 2;
G
Glauber Costa 已提交
370 371

	trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
372 373
				   nr_scanned, nr_eligible,
				   freeable, delta, total_scan);
G
Glauber Costa 已提交
374

375 376 377 378 379 380 381 382 383 384 385
	/*
	 * Normally, we should not scan less than batch_size objects in one
	 * pass to avoid too frequent shrinker calls, but if the slab has less
	 * than batch_size objects in total and we are really tight on memory,
	 * we will try to reclaim all available objects, otherwise we can end
	 * up failing allocations although there are plenty of reclaimable
	 * objects spread over several slabs with usage less than the
	 * batch_size.
	 *
	 * We detect the "tight on memory" situations by looking at the total
	 * number of objects we want to scan (total_scan). If it is greater
386
	 * than the total number of objects on slab (freeable), we must be
387 388 389 390
	 * scanning at high prio and therefore should try to reclaim as much as
	 * possible.
	 */
	while (total_scan >= batch_size ||
391
	       total_scan >= freeable) {
D
Dave Chinner 已提交
392
		unsigned long ret;
393
		unsigned long nr_to_scan = min(batch_size, total_scan);
G
Glauber Costa 已提交
394

395
		shrinkctl->nr_to_scan = nr_to_scan;
D
Dave Chinner 已提交
396 397 398 399
		ret = shrinker->scan_objects(shrinker, shrinkctl);
		if (ret == SHRINK_STOP)
			break;
		freed += ret;
G
Glauber Costa 已提交
400

401 402
		count_vm_events(SLABS_SCANNED, nr_to_scan);
		total_scan -= nr_to_scan;
403
		scanned += nr_to_scan;
G
Glauber Costa 已提交
404 405 406 407

		cond_resched();
	}

408 409 410 411
	if (next_deferred >= scanned)
		next_deferred -= scanned;
	else
		next_deferred = 0;
G
Glauber Costa 已提交
412 413 414 415 416
	/*
	 * move the unused scan count back into the shrinker in a
	 * manner that handles concurrent updates. If we exhausted the
	 * scan, there is no need to do an update.
	 */
417 418
	if (next_deferred > 0)
		new_nr = atomic_long_add_return(next_deferred,
G
Glauber Costa 已提交
419 420 421 422
						&shrinker->nr_deferred[nid]);
	else
		new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);

423
	trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
G
Glauber Costa 已提交
424
	return freed;
425 426
}

427
/**
428
 * shrink_slab - shrink slab caches
429 430
 * @gfp_mask: allocation context
 * @nid: node whose slab caches to target
431
 * @memcg: memory cgroup whose slab caches to target
432 433
 * @nr_scanned: pressure numerator
 * @nr_eligible: pressure denominator
L
Linus Torvalds 已提交
434
 *
435
 * Call the shrink functions to age shrinkable caches.
L
Linus Torvalds 已提交
436
 *
437 438
 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
 * unaware shrinkers will receive a node id of 0 instead.
L
Linus Torvalds 已提交
439
 *
440 441
 * @memcg specifies the memory cgroup to target. If it is not NULL,
 * only shrinkers with SHRINKER_MEMCG_AWARE set will be called to scan
442 443
 * objects from the memory cgroup specified. Otherwise, only unaware
 * shrinkers are called.
444
 *
445 446 447 448 449 450 451
 * @nr_scanned and @nr_eligible form a ratio that indicate how much of
 * the available objects should be scanned.  Page reclaim for example
 * passes the number of pages scanned and the number of pages on the
 * LRU lists that it considered on @nid, plus a bias in @nr_scanned
 * when it encountered mapped pages.  The ratio is further biased by
 * the ->seeks setting of the shrink function, which indicates the
 * cost to recreate an object relative to that of an LRU page.
452
 *
453
 * Returns the number of reclaimed slab objects.
L
Linus Torvalds 已提交
454
 */
455 456 457 458
static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
				 struct mem_cgroup *memcg,
				 unsigned long nr_scanned,
				 unsigned long nr_eligible)
L
Linus Torvalds 已提交
459 460
{
	struct shrinker *shrinker;
D
Dave Chinner 已提交
461
	unsigned long freed = 0;
L
Linus Torvalds 已提交
462

463
	if (memcg && (!memcg_kmem_enabled() || !mem_cgroup_online(memcg)))
464 465
		return 0;

466 467
	if (nr_scanned == 0)
		nr_scanned = SWAP_CLUSTER_MAX;
L
Linus Torvalds 已提交
468

469
	if (!down_read_trylock(&shrinker_rwsem)) {
D
Dave Chinner 已提交
470 471 472 473 474 475 476
		/*
		 * If we would return 0, our callers would understand that we
		 * have nothing else to shrink and give up trying. By returning
		 * 1 we keep it going and assume we'll be able to shrink next
		 * time.
		 */
		freed = 1;
477 478
		goto out;
	}
L
Linus Torvalds 已提交
479 480

	list_for_each_entry(shrinker, &shrinker_list, list) {
481 482 483
		struct shrink_control sc = {
			.gfp_mask = gfp_mask,
			.nid = nid,
484
			.memcg = memcg,
485
		};
486

487 488 489 490 491 492 493
		/*
		 * If kernel memory accounting is disabled, we ignore
		 * SHRINKER_MEMCG_AWARE flag and call all shrinkers
		 * passing NULL for memcg.
		 */
		if (memcg_kmem_enabled() &&
		    !!memcg != !!(shrinker->flags & SHRINKER_MEMCG_AWARE))
494 495
			continue;

496 497
		if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
			sc.nid = 0;
L
Linus Torvalds 已提交
498

499
		freed += do_shrink_slab(&sc, shrinker, nr_scanned, nr_eligible);
L
Linus Torvalds 已提交
500
	}
501

L
Linus Torvalds 已提交
502
	up_read(&shrinker_rwsem);
503 504
out:
	cond_resched();
D
Dave Chinner 已提交
505
	return freed;
L
Linus Torvalds 已提交
506 507
}

508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530
void drop_slab_node(int nid)
{
	unsigned long freed;

	do {
		struct mem_cgroup *memcg = NULL;

		freed = 0;
		do {
			freed += shrink_slab(GFP_KERNEL, nid, memcg,
					     1000, 1000);
		} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
	} while (freed > 10);
}

void drop_slab(void)
{
	int nid;

	for_each_online_node(nid)
		drop_slab_node(nid);
}

L
Linus Torvalds 已提交
531 532
static inline int is_page_cache_freeable(struct page *page)
{
533 534 535 536 537
	/*
	 * A freeable page cache page is referenced only by the caller
	 * that isolated the page, the page cache radix tree and
	 * optional buffer heads at page->private.
	 */
538
	return page_count(page) - page_has_private(page) == 2;
L
Linus Torvalds 已提交
539 540
}

541
static int may_write_to_inode(struct inode *inode, struct scan_control *sc)
L
Linus Torvalds 已提交
542
{
543
	if (current->flags & PF_SWAPWRITE)
L
Linus Torvalds 已提交
544
		return 1;
545
	if (!inode_write_congested(inode))
L
Linus Torvalds 已提交
546
		return 1;
547
	if (inode_to_bdi(inode) == current->backing_dev_info)
L
Linus Torvalds 已提交
548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566
		return 1;
	return 0;
}

/*
 * We detected a synchronous write error writing a page out.  Probably
 * -ENOSPC.  We need to propagate that into the address_space for a subsequent
 * fsync(), msync() or close().
 *
 * The tricky part is that after writepage we cannot touch the mapping: nothing
 * prevents it from being freed up.  But we have a ref on the page and once
 * that page is locked, the mapping is pinned.
 *
 * We're allowed to run sleeping lock_page() here because we know the caller has
 * __GFP_FS.
 */
static void handle_write_error(struct address_space *mapping,
				struct page *page, int error)
{
J
Jens Axboe 已提交
567
	lock_page(page);
568 569
	if (page_mapping(page) == mapping)
		mapping_set_error(mapping, error);
L
Linus Torvalds 已提交
570 571 572
	unlock_page(page);
}

573 574 575 576 577 578 579 580 581 582 583 584
/* possible outcome of pageout() */
typedef enum {
	/* failed to write page out, page is locked */
	PAGE_KEEP,
	/* move page to the active list, page is locked */
	PAGE_ACTIVATE,
	/* page has been sent to the disk successfully, page is unlocked */
	PAGE_SUCCESS,
	/* page is clean and locked */
	PAGE_CLEAN,
} pageout_t;

L
Linus Torvalds 已提交
585
/*
A
Andrew Morton 已提交
586 587
 * pageout is called by shrink_page_list() for each dirty page.
 * Calls ->writepage().
L
Linus Torvalds 已提交
588
 */
589
static pageout_t pageout(struct page *page, struct address_space *mapping,
590
			 struct scan_control *sc)
L
Linus Torvalds 已提交
591 592 593 594 595 596 597 598
{
	/*
	 * If the page is dirty, only perform writeback if that write
	 * will be non-blocking.  To prevent this allocation from being
	 * stalled by pagecache activity.  But note that there may be
	 * stalls if we need to run get_block().  We could test
	 * PagePrivate for that.
	 *
599
	 * If this process is currently in __generic_file_write_iter() against
L
Linus Torvalds 已提交
600 601 602 603 604 605 606 607 608 609 610 611 612 613 614
	 * this page's queue, we can perform writeback even if that
	 * will block.
	 *
	 * If the page is swapcache, write it back even if that would
	 * block, for some throttling. This happens by accident, because
	 * swap_backing_dev_info is bust: it doesn't reflect the
	 * congestion state of the swapdevs.  Easy to fix, if needed.
	 */
	if (!is_page_cache_freeable(page))
		return PAGE_KEEP;
	if (!mapping) {
		/*
		 * Some data journaling orphaned pages can have
		 * page->mapping == NULL while being dirty with clean buffers.
		 */
615
		if (page_has_private(page)) {
L
Linus Torvalds 已提交
616 617
			if (try_to_free_buffers(page)) {
				ClearPageDirty(page);
618
				pr_info("%s: orphaned page\n", __func__);
L
Linus Torvalds 已提交
619 620 621 622 623 624 625
				return PAGE_CLEAN;
			}
		}
		return PAGE_KEEP;
	}
	if (mapping->a_ops->writepage == NULL)
		return PAGE_ACTIVATE;
626
	if (!may_write_to_inode(mapping->host, sc))
L
Linus Torvalds 已提交
627 628 629 630 631 632 633
		return PAGE_KEEP;

	if (clear_page_dirty_for_io(page)) {
		int res;
		struct writeback_control wbc = {
			.sync_mode = WB_SYNC_NONE,
			.nr_to_write = SWAP_CLUSTER_MAX,
634 635
			.range_start = 0,
			.range_end = LLONG_MAX,
L
Linus Torvalds 已提交
636 637 638 639 640 641 642
			.for_reclaim = 1,
		};

		SetPageReclaim(page);
		res = mapping->a_ops->writepage(page, &wbc);
		if (res < 0)
			handle_write_error(mapping, page, res);
643
		if (res == AOP_WRITEPAGE_ACTIVATE) {
L
Linus Torvalds 已提交
644 645 646
			ClearPageReclaim(page);
			return PAGE_ACTIVATE;
		}
647

L
Linus Torvalds 已提交
648 649 650 651
		if (!PageWriteback(page)) {
			/* synchronous write or broken a_ops? */
			ClearPageReclaim(page);
		}
652
		trace_mm_vmscan_writepage(page);
653
		inc_node_page_state(page, NR_VMSCAN_WRITE);
L
Linus Torvalds 已提交
654 655 656 657 658 659
		return PAGE_SUCCESS;
	}

	return PAGE_CLEAN;
}

660
/*
N
Nick Piggin 已提交
661 662
 * Same as remove_mapping, but if the page is removed from the mapping, it
 * gets returned with a refcount of 0.
663
 */
664 665
static int __remove_mapping(struct address_space *mapping, struct page *page,
			    bool reclaimed)
666
{
667 668
	unsigned long flags;

669 670
	BUG_ON(!PageLocked(page));
	BUG_ON(mapping != page_mapping(page));
671

672
	spin_lock_irqsave(&mapping->tree_lock, flags);
673
	/*
N
Nick Piggin 已提交
674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692
	 * The non racy check for a busy page.
	 *
	 * Must be careful with the order of the tests. When someone has
	 * a ref to the page, it may be possible that they dirty it then
	 * drop the reference. So if PageDirty is tested before page_count
	 * here, then the following race may occur:
	 *
	 * get_user_pages(&page);
	 * [user mapping goes away]
	 * write_to(page);
	 *				!PageDirty(page)    [good]
	 * SetPageDirty(page);
	 * put_page(page);
	 *				!page_count(page)   [good, discard it]
	 *
	 * [oops, our write_to data is lost]
	 *
	 * Reversing the order of the tests ensures such a situation cannot
	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
693
	 * load is not satisfied before that of page->_refcount.
N
Nick Piggin 已提交
694 695 696
	 *
	 * Note that if SetPageDirty is always performed via set_page_dirty,
	 * and thus under tree_lock, then this ordering is not required.
697
	 */
698
	if (!page_ref_freeze(page, 2))
699
		goto cannot_free;
N
Nick Piggin 已提交
700 701
	/* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
	if (unlikely(PageDirty(page))) {
702
		page_ref_unfreeze(page, 2);
703
		goto cannot_free;
N
Nick Piggin 已提交
704
	}
705 706 707

	if (PageSwapCache(page)) {
		swp_entry_t swap = { .val = page_private(page) };
708
		mem_cgroup_swapout(page, swap);
709
		__delete_from_swap_cache(page);
710
		spin_unlock_irqrestore(&mapping->tree_lock, flags);
711
		swapcache_free(swap);
N
Nick Piggin 已提交
712
	} else {
713
		void (*freepage)(struct page *);
714
		void *shadow = NULL;
715 716

		freepage = mapping->a_ops->freepage;
717 718 719 720 721 722 723 724 725
		/*
		 * Remember a shadow entry for reclaimed file cache in
		 * order to detect refaults, thus thrashing, later on.
		 *
		 * But don't store shadows in an address space that is
		 * already exiting.  This is not just an optizimation,
		 * inode reclaim needs to empty out the radix tree or
		 * the nodes are lost.  Don't plant shadows behind its
		 * back.
726 727 728 729 730 731
		 *
		 * We also don't store shadows for DAX mappings because the
		 * only page cache pages found in these are zero pages
		 * covering holes, and because we don't want to mix DAX
		 * exceptional entries and shadow exceptional entries in the
		 * same page_tree.
732 733
		 */
		if (reclaimed && page_is_file_cache(page) &&
734
		    !mapping_exiting(mapping) && !dax_mapping(mapping))
735
			shadow = workingset_eviction(mapping, page);
J
Johannes Weiner 已提交
736
		__delete_from_page_cache(page, shadow);
737
		spin_unlock_irqrestore(&mapping->tree_lock, flags);
738 739 740

		if (freepage != NULL)
			freepage(page);
741 742 743 744 745
	}

	return 1;

cannot_free:
746
	spin_unlock_irqrestore(&mapping->tree_lock, flags);
747 748 749
	return 0;
}

N
Nick Piggin 已提交
750 751 752 753 754 755 756 757
/*
 * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
 * someone else has a ref on the page, abort and return 0.  If it was
 * successfully detached, return 1.  Assumes the caller has a single ref on
 * this page.
 */
int remove_mapping(struct address_space *mapping, struct page *page)
{
758
	if (__remove_mapping(mapping, page, false)) {
N
Nick Piggin 已提交
759 760 761 762 763
		/*
		 * Unfreezing the refcount with 1 rather than 2 effectively
		 * drops the pagecache ref for us without requiring another
		 * atomic operation.
		 */
764
		page_ref_unfreeze(page, 1);
N
Nick Piggin 已提交
765 766 767 768 769
		return 1;
	}
	return 0;
}

L
Lee Schermerhorn 已提交
770 771 772 773 774 775 776 777 778 779 780
/**
 * putback_lru_page - put previously isolated page onto appropriate LRU list
 * @page: page to be put back to appropriate lru list
 *
 * Add previously isolated @page to appropriate LRU list.
 * Page may still be unevictable for other reasons.
 *
 * lru_lock must not be held, interrupts must be enabled.
 */
void putback_lru_page(struct page *page)
{
781
	bool is_unevictable;
782
	int was_unevictable = PageUnevictable(page);
L
Lee Schermerhorn 已提交
783

784
	VM_BUG_ON_PAGE(PageLRU(page), page);
L
Lee Schermerhorn 已提交
785 786 787 788

redo:
	ClearPageUnevictable(page);

