vmscan.c 119.9 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
L
Linus Torvalds 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14
/*
 *  linux/mm/vmscan.c
 *
 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 *
 *  Swap reorganised 29.12.95, Stephen Tweedie.
 *  kswapd added: 7.1.96  sct
 *  Removed kswapd_ctl limits, and swap out as many pages as needed
 *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
 *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
 *  Multiqueue VM started 5.8.00, Rik van Riel.
 */

15 16
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

L
Linus Torvalds 已提交
17
#include <linux/mm.h>
18
#include <linux/sched/mm.h>
L
Linus Torvalds 已提交
19
#include <linux/module.h>
20
#include <linux/gfp.h>
L
Linus Torvalds 已提交
21 22 23 24 25
#include <linux/kernel_stat.h>
#include <linux/swap.h>
#include <linux/pagemap.h>
#include <linux/init.h>
#include <linux/highmem.h>
26
#include <linux/vmpressure.h>
27
#include <linux/vmstat.h>
L
Linus Torvalds 已提交
28 29 30 31 32 33 34 35 36 37 38
#include <linux/file.h>
#include <linux/writeback.h>
#include <linux/blkdev.h>
#include <linux/buffer_head.h>	/* for try_to_release_page(),
					buffer_heads_over_limit */
#include <linux/mm_inline.h>
#include <linux/backing-dev.h>
#include <linux/rmap.h>
#include <linux/topology.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
39
#include <linux/compaction.h>
L
Linus Torvalds 已提交
40 41
#include <linux/notifier.h>
#include <linux/rwsem.h>
42
#include <linux/delay.h>
43
#include <linux/kthread.h>
44
#include <linux/freezer.h>
45
#include <linux/memcontrol.h>
46
#include <linux/delayacct.h>
47
#include <linux/sysctl.h>
48
#include <linux/oom.h>
49
#include <linux/prefetch.h>
50
#include <linux/printk.h>
51
#include <linux/dax.h>
L
Linus Torvalds 已提交
52 53 54 55 56

#include <asm/tlbflush.h>
#include <asm/div64.h>

#include <linux/swapops.h>
57
#include <linux/balloon_compaction.h>
L
Linus Torvalds 已提交
58

59 60
#include "internal.h"

61 62 63
#define CREATE_TRACE_POINTS
#include <trace/events/vmscan.h>

L
Linus Torvalds 已提交
64
struct scan_control {
65 66 67
	/* How many pages shrink_list() should reclaim */
	unsigned long nr_to_reclaim;

68 69 70 71 72
	/*
	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
	 * are scanned.
	 */
	nodemask_t	*nodemask;
73

74 75 76 77 78
	/*
	 * The memory cgroup that hit its limit and as a result is the
	 * primary target of this reclaim invocation.
	 */
	struct mem_cgroup *target_mem_cgroup;
79

80
	/* Writepage batching in laptop mode; RECLAIM_WRITE */
81 82 83 84 85 86 87 88
	unsigned int may_writepage:1;

	/* Can mapped pages be reclaimed? */
	unsigned int may_unmap:1;

	/* Can pages be swapped as part of reclaim? */
	unsigned int may_swap:1;

89 90 91 92 93 94 95
	/*
	 * Cgroups are not reclaimed below their configured memory.low,
	 * unless we threaten to OOM. If any cgroups are skipped due to
	 * memory.low and nothing was reclaimed, go back for memory.low.
	 */
	unsigned int memcg_low_reclaim:1;
	unsigned int memcg_low_skipped:1;
96

97 98 99 100 101
	unsigned int hibernation_mode:1;

	/* One of the zones is ready for compaction */
	unsigned int compaction_ready:1;

G
Greg Thelen 已提交
102 103 104 105 106 107 108 109 110 111 112 113
	/* Allocation order */
	s8 order;

	/* Scan (total_size >> priority) pages at once */
	s8 priority;

	/* The highest zone to isolate pages for reclaim from */
	s8 reclaim_idx;

	/* This context's GFP mask */
	gfp_t gfp_mask;

114 115 116 117 118
	/* Incremented by the number of inactive pages that were scanned */
	unsigned long nr_scanned;

	/* Number of pages freed so far during a call to shrink_zones() */
	unsigned long nr_reclaimed;
119 120 121 122 123 124 125 126 127 128

	struct {
		unsigned int dirty;
		unsigned int unqueued_dirty;
		unsigned int congested;
		unsigned int writeback;
		unsigned int immediate;
		unsigned int file_taken;
		unsigned int taken;
	} nr;
L
Linus Torvalds 已提交
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
};

#ifdef ARCH_HAS_PREFETCH
#define prefetch_prev_lru_page(_page, _base, _field)			\
	do {								\
		if ((_page)->lru.prev != _base) {			\
			struct page *prev;				\
									\
			prev = lru_to_page(&(_page->lru));		\
			prefetch(&prev->_field);			\
		}							\
	} while (0)
#else
#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
#endif

#ifdef ARCH_HAS_PREFETCHW
#define prefetchw_prev_lru_page(_page, _base, _field)			\
	do {								\
		if ((_page)->lru.prev != _base) {			\
			struct page *prev;				\
									\
			prev = lru_to_page(&(_page->lru));		\
			prefetchw(&prev->_field);			\
		}							\
	} while (0)
#else
#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
#endif

/*
 * From 0 .. 100.  Higher means more swappy.
 */
int vm_swappiness = 60;
163 164 165 166 167
/*
 * The total number of pages which are beyond the high watermark within all
 * zones.
 */
unsigned long vm_total_pages;
L
Linus Torvalds 已提交
168 169 170 171

static LIST_HEAD(shrinker_list);
static DECLARE_RWSEM(shrinker_rwsem);

172
#ifdef CONFIG_MEMCG_KMEM
173 174 175 176 177 178 179 180 181 182 183 184 185 186

/*
 * We allow subsystems to populate their shrinker-related
 * LRU lists before register_shrinker_prepared() is called
 * for the shrinker, since we don't want to impose
 * restrictions on their internal registration order.
 * In this case shrink_slab_memcg() may find corresponding
 * bit is set in the shrinkers map.
 *
 * This value is used by the function to detect registering
 * shrinkers and to skip do_shrink_slab() calls for them.
 */
#define SHRINKER_REGISTERING ((struct shrinker *)~0UL)

187 188 189 190 191 192 193 194 195
static DEFINE_IDR(shrinker_idr);
static int shrinker_nr_max;

static int prealloc_memcg_shrinker(struct shrinker *shrinker)
{
	int id, ret = -ENOMEM;

	down_write(&shrinker_rwsem);
	/* This may call shrinker, so it must use down_read_trylock() */
196
	id = idr_alloc(&shrinker_idr, SHRINKER_REGISTERING, 0, 0, GFP_KERNEL);
197 198 199
	if (id < 0)
		goto unlock;

200 201 202 203 204 205
	if (id >= shrinker_nr_max) {
		if (memcg_expand_shrinker_maps(id)) {
			idr_remove(&shrinker_idr, id);
			goto unlock;
		}

206
		shrinker_nr_max = id + 1;
207
	}
208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
	shrinker->id = id;
	ret = 0;
unlock:
	up_write(&shrinker_rwsem);
	return ret;
}

static void unregister_memcg_shrinker(struct shrinker *shrinker)
{
	int id = shrinker->id;

	BUG_ON(id < 0);

	down_write(&shrinker_rwsem);
	idr_remove(&shrinker_idr, id);
	up_write(&shrinker_rwsem);
}
#else /* CONFIG_MEMCG_KMEM */
static int prealloc_memcg_shrinker(struct shrinker *shrinker)
{
	return 0;
}

static void unregister_memcg_shrinker(struct shrinker *shrinker)
{
}
#endif /* CONFIG_MEMCG_KMEM */

A
Andrew Morton 已提交
236
#ifdef CONFIG_MEMCG
237 238
static bool global_reclaim(struct scan_control *sc)
{
239
	return !sc->target_mem_cgroup;
240
}
241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261

/**
 * sane_reclaim - is the usual dirty throttling mechanism operational?
 * @sc: scan_control in question
 *
 * The normal page dirty throttling mechanism in balance_dirty_pages() is
 * completely broken with the legacy memcg and direct stalling in
 * shrink_page_list() is used for throttling instead, which lacks all the
 * niceties such as fairness, adaptive pausing, bandwidth proportional
 * allocation and configurability.
 *
 * This function tests whether the vmscan currently in progress can assume
 * that the normal dirty throttling mechanism is operational.
 */
static bool sane_reclaim(struct scan_control *sc)
{
	struct mem_cgroup *memcg = sc->target_mem_cgroup;

	if (!memcg)
		return true;
#ifdef CONFIG_CGROUP_WRITEBACK
262
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
263 264 265 266
		return true;
#endif
	return false;
}
267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289

static void set_memcg_congestion(pg_data_t *pgdat,
				struct mem_cgroup *memcg,
				bool congested)
{
	struct mem_cgroup_per_node *mn;

	if (!memcg)
		return;

	mn = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
	WRITE_ONCE(mn->congested, congested);
}

static bool memcg_congested(pg_data_t *pgdat,
			struct mem_cgroup *memcg)
{
	struct mem_cgroup_per_node *mn;

	mn = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
	return READ_ONCE(mn->congested);

}
290
#else
291 292 293 294
static bool global_reclaim(struct scan_control *sc)
{
	return true;
}
295 296 297 298 299

static bool sane_reclaim(struct scan_control *sc)
{
	return true;
}
300 301 302 303 304 305 306 307 308 309 310 311

static inline void set_memcg_congestion(struct pglist_data *pgdat,
				struct mem_cgroup *memcg, bool congested)
{
}

static inline bool memcg_congested(struct pglist_data *pgdat,
			struct mem_cgroup *memcg)
{
	return false;

}
312 313
#endif

314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331
/*
 * This misses isolated pages which are not accounted for to save counters.
 * As the data only determines if reclaim or compaction continues, it is
 * not expected that isolated pages will be a dominating factor.
 */
unsigned long zone_reclaimable_pages(struct zone *zone)
{
	unsigned long nr;

	nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
		zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
	if (get_nr_swap_pages() > 0)
		nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
			zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);

	return nr;
}

332 333 334 335 336 337 338
/**
 * lruvec_lru_size -  Returns the number of pages on the given LRU list.
 * @lruvec: lru vector
 * @lru: lru to use
 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
 */
unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx)
339
{
340 341 342
	unsigned long lru_size;
	int zid;

343
	if (!mem_cgroup_disabled())
344 345 346
		lru_size = mem_cgroup_get_lru_size(lruvec, lru);
	else
		lru_size = node_page_state(lruvec_pgdat(lruvec), NR_LRU_BASE + lru);
347

348 349 350
	for (zid = zone_idx + 1; zid < MAX_NR_ZONES; zid++) {
		struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
		unsigned long size;
351

352 353 354 355 356 357 358 359 360 361 362 363
		if (!managed_zone(zone))
			continue;

		if (!mem_cgroup_disabled())
			size = mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
		else
			size = zone_page_state(&lruvec_pgdat(lruvec)->node_zones[zid],
				       NR_ZONE_LRU_BASE + lru);
		lru_size -= min(size, lru_size);
	}

	return lru_size;
364 365 366

}

L
Linus Torvalds 已提交
367
/*
G
Glauber Costa 已提交
368
 * Add a shrinker callback to be called from the vm.
L
Linus Torvalds 已提交
369
 */
370
int prealloc_shrinker(struct shrinker *shrinker)
L
Linus Torvalds 已提交
371
{
G
Glauber Costa 已提交
372 373 374 375 376 377 378 379
	size_t size = sizeof(*shrinker->nr_deferred);

	if (shrinker->flags & SHRINKER_NUMA_AWARE)
		size *= nr_node_ids;

	shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
	if (!shrinker->nr_deferred)
		return -ENOMEM;
380 381 382 383 384 385

	if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
		if (prealloc_memcg_shrinker(shrinker))
			goto free_deferred;
	}

386
	return 0;
387 388 389 390 391

free_deferred:
	kfree(shrinker->nr_deferred);
	shrinker->nr_deferred = NULL;
	return -ENOMEM;
392 393 394 395
}

void free_prealloced_shrinker(struct shrinker *shrinker)
{
396 397 398 399 400 401
	if (!shrinker->nr_deferred)
		return;

	if (shrinker->flags & SHRINKER_MEMCG_AWARE)
		unregister_memcg_shrinker(shrinker);

402 403 404
	kfree(shrinker->nr_deferred);
	shrinker->nr_deferred = NULL;
}
G
Glauber Costa 已提交
405

406 407
void register_shrinker_prepared(struct shrinker *shrinker)
{
408 409
	down_write(&shrinker_rwsem);
	list_add_tail(&shrinker->list, &shrinker_list);
410 411 412
#ifdef CONFIG_MEMCG_KMEM
	idr_replace(&shrinker_idr, shrinker, shrinker->id);
#endif
413
	up_write(&shrinker_rwsem);
414 415 416 417 418 419 420 421 422
}

int register_shrinker(struct shrinker *shrinker)
{
	int err = prealloc_shrinker(shrinker);

	if (err)
		return err;
	register_shrinker_prepared(shrinker);
G
Glauber Costa 已提交
423
	return 0;
L
Linus Torvalds 已提交
424
}
425
EXPORT_SYMBOL(register_shrinker);
L
Linus Torvalds 已提交
426 427 428 429

/*
 * Remove one
 */
430
void unregister_shrinker(struct shrinker *shrinker)
L
Linus Torvalds 已提交
431
{
432 433
	if (!shrinker->nr_deferred)
		return;
434 435
	if (shrinker->flags & SHRINKER_MEMCG_AWARE)
		unregister_memcg_shrinker(shrinker);
L
Linus Torvalds 已提交
436 437 438
	down_write(&shrinker_rwsem);
	list_del(&shrinker->list);
	up_write(&shrinker_rwsem);
439
	kfree(shrinker->nr_deferred);
440
	shrinker->nr_deferred = NULL;
L
Linus Torvalds 已提交
441
}
442
EXPORT_SYMBOL(unregister_shrinker);
L
Linus Torvalds 已提交
443 444

#define SHRINK_BATCH 128
G
Glauber Costa 已提交
445

446
static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
447
				    struct shrinker *shrinker, int priority)
G
Glauber Costa 已提交
448 449 450 451
{
	unsigned long freed = 0;
	unsigned long long delta;
	long total_scan;
452
	long freeable;
G
Glauber Costa 已提交
453 454 455 456 457
	long nr;
	long new_nr;
	int nid = shrinkctl->nid;
	long batch_size = shrinker->batch ? shrinker->batch
					  : SHRINK_BATCH;
458
	long scanned = 0, next_deferred;
G
Glauber Costa 已提交
459

460 461 462
	if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
		nid = 0;

463
	freeable = shrinker->count_objects(shrinker, shrinkctl);
464 465
	if (freeable == 0 || freeable == SHRINK_EMPTY)
		return freeable;
G
Glauber Costa 已提交
466 467 468 469 470 471 472 473 474

	/*
	 * copy the current shrinker scan count into a local variable
	 * and zero it so that other concurrent shrinker invocations
	 * don't also do this scanning work.
	 */
	nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);

	total_scan = nr;
475 476 477
	delta = freeable >> priority;
	delta *= 4;
	do_div(delta, shrinker->seeks);
G
Glauber Costa 已提交
478 479
	total_scan += delta;
	if (total_scan < 0) {
480
		pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n",
D
Dave Chinner 已提交
481
		       shrinker->scan_objects, total_scan);
482
		total_scan = freeable;
483 484 485
		next_deferred = nr;
	} else
		next_deferred = total_scan;
G
Glauber Costa 已提交
486 487 488 489 490 491 492

	/*
	 * We need to avoid excessive windup on filesystem shrinkers
	 * due to large numbers of GFP_NOFS allocations causing the
	 * shrinkers to return -1 all the time. This results in a large
	 * nr being built up so when a shrink that can do some work
	 * comes along it empties the entire cache due to nr >>>
493
	 * freeable. This is bad for sustaining a working set in
G
Glauber Costa 已提交
494 495 496 497 498
	 * memory.
	 *
	 * Hence only allow the shrinker to scan the entire cache when
	 * a large delta change is calculated directly.
	 */
499 500
	if (delta < freeable / 4)
		total_scan = min(total_scan, freeable / 2);
G
Glauber Costa 已提交
501 502 503 504 505 506

	/*
	 * Avoid risking looping forever due to too large nr value:
	 * never try to free more than twice the estimate number of
	 * freeable entries.
	 */
507 508
	if (total_scan > freeable * 2)
		total_scan = freeable * 2;
G
Glauber Costa 已提交
509 510

	trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
511
				   freeable, delta, total_scan, priority);
G
Glauber Costa 已提交
512

513 514 515 516 517 518 519 520 521 522 523
	/*
	 * Normally, we should not scan less than batch_size objects in one
	 * pass to avoid too frequent shrinker calls, but if the slab has less
	 * than batch_size objects in total and we are really tight on memory,
	 * we will try to reclaim all available objects, otherwise we can end
	 * up failing allocations although there are plenty of reclaimable
	 * objects spread over several slabs with usage less than the
	 * batch_size.
	 *
	 * We detect the "tight on memory" situations by looking at the total
	 * number of objects we want to scan (total_scan). If it is greater
524
	 * than the total number of objects on slab (freeable), we must be
525 526 527 528
	 * scanning at high prio and therefore should try to reclaim as much as
	 * possible.
	 */
	while (total_scan >= batch_size ||
529
	       total_scan >= freeable) {
D
Dave Chinner 已提交
530
		unsigned long ret;
531
		unsigned long nr_to_scan = min(batch_size, total_scan);
G
Glauber Costa 已提交
532

533
		shrinkctl->nr_to_scan = nr_to_scan;
534
		shrinkctl->nr_scanned = nr_to_scan;
D
Dave Chinner 已提交
535 536 537 538
		ret = shrinker->scan_objects(shrinker, shrinkctl);
		if (ret == SHRINK_STOP)
			break;
		freed += ret;
G
Glauber Costa 已提交
539

540 541 542
		count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
		total_scan -= shrinkctl->nr_scanned;
		scanned += shrinkctl->nr_scanned;
G
Glauber Costa 已提交
543 544 545 546

		cond_resched();
	}

547 548 549 550
	if (next_deferred >= scanned)
		next_deferred -= scanned;
	else
		next_deferred = 0;
G
Glauber Costa 已提交
551 552 553 554 555
	/*
	 * move the unused scan count back into the shrinker in a
	 * manner that handles concurrent updates. If we exhausted the
	 * scan, there is no need to do an update.
	 */
556 557
	if (next_deferred > 0)
		new_nr = atomic_long_add_return(next_deferred,
G
Glauber Costa 已提交
558 559 560 561
						&shrinker->nr_deferred[nid]);
	else
		new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);

562
	trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
G
Glauber Costa 已提交
563
	return freed;
564 565
}

