vmscan.c 113.9 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
L
Linus Torvalds 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14
/*
 *  linux/mm/vmscan.c
 *
 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 *
 *  Swap reorganised 29.12.95, Stephen Tweedie.
 *  kswapd added: 7.1.96  sct
 *  Removed kswapd_ctl limits, and swap out as many pages as needed
 *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
 *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
 *  Multiqueue VM started 5.8.00, Rik van Riel.
 */

15 16
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

L
Linus Torvalds 已提交
17
#include <linux/mm.h>
18
#include <linux/sched/mm.h>
L
Linus Torvalds 已提交
19
#include <linux/module.h>
20
#include <linux/gfp.h>
L
Linus Torvalds 已提交
21 22 23 24 25
#include <linux/kernel_stat.h>
#include <linux/swap.h>
#include <linux/pagemap.h>
#include <linux/init.h>
#include <linux/highmem.h>
26
#include <linux/vmpressure.h>
27
#include <linux/vmstat.h>
L
Linus Torvalds 已提交
28 29 30 31 32 33 34 35 36 37 38
#include <linux/file.h>
#include <linux/writeback.h>
#include <linux/blkdev.h>
#include <linux/buffer_head.h>	/* for try_to_release_page(),
					buffer_heads_over_limit */
#include <linux/mm_inline.h>
#include <linux/backing-dev.h>
#include <linux/rmap.h>
#include <linux/topology.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
39
#include <linux/compaction.h>
L
Linus Torvalds 已提交
40 41
#include <linux/notifier.h>
#include <linux/rwsem.h>
42
#include <linux/delay.h>
43
#include <linux/kthread.h>
44
#include <linux/freezer.h>
45
#include <linux/memcontrol.h>
46
#include <linux/delayacct.h>
47
#include <linux/sysctl.h>
48
#include <linux/oom.h>
49
#include <linux/prefetch.h>
50
#include <linux/printk.h>
51
#include <linux/dax.h>
L
Linus Torvalds 已提交
52 53 54 55 56

#include <asm/tlbflush.h>
#include <asm/div64.h>

#include <linux/swapops.h>
57
#include <linux/balloon_compaction.h>
L
Linus Torvalds 已提交
58

59 60
#include "internal.h"

61 62 63
#define CREATE_TRACE_POINTS
#include <trace/events/vmscan.h>

L
Linus Torvalds 已提交
64
struct scan_control {
65 66 67
	/* How many pages shrink_list() should reclaim */
	unsigned long nr_to_reclaim;

L
Linus Torvalds 已提交
68
	/* This context's GFP mask */
A
Al Viro 已提交
69
	gfp_t gfp_mask;
L
Linus Torvalds 已提交
70

71
	/* Allocation order */
A
Andy Whitcroft 已提交
72
	int order;
73

74 75 76 77 78
	/*
	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
	 * are scanned.
	 */
	nodemask_t	*nodemask;
79

80 81 82 83 84
	/*
	 * The memory cgroup that hit its limit and as a result is the
	 * primary target of this reclaim invocation.
	 */
	struct mem_cgroup *target_mem_cgroup;
85

86 87 88
	/* Scan (total_size >> priority) pages at once */
	int priority;

89 90 91
	/* The highest zone to isolate pages for reclaim from */
	enum zone_type reclaim_idx;

92
	/* Writepage batching in laptop mode; RECLAIM_WRITE */
93 94 95 96 97 98 99 100
	unsigned int may_writepage:1;

	/* Can mapped pages be reclaimed? */
	unsigned int may_unmap:1;

	/* Can pages be swapped as part of reclaim? */
	unsigned int may_swap:1;

101 102 103 104 105 106 107
	/*
	 * Cgroups are not reclaimed below their configured memory.low,
	 * unless we threaten to OOM. If any cgroups are skipped due to
	 * memory.low and nothing was reclaimed, go back for memory.low.
	 */
	unsigned int memcg_low_reclaim:1;
	unsigned int memcg_low_skipped:1;
108

109 110 111 112 113 114 115 116 117 118
	unsigned int hibernation_mode:1;

	/* One of the zones is ready for compaction */
	unsigned int compaction_ready:1;

	/* Incremented by the number of inactive pages that were scanned */
	unsigned long nr_scanned;

	/* Number of pages freed so far during a call to shrink_zones() */
	unsigned long nr_reclaimed;
L
Linus Torvalds 已提交
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
};

#ifdef ARCH_HAS_PREFETCH
#define prefetch_prev_lru_page(_page, _base, _field)			\
	do {								\
		if ((_page)->lru.prev != _base) {			\
			struct page *prev;				\
									\
			prev = lru_to_page(&(_page->lru));		\
			prefetch(&prev->_field);			\
		}							\
	} while (0)
#else
#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
#endif

#ifdef ARCH_HAS_PREFETCHW
#define prefetchw_prev_lru_page(_page, _base, _field)			\
	do {								\
		if ((_page)->lru.prev != _base) {			\
			struct page *prev;				\
									\
			prev = lru_to_page(&(_page->lru));		\
			prefetchw(&prev->_field);			\
		}							\
	} while (0)
#else
#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
#endif

/*
 * From 0 .. 100.  Higher means more swappy.
 */
int vm_swappiness = 60;
153 154 155 156 157
/*
 * The total number of pages which are beyond the high watermark within all
 * zones.
 */
unsigned long vm_total_pages;
L
Linus Torvalds 已提交
158 159 160 161

static LIST_HEAD(shrinker_list);
static DECLARE_RWSEM(shrinker_rwsem);

A
Andrew Morton 已提交
162
#ifdef CONFIG_MEMCG
163 164
static bool global_reclaim(struct scan_control *sc)
{
165
	return !sc->target_mem_cgroup;
166
}
167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187

/**
 * sane_reclaim - is the usual dirty throttling mechanism operational?
 * @sc: scan_control in question
 *
 * The normal page dirty throttling mechanism in balance_dirty_pages() is
 * completely broken with the legacy memcg and direct stalling in
 * shrink_page_list() is used for throttling instead, which lacks all the
 * niceties such as fairness, adaptive pausing, bandwidth proportional
 * allocation and configurability.
 *
 * This function tests whether the vmscan currently in progress can assume
 * that the normal dirty throttling mechanism is operational.
 */
static bool sane_reclaim(struct scan_control *sc)
{
	struct mem_cgroup *memcg = sc->target_mem_cgroup;

	if (!memcg)
		return true;
#ifdef CONFIG_CGROUP_WRITEBACK
188
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
189 190 191 192
		return true;
#endif
	return false;
}
193
#else
194 195 196 197
static bool global_reclaim(struct scan_control *sc)
{
	return true;
}
198 199 200 201 202

static bool sane_reclaim(struct scan_control *sc)
{
	return true;
}
203 204
#endif

205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
/*
 * This misses isolated pages which are not accounted for to save counters.
 * As the data only determines if reclaim or compaction continues, it is
 * not expected that isolated pages will be a dominating factor.
 */
unsigned long zone_reclaimable_pages(struct zone *zone)
{
	unsigned long nr;

	nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
		zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
	if (get_nr_swap_pages() > 0)
		nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
			zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);

	return nr;
}

223 224 225 226 227 228 229
/**
 * lruvec_lru_size -  Returns the number of pages on the given LRU list.
 * @lruvec: lru vector
 * @lru: lru to use
 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
 */
unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx)
230
{
231 232 233
	unsigned long lru_size;
	int zid;

234
	if (!mem_cgroup_disabled())
235 236 237
		lru_size = mem_cgroup_get_lru_size(lruvec, lru);
	else
		lru_size = node_page_state(lruvec_pgdat(lruvec), NR_LRU_BASE + lru);
238

239 240 241
	for (zid = zone_idx + 1; zid < MAX_NR_ZONES; zid++) {
		struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
		unsigned long size;
242

243 244 245 246 247 248 249 250 251 252 253 254
		if (!managed_zone(zone))
			continue;

		if (!mem_cgroup_disabled())
			size = mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
		else
			size = zone_page_state(&lruvec_pgdat(lruvec)->node_zones[zid],
				       NR_ZONE_LRU_BASE + lru);
		lru_size -= min(size, lru_size);
	}

	return lru_size;
255 256 257

}

L
Linus Torvalds 已提交
258
/*
G
Glauber Costa 已提交
259
 * Add a shrinker callback to be called from the vm.
L
Linus Torvalds 已提交
260
 */
G
Glauber Costa 已提交
261
int register_shrinker(struct shrinker *shrinker)
L
Linus Torvalds 已提交
262
{
G
Glauber Costa 已提交
263 264 265 266 267 268 269 270 271
	size_t size = sizeof(*shrinker->nr_deferred);

	if (shrinker->flags & SHRINKER_NUMA_AWARE)
		size *= nr_node_ids;

	shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
	if (!shrinker->nr_deferred)
		return -ENOMEM;

272 273 274
	down_write(&shrinker_rwsem);
	list_add_tail(&shrinker->list, &shrinker_list);
	up_write(&shrinker_rwsem);
G
Glauber Costa 已提交
275
	return 0;
L
Linus Torvalds 已提交
276
}
277
EXPORT_SYMBOL(register_shrinker);
L
Linus Torvalds 已提交
278 279 280 281

/*
 * Remove one
 */
282
void unregister_shrinker(struct shrinker *shrinker)
L
Linus Torvalds 已提交
283
{
284 285
	if (!shrinker->nr_deferred)
		return;
L
Linus Torvalds 已提交
286 287 288
	down_write(&shrinker_rwsem);
	list_del(&shrinker->list);
	up_write(&shrinker_rwsem);
289
	kfree(shrinker->nr_deferred);
290
	shrinker->nr_deferred = NULL;
L
Linus Torvalds 已提交
291
}
292
EXPORT_SYMBOL(unregister_shrinker);
L
Linus Torvalds 已提交
293 294

#define SHRINK_BATCH 128
G
Glauber Costa 已提交
295

296
static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
297
				    struct shrinker *shrinker, int priority)
G
Glauber Costa 已提交
298 299 300 301
{
	unsigned long freed = 0;
	unsigned long long delta;
	long total_scan;
302
	long freeable;
G
Glauber Costa 已提交
303 304 305 306 307
	long nr;
	long new_nr;
	int nid = shrinkctl->nid;
	long batch_size = shrinker->batch ? shrinker->batch
					  : SHRINK_BATCH;
308
	long scanned = 0, next_deferred;
G
Glauber Costa 已提交
309

310 311
	freeable = shrinker->count_objects(shrinker, shrinkctl);
	if (freeable == 0)
G
Glauber Costa 已提交
312 313 314 315 316 317 318 319 320 321
		return 0;

	/*
	 * copy the current shrinker scan count into a local variable
	 * and zero it so that other concurrent shrinker invocations
	 * don't also do this scanning work.
	 */
	nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);

	total_scan = nr;
322 323 324
	delta = freeable >> priority;
	delta *= 4;
	do_div(delta, shrinker->seeks);
G
Glauber Costa 已提交
325 326
	total_scan += delta;
	if (total_scan < 0) {
327
		pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n",
D
Dave Chinner 已提交
328
		       shrinker->scan_objects, total_scan);
329
		total_scan = freeable;
330 331 332
		next_deferred = nr;
	} else
		next_deferred = total_scan;
G
Glauber Costa 已提交
333 334 335 336 337 338 339

	/*
	 * We need to avoid excessive windup on filesystem shrinkers
	 * due to large numbers of GFP_NOFS allocations causing the
	 * shrinkers to return -1 all the time. This results in a large
	 * nr being built up so when a shrink that can do some work
	 * comes along it empties the entire cache due to nr >>>
340
	 * freeable. This is bad for sustaining a working set in
G
Glauber Costa 已提交
341 342 343 344 345
	 * memory.
	 *
	 * Hence only allow the shrinker to scan the entire cache when
	 * a large delta change is calculated directly.
	 */
346 347
	if (delta < freeable / 4)
		total_scan = min(total_scan, freeable / 2);
G
Glauber Costa 已提交
348 349 350 351 352 353

	/*
	 * Avoid risking looping forever due to too large nr value:
	 * never try to free more than twice the estimate number of
	 * freeable entries.
	 */
354 355
	if (total_scan > freeable * 2)
		total_scan = freeable * 2;
G
Glauber Costa 已提交
356 357

	trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
358
				   freeable, delta, total_scan, priority);
G
Glauber Costa 已提交
359

360 361 362 363 364 365 366 367 368 369 370
	/*
	 * Normally, we should not scan less than batch_size objects in one
	 * pass to avoid too frequent shrinker calls, but if the slab has less
	 * than batch_size objects in total and we are really tight on memory,
	 * we will try to reclaim all available objects, otherwise we can end
	 * up failing allocations although there are plenty of reclaimable
	 * objects spread over several slabs with usage less than the
	 * batch_size.
	 *
	 * We detect the "tight on memory" situations by looking at the total
	 * number of objects we want to scan (total_scan). If it is greater
371
	 * than the total number of objects on slab (freeable), we must be
372 373 374 375
	 * scanning at high prio and therefore should try to reclaim as much as
	 * possible.
	 */
	while (total_scan >= batch_size ||
376
	       total_scan >= freeable) {
D
Dave Chinner 已提交
377
		unsigned long ret;
378
		unsigned long nr_to_scan = min(batch_size, total_scan);
G
Glauber Costa 已提交
379

380
		shrinkctl->nr_to_scan = nr_to_scan;
381
		shrinkctl->nr_scanned = nr_to_scan;
D
Dave Chinner 已提交
382 383 384 385
		ret = shrinker->scan_objects(shrinker, shrinkctl);
		if (ret == SHRINK_STOP)
			break;
		freed += ret;
G
Glauber Costa 已提交
386

387 388 389
		count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
		total_scan -= shrinkctl->nr_scanned;
		scanned += shrinkctl->nr_scanned;
G
Glauber Costa 已提交
390 391 392 393

		cond_resched();
	}

394 395 396 397
	if (next_deferred >= scanned)
		next_deferred -= scanned;
	else
		next_deferred = 0;
G
Glauber Costa 已提交
398 399 400 401 402
	/*
	 * move the unused scan count back into the shrinker in a
	 * manner that handles concurrent updates. If we exhausted the
	 * scan, there is no need to do an update.
	 */
403 404
	if (next_deferred > 0)
		new_nr = atomic_long_add_return(next_deferred,
G
Glauber Costa 已提交
405 406 407 408
						&shrinker->nr_deferred[nid]);
	else
		new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);

409
	trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
G
Glauber Costa 已提交
410
	return freed;
411 412
}

413
/**
414
 * shrink_slab - shrink slab caches
415 416
 * @gfp_mask: allocation context
 * @nid: node whose slab caches to target
417
 * @memcg: memory cgroup whose slab caches to target
418
 * @priority: the reclaim priority
L
Linus Torvalds 已提交
419
 *
420
 * Call the shrink functions to age shrinkable caches.
L
Linus Torvalds 已提交
421
 *
422 423
 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
 * unaware shrinkers will receive a node id of 0 instead.
L
Linus Torvalds 已提交
424
 *
425 426
 * @memcg specifies the memory cgroup to target. If it is not NULL,
 * only shrinkers with SHRINKER_MEMCG_AWARE set will be called to scan
427 428
 * objects from the memory cgroup specified. Otherwise, only unaware
 * shrinkers are called.
429
 *
430 431
 * @priority is sc->priority, we take the number of objects and >> by priority
 * in order to get the scan target.
432
 *
433
 * Returns the number of reclaimed slab objects.
L
Linus Torvalds 已提交
434
 */
435 436
static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
				 struct mem_cgroup *memcg,
437
				 int priority)
L
Linus Torvalds 已提交
438 439
{
	struct shrinker *shrinker;
D
Dave Chinner 已提交
440
	unsigned long freed = 0;
L
Linus Torvalds 已提交
441

442
	if (memcg && (!memcg_kmem_enabled() || !mem_cgroup_online(memcg)))
443 444
		return 0;

445
	if (!down_read_trylock(&shrinker_rwsem))
446
		goto out;
L
Linus Torvalds 已提交
447 448

	list_for_each_entry(shrinker, &shrinker_list, list) {
449 450 451
		struct shrink_control sc = {
			.gfp_mask = gfp_mask,
			.nid = nid,
452
			.memcg = memcg,
453
		};
454

455 456 457 458 459 460 461
		/*
		 * If kernel memory accounting is disabled, we ignore
		 * SHRINKER_MEMCG_AWARE flag and call all shrinkers
		 * passing NULL for memcg.
		 */
		if (memcg_kmem_enabled() &&
		    !!memcg != !!(shrinker->flags & SHRINKER_MEMCG_AWARE))
462 463
			continue;

464 465
		if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
			sc.nid = 0;
L
Linus Torvalds 已提交
466

467
		freed += do_shrink_slab(&sc, shrinker, priority);
468 469 470 471 472 473 474 475 476
		/*
		 * Bail out if someone want to register a new shrinker to
		 * prevent the regsitration from being stalled for long periods
		 * by parallel ongoing shrinking.
		 */
		if (rwsem_is_contended(&shrinker_rwsem)) {
			freed = freed ? : 1;
			break;
		}
L
Linus Torvalds 已提交
477
	}
478

L
Linus Torvalds 已提交
479
	up_read(&shrinker_rwsem);
480 481
out:
	cond_resched();
D
Dave Chinner 已提交
482
	return freed;
L
Linus Torvalds 已提交
483 484
}

485 486 487 488 489 490 491 492 493
void drop_slab_node(int nid)
{
	unsigned long freed;

	do {
		struct mem_cgroup *memcg = NULL;

		freed = 0;
		do {
494
			freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
495 496 497 498 499 500 501 502 503 504 505 506
		} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
	} while (freed > 10);
}

void drop_slab(void)
{
	int nid;

	for_each_online_node(nid)
		drop_slab_node(nid);
}

L
Linus Torvalds 已提交
507 508
static inline int is_page_cache_freeable(struct page *page)
{
509 510 511 512 513
	/*
	 * A freeable page cache page is referenced only by the caller
	 * that isolated the page, the page cache radix tree and
	 * optional buffer heads at page->private.
	 */
514 515 516
	int radix_pins = PageTransHuge(page) && PageSwapCache(page) ?
		HPAGE_PMD_NR : 1;
	return page_count(page) - page_has_private(page) == 1 + radix_pins;
L
Linus Torvalds 已提交
517 518
}

519
static int may_write_to_inode(struct inode *inode, struct scan_control *sc)
L
Linus Torvalds 已提交
520
{
521
	if (current->flags & PF_SWAPWRITE)
L
Linus Torvalds 已提交
522
		return 1;
523
	if (!inode_write_congested(inode))
L
Linus Torvalds 已提交
524
		return 1;
525
	if (inode_to_bdi(inode) == current->backing_dev_info)
L
Linus Torvalds 已提交
526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544
		return 1;
	return 0;
}