789
	if (page_evictable(page)) {
L
Lee Schermerhorn 已提交
790 791 792 793 794 795
		/*
		 * For evictable pages, we can use the cache.
		 * In event of a race, worst case is we end up with an
		 * unevictable page on [in]active list.
		 * We know how to handle that.
		 */
796
		is_unevictable = false;
797
		lru_cache_add(page);
L
Lee Schermerhorn 已提交
798 799 800 801 802
	} else {
		/*
		 * Put unevictable pages directly on zone's unevictable
		 * list.
		 */
803
		is_unevictable = true;
L
Lee Schermerhorn 已提交
804
		add_page_to_unevictable_list(page);
805
		/*
806 807 808
		 * When racing with an mlock or AS_UNEVICTABLE clearing
		 * (page is unlocked) make sure that if the other thread
		 * does not observe our setting of PG_lru and fails
809
		 * isolation/check_move_unevictable_pages,
810
		 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
811 812
		 * the page back to the evictable list.
		 *
813
		 * The other side is TestClearPageMlocked() or shmem_lock().
814 815
		 */
		smp_mb();
L
Lee Schermerhorn 已提交
816 817 818 819 820 821 822
	}

	/*
	 * page's status can change while we move it among lru. If an evictable
	 * page is on unevictable list, it never be freed. To avoid that,
	 * check after we added it to the list, again.
	 */
823
	if (is_unevictable && page_evictable(page)) {
L
Lee Schermerhorn 已提交
824 825 826 827 828 829 830 831 832 833
		if (!isolate_lru_page(page)) {
			put_page(page);
			goto redo;
		}
		/* This means someone else dropped this page from LRU
		 * So, it will be freed or putback to LRU again. There is
		 * nothing to do here.
		 */
	}

834
	if (was_unevictable && !is_unevictable)
835
		count_vm_event(UNEVICTABLE_PGRESCUED);
836
	else if (!was_unevictable && is_unevictable)
837 838
		count_vm_event(UNEVICTABLE_PGCULLED);

L
Lee Schermerhorn 已提交
839 840 841
	put_page(page);		/* drop ref from isolate */
}

842 843 844
enum page_references {
	PAGEREF_RECLAIM,
	PAGEREF_RECLAIM_CLEAN,
845
	PAGEREF_KEEP,
846 847 848 849 850 851
	PAGEREF_ACTIVATE,
};

static enum page_references page_check_references(struct page *page,
						  struct scan_control *sc)
{
852
	int referenced_ptes, referenced_page;
853 854
	unsigned long vm_flags;

855 856
	referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
					  &vm_flags);
857
	referenced_page = TestClearPageReferenced(page);
858 859 860 861 862 863 864 865

	/*
	 * Mlock lost the isolation race with us.  Let try_to_unmap()
	 * move the page to the unevictable list.
	 */
	if (vm_flags & VM_LOCKED)
		return PAGEREF_RECLAIM;

866
	if (referenced_ptes) {
867
		if (PageSwapBacked(page))
868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884
			return PAGEREF_ACTIVATE;
		/*
		 * All mapped pages start out with page table
		 * references from the instantiating fault, so we need
		 * to look twice if a mapped file page is used more
		 * than once.
		 *
		 * Mark it and spare it for another trip around the
		 * inactive list.  Another page table reference will
		 * lead to its activation.
		 *
		 * Note: the mark is set for activated pages as well
		 * so that recently deactivated but used pages are
		 * quickly recovered.
		 */
		SetPageReferenced(page);

885
		if (referenced_page || referenced_ptes > 1)
886 887
			return PAGEREF_ACTIVATE;

888 889 890 891 892 893
		/*
		 * Activate file-backed executable pages after first usage.
		 */
		if (vm_flags & VM_EXEC)
			return PAGEREF_ACTIVATE;

894 895
		return PAGEREF_KEEP;
	}
896 897

	/* Reclaim if clean, defer dirty pages to writeback */
898
	if (referenced_page && !PageSwapBacked(page))
899 900 901
		return PAGEREF_RECLAIM_CLEAN;

	return PAGEREF_RECLAIM;
902 903
}

904 905 906 907
/* Check if a page is dirty or under writeback */
static void page_check_dirty_writeback(struct page *page,
				       bool *dirty, bool *writeback)
{
908 909
	struct address_space *mapping;

910 911 912 913
	/*
	 * Anonymous pages are not handled by flushers and must be written
	 * from reclaim context. Do not stall reclaim based on them
	 */
S
Shaohua Li 已提交
914 915
	if (!page_is_file_cache(page) ||
	    (PageAnon(page) && !PageSwapBacked(page))) {
916 917 918 919 920 921 922 923
		*dirty = false;
		*writeback = false;
		return;
	}

	/* By default assume that the page flags are accurate */
	*dirty = PageDirty(page);
	*writeback = PageWriteback(page);
924 925 926 927 928 929 930 931

	/* Verify dirty/writeback state if the filesystem supports it */
	if (!page_has_private(page))
		return;

	mapping = page_mapping(page);
	if (mapping && mapping->a_ops->is_dirty_writeback)
		mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
932 933
}

934 935 936 937 938 939
struct reclaim_stat {
	unsigned nr_dirty;
	unsigned nr_unqueued_dirty;
	unsigned nr_congested;
	unsigned nr_writeback;
	unsigned nr_immediate;
940 941 942
	unsigned nr_activate;
	unsigned nr_ref_keep;
	unsigned nr_unmap_fail;
943 944
};

L
Linus Torvalds 已提交
945
/*
A
Andrew Morton 已提交
946
 * shrink_page_list() returns the number of reclaimed pages
L
Linus Torvalds 已提交
947
 */
A
Andrew Morton 已提交
948
static unsigned long shrink_page_list(struct list_head *page_list,
M
Mel Gorman 已提交
949
				      struct pglist_data *pgdat,
950
				      struct scan_control *sc,
951
				      enum ttu_flags ttu_flags,
952
				      struct reclaim_stat *stat,
953
				      bool force_reclaim)
L
Linus Torvalds 已提交
954 955
{
	LIST_HEAD(ret_pages);
956
	LIST_HEAD(free_pages);
L
Linus Torvalds 已提交
957
	int pgactivate = 0;
958 959 960 961 962 963
	unsigned nr_unqueued_dirty = 0;
	unsigned nr_dirty = 0;
	unsigned nr_congested = 0;
	unsigned nr_reclaimed = 0;
	unsigned nr_writeback = 0;
	unsigned nr_immediate = 0;
964 965
	unsigned nr_ref_keep = 0;
	unsigned nr_unmap_fail = 0;
L
Linus Torvalds 已提交
966 967 968 969 970 971 972

	cond_resched();

	while (!list_empty(page_list)) {
		struct address_space *mapping;
		struct page *page;
		int may_enter_fs;
973
		enum page_references references = PAGEREF_RECLAIM_CLEAN;
974
		bool dirty, writeback;
M
Minchan Kim 已提交
975
		int ret = SWAP_SUCCESS;
L
Linus Torvalds 已提交
976 977 978 979 980 981

		cond_resched();

		page = lru_to_page(page_list);
		list_del(&page->lru);

N
Nick Piggin 已提交
982
		if (!trylock_page(page))
L
Linus Torvalds 已提交
983 984
			goto keep;

985
		VM_BUG_ON_PAGE(PageActive(page), page);
L
Linus Torvalds 已提交
986 987

		sc->nr_scanned++;
988

989
		if (unlikely(!page_evictable(page)))
N
Nick Piggin 已提交
990
			goto cull_mlocked;
L
Lee Schermerhorn 已提交
991

992
		if (!sc->may_unmap && page_mapped(page))
993 994
			goto keep_locked;

L
Linus Torvalds 已提交
995
		/* Double the slab pressure for mapped and swapcache pages */
S
Shaohua Li 已提交
996 997
		if ((page_mapped(page) || PageSwapCache(page)) &&
		    !(PageAnon(page) && !PageSwapBacked(page)))
L
Linus Torvalds 已提交
998 999
			sc->nr_scanned++;

1000 1001 1002
		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));

1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015
		/*
		 * The number of dirty pages determines if a zone is marked
		 * reclaim_congested which affects wait_iff_congested. kswapd
		 * will stall and start writing pages if the tail of the LRU
		 * is all dirty unqueued pages.
		 */
		page_check_dirty_writeback(page, &dirty, &writeback);
		if (dirty || writeback)
			nr_dirty++;

		if (dirty && !writeback)
			nr_unqueued_dirty++;

1016 1017 1018 1019 1020 1021
		/*
		 * Treat this page as congested if the underlying BDI is or if
		 * pages are cycling through the LRU so quickly that the
		 * pages marked for immediate reclaim are making it to the
		 * end of the LRU a second time.
		 */
1022
		mapping = page_mapping(page);
1023
		if (((dirty || writeback) && mapping &&
1024
		     inode_write_congested(mapping->host)) ||
1025
		    (writeback && PageReclaim(page)))
1026 1027
			nr_congested++;

1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038
		/*
		 * If a page at the tail of the LRU is under writeback, there
		 * are three cases to consider.
		 *
		 * 1) If reclaim is encountering an excessive number of pages
		 *    under writeback and this page is both under writeback and
		 *    PageReclaim then it indicates that pages are being queued
		 *    for IO but are being recycled through the LRU before the
		 *    IO can complete. Waiting on the page itself risks an
		 *    indefinite stall if it is impossible to writeback the
		 *    page due to IO error or disconnected storage so instead
1039 1040
		 *    note that the LRU is being scanned too quickly and the
		 *    caller can stall after page list has been processed.
1041
		 *
1042
		 * 2) Global or new memcg reclaim encounters a page that is
1043 1044 1045
		 *    not marked for immediate reclaim, or the caller does not
		 *    have __GFP_FS (or __GFP_IO if it's simply going to swap,
		 *    not to fs). In this case mark the page for immediate
1046
		 *    reclaim and continue scanning.
1047
		 *
1048 1049
		 *    Require may_enter_fs because we would wait on fs, which
		 *    may not have submitted IO yet. And the loop driver might
1050 1051 1052 1053 1054
		 *    enter reclaim, and deadlock if it waits on a page for
		 *    which it is needed to do the write (loop masks off
		 *    __GFP_IO|__GFP_FS for this reason); but more thought
		 *    would probably show more reasons.
		 *
1055
		 * 3) Legacy memcg encounters a page that is already marked
1056 1057 1058 1059
		 *    PageReclaim. memcg does not have any dirty pages
		 *    throttling so we could easily OOM just because too many
		 *    pages are in writeback and there is nothing else to
		 *    reclaim. Wait for the writeback to complete.
1060 1061 1062 1063 1064 1065 1066 1067 1068
		 *
		 * In cases 1) and 2) we activate the pages to get them out of
		 * the way while we continue scanning for clean pages on the
		 * inactive list and refilling from the active list. The
		 * observation here is that waiting for disk writes is more
		 * expensive than potentially causing reloads down the line.
		 * Since they're marked for immediate reclaim, they won't put
		 * memory pressure on the cache working set any longer than it
		 * takes to write them to disk.
1069
		 */
1070
		if (PageWriteback(page)) {
1071 1072 1073
			/* Case 1 above */
			if (current_is_kswapd() &&
			    PageReclaim(page) &&
M
Mel Gorman 已提交
1074
			    test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1075
				nr_immediate++;
1076
				goto activate_locked;
1077 1078

			/* Case 2 above */
1079
			} else if (sane_reclaim(sc) ||
1080
			    !PageReclaim(page) || !may_enter_fs) {
1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092
				/*
				 * This is slightly racy - end_page_writeback()
				 * might have just cleared PageReclaim, then
				 * setting PageReclaim here end up interpreted
				 * as PageReadahead - but that does not matter
				 * enough to care.  What we do want is for this
				 * page to have PageReclaim set next time memcg
				 * reclaim reaches the tests above, so it will
				 * then wait_on_page_writeback() to avoid OOM;
				 * and it's also appropriate in global reclaim.
				 */
				SetPageReclaim(page);
1093
				nr_writeback++;
1094
				goto activate_locked;
1095 1096 1097

			/* Case 3 above */
			} else {
1098
				unlock_page(page);
1099
				wait_on_page_writeback(page);
1100 1101 1102
				/* then go back and try same page again */
				list_add_tail(&page->lru, page_list);
				continue;
1103
			}
1104
		}
L
Linus Torvalds 已提交
1105

1106 1107 1108
		if (!force_reclaim)
			references = page_check_references(page, sc);

1109 1110
		switch (references) {
		case PAGEREF_ACTIVATE:
L
Linus Torvalds 已提交
1111
			goto activate_locked;
1112
		case PAGEREF_KEEP:
1113
			nr_ref_keep++;
1114
			goto keep_locked;
1115 1116 1117 1118
		case PAGEREF_RECLAIM:
		case PAGEREF_RECLAIM_CLEAN:
			; /* try to reclaim the page below */
		}
L
Linus Torvalds 已提交
1119 1120 1121 1122

		/*
		 * Anonymous process memory has backing store?
		 * Try to allocate it some swap space here.
S
Shaohua Li 已提交
1123
		 * Lazyfree page could be freed directly
L
Linus Torvalds 已提交
1124
		 */
S
Shaohua Li 已提交
1125 1126
		if (PageAnon(page) && PageSwapBacked(page) &&
		    !PageSwapCache(page)) {
1127 1128
			if (!(sc->gfp_mask & __GFP_IO))
				goto keep_locked;
1129
			if (!add_to_swap(page, page_list))
L
Linus Torvalds 已提交
1130
				goto activate_locked;
1131
			may_enter_fs = 1;
L
Linus Torvalds 已提交
1132

1133 1134
			/* Adding to swap updated mapping */
			mapping = page_mapping(page);
1135 1136 1137 1138
		} else if (unlikely(PageTransHuge(page))) {
			/* Split file THP */
			if (split_huge_page_to_list(page, page_list))
				goto keep_locked;
1139
		}
L
Linus Torvalds 已提交
1140

1141 1142
		VM_BUG_ON_PAGE(PageTransHuge(page), page);

L
Linus Torvalds 已提交
1143 1144 1145 1146
		/*
		 * The page is mapped into the page tables of one or more
		 * processes. Try to unmap it here.
		 */
S
Shaohua Li 已提交
1147
		if (page_mapped(page)) {
S
Shaohua Li 已提交
1148 1149
			switch (ret = try_to_unmap(page,
				ttu_flags | TTU_BATCH_FLUSH)) {
L
Linus Torvalds 已提交
1150
			case SWAP_FAIL:
1151
				nr_unmap_fail++;
L
Linus Torvalds 已提交
1152 1153 1154
				goto activate_locked;
			case SWAP_AGAIN:
				goto keep_locked;
N
Nick Piggin 已提交
1155 1156
			case SWAP_MLOCK:
				goto cull_mlocked;
L
Linus Torvalds 已提交
1157 1158 1159 1160 1161 1162
			case SWAP_SUCCESS:
				; /* try to free the page below */
			}
		}

		if (PageDirty(page)) {
1163
			/*
1164 1165 1166 1167 1168 1169 1170 1171
			 * Only kswapd can writeback filesystem pages
			 * to avoid risk of stack overflow. But avoid
			 * injecting inefficient single-page IO into
			 * flusher writeback as much as possible: only
			 * write pages when we've encountered many
			 * dirty pages, and when we've already scanned
			 * the rest of the LRU for clean pages and see
			 * the same dirty pages again (PageReclaim).
1172
			 */
1173
			if (page_is_file_cache(page) &&
1174 1175
			    (!current_is_kswapd() || !PageReclaim(page) ||
			     !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1176 1177 1178 1179 1180 1181
				/*
				 * Immediately reclaim when written back.
				 * Similar in principal to deactivate_page()
				 * except we already have the page isolated
				 * and know it's dirty
				 */
1182
				inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
1183 1184
				SetPageReclaim(page);

1185
				goto activate_locked;
1186 1187
			}

1188
			if (references == PAGEREF_RECLAIM_CLEAN)
L
Linus Torvalds 已提交
1189
				goto keep_locked;
1190
			if (!may_enter_fs)
L
Linus Torvalds 已提交
1191
				goto keep_locked;
1192
			if (!sc->may_writepage)
L
Linus Torvalds 已提交
1193 1194
				goto keep_locked;

1195 1196 1197 1198 1199 1200
			/*
			 * Page is dirty. Flush the TLB if a writable entry
			 * potentially exists to avoid CPU writes after IO
			 * starts and then write it out here.
			 */
			try_to_unmap_flush_dirty();
1201
			switch (pageout(page, mapping, sc)) {
L
Linus Torvalds 已提交
1202 1203 1204 1205 1206
			case PAGE_KEEP:
				goto keep_locked;
			case PAGE_ACTIVATE:
				goto activate_locked;
			case PAGE_SUCCESS:
1207
				if (PageWriteback(page))
1208
					goto keep;
1209
				if (PageDirty(page))
L
Linus Torvalds 已提交
1210
					goto keep;
1211

L
Linus Torvalds 已提交
1212 1213 1214 1215
				/*
				 * A synchronous write - probably a ramdisk.  Go
				 * ahead and try to reclaim the page.
				 */
N
Nick Piggin 已提交
1216
				if (!trylock_page(page))
L
Linus Torvalds 已提交
1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235
					goto keep;
				if (PageDirty(page) || PageWriteback(page))
					goto keep_locked;
				mapping = page_mapping(page);
			case PAGE_CLEAN:
				; /* try to free the page below */
			}
		}

