vmscan.c 112.2 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
/*
 *  linux/mm/vmscan.c
 *
 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 *
 *  Swap reorganised 29.12.95, Stephen Tweedie.
 *  kswapd added: 7.1.96  sct
 *  Removed kswapd_ctl limits, and swap out as many pages as needed
 *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
 *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
 *  Multiqueue VM started 5.8.00, Rik van Riel.
 */

14 15
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

L
Linus Torvalds 已提交
16
#include <linux/mm.h>
17
#include <linux/sched/mm.h>
L
Linus Torvalds 已提交
18
#include <linux/module.h>
19
#include <linux/gfp.h>
L
Linus Torvalds 已提交
20 21 22 23 24
#include <linux/kernel_stat.h>
#include <linux/swap.h>
#include <linux/pagemap.h>
#include <linux/init.h>
#include <linux/highmem.h>
25
#include <linux/vmpressure.h>
26
#include <linux/vmstat.h>
L
Linus Torvalds 已提交
27 28 29 30 31 32 33 34 35 36 37
#include <linux/file.h>
#include <linux/writeback.h>
#include <linux/blkdev.h>
#include <linux/buffer_head.h>	/* for try_to_release_page(),
					buffer_heads_over_limit */
#include <linux/mm_inline.h>
#include <linux/backing-dev.h>
#include <linux/rmap.h>
#include <linux/topology.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
38
#include <linux/compaction.h>
L
Linus Torvalds 已提交
39 40
#include <linux/notifier.h>
#include <linux/rwsem.h>
41
#include <linux/delay.h>
42
#include <linux/kthread.h>
43
#include <linux/freezer.h>
44
#include <linux/memcontrol.h>
45
#include <linux/delayacct.h>
46
#include <linux/sysctl.h>
47
#include <linux/oom.h>
48
#include <linux/prefetch.h>
49
#include <linux/printk.h>
50
#include <linux/dax.h>
L
Linus Torvalds 已提交
51 52 53 54 55

#include <asm/tlbflush.h>
#include <asm/div64.h>

#include <linux/swapops.h>
56
#include <linux/balloon_compaction.h>
L
Linus Torvalds 已提交
57

58 59
#include "internal.h"

60 61 62
#define CREATE_TRACE_POINTS
#include <trace/events/vmscan.h>

L
Linus Torvalds 已提交
63
struct scan_control {
64 65 66
	/* How many pages shrink_list() should reclaim */
	unsigned long nr_to_reclaim;

L
Linus Torvalds 已提交
67
	/* This context's GFP mask */
A
Al Viro 已提交
68
	gfp_t gfp_mask;
L
Linus Torvalds 已提交
69

70
	/* Allocation order */
A
Andy Whitcroft 已提交
71
	int order;
72

73 74 75 76 77
	/*
	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
	 * are scanned.
	 */
	nodemask_t	*nodemask;
78

79 80 81 82 83
	/*
	 * The memory cgroup that hit its limit and as a result is the
	 * primary target of this reclaim invocation.
	 */
	struct mem_cgroup *target_mem_cgroup;
84

85 86 87
	/* Scan (total_size >> priority) pages at once */
	int priority;

88 89 90
	/* The highest zone to isolate pages for reclaim from */
	enum zone_type reclaim_idx;

91
	/* Writepage batching in laptop mode; RECLAIM_WRITE */
92 93 94 95 96 97 98 99
	unsigned int may_writepage:1;

	/* Can mapped pages be reclaimed? */
	unsigned int may_unmap:1;

	/* Can pages be swapped as part of reclaim? */
	unsigned int may_swap:1;

100 101 102
	/* Can cgroups be reclaimed below their normal consumption range? */
	unsigned int may_thrash:1;

103 104 105 106 107 108 109 110 111 112
	unsigned int hibernation_mode:1;

	/* One of the zones is ready for compaction */
	unsigned int compaction_ready:1;

	/* Incremented by the number of inactive pages that were scanned */
	unsigned long nr_scanned;

	/* Number of pages freed so far during a call to shrink_zones() */
	unsigned long nr_reclaimed;
L
Linus Torvalds 已提交
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
};

#ifdef ARCH_HAS_PREFETCH
#define prefetch_prev_lru_page(_page, _base, _field)			\
	do {								\
		if ((_page)->lru.prev != _base) {			\
			struct page *prev;				\
									\
			prev = lru_to_page(&(_page->lru));		\
			prefetch(&prev->_field);			\
		}							\
	} while (0)
#else
#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
#endif

#ifdef ARCH_HAS_PREFETCHW
#define prefetchw_prev_lru_page(_page, _base, _field)			\
	do {								\
		if ((_page)->lru.prev != _base) {			\
			struct page *prev;				\
									\
			prev = lru_to_page(&(_page->lru));		\
			prefetchw(&prev->_field);			\
		}							\
	} while (0)
#else
#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
#endif

/*
 * From 0 .. 100.  Higher means more swappy.
 */
int vm_swappiness = 60;
147 148 149 150 151
/*
 * The total number of pages which are beyond the high watermark within all
 * zones.
 */
unsigned long vm_total_pages;
L
Linus Torvalds 已提交
152 153 154 155

static LIST_HEAD(shrinker_list);
static DECLARE_RWSEM(shrinker_rwsem);

A
Andrew Morton 已提交
156
#ifdef CONFIG_MEMCG
157 158
static bool global_reclaim(struct scan_control *sc)
{
159
	return !sc->target_mem_cgroup;
160
}
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181

/**
 * sane_reclaim - is the usual dirty throttling mechanism operational?
 * @sc: scan_control in question
 *
 * The normal page dirty throttling mechanism in balance_dirty_pages() is
 * completely broken with the legacy memcg and direct stalling in
 * shrink_page_list() is used for throttling instead, which lacks all the
 * niceties such as fairness, adaptive pausing, bandwidth proportional
 * allocation and configurability.
 *
 * This function tests whether the vmscan currently in progress can assume
 * that the normal dirty throttling mechanism is operational.
 */
static bool sane_reclaim(struct scan_control *sc)
{
	struct mem_cgroup *memcg = sc->target_mem_cgroup;

	if (!memcg)
		return true;
#ifdef CONFIG_CGROUP_WRITEBACK
182
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
183 184 185 186
		return true;
#endif
	return false;
}
187
#else
188 189 190 191
static bool global_reclaim(struct scan_control *sc)
{
	return true;
}
192 193 194 195 196

static bool sane_reclaim(struct scan_control *sc)
{
	return true;
}
197 198
#endif

199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
/*
 * This misses isolated pages which are not accounted for to save counters.
 * As the data only determines if reclaim or compaction continues, it is
 * not expected that isolated pages will be a dominating factor.
 */
unsigned long zone_reclaimable_pages(struct zone *zone)
{
	unsigned long nr;

	nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
		zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
	if (get_nr_swap_pages() > 0)
		nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
			zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);

	return nr;
}

M
Mel Gorman 已提交
217 218 219 220 221 222 223
unsigned long pgdat_reclaimable_pages(struct pglist_data *pgdat)
{
	unsigned long nr;

	nr = node_page_state_snapshot(pgdat, NR_ACTIVE_FILE) +
	     node_page_state_snapshot(pgdat, NR_INACTIVE_FILE) +
	     node_page_state_snapshot(pgdat, NR_ISOLATED_FILE);
224 225

	if (get_nr_swap_pages() > 0)
M
Mel Gorman 已提交
226 227 228
		nr += node_page_state_snapshot(pgdat, NR_ACTIVE_ANON) +
		      node_page_state_snapshot(pgdat, NR_INACTIVE_ANON) +
		      node_page_state_snapshot(pgdat, NR_ISOLATED_ANON);
229 230 231 232

	return nr;
}

M
Mel Gorman 已提交
233
bool pgdat_reclaimable(struct pglist_data *pgdat)
234
{
M
Mel Gorman 已提交
235 236
	return node_page_state_snapshot(pgdat, NR_PAGES_SCANNED) <
		pgdat_reclaimable_pages(pgdat) * 6;
237 238
}

239 240 241 242 243 244 245
/**
 * lruvec_lru_size -  Returns the number of pages on the given LRU list.
 * @lruvec: lru vector
 * @lru: lru to use
 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
 */
unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx)
246
{
247 248 249
	unsigned long lru_size;
	int zid;

250
	if (!mem_cgroup_disabled())
251 252 253
		lru_size = mem_cgroup_get_lru_size(lruvec, lru);
	else
		lru_size = node_page_state(lruvec_pgdat(lruvec), NR_LRU_BASE + lru);
254

255 256 257
	for (zid = zone_idx + 1; zid < MAX_NR_ZONES; zid++) {
		struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
		unsigned long size;
258

259 260 261 262 263 264 265 266 267 268 269 270
		if (!managed_zone(zone))
			continue;

		if (!mem_cgroup_disabled())
			size = mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
		else
			size = zone_page_state(&lruvec_pgdat(lruvec)->node_zones[zid],
				       NR_ZONE_LRU_BASE + lru);
		lru_size -= min(size, lru_size);
	}

	return lru_size;
271 272 273

}

L
Linus Torvalds 已提交
274
/*
G
Glauber Costa 已提交
275
 * Add a shrinker callback to be called from the vm.
L
Linus Torvalds 已提交
276
 */
G
Glauber Costa 已提交
277
int register_shrinker(struct shrinker *shrinker)
L
Linus Torvalds 已提交
278
{
G
Glauber Costa 已提交
279 280 281 282 283 284 285 286 287
	size_t size = sizeof(*shrinker->nr_deferred);

	if (shrinker->flags & SHRINKER_NUMA_AWARE)
		size *= nr_node_ids;

	shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
	if (!shrinker->nr_deferred)
		return -ENOMEM;

288 289 290
	down_write(&shrinker_rwsem);
	list_add_tail(&shrinker->list, &shrinker_list);
	up_write(&shrinker_rwsem);
G
Glauber Costa 已提交
291
	return 0;
L
Linus Torvalds 已提交
292
}
293
EXPORT_SYMBOL(register_shrinker);
L
Linus Torvalds 已提交
294 295 296 297

/*
 * Remove one
 */
298
void unregister_shrinker(struct shrinker *shrinker)
L
Linus Torvalds 已提交
299 300 301 302
{
	down_write(&shrinker_rwsem);
	list_del(&shrinker->list);
	up_write(&shrinker_rwsem);
303
	kfree(shrinker->nr_deferred);
L
Linus Torvalds 已提交
304
}
305
EXPORT_SYMBOL(unregister_shrinker);
L
Linus Torvalds 已提交
306 307

#define SHRINK_BATCH 128
G
Glauber Costa 已提交
308

309 310 311 312
static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
				    struct shrinker *shrinker,
				    unsigned long nr_scanned,
				    unsigned long nr_eligible)
G
Glauber Costa 已提交
313 314 315 316
{
	unsigned long freed = 0;
	unsigned long long delta;
	long total_scan;
317
	long freeable;
G
Glauber Costa 已提交
318 319 320 321 322
	long nr;
	long new_nr;
	int nid = shrinkctl->nid;
	long batch_size = shrinker->batch ? shrinker->batch
					  : SHRINK_BATCH;
323
	long scanned = 0, next_deferred;
G
Glauber Costa 已提交
324

325 326
	freeable = shrinker->count_objects(shrinker, shrinkctl);
	if (freeable == 0)
G
Glauber Costa 已提交
327 328 329 330 331 332 333 334 335 336
		return 0;

	/*
	 * copy the current shrinker scan count into a local variable
	 * and zero it so that other concurrent shrinker invocations
	 * don't also do this scanning work.
	 */
	nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);

	total_scan = nr;
337
	delta = (4 * nr_scanned) / shrinker->seeks;
338
	delta *= freeable;
339
	do_div(delta, nr_eligible + 1);
G
Glauber Costa 已提交
340 341
	total_scan += delta;
	if (total_scan < 0) {
342
		pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n",
D
Dave Chinner 已提交
343
		       shrinker->scan_objects, total_scan);
344
		total_scan = freeable;
345 346 347
		next_deferred = nr;
	} else
		next_deferred = total_scan;
G
Glauber Costa 已提交
348 349 350 351 352 353 354

	/*
	 * We need to avoid excessive windup on filesystem shrinkers
	 * due to large numbers of GFP_NOFS allocations causing the
	 * shrinkers to return -1 all the time. This results in a large
	 * nr being built up so when a shrink that can do some work
	 * comes along it empties the entire cache due to nr >>>
355
	 * freeable. This is bad for sustaining a working set in
G
Glauber Costa 已提交
356 357 358 359 360
	 * memory.
	 *
	 * Hence only allow the shrinker to scan the entire cache when
	 * a large delta change is calculated directly.
	 */
361 362
	if (delta < freeable / 4)
		total_scan = min(total_scan, freeable / 2);
G
Glauber Costa 已提交
363 364 365 366 367 368

	/*
	 * Avoid risking looping forever due to too large nr value:
	 * never try to free more than twice the estimate number of
	 * freeable entries.
	 */
369 370
	if (total_scan > freeable * 2)
		total_scan = freeable * 2;
G
Glauber Costa 已提交
371 372

	trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
373 374
				   nr_scanned, nr_eligible,
				   freeable, delta, total_scan);
G
Glauber Costa 已提交
375

376 377 378 379 380 381 382 383 384 385 386
	/*
	 * Normally, we should not scan less than batch_size objects in one
	 * pass to avoid too frequent shrinker calls, but if the slab has less
	 * than batch_size objects in total and we are really tight on memory,
	 * we will try to reclaim all available objects, otherwise we can end
	 * up failing allocations although there are plenty of reclaimable
	 * objects spread over several slabs with usage less than the
	 * batch_size.
	 *
	 * We detect the "tight on memory" situations by looking at the total
	 * number of objects we want to scan (total_scan). If it is greater
387
	 * than the total number of objects on slab (freeable), we must be
388 389 390 391
	 * scanning at high prio and therefore should try to reclaim as much as
	 * possible.
	 */
	while (total_scan >= batch_size ||
392
	       total_scan >= freeable) {
D
Dave Chinner 已提交
393
		unsigned long ret;
394
		unsigned long nr_to_scan = min(batch_size, total_scan);
G
Glauber Costa 已提交
395

396
		shrinkctl->nr_to_scan = nr_to_scan;
D
Dave Chinner 已提交
397 398 399 400
		ret = shrinker->scan_objects(shrinker, shrinkctl);
		if (ret == SHRINK_STOP)
			break;
		freed += ret;
G
Glauber Costa 已提交
401

402 403
		count_vm_events(SLABS_SCANNED, nr_to_scan);
		total_scan -= nr_to_scan;
404
		scanned += nr_to_scan;
G
Glauber Costa 已提交
405 406 407 408

		cond_resched();
	}

409 410 411 412
	if (next_deferred >= scanned)
		next_deferred -= scanned;
	else
		next_deferred = 0;
G
Glauber Costa 已提交
413 414 415 416 417
	/*
	 * move the unused scan count back into the shrinker in a
	 * manner that handles concurrent updates. If we exhausted the
	 * scan, there is no need to do an update.
	 */
418 419
	if (next_deferred > 0)
		new_nr = atomic_long_add_return(next_deferred,
G
Glauber Costa 已提交
420 421 422 423
						&shrinker->nr_deferred[nid]);
	else
		new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);

424
	trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
G
Glauber Costa 已提交
425
	return freed;
426 427
}

428
/**
429
 * shrink_slab - shrink slab caches
430 431
 * @gfp_mask: allocation context
 * @nid: node whose slab caches to target
432
 * @memcg: memory cgroup whose slab caches to target
433 434
 * @nr_scanned: pressure numerator
 * @nr_eligible: pressure denominator
L
Linus Torvalds 已提交
435
 *
436
 * Call the shrink functions to age shrinkable caches.
L
Linus Torvalds 已提交
437
 *
438 439
 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
 * unaware shrinkers will receive a node id of 0 instead.
L
Linus Torvalds 已提交
440
 *
441 442
 * @memcg specifies the memory cgroup to target. If it is not NULL,
 * only shrinkers with SHRINKER_MEMCG_AWARE set will be called to scan
443 444
 * objects from the memory cgroup specified. Otherwise, only unaware
 * shrinkers are called.
445
 *
446 447 448 449 450 451 452
 * @nr_scanned and @nr_eligible form a ratio that indicate how much of
 * the available objects should be scanned.  Page reclaim for example
 * passes the number of pages scanned and the number of pages on the
 * LRU lists that it considered on @nid, plus a bias in @nr_scanned
 * when it encountered mapped pages.  The ratio is further biased by
 * the ->seeks setting of the shrink function, which indicates the
 * cost to recreate an object relative to that of an LRU page.
453
 *
454
 * Returns the number of reclaimed slab objects.
L
Linus Torvalds 已提交
455
 */
456 457 458 459
static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
				 struct mem_cgroup *memcg,
				 unsigned long nr_scanned,
				 unsigned long nr_eligible)
L
Linus Torvalds 已提交
460 461
{
	struct shrinker *shrinker;
D
Dave Chinner 已提交
462
	unsigned long freed = 0;
L
Linus Torvalds 已提交
463

464
	if (memcg && (!memcg_kmem_enabled() || !mem_cgroup_online(memcg)))
465 466
		return 0;

467 468
	if (nr_scanned == 0)
		nr_scanned = SWAP_CLUSTER_MAX;
L
Linus Torvalds 已提交
469

470
	if (!down_read_trylock(&shrinker_rwsem)) {
D
Dave Chinner 已提交
471 472 473 474 475 476 477
		/*
		 * If we would return 0, our callers would understand that we
		 * have nothing else to shrink and give up trying. By returning
		 * 1 we keep it going and assume we'll be able to shrink next
		 * time.
		 */
		freed = 1;
478 479
		goto out;
	}
L
Linus Torvalds 已提交
480 481

	list_for_each_entry(shrinker, &shrinker_list, list) {
482 483 484
		struct shrink_control sc = {
			.gfp_mask = gfp_mask,
			.nid = nid,
485
			.memcg = memcg,
486
		};
487

488 489 490 491 492 493 494
		/*
		 * If kernel memory accounting is disabled, we ignore
		 * SHRINKER_MEMCG_AWARE flag and call all shrinkers
		 * passing NULL for memcg.
		 */
		if (memcg_kmem_enabled() &&
		    !!memcg != !!(shrinker->flags & SHRINKER_MEMCG_AWARE))
495 496
			continue;

497 498
		if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
			sc.nid = 0;
L
Linus Torvalds 已提交
499

500
		freed += do_shrink_slab(&sc, shrinker, nr_scanned, nr_eligible);
L
Linus Torvalds 已提交
501
	}
502

L
Linus Torvalds 已提交
503
	up_read(&shrinker_rwsem);
504 505
out:
	cond_resched();
D
Dave Chinner 已提交
506
	return freed;
L
Linus Torvalds 已提交
507 508
}

