vmscan.c 109.2 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
/*
 *  linux/mm/vmscan.c
 *
 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 *
 *  Swap reorganised 29.12.95, Stephen Tweedie.
 *  kswapd added: 7.1.96  sct
 *  Removed kswapd_ctl limits, and swap out as many pages as needed
 *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
 *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
 *  Multiqueue VM started 5.8.00, Rik van Riel.
 */

14 15
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

L
Linus Torvalds 已提交
16 17
#include <linux/mm.h>
#include <linux/module.h>
18
#include <linux/gfp.h>
L
Linus Torvalds 已提交
19 20 21 22 23
#include <linux/kernel_stat.h>
#include <linux/swap.h>
#include <linux/pagemap.h>
#include <linux/init.h>
#include <linux/highmem.h>
24
#include <linux/vmpressure.h>
25
#include <linux/vmstat.h>
L
Linus Torvalds 已提交
26 27 28 29 30 31 32 33 34 35 36
#include <linux/file.h>
#include <linux/writeback.h>
#include <linux/blkdev.h>
#include <linux/buffer_head.h>	/* for try_to_release_page(),
					buffer_heads_over_limit */
#include <linux/mm_inline.h>
#include <linux/backing-dev.h>
#include <linux/rmap.h>
#include <linux/topology.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
37
#include <linux/compaction.h>
L
Linus Torvalds 已提交
38 39
#include <linux/notifier.h>
#include <linux/rwsem.h>
40
#include <linux/delay.h>
41
#include <linux/kthread.h>
42
#include <linux/freezer.h>
43
#include <linux/memcontrol.h>
44
#include <linux/delayacct.h>
45
#include <linux/sysctl.h>
46
#include <linux/oom.h>
47
#include <linux/prefetch.h>
48
#include <linux/printk.h>
49
#include <linux/dax.h>
L
Linus Torvalds 已提交
50 51 52 53 54

#include <asm/tlbflush.h>
#include <asm/div64.h>

#include <linux/swapops.h>
55
#include <linux/balloon_compaction.h>
L
Linus Torvalds 已提交
56

57 58
#include "internal.h"

59 60 61
#define CREATE_TRACE_POINTS
#include <trace/events/vmscan.h>

L
Linus Torvalds 已提交
62
struct scan_control {
63 64 65
	/* How many pages shrink_list() should reclaim */
	unsigned long nr_to_reclaim;

L
Linus Torvalds 已提交
66
	/* This context's GFP mask */
A
Al Viro 已提交
67
	gfp_t gfp_mask;
L
Linus Torvalds 已提交
68

69
	/* Allocation order */
A
Andy Whitcroft 已提交
70
	int order;
71

72 73 74 75 76
	/*
	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
	 * are scanned.
	 */
	nodemask_t	*nodemask;
77

78 79 80 81 82
	/*
	 * The memory cgroup that hit its limit and as a result is the
	 * primary target of this reclaim invocation.
	 */
	struct mem_cgroup *target_mem_cgroup;
83

84 85 86 87 88 89 90 91 92 93 94
	/* Scan (total_size >> priority) pages at once */
	int priority;

	unsigned int may_writepage:1;

	/* Can mapped pages be reclaimed? */
	unsigned int may_unmap:1;

	/* Can pages be swapped as part of reclaim? */
	unsigned int may_swap:1;

95 96 97
	/* Can cgroups be reclaimed below their normal consumption range? */
	unsigned int may_thrash:1;

98 99 100 101 102 103 104 105 106 107
	unsigned int hibernation_mode:1;

	/* One of the zones is ready for compaction */
	unsigned int compaction_ready:1;

	/* Incremented by the number of inactive pages that were scanned */
	unsigned long nr_scanned;

	/* Number of pages freed so far during a call to shrink_zones() */
	unsigned long nr_reclaimed;
L
Linus Torvalds 已提交
108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
};

#ifdef ARCH_HAS_PREFETCH
#define prefetch_prev_lru_page(_page, _base, _field)			\
	do {								\
		if ((_page)->lru.prev != _base) {			\
			struct page *prev;				\
									\
			prev = lru_to_page(&(_page->lru));		\
			prefetch(&prev->_field);			\
		}							\
	} while (0)
#else
#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
#endif

#ifdef ARCH_HAS_PREFETCHW
#define prefetchw_prev_lru_page(_page, _base, _field)			\
	do {								\
		if ((_page)->lru.prev != _base) {			\
			struct page *prev;				\
									\
			prev = lru_to_page(&(_page->lru));		\
			prefetchw(&prev->_field);			\
		}							\
	} while (0)
#else
#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
#endif

/*
 * From 0 .. 100.  Higher means more swappy.
 */
int vm_swappiness = 60;
142 143 144 145 146
/*
 * The total number of pages which are beyond the high watermark within all
 * zones.
 */
unsigned long vm_total_pages;
L
Linus Torvalds 已提交
147 148 149 150

static LIST_HEAD(shrinker_list);
static DECLARE_RWSEM(shrinker_rwsem);

A
Andrew Morton 已提交
151
#ifdef CONFIG_MEMCG
152 153
static bool global_reclaim(struct scan_control *sc)
{
154
	return !sc->target_mem_cgroup;
155
}
156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176

/**
 * sane_reclaim - is the usual dirty throttling mechanism operational?
 * @sc: scan_control in question
 *
 * The normal page dirty throttling mechanism in balance_dirty_pages() is
 * completely broken with the legacy memcg and direct stalling in
 * shrink_page_list() is used for throttling instead, which lacks all the
 * niceties such as fairness, adaptive pausing, bandwidth proportional
 * allocation and configurability.
 *
 * This function tests whether the vmscan currently in progress can assume
 * that the normal dirty throttling mechanism is operational.
 */
static bool sane_reclaim(struct scan_control *sc)
{
	struct mem_cgroup *memcg = sc->target_mem_cgroup;

	if (!memcg)
		return true;
#ifdef CONFIG_CGROUP_WRITEBACK
177
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
178 179 180 181
		return true;
#endif
	return false;
}
182
#else
183 184 185 186
static bool global_reclaim(struct scan_control *sc)
{
	return true;
}
187 188 189 190 191

static bool sane_reclaim(struct scan_control *sc)
{
	return true;
}
192 193
#endif

M
Michal Hocko 已提交
194
unsigned long zone_reclaimable_pages(struct zone *zone)
195
{
196
	unsigned long nr;
197

198 199 200
	nr = zone_page_state_snapshot(zone, NR_ACTIVE_FILE) +
	     zone_page_state_snapshot(zone, NR_INACTIVE_FILE) +
	     zone_page_state_snapshot(zone, NR_ISOLATED_FILE);
201 202

	if (get_nr_swap_pages() > 0)
203 204 205
		nr += zone_page_state_snapshot(zone, NR_ACTIVE_ANON) +
		      zone_page_state_snapshot(zone, NR_INACTIVE_ANON) +
		      zone_page_state_snapshot(zone, NR_ISOLATED_ANON);
206 207 208 209 210 211

	return nr;
}

bool zone_reclaimable(struct zone *zone)
{
212
	return zone_page_state_snapshot(zone, NR_PAGES_SCANNED) <
213
		zone_reclaimable_pages(zone) * 6;
214 215
}

216
unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru)
217
{
218
	if (!mem_cgroup_disabled())
219
		return mem_cgroup_get_lru_size(lruvec, lru);
220

221
	return zone_page_state(lruvec_zone(lruvec), NR_LRU_BASE + lru);
222 223
}

L
Linus Torvalds 已提交
224
/*
G
Glauber Costa 已提交
225
 * Add a shrinker callback to be called from the vm.
L
Linus Torvalds 已提交
226
 */
G
Glauber Costa 已提交
227
int register_shrinker(struct shrinker *shrinker)
L
Linus Torvalds 已提交
228
{
G
Glauber Costa 已提交
229 230 231 232 233 234 235 236 237
	size_t size = sizeof(*shrinker->nr_deferred);

	if (shrinker->flags & SHRINKER_NUMA_AWARE)
		size *= nr_node_ids;

	shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
	if (!shrinker->nr_deferred)
		return -ENOMEM;

238 239 240
	down_write(&shrinker_rwsem);
	list_add_tail(&shrinker->list, &shrinker_list);
	up_write(&shrinker_rwsem);
G
Glauber Costa 已提交
241
	return 0;
L
Linus Torvalds 已提交
242
}
243
EXPORT_SYMBOL(register_shrinker);
L
Linus Torvalds 已提交
244 245 246 247

/*
 * Remove one
 */
248
void unregister_shrinker(struct shrinker *shrinker)
L
Linus Torvalds 已提交
249 250 251 252
{
	down_write(&shrinker_rwsem);
	list_del(&shrinker->list);
	up_write(&shrinker_rwsem);
253
	kfree(shrinker->nr_deferred);
L
Linus Torvalds 已提交
254
}
255
EXPORT_SYMBOL(unregister_shrinker);
L
Linus Torvalds 已提交
256 257

#define SHRINK_BATCH 128
G
Glauber Costa 已提交
258

259 260 261 262
static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
				    struct shrinker *shrinker,
				    unsigned long nr_scanned,
				    unsigned long nr_eligible)
G
Glauber Costa 已提交
263 264 265 266
{
	unsigned long freed = 0;
	unsigned long long delta;
	long total_scan;
267
	long freeable;
G
Glauber Costa 已提交
268 269 270 271 272 273
	long nr;
	long new_nr;
	int nid = shrinkctl->nid;
	long batch_size = shrinker->batch ? shrinker->batch
					  : SHRINK_BATCH;

274 275
	freeable = shrinker->count_objects(shrinker, shrinkctl);
	if (freeable == 0)
G
Glauber Costa 已提交
276 277 278 279 280 281 282 283 284 285
		return 0;

	/*
	 * copy the current shrinker scan count into a local variable
	 * and zero it so that other concurrent shrinker invocations
	 * don't also do this scanning work.
	 */
	nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);

	total_scan = nr;
286
	delta = (4 * nr_scanned) / shrinker->seeks;
287
	delta *= freeable;
288
	do_div(delta, nr_eligible + 1);
G
Glauber Costa 已提交
289 290
	total_scan += delta;
	if (total_scan < 0) {
291
		pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n",
D
Dave Chinner 已提交
292
		       shrinker->scan_objects, total_scan);
293
		total_scan = freeable;
G
Glauber Costa 已提交
294 295 296 297 298 299 300 301
	}

	/*
	 * We need to avoid excessive windup on filesystem shrinkers
	 * due to large numbers of GFP_NOFS allocations causing the
	 * shrinkers to return -1 all the time. This results in a large
	 * nr being built up so when a shrink that can do some work
	 * comes along it empties the entire cache due to nr >>>
302
	 * freeable. This is bad for sustaining a working set in
G
Glauber Costa 已提交
303 304 305 306 307
	 * memory.
	 *
	 * Hence only allow the shrinker to scan the entire cache when
	 * a large delta change is calculated directly.
	 */
308 309
	if (delta < freeable / 4)
		total_scan = min(total_scan, freeable / 2);
G
Glauber Costa 已提交
310 311 312 313 314 315

	/*
	 * Avoid risking looping forever due to too large nr value:
	 * never try to free more than twice the estimate number of
	 * freeable entries.
	 */
316 317
	if (total_scan > freeable * 2)
		total_scan = freeable * 2;
G
Glauber Costa 已提交
318 319

	trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
320 321
				   nr_scanned, nr_eligible,
				   freeable, delta, total_scan);
G
Glauber Costa 已提交
322

323 324 325 326 327 328 329 330 331 332 333
	/*
	 * Normally, we should not scan less than batch_size objects in one
	 * pass to avoid too frequent shrinker calls, but if the slab has less
	 * than batch_size objects in total and we are really tight on memory,
	 * we will try to reclaim all available objects, otherwise we can end
	 * up failing allocations although there are plenty of reclaimable
	 * objects spread over several slabs with usage less than the
	 * batch_size.
	 *
	 * We detect the "tight on memory" situations by looking at the total
	 * number of objects we want to scan (total_scan). If it is greater
334
	 * than the total number of objects on slab (freeable), we must be
335 336 337 338
	 * scanning at high prio and therefore should try to reclaim as much as
	 * possible.
	 */
	while (total_scan >= batch_size ||
339
	       total_scan >= freeable) {
D
Dave Chinner 已提交
340
		unsigned long ret;
341
		unsigned long nr_to_scan = min(batch_size, total_scan);
G
Glauber Costa 已提交
342

343
		shrinkctl->nr_to_scan = nr_to_scan;
D
Dave Chinner 已提交
344 345 346 347
		ret = shrinker->scan_objects(shrinker, shrinkctl);
		if (ret == SHRINK_STOP)
			break;
		freed += ret;
G
Glauber Costa 已提交
348

349 350
		count_vm_events(SLABS_SCANNED, nr_to_scan);
		total_scan -= nr_to_scan;
G
Glauber Costa 已提交
351 352 353 354 355 356 357 358 359 360 361 362 363 364 365

		cond_resched();
	}

	/*
	 * move the unused scan count back into the shrinker in a
	 * manner that handles concurrent updates. If we exhausted the
	 * scan, there is no need to do an update.
	 */
	if (total_scan > 0)
		new_nr = atomic_long_add_return(total_scan,
						&shrinker->nr_deferred[nid]);
	else
		new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);

366
	trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
G
Glauber Costa 已提交
367
	return freed;
368 369
}

370
/**
371
 * shrink_slab - shrink slab caches
372 373
 * @gfp_mask: allocation context
 * @nid: node whose slab caches to target
374
 * @memcg: memory cgroup whose slab caches to target
375 376
 * @nr_scanned: pressure numerator
 * @nr_eligible: pressure denominator
L
Linus Torvalds 已提交
377
 *
378
 * Call the shrink functions to age shrinkable caches.
L
Linus Torvalds 已提交
379
 *
380 381
 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
 * unaware shrinkers will receive a node id of 0 instead.
L
Linus Torvalds 已提交
382
 *
383 384
 * @memcg specifies the memory cgroup to target. If it is not NULL,
 * only shrinkers with SHRINKER_MEMCG_AWARE set will be called to scan
385 386
 * objects from the memory cgroup specified. Otherwise, only unaware
 * shrinkers are called.
387
 *
388 389 390 391 392 393 394
 * @nr_scanned and @nr_eligible form a ratio that indicate how much of
 * the available objects should be scanned.  Page reclaim for example
 * passes the number of pages scanned and the number of pages on the
 * LRU lists that it considered on @nid, plus a bias in @nr_scanned
 * when it encountered mapped pages.  The ratio is further biased by
 * the ->seeks setting of the shrink function, which indicates the
 * cost to recreate an object relative to that of an LRU page.
395
 *
396
 * Returns the number of reclaimed slab objects.
L
Linus Torvalds 已提交
397
 */
398 399 400 401
static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
				 struct mem_cgroup *memcg,
				 unsigned long nr_scanned,
				 unsigned long nr_eligible)
L
Linus Torvalds 已提交
402 403
{
	struct shrinker *shrinker;
D
Dave Chinner 已提交
404
	unsigned long freed = 0;
L
Linus Torvalds 已提交
405

406
	if (memcg && (!memcg_kmem_enabled() || !mem_cgroup_online(memcg)))
407 408
		return 0;

409 410
	if (nr_scanned == 0)
		nr_scanned = SWAP_CLUSTER_MAX;
L
Linus Torvalds 已提交
411

412
	if (!down_read_trylock(&shrinker_rwsem)) {
D
Dave Chinner 已提交
413 414 415 416 417 418 419
		/*
		 * If we would return 0, our callers would understand that we
		 * have nothing else to shrink and give up trying. By returning
		 * 1 we keep it going and assume we'll be able to shrink next
		 * time.
		 */
		freed = 1;
420 421
		goto out;
	}
L
Linus Torvalds 已提交
422 423

	list_for_each_entry(shrinker, &shrinker_list, list) {
424 425 426
		struct shrink_control sc = {
			.gfp_mask = gfp_mask,
			.nid = nid,
427
			.memcg = memcg,
428
		};
429

