vmscan.c 115.6 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
L
Linus Torvalds 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14
/*
 *  linux/mm/vmscan.c
 *
 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 *
 *  Swap reorganised 29.12.95, Stephen Tweedie.
 *  kswapd added: 7.1.96  sct
 *  Removed kswapd_ctl limits, and swap out as many pages as needed
 *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
 *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
 *  Multiqueue VM started 5.8.00, Rik van Riel.
 */

15 16
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

L
Linus Torvalds 已提交
17
#include <linux/mm.h>
18
#include <linux/sched/mm.h>
L
Linus Torvalds 已提交
19
#include <linux/module.h>
20
#include <linux/gfp.h>
L
Linus Torvalds 已提交
21 22 23 24 25
#include <linux/kernel_stat.h>
#include <linux/swap.h>
#include <linux/pagemap.h>
#include <linux/init.h>
#include <linux/highmem.h>
26
#include <linux/vmpressure.h>
27
#include <linux/vmstat.h>
L
Linus Torvalds 已提交
28 29 30 31 32 33 34 35 36 37 38
#include <linux/file.h>
#include <linux/writeback.h>
#include <linux/blkdev.h>
#include <linux/buffer_head.h>	/* for try_to_release_page(),
					buffer_heads_over_limit */
#include <linux/mm_inline.h>
#include <linux/backing-dev.h>
#include <linux/rmap.h>
#include <linux/topology.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
39
#include <linux/compaction.h>
L
Linus Torvalds 已提交
40 41
#include <linux/notifier.h>
#include <linux/rwsem.h>
42
#include <linux/delay.h>
43
#include <linux/kthread.h>
44
#include <linux/freezer.h>
45
#include <linux/memcontrol.h>
46
#include <linux/delayacct.h>
47
#include <linux/sysctl.h>
48
#include <linux/oom.h>
49
#include <linux/prefetch.h>
50
#include <linux/printk.h>
51
#include <linux/dax.h>
L
Linus Torvalds 已提交
52 53 54 55 56

#include <asm/tlbflush.h>
#include <asm/div64.h>

#include <linux/swapops.h>
57
#include <linux/balloon_compaction.h>
L
Linus Torvalds 已提交
58

59 60
#include "internal.h"

61 62 63
#define CREATE_TRACE_POINTS
#include <trace/events/vmscan.h>

L
Linus Torvalds 已提交
64
struct scan_control {
65 66 67
	/* How many pages shrink_list() should reclaim */
	unsigned long nr_to_reclaim;

L
Linus Torvalds 已提交
68
	/* This context's GFP mask */
A
Al Viro 已提交
69
	gfp_t gfp_mask;
L
Linus Torvalds 已提交
70

71
	/* Allocation order */
A
Andy Whitcroft 已提交
72
	int order;
73

74 75 76 77 78
	/*
	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
	 * are scanned.
	 */
	nodemask_t	*nodemask;
79

80 81 82 83 84
	/*
	 * The memory cgroup that hit its limit and as a result is the
	 * primary target of this reclaim invocation.
	 */
	struct mem_cgroup *target_mem_cgroup;
85

86 87 88
	/* Scan (total_size >> priority) pages at once */
	int priority;

89 90 91
	/* The highest zone to isolate pages for reclaim from */
	enum zone_type reclaim_idx;

92
	/* Writepage batching in laptop mode; RECLAIM_WRITE */
93 94 95 96 97 98 99 100
	unsigned int may_writepage:1;

	/* Can mapped pages be reclaimed? */
	unsigned int may_unmap:1;

	/* Can pages be swapped as part of reclaim? */
	unsigned int may_swap:1;

101 102 103 104 105 106 107
	/*
	 * Cgroups are not reclaimed below their configured memory.low,
	 * unless we threaten to OOM. If any cgroups are skipped due to
	 * memory.low and nothing was reclaimed, go back for memory.low.
	 */
	unsigned int memcg_low_reclaim:1;
	unsigned int memcg_low_skipped:1;
108

109 110 111 112 113 114 115 116 117 118
	unsigned int hibernation_mode:1;

	/* One of the zones is ready for compaction */
	unsigned int compaction_ready:1;

	/* Incremented by the number of inactive pages that were scanned */
	unsigned long nr_scanned;

	/* Number of pages freed so far during a call to shrink_zones() */
	unsigned long nr_reclaimed;
L
Linus Torvalds 已提交
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
};

#ifdef ARCH_HAS_PREFETCH
#define prefetch_prev_lru_page(_page, _base, _field)			\
	do {								\
		if ((_page)->lru.prev != _base) {			\
			struct page *prev;				\
									\
			prev = lru_to_page(&(_page->lru));		\
			prefetch(&prev->_field);			\
		}							\
	} while (0)
#else
#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
#endif

#ifdef ARCH_HAS_PREFETCHW
#define prefetchw_prev_lru_page(_page, _base, _field)			\
	do {								\
		if ((_page)->lru.prev != _base) {			\
			struct page *prev;				\
									\
			prev = lru_to_page(&(_page->lru));		\
			prefetchw(&prev->_field);			\
		}							\
	} while (0)
#else
#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
#endif

/*
 * From 0 .. 100.  Higher means more swappy.
 */
int vm_swappiness = 60;
153 154 155 156 157
/*
 * The total number of pages which are beyond the high watermark within all
 * zones.
 */
unsigned long vm_total_pages;
L
Linus Torvalds 已提交
158 159 160 161

static LIST_HEAD(shrinker_list);
static DECLARE_RWSEM(shrinker_rwsem);

A
Andrew Morton 已提交
162
#ifdef CONFIG_MEMCG
163 164
static bool global_reclaim(struct scan_control *sc)
{
165
	return !sc->target_mem_cgroup;
166
}
167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187

/**
 * sane_reclaim - is the usual dirty throttling mechanism operational?
 * @sc: scan_control in question
 *
 * The normal page dirty throttling mechanism in balance_dirty_pages() is
 * completely broken with the legacy memcg and direct stalling in
 * shrink_page_list() is used for throttling instead, which lacks all the
 * niceties such as fairness, adaptive pausing, bandwidth proportional
 * allocation and configurability.
 *
 * This function tests whether the vmscan currently in progress can assume
 * that the normal dirty throttling mechanism is operational.
 */
static bool sane_reclaim(struct scan_control *sc)
{
	struct mem_cgroup *memcg = sc->target_mem_cgroup;

	if (!memcg)
		return true;
#ifdef CONFIG_CGROUP_WRITEBACK
188
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
189 190 191 192
		return true;
#endif
	return false;
}
193
#else
194 195 196 197
static bool global_reclaim(struct scan_control *sc)
{
	return true;
}
198 199 200 201 202

static bool sane_reclaim(struct scan_control *sc)
{
	return true;
}
203 204
#endif

205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
/*
 * This misses isolated pages which are not accounted for to save counters.
 * As the data only determines if reclaim or compaction continues, it is
 * not expected that isolated pages will be a dominating factor.
 */
unsigned long zone_reclaimable_pages(struct zone *zone)
{
	unsigned long nr;

	nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
		zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
	if (get_nr_swap_pages() > 0)
		nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
			zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);

	return nr;
}

M
Mel Gorman 已提交
223 224 225 226 227 228 229
unsigned long pgdat_reclaimable_pages(struct pglist_data *pgdat)
{
	unsigned long nr;

	nr = node_page_state_snapshot(pgdat, NR_ACTIVE_FILE) +
	     node_page_state_snapshot(pgdat, NR_INACTIVE_FILE) +
	     node_page_state_snapshot(pgdat, NR_ISOLATED_FILE);
230 231

	if (get_nr_swap_pages() > 0)
M
Mel Gorman 已提交
232 233 234
		nr += node_page_state_snapshot(pgdat, NR_ACTIVE_ANON) +
		      node_page_state_snapshot(pgdat, NR_INACTIVE_ANON) +
		      node_page_state_snapshot(pgdat, NR_ISOLATED_ANON);
235 236 237 238

	return nr;
}

239 240 241 242 243 244 245
/**
 * lruvec_lru_size -  Returns the number of pages on the given LRU list.
 * @lruvec: lru vector
 * @lru: lru to use
 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
 */
unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx)
246
{
247 248 249
	unsigned long lru_size;
	int zid;

250
	if (!mem_cgroup_disabled())
251 252 253
		lru_size = mem_cgroup_get_lru_size(lruvec, lru);
	else
		lru_size = node_page_state(lruvec_pgdat(lruvec), NR_LRU_BASE + lru);
254

255 256 257
	for (zid = zone_idx + 1; zid < MAX_NR_ZONES; zid++) {
		struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
		unsigned long size;
258

259 260 261 262 263 264 265 266 267 268 269 270
		if (!managed_zone(zone))
			continue;

		if (!mem_cgroup_disabled())
			size = mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
		else
			size = zone_page_state(&lruvec_pgdat(lruvec)->node_zones[zid],
				       NR_ZONE_LRU_BASE + lru);
		lru_size -= min(size, lru_size);
	}

	return lru_size;
271 272 273

}

L
Linus Torvalds 已提交
274
/*
G
Glauber Costa 已提交
275
 * Add a shrinker callback to be called from the vm.
L
Linus Torvalds 已提交
276
 */
G
Glauber Costa 已提交
277
int register_shrinker(struct shrinker *shrinker)
L
Linus Torvalds 已提交
278
{
G
Glauber Costa 已提交
279 280 281 282 283 284 285 286 287
	size_t size = sizeof(*shrinker->nr_deferred);

	if (shrinker->flags & SHRINKER_NUMA_AWARE)
		size *= nr_node_ids;

	shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
	if (!shrinker->nr_deferred)
		return -ENOMEM;

288 289 290
	down_write(&shrinker_rwsem);
	list_add_tail(&shrinker->list, &shrinker_list);
	up_write(&shrinker_rwsem);
G
Glauber Costa 已提交
291
	return 0;
L
Linus Torvalds 已提交
292
}
293
EXPORT_SYMBOL(register_shrinker);
L
Linus Torvalds 已提交
294 295 296 297

/*
 * Remove one
 */
298
void unregister_shrinker(struct shrinker *shrinker)
L
Linus Torvalds 已提交
299
{
300 301
	if (!shrinker->nr_deferred)
		return;
L
Linus Torvalds 已提交
302 303 304
	down_write(&shrinker_rwsem);
	list_del(&shrinker->list);
	up_write(&shrinker_rwsem);
305
	kfree(shrinker->nr_deferred);
306
	shrinker->nr_deferred = NULL;
L
Linus Torvalds 已提交
307
}
308
EXPORT_SYMBOL(unregister_shrinker);
L
Linus Torvalds 已提交
309 310

#define SHRINK_BATCH 128
G
Glauber Costa 已提交
311

312 313 314 315
static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
				    struct shrinker *shrinker,
				    unsigned long nr_scanned,
				    unsigned long nr_eligible)
G
Glauber Costa 已提交
316 317 318 319
{
	unsigned long freed = 0;
	unsigned long long delta;
	long total_scan;
320
	long freeable;
G
Glauber Costa 已提交
321 322 323 324 325
	long nr;
	long new_nr;
	int nid = shrinkctl->nid;
	long batch_size = shrinker->batch ? shrinker->batch
					  : SHRINK_BATCH;
326
	long scanned = 0, next_deferred;
G
Glauber Costa 已提交
327

328 329
	freeable = shrinker->count_objects(shrinker, shrinkctl);
	if (freeable == 0)
G
Glauber Costa 已提交
330 331 332 333 334 335 336 337 338 339
		return 0;

	/*
	 * copy the current shrinker scan count into a local variable
	 * and zero it so that other concurrent shrinker invocations
	 * don't also do this scanning work.
	 */
	nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);

	total_scan = nr;
340
	delta = (4 * nr_scanned) / shrinker->seeks;
341
	delta *= freeable;
342
	do_div(delta, nr_eligible + 1);
G
Glauber Costa 已提交
343 344
	total_scan += delta;
	if (total_scan < 0) {
345
		pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n",
D
Dave Chinner 已提交
346
		       shrinker->scan_objects, total_scan);
347
		total_scan = freeable;
348 349 350
		next_deferred = nr;
	} else
		next_deferred = total_scan;
G
Glauber Costa 已提交
351 352 353 354 355 356 357

	/*
	 * We need to avoid excessive windup on filesystem shrinkers
	 * due to large numbers of GFP_NOFS allocations causing the
	 * shrinkers to return -1 all the time. This results in a large
	 * nr being built up so when a shrink that can do some work
	 * comes along it empties the entire cache due to nr >>>
358
	 * freeable. This is bad for sustaining a working set in
G
Glauber Costa 已提交
359 360 361 362 363
	 * memory.
	 *
	 * Hence only allow the shrinker to scan the entire cache when
	 * a large delta change is calculated directly.
	 */
364 365
	if (delta < freeable / 4)
		total_scan = min(total_scan, freeable / 2);
G
Glauber Costa 已提交
366 367 368 369 370 371

	/*
	 * Avoid risking looping forever due to too large nr value:
	 * never try to free more than twice the estimate number of
	 * freeable entries.
	 */
372 373
	if (total_scan > freeable * 2)
		total_scan = freeable * 2;
G
Glauber Costa 已提交
374 375

	trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
376 377
				   nr_scanned, nr_eligible,
				   freeable, delta, total_scan);
G
Glauber Costa 已提交
378

379 380 381 382 383 384 385 386 387 388 389
	/*
	 * Normally, we should not scan less than batch_size objects in one
	 * pass to avoid too frequent shrinker calls, but if the slab has less
	 * than batch_size objects in total and we are really tight on memory,
	 * we will try to reclaim all available objects, otherwise we can end
	 * up failing allocations although there are plenty of reclaimable
	 * objects spread over several slabs with usage less than the
	 * batch_size.
	 *
	 * We detect the "tight on memory" situations by looking at the total
	 * number of objects we want to scan (total_scan). If it is greater
390
	 * than the total number of objects on slab (freeable), we must be
391 392 393 394
	 * scanning at high prio and therefore should try to reclaim as much as
	 * possible.
	 */
	while (total_scan >= batch_size ||
395
	       total_scan >= freeable) {
D
Dave Chinner 已提交
396
		unsigned long ret;
397
		unsigned long nr_to_scan = min(batch_size, total_scan);
G
Glauber Costa 已提交
398

399
		shrinkctl->nr_to_scan = nr_to_scan;
400
		shrinkctl->nr_scanned = nr_to_scan;
D
Dave Chinner 已提交
401 402 403 404
		ret = shrinker->scan_objects(shrinker, shrinkctl);
		if (ret == SHRINK_STOP)
			break;
		freed += ret;
G
Glauber Costa 已提交
405

406 407 408
		count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
		total_scan -= shrinkctl->nr_scanned;
		scanned += shrinkctl->nr_scanned;
G
Glauber Costa 已提交
409 410 411 412

		cond_resched();
	}

413 414 415 416
	if (next_deferred >= scanned)
		next_deferred -= scanned;
	else
		next_deferred = 0;
G
Glauber Costa 已提交
417 418 419 420 421
	/*
	 * move the unused scan count back into the shrinker in a
	 * manner that handles concurrent updates. If we exhausted the
	 * scan, there is no need to do an update.
	 */
422 423
	if (next_deferred > 0)
		new_nr = atomic_long_add_return(next_deferred,
G
Glauber Costa 已提交
424 425 426 427
						&shrinker->nr_deferred[nid]);
	else
		new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);

428
	trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
G
Glauber Costa 已提交
429
	return freed;
430 431
}

432
/**
433
 * shrink_slab - shrink slab caches
434 435
 * @gfp_mask: allocation context
 * @nid: node whose slab caches to target
436
 * @memcg: memory cgroup whose slab caches to target
437 438
 * @nr_scanned: pressure numerator
 * @nr_eligible: pressure denominator
L
Linus Torvalds 已提交
439
 *
440
 * Call the shrink functions to age shrinkable caches.
L
Linus Torvalds 已提交
441
 *
442 443
 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
 * unaware shrinkers will receive a node id of 0 instead.
L
Linus Torvalds 已提交
444
 *
445 446
 * @memcg specifies the memory cgroup to target. If it is not NULL,
 * only shrinkers with SHRINKER_MEMCG_AWARE set will be called to scan
447 448
 * objects from the memory cgroup specified. Otherwise, only unaware
 * shrinkers are called.
449
 *
450 451 452 453 454 455 456
 * @nr_scanned and @nr_eligible form a ratio that indicate how much of
 * the available objects should be scanned.  Page reclaim for example
 * passes the number of pages scanned and the number of pages on the
 * LRU lists that it considered on @nid, plus a bias in @nr_scanned
 * when it encountered mapped pages.  The ratio is further biased by
 * the ->seeks setting of the shrink function, which indicates the
 * cost to recreate an object relative to that of an LRU page.
457
 *
458
 * Returns the number of reclaimed slab objects.
L
Linus Torvalds 已提交
459
 */
460 461 462 463
static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
				 struct mem_cgroup *memcg,
				 unsigned long nr_scanned,
				 unsigned long nr_eligible)
L
Linus Torvalds 已提交
464 465
{
	struct shrinker *shrinker;
D
Dave Chinner 已提交
466
	unsigned long freed = 0;
L
Linus Torvalds 已提交
467

468
	if (memcg && (!memcg_kmem_enabled() || !mem_cgroup_online(memcg)))
469 470
		return 0;

471 472
	if (nr_scanned == 0)
		nr_scanned = SWAP_CLUSTER_MAX;
L
Linus Torvalds 已提交
473

474
	if (!down_read_trylock(&shrinker_rwsem)) {
D
Dave Chinner 已提交
475 476 477 478 479 480 481
		/*
		 * If we would return 0, our callers would understand that we
		 * have nothing else to shrink and give up trying. By returning
		 * 1 we keep it going and assume we'll be able to shrink next
		 * time.
		 */
		freed = 1;
482 483
		goto out;
	}
L
Linus Torvalds 已提交
484 485

	list_for_each_entry(shrinker, &shrinker_list, list) {
486 487 488
		struct shrink_control sc = {
			.gfp_mask = gfp_mask,
			.nid = nid,
489
			.memcg = memcg,
490
		};
491

492 493 494 495 496 497 498
		/*
		 * If kernel memory accounting is disabled, we ignore
		 * SHRINKER_MEMCG_AWARE flag and call all shrinkers
		 * passing NULL for memcg.
		 */
		if (memcg_kmem_enabled() &&
		    !!memcg != !!(shrinker->flags & SHRINKER_MEMCG_AWARE))
499 500
			continue;

501 502
		if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
			sc.nid = 0;
L
Linus Torvalds 已提交
503

504
		freed += do_shrink_slab(&sc, shrinker, nr_scanned, nr_eligible);
L
Linus Torvalds 已提交
505
	}
506

L
Linus Torvalds 已提交
507
	up_read(&shrinker_rwsem);
508 509
out:
	cond_resched();
D
Dave Chinner 已提交
510
	return freed;
L
Linus Torvalds 已提交
511 512
}