/*
 * We detected a synchronous write error writing a page out.  Probably
 * -ENOSPC.  We need to propagate that into the address_space for a subsequent
 * fsync(), msync() or close().
 *
 * The tricky part is that after writepage we cannot touch the mapping: nothing
 * prevents it from being freed up.  But we have a ref on the page and once
 * that page is locked, the mapping is pinned.
 *
 * We're allowed to run sleeping lock_page() here because we know the caller has
 * __GFP_FS.
 */
static void handle_write_error(struct address_space *mapping,
				struct page *page, int error)
{
J
Jens Axboe 已提交
545
	lock_page(page);
546 547
	if (page_mapping(page) == mapping)
		mapping_set_error(mapping, error);
L
Linus Torvalds 已提交
548 549 550
	unlock_page(page);
}

551 552 553 554 555 556 557 558 559 560 561 562
/* possible outcome of pageout() */
typedef enum {
	/* failed to write page out, page is locked */
	PAGE_KEEP,
	/* move page to the active list, page is locked */
	PAGE_ACTIVATE,
	/* page has been sent to the disk successfully, page is unlocked */
	PAGE_SUCCESS,
	/* page is clean and locked */
	PAGE_CLEAN,
} pageout_t;

L
Linus Torvalds 已提交
563
/*
A
Andrew Morton 已提交
564 565
 * pageout is called by shrink_page_list() for each dirty page.
 * Calls ->writepage().
L
Linus Torvalds 已提交
566
 */
567
static pageout_t pageout(struct page *page, struct address_space *mapping,
568
			 struct scan_control *sc)
L
Linus Torvalds 已提交
569 570 571 572 573 574 575 576
{
	/*
	 * If the page is dirty, only perform writeback if that write
	 * will be non-blocking.  To prevent this allocation from being
	 * stalled by pagecache activity.  But note that there may be
	 * stalls if we need to run get_block().  We could test
	 * PagePrivate for that.
	 *
577
	 * If this process is currently in __generic_file_write_iter() against
L
Linus Torvalds 已提交
578 579 580 581 582 583 584 585 586 587 588 589 590 591 592
	 * this page's queue, we can perform writeback even if that
	 * will block.
	 *
	 * If the page is swapcache, write it back even if that would
	 * block, for some throttling. This happens by accident, because
	 * swap_backing_dev_info is bust: it doesn't reflect the
	 * congestion state of the swapdevs.  Easy to fix, if needed.
	 */
	if (!is_page_cache_freeable(page))
		return PAGE_KEEP;
	if (!mapping) {
		/*
		 * Some data journaling orphaned pages can have
		 * page->mapping == NULL while being dirty with clean buffers.
		 */
593
		if (page_has_private(page)) {
L
Linus Torvalds 已提交
594 595
			if (try_to_free_buffers(page)) {
				ClearPageDirty(page);
596
				pr_info("%s: orphaned page\n", __func__);
L
Linus Torvalds 已提交
597 598 599 600 601 602 603
				return PAGE_CLEAN;
			}
		}
		return PAGE_KEEP;
	}
	if (mapping->a_ops->writepage == NULL)
		return PAGE_ACTIVATE;
604
	if (!may_write_to_inode(mapping->host, sc))
L
Linus Torvalds 已提交
605 606 607 608 609 610 611
		return PAGE_KEEP;

	if (clear_page_dirty_for_io(page)) {
		int res;
		struct writeback_control wbc = {
			.sync_mode = WB_SYNC_NONE,
			.nr_to_write = SWAP_CLUSTER_MAX,
612 613
			.range_start = 0,
			.range_end = LLONG_MAX,
L
Linus Torvalds 已提交
614 615 616 617 618 619 620
			.for_reclaim = 1,
		};

		SetPageReclaim(page);
		res = mapping->a_ops->writepage(page, &wbc);
		if (res < 0)
			handle_write_error(mapping, page, res);
621
		if (res == AOP_WRITEPAGE_ACTIVATE) {
L
Linus Torvalds 已提交
622 623 624
			ClearPageReclaim(page);
			return PAGE_ACTIVATE;
		}
625

L
Linus Torvalds 已提交
626 627 628 629
		if (!PageWriteback(page)) {
			/* synchronous write or broken a_ops? */
			ClearPageReclaim(page);
		}
630
		trace_mm_vmscan_writepage(page);
631
		inc_node_page_state(page, NR_VMSCAN_WRITE);
L
Linus Torvalds 已提交
632 633 634 635 636 637
		return PAGE_SUCCESS;
	}

	return PAGE_CLEAN;
}

638
/*
N
Nick Piggin 已提交
639 640
 * Same as remove_mapping, but if the page is removed from the mapping, it
 * gets returned with a refcount of 0.
641
 */
642 643
static int __remove_mapping(struct address_space *mapping, struct page *page,
			    bool reclaimed)
644
{
645
	unsigned long flags;
646
	int refcount;
647

648 649
	BUG_ON(!PageLocked(page));
	BUG_ON(mapping != page_mapping(page));
650

651
	spin_lock_irqsave(&mapping->tree_lock, flags);
652
	/*
N
Nick Piggin 已提交
653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671
	 * The non racy check for a busy page.
	 *
	 * Must be careful with the order of the tests. When someone has
	 * a ref to the page, it may be possible that they dirty it then
	 * drop the reference. So if PageDirty is tested before page_count
	 * here, then the following race may occur:
	 *
	 * get_user_pages(&page);
	 * [user mapping goes away]
	 * write_to(page);
	 *				!PageDirty(page)    [good]
	 * SetPageDirty(page);
	 * put_page(page);
	 *				!page_count(page)   [good, discard it]
	 *
	 * [oops, our write_to data is lost]
	 *
	 * Reversing the order of the tests ensures such a situation cannot
	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
672
	 * load is not satisfied before that of page->_refcount.
N
Nick Piggin 已提交
673 674 675
	 *
	 * Note that if SetPageDirty is always performed via set_page_dirty,
	 * and thus under tree_lock, then this ordering is not required.
676
	 */
677 678 679 680 681
	if (unlikely(PageTransHuge(page)) && PageSwapCache(page))
		refcount = 1 + HPAGE_PMD_NR;
	else
		refcount = 2;
	if (!page_ref_freeze(page, refcount))
682
		goto cannot_free;
N
Nick Piggin 已提交
683 684
	/* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
	if (unlikely(PageDirty(page))) {
685
		page_ref_unfreeze(page, refcount);
686
		goto cannot_free;
N
Nick Piggin 已提交
687
	}
688 689 690

	if (PageSwapCache(page)) {
		swp_entry_t swap = { .val = page_private(page) };
691
		mem_cgroup_swapout(page, swap);
692
		__delete_from_swap_cache(page);
693
		spin_unlock_irqrestore(&mapping->tree_lock, flags);
694
		put_swap_page(page, swap);
N
Nick Piggin 已提交
695
	} else {
696
		void (*freepage)(struct page *);
697
		void *shadow = NULL;
698 699

		freepage = mapping->a_ops->freepage;
700 701 702 703 704 705 706 707 708
		/*
		 * Remember a shadow entry for reclaimed file cache in
		 * order to detect refaults, thus thrashing, later on.
		 *
		 * But don't store shadows in an address space that is
		 * already exiting.  This is not just an optizimation,
		 * inode reclaim needs to empty out the radix tree or
		 * the nodes are lost.  Don't plant shadows behind its
		 * back.
709 710 711 712 713 714
		 *
		 * We also don't store shadows for DAX mappings because the
		 * only page cache pages found in these are zero pages
		 * covering holes, and because we don't want to mix DAX
		 * exceptional entries and shadow exceptional entries in the
		 * same page_tree.
715 716
		 */
		if (reclaimed && page_is_file_cache(page) &&
717
		    !mapping_exiting(mapping) && !dax_mapping(mapping))
718
			shadow = workingset_eviction(mapping, page);
J
Johannes Weiner 已提交
719
		__delete_from_page_cache(page, shadow);
720
		spin_unlock_irqrestore(&mapping->tree_lock, flags);
721 722 723

		if (freepage != NULL)
			freepage(page);
724 725 726 727 728
	}

	return 1;

cannot_free:
729
	spin_unlock_irqrestore(&mapping->tree_lock, flags);
730 731 732
	return 0;
}

N
Nick Piggin 已提交
733 734 735 736 737 738 739 740
/*
 * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
 * someone else has a ref on the page, abort and return 0.  If it was
 * successfully detached, return 1.  Assumes the caller has a single ref on
 * this page.
 */
int remove_mapping(struct address_space *mapping, struct page *page)
{
741
	if (__remove_mapping(mapping, page, false)) {
N
Nick Piggin 已提交
742 743 744 745 746
		/*
		 * Unfreezing the refcount with 1 rather than 2 effectively
		 * drops the pagecache ref for us without requiring another
		 * atomic operation.
		 */
747
		page_ref_unfreeze(page, 1);
N
Nick Piggin 已提交
748 749 750 751 752
		return 1;
	}
	return 0;
}

L
Lee Schermerhorn 已提交
753 754 755 756 757 758 759 760 761 762 763
/**
 * putback_lru_page - put previously isolated page onto appropriate LRU list
 * @page: page to be put back to appropriate lru list
 *
 * Add previously isolated @page to appropriate LRU list.
 * Page may still be unevictable for other reasons.
 *
 * lru_lock must not be held, interrupts must be enabled.
 */
void putback_lru_page(struct page *page)
{
764
	lru_cache_add(page);
L
Lee Schermerhorn 已提交
765 766 767
	put_page(page);		/* drop ref from isolate */
}

768 769 770
enum page_references {
	PAGEREF_RECLAIM,
	PAGEREF_RECLAIM_CLEAN,
771
	PAGEREF_KEEP,
772 773 774 775 776 777
	PAGEREF_ACTIVATE,
};

static enum page_references page_check_references(struct page *page,
						  struct scan_control *sc)
{
778
	int referenced_ptes, referenced_page;
779 780
	unsigned long vm_flags;

781 782
	referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
					  &vm_flags);
783
	referenced_page = TestClearPageReferenced(page);
784 785 786 787 788 789 790 791

	/*
	 * Mlock lost the isolation race with us.  Let try_to_unmap()
	 * move the page to the unevictable list.
	 */
	if (vm_flags & VM_LOCKED)
		return PAGEREF_RECLAIM;

792
	if (referenced_ptes) {
793
		if (PageSwapBacked(page))
794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810
			return PAGEREF_ACTIVATE;
		/*
		 * All mapped pages start out with page table
		 * references from the instantiating fault, so we need
		 * to look twice if a mapped file page is used more
		 * than once.
		 *
		 * Mark it and spare it for another trip around the
		 * inactive list.  Another page table reference will
		 * lead to its activation.
		 *
		 * Note: the mark is set for activated pages as well
		 * so that recently deactivated but used pages are
		 * quickly recovered.
		 */
		SetPageReferenced(page);

811
		if (referenced_page || referenced_ptes > 1)
812 813
			return PAGEREF_ACTIVATE;

814 815 816 817 818 819
		/*
		 * Activate file-backed executable pages after first usage.
		 */
		if (vm_flags & VM_EXEC)
			return PAGEREF_ACTIVATE;

820 821
		return PAGEREF_KEEP;
	}
822 823

	/* Reclaim if clean, defer dirty pages to writeback */
824
	if (referenced_page && !PageSwapBacked(page))
825 826 827
		return PAGEREF_RECLAIM_CLEAN;

	return PAGEREF_RECLAIM;
828 829
}

830 831 832 833
/* Check if a page is dirty or under writeback */
static void page_check_dirty_writeback(struct page *page,
				       bool *dirty, bool *writeback)
{
834 835
	struct address_space *mapping;

836 837 838 839
	/*
	 * Anonymous pages are not handled by flushers and must be written
	 * from reclaim context. Do not stall reclaim based on them
	 */
S
Shaohua Li 已提交
840 841
	if (!page_is_file_cache(page) ||
	    (PageAnon(page) && !PageSwapBacked(page))) {
842 843 844 845 846 847 848 849
		*dirty = false;
		*writeback = false;
		return;
	}

	/* By default assume that the page flags are accurate */
	*dirty = PageDirty(page);
	*writeback = PageWriteback(page);
850 851 852 853 854 855 856 857

	/* Verify dirty/writeback state if the filesystem supports it */
	if (!page_has_private(page))
		return;

	mapping = page_mapping(page);
	if (mapping && mapping->a_ops->is_dirty_writeback)
		mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
858 859
}

860 861 862 863 864 865
struct reclaim_stat {
	unsigned nr_dirty;
	unsigned nr_unqueued_dirty;
	unsigned nr_congested;
	unsigned nr_writeback;
	unsigned nr_immediate;
866 867 868
	unsigned nr_activate;
	unsigned nr_ref_keep;
	unsigned nr_unmap_fail;
869 870
};

L
Linus Torvalds 已提交
871
/*
A
Andrew Morton 已提交
872
 * shrink_page_list() returns the number of reclaimed pages
L
Linus Torvalds 已提交
873
 */
A
Andrew Morton 已提交
874
static unsigned long shrink_page_list(struct list_head *page_list,
M
Mel Gorman 已提交
875
				      struct pglist_data *pgdat,
876
				      struct scan_control *sc,
877
				      enum ttu_flags ttu_flags,
878
				      struct reclaim_stat *stat,
879
				      bool force_reclaim)
L
Linus Torvalds 已提交
880 881
{
	LIST_HEAD(ret_pages);
882
	LIST_HEAD(free_pages);
L
Linus Torvalds 已提交
883
	int pgactivate = 0;
884 885 886 887 888 889
	unsigned nr_unqueued_dirty = 0;
	unsigned nr_dirty = 0;
	unsigned nr_congested = 0;
	unsigned nr_reclaimed = 0;
	unsigned nr_writeback = 0;
	unsigned nr_immediate = 0;
890 891
	unsigned nr_ref_keep = 0;
	unsigned nr_unmap_fail = 0;
L
Linus Torvalds 已提交
892 893 894 895 896 897 898

	cond_resched();

	while (!list_empty(page_list)) {
		struct address_space *mapping;
		struct page *page;
		int may_enter_fs;
899
		enum page_references references = PAGEREF_RECLAIM_CLEAN;
900
		bool dirty, writeback;
L
Linus Torvalds 已提交
901 902 903 904 905 906

		cond_resched();

		page = lru_to_page(page_list);
		list_del(&page->lru);

N
Nick Piggin 已提交
907
		if (!trylock_page(page))
L
Linus Torvalds 已提交
908 909
			goto keep;

910
		VM_BUG_ON_PAGE(PageActive(page), page);
L
Linus Torvalds 已提交
911 912

		sc->nr_scanned++;
913

914
		if (unlikely(!page_evictable(page)))
M
Minchan Kim 已提交
915
			goto activate_locked;
L
Lee Schermerhorn 已提交
916

917
		if (!sc->may_unmap && page_mapped(page))
918 919
			goto keep_locked;

L
Linus Torvalds 已提交
920
		/* Double the slab pressure for mapped and swapcache pages */
S
Shaohua Li 已提交
921 922
		if ((page_mapped(page) || PageSwapCache(page)) &&
		    !(PageAnon(page) && !PageSwapBacked(page)))
L
Linus Torvalds 已提交
923 924
			sc->nr_scanned++;

925 926 927
		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));

928
		/*
929
		 * The number of dirty pages determines if a node is marked
930 931 932 933 934 935 936 937 938 939 940
		 * reclaim_congested which affects wait_iff_congested. kswapd
		 * will stall and start writing pages if the tail of the LRU
		 * is all dirty unqueued pages.
		 */
		page_check_dirty_writeback(page, &dirty, &writeback);
		if (dirty || writeback)
			nr_dirty++;

		if (dirty && !writeback)
			nr_unqueued_dirty++;

941 942 943 944 945 946
		/*
		 * Treat this page as congested if the underlying BDI is or if
		 * pages are cycling through the LRU so quickly that the
		 * pages marked for immediate reclaim are making it to the
		 * end of the LRU a second time.
		 */
947
		mapping = page_mapping(page);
948
		if (((dirty || writeback) && mapping &&
949
		     inode_write_congested(mapping->host)) ||
950
		    (writeback && PageReclaim(page)))
951 952
			nr_congested++;

953 954 955 956 957 958 959 960 961 962 963
		/*
		 * If a page at the tail of the LRU is under writeback, there
		 * are three cases to consider.
		 *
		 * 1) If reclaim is encountering an excessive number of pages
		 *    under writeback and this page is both under writeback and
		 *    PageReclaim then it indicates that pages are being queued
		 *    for IO but are being recycled through the LRU before the
		 *    IO can complete. Waiting on the page itself risks an
		 *    indefinite stall if it is impossible to writeback the
		 *    page due to IO error or disconnected storage so instead
964 965
		 *    note that the LRU is being scanned too quickly and the
		 *    caller can stall after page list has been processed.
966
		 *
967
		 * 2) Global or new memcg reclaim encounters a page that is
968 969 970
		 *    not marked for immediate reclaim, or the caller does not
		 *    have __GFP_FS (or __GFP_IO if it's simply going to swap,
		 *    not to fs). In this case mark the page for immediate
971
		 *    reclaim and continue scanning.
972
		 *
973 974
		 *    Require may_enter_fs because we would wait on fs, which
		 *    may not have submitted IO yet. And the loop driver might
975 976 977 978 979
		 *    enter reclaim, and deadlock if it waits on a page for
		 *    which it is needed to do the write (loop masks off
		 *    __GFP_IO|__GFP_FS for this reason); but more thought
		 *    would probably show more reasons.
		 *
980
		 * 3) Legacy memcg encounters a page that is already marked
981 982 983 984
		 *    PageReclaim. memcg does not have any dirty pages
		 *    throttling so we could easily OOM just because too many
		 *    pages are in writeback and there is nothing else to
		 *    reclaim. Wait for the writeback to complete.
985 986 987 988 989 990 991 992 993
		 *
		 * In cases 1) and 2) we activate the pages to get them out of
		 * the way while we continue scanning for clean pages on the
		 * inactive list and refilling from the active list. The
		 * observation here is that waiting for disk writes is more
		 * expensive than potentially causing reloads down the line.
		 * Since they're marked for immediate reclaim, they won't put
		 * memory pressure on the cache working set any longer than it
		 * takes to write them to disk.
994
		 */
995
		if (PageWriteback(page)) {
996 997 998
			/* Case 1 above */
			if (current_is_kswapd() &&
			    PageReclaim(page) &&
M
Mel Gorman 已提交
999
			    test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1000
				nr_immediate++;
1001
				goto activate_locked;
1002 1003