509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531
void drop_slab_node(int nid)
{
	unsigned long freed;

	do {
		struct mem_cgroup *memcg = NULL;

		freed = 0;
		do {
			freed += shrink_slab(GFP_KERNEL, nid, memcg,
					     1000, 1000);
		} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
	} while (freed > 10);
}

void drop_slab(void)
{
	int nid;

	for_each_online_node(nid)
		drop_slab_node(nid);
}

L
Linus Torvalds 已提交
532 533
static inline int is_page_cache_freeable(struct page *page)
{
534 535 536 537 538
	/*
	 * A freeable page cache page is referenced only by the caller
	 * that isolated the page, the page cache radix tree and
	 * optional buffer heads at page->private.
	 */
539
	return page_count(page) - page_has_private(page) == 2;
L
Linus Torvalds 已提交
540 541
}

542
static int may_write_to_inode(struct inode *inode, struct scan_control *sc)
L
Linus Torvalds 已提交
543
{
544
	if (current->flags & PF_SWAPWRITE)
L
Linus Torvalds 已提交
545
		return 1;
546
	if (!inode_write_congested(inode))
L
Linus Torvalds 已提交
547
		return 1;
548
	if (inode_to_bdi(inode) == current->backing_dev_info)
L
Linus Torvalds 已提交
549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567
		return 1;
	return 0;
}

/*
 * We detected a synchronous write error writing a page out.  Probably
 * -ENOSPC.  We need to propagate that into the address_space for a subsequent
 * fsync(), msync() or close().
 *
 * The tricky part is that after writepage we cannot touch the mapping: nothing
 * prevents it from being freed up.  But we have a ref on the page and once
 * that page is locked, the mapping is pinned.
 *
 * We're allowed to run sleeping lock_page() here because we know the caller has
 * __GFP_FS.
 */
static void handle_write_error(struct address_space *mapping,
				struct page *page, int error)
{
J
Jens Axboe 已提交
568
	lock_page(page);
569 570
	if (page_mapping(page) == mapping)
		mapping_set_error(mapping, error);
L
Linus Torvalds 已提交
571 572 573
	unlock_page(page);
}

574 575 576 577 578 579 580 581 582 583 584 585
/* possible outcome of pageout() */
typedef enum {
	/* failed to write page out, page is locked */
	PAGE_KEEP,
	/* move page to the active list, page is locked */
	PAGE_ACTIVATE,
	/* page has been sent to the disk successfully, page is unlocked */
	PAGE_SUCCESS,
	/* page is clean and locked */
	PAGE_CLEAN,
} pageout_t;

L
Linus Torvalds 已提交
586
/*
A
Andrew Morton 已提交
587 588
 * pageout is called by shrink_page_list() for each dirty page.
 * Calls ->writepage().
L
Linus Torvalds 已提交
589
 */
590
static pageout_t pageout(struct page *page, struct address_space *mapping,
591
			 struct scan_control *sc)
L
Linus Torvalds 已提交
592 593 594 595 596 597 598 599
{
	/*
	 * If the page is dirty, only perform writeback if that write
	 * will be non-blocking.  To prevent this allocation from being
	 * stalled by pagecache activity.  But note that there may be
	 * stalls if we need to run get_block().  We could test
	 * PagePrivate for that.
	 *
600
	 * If this process is currently in __generic_file_write_iter() against
L
Linus Torvalds 已提交
601 602 603 604 605 606 607 608 609 610 611 612 613 614 615
	 * this page's queue, we can perform writeback even if that
	 * will block.
	 *
	 * If the page is swapcache, write it back even if that would
	 * block, for some throttling. This happens by accident, because
	 * swap_backing_dev_info is bust: it doesn't reflect the
	 * congestion state of the swapdevs.  Easy to fix, if needed.
	 */
	if (!is_page_cache_freeable(page))
		return PAGE_KEEP;
	if (!mapping) {
		/*
		 * Some data journaling orphaned pages can have
		 * page->mapping == NULL while being dirty with clean buffers.
		 */
616
		if (page_has_private(page)) {
L
Linus Torvalds 已提交
617 618
			if (try_to_free_buffers(page)) {
				ClearPageDirty(page);
619
				pr_info("%s: orphaned page\n", __func__);
L
Linus Torvalds 已提交
620 621 622 623 624 625 626
				return PAGE_CLEAN;
			}
		}
		return PAGE_KEEP;
	}
	if (mapping->a_ops->writepage == NULL)
		return PAGE_ACTIVATE;
627
	if (!may_write_to_inode(mapping->host, sc))
L
Linus Torvalds 已提交
628 629 630 631 632 633 634
		return PAGE_KEEP;

	if (clear_page_dirty_for_io(page)) {
		int res;
		struct writeback_control wbc = {
			.sync_mode = WB_SYNC_NONE,
			.nr_to_write = SWAP_CLUSTER_MAX,
635 636
			.range_start = 0,
			.range_end = LLONG_MAX,
L
Linus Torvalds 已提交
637 638 639 640 641 642 643
			.for_reclaim = 1,
		};

		SetPageReclaim(page);
		res = mapping->a_ops->writepage(page, &wbc);
		if (res < 0)
			handle_write_error(mapping, page, res);
644
		if (res == AOP_WRITEPAGE_ACTIVATE) {
L
Linus Torvalds 已提交
645 646 647
			ClearPageReclaim(page);
			return PAGE_ACTIVATE;
		}
648

L
Linus Torvalds 已提交
649 650 651 652
		if (!PageWriteback(page)) {
			/* synchronous write or broken a_ops? */
			ClearPageReclaim(page);
		}
653
		trace_mm_vmscan_writepage(page);
654
		inc_node_page_state(page, NR_VMSCAN_WRITE);
L
Linus Torvalds 已提交
655 656 657 658 659 660
		return PAGE_SUCCESS;
	}

	return PAGE_CLEAN;
}

661
/*
N
Nick Piggin 已提交
662 663
 * Same as remove_mapping, but if the page is removed from the mapping, it
 * gets returned with a refcount of 0.
664
 */
665 666
static int __remove_mapping(struct address_space *mapping, struct page *page,
			    bool reclaimed)
667
{
668 669
	unsigned long flags;

670 671
	BUG_ON(!PageLocked(page));
	BUG_ON(mapping != page_mapping(page));
672

673
	spin_lock_irqsave(&mapping->tree_lock, flags);
674
	/*
N
Nick Piggin 已提交
675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693
	 * The non racy check for a busy page.
	 *
	 * Must be careful with the order of the tests. When someone has
	 * a ref to the page, it may be possible that they dirty it then
	 * drop the reference. So if PageDirty is tested before page_count
	 * here, then the following race may occur:
	 *
	 * get_user_pages(&page);
	 * [user mapping goes away]
	 * write_to(page);
	 *				!PageDirty(page)    [good]
	 * SetPageDirty(page);
	 * put_page(page);
	 *				!page_count(page)   [good, discard it]
	 *
	 * [oops, our write_to data is lost]
	 *
	 * Reversing the order of the tests ensures such a situation cannot
	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
694
	 * load is not satisfied before that of page->_refcount.
N
Nick Piggin 已提交
695 696 697
	 *
	 * Note that if SetPageDirty is always performed via set_page_dirty,
	 * and thus under tree_lock, then this ordering is not required.
698
	 */
699
	if (!page_ref_freeze(page, 2))
700
		goto cannot_free;
N
Nick Piggin 已提交
701 702
	/* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
	if (unlikely(PageDirty(page))) {
703
		page_ref_unfreeze(page, 2);
704
		goto cannot_free;
N
Nick Piggin 已提交
705
	}
706 707 708

	if (PageSwapCache(page)) {
		swp_entry_t swap = { .val = page_private(page) };
709
		mem_cgroup_swapout(page, swap);
710
		__delete_from_swap_cache(page);
711
		spin_unlock_irqrestore(&mapping->tree_lock, flags);
712
		swapcache_free(swap);
N
Nick Piggin 已提交
713
	} else {
714
		void (*freepage)(struct page *);
715
		void *shadow = NULL;
716 717

		freepage = mapping->a_ops->freepage;
718 719 720 721 722 723 724 725 726
		/*
		 * Remember a shadow entry for reclaimed file cache in
		 * order to detect refaults, thus thrashing, later on.
		 *
		 * But don't store shadows in an address space that is
		 * already exiting.  This is not just an optizimation,
		 * inode reclaim needs to empty out the radix tree or
		 * the nodes are lost.  Don't plant shadows behind its
		 * back.
727 728 729 730 731 732
		 *
		 * We also don't store shadows for DAX mappings because the
		 * only page cache pages found in these are zero pages
		 * covering holes, and because we don't want to mix DAX
		 * exceptional entries and shadow exceptional entries in the
		 * same page_tree.
733 734
		 */
		if (reclaimed && page_is_file_cache(page) &&
735
		    !mapping_exiting(mapping) && !dax_mapping(mapping))
736
			shadow = workingset_eviction(mapping, page);
J
Johannes Weiner 已提交
737
		__delete_from_page_cache(page, shadow);
738
		spin_unlock_irqrestore(&mapping->tree_lock, flags);
739 740 741

		if (freepage != NULL)
			freepage(page);
742 743 744 745 746
	}

	return 1;

cannot_free:
747
	spin_unlock_irqrestore(&mapping->tree_lock, flags);
748 749 750
	return 0;
}

N
Nick Piggin 已提交
751 752 753 754 755 756 757 758
/*
 * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
 * someone else has a ref on the page, abort and return 0.  If it was
 * successfully detached, return 1.  Assumes the caller has a single ref on
 * this page.
 */
int remove_mapping(struct address_space *mapping, struct page *page)
{
759
	if (__remove_mapping(mapping, page, false)) {
N
Nick Piggin 已提交
760 761 762 763 764
		/*
		 * Unfreezing the refcount with 1 rather than 2 effectively
		 * drops the pagecache ref for us without requiring another
		 * atomic operation.
		 */
765
		page_ref_unfreeze(page, 1);
N
Nick Piggin 已提交
766 767 768 769 770
		return 1;
	}
	return 0;
}

L
Lee Schermerhorn 已提交
771 772 773 774 775 776 777 778 779 780 781
/**
 * putback_lru_page - put previously isolated page onto appropriate LRU list
 * @page: page to be put back to appropriate lru list
 *
 * Add previously isolated @page to appropriate LRU list.
 * Page may still be unevictable for other reasons.
 *
 * lru_lock must not be held, interrupts must be enabled.
 */
void putback_lru_page(struct page *page)
{
782
	bool is_unevictable;
783
	int was_unevictable = PageUnevictable(page);
L
Lee Schermerhorn 已提交
784

785
	VM_BUG_ON_PAGE(PageLRU(page), page);
L
Lee Schermerhorn 已提交
786 787 788 789

redo:
	ClearPageUnevictable(page);

790
	if (page_evictable(page)) {
L
Lee Schermerhorn 已提交
791 792 793 794 795 796
		/*
		 * For evictable pages, we can use the cache.
		 * In event of a race, worst case is we end up with an
		 * unevictable page on [in]active list.
		 * We know how to handle that.
		 */
797
		is_unevictable = false;
798
		lru_cache_add(page);
L
Lee Schermerhorn 已提交
799 800 801 802 803
	} else {
		/*
		 * Put unevictable pages directly on zone's unevictable
		 * list.
		 */
804
		is_unevictable = true;
L
Lee Schermerhorn 已提交
805
		add_page_to_unevictable_list(page);
806
		/*
807 808 809
		 * When racing with an mlock or AS_UNEVICTABLE clearing
		 * (page is unlocked) make sure that if the other thread
		 * does not observe our setting of PG_lru and fails
810
		 * isolation/check_move_unevictable_pages,
811
		 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
812 813
		 * the page back to the evictable list.
		 *
814
		 * The other side is TestClearPageMlocked() or shmem_lock().
815 816
		 */
		smp_mb();
L
Lee Schermerhorn 已提交
817 818 819 820 821 822 823
	}

	/*
	 * page's status can change while we move it among lru. If an evictable
	 * page is on unevictable list, it never be freed. To avoid that,
	 * check after we added it to the list, again.
	 */
824
	if (is_unevictable && page_evictable(page)) {
L
Lee Schermerhorn 已提交
825 826 827 828 829 830 831 832 833 834
		if (!isolate_lru_page(page)) {
			put_page(page);
			goto redo;
		}
		/* This means someone else dropped this page from LRU
		 * So, it will be freed or putback to LRU again. There is
		 * nothing to do here.
		 */
	}

835
	if (was_unevictable && !is_unevictable)
836
		count_vm_event(UNEVICTABLE_PGRESCUED);
837
	else if (!was_unevictable && is_unevictable)
838 839
		count_vm_event(UNEVICTABLE_PGCULLED);

L
Lee Schermerhorn 已提交
840 841 842
	put_page(page);		/* drop ref from isolate */
}

843 844 845
enum page_references {
	PAGEREF_RECLAIM,
	PAGEREF_RECLAIM_CLEAN,
846
	PAGEREF_KEEP,
847 848 849 850 851 852
	PAGEREF_ACTIVATE,
};

static enum page_references page_check_references(struct page *page,
						  struct scan_control *sc)
{
853
	int referenced_ptes, referenced_page;
854 855
	unsigned long vm_flags;

856 857
	referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
					  &vm_flags);
858
	referenced_page = TestClearPageReferenced(page);
859 860 861 862 863 864 865 866

	/*
	 * Mlock lost the isolation race with us.  Let try_to_unmap()
	 * move the page to the unevictable list.
	 */
	if (vm_flags & VM_LOCKED)
		return PAGEREF_RECLAIM;

867
	if (referenced_ptes) {
868
		if (PageSwapBacked(page))
869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885
			return PAGEREF_ACTIVATE;
		/*
		 * All mapped pages start out with page table
		 * references from the instantiating fault, so we need
		 * to look twice if a mapped file page is used more
		 * than once.
		 *
		 * Mark it and spare it for another trip around the
		 * inactive list.  Another page table reference will
		 * lead to its activation.
		 *
		 * Note: the mark is set for activated pages as well
		 * so that recently deactivated but used pages are
		 * quickly recovered.
		 */
		SetPageReferenced(page);

886
		if (referenced_page || referenced_ptes > 1)
887 888
			return PAGEREF_ACTIVATE;

889 890 891 892 893 894
		/*
		 * Activate file-backed executable pages after first usage.
		 */
		if (vm_flags & VM_EXEC)
			return PAGEREF_ACTIVATE;

895 896
		return PAGEREF_KEEP;
	}
897 898

	/* Reclaim if clean, defer dirty pages to writeback */
899
	if (referenced_page && !PageSwapBacked(page))
900 901 902
		return PAGEREF_RECLAIM_CLEAN;

	return PAGEREF_RECLAIM;
903 904
}

905 906 907 908
/* Check if a page is dirty or under writeback */
static void page_check_dirty_writeback(struct page *page,
				       bool *dirty, bool *writeback)
{
909 910
	struct address_space *mapping;

911 912 913 914 915 916 917 918 919 920 921 922 923
	/*
	 * Anonymous pages are not handled by flushers and must be written
	 * from reclaim context. Do not stall reclaim based on them
	 */
	if (!page_is_file_cache(page)) {
		*dirty = false;
		*writeback = false;
		return;
	}

	/* By default assume that the page flags are accurate */
	*dirty = PageDirty(page);
	*writeback = PageWriteback(page);
924 925 926 927 928 929 930 931

	/* Verify dirty/writeback state if the filesystem supports it */
	if (!page_has_private(page))
		return;

	mapping = page_mapping(page);
	if (mapping && mapping->a_ops->is_dirty_writeback)
		mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
932 933
}

934 935 936 937 938 939
struct reclaim_stat {
	unsigned nr_dirty;
	unsigned nr_unqueued_dirty;
	unsigned nr_congested;
	unsigned nr_writeback;
	unsigned nr_immediate;
940 941 942
	unsigned nr_activate;
	unsigned nr_ref_keep;
	unsigned nr_unmap_fail;
943 944
};

L
Linus Torvalds 已提交
945
/*
A
Andrew Morton 已提交
946
 * shrink_page_list() returns the number of reclaimed pages
L
Linus Torvalds 已提交
947
 */
A
Andrew Morton 已提交
948
static unsigned long shrink_page_list(struct list_head *page_list,
M
Mel Gorman 已提交
949
				      struct pglist_data *pgdat,
950
				      struct scan_control *sc,
951
				      enum ttu_flags ttu_flags,
952
				      struct reclaim_stat *stat,
953
				      bool force_reclaim)
L
Linus Torvalds 已提交
954 955
{
	LIST_HEAD(ret_pages);
956
	LIST_HEAD(free_pages);
L
Linus Torvalds 已提交
957
	int pgactivate = 0;
958 959 960 961 962 963
	unsigned nr_unqueued_dirty = 0;
	unsigned nr_dirty = 0;
	unsigned nr_congested = 0;
	unsigned nr_reclaimed = 0;
	unsigned nr_writeback = 0;
	unsigned nr_immediate = 0;
964 965
	unsigned nr_ref_keep = 0;
	unsigned nr_unmap_fail = 0;
L
Linus Torvalds 已提交
966 967 968 969 970 971 972

	cond_resched();

	while (!list_empty(page_list)) {
		struct address_space *mapping;
		struct page *page;
		int may_enter_fs;
973
		enum page_references references = PAGEREF_RECLAIM_CLEAN;
974
		bool dirty, writeback;
M
Minchan Kim 已提交
975 976
		bool lazyfree = false;
		int ret = SWAP_SUCCESS;
L
Linus Torvalds 已提交
977 978 979 980 981 982

		cond_resched();

		page = lru_to_page(page_list);
		list_del(&page->lru);

N
Nick Piggin 已提交
983
		if (!trylock_page(page))
L
Linus Torvalds 已提交
984 985
			goto keep;

986
		VM_BUG_ON_PAGE(PageActive(page), page);
L
Linus Torvalds 已提交
987 988

		sc->nr_scanned++;
989

990
		if (unlikely(!page_evictable(page)))
N
Nick Piggin 已提交
991
			goto cull_mlocked;
L
Lee Schermerhorn 已提交
992

993
		if (!sc->may_unmap && page_mapped(page))
994 995
			goto keep_locked;

L
Linus Torvalds 已提交
996 997 998 999
		/* Double the slab pressure for mapped and swapcache pages */
		if (page_mapped(page) || PageSwapCache(page))
			sc->nr_scanned++;

1000 1001 1002
		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));

1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015
		/*
		 * The number of dirty pages determines if a zone is marked
		 * reclaim_congested which affects wait_iff_congested. kswapd
		 * will stall and start writing pages if the tail of the LRU
		 * is all dirty unqueued pages.
		 */
		page_check_dirty_writeback(page, &dirty, &writeback);
		if (dirty || writeback)
			nr_dirty++;

		if (dirty && !writeback)
			nr_unqueued_dirty++;