513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535
void drop_slab_node(int nid)
{
	unsigned long freed;

	do {
		struct mem_cgroup *memcg = NULL;

		freed = 0;
		do {
			freed += shrink_slab(GFP_KERNEL, nid, memcg,
					     1000, 1000);
		} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
	} while (freed > 10);
}

void drop_slab(void)
{
	int nid;

	for_each_online_node(nid)
		drop_slab_node(nid);
}

L
Linus Torvalds 已提交
536 537
static inline int is_page_cache_freeable(struct page *page)
{
538 539 540 541 542
	/*
	 * A freeable page cache page is referenced only by the caller
	 * that isolated the page, the page cache radix tree and
	 * optional buffer heads at page->private.
	 */
543 544 545
	int radix_pins = PageTransHuge(page) && PageSwapCache(page) ?
		HPAGE_PMD_NR : 1;
	return page_count(page) - page_has_private(page) == 1 + radix_pins;
L
Linus Torvalds 已提交
546 547
}

548
static int may_write_to_inode(struct inode *inode, struct scan_control *sc)
L
Linus Torvalds 已提交
549
{
550
	if (current->flags & PF_SWAPWRITE)
L
Linus Torvalds 已提交
551
		return 1;
552
	if (!inode_write_congested(inode))
L
Linus Torvalds 已提交
553
		return 1;
554
	if (inode_to_bdi(inode) == current->backing_dev_info)
L
Linus Torvalds 已提交
555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573
		return 1;
	return 0;
}

/*
 * We detected a synchronous write error writing a page out.  Probably
 * -ENOSPC.  We need to propagate that into the address_space for a subsequent
 * fsync(), msync() or close().
 *
 * The tricky part is that after writepage we cannot touch the mapping: nothing
 * prevents it from being freed up.  But we have a ref on the page and once
 * that page is locked, the mapping is pinned.
 *
 * We're allowed to run sleeping lock_page() here because we know the caller has
 * __GFP_FS.
 */
static void handle_write_error(struct address_space *mapping,
				struct page *page, int error)
{
J
Jens Axboe 已提交
574
	lock_page(page);
575 576
	if (page_mapping(page) == mapping)
		mapping_set_error(mapping, error);
L
Linus Torvalds 已提交
577 578 579
	unlock_page(page);
}

580 581 582 583 584 585 586 587 588 589 590 591
/* possible outcome of pageout() */
typedef enum {
	/* failed to write page out, page is locked */
	PAGE_KEEP,
	/* move page to the active list, page is locked */
	PAGE_ACTIVATE,
	/* page has been sent to the disk successfully, page is unlocked */
	PAGE_SUCCESS,
	/* page is clean and locked */
	PAGE_CLEAN,
} pageout_t;

L
Linus Torvalds 已提交
592
/*
A
Andrew Morton 已提交
593 594
 * pageout is called by shrink_page_list() for each dirty page.
 * Calls ->writepage().
L
Linus Torvalds 已提交
595
 */
596
static pageout_t pageout(struct page *page, struct address_space *mapping,
597
			 struct scan_control *sc)
L
Linus Torvalds 已提交
598 599 600 601 602 603 604 605
{
	/*
	 * If the page is dirty, only perform writeback if that write
	 * will be non-blocking.  To prevent this allocation from being
	 * stalled by pagecache activity.  But note that there may be
	 * stalls if we need to run get_block().  We could test
	 * PagePrivate for that.
	 *
606
	 * If this process is currently in __generic_file_write_iter() against
L
Linus Torvalds 已提交
607 608 609 610 611 612 613 614 615 616 617 618 619 620 621
	 * this page's queue, we can perform writeback even if that
	 * will block.
	 *
	 * If the page is swapcache, write it back even if that would
	 * block, for some throttling. This happens by accident, because
	 * swap_backing_dev_info is bust: it doesn't reflect the
	 * congestion state of the swapdevs.  Easy to fix, if needed.
	 */
	if (!is_page_cache_freeable(page))
		return PAGE_KEEP;
	if (!mapping) {
		/*
		 * Some data journaling orphaned pages can have
		 * page->mapping == NULL while being dirty with clean buffers.
		 */
622
		if (page_has_private(page)) {
L
Linus Torvalds 已提交
623 624
			if (try_to_free_buffers(page)) {
				ClearPageDirty(page);
625
				pr_info("%s: orphaned page\n", __func__);
L
Linus Torvalds 已提交
626 627 628 629 630 631 632
				return PAGE_CLEAN;
			}
		}
		return PAGE_KEEP;
	}
	if (mapping->a_ops->writepage == NULL)
		return PAGE_ACTIVATE;
633
	if (!may_write_to_inode(mapping->host, sc))
L
Linus Torvalds 已提交
634 635 636 637 638 639 640
		return PAGE_KEEP;

	if (clear_page_dirty_for_io(page)) {
		int res;
		struct writeback_control wbc = {
			.sync_mode = WB_SYNC_NONE,
			.nr_to_write = SWAP_CLUSTER_MAX,
641 642
			.range_start = 0,
			.range_end = LLONG_MAX,
L
Linus Torvalds 已提交
643 644 645 646 647 648 649
			.for_reclaim = 1,
		};

		SetPageReclaim(page);
		res = mapping->a_ops->writepage(page, &wbc);
		if (res < 0)
			handle_write_error(mapping, page, res);
650
		if (res == AOP_WRITEPAGE_ACTIVATE) {
L
Linus Torvalds 已提交
651 652 653
			ClearPageReclaim(page);
			return PAGE_ACTIVATE;
		}
654

L
Linus Torvalds 已提交
655 656 657 658
		if (!PageWriteback(page)) {
			/* synchronous write or broken a_ops? */
			ClearPageReclaim(page);
		}
659
		trace_mm_vmscan_writepage(page);
660
		inc_node_page_state(page, NR_VMSCAN_WRITE);
L
Linus Torvalds 已提交
661 662 663 664 665 666
		return PAGE_SUCCESS;
	}

	return PAGE_CLEAN;
}

667
/*
N
Nick Piggin 已提交
668 669
 * Same as remove_mapping, but if the page is removed from the mapping, it
 * gets returned with a refcount of 0.
670
 */
671 672
static int __remove_mapping(struct address_space *mapping, struct page *page,
			    bool reclaimed)
673
{
674
	unsigned long flags;
675
	int refcount;
676

677 678
	BUG_ON(!PageLocked(page));
	BUG_ON(mapping != page_mapping(page));
679

680
	spin_lock_irqsave(&mapping->tree_lock, flags);
681
	/*
N
Nick Piggin 已提交
682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700
	 * The non racy check for a busy page.
	 *
	 * Must be careful with the order of the tests. When someone has
	 * a ref to the page, it may be possible that they dirty it then
	 * drop the reference. So if PageDirty is tested before page_count
	 * here, then the following race may occur:
	 *
	 * get_user_pages(&page);
	 * [user mapping goes away]
	 * write_to(page);
	 *				!PageDirty(page)    [good]
	 * SetPageDirty(page);
	 * put_page(page);
	 *				!page_count(page)   [good, discard it]
	 *
	 * [oops, our write_to data is lost]
	 *
	 * Reversing the order of the tests ensures such a situation cannot
	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
701
	 * load is not satisfied before that of page->_refcount.
N
Nick Piggin 已提交
702 703 704
	 *
	 * Note that if SetPageDirty is always performed via set_page_dirty,
	 * and thus under tree_lock, then this ordering is not required.
705
	 */
706 707 708 709 710
	if (unlikely(PageTransHuge(page)) && PageSwapCache(page))
		refcount = 1 + HPAGE_PMD_NR;
	else
		refcount = 2;
	if (!page_ref_freeze(page, refcount))
711
		goto cannot_free;
N
Nick Piggin 已提交
712 713
	/* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
	if (unlikely(PageDirty(page))) {
714
		page_ref_unfreeze(page, refcount);
715
		goto cannot_free;
N
Nick Piggin 已提交
716
	}
717 718 719

	if (PageSwapCache(page)) {
		swp_entry_t swap = { .val = page_private(page) };
720
		mem_cgroup_swapout(page, swap);
721
		__delete_from_swap_cache(page);
722
		spin_unlock_irqrestore(&mapping->tree_lock, flags);
723
		put_swap_page(page, swap);
N
Nick Piggin 已提交
724
	} else {
725
		void (*freepage)(struct page *);
726
		void *shadow = NULL;
727 728

		freepage = mapping->a_ops->freepage;
729 730 731 732 733 734 735 736 737
		/*
		 * Remember a shadow entry for reclaimed file cache in
		 * order to detect refaults, thus thrashing, later on.
		 *
		 * But don't store shadows in an address space that is
		 * already exiting.  This is not just an optizimation,
		 * inode reclaim needs to empty out the radix tree or
		 * the nodes are lost.  Don't plant shadows behind its
		 * back.
738 739 740 741 742 743
		 *
		 * We also don't store shadows for DAX mappings because the
		 * only page cache pages found in these are zero pages
		 * covering holes, and because we don't want to mix DAX
		 * exceptional entries and shadow exceptional entries in the
		 * same page_tree.
744 745
		 */
		if (reclaimed && page_is_file_cache(page) &&
746
		    !mapping_exiting(mapping) && !dax_mapping(mapping))
747
			shadow = workingset_eviction(mapping, page);
J
Johannes Weiner 已提交
748
		__delete_from_page_cache(page, shadow);
749
		spin_unlock_irqrestore(&mapping->tree_lock, flags);
750 751 752

		if (freepage != NULL)
			freepage(page);
753 754 755 756 757
	}

	return 1;

cannot_free:
758
	spin_unlock_irqrestore(&mapping->tree_lock, flags);
759 760 761
	return 0;
}

N
Nick Piggin 已提交
762 763 764 765 766 767 768 769
/*
 * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
 * someone else has a ref on the page, abort and return 0.  If it was
 * successfully detached, return 1.  Assumes the caller has a single ref on
 * this page.
 */
int remove_mapping(struct address_space *mapping, struct page *page)
{
770
	if (__remove_mapping(mapping, page, false)) {
N
Nick Piggin 已提交
771 772 773 774 775
		/*
		 * Unfreezing the refcount with 1 rather than 2 effectively
		 * drops the pagecache ref for us without requiring another
		 * atomic operation.
		 */
776
		page_ref_unfreeze(page, 1);
N
Nick Piggin 已提交
777 778 779 780 781
		return 1;
	}
	return 0;
}

L
Lee Schermerhorn 已提交
782 783 784 785 786 787 788 789 790 791 792
/**
 * putback_lru_page - put previously isolated page onto appropriate LRU list
 * @page: page to be put back to appropriate lru list
 *
 * Add previously isolated @page to appropriate LRU list.
 * Page may still be unevictable for other reasons.
 *
 * lru_lock must not be held, interrupts must be enabled.
 */
void putback_lru_page(struct page *page)
{
793
	bool is_unevictable;
794
	int was_unevictable = PageUnevictable(page);
L
Lee Schermerhorn 已提交
795

796
	VM_BUG_ON_PAGE(PageLRU(page), page);
L
Lee Schermerhorn 已提交
797 798 799 800

redo:
	ClearPageUnevictable(page);

801
	if (page_evictable(page)) {
L
Lee Schermerhorn 已提交
802 803 804 805 806 807
		/*
		 * For evictable pages, we can use the cache.
		 * In event of a race, worst case is we end up with an
		 * unevictable page on [in]active list.
		 * We know how to handle that.
		 */
808
		is_unevictable = false;
809
		lru_cache_add(page);
L
Lee Schermerhorn 已提交
810 811 812 813 814
	} else {
		/*
		 * Put unevictable pages directly on zone's unevictable
		 * list.
		 */
815
		is_unevictable = true;
L
Lee Schermerhorn 已提交
816
		add_page_to_unevictable_list(page);
817
		/*
818 819 820
		 * When racing with an mlock or AS_UNEVICTABLE clearing
		 * (page is unlocked) make sure that if the other thread
		 * does not observe our setting of PG_lru and fails
821
		 * isolation/check_move_unevictable_pages,
822
		 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
823 824
		 * the page back to the evictable list.
		 *
825
		 * The other side is TestClearPageMlocked() or shmem_lock().
826 827
		 */
		smp_mb();
L
Lee Schermerhorn 已提交
828 829 830 831 832 833 834
	}

	/*
	 * page's status can change while we move it among lru. If an evictable
	 * page is on unevictable list, it never be freed. To avoid that,
	 * check after we added it to the list, again.
	 */
835
	if (is_unevictable && page_evictable(page)) {
L
Lee Schermerhorn 已提交
836 837 838 839 840 841 842 843 844 845
		if (!isolate_lru_page(page)) {
			put_page(page);
			goto redo;
		}
		/* This means someone else dropped this page from LRU
		 * So, it will be freed or putback to LRU again. There is
		 * nothing to do here.
		 */
	}

846
	if (was_unevictable && !is_unevictable)
847
		count_vm_event(UNEVICTABLE_PGRESCUED);
848
	else if (!was_unevictable && is_unevictable)
849 850
		count_vm_event(UNEVICTABLE_PGCULLED);

L
Lee Schermerhorn 已提交
851 852 853
	put_page(page);		/* drop ref from isolate */
}

854 855 856
enum page_references {
	PAGEREF_RECLAIM,
	PAGEREF_RECLAIM_CLEAN,
857
	PAGEREF_KEEP,
858 859 860 861 862 863
	PAGEREF_ACTIVATE,
};

static enum page_references page_check_references(struct page *page,
						  struct scan_control *sc)
{
864
	int referenced_ptes, referenced_page;
865 866
	unsigned long vm_flags;

867 868
	referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
					  &vm_flags);
869
	referenced_page = TestClearPageReferenced(page);
870 871 872 873 874 875 876 877

	/*
	 * Mlock lost the isolation race with us.  Let try_to_unmap()
	 * move the page to the unevictable list.
	 */
	if (vm_flags & VM_LOCKED)
		return PAGEREF_RECLAIM;

878
	if (referenced_ptes) {
879
		if (PageSwapBacked(page))
880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896
			return PAGEREF_ACTIVATE;
		/*
		 * All mapped pages start out with page table
		 * references from the instantiating fault, so we need
		 * to look twice if a mapped file page is used more
		 * than once.
		 *
		 * Mark it and spare it for another trip around the
		 * inactive list.  Another page table reference will
		 * lead to its activation.
		 *
		 * Note: the mark is set for activated pages as well
		 * so that recently deactivated but used pages are
		 * quickly recovered.
		 */
		SetPageReferenced(page);

897
		if (referenced_page || referenced_ptes > 1)
898 899
			return PAGEREF_ACTIVATE;

900 901 902 903 904 905
		/*
		 * Activate file-backed executable pages after first usage.
		 */
		if (vm_flags & VM_EXEC)
			return PAGEREF_ACTIVATE;

906 907
		return PAGEREF_KEEP;
	}
908 909

	/* Reclaim if clean, defer dirty pages to writeback */
910
	if (referenced_page && !PageSwapBacked(page))
911 912 913
		return PAGEREF_RECLAIM_CLEAN;

	return PAGEREF_RECLAIM;
914 915
}

916 917 918 919
/* Check if a page is dirty or under writeback */
static void page_check_dirty_writeback(struct page *page,
				       bool *dirty, bool *writeback)
{
920 921
	struct address_space *mapping;

922 923 924 925
	/*
	 * Anonymous pages are not handled by flushers and must be written
	 * from reclaim context. Do not stall reclaim based on them
	 */
S
Shaohua Li 已提交
926 927
	if (!page_is_file_cache(page) ||
	    (PageAnon(page) && !PageSwapBacked(page))) {
928 929 930 931 932 933 934 935
		*dirty = false;
		*writeback = false;
		return;
	}

	/* By default assume that the page flags are accurate */
	*dirty = PageDirty(page);
	*writeback = PageWriteback(page);
936 937 938 939 940 941 942 943

	/* Verify dirty/writeback state if the filesystem supports it */
	if (!page_has_private(page))
		return;

	mapping = page_mapping(page);
	if (mapping && mapping->a_ops->is_dirty_writeback)
		mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
944 945
}

946 947 948 949 950 951
struct reclaim_stat {
	unsigned nr_dirty;
	unsigned nr_unqueued_dirty;
	unsigned nr_congested;
	unsigned nr_writeback;
	unsigned nr_immediate;
952 953 954
	unsigned nr_activate;
	unsigned nr_ref_keep;
	unsigned nr_unmap_fail;
955 956
};

L
Linus Torvalds 已提交
957
/*
A
Andrew Morton 已提交
958
 * shrink_page_list() returns the number of reclaimed pages
L
Linus Torvalds 已提交
959
 */
A
Andrew Morton 已提交
960
static unsigned long shrink_page_list(struct list_head *page_list,
M
Mel Gorman 已提交
961
				      struct pglist_data *pgdat,
962
				      struct scan_control *sc,
963
				      enum ttu_flags ttu_flags,
964
				      struct reclaim_stat *stat,
965
				      bool force_reclaim)
L
Linus Torvalds 已提交
966 967
{
	LIST_HEAD(ret_pages);
968
	LIST_HEAD(free_pages);
L
Linus Torvalds 已提交
969
	int pgactivate = 0;
970 971 972 973 974 975
	unsigned nr_unqueued_dirty = 0;
	unsigned nr_dirty = 0;
	unsigned nr_congested = 0;
	unsigned nr_reclaimed = 0;
	unsigned nr_writeback = 0;
	unsigned nr_immediate = 0;
976 977
	unsigned nr_ref_keep = 0;
	unsigned nr_unmap_fail = 0;
L
Linus Torvalds 已提交
978 979 980 981 982 983 984

	cond_resched();

	while (!list_empty(page_list)) {
		struct address_space *mapping;
		struct page *page;
		int may_enter_fs;
985
		enum page_references references = PAGEREF_RECLAIM_CLEAN;
986
		bool dirty, writeback;
L
Linus Torvalds 已提交
987 988 989 990 991 992

		cond_resched();

		page = lru_to_page(page_list);
		list_del(&page->lru);

N
Nick Piggin 已提交
993
		if (!trylock_page(page))
L
Linus Torvalds 已提交
994 995
			goto keep;

996
		VM_BUG_ON_PAGE(PageActive(page), page);
L
Linus Torvalds 已提交
997 998

		sc->nr_scanned++;
999

1000
		if (unlikely(!page_evictable(page)))
M
Minchan Kim 已提交
1001
			goto activate_locked;
L
Lee Schermerhorn 已提交
1002

1003
		if (!sc->may_unmap && page_mapped(page))
1004 1005
			goto keep_locked;

L
Linus Torvalds 已提交
1006
		/* Double the slab pressure for mapped and swapcache pages */
S
Shaohua Li 已提交
1007 1008
		if ((page_mapped(page) || PageSwapCache(page)) &&
		    !(PageAnon(page) && !PageSwapBacked(page)))
L
Linus Torvalds 已提交
1009 1010
			sc->nr_scanned++;

1011 1012 1013
		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));

1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026
		/*
		 * The number of dirty pages determines if a zone is marked
		 * reclaim_congested which affects wait_iff_congested. kswapd
		 * will stall and start writing pages if the tail of the LRU
		 * is all dirty unqueued pages.
		 */
		page_check_dirty_writeback(page, &dirty, &writeback);
		if (dirty || writeback)
			nr_dirty++;

		if (dirty && !writeback)
			nr_unqueued_dirty++;