430 431 432 433 434 435 436
		/*
		 * If kernel memory accounting is disabled, we ignore
		 * SHRINKER_MEMCG_AWARE flag and call all shrinkers
		 * passing NULL for memcg.
		 */
		if (memcg_kmem_enabled() &&
		    !!memcg != !!(shrinker->flags & SHRINKER_MEMCG_AWARE))
437 438
			continue;

439 440
		if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
			sc.nid = 0;
L
Linus Torvalds 已提交
441

442
		freed += do_shrink_slab(&sc, shrinker, nr_scanned, nr_eligible);
L
Linus Torvalds 已提交
443
	}
444

L
Linus Torvalds 已提交
445
	up_read(&shrinker_rwsem);
446 447
out:
	cond_resched();
D
Dave Chinner 已提交
448
	return freed;
L
Linus Torvalds 已提交
449 450
}

451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473
void drop_slab_node(int nid)
{
	unsigned long freed;

	do {
		struct mem_cgroup *memcg = NULL;

		freed = 0;
		do {
			freed += shrink_slab(GFP_KERNEL, nid, memcg,
					     1000, 1000);
		} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
	} while (freed > 10);
}

void drop_slab(void)
{
	int nid;

	for_each_online_node(nid)
		drop_slab_node(nid);
}

L
Linus Torvalds 已提交
474 475
static inline int is_page_cache_freeable(struct page *page)
{
476 477 478 479 480
	/*
	 * A freeable page cache page is referenced only by the caller
	 * that isolated the page, the page cache radix tree and
	 * optional buffer heads at page->private.
	 */
481
	return page_count(page) - page_has_private(page) == 2;
L
Linus Torvalds 已提交
482 483
}

484
static int may_write_to_inode(struct inode *inode, struct scan_control *sc)
L
Linus Torvalds 已提交
485
{
486
	if (current->flags & PF_SWAPWRITE)
L
Linus Torvalds 已提交
487
		return 1;
488
	if (!inode_write_congested(inode))
L
Linus Torvalds 已提交
489
		return 1;
490
	if (inode_to_bdi(inode) == current->backing_dev_info)
L
Linus Torvalds 已提交
491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509
		return 1;
	return 0;
}

/*
 * We detected a synchronous write error writing a page out.  Probably
 * -ENOSPC.  We need to propagate that into the address_space for a subsequent
 * fsync(), msync() or close().
 *
 * The tricky part is that after writepage we cannot touch the mapping: nothing
 * prevents it from being freed up.  But we have a ref on the page and once
 * that page is locked, the mapping is pinned.
 *
 * We're allowed to run sleeping lock_page() here because we know the caller has
 * __GFP_FS.
 */
static void handle_write_error(struct address_space *mapping,
				struct page *page, int error)
{
J
Jens Axboe 已提交
510
	lock_page(page);
511 512
	if (page_mapping(page) == mapping)
		mapping_set_error(mapping, error);
L
Linus Torvalds 已提交
513 514 515
	unlock_page(page);
}

516 517 518 519 520 521 522 523 524 525 526 527
/* possible outcome of pageout() */
typedef enum {
	/* failed to write page out, page is locked */
	PAGE_KEEP,
	/* move page to the active list, page is locked */
	PAGE_ACTIVATE,
	/* page has been sent to the disk successfully, page is unlocked */
	PAGE_SUCCESS,
	/* page is clean and locked */
	PAGE_CLEAN,
} pageout_t;

L
Linus Torvalds 已提交
528
/*
A
Andrew Morton 已提交
529 530
 * pageout is called by shrink_page_list() for each dirty page.
 * Calls ->writepage().
L
Linus Torvalds 已提交
531
 */
532
static pageout_t pageout(struct page *page, struct address_space *mapping,
533
			 struct scan_control *sc)
L
Linus Torvalds 已提交
534 535 536 537 538 539 540 541
{
	/*
	 * If the page is dirty, only perform writeback if that write
	 * will be non-blocking.  To prevent this allocation from being
	 * stalled by pagecache activity.  But note that there may be
	 * stalls if we need to run get_block().  We could test
	 * PagePrivate for that.
	 *
542
	 * If this process is currently in __generic_file_write_iter() against
L
Linus Torvalds 已提交
543 544 545 546 547 548 549 550 551 552 553 554 555 556 557
	 * this page's queue, we can perform writeback even if that
	 * will block.
	 *
	 * If the page is swapcache, write it back even if that would
	 * block, for some throttling. This happens by accident, because
	 * swap_backing_dev_info is bust: it doesn't reflect the
	 * congestion state of the swapdevs.  Easy to fix, if needed.
	 */
	if (!is_page_cache_freeable(page))
		return PAGE_KEEP;
	if (!mapping) {
		/*
		 * Some data journaling orphaned pages can have
		 * page->mapping == NULL while being dirty with clean buffers.
		 */
558
		if (page_has_private(page)) {
L
Linus Torvalds 已提交
559 560
			if (try_to_free_buffers(page)) {
				ClearPageDirty(page);
561
				pr_info("%s: orphaned page\n", __func__);
L
Linus Torvalds 已提交
562 563 564 565 566 567 568
				return PAGE_CLEAN;
			}
		}
		return PAGE_KEEP;
	}
	if (mapping->a_ops->writepage == NULL)
		return PAGE_ACTIVATE;
569
	if (!may_write_to_inode(mapping->host, sc))
L
Linus Torvalds 已提交
570 571 572 573 574 575 576
		return PAGE_KEEP;

	if (clear_page_dirty_for_io(page)) {
		int res;
		struct writeback_control wbc = {
			.sync_mode = WB_SYNC_NONE,
			.nr_to_write = SWAP_CLUSTER_MAX,
577 578
			.range_start = 0,
			.range_end = LLONG_MAX,
L
Linus Torvalds 已提交
579 580 581 582 583 584 585
			.for_reclaim = 1,
		};

		SetPageReclaim(page);
		res = mapping->a_ops->writepage(page, &wbc);
		if (res < 0)
			handle_write_error(mapping, page, res);
586
		if (res == AOP_WRITEPAGE_ACTIVATE) {
L
Linus Torvalds 已提交
587 588 589
			ClearPageReclaim(page);
			return PAGE_ACTIVATE;
		}
590

L
Linus Torvalds 已提交
591 592 593 594
		if (!PageWriteback(page)) {
			/* synchronous write or broken a_ops? */
			ClearPageReclaim(page);
		}
595
		trace_mm_vmscan_writepage(page);
596
		inc_zone_page_state(page, NR_VMSCAN_WRITE);
L
Linus Torvalds 已提交
597 598 599 600 601 602
		return PAGE_SUCCESS;
	}

	return PAGE_CLEAN;
}

603
/*
N
Nick Piggin 已提交
604 605
 * Same as remove_mapping, but if the page is removed from the mapping, it
 * gets returned with a refcount of 0.
606
 */
607 608
static int __remove_mapping(struct address_space *mapping, struct page *page,
			    bool reclaimed)
609
{
610 611
	unsigned long flags;

612 613
	BUG_ON(!PageLocked(page));
	BUG_ON(mapping != page_mapping(page));
614

615
	spin_lock_irqsave(&mapping->tree_lock, flags);
616
	/*
N
Nick Piggin 已提交
617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635
	 * The non racy check for a busy page.
	 *
	 * Must be careful with the order of the tests. When someone has
	 * a ref to the page, it may be possible that they dirty it then
	 * drop the reference. So if PageDirty is tested before page_count
	 * here, then the following race may occur:
	 *
	 * get_user_pages(&page);
	 * [user mapping goes away]
	 * write_to(page);
	 *				!PageDirty(page)    [good]
	 * SetPageDirty(page);
	 * put_page(page);
	 *				!page_count(page)   [good, discard it]
	 *
	 * [oops, our write_to data is lost]
	 *
	 * Reversing the order of the tests ensures such a situation cannot
	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
636
	 * load is not satisfied before that of page->_refcount.
N
Nick Piggin 已提交
637 638 639
	 *
	 * Note that if SetPageDirty is always performed via set_page_dirty,
	 * and thus under tree_lock, then this ordering is not required.
640
	 */
641
	if (!page_ref_freeze(page, 2))
642
		goto cannot_free;
N
Nick Piggin 已提交
643 644
	/* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
	if (unlikely(PageDirty(page))) {
645
		page_ref_unfreeze(page, 2);
646
		goto cannot_free;
N
Nick Piggin 已提交
647
	}
648 649 650

	if (PageSwapCache(page)) {
		swp_entry_t swap = { .val = page_private(page) };
651
		mem_cgroup_swapout(page, swap);
652
		__delete_from_swap_cache(page);
653
		spin_unlock_irqrestore(&mapping->tree_lock, flags);
654
		swapcache_free(swap);
N
Nick Piggin 已提交
655
	} else {
656
		void (*freepage)(struct page *);
657
		void *shadow = NULL;
658 659

		freepage = mapping->a_ops->freepage;
660 661 662 663 664 665 666 667 668
		/*
		 * Remember a shadow entry for reclaimed file cache in
		 * order to detect refaults, thus thrashing, later on.
		 *
		 * But don't store shadows in an address space that is
		 * already exiting.  This is not just an optizimation,
		 * inode reclaim needs to empty out the radix tree or
		 * the nodes are lost.  Don't plant shadows behind its
		 * back.
669 670 671 672 673 674
		 *
		 * We also don't store shadows for DAX mappings because the
		 * only page cache pages found in these are zero pages
		 * covering holes, and because we don't want to mix DAX
		 * exceptional entries and shadow exceptional entries in the
		 * same page_tree.
675 676
		 */
		if (reclaimed && page_is_file_cache(page) &&
677
		    !mapping_exiting(mapping) && !dax_mapping(mapping))
678
			shadow = workingset_eviction(mapping, page);
J
Johannes Weiner 已提交
679
		__delete_from_page_cache(page, shadow);
680
		spin_unlock_irqrestore(&mapping->tree_lock, flags);
681 682 683

		if (freepage != NULL)
			freepage(page);
684 685 686 687 688
	}

	return 1;

cannot_free:
689
	spin_unlock_irqrestore(&mapping->tree_lock, flags);
690 691 692
	return 0;
}

N
Nick Piggin 已提交
693 694 695 696 697 698 699 700
/*
 * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
 * someone else has a ref on the page, abort and return 0.  If it was
 * successfully detached, return 1.  Assumes the caller has a single ref on
 * this page.
 */
int remove_mapping(struct address_space *mapping, struct page *page)
{
701
	if (__remove_mapping(mapping, page, false)) {
N
Nick Piggin 已提交
702 703 704 705 706
		/*
		 * Unfreezing the refcount with 1 rather than 2 effectively
		 * drops the pagecache ref for us without requiring another
		 * atomic operation.
		 */
707
		page_ref_unfreeze(page, 1);
N
Nick Piggin 已提交
708 709 710 711 712
		return 1;
	}
	return 0;
}

L
Lee Schermerhorn 已提交
713 714 715 716 717 718 719 720 721 722 723
/**
 * putback_lru_page - put previously isolated page onto appropriate LRU list
 * @page: page to be put back to appropriate lru list
 *
 * Add previously isolated @page to appropriate LRU list.
 * Page may still be unevictable for other reasons.
 *
 * lru_lock must not be held, interrupts must be enabled.
 */
void putback_lru_page(struct page *page)
{
724
	bool is_unevictable;
725
	int was_unevictable = PageUnevictable(page);
L
Lee Schermerhorn 已提交
726

727
	VM_BUG_ON_PAGE(PageLRU(page), page);
L
Lee Schermerhorn 已提交
728 729 730 731

redo:
	ClearPageUnevictable(page);

732
	if (page_evictable(page)) {
L
Lee Schermerhorn 已提交
733 734 735 736 737 738
		/*
		 * For evictable pages, we can use the cache.
		 * In event of a race, worst case is we end up with an
		 * unevictable page on [in]active list.
		 * We know how to handle that.
		 */
739
		is_unevictable = false;
740
		lru_cache_add(page);
L
Lee Schermerhorn 已提交
741 742 743 744 745
	} else {
		/*
		 * Put unevictable pages directly on zone's unevictable
		 * list.
		 */
746
		is_unevictable = true;
L
Lee Schermerhorn 已提交
747
		add_page_to_unevictable_list(page);
748
		/*
749 750 751
		 * When racing with an mlock or AS_UNEVICTABLE clearing
		 * (page is unlocked) make sure that if the other thread
		 * does not observe our setting of PG_lru and fails
752
		 * isolation/check_move_unevictable_pages,
753
		 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
754 755
		 * the page back to the evictable list.
		 *
756
		 * The other side is TestClearPageMlocked() or shmem_lock().
757 758
		 */
		smp_mb();
L
Lee Schermerhorn 已提交
759 760 761 762 763 764 765
	}

	/*
	 * page's status can change while we move it among lru. If an evictable
	 * page is on unevictable list, it never be freed. To avoid that,
	 * check after we added it to the list, again.
	 */
766
	if (is_unevictable && page_evictable(page)) {
L
Lee Schermerhorn 已提交
767 768 769 770 771 772 773 774 775 776
		if (!isolate_lru_page(page)) {
			put_page(page);
			goto redo;
		}
		/* This means someone else dropped this page from LRU
		 * So, it will be freed or putback to LRU again. There is
		 * nothing to do here.
		 */
	}

777
	if (was_unevictable && !is_unevictable)
778
		count_vm_event(UNEVICTABLE_PGRESCUED);
779
	else if (!was_unevictable && is_unevictable)
780 781
		count_vm_event(UNEVICTABLE_PGCULLED);

L
Lee Schermerhorn 已提交
782 783 784
	put_page(page);		/* drop ref from isolate */
}

785 786 787
enum page_references {
	PAGEREF_RECLAIM,
	PAGEREF_RECLAIM_CLEAN,
788
	PAGEREF_KEEP,
789 790 791 792 793 794
	PAGEREF_ACTIVATE,
};

static enum page_references page_check_references(struct page *page,
						  struct scan_control *sc)
{
795
	int referenced_ptes, referenced_page;
796 797
	unsigned long vm_flags;

798 799
	referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
					  &vm_flags);
800
	referenced_page = TestClearPageReferenced(page);
801 802 803 804 805 806 807 808

	/*
	 * Mlock lost the isolation race with us.  Let try_to_unmap()
	 * move the page to the unevictable list.
	 */
	if (vm_flags & VM_LOCKED)
		return PAGEREF_RECLAIM;

809
	if (referenced_ptes) {
810
		if (PageSwapBacked(page))
811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827
			return PAGEREF_ACTIVATE;
		/*
		 * All mapped pages start out with page table
		 * references from the instantiating fault, so we need
		 * to look twice if a mapped file page is used more
		 * than once.
		 *
		 * Mark it and spare it for another trip around the
		 * inactive list.  Another page table reference will
		 * lead to its activation.
		 *
		 * Note: the mark is set for activated pages as well
		 * so that recently deactivated but used pages are
		 * quickly recovered.
		 */
		SetPageReferenced(page);

828
		if (referenced_page || referenced_ptes > 1)
829 830
			return PAGEREF_ACTIVATE;

831 832 833 834 835 836
		/*
		 * Activate file-backed executable pages after first usage.
		 */
		if (vm_flags & VM_EXEC)
			return PAGEREF_ACTIVATE;

837 838
		return PAGEREF_KEEP;
	}
839 840

	/* Reclaim if clean, defer dirty pages to writeback */
841
	if (referenced_page && !PageSwapBacked(page))
842 843 844
		return PAGEREF_RECLAIM_CLEAN;

	return PAGEREF_RECLAIM;
845 846
}

847 848 849 850
/* Check if a page is dirty or under writeback */
static void page_check_dirty_writeback(struct page *page,
				       bool *dirty, bool *writeback)
{
851 852
	struct address_space *mapping;

853 854 855 856 857 858 859 860 861 862 863 864 865
	/*
	 * Anonymous pages are not handled by flushers and must be written
	 * from reclaim context. Do not stall reclaim based on them
	 */
	if (!page_is_file_cache(page)) {
		*dirty = false;
		*writeback = false;
		return;
	}

	/* By default assume that the page flags are accurate */
	*dirty = PageDirty(page);
	*writeback = PageWriteback(page);
866 867 868 869 870 871 872 873