566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593
#ifdef CONFIG_MEMCG_KMEM
static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
			struct mem_cgroup *memcg, int priority)
{
	struct memcg_shrinker_map *map;
	unsigned long freed = 0;
	int ret, i;

	if (!memcg_kmem_enabled() || !mem_cgroup_online(memcg))
		return 0;

	if (!down_read_trylock(&shrinker_rwsem))
		return 0;

	map = rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_map,
					true);
	if (unlikely(!map))
		goto unlock;

	for_each_set_bit(i, map->map, shrinker_nr_max) {
		struct shrink_control sc = {
			.gfp_mask = gfp_mask,
			.nid = nid,
			.memcg = memcg,
		};
		struct shrinker *shrinker;

		shrinker = idr_find(&shrinker_idr, i);
594 595 596
		if (unlikely(!shrinker || shrinker == SHRINKER_REGISTERING)) {
			if (!shrinker)
				clear_bit(i, map->map);
597 598 599 600
			continue;
		}

		ret = do_shrink_slab(&sc, shrinker, priority);
601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624
		if (ret == SHRINK_EMPTY) {
			clear_bit(i, map->map);
			/*
			 * After the shrinker reported that it had no objects to
			 * free, but before we cleared the corresponding bit in
			 * the memcg shrinker map, a new object might have been
			 * added. To make sure, we have the bit set in this
			 * case, we invoke the shrinker one more time and reset
			 * the bit if it reports that it is not empty anymore.
			 * The memory barrier here pairs with the barrier in
			 * memcg_set_shrinker_bit():
			 *
			 * list_lru_add()     shrink_slab_memcg()
			 *   list_add_tail()    clear_bit()
			 *   <MB>               <MB>
			 *   set_bit()          do_shrink_slab()
			 */
			smp_mb__after_atomic();
			ret = do_shrink_slab(&sc, shrinker, priority);
			if (ret == SHRINK_EMPTY)
				ret = 0;
			else
				memcg_set_shrinker_bit(memcg, nid, i);
		}
625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643
		freed += ret;

		if (rwsem_is_contended(&shrinker_rwsem)) {
			freed = freed ? : 1;
			break;
		}
	}
unlock:
	up_read(&shrinker_rwsem);
	return freed;
}
#else /* CONFIG_MEMCG_KMEM */
static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
			struct mem_cgroup *memcg, int priority)
{
	return 0;
}
#endif /* CONFIG_MEMCG_KMEM */

644
/**
645
 * shrink_slab - shrink slab caches
646 647
 * @gfp_mask: allocation context
 * @nid: node whose slab caches to target
648
 * @memcg: memory cgroup whose slab caches to target
649
 * @priority: the reclaim priority
L
Linus Torvalds 已提交
650
 *
651
 * Call the shrink functions to age shrinkable caches.
L
Linus Torvalds 已提交
652
 *
653 654
 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
 * unaware shrinkers will receive a node id of 0 instead.
L
Linus Torvalds 已提交
655
 *
656 657
 * @memcg specifies the memory cgroup to target. Unaware shrinkers
 * are called only if it is the root cgroup.
658
 *
659 660
 * @priority is sc->priority, we take the number of objects and >> by priority
 * in order to get the scan target.
661
 *
662
 * Returns the number of reclaimed slab objects.
L
Linus Torvalds 已提交
663
 */
664 665
static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
				 struct mem_cgroup *memcg,
666
				 int priority)
L
Linus Torvalds 已提交
667 668
{
	struct shrinker *shrinker;
D
Dave Chinner 已提交
669
	unsigned long freed = 0;
670
	int ret;
L
Linus Torvalds 已提交
671

672
	if (!mem_cgroup_is_root(memcg))
673
		return shrink_slab_memcg(gfp_mask, nid, memcg, priority);
674

675
	if (!down_read_trylock(&shrinker_rwsem))
676
		goto out;
L
Linus Torvalds 已提交
677 678

	list_for_each_entry(shrinker, &shrinker_list, list) {
679 680 681
		struct shrink_control sc = {
			.gfp_mask = gfp_mask,
			.nid = nid,
682
			.memcg = memcg,
683
		};
684

685 686 687 688
		ret = do_shrink_slab(&sc, shrinker, priority);
		if (ret == SHRINK_EMPTY)
			ret = 0;
		freed += ret;
689 690 691 692 693 694 695 696 697
		/*
		 * Bail out if someone want to register a new shrinker to
		 * prevent the regsitration from being stalled for long periods
		 * by parallel ongoing shrinking.
		 */
		if (rwsem_is_contended(&shrinker_rwsem)) {
			freed = freed ? : 1;
			break;
		}
L
Linus Torvalds 已提交
698
	}
699

L
Linus Torvalds 已提交
700
	up_read(&shrinker_rwsem);
701 702
out:
	cond_resched();
D
Dave Chinner 已提交
703
	return freed;
L
Linus Torvalds 已提交
704 705
}

706 707 708 709 710 711 712 713
void drop_slab_node(int nid)
{
	unsigned long freed;

	do {
		struct mem_cgroup *memcg = NULL;

		freed = 0;
714
		memcg = mem_cgroup_iter(NULL, NULL, NULL);
715
		do {
716
			freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
717 718 719 720 721 722 723 724 725 726 727 728
		} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
	} while (freed > 10);
}

void drop_slab(void)
{
	int nid;

	for_each_online_node(nid)
		drop_slab_node(nid);
}

L
Linus Torvalds 已提交
729 730
static inline int is_page_cache_freeable(struct page *page)
{
731 732 733 734 735
	/*
	 * A freeable page cache page is referenced only by the caller
	 * that isolated the page, the page cache radix tree and
	 * optional buffer heads at page->private.
	 */
736 737 738
	int radix_pins = PageTransHuge(page) && PageSwapCache(page) ?
		HPAGE_PMD_NR : 1;
	return page_count(page) - page_has_private(page) == 1 + radix_pins;
L
Linus Torvalds 已提交
739 740
}

741
static int may_write_to_inode(struct inode *inode, struct scan_control *sc)
L
Linus Torvalds 已提交
742
{
743
	if (current->flags & PF_SWAPWRITE)
L
Linus Torvalds 已提交
744
		return 1;
745
	if (!inode_write_congested(inode))
L
Linus Torvalds 已提交
746
		return 1;
747
	if (inode_to_bdi(inode) == current->backing_dev_info)
L
Linus Torvalds 已提交
748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766
		return 1;
	return 0;
}

/*
 * We detected a synchronous write error writing a page out.  Probably
 * -ENOSPC.  We need to propagate that into the address_space for a subsequent
 * fsync(), msync() or close().
 *
 * The tricky part is that after writepage we cannot touch the mapping: nothing
 * prevents it from being freed up.  But we have a ref on the page and once
 * that page is locked, the mapping is pinned.
 *
 * We're allowed to run sleeping lock_page() here because we know the caller has
 * __GFP_FS.
 */
static void handle_write_error(struct address_space *mapping,
				struct page *page, int error)
{
J
Jens Axboe 已提交
767
	lock_page(page);
768 769
	if (page_mapping(page) == mapping)
		mapping_set_error(mapping, error);
L
Linus Torvalds 已提交
770 771 772
	unlock_page(page);
}

773 774 775 776 777 778 779 780 781 782 783 784
/* possible outcome of pageout() */
typedef enum {
	/* failed to write page out, page is locked */
	PAGE_KEEP,
	/* move page to the active list, page is locked */
	PAGE_ACTIVATE,
	/* page has been sent to the disk successfully, page is unlocked */
	PAGE_SUCCESS,
	/* page is clean and locked */
	PAGE_CLEAN,
} pageout_t;

L
Linus Torvalds 已提交
785
/*
A
Andrew Morton 已提交
786 787
 * pageout is called by shrink_page_list() for each dirty page.
 * Calls ->writepage().
L
Linus Torvalds 已提交
788
 */
789
static pageout_t pageout(struct page *page, struct address_space *mapping,
790
			 struct scan_control *sc)
L
Linus Torvalds 已提交
791 792 793 794 795 796 797 798
{
	/*
	 * If the page is dirty, only perform writeback if that write
	 * will be non-blocking.  To prevent this allocation from being
	 * stalled by pagecache activity.  But note that there may be
	 * stalls if we need to run get_block().  We could test
	 * PagePrivate for that.
	 *
799
	 * If this process is currently in __generic_file_write_iter() against
L
Linus Torvalds 已提交
800 801 802 803 804 805 806 807 808 809 810 811 812 813 814
	 * this page's queue, we can perform writeback even if that
	 * will block.
	 *
	 * If the page is swapcache, write it back even if that would
	 * block, for some throttling. This happens by accident, because
	 * swap_backing_dev_info is bust: it doesn't reflect the
	 * congestion state of the swapdevs.  Easy to fix, if needed.
	 */
	if (!is_page_cache_freeable(page))
		return PAGE_KEEP;
	if (!mapping) {
		/*
		 * Some data journaling orphaned pages can have
		 * page->mapping == NULL while being dirty with clean buffers.
		 */
815
		if (page_has_private(page)) {
L
Linus Torvalds 已提交
816 817
			if (try_to_free_buffers(page)) {
				ClearPageDirty(page);
818
				pr_info("%s: orphaned page\n", __func__);
L
Linus Torvalds 已提交
819 820 821 822 823 824 825
				return PAGE_CLEAN;
			}
		}
		return PAGE_KEEP;
	}
	if (mapping->a_ops->writepage == NULL)
		return PAGE_ACTIVATE;
826
	if (!may_write_to_inode(mapping->host, sc))
L
Linus Torvalds 已提交
827 828 829 830 831 832 833
		return PAGE_KEEP;

	if (clear_page_dirty_for_io(page)) {
		int res;
		struct writeback_control wbc = {
			.sync_mode = WB_SYNC_NONE,
			.nr_to_write = SWAP_CLUSTER_MAX,
834 835
			.range_start = 0,
			.range_end = LLONG_MAX,
L
Linus Torvalds 已提交
836 837 838 839 840 841 842
			.for_reclaim = 1,
		};

		SetPageReclaim(page);
		res = mapping->a_ops->writepage(page, &wbc);
		if (res < 0)
			handle_write_error(mapping, page, res);
843
		if (res == AOP_WRITEPAGE_ACTIVATE) {
L
Linus Torvalds 已提交
844 845 846
			ClearPageReclaim(page);
			return PAGE_ACTIVATE;
		}
847

L
Linus Torvalds 已提交
848 849 850 851
		if (!PageWriteback(page)) {
			/* synchronous write or broken a_ops? */
			ClearPageReclaim(page);
		}
852
		trace_mm_vmscan_writepage(page);
853
		inc_node_page_state(page, NR_VMSCAN_WRITE);
L
Linus Torvalds 已提交
854 855 856 857 858 859
		return PAGE_SUCCESS;
	}

	return PAGE_CLEAN;
}

860
/*
N
Nick Piggin 已提交
861 862
 * Same as remove_mapping, but if the page is removed from the mapping, it
 * gets returned with a refcount of 0.
863
 */
864 865
static int __remove_mapping(struct address_space *mapping, struct page *page,
			    bool reclaimed)
866
{
867
	unsigned long flags;
868
	int refcount;
869

870 871
	BUG_ON(!PageLocked(page));
	BUG_ON(mapping != page_mapping(page));
872

M
Matthew Wilcox 已提交
873
	xa_lock_irqsave(&mapping->i_pages, flags);
874
	/*
N
Nick Piggin 已提交
875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893
	 * The non racy check for a busy page.
	 *
	 * Must be careful with the order of the tests. When someone has
	 * a ref to the page, it may be possible that they dirty it then
	 * drop the reference. So if PageDirty is tested before page_count
	 * here, then the following race may occur:
	 *
	 * get_user_pages(&page);
	 * [user mapping goes away]
	 * write_to(page);
	 *				!PageDirty(page)    [good]
	 * SetPageDirty(page);
	 * put_page(page);
	 *				!page_count(page)   [good, discard it]
	 *
	 * [oops, our write_to data is lost]
	 *
	 * Reversing the order of the tests ensures such a situation cannot
	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
894
	 * load is not satisfied before that of page->_refcount.
N
Nick Piggin 已提交
895 896
	 *
	 * Note that if SetPageDirty is always performed via set_page_dirty,
M
Matthew Wilcox 已提交
897
	 * and thus under the i_pages lock, then this ordering is not required.
898
	 */
899 900 901 902 903
	if (unlikely(PageTransHuge(page)) && PageSwapCache(page))
		refcount = 1 + HPAGE_PMD_NR;
	else
		refcount = 2;
	if (!page_ref_freeze(page, refcount))
904
		goto cannot_free;
N
Nick Piggin 已提交
905 906
	/* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
	if (unlikely(PageDirty(page))) {
907
		page_ref_unfreeze(page, refcount);
908
		goto cannot_free;
N
Nick Piggin 已提交
909
	}
910 911 912

	if (PageSwapCache(page)) {
		swp_entry_t swap = { .val = page_private(page) };
913
		mem_cgroup_swapout(page, swap);
914
		__delete_from_swap_cache(page);
M
Matthew Wilcox 已提交
915
		xa_unlock_irqrestore(&mapping->i_pages, flags);
916
		put_swap_page(page, swap);
N
Nick Piggin 已提交
917
	} else {
918
		void (*freepage)(struct page *);
919
		void *shadow = NULL;
920 921

		freepage = mapping->a_ops->freepage;
922 923 924 925 926 927 928 929 930
		/*
		 * Remember a shadow entry for reclaimed file cache in
		 * order to detect refaults, thus thrashing, later on.
		 *
		 * But don't store shadows in an address space that is
		 * already exiting.  This is not just an optizimation,
		 * inode reclaim needs to empty out the radix tree or
		 * the nodes are lost.  Don't plant shadows behind its
		 * back.
931 932 933 934 935
		 *
		 * We also don't store shadows for DAX mappings because the
		 * only page cache pages found in these are zero pages
		 * covering holes, and because we don't want to mix DAX
		 * exceptional entries and shadow exceptional entries in the
M
Matthew Wilcox 已提交
936
		 * same address_space.
937 938
		 */
		if (reclaimed && page_is_file_cache(page) &&
939
		    !mapping_exiting(mapping) && !dax_mapping(mapping))
940
			shadow = workingset_eviction(mapping, page);
J
Johannes Weiner 已提交
941
		__delete_from_page_cache(page, shadow);
M
Matthew Wilcox 已提交
942
		xa_unlock_irqrestore(&mapping->i_pages, flags);
943 944 945

		if (freepage != NULL)
			freepage(page);
946 947 948 949 950
	}

	return 1;

cannot_free:
M
Matthew Wilcox 已提交
951
	xa_unlock_irqrestore(&mapping->i_pages, flags);
952 953 954
	return 0;
}

N
Nick Piggin 已提交
955 956 957 958 959 960 961 962
/*
 * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
 * someone else has a ref on the page, abort and return 0.  If it was
 * successfully detached, return 1.  Assumes the caller has a single ref on
 * this page.
 */
int remove_mapping(struct address_space *mapping, struct page *page)
{
963
	if (__remove_mapping(mapping, page, false)) {
N
Nick Piggin 已提交
964 965 966 967 968
		/*
		 * Unfreezing the refcount with 1 rather than 2 effectively
		 * drops the pagecache ref for us without requiring another
		 * atomic operation.
		 */
969
		page_ref_unfreeze(page, 1);
N
Nick Piggin 已提交
970 971 972 973 974
		return 1;
	}
	return 0;
}

L
Lee Schermerhorn 已提交
975 976 977 978 979 980 981 982 983 984 985
/**
 * putback_lru_page - put previously isolated page onto appropriate LRU list
 * @page: page to be put back to appropriate lru list
 *
 * Add previously isolated @page to appropriate LRU list.
 * Page may still be unevictable for other reasons.
 *
 * lru_lock must not be held, interrupts must be enabled.
 */
void putback_lru_page(struct page *page)
{
986
	lru_cache_add(page);
L
Lee Schermerhorn 已提交
987 988 989
	put_page(page);		/* drop ref from isolate */
}

990 991 992
enum page_references {
	PAGEREF_RECLAIM,
	PAGEREF_RECLAIM_CLEAN,
993
	PAGEREF_KEEP,
994 995 996 997 998 999
	PAGEREF_ACTIVATE,
};

static enum page_references page_check_references(struct page *page,
						  struct scan_control *sc)
{
1000
	int referenced_ptes, referenced_page;
1001 1002
	unsigned long vm_flags;

1003 1004
	referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
					  &vm_flags);
1005
	referenced_page = TestClearPageReferenced(page);
1006 1007 1008 1009 1010 1011 1012 1013

	/*
	 * Mlock lost the isolation race with us.  Let try_to_unmap()
	 * move the page to the unevictable list.
	 */
	if (vm_flags & VM_LOCKED)
		return PAGEREF_RECLAIM;

1014
	if (referenced_ptes) {
1015
		if (PageSwapBacked(page))
1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032
			return PAGEREF_ACTIVATE;
		/*
		 * All mapped pages start out with page table
		 * references from the instantiating fault, so we need
		 * to look twice if a mapped file page is used more
		 * than once.
		 *
		 * Mark it and spare it for another trip around the
		 * inactive list.  Another page table reference will
		 * lead to its activation.
		 *
		 * Note: the mark is set for activated pages as well
		 * so that recently deactivated but used pages are
		 * quickly recovered.
		 */
		SetPageReferenced(page);

1033
		if (referenced_page || referenced_ptes > 1)
1034 1035
			return PAGEREF_ACTIVATE;

1036 1037 1038 1039 1040 1041
		/*
		 * Activate file-backed executable pages after first usage.
		 */
		if (vm_flags & VM_EXEC)
			return PAGEREF_ACTIVATE;

1042 1043
		return PAGEREF_KEEP;
	}
1044 1045

	/* Reclaim if clean, defer dirty pages to writeback */
1046
	if (referenced_page && !PageSwapBacked(page))
1047 1048 1049
		return PAGEREF_RECLAIM_CLEAN;

	return PAGEREF_RECLAIM;
1050 1051
}

1052 1053 1054 1055
/* Check if a page is dirty or under writeback */
static void page_check_dirty_writeback(struct page *page,
				       bool *dirty, bool *writeback)
{
1056 1057
	struct address_space *mapping;

1058 1059 1060 1061
	/*
	 * Anonymous pages are not handled by flushers and must be written
	 * from reclaim context. Do not stall reclaim based on them
	 */
S
Shaohua Li 已提交
1062 1063
	if (!page_is_file_cache(page) ||
	    (PageAnon(page) && !PageSwapBacked(page))) {
1064 1065 1066 1067 1068 1069 1070 1071
		*dirty = false;
		*writeback = false;
		return;
	}

	/* By default assume that the page flags are accurate */
	*dirty = PageDirty(page);
	*writeback = PageWriteback(page);
1072 1073 1074 1075 1076 1077 1078 1079

	/* Verify dirty/writeback state if the filesystem supports it */
	if (!page_has_private(page))
		return;

	mapping = page_mapping(page);
	if (mapping && mapping->a_ops->is_dirty_writeback)
		mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
1080 1081
}

L
Linus Torvalds 已提交
1082
/*
A
Andrew Morton 已提交
1083
 * shrink_page_list() returns the number of reclaimed pages
L
Linus Torvalds 已提交
1084
 */
A
Andrew Morton 已提交
1085
static unsigned long shrink_page_list(struct list_head *page_list,
M
Mel Gorman 已提交
1086
				      struct pglist_data *pgdat,
1087
				      struct scan_control *sc,
1088
				      enum ttu_flags ttu_flags,
1089
				      struct reclaim_stat *stat,
1090
				      bool force_reclaim)
L
Linus Torvalds 已提交
1091 1092
{
	LIST_HEAD(ret_pages);
1093
	LIST_HEAD(free_pages);
L
Linus Torvalds 已提交
1094
	int pgactivate = 0;
1095 1096 1097 1098 1099 1100
	unsigned nr_unqueued_dirty = 0;
	unsigned nr_dirty = 0;
	unsigned nr_congested = 0;
	unsigned nr_reclaimed = 0;
	unsigned nr_writeback = 0;
	unsigned nr_immediate = 0;
1101 1102
	unsigned nr_ref_keep = 0;
	unsigned nr_unmap_fail = 0;
L
Linus Torvalds 已提交
1103 1104 1105 1106 1107 1108 1109

	cond_resched();

	while (!list_empty(page_list)) {
		struct address_space *mapping;
		struct page *page;
		int may_enter_fs;
1110
		enum page_references references = PAGEREF_RECLAIM_CLEAN;
1111
		bool dirty, writeback;
L
Linus Torvalds 已提交
1112 1113 1114 1115 1116 1117

		cond_resched();

		page = lru_to_page(page_list);
		list_del(&page->lru);