1027 1028 1029 1030 1031 1032
		/*
		 * Treat this page as congested if the underlying BDI is or if
		 * pages are cycling through the LRU so quickly that the
		 * pages marked for immediate reclaim are making it to the
		 * end of the LRU a second time.
		 */
1033
		mapping = page_mapping(page);
1034
		if (((dirty || writeback) && mapping &&
1035
		     inode_write_congested(mapping->host)) ||
1036
		    (writeback && PageReclaim(page)))
1037 1038
			nr_congested++;

1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049
		/*
		 * If a page at the tail of the LRU is under writeback, there
		 * are three cases to consider.
		 *
		 * 1) If reclaim is encountering an excessive number of pages
		 *    under writeback and this page is both under writeback and
		 *    PageReclaim then it indicates that pages are being queued
		 *    for IO but are being recycled through the LRU before the
		 *    IO can complete. Waiting on the page itself risks an
		 *    indefinite stall if it is impossible to writeback the
		 *    page due to IO error or disconnected storage so instead
1050 1051
		 *    note that the LRU is being scanned too quickly and the
		 *    caller can stall after page list has been processed.
1052
		 *
1053
		 * 2) Global or new memcg reclaim encounters a page that is
1054 1055 1056
		 *    not marked for immediate reclaim, or the caller does not
		 *    have __GFP_FS (or __GFP_IO if it's simply going to swap,
		 *    not to fs). In this case mark the page for immediate
1057
		 *    reclaim and continue scanning.
1058
		 *
1059 1060
		 *    Require may_enter_fs because we would wait on fs, which
		 *    may not have submitted IO yet. And the loop driver might
1061 1062 1063 1064 1065
		 *    enter reclaim, and deadlock if it waits on a page for
		 *    which it is needed to do the write (loop masks off
		 *    __GFP_IO|__GFP_FS for this reason); but more thought
		 *    would probably show more reasons.
		 *
1066
		 * 3) Legacy memcg encounters a page that is already marked
1067 1068 1069 1070
		 *    PageReclaim. memcg does not have any dirty pages
		 *    throttling so we could easily OOM just because too many
		 *    pages are in writeback and there is nothing else to
		 *    reclaim. Wait for the writeback to complete.
1071 1072 1073 1074 1075 1076 1077 1078 1079
		 *
		 * In cases 1) and 2) we activate the pages to get them out of
		 * the way while we continue scanning for clean pages on the
		 * inactive list and refilling from the active list. The
		 * observation here is that waiting for disk writes is more
		 * expensive than potentially causing reloads down the line.
		 * Since they're marked for immediate reclaim, they won't put
		 * memory pressure on the cache working set any longer than it
		 * takes to write them to disk.
1080
		 */
1081
		if (PageWriteback(page)) {
1082 1083 1084
			/* Case 1 above */
			if (current_is_kswapd() &&
			    PageReclaim(page) &&
M
Mel Gorman 已提交
1085
			    test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1086
				nr_immediate++;
1087
				goto activate_locked;
1088 1089

			/* Case 2 above */
1090
			} else if (sane_reclaim(sc) ||
1091
			    !PageReclaim(page) || !may_enter_fs) {
1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103
				/*
				 * This is slightly racy - end_page_writeback()
				 * might have just cleared PageReclaim, then
				 * setting PageReclaim here end up interpreted
				 * as PageReadahead - but that does not matter
				 * enough to care.  What we do want is for this
				 * page to have PageReclaim set next time memcg
				 * reclaim reaches the tests above, so it will
				 * then wait_on_page_writeback() to avoid OOM;
				 * and it's also appropriate in global reclaim.
				 */
				SetPageReclaim(page);
1104
				nr_writeback++;
1105
				goto activate_locked;
1106 1107 1108

			/* Case 3 above */
			} else {
1109
				unlock_page(page);
1110
				wait_on_page_writeback(page);
1111 1112 1113
				/* then go back and try same page again */
				list_add_tail(&page->lru, page_list);
				continue;
1114
			}
1115
		}
L
Linus Torvalds 已提交
1116

1117 1118 1119
		if (!force_reclaim)
			references = page_check_references(page, sc);

1120 1121
		switch (references) {
		case PAGEREF_ACTIVATE:
L
Linus Torvalds 已提交
1122
			goto activate_locked;
1123
		case PAGEREF_KEEP:
1124
			nr_ref_keep++;
1125
			goto keep_locked;
1126 1127 1128 1129
		case PAGEREF_RECLAIM:
		case PAGEREF_RECLAIM_CLEAN:
			; /* try to reclaim the page below */
		}
L
Linus Torvalds 已提交
1130 1131 1132 1133

		/*
		 * Anonymous process memory has backing store?
		 * Try to allocate it some swap space here.
S
Shaohua Li 已提交
1134
		 * Lazyfree page could be freed directly
L
Linus Torvalds 已提交
1135
		 */
1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160
		if (PageAnon(page) && PageSwapBacked(page)) {
			if (!PageSwapCache(page)) {
				if (!(sc->gfp_mask & __GFP_IO))
					goto keep_locked;
				if (PageTransHuge(page)) {
					/* cannot split THP, skip it */
					if (!can_split_huge_page(page, NULL))
						goto activate_locked;
					/*
					 * Split pages without a PMD map right
					 * away. Chances are some or all of the
					 * tail pages can be freed without IO.
					 */
					if (!compound_mapcount(page) &&
					    split_huge_page_to_list(page,
								    page_list))
						goto activate_locked;
				}
				if (!add_to_swap(page)) {
					if (!PageTransHuge(page))
						goto activate_locked;
					/* Fallback to swap normal pages */
					if (split_huge_page_to_list(page,
								    page_list))
						goto activate_locked;
1161 1162 1163
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
					count_vm_event(THP_SWPOUT_FALLBACK);
#endif
1164 1165 1166
					if (!add_to_swap(page))
						goto activate_locked;
				}
1167

1168
				may_enter_fs = 1;
L
Linus Torvalds 已提交
1169

1170 1171 1172
				/* Adding to swap updated mapping */
				mapping = page_mapping(page);
			}
1173 1174 1175 1176
		} else if (unlikely(PageTransHuge(page))) {
			/* Split file THP */
			if (split_huge_page_to_list(page, page_list))
				goto keep_locked;
1177
		}
L
Linus Torvalds 已提交
1178 1179 1180 1181 1182

		/*
		 * The page is mapped into the page tables of one or more
		 * processes. Try to unmap it here.
		 */
S
Shaohua Li 已提交
1183
		if (page_mapped(page)) {
1184 1185 1186 1187 1188
			enum ttu_flags flags = ttu_flags | TTU_BATCH_FLUSH;

			if (unlikely(PageTransHuge(page)))
				flags |= TTU_SPLIT_HUGE_PMD;
			if (!try_to_unmap(page, flags)) {
1189
				nr_unmap_fail++;
L
Linus Torvalds 已提交
1190 1191 1192 1193 1194
				goto activate_locked;
			}
		}

		if (PageDirty(page)) {
1195
			/*
1196 1197 1198 1199 1200 1201 1202 1203
			 * Only kswapd can writeback filesystem pages
			 * to avoid risk of stack overflow. But avoid
			 * injecting inefficient single-page IO into
			 * flusher writeback as much as possible: only
			 * write pages when we've encountered many
			 * dirty pages, and when we've already scanned
			 * the rest of the LRU for clean pages and see
			 * the same dirty pages again (PageReclaim).
1204
			 */
1205
			if (page_is_file_cache(page) &&
1206 1207
			    (!current_is_kswapd() || !PageReclaim(page) ||
			     !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1208 1209 1210 1211 1212 1213
				/*
				 * Immediately reclaim when written back.
				 * Similar in principal to deactivate_page()
				 * except we already have the page isolated
				 * and know it's dirty
				 */
1214
				inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
1215 1216
				SetPageReclaim(page);

1217
				goto activate_locked;
1218 1219
			}

1220
			if (references == PAGEREF_RECLAIM_CLEAN)
L
Linus Torvalds 已提交
1221
				goto keep_locked;
1222
			if (!may_enter_fs)
L
Linus Torvalds 已提交
1223
				goto keep_locked;
1224
			if (!sc->may_writepage)
L
Linus Torvalds 已提交
1225 1226
				goto keep_locked;

1227 1228 1229 1230 1231 1232
			/*
			 * Page is dirty. Flush the TLB if a writable entry
			 * potentially exists to avoid CPU writes after IO
			 * starts and then write it out here.
			 */
			try_to_unmap_flush_dirty();
1233
			switch (pageout(page, mapping, sc)) {
L
Linus Torvalds 已提交
1234 1235 1236 1237 1238
			case PAGE_KEEP:
				goto keep_locked;
			case PAGE_ACTIVATE:
				goto activate_locked;
			case PAGE_SUCCESS:
1239
				if (PageWriteback(page))
1240
					goto keep;
1241
				if (PageDirty(page))
L
Linus Torvalds 已提交
1242
					goto keep;
1243

L
Linus Torvalds 已提交
1244 1245 1246 1247
				/*
				 * A synchronous write - probably a ramdisk.  Go
				 * ahead and try to reclaim the page.
				 */
N
Nick Piggin 已提交
1248
				if (!trylock_page(page))
L
Linus Torvalds 已提交
1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267
					goto keep;
				if (PageDirty(page) || PageWriteback(page))
					goto keep_locked;
				mapping = page_mapping(page);
			case PAGE_CLEAN:
				; /* try to free the page below */
			}
		}

		/*
		 * If the page has buffers, try to free the buffer mappings
		 * associated with this page. If we succeed we try to free
		 * the page as well.
		 *
		 * We do this even if the page is PageDirty().
		 * try_to_release_page() does not perform I/O, but it is
		 * possible for a page to have PageDirty set, but it is actually
		 * clean (all its buffers are clean).  This happens if the
		 * buffers were written out directly, with submit_bh(). ext3
L
Lee Schermerhorn 已提交
1268
		 * will do this, as well as the blockdev mapping.
L
Linus Torvalds 已提交
1269 1270 1271 1272 1273 1274 1275 1276 1277 1278
		 * try_to_release_page() will discover that cleanness and will
		 * drop the buffers and mark the page clean - it can be freed.
		 *
		 * Rarely, pages can have buffers and no ->mapping.  These are
		 * the pages which were not successfully invalidated in
		 * truncate_complete_page().  We try to drop those buffers here
		 * and if that worked, and the page is no longer mapped into
		 * process address space (page_count == 1) it can be freed.
		 * Otherwise, leave the page on the LRU so it is swappable.
		 */
1279
		if (page_has_private(page)) {
L
Linus Torvalds 已提交
1280 1281
			if (!try_to_release_page(page, sc->gfp_mask))
				goto activate_locked;
N
Nick Piggin 已提交
1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297
			if (!mapping && page_count(page) == 1) {
				unlock_page(page);
				if (put_page_testzero(page))
					goto free_it;
				else {
					/*
					 * rare race with speculative reference.
					 * the speculative reference will free
					 * this page shortly, so we may
					 * increment nr_reclaimed here (and
					 * leave it off the LRU).
					 */
					nr_reclaimed++;
					continue;
				}
			}
L
Linus Torvalds 已提交
1298 1299
		}

S
Shaohua Li 已提交
1300 1301 1302 1303 1304 1305 1306 1307
		if (PageAnon(page) && !PageSwapBacked(page)) {
			/* follow __remove_mapping for reference */
			if (!page_ref_freeze(page, 1))
				goto keep_locked;
			if (PageDirty(page)) {
				page_ref_unfreeze(page, 1);
				goto keep_locked;
			}
L
Linus Torvalds 已提交
1308

S
Shaohua Li 已提交
1309
			count_vm_event(PGLAZYFREED);
1310
			count_memcg_page_event(page, PGLAZYFREED);
S
Shaohua Li 已提交
1311 1312
		} else if (!mapping || !__remove_mapping(mapping, page, true))
			goto keep_locked;
N
Nick Piggin 已提交
1313 1314 1315 1316 1317 1318 1319
		/*
		 * At this point, we have no other references and there is
		 * no way to pick any more up (removed from LRU, removed
		 * from pagecache). Can use non-atomic bitops now (and
		 * we obviously don't have to worry about waking up a process
		 * waiting on the page lock, because there are no references.
		 */
1320
		__ClearPageLocked(page);
N
Nick Piggin 已提交
1321
free_it:
1322
		nr_reclaimed++;
1323 1324 1325 1326 1327

		/*
		 * Is there need to periodically free_page_list? It would
		 * appear not as the counts should be low
		 */
1328 1329 1330 1331 1332
		if (unlikely(PageTransHuge(page))) {
			mem_cgroup_uncharge(page);
			(*get_compound_page_dtor(page))(page);
		} else
			list_add(&page->lru, &free_pages);
L
Linus Torvalds 已提交
1333 1334 1335
		continue;

activate_locked:
1336
		/* Not a candidate for swapping, so reclaim swap space. */
M
Minchan Kim 已提交
1337 1338
		if (PageSwapCache(page) && (mem_cgroup_swap_full(page) ||
						PageMlocked(page)))
1339
			try_to_free_swap(page);
1340
		VM_BUG_ON_PAGE(PageActive(page), page);
M
Minchan Kim 已提交
1341 1342 1343
		if (!PageMlocked(page)) {
			SetPageActive(page);
			pgactivate++;
1344
			count_memcg_page_event(page, PGACTIVATE);
M
Minchan Kim 已提交
1345
		}
L
Linus Torvalds 已提交
1346 1347 1348 1349
keep_locked:
		unlock_page(page);
keep:
		list_add(&page->lru, &ret_pages);
1350
		VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
L
Linus Torvalds 已提交
1351
	}
1352

1353
	mem_cgroup_uncharge_list(&free_pages);
1354
	try_to_unmap_flush();
1355
	free_unref_page_list(&free_pages);
1356

L
Linus Torvalds 已提交
1357
	list_splice(&ret_pages, page_list);
1358
	count_vm_events(PGACTIVATE, pgactivate);
1359

1360 1361 1362 1363 1364 1365
	if (stat) {
		stat->nr_dirty = nr_dirty;
		stat->nr_congested = nr_congested;
		stat->nr_unqueued_dirty = nr_unqueued_dirty;
		stat->nr_writeback = nr_writeback;
		stat->nr_immediate = nr_immediate;
1366 1367 1368
		stat->nr_activate = pgactivate;
		stat->nr_ref_keep = nr_ref_keep;
		stat->nr_unmap_fail = nr_unmap_fail;
1369
	}
1370
	return nr_reclaimed;
L
Linus Torvalds 已提交
1371 1372
}

1373 1374 1375 1376 1377 1378 1379 1380
unsigned long reclaim_clean_pages_from_list(struct zone *zone,
					    struct list_head *page_list)
{
	struct scan_control sc = {
		.gfp_mask = GFP_KERNEL,
		.priority = DEF_PRIORITY,
		.may_unmap = 1,
	};
1381
	unsigned long ret;
1382 1383 1384 1385
	struct page *page, *next;
	LIST_HEAD(clean_pages);

	list_for_each_entry_safe(page, next, page_list, lru) {
1386
		if (page_is_file_cache(page) && !PageDirty(page) &&
1387
		    !__PageMovable(page)) {
1388 1389 1390 1391 1392
			ClearPageActive(page);
			list_move(&page->lru, &clean_pages);
		}
	}

M
Mel Gorman 已提交
1393
	ret = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
S
Shaohua Li 已提交
1394
			TTU_IGNORE_ACCESS, NULL, true);
1395
	list_splice(&clean_pages, page_list);
M
Mel Gorman 已提交
1396
	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -ret);
1397 1398 1399
	return ret;
}

A
Andy Whitcroft 已提交
1400 1401 1402 1403 1404 1405 1406 1407 1408 1409
/*
 * Attempt to remove the specified page from its LRU.  Only take this page
 * if it is of the appropriate PageActive status.  Pages which are being
 * freed elsewhere are also ignored.
 *
 * page:	page to consider
 * mode:	one of the LRU isolation modes defined above
 *
 * returns 0 on success, -ve errno on failure.
 */
1410
int __isolate_lru_page(struct page *page, isolate_mode_t mode)
A
Andy Whitcroft 已提交
1411 1412 1413 1414 1415 1416 1417
{
	int ret = -EINVAL;

	/* Only take pages on the LRU. */
	if (!PageLRU(page))
		return ret;

M
Minchan Kim 已提交
1418 1419
	/* Compaction should not handle unevictable pages but CMA can do so */
	if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
L
Lee Schermerhorn 已提交
1420 1421
		return ret;

A
Andy Whitcroft 已提交
1422
	ret = -EBUSY;
K
KAMEZAWA Hiroyuki 已提交
1423

1424 1425 1426 1427 1428 1429 1430 1431
	/*
	 * To minimise LRU disruption, the caller can indicate that it only
	 * wants to isolate pages it will be able to operate on without
	 * blocking - clean pages for the most part.
	 *
	 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
	 * that it is possible to migrate without blocking
	 */
1432
	if (mode & ISOLATE_ASYNC_MIGRATE) {
1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449
		/* All the caller can do on PageWriteback is block */
		if (PageWriteback(page))
			return ret;

		if (PageDirty(page)) {
			struct address_space *mapping;

			/*
			 * Only pages without mappings or that have a
			 * ->migratepage callback are possible to migrate
			 * without blocking
			 */
			mapping = page_mapping(page);
			if (mapping && !mapping->a_ops->migratepage)
				return ret;
		}
	}
1450

1451 1452 1453
	if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
		return ret;

A
Andy Whitcroft 已提交
1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466
	if (likely(get_page_unless_zero(page))) {
		/*
		 * Be careful not to clear PageLRU until after we're
		 * sure the page is not being freed elsewhere -- the
		 * page release code relies on it.
		 */
		ClearPageLRU(page);
		ret = 0;
	}

	return ret;
}

1467 1468 1469 1470 1471 1472

/*
 * Update LRU sizes after isolating pages. The LRU size updates must
 * be complete before mem_cgroup_update_lru_size due to a santity check.
 */
static __always_inline void update_lru_sizes(struct lruvec *lruvec,
1473
			enum lru_list lru, unsigned long *nr_zone_taken)
1474 1475 1476 1477 1478 1479 1480 1481 1482
{
	int zid;

	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
		if (!nr_zone_taken[zid])
			continue;

		__update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
#ifdef CONFIG_MEMCG
1483
		mem_cgroup_update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1484
#endif
1485 1486
	}