	/* Verify dirty/writeback state if the filesystem supports it */
	if (!page_has_private(page))
		return;

	mapping = page_mapping(page);
	if (mapping && mapping->a_ops->is_dirty_writeback)
		mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
874 875
}

L
Linus Torvalds 已提交
876
/*
A
Andrew Morton 已提交
877
 * shrink_page_list() returns the number of reclaimed pages
L
Linus Torvalds 已提交
878
 */
A
Andrew Morton 已提交
879
static unsigned long shrink_page_list(struct list_head *page_list,
880
				      struct zone *zone,
881
				      struct scan_control *sc,
882
				      enum ttu_flags ttu_flags,
883
				      unsigned long *ret_nr_dirty,
884
				      unsigned long *ret_nr_unqueued_dirty,
885
				      unsigned long *ret_nr_congested,
886
				      unsigned long *ret_nr_writeback,
887
				      unsigned long *ret_nr_immediate,
888
				      bool force_reclaim)
L
Linus Torvalds 已提交
889 890
{
	LIST_HEAD(ret_pages);
891
	LIST_HEAD(free_pages);
L
Linus Torvalds 已提交
892
	int pgactivate = 0;
893
	unsigned long nr_unqueued_dirty = 0;
894 895
	unsigned long nr_dirty = 0;
	unsigned long nr_congested = 0;
896
	unsigned long nr_reclaimed = 0;
897
	unsigned long nr_writeback = 0;
898
	unsigned long nr_immediate = 0;
L
Linus Torvalds 已提交
899 900 901 902 903 904 905

	cond_resched();

	while (!list_empty(page_list)) {
		struct address_space *mapping;
		struct page *page;
		int may_enter_fs;
906
		enum page_references references = PAGEREF_RECLAIM_CLEAN;
907
		bool dirty, writeback;
M
Minchan Kim 已提交
908 909
		bool lazyfree = false;
		int ret = SWAP_SUCCESS;
L
Linus Torvalds 已提交
910 911 912 913 914 915

		cond_resched();

		page = lru_to_page(page_list);
		list_del(&page->lru);

N
Nick Piggin 已提交
916
		if (!trylock_page(page))
L
Linus Torvalds 已提交
917 918
			goto keep;

919 920
		VM_BUG_ON_PAGE(PageActive(page), page);
		VM_BUG_ON_PAGE(page_zone(page) != zone, page);
L
Linus Torvalds 已提交
921 922

		sc->nr_scanned++;
923

924
		if (unlikely(!page_evictable(page)))
N
Nick Piggin 已提交
925
			goto cull_mlocked;
L
Lee Schermerhorn 已提交
926

927
		if (!sc->may_unmap && page_mapped(page))
928 929
			goto keep_locked;

L
Linus Torvalds 已提交
930 931 932 933
		/* Double the slab pressure for mapped and swapcache pages */
		if (page_mapped(page) || PageSwapCache(page))
			sc->nr_scanned++;

934 935 936
		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));

937 938 939 940 941 942 943 944 945 946 947 948 949
		/*
		 * The number of dirty pages determines if a zone is marked
		 * reclaim_congested which affects wait_iff_congested. kswapd
		 * will stall and start writing pages if the tail of the LRU
		 * is all dirty unqueued pages.
		 */
		page_check_dirty_writeback(page, &dirty, &writeback);
		if (dirty || writeback)
			nr_dirty++;

		if (dirty && !writeback)
			nr_unqueued_dirty++;

950 951 952 953 954 955
		/*
		 * Treat this page as congested if the underlying BDI is or if
		 * pages are cycling through the LRU so quickly that the
		 * pages marked for immediate reclaim are making it to the
		 * end of the LRU a second time.
		 */
956
		mapping = page_mapping(page);
957
		if (((dirty || writeback) && mapping &&
958
		     inode_write_congested(mapping->host)) ||
959
		    (writeback && PageReclaim(page)))
960 961
			nr_congested++;

962 963 964 965 966 967 968 969 970 971 972
		/*
		 * If a page at the tail of the LRU is under writeback, there
		 * are three cases to consider.
		 *
		 * 1) If reclaim is encountering an excessive number of pages
		 *    under writeback and this page is both under writeback and
		 *    PageReclaim then it indicates that pages are being queued
		 *    for IO but are being recycled through the LRU before the
		 *    IO can complete. Waiting on the page itself risks an
		 *    indefinite stall if it is impossible to writeback the
		 *    page due to IO error or disconnected storage so instead
973 974
		 *    note that the LRU is being scanned too quickly and the
		 *    caller can stall after page list has been processed.
975
		 *
976
		 * 2) Global or new memcg reclaim encounters a page that is
977 978 979
		 *    not marked for immediate reclaim, or the caller does not
		 *    have __GFP_FS (or __GFP_IO if it's simply going to swap,
		 *    not to fs). In this case mark the page for immediate
980
		 *    reclaim and continue scanning.
981
		 *
982 983
		 *    Require may_enter_fs because we would wait on fs, which
		 *    may not have submitted IO yet. And the loop driver might
984 985 986 987 988
		 *    enter reclaim, and deadlock if it waits on a page for
		 *    which it is needed to do the write (loop masks off
		 *    __GFP_IO|__GFP_FS for this reason); but more thought
		 *    would probably show more reasons.
		 *
989
		 * 3) Legacy memcg encounters a page that is already marked
990 991 992 993 994
		 *    PageReclaim. memcg does not have any dirty pages
		 *    throttling so we could easily OOM just because too many
		 *    pages are in writeback and there is nothing else to
		 *    reclaim. Wait for the writeback to complete.
		 */
995
		if (PageWriteback(page)) {
996 997 998
			/* Case 1 above */
			if (current_is_kswapd() &&
			    PageReclaim(page) &&
J
Johannes Weiner 已提交
999
			    test_bit(ZONE_WRITEBACK, &zone->flags)) {
1000 1001
				nr_immediate++;
				goto keep_locked;
1002 1003

			/* Case 2 above */
1004
			} else if (sane_reclaim(sc) ||
1005
			    !PageReclaim(page) || !may_enter_fs) {
1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017
				/*
				 * This is slightly racy - end_page_writeback()
				 * might have just cleared PageReclaim, then
				 * setting PageReclaim here end up interpreted
				 * as PageReadahead - but that does not matter
				 * enough to care.  What we do want is for this
				 * page to have PageReclaim set next time memcg
				 * reclaim reaches the tests above, so it will
				 * then wait_on_page_writeback() to avoid OOM;
				 * and it's also appropriate in global reclaim.
				 */
				SetPageReclaim(page);
1018
				nr_writeback++;
1019
				goto keep_locked;
1020 1021 1022

			/* Case 3 above */
			} else {
1023
				unlock_page(page);
1024
				wait_on_page_writeback(page);
1025 1026 1027
				/* then go back and try same page again */
				list_add_tail(&page->lru, page_list);
				continue;
1028
			}
1029
		}
L
Linus Torvalds 已提交
1030

1031 1032 1033
		if (!force_reclaim)
			references = page_check_references(page, sc);

1034 1035
		switch (references) {
		case PAGEREF_ACTIVATE:
L
Linus Torvalds 已提交
1036
			goto activate_locked;
1037 1038
		case PAGEREF_KEEP:
			goto keep_locked;
1039 1040 1041 1042
		case PAGEREF_RECLAIM:
		case PAGEREF_RECLAIM_CLEAN:
			; /* try to reclaim the page below */
		}
L
Linus Torvalds 已提交
1043 1044 1045 1046 1047

		/*
		 * Anonymous process memory has backing store?
		 * Try to allocate it some swap space here.
		 */
N
Nick Piggin 已提交
1048
		if (PageAnon(page) && !PageSwapCache(page)) {
1049 1050
			if (!(sc->gfp_mask & __GFP_IO))
				goto keep_locked;
1051
			if (!add_to_swap(page, page_list))
L
Linus Torvalds 已提交
1052
				goto activate_locked;
M
Minchan Kim 已提交
1053
			lazyfree = true;
1054
			may_enter_fs = 1;
L
Linus Torvalds 已提交
1055

1056 1057 1058
			/* Adding to swap updated mapping */
			mapping = page_mapping(page);
		}
L
Linus Torvalds 已提交
1059 1060 1061 1062 1063 1064

		/*
		 * The page is mapped into the page tables of one or more
		 * processes. Try to unmap it here.
		 */
		if (page_mapped(page) && mapping) {
M
Minchan Kim 已提交
1065 1066 1067
			switch (ret = try_to_unmap(page, lazyfree ?
				(ttu_flags | TTU_BATCH_FLUSH | TTU_LZFREE) :
				(ttu_flags | TTU_BATCH_FLUSH))) {
L
Linus Torvalds 已提交
1068 1069 1070 1071
			case SWAP_FAIL:
				goto activate_locked;
			case SWAP_AGAIN:
				goto keep_locked;
N
Nick Piggin 已提交
1072 1073
			case SWAP_MLOCK:
				goto cull_mlocked;
M
Minchan Kim 已提交
1074 1075
			case SWAP_LZFREE:
				goto lazyfree;
L
Linus Torvalds 已提交
1076 1077 1078 1079 1080 1081
			case SWAP_SUCCESS:
				; /* try to free the page below */
			}
		}

		if (PageDirty(page)) {
1082 1083
			/*
			 * Only kswapd can writeback filesystem pages to
1084 1085
			 * avoid risk of stack overflow but only writeback
			 * if many dirty pages have been encountered.
1086
			 */
1087
			if (page_is_file_cache(page) &&
1088
					(!current_is_kswapd() ||
J
Johannes Weiner 已提交
1089
					 !test_bit(ZONE_DIRTY, &zone->flags))) {
1090 1091 1092 1093 1094 1095 1096 1097 1098
				/*
				 * Immediately reclaim when written back.
				 * Similar in principal to deactivate_page()
				 * except we already have the page isolated
				 * and know it's dirty
				 */
				inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
				SetPageReclaim(page);

1099 1100 1101
				goto keep_locked;
			}

1102
			if (references == PAGEREF_RECLAIM_CLEAN)
L
Linus Torvalds 已提交
1103
				goto keep_locked;
1104
			if (!may_enter_fs)
L
Linus Torvalds 已提交
1105
				goto keep_locked;
1106
			if (!sc->may_writepage)
L
Linus Torvalds 已提交
1107 1108
				goto keep_locked;

1109 1110 1111 1112 1113 1114
			/*
			 * Page is dirty. Flush the TLB if a writable entry
			 * potentially exists to avoid CPU writes after IO
			 * starts and then write it out here.
			 */
			try_to_unmap_flush_dirty();
1115
			switch (pageout(page, mapping, sc)) {
L
Linus Torvalds 已提交
1116 1117 1118 1119 1120
			case PAGE_KEEP:
				goto keep_locked;
			case PAGE_ACTIVATE:
				goto activate_locked;
			case PAGE_SUCCESS:
1121
				if (PageWriteback(page))
1122
					goto keep;
1123
				if (PageDirty(page))
L
Linus Torvalds 已提交
1124
					goto keep;
1125

L
Linus Torvalds 已提交
1126 1127 1128 1129
				/*
				 * A synchronous write - probably a ramdisk.  Go
				 * ahead and try to reclaim the page.
				 */
N
Nick Piggin 已提交
1130
				if (!trylock_page(page))
L
Linus Torvalds 已提交
1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149
					goto keep;
				if (PageDirty(page) || PageWriteback(page))
					goto keep_locked;
				mapping = page_mapping(page);
			case PAGE_CLEAN:
				; /* try to free the page below */
			}
		}

		/*
		 * If the page has buffers, try to free the buffer mappings
		 * associated with this page. If we succeed we try to free
		 * the page as well.
		 *
		 * We do this even if the page is PageDirty().
		 * try_to_release_page() does not perform I/O, but it is
		 * possible for a page to have PageDirty set, but it is actually
		 * clean (all its buffers are clean).  This happens if the
		 * buffers were written out directly, with submit_bh(). ext3
L
Lee Schermerhorn 已提交
1150
		 * will do this, as well as the blockdev mapping.
L
Linus Torvalds 已提交
1151 1152 1153 1154 1155 1156 1157 1158 1159 1160
		 * try_to_release_page() will discover that cleanness and will
		 * drop the buffers and mark the page clean - it can be freed.
		 *
		 * Rarely, pages can have buffers and no ->mapping.  These are
		 * the pages which were not successfully invalidated in
		 * truncate_complete_page().  We try to drop those buffers here
		 * and if that worked, and the page is no longer mapped into
		 * process address space (page_count == 1) it can be freed.
		 * Otherwise, leave the page on the LRU so it is swappable.
		 */
1161
		if (page_has_private(page)) {
L
Linus Torvalds 已提交
1162 1163
			if (!try_to_release_page(page, sc->gfp_mask))
				goto activate_locked;
N
Nick Piggin 已提交
1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179
			if (!mapping && page_count(page) == 1) {
				unlock_page(page);
				if (put_page_testzero(page))
					goto free_it;
				else {
					/*
					 * rare race with speculative reference.
					 * the speculative reference will free
					 * this page shortly, so we may
					 * increment nr_reclaimed here (and
					 * leave it off the LRU).
					 */
					nr_reclaimed++;
					continue;
				}
			}
L
Linus Torvalds 已提交
1180 1181
		}

M
Minchan Kim 已提交
1182
lazyfree:
1183
		if (!mapping || !__remove_mapping(mapping, page, true))
1184
			goto keep_locked;
L
Linus Torvalds 已提交
1185

N
Nick Piggin 已提交
1186 1187 1188 1189 1190 1191 1192
		/*
		 * At this point, we have no other references and there is
		 * no way to pick any more up (removed from LRU, removed
		 * from pagecache). Can use non-atomic bitops now (and
		 * we obviously don't have to worry about waking up a process
		 * waiting on the page lock, because there are no references.
		 */
1193
		__ClearPageLocked(page);
N
Nick Piggin 已提交
1194
free_it:
M
Minchan Kim 已提交
1195 1196 1197
		if (ret == SWAP_LZFREE)
			count_vm_event(PGLAZYFREED);

1198
		nr_reclaimed++;
1199 1200 1201 1202 1203 1204

		/*
		 * Is there need to periodically free_page_list? It would
		 * appear not as the counts should be low
		 */
		list_add(&page->lru, &free_pages);
L
Linus Torvalds 已提交
1205 1206
		continue;

N
Nick Piggin 已提交
1207
cull_mlocked:
1208 1209
		if (PageSwapCache(page))
			try_to_free_swap(page);
N
Nick Piggin 已提交
1210
		unlock_page(page);
1211
		list_add(&page->lru, &ret_pages);
N
Nick Piggin 已提交
1212 1213
		continue;

L
Linus Torvalds 已提交
1214
activate_locked:
1215
		/* Not a candidate for swapping, so reclaim swap space. */
1216
		if (PageSwapCache(page) && mem_cgroup_swap_full(page))
1217
			try_to_free_swap(page);
1218
		VM_BUG_ON_PAGE(PageActive(page), page);
L
Linus Torvalds 已提交
1219 1220 1221 1222 1223 1224
		SetPageActive(page);
		pgactivate++;
keep_locked:
		unlock_page(page);
keep:
		list_add(&page->lru, &ret_pages);
1225
		VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
L
Linus Torvalds 已提交
1226
	}
1227

1228
	mem_cgroup_uncharge_list(&free_pages);
1229
	try_to_unmap_flush();
1230
	free_hot_cold_page_list(&free_pages, true);
1231

L
Linus Torvalds 已提交
1232
	list_splice(&ret_pages, page_list);
1233
	count_vm_events(PGACTIVATE, pgactivate);
1234

1235 1236
	*ret_nr_dirty += nr_dirty;
	*ret_nr_congested += nr_congested;
1237
	*ret_nr_unqueued_dirty += nr_unqueued_dirty;
1238
	*ret_nr_writeback += nr_writeback;
1239
	*ret_nr_immediate += nr_immediate;
1240
	return nr_reclaimed;
L
Linus Torvalds 已提交
1241 1242
}