		/*
		 * If the page has buffers, try to free the buffer mappings
		 * associated with this page. If we succeed we try to free
		 * the page as well.
		 *
		 * We do this even if the page is PageDirty().
		 * try_to_release_page() does not perform I/O, but it is
		 * possible for a page to have PageDirty set, but it is actually
		 * clean (all its buffers are clean).  This happens if the
		 * buffers were written out directly, with submit_bh(). ext3
L
Lee Schermerhorn 已提交
1236
		 * will do this, as well as the blockdev mapping.
L
Linus Torvalds 已提交
1237 1238 1239 1240 1241 1242 1243 1244 1245 1246
		 * try_to_release_page() will discover that cleanness and will
		 * drop the buffers and mark the page clean - it can be freed.
		 *
		 * Rarely, pages can have buffers and no ->mapping.  These are
		 * the pages which were not successfully invalidated in
		 * truncate_complete_page().  We try to drop those buffers here
		 * and if that worked, and the page is no longer mapped into
		 * process address space (page_count == 1) it can be freed.
		 * Otherwise, leave the page on the LRU so it is swappable.
		 */
1247
		if (page_has_private(page)) {
L
Linus Torvalds 已提交
1248 1249
			if (!try_to_release_page(page, sc->gfp_mask))
				goto activate_locked;
N
Nick Piggin 已提交
1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265
			if (!mapping && page_count(page) == 1) {
				unlock_page(page);
				if (put_page_testzero(page))
					goto free_it;
				else {
					/*
					 * rare race with speculative reference.
					 * the speculative reference will free
					 * this page shortly, so we may
					 * increment nr_reclaimed here (and
					 * leave it off the LRU).
					 */
					nr_reclaimed++;
					continue;
				}
			}
L
Linus Torvalds 已提交
1266 1267
		}

S
Shaohua Li 已提交
1268 1269 1270 1271 1272 1273 1274 1275
		if (PageAnon(page) && !PageSwapBacked(page)) {
			/* follow __remove_mapping for reference */
			if (!page_ref_freeze(page, 1))
				goto keep_locked;
			if (PageDirty(page)) {
				page_ref_unfreeze(page, 1);
				goto keep_locked;
			}
L
Linus Torvalds 已提交
1276

S
Shaohua Li 已提交
1277 1278 1279
			count_vm_event(PGLAZYFREED);
		} else if (!mapping || !__remove_mapping(mapping, page, true))
			goto keep_locked;
N
Nick Piggin 已提交
1280 1281 1282 1283 1284 1285 1286
		/*
		 * At this point, we have no other references and there is
		 * no way to pick any more up (removed from LRU, removed
		 * from pagecache). Can use non-atomic bitops now (and
		 * we obviously don't have to worry about waking up a process
		 * waiting on the page lock, because there are no references.
		 */
1287
		__ClearPageLocked(page);
N
Nick Piggin 已提交
1288
free_it:
1289
		nr_reclaimed++;
1290 1291 1292 1293 1294 1295

		/*
		 * Is there need to periodically free_page_list? It would
		 * appear not as the counts should be low
		 */
		list_add(&page->lru, &free_pages);
L
Linus Torvalds 已提交
1296 1297
		continue;

N
Nick Piggin 已提交
1298
cull_mlocked:
1299 1300
		if (PageSwapCache(page))
			try_to_free_swap(page);
N
Nick Piggin 已提交
1301
		unlock_page(page);
1302
		list_add(&page->lru, &ret_pages);
N
Nick Piggin 已提交
1303 1304
		continue;

L
Linus Torvalds 已提交
1305
activate_locked:
1306
		/* Not a candidate for swapping, so reclaim swap space. */
1307
		if (PageSwapCache(page) && mem_cgroup_swap_full(page))
1308
			try_to_free_swap(page);
1309
		VM_BUG_ON_PAGE(PageActive(page), page);
L
Linus Torvalds 已提交
1310 1311 1312 1313 1314 1315
		SetPageActive(page);
		pgactivate++;
keep_locked:
		unlock_page(page);
keep:
		list_add(&page->lru, &ret_pages);
1316
		VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
L
Linus Torvalds 已提交
1317
	}
1318

1319
	mem_cgroup_uncharge_list(&free_pages);
1320
	try_to_unmap_flush();
1321
	free_hot_cold_page_list(&free_pages, true);
1322

L
Linus Torvalds 已提交
1323
	list_splice(&ret_pages, page_list);
1324
	count_vm_events(PGACTIVATE, pgactivate);
1325

1326 1327 1328 1329 1330 1331
	if (stat) {
		stat->nr_dirty = nr_dirty;
		stat->nr_congested = nr_congested;
		stat->nr_unqueued_dirty = nr_unqueued_dirty;
		stat->nr_writeback = nr_writeback;
		stat->nr_immediate = nr_immediate;
1332 1333 1334
		stat->nr_activate = pgactivate;
		stat->nr_ref_keep = nr_ref_keep;
		stat->nr_unmap_fail = nr_unmap_fail;
1335
	}
1336
	return nr_reclaimed;
L
Linus Torvalds 已提交
1337 1338
}

1339 1340 1341 1342 1343 1344 1345 1346
unsigned long reclaim_clean_pages_from_list(struct zone *zone,
					    struct list_head *page_list)
{
	struct scan_control sc = {
		.gfp_mask = GFP_KERNEL,
		.priority = DEF_PRIORITY,
		.may_unmap = 1,
	};
1347
	unsigned long ret;
1348 1349 1350 1351
	struct page *page, *next;
	LIST_HEAD(clean_pages);

	list_for_each_entry_safe(page, next, page_list, lru) {
1352
		if (page_is_file_cache(page) && !PageDirty(page) &&
1353
		    !__PageMovable(page)) {
1354 1355 1356 1357 1358
			ClearPageActive(page);
			list_move(&page->lru, &clean_pages);
		}
	}

M
Mel Gorman 已提交
1359
	ret = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
S
Shaohua Li 已提交
1360
			TTU_IGNORE_ACCESS, NULL, true);
1361
	list_splice(&clean_pages, page_list);
M
Mel Gorman 已提交
1362
	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -ret);
1363 1364 1365
	return ret;
}

A
Andy Whitcroft 已提交
1366 1367 1368 1369 1370 1371 1372 1373 1374 1375
/*
 * Attempt to remove the specified page from its LRU.  Only take this page
 * if it is of the appropriate PageActive status.  Pages which are being
 * freed elsewhere are also ignored.
 *
 * page:	page to consider
 * mode:	one of the LRU isolation modes defined above
 *
 * returns 0 on success, -ve errno on failure.
 */
1376
int __isolate_lru_page(struct page *page, isolate_mode_t mode)
A
Andy Whitcroft 已提交
1377 1378 1379 1380 1381 1382 1383
{
	int ret = -EINVAL;

	/* Only take pages on the LRU. */
	if (!PageLRU(page))
		return ret;

M
Minchan Kim 已提交
1384 1385
	/* Compaction should not handle unevictable pages but CMA can do so */
	if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
L
Lee Schermerhorn 已提交
1386 1387
		return ret;

A
Andy Whitcroft 已提交
1388
	ret = -EBUSY;
K
KAMEZAWA Hiroyuki 已提交
1389

1390 1391 1392 1393 1394 1395 1396 1397
	/*
	 * To minimise LRU disruption, the caller can indicate that it only
	 * wants to isolate pages it will be able to operate on without
	 * blocking - clean pages for the most part.
	 *
	 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
	 * that it is possible to migrate without blocking
	 */
1398
	if (mode & ISOLATE_ASYNC_MIGRATE) {
1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415
		/* All the caller can do on PageWriteback is block */
		if (PageWriteback(page))
			return ret;

		if (PageDirty(page)) {
			struct address_space *mapping;

			/*
			 * Only pages without mappings or that have a
			 * ->migratepage callback are possible to migrate
			 * without blocking
			 */
			mapping = page_mapping(page);
			if (mapping && !mapping->a_ops->migratepage)
				return ret;
		}
	}
1416

1417 1418 1419
	if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
		return ret;

A
Andy Whitcroft 已提交
1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432
	if (likely(get_page_unless_zero(page))) {
		/*
		 * Be careful not to clear PageLRU until after we're
		 * sure the page is not being freed elsewhere -- the
		 * page release code relies on it.
		 */
		ClearPageLRU(page);
		ret = 0;
	}

	return ret;
}

1433 1434 1435 1436 1437 1438

/*
 * Update LRU sizes after isolating pages. The LRU size updates must
 * be complete before mem_cgroup_update_lru_size due to a santity check.
 */
static __always_inline void update_lru_sizes(struct lruvec *lruvec,
1439
			enum lru_list lru, unsigned long *nr_zone_taken)
1440 1441 1442 1443 1444 1445 1446 1447 1448
{
	int zid;

	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
		if (!nr_zone_taken[zid])
			continue;

		__update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
#ifdef CONFIG_MEMCG
1449
		mem_cgroup_update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1450
#endif
1451 1452
	}

1453 1454
}

L
Linus Torvalds 已提交
1455
/*
1456
 * zone_lru_lock is heavily contended.  Some of the functions that
L
Linus Torvalds 已提交
1457 1458 1459 1460 1461 1462 1463 1464 1465
 * shrink the lists perform better by taking out a batch of pages
 * and working on them outside the LRU lock.
 *
 * For pagecache intensive workloads, this function is the hottest
 * spot in the kernel (apart from copy_*_user functions).
 *
 * Appropriate locks must be held before calling this function.
 *
 * @nr_to_scan:	The number of pages to look through on the list.
1466
 * @lruvec:	The LRU vector to pull pages from.
L
Linus Torvalds 已提交
1467
 * @dst:	The temp list to put pages on to.
H
Hugh Dickins 已提交
1468
 * @nr_scanned:	The number of pages that were scanned.
1469
 * @sc:		The scan_control struct for this reclaim session
A
Andy Whitcroft 已提交
1470
 * @mode:	One of the LRU isolation modes
1471
 * @lru:	LRU list id for isolating
L
Linus Torvalds 已提交
1472 1473 1474
 *
 * returns how many pages were moved onto *@dst.
 */
1475
static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1476
		struct lruvec *lruvec, struct list_head *dst,
1477
		unsigned long *nr_scanned, struct scan_control *sc,
1478
		isolate_mode_t mode, enum lru_list lru)
L
Linus Torvalds 已提交
1479
{
H
Hugh Dickins 已提交
1480
	struct list_head *src = &lruvec->lists[lru];
1481
	unsigned long nr_taken = 0;
M
Mel Gorman 已提交
1482
	unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
1483
	unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
1484
	unsigned long skipped = 0;
M
Mel Gorman 已提交
1485
	unsigned long scan, nr_pages;
1486
	LIST_HEAD(pages_skipped);
L
Linus Torvalds 已提交
1487

1488
	for (scan = 0; scan < nr_to_scan && nr_taken < nr_to_scan &&
1489
					!list_empty(src); scan++) {
A
Andy Whitcroft 已提交
1490 1491
		struct page *page;

L
Linus Torvalds 已提交
1492 1493 1494
		page = lru_to_page(src);
		prefetchw_prev_lru_page(page, src, flags);

1495
		VM_BUG_ON_PAGE(!PageLRU(page), page);
N
Nick Piggin 已提交
1496

1497 1498
		if (page_zonenum(page) > sc->reclaim_idx) {
			list_move(&page->lru, &pages_skipped);
1499
			nr_skipped[page_zonenum(page)]++;
1500 1501 1502
			continue;
		}

1503
		switch (__isolate_lru_page(page, mode)) {
A
Andy Whitcroft 已提交
1504
		case 0:
M
Mel Gorman 已提交
1505 1506 1507
			nr_pages = hpage_nr_pages(page);
			nr_taken += nr_pages;
			nr_zone_taken[page_zonenum(page)] += nr_pages;
A
Andy Whitcroft 已提交
1508 1509 1510 1511 1512 1513 1514
			list_move(&page->lru, dst);
			break;

		case -EBUSY:
			/* else it is being freed elsewhere */
			list_move(&page->lru, src);
			continue;
1515

A
Andy Whitcroft 已提交
1516 1517 1518
		default:
			BUG();
		}
L
Linus Torvalds 已提交
1519 1520
	}

1521 1522 1523 1524 1525 1526 1527
	/*
	 * Splice any skipped pages to the start of the LRU list. Note that
	 * this disrupts the LRU order when reclaiming for lower zones but
	 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
	 * scanning would soon rescan the same pages to skip and put the
	 * system at risk of premature OOM.
	 */
1528 1529 1530
	if (!list_empty(&pages_skipped)) {
		int zid;

1531
		list_splice(&pages_skipped, src);
1532 1533 1534 1535 1536
		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
			if (!nr_skipped[zid])
				continue;

			__count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1537
			skipped += nr_skipped[zid];
1538 1539
		}
	}
1540
	*nr_scanned = scan;
1541
	trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
1542
				    scan, skipped, nr_taken, mode, lru);
1543
	update_lru_sizes(lruvec, lru, nr_zone_taken);
L
Linus Torvalds 已提交
1544 1545 1546
	return nr_taken;
}

1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557
/**
 * isolate_lru_page - tries to isolate a page from its LRU list
 * @page: page to isolate from its LRU list
 *
 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
 * vmstat statistic corresponding to whatever LRU list the page was on.
 *
 * Returns 0 if the page was removed from an LRU list.
 * Returns -EBUSY if the page was not on an LRU list.
 *
 * The returned page will have PageLRU() cleared.  If it was found on
L
Lee Schermerhorn 已提交
1558 1559 1560
 * the active list, it will have PageActive set.  If it was found on
 * the unevictable list, it will have the PageUnevictable bit set. That flag
 * may need to be cleared by the caller before letting the page go.
1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575
 *
 * The vmstat statistic corresponding to the list on which the page was
 * found will be decremented.
 *
 * Restrictions:
 * (1) Must be called with an elevated refcount on the page. This is a
 *     fundamentnal difference from isolate_lru_pages (which is called
 *     without a stable reference).
 * (2) the lru_lock must not be held.
 * (3) interrupts must be enabled.
 */
int isolate_lru_page(struct page *page)
{
	int ret = -EBUSY;

1576
	VM_BUG_ON_PAGE(!page_count(page), page);
1577
	WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
1578

1579 1580
	if (PageLRU(page)) {
		struct zone *zone = page_zone(page);
1581
		struct lruvec *lruvec;
1582

1583
		spin_lock_irq(zone_lru_lock(zone));
M
Mel Gorman 已提交
1584
		lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
1585
		if (PageLRU(page)) {
L
Lee Schermerhorn 已提交
1586
			int lru = page_lru(page);
1587
			get_page(page);
1588
			ClearPageLRU(page);
1589 1590
			del_page_from_lru_list(page, lruvec, lru);
			ret = 0;
1591
		}
1592
		spin_unlock_irq(zone_lru_lock(zone));
1593 1594 1595 1596
	}
	return ret;
}

1597
/*
F
Fengguang Wu 已提交
1598 1599 1600 1601 1602
 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
 * then get resheduled. When there are massive number of tasks doing page
 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
 * the LRU list will go small and be scanned faster than necessary, leading to
 * unnecessary swapping, thrashing and OOM.
1603
 */
M
Mel Gorman 已提交
1604
static int too_many_isolated(struct pglist_data *pgdat, int file,
1605 1606 1607 1608 1609 1610 1611
		struct scan_control *sc)
{
	unsigned long inactive, isolated;

	if (current_is_kswapd())
		return 0;

1612
	if (!sane_reclaim(sc))
1613 1614 1615
		return 0;

	if (file) {
M
Mel Gorman 已提交
1616 1617
		inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
		isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
1618
	} else {
M
Mel Gorman 已提交
1619 1620
		inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
		isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
1621 1622
	}

1623 1624 1625 1626 1627
	/*
	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
	 * won't get blocked by normal direct-reclaimers, forming a circular
	 * deadlock.
	 */
1628
	if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
1629 1630
		inactive >>= 3;

1631 1632 1633
	return isolated > inactive;
}

1634
static noinline_for_stack void
H
Hugh Dickins 已提交
1635
putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1636
{
1637
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
M
Mel Gorman 已提交
1638
	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1639
	LIST_HEAD(pages_to_free);
1640 1641 1642 1643 1644

	/*
	 * Put back any unfreeable pages.
	 */
	while (!list_empty(page_list)) {
1645
		struct page *page = lru_to_page(page_list);
1646
		int lru;
1647

1648
		VM_BUG_ON_PAGE(PageLRU(page), page);
1649
		list_del(&page->lru);
1650
		if (unlikely(!page_evictable(page))) {
M
Mel Gorman 已提交
1651
			spin_unlock_irq(&pgdat->lru_lock);
1652
			putback_lru_page(page);
M
Mel Gorman 已提交
1653
			spin_lock_irq(&pgdat->lru_lock);
1654 1655
			continue;
		}
1656