N
Nick Piggin 已提交
1118
		if (!trylock_page(page))
L
Linus Torvalds 已提交
1119 1120
			goto keep;

1121
		VM_BUG_ON_PAGE(PageActive(page), page);
L
Linus Torvalds 已提交
1122 1123

		sc->nr_scanned++;
1124

1125
		if (unlikely(!page_evictable(page)))
M
Minchan Kim 已提交
1126
			goto activate_locked;
L
Lee Schermerhorn 已提交
1127

1128
		if (!sc->may_unmap && page_mapped(page))
1129 1130
			goto keep_locked;

L
Linus Torvalds 已提交
1131
		/* Double the slab pressure for mapped and swapcache pages */
S
Shaohua Li 已提交
1132 1133
		if ((page_mapped(page) || PageSwapCache(page)) &&
		    !(PageAnon(page) && !PageSwapBacked(page)))
L
Linus Torvalds 已提交
1134 1135
			sc->nr_scanned++;

1136 1137 1138
		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));

1139
		/*
1140
		 * The number of dirty pages determines if a node is marked
1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151
		 * reclaim_congested which affects wait_iff_congested. kswapd
		 * will stall and start writing pages if the tail of the LRU
		 * is all dirty unqueued pages.
		 */
		page_check_dirty_writeback(page, &dirty, &writeback);
		if (dirty || writeback)
			nr_dirty++;

		if (dirty && !writeback)
			nr_unqueued_dirty++;

1152 1153 1154 1155 1156 1157
		/*
		 * Treat this page as congested if the underlying BDI is or if
		 * pages are cycling through the LRU so quickly that the
		 * pages marked for immediate reclaim are making it to the
		 * end of the LRU a second time.
		 */
1158
		mapping = page_mapping(page);
1159
		if (((dirty || writeback) && mapping &&
1160
		     inode_write_congested(mapping->host)) ||
1161
		    (writeback && PageReclaim(page)))
1162 1163
			nr_congested++;

1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174
		/*
		 * If a page at the tail of the LRU is under writeback, there
		 * are three cases to consider.
		 *
		 * 1) If reclaim is encountering an excessive number of pages
		 *    under writeback and this page is both under writeback and
		 *    PageReclaim then it indicates that pages are being queued
		 *    for IO but are being recycled through the LRU before the
		 *    IO can complete. Waiting on the page itself risks an
		 *    indefinite stall if it is impossible to writeback the
		 *    page due to IO error or disconnected storage so instead
1175 1176
		 *    note that the LRU is being scanned too quickly and the
		 *    caller can stall after page list has been processed.
1177
		 *
1178
		 * 2) Global or new memcg reclaim encounters a page that is
1179 1180 1181
		 *    not marked for immediate reclaim, or the caller does not
		 *    have __GFP_FS (or __GFP_IO if it's simply going to swap,
		 *    not to fs). In this case mark the page for immediate
1182
		 *    reclaim and continue scanning.
1183
		 *
1184 1185
		 *    Require may_enter_fs because we would wait on fs, which
		 *    may not have submitted IO yet. And the loop driver might
1186 1187 1188 1189 1190
		 *    enter reclaim, and deadlock if it waits on a page for
		 *    which it is needed to do the write (loop masks off
		 *    __GFP_IO|__GFP_FS for this reason); but more thought
		 *    would probably show more reasons.
		 *
1191
		 * 3) Legacy memcg encounters a page that is already marked
1192 1193 1194 1195
		 *    PageReclaim. memcg does not have any dirty pages
		 *    throttling so we could easily OOM just because too many
		 *    pages are in writeback and there is nothing else to
		 *    reclaim. Wait for the writeback to complete.
1196 1197 1198 1199 1200 1201 1202 1203 1204
		 *
		 * In cases 1) and 2) we activate the pages to get them out of
		 * the way while we continue scanning for clean pages on the
		 * inactive list and refilling from the active list. The
		 * observation here is that waiting for disk writes is more
		 * expensive than potentially causing reloads down the line.
		 * Since they're marked for immediate reclaim, they won't put
		 * memory pressure on the cache working set any longer than it
		 * takes to write them to disk.
1205
		 */
1206
		if (PageWriteback(page)) {
1207 1208 1209
			/* Case 1 above */
			if (current_is_kswapd() &&
			    PageReclaim(page) &&
M
Mel Gorman 已提交
1210
			    test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1211
				nr_immediate++;
1212
				goto activate_locked;
1213 1214

			/* Case 2 above */
1215
			} else if (sane_reclaim(sc) ||
1216
			    !PageReclaim(page) || !may_enter_fs) {
1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228
				/*
				 * This is slightly racy - end_page_writeback()
				 * might have just cleared PageReclaim, then
				 * setting PageReclaim here end up interpreted
				 * as PageReadahead - but that does not matter
				 * enough to care.  What we do want is for this
				 * page to have PageReclaim set next time memcg
				 * reclaim reaches the tests above, so it will
				 * then wait_on_page_writeback() to avoid OOM;
				 * and it's also appropriate in global reclaim.
				 */
				SetPageReclaim(page);
1229
				nr_writeback++;
1230
				goto activate_locked;
1231 1232 1233

			/* Case 3 above */
			} else {
1234
				unlock_page(page);
1235
				wait_on_page_writeback(page);
1236 1237 1238
				/* then go back and try same page again */
				list_add_tail(&page->lru, page_list);
				continue;
1239
			}
1240
		}
L
Linus Torvalds 已提交
1241

1242 1243 1244
		if (!force_reclaim)
			references = page_check_references(page, sc);

1245 1246
		switch (references) {
		case PAGEREF_ACTIVATE:
L
Linus Torvalds 已提交
1247
			goto activate_locked;
1248
		case PAGEREF_KEEP:
1249
			nr_ref_keep++;
1250
			goto keep_locked;
1251 1252 1253 1254
		case PAGEREF_RECLAIM:
		case PAGEREF_RECLAIM_CLEAN:
			; /* try to reclaim the page below */
		}
L
Linus Torvalds 已提交
1255 1256 1257 1258

		/*
		 * Anonymous process memory has backing store?
		 * Try to allocate it some swap space here.
S
Shaohua Li 已提交
1259
		 * Lazyfree page could be freed directly
L
Linus Torvalds 已提交
1260
		 */
1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285
		if (PageAnon(page) && PageSwapBacked(page)) {
			if (!PageSwapCache(page)) {
				if (!(sc->gfp_mask & __GFP_IO))
					goto keep_locked;
				if (PageTransHuge(page)) {
					/* cannot split THP, skip it */
					if (!can_split_huge_page(page, NULL))
						goto activate_locked;
					/*
					 * Split pages without a PMD map right
					 * away. Chances are some or all of the
					 * tail pages can be freed without IO.
					 */
					if (!compound_mapcount(page) &&
					    split_huge_page_to_list(page,
								    page_list))
						goto activate_locked;
				}
				if (!add_to_swap(page)) {
					if (!PageTransHuge(page))
						goto activate_locked;
					/* Fallback to swap normal pages */
					if (split_huge_page_to_list(page,
								    page_list))
						goto activate_locked;
1286 1287 1288
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
					count_vm_event(THP_SWPOUT_FALLBACK);
#endif
1289 1290 1291
					if (!add_to_swap(page))
						goto activate_locked;
				}
1292

1293
				may_enter_fs = 1;
L
Linus Torvalds 已提交
1294

1295 1296 1297
				/* Adding to swap updated mapping */
				mapping = page_mapping(page);
			}
1298 1299 1300 1301
		} else if (unlikely(PageTransHuge(page))) {
			/* Split file THP */
			if (split_huge_page_to_list(page, page_list))
				goto keep_locked;
1302
		}
L
Linus Torvalds 已提交
1303 1304 1305 1306 1307

		/*
		 * The page is mapped into the page tables of one or more
		 * processes. Try to unmap it here.
		 */
S
Shaohua Li 已提交
1308
		if (page_mapped(page)) {
1309 1310 1311 1312 1313
			enum ttu_flags flags = ttu_flags | TTU_BATCH_FLUSH;

			if (unlikely(PageTransHuge(page)))
				flags |= TTU_SPLIT_HUGE_PMD;
			if (!try_to_unmap(page, flags)) {
1314
				nr_unmap_fail++;
L
Linus Torvalds 已提交
1315 1316 1317 1318 1319
				goto activate_locked;
			}
		}

		if (PageDirty(page)) {
1320
			/*
1321 1322 1323 1324 1325 1326 1327 1328
			 * Only kswapd can writeback filesystem pages
			 * to avoid risk of stack overflow. But avoid
			 * injecting inefficient single-page IO into
			 * flusher writeback as much as possible: only
			 * write pages when we've encountered many
			 * dirty pages, and when we've already scanned
			 * the rest of the LRU for clean pages and see
			 * the same dirty pages again (PageReclaim).
1329
			 */
1330
			if (page_is_file_cache(page) &&
1331 1332
			    (!current_is_kswapd() || !PageReclaim(page) ||
			     !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1333 1334 1335 1336 1337 1338
				/*
				 * Immediately reclaim when written back.
				 * Similar in principal to deactivate_page()
				 * except we already have the page isolated
				 * and know it's dirty
				 */
1339
				inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
1340 1341
				SetPageReclaim(page);

1342
				goto activate_locked;
1343 1344
			}

1345
			if (references == PAGEREF_RECLAIM_CLEAN)
L
Linus Torvalds 已提交
1346
				goto keep_locked;
1347
			if (!may_enter_fs)
L
Linus Torvalds 已提交
1348
				goto keep_locked;
1349
			if (!sc->may_writepage)
L
Linus Torvalds 已提交
1350 1351
				goto keep_locked;

1352 1353 1354 1355 1356 1357
			/*
			 * Page is dirty. Flush the TLB if a writable entry
			 * potentially exists to avoid CPU writes after IO
			 * starts and then write it out here.
			 */
			try_to_unmap_flush_dirty();
1358
			switch (pageout(page, mapping, sc)) {
L
Linus Torvalds 已提交
1359 1360 1361 1362 1363
			case PAGE_KEEP:
				goto keep_locked;
			case PAGE_ACTIVATE:
				goto activate_locked;
			case PAGE_SUCCESS:
1364
				if (PageWriteback(page))
1365
					goto keep;
1366
				if (PageDirty(page))
L
Linus Torvalds 已提交
1367
					goto keep;
1368

L
Linus Torvalds 已提交
1369 1370 1371 1372
				/*
				 * A synchronous write - probably a ramdisk.  Go
				 * ahead and try to reclaim the page.
				 */
N
Nick Piggin 已提交
1373
				if (!trylock_page(page))
L
Linus Torvalds 已提交
1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392
					goto keep;
				if (PageDirty(page) || PageWriteback(page))
					goto keep_locked;
				mapping = page_mapping(page);
			case PAGE_CLEAN:
				; /* try to free the page below */
			}
		}

		/*
		 * If the page has buffers, try to free the buffer mappings
		 * associated with this page. If we succeed we try to free
		 * the page as well.
		 *
		 * We do this even if the page is PageDirty().
		 * try_to_release_page() does not perform I/O, but it is
		 * possible for a page to have PageDirty set, but it is actually
		 * clean (all its buffers are clean).  This happens if the
		 * buffers were written out directly, with submit_bh(). ext3
L
Lee Schermerhorn 已提交
1393
		 * will do this, as well as the blockdev mapping.
L
Linus Torvalds 已提交
1394 1395 1396 1397 1398 1399 1400 1401 1402 1403
		 * try_to_release_page() will discover that cleanness and will
		 * drop the buffers and mark the page clean - it can be freed.
		 *
		 * Rarely, pages can have buffers and no ->mapping.  These are
		 * the pages which were not successfully invalidated in
		 * truncate_complete_page().  We try to drop those buffers here
		 * and if that worked, and the page is no longer mapped into
		 * process address space (page_count == 1) it can be freed.
		 * Otherwise, leave the page on the LRU so it is swappable.
		 */
1404
		if (page_has_private(page)) {
L
Linus Torvalds 已提交
1405 1406
			if (!try_to_release_page(page, sc->gfp_mask))
				goto activate_locked;
N
Nick Piggin 已提交
1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422
			if (!mapping && page_count(page) == 1) {
				unlock_page(page);
				if (put_page_testzero(page))
					goto free_it;
				else {
					/*
					 * rare race with speculative reference.
					 * the speculative reference will free
					 * this page shortly, so we may
					 * increment nr_reclaimed here (and
					 * leave it off the LRU).
					 */
					nr_reclaimed++;
					continue;
				}
			}
L
Linus Torvalds 已提交
1423 1424
		}

S
Shaohua Li 已提交
1425 1426 1427 1428 1429 1430 1431 1432
		if (PageAnon(page) && !PageSwapBacked(page)) {
			/* follow __remove_mapping for reference */
			if (!page_ref_freeze(page, 1))
				goto keep_locked;
			if (PageDirty(page)) {
				page_ref_unfreeze(page, 1);
				goto keep_locked;
			}
L
Linus Torvalds 已提交
1433

S
Shaohua Li 已提交
1434
			count_vm_event(PGLAZYFREED);
1435
			count_memcg_page_event(page, PGLAZYFREED);
S
Shaohua Li 已提交
1436 1437
		} else if (!mapping || !__remove_mapping(mapping, page, true))
			goto keep_locked;
N
Nick Piggin 已提交
1438 1439 1440 1441 1442 1443 1444
		/*
		 * At this point, we have no other references and there is
		 * no way to pick any more up (removed from LRU, removed
		 * from pagecache). Can use non-atomic bitops now (and
		 * we obviously don't have to worry about waking up a process
		 * waiting on the page lock, because there are no references.
		 */
1445
		__ClearPageLocked(page);
N
Nick Piggin 已提交
1446
free_it:
1447
		nr_reclaimed++;
1448 1449 1450 1451 1452

		/*
		 * Is there need to periodically free_page_list? It would
		 * appear not as the counts should be low
		 */
1453 1454 1455 1456 1457
		if (unlikely(PageTransHuge(page))) {
			mem_cgroup_uncharge(page);
			(*get_compound_page_dtor(page))(page);
		} else
			list_add(&page->lru, &free_pages);
L
Linus Torvalds 已提交
1458 1459 1460
		continue;

activate_locked:
1461
		/* Not a candidate for swapping, so reclaim swap space. */
M
Minchan Kim 已提交
1462 1463
		if (PageSwapCache(page) && (mem_cgroup_swap_full(page) ||
						PageMlocked(page)))
1464
			try_to_free_swap(page);
1465
		VM_BUG_ON_PAGE(PageActive(page), page);
M
Minchan Kim 已提交
1466 1467 1468
		if (!PageMlocked(page)) {
			SetPageActive(page);
			pgactivate++;
1469
			count_memcg_page_event(page, PGACTIVATE);
M
Minchan Kim 已提交
1470
		}
L
Linus Torvalds 已提交
1471 1472 1473 1474
keep_locked:
		unlock_page(page);
keep:
		list_add(&page->lru, &ret_pages);
1475
		VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
L
Linus Torvalds 已提交
1476
	}
1477

1478
	mem_cgroup_uncharge_list(&free_pages);
1479
	try_to_unmap_flush();
1480
	free_unref_page_list(&free_pages);
1481

L
Linus Torvalds 已提交
1482
	list_splice(&ret_pages, page_list);
1483
	count_vm_events(PGACTIVATE, pgactivate);
1484

1485 1486 1487 1488 1489 1490
	if (stat) {
		stat->nr_dirty = nr_dirty;
		stat->nr_congested = nr_congested;
		stat->nr_unqueued_dirty = nr_unqueued_dirty;
		stat->nr_writeback = nr_writeback;
		stat->nr_immediate = nr_immediate;
1491 1492 1493
		stat->nr_activate = pgactivate;
		stat->nr_ref_keep = nr_ref_keep;
		stat->nr_unmap_fail = nr_unmap_fail;
1494
	}
1495
	return nr_reclaimed;
L
Linus Torvalds 已提交
1496 1497
}

1498 1499 1500 1501 1502 1503 1504 1505
unsigned long reclaim_clean_pages_from_list(struct zone *zone,
					    struct list_head *page_list)
{
	struct scan_control sc = {
		.gfp_mask = GFP_KERNEL,
		.priority = DEF_PRIORITY,
		.may_unmap = 1,
	};
1506
	unsigned long ret;
1507 1508 1509 1510
	struct page *page, *next;
	LIST_HEAD(clean_pages);

	list_for_each_entry_safe(page, next, page_list, lru) {
1511
		if (page_is_file_cache(page) && !PageDirty(page) &&
1512
		    !__PageMovable(page)) {
1513 1514 1515 1516 1517
			ClearPageActive(page);
			list_move(&page->lru, &clean_pages);
		}
	}

M
Mel Gorman 已提交
1518
	ret = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
S
Shaohua Li 已提交
1519
			TTU_IGNORE_ACCESS, NULL, true);
1520
	list_splice(&clean_pages, page_list);
M
Mel Gorman 已提交
1521
	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -ret);
1522 1523 1524
	return ret;
}

A
Andy Whitcroft 已提交
1525 1526 1527 1528 1529 1530 1531 1532 1533 1534
/*
 * Attempt to remove the specified page from its LRU.  Only take this page
 * if it is of the appropriate PageActive status.  Pages which are being
 * freed elsewhere are also ignored.
 *
 * page:	page to consider
 * mode:	one of the LRU isolation modes defined above
 *
 * returns 0 on success, -ve errno on failure.
 */
1535
int __isolate_lru_page(struct page *page, isolate_mode_t mode)
A
Andy Whitcroft 已提交
1536 1537 1538 1539 1540 1541 1542
{
	int ret = -EINVAL;

	/* Only take pages on the LRU. */
	if (!PageLRU(page))
		return ret;

M
Minchan Kim 已提交
1543 1544
	/* Compaction should not handle unevictable pages but CMA can do so */
	if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
L
Lee Schermerhorn 已提交
1545 1546
		return ret;

A
Andy Whitcroft 已提交
1547
	ret = -EBUSY;
K
KAMEZAWA Hiroyuki 已提交
1548

1549 1550 1551 1552 1553 1554 1555 1556
	/*
	 * To minimise LRU disruption, the caller can indicate that it only
	 * wants to isolate pages it will be able to operate on without
	 * blocking - clean pages for the most part.
	 *
	 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
	 * that it is possible to migrate without blocking
	 */
1557
	if (mode & ISOLATE_ASYNC_MIGRATE) {
1558 1559 1560 1561 1562 1563
		/* All the caller can do on PageWriteback is block */
		if (PageWriteback(page))
			return ret;

		if (PageDirty(page)) {
			struct address_space *mapping;
1564
			bool migrate_dirty;
1565 1566 1567 1568

			/*
			 * Only pages without mappings or that have a
			 * ->migratepage callback are possible to migrate
1569 1570 1571 1572 1573
			 * without blocking. However, we can be racing with
			 * truncation so it's necessary to lock the page
			 * to stabilise the mapping as truncation holds
			 * the page lock until after the page is removed
			 * from the page cache.
1574
			 */
1575 1576 1577
			if (!trylock_page(page))
				return ret;

1578
			mapping = page_mapping(page);
1579
			migrate_dirty = !mapping || mapping->a_ops->migratepage;
1580 1581
			unlock_page(page);
			if (!migrate_dirty)
1582 1583 1584
				return ret;
		}
	}
1585

1586 1587 1588
	if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
		return ret;

A
Andy Whitcroft 已提交
1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601
	if (likely(get_page_unless_zero(page))) {
		/*
		 * Be careful not to clear PageLRU until after we're
		 * sure the page is not being freed elsewhere -- the
		 * page release code relies on it.
		 */
		ClearPageLRU(page);
		ret = 0;
	}

	return ret;
}

1602 1603 1604 1605 1606 1607

/*
 * Update LRU sizes after isolating pages. The LRU size updates must
 * be complete before mem_cgroup_update_lru_size due to a santity check.
 */
static __always_inline void update_lru_sizes(struct lruvec *lruvec,
1608
			enum lru_list lru, unsigned long *nr_zone_taken)
1609 1610 1611 1612 1613 1614 1615 1616 1617
{
	int zid;