1243 1244 1245 1246 1247 1248 1249 1250
unsigned long reclaim_clean_pages_from_list(struct zone *zone,
					    struct list_head *page_list)
{
	struct scan_control sc = {
		.gfp_mask = GFP_KERNEL,
		.priority = DEF_PRIORITY,
		.may_unmap = 1,
	};
1251
	unsigned long ret, dummy1, dummy2, dummy3, dummy4, dummy5;
1252 1253 1254 1255
	struct page *page, *next;
	LIST_HEAD(clean_pages);

	list_for_each_entry_safe(page, next, page_list, lru) {
1256
		if (page_is_file_cache(page) && !PageDirty(page) &&
1257
		    !__PageMovable(page)) {
1258 1259 1260 1261 1262 1263
			ClearPageActive(page);
			list_move(&page->lru, &clean_pages);
		}
	}

	ret = shrink_page_list(&clean_pages, zone, &sc,
1264 1265
			TTU_UNMAP|TTU_IGNORE_ACCESS,
			&dummy1, &dummy2, &dummy3, &dummy4, &dummy5, true);
1266
	list_splice(&clean_pages, page_list);
1267
	mod_zone_page_state(zone, NR_ISOLATED_FILE, -ret);
1268 1269 1270
	return ret;
}

A
Andy Whitcroft 已提交
1271 1272 1273 1274 1275 1276 1277 1278 1279 1280
/*
 * Attempt to remove the specified page from its LRU.  Only take this page
 * if it is of the appropriate PageActive status.  Pages which are being
 * freed elsewhere are also ignored.
 *
 * page:	page to consider
 * mode:	one of the LRU isolation modes defined above
 *
 * returns 0 on success, -ve errno on failure.
 */
1281
int __isolate_lru_page(struct page *page, isolate_mode_t mode)
A
Andy Whitcroft 已提交
1282 1283 1284 1285 1286 1287 1288
{
	int ret = -EINVAL;

	/* Only take pages on the LRU. */
	if (!PageLRU(page))
		return ret;

M
Minchan Kim 已提交
1289 1290
	/* Compaction should not handle unevictable pages but CMA can do so */
	if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
L
Lee Schermerhorn 已提交
1291 1292
		return ret;

A
Andy Whitcroft 已提交
1293
	ret = -EBUSY;
K
KAMEZAWA Hiroyuki 已提交
1294

1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327
	/*
	 * To minimise LRU disruption, the caller can indicate that it only
	 * wants to isolate pages it will be able to operate on without
	 * blocking - clean pages for the most part.
	 *
	 * ISOLATE_CLEAN means that only clean pages should be isolated. This
	 * is used by reclaim when it is cannot write to backing storage
	 *
	 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
	 * that it is possible to migrate without blocking
	 */
	if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
		/* All the caller can do on PageWriteback is block */
		if (PageWriteback(page))
			return ret;

		if (PageDirty(page)) {
			struct address_space *mapping;

			/* ISOLATE_CLEAN means only clean pages */
			if (mode & ISOLATE_CLEAN)
				return ret;

			/*
			 * Only pages without mappings or that have a
			 * ->migratepage callback are possible to migrate
			 * without blocking
			 */
			mapping = page_mapping(page);
			if (mapping && !mapping->a_ops->migratepage)
				return ret;
		}
	}
1328

1329 1330 1331
	if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
		return ret;

A
Andy Whitcroft 已提交
1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344
	if (likely(get_page_unless_zero(page))) {
		/*
		 * Be careful not to clear PageLRU until after we're
		 * sure the page is not being freed elsewhere -- the
		 * page release code relies on it.
		 */
		ClearPageLRU(page);
		ret = 0;
	}

	return ret;
}

L
Linus Torvalds 已提交
1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355
/*
 * zone->lru_lock is heavily contended.  Some of the functions that
 * shrink the lists perform better by taking out a batch of pages
 * and working on them outside the LRU lock.
 *
 * For pagecache intensive workloads, this function is the hottest
 * spot in the kernel (apart from copy_*_user functions).
 *
 * Appropriate locks must be held before calling this function.
 *
 * @nr_to_scan:	The number of pages to look through on the list.
1356
 * @lruvec:	The LRU vector to pull pages from.
L
Linus Torvalds 已提交
1357
 * @dst:	The temp list to put pages on to.
H
Hugh Dickins 已提交
1358
 * @nr_scanned:	The number of pages that were scanned.
1359
 * @sc:		The scan_control struct for this reclaim session
A
Andy Whitcroft 已提交
1360
 * @mode:	One of the LRU isolation modes
1361
 * @lru:	LRU list id for isolating
L
Linus Torvalds 已提交
1362 1363 1364
 *
 * returns how many pages were moved onto *@dst.
 */
1365
static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1366
		struct lruvec *lruvec, struct list_head *dst,
1367
		unsigned long *nr_scanned, struct scan_control *sc,
1368
		isolate_mode_t mode, enum lru_list lru)
L
Linus Torvalds 已提交
1369
{
H
Hugh Dickins 已提交
1370
	struct list_head *src = &lruvec->lists[lru];
1371
	unsigned long nr_taken = 0;
1372
	unsigned long scan;
L
Linus Torvalds 已提交
1373

1374 1375
	for (scan = 0; scan < nr_to_scan && nr_taken < nr_to_scan &&
					!list_empty(src); scan++) {
A
Andy Whitcroft 已提交
1376 1377
		struct page *page;

L
Linus Torvalds 已提交
1378 1379 1380
		page = lru_to_page(src);
		prefetchw_prev_lru_page(page, src, flags);

1381
		VM_BUG_ON_PAGE(!PageLRU(page), page);
N
Nick Piggin 已提交
1382

1383
		switch (__isolate_lru_page(page, mode)) {
A
Andy Whitcroft 已提交
1384
		case 0:
1385
			nr_taken += hpage_nr_pages(page);
A
Andy Whitcroft 已提交
1386 1387 1388 1389 1390 1391 1392
			list_move(&page->lru, dst);
			break;

		case -EBUSY:
			/* else it is being freed elsewhere */
			list_move(&page->lru, src);
			continue;
1393

A
Andy Whitcroft 已提交
1394 1395 1396
		default:
			BUG();
		}
L
Linus Torvalds 已提交
1397 1398
	}

H
Hugh Dickins 已提交
1399
	*nr_scanned = scan;
H
Hugh Dickins 已提交
1400 1401
	trace_mm_vmscan_lru_isolate(sc->order, nr_to_scan, scan,
				    nr_taken, mode, is_file_lru(lru));
L
Linus Torvalds 已提交
1402 1403 1404
	return nr_taken;
}

1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415
/**
 * isolate_lru_page - tries to isolate a page from its LRU list
 * @page: page to isolate from its LRU list
 *
 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
 * vmstat statistic corresponding to whatever LRU list the page was on.
 *
 * Returns 0 if the page was removed from an LRU list.
 * Returns -EBUSY if the page was not on an LRU list.
 *
 * The returned page will have PageLRU() cleared.  If it was found on
L
Lee Schermerhorn 已提交
1416 1417 1418
 * the active list, it will have PageActive set.  If it was found on
 * the unevictable list, it will have the PageUnevictable bit set. That flag
 * may need to be cleared by the caller before letting the page go.
1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433
 *
 * The vmstat statistic corresponding to the list on which the page was
 * found will be decremented.
 *
 * Restrictions:
 * (1) Must be called with an elevated refcount on the page. This is a
 *     fundamentnal difference from isolate_lru_pages (which is called
 *     without a stable reference).
 * (2) the lru_lock must not be held.
 * (3) interrupts must be enabled.
 */
int isolate_lru_page(struct page *page)
{
	int ret = -EBUSY;

1434
	VM_BUG_ON_PAGE(!page_count(page), page);
1435
	WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
1436

1437 1438
	if (PageLRU(page)) {
		struct zone *zone = page_zone(page);
1439
		struct lruvec *lruvec;
1440 1441

		spin_lock_irq(&zone->lru_lock);
1442
		lruvec = mem_cgroup_page_lruvec(page, zone);
1443
		if (PageLRU(page)) {
L
Lee Schermerhorn 已提交
1444
			int lru = page_lru(page);
1445
			get_page(page);
1446
			ClearPageLRU(page);
1447 1448
			del_page_from_lru_list(page, lruvec, lru);
			ret = 0;
1449 1450 1451 1452 1453 1454
		}
		spin_unlock_irq(&zone->lru_lock);
	}
	return ret;
}

1455
/*
F
Fengguang Wu 已提交
1456 1457 1458 1459 1460
 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
 * then get resheduled. When there are massive number of tasks doing page
 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
 * the LRU list will go small and be scanned faster than necessary, leading to
 * unnecessary swapping, thrashing and OOM.
1461 1462 1463 1464 1465 1466 1467 1468 1469
 */
static int too_many_isolated(struct zone *zone, int file,
		struct scan_control *sc)
{
	unsigned long inactive, isolated;

	if (current_is_kswapd())
		return 0;

1470
	if (!sane_reclaim(sc))
1471 1472 1473 1474 1475 1476 1477 1478 1479 1480
		return 0;

	if (file) {
		inactive = zone_page_state(zone, NR_INACTIVE_FILE);
		isolated = zone_page_state(zone, NR_ISOLATED_FILE);
	} else {
		inactive = zone_page_state(zone, NR_INACTIVE_ANON);
		isolated = zone_page_state(zone, NR_ISOLATED_ANON);
	}

1481 1482 1483 1484 1485
	/*
	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
	 * won't get blocked by normal direct-reclaimers, forming a circular
	 * deadlock.
	 */
1486
	if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
1487 1488
		inactive >>= 3;

1489 1490 1491
	return isolated > inactive;
}

1492
static noinline_for_stack void
H
Hugh Dickins 已提交
1493
putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1494
{
1495 1496
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
	struct zone *zone = lruvec_zone(lruvec);
1497
	LIST_HEAD(pages_to_free);
1498 1499 1500 1501 1502

	/*
	 * Put back any unfreeable pages.
	 */
	while (!list_empty(page_list)) {
1503
		struct page *page = lru_to_page(page_list);
1504
		int lru;
1505

1506
		VM_BUG_ON_PAGE(PageLRU(page), page);
1507
		list_del(&page->lru);
1508
		if (unlikely(!page_evictable(page))) {
1509 1510 1511 1512 1513
			spin_unlock_irq(&zone->lru_lock);
			putback_lru_page(page);
			spin_lock_irq(&zone->lru_lock);
			continue;
		}
1514 1515 1516

		lruvec = mem_cgroup_page_lruvec(page, zone);

1517
		SetPageLRU(page);
1518
		lru = page_lru(page);
1519 1520
		add_page_to_lru_list(page, lruvec, lru);

1521 1522
		if (is_active_lru(lru)) {
			int file = is_file_lru(lru);
1523 1524
			int numpages = hpage_nr_pages(page);
			reclaim_stat->recent_rotated[file] += numpages;
1525
		}
1526 1527 1528
		if (put_page_testzero(page)) {
			__ClearPageLRU(page);
			__ClearPageActive(page);
1529
			del_page_from_lru_list(page, lruvec, lru);
1530 1531 1532

			if (unlikely(PageCompound(page))) {
				spin_unlock_irq(&zone->lru_lock);
1533
				mem_cgroup_uncharge(page);
1534 1535 1536 1537
				(*get_compound_page_dtor(page))(page);
				spin_lock_irq(&zone->lru_lock);
			} else
				list_add(&page->lru, &pages_to_free);
1538 1539 1540
		}
	}

1541 1542 1543 1544
	/*
	 * To save our caller's stack, now use input list for pages to free.
	 */
	list_splice(&pages_to_free, page_list);
1545 1546
}

1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559
/*
 * If a kernel thread (such as nfsd for loop-back mounts) services
 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
 * In that case we should only throttle if the backing device it is
 * writing to is congested.  In other cases it is safe to throttle.
 */
static int current_may_throttle(void)
{
	return !(current->flags & PF_LESS_THROTTLE) ||
		current->backing_dev_info == NULL ||
		bdi_write_congested(current->backing_dev_info);
}

L
Linus Torvalds 已提交
1560
/*
A
Andrew Morton 已提交
1561 1562
 * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
 * of reclaimed pages
L
Linus Torvalds 已提交
1563
 */
1564
static noinline_for_stack unsigned long
1565
shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1566
		     struct scan_control *sc, enum lru_list lru)
L
Linus Torvalds 已提交
1567 1568
{
	LIST_HEAD(page_list);
1569
	unsigned long nr_scanned;
1570
	unsigned long nr_reclaimed = 0;
1571
	unsigned long nr_taken;
1572 1573
	unsigned long nr_dirty = 0;
	unsigned long nr_congested = 0;
1574
	unsigned long nr_unqueued_dirty = 0;
1575
	unsigned long nr_writeback = 0;
1576
	unsigned long nr_immediate = 0;
1577
	isolate_mode_t isolate_mode = 0;
1578
	int file = is_file_lru(lru);
1579 1580
	struct zone *zone = lruvec_zone(lruvec);
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1581

1582
	while (unlikely(too_many_isolated(zone, file, sc))) {
1583
		congestion_wait(BLK_RW_ASYNC, HZ/10);
1584 1585 1586 1587 1588 1589

		/* We are about to die and free our memory. Return now. */
		if (fatal_signal_pending(current))
			return SWAP_CLUSTER_MAX;
	}

L
Linus Torvalds 已提交
1590
	lru_add_drain();
1591 1592

	if (!sc->may_unmap)
1593
		isolate_mode |= ISOLATE_UNMAPPED;
1594
	if (!sc->may_writepage)
1595
		isolate_mode |= ISOLATE_CLEAN;
1596

L
Linus Torvalds 已提交
1597
	spin_lock_irq(&zone->lru_lock);
1598

1599 1600
	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
				     &nr_scanned, sc, isolate_mode, lru);
1601

1602
	update_lru_size(lruvec, lru, -nr_taken);
1603
	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1604
	reclaim_stat->recent_scanned[file] += nr_taken;
1605

1606
	if (global_reclaim(sc)) {
1607
		__mod_zone_page_state(zone, NR_PAGES_SCANNED, nr_scanned);
1608
		if (current_is_kswapd())
H
Hugh Dickins 已提交
1609
			__count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scanned);
1610
		else
H
Hugh Dickins 已提交
1611
			__count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scanned);
1612
	}
1613
	spin_unlock_irq(&zone->lru_lock);
1614

1615
	if (nr_taken == 0)
1616
		return 0;
A
Andy Whitcroft 已提交
1617

1618
	nr_reclaimed = shrink_page_list(&page_list, zone, sc, TTU_UNMAP,
1619 1620 1621
				&nr_dirty, &nr_unqueued_dirty, &nr_congested,
				&nr_writeback, &nr_immediate,
				false);
1622

1623 1624
	spin_lock_irq(&zone->lru_lock);

Y
Ying Han 已提交
1625 1626 1627 1628 1629 1630 1631 1632
	if (global_reclaim(sc)) {
		if (current_is_kswapd())
			__count_zone_vm_events(PGSTEAL_KSWAPD, zone,
					       nr_reclaimed);
		else
			__count_zone_vm_events(PGSTEAL_DIRECT, zone,
					       nr_reclaimed);
	}
N
Nick Piggin 已提交
1633

1634
	putback_inactive_pages(lruvec, &page_list);
1635

1636
	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1637 1638 1639

	spin_unlock_irq(&zone->lru_lock);

1640
	mem_cgroup_uncharge_list(&page_list);
1641
	free_hot_cold_page_list(&page_list, true);
1642

1643 1644 1645 1646 1647 1648 1649 1650 1651 1652
	/*
	 * If reclaim is isolating dirty pages under writeback, it implies
	 * that the long-lived page allocation rate is exceeding the page
	 * laundering rate. Either the global limits are not being effective
	 * at throttling processes due to the page distribution throughout
	 * zones or there is heavy usage of a slow backing device. The
	 * only option is to throttle from reclaim context which is not ideal
	 * as there is no guarantee the dirtying process is throttled in the
	 * same way balance_dirty_pages() manages.
	 *
1653 1654 1655
	 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
	 * of pages under pages flagged for immediate reclaim and stall if any
	 * are encountered in the nr_immediate check below.
1656
	 */
1657
	if (nr_writeback && nr_writeback == nr_taken)
J
Johannes Weiner 已提交
1658
		set_bit(ZONE_WRITEBACK, &zone->flags);
1659