M
Mel Gorman 已提交
1657
		lruvec = mem_cgroup_page_lruvec(page, pgdat);
1658

1659
		SetPageLRU(page);
1660
		lru = page_lru(page);
1661 1662
		add_page_to_lru_list(page, lruvec, lru);

1663 1664
		if (is_active_lru(lru)) {
			int file = is_file_lru(lru);
1665 1666
			int numpages = hpage_nr_pages(page);
			reclaim_stat->recent_rotated[file] += numpages;
1667
		}
1668 1669 1670
		if (put_page_testzero(page)) {
			__ClearPageLRU(page);
			__ClearPageActive(page);
1671
			del_page_from_lru_list(page, lruvec, lru);
1672 1673

			if (unlikely(PageCompound(page))) {
M
Mel Gorman 已提交
1674
				spin_unlock_irq(&pgdat->lru_lock);
1675
				mem_cgroup_uncharge(page);
1676
				(*get_compound_page_dtor(page))(page);
M
Mel Gorman 已提交
1677
				spin_lock_irq(&pgdat->lru_lock);
1678 1679
			} else
				list_add(&page->lru, &pages_to_free);
1680 1681 1682
		}
	}

1683 1684 1685 1686
	/*
	 * To save our caller's stack, now use input list for pages to free.
	 */
	list_splice(&pages_to_free, page_list);
1687 1688
}

1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701
/*
 * If a kernel thread (such as nfsd for loop-back mounts) services
 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
 * In that case we should only throttle if the backing device it is
 * writing to is congested.  In other cases it is safe to throttle.
 */
static int current_may_throttle(void)
{
	return !(current->flags & PF_LESS_THROTTLE) ||
		current->backing_dev_info == NULL ||
		bdi_write_congested(current->backing_dev_info);
}

L
Linus Torvalds 已提交
1702
/*
1703
 * shrink_inactive_list() is a helper for shrink_node().  It returns the number
A
Andrew Morton 已提交
1704
 * of reclaimed pages
L
Linus Torvalds 已提交
1705
 */
1706
static noinline_for_stack unsigned long
1707
shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1708
		     struct scan_control *sc, enum lru_list lru)
L
Linus Torvalds 已提交
1709 1710
{
	LIST_HEAD(page_list);
1711
	unsigned long nr_scanned;
1712
	unsigned long nr_reclaimed = 0;
1713
	unsigned long nr_taken;
1714
	struct reclaim_stat stat = {};
1715
	isolate_mode_t isolate_mode = 0;
1716
	int file = is_file_lru(lru);
M
Mel Gorman 已提交
1717
	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1718
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1719

M
Mel Gorman 已提交
1720
	while (unlikely(too_many_isolated(pgdat, file, sc))) {
1721
		congestion_wait(BLK_RW_ASYNC, HZ/10);
1722 1723 1724 1725 1726 1727

		/* We are about to die and free our memory. Return now. */
		if (fatal_signal_pending(current))
			return SWAP_CLUSTER_MAX;
	}

L
Linus Torvalds 已提交
1728
	lru_add_drain();
1729 1730

	if (!sc->may_unmap)
1731
		isolate_mode |= ISOLATE_UNMAPPED;
1732

M
Mel Gorman 已提交
1733
	spin_lock_irq(&pgdat->lru_lock);
1734

1735 1736
	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
				     &nr_scanned, sc, isolate_mode, lru);
1737

M
Mel Gorman 已提交
1738
	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1739
	reclaim_stat->recent_scanned[file] += nr_taken;
1740

1741
	if (global_reclaim(sc)) {
1742
		if (current_is_kswapd())
M
Mel Gorman 已提交
1743
			__count_vm_events(PGSCAN_KSWAPD, nr_scanned);
1744
		else
M
Mel Gorman 已提交
1745
			__count_vm_events(PGSCAN_DIRECT, nr_scanned);
1746
	}
M
Mel Gorman 已提交
1747
	spin_unlock_irq(&pgdat->lru_lock);
1748

1749
	if (nr_taken == 0)
1750
		return 0;
A
Andy Whitcroft 已提交
1751

S
Shaohua Li 已提交
1752
	nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, 0,
1753
				&stat, false);
1754

M
Mel Gorman 已提交
1755
	spin_lock_irq(&pgdat->lru_lock);
1756

Y
Ying Han 已提交
1757 1758
	if (global_reclaim(sc)) {
		if (current_is_kswapd())
M
Mel Gorman 已提交
1759
			__count_vm_events(PGSTEAL_KSWAPD, nr_reclaimed);
Y
Ying Han 已提交
1760
		else
M
Mel Gorman 已提交
1761
			__count_vm_events(PGSTEAL_DIRECT, nr_reclaimed);
Y
Ying Han 已提交
1762
	}
N
Nick Piggin 已提交
1763

1764
	putback_inactive_pages(lruvec, &page_list);
1765

M
Mel Gorman 已提交
1766
	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
1767

M
Mel Gorman 已提交
1768
	spin_unlock_irq(&pgdat->lru_lock);
1769

1770
	mem_cgroup_uncharge_list(&page_list);
1771
	free_hot_cold_page_list(&page_list, true);
1772

1773 1774 1775 1776 1777 1778 1779 1780 1781 1782
	/*
	 * If reclaim is isolating dirty pages under writeback, it implies
	 * that the long-lived page allocation rate is exceeding the page
	 * laundering rate. Either the global limits are not being effective
	 * at throttling processes due to the page distribution throughout
	 * zones or there is heavy usage of a slow backing device. The
	 * only option is to throttle from reclaim context which is not ideal
	 * as there is no guarantee the dirtying process is throttled in the
	 * same way balance_dirty_pages() manages.
	 *
1783 1784 1785
	 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
	 * of pages under pages flagged for immediate reclaim and stall if any
	 * are encountered in the nr_immediate check below.
1786
	 */
1787
	if (stat.nr_writeback && stat.nr_writeback == nr_taken)
M
Mel Gorman 已提交
1788
		set_bit(PGDAT_WRITEBACK, &pgdat->flags);
1789

1790
	/*
1791 1792
	 * Legacy memcg will stall in page writeback so avoid forcibly
	 * stalling here.
1793
	 */
1794
	if (sane_reclaim(sc)) {
1795 1796 1797 1798
		/*
		 * Tag a zone as congested if all the dirty pages scanned were
		 * backed by a congested BDI and wait_iff_congested will stall.
		 */
1799
		if (stat.nr_dirty && stat.nr_dirty == stat.nr_congested)
M
Mel Gorman 已提交
1800
			set_bit(PGDAT_CONGESTED, &pgdat->flags);
1801

1802 1803
		/*
		 * If dirty pages are scanned that are not queued for IO, it
1804 1805 1806 1807 1808 1809 1810 1811 1812
		 * implies that flushers are not doing their job. This can
		 * happen when memory pressure pushes dirty pages to the end of
		 * the LRU before the dirty limits are breached and the dirty
		 * data has expired. It can also happen when the proportion of
		 * dirty pages grows not through writes but through memory
		 * pressure reclaiming all the clean cache. And in some cases,
		 * the flushers simply cannot keep up with the allocation
		 * rate. Nudge the flusher threads in case they are asleep, but
		 * also allow kswapd to start writing pages during reclaim.
1813
		 */
1814 1815
		if (stat.nr_unqueued_dirty == nr_taken) {
			wakeup_flusher_threads(0, WB_REASON_VMSCAN);
M
Mel Gorman 已提交
1816
			set_bit(PGDAT_DIRTY, &pgdat->flags);
1817
		}
1818 1819

		/*
1820 1821 1822
		 * If kswapd scans pages marked marked for immediate
		 * reclaim and under writeback (nr_immediate), it implies
		 * that pages are cycling through the LRU faster than
1823 1824
		 * they are written so also forcibly stall.
		 */
1825
		if (stat.nr_immediate && current_may_throttle())
1826
			congestion_wait(BLK_RW_ASYNC, HZ/10);
1827
	}
1828

1829 1830 1831 1832 1833
	/*
	 * Stall direct reclaim for IO completions if underlying BDIs or zone
	 * is congested. Allow kswapd to continue until it starts encountering
	 * unqueued dirty pages or cycling through the LRU too quickly.
	 */
1834 1835
	if (!sc->hibernation_mode && !current_is_kswapd() &&
	    current_may_throttle())
M
Mel Gorman 已提交
1836
		wait_iff_congested(pgdat, BLK_RW_ASYNC, HZ/10);
1837

M
Mel Gorman 已提交
1838 1839
	trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
			nr_scanned, nr_reclaimed,
1840 1841 1842 1843
			stat.nr_dirty,  stat.nr_writeback,
			stat.nr_congested, stat.nr_immediate,
			stat.nr_activate, stat.nr_ref_keep,
			stat.nr_unmap_fail,
1844
			sc->priority, file);
1845
	return nr_reclaimed;
L
Linus Torvalds 已提交
1846 1847 1848 1849 1850 1851 1852 1853 1854
}

/*
 * This moves pages from the active list to the inactive list.
 *
 * We move them the other way if the page is referenced by one or more
 * processes, from rmap.
 *
 * If the pages are mostly unmapped, the processing is fast and it is
1855
 * appropriate to hold zone_lru_lock across the whole operation.  But if
L
Linus Torvalds 已提交
1856
 * the pages are mapped, the processing is slow (page_referenced()) so we
1857
 * should drop zone_lru_lock around each page.  It's impossible to balance
L
Linus Torvalds 已提交
1858 1859 1860 1861
 * this, so instead we remove the pages from the LRU while processing them.
 * It is safe to rely on PG_active against the non-LRU pages in here because
 * nobody will play with that bit on a non-LRU page.
 *
1862
 * The downside is that we have to touch page->_refcount against each page.
L
Linus Torvalds 已提交
1863
 * But we had to alter page->flags anyway.
1864 1865
 *
 * Returns the number of pages moved to the given lru.
L
Linus Torvalds 已提交
1866
 */
1867

1868
static unsigned move_active_pages_to_lru(struct lruvec *lruvec,
1869
				     struct list_head *list,
1870
				     struct list_head *pages_to_free,
1871 1872
				     enum lru_list lru)
{
M
Mel Gorman 已提交
1873
	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1874
	struct page *page;
1875
	int nr_pages;
1876
	int nr_moved = 0;
1877 1878 1879

	while (!list_empty(list)) {
		page = lru_to_page(list);
M
Mel Gorman 已提交
1880
		lruvec = mem_cgroup_page_lruvec(page, pgdat);
1881

1882
		VM_BUG_ON_PAGE(PageLRU(page), page);
1883 1884
		SetPageLRU(page);

1885
		nr_pages = hpage_nr_pages(page);
M
Mel Gorman 已提交
1886
		update_lru_size(lruvec, lru, page_zonenum(page), nr_pages);
1887
		list_move(&page->lru, &lruvec->lists[lru]);
1888

1889 1890 1891
		if (put_page_testzero(page)) {
			__ClearPageLRU(page);
			__ClearPageActive(page);
1892
			del_page_from_lru_list(page, lruvec, lru);
1893 1894

			if (unlikely(PageCompound(page))) {
M
Mel Gorman 已提交
1895
				spin_unlock_irq(&pgdat->lru_lock);
1896
				mem_cgroup_uncharge(page);
1897
				(*get_compound_page_dtor(page))(page);
M
Mel Gorman 已提交
1898
				spin_lock_irq(&pgdat->lru_lock);
1899 1900
			} else
				list_add(&page->lru, pages_to_free);
1901 1902
		} else {
			nr_moved += nr_pages;
1903 1904
		}
	}
1905

1906
	if (!is_active_lru(lru))
1907
		__count_vm_events(PGDEACTIVATE, nr_moved);
1908 1909

	return nr_moved;
1910
}
1911

H
Hugh Dickins 已提交
1912
static void shrink_active_list(unsigned long nr_to_scan,
1913
			       struct lruvec *lruvec,
1914
			       struct scan_control *sc,
1915
			       enum lru_list lru)
L
Linus Torvalds 已提交
1916
{
1917
	unsigned long nr_taken;
H
Hugh Dickins 已提交
1918
	unsigned long nr_scanned;
1919
	unsigned long vm_flags;
L
Linus Torvalds 已提交
1920
	LIST_HEAD(l_hold);	/* The pages which were snipped off */
1921
	LIST_HEAD(l_active);
1922
	LIST_HEAD(l_inactive);
L
Linus Torvalds 已提交
1923
	struct page *page;
1924
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1925 1926
	unsigned nr_deactivate, nr_activate;
	unsigned nr_rotated = 0;
1927
	isolate_mode_t isolate_mode = 0;
1928
	int file = is_file_lru(lru);
M
Mel Gorman 已提交
1929
	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
L
Linus Torvalds 已提交
1930 1931

	lru_add_drain();
1932 1933

	if (!sc->may_unmap)
1934
		isolate_mode |= ISOLATE_UNMAPPED;
1935

M
Mel Gorman 已提交
1936
	spin_lock_irq(&pgdat->lru_lock);
1937

1938 1939
	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
				     &nr_scanned, sc, isolate_mode, lru);
1940

M
Mel Gorman 已提交
1941
	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1942
	reclaim_stat->recent_scanned[file] += nr_taken;
1943

M
Mel Gorman 已提交
1944
	__count_vm_events(PGREFILL, nr_scanned);
1945

M
Mel Gorman 已提交
1946
	spin_unlock_irq(&pgdat->lru_lock);
L
Linus Torvalds 已提交
1947 1948 1949 1950 1951

	while (!list_empty(&l_hold)) {
		cond_resched();
		page = lru_to_page(&l_hold);
		list_del(&page->lru);
1952

1953
		if (unlikely(!page_evictable(page))) {
L
Lee Schermerhorn 已提交
1954 1955 1956 1957
			putback_lru_page(page);
			continue;
		}

1958 1959 1960 1961 1962 1963 1964 1965
		if (unlikely(buffer_heads_over_limit)) {
			if (page_has_private(page) && trylock_page(page)) {
				if (page_has_private(page))
					try_to_release_page(page, 0);
				unlock_page(page);
			}
		}

1966 1967
		if (page_referenced(page, 0, sc->target_mem_cgroup,
				    &vm_flags)) {
1968
			nr_rotated += hpage_nr_pages(page);
1969 1970 1971 1972 1973 1974 1975 1976 1977
			/*
			 * Identify referenced, file-backed active pages and
			 * give them one more trip around the active list. So
			 * that executable code get better chances to stay in
			 * memory under moderate memory pressure.  Anon pages
			 * are not likely to be evicted by use-once streaming
			 * IO, plus JVM can create lots of anon VM_EXEC pages,
			 * so we ignore them here.
			 */
1978
			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1979 1980 1981 1982
				list_add(&page->lru, &l_active);
				continue;
			}
		}
1983

1984
		ClearPageActive(page);	/* we are de-activating */
L
Linus Torvalds 已提交
1985 1986 1987
		list_add(&page->lru, &l_inactive);
	}

1988
	/*
1989
	 * Move pages back to the lru list.
1990
	 */
M
Mel Gorman 已提交
1991
	spin_lock_irq(&pgdat->lru_lock);
1992
	/*
1993 1994 1995
	 * Count referenced pages from currently used mappings as rotated,
	 * even though only some of them are actually re-activated.  This
	 * helps balance scan pressure between file and anonymous pages in
1996
	 * get_scan_count.
1997
	 */
1998
	reclaim_stat->recent_rotated[file] += nr_rotated;
1999

2000 2001
	nr_activate = move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
	nr_deactivate = move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
M
Mel Gorman 已提交
2002 2003
	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
	spin_unlock_irq(&pgdat->lru_lock);
2004

2005
	mem_cgroup_uncharge_list(&l_hold);
2006
	free_hot_cold_page_list(&l_hold, true);
2007 2008
	trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
			nr_deactivate, nr_rotated, sc->priority, file);
L
Linus Torvalds 已提交
2009 2010
}

2011 2012 2013
/*
 * The inactive anon list should be small enough that the VM never has
 * to do too much work.
2014
 *
2015 2016 2017
 * The inactive file list should be small enough to leave most memory
 * to the established workingset on the scan-resistant active list,
 * but large enough to avoid thrashing the aggregate readahead window.
2018
 *
2019 2020
 * Both inactive lists should also be large enough that each inactive
 * page has a chance to be referenced again before it is reclaimed.
2021
 *
2022 2023 2024
 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
 * on this LRU, maintained by the pageout code. A zone->inactive_ratio
 * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
2025
 *
2026 2027 2028 2029 2030 2031 2032 2033 2034 2035
 * total     target    max
 * memory    ratio     inactive
 * -------------------------------------
 *   10MB       1         5MB
 *  100MB       1        50MB
 *    1GB       3       250MB
 *   10GB      10       0.9GB
 *  100GB      31         3GB
 *    1TB     101        10GB
 *   10TB     320        32GB
2036
 */
2037
static bool inactive_list_is_low(struct lruvec *lruvec, bool file,
2038
						struct scan_control *sc, bool trace)
2039
{
2040
	unsigned long inactive_ratio;
2041 2042 2043
	unsigned long inactive, active;
	enum lru_list inactive_lru = file * LRU_FILE;
	enum lru_list active_lru = file * LRU_FILE + LRU_ACTIVE;
2044
	unsigned long gb;
2045