			/* Case 2 above */
1004
			} else if (sane_reclaim(sc) ||
1005
			    !PageReclaim(page) || !may_enter_fs) {
1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017
				/*
				 * This is slightly racy - end_page_writeback()
				 * might have just cleared PageReclaim, then
				 * setting PageReclaim here end up interpreted
				 * as PageReadahead - but that does not matter
				 * enough to care.  What we do want is for this
				 * page to have PageReclaim set next time memcg
				 * reclaim reaches the tests above, so it will
				 * then wait_on_page_writeback() to avoid OOM;
				 * and it's also appropriate in global reclaim.
				 */
				SetPageReclaim(page);
1018
				nr_writeback++;
1019
				goto activate_locked;
1020 1021 1022

			/* Case 3 above */
			} else {
1023
				unlock_page(page);
1024
				wait_on_page_writeback(page);
1025 1026 1027
				/* then go back and try same page again */
				list_add_tail(&page->lru, page_list);
				continue;
1028
			}
1029
		}
L
Linus Torvalds 已提交
1030

1031 1032 1033
		if (!force_reclaim)
			references = page_check_references(page, sc);

1034 1035
		switch (references) {
		case PAGEREF_ACTIVATE:
L
Linus Torvalds 已提交
1036
			goto activate_locked;
1037
		case PAGEREF_KEEP:
1038
			nr_ref_keep++;
1039
			goto keep_locked;
1040 1041 1042 1043
		case PAGEREF_RECLAIM:
		case PAGEREF_RECLAIM_CLEAN:
			; /* try to reclaim the page below */
		}
L
Linus Torvalds 已提交
1044 1045 1046 1047

		/*
		 * Anonymous process memory has backing store?
		 * Try to allocate it some swap space here.
S
Shaohua Li 已提交
1048
		 * Lazyfree page could be freed directly
L
Linus Torvalds 已提交
1049
		 */
1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074
		if (PageAnon(page) && PageSwapBacked(page)) {
			if (!PageSwapCache(page)) {
				if (!(sc->gfp_mask & __GFP_IO))
					goto keep_locked;
				if (PageTransHuge(page)) {
					/* cannot split THP, skip it */
					if (!can_split_huge_page(page, NULL))
						goto activate_locked;
					/*
					 * Split pages without a PMD map right
					 * away. Chances are some or all of the
					 * tail pages can be freed without IO.
					 */
					if (!compound_mapcount(page) &&
					    split_huge_page_to_list(page,
								    page_list))
						goto activate_locked;
				}
				if (!add_to_swap(page)) {
					if (!PageTransHuge(page))
						goto activate_locked;
					/* Fallback to swap normal pages */
					if (split_huge_page_to_list(page,
								    page_list))
						goto activate_locked;
1075 1076 1077
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
					count_vm_event(THP_SWPOUT_FALLBACK);
#endif
1078 1079 1080
					if (!add_to_swap(page))
						goto activate_locked;
				}
1081

1082
				may_enter_fs = 1;
L
Linus Torvalds 已提交
1083

1084 1085 1086
				/* Adding to swap updated mapping */
				mapping = page_mapping(page);
			}
1087 1088 1089 1090
		} else if (unlikely(PageTransHuge(page))) {
			/* Split file THP */
			if (split_huge_page_to_list(page, page_list))
				goto keep_locked;
1091
		}
L
Linus Torvalds 已提交
1092 1093 1094 1095 1096

		/*
		 * The page is mapped into the page tables of one or more
		 * processes. Try to unmap it here.
		 */
S
Shaohua Li 已提交
1097
		if (page_mapped(page)) {
1098 1099 1100 1101 1102
			enum ttu_flags flags = ttu_flags | TTU_BATCH_FLUSH;

			if (unlikely(PageTransHuge(page)))
				flags |= TTU_SPLIT_HUGE_PMD;
			if (!try_to_unmap(page, flags)) {
1103
				nr_unmap_fail++;
L
Linus Torvalds 已提交
1104 1105 1106 1107 1108
				goto activate_locked;
			}
		}

		if (PageDirty(page)) {
1109
			/*
1110 1111 1112 1113 1114 1115 1116 1117
			 * Only kswapd can writeback filesystem pages
			 * to avoid risk of stack overflow. But avoid
			 * injecting inefficient single-page IO into
			 * flusher writeback as much as possible: only
			 * write pages when we've encountered many
			 * dirty pages, and when we've already scanned
			 * the rest of the LRU for clean pages and see
			 * the same dirty pages again (PageReclaim).
1118
			 */
1119
			if (page_is_file_cache(page) &&
1120 1121
			    (!current_is_kswapd() || !PageReclaim(page) ||
			     !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1122 1123 1124 1125 1126 1127
				/*
				 * Immediately reclaim when written back.
				 * Similar in principal to deactivate_page()
				 * except we already have the page isolated
				 * and know it's dirty
				 */
1128
				inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
1129 1130
				SetPageReclaim(page);

1131
				goto activate_locked;
1132 1133
			}

1134
			if (references == PAGEREF_RECLAIM_CLEAN)
L
Linus Torvalds 已提交
1135
				goto keep_locked;
1136
			if (!may_enter_fs)
L
Linus Torvalds 已提交
1137
				goto keep_locked;
1138
			if (!sc->may_writepage)
L
Linus Torvalds 已提交
1139 1140
				goto keep_locked;

1141 1142 1143 1144 1145 1146
			/*
			 * Page is dirty. Flush the TLB if a writable entry
			 * potentially exists to avoid CPU writes after IO
			 * starts and then write it out here.
			 */
			try_to_unmap_flush_dirty();
1147
			switch (pageout(page, mapping, sc)) {
L
Linus Torvalds 已提交
1148 1149 1150 1151 1152
			case PAGE_KEEP:
				goto keep_locked;
			case PAGE_ACTIVATE:
				goto activate_locked;
			case PAGE_SUCCESS:
1153
				if (PageWriteback(page))
1154
					goto keep;
1155
				if (PageDirty(page))
L
Linus Torvalds 已提交
1156
					goto keep;
1157

L
Linus Torvalds 已提交
1158 1159 1160 1161
				/*
				 * A synchronous write - probably a ramdisk.  Go
				 * ahead and try to reclaim the page.
				 */
N
Nick Piggin 已提交
1162
				if (!trylock_page(page))
L
Linus Torvalds 已提交
1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181
					goto keep;
				if (PageDirty(page) || PageWriteback(page))
					goto keep_locked;
				mapping = page_mapping(page);
			case PAGE_CLEAN:
				; /* try to free the page below */
			}
		}

		/*
		 * If the page has buffers, try to free the buffer mappings
		 * associated with this page. If we succeed we try to free
		 * the page as well.
		 *
		 * We do this even if the page is PageDirty().
		 * try_to_release_page() does not perform I/O, but it is
		 * possible for a page to have PageDirty set, but it is actually
		 * clean (all its buffers are clean).  This happens if the
		 * buffers were written out directly, with submit_bh(). ext3
L
Lee Schermerhorn 已提交
1182
		 * will do this, as well as the blockdev mapping.
L
Linus Torvalds 已提交
1183 1184 1185 1186 1187 1188 1189 1190 1191 1192
		 * try_to_release_page() will discover that cleanness and will
		 * drop the buffers and mark the page clean - it can be freed.
		 *
		 * Rarely, pages can have buffers and no ->mapping.  These are
		 * the pages which were not successfully invalidated in
		 * truncate_complete_page().  We try to drop those buffers here
		 * and if that worked, and the page is no longer mapped into
		 * process address space (page_count == 1) it can be freed.
		 * Otherwise, leave the page on the LRU so it is swappable.
		 */
1193
		if (page_has_private(page)) {
L
Linus Torvalds 已提交
1194 1195
			if (!try_to_release_page(page, sc->gfp_mask))
				goto activate_locked;
N
Nick Piggin 已提交
1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211
			if (!mapping && page_count(page) == 1) {
				unlock_page(page);
				if (put_page_testzero(page))
					goto free_it;
				else {
					/*
					 * rare race with speculative reference.
					 * the speculative reference will free
					 * this page shortly, so we may
					 * increment nr_reclaimed here (and
					 * leave it off the LRU).
					 */
					nr_reclaimed++;
					continue;
				}
			}
L
Linus Torvalds 已提交
1212 1213
		}

S
Shaohua Li 已提交
1214 1215 1216 1217 1218 1219 1220 1221
		if (PageAnon(page) && !PageSwapBacked(page)) {
			/* follow __remove_mapping for reference */
			if (!page_ref_freeze(page, 1))
				goto keep_locked;
			if (PageDirty(page)) {
				page_ref_unfreeze(page, 1);
				goto keep_locked;
			}
L
Linus Torvalds 已提交
1222

S
Shaohua Li 已提交
1223
			count_vm_event(PGLAZYFREED);
1224
			count_memcg_page_event(page, PGLAZYFREED);
S
Shaohua Li 已提交
1225 1226
		} else if (!mapping || !__remove_mapping(mapping, page, true))
			goto keep_locked;
N
Nick Piggin 已提交
1227 1228 1229 1230 1231 1232 1233
		/*
		 * At this point, we have no other references and there is
		 * no way to pick any more up (removed from LRU, removed
		 * from pagecache). Can use non-atomic bitops now (and
		 * we obviously don't have to worry about waking up a process
		 * waiting on the page lock, because there are no references.
		 */
1234
		__ClearPageLocked(page);
N
Nick Piggin 已提交
1235
free_it:
1236
		nr_reclaimed++;
1237 1238 1239 1240 1241

		/*
		 * Is there need to periodically free_page_list? It would
		 * appear not as the counts should be low
		 */
1242 1243 1244 1245 1246
		if (unlikely(PageTransHuge(page))) {
			mem_cgroup_uncharge(page);
			(*get_compound_page_dtor(page))(page);
		} else
			list_add(&page->lru, &free_pages);
L
Linus Torvalds 已提交
1247 1248 1249
		continue;

activate_locked:
1250
		/* Not a candidate for swapping, so reclaim swap space. */
M
Minchan Kim 已提交
1251 1252
		if (PageSwapCache(page) && (mem_cgroup_swap_full(page) ||
						PageMlocked(page)))
1253
			try_to_free_swap(page);
1254
		VM_BUG_ON_PAGE(PageActive(page), page);
M
Minchan Kim 已提交
1255 1256 1257
		if (!PageMlocked(page)) {
			SetPageActive(page);
			pgactivate++;
1258
			count_memcg_page_event(page, PGACTIVATE);
M
Minchan Kim 已提交
1259
		}
L
Linus Torvalds 已提交
1260 1261 1262 1263
keep_locked:
		unlock_page(page);
keep:
		list_add(&page->lru, &ret_pages);
1264
		VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
L
Linus Torvalds 已提交
1265
	}
1266

1267
	mem_cgroup_uncharge_list(&free_pages);
1268
	try_to_unmap_flush();
1269
	free_unref_page_list(&free_pages);
1270

L
Linus Torvalds 已提交
1271
	list_splice(&ret_pages, page_list);
1272
	count_vm_events(PGACTIVATE, pgactivate);
1273

1274 1275 1276 1277 1278 1279
	if (stat) {
		stat->nr_dirty = nr_dirty;
		stat->nr_congested = nr_congested;
		stat->nr_unqueued_dirty = nr_unqueued_dirty;
		stat->nr_writeback = nr_writeback;
		stat->nr_immediate = nr_immediate;
1280 1281 1282
		stat->nr_activate = pgactivate;
		stat->nr_ref_keep = nr_ref_keep;
		stat->nr_unmap_fail = nr_unmap_fail;
1283
	}
1284
	return nr_reclaimed;
L
Linus Torvalds 已提交
1285 1286
}

1287 1288 1289 1290 1291 1292 1293 1294
unsigned long reclaim_clean_pages_from_list(struct zone *zone,
					    struct list_head *page_list)
{
	struct scan_control sc = {
		.gfp_mask = GFP_KERNEL,
		.priority = DEF_PRIORITY,
		.may_unmap = 1,
	};
1295
	unsigned long ret;
1296 1297 1298 1299
	struct page *page, *next;
	LIST_HEAD(clean_pages);

	list_for_each_entry_safe(page, next, page_list, lru) {
1300
		if (page_is_file_cache(page) && !PageDirty(page) &&
1301
		    !__PageMovable(page)) {
1302 1303 1304 1305 1306
			ClearPageActive(page);
			list_move(&page->lru, &clean_pages);
		}
	}

M
Mel Gorman 已提交
1307
	ret = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
S
Shaohua Li 已提交
1308
			TTU_IGNORE_ACCESS, NULL, true);
1309
	list_splice(&clean_pages, page_list);
M
Mel Gorman 已提交
1310
	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -ret);
1311 1312 1313
	return ret;
}

A
Andy Whitcroft 已提交
1314 1315 1316 1317 1318 1319 1320 1321 1322 1323
/*
 * Attempt to remove the specified page from its LRU.  Only take this page
 * if it is of the appropriate PageActive status.  Pages which are being
 * freed elsewhere are also ignored.
 *
 * page:	page to consider
 * mode:	one of the LRU isolation modes defined above
 *
 * returns 0 on success, -ve errno on failure.
 */
1324
int __isolate_lru_page(struct page *page, isolate_mode_t mode)
A
Andy Whitcroft 已提交
1325 1326 1327 1328 1329 1330 1331
{
	int ret = -EINVAL;

	/* Only take pages on the LRU. */
	if (!PageLRU(page))
		return ret;

M
Minchan Kim 已提交
1332 1333
	/* Compaction should not handle unevictable pages but CMA can do so */
	if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
L
Lee Schermerhorn 已提交
1334 1335
		return ret;

A
Andy Whitcroft 已提交
1336
	ret = -EBUSY;
K
KAMEZAWA Hiroyuki 已提交
1337

1338 1339 1340 1341 1342 1343 1344 1345
	/*
	 * To minimise LRU disruption, the caller can indicate that it only
	 * wants to isolate pages it will be able to operate on without
	 * blocking - clean pages for the most part.
	 *
	 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
	 * that it is possible to migrate without blocking
	 */
1346
	if (mode & ISOLATE_ASYNC_MIGRATE) {
1347 1348 1349 1350 1351 1352
		/* All the caller can do on PageWriteback is block */
		if (PageWriteback(page))
			return ret;

		if (PageDirty(page)) {
			struct address_space *mapping;
1353
			bool migrate_dirty;
1354 1355 1356 1357

			/*
			 * Only pages without mappings or that have a
			 * ->migratepage callback are possible to migrate
1358 1359 1360 1361 1362
			 * without blocking. However, we can be racing with
			 * truncation so it's necessary to lock the page
			 * to stabilise the mapping as truncation holds
			 * the page lock until after the page is removed
			 * from the page cache.
1363
			 */
1364 1365 1366
			if (!trylock_page(page))
				return ret;

1367
			mapping = page_mapping(page);
1368 1369 1370
			migrate_dirty = mapping && mapping->a_ops->migratepage;
			unlock_page(page);
			if (!migrate_dirty)
1371 1372 1373
				return ret;
		}
	}
1374

1375 1376 1377
	if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
		return ret;

A
Andy Whitcroft 已提交
1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390
	if (likely(get_page_unless_zero(page))) {
		/*
		 * Be careful not to clear PageLRU until after we're
		 * sure the page is not being freed elsewhere -- the
		 * page release code relies on it.
		 */
		ClearPageLRU(page);
		ret = 0;
	}

	return ret;
}

1391 1392 1393 1394 1395 1396

/*
 * Update LRU sizes after isolating pages. The LRU size updates must
 * be complete before mem_cgroup_update_lru_size due to a santity check.
 */
static __always_inline void update_lru_sizes(struct lruvec *lruvec,
1397
			enum lru_list lru, unsigned long *nr_zone_taken)
1398 1399 1400 1401 1402 1403 1404 1405 1406
{
	int zid;

	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
		if (!nr_zone_taken[zid])
			continue;

		__update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
#ifdef CONFIG_MEMCG
1407
		mem_cgroup_update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1408
#endif
1409 1410
	}

1411 1412
}

L
Linus Torvalds 已提交
1413
/*
1414
 * zone_lru_lock is heavily contended.  Some of the functions that
L
Linus Torvalds 已提交
1415 1416 1417 1418 1419 1420 1421 1422
 * shrink the lists perform better by taking out a batch of pages
 * and working on them outside the LRU lock.
 *
 * For pagecache intensive workloads, this function is the hottest
 * spot in the kernel (apart from copy_*_user functions).
 *
 * Appropriate locks must be held before calling this function.
 *
1423
 * @nr_to_scan:	The number of eligible pages to look through on the list.
1424
 * @lruvec:	The LRU vector to pull pages from.
L
Linus Torvalds 已提交
1425
 * @dst:	The temp list to put pages on to.
H
Hugh Dickins 已提交
1426
 * @nr_scanned:	The number of pages that were scanned.
1427
 * @sc:		The scan_control struct for this reclaim session
A
Andy Whitcroft 已提交
1428
 * @mode:	One of the LRU isolation modes
1429
 * @lru:	LRU list id for isolating
L
Linus Torvalds 已提交
1430 1431 1432
 *
 * returns how many pages were moved onto *@dst.
 */
1433
static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1434
		struct lruvec *lruvec, struct list_head *dst,
1435
		unsigned long *nr_scanned, struct scan_control *sc,
1436
		isolate_mode_t mode, enum lru_list lru)
L
Linus Torvalds 已提交
1437
{
H
Hugh Dickins 已提交
1438
	struct list_head *src = &lruvec->lists[lru];
1439
	unsigned long nr_taken = 0;
M
Mel Gorman 已提交
1440
	unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
1441
	unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
1442
	unsigned long skipped = 0;
1443
	unsigned long scan, total_scan, nr_pages;
1444
	LIST_HEAD(pages_skipped);
L
Linus Torvalds 已提交
1445

1446 1447 1448 1449
	scan = 0;
	for (total_scan = 0;
	     scan < nr_to_scan && nr_taken < nr_to_scan && !list_empty(src);
	     total_scan++) {
A
Andy Whitcroft 已提交
1450 1451
		struct page *page;

L
Linus Torvalds 已提交
1452 1453 1454
		page = lru_to_page(src);
		prefetchw_prev_lru_page(page, src, flags);

1455
		VM_BUG_ON_PAGE(!PageLRU(page), page);
N
Nick Piggin 已提交
1456

1457 1458
		if (page_zonenum(page) > sc->reclaim_idx) {
			list_move(&page->lru, &pages_skipped);
1459
			nr_skipped[page_zonenum(page)]++;
1460 1461 1462
			continue;
		}

1463 1464 1465 1466 1467 1468 1469
		/*
		 * Do not count skipped pages because that makes the function
		 * return with no isolated pages if the LRU mostly contains
		 * ineligible pages.  This causes the VM to not reclaim any
		 * pages, triggering a premature OOM.
		 */
		scan++;
1470
		switch (__isolate_lru_page(page, mode)) {
A
Andy Whitcroft 已提交
1471
		case 0:
M
Mel Gorman 已提交
1472 1473 1474
			nr_pages = hpage_nr_pages(page);
			nr_taken += nr_pages;
			nr_zone_taken[page_zonenum(page)] += nr_pages;
A
Andy Whitcroft 已提交
1475 1476 1477 1478 1479 1480 1481
			list_move(&page->lru, dst);
			break;

		case -EBUSY:
			/* else it is being freed elsewhere */
			list_move(&page->lru, src);
			continue;
1482