1660
	/*
1661 1662
	 * Legacy memcg will stall in page writeback so avoid forcibly
	 * stalling here.
1663
	 */
1664
	if (sane_reclaim(sc)) {
1665 1666 1667 1668 1669
		/*
		 * Tag a zone as congested if all the dirty pages scanned were
		 * backed by a congested BDI and wait_iff_congested will stall.
		 */
		if (nr_dirty && nr_dirty == nr_congested)
J
Johannes Weiner 已提交
1670
			set_bit(ZONE_CONGESTED, &zone->flags);
1671

1672 1673 1674
		/*
		 * If dirty pages are scanned that are not queued for IO, it
		 * implies that flushers are not keeping up. In this case, flag
J
Johannes Weiner 已提交
1675 1676
		 * the zone ZONE_DIRTY and kswapd will start writing pages from
		 * reclaim context.
1677 1678
		 */
		if (nr_unqueued_dirty == nr_taken)
J
Johannes Weiner 已提交
1679
			set_bit(ZONE_DIRTY, &zone->flags);
1680 1681

		/*
1682 1683 1684
		 * If kswapd scans pages marked marked for immediate
		 * reclaim and under writeback (nr_immediate), it implies
		 * that pages are cycling through the LRU faster than
1685 1686
		 * they are written so also forcibly stall.
		 */
1687
		if (nr_immediate && current_may_throttle())
1688
			congestion_wait(BLK_RW_ASYNC, HZ/10);
1689
	}
1690

1691 1692 1693 1694 1695
	/*
	 * Stall direct reclaim for IO completions if underlying BDIs or zone
	 * is congested. Allow kswapd to continue until it starts encountering
	 * unqueued dirty pages or cycling through the LRU too quickly.
	 */
1696 1697
	if (!sc->hibernation_mode && !current_is_kswapd() &&
	    current_may_throttle())
1698 1699
		wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);

1700 1701
	trace_mm_vmscan_lru_shrink_inactive(zone, nr_scanned, nr_reclaimed,
			sc->priority, file);
1702
	return nr_reclaimed;
L
Linus Torvalds 已提交
1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718
}

/*
 * This moves pages from the active list to the inactive list.
 *
 * We move them the other way if the page is referenced by one or more
 * processes, from rmap.
 *
 * If the pages are mostly unmapped, the processing is fast and it is
 * appropriate to hold zone->lru_lock across the whole operation.  But if
 * the pages are mapped, the processing is slow (page_referenced()) so we
 * should drop zone->lru_lock around each page.  It's impossible to balance
 * this, so instead we remove the pages from the LRU while processing them.
 * It is safe to rely on PG_active against the non-LRU pages in here because
 * nobody will play with that bit on a non-LRU page.
 *
1719
 * The downside is that we have to touch page->_refcount against each page.
L
Linus Torvalds 已提交
1720 1721
 * But we had to alter page->flags anyway.
 */
1722

1723
static void move_active_pages_to_lru(struct lruvec *lruvec,
1724
				     struct list_head *list,
1725
				     struct list_head *pages_to_free,
1726 1727
				     enum lru_list lru)
{
1728
	struct zone *zone = lruvec_zone(lruvec);
1729 1730
	unsigned long pgmoved = 0;
	struct page *page;
1731
	int nr_pages;
1732 1733 1734

	while (!list_empty(list)) {
		page = lru_to_page(list);
1735
		lruvec = mem_cgroup_page_lruvec(page, zone);
1736

1737
		VM_BUG_ON_PAGE(PageLRU(page), page);
1738 1739
		SetPageLRU(page);

1740
		nr_pages = hpage_nr_pages(page);
1741
		update_lru_size(lruvec, lru, nr_pages);
1742
		list_move(&page->lru, &lruvec->lists[lru]);
1743
		pgmoved += nr_pages;
1744

1745 1746 1747
		if (put_page_testzero(page)) {
			__ClearPageLRU(page);
			__ClearPageActive(page);
1748
			del_page_from_lru_list(page, lruvec, lru);
1749 1750 1751

			if (unlikely(PageCompound(page))) {
				spin_unlock_irq(&zone->lru_lock);
1752
				mem_cgroup_uncharge(page);
1753 1754 1755 1756
				(*get_compound_page_dtor(page))(page);
				spin_lock_irq(&zone->lru_lock);
			} else
				list_add(&page->lru, pages_to_free);
1757 1758
		}
	}
1759

1760 1761 1762
	if (!is_active_lru(lru))
		__count_vm_events(PGDEACTIVATE, pgmoved);
}
1763

H
Hugh Dickins 已提交
1764
static void shrink_active_list(unsigned long nr_to_scan,
1765
			       struct lruvec *lruvec,
1766
			       struct scan_control *sc,
1767
			       enum lru_list lru)
L
Linus Torvalds 已提交
1768
{
1769
	unsigned long nr_taken;
H
Hugh Dickins 已提交
1770
	unsigned long nr_scanned;
1771
	unsigned long vm_flags;
L
Linus Torvalds 已提交
1772
	LIST_HEAD(l_hold);	/* The pages which were snipped off */
1773
	LIST_HEAD(l_active);
1774
	LIST_HEAD(l_inactive);
L
Linus Torvalds 已提交
1775
	struct page *page;
1776
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1777
	unsigned long nr_rotated = 0;
1778
	isolate_mode_t isolate_mode = 0;
1779
	int file = is_file_lru(lru);
1780
	struct zone *zone = lruvec_zone(lruvec);
L
Linus Torvalds 已提交
1781 1782

	lru_add_drain();
1783 1784

	if (!sc->may_unmap)
1785
		isolate_mode |= ISOLATE_UNMAPPED;
1786
	if (!sc->may_writepage)
1787
		isolate_mode |= ISOLATE_CLEAN;
1788

L
Linus Torvalds 已提交
1789
	spin_lock_irq(&zone->lru_lock);
1790

1791 1792
	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
				     &nr_scanned, sc, isolate_mode, lru);
1793

1794 1795
	update_lru_size(lruvec, lru, -nr_taken);
	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1796
	reclaim_stat->recent_scanned[file] += nr_taken;
1797

1798 1799
	if (global_reclaim(sc))
		__mod_zone_page_state(zone, NR_PAGES_SCANNED, nr_scanned);
H
Hugh Dickins 已提交
1800
	__count_zone_vm_events(PGREFILL, zone, nr_scanned);
1801

L
Linus Torvalds 已提交
1802 1803 1804 1805 1806 1807
	spin_unlock_irq(&zone->lru_lock);

	while (!list_empty(&l_hold)) {
		cond_resched();
		page = lru_to_page(&l_hold);
		list_del(&page->lru);
1808

1809
		if (unlikely(!page_evictable(page))) {
L
Lee Schermerhorn 已提交
1810 1811 1812 1813
			putback_lru_page(page);
			continue;
		}

1814 1815 1816 1817 1818 1819 1820 1821
		if (unlikely(buffer_heads_over_limit)) {
			if (page_has_private(page) && trylock_page(page)) {
				if (page_has_private(page))
					try_to_release_page(page, 0);
				unlock_page(page);
			}
		}

1822 1823
		if (page_referenced(page, 0, sc->target_mem_cgroup,
				    &vm_flags)) {
1824
			nr_rotated += hpage_nr_pages(page);
1825 1826 1827 1828 1829 1830 1831 1832 1833
			/*
			 * Identify referenced, file-backed active pages and
			 * give them one more trip around the active list. So
			 * that executable code get better chances to stay in
			 * memory under moderate memory pressure.  Anon pages
			 * are not likely to be evicted by use-once streaming
			 * IO, plus JVM can create lots of anon VM_EXEC pages,
			 * so we ignore them here.
			 */
1834
			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1835 1836 1837 1838
				list_add(&page->lru, &l_active);
				continue;
			}
		}
1839

1840
		ClearPageActive(page);	/* we are de-activating */
L
Linus Torvalds 已提交
1841 1842 1843
		list_add(&page->lru, &l_inactive);
	}

1844
	/*
1845
	 * Move pages back to the lru list.
1846
	 */
1847
	spin_lock_irq(&zone->lru_lock);
1848
	/*
1849 1850 1851
	 * Count referenced pages from currently used mappings as rotated,
	 * even though only some of them are actually re-activated.  This
	 * helps balance scan pressure between file and anonymous pages in
1852
	 * get_scan_count.
1853
	 */
1854
	reclaim_stat->recent_rotated[file] += nr_rotated;
1855

1856 1857
	move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
	move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
K
KOSAKI Motohiro 已提交
1858
	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1859
	spin_unlock_irq(&zone->lru_lock);
1860

1861
	mem_cgroup_uncharge_list(&l_hold);
1862
	free_hot_cold_page_list(&l_hold, true);
L
Linus Torvalds 已提交
1863 1864
}

1865 1866 1867
/*
 * The inactive anon list should be small enough that the VM never has
 * to do too much work.
1868
 *
1869 1870 1871
 * The inactive file list should be small enough to leave most memory
 * to the established workingset on the scan-resistant active list,
 * but large enough to avoid thrashing the aggregate readahead window.
1872
 *
1873 1874
 * Both inactive lists should also be large enough that each inactive
 * page has a chance to be referenced again before it is reclaimed.
1875
 *
1876 1877 1878
 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
 * on this LRU, maintained by the pageout code. A zone->inactive_ratio
 * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
1879
 *
1880 1881 1882 1883 1884 1885 1886 1887 1888 1889
 * total     target    max
 * memory    ratio     inactive
 * -------------------------------------
 *   10MB       1         5MB
 *  100MB       1        50MB
 *    1GB       3       250MB
 *   10GB      10       0.9GB
 *  100GB      31         3GB
 *    1TB     101        10GB
 *   10TB     320        32GB
1890
 */
1891
static bool inactive_list_is_low(struct lruvec *lruvec, bool file)
1892
{
1893
	unsigned long inactive_ratio;
1894 1895
	unsigned long inactive;
	unsigned long active;
1896
	unsigned long gb;
1897

1898 1899 1900 1901 1902 1903
	/*
	 * If we don't have swap space, anonymous page deactivation
	 * is pointless.
	 */
	if (!file && !total_swap_pages)
		return false;
1904

1905 1906
	inactive = lruvec_lru_size(lruvec, file * LRU_FILE);
	active = lruvec_lru_size(lruvec, file * LRU_FILE + LRU_ACTIVE);
1907

1908 1909 1910
	gb = (inactive + active) >> (30 - PAGE_SHIFT);
	if (gb)
		inactive_ratio = int_sqrt(10 * gb);
1911
	else
1912 1913 1914
		inactive_ratio = 1;

	return inactive * inactive_ratio < active;
1915 1916
}

1917
static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1918
				 struct lruvec *lruvec, struct scan_control *sc)
1919
{
1920
	if (is_active_lru(lru)) {
1921
		if (inactive_list_is_low(lruvec, is_file_lru(lru)))
1922
			shrink_active_list(nr_to_scan, lruvec, sc, lru);
1923 1924 1925
		return 0;
	}

1926
	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
1927 1928
}

1929 1930 1931 1932 1933 1934 1935
enum scan_balance {
	SCAN_EQUAL,
	SCAN_FRACT,
	SCAN_ANON,
	SCAN_FILE,
};

1936 1937 1938 1939 1940 1941
/*
 * Determine how aggressively the anon and file LRU lists should be
 * scanned.  The relative value of each set of LRU lists is determined
 * by looking at the fraction of the pages scanned we did rotate back
 * onto the active list instead of evict.
 *
W
Wanpeng Li 已提交
1942 1943
 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
1944
 */
1945
static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg,
1946 1947
			   struct scan_control *sc, unsigned long *nr,
			   unsigned long *lru_pages)
1948
{
1949
	int swappiness = mem_cgroup_swappiness(memcg);
1950 1951 1952 1953
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
	u64 fraction[2];
	u64 denominator = 0;	/* gcc */
	struct zone *zone = lruvec_zone(lruvec);
1954
	unsigned long anon_prio, file_prio;
1955
	enum scan_balance scan_balance;
1956
	unsigned long anon, file;
1957
	bool force_scan = false;
1958
	unsigned long ap, fp;
H
Hugh Dickins 已提交
1959
	enum lru_list lru;
1960 1961
	bool some_scanned;
	int pass;
1962

1963 1964 1965 1966 1967 1968 1969 1970 1971 1972
	/*
	 * If the zone or memcg is small, nr[l] can be 0.  This
	 * results in no scanning on this priority and a potential
	 * priority drop.  Global direct reclaim can go to the next
	 * zone and tends to have no problems. Global kswapd is for
	 * zone balancing and it needs to scan a minimum amount. When
	 * reclaiming for a memcg, a priority drop can cause high
	 * latencies, so it's better to scan a minimum amount there as
	 * well.
	 */
1973 1974 1975
	if (current_is_kswapd()) {
		if (!zone_reclaimable(zone))
			force_scan = true;
1976
		if (!mem_cgroup_online(memcg))
1977 1978
			force_scan = true;
	}
1979
	if (!global_reclaim(sc))
1980
		force_scan = true;
1981 1982

	/* If we have no swap space, do not bother scanning anon pages. */
1983
	if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
1984
		scan_balance = SCAN_FILE;
1985 1986
		goto out;
	}
1987

1988 1989 1990 1991 1992 1993 1994
	/*
	 * Global reclaim will swap to prevent OOM even with no
	 * swappiness, but memcg users want to use this knob to
	 * disable swapping for individual groups completely when
	 * using the memory controller's swap limit feature would be
	 * too expensive.
	 */
1995
	if (!global_reclaim(sc) && !swappiness) {
1996
		scan_balance = SCAN_FILE;
1997 1998 1999 2000 2001 2002 2003 2004
		goto out;
	}

	/*
	 * Do not apply any pressure balancing cleverness when the
	 * system is close to OOM, scan both anon and file equally
	 * (unless the swappiness setting disagrees with swapping).
	 */
2005
	if (!sc->priority && swappiness) {
2006
		scan_balance = SCAN_EQUAL;
2007 2008 2009
		goto out;
	}

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019
	/*
	 * Prevent the reclaimer from falling into the cache trap: as
	 * cache pages start out inactive, every cache fault will tip
	 * the scan balance towards the file LRU.  And as the file LRU
	 * shrinks, so does the window for rotation from references.
	 * This means we have a runaway feedback loop where a tiny
	 * thrashing file LRU becomes infinitely more attractive than
	 * anon pages.  Try to detect this based on file LRU size.
	 */
	if (global_reclaim(sc)) {
2020 2021 2022 2023 2024 2025
		unsigned long zonefile;
		unsigned long zonefree;

		zonefree = zone_page_state(zone, NR_FREE_PAGES);
		zonefile = zone_page_state(zone, NR_ACTIVE_FILE) +
			   zone_page_state(zone, NR_INACTIVE_FILE);
2026

2027
		if (unlikely(zonefile + zonefree <= high_wmark_pages(zone))) {
2028 2029 2030 2031 2032
			scan_balance = SCAN_ANON;
			goto out;
		}
	}

2033
	/*
2034 2035 2036 2037 2038 2039 2040
	 * If there is enough inactive page cache, i.e. if the size of the
	 * inactive list is greater than that of the active list *and* the
	 * inactive list actually has some pages to scan on this priority, we
	 * do not reclaim anything from the anonymous working set right now.
	 * Without the second condition we could end up never scanning an
	 * lruvec even if it has plenty of old anonymous pages unless the
	 * system is under heavy pressure.
2041
	 */
2042
	if (!inactive_list_is_low(lruvec, true) &&
2043
	    lruvec_lru_size(lruvec, LRU_INACTIVE_FILE) >> sc->priority) {
2044
		scan_balance = SCAN_FILE;
2045 2046 2047
		goto out;
	}

2048 2049
	scan_balance = SCAN_FRACT;

2050 2051 2052 2053
	/*
	 * With swappiness at 100, anonymous and file have the same priority.
	 * This scanning priority is essentially the inverse of IO cost.
	 */
2054
	anon_prio = swappiness;
H
Hugh Dickins 已提交
2055
	file_prio = 200 - anon_prio;
2056