2046 2047 2048 2049 2050 2051
	/*
	 * If we don't have swap space, anonymous page deactivation
	 * is pointless.
	 */
	if (!file && !total_swap_pages)
		return false;
2052

2053 2054
	inactive = lruvec_lru_size(lruvec, inactive_lru, sc->reclaim_idx);
	active = lruvec_lru_size(lruvec, active_lru, sc->reclaim_idx);
2055

2056 2057 2058
	gb = (inactive + active) >> (30 - PAGE_SHIFT);
	if (gb)
		inactive_ratio = int_sqrt(10 * gb);
2059
	else
2060 2061
		inactive_ratio = 1;

2062
	if (trace)
2063
		trace_mm_vmscan_inactive_list_is_low(lruvec_pgdat(lruvec)->node_id,
2064
				sc->reclaim_idx,
2065 2066 2067 2068
				lruvec_lru_size(lruvec, inactive_lru, MAX_NR_ZONES), inactive,
				lruvec_lru_size(lruvec, active_lru, MAX_NR_ZONES), active,
				inactive_ratio, file);

2069
	return inactive * inactive_ratio < active;
2070 2071
}

2072
static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2073
				 struct lruvec *lruvec, struct scan_control *sc)
2074
{
2075
	if (is_active_lru(lru)) {
2076
		if (inactive_list_is_low(lruvec, is_file_lru(lru), sc, true))
2077
			shrink_active_list(nr_to_scan, lruvec, sc, lru);
2078 2079 2080
		return 0;
	}

2081
	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2082 2083
}

2084 2085 2086 2087 2088 2089 2090
enum scan_balance {
	SCAN_EQUAL,
	SCAN_FRACT,
	SCAN_ANON,
	SCAN_FILE,
};

2091 2092 2093 2094 2095 2096
/*
 * Determine how aggressively the anon and file LRU lists should be
 * scanned.  The relative value of each set of LRU lists is determined
 * by looking at the fraction of the pages scanned we did rotate back
 * onto the active list instead of evict.
 *
W
Wanpeng Li 已提交
2097 2098
 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
2099
 */
2100
static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg,
2101 2102
			   struct scan_control *sc, unsigned long *nr,
			   unsigned long *lru_pages)
2103
{
2104
	int swappiness = mem_cgroup_swappiness(memcg);
2105 2106 2107
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
	u64 fraction[2];
	u64 denominator = 0;	/* gcc */
M
Mel Gorman 已提交
2108
	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2109
	unsigned long anon_prio, file_prio;
2110
	enum scan_balance scan_balance;
2111
	unsigned long anon, file;
2112
	unsigned long ap, fp;
H
Hugh Dickins 已提交
2113
	enum lru_list lru;
2114 2115

	/* If we have no swap space, do not bother scanning anon pages. */
2116
	if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
2117
		scan_balance = SCAN_FILE;
2118 2119
		goto out;
	}
2120

2121 2122 2123 2124 2125 2126 2127
	/*
	 * Global reclaim will swap to prevent OOM even with no
	 * swappiness, but memcg users want to use this knob to
	 * disable swapping for individual groups completely when
	 * using the memory controller's swap limit feature would be
	 * too expensive.
	 */
2128
	if (!global_reclaim(sc) && !swappiness) {
2129
		scan_balance = SCAN_FILE;
2130 2131 2132 2133 2134 2135 2136 2137
		goto out;
	}

	/*
	 * Do not apply any pressure balancing cleverness when the
	 * system is close to OOM, scan both anon and file equally
	 * (unless the swappiness setting disagrees with swapping).
	 */
2138
	if (!sc->priority && swappiness) {
2139
		scan_balance = SCAN_EQUAL;
2140 2141 2142
		goto out;
	}

2143 2144 2145 2146 2147 2148 2149 2150 2151 2152
	/*
	 * Prevent the reclaimer from falling into the cache trap: as
	 * cache pages start out inactive, every cache fault will tip
	 * the scan balance towards the file LRU.  And as the file LRU
	 * shrinks, so does the window for rotation from references.
	 * This means we have a runaway feedback loop where a tiny
	 * thrashing file LRU becomes infinitely more attractive than
	 * anon pages.  Try to detect this based on file LRU size.
	 */
	if (global_reclaim(sc)) {
M
Mel Gorman 已提交
2153 2154 2155 2156
		unsigned long pgdatfile;
		unsigned long pgdatfree;
		int z;
		unsigned long total_high_wmark = 0;
2157

M
Mel Gorman 已提交
2158 2159 2160 2161 2162 2163
		pgdatfree = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
		pgdatfile = node_page_state(pgdat, NR_ACTIVE_FILE) +
			   node_page_state(pgdat, NR_INACTIVE_FILE);

		for (z = 0; z < MAX_NR_ZONES; z++) {
			struct zone *zone = &pgdat->node_zones[z];
2164
			if (!managed_zone(zone))
M
Mel Gorman 已提交
2165 2166 2167 2168
				continue;

			total_high_wmark += high_wmark_pages(zone);
		}
2169

M
Mel Gorman 已提交
2170
		if (unlikely(pgdatfile + pgdatfree <= total_high_wmark)) {
2171 2172 2173 2174 2175
			scan_balance = SCAN_ANON;
			goto out;
		}
	}

2176
	/*
2177 2178 2179 2180 2181 2182 2183
	 * If there is enough inactive page cache, i.e. if the size of the
	 * inactive list is greater than that of the active list *and* the
	 * inactive list actually has some pages to scan on this priority, we
	 * do not reclaim anything from the anonymous working set right now.
	 * Without the second condition we could end up never scanning an
	 * lruvec even if it has plenty of old anonymous pages unless the
	 * system is under heavy pressure.
2184
	 */
2185
	if (!inactive_list_is_low(lruvec, true, sc, false) &&
2186
	    lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, sc->reclaim_idx) >> sc->priority) {
2187
		scan_balance = SCAN_FILE;
2188 2189 2190
		goto out;
	}

2191 2192
	scan_balance = SCAN_FRACT;

2193 2194 2195 2196
	/*
	 * With swappiness at 100, anonymous and file have the same priority.
	 * This scanning priority is essentially the inverse of IO cost.
	 */
2197
	anon_prio = swappiness;
H
Hugh Dickins 已提交
2198
	file_prio = 200 - anon_prio;
2199

2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210
	/*
	 * OK, so we have swap space and a fair amount of page cache
	 * pages.  We use the recently rotated / recently scanned
	 * ratios to determine how valuable each cache is.
	 *
	 * Because workloads change over time (and to avoid overflow)
	 * we keep these statistics as a floating average, which ends
	 * up weighing recent references more than old ones.
	 *
	 * anon in [0], file in [1]
	 */
2211

2212 2213 2214 2215
	anon  = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON, MAX_NR_ZONES) +
		lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, MAX_NR_ZONES);
	file  = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE, MAX_NR_ZONES) +
		lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, MAX_NR_ZONES);
2216

M
Mel Gorman 已提交
2217
	spin_lock_irq(&pgdat->lru_lock);
2218 2219 2220
	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
		reclaim_stat->recent_scanned[0] /= 2;
		reclaim_stat->recent_rotated[0] /= 2;
2221 2222
	}

2223 2224 2225
	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
		reclaim_stat->recent_scanned[1] /= 2;
		reclaim_stat->recent_rotated[1] /= 2;
2226 2227 2228
	}

	/*
2229 2230 2231
	 * The amount of pressure on anon vs file pages is inversely
	 * proportional to the fraction of recently scanned pages on
	 * each list that were recently referenced and in active use.
2232
	 */
2233
	ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
2234
	ap /= reclaim_stat->recent_rotated[0] + 1;
2235

2236
	fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
2237
	fp /= reclaim_stat->recent_rotated[1] + 1;
M
Mel Gorman 已提交
2238
	spin_unlock_irq(&pgdat->lru_lock);
2239

2240 2241 2242 2243
	fraction[0] = ap;
	fraction[1] = fp;
	denominator = ap + fp + 1;
out:
2244 2245 2246 2247 2248
	*lru_pages = 0;
	for_each_evictable_lru(lru) {
		int file = is_file_lru(lru);
		unsigned long size;
		unsigned long scan;
2249

2250 2251 2252 2253 2254 2255 2256 2257
		size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
		scan = size >> sc->priority;
		/*
		 * If the cgroup's already been deleted, make sure to
		 * scrape out the remaining cache.
		 */
		if (!scan && !mem_cgroup_online(memcg))
			scan = min(size, SWAP_CLUSTER_MAX);
2258

2259 2260 2261 2262 2263
		switch (scan_balance) {
		case SCAN_EQUAL:
			/* Scan lists relative to size */
			break;
		case SCAN_FRACT:
2264
			/*
2265 2266
			 * Scan types proportional to swappiness and
			 * their relative recent reclaim efficiency.
2267
			 */
2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281
			scan = div64_u64(scan * fraction[file],
					 denominator);
			break;
		case SCAN_FILE:
		case SCAN_ANON:
			/* Scan one type exclusively */
			if ((scan_balance == SCAN_FILE) != file) {
				size = 0;
				scan = 0;
			}
			break;
		default:
			/* Look ma, no brain */
			BUG();
2282
		}
2283 2284 2285

		*lru_pages += size;
		nr[lru] = scan;
2286
	}
2287
}
2288

2289
/*
2290
 * This is a basic per-node page freer.  Used by both kswapd and direct reclaim.
2291
 */
2292
static void shrink_node_memcg(struct pglist_data *pgdat, struct mem_cgroup *memcg,
2293
			      struct scan_control *sc, unsigned long *lru_pages)
2294
{
2295
	struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
2296
	unsigned long nr[NR_LRU_LISTS];
2297
	unsigned long targets[NR_LRU_LISTS];
2298 2299 2300 2301 2302
	unsigned long nr_to_scan;
	enum lru_list lru;
	unsigned long nr_reclaimed = 0;
	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
	struct blk_plug plug;
2303
	bool scan_adjusted;
2304

2305
	get_scan_count(lruvec, memcg, sc, nr, lru_pages);
2306

2307 2308 2309
	/* Record the original scan target for proportional adjustments later */
	memcpy(targets, nr, sizeof(nr));

2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323
	/*
	 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
	 * event that can occur when there is little memory pressure e.g.
	 * multiple streaming readers/writers. Hence, we do not abort scanning
	 * when the requested number of pages are reclaimed when scanning at
	 * DEF_PRIORITY on the assumption that the fact we are direct
	 * reclaiming implies that kswapd is not keeping up and it is best to
	 * do a batch of work at once. For memcg reclaim one check is made to
	 * abort proportional reclaim if either the file or anon lru has already
	 * dropped to zero at the first pass.
	 */
	scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
			 sc->priority == DEF_PRIORITY);

2324 2325 2326
	blk_start_plug(&plug);
	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
					nr[LRU_INACTIVE_FILE]) {
2327 2328 2329
		unsigned long nr_anon, nr_file, percentage;
		unsigned long nr_scanned;

2330 2331 2332 2333 2334 2335 2336 2337 2338
		for_each_evictable_lru(lru) {
			if (nr[lru]) {
				nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
				nr[lru] -= nr_to_scan;

				nr_reclaimed += shrink_list(lru, nr_to_scan,
							    lruvec, sc);
			}
		}
2339

2340 2341
		cond_resched();

2342 2343 2344 2345 2346
		if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
			continue;

		/*
		 * For kswapd and memcg, reclaim at least the number of pages
2347
		 * requested. Ensure that the anon and file LRUs are scanned
2348 2349 2350 2351 2352 2353 2354
		 * proportionally what was requested by get_scan_count(). We
		 * stop reclaiming one LRU and reduce the amount scanning
		 * proportional to the original scan target.
		 */
		nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
		nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];

2355 2356 2357 2358 2359 2360 2361 2362 2363
		/*
		 * It's just vindictive to attack the larger once the smaller
		 * has gone to zero.  And given the way we stop scanning the
		 * smaller below, this makes sure that we only make one nudge
		 * towards proportionality once we've got nr_to_reclaim.
		 */
		if (!nr_file || !nr_anon)
			break;

2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394
		if (nr_file > nr_anon) {
			unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
						targets[LRU_ACTIVE_ANON] + 1;
			lru = LRU_BASE;
			percentage = nr_anon * 100 / scan_target;
		} else {
			unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
						targets[LRU_ACTIVE_FILE] + 1;
			lru = LRU_FILE;
			percentage = nr_file * 100 / scan_target;
		}

		/* Stop scanning the smaller of the LRU */
		nr[lru] = 0;
		nr[lru + LRU_ACTIVE] = 0;

		/*
		 * Recalculate the other LRU scan count based on its original
		 * scan target and the percentage scanning already complete
		 */
		lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
		nr_scanned = targets[lru] - nr[lru];
		nr[lru] = targets[lru] * (100 - percentage) / 100;
		nr[lru] -= min(nr[lru], nr_scanned);

		lru += LRU_ACTIVE;
		nr_scanned = targets[lru] - nr[lru];
		nr[lru] = targets[lru] * (100 - percentage) / 100;
		nr[lru] -= min(nr[lru], nr_scanned);

		scan_adjusted = true;
2395 2396 2397 2398 2399 2400 2401 2402
	}
	blk_finish_plug(&plug);
	sc->nr_reclaimed += nr_reclaimed;

	/*
	 * Even if we did not try to evict anon pages at all, we want to
	 * rebalance the anon lru active/inactive ratio.
	 */
2403
	if (inactive_list_is_low(lruvec, false, sc, true))
2404 2405 2406 2407
		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
				   sc, LRU_ACTIVE_ANON);
}

M
Mel Gorman 已提交
2408
/* Use reclaim/compaction for costly allocs or under memory pressure */
2409
static bool in_reclaim_compaction(struct scan_control *sc)
M
Mel Gorman 已提交
2410
{
2411
	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
M
Mel Gorman 已提交
2412
			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2413
			 sc->priority < DEF_PRIORITY - 2))
M
Mel Gorman 已提交
2414 2415 2416 2417 2418
		return true;

	return false;
}

2419
/*
M
Mel Gorman 已提交
2420 2421 2422 2423 2424
 * Reclaim/compaction is used for high-order allocation requests. It reclaims
 * order-0 pages before compacting the zone. should_continue_reclaim() returns
 * true if more pages should be reclaimed such that when the page allocator
 * calls try_to_compact_zone() that it will have enough free pages to succeed.
 * It will give up earlier than that if there is difficulty reclaiming pages.
2425
 */
2426
static inline bool should_continue_reclaim(struct pglist_data *pgdat,
2427 2428 2429 2430 2431 2432
					unsigned long nr_reclaimed,
					unsigned long nr_scanned,
					struct scan_control *sc)
{
	unsigned long pages_for_compaction;
	unsigned long inactive_lru_pages;
2433
	int z;
2434 2435

	/* If not in reclaim/compaction mode, stop */
2436
	if (!in_reclaim_compaction(sc))
2437 2438
		return false;

2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460
	/* Consider stopping depending on scan and reclaim activity */
	if (sc->gfp_mask & __GFP_REPEAT) {
		/*
		 * For __GFP_REPEAT allocations, stop reclaiming if the
		 * full LRU list has been scanned and we are still failing
		 * to reclaim pages. This full LRU scan is potentially
		 * expensive but a __GFP_REPEAT caller really wants to succeed
		 */
		if (!nr_reclaimed && !nr_scanned)
			return false;
	} else {
		/*
		 * For non-__GFP_REPEAT allocations which can presumably
		 * fail without consequence, stop if we failed to reclaim
		 * any pages from the last SWAP_CLUSTER_MAX number of
		 * pages that were scanned. This will return to the
		 * caller faster at the risk reclaim/compaction and
		 * the resulting allocation attempt fails
		 */
		if (!nr_reclaimed)
			return false;
	}
2461 2462 2463 2464 2465

	/*
	 * If we have not reclaimed enough pages for compaction and the
	 * inactive lists are large enough, continue reclaiming
	 */
2466
	pages_for_compaction = compact_gap(sc->order);
2467
	inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
2468
	if (get_nr_swap_pages() > 0)
2469
		inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
2470 2471 2472 2473 2474
	if (sc->nr_reclaimed < pages_for_compaction &&
			inactive_lru_pages > pages_for_compaction)
		return true;

	/* If compaction would go ahead or the allocation would succeed, stop */
2475 2476
	for (z = 0; z <= sc->reclaim_idx; z++) {
		struct zone *zone = &pgdat->node_zones[z];
2477
		if (!managed_zone(zone))
2478 2479 2480
			continue;

		switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
2481
		case COMPACT_SUCCESS:
2482 2483 2484 2485 2486 2487
		case COMPACT_CONTINUE:
			return false;
		default:
			/* check next zone */
			;
		}
2488
	}
2489
	return true;
2490 2491
}