	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
		if (!nr_zone_taken[zid])
			continue;

		__update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
#ifdef CONFIG_MEMCG
1618
		mem_cgroup_update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1619
#endif
1620 1621
	}

1622 1623
}

L
Linus Torvalds 已提交
1624
/*
1625
 * zone_lru_lock is heavily contended.  Some of the functions that
L
Linus Torvalds 已提交
1626 1627 1628 1629 1630 1631 1632 1633
 * shrink the lists perform better by taking out a batch of pages
 * and working on them outside the LRU lock.
 *
 * For pagecache intensive workloads, this function is the hottest
 * spot in the kernel (apart from copy_*_user functions).
 *
 * Appropriate locks must be held before calling this function.
 *
1634
 * @nr_to_scan:	The number of eligible pages to look through on the list.
1635
 * @lruvec:	The LRU vector to pull pages from.
L
Linus Torvalds 已提交
1636
 * @dst:	The temp list to put pages on to.
H
Hugh Dickins 已提交
1637
 * @nr_scanned:	The number of pages that were scanned.
1638
 * @sc:		The scan_control struct for this reclaim session
A
Andy Whitcroft 已提交
1639
 * @mode:	One of the LRU isolation modes
1640
 * @lru:	LRU list id for isolating
L
Linus Torvalds 已提交
1641 1642 1643
 *
 * returns how many pages were moved onto *@dst.
 */
1644
static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1645
		struct lruvec *lruvec, struct list_head *dst,
1646
		unsigned long *nr_scanned, struct scan_control *sc,
1647
		isolate_mode_t mode, enum lru_list lru)
L
Linus Torvalds 已提交
1648
{
H
Hugh Dickins 已提交
1649
	struct list_head *src = &lruvec->lists[lru];
1650
	unsigned long nr_taken = 0;
M
Mel Gorman 已提交
1651
	unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
1652
	unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
1653
	unsigned long skipped = 0;
1654
	unsigned long scan, total_scan, nr_pages;
1655
	LIST_HEAD(pages_skipped);
L
Linus Torvalds 已提交
1656

1657 1658 1659 1660
	scan = 0;
	for (total_scan = 0;
	     scan < nr_to_scan && nr_taken < nr_to_scan && !list_empty(src);
	     total_scan++) {
A
Andy Whitcroft 已提交
1661 1662
		struct page *page;

L
Linus Torvalds 已提交
1663 1664 1665
		page = lru_to_page(src);
		prefetchw_prev_lru_page(page, src, flags);

1666
		VM_BUG_ON_PAGE(!PageLRU(page), page);
N
Nick Piggin 已提交
1667

1668 1669
		if (page_zonenum(page) > sc->reclaim_idx) {
			list_move(&page->lru, &pages_skipped);
1670
			nr_skipped[page_zonenum(page)]++;
1671 1672 1673
			continue;
		}

1674 1675 1676 1677 1678 1679 1680
		/*
		 * Do not count skipped pages because that makes the function
		 * return with no isolated pages if the LRU mostly contains
		 * ineligible pages.  This causes the VM to not reclaim any
		 * pages, triggering a premature OOM.
		 */
		scan++;
1681
		switch (__isolate_lru_page(page, mode)) {
A
Andy Whitcroft 已提交
1682
		case 0:
M
Mel Gorman 已提交
1683 1684 1685
			nr_pages = hpage_nr_pages(page);
			nr_taken += nr_pages;
			nr_zone_taken[page_zonenum(page)] += nr_pages;
A
Andy Whitcroft 已提交
1686 1687 1688 1689 1690 1691 1692
			list_move(&page->lru, dst);
			break;

		case -EBUSY:
			/* else it is being freed elsewhere */
			list_move(&page->lru, src);
			continue;
1693

A
Andy Whitcroft 已提交
1694 1695 1696
		default:
			BUG();
		}
L
Linus Torvalds 已提交
1697 1698
	}

1699 1700 1701 1702 1703 1704 1705
	/*
	 * Splice any skipped pages to the start of the LRU list. Note that
	 * this disrupts the LRU order when reclaiming for lower zones but
	 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
	 * scanning would soon rescan the same pages to skip and put the
	 * system at risk of premature OOM.
	 */
1706 1707 1708
	if (!list_empty(&pages_skipped)) {
		int zid;

1709
		list_splice(&pages_skipped, src);
1710 1711 1712 1713 1714
		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
			if (!nr_skipped[zid])
				continue;

			__count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1715
			skipped += nr_skipped[zid];
1716 1717
		}
	}
1718
	*nr_scanned = total_scan;
1719
	trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
1720
				    total_scan, skipped, nr_taken, mode, lru);
1721
	update_lru_sizes(lruvec, lru, nr_zone_taken);
L
Linus Torvalds 已提交
1722 1723 1724
	return nr_taken;
}

1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735
/**
 * isolate_lru_page - tries to isolate a page from its LRU list
 * @page: page to isolate from its LRU list
 *
 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
 * vmstat statistic corresponding to whatever LRU list the page was on.
 *
 * Returns 0 if the page was removed from an LRU list.
 * Returns -EBUSY if the page was not on an LRU list.
 *
 * The returned page will have PageLRU() cleared.  If it was found on
L
Lee Schermerhorn 已提交
1736 1737 1738
 * the active list, it will have PageActive set.  If it was found on
 * the unevictable list, it will have the PageUnevictable bit set. That flag
 * may need to be cleared by the caller before letting the page go.
1739 1740 1741 1742 1743
 *
 * The vmstat statistic corresponding to the list on which the page was
 * found will be decremented.
 *
 * Restrictions:
1744
 *
1745 1746 1747 1748 1749 1750 1751 1752 1753 1754
 * (1) Must be called with an elevated refcount on the page. This is a
 *     fundamentnal difference from isolate_lru_pages (which is called
 *     without a stable reference).
 * (2) the lru_lock must not be held.
 * (3) interrupts must be enabled.
 */
int isolate_lru_page(struct page *page)
{
	int ret = -EBUSY;

1755
	VM_BUG_ON_PAGE(!page_count(page), page);
1756
	WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
1757

1758 1759
	if (PageLRU(page)) {
		struct zone *zone = page_zone(page);
1760
		struct lruvec *lruvec;
1761

1762
		spin_lock_irq(zone_lru_lock(zone));
M
Mel Gorman 已提交
1763
		lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
1764
		if (PageLRU(page)) {
L
Lee Schermerhorn 已提交
1765
			int lru = page_lru(page);
1766
			get_page(page);
1767
			ClearPageLRU(page);
1768 1769
			del_page_from_lru_list(page, lruvec, lru);
			ret = 0;
1770
		}
1771
		spin_unlock_irq(zone_lru_lock(zone));
1772 1773 1774 1775
	}
	return ret;
}

1776
/*
F
Fengguang Wu 已提交
1777 1778 1779 1780 1781
 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
 * then get resheduled. When there are massive number of tasks doing page
 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
 * the LRU list will go small and be scanned faster than necessary, leading to
 * unnecessary swapping, thrashing and OOM.
1782
 */
M
Mel Gorman 已提交
1783
static int too_many_isolated(struct pglist_data *pgdat, int file,
1784 1785 1786 1787 1788 1789 1790
		struct scan_control *sc)
{
	unsigned long inactive, isolated;

	if (current_is_kswapd())
		return 0;

1791
	if (!sane_reclaim(sc))
1792 1793 1794
		return 0;

	if (file) {
M
Mel Gorman 已提交
1795 1796
		inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
		isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
1797
	} else {
M
Mel Gorman 已提交
1798 1799
		inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
		isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
1800 1801
	}

1802 1803 1804 1805 1806
	/*
	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
	 * won't get blocked by normal direct-reclaimers, forming a circular
	 * deadlock.
	 */
1807
	if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
1808 1809
		inactive >>= 3;

1810 1811 1812
	return isolated > inactive;
}

1813
static noinline_for_stack void
H
Hugh Dickins 已提交
1814
putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1815
{
1816
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
M
Mel Gorman 已提交
1817
	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1818
	LIST_HEAD(pages_to_free);
1819 1820 1821 1822 1823

	/*
	 * Put back any unfreeable pages.
	 */
	while (!list_empty(page_list)) {
1824
		struct page *page = lru_to_page(page_list);
1825
		int lru;
1826

1827
		VM_BUG_ON_PAGE(PageLRU(page), page);
1828
		list_del(&page->lru);
1829
		if (unlikely(!page_evictable(page))) {
M
Mel Gorman 已提交
1830
			spin_unlock_irq(&pgdat->lru_lock);
1831
			putback_lru_page(page);
M
Mel Gorman 已提交
1832
			spin_lock_irq(&pgdat->lru_lock);
1833 1834
			continue;
		}
1835

M
Mel Gorman 已提交
1836
		lruvec = mem_cgroup_page_lruvec(page, pgdat);
1837

1838
		SetPageLRU(page);
1839
		lru = page_lru(page);
1840 1841
		add_page_to_lru_list(page, lruvec, lru);

1842 1843
		if (is_active_lru(lru)) {
			int file = is_file_lru(lru);
1844 1845
			int numpages = hpage_nr_pages(page);
			reclaim_stat->recent_rotated[file] += numpages;
1846
		}
1847 1848 1849
		if (put_page_testzero(page)) {
			__ClearPageLRU(page);
			__ClearPageActive(page);
1850
			del_page_from_lru_list(page, lruvec, lru);
1851 1852

			if (unlikely(PageCompound(page))) {
M
Mel Gorman 已提交
1853
				spin_unlock_irq(&pgdat->lru_lock);
1854
				mem_cgroup_uncharge(page);
1855
				(*get_compound_page_dtor(page))(page);
M
Mel Gorman 已提交
1856
				spin_lock_irq(&pgdat->lru_lock);
1857 1858
			} else
				list_add(&page->lru, &pages_to_free);
1859 1860 1861
		}
	}

1862 1863 1864 1865
	/*
	 * To save our caller's stack, now use input list for pages to free.
	 */
	list_splice(&pages_to_free, page_list);
1866 1867
}

1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880
/*
 * If a kernel thread (such as nfsd for loop-back mounts) services
 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
 * In that case we should only throttle if the backing device it is
 * writing to is congested.  In other cases it is safe to throttle.
 */
static int current_may_throttle(void)
{
	return !(current->flags & PF_LESS_THROTTLE) ||
		current->backing_dev_info == NULL ||
		bdi_write_congested(current->backing_dev_info);
}

L
Linus Torvalds 已提交
1881
/*
1882
 * shrink_inactive_list() is a helper for shrink_node().  It returns the number
A
Andrew Morton 已提交
1883
 * of reclaimed pages
L
Linus Torvalds 已提交
1884
 */
1885
static noinline_for_stack unsigned long
1886
shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1887
		     struct scan_control *sc, enum lru_list lru)
L
Linus Torvalds 已提交
1888 1889
{
	LIST_HEAD(page_list);
1890
	unsigned long nr_scanned;
1891
	unsigned long nr_reclaimed = 0;
1892
	unsigned long nr_taken;
1893
	struct reclaim_stat stat = {};
1894
	isolate_mode_t isolate_mode = 0;
1895
	int file = is_file_lru(lru);
M
Mel Gorman 已提交
1896
	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1897
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1898
	bool stalled = false;
1899

M
Mel Gorman 已提交
1900
	while (unlikely(too_many_isolated(pgdat, file, sc))) {
1901 1902 1903 1904 1905 1906
		if (stalled)
			return 0;

		/* wait a bit for the reclaimer. */
		msleep(100);
		stalled = true;
1907 1908 1909 1910 1911 1912

		/* We are about to die and free our memory. Return now. */
		if (fatal_signal_pending(current))
			return SWAP_CLUSTER_MAX;
	}

L
Linus Torvalds 已提交
1913
	lru_add_drain();
1914 1915

	if (!sc->may_unmap)
1916
		isolate_mode |= ISOLATE_UNMAPPED;
1917

M
Mel Gorman 已提交
1918
	spin_lock_irq(&pgdat->lru_lock);
1919

1920 1921
	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
				     &nr_scanned, sc, isolate_mode, lru);
1922

M
Mel Gorman 已提交
1923
	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1924
	reclaim_stat->recent_scanned[file] += nr_taken;
1925

1926 1927
	if (current_is_kswapd()) {
		if (global_reclaim(sc))
M
Mel Gorman 已提交
1928
			__count_vm_events(PGSCAN_KSWAPD, nr_scanned);
1929 1930 1931 1932
		count_memcg_events(lruvec_memcg(lruvec), PGSCAN_KSWAPD,
				   nr_scanned);
	} else {
		if (global_reclaim(sc))
M
Mel Gorman 已提交
1933
			__count_vm_events(PGSCAN_DIRECT, nr_scanned);
1934 1935
		count_memcg_events(lruvec_memcg(lruvec), PGSCAN_DIRECT,
				   nr_scanned);
1936
	}
M
Mel Gorman 已提交
1937
	spin_unlock_irq(&pgdat->lru_lock);
1938

1939
	if (nr_taken == 0)
1940
		return 0;
A
Andy Whitcroft 已提交
1941

S
Shaohua Li 已提交
1942
	nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, 0,
1943
				&stat, false);
1944

M
Mel Gorman 已提交
1945
	spin_lock_irq(&pgdat->lru_lock);
1946

1947 1948
	if (current_is_kswapd()) {
		if (global_reclaim(sc))
M
Mel Gorman 已提交
1949
			__count_vm_events(PGSTEAL_KSWAPD, nr_reclaimed);
1950 1951 1952 1953
		count_memcg_events(lruvec_memcg(lruvec), PGSTEAL_KSWAPD,
				   nr_reclaimed);
	} else {
		if (global_reclaim(sc))
M
Mel Gorman 已提交
1954
			__count_vm_events(PGSTEAL_DIRECT, nr_reclaimed);
1955 1956
		count_memcg_events(lruvec_memcg(lruvec), PGSTEAL_DIRECT,
				   nr_reclaimed);
Y
Ying Han 已提交
1957
	}
N
Nick Piggin 已提交
1958

1959
	putback_inactive_pages(lruvec, &page_list);
1960

M
Mel Gorman 已提交
1961
	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
1962

M
Mel Gorman 已提交
1963
	spin_unlock_irq(&pgdat->lru_lock);
1964

1965
	mem_cgroup_uncharge_list(&page_list);
1966
	free_unref_page_list(&page_list);
1967

1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981
	/*
	 * If dirty pages are scanned that are not queued for IO, it
	 * implies that flushers are not doing their job. This can
	 * happen when memory pressure pushes dirty pages to the end of
	 * the LRU before the dirty limits are breached and the dirty
	 * data has expired. It can also happen when the proportion of
	 * dirty pages grows not through writes but through memory
	 * pressure reclaiming all the clean cache. And in some cases,
	 * the flushers simply cannot keep up with the allocation
	 * rate. Nudge the flusher threads in case they are asleep.
	 */
	if (stat.nr_unqueued_dirty == nr_taken)
		wakeup_flusher_threads(WB_REASON_VMSCAN);

1982 1983 1984 1985 1986 1987 1988 1989
	sc->nr.dirty += stat.nr_dirty;
	sc->nr.congested += stat.nr_congested;
	sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
	sc->nr.writeback += stat.nr_writeback;
	sc->nr.immediate += stat.nr_immediate;
	sc->nr.taken += nr_taken;
	if (file)
		sc->nr.file_taken += nr_taken;
1990

M
Mel Gorman 已提交
1991
	trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
1992
			nr_scanned, nr_reclaimed, &stat, sc->priority, file);
1993
	return nr_reclaimed;
L
Linus Torvalds 已提交
1994 1995 1996 1997 1998 1999 2000 2001 2002
}

/*
 * This moves pages from the active list to the inactive list.
 *
 * We move them the other way if the page is referenced by one or more
 * processes, from rmap.
 *
 * If the pages are mostly unmapped, the processing is fast and it is
2003
 * appropriate to hold zone_lru_lock across the whole operation.  But if
L
Linus Torvalds 已提交
2004
 * the pages are mapped, the processing is slow (page_referenced()) so we
2005
 * should drop zone_lru_lock around each page.  It's impossible to balance
L
Linus Torvalds 已提交
2006 2007 2008 2009
 * this, so instead we remove the pages from the LRU while processing them.
 * It is safe to rely on PG_active against the non-LRU pages in here because
 * nobody will play with that bit on a non-LRU page.
 *
2010
 * The downside is that we have to touch page->_refcount against each page.
L
Linus Torvalds 已提交
2011
 * But we had to alter page->flags anyway.
2012 2013
 *
 * Returns the number of pages moved to the given lru.
L
Linus Torvalds 已提交
2014
 */
2015

2016
static unsigned move_active_pages_to_lru(struct lruvec *lruvec,
2017
				     struct list_head *list,
2018
				     struct list_head *pages_to_free,
2019 2020
				     enum lru_list lru)
{
M
Mel Gorman 已提交
2021
	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2022
	struct page *page;
2023
	int nr_pages;
2024
	int nr_moved = 0;
2025 2026 2027

	while (!list_empty(list)) {
		page = lru_to_page(list);
M
Mel Gorman 已提交
2028
		lruvec = mem_cgroup_page_lruvec(page, pgdat);
2029

2030
		VM_BUG_ON_PAGE(PageLRU(page), page);
2031 2032
		SetPageLRU(page);

2033
		nr_pages = hpage_nr_pages(page);
M
Mel Gorman 已提交
2034
		update_lru_size(lruvec, lru, page_zonenum(page), nr_pages);
2035
		list_move(&page->lru, &lruvec->lists[lru]);
2036

2037 2038 2039
		if (put_page_testzero(page)) {
			__ClearPageLRU(page);
			__ClearPageActive(page);
2040
			del_page_from_lru_list(page, lruvec, lru);
2041 2042

			if (unlikely(PageCompound(page))) {
M
Mel Gorman 已提交
2043
				spin_unlock_irq(&pgdat->lru_lock);
2044
				mem_cgroup_uncharge(page);
2045
				(*get_compound_page_dtor(page))(page);
M
Mel Gorman 已提交
2046
				spin_lock_irq(&pgdat->lru_lock);
2047 2048
			} else
				list_add(&page->lru, pages_to_free);
2049 2050
		} else {
			nr_moved += nr_pages;
2051 2052
		}
	}
2053

2054
	if (!is_active_lru(lru)) {
2055
		__count_vm_events(PGDEACTIVATE, nr_moved);
2056 2057 2058
		count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE,
				   nr_moved);
	}
2059 2060

	return nr_moved;
2061
}
2062

H
Hugh Dickins 已提交
2063
static void shrink_active_list(unsigned long nr_to_scan,
2064
			       struct lruvec *lruvec,
2065
			       struct scan_control *sc,
2066
			       enum lru_list lru)
L
Linus Torvalds 已提交
2067
{
2068
	unsigned long nr_taken;
H
Hugh Dickins 已提交
2069
	unsigned long nr_scanned;
2070
	unsigned long vm_flags;
L
Linus Torvalds 已提交
2071
	LIST_HEAD(l_hold);	/* The pages which were snipped off */
2072
	LIST_HEAD(l_active);
2073
	LIST_HEAD(l_inactive);
L
Linus Torvalds 已提交
2074
	struct page *page;
2075
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
2076 2077
	unsigned nr_deactivate, nr_activate;
	unsigned nr_rotated = 0;
2078
	isolate_mode_t isolate_mode = 0;
2079
	int file = is_file_lru(lru);
M
Mel Gorman 已提交
2080
	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
L
Linus Torvalds 已提交
2081 2082

	lru_add_drain();
2083 2084

	if (!sc->may_unmap)
2085
		isolate_mode |= ISOLATE_UNMAPPED;
2086

M
Mel Gorman 已提交
2087
	spin_lock_irq(&pgdat->lru_lock);
2088

2089 2090
	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
				     &nr_scanned, sc, isolate_mode, lru);
2091