2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067
	/*
	 * OK, so we have swap space and a fair amount of page cache
	 * pages.  We use the recently rotated / recently scanned
	 * ratios to determine how valuable each cache is.
	 *
	 * Because workloads change over time (and to avoid overflow)
	 * we keep these statistics as a floating average, which ends
	 * up weighing recent references more than old ones.
	 *
	 * anon in [0], file in [1]
	 */
2068

2069 2070 2071 2072
	anon  = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON) +
		lruvec_lru_size(lruvec, LRU_INACTIVE_ANON);
	file  = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE) +
		lruvec_lru_size(lruvec, LRU_INACTIVE_FILE);
2073

2074
	spin_lock_irq(&zone->lru_lock);
2075 2076 2077
	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
		reclaim_stat->recent_scanned[0] /= 2;
		reclaim_stat->recent_rotated[0] /= 2;
2078 2079
	}

2080 2081 2082
	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
		reclaim_stat->recent_scanned[1] /= 2;
		reclaim_stat->recent_rotated[1] /= 2;
2083 2084 2085
	}

	/*
2086 2087 2088
	 * The amount of pressure on anon vs file pages is inversely
	 * proportional to the fraction of recently scanned pages on
	 * each list that were recently referenced and in active use.
2089
	 */
2090
	ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
2091
	ap /= reclaim_stat->recent_rotated[0] + 1;
2092

2093
	fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
2094
	fp /= reclaim_stat->recent_rotated[1] + 1;
2095
	spin_unlock_irq(&zone->lru_lock);
2096

2097 2098 2099 2100
	fraction[0] = ap;
	fraction[1] = fp;
	denominator = ap + fp + 1;
out:
2101 2102 2103
	some_scanned = false;
	/* Only use force_scan on second pass. */
	for (pass = 0; !some_scanned && pass < 2; pass++) {
2104
		*lru_pages = 0;
2105 2106 2107 2108
		for_each_evictable_lru(lru) {
			int file = is_file_lru(lru);
			unsigned long size;
			unsigned long scan;
2109

2110
			size = lruvec_lru_size(lruvec, lru);
2111
			scan = size >> sc->priority;
2112

2113 2114
			if (!scan && pass && force_scan)
				scan = min(size, SWAP_CLUSTER_MAX);
2115

2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130
			switch (scan_balance) {
			case SCAN_EQUAL:
				/* Scan lists relative to size */
				break;
			case SCAN_FRACT:
				/*
				 * Scan types proportional to swappiness and
				 * their relative recent reclaim efficiency.
				 */
				scan = div64_u64(scan * fraction[file],
							denominator);
				break;
			case SCAN_FILE:
			case SCAN_ANON:
				/* Scan one type exclusively */
2131 2132
				if ((scan_balance == SCAN_FILE) != file) {
					size = 0;
2133
					scan = 0;
2134
				}
2135 2136 2137 2138 2139
				break;
			default:
				/* Look ma, no brain */
				BUG();
			}
2140 2141

			*lru_pages += size;
2142
			nr[lru] = scan;
2143

2144
			/*
2145 2146
			 * Skip the second pass and don't force_scan,
			 * if we found something to scan.
2147
			 */
2148
			some_scanned |= !!scan;
2149
		}
2150
	}
2151
}
2152

2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169
#ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
static void init_tlb_ubc(void)
{
	/*
	 * This deliberately does not clear the cpumask as it's expensive
	 * and unnecessary. If there happens to be data in there then the
	 * first SWAP_CLUSTER_MAX pages will send an unnecessary IPI and
	 * then will be cleared.
	 */
	current->tlb_ubc.flush_required = false;
}
#else
static inline void init_tlb_ubc(void)
{
}
#endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */

2170 2171 2172
/*
 * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
 */
2173 2174
static void shrink_zone_memcg(struct zone *zone, struct mem_cgroup *memcg,
			      struct scan_control *sc, unsigned long *lru_pages)
2175
{
2176
	struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2177
	unsigned long nr[NR_LRU_LISTS];
2178
	unsigned long targets[NR_LRU_LISTS];
2179 2180 2181 2182 2183
	unsigned long nr_to_scan;
	enum lru_list lru;
	unsigned long nr_reclaimed = 0;
	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
	struct blk_plug plug;
2184
	bool scan_adjusted;
2185

2186
	get_scan_count(lruvec, memcg, sc, nr, lru_pages);
2187

2188 2189 2190
	/* Record the original scan target for proportional adjustments later */
	memcpy(targets, nr, sizeof(nr));

2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204
	/*
	 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
	 * event that can occur when there is little memory pressure e.g.
	 * multiple streaming readers/writers. Hence, we do not abort scanning
	 * when the requested number of pages are reclaimed when scanning at
	 * DEF_PRIORITY on the assumption that the fact we are direct
	 * reclaiming implies that kswapd is not keeping up and it is best to
	 * do a batch of work at once. For memcg reclaim one check is made to
	 * abort proportional reclaim if either the file or anon lru has already
	 * dropped to zero at the first pass.
	 */
	scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
			 sc->priority == DEF_PRIORITY);

2205 2206
	init_tlb_ubc();

2207 2208 2209
	blk_start_plug(&plug);
	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
					nr[LRU_INACTIVE_FILE]) {
2210 2211 2212
		unsigned long nr_anon, nr_file, percentage;
		unsigned long nr_scanned;

2213 2214 2215 2216 2217 2218 2219 2220 2221
		for_each_evictable_lru(lru) {
			if (nr[lru]) {
				nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
				nr[lru] -= nr_to_scan;

				nr_reclaimed += shrink_list(lru, nr_to_scan,
							    lruvec, sc);
			}
		}
2222 2223 2224 2225 2226 2227

		if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
			continue;

		/*
		 * For kswapd and memcg, reclaim at least the number of pages
2228
		 * requested. Ensure that the anon and file LRUs are scanned
2229 2230 2231 2232 2233 2234 2235
		 * proportionally what was requested by get_scan_count(). We
		 * stop reclaiming one LRU and reduce the amount scanning
		 * proportional to the original scan target.
		 */
		nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
		nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];

2236 2237 2238 2239 2240 2241 2242 2243 2244
		/*
		 * It's just vindictive to attack the larger once the smaller
		 * has gone to zero.  And given the way we stop scanning the
		 * smaller below, this makes sure that we only make one nudge
		 * towards proportionality once we've got nr_to_reclaim.
		 */
		if (!nr_file || !nr_anon)
			break;

2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275
		if (nr_file > nr_anon) {
			unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
						targets[LRU_ACTIVE_ANON] + 1;
			lru = LRU_BASE;
			percentage = nr_anon * 100 / scan_target;
		} else {
			unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
						targets[LRU_ACTIVE_FILE] + 1;
			lru = LRU_FILE;
			percentage = nr_file * 100 / scan_target;
		}

		/* Stop scanning the smaller of the LRU */
		nr[lru] = 0;
		nr[lru + LRU_ACTIVE] = 0;

		/*
		 * Recalculate the other LRU scan count based on its original
		 * scan target and the percentage scanning already complete
		 */
		lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
		nr_scanned = targets[lru] - nr[lru];
		nr[lru] = targets[lru] * (100 - percentage) / 100;
		nr[lru] -= min(nr[lru], nr_scanned);

		lru += LRU_ACTIVE;
		nr_scanned = targets[lru] - nr[lru];
		nr[lru] = targets[lru] * (100 - percentage) / 100;
		nr[lru] -= min(nr[lru], nr_scanned);

		scan_adjusted = true;
2276 2277 2278 2279 2280 2281 2282 2283
	}
	blk_finish_plug(&plug);
	sc->nr_reclaimed += nr_reclaimed;

	/*
	 * Even if we did not try to evict anon pages at all, we want to
	 * rebalance the anon lru active/inactive ratio.
	 */
2284
	if (inactive_list_is_low(lruvec, false))
2285 2286 2287 2288 2289 2290
		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
				   sc, LRU_ACTIVE_ANON);

	throttle_vm_writeout(sc->gfp_mask);
}

M
Mel Gorman 已提交
2291
/* Use reclaim/compaction for costly allocs or under memory pressure */
2292
static bool in_reclaim_compaction(struct scan_control *sc)
M
Mel Gorman 已提交
2293
{
2294
	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
M
Mel Gorman 已提交
2295
			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2296
			 sc->priority < DEF_PRIORITY - 2))
M
Mel Gorman 已提交
2297 2298 2299 2300 2301
		return true;

	return false;
}

2302
/*
M
Mel Gorman 已提交
2303 2304 2305 2306 2307
 * Reclaim/compaction is used for high-order allocation requests. It reclaims
 * order-0 pages before compacting the zone. should_continue_reclaim() returns
 * true if more pages should be reclaimed such that when the page allocator
 * calls try_to_compact_zone() that it will have enough free pages to succeed.
 * It will give up earlier than that if there is difficulty reclaiming pages.
2308
 */
2309
static inline bool should_continue_reclaim(struct zone *zone,
2310 2311 2312 2313 2314 2315 2316 2317
					unsigned long nr_reclaimed,
					unsigned long nr_scanned,
					struct scan_control *sc)
{
	unsigned long pages_for_compaction;
	unsigned long inactive_lru_pages;

	/* If not in reclaim/compaction mode, stop */
2318
	if (!in_reclaim_compaction(sc))
2319 2320
		return false;

2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342
	/* Consider stopping depending on scan and reclaim activity */
	if (sc->gfp_mask & __GFP_REPEAT) {
		/*
		 * For __GFP_REPEAT allocations, stop reclaiming if the
		 * full LRU list has been scanned and we are still failing
		 * to reclaim pages. This full LRU scan is potentially
		 * expensive but a __GFP_REPEAT caller really wants to succeed
		 */
		if (!nr_reclaimed && !nr_scanned)
			return false;
	} else {
		/*
		 * For non-__GFP_REPEAT allocations which can presumably
		 * fail without consequence, stop if we failed to reclaim
		 * any pages from the last SWAP_CLUSTER_MAX number of
		 * pages that were scanned. This will return to the
		 * caller faster at the risk reclaim/compaction and
		 * the resulting allocation attempt fails
		 */
		if (!nr_reclaimed)
			return false;
	}
2343 2344 2345 2346 2347 2348

	/*
	 * If we have not reclaimed enough pages for compaction and the
	 * inactive lists are large enough, continue reclaiming
	 */
	pages_for_compaction = (2UL << sc->order);
2349
	inactive_lru_pages = zone_page_state(zone, NR_INACTIVE_FILE);
2350
	if (get_nr_swap_pages() > 0)
2351
		inactive_lru_pages += zone_page_state(zone, NR_INACTIVE_ANON);
2352 2353 2354 2355 2356
	if (sc->nr_reclaimed < pages_for_compaction &&
			inactive_lru_pages > pages_for_compaction)
		return true;

	/* If compaction would go ahead or the allocation would succeed, stop */
2357
	switch (compaction_suitable(zone, sc->order, 0, 0)) {
2358 2359 2360 2361 2362 2363 2364 2365
	case COMPACT_PARTIAL:
	case COMPACT_CONTINUE:
		return false;
	default:
		return true;
	}
}

2366 2367
static bool shrink_zone(struct zone *zone, struct scan_control *sc,
			bool is_classzone)
L
Linus Torvalds 已提交
2368
{
2369
	struct reclaim_state *reclaim_state = current->reclaim_state;
2370
	unsigned long nr_reclaimed, nr_scanned;
2371
	bool reclaimable = false;
L
Linus Torvalds 已提交
2372

2373 2374 2375 2376 2377 2378
	do {
		struct mem_cgroup *root = sc->target_mem_cgroup;
		struct mem_cgroup_reclaim_cookie reclaim = {
			.zone = zone,
			.priority = sc->priority,
		};
2379
		unsigned long zone_lru_pages = 0;
2380
		struct mem_cgroup *memcg;
2381

2382 2383
		nr_reclaimed = sc->nr_reclaimed;
		nr_scanned = sc->nr_scanned;
L
Linus Torvalds 已提交
2384

2385 2386
		memcg = mem_cgroup_iter(root, NULL, &reclaim);
		do {
2387
			unsigned long lru_pages;
2388
			unsigned long reclaimed;
2389
			unsigned long scanned;
2390

2391 2392 2393 2394 2395 2396
			if (mem_cgroup_low(root, memcg)) {
				if (!sc->may_thrash)
					continue;
				mem_cgroup_events(memcg, MEMCG_LOW, 1);
			}

2397
			reclaimed = sc->nr_reclaimed;
2398
			scanned = sc->nr_scanned;
2399

2400
			shrink_zone_memcg(zone, memcg, sc, &lru_pages);
2401
			zone_lru_pages += lru_pages;
2402

2403 2404 2405 2406 2407
			if (memcg && is_classzone)
				shrink_slab(sc->gfp_mask, zone_to_nid(zone),
					    memcg, sc->nr_scanned - scanned,
					    lru_pages);

2408 2409 2410 2411 2412
			/* Record the group's reclaim efficiency */
			vmpressure(sc->gfp_mask, memcg, false,
				   sc->nr_scanned - scanned,
				   sc->nr_reclaimed - reclaimed);

2413
			/*
2414 2415
			 * Direct reclaim and kswapd have to scan all memory
			 * cgroups to fulfill the overall scan target for the
2416
			 * zone.
2417 2418 2419 2420 2421
			 *
			 * Limit reclaim, on the other hand, only cares about
			 * nr_to_reclaim pages to be reclaimed and it will
			 * retry with decreasing priority if one round over the
			 * whole hierarchy is not sufficient.
2422
			 */
2423 2424
			if (!global_reclaim(sc) &&
					sc->nr_reclaimed >= sc->nr_to_reclaim) {
2425 2426 2427
				mem_cgroup_iter_break(root, memcg);
				break;
			}
2428
		} while ((memcg = mem_cgroup_iter(root, memcg, &reclaim)));
2429

2430 2431 2432 2433
		/*
		 * Shrink the slab caches in the same proportion that
		 * the eligible LRU pages were scanned.
		 */
2434 2435 2436 2437 2438 2439 2440 2441
		if (global_reclaim(sc) && is_classzone)
			shrink_slab(sc->gfp_mask, zone_to_nid(zone), NULL,
				    sc->nr_scanned - nr_scanned,
				    zone_lru_pages);

		if (reclaim_state) {
			sc->nr_reclaimed += reclaim_state->reclaimed_slab;
			reclaim_state->reclaimed_slab = 0;
2442 2443
		}

2444 2445
		/* Record the subtree's reclaim efficiency */
		vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
2446 2447 2448
			   sc->nr_scanned - nr_scanned,
			   sc->nr_reclaimed - nr_reclaimed);

2449 2450 2451
		if (sc->nr_reclaimed - nr_reclaimed)
			reclaimable = true;

2452 2453
	} while (should_continue_reclaim(zone, sc->nr_reclaimed - nr_reclaimed,
					 sc->nr_scanned - nr_scanned, sc));
2454 2455

	return reclaimable;
2456 2457
}

2458 2459 2460 2461
/*
 * Returns true if compaction should go ahead for a high-order request, or
 * the high-order allocation would succeed without compaction.
 */
2462
static inline bool compaction_ready(struct zone *zone, int order, int classzone_idx)
2463 2464 2465 2466 2467 2468 2469 2470 2471 2472
{
	unsigned long balance_gap, watermark;
	bool watermark_ok;

	/*
	 * Compaction takes time to run and there are potentially other
	 * callers using the pages just freed. Continue reclaiming until
	 * there is a buffer of free pages available to give compaction
	 * a reasonable chance of completing and allocating the page
	 */
2473 2474
	balance_gap = min(low_wmark_pages(zone), DIV_ROUND_UP(
			zone->managed_pages, KSWAPD_ZONE_BALANCE_GAP_RATIO));
2475
	watermark = high_wmark_pages(zone) + balance_gap + (2UL << order);
2476
	watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, classzone_idx);
2477 2478 2479 2480 2481

	/*
	 * If compaction is deferred, reclaim up to a point where
	 * compaction will have a chance of success when re-enabled
	 */
2482
	if (compaction_deferred(zone, order))
2483 2484
		return watermark_ok;