2492
static bool shrink_node(pg_data_t *pgdat, struct scan_control *sc)
L
Linus Torvalds 已提交
2493
{
2494
	struct reclaim_state *reclaim_state = current->reclaim_state;
2495
	unsigned long nr_reclaimed, nr_scanned;
2496
	bool reclaimable = false;
L
Linus Torvalds 已提交
2497

2498 2499 2500
	do {
		struct mem_cgroup *root = sc->target_mem_cgroup;
		struct mem_cgroup_reclaim_cookie reclaim = {
2501
			.pgdat = pgdat,
2502 2503
			.priority = sc->priority,
		};
2504
		unsigned long node_lru_pages = 0;
2505
		struct mem_cgroup *memcg;
2506

2507 2508
		nr_reclaimed = sc->nr_reclaimed;
		nr_scanned = sc->nr_scanned;
L
Linus Torvalds 已提交
2509

2510 2511
		memcg = mem_cgroup_iter(root, NULL, &reclaim);
		do {
2512
			unsigned long lru_pages;
2513
			unsigned long reclaimed;
2514
			unsigned long scanned;
2515

2516
			if (mem_cgroup_low(root, memcg)) {
2517 2518
				if (!sc->memcg_low_reclaim) {
					sc->memcg_low_skipped = 1;
2519
					continue;
2520
				}
2521 2522 2523
				mem_cgroup_events(memcg, MEMCG_LOW, 1);
			}

2524
			reclaimed = sc->nr_reclaimed;
2525
			scanned = sc->nr_scanned;
2526

2527 2528
			shrink_node_memcg(pgdat, memcg, sc, &lru_pages);
			node_lru_pages += lru_pages;
2529

2530
			if (memcg)
2531
				shrink_slab(sc->gfp_mask, pgdat->node_id,
2532 2533 2534
					    memcg, sc->nr_scanned - scanned,
					    lru_pages);

2535 2536 2537 2538 2539
			/* Record the group's reclaim efficiency */
			vmpressure(sc->gfp_mask, memcg, false,
				   sc->nr_scanned - scanned,
				   sc->nr_reclaimed - reclaimed);

2540
			/*
2541 2542
			 * Direct reclaim and kswapd have to scan all memory
			 * cgroups to fulfill the overall scan target for the
2543
			 * node.
2544 2545 2546 2547 2548
			 *
			 * Limit reclaim, on the other hand, only cares about
			 * nr_to_reclaim pages to be reclaimed and it will
			 * retry with decreasing priority if one round over the
			 * whole hierarchy is not sufficient.
2549
			 */
2550 2551
			if (!global_reclaim(sc) &&
					sc->nr_reclaimed >= sc->nr_to_reclaim) {
2552 2553 2554
				mem_cgroup_iter_break(root, memcg);
				break;
			}
2555
		} while ((memcg = mem_cgroup_iter(root, memcg, &reclaim)));
2556

2557 2558 2559 2560
		/*
		 * Shrink the slab caches in the same proportion that
		 * the eligible LRU pages were scanned.
		 */
2561
		if (global_reclaim(sc))
2562
			shrink_slab(sc->gfp_mask, pgdat->node_id, NULL,
2563
				    sc->nr_scanned - nr_scanned,
2564
				    node_lru_pages);
2565 2566 2567 2568

		if (reclaim_state) {
			sc->nr_reclaimed += reclaim_state->reclaimed_slab;
			reclaim_state->reclaimed_slab = 0;
2569 2570
		}

2571 2572
		/* Record the subtree's reclaim efficiency */
		vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
2573 2574 2575
			   sc->nr_scanned - nr_scanned,
			   sc->nr_reclaimed - nr_reclaimed);

2576 2577 2578
		if (sc->nr_reclaimed - nr_reclaimed)
			reclaimable = true;

2579
	} while (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
2580
					 sc->nr_scanned - nr_scanned, sc));
2581

2582 2583 2584 2585 2586 2587 2588 2589 2590
	/*
	 * Kswapd gives up on balancing particular nodes after too
	 * many failures to reclaim anything from them and goes to
	 * sleep. On reclaim progress, reset the failure counter. A
	 * successful direct reclaim run will revive a dormant kswapd.
	 */
	if (reclaimable)
		pgdat->kswapd_failures = 0;

2591
	return reclaimable;
2592 2593
}

2594
/*
2595 2596 2597
 * Returns true if compaction should go ahead for a costly-order request, or
 * the allocation would already succeed without compaction. Return false if we
 * should reclaim first.
2598
 */
2599
static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2600
{
M
Mel Gorman 已提交
2601
	unsigned long watermark;
2602
	enum compact_result suitable;
2603

2604 2605 2606 2607 2608 2609 2610
	suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
	if (suitable == COMPACT_SUCCESS)
		/* Allocation should succeed already. Don't reclaim. */
		return true;
	if (suitable == COMPACT_SKIPPED)
		/* Compaction cannot yet proceed. Do reclaim. */
		return false;
2611

2612
	/*
2613 2614 2615 2616 2617 2618 2619
	 * Compaction is already possible, but it takes time to run and there
	 * are potentially other callers using the pages just freed. So proceed
	 * with reclaim to make a buffer of free pages available to give
	 * compaction a reasonable chance of completing and allocating the page.
	 * Note that we won't actually reclaim the whole buffer in one attempt
	 * as the target watermark in should_continue_reclaim() is lower. But if
	 * we are already above the high+gap watermark, don't reclaim at all.
2620
	 */
2621
	watermark = high_wmark_pages(zone) + compact_gap(sc->order);
2622

2623
	return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
2624 2625
}

L
Linus Torvalds 已提交
2626 2627 2628 2629 2630 2631 2632 2633
/*
 * This is the direct reclaim path, for page-allocating processes.  We only
 * try to reclaim pages from zones which will satisfy the caller's allocation
 * request.
 *
 * If a zone is deemed to be full of pinned pages then just give it a light
 * scan then give up on it.
 */
M
Michal Hocko 已提交
2634
static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
L
Linus Torvalds 已提交
2635
{
2636
	struct zoneref *z;
2637
	struct zone *zone;
2638 2639
	unsigned long nr_soft_reclaimed;
	unsigned long nr_soft_scanned;
2640
	gfp_t orig_mask;
2641
	pg_data_t *last_pgdat = NULL;
2642

2643 2644 2645 2646 2647
	/*
	 * If the number of buffer_heads in the machine exceeds the maximum
	 * allowed level, force direct reclaim to scan the highmem zone as
	 * highmem pages could be pinning lowmem pages storing buffer_heads
	 */
2648
	orig_mask = sc->gfp_mask;
2649
	if (buffer_heads_over_limit) {
2650
		sc->gfp_mask |= __GFP_HIGHMEM;
2651
		sc->reclaim_idx = gfp_zone(sc->gfp_mask);
2652
	}
2653

2654
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2655
					sc->reclaim_idx, sc->nodemask) {
2656 2657 2658 2659
		/*
		 * Take care memory controller reclaiming has small influence
		 * to global LRU.
		 */
2660
		if (global_reclaim(sc)) {
2661 2662
			if (!cpuset_zone_allowed(zone,
						 GFP_KERNEL | __GFP_HARDWALL))
2663
				continue;
2664

2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675
			/*
			 * If we already have plenty of memory free for
			 * compaction in this zone, don't free any more.
			 * Even though compaction is invoked for any
			 * non-zero order, only frequent costly order
			 * reclamation is disruptive enough to become a
			 * noticeable problem, like transparent huge
			 * page allocations.
			 */
			if (IS_ENABLED(CONFIG_COMPACTION) &&
			    sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2676
			    compaction_ready(zone, sc)) {
2677 2678
				sc->compaction_ready = true;
				continue;
2679
			}
2680

2681 2682 2683 2684 2685 2686 2687 2688 2689
			/*
			 * Shrink each node in the zonelist once. If the
			 * zonelist is ordered by zone (not the default) then a
			 * node may be shrunk multiple times but in that case
			 * the user prefers lower zones being preserved.
			 */
			if (zone->zone_pgdat == last_pgdat)
				continue;

2690 2691 2692 2693 2694 2695 2696
			/*
			 * This steals pages from memory cgroups over softlimit
			 * and returns the number of reclaimed pages and
			 * scanned pages. This works for global memory pressure
			 * and balancing, not for a memcg's limit.
			 */
			nr_soft_scanned = 0;
2697
			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
2698 2699 2700 2701
						sc->order, sc->gfp_mask,
						&nr_soft_scanned);
			sc->nr_reclaimed += nr_soft_reclaimed;
			sc->nr_scanned += nr_soft_scanned;
2702
			/* need some check for avoid more shrink_zone() */
2703
		}
2704

2705 2706 2707 2708
		/* See comment about same check for global reclaim above */
		if (zone->zone_pgdat == last_pgdat)
			continue;
		last_pgdat = zone->zone_pgdat;
2709
		shrink_node(zone->zone_pgdat, sc);
L
Linus Torvalds 已提交
2710
	}
2711

2712 2713 2714 2715 2716
	/*
	 * Restore to original mask to avoid the impact on the caller if we
	 * promoted it to __GFP_HIGHMEM.
	 */
	sc->gfp_mask = orig_mask;
L
Linus Torvalds 已提交
2717
}
2718

L
Linus Torvalds 已提交
2719 2720 2721 2722 2723 2724 2725 2726
/*
 * This is the main entry point to direct page reclaim.
 *
 * If a full scan of the inactive list fails to free enough memory then we
 * are "out of memory" and something needs to be killed.
 *
 * If the caller is !__GFP_FS then the probability of a failure is reasonably
 * high - the zone may be full of dirty or under-writeback pages, which this
2727 2728 2729 2730
 * caller can't do much about.  We kick the writeback threads and take explicit
 * naps in the hope that some of these pages can be written.  But if the
 * allocating task holds filesystem locks which prevent writeout this might not
 * work, and the allocation attempt will fail.
2731 2732 2733
 *
 * returns:	0, if no pages reclaimed
 * 		else, the number of pages reclaimed
L
Linus Torvalds 已提交
2734
 */
2735
static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2736
					  struct scan_control *sc)
L
Linus Torvalds 已提交
2737
{
2738 2739
	int initial_priority = sc->priority;
retry:
2740 2741
	delayacct_freepages_start();

2742
	if (global_reclaim(sc))
2743
		__count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
L
Linus Torvalds 已提交
2744

2745
	do {
2746 2747
		vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
				sc->priority);
2748
		sc->nr_scanned = 0;
M
Michal Hocko 已提交
2749
		shrink_zones(zonelist, sc);
2750

2751
		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2752 2753 2754 2755
			break;

		if (sc->compaction_ready)
			break;
L
Linus Torvalds 已提交
2756

2757 2758 2759 2760 2761 2762
		/*
		 * If we're getting trouble reclaiming, start doing
		 * writepage even in laptop mode.
		 */
		if (sc->priority < DEF_PRIORITY - 2)
			sc->may_writepage = 1;
2763
	} while (--sc->priority >= 0);
2764

2765 2766
	delayacct_freepages_end();

2767 2768 2769
	if (sc->nr_reclaimed)
		return sc->nr_reclaimed;

2770
	/* Aborted reclaim to try compaction? don't OOM, then */
2771
	if (sc->compaction_ready)
2772 2773
		return 1;

2774
	/* Untapped cgroup reserves?  Don't OOM, retry. */
2775
	if (sc->memcg_low_skipped) {
2776
		sc->priority = initial_priority;
2777 2778
		sc->memcg_low_reclaim = 1;
		sc->memcg_low_skipped = 0;
2779 2780 2781
		goto retry;
	}

2782
	return 0;
L
Linus Torvalds 已提交
2783 2784
}

2785
static bool allow_direct_reclaim(pg_data_t *pgdat)
2786 2787 2788 2789 2790 2791 2792
{
	struct zone *zone;
	unsigned long pfmemalloc_reserve = 0;
	unsigned long free_pages = 0;
	int i;
	bool wmark_ok;

2793 2794 2795
	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
		return true;

2796 2797
	for (i = 0; i <= ZONE_NORMAL; i++) {
		zone = &pgdat->node_zones[i];
2798 2799 2800 2801
		if (!managed_zone(zone))
			continue;

		if (!zone_reclaimable_pages(zone))
2802 2803
			continue;

2804 2805 2806 2807
		pfmemalloc_reserve += min_wmark_pages(zone);
		free_pages += zone_page_state(zone, NR_FREE_PAGES);
	}

2808 2809 2810 2811
	/* If there are no reserves (unexpected config) then do not throttle */
	if (!pfmemalloc_reserve)
		return true;

2812 2813 2814 2815
	wmark_ok = free_pages > pfmemalloc_reserve / 2;

	/* kswapd must be awake if processes are being throttled */
	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
2816
		pgdat->kswapd_classzone_idx = min(pgdat->kswapd_classzone_idx,
2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827
						(enum zone_type)ZONE_NORMAL);
		wake_up_interruptible(&pgdat->kswapd_wait);
	}

	return wmark_ok;
}

/*
 * Throttle direct reclaimers if backing storage is backed by the network
 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
 * depleted. kswapd will continue to make progress and wake the processes
2828 2829 2830 2831
 * when the low watermark is reached.
 *
 * Returns true if a fatal signal was delivered during throttling. If this
 * happens, the page allocator should not consider triggering the OOM killer.
2832
 */
2833
static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
2834 2835
					nodemask_t *nodemask)
{
2836
	struct zoneref *z;
2837
	struct zone *zone;
2838
	pg_data_t *pgdat = NULL;
2839 2840 2841 2842 2843 2844 2845 2846 2847

	/*
	 * Kernel threads should not be throttled as they may be indirectly
	 * responsible for cleaning pages necessary for reclaim to make forward
	 * progress. kjournald for example may enter direct reclaim while
	 * committing a transaction where throttling it could forcing other
	 * processes to block on log_wait_commit().
	 */
	if (current->flags & PF_KTHREAD)
2848 2849 2850 2851 2852 2853 2854 2855
		goto out;

	/*
	 * If a fatal signal is pending, this process should not throttle.
	 * It should return quickly so it can exit and free its memory
	 */
	if (fatal_signal_pending(current))
		goto out;
2856

2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871
	/*
	 * Check if the pfmemalloc reserves are ok by finding the first node
	 * with a usable ZONE_NORMAL or lower zone. The expectation is that
	 * GFP_KERNEL will be required for allocating network buffers when
	 * swapping over the network so ZONE_HIGHMEM is unusable.
	 *
	 * Throttling is based on the first usable node and throttled processes
	 * wait on a queue until kswapd makes progress and wakes them. There
	 * is an affinity then between processes waking up and where reclaim
	 * progress has been made assuming the process wakes on the same node.
	 * More importantly, processes running on remote nodes will not compete
	 * for remote pfmemalloc reserves and processes on different nodes
	 * should make reasonable progress.
	 */
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2872
					gfp_zone(gfp_mask), nodemask) {
2873 2874 2875 2876 2877
		if (zone_idx(zone) > ZONE_NORMAL)
			continue;

		/* Throttle based on the first usable node */
		pgdat = zone->zone_pgdat;
2878
		if (allow_direct_reclaim(pgdat))
2879 2880 2881 2882 2883 2884
			goto out;
		break;
	}

	/* If no zone was usable by the allocation flags then do not throttle */
	if (!pgdat)
2885
		goto out;
2886

2887 2888 2889
	/* Account for the throttling */
	count_vm_event(PGSCAN_DIRECT_THROTTLE);

2890 2891 2892 2893 2894 2895 2896 2897 2898 2899
	/*
	 * If the caller cannot enter the filesystem, it's possible that it
	 * is due to the caller holding an FS lock or performing a journal
	 * transaction in the case of a filesystem like ext[3|4]. In this case,
	 * it is not safe to block on pfmemalloc_wait as kswapd could be
	 * blocked waiting on the same lock. Instead, throttle for up to a
	 * second before continuing.
	 */
	if (!(gfp_mask & __GFP_FS)) {
		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
2900
			allow_direct_reclaim(pgdat), HZ);
2901 2902

		goto check_pending;
2903 2904 2905 2906
	}

	/* Throttle until kswapd wakes the process */
	wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
2907
		allow_direct_reclaim(pgdat));
2908 2909 2910 2911 2912 2913 2914

check_pending:
	if (fatal_signal_pending(current))
		return true;

out:
	return false;
2915 2916
}

2917
unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2918
				gfp_t gfp_mask, nodemask_t *nodemask)
2919
{
2920
	unsigned long nr_reclaimed;
2921
	struct scan_control sc = {
2922
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2923
		.gfp_mask = (gfp_mask = current_gfp_context(gfp_mask)),
2924
		.reclaim_idx = gfp_zone(gfp_mask),
2925 2926 2927
		.order = order,
		.nodemask = nodemask,
		.priority = DEF_PRIORITY,
2928
		.may_writepage = !laptop_mode,
2929
		.may_unmap = 1,
2930
		.may_swap = 1,
2931 2932
	};

2933
	/*
2934 2935 2936
	 * Do not enter reclaim if fatal signal was delivered while throttled.
	 * 1 is returned so that the page allocator does not OOM kill at this
	 * point.
2937
	 */
2938
	if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask))
2939 2940
		return 1;