M
Mel Gorman 已提交
2092
	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2093
	reclaim_stat->recent_scanned[file] += nr_taken;
2094

M
Mel Gorman 已提交
2095
	__count_vm_events(PGREFILL, nr_scanned);
2096
	count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
2097

M
Mel Gorman 已提交
2098
	spin_unlock_irq(&pgdat->lru_lock);
L
Linus Torvalds 已提交
2099 2100 2101 2102 2103

	while (!list_empty(&l_hold)) {
		cond_resched();
		page = lru_to_page(&l_hold);
		list_del(&page->lru);
2104

2105
		if (unlikely(!page_evictable(page))) {
L
Lee Schermerhorn 已提交
2106 2107 2108 2109
			putback_lru_page(page);
			continue;
		}

2110 2111 2112 2113 2114 2115 2116 2117
		if (unlikely(buffer_heads_over_limit)) {
			if (page_has_private(page) && trylock_page(page)) {
				if (page_has_private(page))
					try_to_release_page(page, 0);
				unlock_page(page);
			}
		}

2118 2119
		if (page_referenced(page, 0, sc->target_mem_cgroup,
				    &vm_flags)) {
2120
			nr_rotated += hpage_nr_pages(page);
2121 2122 2123 2124 2125 2126 2127 2128 2129
			/*
			 * Identify referenced, file-backed active pages and
			 * give them one more trip around the active list. So
			 * that executable code get better chances to stay in
			 * memory under moderate memory pressure.  Anon pages
			 * are not likely to be evicted by use-once streaming
			 * IO, plus JVM can create lots of anon VM_EXEC pages,
			 * so we ignore them here.
			 */
2130
			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
2131 2132 2133 2134
				list_add(&page->lru, &l_active);
				continue;
			}
		}
2135

2136
		ClearPageActive(page);	/* we are de-activating */
L
Linus Torvalds 已提交
2137 2138 2139
		list_add(&page->lru, &l_inactive);
	}

2140
	/*
2141
	 * Move pages back to the lru list.
2142
	 */
M
Mel Gorman 已提交
2143
	spin_lock_irq(&pgdat->lru_lock);
2144
	/*
2145 2146 2147
	 * Count referenced pages from currently used mappings as rotated,
	 * even though only some of them are actually re-activated.  This
	 * helps balance scan pressure between file and anonymous pages in
2148
	 * get_scan_count.
2149
	 */
2150
	reclaim_stat->recent_rotated[file] += nr_rotated;
2151

2152 2153
	nr_activate = move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
	nr_deactivate = move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
M
Mel Gorman 已提交
2154 2155
	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
	spin_unlock_irq(&pgdat->lru_lock);
2156

2157
	mem_cgroup_uncharge_list(&l_hold);
2158
	free_unref_page_list(&l_hold);
2159 2160
	trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
			nr_deactivate, nr_rotated, sc->priority, file);
L
Linus Torvalds 已提交
2161 2162
}

2163 2164 2165
/*
 * The inactive anon list should be small enough that the VM never has
 * to do too much work.
2166
 *
2167 2168 2169
 * The inactive file list should be small enough to leave most memory
 * to the established workingset on the scan-resistant active list,
 * but large enough to avoid thrashing the aggregate readahead window.
2170
 *
2171 2172
 * Both inactive lists should also be large enough that each inactive
 * page has a chance to be referenced again before it is reclaimed.
2173
 *
2174 2175
 * If that fails and refaulting is observed, the inactive list grows.
 *
2176
 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
2177
 * on this LRU, maintained by the pageout code. An inactive_ratio
2178
 * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
2179
 *
2180 2181 2182 2183 2184 2185 2186 2187 2188 2189
 * total     target    max
 * memory    ratio     inactive
 * -------------------------------------
 *   10MB       1         5MB
 *  100MB       1        50MB
 *    1GB       3       250MB
 *   10GB      10       0.9GB
 *  100GB      31         3GB
 *    1TB     101        10GB
 *   10TB     320        32GB
2190
 */
2191
static bool inactive_list_is_low(struct lruvec *lruvec, bool file,
2192 2193
				 struct mem_cgroup *memcg,
				 struct scan_control *sc, bool actual_reclaim)
2194
{
2195
	enum lru_list active_lru = file * LRU_FILE + LRU_ACTIVE;
2196 2197 2198 2199 2200
	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
	enum lru_list inactive_lru = file * LRU_FILE;
	unsigned long inactive, active;
	unsigned long inactive_ratio;
	unsigned long refaults;
2201
	unsigned long gb;
2202

2203 2204 2205 2206 2207 2208
	/*
	 * If we don't have swap space, anonymous page deactivation
	 * is pointless.
	 */
	if (!file && !total_swap_pages)
		return false;
2209

2210 2211
	inactive = lruvec_lru_size(lruvec, inactive_lru, sc->reclaim_idx);
	active = lruvec_lru_size(lruvec, active_lru, sc->reclaim_idx);
2212

2213
	if (memcg)
2214
		refaults = memcg_page_state(memcg, WORKINGSET_ACTIVATE);
2215
	else
2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231
		refaults = node_page_state(pgdat, WORKINGSET_ACTIVATE);

	/*
	 * When refaults are being observed, it means a new workingset
	 * is being established. Disable active list protection to get
	 * rid of the stale workingset quickly.
	 */
	if (file && actual_reclaim && lruvec->refaults != refaults) {
		inactive_ratio = 0;
	} else {
		gb = (inactive + active) >> (30 - PAGE_SHIFT);
		if (gb)
			inactive_ratio = int_sqrt(10 * gb);
		else
			inactive_ratio = 1;
	}
2232

2233 2234 2235 2236 2237
	if (actual_reclaim)
		trace_mm_vmscan_inactive_list_is_low(pgdat->node_id, sc->reclaim_idx,
			lruvec_lru_size(lruvec, inactive_lru, MAX_NR_ZONES), inactive,
			lruvec_lru_size(lruvec, active_lru, MAX_NR_ZONES), active,
			inactive_ratio, file);
2238

2239
	return inactive * inactive_ratio < active;
2240 2241
}

2242
static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2243 2244
				 struct lruvec *lruvec, struct mem_cgroup *memcg,
				 struct scan_control *sc)
2245
{
2246
	if (is_active_lru(lru)) {
2247 2248
		if (inactive_list_is_low(lruvec, is_file_lru(lru),
					 memcg, sc, true))
2249
			shrink_active_list(nr_to_scan, lruvec, sc, lru);
2250 2251 2252
		return 0;
	}

2253
	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2254 2255
}

2256 2257 2258 2259 2260 2261 2262
enum scan_balance {
	SCAN_EQUAL,
	SCAN_FRACT,
	SCAN_ANON,
	SCAN_FILE,
};

2263 2264 2265 2266 2267 2268
/*
 * Determine how aggressively the anon and file LRU lists should be
 * scanned.  The relative value of each set of LRU lists is determined
 * by looking at the fraction of the pages scanned we did rotate back
 * onto the active list instead of evict.
 *
W
Wanpeng Li 已提交
2269 2270
 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
2271
 */
2272
static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg,
2273 2274
			   struct scan_control *sc, unsigned long *nr,
			   unsigned long *lru_pages)
2275
{
2276
	int swappiness = mem_cgroup_swappiness(memcg);
2277 2278 2279
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
	u64 fraction[2];
	u64 denominator = 0;	/* gcc */
M
Mel Gorman 已提交
2280
	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2281
	unsigned long anon_prio, file_prio;
2282
	enum scan_balance scan_balance;
2283
	unsigned long anon, file;
2284
	unsigned long ap, fp;
H
Hugh Dickins 已提交
2285
	enum lru_list lru;
2286 2287

	/* If we have no swap space, do not bother scanning anon pages. */
2288
	if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
2289
		scan_balance = SCAN_FILE;
2290 2291
		goto out;
	}
2292

2293 2294 2295 2296 2297 2298 2299
	/*
	 * Global reclaim will swap to prevent OOM even with no
	 * swappiness, but memcg users want to use this knob to
	 * disable swapping for individual groups completely when
	 * using the memory controller's swap limit feature would be
	 * too expensive.
	 */
2300
	if (!global_reclaim(sc) && !swappiness) {
2301
		scan_balance = SCAN_FILE;
2302 2303 2304 2305 2306 2307 2308 2309
		goto out;
	}

	/*
	 * Do not apply any pressure balancing cleverness when the
	 * system is close to OOM, scan both anon and file equally
	 * (unless the swappiness setting disagrees with swapping).
	 */
2310
	if (!sc->priority && swappiness) {
2311
		scan_balance = SCAN_EQUAL;
2312 2313 2314
		goto out;
	}

2315 2316 2317 2318 2319 2320 2321 2322 2323 2324
	/*
	 * Prevent the reclaimer from falling into the cache trap: as
	 * cache pages start out inactive, every cache fault will tip
	 * the scan balance towards the file LRU.  And as the file LRU
	 * shrinks, so does the window for rotation from references.
	 * This means we have a runaway feedback loop where a tiny
	 * thrashing file LRU becomes infinitely more attractive than
	 * anon pages.  Try to detect this based on file LRU size.
	 */
	if (global_reclaim(sc)) {
M
Mel Gorman 已提交
2325 2326 2327 2328
		unsigned long pgdatfile;
		unsigned long pgdatfree;
		int z;
		unsigned long total_high_wmark = 0;
2329

M
Mel Gorman 已提交
2330 2331 2332 2333 2334 2335
		pgdatfree = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
		pgdatfile = node_page_state(pgdat, NR_ACTIVE_FILE) +
			   node_page_state(pgdat, NR_INACTIVE_FILE);

		for (z = 0; z < MAX_NR_ZONES; z++) {
			struct zone *zone = &pgdat->node_zones[z];
2336
			if (!managed_zone(zone))
M
Mel Gorman 已提交
2337 2338 2339 2340
				continue;

			total_high_wmark += high_wmark_pages(zone);
		}
2341

M
Mel Gorman 已提交
2342
		if (unlikely(pgdatfile + pgdatfree <= total_high_wmark)) {
2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353
			/*
			 * Force SCAN_ANON if there are enough inactive
			 * anonymous pages on the LRU in eligible zones.
			 * Otherwise, the small LRU gets thrashed.
			 */
			if (!inactive_list_is_low(lruvec, false, memcg, sc, false) &&
			    lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, sc->reclaim_idx)
					>> sc->priority) {
				scan_balance = SCAN_ANON;
				goto out;
			}
2354 2355 2356
		}
	}

2357
	/*
2358 2359 2360 2361 2362 2363 2364
	 * If there is enough inactive page cache, i.e. if the size of the
	 * inactive list is greater than that of the active list *and* the
	 * inactive list actually has some pages to scan on this priority, we
	 * do not reclaim anything from the anonymous working set right now.
	 * Without the second condition we could end up never scanning an
	 * lruvec even if it has plenty of old anonymous pages unless the
	 * system is under heavy pressure.
2365
	 */
2366
	if (!inactive_list_is_low(lruvec, true, memcg, sc, false) &&
2367
	    lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, sc->reclaim_idx) >> sc->priority) {
2368
		scan_balance = SCAN_FILE;
2369 2370 2371
		goto out;
	}

2372 2373
	scan_balance = SCAN_FRACT;

2374 2375 2376 2377
	/*
	 * With swappiness at 100, anonymous and file have the same priority.
	 * This scanning priority is essentially the inverse of IO cost.
	 */
2378
	anon_prio = swappiness;
H
Hugh Dickins 已提交
2379
	file_prio = 200 - anon_prio;
2380

2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391
	/*
	 * OK, so we have swap space and a fair amount of page cache
	 * pages.  We use the recently rotated / recently scanned
	 * ratios to determine how valuable each cache is.
	 *
	 * Because workloads change over time (and to avoid overflow)
	 * we keep these statistics as a floating average, which ends
	 * up weighing recent references more than old ones.
	 *
	 * anon in [0], file in [1]
	 */
2392

2393 2394 2395 2396
	anon  = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON, MAX_NR_ZONES) +
		lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, MAX_NR_ZONES);
	file  = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE, MAX_NR_ZONES) +
		lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, MAX_NR_ZONES);
2397

M
Mel Gorman 已提交
2398
	spin_lock_irq(&pgdat->lru_lock);
2399 2400 2401
	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
		reclaim_stat->recent_scanned[0] /= 2;
		reclaim_stat->recent_rotated[0] /= 2;
2402 2403
	}

2404 2405 2406
	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
		reclaim_stat->recent_scanned[1] /= 2;
		reclaim_stat->recent_rotated[1] /= 2;
2407 2408 2409
	}

	/*
2410 2411 2412
	 * The amount of pressure on anon vs file pages is inversely
	 * proportional to the fraction of recently scanned pages on
	 * each list that were recently referenced and in active use.
2413
	 */
2414
	ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
2415
	ap /= reclaim_stat->recent_rotated[0] + 1;
2416

2417
	fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
2418
	fp /= reclaim_stat->recent_rotated[1] + 1;
M
Mel Gorman 已提交
2419
	spin_unlock_irq(&pgdat->lru_lock);
2420

2421 2422 2423 2424
	fraction[0] = ap;
	fraction[1] = fp;
	denominator = ap + fp + 1;
out:
2425 2426 2427 2428 2429
	*lru_pages = 0;
	for_each_evictable_lru(lru) {
		int file = is_file_lru(lru);
		unsigned long size;
		unsigned long scan;
2430

2431 2432 2433 2434 2435 2436 2437 2438
		size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
		scan = size >> sc->priority;
		/*
		 * If the cgroup's already been deleted, make sure to
		 * scrape out the remaining cache.
		 */
		if (!scan && !mem_cgroup_online(memcg))
			scan = min(size, SWAP_CLUSTER_MAX);
2439

2440 2441 2442 2443 2444
		switch (scan_balance) {
		case SCAN_EQUAL:
			/* Scan lists relative to size */
			break;
		case SCAN_FRACT:
2445
			/*
2446 2447
			 * Scan types proportional to swappiness and
			 * their relative recent reclaim efficiency.
2448
			 */
2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462
			scan = div64_u64(scan * fraction[file],
					 denominator);
			break;
		case SCAN_FILE:
		case SCAN_ANON:
			/* Scan one type exclusively */
			if ((scan_balance == SCAN_FILE) != file) {
				size = 0;
				scan = 0;
			}
			break;
		default:
			/* Look ma, no brain */
			BUG();
2463
		}
2464 2465 2466

		*lru_pages += size;
		nr[lru] = scan;
2467
	}
2468
}
2469

2470
/*
2471
 * This is a basic per-node page freer.  Used by both kswapd and direct reclaim.
2472
 */
2473
static void shrink_node_memcg(struct pglist_data *pgdat, struct mem_cgroup *memcg,
2474
			      struct scan_control *sc, unsigned long *lru_pages)
2475
{
2476
	struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
2477
	unsigned long nr[NR_LRU_LISTS];
2478
	unsigned long targets[NR_LRU_LISTS];
2479 2480 2481 2482 2483
	unsigned long nr_to_scan;
	enum lru_list lru;
	unsigned long nr_reclaimed = 0;
	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
	struct blk_plug plug;
2484
	bool scan_adjusted;
2485

2486
	get_scan_count(lruvec, memcg, sc, nr, lru_pages);
2487

2488 2489 2490
	/* Record the original scan target for proportional adjustments later */
	memcpy(targets, nr, sizeof(nr));

2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504
	/*
	 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
	 * event that can occur when there is little memory pressure e.g.
	 * multiple streaming readers/writers. Hence, we do not abort scanning
	 * when the requested number of pages are reclaimed when scanning at
	 * DEF_PRIORITY on the assumption that the fact we are direct
	 * reclaiming implies that kswapd is not keeping up and it is best to
	 * do a batch of work at once. For memcg reclaim one check is made to
	 * abort proportional reclaim if either the file or anon lru has already
	 * dropped to zero at the first pass.
	 */
	scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
			 sc->priority == DEF_PRIORITY);

2505 2506 2507
	blk_start_plug(&plug);
	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
					nr[LRU_INACTIVE_FILE]) {
2508 2509 2510
		unsigned long nr_anon, nr_file, percentage;
		unsigned long nr_scanned;

2511 2512 2513 2514 2515 2516
		for_each_evictable_lru(lru) {
			if (nr[lru]) {
				nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
				nr[lru] -= nr_to_scan;

				nr_reclaimed += shrink_list(lru, nr_to_scan,
2517
							    lruvec, memcg, sc);
2518 2519
			}
		}
2520

2521 2522
		cond_resched();

2523 2524 2525 2526 2527
		if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
			continue;

		/*
		 * For kswapd and memcg, reclaim at least the number of pages
2528
		 * requested. Ensure that the anon and file LRUs are scanned
2529 2530 2531 2532 2533 2534 2535
		 * proportionally what was requested by get_scan_count(). We
		 * stop reclaiming one LRU and reduce the amount scanning
		 * proportional to the original scan target.
		 */
		nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
		nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];

2536 2537 2538 2539 2540 2541 2542 2543 2544
		/*
		 * It's just vindictive to attack the larger once the smaller
		 * has gone to zero.  And given the way we stop scanning the
		 * smaller below, this makes sure that we only make one nudge
		 * towards proportionality once we've got nr_to_reclaim.
		 */
		if (!nr_file || !nr_anon)
			break;

2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575
		if (nr_file > nr_anon) {
			unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
						targets[LRU_ACTIVE_ANON] + 1;
			lru = LRU_BASE;
			percentage = nr_anon * 100 / scan_target;
		} else {
			unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
						targets[LRU_ACTIVE_FILE] + 1;
			lru = LRU_FILE;
			percentage = nr_file * 100 / scan_target;
		}

		/* Stop scanning the smaller of the LRU */
		nr[lru] = 0;
		nr[lru + LRU_ACTIVE] = 0;

		/*
		 * Recalculate the other LRU scan count based on its original
		 * scan target and the percentage scanning already complete
		 */
		lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
		nr_scanned = targets[lru] - nr[lru];
		nr[lru] = targets[lru] * (100 - percentage) / 100;
		nr[lru] -= min(nr[lru], nr_scanned);

		lru += LRU_ACTIVE;
		nr_scanned = targets[lru] - nr[lru];
		nr[lru] = targets[lru] * (100 - percentage) / 100;
		nr[lru] -= min(nr[lru], nr_scanned);

		scan_adjusted = true;
2576 2577 2578 2579 2580 2581 2582 2583
	}
	blk_finish_plug(&plug);
	sc->nr_reclaimed += nr_reclaimed;

	/*
	 * Even if we did not try to evict anon pages at all, we want to
	 * rebalance the anon lru active/inactive ratio.
	 */
2584
	if (inactive_list_is_low(lruvec, false, memcg, sc, true))
2585 2586 2587 2588
		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
				   sc, LRU_ACTIVE_ANON);
}

M
Mel Gorman 已提交
2589
/* Use reclaim/compaction for costly allocs or under memory pressure */
2590
static bool in_reclaim_compaction(struct scan_control *sc)
M
Mel Gorman 已提交
2591
{
2592
	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
M
Mel Gorman 已提交
2593
			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2594
			 sc->priority < DEF_PRIORITY - 2))
M
Mel Gorman 已提交
2595 2596 2597 2598 2599
		return true;

	return false;
}

2600
/*
M
Mel Gorman 已提交
2601 2602 2603 2604 2605
 * Reclaim/compaction is used for high-order allocation requests. It reclaims
 * order-0 pages before compacting the zone. should_continue_reclaim() returns
 * true if more pages should be reclaimed such that when the page allocator
 * calls try_to_compact_zone() that it will have enough free pages to succeed.
 * It will give up earlier than that if there is difficulty reclaiming pages.
2606
 */
2607
static inline bool should_continue_reclaim(struct pglist_data *pgdat,
2608 2609 2610 2611 2612 2613
					unsigned long nr_reclaimed,
					unsigned long nr_scanned,
					struct scan_control *sc)
{
	unsigned long pages_for_compaction;
	unsigned long inactive_lru_pages;
2614
	int z;
2615 2616