2485 2486 2487 2488
	/*
	 * If compaction is not ready to start and allocation is not likely
	 * to succeed without it, then keep reclaiming.
	 */
2489
	if (compaction_suitable(zone, order, 0, classzone_idx) == COMPACT_SKIPPED)
2490 2491 2492 2493 2494
		return false;

	return watermark_ok;
}

L
Linus Torvalds 已提交
2495 2496 2497 2498 2499
/*
 * This is the direct reclaim path, for page-allocating processes.  We only
 * try to reclaim pages from zones which will satisfy the caller's allocation
 * request.
 *
2500 2501
 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
 * Because:
L
Linus Torvalds 已提交
2502 2503
 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
 *    allocation or
2504 2505 2506
 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
 *    must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
 *    zone defense algorithm.
L
Linus Torvalds 已提交
2507 2508 2509 2510
 *
 * If a zone is deemed to be full of pinned pages then just give it a light
 * scan then give up on it.
 */
M
Michal Hocko 已提交
2511
static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
L
Linus Torvalds 已提交
2512
{
2513
	struct zoneref *z;
2514
	struct zone *zone;
2515 2516
	unsigned long nr_soft_reclaimed;
	unsigned long nr_soft_scanned;
2517
	gfp_t orig_mask;
2518
	enum zone_type requested_highidx = gfp_zone(sc->gfp_mask);
2519

2520 2521 2522 2523 2524
	/*
	 * If the number of buffer_heads in the machine exceeds the maximum
	 * allowed level, force direct reclaim to scan the highmem zone as
	 * highmem pages could be pinning lowmem pages storing buffer_heads
	 */
2525
	orig_mask = sc->gfp_mask;
2526 2527 2528
	if (buffer_heads_over_limit)
		sc->gfp_mask |= __GFP_HIGHMEM;

2529
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2530
					gfp_zone(sc->gfp_mask), sc->nodemask) {
2531 2532
		enum zone_type classzone_idx;

2533
		if (!populated_zone(zone))
L
Linus Torvalds 已提交
2534
			continue;
2535 2536 2537 2538 2539 2540

		classzone_idx = requested_highidx;
		while (!populated_zone(zone->zone_pgdat->node_zones +
							classzone_idx))
			classzone_idx--;

2541 2542 2543 2544
		/*
		 * Take care memory controller reclaiming has small influence
		 * to global LRU.
		 */
2545
		if (global_reclaim(sc)) {
2546 2547
			if (!cpuset_zone_allowed(zone,
						 GFP_KERNEL | __GFP_HARDWALL))
2548
				continue;
2549

2550 2551
			if (sc->priority != DEF_PRIORITY &&
			    !zone_reclaimable(zone))
2552
				continue;	/* Let kswapd poll it */
2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565

			/*
			 * If we already have plenty of memory free for
			 * compaction in this zone, don't free any more.
			 * Even though compaction is invoked for any
			 * non-zero order, only frequent costly order
			 * reclamation is disruptive enough to become a
			 * noticeable problem, like transparent huge
			 * page allocations.
			 */
			if (IS_ENABLED(CONFIG_COMPACTION) &&
			    sc->order > PAGE_ALLOC_COSTLY_ORDER &&
			    zonelist_zone_idx(z) <= requested_highidx &&
2566
			    compaction_ready(zone, sc->order, requested_highidx)) {
2567 2568
				sc->compaction_ready = true;
				continue;
2569
			}
2570

2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582
			/*
			 * This steals pages from memory cgroups over softlimit
			 * and returns the number of reclaimed pages and
			 * scanned pages. This works for global memory pressure
			 * and balancing, not for a memcg's limit.
			 */
			nr_soft_scanned = 0;
			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
						sc->order, sc->gfp_mask,
						&nr_soft_scanned);
			sc->nr_reclaimed += nr_soft_reclaimed;
			sc->nr_scanned += nr_soft_scanned;
2583
			/* need some check for avoid more shrink_zone() */
2584
		}
2585

M
Michal Hocko 已提交
2586
		shrink_zone(zone, sc, zone_idx(zone) == classzone_idx);
L
Linus Torvalds 已提交
2587
	}
2588

2589 2590 2591 2592 2593
	/*
	 * Restore to original mask to avoid the impact on the caller if we
	 * promoted it to __GFP_HIGHMEM.
	 */
	sc->gfp_mask = orig_mask;
L
Linus Torvalds 已提交
2594
}
2595

L
Linus Torvalds 已提交
2596 2597 2598 2599 2600 2601 2602 2603
/*
 * This is the main entry point to direct page reclaim.
 *
 * If a full scan of the inactive list fails to free enough memory then we
 * are "out of memory" and something needs to be killed.
 *
 * If the caller is !__GFP_FS then the probability of a failure is reasonably
 * high - the zone may be full of dirty or under-writeback pages, which this
2604 2605 2606 2607
 * caller can't do much about.  We kick the writeback threads and take explicit
 * naps in the hope that some of these pages can be written.  But if the
 * allocating task holds filesystem locks which prevent writeout this might not
 * work, and the allocation attempt will fail.
2608 2609 2610
 *
 * returns:	0, if no pages reclaimed
 * 		else, the number of pages reclaimed
L
Linus Torvalds 已提交
2611
 */
2612
static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2613
					  struct scan_control *sc)
L
Linus Torvalds 已提交
2614
{
2615
	int initial_priority = sc->priority;
2616
	unsigned long total_scanned = 0;
2617
	unsigned long writeback_threshold;
2618
retry:
2619 2620
	delayacct_freepages_start();

2621
	if (global_reclaim(sc))
2622
		count_vm_event(ALLOCSTALL);
L
Linus Torvalds 已提交
2623

2624
	do {
2625 2626
		vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
				sc->priority);
2627
		sc->nr_scanned = 0;
M
Michal Hocko 已提交
2628
		shrink_zones(zonelist, sc);
2629

2630
		total_scanned += sc->nr_scanned;
2631
		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2632 2633 2634 2635
			break;

		if (sc->compaction_ready)
			break;
L
Linus Torvalds 已提交
2636

2637 2638 2639 2640 2641 2642 2643
		/*
		 * If we're getting trouble reclaiming, start doing
		 * writepage even in laptop mode.
		 */
		if (sc->priority < DEF_PRIORITY - 2)
			sc->may_writepage = 1;

L
Linus Torvalds 已提交
2644 2645 2646 2647 2648 2649 2650
		/*
		 * Try to write back as many pages as we just scanned.  This
		 * tends to cause slow streaming writers to write data to the
		 * disk smoothly, at the dirtying rate, which is nice.   But
		 * that's undesirable in laptop mode, where we *want* lumpy
		 * writeout.  So in laptop mode, write out the whole world.
		 */
2651 2652
		writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
		if (total_scanned > writeback_threshold) {
2653 2654
			wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
						WB_REASON_TRY_TO_FREE_PAGES);
2655
			sc->may_writepage = 1;
L
Linus Torvalds 已提交
2656
		}
2657
	} while (--sc->priority >= 0);
2658

2659 2660
	delayacct_freepages_end();

2661 2662 2663
	if (sc->nr_reclaimed)
		return sc->nr_reclaimed;

2664
	/* Aborted reclaim to try compaction? don't OOM, then */
2665
	if (sc->compaction_ready)
2666 2667
		return 1;

2668 2669 2670 2671 2672 2673 2674
	/* Untapped cgroup reserves?  Don't OOM, retry. */
	if (!sc->may_thrash) {
		sc->priority = initial_priority;
		sc->may_thrash = 1;
		goto retry;
	}

2675
	return 0;
L
Linus Torvalds 已提交
2676 2677
}

2678 2679 2680 2681 2682 2683 2684 2685 2686 2687
static bool pfmemalloc_watermark_ok(pg_data_t *pgdat)
{
	struct zone *zone;
	unsigned long pfmemalloc_reserve = 0;
	unsigned long free_pages = 0;
	int i;
	bool wmark_ok;

	for (i = 0; i <= ZONE_NORMAL; i++) {
		zone = &pgdat->node_zones[i];
2688 2689
		if (!populated_zone(zone) ||
		    zone_reclaimable_pages(zone) == 0)
2690 2691
			continue;

2692 2693 2694 2695
		pfmemalloc_reserve += min_wmark_pages(zone);
		free_pages += zone_page_state(zone, NR_FREE_PAGES);
	}

2696 2697 2698 2699
	/* If there are no reserves (unexpected config) then do not throttle */
	if (!pfmemalloc_reserve)
		return true;

2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715
	wmark_ok = free_pages > pfmemalloc_reserve / 2;

	/* kswapd must be awake if processes are being throttled */
	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
		pgdat->classzone_idx = min(pgdat->classzone_idx,
						(enum zone_type)ZONE_NORMAL);
		wake_up_interruptible(&pgdat->kswapd_wait);
	}

	return wmark_ok;
}

/*
 * Throttle direct reclaimers if backing storage is backed by the network
 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
 * depleted. kswapd will continue to make progress and wake the processes
2716 2717 2718 2719
 * when the low watermark is reached.
 *
 * Returns true if a fatal signal was delivered during throttling. If this
 * happens, the page allocator should not consider triggering the OOM killer.
2720
 */
2721
static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
2722 2723
					nodemask_t *nodemask)
{
2724
	struct zoneref *z;
2725
	struct zone *zone;
2726
	pg_data_t *pgdat = NULL;
2727 2728 2729 2730 2731 2732 2733 2734 2735

	/*
	 * Kernel threads should not be throttled as they may be indirectly
	 * responsible for cleaning pages necessary for reclaim to make forward
	 * progress. kjournald for example may enter direct reclaim while
	 * committing a transaction where throttling it could forcing other
	 * processes to block on log_wait_commit().
	 */
	if (current->flags & PF_KTHREAD)
2736 2737 2738 2739 2740 2741 2742 2743
		goto out;

	/*
	 * If a fatal signal is pending, this process should not throttle.
	 * It should return quickly so it can exit and free its memory
	 */
	if (fatal_signal_pending(current))
		goto out;
2744

2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759
	/*
	 * Check if the pfmemalloc reserves are ok by finding the first node
	 * with a usable ZONE_NORMAL or lower zone. The expectation is that
	 * GFP_KERNEL will be required for allocating network buffers when
	 * swapping over the network so ZONE_HIGHMEM is unusable.
	 *
	 * Throttling is based on the first usable node and throttled processes
	 * wait on a queue until kswapd makes progress and wakes them. There
	 * is an affinity then between processes waking up and where reclaim
	 * progress has been made assuming the process wakes on the same node.
	 * More importantly, processes running on remote nodes will not compete
	 * for remote pfmemalloc reserves and processes on different nodes
	 * should make reasonable progress.
	 */
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2760
					gfp_zone(gfp_mask), nodemask) {
2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772
		if (zone_idx(zone) > ZONE_NORMAL)
			continue;

		/* Throttle based on the first usable node */
		pgdat = zone->zone_pgdat;
		if (pfmemalloc_watermark_ok(pgdat))
			goto out;
		break;
	}

	/* If no zone was usable by the allocation flags then do not throttle */
	if (!pgdat)
2773
		goto out;
2774

2775 2776 2777
	/* Account for the throttling */
	count_vm_event(PGSCAN_DIRECT_THROTTLE);

2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788
	/*
	 * If the caller cannot enter the filesystem, it's possible that it
	 * is due to the caller holding an FS lock or performing a journal
	 * transaction in the case of a filesystem like ext[3|4]. In this case,
	 * it is not safe to block on pfmemalloc_wait as kswapd could be
	 * blocked waiting on the same lock. Instead, throttle for up to a
	 * second before continuing.
	 */
	if (!(gfp_mask & __GFP_FS)) {
		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
			pfmemalloc_watermark_ok(pgdat), HZ);
2789 2790

		goto check_pending;
2791 2792 2793 2794 2795
	}

	/* Throttle until kswapd wakes the process */
	wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
		pfmemalloc_watermark_ok(pgdat));
2796 2797 2798 2799 2800 2801 2802

check_pending:
	if (fatal_signal_pending(current))
		return true;

out:
	return false;
2803 2804
}

2805
unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2806
				gfp_t gfp_mask, nodemask_t *nodemask)
2807
{
2808
	unsigned long nr_reclaimed;
2809
	struct scan_control sc = {
2810
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2811
		.gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
2812 2813 2814
		.order = order,
		.nodemask = nodemask,
		.priority = DEF_PRIORITY,
2815
		.may_writepage = !laptop_mode,
2816
		.may_unmap = 1,
2817
		.may_swap = 1,
2818 2819
	};

2820
	/*
2821 2822 2823
	 * Do not enter reclaim if fatal signal was delivered while throttled.
	 * 1 is returned so that the page allocator does not OOM kill at this
	 * point.
2824
	 */
2825
	if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask))
2826 2827
		return 1;

2828 2829 2830 2831
	trace_mm_vmscan_direct_reclaim_begin(order,
				sc.may_writepage,
				gfp_mask);

2832
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2833 2834 2835 2836

	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);

	return nr_reclaimed;
2837 2838
}

A
Andrew Morton 已提交
2839
#ifdef CONFIG_MEMCG
2840

2841
unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
2842
						gfp_t gfp_mask, bool noswap,
2843 2844
						struct zone *zone,
						unsigned long *nr_scanned)
2845 2846
{
	struct scan_control sc = {
2847
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2848
		.target_mem_cgroup = memcg,
2849 2850 2851 2852
		.may_writepage = !laptop_mode,
		.may_unmap = 1,
		.may_swap = !noswap,
	};
2853
	unsigned long lru_pages;
2854

2855 2856
	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2857

2858
	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
2859 2860 2861
						      sc.may_writepage,
						      sc.gfp_mask);

2862 2863 2864 2865 2866 2867 2868
	/*
	 * NOTE: Although we can get the priority field, using it
	 * here is not a good idea, since it limits the pages we can scan.
	 * if we don't reclaim here, the shrink_zone from balance_pgdat
	 * will pick up pages from other mem cgroup's as well. We hack
	 * the priority and make it zero.
	 */
2869
	shrink_zone_memcg(zone, memcg, &sc, &lru_pages);
2870 2871 2872

	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);

2873
	*nr_scanned = sc.nr_scanned;
2874 2875 2876
	return sc.nr_reclaimed;
}

2877
unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
2878
					   unsigned long nr_pages,
K
KOSAKI Motohiro 已提交
2879
					   gfp_t gfp_mask,
2880
					   bool may_swap)
2881
{
2882
	struct zonelist *zonelist;
2883
	unsigned long nr_reclaimed;
2884
	int nid;
2885
	struct scan_control sc = {
2886
		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
2887 2888
		.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2889 2890 2891 2892
		.target_mem_cgroup = memcg,
		.priority = DEF_PRIORITY,
		.may_writepage = !laptop_mode,
		.may_unmap = 1,
2893
		.may_swap = may_swap,
2894
	};
2895

2896 2897 2898 2899 2900
	/*
	 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
	 * take care of from where we get pages. So the node where we start the
	 * scan does not need to be the current node.
	 */
2901
	nid = mem_cgroup_select_victim_node(memcg);
2902 2903

	zonelist = NODE_DATA(nid)->node_zonelists;
2904 2905 2906 2907 2908

	trace_mm_vmscan_memcg_reclaim_begin(0,
					    sc.may_writepage,
					    sc.gfp_mask);

2909
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2910 2911 2912 2913

	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);

	return nr_reclaimed;
2914 2915 2916
}
#endif

2917
static void age_active_anon(struct zone *zone, struct scan_control *sc)
2918
{
2919
	struct mem_cgroup *memcg;
2920

2921 2922 2923 2924 2925
	if (!total_swap_pages)
		return;

	memcg = mem_cgroup_iter(NULL, NULL, NULL);
	do {
2926
		struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2927

2928
		if (inactive_list_is_low(lruvec, false))
2929
			shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2930
					   sc, LRU_ACTIVE_ANON);
2931 2932 2933

		memcg = mem_cgroup_iter(NULL, memcg, NULL);
	} while (memcg);
2934 2935
}

2936 2937
static bool zone_balanced(struct zone *zone, int order, bool highorder,
			unsigned long balance_gap, int classzone_idx)
2938
{
2939
	unsigned long mark = high_wmark_pages(zone) + balance_gap;
2940