1016 1017 1018 1019 1020 1021
		/*
		 * Treat this page as congested if the underlying BDI is or if
		 * pages are cycling through the LRU so quickly that the
		 * pages marked for immediate reclaim are making it to the
		 * end of the LRU a second time.
		 */
1022
		mapping = page_mapping(page);
1023
		if (((dirty || writeback) && mapping &&
1024
		     inode_write_congested(mapping->host)) ||
1025
		    (writeback && PageReclaim(page)))
1026 1027
			nr_congested++;

1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038
		/*
		 * If a page at the tail of the LRU is under writeback, there
		 * are three cases to consider.
		 *
		 * 1) If reclaim is encountering an excessive number of pages
		 *    under writeback and this page is both under writeback and
		 *    PageReclaim then it indicates that pages are being queued
		 *    for IO but are being recycled through the LRU before the
		 *    IO can complete. Waiting on the page itself risks an
		 *    indefinite stall if it is impossible to writeback the
		 *    page due to IO error or disconnected storage so instead
1039 1040
		 *    note that the LRU is being scanned too quickly and the
		 *    caller can stall after page list has been processed.
1041
		 *
1042
		 * 2) Global or new memcg reclaim encounters a page that is
1043 1044 1045
		 *    not marked for immediate reclaim, or the caller does not
		 *    have __GFP_FS (or __GFP_IO if it's simply going to swap,
		 *    not to fs). In this case mark the page for immediate
1046
		 *    reclaim and continue scanning.
1047
		 *
1048 1049
		 *    Require may_enter_fs because we would wait on fs, which
		 *    may not have submitted IO yet. And the loop driver might
1050 1051 1052 1053 1054
		 *    enter reclaim, and deadlock if it waits on a page for
		 *    which it is needed to do the write (loop masks off
		 *    __GFP_IO|__GFP_FS for this reason); but more thought
		 *    would probably show more reasons.
		 *
1055
		 * 3) Legacy memcg encounters a page that is already marked
1056 1057 1058 1059
		 *    PageReclaim. memcg does not have any dirty pages
		 *    throttling so we could easily OOM just because too many
		 *    pages are in writeback and there is nothing else to
		 *    reclaim. Wait for the writeback to complete.
1060 1061 1062 1063 1064 1065 1066 1067 1068
		 *
		 * In cases 1) and 2) we activate the pages to get them out of
		 * the way while we continue scanning for clean pages on the
		 * inactive list and refilling from the active list. The
		 * observation here is that waiting for disk writes is more
		 * expensive than potentially causing reloads down the line.
		 * Since they're marked for immediate reclaim, they won't put
		 * memory pressure on the cache working set any longer than it
		 * takes to write them to disk.
1069
		 */
1070
		if (PageWriteback(page)) {
1071 1072 1073
			/* Case 1 above */
			if (current_is_kswapd() &&
			    PageReclaim(page) &&
M
Mel Gorman 已提交
1074
			    test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1075
				nr_immediate++;
1076
				goto activate_locked;
1077 1078

			/* Case 2 above */
1079
			} else if (sane_reclaim(sc) ||
1080
			    !PageReclaim(page) || !may_enter_fs) {
1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092
				/*
				 * This is slightly racy - end_page_writeback()
				 * might have just cleared PageReclaim, then
				 * setting PageReclaim here end up interpreted
				 * as PageReadahead - but that does not matter
				 * enough to care.  What we do want is for this
				 * page to have PageReclaim set next time memcg
				 * reclaim reaches the tests above, so it will
				 * then wait_on_page_writeback() to avoid OOM;
				 * and it's also appropriate in global reclaim.
				 */
				SetPageReclaim(page);
1093
				nr_writeback++;
1094
				goto activate_locked;
1095 1096 1097

			/* Case 3 above */
			} else {
1098
				unlock_page(page);
1099
				wait_on_page_writeback(page);
1100 1101 1102
				/* then go back and try same page again */
				list_add_tail(&page->lru, page_list);
				continue;
1103
			}
1104
		}
L
Linus Torvalds 已提交
1105

1106 1107 1108
		if (!force_reclaim)
			references = page_check_references(page, sc);

1109 1110
		switch (references) {
		case PAGEREF_ACTIVATE:
L
Linus Torvalds 已提交
1111
			goto activate_locked;
1112
		case PAGEREF_KEEP:
1113
			nr_ref_keep++;
1114
			goto keep_locked;
1115 1116 1117 1118
		case PAGEREF_RECLAIM:
		case PAGEREF_RECLAIM_CLEAN:
			; /* try to reclaim the page below */
		}
L
Linus Torvalds 已提交
1119 1120 1121 1122 1123

		/*
		 * Anonymous process memory has backing store?
		 * Try to allocate it some swap space here.
		 */
N
Nick Piggin 已提交
1124
		if (PageAnon(page) && !PageSwapCache(page)) {
1125 1126
			if (!(sc->gfp_mask & __GFP_IO))
				goto keep_locked;
1127
			if (!add_to_swap(page, page_list))
L
Linus Torvalds 已提交
1128
				goto activate_locked;
M
Minchan Kim 已提交
1129
			lazyfree = true;
1130
			may_enter_fs = 1;
L
Linus Torvalds 已提交
1131

1132 1133
			/* Adding to swap updated mapping */
			mapping = page_mapping(page);
1134 1135 1136 1137
		} else if (unlikely(PageTransHuge(page))) {
			/* Split file THP */
			if (split_huge_page_to_list(page, page_list))
				goto keep_locked;
1138
		}
L
Linus Torvalds 已提交
1139

1140 1141
		VM_BUG_ON_PAGE(PageTransHuge(page), page);

L
Linus Torvalds 已提交
1142 1143 1144 1145 1146
		/*
		 * The page is mapped into the page tables of one or more
		 * processes. Try to unmap it here.
		 */
		if (page_mapped(page) && mapping) {
M
Minchan Kim 已提交
1147 1148 1149
			switch (ret = try_to_unmap(page, lazyfree ?
				(ttu_flags | TTU_BATCH_FLUSH | TTU_LZFREE) :
				(ttu_flags | TTU_BATCH_FLUSH))) {
L
Linus Torvalds 已提交
1150
			case SWAP_FAIL:
1151
				nr_unmap_fail++;
L
Linus Torvalds 已提交
1152 1153 1154
				goto activate_locked;
			case SWAP_AGAIN:
				goto keep_locked;
N
Nick Piggin 已提交
1155 1156
			case SWAP_MLOCK:
				goto cull_mlocked;
M
Minchan Kim 已提交
1157 1158
			case SWAP_LZFREE:
				goto lazyfree;
L
Linus Torvalds 已提交
1159 1160 1161 1162 1163 1164
			case SWAP_SUCCESS:
				; /* try to free the page below */
			}
		}

		if (PageDirty(page)) {
1165
			/*
1166 1167 1168 1169 1170 1171 1172 1173
			 * Only kswapd can writeback filesystem pages
			 * to avoid risk of stack overflow. But avoid
			 * injecting inefficient single-page IO into
			 * flusher writeback as much as possible: only
			 * write pages when we've encountered many
			 * dirty pages, and when we've already scanned
			 * the rest of the LRU for clean pages and see
			 * the same dirty pages again (PageReclaim).
1174
			 */
1175
			if (page_is_file_cache(page) &&
1176 1177
			    (!current_is_kswapd() || !PageReclaim(page) ||
			     !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1178 1179 1180 1181 1182 1183
				/*
				 * Immediately reclaim when written back.
				 * Similar in principal to deactivate_page()
				 * except we already have the page isolated
				 * and know it's dirty
				 */
1184
				inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
1185 1186
				SetPageReclaim(page);

1187
				goto activate_locked;
1188 1189
			}

1190
			if (references == PAGEREF_RECLAIM_CLEAN)
L
Linus Torvalds 已提交
1191
				goto keep_locked;
1192
			if (!may_enter_fs)
L
Linus Torvalds 已提交
1193
				goto keep_locked;
1194
			if (!sc->may_writepage)
L
Linus Torvalds 已提交
1195 1196
				goto keep_locked;

1197 1198 1199 1200 1201 1202
			/*
			 * Page is dirty. Flush the TLB if a writable entry
			 * potentially exists to avoid CPU writes after IO
			 * starts and then write it out here.
			 */
			try_to_unmap_flush_dirty();
1203
			switch (pageout(page, mapping, sc)) {
L
Linus Torvalds 已提交
1204 1205 1206 1207 1208
			case PAGE_KEEP:
				goto keep_locked;
			case PAGE_ACTIVATE:
				goto activate_locked;
			case PAGE_SUCCESS:
1209
				if (PageWriteback(page))
1210
					goto keep;
1211
				if (PageDirty(page))
L
Linus Torvalds 已提交
1212
					goto keep;
1213

L
Linus Torvalds 已提交
1214 1215 1216 1217
				/*
				 * A synchronous write - probably a ramdisk.  Go
				 * ahead and try to reclaim the page.
				 */
N
Nick Piggin 已提交
1218
				if (!trylock_page(page))
L
Linus Torvalds 已提交
1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237
					goto keep;
				if (PageDirty(page) || PageWriteback(page))
					goto keep_locked;
				mapping = page_mapping(page);
			case PAGE_CLEAN:
				; /* try to free the page below */
			}
		}

		/*
		 * If the page has buffers, try to free the buffer mappings
		 * associated with this page. If we succeed we try to free
		 * the page as well.
		 *
		 * We do this even if the page is PageDirty().
		 * try_to_release_page() does not perform I/O, but it is
		 * possible for a page to have PageDirty set, but it is actually
		 * clean (all its buffers are clean).  This happens if the
		 * buffers were written out directly, with submit_bh(). ext3
L
Lee Schermerhorn 已提交
1238
		 * will do this, as well as the blockdev mapping.
L
Linus Torvalds 已提交
1239 1240 1241 1242 1243 1244 1245 1246 1247 1248
		 * try_to_release_page() will discover that cleanness and will
		 * drop the buffers and mark the page clean - it can be freed.
		 *
		 * Rarely, pages can have buffers and no ->mapping.  These are
		 * the pages which were not successfully invalidated in
		 * truncate_complete_page().  We try to drop those buffers here
		 * and if that worked, and the page is no longer mapped into
		 * process address space (page_count == 1) it can be freed.
		 * Otherwise, leave the page on the LRU so it is swappable.
		 */
1249
		if (page_has_private(page)) {
L
Linus Torvalds 已提交
1250 1251
			if (!try_to_release_page(page, sc->gfp_mask))
				goto activate_locked;
N
Nick Piggin 已提交
1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267
			if (!mapping && page_count(page) == 1) {
				unlock_page(page);
				if (put_page_testzero(page))
					goto free_it;
				else {
					/*
					 * rare race with speculative reference.
					 * the speculative reference will free
					 * this page shortly, so we may
					 * increment nr_reclaimed here (and
					 * leave it off the LRU).
					 */
					nr_reclaimed++;
					continue;
				}
			}
L
Linus Torvalds 已提交
1268 1269
		}

M
Minchan Kim 已提交
1270
lazyfree:
1271
		if (!mapping || !__remove_mapping(mapping, page, true))
1272
			goto keep_locked;
L
Linus Torvalds 已提交
1273

N
Nick Piggin 已提交
1274 1275 1276 1277 1278 1279 1280
		/*
		 * At this point, we have no other references and there is
		 * no way to pick any more up (removed from LRU, removed
		 * from pagecache). Can use non-atomic bitops now (and
		 * we obviously don't have to worry about waking up a process
		 * waiting on the page lock, because there are no references.
		 */
1281
		__ClearPageLocked(page);
N
Nick Piggin 已提交
1282
free_it:
M
Minchan Kim 已提交
1283 1284 1285
		if (ret == SWAP_LZFREE)
			count_vm_event(PGLAZYFREED);

1286
		nr_reclaimed++;
1287 1288 1289 1290 1291 1292

		/*
		 * Is there need to periodically free_page_list? It would
		 * appear not as the counts should be low
		 */
		list_add(&page->lru, &free_pages);
L
Linus Torvalds 已提交
1293 1294
		continue;

N
Nick Piggin 已提交
1295
cull_mlocked:
1296 1297
		if (PageSwapCache(page))
			try_to_free_swap(page);
N
Nick Piggin 已提交
1298
		unlock_page(page);
1299
		list_add(&page->lru, &ret_pages);
N
Nick Piggin 已提交
1300 1301
		continue;

L
Linus Torvalds 已提交
1302
activate_locked:
1303
		/* Not a candidate for swapping, so reclaim swap space. */
1304
		if (PageSwapCache(page) && mem_cgroup_swap_full(page))
1305
			try_to_free_swap(page);
1306
		VM_BUG_ON_PAGE(PageActive(page), page);
L
Linus Torvalds 已提交
1307 1308 1309 1310 1311 1312
		SetPageActive(page);
		pgactivate++;
keep_locked:
		unlock_page(page);
keep:
		list_add(&page->lru, &ret_pages);
1313
		VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
L
Linus Torvalds 已提交
1314
	}
1315

1316
	mem_cgroup_uncharge_list(&free_pages);
1317
	try_to_unmap_flush();
1318
	free_hot_cold_page_list(&free_pages, true);
1319

L
Linus Torvalds 已提交
1320
	list_splice(&ret_pages, page_list);
1321
	count_vm_events(PGACTIVATE, pgactivate);
1322

1323 1324 1325 1326 1327 1328
	if (stat) {
		stat->nr_dirty = nr_dirty;
		stat->nr_congested = nr_congested;
		stat->nr_unqueued_dirty = nr_unqueued_dirty;
		stat->nr_writeback = nr_writeback;
		stat->nr_immediate = nr_immediate;
1329 1330 1331
		stat->nr_activate = pgactivate;
		stat->nr_ref_keep = nr_ref_keep;
		stat->nr_unmap_fail = nr_unmap_fail;
1332
	}
1333
	return nr_reclaimed;
L
Linus Torvalds 已提交
1334 1335
}

1336 1337 1338 1339 1340 1341 1342 1343
unsigned long reclaim_clean_pages_from_list(struct zone *zone,
					    struct list_head *page_list)
{
	struct scan_control sc = {
		.gfp_mask = GFP_KERNEL,
		.priority = DEF_PRIORITY,
		.may_unmap = 1,
	};
1344
	unsigned long ret;
1345 1346 1347 1348
	struct page *page, *next;
	LIST_HEAD(clean_pages);

	list_for_each_entry_safe(page, next, page_list, lru) {
1349
		if (page_is_file_cache(page) && !PageDirty(page) &&
1350
		    !__PageMovable(page)) {
1351 1352 1353 1354 1355
			ClearPageActive(page);
			list_move(&page->lru, &clean_pages);
		}
	}

M
Mel Gorman 已提交
1356
	ret = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
1357
			TTU_UNMAP|TTU_IGNORE_ACCESS, NULL, true);
1358
	list_splice(&clean_pages, page_list);
M
Mel Gorman 已提交
1359
	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -ret);
1360 1361 1362
	return ret;
}

A
Andy Whitcroft 已提交
1363 1364 1365 1366 1367 1368 1369 1370 1371 1372
/*
 * Attempt to remove the specified page from its LRU.  Only take this page
 * if it is of the appropriate PageActive status.  Pages which are being
 * freed elsewhere are also ignored.
 *
 * page:	page to consider
 * mode:	one of the LRU isolation modes defined above
 *
 * returns 0 on success, -ve errno on failure.
 */
1373
int __isolate_lru_page(struct page *page, isolate_mode_t mode)
A
Andy Whitcroft 已提交
1374 1375 1376 1377 1378 1379 1380
{
	int ret = -EINVAL;

	/* Only take pages on the LRU. */
	if (!PageLRU(page))
		return ret;

M
Minchan Kim 已提交
1381 1382
	/* Compaction should not handle unevictable pages but CMA can do so */
	if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
L
Lee Schermerhorn 已提交
1383 1384
		return ret;

A
Andy Whitcroft 已提交
1385
	ret = -EBUSY;
K
KAMEZAWA Hiroyuki 已提交
1386

1387 1388 1389 1390 1391 1392 1393 1394
	/*
	 * To minimise LRU disruption, the caller can indicate that it only
	 * wants to isolate pages it will be able to operate on without
	 * blocking - clean pages for the most part.
	 *
	 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
	 * that it is possible to migrate without blocking
	 */
1395
	if (mode & ISOLATE_ASYNC_MIGRATE) {
1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412
		/* All the caller can do on PageWriteback is block */
		if (PageWriteback(page))
			return ret;

		if (PageDirty(page)) {
			struct address_space *mapping;

			/*
			 * Only pages without mappings or that have a
			 * ->migratepage callback are possible to migrate
			 * without blocking
			 */
			mapping = page_mapping(page);
			if (mapping && !mapping->a_ops->migratepage)
				return ret;
		}
	}
1413

1414 1415 1416
	if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
		return ret;

A
Andy Whitcroft 已提交
1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429
	if (likely(get_page_unless_zero(page))) {
		/*
		 * Be careful not to clear PageLRU until after we're
		 * sure the page is not being freed elsewhere -- the
		 * page release code relies on it.
		 */
		ClearPageLRU(page);
		ret = 0;
	}

	return ret;
}

1430 1431 1432 1433 1434 1435

/*
 * Update LRU sizes after isolating pages. The LRU size updates must
 * be complete before mem_cgroup_update_lru_size due to a santity check.
 */
static __always_inline void update_lru_sizes(struct lruvec *lruvec,
1436
			enum lru_list lru, unsigned long *nr_zone_taken)
1437 1438 1439 1440 1441 1442 1443 1444 1445
{
	int zid;

	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
		if (!nr_zone_taken[zid])
			continue;

		__update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
#ifdef CONFIG_MEMCG
1446
		mem_cgroup_update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1447
#endif
1448 1449
	}