	/* If not in reclaim/compaction mode, stop */
2617
	if (!in_reclaim_compaction(sc))
2618 2619
		return false;

2620
	/* Consider stopping depending on scan and reclaim activity */
2621
	if (sc->gfp_mask & __GFP_RETRY_MAYFAIL) {
2622
		/*
2623
		 * For __GFP_RETRY_MAYFAIL allocations, stop reclaiming if the
2624 2625
		 * full LRU list has been scanned and we are still failing
		 * to reclaim pages. This full LRU scan is potentially
2626
		 * expensive but a __GFP_RETRY_MAYFAIL caller really wants to succeed
2627 2628 2629 2630 2631
		 */
		if (!nr_reclaimed && !nr_scanned)
			return false;
	} else {
		/*
2632
		 * For non-__GFP_RETRY_MAYFAIL allocations which can presumably
2633 2634 2635 2636 2637 2638 2639 2640 2641
		 * fail without consequence, stop if we failed to reclaim
		 * any pages from the last SWAP_CLUSTER_MAX number of
		 * pages that were scanned. This will return to the
		 * caller faster at the risk reclaim/compaction and
		 * the resulting allocation attempt fails
		 */
		if (!nr_reclaimed)
			return false;
	}
2642 2643 2644 2645 2646

	/*
	 * If we have not reclaimed enough pages for compaction and the
	 * inactive lists are large enough, continue reclaiming
	 */
2647
	pages_for_compaction = compact_gap(sc->order);
2648
	inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
2649
	if (get_nr_swap_pages() > 0)
2650
		inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
2651 2652 2653 2654 2655
	if (sc->nr_reclaimed < pages_for_compaction &&
			inactive_lru_pages > pages_for_compaction)
		return true;

	/* If compaction would go ahead or the allocation would succeed, stop */
2656 2657
	for (z = 0; z <= sc->reclaim_idx; z++) {
		struct zone *zone = &pgdat->node_zones[z];
2658
		if (!managed_zone(zone))
2659 2660 2661
			continue;

		switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
2662
		case COMPACT_SUCCESS:
2663 2664 2665 2666 2667 2668
		case COMPACT_CONTINUE:
			return false;
		default:
			/* check next zone */
			;
		}
2669
	}
2670
	return true;
2671 2672
}

2673 2674 2675 2676 2677 2678
static bool pgdat_memcg_congested(pg_data_t *pgdat, struct mem_cgroup *memcg)
{
	return test_bit(PGDAT_CONGESTED, &pgdat->flags) ||
		(memcg && memcg_congested(pgdat, memcg));
}

2679
static bool shrink_node(pg_data_t *pgdat, struct scan_control *sc)
L
Linus Torvalds 已提交
2680
{
2681
	struct reclaim_state *reclaim_state = current->reclaim_state;
2682
	unsigned long nr_reclaimed, nr_scanned;
2683
	bool reclaimable = false;
L
Linus Torvalds 已提交
2684

2685 2686 2687
	do {
		struct mem_cgroup *root = sc->target_mem_cgroup;
		struct mem_cgroup_reclaim_cookie reclaim = {
2688
			.pgdat = pgdat,
2689 2690
			.priority = sc->priority,
		};
2691
		unsigned long node_lru_pages = 0;
2692
		struct mem_cgroup *memcg;
2693

2694 2695
		memset(&sc->nr, 0, sizeof(sc->nr));

2696 2697
		nr_reclaimed = sc->nr_reclaimed;
		nr_scanned = sc->nr_scanned;
L
Linus Torvalds 已提交
2698

2699 2700
		memcg = mem_cgroup_iter(root, NULL, &reclaim);
		do {
2701
			unsigned long lru_pages;
2702
			unsigned long reclaimed;
2703
			unsigned long scanned;
2704

R
Roman Gushchin 已提交
2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718
			switch (mem_cgroup_protected(root, memcg)) {
			case MEMCG_PROT_MIN:
				/*
				 * Hard protection.
				 * If there is no reclaimable memory, OOM.
				 */
				continue;
			case MEMCG_PROT_LOW:
				/*
				 * Soft protection.
				 * Respect the protection only as long as
				 * there is an unprotected supply
				 * of reclaimable memory from other cgroups.
				 */
2719 2720
				if (!sc->memcg_low_reclaim) {
					sc->memcg_low_skipped = 1;
2721
					continue;
2722
				}
2723
				memcg_memory_event(memcg, MEMCG_LOW);
R
Roman Gushchin 已提交
2724 2725 2726
				break;
			case MEMCG_PROT_NONE:
				break;
2727 2728
			}

2729
			reclaimed = sc->nr_reclaimed;
2730
			scanned = sc->nr_scanned;
2731 2732
			shrink_node_memcg(pgdat, memcg, sc, &lru_pages);
			node_lru_pages += lru_pages;
2733

2734 2735
			shrink_slab(sc->gfp_mask, pgdat->node_id,
				    memcg, sc->priority);
2736

2737 2738 2739 2740 2741
			/* Record the group's reclaim efficiency */
			vmpressure(sc->gfp_mask, memcg, false,
				   sc->nr_scanned - scanned,
				   sc->nr_reclaimed - reclaimed);

2742
			/*
2743 2744
			 * Direct reclaim and kswapd have to scan all memory
			 * cgroups to fulfill the overall scan target for the
2745
			 * node.
2746 2747 2748 2749 2750
			 *
			 * Limit reclaim, on the other hand, only cares about
			 * nr_to_reclaim pages to be reclaimed and it will
			 * retry with decreasing priority if one round over the
			 * whole hierarchy is not sufficient.
2751
			 */
2752 2753
			if (!global_reclaim(sc) &&
					sc->nr_reclaimed >= sc->nr_to_reclaim) {
2754 2755 2756
				mem_cgroup_iter_break(root, memcg);
				break;
			}
2757
		} while ((memcg = mem_cgroup_iter(root, memcg, &reclaim)));
2758

2759 2760 2761
		if (reclaim_state) {
			sc->nr_reclaimed += reclaim_state->reclaimed_slab;
			reclaim_state->reclaimed_slab = 0;
2762 2763
		}

2764 2765
		/* Record the subtree's reclaim efficiency */
		vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
2766 2767 2768
			   sc->nr_scanned - nr_scanned,
			   sc->nr_reclaimed - nr_reclaimed);

2769 2770 2771
		if (sc->nr_reclaimed - nr_reclaimed)
			reclaimable = true;

2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791
		if (current_is_kswapd()) {
			/*
			 * If reclaim is isolating dirty pages under writeback,
			 * it implies that the long-lived page allocation rate
			 * is exceeding the page laundering rate. Either the
			 * global limits are not being effective at throttling
			 * processes due to the page distribution throughout
			 * zones or there is heavy usage of a slow backing
			 * device. The only option is to throttle from reclaim
			 * context which is not ideal as there is no guarantee
			 * the dirtying process is throttled in the same way
			 * balance_dirty_pages() manages.
			 *
			 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
			 * count the number of pages under pages flagged for
			 * immediate reclaim and stall if any are encountered
			 * in the nr_immediate check below.
			 */
			if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
				set_bit(PGDAT_WRITEBACK, &pgdat->flags);
2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814

			/*
			 * Tag a node as congested if all the dirty pages
			 * scanned were backed by a congested BDI and
			 * wait_iff_congested will stall.
			 */
			if (sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
				set_bit(PGDAT_CONGESTED, &pgdat->flags);

			/* Allow kswapd to start writing pages during reclaim.*/
			if (sc->nr.unqueued_dirty == sc->nr.file_taken)
				set_bit(PGDAT_DIRTY, &pgdat->flags);

			/*
			 * If kswapd scans pages marked marked for immediate
			 * reclaim and under writeback (nr_immediate), it
			 * implies that pages are cycling through the LRU
			 * faster than they are written so also forcibly stall.
			 */
			if (sc->nr.immediate)
				congestion_wait(BLK_RW_ASYNC, HZ/10);
		}

2815 2816 2817 2818 2819 2820 2821 2822
		/*
		 * Legacy memcg will stall in page writeback so avoid forcibly
		 * stalling in wait_iff_congested().
		 */
		if (!global_reclaim(sc) && sane_reclaim(sc) &&
		    sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
			set_memcg_congestion(pgdat, root, true);

2823 2824 2825 2826 2827 2828 2829
		/*
		 * Stall direct reclaim for IO completions if underlying BDIs
		 * and node is congested. Allow kswapd to continue until it
		 * starts encountering unqueued dirty pages or cycling through
		 * the LRU too quickly.
		 */
		if (!sc->hibernation_mode && !current_is_kswapd() &&
2830 2831
		   current_may_throttle() && pgdat_memcg_congested(pgdat, root))
			wait_iff_congested(BLK_RW_ASYNC, HZ/10);
2832

2833
	} while (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
2834
					 sc->nr_scanned - nr_scanned, sc));
2835

2836 2837 2838 2839 2840 2841 2842 2843 2844
	/*
	 * Kswapd gives up on balancing particular nodes after too
	 * many failures to reclaim anything from them and goes to
	 * sleep. On reclaim progress, reset the failure counter. A
	 * successful direct reclaim run will revive a dormant kswapd.
	 */
	if (reclaimable)
		pgdat->kswapd_failures = 0;

2845
	return reclaimable;
2846 2847
}

2848
/*
2849 2850 2851
 * Returns true if compaction should go ahead for a costly-order request, or
 * the allocation would already succeed without compaction. Return false if we
 * should reclaim first.
2852
 */
2853
static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2854
{
M
Mel Gorman 已提交
2855
	unsigned long watermark;
2856
	enum compact_result suitable;
2857

2858 2859 2860 2861 2862 2863 2864
	suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
	if (suitable == COMPACT_SUCCESS)
		/* Allocation should succeed already. Don't reclaim. */
		return true;
	if (suitable == COMPACT_SKIPPED)
		/* Compaction cannot yet proceed. Do reclaim. */
		return false;
2865

2866
	/*
2867 2868 2869 2870 2871 2872 2873
	 * Compaction is already possible, but it takes time to run and there
	 * are potentially other callers using the pages just freed. So proceed
	 * with reclaim to make a buffer of free pages available to give
	 * compaction a reasonable chance of completing and allocating the page.
	 * Note that we won't actually reclaim the whole buffer in one attempt
	 * as the target watermark in should_continue_reclaim() is lower. But if
	 * we are already above the high+gap watermark, don't reclaim at all.
2874
	 */
2875
	watermark = high_wmark_pages(zone) + compact_gap(sc->order);
2876

2877
	return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
2878 2879
}

L
Linus Torvalds 已提交
2880 2881 2882 2883 2884 2885 2886 2887
/*
 * This is the direct reclaim path, for page-allocating processes.  We only
 * try to reclaim pages from zones which will satisfy the caller's allocation
 * request.
 *
 * If a zone is deemed to be full of pinned pages then just give it a light
 * scan then give up on it.
 */
M
Michal Hocko 已提交
2888
static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
L
Linus Torvalds 已提交
2889
{
2890
	struct zoneref *z;
2891
	struct zone *zone;
2892 2893
	unsigned long nr_soft_reclaimed;
	unsigned long nr_soft_scanned;
2894
	gfp_t orig_mask;
2895
	pg_data_t *last_pgdat = NULL;
2896

2897 2898 2899 2900 2901
	/*
	 * If the number of buffer_heads in the machine exceeds the maximum
	 * allowed level, force direct reclaim to scan the highmem zone as
	 * highmem pages could be pinning lowmem pages storing buffer_heads
	 */
2902
	orig_mask = sc->gfp_mask;
2903
	if (buffer_heads_over_limit) {
2904
		sc->gfp_mask |= __GFP_HIGHMEM;
2905
		sc->reclaim_idx = gfp_zone(sc->gfp_mask);
2906
	}
2907

2908
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2909
					sc->reclaim_idx, sc->nodemask) {
2910 2911 2912 2913
		/*
		 * Take care memory controller reclaiming has small influence
		 * to global LRU.
		 */
2914
		if (global_reclaim(sc)) {
2915 2916
			if (!cpuset_zone_allowed(zone,
						 GFP_KERNEL | __GFP_HARDWALL))
2917
				continue;
2918

2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929
			/*
			 * If we already have plenty of memory free for
			 * compaction in this zone, don't free any more.
			 * Even though compaction is invoked for any
			 * non-zero order, only frequent costly order
			 * reclamation is disruptive enough to become a
			 * noticeable problem, like transparent huge
			 * page allocations.
			 */
			if (IS_ENABLED(CONFIG_COMPACTION) &&
			    sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2930
			    compaction_ready(zone, sc)) {
2931 2932
				sc->compaction_ready = true;
				continue;
2933
			}
2934

2935 2936 2937 2938 2939 2940 2941 2942 2943
			/*
			 * Shrink each node in the zonelist once. If the
			 * zonelist is ordered by zone (not the default) then a
			 * node may be shrunk multiple times but in that case
			 * the user prefers lower zones being preserved.
			 */
			if (zone->zone_pgdat == last_pgdat)
				continue;

2944 2945 2946 2947 2948 2949 2950
			/*
			 * This steals pages from memory cgroups over softlimit
			 * and returns the number of reclaimed pages and
			 * scanned pages. This works for global memory pressure
			 * and balancing, not for a memcg's limit.
			 */
			nr_soft_scanned = 0;
2951
			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
2952 2953 2954 2955
						sc->order, sc->gfp_mask,
						&nr_soft_scanned);
			sc->nr_reclaimed += nr_soft_reclaimed;
			sc->nr_scanned += nr_soft_scanned;
2956
			/* need some check for avoid more shrink_zone() */
2957
		}
2958

2959 2960 2961 2962
		/* See comment about same check for global reclaim above */
		if (zone->zone_pgdat == last_pgdat)
			continue;
		last_pgdat = zone->zone_pgdat;
2963
		shrink_node(zone->zone_pgdat, sc);
L
Linus Torvalds 已提交
2964
	}
2965

2966 2967 2968 2969 2970
	/*
	 * Restore to original mask to avoid the impact on the caller if we
	 * promoted it to __GFP_HIGHMEM.
	 */
	sc->gfp_mask = orig_mask;
L
Linus Torvalds 已提交
2971
}
2972

2973 2974 2975 2976 2977 2978 2979 2980 2981 2982
static void snapshot_refaults(struct mem_cgroup *root_memcg, pg_data_t *pgdat)
{
	struct mem_cgroup *memcg;

	memcg = mem_cgroup_iter(root_memcg, NULL, NULL);
	do {
		unsigned long refaults;
		struct lruvec *lruvec;

		if (memcg)
2983
			refaults = memcg_page_state(memcg, WORKINGSET_ACTIVATE);
2984 2985 2986 2987 2988 2989 2990 2991
		else
			refaults = node_page_state(pgdat, WORKINGSET_ACTIVATE);

		lruvec = mem_cgroup_lruvec(pgdat, memcg);
		lruvec->refaults = refaults;
	} while ((memcg = mem_cgroup_iter(root_memcg, memcg, NULL)));
}

L
Linus Torvalds 已提交
2992 2993 2994 2995 2996 2997 2998 2999
/*
 * This is the main entry point to direct page reclaim.
 *
 * If a full scan of the inactive list fails to free enough memory then we
 * are "out of memory" and something needs to be killed.
 *
 * If the caller is !__GFP_FS then the probability of a failure is reasonably
 * high - the zone may be full of dirty or under-writeback pages, which this
3000 3001 3002 3003
 * caller can't do much about.  We kick the writeback threads and take explicit
 * naps in the hope that some of these pages can be written.  But if the
 * allocating task holds filesystem locks which prevent writeout this might not
 * work, and the allocation attempt will fail.
3004 3005 3006
 *
 * returns:	0, if no pages reclaimed
 * 		else, the number of pages reclaimed
L
Linus Torvalds 已提交
3007
 */
3008
static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
3009
					  struct scan_control *sc)
L
Linus Torvalds 已提交
3010
{
3011
	int initial_priority = sc->priority;
3012 3013 3014
	pg_data_t *last_pgdat;
	struct zoneref *z;
	struct zone *zone;
3015
retry:
3016 3017
	delayacct_freepages_start();

3018
	if (global_reclaim(sc))
3019
		__count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
L
Linus Torvalds 已提交
3020

3021
	do {
3022 3023
		vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
				sc->priority);
3024
		sc->nr_scanned = 0;
M
Michal Hocko 已提交
3025
		shrink_zones(zonelist, sc);
3026

3027
		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
3028 3029 3030 3031
			break;

		if (sc->compaction_ready)
			break;
L
Linus Torvalds 已提交
3032

3033 3034 3035 3036 3037 3038
		/*
		 * If we're getting trouble reclaiming, start doing
		 * writepage even in laptop mode.
		 */
		if (sc->priority < DEF_PRIORITY - 2)
			sc->may_writepage = 1;
3039
	} while (--sc->priority >= 0);
3040

3041 3042 3043 3044 3045 3046 3047
	last_pgdat = NULL;
	for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
					sc->nodemask) {
		if (zone->zone_pgdat == last_pgdat)
			continue;
		last_pgdat = zone->zone_pgdat;
		snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
3048
		set_memcg_congestion(last_pgdat, sc->target_mem_cgroup, false);
3049 3050
	}

3051 3052
	delayacct_freepages_end();

3053 3054 3055
	if (sc->nr_reclaimed)
		return sc->nr_reclaimed;

3056
	/* Aborted reclaim to try compaction? don't OOM, then */
3057
	if (sc->compaction_ready)
3058 3059
		return 1;

3060
	/* Untapped cgroup reserves?  Don't OOM, retry. */
3061
	if (sc->memcg_low_skipped) {
3062
		sc->priority = initial_priority;
3063 3064
		sc->memcg_low_reclaim = 1;
		sc->memcg_low_skipped = 0;
3065 3066 3067
		goto retry;
	}

3068
	return 0;
L
Linus Torvalds 已提交
3069 3070
}

3071
static bool allow_direct_reclaim(pg_data_t *pgdat)
3072 3073 3074 3075 3076 3077 3078
{
	struct zone *zone;
	unsigned long pfmemalloc_reserve = 0;
	unsigned long free_pages = 0;
	int i;
	bool wmark_ok;

3079 3080 3081
	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
		return true;

3082 3083
	for (i = 0; i <= ZONE_NORMAL; i++) {
		zone = &pgdat->node_zones[i];
3084 3085 3086 3087
		if (!managed_zone(zone))
			continue;

		if (!zone_reclaimable_pages(zone))
3088 3089
			continue;

3090 3091 3092 3093
		pfmemalloc_reserve += min_wmark_pages(zone);
		free_pages += zone_page_state(zone, NR_FREE_PAGES);
	}

3094 3095 3096 3097
	/* If there are no reserves (unexpected config) then do not throttle */
	if (!pfmemalloc_reserve)
		return true;

3098 3099 3100 3101
	wmark_ok = free_pages > pfmemalloc_reserve / 2;