A
Andy Whitcroft 已提交
1483 1484 1485
		default:
			BUG();
		}
L
Linus Torvalds 已提交
1486 1487
	}

1488 1489 1490 1491 1492 1493 1494
	/*
	 * Splice any skipped pages to the start of the LRU list. Note that
	 * this disrupts the LRU order when reclaiming for lower zones but
	 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
	 * scanning would soon rescan the same pages to skip and put the
	 * system at risk of premature OOM.
	 */
1495 1496 1497
	if (!list_empty(&pages_skipped)) {
		int zid;

1498
		list_splice(&pages_skipped, src);
1499 1500 1501 1502 1503
		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
			if (!nr_skipped[zid])
				continue;

			__count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1504
			skipped += nr_skipped[zid];
1505 1506
		}
	}
1507
	*nr_scanned = total_scan;
1508
	trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
1509
				    total_scan, skipped, nr_taken, mode, lru);
1510
	update_lru_sizes(lruvec, lru, nr_zone_taken);
L
Linus Torvalds 已提交
1511 1512 1513
	return nr_taken;
}

1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524
/**
 * isolate_lru_page - tries to isolate a page from its LRU list
 * @page: page to isolate from its LRU list
 *
 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
 * vmstat statistic corresponding to whatever LRU list the page was on.
 *
 * Returns 0 if the page was removed from an LRU list.
 * Returns -EBUSY if the page was not on an LRU list.
 *
 * The returned page will have PageLRU() cleared.  If it was found on
L
Lee Schermerhorn 已提交
1525 1526 1527
 * the active list, it will have PageActive set.  If it was found on
 * the unevictable list, it will have the PageUnevictable bit set. That flag
 * may need to be cleared by the caller before letting the page go.
1528 1529 1530 1531 1532
 *
 * The vmstat statistic corresponding to the list on which the page was
 * found will be decremented.
 *
 * Restrictions:
1533
 *
1534 1535 1536 1537 1538 1539 1540 1541 1542 1543
 * (1) Must be called with an elevated refcount on the page. This is a
 *     fundamentnal difference from isolate_lru_pages (which is called
 *     without a stable reference).
 * (2) the lru_lock must not be held.
 * (3) interrupts must be enabled.
 */
int isolate_lru_page(struct page *page)
{
	int ret = -EBUSY;

1544
	VM_BUG_ON_PAGE(!page_count(page), page);
1545
	WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
1546

1547 1548
	if (PageLRU(page)) {
		struct zone *zone = page_zone(page);
1549
		struct lruvec *lruvec;
1550

1551
		spin_lock_irq(zone_lru_lock(zone));
M
Mel Gorman 已提交
1552
		lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
1553
		if (PageLRU(page)) {
L
Lee Schermerhorn 已提交
1554
			int lru = page_lru(page);
1555
			get_page(page);
1556
			ClearPageLRU(page);
1557 1558
			del_page_from_lru_list(page, lruvec, lru);
			ret = 0;
1559
		}
1560
		spin_unlock_irq(zone_lru_lock(zone));
1561 1562 1563 1564
	}
	return ret;
}

1565
/*
F
Fengguang Wu 已提交
1566 1567 1568 1569 1570
 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
 * then get resheduled. When there are massive number of tasks doing page
 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
 * the LRU list will go small and be scanned faster than necessary, leading to
 * unnecessary swapping, thrashing and OOM.
1571
 */
M
Mel Gorman 已提交
1572
static int too_many_isolated(struct pglist_data *pgdat, int file,
1573 1574 1575 1576 1577 1578 1579
		struct scan_control *sc)
{
	unsigned long inactive, isolated;

	if (current_is_kswapd())
		return 0;

1580
	if (!sane_reclaim(sc))
1581 1582 1583
		return 0;

	if (file) {
M
Mel Gorman 已提交
1584 1585
		inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
		isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
1586
	} else {
M
Mel Gorman 已提交
1587 1588
		inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
		isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
1589 1590
	}

1591 1592 1593 1594 1595
	/*
	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
	 * won't get blocked by normal direct-reclaimers, forming a circular
	 * deadlock.
	 */
1596
	if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
1597 1598
		inactive >>= 3;

1599 1600 1601
	return isolated > inactive;
}

1602
static noinline_for_stack void
H
Hugh Dickins 已提交
1603
putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1604
{
1605
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
M
Mel Gorman 已提交
1606
	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1607
	LIST_HEAD(pages_to_free);
1608 1609 1610 1611 1612

	/*
	 * Put back any unfreeable pages.
	 */
	while (!list_empty(page_list)) {
1613
		struct page *page = lru_to_page(page_list);
1614
		int lru;
1615

1616
		VM_BUG_ON_PAGE(PageLRU(page), page);
1617
		list_del(&page->lru);
1618
		if (unlikely(!page_evictable(page))) {
M
Mel Gorman 已提交
1619
			spin_unlock_irq(&pgdat->lru_lock);
1620
			putback_lru_page(page);
M
Mel Gorman 已提交
1621
			spin_lock_irq(&pgdat->lru_lock);
1622 1623
			continue;
		}
1624

M
Mel Gorman 已提交
1625
		lruvec = mem_cgroup_page_lruvec(page, pgdat);
1626

1627
		SetPageLRU(page);
1628
		lru = page_lru(page);
1629 1630
		add_page_to_lru_list(page, lruvec, lru);

1631 1632
		if (is_active_lru(lru)) {
			int file = is_file_lru(lru);
1633 1634
			int numpages = hpage_nr_pages(page);
			reclaim_stat->recent_rotated[file] += numpages;
1635
		}
1636 1637 1638
		if (put_page_testzero(page)) {
			__ClearPageLRU(page);
			__ClearPageActive(page);
1639
			del_page_from_lru_list(page, lruvec, lru);
1640 1641

			if (unlikely(PageCompound(page))) {
M
Mel Gorman 已提交
1642
				spin_unlock_irq(&pgdat->lru_lock);
1643
				mem_cgroup_uncharge(page);
1644
				(*get_compound_page_dtor(page))(page);
M
Mel Gorman 已提交
1645
				spin_lock_irq(&pgdat->lru_lock);
1646 1647
			} else
				list_add(&page->lru, &pages_to_free);
1648 1649 1650
		}
	}

1651 1652 1653 1654
	/*
	 * To save our caller's stack, now use input list for pages to free.
	 */
	list_splice(&pages_to_free, page_list);
1655 1656
}

1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669
/*
 * If a kernel thread (such as nfsd for loop-back mounts) services
 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
 * In that case we should only throttle if the backing device it is
 * writing to is congested.  In other cases it is safe to throttle.
 */
static int current_may_throttle(void)
{
	return !(current->flags & PF_LESS_THROTTLE) ||
		current->backing_dev_info == NULL ||
		bdi_write_congested(current->backing_dev_info);
}

L
Linus Torvalds 已提交
1670
/*
1671
 * shrink_inactive_list() is a helper for shrink_node().  It returns the number
A
Andrew Morton 已提交
1672
 * of reclaimed pages
L
Linus Torvalds 已提交
1673
 */
1674
static noinline_for_stack unsigned long
1675
shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1676
		     struct scan_control *sc, enum lru_list lru)
L
Linus Torvalds 已提交
1677 1678
{
	LIST_HEAD(page_list);
1679
	unsigned long nr_scanned;
1680
	unsigned long nr_reclaimed = 0;
1681
	unsigned long nr_taken;
1682
	struct reclaim_stat stat = {};
1683
	isolate_mode_t isolate_mode = 0;
1684
	int file = is_file_lru(lru);
M
Mel Gorman 已提交
1685
	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1686
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1687
	bool stalled = false;
1688

M
Mel Gorman 已提交
1689
	while (unlikely(too_many_isolated(pgdat, file, sc))) {
1690 1691 1692 1693 1694 1695
		if (stalled)
			return 0;

		/* wait a bit for the reclaimer. */
		msleep(100);
		stalled = true;
1696 1697 1698 1699 1700 1701

		/* We are about to die and free our memory. Return now. */
		if (fatal_signal_pending(current))
			return SWAP_CLUSTER_MAX;
	}

L
Linus Torvalds 已提交
1702
	lru_add_drain();
1703 1704

	if (!sc->may_unmap)
1705
		isolate_mode |= ISOLATE_UNMAPPED;
1706

M
Mel Gorman 已提交
1707
	spin_lock_irq(&pgdat->lru_lock);
1708

1709 1710
	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
				     &nr_scanned, sc, isolate_mode, lru);
1711

M
Mel Gorman 已提交
1712
	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1713
	reclaim_stat->recent_scanned[file] += nr_taken;
1714

1715 1716
	if (current_is_kswapd()) {
		if (global_reclaim(sc))
M
Mel Gorman 已提交
1717
			__count_vm_events(PGSCAN_KSWAPD, nr_scanned);
1718 1719 1720 1721
		count_memcg_events(lruvec_memcg(lruvec), PGSCAN_KSWAPD,
				   nr_scanned);
	} else {
		if (global_reclaim(sc))
M
Mel Gorman 已提交
1722
			__count_vm_events(PGSCAN_DIRECT, nr_scanned);
1723 1724
		count_memcg_events(lruvec_memcg(lruvec), PGSCAN_DIRECT,
				   nr_scanned);
1725
	}
M
Mel Gorman 已提交
1726
	spin_unlock_irq(&pgdat->lru_lock);
1727

1728
	if (nr_taken == 0)
1729
		return 0;
A
Andy Whitcroft 已提交
1730

S
Shaohua Li 已提交
1731
	nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, 0,
1732
				&stat, false);
1733

M
Mel Gorman 已提交
1734
	spin_lock_irq(&pgdat->lru_lock);
1735

1736 1737
	if (current_is_kswapd()) {
		if (global_reclaim(sc))
M
Mel Gorman 已提交
1738
			__count_vm_events(PGSTEAL_KSWAPD, nr_reclaimed);
1739 1740 1741 1742
		count_memcg_events(lruvec_memcg(lruvec), PGSTEAL_KSWAPD,
				   nr_reclaimed);
	} else {
		if (global_reclaim(sc))
M
Mel Gorman 已提交
1743
			__count_vm_events(PGSTEAL_DIRECT, nr_reclaimed);
1744 1745
		count_memcg_events(lruvec_memcg(lruvec), PGSTEAL_DIRECT,
				   nr_reclaimed);
Y
Ying Han 已提交
1746
	}
N
Nick Piggin 已提交
1747

1748
	putback_inactive_pages(lruvec, &page_list);
1749

M
Mel Gorman 已提交
1750
	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
1751

M
Mel Gorman 已提交
1752
	spin_unlock_irq(&pgdat->lru_lock);
1753

1754
	mem_cgroup_uncharge_list(&page_list);
1755
	free_unref_page_list(&page_list);
1756

1757 1758 1759 1760 1761 1762 1763 1764 1765 1766
	/*
	 * If reclaim is isolating dirty pages under writeback, it implies
	 * that the long-lived page allocation rate is exceeding the page
	 * laundering rate. Either the global limits are not being effective
	 * at throttling processes due to the page distribution throughout
	 * zones or there is heavy usage of a slow backing device. The
	 * only option is to throttle from reclaim context which is not ideal
	 * as there is no guarantee the dirtying process is throttled in the
	 * same way balance_dirty_pages() manages.
	 *
1767
	 * Once a node is flagged PGDAT_WRITEBACK, kswapd will count the number
1768 1769
	 * of pages under pages flagged for immediate reclaim and stall if any
	 * are encountered in the nr_immediate check below.
1770
	 */
1771
	if (stat.nr_writeback && stat.nr_writeback == nr_taken)
M
Mel Gorman 已提交
1772
		set_bit(PGDAT_WRITEBACK, &pgdat->flags);
1773

1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787
	/*
	 * If dirty pages are scanned that are not queued for IO, it
	 * implies that flushers are not doing their job. This can
	 * happen when memory pressure pushes dirty pages to the end of
	 * the LRU before the dirty limits are breached and the dirty
	 * data has expired. It can also happen when the proportion of
	 * dirty pages grows not through writes but through memory
	 * pressure reclaiming all the clean cache. And in some cases,
	 * the flushers simply cannot keep up with the allocation
	 * rate. Nudge the flusher threads in case they are asleep.
	 */
	if (stat.nr_unqueued_dirty == nr_taken)
		wakeup_flusher_threads(WB_REASON_VMSCAN);

1788
	/*
1789 1790
	 * Legacy memcg will stall in page writeback so avoid forcibly
	 * stalling here.
1791
	 */
1792
	if (sane_reclaim(sc)) {
1793
		/*
1794
		 * Tag a node as congested if all the dirty pages scanned were
1795 1796
		 * backed by a congested BDI and wait_iff_congested will stall.
		 */
1797
		if (stat.nr_dirty && stat.nr_dirty == stat.nr_congested)
M
Mel Gorman 已提交
1798
			set_bit(PGDAT_CONGESTED, &pgdat->flags);
1799

1800 1801
		/* Allow kswapd to start writing pages during reclaim. */
		if (stat.nr_unqueued_dirty == nr_taken)
M
Mel Gorman 已提交
1802
			set_bit(PGDAT_DIRTY, &pgdat->flags);
1803 1804

		/*
1805 1806 1807
		 * If kswapd scans pages marked marked for immediate
		 * reclaim and under writeback (nr_immediate), it implies
		 * that pages are cycling through the LRU faster than
1808 1809
		 * they are written so also forcibly stall.
		 */
1810
		if (stat.nr_immediate)
1811
			congestion_wait(BLK_RW_ASYNC, HZ/10);
1812
	}
1813

1814
	/*
1815
	 * Stall direct reclaim for IO completions if underlying BDIs and node
1816 1817 1818
	 * is congested. Allow kswapd to continue until it starts encountering
	 * unqueued dirty pages or cycling through the LRU too quickly.
	 */
1819 1820
	if (!sc->hibernation_mode && !current_is_kswapd() &&
	    current_may_throttle())
M
Mel Gorman 已提交
1821
		wait_iff_congested(pgdat, BLK_RW_ASYNC, HZ/10);
1822

M
Mel Gorman 已提交
1823 1824
	trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
			nr_scanned, nr_reclaimed,
1825 1826 1827 1828
			stat.nr_dirty,  stat.nr_writeback,
			stat.nr_congested, stat.nr_immediate,
			stat.nr_activate, stat.nr_ref_keep,
			stat.nr_unmap_fail,
1829
			sc->priority, file);
1830
	return nr_reclaimed;
L
Linus Torvalds 已提交
1831 1832 1833 1834 1835 1836 1837 1838 1839
}

/*
 * This moves pages from the active list to the inactive list.
 *
 * We move them the other way if the page is referenced by one or more
 * processes, from rmap.
 *
 * If the pages are mostly unmapped, the processing is fast and it is
1840
 * appropriate to hold zone_lru_lock across the whole operation.  But if
L
Linus Torvalds 已提交
1841
 * the pages are mapped, the processing is slow (page_referenced()) so we
1842
 * should drop zone_lru_lock around each page.  It's impossible to balance
L
Linus Torvalds 已提交
1843 1844 1845 1846
 * this, so instead we remove the pages from the LRU while processing them.
 * It is safe to rely on PG_active against the non-LRU pages in here because
 * nobody will play with that bit on a non-LRU page.
 *
1847
 * The downside is that we have to touch page->_refcount against each page.
L
Linus Torvalds 已提交
1848
 * But we had to alter page->flags anyway.
1849 1850
 *
 * Returns the number of pages moved to the given lru.
L
Linus Torvalds 已提交
1851
 */
1852

1853
static unsigned move_active_pages_to_lru(struct lruvec *lruvec,
1854
				     struct list_head *list,
1855
				     struct list_head *pages_to_free,
1856 1857
				     enum lru_list lru)
{
M
Mel Gorman 已提交
1858
	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1859
	struct page *page;
1860
	int nr_pages;
1861
	int nr_moved = 0;
1862 1863 1864

	while (!list_empty(list)) {
		page = lru_to_page(list);
M
Mel Gorman 已提交
1865
		lruvec = mem_cgroup_page_lruvec(page, pgdat);
1866

1867
		VM_BUG_ON_PAGE(PageLRU(page), page);
1868 1869
		SetPageLRU(page);

1870
		nr_pages = hpage_nr_pages(page);
M
Mel Gorman 已提交
1871
		update_lru_size(lruvec, lru, page_zonenum(page), nr_pages);
1872
		list_move(&page->lru, &lruvec->lists[lru]);
1873

1874 1875 1876
		if (put_page_testzero(page)) {
			__ClearPageLRU(page);
			__ClearPageActive(page);
1877
			del_page_from_lru_list(page, lruvec, lru);
1878 1879

			if (unlikely(PageCompound(page))) {
M
Mel Gorman 已提交
1880
				spin_unlock_irq(&pgdat->lru_lock);
1881
				mem_cgroup_uncharge(page);
1882
				(*get_compound_page_dtor(page))(page);
M
Mel Gorman 已提交
1883
				spin_lock_irq(&pgdat->lru_lock);
1884 1885
			} else
				list_add(&page->lru, pages_to_free);
1886 1887
		} else {
			nr_moved += nr_pages;
1888 1889
		}
	}
1890

1891
	if (!is_active_lru(lru)) {
1892
		__count_vm_events(PGDEACTIVATE, nr_moved);
1893 1894 1895
		count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE,
				   nr_moved);
	}
1896 1897

	return nr_moved;
1898
}
1899

H
Hugh Dickins 已提交
1900
static void shrink_active_list(unsigned long nr_to_scan,
1901
			       struct lruvec *lruvec,
1902
			       struct scan_control *sc,
1903
			       enum lru_list lru)
L
Linus Torvalds 已提交
1904
{
1905
	unsigned long nr_taken;
H
Hugh Dickins 已提交
1906
	unsigned long nr_scanned;
1907
	unsigned long vm_flags;
L
Linus Torvalds 已提交
1908
	LIST_HEAD(l_hold);	/* The pages which were snipped off */
1909
	LIST_HEAD(l_active);
1910
	LIST_HEAD(l_inactive);
L
Linus Torvalds 已提交
1911
	struct page *page;
1912
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1913 1914
	unsigned nr_deactivate, nr_activate;
	unsigned nr_rotated = 0;
1915
	isolate_mode_t isolate_mode = 0;
1916
	int file = is_file_lru(lru);
M
Mel Gorman 已提交
1917
	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
L
Linus Torvalds 已提交
1918 1919

	lru_add_drain();
1920 1921

	if (!sc->may_unmap)
1922
		isolate_mode |= ISOLATE_UNMAPPED;
1923

M
Mel Gorman 已提交
1924
	spin_lock_irq(&pgdat->lru_lock);
1925

1926 1927
	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
				     &nr_scanned, sc, isolate_mode, lru);
1928