1450 1451
}

L
Linus Torvalds 已提交
1452
/*
1453
 * zone_lru_lock is heavily contended.  Some of the functions that
L
Linus Torvalds 已提交
1454 1455 1456 1457 1458 1459 1460 1461 1462
 * shrink the lists perform better by taking out a batch of pages
 * and working on them outside the LRU lock.
 *
 * For pagecache intensive workloads, this function is the hottest
 * spot in the kernel (apart from copy_*_user functions).
 *
 * Appropriate locks must be held before calling this function.
 *
 * @nr_to_scan:	The number of pages to look through on the list.
1463
 * @lruvec:	The LRU vector to pull pages from.
L
Linus Torvalds 已提交
1464
 * @dst:	The temp list to put pages on to.
H
Hugh Dickins 已提交
1465
 * @nr_scanned:	The number of pages that were scanned.
1466
 * @sc:		The scan_control struct for this reclaim session
A
Andy Whitcroft 已提交
1467
 * @mode:	One of the LRU isolation modes
1468
 * @lru:	LRU list id for isolating
L
Linus Torvalds 已提交
1469 1470 1471
 *
 * returns how many pages were moved onto *@dst.
 */
1472
static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1473
		struct lruvec *lruvec, struct list_head *dst,
1474
		unsigned long *nr_scanned, struct scan_control *sc,
1475
		isolate_mode_t mode, enum lru_list lru)
L
Linus Torvalds 已提交
1476
{
H
Hugh Dickins 已提交
1477
	struct list_head *src = &lruvec->lists[lru];
1478
	unsigned long nr_taken = 0;
M
Mel Gorman 已提交
1479
	unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
1480
	unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
1481
	unsigned long skipped = 0, total_skipped = 0;
M
Mel Gorman 已提交
1482
	unsigned long scan, nr_pages;
1483
	LIST_HEAD(pages_skipped);
L
Linus Torvalds 已提交
1484

1485
	for (scan = 0; scan < nr_to_scan && nr_taken < nr_to_scan &&
1486
					!list_empty(src);) {
A
Andy Whitcroft 已提交
1487 1488
		struct page *page;

L
Linus Torvalds 已提交
1489 1490 1491
		page = lru_to_page(src);
		prefetchw_prev_lru_page(page, src, flags);

1492
		VM_BUG_ON_PAGE(!PageLRU(page), page);
N
Nick Piggin 已提交
1493

1494 1495
		if (page_zonenum(page) > sc->reclaim_idx) {
			list_move(&page->lru, &pages_skipped);
1496
			nr_skipped[page_zonenum(page)]++;
1497 1498 1499
			continue;
		}

1500 1501 1502 1503 1504 1505
		/*
		 * Account for scanned and skipped separetly to avoid the pgdat
		 * being prematurely marked unreclaimable by pgdat_reclaimable.
		 */
		scan++;

1506
		switch (__isolate_lru_page(page, mode)) {
A
Andy Whitcroft 已提交
1507
		case 0:
M
Mel Gorman 已提交
1508 1509 1510
			nr_pages = hpage_nr_pages(page);
			nr_taken += nr_pages;
			nr_zone_taken[page_zonenum(page)] += nr_pages;
A
Andy Whitcroft 已提交
1511 1512 1513 1514 1515 1516 1517
			list_move(&page->lru, dst);
			break;

		case -EBUSY:
			/* else it is being freed elsewhere */
			list_move(&page->lru, src);
			continue;
1518

A
Andy Whitcroft 已提交
1519 1520 1521
		default:
			BUG();
		}
L
Linus Torvalds 已提交
1522 1523
	}

1524 1525 1526 1527 1528 1529 1530
	/*
	 * Splice any skipped pages to the start of the LRU list. Note that
	 * this disrupts the LRU order when reclaiming for lower zones but
	 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
	 * scanning would soon rescan the same pages to skip and put the
	 * system at risk of premature OOM.
	 */
1531 1532 1533 1534 1535 1536 1537 1538
	if (!list_empty(&pages_skipped)) {
		int zid;

		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
			if (!nr_skipped[zid])
				continue;

			__count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1539
			skipped += nr_skipped[zid];
1540
		}
1541 1542 1543 1544 1545 1546

		/*
		 * Account skipped pages as a partial scan as the pgdat may be
		 * close to unreclaimable. If the LRU list is empty, account
		 * skipped pages as a full scan.
		 */
1547
		total_skipped = list_empty(src) ? skipped : skipped >> 2;
1548 1549

		list_splice(&pages_skipped, src);
1550
	}
1551 1552
	*nr_scanned = scan + total_skipped;
	trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
1553
				    scan, skipped, nr_taken, mode, lru);
1554
	update_lru_sizes(lruvec, lru, nr_zone_taken);
L
Linus Torvalds 已提交
1555 1556 1557
	return nr_taken;
}

1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568
/**
 * isolate_lru_page - tries to isolate a page from its LRU list
 * @page: page to isolate from its LRU list
 *
 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
 * vmstat statistic corresponding to whatever LRU list the page was on.
 *
 * Returns 0 if the page was removed from an LRU list.
 * Returns -EBUSY if the page was not on an LRU list.
 *
 * The returned page will have PageLRU() cleared.  If it was found on
L
Lee Schermerhorn 已提交
1569 1570 1571
 * the active list, it will have PageActive set.  If it was found on
 * the unevictable list, it will have the PageUnevictable bit set. That flag
 * may need to be cleared by the caller before letting the page go.
1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586
 *
 * The vmstat statistic corresponding to the list on which the page was
 * found will be decremented.
 *
 * Restrictions:
 * (1) Must be called with an elevated refcount on the page. This is a
 *     fundamentnal difference from isolate_lru_pages (which is called
 *     without a stable reference).
 * (2) the lru_lock must not be held.
 * (3) interrupts must be enabled.
 */
int isolate_lru_page(struct page *page)
{
	int ret = -EBUSY;

1587
	VM_BUG_ON_PAGE(!page_count(page), page);
1588
	WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
1589

1590 1591
	if (PageLRU(page)) {
		struct zone *zone = page_zone(page);
1592
		struct lruvec *lruvec;
1593

1594
		spin_lock_irq(zone_lru_lock(zone));
M
Mel Gorman 已提交
1595
		lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
1596
		if (PageLRU(page)) {
L
Lee Schermerhorn 已提交
1597
			int lru = page_lru(page);
1598
			get_page(page);
1599
			ClearPageLRU(page);
1600 1601
			del_page_from_lru_list(page, lruvec, lru);
			ret = 0;
1602
		}
1603
		spin_unlock_irq(zone_lru_lock(zone));
1604 1605 1606 1607
	}
	return ret;
}

1608
/*
F
Fengguang Wu 已提交
1609 1610 1611 1612 1613
 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
 * then get resheduled. When there are massive number of tasks doing page
 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
 * the LRU list will go small and be scanned faster than necessary, leading to
 * unnecessary swapping, thrashing and OOM.
1614
 */
M
Mel Gorman 已提交
1615
static int too_many_isolated(struct pglist_data *pgdat, int file,
1616 1617 1618 1619 1620 1621 1622
		struct scan_control *sc)
{
	unsigned long inactive, isolated;

	if (current_is_kswapd())
		return 0;

1623
	if (!sane_reclaim(sc))
1624 1625 1626
		return 0;

	if (file) {
M
Mel Gorman 已提交
1627 1628
		inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
		isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
1629
	} else {
M
Mel Gorman 已提交
1630 1631
		inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
		isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
1632 1633
	}

1634 1635 1636 1637 1638
	/*
	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
	 * won't get blocked by normal direct-reclaimers, forming a circular
	 * deadlock.
	 */
1639
	if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
1640 1641
		inactive >>= 3;

1642 1643 1644
	return isolated > inactive;
}

1645
static noinline_for_stack void
H
Hugh Dickins 已提交
1646
putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1647
{
1648
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
M
Mel Gorman 已提交
1649
	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1650
	LIST_HEAD(pages_to_free);
1651 1652 1653 1654 1655

	/*
	 * Put back any unfreeable pages.
	 */
	while (!list_empty(page_list)) {
1656
		struct page *page = lru_to_page(page_list);
1657
		int lru;
1658

1659
		VM_BUG_ON_PAGE(PageLRU(page), page);
1660
		list_del(&page->lru);
1661
		if (unlikely(!page_evictable(page))) {
M
Mel Gorman 已提交
1662
			spin_unlock_irq(&pgdat->lru_lock);
1663
			putback_lru_page(page);
M
Mel Gorman 已提交
1664
			spin_lock_irq(&pgdat->lru_lock);
1665 1666
			continue;
		}
1667

M
Mel Gorman 已提交
1668
		lruvec = mem_cgroup_page_lruvec(page, pgdat);
1669

1670
		SetPageLRU(page);
1671
		lru = page_lru(page);
1672 1673
		add_page_to_lru_list(page, lruvec, lru);

1674 1675
		if (is_active_lru(lru)) {
			int file = is_file_lru(lru);
1676 1677
			int numpages = hpage_nr_pages(page);
			reclaim_stat->recent_rotated[file] += numpages;
1678
		}
1679 1680 1681
		if (put_page_testzero(page)) {
			__ClearPageLRU(page);
			__ClearPageActive(page);
1682
			del_page_from_lru_list(page, lruvec, lru);
1683 1684

			if (unlikely(PageCompound(page))) {
M
Mel Gorman 已提交
1685
				spin_unlock_irq(&pgdat->lru_lock);
1686
				mem_cgroup_uncharge(page);
1687
				(*get_compound_page_dtor(page))(page);
M
Mel Gorman 已提交
1688
				spin_lock_irq(&pgdat->lru_lock);
1689 1690
			} else
				list_add(&page->lru, &pages_to_free);
1691 1692 1693
		}
	}

1694 1695 1696 1697
	/*
	 * To save our caller's stack, now use input list for pages to free.
	 */
	list_splice(&pages_to_free, page_list);
1698 1699
}

1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712
/*
 * If a kernel thread (such as nfsd for loop-back mounts) services
 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
 * In that case we should only throttle if the backing device it is
 * writing to is congested.  In other cases it is safe to throttle.
 */
static int current_may_throttle(void)
{
	return !(current->flags & PF_LESS_THROTTLE) ||
		current->backing_dev_info == NULL ||
		bdi_write_congested(current->backing_dev_info);
}

L
Linus Torvalds 已提交
1713
/*
1714
 * shrink_inactive_list() is a helper for shrink_node().  It returns the number
A
Andrew Morton 已提交
1715
 * of reclaimed pages
L
Linus Torvalds 已提交
1716
 */
1717
static noinline_for_stack unsigned long
1718
shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1719
		     struct scan_control *sc, enum lru_list lru)
L
Linus Torvalds 已提交
1720 1721
{
	LIST_HEAD(page_list);
1722
	unsigned long nr_scanned;
1723
	unsigned long nr_reclaimed = 0;
1724
	unsigned long nr_taken;
1725
	struct reclaim_stat stat = {};
1726
	isolate_mode_t isolate_mode = 0;
1727
	int file = is_file_lru(lru);
M
Mel Gorman 已提交
1728
	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1729
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1730

M
Mel Gorman 已提交
1731
	while (unlikely(too_many_isolated(pgdat, file, sc))) {
1732
		congestion_wait(BLK_RW_ASYNC, HZ/10);
1733 1734 1735 1736 1737 1738

		/* We are about to die and free our memory. Return now. */
		if (fatal_signal_pending(current))
			return SWAP_CLUSTER_MAX;
	}

L
Linus Torvalds 已提交
1739
	lru_add_drain();
1740 1741

	if (!sc->may_unmap)
1742
		isolate_mode |= ISOLATE_UNMAPPED;
1743

M
Mel Gorman 已提交
1744
	spin_lock_irq(&pgdat->lru_lock);
1745

1746 1747
	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
				     &nr_scanned, sc, isolate_mode, lru);
1748

M
Mel Gorman 已提交
1749
	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1750
	reclaim_stat->recent_scanned[file] += nr_taken;
1751

1752
	if (global_reclaim(sc)) {
M
Mel Gorman 已提交
1753
		__mod_node_page_state(pgdat, NR_PAGES_SCANNED, nr_scanned);
1754
		if (current_is_kswapd())
M
Mel Gorman 已提交
1755
			__count_vm_events(PGSCAN_KSWAPD, nr_scanned);
1756
		else
M
Mel Gorman 已提交
1757
			__count_vm_events(PGSCAN_DIRECT, nr_scanned);
1758
	}
M
Mel Gorman 已提交
1759
	spin_unlock_irq(&pgdat->lru_lock);
1760

1761
	if (nr_taken == 0)
1762
		return 0;
A
Andy Whitcroft 已提交
1763

M
Mel Gorman 已提交
1764
	nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, TTU_UNMAP,
1765
				&stat, false);
1766

M
Mel Gorman 已提交
1767
	spin_lock_irq(&pgdat->lru_lock);
1768

Y
Ying Han 已提交
1769 1770
	if (global_reclaim(sc)) {
		if (current_is_kswapd())
M
Mel Gorman 已提交
1771
			__count_vm_events(PGSTEAL_KSWAPD, nr_reclaimed);
Y
Ying Han 已提交
1772
		else
M
Mel Gorman 已提交
1773
			__count_vm_events(PGSTEAL_DIRECT, nr_reclaimed);
Y
Ying Han 已提交
1774
	}
N
Nick Piggin 已提交
1775

1776
	putback_inactive_pages(lruvec, &page_list);
1777

M
Mel Gorman 已提交
1778
	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
1779

M
Mel Gorman 已提交
1780
	spin_unlock_irq(&pgdat->lru_lock);
1781

1782
	mem_cgroup_uncharge_list(&page_list);
1783
	free_hot_cold_page_list(&page_list, true);
1784

1785 1786 1787 1788 1789 1790 1791 1792 1793 1794
	/*
	 * If reclaim is isolating dirty pages under writeback, it implies
	 * that the long-lived page allocation rate is exceeding the page
	 * laundering rate. Either the global limits are not being effective
	 * at throttling processes due to the page distribution throughout
	 * zones or there is heavy usage of a slow backing device. The
	 * only option is to throttle from reclaim context which is not ideal
	 * as there is no guarantee the dirtying process is throttled in the
	 * same way balance_dirty_pages() manages.
	 *
1795 1796 1797
	 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
	 * of pages under pages flagged for immediate reclaim and stall if any
	 * are encountered in the nr_immediate check below.
1798
	 */
1799
	if (stat.nr_writeback && stat.nr_writeback == nr_taken)
M
Mel Gorman 已提交
1800
		set_bit(PGDAT_WRITEBACK, &pgdat->flags);
1801

1802
	/*
1803 1804
	 * Legacy memcg will stall in page writeback so avoid forcibly
	 * stalling here.
1805
	 */
1806
	if (sane_reclaim(sc)) {
1807 1808 1809 1810
		/*
		 * Tag a zone as congested if all the dirty pages scanned were
		 * backed by a congested BDI and wait_iff_congested will stall.
		 */
1811
		if (stat.nr_dirty && stat.nr_dirty == stat.nr_congested)
M
Mel Gorman 已提交
1812
			set_bit(PGDAT_CONGESTED, &pgdat->flags);
1813

1814 1815
		/*
		 * If dirty pages are scanned that are not queued for IO, it
1816 1817 1818 1819 1820 1821 1822 1823 1824
		 * implies that flushers are not doing their job. This can
		 * happen when memory pressure pushes dirty pages to the end of
		 * the LRU before the dirty limits are breached and the dirty
		 * data has expired. It can also happen when the proportion of
		 * dirty pages grows not through writes but through memory
		 * pressure reclaiming all the clean cache. And in some cases,
		 * the flushers simply cannot keep up with the allocation
		 * rate. Nudge the flusher threads in case they are asleep, but
		 * also allow kswapd to start writing pages during reclaim.
1825
		 */
1826 1827
		if (stat.nr_unqueued_dirty == nr_taken) {
			wakeup_flusher_threads(0, WB_REASON_VMSCAN);
M
Mel Gorman 已提交
1828
			set_bit(PGDAT_DIRTY, &pgdat->flags);
1829
		}
1830 1831

		/*
1832 1833 1834
		 * If kswapd scans pages marked marked for immediate
		 * reclaim and under writeback (nr_immediate), it implies
		 * that pages are cycling through the LRU faster than
1835 1836
		 * they are written so also forcibly stall.
		 */
1837
		if (stat.nr_immediate && current_may_throttle())
1838
			congestion_wait(BLK_RW_ASYNC, HZ/10);
1839
	}
1840

1841 1842 1843 1844 1845
	/*
	 * Stall direct reclaim for IO completions if underlying BDIs or zone
	 * is congested. Allow kswapd to continue until it starts encountering
	 * unqueued dirty pages or cycling through the LRU too quickly.
	 */
1846 1847
	if (!sc->hibernation_mode && !current_is_kswapd() &&
	    current_may_throttle())
M
Mel Gorman 已提交
1848
		wait_iff_congested(pgdat, BLK_RW_ASYNC, HZ/10);
1849

M
Mel Gorman 已提交
1850 1851
	trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
			nr_scanned, nr_reclaimed,
1852 1853 1854 1855
			stat.nr_dirty,  stat.nr_writeback,
			stat.nr_congested, stat.nr_immediate,
			stat.nr_activate, stat.nr_ref_keep,
			stat.nr_unmap_fail,
1856
			sc->priority, file);
1857
	return nr_reclaimed;
L
Linus Torvalds 已提交
1858 1859 1860 1861 1862 1863 1864 1865 1866
}

/*
 * This moves pages from the active list to the inactive list.
 *
 * We move them the other way if the page is referenced by one or more
 * processes, from rmap.
 *
 * If the pages are mostly unmapped, the processing is fast and it is
1867
 * appropriate to hold zone_lru_lock across the whole operation.  But if
L
Linus Torvalds 已提交
1868
 * the pages are mapped, the processing is slow (page_referenced()) so we
1869
 * should drop zone_lru_lock around each page.  It's impossible to balance
L
Linus Torvalds 已提交
1870 1871 1872 1873
 * this, so instead we remove the pages from the LRU while processing them.
 * It is safe to rely on PG_active against the non-LRU pages in here because
 * nobody will play with that bit on a non-LRU page.
 *
1874
 * The downside is that we have to touch page->_refcount against each page.
L
Linus Torvalds 已提交
1875
 * But we had to alter page->flags anyway.
1876 1877
 *
 * Returns the number of pages moved to the given lru.
L
Linus Torvalds 已提交
1878
 */
1879

1880
static unsigned move_active_pages_to_lru(struct lruvec *lruvec,
1881
				     struct list_head *list,
1882
				     struct list_head *pages_to_free,
1883 1884
				     enum lru_list lru)
{
M
Mel Gorman 已提交
1885
	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1886
	struct page *page;
1887
	int nr_pages;
1888
	int nr_moved = 0;
1889 1890 1891

	while (!list_empty(list)) {
		page = lru_to_page(list);
M
Mel Gorman 已提交
1892
		lruvec = mem_cgroup_page_lruvec(page, pgdat);
1893

1894
		VM_BUG_ON_PAGE(PageLRU(page), page);
1895 1896
		SetPageLRU(page);

1897
		nr_pages = hpage_nr_pages(page);
M
Mel Gorman 已提交
1898
		update_lru_size(lruvec, lru, page_zonenum(page), nr_pages);
1899
		list_move(&page->lru, &lruvec->lists[lru]);
1900