1487 1488
}

L
Linus Torvalds 已提交
1489
/*
1490
 * zone_lru_lock is heavily contended.  Some of the functions that
L
Linus Torvalds 已提交
1491 1492 1493 1494 1495 1496 1497 1498
 * shrink the lists perform better by taking out a batch of pages
 * and working on them outside the LRU lock.
 *
 * For pagecache intensive workloads, this function is the hottest
 * spot in the kernel (apart from copy_*_user functions).
 *
 * Appropriate locks must be held before calling this function.
 *
1499
 * @nr_to_scan:	The number of eligible pages to look through on the list.
1500
 * @lruvec:	The LRU vector to pull pages from.
L
Linus Torvalds 已提交
1501
 * @dst:	The temp list to put pages on to.
H
Hugh Dickins 已提交
1502
 * @nr_scanned:	The number of pages that were scanned.
1503
 * @sc:		The scan_control struct for this reclaim session
A
Andy Whitcroft 已提交
1504
 * @mode:	One of the LRU isolation modes
1505
 * @lru:	LRU list id for isolating
L
Linus Torvalds 已提交
1506 1507 1508
 *
 * returns how many pages were moved onto *@dst.
 */
1509
static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1510
		struct lruvec *lruvec, struct list_head *dst,
1511
		unsigned long *nr_scanned, struct scan_control *sc,
1512
		isolate_mode_t mode, enum lru_list lru)
L
Linus Torvalds 已提交
1513
{
H
Hugh Dickins 已提交
1514
	struct list_head *src = &lruvec->lists[lru];
1515
	unsigned long nr_taken = 0;
M
Mel Gorman 已提交
1516
	unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
1517
	unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
1518
	unsigned long skipped = 0;
1519
	unsigned long scan, total_scan, nr_pages;
1520
	LIST_HEAD(pages_skipped);
L
Linus Torvalds 已提交
1521

1522 1523 1524 1525
	scan = 0;
	for (total_scan = 0;
	     scan < nr_to_scan && nr_taken < nr_to_scan && !list_empty(src);
	     total_scan++) {
A
Andy Whitcroft 已提交
1526 1527
		struct page *page;

L
Linus Torvalds 已提交
1528 1529 1530
		page = lru_to_page(src);
		prefetchw_prev_lru_page(page, src, flags);

1531
		VM_BUG_ON_PAGE(!PageLRU(page), page);
N
Nick Piggin 已提交
1532

1533 1534
		if (page_zonenum(page) > sc->reclaim_idx) {
			list_move(&page->lru, &pages_skipped);
1535
			nr_skipped[page_zonenum(page)]++;
1536 1537 1538
			continue;
		}

1539 1540 1541 1542 1543 1544 1545
		/*
		 * Do not count skipped pages because that makes the function
		 * return with no isolated pages if the LRU mostly contains
		 * ineligible pages.  This causes the VM to not reclaim any
		 * pages, triggering a premature OOM.
		 */
		scan++;
1546
		switch (__isolate_lru_page(page, mode)) {
A
Andy Whitcroft 已提交
1547
		case 0:
M
Mel Gorman 已提交
1548 1549 1550
			nr_pages = hpage_nr_pages(page);
			nr_taken += nr_pages;
			nr_zone_taken[page_zonenum(page)] += nr_pages;
A
Andy Whitcroft 已提交
1551 1552 1553 1554 1555 1556 1557
			list_move(&page->lru, dst);
			break;

		case -EBUSY:
			/* else it is being freed elsewhere */
			list_move(&page->lru, src);
			continue;
1558

A
Andy Whitcroft 已提交
1559 1560 1561
		default:
			BUG();
		}
L
Linus Torvalds 已提交
1562 1563
	}

1564 1565 1566 1567 1568 1569 1570
	/*
	 * Splice any skipped pages to the start of the LRU list. Note that
	 * this disrupts the LRU order when reclaiming for lower zones but
	 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
	 * scanning would soon rescan the same pages to skip and put the
	 * system at risk of premature OOM.
	 */
1571 1572 1573
	if (!list_empty(&pages_skipped)) {
		int zid;

1574
		list_splice(&pages_skipped, src);
1575 1576 1577 1578 1579
		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
			if (!nr_skipped[zid])
				continue;

			__count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1580
			skipped += nr_skipped[zid];
1581 1582
		}
	}
1583
	*nr_scanned = total_scan;
1584
	trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
1585
				    total_scan, skipped, nr_taken, mode, lru);
1586
	update_lru_sizes(lruvec, lru, nr_zone_taken);
L
Linus Torvalds 已提交
1587 1588 1589
	return nr_taken;
}

1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600
/**
 * isolate_lru_page - tries to isolate a page from its LRU list
 * @page: page to isolate from its LRU list
 *
 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
 * vmstat statistic corresponding to whatever LRU list the page was on.
 *
 * Returns 0 if the page was removed from an LRU list.
 * Returns -EBUSY if the page was not on an LRU list.
 *
 * The returned page will have PageLRU() cleared.  If it was found on
L
Lee Schermerhorn 已提交
1601 1602 1603
 * the active list, it will have PageActive set.  If it was found on
 * the unevictable list, it will have the PageUnevictable bit set. That flag
 * may need to be cleared by the caller before letting the page go.
1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618
 *
 * The vmstat statistic corresponding to the list on which the page was
 * found will be decremented.
 *
 * Restrictions:
 * (1) Must be called with an elevated refcount on the page. This is a
 *     fundamentnal difference from isolate_lru_pages (which is called
 *     without a stable reference).
 * (2) the lru_lock must not be held.
 * (3) interrupts must be enabled.
 */
int isolate_lru_page(struct page *page)
{
	int ret = -EBUSY;

1619
	VM_BUG_ON_PAGE(!page_count(page), page);
1620
	WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
1621

1622 1623
	if (PageLRU(page)) {
		struct zone *zone = page_zone(page);
1624
		struct lruvec *lruvec;
1625

1626
		spin_lock_irq(zone_lru_lock(zone));
M
Mel Gorman 已提交
1627
		lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
1628
		if (PageLRU(page)) {
L
Lee Schermerhorn 已提交
1629
			int lru = page_lru(page);
1630
			get_page(page);
1631
			ClearPageLRU(page);
1632 1633
			del_page_from_lru_list(page, lruvec, lru);
			ret = 0;
1634
		}
1635
		spin_unlock_irq(zone_lru_lock(zone));
1636 1637 1638 1639
	}
	return ret;
}

1640
/*
F
Fengguang Wu 已提交
1641 1642 1643 1644 1645
 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
 * then get resheduled. When there are massive number of tasks doing page
 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
 * the LRU list will go small and be scanned faster than necessary, leading to
 * unnecessary swapping, thrashing and OOM.
1646
 */
M
Mel Gorman 已提交
1647
static int too_many_isolated(struct pglist_data *pgdat, int file,
1648 1649 1650 1651 1652 1653 1654
		struct scan_control *sc)
{
	unsigned long inactive, isolated;

	if (current_is_kswapd())
		return 0;

1655
	if (!sane_reclaim(sc))
1656 1657 1658
		return 0;

	if (file) {
M
Mel Gorman 已提交
1659 1660
		inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
		isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
1661
	} else {
M
Mel Gorman 已提交
1662 1663
		inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
		isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
1664 1665
	}

1666 1667 1668 1669 1670
	/*
	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
	 * won't get blocked by normal direct-reclaimers, forming a circular
	 * deadlock.
	 */
1671
	if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
1672 1673
		inactive >>= 3;

1674 1675 1676
	return isolated > inactive;
}

1677
static noinline_for_stack void
H
Hugh Dickins 已提交
1678
putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1679
{
1680
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
M
Mel Gorman 已提交
1681
	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1682
	LIST_HEAD(pages_to_free);
1683 1684 1685 1686 1687

	/*
	 * Put back any unfreeable pages.
	 */
	while (!list_empty(page_list)) {
1688
		struct page *page = lru_to_page(page_list);
1689
		int lru;
1690

1691
		VM_BUG_ON_PAGE(PageLRU(page), page);
1692
		list_del(&page->lru);
1693
		if (unlikely(!page_evictable(page))) {
M
Mel Gorman 已提交
1694
			spin_unlock_irq(&pgdat->lru_lock);
1695
			putback_lru_page(page);
M
Mel Gorman 已提交
1696
			spin_lock_irq(&pgdat->lru_lock);
1697 1698
			continue;
		}
1699

M
Mel Gorman 已提交
1700
		lruvec = mem_cgroup_page_lruvec(page, pgdat);
1701

1702
		SetPageLRU(page);
1703
		lru = page_lru(page);
1704 1705
		add_page_to_lru_list(page, lruvec, lru);

1706 1707
		if (is_active_lru(lru)) {
			int file = is_file_lru(lru);
1708 1709
			int numpages = hpage_nr_pages(page);
			reclaim_stat->recent_rotated[file] += numpages;
1710
		}
1711 1712 1713
		if (put_page_testzero(page)) {
			__ClearPageLRU(page);
			__ClearPageActive(page);
1714
			del_page_from_lru_list(page, lruvec, lru);
1715 1716

			if (unlikely(PageCompound(page))) {
M
Mel Gorman 已提交
1717
				spin_unlock_irq(&pgdat->lru_lock);
1718
				mem_cgroup_uncharge(page);
1719
				(*get_compound_page_dtor(page))(page);
M
Mel Gorman 已提交
1720
				spin_lock_irq(&pgdat->lru_lock);
1721 1722
			} else
				list_add(&page->lru, &pages_to_free);
1723 1724 1725
		}
	}

1726 1727 1728 1729
	/*
	 * To save our caller's stack, now use input list for pages to free.
	 */
	list_splice(&pages_to_free, page_list);
1730 1731
}

1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744
/*
 * If a kernel thread (such as nfsd for loop-back mounts) services
 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
 * In that case we should only throttle if the backing device it is
 * writing to is congested.  In other cases it is safe to throttle.
 */
static int current_may_throttle(void)
{
	return !(current->flags & PF_LESS_THROTTLE) ||
		current->backing_dev_info == NULL ||
		bdi_write_congested(current->backing_dev_info);
}

L
Linus Torvalds 已提交
1745
/*
1746
 * shrink_inactive_list() is a helper for shrink_node().  It returns the number
A
Andrew Morton 已提交
1747
 * of reclaimed pages
L
Linus Torvalds 已提交
1748
 */
1749
static noinline_for_stack unsigned long
1750
shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1751
		     struct scan_control *sc, enum lru_list lru)
L
Linus Torvalds 已提交
1752 1753
{
	LIST_HEAD(page_list);
1754
	unsigned long nr_scanned;
1755
	unsigned long nr_reclaimed = 0;
1756
	unsigned long nr_taken;
1757
	struct reclaim_stat stat = {};
1758
	isolate_mode_t isolate_mode = 0;
1759
	int file = is_file_lru(lru);
M
Mel Gorman 已提交
1760
	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1761
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1762
	bool stalled = false;
1763

M
Mel Gorman 已提交
1764
	while (unlikely(too_many_isolated(pgdat, file, sc))) {
1765 1766 1767 1768 1769 1770
		if (stalled)
			return 0;

		/* wait a bit for the reclaimer. */
		msleep(100);
		stalled = true;
1771 1772 1773 1774 1775 1776

		/* We are about to die and free our memory. Return now. */
		if (fatal_signal_pending(current))
			return SWAP_CLUSTER_MAX;
	}

L
Linus Torvalds 已提交
1777
	lru_add_drain();
1778 1779

	if (!sc->may_unmap)
1780
		isolate_mode |= ISOLATE_UNMAPPED;
1781

M
Mel Gorman 已提交
1782
	spin_lock_irq(&pgdat->lru_lock);
1783

1784 1785
	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
				     &nr_scanned, sc, isolate_mode, lru);
1786

M
Mel Gorman 已提交
1787
	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1788
	reclaim_stat->recent_scanned[file] += nr_taken;
1789

1790 1791
	if (current_is_kswapd()) {
		if (global_reclaim(sc))
M
Mel Gorman 已提交
1792
			__count_vm_events(PGSCAN_KSWAPD, nr_scanned);
1793 1794 1795 1796
		count_memcg_events(lruvec_memcg(lruvec), PGSCAN_KSWAPD,
				   nr_scanned);
	} else {
		if (global_reclaim(sc))
M
Mel Gorman 已提交
1797
			__count_vm_events(PGSCAN_DIRECT, nr_scanned);
1798 1799
		count_memcg_events(lruvec_memcg(lruvec), PGSCAN_DIRECT,
				   nr_scanned);
1800
	}
M
Mel Gorman 已提交
1801
	spin_unlock_irq(&pgdat->lru_lock);
1802

1803
	if (nr_taken == 0)
1804
		return 0;
A
Andy Whitcroft 已提交
1805

S
Shaohua Li 已提交
1806
	nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, 0,
1807
				&stat, false);
1808

M
Mel Gorman 已提交
1809
	spin_lock_irq(&pgdat->lru_lock);
1810

1811 1812
	if (current_is_kswapd()) {
		if (global_reclaim(sc))
M
Mel Gorman 已提交
1813
			__count_vm_events(PGSTEAL_KSWAPD, nr_reclaimed);
1814 1815 1816 1817
		count_memcg_events(lruvec_memcg(lruvec), PGSTEAL_KSWAPD,
				   nr_reclaimed);
	} else {
		if (global_reclaim(sc))
M
Mel Gorman 已提交
1818
			__count_vm_events(PGSTEAL_DIRECT, nr_reclaimed);
1819 1820
		count_memcg_events(lruvec_memcg(lruvec), PGSTEAL_DIRECT,
				   nr_reclaimed);
Y
Ying Han 已提交
1821
	}
N
Nick Piggin 已提交
1822

1823
	putback_inactive_pages(lruvec, &page_list);
1824

M
Mel Gorman 已提交
1825
	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
1826

M
Mel Gorman 已提交
1827
	spin_unlock_irq(&pgdat->lru_lock);
1828

1829
	mem_cgroup_uncharge_list(&page_list);
1830
	free_unref_page_list(&page_list);
1831

1832 1833 1834 1835 1836 1837 1838 1839 1840 1841
	/*
	 * If reclaim is isolating dirty pages under writeback, it implies
	 * that the long-lived page allocation rate is exceeding the page
	 * laundering rate. Either the global limits are not being effective
	 * at throttling processes due to the page distribution throughout
	 * zones or there is heavy usage of a slow backing device. The
	 * only option is to throttle from reclaim context which is not ideal
	 * as there is no guarantee the dirtying process is throttled in the
	 * same way balance_dirty_pages() manages.
	 *
1842 1843 1844
	 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
	 * of pages under pages flagged for immediate reclaim and stall if any
	 * are encountered in the nr_immediate check below.
1845
	 */
1846
	if (stat.nr_writeback && stat.nr_writeback == nr_taken)
M
Mel Gorman 已提交
1847
		set_bit(PGDAT_WRITEBACK, &pgdat->flags);
1848

1849
	/*
1850 1851
	 * Legacy memcg will stall in page writeback so avoid forcibly
	 * stalling here.
1852
	 */
1853
	if (sane_reclaim(sc)) {
1854 1855 1856 1857
		/*
		 * Tag a zone as congested if all the dirty pages scanned were
		 * backed by a congested BDI and wait_iff_congested will stall.
		 */
1858
		if (stat.nr_dirty && stat.nr_dirty == stat.nr_congested)
M
Mel Gorman 已提交
1859
			set_bit(PGDAT_CONGESTED, &pgdat->flags);
1860

1861 1862
		/*
		 * If dirty pages are scanned that are not queued for IO, it
1863 1864 1865 1866 1867 1868 1869 1870 1871
		 * implies that flushers are not doing their job. This can
		 * happen when memory pressure pushes dirty pages to the end of
		 * the LRU before the dirty limits are breached and the dirty
		 * data has expired. It can also happen when the proportion of
		 * dirty pages grows not through writes but through memory
		 * pressure reclaiming all the clean cache. And in some cases,
		 * the flushers simply cannot keep up with the allocation
		 * rate. Nudge the flusher threads in case they are asleep, but
		 * also allow kswapd to start writing pages during reclaim.
1872
		 */
1873
		if (stat.nr_unqueued_dirty == nr_taken) {
1874
			wakeup_flusher_threads(WB_REASON_VMSCAN);
M
Mel Gorman 已提交
1875
			set_bit(PGDAT_DIRTY, &pgdat->flags);
1876
		}
1877 1878

		/*
1879 1880 1881
		 * If kswapd scans pages marked marked for immediate
		 * reclaim and under writeback (nr_immediate), it implies
		 * that pages are cycling through the LRU faster than
1882 1883
		 * they are written so also forcibly stall.
		 */
1884
		if (stat.nr_immediate && current_may_throttle())
1885
			congestion_wait(BLK_RW_ASYNC, HZ/10);
1886
	}
1887

1888 1889 1890 1891 1892
	/*
	 * Stall direct reclaim for IO completions if underlying BDIs or zone
	 * is congested. Allow kswapd to continue until it starts encountering
	 * unqueued dirty pages or cycling through the LRU too quickly.
	 */
1893 1894
	if (!sc->hibernation_mode && !current_is_kswapd() &&
	    current_may_throttle())
M
Mel Gorman 已提交
1895
		wait_iff_congested(pgdat, BLK_RW_ASYNC, HZ/10);
1896

M
Mel Gorman 已提交
1897 1898
	trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
			nr_scanned, nr_reclaimed,
1899 1900 1901 1902
			stat.nr_dirty,  stat.nr_writeback,
			stat.nr_congested, stat.nr_immediate,
			stat.nr_activate, stat.nr_ref_keep,
			stat.nr_unmap_fail,
1903
			sc->priority, file);
1904
	return nr_reclaimed;
L
Linus Torvalds 已提交
1905 1906 1907 1908 1909 1910 1911 1912 1913
}

/*
 * This moves pages from the active list to the inactive list.
 *
 * We move them the other way if the page is referenced by one or more
 * processes, from rmap.
 *
 * If the pages are mostly unmapped, the processing is fast and it is
1914
 * appropriate to hold zone_lru_lock across the whole operation.  But if
L
Linus Torvalds 已提交
1915
 * the pages are mapped, the processing is slow (page_referenced()) so we
1916
 * should drop zone_lru_lock around each page.  It's impossible to balance
L
Linus Torvalds 已提交
1917 1918 1919 1920
 * this, so instead we remove the pages from the LRU while processing them.
 * It is safe to rely on PG_active against the non-LRU pages in here because
 * nobody will play with that bit on a non-LRU page.
 *
1921
 * The downside is that we have to touch page->_refcount against each page.
L
Linus Torvalds 已提交
1922
 * But we had to alter page->flags anyway.
1923 1924
 *
 * Returns the number of pages moved to the given lru.
L
Linus Torvalds 已提交
1925
 */
1926

1927
static unsigned move_active_pages_to_lru(struct lruvec *lruvec,
1928
				     struct list_head *list,
1929
				     struct list_head *pages_to_free,
1930 1931
				     enum lru_list lru)
{
M
Mel Gorman 已提交
1932
	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1933
	struct page *page;
1934
	int nr_pages;
1935
	int nr_moved = 0;
1936 1937 1938

	while (!list_empty(list)) {
		page = lru_to_page(list);
M
Mel Gorman 已提交
1939
		lruvec = mem_cgroup_page_lruvec(page, pgdat);
1940

1941
		VM_BUG_ON_PAGE(PageLRU(page), page);
1942 1943
		SetPageLRU(page);

1944
		nr_pages = hpage_nr_pages(page);
M
Mel Gorman 已提交
1945
		update_lru_size(lruvec, lru, page_zonenum(page), nr_pages);
1946
		list_move(&page->lru, &lruvec->lists[lru]);
1947