2941 2942
	trace_mm_vmscan_direct_reclaim_begin(order,
				sc.may_writepage,
2943 2944
				gfp_mask,
				sc.reclaim_idx);
2945

2946
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2947 2948 2949 2950

	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);

	return nr_reclaimed;
2951 2952
}

A
Andrew Morton 已提交
2953
#ifdef CONFIG_MEMCG
2954

2955
unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
2956
						gfp_t gfp_mask, bool noswap,
2957
						pg_data_t *pgdat,
2958
						unsigned long *nr_scanned)
2959 2960
{
	struct scan_control sc = {
2961
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2962
		.target_mem_cgroup = memcg,
2963 2964
		.may_writepage = !laptop_mode,
		.may_unmap = 1,
2965
		.reclaim_idx = MAX_NR_ZONES - 1,
2966 2967
		.may_swap = !noswap,
	};
2968
	unsigned long lru_pages;
2969

2970 2971
	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2972

2973
	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
2974
						      sc.may_writepage,
2975 2976
						      sc.gfp_mask,
						      sc.reclaim_idx);
2977

2978 2979 2980
	/*
	 * NOTE: Although we can get the priority field, using it
	 * here is not a good idea, since it limits the pages we can scan.
2981
	 * if we don't reclaim here, the shrink_node from balance_pgdat
2982 2983 2984
	 * will pick up pages from other mem cgroup's as well. We hack
	 * the priority and make it zero.
	 */
2985
	shrink_node_memcg(pgdat, memcg, &sc, &lru_pages);
2986 2987 2988

	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);

2989
	*nr_scanned = sc.nr_scanned;
2990 2991 2992
	return sc.nr_reclaimed;
}

2993
unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
2994
					   unsigned long nr_pages,
K
KOSAKI Motohiro 已提交
2995
					   gfp_t gfp_mask,
2996
					   bool may_swap)
2997
{
2998
	struct zonelist *zonelist;
2999
	unsigned long nr_reclaimed;
3000
	int nid;
3001
	struct scan_control sc = {
3002
		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3003
		.gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
3004
				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
3005
		.reclaim_idx = MAX_NR_ZONES - 1,
3006 3007 3008 3009
		.target_mem_cgroup = memcg,
		.priority = DEF_PRIORITY,
		.may_writepage = !laptop_mode,
		.may_unmap = 1,
3010
		.may_swap = may_swap,
3011
	};
3012

3013 3014 3015 3016 3017
	/*
	 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
	 * take care of from where we get pages. So the node where we start the
	 * scan does not need to be the current node.
	 */
3018
	nid = mem_cgroup_select_victim_node(memcg);
3019

3020
	zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK];
3021 3022 3023

	trace_mm_vmscan_memcg_reclaim_begin(0,
					    sc.may_writepage,
3024 3025
					    sc.gfp_mask,
					    sc.reclaim_idx);
3026

3027
	current->flags |= PF_MEMALLOC;
3028
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3029
	current->flags &= ~PF_MEMALLOC;
3030 3031 3032 3033

	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);

	return nr_reclaimed;
3034 3035 3036
}
#endif

3037
static void age_active_anon(struct pglist_data *pgdat,
3038
				struct scan_control *sc)
3039
{
3040
	struct mem_cgroup *memcg;
3041

3042 3043 3044 3045 3046
	if (!total_swap_pages)
		return;

	memcg = mem_cgroup_iter(NULL, NULL, NULL);
	do {
3047
		struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
3048

3049
		if (inactive_list_is_low(lruvec, false, sc, true))
3050
			shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3051
					   sc, LRU_ACTIVE_ANON);
3052 3053 3054

		memcg = mem_cgroup_iter(NULL, memcg, NULL);
	} while (memcg);
3055 3056
}

3057 3058 3059 3060 3061
/*
 * Returns true if there is an eligible zone balanced for the request order
 * and classzone_idx
 */
static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
3062
{
3063 3064 3065
	int i;
	unsigned long mark = -1;
	struct zone *zone;
3066

3067 3068
	for (i = 0; i <= classzone_idx; i++) {
		zone = pgdat->node_zones + i;
3069

3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086
		if (!managed_zone(zone))
			continue;

		mark = high_wmark_pages(zone);
		if (zone_watermark_ok_safe(zone, order, mark, classzone_idx))
			return true;
	}

	/*
	 * If a node has no populated zone within classzone_idx, it does not
	 * need balancing by definition. This can happen if a zone-restricted
	 * allocation tries to wake a remote kswapd.
	 */
	if (mark == -1)
		return true;

	return false;
3087 3088
}

3089 3090 3091 3092 3093 3094 3095 3096
/* Clear pgdat state for congested, dirty or under writeback. */
static void clear_pgdat_congested(pg_data_t *pgdat)
{
	clear_bit(PGDAT_CONGESTED, &pgdat->flags);
	clear_bit(PGDAT_DIRTY, &pgdat->flags);
	clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
}

3097 3098 3099 3100 3101 3102
/*
 * Prepare kswapd for sleeping. This verifies that there are no processes
 * waiting in throttle_direct_reclaim() and that watermarks have been met.
 *
 * Returns true if kswapd is ready to sleep
 */
3103
static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3104
{
3105
	/*
3106
	 * The throttled processes are normally woken up in balance_pgdat() as
3107
	 * soon as allow_direct_reclaim() is true. But there is a potential
3108 3109 3110 3111 3112 3113 3114 3115 3116
	 * race between when kswapd checks the watermarks and a process gets
	 * throttled. There is also a potential race if processes get
	 * throttled, kswapd wakes, a large process exits thereby balancing the
	 * zones, which causes kswapd to exit balance_pgdat() before reaching
	 * the wake up checks. If kswapd is going to sleep, no process should
	 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
	 * the wake up is premature, processes will wake kswapd and get
	 * throttled again. The difference from wake ups in balance_pgdat() is
	 * that here we are under prepare_to_wait().
3117
	 */
3118 3119
	if (waitqueue_active(&pgdat->pfmemalloc_wait))
		wake_up_all(&pgdat->pfmemalloc_wait);
3120

3121 3122 3123 3124
	/* Hopeless node, leave it to direct reclaim */
	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
		return true;

3125 3126 3127
	if (pgdat_balanced(pgdat, order, classzone_idx)) {
		clear_pgdat_congested(pgdat);
		return true;
3128 3129
	}

3130
	return false;
3131 3132
}

3133
/*
3134 3135
 * kswapd shrinks a node of pages that are at or below the highest usable
 * zone that is currently unbalanced.
3136 3137
 *
 * Returns true if kswapd scanned at least the requested number of pages to
3138 3139
 * reclaim or if the lack of progress was due to pages under writeback.
 * This is used to determine if the scanning priority needs to be raised.
3140
 */
3141
static bool kswapd_shrink_node(pg_data_t *pgdat,
3142
			       struct scan_control *sc)
3143
{
3144 3145
	struct zone *zone;
	int z;
3146

3147 3148
	/* Reclaim a number of pages proportional to the number of zones */
	sc->nr_to_reclaim = 0;
3149
	for (z = 0; z <= sc->reclaim_idx; z++) {
3150
		zone = pgdat->node_zones + z;
3151
		if (!managed_zone(zone))
3152
			continue;
3153

3154 3155
		sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
	}
3156 3157

	/*
3158 3159
	 * Historically care was taken to put equal pressure on all zones but
	 * now pressure is applied based on node LRU order.
3160
	 */
3161
	shrink_node(pgdat, sc);
3162

3163
	/*
3164 3165 3166 3167 3168
	 * Fragmentation may mean that the system cannot be rebalanced for
	 * high-order allocations. If twice the allocation size has been
	 * reclaimed then recheck watermarks only at order-0 to prevent
	 * excessive reclaim. Assume that a process requested a high-order
	 * can direct reclaim/compact.
3169
	 */
3170
	if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
3171
		sc->order = 0;
3172

3173
	return sc->nr_scanned >= sc->nr_to_reclaim;
3174 3175
}

L
Linus Torvalds 已提交
3176
/*
3177 3178 3179
 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
 * that are eligible for use by the caller until at least one zone is
 * balanced.
L
Linus Torvalds 已提交
3180
 *
3181
 * Returns the order kswapd finished reclaiming at.
L
Linus Torvalds 已提交
3182 3183
 *
 * kswapd scans the zones in the highmem->normal->dma direction.  It skips
3184
 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3185 3186 3187
 * found to have free_pages <= high_wmark_pages(zone), any page is that zone
 * or lower is eligible for reclaim until at least one usable zone is
 * balanced.
L
Linus Torvalds 已提交
3188
 */
3189
static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx)
L
Linus Torvalds 已提交
3190 3191
{
	int i;
3192 3193
	unsigned long nr_soft_reclaimed;
	unsigned long nr_soft_scanned;
3194
	struct zone *zone;
3195 3196
	struct scan_control sc = {
		.gfp_mask = GFP_KERNEL,
3197
		.order = order,
3198
		.priority = DEF_PRIORITY,
3199
		.may_writepage = !laptop_mode,
3200
		.may_unmap = 1,
3201
		.may_swap = 1,
3202
	};
3203
	count_vm_event(PAGEOUTRUN);
L
Linus Torvalds 已提交
3204

3205
	do {
3206
		unsigned long nr_reclaimed = sc.nr_reclaimed;
3207 3208
		bool raise_priority = true;

3209
		sc.reclaim_idx = classzone_idx;
L
Linus Torvalds 已提交
3210

3211
		/*
3212 3213 3214 3215 3216 3217 3218 3219
		 * If the number of buffer_heads exceeds the maximum allowed
		 * then consider reclaiming from all zones. This has a dual
		 * purpose -- on 64-bit systems it is expected that
		 * buffer_heads are stripped during active rotation. On 32-bit
		 * systems, highmem pages can pin lowmem memory and shrinking
		 * buffers can relieve lowmem pressure. Reclaim may still not
		 * go ahead if all eligible zones for the original allocation
		 * request are balanced to avoid excessive reclaim from kswapd.
3220 3221 3222 3223
		 */
		if (buffer_heads_over_limit) {
			for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
				zone = pgdat->node_zones + i;
3224
				if (!managed_zone(zone))
3225
					continue;
3226

3227
				sc.reclaim_idx = i;
A
Andrew Morton 已提交
3228
				break;
L
Linus Torvalds 已提交
3229 3230
			}
		}
3231

3232
		/*
3233 3234 3235
		 * Only reclaim if there are no eligible zones. Note that
		 * sc.reclaim_idx is not used as buffer_heads_over_limit may
		 * have adjusted it.
3236
		 */
3237 3238
		if (pgdat_balanced(pgdat, sc.order, classzone_idx))
			goto out;
A
Andrew Morton 已提交
3239

3240 3241 3242 3243 3244 3245
		/*
		 * Do some background aging of the anon list, to give
		 * pages a chance to be referenced before reclaiming. All
		 * pages are rotated regardless of classzone as this is
		 * about consistent aging.
		 */
3246
		age_active_anon(pgdat, &sc);
3247

3248 3249 3250 3251
		/*
		 * If we're getting trouble reclaiming, start doing writepage
		 * even in laptop mode.
		 */
3252
		if (sc.priority < DEF_PRIORITY - 2)
3253 3254
			sc.may_writepage = 1;

3255 3256 3257
		/* Call soft limit reclaim before calling shrink_node. */
		sc.nr_scanned = 0;
		nr_soft_scanned = 0;
3258
		nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
3259 3260 3261
						sc.gfp_mask, &nr_soft_scanned);
		sc.nr_reclaimed += nr_soft_reclaimed;

L
Linus Torvalds 已提交
3262
		/*
3263 3264 3265
		 * There should be no need to raise the scanning priority if
		 * enough pages are already being scanned that that high
		 * watermark would be met at 100% efficiency.
L
Linus Torvalds 已提交
3266
		 */
3267
		if (kswapd_shrink_node(pgdat, &sc))
3268
			raise_priority = false;
3269 3270 3271 3272 3273 3274 3275

		/*
		 * If the low watermark is met there is no need for processes
		 * to be throttled on pfmemalloc_wait as they should not be
		 * able to safely make forward progress. Wake them
		 */
		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3276
				allow_direct_reclaim(pgdat))
3277
			wake_up_all(&pgdat->pfmemalloc_wait);
3278

3279 3280 3281
		/* Check if kswapd should be suspending */
		if (try_to_freeze() || kthread_should_stop())
			break;
3282

3283
		/*
3284 3285
		 * Raise priority if scanning rate is too low or there was no
		 * progress in reclaiming pages
3286
		 */
3287 3288
		nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
		if (raise_priority || !nr_reclaimed)
3289
			sc.priority--;
3290
	} while (sc.priority >= 1);
L
Linus Torvalds 已提交
3291

3292 3293 3294
	if (!sc.nr_reclaimed)
		pgdat->kswapd_failures++;

3295
out:
3296
	/*
3297 3298 3299 3300
	 * Return the order kswapd stopped reclaiming at as
	 * prepare_kswapd_sleep() takes it into account. If another caller
	 * entered the allocator slow path while kswapd was awake, order will
	 * remain at the higher level.
3301
	 */
3302
	return sc.order;
L
Linus Torvalds 已提交
3303 3304
}

3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320
/*
 * pgdat->kswapd_classzone_idx is the highest zone index that a recent
 * allocation request woke kswapd for. When kswapd has not woken recently,
 * the value is MAX_NR_ZONES which is not a valid index. This compares a
 * given classzone and returns it or the highest classzone index kswapd
 * was recently woke for.
 */
static enum zone_type kswapd_classzone_idx(pg_data_t *pgdat,
					   enum zone_type classzone_idx)
{
	if (pgdat->kswapd_classzone_idx == MAX_NR_ZONES)
		return classzone_idx;

	return max(pgdat->kswapd_classzone_idx, classzone_idx);
}

3321 3322
static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
				unsigned int classzone_idx)
3323 3324 3325 3326 3327 3328 3329 3330 3331
{
	long remaining = 0;
	DEFINE_WAIT(wait);

	if (freezing(current) || kthread_should_stop())
		return;

	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);

3332 3333 3334 3335 3336 3337 3338
	/*
	 * Try to sleep for a short interval. Note that kcompactd will only be
	 * woken if it is possible to sleep for a short interval. This is
	 * deliberate on the assumption that if reclaim cannot keep an
	 * eligible zone balanced that it's also unlikely that compaction will
	 * succeed.
	 */
3339
	if (prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351
		/*
		 * Compaction records what page blocks it recently failed to
		 * isolate pages from and skips them in the future scanning.
		 * When kswapd is going to sleep, it is reasonable to assume
		 * that pages and compaction may succeed so reset the cache.
		 */
		reset_isolation_suitable(pgdat);

		/*
		 * We have freed the memory, now we should compact it to make
		 * allocation of the requested order possible.
		 */
3352
		wakeup_kcompactd(pgdat, alloc_order, classzone_idx);
3353

3354
		remaining = schedule_timeout(HZ/10);
3355 3356 3357 3358 3359 3360 3361

		/*
		 * If woken prematurely then reset kswapd_classzone_idx and
		 * order. The values will either be from a wakeup request or
		 * the previous request that slept prematurely.
		 */
		if (remaining) {
3362
			pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3363 3364 3365
			pgdat->kswapd_order = max(pgdat->kswapd_order, reclaim_order);
		}

3366 3367 3368 3369 3370 3371 3372 3373
		finish_wait(&pgdat->kswapd_wait, &wait);
		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
	}

	/*
	 * After a short sleep, check if it was a premature sleep. If not, then
	 * go fully to sleep until explicitly woken up.
	 */
3374 3375
	if (!remaining &&
	    prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386
		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);

		/*
		 * vmstat counters are not perfectly accurate and the estimated
		 * value for counters such as NR_FREE_PAGES can deviate from the
		 * true value by nr_online_cpus * threshold. To avoid the zone
		 * watermarks being breached while under pressure, we reduce the
		 * per-cpu vmstat threshold while kswapd is awake and restore
		 * them before going back to sleep.
		 */
		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3387 3388 3389 3390

		if (!kthread_should_stop())
			schedule();

3391 3392 3393 3394 3395 3396 3397 3398 3399 3400
		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
	} else {
		if (remaining)
			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
		else
			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
	}
	finish_wait(&pgdat->kswapd_wait, &wait);
}

L
Linus Torvalds 已提交
3401 3402
/*
 * The background pageout daemon, started as a kernel thread
3403
 * from the init process.
L
Linus Torvalds 已提交
3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415
 *
 * This basically trickles out pages so that we have _some_
 * free memory available even if there is no other activity
 * that frees anything up. This is needed for things like routing
 * etc, where we otherwise might have all activity going on in
 * asynchronous contexts that cannot page things out.
 *
 * If there are applications that are active memory-allocators
 * (most normal use), this basically shouldn't matter.
 */
static int kswapd(void *p)
{
3416 3417
	unsigned int alloc_order, reclaim_order;
	unsigned int classzone_idx = MAX_NR_ZONES - 1;
L
Linus Torvalds 已提交
3418 3419
	pg_data_t *pgdat = (pg_data_t*)p;
	struct task_struct *tsk = current;
3420