1901 1902 1903
		if (put_page_testzero(page)) {
			__ClearPageLRU(page);
			__ClearPageActive(page);
1904
			del_page_from_lru_list(page, lruvec, lru);
1905 1906

			if (unlikely(PageCompound(page))) {
M
Mel Gorman 已提交
1907
				spin_unlock_irq(&pgdat->lru_lock);
1908
				mem_cgroup_uncharge(page);
1909
				(*get_compound_page_dtor(page))(page);
M
Mel Gorman 已提交
1910
				spin_lock_irq(&pgdat->lru_lock);
1911 1912
			} else
				list_add(&page->lru, pages_to_free);
1913 1914
		} else {
			nr_moved += nr_pages;
1915 1916
		}
	}
1917

1918
	if (!is_active_lru(lru))
1919
		__count_vm_events(PGDEACTIVATE, nr_moved);
1920 1921

	return nr_moved;
1922
}
1923

H
Hugh Dickins 已提交
1924
static void shrink_active_list(unsigned long nr_to_scan,
1925
			       struct lruvec *lruvec,
1926
			       struct scan_control *sc,
1927
			       enum lru_list lru)
L
Linus Torvalds 已提交
1928
{
1929
	unsigned long nr_taken;
H
Hugh Dickins 已提交
1930
	unsigned long nr_scanned;
1931
	unsigned long vm_flags;
L
Linus Torvalds 已提交
1932
	LIST_HEAD(l_hold);	/* The pages which were snipped off */
1933
	LIST_HEAD(l_active);
1934
	LIST_HEAD(l_inactive);
L
Linus Torvalds 已提交
1935
	struct page *page;
1936
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1937 1938
	unsigned nr_deactivate, nr_activate;
	unsigned nr_rotated = 0;
1939
	isolate_mode_t isolate_mode = 0;
1940
	int file = is_file_lru(lru);
M
Mel Gorman 已提交
1941
	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
L
Linus Torvalds 已提交
1942 1943

	lru_add_drain();
1944 1945

	if (!sc->may_unmap)
1946
		isolate_mode |= ISOLATE_UNMAPPED;
1947

M
Mel Gorman 已提交
1948
	spin_lock_irq(&pgdat->lru_lock);
1949

1950 1951
	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
				     &nr_scanned, sc, isolate_mode, lru);
1952

M
Mel Gorman 已提交
1953
	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1954
	reclaim_stat->recent_scanned[file] += nr_taken;
1955

1956
	if (global_reclaim(sc))
M
Mel Gorman 已提交
1957 1958
		__mod_node_page_state(pgdat, NR_PAGES_SCANNED, nr_scanned);
	__count_vm_events(PGREFILL, nr_scanned);
1959

M
Mel Gorman 已提交
1960
	spin_unlock_irq(&pgdat->lru_lock);
L
Linus Torvalds 已提交
1961 1962 1963 1964 1965

	while (!list_empty(&l_hold)) {
		cond_resched();
		page = lru_to_page(&l_hold);
		list_del(&page->lru);
1966

1967
		if (unlikely(!page_evictable(page))) {
L
Lee Schermerhorn 已提交
1968 1969 1970 1971
			putback_lru_page(page);
			continue;
		}

1972 1973 1974 1975 1976 1977 1978 1979
		if (unlikely(buffer_heads_over_limit)) {
			if (page_has_private(page) && trylock_page(page)) {
				if (page_has_private(page))
					try_to_release_page(page, 0);
				unlock_page(page);
			}
		}

1980 1981
		if (page_referenced(page, 0, sc->target_mem_cgroup,
				    &vm_flags)) {
1982
			nr_rotated += hpage_nr_pages(page);
1983 1984 1985 1986 1987 1988 1989 1990 1991
			/*
			 * Identify referenced, file-backed active pages and
			 * give them one more trip around the active list. So
			 * that executable code get better chances to stay in
			 * memory under moderate memory pressure.  Anon pages
			 * are not likely to be evicted by use-once streaming
			 * IO, plus JVM can create lots of anon VM_EXEC pages,
			 * so we ignore them here.
			 */
1992
			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1993 1994 1995 1996
				list_add(&page->lru, &l_active);
				continue;
			}
		}
1997

1998
		ClearPageActive(page);	/* we are de-activating */
L
Linus Torvalds 已提交
1999 2000 2001
		list_add(&page->lru, &l_inactive);
	}

2002
	/*
2003
	 * Move pages back to the lru list.
2004
	 */
M
Mel Gorman 已提交
2005
	spin_lock_irq(&pgdat->lru_lock);
2006
	/*
2007 2008 2009
	 * Count referenced pages from currently used mappings as rotated,
	 * even though only some of them are actually re-activated.  This
	 * helps balance scan pressure between file and anonymous pages in
2010
	 * get_scan_count.
2011
	 */
2012
	reclaim_stat->recent_rotated[file] += nr_rotated;
2013

2014 2015
	nr_activate = move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
	nr_deactivate = move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
M
Mel Gorman 已提交
2016 2017
	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
	spin_unlock_irq(&pgdat->lru_lock);
2018

2019
	mem_cgroup_uncharge_list(&l_hold);
2020
	free_hot_cold_page_list(&l_hold, true);
2021 2022
	trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
			nr_deactivate, nr_rotated, sc->priority, file);
L
Linus Torvalds 已提交
2023 2024
}

2025 2026 2027
/*
 * The inactive anon list should be small enough that the VM never has
 * to do too much work.
2028
 *
2029 2030 2031
 * The inactive file list should be small enough to leave most memory
 * to the established workingset on the scan-resistant active list,
 * but large enough to avoid thrashing the aggregate readahead window.
2032
 *
2033 2034
 * Both inactive lists should also be large enough that each inactive
 * page has a chance to be referenced again before it is reclaimed.
2035
 *
2036 2037 2038
 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
 * on this LRU, maintained by the pageout code. A zone->inactive_ratio
 * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
2039
 *
2040 2041 2042 2043 2044 2045 2046 2047 2048 2049
 * total     target    max
 * memory    ratio     inactive
 * -------------------------------------
 *   10MB       1         5MB
 *  100MB       1        50MB
 *    1GB       3       250MB
 *   10GB      10       0.9GB
 *  100GB      31         3GB
 *    1TB     101        10GB
 *   10TB     320        32GB
2050
 */
2051
static bool inactive_list_is_low(struct lruvec *lruvec, bool file,
2052
						struct scan_control *sc, bool trace)
2053
{
2054
	unsigned long inactive_ratio;
2055 2056 2057
	unsigned long inactive, active;
	enum lru_list inactive_lru = file * LRU_FILE;
	enum lru_list active_lru = file * LRU_FILE + LRU_ACTIVE;
2058
	unsigned long gb;
2059

2060 2061 2062 2063 2064 2065
	/*
	 * If we don't have swap space, anonymous page deactivation
	 * is pointless.
	 */
	if (!file && !total_swap_pages)
		return false;
2066

2067 2068
	inactive = lruvec_lru_size(lruvec, inactive_lru, sc->reclaim_idx);
	active = lruvec_lru_size(lruvec, active_lru, sc->reclaim_idx);
2069

2070 2071 2072
	gb = (inactive + active) >> (30 - PAGE_SHIFT);
	if (gb)
		inactive_ratio = int_sqrt(10 * gb);
2073
	else
2074 2075
		inactive_ratio = 1;

2076
	if (trace)
2077
		trace_mm_vmscan_inactive_list_is_low(lruvec_pgdat(lruvec)->node_id,
2078
				sc->reclaim_idx,
2079 2080 2081 2082
				lruvec_lru_size(lruvec, inactive_lru, MAX_NR_ZONES), inactive,
				lruvec_lru_size(lruvec, active_lru, MAX_NR_ZONES), active,
				inactive_ratio, file);

2083
	return inactive * inactive_ratio < active;
2084 2085
}

2086
static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2087
				 struct lruvec *lruvec, struct scan_control *sc)
2088
{
2089
	if (is_active_lru(lru)) {
2090
		if (inactive_list_is_low(lruvec, is_file_lru(lru), sc, true))
2091
			shrink_active_list(nr_to_scan, lruvec, sc, lru);
2092 2093 2094
		return 0;
	}

2095
	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2096 2097
}

2098 2099 2100 2101 2102 2103 2104
enum scan_balance {
	SCAN_EQUAL,
	SCAN_FRACT,
	SCAN_ANON,
	SCAN_FILE,
};

2105 2106 2107 2108 2109 2110
/*
 * Determine how aggressively the anon and file LRU lists should be
 * scanned.  The relative value of each set of LRU lists is determined
 * by looking at the fraction of the pages scanned we did rotate back
 * onto the active list instead of evict.
 *
W
Wanpeng Li 已提交
2111 2112
 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
2113
 */
2114
static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg,
2115 2116
			   struct scan_control *sc, unsigned long *nr,
			   unsigned long *lru_pages)
2117
{
2118
	int swappiness = mem_cgroup_swappiness(memcg);
2119 2120 2121
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
	u64 fraction[2];
	u64 denominator = 0;	/* gcc */
M
Mel Gorman 已提交
2122
	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2123
	unsigned long anon_prio, file_prio;
2124
	enum scan_balance scan_balance;
2125
	unsigned long anon, file;
2126
	bool force_scan = false;
2127
	unsigned long ap, fp;
H
Hugh Dickins 已提交
2128
	enum lru_list lru;
2129 2130
	bool some_scanned;
	int pass;
2131

2132 2133 2134 2135 2136 2137 2138 2139 2140 2141
	/*
	 * If the zone or memcg is small, nr[l] can be 0.  This
	 * results in no scanning on this priority and a potential
	 * priority drop.  Global direct reclaim can go to the next
	 * zone and tends to have no problems. Global kswapd is for
	 * zone balancing and it needs to scan a minimum amount. When
	 * reclaiming for a memcg, a priority drop can cause high
	 * latencies, so it's better to scan a minimum amount there as
	 * well.
	 */
2142
	if (current_is_kswapd()) {
M
Mel Gorman 已提交
2143
		if (!pgdat_reclaimable(pgdat))
2144
			force_scan = true;
2145
		if (!mem_cgroup_online(memcg))
2146 2147
			force_scan = true;
	}
2148
	if (!global_reclaim(sc))
2149
		force_scan = true;
2150 2151

	/* If we have no swap space, do not bother scanning anon pages. */
2152
	if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
2153
		scan_balance = SCAN_FILE;
2154 2155
		goto out;
	}
2156

2157 2158 2159 2160 2161 2162 2163
	/*
	 * Global reclaim will swap to prevent OOM even with no
	 * swappiness, but memcg users want to use this knob to
	 * disable swapping for individual groups completely when
	 * using the memory controller's swap limit feature would be
	 * too expensive.
	 */
2164
	if (!global_reclaim(sc) && !swappiness) {
2165
		scan_balance = SCAN_FILE;
2166 2167 2168 2169 2170 2171 2172 2173
		goto out;
	}

	/*
	 * Do not apply any pressure balancing cleverness when the
	 * system is close to OOM, scan both anon and file equally
	 * (unless the swappiness setting disagrees with swapping).
	 */
2174
	if (!sc->priority && swappiness) {
2175
		scan_balance = SCAN_EQUAL;
2176 2177 2178
		goto out;
	}

2179 2180 2181 2182 2183 2184 2185 2186 2187 2188
	/*
	 * Prevent the reclaimer from falling into the cache trap: as
	 * cache pages start out inactive, every cache fault will tip
	 * the scan balance towards the file LRU.  And as the file LRU
	 * shrinks, so does the window for rotation from references.
	 * This means we have a runaway feedback loop where a tiny
	 * thrashing file LRU becomes infinitely more attractive than
	 * anon pages.  Try to detect this based on file LRU size.
	 */
	if (global_reclaim(sc)) {
M
Mel Gorman 已提交
2189 2190 2191 2192
		unsigned long pgdatfile;
		unsigned long pgdatfree;
		int z;
		unsigned long total_high_wmark = 0;
2193

M
Mel Gorman 已提交
2194 2195 2196 2197 2198 2199
		pgdatfree = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
		pgdatfile = node_page_state(pgdat, NR_ACTIVE_FILE) +
			   node_page_state(pgdat, NR_INACTIVE_FILE);

		for (z = 0; z < MAX_NR_ZONES; z++) {
			struct zone *zone = &pgdat->node_zones[z];
2200
			if (!managed_zone(zone))
M
Mel Gorman 已提交
2201 2202 2203 2204
				continue;

			total_high_wmark += high_wmark_pages(zone);
		}
2205

M
Mel Gorman 已提交
2206
		if (unlikely(pgdatfile + pgdatfree <= total_high_wmark)) {
2207 2208 2209 2210 2211
			scan_balance = SCAN_ANON;
			goto out;
		}
	}

2212
	/*
2213 2214 2215 2216 2217 2218 2219
	 * If there is enough inactive page cache, i.e. if the size of the
	 * inactive list is greater than that of the active list *and* the
	 * inactive list actually has some pages to scan on this priority, we
	 * do not reclaim anything from the anonymous working set right now.
	 * Without the second condition we could end up never scanning an
	 * lruvec even if it has plenty of old anonymous pages unless the
	 * system is under heavy pressure.
2220
	 */
2221
	if (!inactive_list_is_low(lruvec, true, sc, false) &&
2222
	    lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, sc->reclaim_idx) >> sc->priority) {
2223
		scan_balance = SCAN_FILE;
2224 2225 2226
		goto out;
	}

2227 2228
	scan_balance = SCAN_FRACT;

2229 2230 2231 2232
	/*
	 * With swappiness at 100, anonymous and file have the same priority.
	 * This scanning priority is essentially the inverse of IO cost.
	 */
2233
	anon_prio = swappiness;
H
Hugh Dickins 已提交
2234
	file_prio = 200 - anon_prio;
2235

2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246
	/*
	 * OK, so we have swap space and a fair amount of page cache
	 * pages.  We use the recently rotated / recently scanned
	 * ratios to determine how valuable each cache is.
	 *
	 * Because workloads change over time (and to avoid overflow)
	 * we keep these statistics as a floating average, which ends
	 * up weighing recent references more than old ones.
	 *
	 * anon in [0], file in [1]
	 */
2247

2248 2249 2250 2251
	anon  = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON, MAX_NR_ZONES) +
		lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, MAX_NR_ZONES);
	file  = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE, MAX_NR_ZONES) +
		lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, MAX_NR_ZONES);
2252

M
Mel Gorman 已提交
2253
	spin_lock_irq(&pgdat->lru_lock);
2254 2255 2256
	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
		reclaim_stat->recent_scanned[0] /= 2;
		reclaim_stat->recent_rotated[0] /= 2;
2257 2258
	}

2259 2260 2261
	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
		reclaim_stat->recent_scanned[1] /= 2;
		reclaim_stat->recent_rotated[1] /= 2;
2262 2263 2264
	}

	/*
2265 2266 2267
	 * The amount of pressure on anon vs file pages is inversely
	 * proportional to the fraction of recently scanned pages on
	 * each list that were recently referenced and in active use.
2268
	 */
2269
	ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
2270
	ap /= reclaim_stat->recent_rotated[0] + 1;
2271

2272
	fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
2273
	fp /= reclaim_stat->recent_rotated[1] + 1;
M
Mel Gorman 已提交
2274
	spin_unlock_irq(&pgdat->lru_lock);
2275

2276 2277 2278 2279
	fraction[0] = ap;
	fraction[1] = fp;
	denominator = ap + fp + 1;
out:
2280 2281 2282
	some_scanned = false;
	/* Only use force_scan on second pass. */
	for (pass = 0; !some_scanned && pass < 2; pass++) {
2283
		*lru_pages = 0;
2284 2285 2286 2287
		for_each_evictable_lru(lru) {
			int file = is_file_lru(lru);
			unsigned long size;
			unsigned long scan;
2288

2289
			size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
2290
			scan = size >> sc->priority;
2291

2292 2293
			if (!scan && pass && force_scan)
				scan = min(size, SWAP_CLUSTER_MAX);
2294

2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309
			switch (scan_balance) {
			case SCAN_EQUAL:
				/* Scan lists relative to size */
				break;
			case SCAN_FRACT:
				/*
				 * Scan types proportional to swappiness and
				 * their relative recent reclaim efficiency.
				 */
				scan = div64_u64(scan * fraction[file],
							denominator);
				break;
			case SCAN_FILE:
			case SCAN_ANON:
				/* Scan one type exclusively */
2310 2311
				if ((scan_balance == SCAN_FILE) != file) {
					size = 0;
2312
					scan = 0;
2313
				}
2314 2315 2316 2317 2318
				break;
			default:
				/* Look ma, no brain */
				BUG();
			}
2319 2320

			*lru_pages += size;
2321
			nr[lru] = scan;
2322

2323
			/*
2324 2325
			 * Skip the second pass and don't force_scan,
			 * if we found something to scan.
2326
			 */
2327
			some_scanned |= !!scan;
2328
		}
2329
	}
2330
}
2331

2332
/*
2333
 * This is a basic per-node page freer.  Used by both kswapd and direct reclaim.
2334
 */
2335
static void shrink_node_memcg(struct pglist_data *pgdat, struct mem_cgroup *memcg,
2336
			      struct scan_control *sc, unsigned long *lru_pages)
2337
{
2338
	struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
2339
	unsigned long nr[NR_LRU_LISTS];
2340
	unsigned long targets[NR_LRU_LISTS];
2341 2342 2343 2344 2345
	unsigned long nr_to_scan;
	enum lru_list lru;
	unsigned long nr_reclaimed = 0;
	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
	struct blk_plug plug;
2346
	bool scan_adjusted;
2347

2348
	get_scan_count(lruvec, memcg, sc, nr, lru_pages);
2349

2350 2351 2352
	/* Record the original scan target for proportional adjustments later */
	memcpy(targets, nr, sizeof(nr));

2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366
	/*
	 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
	 * event that can occur when there is little memory pressure e.g.
	 * multiple streaming readers/writers. Hence, we do not abort scanning
	 * when the requested number of pages are reclaimed when scanning at
	 * DEF_PRIORITY on the assumption that the fact we are direct
	 * reclaiming implies that kswapd is not keeping up and it is best to
	 * do a batch of work at once. For memcg reclaim one check is made to
	 * abort proportional reclaim if either the file or anon lru has already
	 * dropped to zero at the first pass.
	 */
	scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
			 sc->priority == DEF_PRIORITY);

2367 2368 2369
	blk_start_plug(&plug);
	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
					nr[LRU_INACTIVE_FILE]) {
2370 2371 2372
		unsigned long nr_anon, nr_file, percentage;
		unsigned long nr_scanned;

2373 2374 2375 2376 2377 2378 2379 2380 2381
		for_each_evictable_lru(lru) {
			if (nr[lru]) {
				nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
				nr[lru] -= nr_to_scan;

				nr_reclaimed += shrink_list(lru, nr_to_scan,
							    lruvec, sc);
			}
		}
2382