M
Mel Gorman 已提交
1929
	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1930
	reclaim_stat->recent_scanned[file] += nr_taken;
1931

M
Mel Gorman 已提交
1932
	__count_vm_events(PGREFILL, nr_scanned);
1933
	count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
1934

M
Mel Gorman 已提交
1935
	spin_unlock_irq(&pgdat->lru_lock);
L
Linus Torvalds 已提交
1936 1937 1938 1939 1940

	while (!list_empty(&l_hold)) {
		cond_resched();
		page = lru_to_page(&l_hold);
		list_del(&page->lru);
1941

1942
		if (unlikely(!page_evictable(page))) {
L
Lee Schermerhorn 已提交
1943 1944 1945 1946
			putback_lru_page(page);
			continue;
		}

1947 1948 1949 1950 1951 1952 1953 1954
		if (unlikely(buffer_heads_over_limit)) {
			if (page_has_private(page) && trylock_page(page)) {
				if (page_has_private(page))
					try_to_release_page(page, 0);
				unlock_page(page);
			}
		}

1955 1956
		if (page_referenced(page, 0, sc->target_mem_cgroup,
				    &vm_flags)) {
1957
			nr_rotated += hpage_nr_pages(page);
1958 1959 1960 1961 1962 1963 1964 1965 1966
			/*
			 * Identify referenced, file-backed active pages and
			 * give them one more trip around the active list. So
			 * that executable code get better chances to stay in
			 * memory under moderate memory pressure.  Anon pages
			 * are not likely to be evicted by use-once streaming
			 * IO, plus JVM can create lots of anon VM_EXEC pages,
			 * so we ignore them here.
			 */
1967
			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1968 1969 1970 1971
				list_add(&page->lru, &l_active);
				continue;
			}
		}
1972

1973
		ClearPageActive(page);	/* we are de-activating */
L
Linus Torvalds 已提交
1974 1975 1976
		list_add(&page->lru, &l_inactive);
	}

1977
	/*
1978
	 * Move pages back to the lru list.
1979
	 */
M
Mel Gorman 已提交
1980
	spin_lock_irq(&pgdat->lru_lock);
1981
	/*
1982 1983 1984
	 * Count referenced pages from currently used mappings as rotated,
	 * even though only some of them are actually re-activated.  This
	 * helps balance scan pressure between file and anonymous pages in
1985
	 * get_scan_count.
1986
	 */
1987
	reclaim_stat->recent_rotated[file] += nr_rotated;
1988

1989 1990
	nr_activate = move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
	nr_deactivate = move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
M
Mel Gorman 已提交
1991 1992
	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
	spin_unlock_irq(&pgdat->lru_lock);
1993

1994
	mem_cgroup_uncharge_list(&l_hold);
1995
	free_unref_page_list(&l_hold);
1996 1997
	trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
			nr_deactivate, nr_rotated, sc->priority, file);
L
Linus Torvalds 已提交
1998 1999
}

2000 2001 2002
/*
 * The inactive anon list should be small enough that the VM never has
 * to do too much work.
2003
 *
2004 2005 2006
 * The inactive file list should be small enough to leave most memory
 * to the established workingset on the scan-resistant active list,
 * but large enough to avoid thrashing the aggregate readahead window.
2007
 *
2008 2009
 * Both inactive lists should also be large enough that each inactive
 * page has a chance to be referenced again before it is reclaimed.
2010
 *
2011 2012
 * If that fails and refaulting is observed, the inactive list grows.
 *
2013
 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
2014
 * on this LRU, maintained by the pageout code. An inactive_ratio
2015
 * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
2016
 *
2017 2018 2019 2020 2021 2022 2023 2024 2025 2026
 * total     target    max
 * memory    ratio     inactive
 * -------------------------------------
 *   10MB       1         5MB
 *  100MB       1        50MB
 *    1GB       3       250MB
 *   10GB      10       0.9GB
 *  100GB      31         3GB
 *    1TB     101        10GB
 *   10TB     320        32GB
2027
 */
2028
static bool inactive_list_is_low(struct lruvec *lruvec, bool file,
2029 2030
				 struct mem_cgroup *memcg,
				 struct scan_control *sc, bool actual_reclaim)
2031
{
2032
	enum lru_list active_lru = file * LRU_FILE + LRU_ACTIVE;
2033 2034 2035 2036 2037
	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
	enum lru_list inactive_lru = file * LRU_FILE;
	unsigned long inactive, active;
	unsigned long inactive_ratio;
	unsigned long refaults;
2038
	unsigned long gb;
2039

2040 2041 2042 2043 2044 2045
	/*
	 * If we don't have swap space, anonymous page deactivation
	 * is pointless.
	 */
	if (!file && !total_swap_pages)
		return false;
2046

2047 2048
	inactive = lruvec_lru_size(lruvec, inactive_lru, sc->reclaim_idx);
	active = lruvec_lru_size(lruvec, active_lru, sc->reclaim_idx);
2049

2050
	if (memcg)
2051
		refaults = memcg_page_state(memcg, WORKINGSET_ACTIVATE);
2052
	else
2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068
		refaults = node_page_state(pgdat, WORKINGSET_ACTIVATE);

	/*
	 * When refaults are being observed, it means a new workingset
	 * is being established. Disable active list protection to get
	 * rid of the stale workingset quickly.
	 */
	if (file && actual_reclaim && lruvec->refaults != refaults) {
		inactive_ratio = 0;
	} else {
		gb = (inactive + active) >> (30 - PAGE_SHIFT);
		if (gb)
			inactive_ratio = int_sqrt(10 * gb);
		else
			inactive_ratio = 1;
	}
2069

2070 2071 2072 2073 2074
	if (actual_reclaim)
		trace_mm_vmscan_inactive_list_is_low(pgdat->node_id, sc->reclaim_idx,
			lruvec_lru_size(lruvec, inactive_lru, MAX_NR_ZONES), inactive,
			lruvec_lru_size(lruvec, active_lru, MAX_NR_ZONES), active,
			inactive_ratio, file);
2075

2076
	return inactive * inactive_ratio < active;
2077 2078
}

2079
static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2080 2081
				 struct lruvec *lruvec, struct mem_cgroup *memcg,
				 struct scan_control *sc)
2082
{
2083
	if (is_active_lru(lru)) {
2084 2085
		if (inactive_list_is_low(lruvec, is_file_lru(lru),
					 memcg, sc, true))
2086
			shrink_active_list(nr_to_scan, lruvec, sc, lru);
2087 2088 2089
		return 0;
	}

2090
	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2091 2092
}

2093 2094 2095 2096 2097 2098 2099
enum scan_balance {
	SCAN_EQUAL,
	SCAN_FRACT,
	SCAN_ANON,
	SCAN_FILE,
};

2100 2101 2102 2103 2104 2105
/*
 * Determine how aggressively the anon and file LRU lists should be
 * scanned.  The relative value of each set of LRU lists is determined
 * by looking at the fraction of the pages scanned we did rotate back
 * onto the active list instead of evict.
 *
W
Wanpeng Li 已提交
2106 2107
 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
2108
 */
2109
static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg,
2110 2111
			   struct scan_control *sc, unsigned long *nr,
			   unsigned long *lru_pages)
2112
{
2113
	int swappiness = mem_cgroup_swappiness(memcg);
2114 2115 2116
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
	u64 fraction[2];
	u64 denominator = 0;	/* gcc */
M
Mel Gorman 已提交
2117
	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2118
	unsigned long anon_prio, file_prio;
2119
	enum scan_balance scan_balance;
2120
	unsigned long anon, file;
2121
	unsigned long ap, fp;
H
Hugh Dickins 已提交
2122
	enum lru_list lru;
2123 2124

	/* If we have no swap space, do not bother scanning anon pages. */
2125
	if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
2126
		scan_balance = SCAN_FILE;
2127 2128
		goto out;
	}
2129

2130 2131 2132 2133 2134 2135 2136
	/*
	 * Global reclaim will swap to prevent OOM even with no
	 * swappiness, but memcg users want to use this knob to
	 * disable swapping for individual groups completely when
	 * using the memory controller's swap limit feature would be
	 * too expensive.
	 */
2137
	if (!global_reclaim(sc) && !swappiness) {
2138
		scan_balance = SCAN_FILE;
2139 2140 2141 2142 2143 2144 2145 2146
		goto out;
	}

	/*
	 * Do not apply any pressure balancing cleverness when the
	 * system is close to OOM, scan both anon and file equally
	 * (unless the swappiness setting disagrees with swapping).
	 */
2147
	if (!sc->priority && swappiness) {
2148
		scan_balance = SCAN_EQUAL;
2149 2150 2151
		goto out;
	}

2152 2153 2154 2155 2156 2157 2158 2159 2160 2161
	/*
	 * Prevent the reclaimer from falling into the cache trap: as
	 * cache pages start out inactive, every cache fault will tip
	 * the scan balance towards the file LRU.  And as the file LRU
	 * shrinks, so does the window for rotation from references.
	 * This means we have a runaway feedback loop where a tiny
	 * thrashing file LRU becomes infinitely more attractive than
	 * anon pages.  Try to detect this based on file LRU size.
	 */
	if (global_reclaim(sc)) {
M
Mel Gorman 已提交
2162 2163 2164 2165
		unsigned long pgdatfile;
		unsigned long pgdatfree;
		int z;
		unsigned long total_high_wmark = 0;
2166

M
Mel Gorman 已提交
2167 2168 2169 2170 2171 2172
		pgdatfree = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
		pgdatfile = node_page_state(pgdat, NR_ACTIVE_FILE) +
			   node_page_state(pgdat, NR_INACTIVE_FILE);

		for (z = 0; z < MAX_NR_ZONES; z++) {
			struct zone *zone = &pgdat->node_zones[z];
2173
			if (!managed_zone(zone))
M
Mel Gorman 已提交
2174 2175 2176 2177
				continue;

			total_high_wmark += high_wmark_pages(zone);
		}
2178

M
Mel Gorman 已提交
2179
		if (unlikely(pgdatfile + pgdatfree <= total_high_wmark)) {
2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190
			/*
			 * Force SCAN_ANON if there are enough inactive
			 * anonymous pages on the LRU in eligible zones.
			 * Otherwise, the small LRU gets thrashed.
			 */
			if (!inactive_list_is_low(lruvec, false, memcg, sc, false) &&
			    lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, sc->reclaim_idx)
					>> sc->priority) {
				scan_balance = SCAN_ANON;
				goto out;
			}
2191 2192 2193
		}
	}

2194
	/*
2195 2196 2197 2198 2199 2200 2201
	 * If there is enough inactive page cache, i.e. if the size of the
	 * inactive list is greater than that of the active list *and* the
	 * inactive list actually has some pages to scan on this priority, we
	 * do not reclaim anything from the anonymous working set right now.
	 * Without the second condition we could end up never scanning an
	 * lruvec even if it has plenty of old anonymous pages unless the
	 * system is under heavy pressure.
2202
	 */
2203
	if (!inactive_list_is_low(lruvec, true, memcg, sc, false) &&
2204
	    lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, sc->reclaim_idx) >> sc->priority) {
2205
		scan_balance = SCAN_FILE;
2206 2207 2208
		goto out;
	}

2209 2210
	scan_balance = SCAN_FRACT;

2211 2212 2213 2214
	/*
	 * With swappiness at 100, anonymous and file have the same priority.
	 * This scanning priority is essentially the inverse of IO cost.
	 */
2215
	anon_prio = swappiness;
H
Hugh Dickins 已提交
2216
	file_prio = 200 - anon_prio;
2217

2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228
	/*
	 * OK, so we have swap space and a fair amount of page cache
	 * pages.  We use the recently rotated / recently scanned
	 * ratios to determine how valuable each cache is.
	 *
	 * Because workloads change over time (and to avoid overflow)
	 * we keep these statistics as a floating average, which ends
	 * up weighing recent references more than old ones.
	 *
	 * anon in [0], file in [1]
	 */
2229

2230 2231 2232 2233
	anon  = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON, MAX_NR_ZONES) +
		lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, MAX_NR_ZONES);
	file  = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE, MAX_NR_ZONES) +
		lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, MAX_NR_ZONES);
2234

M
Mel Gorman 已提交
2235
	spin_lock_irq(&pgdat->lru_lock);
2236 2237 2238
	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
		reclaim_stat->recent_scanned[0] /= 2;
		reclaim_stat->recent_rotated[0] /= 2;
2239 2240
	}

2241 2242 2243
	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
		reclaim_stat->recent_scanned[1] /= 2;
		reclaim_stat->recent_rotated[1] /= 2;
2244 2245 2246
	}

	/*
2247 2248 2249
	 * The amount of pressure on anon vs file pages is inversely
	 * proportional to the fraction of recently scanned pages on
	 * each list that were recently referenced and in active use.
2250
	 */
2251
	ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
2252
	ap /= reclaim_stat->recent_rotated[0] + 1;
2253

2254
	fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
2255
	fp /= reclaim_stat->recent_rotated[1] + 1;
M
Mel Gorman 已提交
2256
	spin_unlock_irq(&pgdat->lru_lock);
2257

2258 2259 2260 2261
	fraction[0] = ap;
	fraction[1] = fp;
	denominator = ap + fp + 1;
out:
2262 2263 2264 2265 2266
	*lru_pages = 0;
	for_each_evictable_lru(lru) {
		int file = is_file_lru(lru);
		unsigned long size;
		unsigned long scan;
2267

2268 2269 2270 2271 2272 2273 2274 2275
		size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
		scan = size >> sc->priority;
		/*
		 * If the cgroup's already been deleted, make sure to
		 * scrape out the remaining cache.
		 */
		if (!scan && !mem_cgroup_online(memcg))
			scan = min(size, SWAP_CLUSTER_MAX);
2276

2277 2278 2279 2280 2281
		switch (scan_balance) {
		case SCAN_EQUAL:
			/* Scan lists relative to size */
			break;
		case SCAN_FRACT:
2282
			/*
2283 2284
			 * Scan types proportional to swappiness and
			 * their relative recent reclaim efficiency.
2285
			 */
2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299
			scan = div64_u64(scan * fraction[file],
					 denominator);
			break;
		case SCAN_FILE:
		case SCAN_ANON:
			/* Scan one type exclusively */
			if ((scan_balance == SCAN_FILE) != file) {
				size = 0;
				scan = 0;
			}
			break;
		default:
			/* Look ma, no brain */
			BUG();
2300
		}
2301 2302 2303

		*lru_pages += size;
		nr[lru] = scan;
2304
	}
2305
}
2306

2307
/*
2308
 * This is a basic per-node page freer.  Used by both kswapd and direct reclaim.
2309
 */
2310
static void shrink_node_memcg(struct pglist_data *pgdat, struct mem_cgroup *memcg,
2311
			      struct scan_control *sc, unsigned long *lru_pages)
2312
{
2313
	struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
2314
	unsigned long nr[NR_LRU_LISTS];
2315
	unsigned long targets[NR_LRU_LISTS];
2316 2317 2318 2319 2320
	unsigned long nr_to_scan;
	enum lru_list lru;
	unsigned long nr_reclaimed = 0;
	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
	struct blk_plug plug;
2321
	bool scan_adjusted;
2322

2323
	get_scan_count(lruvec, memcg, sc, nr, lru_pages);
2324

2325 2326 2327
	/* Record the original scan target for proportional adjustments later */
	memcpy(targets, nr, sizeof(nr));

2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341
	/*
	 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
	 * event that can occur when there is little memory pressure e.g.
	 * multiple streaming readers/writers. Hence, we do not abort scanning
	 * when the requested number of pages are reclaimed when scanning at
	 * DEF_PRIORITY on the assumption that the fact we are direct
	 * reclaiming implies that kswapd is not keeping up and it is best to
	 * do a batch of work at once. For memcg reclaim one check is made to
	 * abort proportional reclaim if either the file or anon lru has already
	 * dropped to zero at the first pass.
	 */
	scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
			 sc->priority == DEF_PRIORITY);

2342 2343 2344
	blk_start_plug(&plug);
	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
					nr[LRU_INACTIVE_FILE]) {
2345 2346 2347
		unsigned long nr_anon, nr_file, percentage;
		unsigned long nr_scanned;

2348 2349 2350 2351 2352 2353
		for_each_evictable_lru(lru) {
			if (nr[lru]) {
				nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
				nr[lru] -= nr_to_scan;

				nr_reclaimed += shrink_list(lru, nr_to_scan,
2354
							    lruvec, memcg, sc);
2355 2356
			}
		}
2357

2358 2359
		cond_resched();

2360 2361 2362 2363 2364
		if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
			continue;

		/*
		 * For kswapd and memcg, reclaim at least the number of pages
2365
		 * requested. Ensure that the anon and file LRUs are scanned
2366 2367 2368 2369 2370 2371 2372
		 * proportionally what was requested by get_scan_count(). We
		 * stop reclaiming one LRU and reduce the amount scanning
		 * proportional to the original scan target.
		 */
		nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
		nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];

2373 2374 2375 2376 2377 2378 2379 2380 2381
		/*
		 * It's just vindictive to attack the larger once the smaller
		 * has gone to zero.  And given the way we stop scanning the
		 * smaller below, this makes sure that we only make one nudge
		 * towards proportionality once we've got nr_to_reclaim.
		 */
		if (!nr_file || !nr_anon)
			break;

2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412
		if (nr_file > nr_anon) {
			unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
						targets[LRU_ACTIVE_ANON] + 1;
			lru = LRU_BASE;
			percentage = nr_anon * 100 / scan_target;
		} else {
			unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
						targets[LRU_ACTIVE_FILE] + 1;
			lru = LRU_FILE;
			percentage = nr_file * 100 / scan_target;
		}

		/* Stop scanning the smaller of the LRU */
		nr[lru] = 0;
		nr[lru + LRU_ACTIVE] = 0;

		/*
		 * Recalculate the other LRU scan count based on its original
		 * scan target and the percentage scanning already complete
		 */
		lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
		nr_scanned = targets[lru] - nr[lru];
		nr[lru] = targets[lru] * (100 - percentage) / 100;
		nr[lru] -= min(nr[lru], nr_scanned);

		lru += LRU_ACTIVE;
		nr_scanned = targets[lru] - nr[lru];
		nr[lru] = targets[lru] * (100 - percentage) / 100;
		nr[lru] -= min(nr[lru], nr_scanned);

		scan_adjusted = true;
2413 2414 2415 2416 2417 2418 2419 2420
	}
	blk_finish_plug(&plug);
	sc->nr_reclaimed += nr_reclaimed;

	/*
	 * Even if we did not try to evict anon pages at all, we want to
	 * rebalance the anon lru active/inactive ratio.
	 */
2421
	if (inactive_list_is_low(lruvec, false, memcg, sc, true))
2422 2423 2424 2425
		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
				   sc, LRU_ACTIVE_ANON);
}