	/* kswapd must be awake if processes are being throttled */
	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
3102
		pgdat->kswapd_classzone_idx = min(pgdat->kswapd_classzone_idx,
3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113
						(enum zone_type)ZONE_NORMAL);
		wake_up_interruptible(&pgdat->kswapd_wait);
	}

	return wmark_ok;
}

/*
 * Throttle direct reclaimers if backing storage is backed by the network
 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
 * depleted. kswapd will continue to make progress and wake the processes
3114 3115 3116 3117
 * when the low watermark is reached.
 *
 * Returns true if a fatal signal was delivered during throttling. If this
 * happens, the page allocator should not consider triggering the OOM killer.
3118
 */
3119
static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
3120 3121
					nodemask_t *nodemask)
{
3122
	struct zoneref *z;
3123
	struct zone *zone;
3124
	pg_data_t *pgdat = NULL;
3125 3126 3127 3128 3129 3130 3131 3132 3133

	/*
	 * Kernel threads should not be throttled as they may be indirectly
	 * responsible for cleaning pages necessary for reclaim to make forward
	 * progress. kjournald for example may enter direct reclaim while
	 * committing a transaction where throttling it could forcing other
	 * processes to block on log_wait_commit().
	 */
	if (current->flags & PF_KTHREAD)
3134 3135 3136 3137 3138 3139 3140 3141
		goto out;

	/*
	 * If a fatal signal is pending, this process should not throttle.
	 * It should return quickly so it can exit and free its memory
	 */
	if (fatal_signal_pending(current))
		goto out;
3142

3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157
	/*
	 * Check if the pfmemalloc reserves are ok by finding the first node
	 * with a usable ZONE_NORMAL or lower zone. The expectation is that
	 * GFP_KERNEL will be required for allocating network buffers when
	 * swapping over the network so ZONE_HIGHMEM is unusable.
	 *
	 * Throttling is based on the first usable node and throttled processes
	 * wait on a queue until kswapd makes progress and wakes them. There
	 * is an affinity then between processes waking up and where reclaim
	 * progress has been made assuming the process wakes on the same node.
	 * More importantly, processes running on remote nodes will not compete
	 * for remote pfmemalloc reserves and processes on different nodes
	 * should make reasonable progress.
	 */
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
3158
					gfp_zone(gfp_mask), nodemask) {
3159 3160 3161 3162 3163
		if (zone_idx(zone) > ZONE_NORMAL)
			continue;

		/* Throttle based on the first usable node */
		pgdat = zone->zone_pgdat;
3164
		if (allow_direct_reclaim(pgdat))
3165 3166 3167 3168 3169 3170
			goto out;
		break;
	}

	/* If no zone was usable by the allocation flags then do not throttle */
	if (!pgdat)
3171
		goto out;
3172

3173 3174 3175
	/* Account for the throttling */
	count_vm_event(PGSCAN_DIRECT_THROTTLE);

3176 3177 3178 3179 3180 3181 3182 3183 3184 3185
	/*
	 * If the caller cannot enter the filesystem, it's possible that it
	 * is due to the caller holding an FS lock or performing a journal
	 * transaction in the case of a filesystem like ext[3|4]. In this case,
	 * it is not safe to block on pfmemalloc_wait as kswapd could be
	 * blocked waiting on the same lock. Instead, throttle for up to a
	 * second before continuing.
	 */
	if (!(gfp_mask & __GFP_FS)) {
		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
3186
			allow_direct_reclaim(pgdat), HZ);
3187 3188

		goto check_pending;
3189 3190 3191 3192
	}

	/* Throttle until kswapd wakes the process */
	wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
3193
		allow_direct_reclaim(pgdat));
3194 3195 3196 3197 3198 3199 3200

check_pending:
	if (fatal_signal_pending(current))
		return true;

out:
	return false;
3201 3202
}

3203
unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
3204
				gfp_t gfp_mask, nodemask_t *nodemask)
3205
{
3206
	unsigned long nr_reclaimed;
3207
	struct scan_control sc = {
3208
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
3209
		.gfp_mask = current_gfp_context(gfp_mask),
3210
		.reclaim_idx = gfp_zone(gfp_mask),
3211 3212 3213
		.order = order,
		.nodemask = nodemask,
		.priority = DEF_PRIORITY,
3214
		.may_writepage = !laptop_mode,
3215
		.may_unmap = 1,
3216
		.may_swap = 1,
3217 3218
	};

G
Greg Thelen 已提交
3219 3220 3221 3222 3223 3224 3225 3226
	/*
	 * scan_control uses s8 fields for order, priority, and reclaim_idx.
	 * Confirm they are large enough for max values.
	 */
	BUILD_BUG_ON(MAX_ORDER > S8_MAX);
	BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
	BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);

3227
	/*
3228 3229 3230
	 * Do not enter reclaim if fatal signal was delivered while throttled.
	 * 1 is returned so that the page allocator does not OOM kill at this
	 * point.
3231
	 */
3232
	if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
3233 3234
		return 1;

3235 3236
	trace_mm_vmscan_direct_reclaim_begin(order,
				sc.may_writepage,
3237
				sc.gfp_mask,
3238
				sc.reclaim_idx);
3239

3240
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3241 3242 3243 3244

	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);

	return nr_reclaimed;
3245 3246
}

A
Andrew Morton 已提交
3247
#ifdef CONFIG_MEMCG
3248

3249
unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
3250
						gfp_t gfp_mask, bool noswap,
3251
						pg_data_t *pgdat,
3252
						unsigned long *nr_scanned)
3253 3254
{
	struct scan_control sc = {
3255
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
3256
		.target_mem_cgroup = memcg,
3257 3258
		.may_writepage = !laptop_mode,
		.may_unmap = 1,
3259
		.reclaim_idx = MAX_NR_ZONES - 1,
3260 3261
		.may_swap = !noswap,
	};
3262
	unsigned long lru_pages;
3263

3264 3265
	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
3266

3267
	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
3268
						      sc.may_writepage,
3269 3270
						      sc.gfp_mask,
						      sc.reclaim_idx);
3271

3272 3273 3274
	/*
	 * NOTE: Although we can get the priority field, using it
	 * here is not a good idea, since it limits the pages we can scan.
3275
	 * if we don't reclaim here, the shrink_node from balance_pgdat
3276 3277 3278
	 * will pick up pages from other mem cgroup's as well. We hack
	 * the priority and make it zero.
	 */
3279
	shrink_node_memcg(pgdat, memcg, &sc, &lru_pages);
3280 3281 3282

	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);

3283
	*nr_scanned = sc.nr_scanned;
3284 3285 3286
	return sc.nr_reclaimed;
}

3287
unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
3288
					   unsigned long nr_pages,
K
KOSAKI Motohiro 已提交
3289
					   gfp_t gfp_mask,
3290
					   bool may_swap)
3291
{
3292
	struct zonelist *zonelist;
3293
	unsigned long nr_reclaimed;
3294
	int nid;
3295
	unsigned int noreclaim_flag;
3296
	struct scan_control sc = {
3297
		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3298
		.gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
3299
				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
3300
		.reclaim_idx = MAX_NR_ZONES - 1,
3301 3302 3303 3304
		.target_mem_cgroup = memcg,
		.priority = DEF_PRIORITY,
		.may_writepage = !laptop_mode,
		.may_unmap = 1,
3305
		.may_swap = may_swap,
3306
	};
3307

3308 3309 3310 3311 3312
	/*
	 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
	 * take care of from where we get pages. So the node where we start the
	 * scan does not need to be the current node.
	 */
3313
	nid = mem_cgroup_select_victim_node(memcg);
3314

3315
	zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK];
3316 3317 3318

	trace_mm_vmscan_memcg_reclaim_begin(0,
					    sc.may_writepage,
3319 3320
					    sc.gfp_mask,
					    sc.reclaim_idx);
3321

3322
	noreclaim_flag = memalloc_noreclaim_save();
3323
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3324
	memalloc_noreclaim_restore(noreclaim_flag);
3325 3326 3327 3328

	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);

	return nr_reclaimed;
3329 3330 3331
}
#endif

3332
static void age_active_anon(struct pglist_data *pgdat,
3333
				struct scan_control *sc)
3334
{
3335
	struct mem_cgroup *memcg;
3336

3337 3338 3339 3340 3341
	if (!total_swap_pages)
		return;

	memcg = mem_cgroup_iter(NULL, NULL, NULL);
	do {
3342
		struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
3343

3344
		if (inactive_list_is_low(lruvec, false, memcg, sc, true))
3345
			shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3346
					   sc, LRU_ACTIVE_ANON);
3347 3348 3349

		memcg = mem_cgroup_iter(NULL, memcg, NULL);
	} while (memcg);
3350 3351
}

3352 3353 3354 3355 3356
/*
 * Returns true if there is an eligible zone balanced for the request order
 * and classzone_idx
 */
static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
3357
{
3358 3359 3360
	int i;
	unsigned long mark = -1;
	struct zone *zone;
3361

3362 3363
	for (i = 0; i <= classzone_idx; i++) {
		zone = pgdat->node_zones + i;
3364

3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381
		if (!managed_zone(zone))
			continue;

		mark = high_wmark_pages(zone);
		if (zone_watermark_ok_safe(zone, order, mark, classzone_idx))
			return true;
	}

	/*
	 * If a node has no populated zone within classzone_idx, it does not
	 * need balancing by definition. This can happen if a zone-restricted
	 * allocation tries to wake a remote kswapd.
	 */
	if (mark == -1)
		return true;

	return false;
3382 3383
}

3384 3385 3386 3387 3388 3389 3390 3391
/* Clear pgdat state for congested, dirty or under writeback. */
static void clear_pgdat_congested(pg_data_t *pgdat)
{
	clear_bit(PGDAT_CONGESTED, &pgdat->flags);
	clear_bit(PGDAT_DIRTY, &pgdat->flags);
	clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
}

3392 3393 3394 3395 3396 3397
/*
 * Prepare kswapd for sleeping. This verifies that there are no processes
 * waiting in throttle_direct_reclaim() and that watermarks have been met.
 *
 * Returns true if kswapd is ready to sleep
 */
3398
static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3399
{
3400
	/*
3401
	 * The throttled processes are normally woken up in balance_pgdat() as
3402
	 * soon as allow_direct_reclaim() is true. But there is a potential
3403 3404 3405 3406 3407 3408 3409 3410 3411
	 * race between when kswapd checks the watermarks and a process gets
	 * throttled. There is also a potential race if processes get
	 * throttled, kswapd wakes, a large process exits thereby balancing the
	 * zones, which causes kswapd to exit balance_pgdat() before reaching
	 * the wake up checks. If kswapd is going to sleep, no process should
	 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
	 * the wake up is premature, processes will wake kswapd and get
	 * throttled again. The difference from wake ups in balance_pgdat() is
	 * that here we are under prepare_to_wait().
3412
	 */
3413 3414
	if (waitqueue_active(&pgdat->pfmemalloc_wait))
		wake_up_all(&pgdat->pfmemalloc_wait);
3415

3416 3417 3418 3419
	/* Hopeless node, leave it to direct reclaim */
	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
		return true;

3420 3421 3422
	if (pgdat_balanced(pgdat, order, classzone_idx)) {
		clear_pgdat_congested(pgdat);
		return true;
3423 3424
	}

3425
	return false;
3426 3427
}

3428
/*
3429 3430
 * kswapd shrinks a node of pages that are at or below the highest usable
 * zone that is currently unbalanced.
3431 3432
 *
 * Returns true if kswapd scanned at least the requested number of pages to
3433 3434
 * reclaim or if the lack of progress was due to pages under writeback.
 * This is used to determine if the scanning priority needs to be raised.
3435
 */
3436
static bool kswapd_shrink_node(pg_data_t *pgdat,
3437
			       struct scan_control *sc)
3438
{
3439 3440
	struct zone *zone;
	int z;
3441

3442 3443
	/* Reclaim a number of pages proportional to the number of zones */
	sc->nr_to_reclaim = 0;
3444
	for (z = 0; z <= sc->reclaim_idx; z++) {
3445
		zone = pgdat->node_zones + z;
3446
		if (!managed_zone(zone))
3447
			continue;
3448

3449 3450
		sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
	}
3451 3452

	/*
3453 3454
	 * Historically care was taken to put equal pressure on all zones but
	 * now pressure is applied based on node LRU order.
3455
	 */
3456
	shrink_node(pgdat, sc);
3457

3458
	/*
3459 3460 3461 3462 3463
	 * Fragmentation may mean that the system cannot be rebalanced for
	 * high-order allocations. If twice the allocation size has been
	 * reclaimed then recheck watermarks only at order-0 to prevent
	 * excessive reclaim. Assume that a process requested a high-order
	 * can direct reclaim/compact.
3464
	 */
3465
	if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
3466
		sc->order = 0;
3467

3468
	return sc->nr_scanned >= sc->nr_to_reclaim;
3469 3470
}

L
Linus Torvalds 已提交
3471
/*
3472 3473 3474
 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
 * that are eligible for use by the caller until at least one zone is
 * balanced.
L
Linus Torvalds 已提交
3475
 *
3476
 * Returns the order kswapd finished reclaiming at.
L
Linus Torvalds 已提交
3477 3478
 *
 * kswapd scans the zones in the highmem->normal->dma direction.  It skips
3479
 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3480 3481 3482
 * found to have free_pages <= high_wmark_pages(zone), any page is that zone
 * or lower is eligible for reclaim until at least one usable zone is
 * balanced.
L
Linus Torvalds 已提交
3483
 */
3484
static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx)
L
Linus Torvalds 已提交
3485 3486
{
	int i;
3487 3488
	unsigned long nr_soft_reclaimed;
	unsigned long nr_soft_scanned;
3489
	struct zone *zone;
3490 3491
	struct scan_control sc = {
		.gfp_mask = GFP_KERNEL,
3492
		.order = order,
3493
		.priority = DEF_PRIORITY,
3494
		.may_writepage = !laptop_mode,
3495
		.may_unmap = 1,
3496
		.may_swap = 1,
3497
	};
3498 3499 3500

	__fs_reclaim_acquire();

3501
	count_vm_event(PAGEOUTRUN);
L
Linus Torvalds 已提交
3502

3503
	do {
3504
		unsigned long nr_reclaimed = sc.nr_reclaimed;
3505
		bool raise_priority = true;
3506
		bool ret;
3507

3508
		sc.reclaim_idx = classzone_idx;
L
Linus Torvalds 已提交
3509

3510
		/*
3511 3512 3513 3514 3515 3516 3517 3518
		 * If the number of buffer_heads exceeds the maximum allowed
		 * then consider reclaiming from all zones. This has a dual
		 * purpose -- on 64-bit systems it is expected that
		 * buffer_heads are stripped during active rotation. On 32-bit
		 * systems, highmem pages can pin lowmem memory and shrinking
		 * buffers can relieve lowmem pressure. Reclaim may still not
		 * go ahead if all eligible zones for the original allocation
		 * request are balanced to avoid excessive reclaim from kswapd.
3519 3520 3521 3522
		 */
		if (buffer_heads_over_limit) {
			for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
				zone = pgdat->node_zones + i;
3523
				if (!managed_zone(zone))
3524
					continue;
3525

3526
				sc.reclaim_idx = i;
A
Andrew Morton 已提交
3527
				break;
L
Linus Torvalds 已提交
3528 3529
			}
		}
3530

3531
		/*
3532 3533 3534
		 * Only reclaim if there are no eligible zones. Note that
		 * sc.reclaim_idx is not used as buffer_heads_over_limit may
		 * have adjusted it.
3535
		 */
3536 3537
		if (pgdat_balanced(pgdat, sc.order, classzone_idx))
			goto out;
A
Andrew Morton 已提交
3538

3539 3540 3541 3542 3543 3544
		/*
		 * Do some background aging of the anon list, to give
		 * pages a chance to be referenced before reclaiming. All
		 * pages are rotated regardless of classzone as this is
		 * about consistent aging.
		 */
3545
		age_active_anon(pgdat, &sc);
3546

3547 3548 3549 3550
		/*
		 * If we're getting trouble reclaiming, start doing writepage
		 * even in laptop mode.
		 */
3551
		if (sc.priority < DEF_PRIORITY - 2)
3552 3553
			sc.may_writepage = 1;

3554 3555 3556
		/* Call soft limit reclaim before calling shrink_node. */
		sc.nr_scanned = 0;
		nr_soft_scanned = 0;
3557
		nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
3558 3559 3560
						sc.gfp_mask, &nr_soft_scanned);
		sc.nr_reclaimed += nr_soft_reclaimed;

L
Linus Torvalds 已提交
3561
		/*
3562 3563 3564
		 * There should be no need to raise the scanning priority if
		 * enough pages are already being scanned that that high
		 * watermark would be met at 100% efficiency.
L
Linus Torvalds 已提交
3565
		 */
3566
		if (kswapd_shrink_node(pgdat, &sc))
3567
			raise_priority = false;
3568 3569 3570 3571 3572 3573 3574

		/*
		 * If the low watermark is met there is no need for processes
		 * to be throttled on pfmemalloc_wait as they should not be
		 * able to safely make forward progress. Wake them
		 */
		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3575
				allow_direct_reclaim(pgdat))
3576
			wake_up_all(&pgdat->pfmemalloc_wait);
3577

3578
		/* Check if kswapd should be suspending */
3579 3580 3581 3582
		__fs_reclaim_release();
		ret = try_to_freeze();
		__fs_reclaim_acquire();
		if (ret || kthread_should_stop())
3583
			break;
3584

3585
		/*
3586 3587
		 * Raise priority if scanning rate is too low or there was no
		 * progress in reclaiming pages
3588
		 */
3589 3590
		nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
		if (raise_priority || !nr_reclaimed)
3591
			sc.priority--;
3592
	} while (sc.priority >= 1);
L
Linus Torvalds 已提交
3593

3594 3595 3596
	if (!sc.nr_reclaimed)
		pgdat->kswapd_failures++;

3597
out:
3598
	snapshot_refaults(NULL, pgdat);
3599
	__fs_reclaim_release();
3600
	/*
3601 3602 3603 3604
	 * Return the order kswapd stopped reclaiming at as
	 * prepare_kswapd_sleep() takes it into account. If another caller
	 * entered the allocator slow path while kswapd was awake, order will
	 * remain at the higher level.
3605
	 */
3606
	return sc.order;
L
Linus Torvalds 已提交
3607 3608
}

3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624
/*
 * pgdat->kswapd_classzone_idx is the highest zone index that a recent
 * allocation request woke kswapd for. When kswapd has not woken recently,
 * the value is MAX_NR_ZONES which is not a valid index. This compares a
 * given classzone and returns it or the highest classzone index kswapd
 * was recently woke for.
 */
static enum zone_type kswapd_classzone_idx(pg_data_t *pgdat,
					   enum zone_type classzone_idx)
{
	if (pgdat->kswapd_classzone_idx == MAX_NR_ZONES)
		return classzone_idx;

	return max(pgdat->kswapd_classzone_idx, classzone_idx);
}

3625 3626
static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
				unsigned int classzone_idx)
3627 3628 3629 3630 3631 3632 3633 3634 3635
{
	long remaining = 0;
	DEFINE_WAIT(wait);

	if (freezing(current) || kthread_should_stop())
		return;

	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);

3636 3637 3638 3639 3640 3641 3642
	/*
	 * Try to sleep for a short interval. Note that kcompactd will only be
	 * woken if it is possible to sleep for a short interval. This is
	 * deliberate on the assumption that if reclaim cannot keep an
	 * eligible zone balanced that it's also unlikely that compaction will
	 * succeed.
	 */
3643
	if (prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655
		/*
		 * Compaction records what page blocks it recently failed to
		 * isolate pages from and skips them in the future scanning.
		 * When kswapd is going to sleep, it is reasonable to assume
		 * that pages and compaction may succeed so reset the cache.
		 */
		reset_isolation_suitable(pgdat);

		/*
		 * We have freed the memory, now we should compact it to make
		 * allocation of the requested order possible.
		 */
3656
		wakeup_kcompactd(pgdat, alloc_order, classzone_idx);
3657