2383 2384
		cond_resched();

2385 2386 2387 2388 2389
		if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
			continue;

		/*
		 * For kswapd and memcg, reclaim at least the number of pages
2390
		 * requested. Ensure that the anon and file LRUs are scanned
2391 2392 2393 2394 2395 2396 2397
		 * proportionally what was requested by get_scan_count(). We
		 * stop reclaiming one LRU and reduce the amount scanning
		 * proportional to the original scan target.
		 */
		nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
		nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];

2398 2399 2400 2401 2402 2403 2404 2405 2406
		/*
		 * It's just vindictive to attack the larger once the smaller
		 * has gone to zero.  And given the way we stop scanning the
		 * smaller below, this makes sure that we only make one nudge
		 * towards proportionality once we've got nr_to_reclaim.
		 */
		if (!nr_file || !nr_anon)
			break;

2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437
		if (nr_file > nr_anon) {
			unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
						targets[LRU_ACTIVE_ANON] + 1;
			lru = LRU_BASE;
			percentage = nr_anon * 100 / scan_target;
		} else {
			unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
						targets[LRU_ACTIVE_FILE] + 1;
			lru = LRU_FILE;
			percentage = nr_file * 100 / scan_target;
		}

		/* Stop scanning the smaller of the LRU */
		nr[lru] = 0;
		nr[lru + LRU_ACTIVE] = 0;

		/*
		 * Recalculate the other LRU scan count based on its original
		 * scan target and the percentage scanning already complete
		 */
		lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
		nr_scanned = targets[lru] - nr[lru];
		nr[lru] = targets[lru] * (100 - percentage) / 100;
		nr[lru] -= min(nr[lru], nr_scanned);

		lru += LRU_ACTIVE;
		nr_scanned = targets[lru] - nr[lru];
		nr[lru] = targets[lru] * (100 - percentage) / 100;
		nr[lru] -= min(nr[lru], nr_scanned);

		scan_adjusted = true;
2438 2439 2440 2441 2442 2443 2444 2445
	}
	blk_finish_plug(&plug);
	sc->nr_reclaimed += nr_reclaimed;

	/*
	 * Even if we did not try to evict anon pages at all, we want to
	 * rebalance the anon lru active/inactive ratio.
	 */
2446
	if (inactive_list_is_low(lruvec, false, sc, true))
2447 2448 2449 2450
		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
				   sc, LRU_ACTIVE_ANON);
}

M
Mel Gorman 已提交
2451
/* Use reclaim/compaction for costly allocs or under memory pressure */
2452
static bool in_reclaim_compaction(struct scan_control *sc)
M
Mel Gorman 已提交
2453
{
2454
	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
M
Mel Gorman 已提交
2455
			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2456
			 sc->priority < DEF_PRIORITY - 2))
M
Mel Gorman 已提交
2457 2458 2459 2460 2461
		return true;

	return false;
}

2462
/*
M
Mel Gorman 已提交
2463 2464 2465 2466 2467
 * Reclaim/compaction is used for high-order allocation requests. It reclaims
 * order-0 pages before compacting the zone. should_continue_reclaim() returns
 * true if more pages should be reclaimed such that when the page allocator
 * calls try_to_compact_zone() that it will have enough free pages to succeed.
 * It will give up earlier than that if there is difficulty reclaiming pages.
2468
 */
2469
static inline bool should_continue_reclaim(struct pglist_data *pgdat,
2470 2471 2472 2473 2474 2475
					unsigned long nr_reclaimed,
					unsigned long nr_scanned,
					struct scan_control *sc)
{
	unsigned long pages_for_compaction;
	unsigned long inactive_lru_pages;
2476
	int z;
2477 2478

	/* If not in reclaim/compaction mode, stop */
2479
	if (!in_reclaim_compaction(sc))
2480 2481
		return false;

2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503
	/* Consider stopping depending on scan and reclaim activity */
	if (sc->gfp_mask & __GFP_REPEAT) {
		/*
		 * For __GFP_REPEAT allocations, stop reclaiming if the
		 * full LRU list has been scanned and we are still failing
		 * to reclaim pages. This full LRU scan is potentially
		 * expensive but a __GFP_REPEAT caller really wants to succeed
		 */
		if (!nr_reclaimed && !nr_scanned)
			return false;
	} else {
		/*
		 * For non-__GFP_REPEAT allocations which can presumably
		 * fail without consequence, stop if we failed to reclaim
		 * any pages from the last SWAP_CLUSTER_MAX number of
		 * pages that were scanned. This will return to the
		 * caller faster at the risk reclaim/compaction and
		 * the resulting allocation attempt fails
		 */
		if (!nr_reclaimed)
			return false;
	}
2504 2505 2506 2507 2508

	/*
	 * If we have not reclaimed enough pages for compaction and the
	 * inactive lists are large enough, continue reclaiming
	 */
2509
	pages_for_compaction = compact_gap(sc->order);
2510
	inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
2511
	if (get_nr_swap_pages() > 0)
2512
		inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
2513 2514 2515 2516 2517
	if (sc->nr_reclaimed < pages_for_compaction &&
			inactive_lru_pages > pages_for_compaction)
		return true;

	/* If compaction would go ahead or the allocation would succeed, stop */
2518 2519
	for (z = 0; z <= sc->reclaim_idx; z++) {
		struct zone *zone = &pgdat->node_zones[z];
2520
		if (!managed_zone(zone))
2521 2522 2523
			continue;

		switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
2524
		case COMPACT_SUCCESS:
2525 2526 2527 2528 2529 2530
		case COMPACT_CONTINUE:
			return false;
		default:
			/* check next zone */
			;
		}
2531
	}
2532
	return true;
2533 2534
}

2535
static bool shrink_node(pg_data_t *pgdat, struct scan_control *sc)
L
Linus Torvalds 已提交
2536
{
2537
	struct reclaim_state *reclaim_state = current->reclaim_state;
2538
	unsigned long nr_reclaimed, nr_scanned;
2539
	bool reclaimable = false;
L
Linus Torvalds 已提交
2540

2541 2542 2543
	do {
		struct mem_cgroup *root = sc->target_mem_cgroup;
		struct mem_cgroup_reclaim_cookie reclaim = {
2544
			.pgdat = pgdat,
2545 2546
			.priority = sc->priority,
		};
2547
		unsigned long node_lru_pages = 0;
2548
		struct mem_cgroup *memcg;
2549

2550 2551
		nr_reclaimed = sc->nr_reclaimed;
		nr_scanned = sc->nr_scanned;
L
Linus Torvalds 已提交
2552

2553 2554
		memcg = mem_cgroup_iter(root, NULL, &reclaim);
		do {
2555
			unsigned long lru_pages;
2556
			unsigned long reclaimed;
2557
			unsigned long scanned;
2558

2559 2560 2561 2562 2563 2564
			if (mem_cgroup_low(root, memcg)) {
				if (!sc->may_thrash)
					continue;
				mem_cgroup_events(memcg, MEMCG_LOW, 1);
			}

2565
			reclaimed = sc->nr_reclaimed;
2566
			scanned = sc->nr_scanned;
2567

2568 2569
			shrink_node_memcg(pgdat, memcg, sc, &lru_pages);
			node_lru_pages += lru_pages;
2570

2571
			if (memcg)
2572
				shrink_slab(sc->gfp_mask, pgdat->node_id,
2573 2574 2575
					    memcg, sc->nr_scanned - scanned,
					    lru_pages);

2576 2577 2578 2579 2580
			/* Record the group's reclaim efficiency */
			vmpressure(sc->gfp_mask, memcg, false,
				   sc->nr_scanned - scanned,
				   sc->nr_reclaimed - reclaimed);

2581
			/*
2582 2583
			 * Direct reclaim and kswapd have to scan all memory
			 * cgroups to fulfill the overall scan target for the
2584
			 * node.
2585 2586 2587 2588 2589
			 *
			 * Limit reclaim, on the other hand, only cares about
			 * nr_to_reclaim pages to be reclaimed and it will
			 * retry with decreasing priority if one round over the
			 * whole hierarchy is not sufficient.
2590
			 */
2591 2592
			if (!global_reclaim(sc) &&
					sc->nr_reclaimed >= sc->nr_to_reclaim) {
2593 2594 2595
				mem_cgroup_iter_break(root, memcg);
				break;
			}
2596
		} while ((memcg = mem_cgroup_iter(root, memcg, &reclaim)));
2597

2598 2599 2600 2601
		/*
		 * Shrink the slab caches in the same proportion that
		 * the eligible LRU pages were scanned.
		 */
2602
		if (global_reclaim(sc))
2603
			shrink_slab(sc->gfp_mask, pgdat->node_id, NULL,
2604
				    sc->nr_scanned - nr_scanned,
2605
				    node_lru_pages);
2606 2607 2608 2609

		if (reclaim_state) {
			sc->nr_reclaimed += reclaim_state->reclaimed_slab;
			reclaim_state->reclaimed_slab = 0;
2610 2611
		}

2612 2613
		/* Record the subtree's reclaim efficiency */
		vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
2614 2615 2616
			   sc->nr_scanned - nr_scanned,
			   sc->nr_reclaimed - nr_reclaimed);

2617 2618 2619
		if (sc->nr_reclaimed - nr_reclaimed)
			reclaimable = true;

2620
	} while (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
2621
					 sc->nr_scanned - nr_scanned, sc));
2622

2623 2624 2625 2626 2627 2628 2629 2630 2631
	/*
	 * Kswapd gives up on balancing particular nodes after too
	 * many failures to reclaim anything from them and goes to
	 * sleep. On reclaim progress, reset the failure counter. A
	 * successful direct reclaim run will revive a dormant kswapd.
	 */
	if (reclaimable)
		pgdat->kswapd_failures = 0;

2632
	return reclaimable;
2633 2634
}

2635
/*
2636 2637 2638
 * Returns true if compaction should go ahead for a costly-order request, or
 * the allocation would already succeed without compaction. Return false if we
 * should reclaim first.
2639
 */
2640
static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2641
{
M
Mel Gorman 已提交
2642
	unsigned long watermark;
2643
	enum compact_result suitable;
2644

2645 2646 2647 2648 2649 2650 2651
	suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
	if (suitable == COMPACT_SUCCESS)
		/* Allocation should succeed already. Don't reclaim. */
		return true;
	if (suitable == COMPACT_SKIPPED)
		/* Compaction cannot yet proceed. Do reclaim. */
		return false;
2652

2653
	/*
2654 2655 2656 2657 2658 2659 2660
	 * Compaction is already possible, but it takes time to run and there
	 * are potentially other callers using the pages just freed. So proceed
	 * with reclaim to make a buffer of free pages available to give
	 * compaction a reasonable chance of completing and allocating the page.
	 * Note that we won't actually reclaim the whole buffer in one attempt
	 * as the target watermark in should_continue_reclaim() is lower. But if
	 * we are already above the high+gap watermark, don't reclaim at all.
2661
	 */
2662
	watermark = high_wmark_pages(zone) + compact_gap(sc->order);
2663

2664
	return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
2665 2666
}

L
Linus Torvalds 已提交
2667 2668 2669 2670 2671 2672 2673 2674
/*
 * This is the direct reclaim path, for page-allocating processes.  We only
 * try to reclaim pages from zones which will satisfy the caller's allocation
 * request.
 *
 * If a zone is deemed to be full of pinned pages then just give it a light
 * scan then give up on it.
 */
M
Michal Hocko 已提交
2675
static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
L
Linus Torvalds 已提交
2676
{
2677
	struct zoneref *z;
2678
	struct zone *zone;
2679 2680
	unsigned long nr_soft_reclaimed;
	unsigned long nr_soft_scanned;
2681
	gfp_t orig_mask;
2682
	pg_data_t *last_pgdat = NULL;
2683

2684 2685 2686 2687 2688
	/*
	 * If the number of buffer_heads in the machine exceeds the maximum
	 * allowed level, force direct reclaim to scan the highmem zone as
	 * highmem pages could be pinning lowmem pages storing buffer_heads
	 */
2689
	orig_mask = sc->gfp_mask;
2690
	if (buffer_heads_over_limit) {
2691
		sc->gfp_mask |= __GFP_HIGHMEM;
2692
		sc->reclaim_idx = gfp_zone(sc->gfp_mask);
2693
	}
2694

2695
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2696
					sc->reclaim_idx, sc->nodemask) {
2697 2698 2699 2700
		/*
		 * Take care memory controller reclaiming has small influence
		 * to global LRU.
		 */
2701
		if (global_reclaim(sc)) {
2702 2703
			if (!cpuset_zone_allowed(zone,
						 GFP_KERNEL | __GFP_HARDWALL))
2704
				continue;
2705

2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716
			/*
			 * If we already have plenty of memory free for
			 * compaction in this zone, don't free any more.
			 * Even though compaction is invoked for any
			 * non-zero order, only frequent costly order
			 * reclamation is disruptive enough to become a
			 * noticeable problem, like transparent huge
			 * page allocations.
			 */
			if (IS_ENABLED(CONFIG_COMPACTION) &&
			    sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2717
			    compaction_ready(zone, sc)) {
2718 2719
				sc->compaction_ready = true;
				continue;
2720
			}
2721

2722 2723 2724 2725 2726 2727 2728 2729 2730
			/*
			 * Shrink each node in the zonelist once. If the
			 * zonelist is ordered by zone (not the default) then a
			 * node may be shrunk multiple times but in that case
			 * the user prefers lower zones being preserved.
			 */
			if (zone->zone_pgdat == last_pgdat)
				continue;

2731 2732 2733 2734 2735 2736 2737
			/*
			 * This steals pages from memory cgroups over softlimit
			 * and returns the number of reclaimed pages and
			 * scanned pages. This works for global memory pressure
			 * and balancing, not for a memcg's limit.
			 */
			nr_soft_scanned = 0;
2738
			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
2739 2740 2741 2742
						sc->order, sc->gfp_mask,
						&nr_soft_scanned);
			sc->nr_reclaimed += nr_soft_reclaimed;
			sc->nr_scanned += nr_soft_scanned;
2743
			/* need some check for avoid more shrink_zone() */
2744
		}
2745

2746 2747 2748 2749
		/* See comment about same check for global reclaim above */
		if (zone->zone_pgdat == last_pgdat)
			continue;
		last_pgdat = zone->zone_pgdat;
2750
		shrink_node(zone->zone_pgdat, sc);
L
Linus Torvalds 已提交
2751
	}
2752

2753 2754 2755 2756 2757
	/*
	 * Restore to original mask to avoid the impact on the caller if we
	 * promoted it to __GFP_HIGHMEM.
	 */
	sc->gfp_mask = orig_mask;
L
Linus Torvalds 已提交
2758
}
2759

L
Linus Torvalds 已提交
2760 2761 2762 2763 2764 2765 2766 2767
/*
 * This is the main entry point to direct page reclaim.
 *
 * If a full scan of the inactive list fails to free enough memory then we
 * are "out of memory" and something needs to be killed.
 *
 * If the caller is !__GFP_FS then the probability of a failure is reasonably
 * high - the zone may be full of dirty or under-writeback pages, which this
2768 2769 2770 2771
 * caller can't do much about.  We kick the writeback threads and take explicit
 * naps in the hope that some of these pages can be written.  But if the
 * allocating task holds filesystem locks which prevent writeout this might not
 * work, and the allocation attempt will fail.
2772 2773 2774
 *
 * returns:	0, if no pages reclaimed
 * 		else, the number of pages reclaimed
L
Linus Torvalds 已提交
2775
 */
2776
static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2777
					  struct scan_control *sc)
L
Linus Torvalds 已提交
2778
{
2779 2780
	int initial_priority = sc->priority;
retry:
2781 2782
	delayacct_freepages_start();

2783
	if (global_reclaim(sc))
2784
		__count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
L
Linus Torvalds 已提交
2785

2786
	do {
2787 2788
		vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
				sc->priority);
2789
		sc->nr_scanned = 0;
M
Michal Hocko 已提交
2790
		shrink_zones(zonelist, sc);
2791

2792
		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2793 2794 2795 2796
			break;

		if (sc->compaction_ready)
			break;
L
Linus Torvalds 已提交
2797

2798 2799 2800 2801 2802 2803
		/*
		 * If we're getting trouble reclaiming, start doing
		 * writepage even in laptop mode.
		 */
		if (sc->priority < DEF_PRIORITY - 2)
			sc->may_writepage = 1;
2804
	} while (--sc->priority >= 0);
2805

2806 2807
	delayacct_freepages_end();

2808 2809 2810
	if (sc->nr_reclaimed)
		return sc->nr_reclaimed;

2811
	/* Aborted reclaim to try compaction? don't OOM, then */
2812
	if (sc->compaction_ready)
2813 2814
		return 1;

2815 2816 2817 2818 2819 2820 2821
	/* Untapped cgroup reserves?  Don't OOM, retry. */
	if (!sc->may_thrash) {
		sc->priority = initial_priority;
		sc->may_thrash = 1;
		goto retry;
	}

2822
	return 0;
L
Linus Torvalds 已提交
2823 2824
}

2825
static bool allow_direct_reclaim(pg_data_t *pgdat)
2826 2827 2828 2829 2830 2831 2832
{
	struct zone *zone;
	unsigned long pfmemalloc_reserve = 0;
	unsigned long free_pages = 0;
	int i;
	bool wmark_ok;

2833 2834 2835
	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
		return true;

2836 2837
	for (i = 0; i <= ZONE_NORMAL; i++) {
		zone = &pgdat->node_zones[i];
2838 2839 2840 2841
		if (!managed_zone(zone))
			continue;

		if (!zone_reclaimable_pages(zone))
2842 2843
			continue;

2844 2845 2846 2847
		pfmemalloc_reserve += min_wmark_pages(zone);
		free_pages += zone_page_state(zone, NR_FREE_PAGES);
	}

2848 2849 2850 2851
	/* If there are no reserves (unexpected config) then do not throttle */
	if (!pfmemalloc_reserve)
		return true;

2852 2853 2854 2855
	wmark_ok = free_pages > pfmemalloc_reserve / 2;

	/* kswapd must be awake if processes are being throttled */
	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
2856
		pgdat->kswapd_classzone_idx = min(pgdat->kswapd_classzone_idx,
2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867
						(enum zone_type)ZONE_NORMAL);
		wake_up_interruptible(&pgdat->kswapd_wait);
	}

	return wmark_ok;
}

/*
 * Throttle direct reclaimers if backing storage is backed by the network
 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
 * depleted. kswapd will continue to make progress and wake the processes
2868 2869 2870 2871
 * when the low watermark is reached.
 *
 * Returns true if a fatal signal was delivered during throttling. If this
 * happens, the page allocator should not consider triggering the OOM killer.
2872
 */
2873
static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
2874 2875
					nodemask_t *nodemask)
{
2876
	struct zoneref *z;
2877
	struct zone *zone;
2878
	pg_data_t *pgdat = NULL;
2879 2880 2881 2882 2883 2884 2885 2886 2887