M
Mel Gorman 已提交
2426
/* Use reclaim/compaction for costly allocs or under memory pressure */
2427
static bool in_reclaim_compaction(struct scan_control *sc)
M
Mel Gorman 已提交
2428
{
2429
	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
M
Mel Gorman 已提交
2430
			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2431
			 sc->priority < DEF_PRIORITY - 2))
M
Mel Gorman 已提交
2432 2433 2434 2435 2436
		return true;

	return false;
}

2437
/*
M
Mel Gorman 已提交
2438 2439 2440 2441 2442
 * Reclaim/compaction is used for high-order allocation requests. It reclaims
 * order-0 pages before compacting the zone. should_continue_reclaim() returns
 * true if more pages should be reclaimed such that when the page allocator
 * calls try_to_compact_zone() that it will have enough free pages to succeed.
 * It will give up earlier than that if there is difficulty reclaiming pages.
2443
 */
2444
static inline bool should_continue_reclaim(struct pglist_data *pgdat,
2445 2446 2447 2448 2449 2450
					unsigned long nr_reclaimed,
					unsigned long nr_scanned,
					struct scan_control *sc)
{
	unsigned long pages_for_compaction;
	unsigned long inactive_lru_pages;
2451
	int z;
2452 2453

	/* If not in reclaim/compaction mode, stop */
2454
	if (!in_reclaim_compaction(sc))
2455 2456
		return false;

2457
	/* Consider stopping depending on scan and reclaim activity */
2458
	if (sc->gfp_mask & __GFP_RETRY_MAYFAIL) {
2459
		/*
2460
		 * For __GFP_RETRY_MAYFAIL allocations, stop reclaiming if the
2461 2462
		 * full LRU list has been scanned and we are still failing
		 * to reclaim pages. This full LRU scan is potentially
2463
		 * expensive but a __GFP_RETRY_MAYFAIL caller really wants to succeed
2464 2465 2466 2467 2468
		 */
		if (!nr_reclaimed && !nr_scanned)
			return false;
	} else {
		/*
2469
		 * For non-__GFP_RETRY_MAYFAIL allocations which can presumably
2470 2471 2472 2473 2474 2475 2476 2477 2478
		 * fail without consequence, stop if we failed to reclaim
		 * any pages from the last SWAP_CLUSTER_MAX number of
		 * pages that were scanned. This will return to the
		 * caller faster at the risk reclaim/compaction and
		 * the resulting allocation attempt fails
		 */
		if (!nr_reclaimed)
			return false;
	}
2479 2480 2481 2482 2483

	/*
	 * If we have not reclaimed enough pages for compaction and the
	 * inactive lists are large enough, continue reclaiming
	 */
2484
	pages_for_compaction = compact_gap(sc->order);
2485
	inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
2486
	if (get_nr_swap_pages() > 0)
2487
		inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
2488 2489 2490 2491 2492
	if (sc->nr_reclaimed < pages_for_compaction &&
			inactive_lru_pages > pages_for_compaction)
		return true;

	/* If compaction would go ahead or the allocation would succeed, stop */
2493 2494
	for (z = 0; z <= sc->reclaim_idx; z++) {
		struct zone *zone = &pgdat->node_zones[z];
2495
		if (!managed_zone(zone))
2496 2497 2498
			continue;

		switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
2499
		case COMPACT_SUCCESS:
2500 2501 2502 2503 2504 2505
		case COMPACT_CONTINUE:
			return false;
		default:
			/* check next zone */
			;
		}
2506
	}
2507
	return true;
2508 2509
}

2510
static bool shrink_node(pg_data_t *pgdat, struct scan_control *sc)
L
Linus Torvalds 已提交
2511
{
2512
	struct reclaim_state *reclaim_state = current->reclaim_state;
2513
	unsigned long nr_reclaimed, nr_scanned;
2514
	bool reclaimable = false;
L
Linus Torvalds 已提交
2515

2516 2517 2518
	do {
		struct mem_cgroup *root = sc->target_mem_cgroup;
		struct mem_cgroup_reclaim_cookie reclaim = {
2519
			.pgdat = pgdat,
2520 2521
			.priority = sc->priority,
		};
2522
		unsigned long node_lru_pages = 0;
2523
		struct mem_cgroup *memcg;
2524

2525 2526
		nr_reclaimed = sc->nr_reclaimed;
		nr_scanned = sc->nr_scanned;
L
Linus Torvalds 已提交
2527

2528 2529
		memcg = mem_cgroup_iter(root, NULL, &reclaim);
		do {
2530
			unsigned long lru_pages;
2531
			unsigned long reclaimed;
2532
			unsigned long scanned;
2533

2534
			if (mem_cgroup_low(root, memcg)) {
2535 2536
				if (!sc->memcg_low_reclaim) {
					sc->memcg_low_skipped = 1;
2537
					continue;
2538
				}
2539
				mem_cgroup_event(memcg, MEMCG_LOW);
2540 2541
			}

2542
			reclaimed = sc->nr_reclaimed;
2543
			scanned = sc->nr_scanned;
2544 2545
			shrink_node_memcg(pgdat, memcg, sc, &lru_pages);
			node_lru_pages += lru_pages;
2546

2547
			if (memcg)
2548
				shrink_slab(sc->gfp_mask, pgdat->node_id,
2549
					    memcg, sc->priority);
2550

2551 2552 2553 2554 2555
			/* Record the group's reclaim efficiency */
			vmpressure(sc->gfp_mask, memcg, false,
				   sc->nr_scanned - scanned,
				   sc->nr_reclaimed - reclaimed);

2556
			/*
2557 2558
			 * Direct reclaim and kswapd have to scan all memory
			 * cgroups to fulfill the overall scan target for the
2559
			 * node.
2560 2561 2562 2563 2564
			 *
			 * Limit reclaim, on the other hand, only cares about
			 * nr_to_reclaim pages to be reclaimed and it will
			 * retry with decreasing priority if one round over the
			 * whole hierarchy is not sufficient.
2565
			 */
2566 2567
			if (!global_reclaim(sc) &&
					sc->nr_reclaimed >= sc->nr_to_reclaim) {
2568 2569 2570
				mem_cgroup_iter_break(root, memcg);
				break;
			}
2571
		} while ((memcg = mem_cgroup_iter(root, memcg, &reclaim)));
2572

2573
		if (global_reclaim(sc))
2574
			shrink_slab(sc->gfp_mask, pgdat->node_id, NULL,
2575
				    sc->priority);
2576 2577 2578 2579

		if (reclaim_state) {
			sc->nr_reclaimed += reclaim_state->reclaimed_slab;
			reclaim_state->reclaimed_slab = 0;
2580 2581
		}

2582 2583
		/* Record the subtree's reclaim efficiency */
		vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
2584 2585 2586
			   sc->nr_scanned - nr_scanned,
			   sc->nr_reclaimed - nr_reclaimed);

2587 2588 2589
		if (sc->nr_reclaimed - nr_reclaimed)
			reclaimable = true;

2590
	} while (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
2591
					 sc->nr_scanned - nr_scanned, sc));
2592

2593 2594 2595 2596 2597 2598 2599 2600 2601
	/*
	 * Kswapd gives up on balancing particular nodes after too
	 * many failures to reclaim anything from them and goes to
	 * sleep. On reclaim progress, reset the failure counter. A
	 * successful direct reclaim run will revive a dormant kswapd.
	 */
	if (reclaimable)
		pgdat->kswapd_failures = 0;

2602
	return reclaimable;
2603 2604
}

2605
/*
2606 2607 2608
 * Returns true if compaction should go ahead for a costly-order request, or
 * the allocation would already succeed without compaction. Return false if we
 * should reclaim first.
2609
 */
2610
static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2611
{
M
Mel Gorman 已提交
2612
	unsigned long watermark;
2613
	enum compact_result suitable;
2614

2615 2616 2617 2618 2619 2620 2621
	suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
	if (suitable == COMPACT_SUCCESS)
		/* Allocation should succeed already. Don't reclaim. */
		return true;
	if (suitable == COMPACT_SKIPPED)
		/* Compaction cannot yet proceed. Do reclaim. */
		return false;
2622

2623
	/*
2624 2625 2626 2627 2628 2629 2630
	 * Compaction is already possible, but it takes time to run and there
	 * are potentially other callers using the pages just freed. So proceed
	 * with reclaim to make a buffer of free pages available to give
	 * compaction a reasonable chance of completing and allocating the page.
	 * Note that we won't actually reclaim the whole buffer in one attempt
	 * as the target watermark in should_continue_reclaim() is lower. But if
	 * we are already above the high+gap watermark, don't reclaim at all.
2631
	 */
2632
	watermark = high_wmark_pages(zone) + compact_gap(sc->order);
2633

2634
	return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
2635 2636
}

L
Linus Torvalds 已提交
2637 2638 2639 2640 2641 2642 2643 2644
/*
 * This is the direct reclaim path, for page-allocating processes.  We only
 * try to reclaim pages from zones which will satisfy the caller's allocation
 * request.
 *
 * If a zone is deemed to be full of pinned pages then just give it a light
 * scan then give up on it.
 */
M
Michal Hocko 已提交
2645
static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
L
Linus Torvalds 已提交
2646
{
2647
	struct zoneref *z;
2648
	struct zone *zone;
2649 2650
	unsigned long nr_soft_reclaimed;
	unsigned long nr_soft_scanned;
2651
	gfp_t orig_mask;
2652
	pg_data_t *last_pgdat = NULL;
2653

2654 2655 2656 2657 2658
	/*
	 * If the number of buffer_heads in the machine exceeds the maximum
	 * allowed level, force direct reclaim to scan the highmem zone as
	 * highmem pages could be pinning lowmem pages storing buffer_heads
	 */
2659
	orig_mask = sc->gfp_mask;
2660
	if (buffer_heads_over_limit) {
2661
		sc->gfp_mask |= __GFP_HIGHMEM;
2662
		sc->reclaim_idx = gfp_zone(sc->gfp_mask);
2663
	}
2664

2665
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2666
					sc->reclaim_idx, sc->nodemask) {
2667 2668 2669 2670
		/*
		 * Take care memory controller reclaiming has small influence
		 * to global LRU.
		 */
2671
		if (global_reclaim(sc)) {
2672 2673
			if (!cpuset_zone_allowed(zone,
						 GFP_KERNEL | __GFP_HARDWALL))
2674
				continue;
2675

2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686
			/*
			 * If we already have plenty of memory free for
			 * compaction in this zone, don't free any more.
			 * Even though compaction is invoked for any
			 * non-zero order, only frequent costly order
			 * reclamation is disruptive enough to become a
			 * noticeable problem, like transparent huge
			 * page allocations.
			 */
			if (IS_ENABLED(CONFIG_COMPACTION) &&
			    sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2687
			    compaction_ready(zone, sc)) {
2688 2689
				sc->compaction_ready = true;
				continue;
2690
			}
2691

2692 2693 2694 2695 2696 2697 2698 2699 2700
			/*
			 * Shrink each node in the zonelist once. If the
			 * zonelist is ordered by zone (not the default) then a
			 * node may be shrunk multiple times but in that case
			 * the user prefers lower zones being preserved.
			 */
			if (zone->zone_pgdat == last_pgdat)
				continue;

2701 2702 2703 2704 2705 2706 2707
			/*
			 * This steals pages from memory cgroups over softlimit
			 * and returns the number of reclaimed pages and
			 * scanned pages. This works for global memory pressure
			 * and balancing, not for a memcg's limit.
			 */
			nr_soft_scanned = 0;
2708
			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
2709 2710 2711 2712
						sc->order, sc->gfp_mask,
						&nr_soft_scanned);
			sc->nr_reclaimed += nr_soft_reclaimed;
			sc->nr_scanned += nr_soft_scanned;
2713
			/* need some check for avoid more shrink_zone() */
2714
		}
2715

2716 2717 2718 2719
		/* See comment about same check for global reclaim above */
		if (zone->zone_pgdat == last_pgdat)
			continue;
		last_pgdat = zone->zone_pgdat;
2720
		shrink_node(zone->zone_pgdat, sc);
L
Linus Torvalds 已提交
2721
	}
2722

2723 2724 2725 2726 2727
	/*
	 * Restore to original mask to avoid the impact on the caller if we
	 * promoted it to __GFP_HIGHMEM.
	 */
	sc->gfp_mask = orig_mask;
L
Linus Torvalds 已提交
2728
}
2729

2730 2731 2732 2733 2734 2735 2736 2737 2738 2739
static void snapshot_refaults(struct mem_cgroup *root_memcg, pg_data_t *pgdat)
{
	struct mem_cgroup *memcg;

	memcg = mem_cgroup_iter(root_memcg, NULL, NULL);
	do {
		unsigned long refaults;
		struct lruvec *lruvec;

		if (memcg)
2740
			refaults = memcg_page_state(memcg, WORKINGSET_ACTIVATE);
2741 2742 2743 2744 2745 2746 2747 2748
		else
			refaults = node_page_state(pgdat, WORKINGSET_ACTIVATE);

		lruvec = mem_cgroup_lruvec(pgdat, memcg);
		lruvec->refaults = refaults;
	} while ((memcg = mem_cgroup_iter(root_memcg, memcg, NULL)));
}

L
Linus Torvalds 已提交
2749 2750 2751 2752 2753 2754 2755 2756
/*
 * This is the main entry point to direct page reclaim.
 *
 * If a full scan of the inactive list fails to free enough memory then we
 * are "out of memory" and something needs to be killed.
 *
 * If the caller is !__GFP_FS then the probability of a failure is reasonably
 * high - the zone may be full of dirty or under-writeback pages, which this
2757 2758 2759 2760
 * caller can't do much about.  We kick the writeback threads and take explicit
 * naps in the hope that some of these pages can be written.  But if the
 * allocating task holds filesystem locks which prevent writeout this might not
 * work, and the allocation attempt will fail.
2761 2762 2763
 *
 * returns:	0, if no pages reclaimed
 * 		else, the number of pages reclaimed
L
Linus Torvalds 已提交
2764
 */
2765
static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2766
					  struct scan_control *sc)
L
Linus Torvalds 已提交
2767
{
2768
	int initial_priority = sc->priority;
2769 2770 2771
	pg_data_t *last_pgdat;
	struct zoneref *z;
	struct zone *zone;
2772
retry:
2773 2774
	delayacct_freepages_start();

2775
	if (global_reclaim(sc))
2776
		__count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
L
Linus Torvalds 已提交
2777

2778
	do {
2779 2780
		vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
				sc->priority);
2781
		sc->nr_scanned = 0;
M
Michal Hocko 已提交
2782
		shrink_zones(zonelist, sc);
2783

2784
		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2785 2786 2787 2788
			break;

		if (sc->compaction_ready)
			break;
L
Linus Torvalds 已提交
2789

2790 2791 2792 2793 2794 2795
		/*
		 * If we're getting trouble reclaiming, start doing
		 * writepage even in laptop mode.
		 */
		if (sc->priority < DEF_PRIORITY - 2)
			sc->may_writepage = 1;
2796
	} while (--sc->priority >= 0);
2797

2798 2799 2800 2801 2802 2803 2804 2805 2806
	last_pgdat = NULL;
	for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
					sc->nodemask) {
		if (zone->zone_pgdat == last_pgdat)
			continue;
		last_pgdat = zone->zone_pgdat;
		snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
	}

2807 2808
	delayacct_freepages_end();

2809 2810 2811
	if (sc->nr_reclaimed)
		return sc->nr_reclaimed;

2812
	/* Aborted reclaim to try compaction? don't OOM, then */
2813
	if (sc->compaction_ready)
2814 2815
		return 1;

2816
	/* Untapped cgroup reserves?  Don't OOM, retry. */
2817
	if (sc->memcg_low_skipped) {
2818
		sc->priority = initial_priority;
2819 2820
		sc->memcg_low_reclaim = 1;
		sc->memcg_low_skipped = 0;
2821 2822 2823
		goto retry;
	}

2824
	return 0;
L
Linus Torvalds 已提交
2825 2826
}

2827
static bool allow_direct_reclaim(pg_data_t *pgdat)
2828 2829 2830 2831 2832 2833 2834
{
	struct zone *zone;
	unsigned long pfmemalloc_reserve = 0;
	unsigned long free_pages = 0;
	int i;
	bool wmark_ok;

2835 2836 2837
	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
		return true;

2838 2839
	for (i = 0; i <= ZONE_NORMAL; i++) {
		zone = &pgdat->node_zones[i];
2840 2841 2842 2843
		if (!managed_zone(zone))
			continue;

		if (!zone_reclaimable_pages(zone))
2844 2845
			continue;

2846 2847 2848 2849
		pfmemalloc_reserve += min_wmark_pages(zone);
		free_pages += zone_page_state(zone, NR_FREE_PAGES);
	}

2850 2851 2852 2853
	/* If there are no reserves (unexpected config) then do not throttle */
	if (!pfmemalloc_reserve)
		return true;

2854 2855 2856 2857
	wmark_ok = free_pages > pfmemalloc_reserve / 2;

	/* kswapd must be awake if processes are being throttled */
	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
2858
		pgdat->kswapd_classzone_idx = min(pgdat->kswapd_classzone_idx,
2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869
						(enum zone_type)ZONE_NORMAL);
		wake_up_interruptible(&pgdat->kswapd_wait);
	}

	return wmark_ok;
}

/*
 * Throttle direct reclaimers if backing storage is backed by the network
 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
 * depleted. kswapd will continue to make progress and wake the processes
2870 2871 2872 2873
 * when the low watermark is reached.
 *
 * Returns true if a fatal signal was delivered during throttling. If this
 * happens, the page allocator should not consider triggering the OOM killer.
2874
 */
2875
static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
2876 2877
					nodemask_t *nodemask)
{
2878
	struct zoneref *z;
2879
	struct zone *zone;
2880
	pg_data_t *pgdat = NULL;
2881 2882 2883 2884 2885 2886 2887 2888 2889

	/*
	 * Kernel threads should not be throttled as they may be indirectly
	 * responsible for cleaning pages necessary for reclaim to make forward
	 * progress. kjournald for example may enter direct reclaim while
	 * committing a transaction where throttling it could forcing other
	 * processes to block on log_wait_commit().
	 */
	if (current->flags & PF_KTHREAD)
2890 2891 2892 2893 2894 2895 2896 2897
		goto out;

	/*
	 * If a fatal signal is pending, this process should not throttle.
	 * It should return quickly so it can exit and free its memory
	 */
	if (fatal_signal_pending(current))
		goto out;
2898