1948 1949 1950
		if (put_page_testzero(page)) {
			__ClearPageLRU(page);
			__ClearPageActive(page);
1951
			del_page_from_lru_list(page, lruvec, lru);
1952 1953

			if (unlikely(PageCompound(page))) {
M
Mel Gorman 已提交
1954
				spin_unlock_irq(&pgdat->lru_lock);
1955
				mem_cgroup_uncharge(page);
1956
				(*get_compound_page_dtor(page))(page);
M
Mel Gorman 已提交
1957
				spin_lock_irq(&pgdat->lru_lock);
1958 1959
			} else
				list_add(&page->lru, pages_to_free);
1960 1961
		} else {
			nr_moved += nr_pages;
1962 1963
		}
	}
1964

1965
	if (!is_active_lru(lru)) {
1966
		__count_vm_events(PGDEACTIVATE, nr_moved);
1967 1968 1969
		count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE,
				   nr_moved);
	}
1970 1971

	return nr_moved;
1972
}
1973

H
Hugh Dickins 已提交
1974
static void shrink_active_list(unsigned long nr_to_scan,
1975
			       struct lruvec *lruvec,
1976
			       struct scan_control *sc,
1977
			       enum lru_list lru)
L
Linus Torvalds 已提交
1978
{
1979
	unsigned long nr_taken;
H
Hugh Dickins 已提交
1980
	unsigned long nr_scanned;
1981
	unsigned long vm_flags;
L
Linus Torvalds 已提交
1982
	LIST_HEAD(l_hold);	/* The pages which were snipped off */
1983
	LIST_HEAD(l_active);
1984
	LIST_HEAD(l_inactive);
L
Linus Torvalds 已提交
1985
	struct page *page;
1986
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1987 1988
	unsigned nr_deactivate, nr_activate;
	unsigned nr_rotated = 0;
1989
	isolate_mode_t isolate_mode = 0;
1990
	int file = is_file_lru(lru);
M
Mel Gorman 已提交
1991
	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
L
Linus Torvalds 已提交
1992 1993

	lru_add_drain();
1994 1995

	if (!sc->may_unmap)
1996
		isolate_mode |= ISOLATE_UNMAPPED;
1997

M
Mel Gorman 已提交
1998
	spin_lock_irq(&pgdat->lru_lock);
1999

2000 2001
	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
				     &nr_scanned, sc, isolate_mode, lru);
2002

M
Mel Gorman 已提交
2003
	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2004
	reclaim_stat->recent_scanned[file] += nr_taken;
2005

M
Mel Gorman 已提交
2006
	__count_vm_events(PGREFILL, nr_scanned);
2007
	count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
2008

M
Mel Gorman 已提交
2009
	spin_unlock_irq(&pgdat->lru_lock);
L
Linus Torvalds 已提交
2010 2011 2012 2013 2014

	while (!list_empty(&l_hold)) {
		cond_resched();
		page = lru_to_page(&l_hold);
		list_del(&page->lru);
2015

2016
		if (unlikely(!page_evictable(page))) {
L
Lee Schermerhorn 已提交
2017 2018 2019 2020
			putback_lru_page(page);
			continue;
		}

2021 2022 2023 2024 2025 2026 2027 2028
		if (unlikely(buffer_heads_over_limit)) {
			if (page_has_private(page) && trylock_page(page)) {
				if (page_has_private(page))
					try_to_release_page(page, 0);
				unlock_page(page);
			}
		}

2029 2030
		if (page_referenced(page, 0, sc->target_mem_cgroup,
				    &vm_flags)) {
2031
			nr_rotated += hpage_nr_pages(page);
2032 2033 2034 2035 2036 2037 2038 2039 2040
			/*
			 * Identify referenced, file-backed active pages and
			 * give them one more trip around the active list. So
			 * that executable code get better chances to stay in
			 * memory under moderate memory pressure.  Anon pages
			 * are not likely to be evicted by use-once streaming
			 * IO, plus JVM can create lots of anon VM_EXEC pages,
			 * so we ignore them here.
			 */
2041
			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
2042 2043 2044 2045
				list_add(&page->lru, &l_active);
				continue;
			}
		}
2046

2047
		ClearPageActive(page);	/* we are de-activating */
L
Linus Torvalds 已提交
2048 2049 2050
		list_add(&page->lru, &l_inactive);
	}

2051
	/*
2052
	 * Move pages back to the lru list.
2053
	 */
M
Mel Gorman 已提交
2054
	spin_lock_irq(&pgdat->lru_lock);
2055
	/*
2056 2057 2058
	 * Count referenced pages from currently used mappings as rotated,
	 * even though only some of them are actually re-activated.  This
	 * helps balance scan pressure between file and anonymous pages in
2059
	 * get_scan_count.
2060
	 */
2061
	reclaim_stat->recent_rotated[file] += nr_rotated;
2062

2063 2064
	nr_activate = move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
	nr_deactivate = move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
M
Mel Gorman 已提交
2065 2066
	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
	spin_unlock_irq(&pgdat->lru_lock);
2067

2068
	mem_cgroup_uncharge_list(&l_hold);
2069
	free_unref_page_list(&l_hold);
2070 2071
	trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
			nr_deactivate, nr_rotated, sc->priority, file);
L
Linus Torvalds 已提交
2072 2073
}

2074 2075 2076
/*
 * The inactive anon list should be small enough that the VM never has
 * to do too much work.
2077
 *
2078 2079 2080
 * The inactive file list should be small enough to leave most memory
 * to the established workingset on the scan-resistant active list,
 * but large enough to avoid thrashing the aggregate readahead window.
2081
 *
2082 2083
 * Both inactive lists should also be large enough that each inactive
 * page has a chance to be referenced again before it is reclaimed.
2084
 *
2085 2086
 * If that fails and refaulting is observed, the inactive list grows.
 *
2087
 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
2088
 * on this LRU, maintained by the pageout code. An inactive_ratio
2089
 * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
2090
 *
2091 2092 2093 2094 2095 2096 2097 2098 2099 2100
 * total     target    max
 * memory    ratio     inactive
 * -------------------------------------
 *   10MB       1         5MB
 *  100MB       1        50MB
 *    1GB       3       250MB
 *   10GB      10       0.9GB
 *  100GB      31         3GB
 *    1TB     101        10GB
 *   10TB     320        32GB
2101
 */
2102
static bool inactive_list_is_low(struct lruvec *lruvec, bool file,
2103 2104
				 struct mem_cgroup *memcg,
				 struct scan_control *sc, bool actual_reclaim)
2105
{
2106
	enum lru_list active_lru = file * LRU_FILE + LRU_ACTIVE;
2107 2108 2109 2110 2111
	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
	enum lru_list inactive_lru = file * LRU_FILE;
	unsigned long inactive, active;
	unsigned long inactive_ratio;
	unsigned long refaults;
2112
	unsigned long gb;
2113

2114 2115 2116 2117 2118 2119
	/*
	 * If we don't have swap space, anonymous page deactivation
	 * is pointless.
	 */
	if (!file && !total_swap_pages)
		return false;
2120

2121 2122
	inactive = lruvec_lru_size(lruvec, inactive_lru, sc->reclaim_idx);
	active = lruvec_lru_size(lruvec, active_lru, sc->reclaim_idx);
2123

2124
	if (memcg)
2125
		refaults = memcg_page_state(memcg, WORKINGSET_ACTIVATE);
2126
	else
2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142
		refaults = node_page_state(pgdat, WORKINGSET_ACTIVATE);

	/*
	 * When refaults are being observed, it means a new workingset
	 * is being established. Disable active list protection to get
	 * rid of the stale workingset quickly.
	 */
	if (file && actual_reclaim && lruvec->refaults != refaults) {
		inactive_ratio = 0;
	} else {
		gb = (inactive + active) >> (30 - PAGE_SHIFT);
		if (gb)
			inactive_ratio = int_sqrt(10 * gb);
		else
			inactive_ratio = 1;
	}
2143

2144 2145 2146 2147 2148
	if (actual_reclaim)
		trace_mm_vmscan_inactive_list_is_low(pgdat->node_id, sc->reclaim_idx,
			lruvec_lru_size(lruvec, inactive_lru, MAX_NR_ZONES), inactive,
			lruvec_lru_size(lruvec, active_lru, MAX_NR_ZONES), active,
			inactive_ratio, file);
2149

2150
	return inactive * inactive_ratio < active;
2151 2152
}

2153
static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2154 2155
				 struct lruvec *lruvec, struct mem_cgroup *memcg,
				 struct scan_control *sc)
2156
{
2157
	if (is_active_lru(lru)) {
2158 2159
		if (inactive_list_is_low(lruvec, is_file_lru(lru),
					 memcg, sc, true))
2160
			shrink_active_list(nr_to_scan, lruvec, sc, lru);
2161 2162 2163
		return 0;
	}

2164
	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2165 2166
}

2167 2168 2169 2170 2171 2172 2173
enum scan_balance {
	SCAN_EQUAL,
	SCAN_FRACT,
	SCAN_ANON,
	SCAN_FILE,
};

2174 2175 2176 2177 2178 2179
/*
 * Determine how aggressively the anon and file LRU lists should be
 * scanned.  The relative value of each set of LRU lists is determined
 * by looking at the fraction of the pages scanned we did rotate back
 * onto the active list instead of evict.
 *
W
Wanpeng Li 已提交
2180 2181
 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
2182
 */
2183
static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg,
2184 2185
			   struct scan_control *sc, unsigned long *nr,
			   unsigned long *lru_pages)
2186
{
2187
	int swappiness = mem_cgroup_swappiness(memcg);
2188 2189 2190
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
	u64 fraction[2];
	u64 denominator = 0;	/* gcc */
M
Mel Gorman 已提交
2191
	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2192
	unsigned long anon_prio, file_prio;
2193
	enum scan_balance scan_balance;
2194
	unsigned long anon, file;
2195
	unsigned long ap, fp;
H
Hugh Dickins 已提交
2196
	enum lru_list lru;
2197 2198

	/* If we have no swap space, do not bother scanning anon pages. */
2199
	if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
2200
		scan_balance = SCAN_FILE;
2201 2202
		goto out;
	}
2203

2204 2205 2206 2207 2208 2209 2210
	/*
	 * Global reclaim will swap to prevent OOM even with no
	 * swappiness, but memcg users want to use this knob to
	 * disable swapping for individual groups completely when
	 * using the memory controller's swap limit feature would be
	 * too expensive.
	 */
2211
	if (!global_reclaim(sc) && !swappiness) {
2212
		scan_balance = SCAN_FILE;
2213 2214 2215 2216 2217 2218 2219 2220
		goto out;
	}

	/*
	 * Do not apply any pressure balancing cleverness when the
	 * system is close to OOM, scan both anon and file equally
	 * (unless the swappiness setting disagrees with swapping).
	 */
2221
	if (!sc->priority && swappiness) {
2222
		scan_balance = SCAN_EQUAL;
2223 2224 2225
		goto out;
	}

2226 2227 2228 2229 2230 2231 2232 2233 2234 2235
	/*
	 * Prevent the reclaimer from falling into the cache trap: as
	 * cache pages start out inactive, every cache fault will tip
	 * the scan balance towards the file LRU.  And as the file LRU
	 * shrinks, so does the window for rotation from references.
	 * This means we have a runaway feedback loop where a tiny
	 * thrashing file LRU becomes infinitely more attractive than
	 * anon pages.  Try to detect this based on file LRU size.
	 */
	if (global_reclaim(sc)) {
M
Mel Gorman 已提交
2236 2237 2238 2239
		unsigned long pgdatfile;
		unsigned long pgdatfree;
		int z;
		unsigned long total_high_wmark = 0;
2240

M
Mel Gorman 已提交
2241 2242 2243 2244 2245 2246
		pgdatfree = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
		pgdatfile = node_page_state(pgdat, NR_ACTIVE_FILE) +
			   node_page_state(pgdat, NR_INACTIVE_FILE);

		for (z = 0; z < MAX_NR_ZONES; z++) {
			struct zone *zone = &pgdat->node_zones[z];
2247
			if (!managed_zone(zone))
M
Mel Gorman 已提交
2248 2249 2250 2251
				continue;

			total_high_wmark += high_wmark_pages(zone);
		}
2252

M
Mel Gorman 已提交
2253
		if (unlikely(pgdatfile + pgdatfree <= total_high_wmark)) {
2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264
			/*
			 * Force SCAN_ANON if there are enough inactive
			 * anonymous pages on the LRU in eligible zones.
			 * Otherwise, the small LRU gets thrashed.
			 */
			if (!inactive_list_is_low(lruvec, false, memcg, sc, false) &&
			    lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, sc->reclaim_idx)
					>> sc->priority) {
				scan_balance = SCAN_ANON;
				goto out;
			}
2265 2266 2267
		}
	}

2268
	/*
2269 2270 2271 2272 2273 2274 2275
	 * If there is enough inactive page cache, i.e. if the size of the
	 * inactive list is greater than that of the active list *and* the
	 * inactive list actually has some pages to scan on this priority, we
	 * do not reclaim anything from the anonymous working set right now.
	 * Without the second condition we could end up never scanning an
	 * lruvec even if it has plenty of old anonymous pages unless the
	 * system is under heavy pressure.
2276
	 */
2277
	if (!inactive_list_is_low(lruvec, true, memcg, sc, false) &&
2278
	    lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, sc->reclaim_idx) >> sc->priority) {
2279
		scan_balance = SCAN_FILE;
2280 2281 2282
		goto out;
	}

2283 2284
	scan_balance = SCAN_FRACT;

2285 2286 2287 2288
	/*
	 * With swappiness at 100, anonymous and file have the same priority.
	 * This scanning priority is essentially the inverse of IO cost.
	 */
2289
	anon_prio = swappiness;
H
Hugh Dickins 已提交
2290
	file_prio = 200 - anon_prio;
2291

2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302
	/*
	 * OK, so we have swap space and a fair amount of page cache
	 * pages.  We use the recently rotated / recently scanned
	 * ratios to determine how valuable each cache is.
	 *
	 * Because workloads change over time (and to avoid overflow)
	 * we keep these statistics as a floating average, which ends
	 * up weighing recent references more than old ones.
	 *
	 * anon in [0], file in [1]
	 */
2303

2304 2305 2306 2307
	anon  = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON, MAX_NR_ZONES) +
		lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, MAX_NR_ZONES);
	file  = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE, MAX_NR_ZONES) +
		lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, MAX_NR_ZONES);
2308

M
Mel Gorman 已提交
2309
	spin_lock_irq(&pgdat->lru_lock);
2310 2311 2312
	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
		reclaim_stat->recent_scanned[0] /= 2;
		reclaim_stat->recent_rotated[0] /= 2;
2313 2314
	}

2315 2316 2317
	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
		reclaim_stat->recent_scanned[1] /= 2;
		reclaim_stat->recent_rotated[1] /= 2;
2318 2319 2320
	}

	/*
2321 2322 2323
	 * The amount of pressure on anon vs file pages is inversely
	 * proportional to the fraction of recently scanned pages on
	 * each list that were recently referenced and in active use.
2324
	 */
2325
	ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
2326
	ap /= reclaim_stat->recent_rotated[0] + 1;
2327

2328
	fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
2329
	fp /= reclaim_stat->recent_rotated[1] + 1;
M
Mel Gorman 已提交
2330
	spin_unlock_irq(&pgdat->lru_lock);
2331

2332 2333 2334 2335
	fraction[0] = ap;
	fraction[1] = fp;
	denominator = ap + fp + 1;
out:
2336 2337 2338 2339 2340
	*lru_pages = 0;
	for_each_evictable_lru(lru) {
		int file = is_file_lru(lru);
		unsigned long size;
		unsigned long scan;
2341

2342 2343 2344 2345 2346 2347 2348 2349
		size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
		scan = size >> sc->priority;
		/*
		 * If the cgroup's already been deleted, make sure to
		 * scrape out the remaining cache.
		 */
		if (!scan && !mem_cgroup_online(memcg))
			scan = min(size, SWAP_CLUSTER_MAX);
2350

2351 2352 2353 2354 2355
		switch (scan_balance) {
		case SCAN_EQUAL:
			/* Scan lists relative to size */
			break;
		case SCAN_FRACT:
2356
			/*
2357 2358
			 * Scan types proportional to swappiness and
			 * their relative recent reclaim efficiency.
2359
			 */
2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373
			scan = div64_u64(scan * fraction[file],
					 denominator);
			break;
		case SCAN_FILE:
		case SCAN_ANON:
			/* Scan one type exclusively */
			if ((scan_balance == SCAN_FILE) != file) {
				size = 0;
				scan = 0;
			}
			break;
		default:
			/* Look ma, no brain */
			BUG();
2374
		}
2375 2376 2377

		*lru_pages += size;
		nr[lru] = scan;
2378
	}
2379
}
2380

2381
/*
2382
 * This is a basic per-node page freer.  Used by both kswapd and direct reclaim.
2383
 */
2384
static void shrink_node_memcg(struct pglist_data *pgdat, struct mem_cgroup *memcg,
2385
			      struct scan_control *sc, unsigned long *lru_pages)
2386
{
2387
	struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
2388
	unsigned long nr[NR_LRU_LISTS];
2389
	unsigned long targets[NR_LRU_LISTS];
2390 2391 2392 2393 2394
	unsigned long nr_to_scan;
	enum lru_list lru;
	unsigned long nr_reclaimed = 0;
	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
	struct blk_plug plug;
2395
	bool scan_adjusted;
2396

2397
	get_scan_count(lruvec, memcg, sc, nr, lru_pages);
2398

2399 2400 2401
	/* Record the original scan target for proportional adjustments later */
	memcpy(targets, nr, sizeof(nr));

2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415
	/*
	 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
	 * event that can occur when there is little memory pressure e.g.
	 * multiple streaming readers/writers. Hence, we do not abort scanning
	 * when the requested number of pages are reclaimed when scanning at
	 * DEF_PRIORITY on the assumption that the fact we are direct
	 * reclaiming implies that kswapd is not keeping up and it is best to
	 * do a batch of work at once. For memcg reclaim one check is made to
	 * abort proportional reclaim if either the file or anon lru has already
	 * dropped to zero at the first pass.
	 */
	scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
			 sc->priority == DEF_PRIORITY);

2416 2417 2418
	blk_start_plug(&plug);
	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
					nr[LRU_INACTIVE_FILE]) {
2419 2420 2421
		unsigned long nr_anon, nr_file, percentage;
		unsigned long nr_scanned;

2422 2423 2424 2425 2426 2427
		for_each_evictable_lru(lru) {
			if (nr[lru]) {
				nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
				nr[lru] -= nr_to_scan;

				nr_reclaimed += shrink_list(lru, nr_to_scan,
2428
							    lruvec, memcg, sc);
2429 2430
			}
		}
2431

2432 2433
		cond_resched();

2434 2435 2436 2437 2438
		if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
			continue;

		/*
		 * For kswapd and memcg, reclaim at least the number of pages
2439
		 * requested. Ensure that the anon and file LRUs are scanned
2440 2441 2442 2443 2444 2445 2446
		 * proportionally what was requested by get_scan_count(). We
		 * stop reclaiming one LRU and reduce the amount scanning
		 * proportional to the original scan target.
		 */
		nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
		nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];

2447 2448 2449 2450 2451 2452 2453 2454 2455
		/*
		 * It's just vindictive to attack the larger once the smaller
		 * has gone to zero.  And given the way we stop scanning the
		 * smaller below, this makes sure that we only make one nudge
		 * towards proportionality once we've got nr_to_reclaim.
		 */
		if (!nr_file || !nr_anon)
			break;