	/*
	 * Kernel threads should not be throttled as they may be indirectly
	 * responsible for cleaning pages necessary for reclaim to make forward
	 * progress. kjournald for example may enter direct reclaim while
	 * committing a transaction where throttling it could forcing other
	 * processes to block on log_wait_commit().
	 */
	if (current->flags & PF_KTHREAD)
2888 2889 2890 2891 2892 2893 2894 2895
		goto out;

	/*
	 * If a fatal signal is pending, this process should not throttle.
	 * It should return quickly so it can exit and free its memory
	 */
	if (fatal_signal_pending(current))
		goto out;
2896

2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911
	/*
	 * Check if the pfmemalloc reserves are ok by finding the first node
	 * with a usable ZONE_NORMAL or lower zone. The expectation is that
	 * GFP_KERNEL will be required for allocating network buffers when
	 * swapping over the network so ZONE_HIGHMEM is unusable.
	 *
	 * Throttling is based on the first usable node and throttled processes
	 * wait on a queue until kswapd makes progress and wakes them. There
	 * is an affinity then between processes waking up and where reclaim
	 * progress has been made assuming the process wakes on the same node.
	 * More importantly, processes running on remote nodes will not compete
	 * for remote pfmemalloc reserves and processes on different nodes
	 * should make reasonable progress.
	 */
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2912
					gfp_zone(gfp_mask), nodemask) {
2913 2914 2915 2916 2917
		if (zone_idx(zone) > ZONE_NORMAL)
			continue;

		/* Throttle based on the first usable node */
		pgdat = zone->zone_pgdat;
2918
		if (allow_direct_reclaim(pgdat))
2919 2920 2921 2922 2923 2924
			goto out;
		break;
	}

	/* If no zone was usable by the allocation flags then do not throttle */
	if (!pgdat)
2925
		goto out;
2926

2927 2928 2929
	/* Account for the throttling */
	count_vm_event(PGSCAN_DIRECT_THROTTLE);

2930 2931 2932 2933 2934 2935 2936 2937 2938 2939
	/*
	 * If the caller cannot enter the filesystem, it's possible that it
	 * is due to the caller holding an FS lock or performing a journal
	 * transaction in the case of a filesystem like ext[3|4]. In this case,
	 * it is not safe to block on pfmemalloc_wait as kswapd could be
	 * blocked waiting on the same lock. Instead, throttle for up to a
	 * second before continuing.
	 */
	if (!(gfp_mask & __GFP_FS)) {
		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
2940
			allow_direct_reclaim(pgdat), HZ);
2941 2942

		goto check_pending;
2943 2944 2945 2946
	}

	/* Throttle until kswapd wakes the process */
	wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
2947
		allow_direct_reclaim(pgdat));
2948 2949 2950 2951 2952 2953 2954

check_pending:
	if (fatal_signal_pending(current))
		return true;

out:
	return false;
2955 2956
}

2957
unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2958
				gfp_t gfp_mask, nodemask_t *nodemask)
2959
{
2960
	unsigned long nr_reclaimed;
2961
	struct scan_control sc = {
2962
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2963
		.gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
2964
		.reclaim_idx = gfp_zone(gfp_mask),
2965 2966 2967
		.order = order,
		.nodemask = nodemask,
		.priority = DEF_PRIORITY,
2968
		.may_writepage = !laptop_mode,
2969
		.may_unmap = 1,
2970
		.may_swap = 1,
2971 2972
	};

2973
	/*
2974 2975 2976
	 * Do not enter reclaim if fatal signal was delivered while throttled.
	 * 1 is returned so that the page allocator does not OOM kill at this
	 * point.
2977
	 */
2978
	if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask))
2979 2980
		return 1;

2981 2982
	trace_mm_vmscan_direct_reclaim_begin(order,
				sc.may_writepage,
2983 2984
				gfp_mask,
				sc.reclaim_idx);
2985

2986
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2987 2988 2989 2990

	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);

	return nr_reclaimed;
2991 2992
}

A
Andrew Morton 已提交
2993
#ifdef CONFIG_MEMCG
2994

2995
unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
2996
						gfp_t gfp_mask, bool noswap,
2997
						pg_data_t *pgdat,
2998
						unsigned long *nr_scanned)
2999 3000
{
	struct scan_control sc = {
3001
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
3002
		.target_mem_cgroup = memcg,
3003 3004
		.may_writepage = !laptop_mode,
		.may_unmap = 1,
3005
		.reclaim_idx = MAX_NR_ZONES - 1,
3006 3007
		.may_swap = !noswap,
	};
3008
	unsigned long lru_pages;
3009

3010 3011
	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
3012

3013
	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
3014
						      sc.may_writepage,
3015 3016
						      sc.gfp_mask,
						      sc.reclaim_idx);
3017

3018 3019 3020
	/*
	 * NOTE: Although we can get the priority field, using it
	 * here is not a good idea, since it limits the pages we can scan.
3021
	 * if we don't reclaim here, the shrink_node from balance_pgdat
3022 3023 3024
	 * will pick up pages from other mem cgroup's as well. We hack
	 * the priority and make it zero.
	 */
3025
	shrink_node_memcg(pgdat, memcg, &sc, &lru_pages);
3026 3027 3028

	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);

3029
	*nr_scanned = sc.nr_scanned;
3030 3031 3032
	return sc.nr_reclaimed;
}

3033
unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
3034
					   unsigned long nr_pages,
K
KOSAKI Motohiro 已提交
3035
					   gfp_t gfp_mask,
3036
					   bool may_swap)
3037
{
3038
	struct zonelist *zonelist;
3039
	unsigned long nr_reclaimed;
3040
	int nid;
3041
	struct scan_control sc = {
3042
		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3043 3044
		.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
3045
		.reclaim_idx = MAX_NR_ZONES - 1,
3046 3047 3048 3049
		.target_mem_cgroup = memcg,
		.priority = DEF_PRIORITY,
		.may_writepage = !laptop_mode,
		.may_unmap = 1,
3050
		.may_swap = may_swap,
3051
	};
3052

3053 3054 3055 3056 3057
	/*
	 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
	 * take care of from where we get pages. So the node where we start the
	 * scan does not need to be the current node.
	 */
3058
	nid = mem_cgroup_select_victim_node(memcg);
3059

3060
	zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK];
3061 3062 3063

	trace_mm_vmscan_memcg_reclaim_begin(0,
					    sc.may_writepage,
3064 3065
					    sc.gfp_mask,
					    sc.reclaim_idx);
3066

3067
	current->flags |= PF_MEMALLOC;
3068
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3069
	current->flags &= ~PF_MEMALLOC;
3070 3071 3072 3073

	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);

	return nr_reclaimed;
3074 3075 3076
}
#endif

3077
static void age_active_anon(struct pglist_data *pgdat,
3078
				struct scan_control *sc)
3079
{
3080
	struct mem_cgroup *memcg;
3081

3082 3083 3084 3085 3086
	if (!total_swap_pages)
		return;

	memcg = mem_cgroup_iter(NULL, NULL, NULL);
	do {
3087
		struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
3088

3089
		if (inactive_list_is_low(lruvec, false, sc, true))
3090
			shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3091
					   sc, LRU_ACTIVE_ANON);
3092 3093 3094

		memcg = mem_cgroup_iter(NULL, memcg, NULL);
	} while (memcg);
3095 3096
}

M
Mel Gorman 已提交
3097
static bool zone_balanced(struct zone *zone, int order, int classzone_idx)
3098
{
M
Mel Gorman 已提交
3099
	unsigned long mark = high_wmark_pages(zone);
3100

3101 3102 3103 3104 3105 3106 3107 3108 3109
	if (!zone_watermark_ok_safe(zone, order, mark, classzone_idx))
		return false;

	/*
	 * If any eligible zone is balanced then the node is not considered
	 * to be congested or dirty
	 */
	clear_bit(PGDAT_CONGESTED, &zone->zone_pgdat->flags);
	clear_bit(PGDAT_DIRTY, &zone->zone_pgdat->flags);
3110
	clear_bit(PGDAT_WRITEBACK, &zone->zone_pgdat->flags);
3111 3112

	return true;
3113 3114
}

3115 3116 3117 3118 3119 3120
/*
 * Prepare kswapd for sleeping. This verifies that there are no processes
 * waiting in throttle_direct_reclaim() and that watermarks have been met.
 *
 * Returns true if kswapd is ready to sleep
 */
3121
static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3122
{
3123 3124
	int i;

3125
	/*
3126
	 * The throttled processes are normally woken up in balance_pgdat() as
3127
	 * soon as allow_direct_reclaim() is true. But there is a potential
3128 3129 3130 3131 3132 3133 3134 3135 3136
	 * race between when kswapd checks the watermarks and a process gets
	 * throttled. There is also a potential race if processes get
	 * throttled, kswapd wakes, a large process exits thereby balancing the
	 * zones, which causes kswapd to exit balance_pgdat() before reaching
	 * the wake up checks. If kswapd is going to sleep, no process should
	 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
	 * the wake up is premature, processes will wake kswapd and get
	 * throttled again. The difference from wake ups in balance_pgdat() is
	 * that here we are under prepare_to_wait().
3137
	 */
3138 3139
	if (waitqueue_active(&pgdat->pfmemalloc_wait))
		wake_up_all(&pgdat->pfmemalloc_wait);
3140

3141 3142 3143 3144
	/* Hopeless node, leave it to direct reclaim */
	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
		return true;

3145 3146 3147
	for (i = 0; i <= classzone_idx; i++) {
		struct zone *zone = pgdat->node_zones + i;

3148
		if (!managed_zone(zone))
3149 3150
			continue;

3151 3152
		if (!zone_balanced(zone, order, classzone_idx))
			return false;
3153 3154
	}

3155
	return true;
3156 3157
}

3158
/*
3159 3160
 * kswapd shrinks a node of pages that are at or below the highest usable
 * zone that is currently unbalanced.
3161 3162
 *
 * Returns true if kswapd scanned at least the requested number of pages to
3163 3164
 * reclaim or if the lack of progress was due to pages under writeback.
 * This is used to determine if the scanning priority needs to be raised.
3165
 */
3166
static bool kswapd_shrink_node(pg_data_t *pgdat,
3167
			       struct scan_control *sc)
3168
{
3169 3170
	struct zone *zone;
	int z;
3171

3172 3173
	/* Reclaim a number of pages proportional to the number of zones */
	sc->nr_to_reclaim = 0;
3174
	for (z = 0; z <= sc->reclaim_idx; z++) {
3175
		zone = pgdat->node_zones + z;
3176
		if (!managed_zone(zone))
3177
			continue;
3178

3179 3180
		sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
	}
3181 3182

	/*
3183 3184
	 * Historically care was taken to put equal pressure on all zones but
	 * now pressure is applied based on node LRU order.
3185
	 */
3186
	shrink_node(pgdat, sc);
3187

3188
	/*
3189 3190 3191 3192 3193
	 * Fragmentation may mean that the system cannot be rebalanced for
	 * high-order allocations. If twice the allocation size has been
	 * reclaimed then recheck watermarks only at order-0 to prevent
	 * excessive reclaim. Assume that a process requested a high-order
	 * can direct reclaim/compact.
3194
	 */
3195
	if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
3196
		sc->order = 0;
3197

3198
	return sc->nr_scanned >= sc->nr_to_reclaim;
3199 3200
}

L
Linus Torvalds 已提交
3201
/*
3202 3203 3204
 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
 * that are eligible for use by the caller until at least one zone is
 * balanced.
L
Linus Torvalds 已提交
3205
 *
3206
 * Returns the order kswapd finished reclaiming at.
L
Linus Torvalds 已提交
3207 3208
 *
 * kswapd scans the zones in the highmem->normal->dma direction.  It skips
3209
 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3210 3211 3212
 * found to have free_pages <= high_wmark_pages(zone), any page is that zone
 * or lower is eligible for reclaim until at least one usable zone is
 * balanced.
L
Linus Torvalds 已提交
3213
 */
3214
static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx)
L
Linus Torvalds 已提交
3215 3216
{
	int i;
3217 3218
	unsigned long nr_soft_reclaimed;
	unsigned long nr_soft_scanned;
3219
	struct zone *zone;
3220 3221
	struct scan_control sc = {
		.gfp_mask = GFP_KERNEL,
3222
		.order = order,
3223
		.priority = DEF_PRIORITY,
3224
		.may_writepage = !laptop_mode,
3225
		.may_unmap = 1,
3226
		.may_swap = 1,
3227
	};
3228
	count_vm_event(PAGEOUTRUN);
L
Linus Torvalds 已提交
3229

3230
	do {
3231
		unsigned long nr_reclaimed = sc.nr_reclaimed;
3232 3233
		bool raise_priority = true;

3234
		sc.reclaim_idx = classzone_idx;
L
Linus Torvalds 已提交
3235

3236
		/*
3237 3238 3239 3240 3241 3242 3243 3244
		 * If the number of buffer_heads exceeds the maximum allowed
		 * then consider reclaiming from all zones. This has a dual
		 * purpose -- on 64-bit systems it is expected that
		 * buffer_heads are stripped during active rotation. On 32-bit
		 * systems, highmem pages can pin lowmem memory and shrinking
		 * buffers can relieve lowmem pressure. Reclaim may still not
		 * go ahead if all eligible zones for the original allocation
		 * request are balanced to avoid excessive reclaim from kswapd.
3245 3246 3247 3248
		 */
		if (buffer_heads_over_limit) {
			for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
				zone = pgdat->node_zones + i;
3249
				if (!managed_zone(zone))
3250
					continue;
3251

3252
				sc.reclaim_idx = i;
A
Andrew Morton 已提交
3253
				break;
L
Linus Torvalds 已提交
3254 3255
			}
		}
3256

3257 3258 3259 3260 3261 3262
		/*
		 * Only reclaim if there are no eligible zones. Check from
		 * high to low zone as allocations prefer higher zones.
		 * Scanning from low to high zone would allow congestion to be
		 * cleared during a very small window when a small low
		 * zone was balanced even under extreme pressure when the
3263 3264 3265
		 * overall node may be congested. Note that sc.reclaim_idx
		 * is not used as buffer_heads_over_limit may have adjusted
		 * it.
3266
		 */
3267
		for (i = classzone_idx; i >= 0; i--) {
3268
			zone = pgdat->node_zones + i;
3269
			if (!managed_zone(zone))
3270 3271
				continue;

3272
			if (zone_balanced(zone, sc.order, classzone_idx))
3273 3274
				goto out;
		}
A
Andrew Morton 已提交
3275

3276 3277 3278 3279 3280 3281
		/*
		 * Do some background aging of the anon list, to give
		 * pages a chance to be referenced before reclaiming. All
		 * pages are rotated regardless of classzone as this is
		 * about consistent aging.
		 */
3282
		age_active_anon(pgdat, &sc);
3283

3284 3285 3286 3287
		/*
		 * If we're getting trouble reclaiming, start doing writepage
		 * even in laptop mode.
		 */
3288
		if (sc.priority < DEF_PRIORITY - 2 || !pgdat_reclaimable(pgdat))
3289 3290
			sc.may_writepage = 1;

3291 3292 3293
		/* Call soft limit reclaim before calling shrink_node. */
		sc.nr_scanned = 0;
		nr_soft_scanned = 0;
3294
		nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
3295 3296 3297
						sc.gfp_mask, &nr_soft_scanned);
		sc.nr_reclaimed += nr_soft_reclaimed;

L
Linus Torvalds 已提交
3298
		/*
3299 3300 3301
		 * There should be no need to raise the scanning priority if
		 * enough pages are already being scanned that that high
		 * watermark would be met at 100% efficiency.
L
Linus Torvalds 已提交
3302
		 */
3303
		if (kswapd_shrink_node(pgdat, &sc))
3304
			raise_priority = false;
3305 3306 3307 3308 3309 3310 3311

		/*
		 * If the low watermark is met there is no need for processes
		 * to be throttled on pfmemalloc_wait as they should not be
		 * able to safely make forward progress. Wake them
		 */
		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3312
				allow_direct_reclaim(pgdat))
3313
			wake_up_all(&pgdat->pfmemalloc_wait);
3314

3315 3316 3317
		/* Check if kswapd should be suspending */
		if (try_to_freeze() || kthread_should_stop())
			break;
3318

3319
		/*
3320 3321
		 * Raise priority if scanning rate is too low or there was no
		 * progress in reclaiming pages
3322
		 */
3323 3324
		nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
		if (raise_priority || !nr_reclaimed)
3325
			sc.priority--;
3326
	} while (sc.priority >= 1);
L
Linus Torvalds 已提交
3327

3328 3329 3330
	if (!sc.nr_reclaimed)
		pgdat->kswapd_failures++;

3331
out:
3332
	/*
3333 3334 3335 3336
	 * Return the order kswapd stopped reclaiming at as
	 * prepare_kswapd_sleep() takes it into account. If another caller
	 * entered the allocator slow path while kswapd was awake, order will
	 * remain at the higher level.
3337
	 */
3338
	return sc.order;
L
Linus Torvalds 已提交
3339 3340
}

3341 3342
static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
				unsigned int classzone_idx)
3343 3344 3345 3346 3347 3348 3349 3350 3351 3352
{
	long remaining = 0;
	DEFINE_WAIT(wait);

	if (freezing(current) || kthread_should_stop())
		return;

	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);

	/* Try to sleep for a short interval */
3353
	if (prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365
		/*
		 * Compaction records what page blocks it recently failed to
		 * isolate pages from and skips them in the future scanning.
		 * When kswapd is going to sleep, it is reasonable to assume
		 * that pages and compaction may succeed so reset the cache.
		 */
		reset_isolation_suitable(pgdat);

		/*
		 * We have freed the memory, now we should compact it to make
		 * allocation of the requested order possible.
		 */
3366
		wakeup_kcompactd(pgdat, alloc_order, classzone_idx);
3367

3368
		remaining = schedule_timeout(HZ/10);
3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379

		/*
		 * If woken prematurely then reset kswapd_classzone_idx and
		 * order. The values will either be from a wakeup request or
		 * the previous request that slept prematurely.
		 */
		if (remaining) {
			pgdat->kswapd_classzone_idx = max(pgdat->kswapd_classzone_idx, classzone_idx);
			pgdat->kswapd_order = max(pgdat->kswapd_order, reclaim_order);
		}

3380 3381 3382 3383 3384 3385 3386 3387
		finish_wait(&pgdat->kswapd_wait, &wait);
		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
	}