2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913
	/*
	 * Check if the pfmemalloc reserves are ok by finding the first node
	 * with a usable ZONE_NORMAL or lower zone. The expectation is that
	 * GFP_KERNEL will be required for allocating network buffers when
	 * swapping over the network so ZONE_HIGHMEM is unusable.
	 *
	 * Throttling is based on the first usable node and throttled processes
	 * wait on a queue until kswapd makes progress and wakes them. There
	 * is an affinity then between processes waking up and where reclaim
	 * progress has been made assuming the process wakes on the same node.
	 * More importantly, processes running on remote nodes will not compete
	 * for remote pfmemalloc reserves and processes on different nodes
	 * should make reasonable progress.
	 */
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2914
					gfp_zone(gfp_mask), nodemask) {
2915 2916 2917 2918 2919
		if (zone_idx(zone) > ZONE_NORMAL)
			continue;

		/* Throttle based on the first usable node */
		pgdat = zone->zone_pgdat;
2920
		if (allow_direct_reclaim(pgdat))
2921 2922 2923 2924 2925 2926
			goto out;
		break;
	}

	/* If no zone was usable by the allocation flags then do not throttle */
	if (!pgdat)
2927
		goto out;
2928

2929 2930 2931
	/* Account for the throttling */
	count_vm_event(PGSCAN_DIRECT_THROTTLE);

2932 2933 2934 2935 2936 2937 2938 2939 2940 2941
	/*
	 * If the caller cannot enter the filesystem, it's possible that it
	 * is due to the caller holding an FS lock or performing a journal
	 * transaction in the case of a filesystem like ext[3|4]. In this case,
	 * it is not safe to block on pfmemalloc_wait as kswapd could be
	 * blocked waiting on the same lock. Instead, throttle for up to a
	 * second before continuing.
	 */
	if (!(gfp_mask & __GFP_FS)) {
		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
2942
			allow_direct_reclaim(pgdat), HZ);
2943 2944

		goto check_pending;
2945 2946 2947 2948
	}

	/* Throttle until kswapd wakes the process */
	wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
2949
		allow_direct_reclaim(pgdat));
2950 2951 2952 2953 2954 2955 2956

check_pending:
	if (fatal_signal_pending(current))
		return true;

out:
	return false;
2957 2958
}

2959
unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2960
				gfp_t gfp_mask, nodemask_t *nodemask)
2961
{
2962
	unsigned long nr_reclaimed;
2963
	struct scan_control sc = {
2964
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2965
		.gfp_mask = current_gfp_context(gfp_mask),
2966
		.reclaim_idx = gfp_zone(gfp_mask),
2967 2968 2969
		.order = order,
		.nodemask = nodemask,
		.priority = DEF_PRIORITY,
2970
		.may_writepage = !laptop_mode,
2971
		.may_unmap = 1,
2972
		.may_swap = 1,
2973 2974
	};

2975
	/*
2976 2977 2978
	 * Do not enter reclaim if fatal signal was delivered while throttled.
	 * 1 is returned so that the page allocator does not OOM kill at this
	 * point.
2979
	 */
2980
	if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
2981 2982
		return 1;

2983 2984
	trace_mm_vmscan_direct_reclaim_begin(order,
				sc.may_writepage,
2985
				sc.gfp_mask,
2986
				sc.reclaim_idx);
2987

2988
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2989 2990 2991 2992

	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);

	return nr_reclaimed;
2993 2994
}

A
Andrew Morton 已提交
2995
#ifdef CONFIG_MEMCG
2996

2997
unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
2998
						gfp_t gfp_mask, bool noswap,
2999
						pg_data_t *pgdat,
3000
						unsigned long *nr_scanned)
3001 3002
{
	struct scan_control sc = {
3003
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
3004
		.target_mem_cgroup = memcg,
3005 3006
		.may_writepage = !laptop_mode,
		.may_unmap = 1,
3007
		.reclaim_idx = MAX_NR_ZONES - 1,
3008 3009
		.may_swap = !noswap,
	};
3010
	unsigned long lru_pages;
3011

3012 3013
	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
3014

3015
	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
3016
						      sc.may_writepage,
3017 3018
						      sc.gfp_mask,
						      sc.reclaim_idx);
3019

3020 3021 3022
	/*
	 * NOTE: Although we can get the priority field, using it
	 * here is not a good idea, since it limits the pages we can scan.
3023
	 * if we don't reclaim here, the shrink_node from balance_pgdat
3024 3025 3026
	 * will pick up pages from other mem cgroup's as well. We hack
	 * the priority and make it zero.
	 */
3027
	shrink_node_memcg(pgdat, memcg, &sc, &lru_pages);
3028 3029 3030

	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);

3031
	*nr_scanned = sc.nr_scanned;
3032 3033 3034
	return sc.nr_reclaimed;
}

3035
unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
3036
					   unsigned long nr_pages,
K
KOSAKI Motohiro 已提交
3037
					   gfp_t gfp_mask,
3038
					   bool may_swap)
3039
{
3040
	struct zonelist *zonelist;
3041
	unsigned long nr_reclaimed;
3042
	int nid;
3043
	unsigned int noreclaim_flag;
3044
	struct scan_control sc = {
3045
		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3046
		.gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
3047
				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
3048
		.reclaim_idx = MAX_NR_ZONES - 1,
3049 3050 3051 3052
		.target_mem_cgroup = memcg,
		.priority = DEF_PRIORITY,
		.may_writepage = !laptop_mode,
		.may_unmap = 1,
3053
		.may_swap = may_swap,
3054
	};
3055

3056 3057 3058 3059 3060
	/*
	 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
	 * take care of from where we get pages. So the node where we start the
	 * scan does not need to be the current node.
	 */
3061
	nid = mem_cgroup_select_victim_node(memcg);
3062

3063
	zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK];
3064 3065 3066

	trace_mm_vmscan_memcg_reclaim_begin(0,
					    sc.may_writepage,
3067 3068
					    sc.gfp_mask,
					    sc.reclaim_idx);
3069

3070
	noreclaim_flag = memalloc_noreclaim_save();
3071
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3072
	memalloc_noreclaim_restore(noreclaim_flag);
3073 3074 3075 3076

	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);

	return nr_reclaimed;
3077 3078 3079
}
#endif

3080
static void age_active_anon(struct pglist_data *pgdat,
3081
				struct scan_control *sc)
3082
{
3083
	struct mem_cgroup *memcg;
3084

3085 3086 3087 3088 3089
	if (!total_swap_pages)
		return;

	memcg = mem_cgroup_iter(NULL, NULL, NULL);
	do {
3090
		struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
3091

3092
		if (inactive_list_is_low(lruvec, false, memcg, sc, true))
3093
			shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3094
					   sc, LRU_ACTIVE_ANON);
3095 3096 3097

		memcg = mem_cgroup_iter(NULL, memcg, NULL);
	} while (memcg);
3098 3099
}

3100 3101 3102 3103 3104
/*
 * Returns true if there is an eligible zone balanced for the request order
 * and classzone_idx
 */
static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
3105
{
3106 3107 3108
	int i;
	unsigned long mark = -1;
	struct zone *zone;
3109

3110 3111
	for (i = 0; i <= classzone_idx; i++) {
		zone = pgdat->node_zones + i;
3112

3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129
		if (!managed_zone(zone))
			continue;

		mark = high_wmark_pages(zone);
		if (zone_watermark_ok_safe(zone, order, mark, classzone_idx))
			return true;
	}

	/*
	 * If a node has no populated zone within classzone_idx, it does not
	 * need balancing by definition. This can happen if a zone-restricted
	 * allocation tries to wake a remote kswapd.
	 */
	if (mark == -1)
		return true;

	return false;
3130 3131
}

3132 3133 3134 3135 3136 3137 3138 3139
/* Clear pgdat state for congested, dirty or under writeback. */
static void clear_pgdat_congested(pg_data_t *pgdat)
{
	clear_bit(PGDAT_CONGESTED, &pgdat->flags);
	clear_bit(PGDAT_DIRTY, &pgdat->flags);
	clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
}

3140 3141 3142 3143 3144 3145
/*
 * Prepare kswapd for sleeping. This verifies that there are no processes
 * waiting in throttle_direct_reclaim() and that watermarks have been met.
 *
 * Returns true if kswapd is ready to sleep
 */
3146
static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3147
{
3148
	/*
3149
	 * The throttled processes are normally woken up in balance_pgdat() as
3150
	 * soon as allow_direct_reclaim() is true. But there is a potential
3151 3152 3153 3154 3155 3156 3157 3158 3159
	 * race between when kswapd checks the watermarks and a process gets
	 * throttled. There is also a potential race if processes get
	 * throttled, kswapd wakes, a large process exits thereby balancing the
	 * zones, which causes kswapd to exit balance_pgdat() before reaching
	 * the wake up checks. If kswapd is going to sleep, no process should
	 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
	 * the wake up is premature, processes will wake kswapd and get
	 * throttled again. The difference from wake ups in balance_pgdat() is
	 * that here we are under prepare_to_wait().
3160
	 */
3161 3162
	if (waitqueue_active(&pgdat->pfmemalloc_wait))
		wake_up_all(&pgdat->pfmemalloc_wait);
3163

3164 3165 3166 3167
	/* Hopeless node, leave it to direct reclaim */
	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
		return true;

3168 3169 3170
	if (pgdat_balanced(pgdat, order, classzone_idx)) {
		clear_pgdat_congested(pgdat);
		return true;
3171 3172
	}

3173
	return false;
3174 3175
}

3176
/*
3177 3178
 * kswapd shrinks a node of pages that are at or below the highest usable
 * zone that is currently unbalanced.
3179 3180
 *
 * Returns true if kswapd scanned at least the requested number of pages to
3181 3182
 * reclaim or if the lack of progress was due to pages under writeback.
 * This is used to determine if the scanning priority needs to be raised.
3183
 */
3184
static bool kswapd_shrink_node(pg_data_t *pgdat,
3185
			       struct scan_control *sc)
3186
{
3187 3188
	struct zone *zone;
	int z;
3189

3190 3191
	/* Reclaim a number of pages proportional to the number of zones */
	sc->nr_to_reclaim = 0;
3192
	for (z = 0; z <= sc->reclaim_idx; z++) {
3193
		zone = pgdat->node_zones + z;
3194
		if (!managed_zone(zone))
3195
			continue;
3196

3197 3198
		sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
	}
3199 3200

	/*
3201 3202
	 * Historically care was taken to put equal pressure on all zones but
	 * now pressure is applied based on node LRU order.
3203
	 */
3204
	shrink_node(pgdat, sc);
3205

3206
	/*
3207 3208 3209 3210 3211
	 * Fragmentation may mean that the system cannot be rebalanced for
	 * high-order allocations. If twice the allocation size has been
	 * reclaimed then recheck watermarks only at order-0 to prevent
	 * excessive reclaim. Assume that a process requested a high-order
	 * can direct reclaim/compact.
3212
	 */
3213
	if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
3214
		sc->order = 0;
3215

3216
	return sc->nr_scanned >= sc->nr_to_reclaim;
3217 3218
}

L
Linus Torvalds 已提交
3219
/*
3220 3221 3222
 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
 * that are eligible for use by the caller until at least one zone is
 * balanced.
L
Linus Torvalds 已提交
3223
 *
3224
 * Returns the order kswapd finished reclaiming at.
L
Linus Torvalds 已提交
3225 3226
 *
 * kswapd scans the zones in the highmem->normal->dma direction.  It skips
3227
 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3228 3229 3230
 * found to have free_pages <= high_wmark_pages(zone), any page is that zone
 * or lower is eligible for reclaim until at least one usable zone is
 * balanced.
L
Linus Torvalds 已提交
3231
 */
3232
static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx)
L
Linus Torvalds 已提交
3233 3234
{
	int i;
3235 3236
	unsigned long nr_soft_reclaimed;
	unsigned long nr_soft_scanned;
3237
	struct zone *zone;
3238 3239
	struct scan_control sc = {
		.gfp_mask = GFP_KERNEL,
3240
		.order = order,
3241
		.priority = DEF_PRIORITY,
3242
		.may_writepage = !laptop_mode,
3243
		.may_unmap = 1,
3244
		.may_swap = 1,
3245
	};
3246
	count_vm_event(PAGEOUTRUN);
L
Linus Torvalds 已提交
3247

3248
	do {
3249
		unsigned long nr_reclaimed = sc.nr_reclaimed;
3250 3251
		bool raise_priority = true;

3252
		sc.reclaim_idx = classzone_idx;
L
Linus Torvalds 已提交
3253

3254
		/*
3255 3256 3257 3258 3259 3260 3261 3262
		 * If the number of buffer_heads exceeds the maximum allowed
		 * then consider reclaiming from all zones. This has a dual
		 * purpose -- on 64-bit systems it is expected that
		 * buffer_heads are stripped during active rotation. On 32-bit
		 * systems, highmem pages can pin lowmem memory and shrinking
		 * buffers can relieve lowmem pressure. Reclaim may still not
		 * go ahead if all eligible zones for the original allocation
		 * request are balanced to avoid excessive reclaim from kswapd.
3263 3264 3265 3266
		 */
		if (buffer_heads_over_limit) {
			for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
				zone = pgdat->node_zones + i;
3267
				if (!managed_zone(zone))
3268
					continue;
3269

3270
				sc.reclaim_idx = i;
A
Andrew Morton 已提交
3271
				break;
L
Linus Torvalds 已提交
3272 3273
			}
		}
3274

3275
		/*
3276 3277 3278
		 * Only reclaim if there are no eligible zones. Note that
		 * sc.reclaim_idx is not used as buffer_heads_over_limit may
		 * have adjusted it.
3279
		 */
3280 3281
		if (pgdat_balanced(pgdat, sc.order, classzone_idx))
			goto out;
A
Andrew Morton 已提交
3282

3283 3284 3285 3286 3287 3288
		/*
		 * Do some background aging of the anon list, to give
		 * pages a chance to be referenced before reclaiming. All
		 * pages are rotated regardless of classzone as this is
		 * about consistent aging.
		 */
3289
		age_active_anon(pgdat, &sc);
3290

3291 3292 3293 3294
		/*
		 * If we're getting trouble reclaiming, start doing writepage
		 * even in laptop mode.
		 */
3295
		if (sc.priority < DEF_PRIORITY - 2)
3296 3297
			sc.may_writepage = 1;

3298 3299 3300
		/* Call soft limit reclaim before calling shrink_node. */
		sc.nr_scanned = 0;
		nr_soft_scanned = 0;
3301
		nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
3302 3303 3304
						sc.gfp_mask, &nr_soft_scanned);
		sc.nr_reclaimed += nr_soft_reclaimed;

L
Linus Torvalds 已提交
3305
		/*
3306 3307 3308
		 * There should be no need to raise the scanning priority if
		 * enough pages are already being scanned that that high
		 * watermark would be met at 100% efficiency.
L
Linus Torvalds 已提交
3309
		 */
3310
		if (kswapd_shrink_node(pgdat, &sc))
3311
			raise_priority = false;
3312 3313 3314 3315 3316 3317 3318

		/*
		 * If the low watermark is met there is no need for processes
		 * to be throttled on pfmemalloc_wait as they should not be
		 * able to safely make forward progress. Wake them
		 */
		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3319
				allow_direct_reclaim(pgdat))
3320
			wake_up_all(&pgdat->pfmemalloc_wait);
3321

3322 3323 3324
		/* Check if kswapd should be suspending */
		if (try_to_freeze() || kthread_should_stop())
			break;
3325

3326
		/*
3327 3328
		 * Raise priority if scanning rate is too low or there was no
		 * progress in reclaiming pages
3329
		 */
3330 3331
		nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
		if (raise_priority || !nr_reclaimed)
3332
			sc.priority--;
3333
	} while (sc.priority >= 1);
L
Linus Torvalds 已提交
3334

3335 3336 3337
	if (!sc.nr_reclaimed)
		pgdat->kswapd_failures++;

3338
out:
3339
	snapshot_refaults(NULL, pgdat);
3340
	/*
3341 3342 3343 3344
	 * Return the order kswapd stopped reclaiming at as
	 * prepare_kswapd_sleep() takes it into account. If another caller
	 * entered the allocator slow path while kswapd was awake, order will
	 * remain at the higher level.
3345
	 */
3346
	return sc.order;
L
Linus Torvalds 已提交
3347 3348
}

3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364
/*
 * pgdat->kswapd_classzone_idx is the highest zone index that a recent
 * allocation request woke kswapd for. When kswapd has not woken recently,
 * the value is MAX_NR_ZONES which is not a valid index. This compares a
 * given classzone and returns it or the highest classzone index kswapd
 * was recently woke for.
 */
static enum zone_type kswapd_classzone_idx(pg_data_t *pgdat,
					   enum zone_type classzone_idx)
{
	if (pgdat->kswapd_classzone_idx == MAX_NR_ZONES)
		return classzone_idx;

	return max(pgdat->kswapd_classzone_idx, classzone_idx);
}

3365 3366
static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
				unsigned int classzone_idx)
3367 3368 3369 3370 3371 3372 3373 3374 3375
{
	long remaining = 0;
	DEFINE_WAIT(wait);

	if (freezing(current) || kthread_should_stop())
		return;

	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);

3376 3377 3378 3379 3380 3381 3382
	/*
	 * Try to sleep for a short interval. Note that kcompactd will only be
	 * woken if it is possible to sleep for a short interval. This is
	 * deliberate on the assumption that if reclaim cannot keep an
	 * eligible zone balanced that it's also unlikely that compaction will
	 * succeed.
	 */
3383
	if (prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395
		/*
		 * Compaction records what page blocks it recently failed to
		 * isolate pages from and skips them in the future scanning.
		 * When kswapd is going to sleep, it is reasonable to assume
		 * that pages and compaction may succeed so reset the cache.
		 */
		reset_isolation_suitable(pgdat);

		/*
		 * We have freed the memory, now we should compact it to make
		 * allocation of the requested order possible.
		 */
3396
		wakeup_kcompactd(pgdat, alloc_order, classzone_idx);
3397

3398
		remaining = schedule_timeout(HZ/10);
3399 3400 3401 3402 3403 3404 3405

		/*
		 * If woken prematurely then reset kswapd_classzone_idx and
		 * order. The values will either be from a wakeup request or
		 * the previous request that slept prematurely.
		 */
		if (remaining) {
3406
			pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3407 3408 3409
			pgdat->kswapd_order = max(pgdat->kswapd_order, reclaim_order);
		}

3410 3411 3412 3413 3414 3415 3416 3417
		finish_wait(&pgdat->kswapd_wait, &wait);
		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
	}

	/*
	 * After a short sleep, check if it was a premature sleep. If not, then
	 * go fully to sleep until explicitly woken up.
	 */
3418 3419
	if (!remaining &&
	    prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430
		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);

		/*
		 * vmstat counters are not perfectly accurate and the estimated
		 * value for counters such as NR_FREE_PAGES can deviate from the
		 * true value by nr_online_cpus * threshold. To avoid the zone
		 * watermarks being breached while under pressure, we reduce the
		 * per-cpu vmstat threshold while kswapd is awake and restore
		 * them before going back to sleep.
		 */
		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3431 3432 3433 3434

		if (!kthread_should_stop())
			schedule();