2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486
		if (nr_file > nr_anon) {
			unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
						targets[LRU_ACTIVE_ANON] + 1;
			lru = LRU_BASE;
			percentage = nr_anon * 100 / scan_target;
		} else {
			unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
						targets[LRU_ACTIVE_FILE] + 1;
			lru = LRU_FILE;
			percentage = nr_file * 100 / scan_target;
		}

		/* Stop scanning the smaller of the LRU */
		nr[lru] = 0;
		nr[lru + LRU_ACTIVE] = 0;

		/*
		 * Recalculate the other LRU scan count based on its original
		 * scan target and the percentage scanning already complete
		 */
		lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
		nr_scanned = targets[lru] - nr[lru];
		nr[lru] = targets[lru] * (100 - percentage) / 100;
		nr[lru] -= min(nr[lru], nr_scanned);

		lru += LRU_ACTIVE;
		nr_scanned = targets[lru] - nr[lru];
		nr[lru] = targets[lru] * (100 - percentage) / 100;
		nr[lru] -= min(nr[lru], nr_scanned);

		scan_adjusted = true;
2487 2488 2489 2490 2491 2492 2493 2494
	}
	blk_finish_plug(&plug);
	sc->nr_reclaimed += nr_reclaimed;

	/*
	 * Even if we did not try to evict anon pages at all, we want to
	 * rebalance the anon lru active/inactive ratio.
	 */
2495
	if (inactive_list_is_low(lruvec, false, memcg, sc, true))
2496 2497 2498 2499
		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
				   sc, LRU_ACTIVE_ANON);
}

M
Mel Gorman 已提交
2500
/* Use reclaim/compaction for costly allocs or under memory pressure */
2501
static bool in_reclaim_compaction(struct scan_control *sc)
M
Mel Gorman 已提交
2502
{
2503
	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
M
Mel Gorman 已提交
2504
			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2505
			 sc->priority < DEF_PRIORITY - 2))
M
Mel Gorman 已提交
2506 2507 2508 2509 2510
		return true;

	return false;
}

2511
/*
M
Mel Gorman 已提交
2512 2513 2514 2515 2516
 * Reclaim/compaction is used for high-order allocation requests. It reclaims
 * order-0 pages before compacting the zone. should_continue_reclaim() returns
 * true if more pages should be reclaimed such that when the page allocator
 * calls try_to_compact_zone() that it will have enough free pages to succeed.
 * It will give up earlier than that if there is difficulty reclaiming pages.
2517
 */
2518
static inline bool should_continue_reclaim(struct pglist_data *pgdat,
2519 2520 2521 2522 2523 2524
					unsigned long nr_reclaimed,
					unsigned long nr_scanned,
					struct scan_control *sc)
{
	unsigned long pages_for_compaction;
	unsigned long inactive_lru_pages;
2525
	int z;
2526 2527

	/* If not in reclaim/compaction mode, stop */
2528
	if (!in_reclaim_compaction(sc))
2529 2530
		return false;

2531
	/* Consider stopping depending on scan and reclaim activity */
2532
	if (sc->gfp_mask & __GFP_RETRY_MAYFAIL) {
2533
		/*
2534
		 * For __GFP_RETRY_MAYFAIL allocations, stop reclaiming if the
2535 2536
		 * full LRU list has been scanned and we are still failing
		 * to reclaim pages. This full LRU scan is potentially
2537
		 * expensive but a __GFP_RETRY_MAYFAIL caller really wants to succeed
2538 2539 2540 2541 2542
		 */
		if (!nr_reclaimed && !nr_scanned)
			return false;
	} else {
		/*
2543
		 * For non-__GFP_RETRY_MAYFAIL allocations which can presumably
2544 2545 2546 2547 2548 2549 2550 2551 2552
		 * fail without consequence, stop if we failed to reclaim
		 * any pages from the last SWAP_CLUSTER_MAX number of
		 * pages that were scanned. This will return to the
		 * caller faster at the risk reclaim/compaction and
		 * the resulting allocation attempt fails
		 */
		if (!nr_reclaimed)
			return false;
	}
2553 2554 2555 2556 2557

	/*
	 * If we have not reclaimed enough pages for compaction and the
	 * inactive lists are large enough, continue reclaiming
	 */
2558
	pages_for_compaction = compact_gap(sc->order);
2559
	inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
2560
	if (get_nr_swap_pages() > 0)
2561
		inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
2562 2563 2564 2565 2566
	if (sc->nr_reclaimed < pages_for_compaction &&
			inactive_lru_pages > pages_for_compaction)
		return true;

	/* If compaction would go ahead or the allocation would succeed, stop */
2567 2568
	for (z = 0; z <= sc->reclaim_idx; z++) {
		struct zone *zone = &pgdat->node_zones[z];
2569
		if (!managed_zone(zone))
2570 2571 2572
			continue;

		switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
2573
		case COMPACT_SUCCESS:
2574 2575 2576 2577 2578 2579
		case COMPACT_CONTINUE:
			return false;
		default:
			/* check next zone */
			;
		}
2580
	}
2581
	return true;
2582 2583
}

2584
static bool shrink_node(pg_data_t *pgdat, struct scan_control *sc)
L
Linus Torvalds 已提交
2585
{
2586
	struct reclaim_state *reclaim_state = current->reclaim_state;
2587
	unsigned long nr_reclaimed, nr_scanned;
2588
	bool reclaimable = false;
L
Linus Torvalds 已提交
2589

2590 2591 2592
	do {
		struct mem_cgroup *root = sc->target_mem_cgroup;
		struct mem_cgroup_reclaim_cookie reclaim = {
2593
			.pgdat = pgdat,
2594 2595
			.priority = sc->priority,
		};
2596
		unsigned long node_lru_pages = 0;
2597
		struct mem_cgroup *memcg;
2598

2599 2600
		nr_reclaimed = sc->nr_reclaimed;
		nr_scanned = sc->nr_scanned;
L
Linus Torvalds 已提交
2601

2602 2603
		memcg = mem_cgroup_iter(root, NULL, &reclaim);
		do {
2604
			unsigned long lru_pages;
2605
			unsigned long reclaimed;
2606
			unsigned long scanned;
2607

2608
			if (mem_cgroup_low(root, memcg)) {
2609 2610
				if (!sc->memcg_low_reclaim) {
					sc->memcg_low_skipped = 1;
2611
					continue;
2612
				}
2613
				mem_cgroup_event(memcg, MEMCG_LOW);
2614 2615
			}

2616
			reclaimed = sc->nr_reclaimed;
2617
			scanned = sc->nr_scanned;
2618

2619 2620
			shrink_node_memcg(pgdat, memcg, sc, &lru_pages);
			node_lru_pages += lru_pages;
2621

2622
			if (memcg)
2623
				shrink_slab(sc->gfp_mask, pgdat->node_id,
2624 2625 2626
					    memcg, sc->nr_scanned - scanned,
					    lru_pages);

2627 2628 2629 2630 2631
			/* Record the group's reclaim efficiency */
			vmpressure(sc->gfp_mask, memcg, false,
				   sc->nr_scanned - scanned,
				   sc->nr_reclaimed - reclaimed);

2632
			/*
2633 2634
			 * Direct reclaim and kswapd have to scan all memory
			 * cgroups to fulfill the overall scan target for the
2635
			 * node.
2636 2637 2638 2639 2640
			 *
			 * Limit reclaim, on the other hand, only cares about
			 * nr_to_reclaim pages to be reclaimed and it will
			 * retry with decreasing priority if one round over the
			 * whole hierarchy is not sufficient.
2641
			 */
2642 2643
			if (!global_reclaim(sc) &&
					sc->nr_reclaimed >= sc->nr_to_reclaim) {
2644 2645 2646
				mem_cgroup_iter_break(root, memcg);
				break;
			}
2647
		} while ((memcg = mem_cgroup_iter(root, memcg, &reclaim)));
2648

2649 2650 2651 2652
		/*
		 * Shrink the slab caches in the same proportion that
		 * the eligible LRU pages were scanned.
		 */
2653
		if (global_reclaim(sc))
2654
			shrink_slab(sc->gfp_mask, pgdat->node_id, NULL,
2655
				    sc->nr_scanned - nr_scanned,
2656
				    node_lru_pages);
2657 2658 2659 2660

		if (reclaim_state) {
			sc->nr_reclaimed += reclaim_state->reclaimed_slab;
			reclaim_state->reclaimed_slab = 0;
2661 2662
		}

2663 2664
		/* Record the subtree's reclaim efficiency */
		vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
2665 2666 2667
			   sc->nr_scanned - nr_scanned,
			   sc->nr_reclaimed - nr_reclaimed);

2668 2669 2670
		if (sc->nr_reclaimed - nr_reclaimed)
			reclaimable = true;

2671
	} while (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
2672
					 sc->nr_scanned - nr_scanned, sc));
2673

2674 2675 2676 2677 2678 2679 2680 2681 2682
	/*
	 * Kswapd gives up on balancing particular nodes after too
	 * many failures to reclaim anything from them and goes to
	 * sleep. On reclaim progress, reset the failure counter. A
	 * successful direct reclaim run will revive a dormant kswapd.
	 */
	if (reclaimable)
		pgdat->kswapd_failures = 0;

2683
	return reclaimable;
2684 2685
}

2686
/*
2687 2688 2689
 * Returns true if compaction should go ahead for a costly-order request, or
 * the allocation would already succeed without compaction. Return false if we
 * should reclaim first.
2690
 */
2691
static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2692
{
M
Mel Gorman 已提交
2693
	unsigned long watermark;
2694
	enum compact_result suitable;
2695

2696 2697 2698 2699 2700 2701 2702
	suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
	if (suitable == COMPACT_SUCCESS)
		/* Allocation should succeed already. Don't reclaim. */
		return true;
	if (suitable == COMPACT_SKIPPED)
		/* Compaction cannot yet proceed. Do reclaim. */
		return false;
2703

2704
	/*
2705 2706 2707 2708 2709 2710 2711
	 * Compaction is already possible, but it takes time to run and there
	 * are potentially other callers using the pages just freed. So proceed
	 * with reclaim to make a buffer of free pages available to give
	 * compaction a reasonable chance of completing and allocating the page.
	 * Note that we won't actually reclaim the whole buffer in one attempt
	 * as the target watermark in should_continue_reclaim() is lower. But if
	 * we are already above the high+gap watermark, don't reclaim at all.
2712
	 */
2713
	watermark = high_wmark_pages(zone) + compact_gap(sc->order);
2714

2715
	return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
2716 2717
}

L
Linus Torvalds 已提交
2718 2719 2720 2721 2722 2723 2724 2725
/*
 * This is the direct reclaim path, for page-allocating processes.  We only
 * try to reclaim pages from zones which will satisfy the caller's allocation
 * request.
 *
 * If a zone is deemed to be full of pinned pages then just give it a light
 * scan then give up on it.
 */
M
Michal Hocko 已提交
2726
static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
L
Linus Torvalds 已提交
2727
{
2728
	struct zoneref *z;
2729
	struct zone *zone;
2730 2731
	unsigned long nr_soft_reclaimed;
	unsigned long nr_soft_scanned;
2732
	gfp_t orig_mask;
2733
	pg_data_t *last_pgdat = NULL;
2734

2735 2736 2737 2738 2739
	/*
	 * If the number of buffer_heads in the machine exceeds the maximum
	 * allowed level, force direct reclaim to scan the highmem zone as
	 * highmem pages could be pinning lowmem pages storing buffer_heads
	 */
2740
	orig_mask = sc->gfp_mask;
2741
	if (buffer_heads_over_limit) {
2742
		sc->gfp_mask |= __GFP_HIGHMEM;
2743
		sc->reclaim_idx = gfp_zone(sc->gfp_mask);
2744
	}
2745

2746
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2747
					sc->reclaim_idx, sc->nodemask) {
2748 2749 2750 2751
		/*
		 * Take care memory controller reclaiming has small influence
		 * to global LRU.
		 */
2752
		if (global_reclaim(sc)) {
2753 2754
			if (!cpuset_zone_allowed(zone,
						 GFP_KERNEL | __GFP_HARDWALL))
2755
				continue;
2756

2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767
			/*
			 * If we already have plenty of memory free for
			 * compaction in this zone, don't free any more.
			 * Even though compaction is invoked for any
			 * non-zero order, only frequent costly order
			 * reclamation is disruptive enough to become a
			 * noticeable problem, like transparent huge
			 * page allocations.
			 */
			if (IS_ENABLED(CONFIG_COMPACTION) &&
			    sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2768
			    compaction_ready(zone, sc)) {
2769 2770
				sc->compaction_ready = true;
				continue;
2771
			}
2772

2773 2774 2775 2776 2777 2778 2779 2780 2781
			/*
			 * Shrink each node in the zonelist once. If the
			 * zonelist is ordered by zone (not the default) then a
			 * node may be shrunk multiple times but in that case
			 * the user prefers lower zones being preserved.
			 */
			if (zone->zone_pgdat == last_pgdat)
				continue;

2782 2783 2784 2785 2786 2787 2788
			/*
			 * This steals pages from memory cgroups over softlimit
			 * and returns the number of reclaimed pages and
			 * scanned pages. This works for global memory pressure
			 * and balancing, not for a memcg's limit.
			 */
			nr_soft_scanned = 0;
2789
			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
2790 2791 2792 2793
						sc->order, sc->gfp_mask,
						&nr_soft_scanned);
			sc->nr_reclaimed += nr_soft_reclaimed;
			sc->nr_scanned += nr_soft_scanned;
2794
			/* need some check for avoid more shrink_zone() */
2795
		}
2796

2797 2798 2799 2800
		/* See comment about same check for global reclaim above */
		if (zone->zone_pgdat == last_pgdat)
			continue;
		last_pgdat = zone->zone_pgdat;
2801
		shrink_node(zone->zone_pgdat, sc);
L
Linus Torvalds 已提交
2802
	}
2803

2804 2805 2806 2807 2808
	/*
	 * Restore to original mask to avoid the impact on the caller if we
	 * promoted it to __GFP_HIGHMEM.
	 */
	sc->gfp_mask = orig_mask;
L
Linus Torvalds 已提交
2809
}
2810

2811 2812 2813 2814 2815 2816 2817 2818 2819 2820
static void snapshot_refaults(struct mem_cgroup *root_memcg, pg_data_t *pgdat)
{
	struct mem_cgroup *memcg;

	memcg = mem_cgroup_iter(root_memcg, NULL, NULL);
	do {
		unsigned long refaults;
		struct lruvec *lruvec;

		if (memcg)
2821
			refaults = memcg_page_state(memcg, WORKINGSET_ACTIVATE);
2822 2823 2824 2825 2826 2827 2828 2829
		else
			refaults = node_page_state(pgdat, WORKINGSET_ACTIVATE);

		lruvec = mem_cgroup_lruvec(pgdat, memcg);
		lruvec->refaults = refaults;
	} while ((memcg = mem_cgroup_iter(root_memcg, memcg, NULL)));
}

L
Linus Torvalds 已提交
2830 2831 2832 2833 2834 2835 2836 2837
/*
 * This is the main entry point to direct page reclaim.
 *
 * If a full scan of the inactive list fails to free enough memory then we
 * are "out of memory" and something needs to be killed.
 *
 * If the caller is !__GFP_FS then the probability of a failure is reasonably
 * high - the zone may be full of dirty or under-writeback pages, which this
2838 2839 2840 2841
 * caller can't do much about.  We kick the writeback threads and take explicit
 * naps in the hope that some of these pages can be written.  But if the
 * allocating task holds filesystem locks which prevent writeout this might not
 * work, and the allocation attempt will fail.
2842 2843 2844
 *
 * returns:	0, if no pages reclaimed
 * 		else, the number of pages reclaimed
L
Linus Torvalds 已提交
2845
 */
2846
static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2847
					  struct scan_control *sc)
L
Linus Torvalds 已提交
2848
{
2849
	int initial_priority = sc->priority;
2850 2851 2852
	pg_data_t *last_pgdat;
	struct zoneref *z;
	struct zone *zone;
2853
retry:
2854 2855
	delayacct_freepages_start();

2856
	if (global_reclaim(sc))
2857
		__count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
L
Linus Torvalds 已提交
2858

2859
	do {
2860 2861
		vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
				sc->priority);
2862
		sc->nr_scanned = 0;
M
Michal Hocko 已提交
2863
		shrink_zones(zonelist, sc);
2864

2865
		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2866 2867 2868 2869
			break;

		if (sc->compaction_ready)
			break;
L
Linus Torvalds 已提交
2870

2871 2872 2873 2874 2875 2876
		/*
		 * If we're getting trouble reclaiming, start doing
		 * writepage even in laptop mode.
		 */
		if (sc->priority < DEF_PRIORITY - 2)
			sc->may_writepage = 1;
2877
	} while (--sc->priority >= 0);
2878

2879 2880 2881 2882 2883 2884 2885 2886 2887
	last_pgdat = NULL;
	for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
					sc->nodemask) {
		if (zone->zone_pgdat == last_pgdat)
			continue;
		last_pgdat = zone->zone_pgdat;
		snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
	}

2888 2889
	delayacct_freepages_end();

2890 2891 2892
	if (sc->nr_reclaimed)
		return sc->nr_reclaimed;

2893
	/* Aborted reclaim to try compaction? don't OOM, then */
2894
	if (sc->compaction_ready)
2895 2896
		return 1;

2897
	/* Untapped cgroup reserves?  Don't OOM, retry. */
2898
	if (sc->memcg_low_skipped) {
2899
		sc->priority = initial_priority;
2900 2901
		sc->memcg_low_reclaim = 1;
		sc->memcg_low_skipped = 0;
2902 2903 2904
		goto retry;
	}

2905
	return 0;
L
Linus Torvalds 已提交
2906 2907
}

2908
static bool allow_direct_reclaim(pg_data_t *pgdat)
2909 2910 2911 2912 2913 2914 2915
{
	struct zone *zone;
	unsigned long pfmemalloc_reserve = 0;
	unsigned long free_pages = 0;
	int i;
	bool wmark_ok;

2916 2917 2918
	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
		return true;

2919 2920
	for (i = 0; i <= ZONE_NORMAL; i++) {
		zone = &pgdat->node_zones[i];
2921 2922 2923 2924
		if (!managed_zone(zone))
			continue;

		if (!zone_reclaimable_pages(zone))
2925 2926
			continue;

2927 2928 2929 2930
		pfmemalloc_reserve += min_wmark_pages(zone);
		free_pages += zone_page_state(zone, NR_FREE_PAGES);
	}

2931 2932 2933 2934
	/* If there are no reserves (unexpected config) then do not throttle */
	if (!pfmemalloc_reserve)
		return true;

2935 2936 2937 2938
	wmark_ok = free_pages > pfmemalloc_reserve / 2;