3658
		remaining = schedule_timeout(HZ/10);
3659 3660 3661 3662 3663 3664 3665

		/*
		 * If woken prematurely then reset kswapd_classzone_idx and
		 * order. The values will either be from a wakeup request or
		 * the previous request that slept prematurely.
		 */
		if (remaining) {
3666
			pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3667 3668 3669
			pgdat->kswapd_order = max(pgdat->kswapd_order, reclaim_order);
		}

3670 3671 3672 3673 3674 3675 3676 3677
		finish_wait(&pgdat->kswapd_wait, &wait);
		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
	}

	/*
	 * After a short sleep, check if it was a premature sleep. If not, then
	 * go fully to sleep until explicitly woken up.
	 */
3678 3679
	if (!remaining &&
	    prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690
		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);

		/*
		 * vmstat counters are not perfectly accurate and the estimated
		 * value for counters such as NR_FREE_PAGES can deviate from the
		 * true value by nr_online_cpus * threshold. To avoid the zone
		 * watermarks being breached while under pressure, we reduce the
		 * per-cpu vmstat threshold while kswapd is awake and restore
		 * them before going back to sleep.
		 */
		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3691 3692 3693 3694

		if (!kthread_should_stop())
			schedule();

3695 3696 3697 3698 3699 3700 3701 3702 3703 3704
		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
	} else {
		if (remaining)
			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
		else
			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
	}
	finish_wait(&pgdat->kswapd_wait, &wait);
}

L
Linus Torvalds 已提交
3705 3706
/*
 * The background pageout daemon, started as a kernel thread
3707
 * from the init process.
L
Linus Torvalds 已提交
3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719
 *
 * This basically trickles out pages so that we have _some_
 * free memory available even if there is no other activity
 * that frees anything up. This is needed for things like routing
 * etc, where we otherwise might have all activity going on in
 * asynchronous contexts that cannot page things out.
 *
 * If there are applications that are active memory-allocators
 * (most normal use), this basically shouldn't matter.
 */
static int kswapd(void *p)
{
3720 3721
	unsigned int alloc_order, reclaim_order;
	unsigned int classzone_idx = MAX_NR_ZONES - 1;
L
Linus Torvalds 已提交
3722 3723
	pg_data_t *pgdat = (pg_data_t*)p;
	struct task_struct *tsk = current;
3724

L
Linus Torvalds 已提交
3725 3726 3727
	struct reclaim_state reclaim_state = {
		.reclaimed_slab = 0,
	};
3728
	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
L
Linus Torvalds 已提交
3729

R
Rusty Russell 已提交
3730
	if (!cpumask_empty(cpumask))
3731
		set_cpus_allowed_ptr(tsk, cpumask);
L
Linus Torvalds 已提交
3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745
	current->reclaim_state = &reclaim_state;

	/*
	 * Tell the memory management that we're a "memory allocator",
	 * and that if we need more memory we should get access to it
	 * regardless (see "__alloc_pages()"). "kswapd" should
	 * never get caught in the normal page freeing logic.
	 *
	 * (Kswapd normally doesn't need memory anyway, but sometimes
	 * you need a small amount of memory in order to be able to
	 * page out something else, and this flag essentially protects
	 * us from recursively trying to free more memory as we're
	 * trying to free the first piece of memory in the first place).
	 */
3746
	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3747
	set_freezable();
L
Linus Torvalds 已提交
3748

3749 3750
	pgdat->kswapd_order = 0;
	pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
L
Linus Torvalds 已提交
3751
	for ( ; ; ) {
3752
		bool ret;
3753

3754 3755 3756
		alloc_order = reclaim_order = pgdat->kswapd_order;
		classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);

3757 3758 3759
kswapd_try_sleep:
		kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
					classzone_idx);
3760

3761 3762
		/* Read the new order and classzone_idx */
		alloc_order = reclaim_order = pgdat->kswapd_order;
3763
		classzone_idx = kswapd_classzone_idx(pgdat, 0);
3764
		pgdat->kswapd_order = 0;
3765
		pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
L
Linus Torvalds 已提交
3766

3767 3768 3769 3770 3771 3772 3773 3774
		ret = try_to_freeze();
		if (kthread_should_stop())
			break;

		/*
		 * We can speed up thawing tasks if we don't call balance_pgdat
		 * after returning from the refrigerator
		 */
3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785
		if (ret)
			continue;

		/*
		 * Reclaim begins at the requested order but if a high-order
		 * reclaim fails then kswapd falls back to reclaiming for
		 * order-0. If that happens, kswapd will consider sleeping
		 * for the order it finished reclaiming at (reclaim_order)
		 * but kcompactd is woken to compact for the original
		 * request (alloc_order).
		 */
3786 3787
		trace_mm_vmscan_kswapd_wake(pgdat->node_id, classzone_idx,
						alloc_order);
3788 3789 3790
		reclaim_order = balance_pgdat(pgdat, alloc_order, classzone_idx);
		if (reclaim_order < alloc_order)
			goto kswapd_try_sleep;
L
Linus Torvalds 已提交
3791
	}
3792

3793
	tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
3794
	current->reclaim_state = NULL;
3795

L
Linus Torvalds 已提交
3796 3797 3798 3799
	return 0;
}

/*
3800 3801 3802 3803 3804
 * A zone is low on free memory or too fragmented for high-order memory.  If
 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
 * pgdat.  It will wake up kcompactd after reclaiming memory.  If kswapd reclaim
 * has failed or is not needed, still wake up kcompactd if only compaction is
 * needed.
L
Linus Torvalds 已提交
3805
 */
3806 3807
void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
		   enum zone_type classzone_idx)
L
Linus Torvalds 已提交
3808 3809 3810
{
	pg_data_t *pgdat;

3811
	if (!managed_zone(zone))
L
Linus Torvalds 已提交
3812 3813
		return;

3814
	if (!cpuset_zone_allowed(zone, gfp_flags))
L
Linus Torvalds 已提交
3815
		return;
3816
	pgdat = zone->zone_pgdat;
3817 3818
	pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat,
							   classzone_idx);
3819
	pgdat->kswapd_order = max(pgdat->kswapd_order, order);
3820
	if (!waitqueue_active(&pgdat->kswapd_wait))
L
Linus Torvalds 已提交
3821
		return;
3822

3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834
	/* Hopeless node, leave it to direct reclaim if possible */
	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
	    pgdat_balanced(pgdat, order, classzone_idx)) {
		/*
		 * There may be plenty of free memory available, but it's too
		 * fragmented for high-order allocations.  Wake up kcompactd
		 * and rely on compaction_suitable() to determine if it's
		 * needed.  If it fails, it will defer subsequent attempts to
		 * ratelimit its work.
		 */
		if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
			wakeup_kcompactd(pgdat, order, classzone_idx);
3835
		return;
3836
	}
3837

3838 3839
	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, classzone_idx, order,
				      gfp_flags);
3840
	wake_up_interruptible(&pgdat->kswapd_wait);
L
Linus Torvalds 已提交
3841 3842
}

3843
#ifdef CONFIG_HIBERNATION
L
Linus Torvalds 已提交
3844
/*
3845
 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3846 3847 3848 3849 3850
 * freed pages.
 *
 * Rather than trying to age LRUs the aim is to preserve the overall
 * LRU order by reclaiming preferentially
 * inactive > active > active referenced > active mapped
L
Linus Torvalds 已提交
3851
 */
3852
unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
L
Linus Torvalds 已提交
3853
{
3854 3855
	struct reclaim_state reclaim_state;
	struct scan_control sc = {
3856
		.nr_to_reclaim = nr_to_reclaim,
3857
		.gfp_mask = GFP_HIGHUSER_MOVABLE,
3858
		.reclaim_idx = MAX_NR_ZONES - 1,
3859
		.priority = DEF_PRIORITY,
3860
		.may_writepage = 1,
3861 3862
		.may_unmap = 1,
		.may_swap = 1,
3863
		.hibernation_mode = 1,
L
Linus Torvalds 已提交
3864
	};
3865
	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3866 3867
	struct task_struct *p = current;
	unsigned long nr_reclaimed;
3868
	unsigned int noreclaim_flag;
L
Linus Torvalds 已提交
3869

3870
	fs_reclaim_acquire(sc.gfp_mask);
3871
	noreclaim_flag = memalloc_noreclaim_save();
3872 3873
	reclaim_state.reclaimed_slab = 0;
	p->reclaim_state = &reclaim_state;
3874

3875
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3876

3877
	p->reclaim_state = NULL;
3878
	memalloc_noreclaim_restore(noreclaim_flag);
3879
	fs_reclaim_release(sc.gfp_mask);
3880

3881
	return nr_reclaimed;
L
Linus Torvalds 已提交
3882
}
3883
#endif /* CONFIG_HIBERNATION */
L
Linus Torvalds 已提交
3884 3885 3886 3887 3888

/* It's optimal to keep kswapds on the same CPUs as their memory, but
   not required for correctness.  So if the last cpu in a node goes
   away, we get changed to run anywhere: as the first one comes back,
   restore their cpu bindings. */
3889
static int kswapd_cpu_online(unsigned int cpu)
L
Linus Torvalds 已提交
3890
{
3891
	int nid;
L
Linus Torvalds 已提交
3892

3893 3894 3895
	for_each_node_state(nid, N_MEMORY) {
		pg_data_t *pgdat = NODE_DATA(nid);
		const struct cpumask *mask;
3896

3897
		mask = cpumask_of_node(pgdat->node_id);
3898

3899 3900 3901
		if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
			/* One of our CPUs online: restore mask */
			set_cpus_allowed_ptr(pgdat->kswapd, mask);
L
Linus Torvalds 已提交
3902
	}
3903
	return 0;
L
Linus Torvalds 已提交
3904 3905
}

3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920
/*
 * This kswapd start function will be called by init and node-hot-add.
 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
 */
int kswapd_run(int nid)
{
	pg_data_t *pgdat = NODE_DATA(nid);
	int ret = 0;

	if (pgdat->kswapd)
		return 0;

	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
	if (IS_ERR(pgdat->kswapd)) {
		/* failure at boot is fatal */
3921
		BUG_ON(system_state < SYSTEM_RUNNING);
3922 3923
		pr_err("Failed to start kswapd on node %d\n", nid);
		ret = PTR_ERR(pgdat->kswapd);
3924
		pgdat->kswapd = NULL;
3925 3926 3927 3928
	}
	return ret;
}

3929
/*
3930
 * Called by memory hotplug when all memory in a node is offlined.  Caller must
3931
 * hold mem_hotplug_begin/end().
3932 3933 3934 3935 3936
 */
void kswapd_stop(int nid)
{
	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;

3937
	if (kswapd) {
3938
		kthread_stop(kswapd);
3939 3940
		NODE_DATA(nid)->kswapd = NULL;
	}
3941 3942
}

L
Linus Torvalds 已提交
3943 3944
static int __init kswapd_init(void)
{
3945
	int nid, ret;
3946

L
Linus Torvalds 已提交
3947
	swap_setup();
3948
	for_each_node_state(nid, N_MEMORY)
3949
 		kswapd_run(nid);
3950 3951 3952 3953
	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
					"mm/vmscan:online", kswapd_cpu_online,
					NULL);
	WARN_ON(ret < 0);
L
Linus Torvalds 已提交
3954 3955 3956 3957
	return 0;
}

module_init(kswapd_init)
3958 3959 3960

#ifdef CONFIG_NUMA
/*
3961
 * Node reclaim mode
3962
 *
3963
 * If non-zero call node_reclaim when the number of free pages falls below
3964 3965
 * the watermarks.
 */
3966
int node_reclaim_mode __read_mostly;
3967

3968
#define RECLAIM_OFF 0
3969
#define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
3970
#define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
3971
#define RECLAIM_UNMAP (1<<2)	/* Unmap pages during reclaim */
3972

3973
/*
3974
 * Priority for NODE_RECLAIM. This determines the fraction of pages
3975 3976 3977
 * of a node considered for each zone_reclaim. 4 scans 1/16th of
 * a zone.
 */
3978
#define NODE_RECLAIM_PRIORITY 4
3979

3980
/*
3981
 * Percentage of pages in a zone that must be unmapped for node_reclaim to
3982 3983 3984 3985
 * occur.
 */
int sysctl_min_unmapped_ratio = 1;

3986 3987 3988 3989 3990 3991
/*
 * If the number of slab pages in a zone grows beyond this percentage then
 * slab reclaim needs to occur.
 */
int sysctl_min_slab_ratio = 5;

3992
static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
3993
{
3994 3995 3996
	unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
	unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
		node_page_state(pgdat, NR_ACTIVE_FILE);
3997 3998 3999 4000 4001 4002 4003 4004 4005 4006

	/*
	 * It's possible for there to be more file mapped pages than
	 * accounted for by the pages on the file LRU lists because
	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
	 */
	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
}

/* Work out how many page cache pages we can reclaim in this reclaim_mode */
4007
static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
4008
{
4009 4010
	unsigned long nr_pagecache_reclaimable;
	unsigned long delta = 0;
4011 4012

	/*
4013
	 * If RECLAIM_UNMAP is set, then all file pages are considered
4014
	 * potentially reclaimable. Otherwise, we have to worry about
4015
	 * pages like swapcache and node_unmapped_file_pages() provides
4016 4017
	 * a better estimate
	 */
4018 4019
	if (node_reclaim_mode & RECLAIM_UNMAP)
		nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
4020
	else
4021
		nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
4022 4023

	/* If we can't clean pages, remove dirty pages from consideration */
4024 4025
	if (!(node_reclaim_mode & RECLAIM_WRITE))
		delta += node_page_state(pgdat, NR_FILE_DIRTY);
4026 4027 4028 4029 4030 4031 4032 4033

	/* Watch for any possible underflows due to delta */
	if (unlikely(delta > nr_pagecache_reclaimable))
		delta = nr_pagecache_reclaimable;

	return nr_pagecache_reclaimable - delta;
}

4034
/*
4035
 * Try to free up some pages from this node through reclaim.
4036
 */
4037
static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4038
{
4039
	/* Minimum pages needed in order to stay on node */
4040
	const unsigned long nr_pages = 1 << order;
4041 4042
	struct task_struct *p = current;
	struct reclaim_state reclaim_state;
4043
	unsigned int noreclaim_flag;
4044
	struct scan_control sc = {
4045
		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
4046
		.gfp_mask = current_gfp_context(gfp_mask),
4047
		.order = order,
4048 4049 4050
		.priority = NODE_RECLAIM_PRIORITY,
		.may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
		.may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
4051
		.may_swap = 1,
4052
		.reclaim_idx = gfp_zone(gfp_mask),
4053
	};
4054 4055

	cond_resched();
4056
	fs_reclaim_acquire(sc.gfp_mask);
4057
	/*
4058
	 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
4059
	 * and we also need to be able to write out pages for RECLAIM_WRITE
4060
	 * and RECLAIM_UNMAP.
4061
	 */
4062 4063
	noreclaim_flag = memalloc_noreclaim_save();
	p->flags |= PF_SWAPWRITE;
4064 4065
	reclaim_state.reclaimed_slab = 0;
	p->reclaim_state = &reclaim_state;
4066

4067
	if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
4068
		/*
4069
		 * Free memory by calling shrink node with increasing
4070 4071 4072
		 * priorities until we have enough memory freed.
		 */
		do {
4073
			shrink_node(pgdat, &sc);
4074
		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
4075
	}
4076

4077
	p->reclaim_state = NULL;
4078 4079
	current->flags &= ~PF_SWAPWRITE;
	memalloc_noreclaim_restore(noreclaim_flag);
4080
	fs_reclaim_release(sc.gfp_mask);
4081
	return sc.nr_reclaimed >= nr_pages;
4082
}
4083

4084
int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4085
{
4086
	int ret;
4087 4088

	/*
4089
	 * Node reclaim reclaims unmapped file backed pages and
4090
	 * slab pages if we are over the defined limits.
4091
	 *
4092 4093
	 * A small portion of unmapped file backed pages is needed for
	 * file I/O otherwise pages read by file I/O will be immediately
4094 4095
	 * thrown out if the node is overallocated. So we do not reclaim
	 * if less than a specified percentage of the node is used by
4096
	 * unmapped file backed pages.
4097
	 */
4098
	if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
4099
	    node_page_state(pgdat, NR_SLAB_RECLAIMABLE) <= pgdat->min_slab_pages)
4100
		return NODE_RECLAIM_FULL;
4101 4102

	/*
4103
	 * Do not scan if the allocation should not be delayed.
4104
	 */
4105
	if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
4106
		return NODE_RECLAIM_NOSCAN;
4107 4108

	/*
4109
	 * Only run node reclaim on the local node or on nodes that do not
4110 4111 4112 4113
	 * have associated processors. This will favor the local processor
	 * over remote processors and spread off node memory allocations
	 * as wide as possible.
	 */
4114 4115
	if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
		return NODE_RECLAIM_NOSCAN;
4116

4117 4118
	if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
		return NODE_RECLAIM_NOSCAN;
4119

4120 4121
	ret = __node_reclaim(pgdat, gfp_mask, order);
	clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
4122

4123 4124 4125
	if (!ret)
		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);

4126
	return ret;
4127
}
4128
#endif
L
Lee Schermerhorn 已提交
4129 4130 4131 4132 4133 4134

/*
 * page_evictable - test whether a page is evictable
 * @page: the page to test
 *
 * Test whether page is evictable--i.e., should be placed on active/inactive
4135
 * lists vs unevictable list.
L
Lee Schermerhorn 已提交
4136 4137
 *
 * Reasons page might not be evictable:
4138
 * (1) page's mapping marked unevictable
N
Nick Piggin 已提交
4139
 * (2) page is part of an mlocked VMA
4140
 *
L
Lee Schermerhorn 已提交
4141
 */
4142
int page_evictable(struct page *page)
L
Lee Schermerhorn 已提交
4143
{
4144 4145 4146 4147 4148 4149 4150
	int ret;

	/* Prevent address_space of inode and swap cache from being freed */
	rcu_read_lock();
	ret = !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
	rcu_read_unlock();
	return ret;
L
Lee Schermerhorn 已提交
4151
}
4152

4153
#ifdef CONFIG_SHMEM
4154
/**
4155 4156 4157
 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
 * @pages:	array of pages to check
 * @nr_pages:	number of pages to check
4158
 *
4159
 * Checks pages for evictability and moves them to the appropriate lru list.
4160 4161
 *
 * This function is only used for SysV IPC SHM_UNLOCK.
4162
 */
4163
void check_move_unevictable_pages(struct page **pages, int nr_pages)
4164
{
4165
	struct lruvec *lruvec;
4166
	struct pglist_data *pgdat = NULL;
4167 4168 4169
	int pgscanned = 0;
	int pgrescued = 0;
	int i;
4170

4171 4172
	for (i = 0; i < nr_pages; i++) {
		struct page *page = pages[i];
4173
		struct pglist_data *pagepgdat = page_pgdat(page);
4174

4175
		pgscanned++;
4176 4177 4178 4179 4180
		if (pagepgdat != pgdat) {
			if (pgdat)
				spin_unlock_irq(&pgdat->lru_lock);
			pgdat = pagepgdat;
			spin_lock_irq(&pgdat->lru_lock);
4181
		}
4182
		lruvec = mem_cgroup_page_lruvec(page, pgdat);
4183

4184 4185
		if (!PageLRU(page) || !PageUnevictable(page))
			continue;
4186

4187
		if (page_evictable(page)) {
4188 4189
			enum lru_list lru = page_lru_base_type(page);

4190
			VM_BUG_ON_PAGE(PageActive(page), page);
4191
			ClearPageUnevictable(page);
4192 4193
			del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
			add_page_to_lru_list(page, lruvec, lru);
4194
			pgrescued++;
4195
		}
4196
	}
4197

4198
	if (pgdat) {
4199 4200
		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
4201
		spin_unlock_irq(&pgdat->lru_lock);
4202 4203
	}
}
4204
#endif /* CONFIG_SHMEM */