3435 3436 3437 3438 3439 3440 3441 3442 3443 3444
		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
	} else {
		if (remaining)
			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
		else
			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
	}
	finish_wait(&pgdat->kswapd_wait, &wait);
}

L
Linus Torvalds 已提交
3445 3446
/*
 * The background pageout daemon, started as a kernel thread
3447
 * from the init process.
L
Linus Torvalds 已提交
3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459
 *
 * This basically trickles out pages so that we have _some_
 * free memory available even if there is no other activity
 * that frees anything up. This is needed for things like routing
 * etc, where we otherwise might have all activity going on in
 * asynchronous contexts that cannot page things out.
 *
 * If there are applications that are active memory-allocators
 * (most normal use), this basically shouldn't matter.
 */
static int kswapd(void *p)
{
3460 3461
	unsigned int alloc_order, reclaim_order;
	unsigned int classzone_idx = MAX_NR_ZONES - 1;
L
Linus Torvalds 已提交
3462 3463
	pg_data_t *pgdat = (pg_data_t*)p;
	struct task_struct *tsk = current;
3464

L
Linus Torvalds 已提交
3465 3466 3467
	struct reclaim_state reclaim_state = {
		.reclaimed_slab = 0,
	};
3468
	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
L
Linus Torvalds 已提交
3469

R
Rusty Russell 已提交
3470
	if (!cpumask_empty(cpumask))
3471
		set_cpus_allowed_ptr(tsk, cpumask);
L
Linus Torvalds 已提交
3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485
	current->reclaim_state = &reclaim_state;

	/*
	 * Tell the memory management that we're a "memory allocator",
	 * and that if we need more memory we should get access to it
	 * regardless (see "__alloc_pages()"). "kswapd" should
	 * never get caught in the normal page freeing logic.
	 *
	 * (Kswapd normally doesn't need memory anyway, but sometimes
	 * you need a small amount of memory in order to be able to
	 * page out something else, and this flag essentially protects
	 * us from recursively trying to free more memory as we're
	 * trying to free the first piece of memory in the first place).
	 */
3486
	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3487
	set_freezable();
L
Linus Torvalds 已提交
3488

3489 3490
	pgdat->kswapd_order = 0;
	pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
L
Linus Torvalds 已提交
3491
	for ( ; ; ) {
3492
		bool ret;
3493

3494 3495 3496
		alloc_order = reclaim_order = pgdat->kswapd_order;
		classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);

3497 3498 3499
kswapd_try_sleep:
		kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
					classzone_idx);
3500

3501 3502
		/* Read the new order and classzone_idx */
		alloc_order = reclaim_order = pgdat->kswapd_order;
3503
		classzone_idx = kswapd_classzone_idx(pgdat, 0);
3504
		pgdat->kswapd_order = 0;
3505
		pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
L
Linus Torvalds 已提交
3506

3507 3508 3509 3510 3511 3512 3513 3514
		ret = try_to_freeze();
		if (kthread_should_stop())
			break;

		/*
		 * We can speed up thawing tasks if we don't call balance_pgdat
		 * after returning from the refrigerator
		 */
3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525
		if (ret)
			continue;

		/*
		 * Reclaim begins at the requested order but if a high-order
		 * reclaim fails then kswapd falls back to reclaiming for
		 * order-0. If that happens, kswapd will consider sleeping
		 * for the order it finished reclaiming at (reclaim_order)
		 * but kcompactd is woken to compact for the original
		 * request (alloc_order).
		 */
3526 3527
		trace_mm_vmscan_kswapd_wake(pgdat->node_id, classzone_idx,
						alloc_order);
3528
		fs_reclaim_acquire(GFP_KERNEL);
3529
		reclaim_order = balance_pgdat(pgdat, alloc_order, classzone_idx);
3530
		fs_reclaim_release(GFP_KERNEL);
3531 3532
		if (reclaim_order < alloc_order)
			goto kswapd_try_sleep;
L
Linus Torvalds 已提交
3533
	}
3534

3535
	tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
3536
	current->reclaim_state = NULL;
3537

L
Linus Torvalds 已提交
3538 3539 3540 3541
	return 0;
}

/*
3542 3543 3544 3545 3546
 * A zone is low on free memory or too fragmented for high-order memory.  If
 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
 * pgdat.  It will wake up kcompactd after reclaiming memory.  If kswapd reclaim
 * has failed or is not needed, still wake up kcompactd if only compaction is
 * needed.
L
Linus Torvalds 已提交
3547
 */
3548 3549
void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
		   enum zone_type classzone_idx)
L
Linus Torvalds 已提交
3550 3551 3552
{
	pg_data_t *pgdat;

3553
	if (!managed_zone(zone))
L
Linus Torvalds 已提交
3554 3555
		return;

3556
	if (!cpuset_zone_allowed(zone, gfp_flags))
L
Linus Torvalds 已提交
3557
		return;
3558
	pgdat = zone->zone_pgdat;
3559 3560
	pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat,
							   classzone_idx);
3561
	pgdat->kswapd_order = max(pgdat->kswapd_order, order);
3562
	if (!waitqueue_active(&pgdat->kswapd_wait))
L
Linus Torvalds 已提交
3563
		return;
3564

3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576
	/* Hopeless node, leave it to direct reclaim if possible */
	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
	    pgdat_balanced(pgdat, order, classzone_idx)) {
		/*
		 * There may be plenty of free memory available, but it's too
		 * fragmented for high-order allocations.  Wake up kcompactd
		 * and rely on compaction_suitable() to determine if it's
		 * needed.  If it fails, it will defer subsequent attempts to
		 * ratelimit its work.
		 */
		if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
			wakeup_kcompactd(pgdat, order, classzone_idx);
3577
		return;
3578
	}
3579

3580 3581
	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, classzone_idx, order,
				      gfp_flags);
3582
	wake_up_interruptible(&pgdat->kswapd_wait);
L
Linus Torvalds 已提交
3583 3584
}

3585
#ifdef CONFIG_HIBERNATION
L
Linus Torvalds 已提交
3586
/*
3587
 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3588 3589 3590 3591 3592
 * freed pages.
 *
 * Rather than trying to age LRUs the aim is to preserve the overall
 * LRU order by reclaiming preferentially
 * inactive > active > active referenced > active mapped
L
Linus Torvalds 已提交
3593
 */
3594
unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
L
Linus Torvalds 已提交
3595
{
3596 3597
	struct reclaim_state reclaim_state;
	struct scan_control sc = {
3598
		.nr_to_reclaim = nr_to_reclaim,
3599
		.gfp_mask = GFP_HIGHUSER_MOVABLE,
3600
		.reclaim_idx = MAX_NR_ZONES - 1,
3601
		.priority = DEF_PRIORITY,
3602
		.may_writepage = 1,
3603 3604
		.may_unmap = 1,
		.may_swap = 1,
3605
		.hibernation_mode = 1,
L
Linus Torvalds 已提交
3606
	};
3607
	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3608 3609
	struct task_struct *p = current;
	unsigned long nr_reclaimed;
3610
	unsigned int noreclaim_flag;
L
Linus Torvalds 已提交
3611

3612
	noreclaim_flag = memalloc_noreclaim_save();
3613
	fs_reclaim_acquire(sc.gfp_mask);
3614 3615
	reclaim_state.reclaimed_slab = 0;
	p->reclaim_state = &reclaim_state;
3616

3617
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3618

3619
	p->reclaim_state = NULL;
3620
	fs_reclaim_release(sc.gfp_mask);
3621
	memalloc_noreclaim_restore(noreclaim_flag);
3622

3623
	return nr_reclaimed;
L
Linus Torvalds 已提交
3624
}
3625
#endif /* CONFIG_HIBERNATION */
L
Linus Torvalds 已提交
3626 3627 3628 3629 3630

/* It's optimal to keep kswapds on the same CPUs as their memory, but
   not required for correctness.  So if the last cpu in a node goes
   away, we get changed to run anywhere: as the first one comes back,
   restore their cpu bindings. */
3631
static int kswapd_cpu_online(unsigned int cpu)
L
Linus Torvalds 已提交
3632
{
3633
	int nid;
L
Linus Torvalds 已提交
3634

3635 3636 3637
	for_each_node_state(nid, N_MEMORY) {
		pg_data_t *pgdat = NODE_DATA(nid);
		const struct cpumask *mask;
3638

3639
		mask = cpumask_of_node(pgdat->node_id);
3640

3641 3642 3643
		if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
			/* One of our CPUs online: restore mask */
			set_cpus_allowed_ptr(pgdat->kswapd, mask);
L
Linus Torvalds 已提交
3644
	}
3645
	return 0;
L
Linus Torvalds 已提交
3646 3647
}

3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662
/*
 * This kswapd start function will be called by init and node-hot-add.
 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
 */
int kswapd_run(int nid)
{
	pg_data_t *pgdat = NODE_DATA(nid);
	int ret = 0;

	if (pgdat->kswapd)
		return 0;

	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
	if (IS_ERR(pgdat->kswapd)) {
		/* failure at boot is fatal */
3663
		BUG_ON(system_state < SYSTEM_RUNNING);
3664 3665
		pr_err("Failed to start kswapd on node %d\n", nid);
		ret = PTR_ERR(pgdat->kswapd);
3666
		pgdat->kswapd = NULL;
3667 3668 3669 3670
	}
	return ret;
}

3671
/*
3672
 * Called by memory hotplug when all memory in a node is offlined.  Caller must
3673
 * hold mem_hotplug_begin/end().
3674 3675 3676 3677 3678
 */
void kswapd_stop(int nid)
{
	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;

3679
	if (kswapd) {
3680
		kthread_stop(kswapd);
3681 3682
		NODE_DATA(nid)->kswapd = NULL;
	}
3683 3684
}

L
Linus Torvalds 已提交
3685 3686
static int __init kswapd_init(void)
{
3687
	int nid, ret;
3688

L
Linus Torvalds 已提交
3689
	swap_setup();
3690
	for_each_node_state(nid, N_MEMORY)
3691
 		kswapd_run(nid);
3692 3693 3694 3695
	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
					"mm/vmscan:online", kswapd_cpu_online,
					NULL);
	WARN_ON(ret < 0);
L
Linus Torvalds 已提交
3696 3697 3698 3699
	return 0;
}

module_init(kswapd_init)
3700 3701 3702

#ifdef CONFIG_NUMA
/*
3703
 * Node reclaim mode
3704
 *
3705
 * If non-zero call node_reclaim when the number of free pages falls below
3706 3707
 * the watermarks.
 */
3708
int node_reclaim_mode __read_mostly;
3709

3710
#define RECLAIM_OFF 0
3711
#define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
3712
#define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
3713
#define RECLAIM_UNMAP (1<<2)	/* Unmap pages during reclaim */
3714

3715
/*
3716
 * Priority for NODE_RECLAIM. This determines the fraction of pages
3717 3718 3719
 * of a node considered for each zone_reclaim. 4 scans 1/16th of
 * a zone.
 */
3720
#define NODE_RECLAIM_PRIORITY 4
3721

3722
/*
3723
 * Percentage of pages in a zone that must be unmapped for node_reclaim to
3724 3725 3726 3727
 * occur.
 */
int sysctl_min_unmapped_ratio = 1;

3728 3729 3730 3731 3732 3733
/*
 * If the number of slab pages in a zone grows beyond this percentage then
 * slab reclaim needs to occur.
 */
int sysctl_min_slab_ratio = 5;

3734
static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
3735
{
3736 3737 3738
	unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
	unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
		node_page_state(pgdat, NR_ACTIVE_FILE);
3739 3740 3741 3742 3743 3744 3745 3746 3747 3748

	/*
	 * It's possible for there to be more file mapped pages than
	 * accounted for by the pages on the file LRU lists because
	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
	 */
	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
}

/* Work out how many page cache pages we can reclaim in this reclaim_mode */
3749
static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
3750
{
3751 3752
	unsigned long nr_pagecache_reclaimable;
	unsigned long delta = 0;
3753 3754

	/*
3755
	 * If RECLAIM_UNMAP is set, then all file pages are considered
3756
	 * potentially reclaimable. Otherwise, we have to worry about
3757
	 * pages like swapcache and node_unmapped_file_pages() provides
3758 3759
	 * a better estimate
	 */
3760 3761
	if (node_reclaim_mode & RECLAIM_UNMAP)
		nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
3762
	else
3763
		nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
3764 3765

	/* If we can't clean pages, remove dirty pages from consideration */
3766 3767
	if (!(node_reclaim_mode & RECLAIM_WRITE))
		delta += node_page_state(pgdat, NR_FILE_DIRTY);
3768 3769 3770 3771 3772 3773 3774 3775

	/* Watch for any possible underflows due to delta */
	if (unlikely(delta > nr_pagecache_reclaimable))
		delta = nr_pagecache_reclaimable;

	return nr_pagecache_reclaimable - delta;
}

3776
/*
3777
 * Try to free up some pages from this node through reclaim.
3778
 */
3779
static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
3780
{
3781
	/* Minimum pages needed in order to stay on node */
3782
	const unsigned long nr_pages = 1 << order;
3783 3784
	struct task_struct *p = current;
	struct reclaim_state reclaim_state;
3785
	unsigned int noreclaim_flag;
3786
	struct scan_control sc = {
3787
		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3788
		.gfp_mask = current_gfp_context(gfp_mask),
3789
		.order = order,
3790 3791 3792
		.priority = NODE_RECLAIM_PRIORITY,
		.may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
		.may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
3793
		.may_swap = 1,
3794
		.reclaim_idx = gfp_zone(gfp_mask),
3795
	};
3796 3797

	cond_resched();
3798
	/*
3799
	 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
3800
	 * and we also need to be able to write out pages for RECLAIM_WRITE
3801
	 * and RECLAIM_UNMAP.
3802
	 */
3803 3804
	noreclaim_flag = memalloc_noreclaim_save();
	p->flags |= PF_SWAPWRITE;
3805
	fs_reclaim_acquire(sc.gfp_mask);
3806 3807
	reclaim_state.reclaimed_slab = 0;
	p->reclaim_state = &reclaim_state;
3808

3809
	if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
3810
		/*
3811
		 * Free memory by calling shrink node with increasing
3812 3813 3814
		 * priorities until we have enough memory freed.
		 */
		do {
3815
			shrink_node(pgdat, &sc);
3816
		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3817
	}
3818

3819
	p->reclaim_state = NULL;
3820
	fs_reclaim_release(gfp_mask);
3821 3822
	current->flags &= ~PF_SWAPWRITE;
	memalloc_noreclaim_restore(noreclaim_flag);
3823
	return sc.nr_reclaimed >= nr_pages;
3824
}
3825

3826
int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
3827
{
3828
	int ret;
3829 3830

	/*
3831
	 * Node reclaim reclaims unmapped file backed pages and
3832
	 * slab pages if we are over the defined limits.
3833
	 *
3834 3835
	 * A small portion of unmapped file backed pages is needed for
	 * file I/O otherwise pages read by file I/O will be immediately
3836 3837
	 * thrown out if the node is overallocated. So we do not reclaim
	 * if less than a specified percentage of the node is used by
3838
	 * unmapped file backed pages.
3839
	 */
3840
	if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
3841
	    node_page_state(pgdat, NR_SLAB_RECLAIMABLE) <= pgdat->min_slab_pages)
3842
		return NODE_RECLAIM_FULL;
3843 3844

	/*
3845
	 * Do not scan if the allocation should not be delayed.
3846
	 */
3847
	if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
3848
		return NODE_RECLAIM_NOSCAN;
3849 3850

	/*
3851
	 * Only run node reclaim on the local node or on nodes that do not
3852 3853 3854 3855
	 * have associated processors. This will favor the local processor
	 * over remote processors and spread off node memory allocations
	 * as wide as possible.
	 */
3856 3857
	if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
		return NODE_RECLAIM_NOSCAN;
3858

3859 3860
	if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
		return NODE_RECLAIM_NOSCAN;
3861

3862 3863
	ret = __node_reclaim(pgdat, gfp_mask, order);
	clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
3864

3865 3866 3867
	if (!ret)
		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);

3868
	return ret;
3869
}
3870
#endif
L
Lee Schermerhorn 已提交
3871 3872 3873 3874 3875 3876

/*
 * page_evictable - test whether a page is evictable
 * @page: the page to test
 *
 * Test whether page is evictable--i.e., should be placed on active/inactive
3877
 * lists vs unevictable list.
L
Lee Schermerhorn 已提交
3878 3879
 *
 * Reasons page might not be evictable:
3880
 * (1) page's mapping marked unevictable
N
Nick Piggin 已提交
3881
 * (2) page is part of an mlocked VMA
3882
 *
L
Lee Schermerhorn 已提交
3883
 */
3884
int page_evictable(struct page *page)
L
Lee Schermerhorn 已提交
3885
{
3886 3887 3888 3889 3890 3891 3892
	int ret;

	/* Prevent address_space of inode and swap cache from being freed */
	rcu_read_lock();
	ret = !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
	rcu_read_unlock();
	return ret;
L
Lee Schermerhorn 已提交
3893
}
3894

3895
#ifdef CONFIG_SHMEM
3896
/**
3897 3898 3899
 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
 * @pages:	array of pages to check
 * @nr_pages:	number of pages to check
3900
 *
3901
 * Checks pages for evictability and moves them to the appropriate lru list.
3902 3903
 *
 * This function is only used for SysV IPC SHM_UNLOCK.
3904
 */
3905
void check_move_unevictable_pages(struct page **pages, int nr_pages)
3906
{
3907
	struct lruvec *lruvec;
3908
	struct pglist_data *pgdat = NULL;
3909 3910 3911
	int pgscanned = 0;
	int pgrescued = 0;
	int i;
3912

3913 3914
	for (i = 0; i < nr_pages; i++) {
		struct page *page = pages[i];
3915
		struct pglist_data *pagepgdat = page_pgdat(page);
3916

3917
		pgscanned++;
3918 3919 3920 3921 3922
		if (pagepgdat != pgdat) {
			if (pgdat)
				spin_unlock_irq(&pgdat->lru_lock);
			pgdat = pagepgdat;
			spin_lock_irq(&pgdat->lru_lock);
3923
		}
3924
		lruvec = mem_cgroup_page_lruvec(page, pgdat);
3925

3926 3927
		if (!PageLRU(page) || !PageUnevictable(page))
			continue;
3928

3929
		if (page_evictable(page)) {
3930 3931
			enum lru_list lru = page_lru_base_type(page);

3932
			VM_BUG_ON_PAGE(PageActive(page), page);
3933
			ClearPageUnevictable(page);
3934 3935
			del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
			add_page_to_lru_list(page, lruvec, lru);
3936
			pgrescued++;
3937
		}
3938
	}
3939

3940
	if (pgdat) {
3941 3942
		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3943
		spin_unlock_irq(&pgdat->lru_lock);
3944 3945
	}
}
3946
#endif /* CONFIG_SHMEM */