	/* kswapd must be awake if processes are being throttled */
	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
2939
		pgdat->kswapd_classzone_idx = min(pgdat->kswapd_classzone_idx,
2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950
						(enum zone_type)ZONE_NORMAL);
		wake_up_interruptible(&pgdat->kswapd_wait);
	}

	return wmark_ok;
}

/*
 * Throttle direct reclaimers if backing storage is backed by the network
 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
 * depleted. kswapd will continue to make progress and wake the processes
2951 2952 2953 2954
 * when the low watermark is reached.
 *
 * Returns true if a fatal signal was delivered during throttling. If this
 * happens, the page allocator should not consider triggering the OOM killer.
2955
 */
2956
static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
2957 2958
					nodemask_t *nodemask)
{
2959
	struct zoneref *z;
2960
	struct zone *zone;
2961
	pg_data_t *pgdat = NULL;
2962 2963 2964 2965 2966 2967 2968 2969 2970

	/*
	 * Kernel threads should not be throttled as they may be indirectly
	 * responsible for cleaning pages necessary for reclaim to make forward
	 * progress. kjournald for example may enter direct reclaim while
	 * committing a transaction where throttling it could forcing other
	 * processes to block on log_wait_commit().
	 */
	if (current->flags & PF_KTHREAD)
2971 2972 2973 2974 2975 2976 2977 2978
		goto out;

	/*
	 * If a fatal signal is pending, this process should not throttle.
	 * It should return quickly so it can exit and free its memory
	 */
	if (fatal_signal_pending(current))
		goto out;
2979

2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994
	/*
	 * Check if the pfmemalloc reserves are ok by finding the first node
	 * with a usable ZONE_NORMAL or lower zone. The expectation is that
	 * GFP_KERNEL will be required for allocating network buffers when
	 * swapping over the network so ZONE_HIGHMEM is unusable.
	 *
	 * Throttling is based on the first usable node and throttled processes
	 * wait on a queue until kswapd makes progress and wakes them. There
	 * is an affinity then between processes waking up and where reclaim
	 * progress has been made assuming the process wakes on the same node.
	 * More importantly, processes running on remote nodes will not compete
	 * for remote pfmemalloc reserves and processes on different nodes
	 * should make reasonable progress.
	 */
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2995
					gfp_zone(gfp_mask), nodemask) {
2996 2997 2998 2999 3000
		if (zone_idx(zone) > ZONE_NORMAL)
			continue;

		/* Throttle based on the first usable node */
		pgdat = zone->zone_pgdat;
3001
		if (allow_direct_reclaim(pgdat))
3002 3003 3004 3005 3006 3007
			goto out;
		break;
	}

	/* If no zone was usable by the allocation flags then do not throttle */
	if (!pgdat)
3008
		goto out;
3009

3010 3011 3012
	/* Account for the throttling */
	count_vm_event(PGSCAN_DIRECT_THROTTLE);

3013 3014 3015 3016 3017 3018 3019 3020 3021 3022
	/*
	 * If the caller cannot enter the filesystem, it's possible that it
	 * is due to the caller holding an FS lock or performing a journal
	 * transaction in the case of a filesystem like ext[3|4]. In this case,
	 * it is not safe to block on pfmemalloc_wait as kswapd could be
	 * blocked waiting on the same lock. Instead, throttle for up to a
	 * second before continuing.
	 */
	if (!(gfp_mask & __GFP_FS)) {
		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
3023
			allow_direct_reclaim(pgdat), HZ);
3024 3025

		goto check_pending;
3026 3027 3028 3029
	}

	/* Throttle until kswapd wakes the process */
	wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
3030
		allow_direct_reclaim(pgdat));
3031 3032 3033 3034 3035 3036 3037

check_pending:
	if (fatal_signal_pending(current))
		return true;

out:
	return false;
3038 3039
}

3040
unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
3041
				gfp_t gfp_mask, nodemask_t *nodemask)
3042
{
3043
	unsigned long nr_reclaimed;
3044
	struct scan_control sc = {
3045
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
3046
		.gfp_mask = current_gfp_context(gfp_mask),
3047
		.reclaim_idx = gfp_zone(gfp_mask),
3048 3049 3050
		.order = order,
		.nodemask = nodemask,
		.priority = DEF_PRIORITY,
3051
		.may_writepage = !laptop_mode,
3052
		.may_unmap = 1,
3053
		.may_swap = 1,
3054 3055
	};

3056
	/*
3057 3058 3059
	 * Do not enter reclaim if fatal signal was delivered while throttled.
	 * 1 is returned so that the page allocator does not OOM kill at this
	 * point.
3060
	 */
3061
	if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
3062 3063
		return 1;

3064 3065
	trace_mm_vmscan_direct_reclaim_begin(order,
				sc.may_writepage,
3066
				sc.gfp_mask,
3067
				sc.reclaim_idx);
3068

3069
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3070 3071 3072 3073

	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);

	return nr_reclaimed;
3074 3075
}

A
Andrew Morton 已提交
3076
#ifdef CONFIG_MEMCG
3077

3078
unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
3079
						gfp_t gfp_mask, bool noswap,
3080
						pg_data_t *pgdat,
3081
						unsigned long *nr_scanned)
3082 3083
{
	struct scan_control sc = {
3084
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
3085
		.target_mem_cgroup = memcg,
3086 3087
		.may_writepage = !laptop_mode,
		.may_unmap = 1,
3088
		.reclaim_idx = MAX_NR_ZONES - 1,
3089 3090
		.may_swap = !noswap,
	};
3091
	unsigned long lru_pages;
3092

3093 3094
	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
3095

3096
	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
3097
						      sc.may_writepage,
3098 3099
						      sc.gfp_mask,
						      sc.reclaim_idx);
3100

3101 3102 3103
	/*
	 * NOTE: Although we can get the priority field, using it
	 * here is not a good idea, since it limits the pages we can scan.
3104
	 * if we don't reclaim here, the shrink_node from balance_pgdat
3105 3106 3107
	 * will pick up pages from other mem cgroup's as well. We hack
	 * the priority and make it zero.
	 */
3108
	shrink_node_memcg(pgdat, memcg, &sc, &lru_pages);
3109 3110 3111

	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);

3112
	*nr_scanned = sc.nr_scanned;
3113 3114 3115
	return sc.nr_reclaimed;
}

3116
unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
3117
					   unsigned long nr_pages,
K
KOSAKI Motohiro 已提交
3118
					   gfp_t gfp_mask,
3119
					   bool may_swap)
3120
{
3121
	struct zonelist *zonelist;
3122
	unsigned long nr_reclaimed;
3123
	int nid;
3124
	unsigned int noreclaim_flag;
3125
	struct scan_control sc = {
3126
		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3127
		.gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
3128
				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
3129
		.reclaim_idx = MAX_NR_ZONES - 1,
3130 3131 3132 3133
		.target_mem_cgroup = memcg,
		.priority = DEF_PRIORITY,
		.may_writepage = !laptop_mode,
		.may_unmap = 1,
3134
		.may_swap = may_swap,
3135
	};
3136

3137 3138 3139 3140 3141
	/*
	 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
	 * take care of from where we get pages. So the node where we start the
	 * scan does not need to be the current node.
	 */
3142
	nid = mem_cgroup_select_victim_node(memcg);
3143

3144
	zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK];
3145 3146 3147

	trace_mm_vmscan_memcg_reclaim_begin(0,
					    sc.may_writepage,
3148 3149
					    sc.gfp_mask,
					    sc.reclaim_idx);
3150

3151
	noreclaim_flag = memalloc_noreclaim_save();
3152
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3153
	memalloc_noreclaim_restore(noreclaim_flag);
3154 3155 3156 3157

	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);

	return nr_reclaimed;
3158 3159 3160
}
#endif

3161
static void age_active_anon(struct pglist_data *pgdat,
3162
				struct scan_control *sc)
3163
{
3164
	struct mem_cgroup *memcg;
3165

3166 3167 3168 3169 3170
	if (!total_swap_pages)
		return;

	memcg = mem_cgroup_iter(NULL, NULL, NULL);
	do {
3171
		struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
3172

3173
		if (inactive_list_is_low(lruvec, false, memcg, sc, true))
3174
			shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3175
					   sc, LRU_ACTIVE_ANON);
3176 3177 3178

		memcg = mem_cgroup_iter(NULL, memcg, NULL);
	} while (memcg);
3179 3180
}

3181 3182 3183 3184 3185
/*
 * Returns true if there is an eligible zone balanced for the request order
 * and classzone_idx
 */
static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
3186
{
3187 3188 3189
	int i;
	unsigned long mark = -1;
	struct zone *zone;
3190

3191 3192
	for (i = 0; i <= classzone_idx; i++) {
		zone = pgdat->node_zones + i;
3193

3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210
		if (!managed_zone(zone))
			continue;

		mark = high_wmark_pages(zone);
		if (zone_watermark_ok_safe(zone, order, mark, classzone_idx))
			return true;
	}

	/*
	 * If a node has no populated zone within classzone_idx, it does not
	 * need balancing by definition. This can happen if a zone-restricted
	 * allocation tries to wake a remote kswapd.
	 */
	if (mark == -1)
		return true;

	return false;
3211 3212
}

3213 3214 3215 3216 3217 3218 3219 3220
/* Clear pgdat state for congested, dirty or under writeback. */
static void clear_pgdat_congested(pg_data_t *pgdat)
{
	clear_bit(PGDAT_CONGESTED, &pgdat->flags);
	clear_bit(PGDAT_DIRTY, &pgdat->flags);
	clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
}

3221 3222 3223 3224 3225 3226
/*
 * Prepare kswapd for sleeping. This verifies that there are no processes
 * waiting in throttle_direct_reclaim() and that watermarks have been met.
 *
 * Returns true if kswapd is ready to sleep
 */
3227
static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3228
{
3229
	/*
3230
	 * The throttled processes are normally woken up in balance_pgdat() as
3231
	 * soon as allow_direct_reclaim() is true. But there is a potential
3232 3233 3234 3235 3236 3237 3238 3239 3240
	 * race between when kswapd checks the watermarks and a process gets
	 * throttled. There is also a potential race if processes get
	 * throttled, kswapd wakes, a large process exits thereby balancing the
	 * zones, which causes kswapd to exit balance_pgdat() before reaching
	 * the wake up checks. If kswapd is going to sleep, no process should
	 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
	 * the wake up is premature, processes will wake kswapd and get
	 * throttled again. The difference from wake ups in balance_pgdat() is
	 * that here we are under prepare_to_wait().
3241
	 */
3242 3243
	if (waitqueue_active(&pgdat->pfmemalloc_wait))
		wake_up_all(&pgdat->pfmemalloc_wait);
3244

3245 3246 3247 3248
	/* Hopeless node, leave it to direct reclaim */
	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
		return true;

3249 3250 3251
	if (pgdat_balanced(pgdat, order, classzone_idx)) {
		clear_pgdat_congested(pgdat);
		return true;
3252 3253
	}

3254
	return false;
3255 3256
}

3257
/*
3258 3259
 * kswapd shrinks a node of pages that are at or below the highest usable
 * zone that is currently unbalanced.
3260 3261
 *
 * Returns true if kswapd scanned at least the requested number of pages to
3262 3263
 * reclaim or if the lack of progress was due to pages under writeback.
 * This is used to determine if the scanning priority needs to be raised.
3264
 */
3265
static bool kswapd_shrink_node(pg_data_t *pgdat,
3266
			       struct scan_control *sc)
3267
{
3268 3269
	struct zone *zone;
	int z;
3270

3271 3272
	/* Reclaim a number of pages proportional to the number of zones */
	sc->nr_to_reclaim = 0;
3273
	for (z = 0; z <= sc->reclaim_idx; z++) {
3274
		zone = pgdat->node_zones + z;
3275
		if (!managed_zone(zone))
3276
			continue;
3277

3278 3279
		sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
	}
3280 3281

	/*
3282 3283
	 * Historically care was taken to put equal pressure on all zones but
	 * now pressure is applied based on node LRU order.
3284
	 */
3285
	shrink_node(pgdat, sc);
3286

3287
	/*
3288 3289 3290 3291 3292
	 * Fragmentation may mean that the system cannot be rebalanced for
	 * high-order allocations. If twice the allocation size has been
	 * reclaimed then recheck watermarks only at order-0 to prevent
	 * excessive reclaim. Assume that a process requested a high-order
	 * can direct reclaim/compact.
3293
	 */
3294
	if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
3295
		sc->order = 0;
3296

3297
	return sc->nr_scanned >= sc->nr_to_reclaim;
3298 3299
}

L
Linus Torvalds 已提交
3300
/*
3301 3302 3303
 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
 * that are eligible for use by the caller until at least one zone is
 * balanced.
L
Linus Torvalds 已提交
3304
 *
3305
 * Returns the order kswapd finished reclaiming at.
L
Linus Torvalds 已提交
3306 3307
 *
 * kswapd scans the zones in the highmem->normal->dma direction.  It skips
3308
 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3309 3310 3311
 * found to have free_pages <= high_wmark_pages(zone), any page is that zone
 * or lower is eligible for reclaim until at least one usable zone is
 * balanced.
L
Linus Torvalds 已提交
3312
 */
3313
static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx)
L
Linus Torvalds 已提交
3314 3315
{
	int i;
3316 3317
	unsigned long nr_soft_reclaimed;
	unsigned long nr_soft_scanned;
3318
	struct zone *zone;
3319 3320
	struct scan_control sc = {
		.gfp_mask = GFP_KERNEL,
3321
		.order = order,
3322
		.priority = DEF_PRIORITY,
3323
		.may_writepage = !laptop_mode,
3324
		.may_unmap = 1,
3325
		.may_swap = 1,
3326
	};
3327
	count_vm_event(PAGEOUTRUN);
L
Linus Torvalds 已提交
3328

3329
	do {
3330
		unsigned long nr_reclaimed = sc.nr_reclaimed;
3331 3332
		bool raise_priority = true;

3333
		sc.reclaim_idx = classzone_idx;
L
Linus Torvalds 已提交
3334

3335
		/*
3336 3337 3338 3339 3340 3341 3342 3343
		 * If the number of buffer_heads exceeds the maximum allowed
		 * then consider reclaiming from all zones. This has a dual
		 * purpose -- on 64-bit systems it is expected that
		 * buffer_heads are stripped during active rotation. On 32-bit
		 * systems, highmem pages can pin lowmem memory and shrinking
		 * buffers can relieve lowmem pressure. Reclaim may still not
		 * go ahead if all eligible zones for the original allocation
		 * request are balanced to avoid excessive reclaim from kswapd.
3344 3345 3346 3347
		 */
		if (buffer_heads_over_limit) {
			for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
				zone = pgdat->node_zones + i;
3348
				if (!managed_zone(zone))
3349
					continue;
3350

3351
				sc.reclaim_idx = i;
A
Andrew Morton 已提交
3352
				break;
L
Linus Torvalds 已提交
3353 3354
			}
		}
3355

3356
		/*
3357 3358 3359
		 * Only reclaim if there are no eligible zones. Note that
		 * sc.reclaim_idx is not used as buffer_heads_over_limit may
		 * have adjusted it.
3360
		 */
3361 3362
		if (pgdat_balanced(pgdat, sc.order, classzone_idx))
			goto out;
A
Andrew Morton 已提交
3363

3364 3365 3366 3367 3368 3369
		/*
		 * Do some background aging of the anon list, to give
		 * pages a chance to be referenced before reclaiming. All
		 * pages are rotated regardless of classzone as this is
		 * about consistent aging.
		 */
3370
		age_active_anon(pgdat, &sc);
3371

3372 3373 3374 3375
		/*
		 * If we're getting trouble reclaiming, start doing writepage
		 * even in laptop mode.
		 */
3376
		if (sc.priority < DEF_PRIORITY - 2)
3377 3378
			sc.may_writepage = 1;

3379 3380 3381
		/* Call soft limit reclaim before calling shrink_node. */
		sc.nr_scanned = 0;
		nr_soft_scanned = 0;
3382
		nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
3383 3384 3385
						sc.gfp_mask, &nr_soft_scanned);
		sc.nr_reclaimed += nr_soft_reclaimed;

L
Linus Torvalds 已提交
3386
		/*
3387 3388 3389
		 * There should be no need to raise the scanning priority if
		 * enough pages are already being scanned that that high
		 * watermark would be met at 100% efficiency.
L
Linus Torvalds 已提交
3390
		 */
3391
		if (kswapd_shrink_node(pgdat, &sc))
3392
			raise_priority = false;
3393 3394 3395 3396 3397 3398 3399

		/*
		 * If the low watermark is met there is no need for processes
		 * to be throttled on pfmemalloc_wait as they should not be
		 * able to safely make forward progress. Wake them
		 */
		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3400
				allow_direct_reclaim(pgdat))
3401
			wake_up_all(&pgdat->pfmemalloc_wait);
3402

3403 3404 3405
		/* Check if kswapd should be suspending */
		if (try_to_freeze() || kthread_should_stop())
			break;
3406

3407
		/*
3408 3409
		 * Raise priority if scanning rate is too low or there was no
		 * progress in reclaiming pages
3410
		 */
3411 3412
		nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
		if (raise_priority || !nr_reclaimed)
3413
			sc.priority--;
3414
	} while (sc.priority >= 1);
L
Linus Torvalds 已提交
3415

3416 3417 3418
	if (!sc.nr_reclaimed)
		pgdat->kswapd_failures++;

3419
out:
3420
	snapshot_refaults(NULL, pgdat);
3421
	/*
3422 3423 3424 3425
	 * Return the order kswapd stopped reclaiming at as
	 * prepare_kswapd_sleep() takes it into account. If another caller
	 * entered the allocator slow path while kswapd was awake, order will
	 * remain at the higher level.
3426
	 */
3427
	return sc.order;
L
Linus Torvalds 已提交
3428 3429
}

3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445
/*
 * pgdat->kswapd_classzone_idx is the highest zone index that a recent
 * allocation request woke kswapd for. When kswapd has not woken recently,
 * the value is MAX_NR_ZONES which is not a valid index. This compares a
 * given classzone and returns it or the highest classzone index kswapd
 * was recently woke for.
 */
static enum zone_type kswapd_classzone_idx(pg_data_t *pgdat,
					   enum zone_type classzone_idx)
{
	if (pgdat->kswapd_classzone_idx == MAX_NR_ZONES)
		return classzone_idx;

	return max(pgdat->kswapd_classzone_idx, classzone_idx);
}

3446 3447
static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
				unsigned int classzone_idx)
3448 3449 3450 3451 3452 3453 3454 3455 3456
{
	long remaining = 0;
	DEFINE_WAIT(wait);

	if (freezing(current) || kthread_should_stop())
		return;

	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);

3457 3458 3459 3460 3461 3462 3463
	/*
	 * Try to sleep for a short interval. Note that kcompactd will only be
	 * woken if it is possible to sleep for a short interval. This is
	 * deliberate on the assumption that if reclaim cannot keep an
	 * eligible zone balanced that it's also unlikely that compaction will
	 * succeed.
	 */
3464
	if (prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476
		/*
		 * Compaction records what page blocks it recently failed to
		 * isolate pages from and skips them in the future scanning.
		 * When kswapd is going to sleep, it is reasonable to assume
		 * that pages and compaction may succeed so reset the cache.
		 */
		reset_isolation_suitable(pgdat);

		/*
		 * We have freed the memory, now we should compact it to make
		 * allocation of the requested order possible.
		 */
3477
		wakeup_kcompactd(pgdat, alloc_order, classzone_idx);
3478