L
Linus Torvalds 已提交
3421 3422 3423
	struct reclaim_state reclaim_state = {
		.reclaimed_slab = 0,
	};
3424
	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
L
Linus Torvalds 已提交
3425

3426 3427
	lockdep_set_current_reclaim_state(GFP_KERNEL);

R
Rusty Russell 已提交
3428
	if (!cpumask_empty(cpumask))
3429
		set_cpus_allowed_ptr(tsk, cpumask);
L
Linus Torvalds 已提交
3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443
	current->reclaim_state = &reclaim_state;

	/*
	 * Tell the memory management that we're a "memory allocator",
	 * and that if we need more memory we should get access to it
	 * regardless (see "__alloc_pages()"). "kswapd" should
	 * never get caught in the normal page freeing logic.
	 *
	 * (Kswapd normally doesn't need memory anyway, but sometimes
	 * you need a small amount of memory in order to be able to
	 * page out something else, and this flag essentially protects
	 * us from recursively trying to free more memory as we're
	 * trying to free the first piece of memory in the first place).
	 */
3444
	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3445
	set_freezable();
L
Linus Torvalds 已提交
3446

3447 3448
	pgdat->kswapd_order = 0;
	pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
L
Linus Torvalds 已提交
3449
	for ( ; ; ) {
3450
		bool ret;
3451

3452 3453 3454
		alloc_order = reclaim_order = pgdat->kswapd_order;
		classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);

3455 3456 3457
kswapd_try_sleep:
		kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
					classzone_idx);
3458

3459 3460
		/* Read the new order and classzone_idx */
		alloc_order = reclaim_order = pgdat->kswapd_order;
3461
		classzone_idx = kswapd_classzone_idx(pgdat, 0);
3462
		pgdat->kswapd_order = 0;
3463
		pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
L
Linus Torvalds 已提交
3464

3465 3466 3467 3468 3469 3470 3471 3472
		ret = try_to_freeze();
		if (kthread_should_stop())
			break;

		/*
		 * We can speed up thawing tasks if we don't call balance_pgdat
		 * after returning from the refrigerator
		 */
3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483
		if (ret)
			continue;

		/*
		 * Reclaim begins at the requested order but if a high-order
		 * reclaim fails then kswapd falls back to reclaiming for
		 * order-0. If that happens, kswapd will consider sleeping
		 * for the order it finished reclaiming at (reclaim_order)
		 * but kcompactd is woken to compact for the original
		 * request (alloc_order).
		 */
3484 3485
		trace_mm_vmscan_kswapd_wake(pgdat->node_id, classzone_idx,
						alloc_order);
3486 3487 3488
		reclaim_order = balance_pgdat(pgdat, alloc_order, classzone_idx);
		if (reclaim_order < alloc_order)
			goto kswapd_try_sleep;
L
Linus Torvalds 已提交
3489
	}
3490

3491
	tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
3492
	current->reclaim_state = NULL;
3493 3494
	lockdep_clear_current_reclaim_state();

L
Linus Torvalds 已提交
3495 3496 3497 3498 3499 3500
	return 0;
}

/*
 * A zone is low on free memory, so wake its kswapd task to service it.
 */
3501
void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
L
Linus Torvalds 已提交
3502 3503 3504
{
	pg_data_t *pgdat;

3505
	if (!managed_zone(zone))
L
Linus Torvalds 已提交
3506 3507
		return;

3508
	if (!cpuset_zone_allowed(zone, GFP_KERNEL | __GFP_HARDWALL))
L
Linus Torvalds 已提交
3509
		return;
3510
	pgdat = zone->zone_pgdat;
3511 3512
	pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat,
							   classzone_idx);
3513
	pgdat->kswapd_order = max(pgdat->kswapd_order, order);
3514
	if (!waitqueue_active(&pgdat->kswapd_wait))
L
Linus Torvalds 已提交
3515
		return;
3516

3517 3518 3519 3520
	/* Hopeless node, leave it to direct reclaim */
	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
		return;

3521 3522
	if (pgdat_balanced(pgdat, order, classzone_idx))
		return;
3523

3524
	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, classzone_idx, order);
3525
	wake_up_interruptible(&pgdat->kswapd_wait);
L
Linus Torvalds 已提交
3526 3527
}

3528
#ifdef CONFIG_HIBERNATION
L
Linus Torvalds 已提交
3529
/*
3530
 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3531 3532 3533 3534 3535
 * freed pages.
 *
 * Rather than trying to age LRUs the aim is to preserve the overall
 * LRU order by reclaiming preferentially
 * inactive > active > active referenced > active mapped
L
Linus Torvalds 已提交
3536
 */
3537
unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
L
Linus Torvalds 已提交
3538
{
3539 3540
	struct reclaim_state reclaim_state;
	struct scan_control sc = {
3541
		.nr_to_reclaim = nr_to_reclaim,
3542
		.gfp_mask = GFP_HIGHUSER_MOVABLE,
3543
		.reclaim_idx = MAX_NR_ZONES - 1,
3544
		.priority = DEF_PRIORITY,
3545
		.may_writepage = 1,
3546 3547
		.may_unmap = 1,
		.may_swap = 1,
3548
		.hibernation_mode = 1,
L
Linus Torvalds 已提交
3549
	};
3550
	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3551 3552
	struct task_struct *p = current;
	unsigned long nr_reclaimed;
L
Linus Torvalds 已提交
3553

3554 3555 3556 3557
	p->flags |= PF_MEMALLOC;
	lockdep_set_current_reclaim_state(sc.gfp_mask);
	reclaim_state.reclaimed_slab = 0;
	p->reclaim_state = &reclaim_state;
3558

3559
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3560

3561 3562 3563
	p->reclaim_state = NULL;
	lockdep_clear_current_reclaim_state();
	p->flags &= ~PF_MEMALLOC;
3564

3565
	return nr_reclaimed;
L
Linus Torvalds 已提交
3566
}
3567
#endif /* CONFIG_HIBERNATION */
L
Linus Torvalds 已提交
3568 3569 3570 3571 3572

/* It's optimal to keep kswapds on the same CPUs as their memory, but
   not required for correctness.  So if the last cpu in a node goes
   away, we get changed to run anywhere: as the first one comes back,
   restore their cpu bindings. */
3573
static int kswapd_cpu_online(unsigned int cpu)
L
Linus Torvalds 已提交
3574
{
3575
	int nid;
L
Linus Torvalds 已提交
3576

3577 3578 3579
	for_each_node_state(nid, N_MEMORY) {
		pg_data_t *pgdat = NODE_DATA(nid);
		const struct cpumask *mask;
3580

3581
		mask = cpumask_of_node(pgdat->node_id);
3582

3583 3584 3585
		if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
			/* One of our CPUs online: restore mask */
			set_cpus_allowed_ptr(pgdat->kswapd, mask);
L
Linus Torvalds 已提交
3586
	}
3587
	return 0;
L
Linus Torvalds 已提交
3588 3589
}

3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605
/*
 * This kswapd start function will be called by init and node-hot-add.
 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
 */
int kswapd_run(int nid)
{
	pg_data_t *pgdat = NODE_DATA(nid);
	int ret = 0;

	if (pgdat->kswapd)
		return 0;

	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
	if (IS_ERR(pgdat->kswapd)) {
		/* failure at boot is fatal */
		BUG_ON(system_state == SYSTEM_BOOTING);
3606 3607
		pr_err("Failed to start kswapd on node %d\n", nid);
		ret = PTR_ERR(pgdat->kswapd);
3608
		pgdat->kswapd = NULL;
3609 3610 3611 3612
	}
	return ret;
}

3613
/*
3614
 * Called by memory hotplug when all memory in a node is offlined.  Caller must
3615
 * hold mem_hotplug_begin/end().
3616 3617 3618 3619 3620
 */
void kswapd_stop(int nid)
{
	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;

3621
	if (kswapd) {
3622
		kthread_stop(kswapd);
3623 3624
		NODE_DATA(nid)->kswapd = NULL;
	}
3625 3626
}

L
Linus Torvalds 已提交
3627 3628
static int __init kswapd_init(void)
{
3629
	int nid, ret;
3630

L
Linus Torvalds 已提交
3631
	swap_setup();
3632
	for_each_node_state(nid, N_MEMORY)
3633
 		kswapd_run(nid);
3634 3635 3636 3637
	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
					"mm/vmscan:online", kswapd_cpu_online,
					NULL);
	WARN_ON(ret < 0);
L
Linus Torvalds 已提交
3638 3639 3640 3641
	return 0;
}

module_init(kswapd_init)
3642 3643 3644

#ifdef CONFIG_NUMA
/*
3645
 * Node reclaim mode
3646
 *
3647
 * If non-zero call node_reclaim when the number of free pages falls below
3648 3649
 * the watermarks.
 */
3650
int node_reclaim_mode __read_mostly;
3651

3652
#define RECLAIM_OFF 0
3653
#define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
3654
#define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
3655
#define RECLAIM_UNMAP (1<<2)	/* Unmap pages during reclaim */
3656

3657
/*
3658
 * Priority for NODE_RECLAIM. This determines the fraction of pages
3659 3660 3661
 * of a node considered for each zone_reclaim. 4 scans 1/16th of
 * a zone.
 */
3662
#define NODE_RECLAIM_PRIORITY 4
3663

3664
/*
3665
 * Percentage of pages in a zone that must be unmapped for node_reclaim to
3666 3667 3668 3669
 * occur.
 */
int sysctl_min_unmapped_ratio = 1;

3670 3671 3672 3673 3674 3675
/*
 * If the number of slab pages in a zone grows beyond this percentage then
 * slab reclaim needs to occur.
 */
int sysctl_min_slab_ratio = 5;

3676
static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
3677
{
3678 3679 3680
	unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
	unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
		node_page_state(pgdat, NR_ACTIVE_FILE);
3681 3682 3683 3684 3685 3686 3687 3688 3689 3690

	/*
	 * It's possible for there to be more file mapped pages than
	 * accounted for by the pages on the file LRU lists because
	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
	 */
	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
}

/* Work out how many page cache pages we can reclaim in this reclaim_mode */
3691
static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
3692
{
3693 3694
	unsigned long nr_pagecache_reclaimable;
	unsigned long delta = 0;
3695 3696

	/*
3697
	 * If RECLAIM_UNMAP is set, then all file pages are considered
3698
	 * potentially reclaimable. Otherwise, we have to worry about
3699
	 * pages like swapcache and node_unmapped_file_pages() provides
3700 3701
	 * a better estimate
	 */
3702 3703
	if (node_reclaim_mode & RECLAIM_UNMAP)
		nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
3704
	else
3705
		nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
3706 3707

	/* If we can't clean pages, remove dirty pages from consideration */
3708 3709
	if (!(node_reclaim_mode & RECLAIM_WRITE))
		delta += node_page_state(pgdat, NR_FILE_DIRTY);
3710 3711 3712 3713 3714 3715 3716 3717

	/* Watch for any possible underflows due to delta */
	if (unlikely(delta > nr_pagecache_reclaimable))
		delta = nr_pagecache_reclaimable;

	return nr_pagecache_reclaimable - delta;
}

3718
/*
3719
 * Try to free up some pages from this node through reclaim.
3720
 */
3721
static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
3722
{
3723
	/* Minimum pages needed in order to stay on node */
3724
	const unsigned long nr_pages = 1 << order;
3725 3726
	struct task_struct *p = current;
	struct reclaim_state reclaim_state;
3727
	int classzone_idx = gfp_zone(gfp_mask);
3728
	struct scan_control sc = {
3729
		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3730
		.gfp_mask = (gfp_mask = current_gfp_context(gfp_mask)),
3731
		.order = order,
3732 3733 3734
		.priority = NODE_RECLAIM_PRIORITY,
		.may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
		.may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
3735
		.may_swap = 1,
3736
		.reclaim_idx = classzone_idx,
3737
	};
3738 3739

	cond_resched();
3740
	/*
3741
	 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
3742
	 * and we also need to be able to write out pages for RECLAIM_WRITE
3743
	 * and RECLAIM_UNMAP.
3744 3745
	 */
	p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3746
	lockdep_set_current_reclaim_state(gfp_mask);
3747 3748
	reclaim_state.reclaimed_slab = 0;
	p->reclaim_state = &reclaim_state;
3749

3750
	if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
3751 3752 3753 3754 3755
		/*
		 * Free memory by calling shrink zone with increasing
		 * priorities until we have enough memory freed.
		 */
		do {
3756
			shrink_node(pgdat, &sc);
3757
		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3758
	}
3759

3760
	p->reclaim_state = NULL;
3761
	current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3762
	lockdep_clear_current_reclaim_state();
3763
	return sc.nr_reclaimed >= nr_pages;
3764
}
3765

3766
int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
3767
{
3768
	int ret;
3769 3770

	/*
3771
	 * Node reclaim reclaims unmapped file backed pages and
3772
	 * slab pages if we are over the defined limits.
3773
	 *
3774 3775
	 * A small portion of unmapped file backed pages is needed for
	 * file I/O otherwise pages read by file I/O will be immediately
3776 3777
	 * thrown out if the node is overallocated. So we do not reclaim
	 * if less than a specified percentage of the node is used by
3778
	 * unmapped file backed pages.
3779
	 */
3780 3781 3782
	if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
	    sum_zone_node_page_state(pgdat->node_id, NR_SLAB_RECLAIMABLE) <= pgdat->min_slab_pages)
		return NODE_RECLAIM_FULL;
3783 3784

	/*
3785
	 * Do not scan if the allocation should not be delayed.
3786
	 */
3787
	if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
3788
		return NODE_RECLAIM_NOSCAN;
3789 3790

	/*
3791
	 * Only run node reclaim on the local node or on nodes that do not
3792 3793 3794 3795
	 * have associated processors. This will favor the local processor
	 * over remote processors and spread off node memory allocations
	 * as wide as possible.
	 */
3796 3797
	if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
		return NODE_RECLAIM_NOSCAN;
3798

3799 3800
	if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
		return NODE_RECLAIM_NOSCAN;
3801

3802 3803
	ret = __node_reclaim(pgdat, gfp_mask, order);
	clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
3804

3805 3806 3807
	if (!ret)
		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);

3808
	return ret;
3809
}
3810
#endif
L
Lee Schermerhorn 已提交
3811 3812 3813 3814 3815 3816

/*
 * page_evictable - test whether a page is evictable
 * @page: the page to test
 *
 * Test whether page is evictable--i.e., should be placed on active/inactive
3817
 * lists vs unevictable list.
L
Lee Schermerhorn 已提交
3818 3819
 *
 * Reasons page might not be evictable:
3820
 * (1) page's mapping marked unevictable
N
Nick Piggin 已提交
3821
 * (2) page is part of an mlocked VMA
3822
 *
L
Lee Schermerhorn 已提交
3823
 */
3824
int page_evictable(struct page *page)
L
Lee Schermerhorn 已提交
3825
{
3826
	return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
L
Lee Schermerhorn 已提交
3827
}
3828

3829
#ifdef CONFIG_SHMEM
3830
/**
3831 3832 3833
 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
 * @pages:	array of pages to check
 * @nr_pages:	number of pages to check
3834
 *
3835
 * Checks pages for evictability and moves them to the appropriate lru list.
3836 3837
 *
 * This function is only used for SysV IPC SHM_UNLOCK.
3838
 */
3839
void check_move_unevictable_pages(struct page **pages, int nr_pages)
3840
{
3841
	struct lruvec *lruvec;
3842
	struct pglist_data *pgdat = NULL;
3843 3844 3845
	int pgscanned = 0;
	int pgrescued = 0;
	int i;
3846

3847 3848
	for (i = 0; i < nr_pages; i++) {
		struct page *page = pages[i];
3849
		struct pglist_data *pagepgdat = page_pgdat(page);
3850

3851
		pgscanned++;
3852 3853 3854 3855 3856
		if (pagepgdat != pgdat) {
			if (pgdat)
				spin_unlock_irq(&pgdat->lru_lock);
			pgdat = pagepgdat;
			spin_lock_irq(&pgdat->lru_lock);
3857
		}
3858
		lruvec = mem_cgroup_page_lruvec(page, pgdat);
3859

3860 3861
		if (!PageLRU(page) || !PageUnevictable(page))
			continue;
3862

3863
		if (page_evictable(page)) {
3864 3865
			enum lru_list lru = page_lru_base_type(page);

3866
			VM_BUG_ON_PAGE(PageActive(page), page);
3867
			ClearPageUnevictable(page);
3868 3869
			del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
			add_page_to_lru_list(page, lruvec, lru);
3870
			pgrescued++;
3871
		}
3872
	}
3873

3874
	if (pgdat) {
3875 3876
		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3877
		spin_unlock_irq(&pgdat->lru_lock);
3878 3879
	}
}
3880
#endif /* CONFIG_SHMEM */