	/*
	 * After a short sleep, check if it was a premature sleep. If not, then
	 * go fully to sleep until explicitly woken up.
	 */
3388 3389
	if (!remaining &&
	    prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400
		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);

		/*
		 * vmstat counters are not perfectly accurate and the estimated
		 * value for counters such as NR_FREE_PAGES can deviate from the
		 * true value by nr_online_cpus * threshold. To avoid the zone
		 * watermarks being breached while under pressure, we reduce the
		 * per-cpu vmstat threshold while kswapd is awake and restore
		 * them before going back to sleep.
		 */
		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3401 3402 3403 3404

		if (!kthread_should_stop())
			schedule();

3405 3406 3407 3408 3409 3410 3411 3412 3413 3414
		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
	} else {
		if (remaining)
			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
		else
			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
	}
	finish_wait(&pgdat->kswapd_wait, &wait);
}

L
Linus Torvalds 已提交
3415 3416
/*
 * The background pageout daemon, started as a kernel thread
3417
 * from the init process.
L
Linus Torvalds 已提交
3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429
 *
 * This basically trickles out pages so that we have _some_
 * free memory available even if there is no other activity
 * that frees anything up. This is needed for things like routing
 * etc, where we otherwise might have all activity going on in
 * asynchronous contexts that cannot page things out.
 *
 * If there are applications that are active memory-allocators
 * (most normal use), this basically shouldn't matter.
 */
static int kswapd(void *p)
{
3430
	unsigned int alloc_order, reclaim_order, classzone_idx;
L
Linus Torvalds 已提交
3431 3432
	pg_data_t *pgdat = (pg_data_t*)p;
	struct task_struct *tsk = current;
3433

L
Linus Torvalds 已提交
3434 3435 3436
	struct reclaim_state reclaim_state = {
		.reclaimed_slab = 0,
	};
3437
	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
L
Linus Torvalds 已提交
3438

3439 3440
	lockdep_set_current_reclaim_state(GFP_KERNEL);

R
Rusty Russell 已提交
3441
	if (!cpumask_empty(cpumask))
3442
		set_cpus_allowed_ptr(tsk, cpumask);
L
Linus Torvalds 已提交
3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456
	current->reclaim_state = &reclaim_state;

	/*
	 * Tell the memory management that we're a "memory allocator",
	 * and that if we need more memory we should get access to it
	 * regardless (see "__alloc_pages()"). "kswapd" should
	 * never get caught in the normal page freeing logic.
	 *
	 * (Kswapd normally doesn't need memory anyway, but sometimes
	 * you need a small amount of memory in order to be able to
	 * page out something else, and this flag essentially protects
	 * us from recursively trying to free more memory as we're
	 * trying to free the first piece of memory in the first place).
	 */
3457
	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3458
	set_freezable();
L
Linus Torvalds 已提交
3459

3460 3461
	pgdat->kswapd_order = alloc_order = reclaim_order = 0;
	pgdat->kswapd_classzone_idx = classzone_idx = 0;
L
Linus Torvalds 已提交
3462
	for ( ; ; ) {
3463
		bool ret;
3464

3465 3466 3467
kswapd_try_sleep:
		kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
					classzone_idx);
3468

3469 3470 3471 3472 3473
		/* Read the new order and classzone_idx */
		alloc_order = reclaim_order = pgdat->kswapd_order;
		classzone_idx = pgdat->kswapd_classzone_idx;
		pgdat->kswapd_order = 0;
		pgdat->kswapd_classzone_idx = 0;
L
Linus Torvalds 已提交
3474

3475 3476 3477 3478 3479 3480 3481 3482
		ret = try_to_freeze();
		if (kthread_should_stop())
			break;

		/*
		 * We can speed up thawing tasks if we don't call balance_pgdat
		 * after returning from the refrigerator
		 */
3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493
		if (ret)
			continue;

		/*
		 * Reclaim begins at the requested order but if a high-order
		 * reclaim fails then kswapd falls back to reclaiming for
		 * order-0. If that happens, kswapd will consider sleeping
		 * for the order it finished reclaiming at (reclaim_order)
		 * but kcompactd is woken to compact for the original
		 * request (alloc_order).
		 */
3494 3495
		trace_mm_vmscan_kswapd_wake(pgdat->node_id, classzone_idx,
						alloc_order);
3496 3497 3498
		reclaim_order = balance_pgdat(pgdat, alloc_order, classzone_idx);
		if (reclaim_order < alloc_order)
			goto kswapd_try_sleep;
3499

3500 3501
		alloc_order = reclaim_order = pgdat->kswapd_order;
		classzone_idx = pgdat->kswapd_classzone_idx;
L
Linus Torvalds 已提交
3502
	}
3503

3504
	tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
3505
	current->reclaim_state = NULL;
3506 3507
	lockdep_clear_current_reclaim_state();

L
Linus Torvalds 已提交
3508 3509 3510 3511 3512 3513
	return 0;
}

/*
 * A zone is low on free memory, so wake its kswapd task to service it.
 */
3514
void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
L
Linus Torvalds 已提交
3515 3516
{
	pg_data_t *pgdat;
3517
	int z;
L
Linus Torvalds 已提交
3518

3519
	if (!managed_zone(zone))
L
Linus Torvalds 已提交
3520 3521
		return;

3522
	if (!cpuset_zone_allowed(zone, GFP_KERNEL | __GFP_HARDWALL))
L
Linus Torvalds 已提交
3523
		return;
3524
	pgdat = zone->zone_pgdat;
3525 3526
	pgdat->kswapd_classzone_idx = max(pgdat->kswapd_classzone_idx, classzone_idx);
	pgdat->kswapd_order = max(pgdat->kswapd_order, order);
3527
	if (!waitqueue_active(&pgdat->kswapd_wait))
L
Linus Torvalds 已提交
3528
		return;
3529

3530 3531 3532 3533
	/* Hopeless node, leave it to direct reclaim */
	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
		return;

3534 3535 3536
	/* Only wake kswapd if all zones are unbalanced */
	for (z = 0; z <= classzone_idx; z++) {
		zone = pgdat->node_zones + z;
3537
		if (!managed_zone(zone))
3538 3539 3540 3541 3542
			continue;

		if (zone_balanced(zone, order, classzone_idx))
			return;
	}
3543 3544

	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
3545
	wake_up_interruptible(&pgdat->kswapd_wait);
L
Linus Torvalds 已提交
3546 3547
}

3548
#ifdef CONFIG_HIBERNATION
L
Linus Torvalds 已提交
3549
/*
3550
 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3551 3552 3553 3554 3555
 * freed pages.
 *
 * Rather than trying to age LRUs the aim is to preserve the overall
 * LRU order by reclaiming preferentially
 * inactive > active > active referenced > active mapped
L
Linus Torvalds 已提交
3556
 */
3557
unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
L
Linus Torvalds 已提交
3558
{
3559 3560
	struct reclaim_state reclaim_state;
	struct scan_control sc = {
3561
		.nr_to_reclaim = nr_to_reclaim,
3562
		.gfp_mask = GFP_HIGHUSER_MOVABLE,
3563
		.reclaim_idx = MAX_NR_ZONES - 1,
3564
		.priority = DEF_PRIORITY,
3565
		.may_writepage = 1,
3566 3567
		.may_unmap = 1,
		.may_swap = 1,
3568
		.hibernation_mode = 1,
L
Linus Torvalds 已提交
3569
	};
3570
	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3571 3572
	struct task_struct *p = current;
	unsigned long nr_reclaimed;
L
Linus Torvalds 已提交
3573

3574 3575 3576 3577
	p->flags |= PF_MEMALLOC;
	lockdep_set_current_reclaim_state(sc.gfp_mask);
	reclaim_state.reclaimed_slab = 0;
	p->reclaim_state = &reclaim_state;
3578

3579
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3580

3581 3582 3583
	p->reclaim_state = NULL;
	lockdep_clear_current_reclaim_state();
	p->flags &= ~PF_MEMALLOC;
3584

3585
	return nr_reclaimed;
L
Linus Torvalds 已提交
3586
}
3587
#endif /* CONFIG_HIBERNATION */
L
Linus Torvalds 已提交
3588 3589 3590 3591 3592

/* It's optimal to keep kswapds on the same CPUs as their memory, but
   not required for correctness.  So if the last cpu in a node goes
   away, we get changed to run anywhere: as the first one comes back,
   restore their cpu bindings. */
3593
static int kswapd_cpu_online(unsigned int cpu)
L
Linus Torvalds 已提交
3594
{
3595
	int nid;
L
Linus Torvalds 已提交
3596

3597 3598 3599
	for_each_node_state(nid, N_MEMORY) {
		pg_data_t *pgdat = NODE_DATA(nid);
		const struct cpumask *mask;
3600

3601
		mask = cpumask_of_node(pgdat->node_id);
3602

3603 3604 3605
		if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
			/* One of our CPUs online: restore mask */
			set_cpus_allowed_ptr(pgdat->kswapd, mask);
L
Linus Torvalds 已提交
3606
	}
3607
	return 0;
L
Linus Torvalds 已提交
3608 3609
}

3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625
/*
 * This kswapd start function will be called by init and node-hot-add.
 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
 */
int kswapd_run(int nid)
{
	pg_data_t *pgdat = NODE_DATA(nid);
	int ret = 0;

	if (pgdat->kswapd)
		return 0;

	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
	if (IS_ERR(pgdat->kswapd)) {
		/* failure at boot is fatal */
		BUG_ON(system_state == SYSTEM_BOOTING);
3626 3627
		pr_err("Failed to start kswapd on node %d\n", nid);
		ret = PTR_ERR(pgdat->kswapd);
3628
		pgdat->kswapd = NULL;
3629 3630 3631 3632
	}
	return ret;
}

3633
/*
3634
 * Called by memory hotplug when all memory in a node is offlined.  Caller must
3635
 * hold mem_hotplug_begin/end().
3636 3637 3638 3639 3640
 */
void kswapd_stop(int nid)
{
	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;

3641
	if (kswapd) {
3642
		kthread_stop(kswapd);
3643 3644
		NODE_DATA(nid)->kswapd = NULL;
	}
3645 3646
}

L
Linus Torvalds 已提交
3647 3648
static int __init kswapd_init(void)
{
3649
	int nid, ret;
3650

L
Linus Torvalds 已提交
3651
	swap_setup();
3652
	for_each_node_state(nid, N_MEMORY)
3653
 		kswapd_run(nid);
3654 3655 3656 3657
	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
					"mm/vmscan:online", kswapd_cpu_online,
					NULL);
	WARN_ON(ret < 0);
L
Linus Torvalds 已提交
3658 3659 3660 3661
	return 0;
}

module_init(kswapd_init)
3662 3663 3664

#ifdef CONFIG_NUMA
/*
3665
 * Node reclaim mode
3666
 *
3667
 * If non-zero call node_reclaim when the number of free pages falls below
3668 3669
 * the watermarks.
 */
3670
int node_reclaim_mode __read_mostly;
3671

3672
#define RECLAIM_OFF 0
3673
#define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
3674
#define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
3675
#define RECLAIM_UNMAP (1<<2)	/* Unmap pages during reclaim */
3676

3677
/*
3678
 * Priority for NODE_RECLAIM. This determines the fraction of pages
3679 3680 3681
 * of a node considered for each zone_reclaim. 4 scans 1/16th of
 * a zone.
 */
3682
#define NODE_RECLAIM_PRIORITY 4
3683

3684
/*
3685
 * Percentage of pages in a zone that must be unmapped for node_reclaim to
3686 3687 3688 3689
 * occur.
 */
int sysctl_min_unmapped_ratio = 1;

3690 3691 3692 3693 3694 3695
/*
 * If the number of slab pages in a zone grows beyond this percentage then
 * slab reclaim needs to occur.
 */
int sysctl_min_slab_ratio = 5;

3696
static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
3697
{
3698 3699 3700
	unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
	unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
		node_page_state(pgdat, NR_ACTIVE_FILE);
3701 3702 3703 3704 3705 3706 3707 3708 3709 3710

	/*
	 * It's possible for there to be more file mapped pages than
	 * accounted for by the pages on the file LRU lists because
	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
	 */
	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
}

/* Work out how many page cache pages we can reclaim in this reclaim_mode */
3711
static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
3712
{
3713 3714
	unsigned long nr_pagecache_reclaimable;
	unsigned long delta = 0;
3715 3716

	/*
3717
	 * If RECLAIM_UNMAP is set, then all file pages are considered
3718
	 * potentially reclaimable. Otherwise, we have to worry about
3719
	 * pages like swapcache and node_unmapped_file_pages() provides
3720 3721
	 * a better estimate
	 */
3722 3723
	if (node_reclaim_mode & RECLAIM_UNMAP)
		nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
3724
	else
3725
		nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
3726 3727

	/* If we can't clean pages, remove dirty pages from consideration */
3728 3729
	if (!(node_reclaim_mode & RECLAIM_WRITE))
		delta += node_page_state(pgdat, NR_FILE_DIRTY);
3730 3731 3732 3733 3734 3735 3736 3737

	/* Watch for any possible underflows due to delta */
	if (unlikely(delta > nr_pagecache_reclaimable))
		delta = nr_pagecache_reclaimable;

	return nr_pagecache_reclaimable - delta;
}

3738
/*
3739
 * Try to free up some pages from this node through reclaim.
3740
 */
3741
static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
3742
{
3743
	/* Minimum pages needed in order to stay on node */
3744
	const unsigned long nr_pages = 1 << order;
3745 3746
	struct task_struct *p = current;
	struct reclaim_state reclaim_state;
3747
	int classzone_idx = gfp_zone(gfp_mask);
3748
	struct scan_control sc = {
3749
		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3750
		.gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
3751
		.order = order,
3752 3753 3754
		.priority = NODE_RECLAIM_PRIORITY,
		.may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
		.may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
3755
		.may_swap = 1,
3756
		.reclaim_idx = classzone_idx,
3757
	};
3758 3759

	cond_resched();
3760
	/*
3761
	 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
3762
	 * and we also need to be able to write out pages for RECLAIM_WRITE
3763
	 * and RECLAIM_UNMAP.
3764 3765
	 */
	p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3766
	lockdep_set_current_reclaim_state(gfp_mask);
3767 3768
	reclaim_state.reclaimed_slab = 0;
	p->reclaim_state = &reclaim_state;
3769

3770
	if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
3771 3772 3773 3774 3775
		/*
		 * Free memory by calling shrink zone with increasing
		 * priorities until we have enough memory freed.
		 */
		do {
3776
			shrink_node(pgdat, &sc);
3777
		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3778
	}
3779

3780
	p->reclaim_state = NULL;
3781
	current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3782
	lockdep_clear_current_reclaim_state();
3783
	return sc.nr_reclaimed >= nr_pages;
3784
}
3785

3786
int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
3787
{
3788
	int ret;
3789 3790

	/*
3791
	 * Node reclaim reclaims unmapped file backed pages and
3792
	 * slab pages if we are over the defined limits.
3793
	 *
3794 3795
	 * A small portion of unmapped file backed pages is needed for
	 * file I/O otherwise pages read by file I/O will be immediately
3796 3797
	 * thrown out if the node is overallocated. So we do not reclaim
	 * if less than a specified percentage of the node is used by
3798
	 * unmapped file backed pages.
3799
	 */
3800 3801 3802
	if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
	    sum_zone_node_page_state(pgdat->node_id, NR_SLAB_RECLAIMABLE) <= pgdat->min_slab_pages)
		return NODE_RECLAIM_FULL;
3803 3804

	/*
3805
	 * Do not scan if the allocation should not be delayed.
3806
	 */
3807
	if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
3808
		return NODE_RECLAIM_NOSCAN;
3809 3810

	/*
3811
	 * Only run node reclaim on the local node or on nodes that do not
3812 3813 3814 3815
	 * have associated processors. This will favor the local processor
	 * over remote processors and spread off node memory allocations
	 * as wide as possible.
	 */
3816 3817
	if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
		return NODE_RECLAIM_NOSCAN;
3818

3819 3820
	if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
		return NODE_RECLAIM_NOSCAN;
3821

3822 3823
	ret = __node_reclaim(pgdat, gfp_mask, order);
	clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
3824

3825 3826 3827
	if (!ret)
		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);

3828
	return ret;
3829
}
3830
#endif
L
Lee Schermerhorn 已提交
3831 3832 3833 3834 3835 3836

/*
 * page_evictable - test whether a page is evictable
 * @page: the page to test
 *
 * Test whether page is evictable--i.e., should be placed on active/inactive
3837
 * lists vs unevictable list.
L
Lee Schermerhorn 已提交
3838 3839
 *
 * Reasons page might not be evictable:
3840
 * (1) page's mapping marked unevictable
N
Nick Piggin 已提交
3841
 * (2) page is part of an mlocked VMA
3842
 *
L
Lee Schermerhorn 已提交
3843
 */
3844
int page_evictable(struct page *page)
L
Lee Schermerhorn 已提交
3845
{
3846
	return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
L
Lee Schermerhorn 已提交
3847
}
3848

3849
#ifdef CONFIG_SHMEM
3850
/**
3851 3852 3853
 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
 * @pages:	array of pages to check
 * @nr_pages:	number of pages to check
3854
 *
3855
 * Checks pages for evictability and moves them to the appropriate lru list.
3856 3857
 *
 * This function is only used for SysV IPC SHM_UNLOCK.
3858
 */
3859
void check_move_unevictable_pages(struct page **pages, int nr_pages)
3860
{
3861
	struct lruvec *lruvec;
3862
	struct pglist_data *pgdat = NULL;
3863 3864 3865
	int pgscanned = 0;
	int pgrescued = 0;
	int i;
3866

3867 3868
	for (i = 0; i < nr_pages; i++) {
		struct page *page = pages[i];
3869
		struct pglist_data *pagepgdat = page_pgdat(page);
3870

3871
		pgscanned++;
3872 3873 3874 3875 3876
		if (pagepgdat != pgdat) {
			if (pgdat)
				spin_unlock_irq(&pgdat->lru_lock);
			pgdat = pagepgdat;
			spin_lock_irq(&pgdat->lru_lock);
3877
		}
3878
		lruvec = mem_cgroup_page_lruvec(page, pgdat);
3879

3880 3881
		if (!PageLRU(page) || !PageUnevictable(page))
			continue;
3882

3883
		if (page_evictable(page)) {
3884 3885
			enum lru_list lru = page_lru_base_type(page);

3886
			VM_BUG_ON_PAGE(PageActive(page), page);
3887
			ClearPageUnevictable(page);
3888 3889
			del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
			add_page_to_lru_list(page, lruvec, lru);
3890
			pgrescued++;
3891
		}
3892
	}
3893

3894
	if (pgdat) {
3895 3896
		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3897
		spin_unlock_irq(&pgdat->lru_lock);
3898 3899
	}
}
3900
#endif /* CONFIG_SHMEM */