3479
		remaining = schedule_timeout(HZ/10);
3480 3481 3482 3483 3484 3485 3486

		/*
		 * If woken prematurely then reset kswapd_classzone_idx and
		 * order. The values will either be from a wakeup request or
		 * the previous request that slept prematurely.
		 */
		if (remaining) {
3487
			pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3488 3489 3490
			pgdat->kswapd_order = max(pgdat->kswapd_order, reclaim_order);
		}

3491 3492 3493 3494 3495 3496 3497 3498
		finish_wait(&pgdat->kswapd_wait, &wait);
		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
	}

	/*
	 * After a short sleep, check if it was a premature sleep. If not, then
	 * go fully to sleep until explicitly woken up.
	 */
3499 3500
	if (!remaining &&
	    prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511
		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);

		/*
		 * vmstat counters are not perfectly accurate and the estimated
		 * value for counters such as NR_FREE_PAGES can deviate from the
		 * true value by nr_online_cpus * threshold. To avoid the zone
		 * watermarks being breached while under pressure, we reduce the
		 * per-cpu vmstat threshold while kswapd is awake and restore
		 * them before going back to sleep.
		 */
		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3512 3513 3514 3515

		if (!kthread_should_stop())
			schedule();

3516 3517 3518 3519 3520 3521 3522 3523 3524 3525
		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
	} else {
		if (remaining)
			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
		else
			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
	}
	finish_wait(&pgdat->kswapd_wait, &wait);
}

L
Linus Torvalds 已提交
3526 3527
/*
 * The background pageout daemon, started as a kernel thread
3528
 * from the init process.
L
Linus Torvalds 已提交
3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540
 *
 * This basically trickles out pages so that we have _some_
 * free memory available even if there is no other activity
 * that frees anything up. This is needed for things like routing
 * etc, where we otherwise might have all activity going on in
 * asynchronous contexts that cannot page things out.
 *
 * If there are applications that are active memory-allocators
 * (most normal use), this basically shouldn't matter.
 */
static int kswapd(void *p)
{
3541 3542
	unsigned int alloc_order, reclaim_order;
	unsigned int classzone_idx = MAX_NR_ZONES - 1;
L
Linus Torvalds 已提交
3543 3544
	pg_data_t *pgdat = (pg_data_t*)p;
	struct task_struct *tsk = current;
3545

L
Linus Torvalds 已提交
3546 3547 3548
	struct reclaim_state reclaim_state = {
		.reclaimed_slab = 0,
	};
3549
	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
L
Linus Torvalds 已提交
3550

R
Rusty Russell 已提交
3551
	if (!cpumask_empty(cpumask))
3552
		set_cpus_allowed_ptr(tsk, cpumask);
L
Linus Torvalds 已提交
3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566
	current->reclaim_state = &reclaim_state;

	/*
	 * Tell the memory management that we're a "memory allocator",
	 * and that if we need more memory we should get access to it
	 * regardless (see "__alloc_pages()"). "kswapd" should
	 * never get caught in the normal page freeing logic.
	 *
	 * (Kswapd normally doesn't need memory anyway, but sometimes
	 * you need a small amount of memory in order to be able to
	 * page out something else, and this flag essentially protects
	 * us from recursively trying to free more memory as we're
	 * trying to free the first piece of memory in the first place).
	 */
3567
	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3568
	set_freezable();
L
Linus Torvalds 已提交
3569

3570 3571
	pgdat->kswapd_order = 0;
	pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
L
Linus Torvalds 已提交
3572
	for ( ; ; ) {
3573
		bool ret;
3574

3575 3576 3577
		alloc_order = reclaim_order = pgdat->kswapd_order;
		classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);

3578 3579 3580
kswapd_try_sleep:
		kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
					classzone_idx);
3581

3582 3583
		/* Read the new order and classzone_idx */
		alloc_order = reclaim_order = pgdat->kswapd_order;
3584
		classzone_idx = kswapd_classzone_idx(pgdat, 0);
3585
		pgdat->kswapd_order = 0;
3586
		pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
L
Linus Torvalds 已提交
3587

3588 3589 3590 3591 3592 3593 3594 3595
		ret = try_to_freeze();
		if (kthread_should_stop())
			break;

		/*
		 * We can speed up thawing tasks if we don't call balance_pgdat
		 * after returning from the refrigerator
		 */
3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606
		if (ret)
			continue;

		/*
		 * Reclaim begins at the requested order but if a high-order
		 * reclaim fails then kswapd falls back to reclaiming for
		 * order-0. If that happens, kswapd will consider sleeping
		 * for the order it finished reclaiming at (reclaim_order)
		 * but kcompactd is woken to compact for the original
		 * request (alloc_order).
		 */
3607 3608
		trace_mm_vmscan_kswapd_wake(pgdat->node_id, classzone_idx,
						alloc_order);
3609
		fs_reclaim_acquire(GFP_KERNEL);
3610
		reclaim_order = balance_pgdat(pgdat, alloc_order, classzone_idx);
3611
		fs_reclaim_release(GFP_KERNEL);
3612 3613
		if (reclaim_order < alloc_order)
			goto kswapd_try_sleep;
L
Linus Torvalds 已提交
3614
	}
3615

3616
	tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
3617
	current->reclaim_state = NULL;
3618

L
Linus Torvalds 已提交
3619 3620 3621 3622 3623 3624
	return 0;
}

/*
 * A zone is low on free memory, so wake its kswapd task to service it.
 */
3625
void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
L
Linus Torvalds 已提交
3626 3627 3628
{
	pg_data_t *pgdat;

3629
	if (!managed_zone(zone))
L
Linus Torvalds 已提交
3630 3631
		return;

3632
	if (!cpuset_zone_allowed(zone, GFP_KERNEL | __GFP_HARDWALL))
L
Linus Torvalds 已提交
3633
		return;
3634
	pgdat = zone->zone_pgdat;
3635 3636
	pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat,
							   classzone_idx);
3637
	pgdat->kswapd_order = max(pgdat->kswapd_order, order);
3638
	if (!waitqueue_active(&pgdat->kswapd_wait))
L
Linus Torvalds 已提交
3639
		return;
3640

3641 3642 3643 3644
	/* Hopeless node, leave it to direct reclaim */
	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
		return;

3645 3646
	if (pgdat_balanced(pgdat, order, classzone_idx))
		return;
3647

3648
	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, classzone_idx, order);
3649
	wake_up_interruptible(&pgdat->kswapd_wait);
L
Linus Torvalds 已提交
3650 3651
}

3652
#ifdef CONFIG_HIBERNATION
L
Linus Torvalds 已提交
3653
/*
3654
 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3655 3656 3657 3658 3659
 * freed pages.
 *
 * Rather than trying to age LRUs the aim is to preserve the overall
 * LRU order by reclaiming preferentially
 * inactive > active > active referenced > active mapped
L
Linus Torvalds 已提交
3660
 */
3661
unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
L
Linus Torvalds 已提交
3662
{
3663 3664
	struct reclaim_state reclaim_state;
	struct scan_control sc = {
3665
		.nr_to_reclaim = nr_to_reclaim,
3666
		.gfp_mask = GFP_HIGHUSER_MOVABLE,
3667
		.reclaim_idx = MAX_NR_ZONES - 1,
3668
		.priority = DEF_PRIORITY,
3669
		.may_writepage = 1,
3670 3671
		.may_unmap = 1,
		.may_swap = 1,
3672
		.hibernation_mode = 1,
L
Linus Torvalds 已提交
3673
	};
3674
	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3675 3676
	struct task_struct *p = current;
	unsigned long nr_reclaimed;
3677
	unsigned int noreclaim_flag;
L
Linus Torvalds 已提交
3678

3679
	noreclaim_flag = memalloc_noreclaim_save();
3680
	fs_reclaim_acquire(sc.gfp_mask);
3681 3682
	reclaim_state.reclaimed_slab = 0;
	p->reclaim_state = &reclaim_state;
3683

3684
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3685

3686
	p->reclaim_state = NULL;
3687
	fs_reclaim_release(sc.gfp_mask);
3688
	memalloc_noreclaim_restore(noreclaim_flag);
3689

3690
	return nr_reclaimed;
L
Linus Torvalds 已提交
3691
}
3692
#endif /* CONFIG_HIBERNATION */
L
Linus Torvalds 已提交
3693 3694 3695 3696 3697

/* It's optimal to keep kswapds on the same CPUs as their memory, but
   not required for correctness.  So if the last cpu in a node goes
   away, we get changed to run anywhere: as the first one comes back,
   restore their cpu bindings. */
3698
static int kswapd_cpu_online(unsigned int cpu)
L
Linus Torvalds 已提交
3699
{
3700
	int nid;
L
Linus Torvalds 已提交
3701

3702 3703 3704
	for_each_node_state(nid, N_MEMORY) {
		pg_data_t *pgdat = NODE_DATA(nid);
		const struct cpumask *mask;
3705

3706
		mask = cpumask_of_node(pgdat->node_id);
3707

3708 3709 3710
		if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
			/* One of our CPUs online: restore mask */
			set_cpus_allowed_ptr(pgdat->kswapd, mask);
L
Linus Torvalds 已提交
3711
	}
3712
	return 0;
L
Linus Torvalds 已提交
3713 3714
}

3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729
/*
 * This kswapd start function will be called by init and node-hot-add.
 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
 */
int kswapd_run(int nid)
{
	pg_data_t *pgdat = NODE_DATA(nid);
	int ret = 0;

	if (pgdat->kswapd)
		return 0;

	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
	if (IS_ERR(pgdat->kswapd)) {
		/* failure at boot is fatal */
3730
		BUG_ON(system_state < SYSTEM_RUNNING);
3731 3732
		pr_err("Failed to start kswapd on node %d\n", nid);
		ret = PTR_ERR(pgdat->kswapd);
3733
		pgdat->kswapd = NULL;
3734 3735 3736 3737
	}
	return ret;
}

3738
/*
3739
 * Called by memory hotplug when all memory in a node is offlined.  Caller must
3740
 * hold mem_hotplug_begin/end().
3741 3742 3743 3744 3745
 */
void kswapd_stop(int nid)
{
	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;

3746
	if (kswapd) {
3747
		kthread_stop(kswapd);
3748 3749
		NODE_DATA(nid)->kswapd = NULL;
	}
3750 3751
}

L
Linus Torvalds 已提交
3752 3753
static int __init kswapd_init(void)
{
3754
	int nid, ret;
3755

L
Linus Torvalds 已提交
3756
	swap_setup();
3757
	for_each_node_state(nid, N_MEMORY)
3758
 		kswapd_run(nid);
3759 3760 3761 3762
	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
					"mm/vmscan:online", kswapd_cpu_online,
					NULL);
	WARN_ON(ret < 0);
L
Linus Torvalds 已提交
3763 3764 3765 3766
	return 0;
}

module_init(kswapd_init)
3767 3768 3769

#ifdef CONFIG_NUMA
/*
3770
 * Node reclaim mode
3771
 *
3772
 * If non-zero call node_reclaim when the number of free pages falls below
3773 3774
 * the watermarks.
 */
3775
int node_reclaim_mode __read_mostly;
3776

3777
#define RECLAIM_OFF 0
3778
#define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
3779
#define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
3780
#define RECLAIM_UNMAP (1<<2)	/* Unmap pages during reclaim */
3781

3782
/*
3783
 * Priority for NODE_RECLAIM. This determines the fraction of pages
3784 3785 3786
 * of a node considered for each zone_reclaim. 4 scans 1/16th of
 * a zone.
 */
3787
#define NODE_RECLAIM_PRIORITY 4
3788

3789
/*
3790
 * Percentage of pages in a zone that must be unmapped for node_reclaim to
3791 3792 3793 3794
 * occur.
 */
int sysctl_min_unmapped_ratio = 1;

3795 3796 3797 3798 3799 3800
/*
 * If the number of slab pages in a zone grows beyond this percentage then
 * slab reclaim needs to occur.
 */
int sysctl_min_slab_ratio = 5;

3801
static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
3802
{
3803 3804 3805
	unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
	unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
		node_page_state(pgdat, NR_ACTIVE_FILE);
3806 3807 3808 3809 3810 3811 3812 3813 3814 3815

	/*
	 * It's possible for there to be more file mapped pages than
	 * accounted for by the pages on the file LRU lists because
	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
	 */
	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
}

/* Work out how many page cache pages we can reclaim in this reclaim_mode */
3816
static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
3817
{
3818 3819
	unsigned long nr_pagecache_reclaimable;
	unsigned long delta = 0;
3820 3821

	/*
3822
	 * If RECLAIM_UNMAP is set, then all file pages are considered
3823
	 * potentially reclaimable. Otherwise, we have to worry about
3824
	 * pages like swapcache and node_unmapped_file_pages() provides
3825 3826
	 * a better estimate
	 */
3827 3828
	if (node_reclaim_mode & RECLAIM_UNMAP)
		nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
3829
	else
3830
		nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
3831 3832

	/* If we can't clean pages, remove dirty pages from consideration */
3833 3834
	if (!(node_reclaim_mode & RECLAIM_WRITE))
		delta += node_page_state(pgdat, NR_FILE_DIRTY);
3835 3836 3837 3838 3839 3840 3841 3842

	/* Watch for any possible underflows due to delta */
	if (unlikely(delta > nr_pagecache_reclaimable))
		delta = nr_pagecache_reclaimable;

	return nr_pagecache_reclaimable - delta;
}

3843
/*
3844
 * Try to free up some pages from this node through reclaim.
3845
 */
3846
static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
3847
{
3848
	/* Minimum pages needed in order to stay on node */
3849
	const unsigned long nr_pages = 1 << order;
3850 3851
	struct task_struct *p = current;
	struct reclaim_state reclaim_state;
3852
	unsigned int noreclaim_flag;
3853
	struct scan_control sc = {
3854
		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3855
		.gfp_mask = current_gfp_context(gfp_mask),
3856
		.order = order,
3857 3858 3859
		.priority = NODE_RECLAIM_PRIORITY,
		.may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
		.may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
3860
		.may_swap = 1,
3861
		.reclaim_idx = gfp_zone(gfp_mask),
3862
	};
3863 3864

	cond_resched();
3865
	/*
3866
	 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
3867
	 * and we also need to be able to write out pages for RECLAIM_WRITE
3868
	 * and RECLAIM_UNMAP.
3869
	 */
3870 3871
	noreclaim_flag = memalloc_noreclaim_save();
	p->flags |= PF_SWAPWRITE;
3872
	fs_reclaim_acquire(sc.gfp_mask);
3873 3874
	reclaim_state.reclaimed_slab = 0;
	p->reclaim_state = &reclaim_state;
3875

3876
	if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
3877 3878 3879 3880 3881
		/*
		 * Free memory by calling shrink zone with increasing
		 * priorities until we have enough memory freed.
		 */
		do {
3882
			shrink_node(pgdat, &sc);
3883
		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3884
	}
3885

3886
	p->reclaim_state = NULL;
3887
	fs_reclaim_release(gfp_mask);
3888 3889
	current->flags &= ~PF_SWAPWRITE;
	memalloc_noreclaim_restore(noreclaim_flag);
3890
	return sc.nr_reclaimed >= nr_pages;
3891
}
3892

3893
int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
3894
{
3895
	int ret;
3896 3897

	/*
3898
	 * Node reclaim reclaims unmapped file backed pages and
3899
	 * slab pages if we are over the defined limits.
3900
	 *
3901 3902
	 * A small portion of unmapped file backed pages is needed for
	 * file I/O otherwise pages read by file I/O will be immediately
3903 3904
	 * thrown out if the node is overallocated. So we do not reclaim
	 * if less than a specified percentage of the node is used by
3905
	 * unmapped file backed pages.
3906
	 */
3907
	if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
3908
	    node_page_state(pgdat, NR_SLAB_RECLAIMABLE) <= pgdat->min_slab_pages)
3909
		return NODE_RECLAIM_FULL;
3910 3911

	/*
3912
	 * Do not scan if the allocation should not be delayed.
3913
	 */
3914
	if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
3915
		return NODE_RECLAIM_NOSCAN;
3916 3917

	/*
3918
	 * Only run node reclaim on the local node or on nodes that do not
3919 3920 3921 3922
	 * have associated processors. This will favor the local processor
	 * over remote processors and spread off node memory allocations
	 * as wide as possible.
	 */
3923 3924
	if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
		return NODE_RECLAIM_NOSCAN;
3925

3926 3927
	if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
		return NODE_RECLAIM_NOSCAN;
3928

3929 3930
	ret = __node_reclaim(pgdat, gfp_mask, order);
	clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
3931

3932 3933 3934
	if (!ret)
		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);

3935
	return ret;
3936
}
3937
#endif
L
Lee Schermerhorn 已提交
3938 3939 3940 3941 3942 3943

/*
 * page_evictable - test whether a page is evictable
 * @page: the page to test
 *
 * Test whether page is evictable--i.e., should be placed on active/inactive
3944
 * lists vs unevictable list.
L
Lee Schermerhorn 已提交
3945 3946
 *
 * Reasons page might not be evictable:
3947
 * (1) page's mapping marked unevictable
N
Nick Piggin 已提交
3948
 * (2) page is part of an mlocked VMA
3949
 *
L
Lee Schermerhorn 已提交
3950
 */
3951
int page_evictable(struct page *page)
L
Lee Schermerhorn 已提交
3952
{
3953
	return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
L
Lee Schermerhorn 已提交
3954
}
3955

3956
#ifdef CONFIG_SHMEM
3957
/**
3958 3959 3960
 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
 * @pages:	array of pages to check
 * @nr_pages:	number of pages to check
3961
 *
3962
 * Checks pages for evictability and moves them to the appropriate lru list.
3963 3964
 *
 * This function is only used for SysV IPC SHM_UNLOCK.
3965
 */
3966
void check_move_unevictable_pages(struct page **pages, int nr_pages)
3967
{
3968
	struct lruvec *lruvec;
3969
	struct pglist_data *pgdat = NULL;
3970 3971 3972
	int pgscanned = 0;
	int pgrescued = 0;
	int i;
3973

3974 3975
	for (i = 0; i < nr_pages; i++) {
		struct page *page = pages[i];
3976
		struct pglist_data *pagepgdat = page_pgdat(page);
3977

3978
		pgscanned++;
3979 3980 3981 3982 3983
		if (pagepgdat != pgdat) {
			if (pgdat)
				spin_unlock_irq(&pgdat->lru_lock);
			pgdat = pagepgdat;
			spin_lock_irq(&pgdat->lru_lock);
3984
		}
3985
		lruvec = mem_cgroup_page_lruvec(page, pgdat);
3986

3987 3988
		if (!PageLRU(page) || !PageUnevictable(page))
			continue;
3989

3990
		if (page_evictable(page)) {
3991 3992
			enum lru_list lru = page_lru_base_type(page);

3993
			VM_BUG_ON_PAGE(PageActive(page), page);
3994
			ClearPageUnevictable(page);
3995 3996
			del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
			add_page_to_lru_list(page, lruvec, lru);
3997
			pgrescued++;
3998
		}
3999
	}
4000

4001
	if (pgdat) {
4002 4003
		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
4004
		spin_unlock_irq(&pgdat->lru_lock);
4005 4006
	}
}
4007
#endif /* CONFIG_SHMEM */