2941 2942 2943 2944 2945 2946 2947 2948 2949 2950
	/*
	 * When checking from pgdat_balanced(), kswapd should stop and sleep
	 * when it reaches the high order-0 watermark and let kcompactd take
	 * over. Other callers such as wakeup_kswapd() want to determine the
	 * true high-order watermark.
	 */
	if (IS_ENABLED(CONFIG_COMPACTION) && !highorder) {
		mark += (1UL << order);
		order = 0;
	}
2951

2952
	return zone_watermark_ok_safe(zone, order, mark, classzone_idx);
2953 2954
}

2955
/*
2956 2957 2958 2959 2960 2961 2962 2963 2964 2965
 * pgdat_balanced() is used when checking if a node is balanced.
 *
 * For order-0, all zones must be balanced!
 *
 * For high-order allocations only zones that meet watermarks and are in a
 * zone allowed by the callers classzone_idx are added to balanced_pages. The
 * total of balanced pages must be at least 25% of the zones allowed by
 * classzone_idx for the node to be considered balanced. Forcing all zones to
 * be balanced for high orders can cause excessive reclaim when there are
 * imbalanced zones.
2966 2967 2968 2969
 * The choice of 25% is due to
 *   o a 16M DMA zone that is balanced will not balance a zone on any
 *     reasonable sized machine
 *   o On all other machines, the top zone must be at least a reasonable
L
Lucas De Marchi 已提交
2970
 *     percentage of the middle zones. For example, on 32-bit x86, highmem
2971 2972 2973 2974
 *     would need to be at least 256M for it to be balance a whole node.
 *     Similarly, on x86-64 the Normal zone would need to be at least 1G
 *     to balance a node on its own. These seemed like reasonable ratios.
 */
2975
static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
2976
{
2977
	unsigned long managed_pages = 0;
2978
	unsigned long balanced_pages = 0;
2979 2980
	int i;

2981 2982 2983
	/* Check the watermark levels */
	for (i = 0; i <= classzone_idx; i++) {
		struct zone *zone = pgdat->node_zones + i;
2984

2985 2986 2987
		if (!populated_zone(zone))
			continue;

2988
		managed_pages += zone->managed_pages;
2989 2990 2991 2992 2993 2994 2995 2996

		/*
		 * A special case here:
		 *
		 * balance_pgdat() skips over all_unreclaimable after
		 * DEF_PRIORITY. Effectively, it considers them balanced so
		 * they must be considered balanced here as well!
		 */
2997
		if (!zone_reclaimable(zone)) {
2998
			balanced_pages += zone->managed_pages;
2999 3000 3001
			continue;
		}

3002
		if (zone_balanced(zone, order, false, 0, i))
3003
			balanced_pages += zone->managed_pages;
3004 3005 3006 3007 3008
		else if (!order)
			return false;
	}

	if (order)
3009
		return balanced_pages >= (managed_pages >> 2);
3010 3011
	else
		return true;
3012 3013
}

3014 3015 3016 3017 3018 3019 3020
/*
 * Prepare kswapd for sleeping. This verifies that there are no processes
 * waiting in throttle_direct_reclaim() and that watermarks have been met.
 *
 * Returns true if kswapd is ready to sleep
 */
static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, long remaining,
3021
					int classzone_idx)
3022 3023 3024
{
	/* If a direct reclaimer woke kswapd within HZ/10, it's premature */
	if (remaining)
3025 3026 3027
		return false;

	/*
3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038
	 * The throttled processes are normally woken up in balance_pgdat() as
	 * soon as pfmemalloc_watermark_ok() is true. But there is a potential
	 * race between when kswapd checks the watermarks and a process gets
	 * throttled. There is also a potential race if processes get
	 * throttled, kswapd wakes, a large process exits thereby balancing the
	 * zones, which causes kswapd to exit balance_pgdat() before reaching
	 * the wake up checks. If kswapd is going to sleep, no process should
	 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
	 * the wake up is premature, processes will wake kswapd and get
	 * throttled again. The difference from wake ups in balance_pgdat() is
	 * that here we are under prepare_to_wait().
3039
	 */
3040 3041
	if (waitqueue_active(&pgdat->pfmemalloc_wait))
		wake_up_all(&pgdat->pfmemalloc_wait);
3042

3043
	return pgdat_balanced(pgdat, order, classzone_idx);
3044 3045
}

3046 3047 3048
/*
 * kswapd shrinks the zone by the number of pages required to reach
 * the high watermark.
3049 3050
 *
 * Returns true if kswapd scanned at least the requested number of pages to
3051 3052
 * reclaim or if the lack of progress was due to pages under writeback.
 * This is used to determine if the scanning priority needs to be raised.
3053
 */
3054
static bool kswapd_shrink_zone(struct zone *zone,
3055
			       int classzone_idx,
3056
			       struct scan_control *sc)
3057
{
3058 3059
	unsigned long balance_gap;
	bool lowmem_pressure;
3060 3061 3062

	/* Reclaim above the high watermark. */
	sc->nr_to_reclaim = max(SWAP_CLUSTER_MAX, high_wmark_pages(zone));
3063 3064 3065 3066 3067 3068 3069

	/*
	 * We put equal pressure on every zone, unless one zone has way too
	 * many pages free already. The "too many pages" is defined as the
	 * high wmark plus a "gap" where the gap is either the low
	 * watermark or 1% of the zone, whichever is smaller.
	 */
3070 3071
	balance_gap = min(low_wmark_pages(zone), DIV_ROUND_UP(
			zone->managed_pages, KSWAPD_ZONE_BALANCE_GAP_RATIO));
3072 3073 3074 3075 3076 3077

	/*
	 * If there is no low memory pressure or the zone is balanced then no
	 * reclaim is necessary
	 */
	lowmem_pressure = (buffer_heads_over_limit && is_highmem(zone));
3078
	if (!lowmem_pressure && zone_balanced(zone, sc->order, false,
3079 3080 3081
						balance_gap, classzone_idx))
		return true;

3082
	shrink_zone(zone, sc, zone_idx(zone) == classzone_idx);
3083

J
Johannes Weiner 已提交
3084
	clear_bit(ZONE_WRITEBACK, &zone->flags);
3085

3086 3087 3088 3089 3090 3091
	/*
	 * If a zone reaches its high watermark, consider it to be no longer
	 * congested. It's possible there are dirty pages backed by congested
	 * BDIs but as pressure is relieved, speculatively avoid congestion
	 * waits.
	 */
3092
	if (zone_reclaimable(zone) &&
3093
	    zone_balanced(zone, sc->order, false, 0, classzone_idx)) {
J
Johannes Weiner 已提交
3094 3095
		clear_bit(ZONE_CONGESTED, &zone->flags);
		clear_bit(ZONE_DIRTY, &zone->flags);
3096 3097
	}

3098
	return sc->nr_scanned >= sc->nr_to_reclaim;
3099 3100
}

L
Linus Torvalds 已提交
3101 3102
/*
 * For kswapd, balance_pgdat() will work across all this node's zones until
3103
 * they are all at high_wmark_pages(zone).
L
Linus Torvalds 已提交
3104
 *
3105
 * Returns the highest zone idx kswapd was reclaiming at
L
Linus Torvalds 已提交
3106 3107 3108 3109 3110 3111 3112 3113 3114 3115
 *
 * There is special handling here for zones which are full of pinned pages.
 * This can happen if the pages are all mlocked, or if they are all used by
 * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
 * What we do is to detect the case where all pages in the zone have been
 * scanned twice and there has been zero successful reclaim.  Mark the zone as
 * dead and from now on, only perform a short scan.  Basically we're polling
 * the zone for when the problem goes away.
 *
 * kswapd scans the zones in the highmem->normal->dma direction.  It skips
3116 3117 3118 3119 3120
 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
 * lower zones regardless of the number of free pages in the lower zones. This
 * interoperates with the page allocator fallback scheme to ensure that aging
 * of pages is balanced across the zones.
L
Linus Torvalds 已提交
3121
 */
3122
static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx)
L
Linus Torvalds 已提交
3123 3124
{
	int i;
3125
	int end_zone = 0;	/* Inclusive.  0 = ZONE_DMA */
3126 3127
	unsigned long nr_soft_reclaimed;
	unsigned long nr_soft_scanned;
3128 3129
	struct scan_control sc = {
		.gfp_mask = GFP_KERNEL,
3130
		.order = order,
3131
		.priority = DEF_PRIORITY,
3132
		.may_writepage = !laptop_mode,
3133
		.may_unmap = 1,
3134
		.may_swap = 1,
3135
	};
3136
	count_vm_event(PAGEOUTRUN);
L
Linus Torvalds 已提交
3137

3138
	do {
3139 3140 3141
		bool raise_priority = true;

		sc.nr_reclaimed = 0;
L
Linus Torvalds 已提交
3142

3143 3144 3145 3146 3147 3148
		/*
		 * Scan in the highmem->dma direction for the highest
		 * zone which needs scanning
		 */
		for (i = pgdat->nr_zones - 1; i >= 0; i--) {
			struct zone *zone = pgdat->node_zones + i;
L
Linus Torvalds 已提交
3149

3150 3151
			if (!populated_zone(zone))
				continue;
L
Linus Torvalds 已提交
3152

3153 3154
			if (sc.priority != DEF_PRIORITY &&
			    !zone_reclaimable(zone))
3155
				continue;
L
Linus Torvalds 已提交
3156

3157 3158 3159 3160
			/*
			 * Do some background aging of the anon list, to give
			 * pages a chance to be referenced before reclaiming.
			 */
3161
			age_active_anon(zone, &sc);
3162

3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173
			/*
			 * If the number of buffer_heads in the machine
			 * exceeds the maximum allowed level and this node
			 * has a highmem zone, force kswapd to reclaim from
			 * it to relieve lowmem pressure.
			 */
			if (buffer_heads_over_limit && is_highmem_idx(i)) {
				end_zone = i;
				break;
			}

3174
			if (!zone_balanced(zone, order, false, 0, 0)) {
3175
				end_zone = i;
A
Andrew Morton 已提交
3176
				break;
3177
			} else {
3178 3179 3180 3181
				/*
				 * If balanced, clear the dirty and congested
				 * flags
				 */
J
Johannes Weiner 已提交
3182 3183
				clear_bit(ZONE_CONGESTED, &zone->flags);
				clear_bit(ZONE_DIRTY, &zone->flags);
L
Linus Torvalds 已提交
3184 3185
			}
		}
3186

3187
		if (i < 0)
A
Andrew Morton 已提交
3188 3189
			goto out;

3190 3191 3192 3193 3194 3195 3196
		/*
		 * If we're getting trouble reclaiming, start doing writepage
		 * even in laptop mode.
		 */
		if (sc.priority < DEF_PRIORITY - 2)
			sc.may_writepage = 1;

L
Linus Torvalds 已提交
3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208
		/*
		 * Now scan the zone in the dma->highmem direction, stopping
		 * at the last zone which needs scanning.
		 *
		 * We do this because the page allocator works in the opposite
		 * direction.  This prevents the page allocator from allocating
		 * pages behind kswapd's direction of progress, which would
		 * cause too much scanning of the lower zones.
		 */
		for (i = 0; i <= end_zone; i++) {
			struct zone *zone = pgdat->node_zones + i;

3209
			if (!populated_zone(zone))
L
Linus Torvalds 已提交
3210 3211
				continue;

3212 3213
			if (sc.priority != DEF_PRIORITY &&
			    !zone_reclaimable(zone))
L
Linus Torvalds 已提交
3214 3215 3216
				continue;

			sc.nr_scanned = 0;
3217

3218 3219 3220 3221 3222 3223 3224 3225 3226
			nr_soft_scanned = 0;
			/*
			 * Call soft limit reclaim before calling shrink_zone.
			 */
			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
							order, sc.gfp_mask,
							&nr_soft_scanned);
			sc.nr_reclaimed += nr_soft_reclaimed;

3227
			/*
3228 3229 3230 3231
			 * There should be no need to raise the scanning
			 * priority if enough pages are already being scanned
			 * that that high watermark would be met at 100%
			 * efficiency.
3232
			 */
3233
			if (kswapd_shrink_zone(zone, end_zone, &sc))
3234
				raise_priority = false;
L
Linus Torvalds 已提交
3235
		}
3236 3237 3238 3239 3240 3241 3242 3243

		/*
		 * If the low watermark is met there is no need for processes
		 * to be throttled on pfmemalloc_wait as they should not be
		 * able to safely make forward progress. Wake them
		 */
		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
				pfmemalloc_watermark_ok(pgdat))
3244
			wake_up_all(&pgdat->pfmemalloc_wait);
3245

3246 3247 3248
		/* Check if kswapd should be suspending */
		if (try_to_freeze() || kthread_should_stop())
			break;
3249

3250
		/*
3251 3252
		 * Raise priority if scanning rate is too low or there was no
		 * progress in reclaiming pages
3253
		 */
3254 3255
		if (raise_priority || !sc.nr_reclaimed)
			sc.priority--;
3256
	} while (sc.priority >= 1 &&
3257
			!pgdat_balanced(pgdat, order, classzone_idx));
L
Linus Torvalds 已提交
3258

3259
out:
3260
	/*
3261 3262
	 * Return the highest zone idx we were reclaiming at so
	 * prepare_kswapd_sleep() makes the same decisions as here.
3263
	 */
3264
	return end_zone;
L
Linus Torvalds 已提交
3265 3266
}

3267 3268
static void kswapd_try_to_sleep(pg_data_t *pgdat, int order,
				int classzone_idx, int balanced_classzone_idx)
3269 3270 3271 3272 3273 3274 3275 3276 3277 3278
{
	long remaining = 0;
	DEFINE_WAIT(wait);

	if (freezing(current) || kthread_should_stop())
		return;

	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);

	/* Try to sleep for a short interval */
3279 3280
	if (prepare_kswapd_sleep(pgdat, order, remaining,
						balanced_classzone_idx)) {
3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294
		/*
		 * Compaction records what page blocks it recently failed to
		 * isolate pages from and skips them in the future scanning.
		 * When kswapd is going to sleep, it is reasonable to assume
		 * that pages and compaction may succeed so reset the cache.
		 */
		reset_isolation_suitable(pgdat);

		/*
		 * We have freed the memory, now we should compact it to make
		 * allocation of the requested order possible.
		 */
		wakeup_kcompactd(pgdat, order, classzone_idx);

3295 3296 3297 3298 3299 3300 3301 3302 3303
		remaining = schedule_timeout(HZ/10);
		finish_wait(&pgdat->kswapd_wait, &wait);
		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
	}

	/*
	 * After a short sleep, check if it was a premature sleep. If not, then
	 * go fully to sleep until explicitly woken up.
	 */
3304 3305
	if (prepare_kswapd_sleep(pgdat, order, remaining,
						balanced_classzone_idx)) {
3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316
		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);

		/*
		 * vmstat counters are not perfectly accurate and the estimated
		 * value for counters such as NR_FREE_PAGES can deviate from the
		 * true value by nr_online_cpus * threshold. To avoid the zone
		 * watermarks being breached while under pressure, we reduce the
		 * per-cpu vmstat threshold while kswapd is awake and restore
		 * them before going back to sleep.
		 */
		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3317 3318 3319 3320

		if (!kthread_should_stop())
			schedule();

3321 3322 3323 3324 3325 3326 3327 3328 3329 3330
		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
	} else {
		if (remaining)
			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
		else
			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
	}
	finish_wait(&pgdat->kswapd_wait, &wait);
}

L
Linus Torvalds 已提交
3331 3332
/*
 * The background pageout daemon, started as a kernel thread
3333
 * from the init process.
L
Linus Torvalds 已提交
3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345
 *
 * This basically trickles out pages so that we have _some_
 * free memory available even if there is no other activity
 * that frees anything up. This is needed for things like routing
 * etc, where we otherwise might have all activity going on in
 * asynchronous contexts that cannot page things out.
 *
 * If there are applications that are active memory-allocators
 * (most normal use), this basically shouldn't matter.
 */
static int kswapd(void *p)
{
3346 3347
	unsigned long order, new_order;
	int classzone_idx, new_classzone_idx;
3348
	int balanced_classzone_idx;
L
Linus Torvalds 已提交
3349 3350
	pg_data_t *pgdat = (pg_data_t*)p;
	struct task_struct *tsk = current;
3351

L
Linus Torvalds 已提交
3352 3353 3354
	struct reclaim_state reclaim_state = {
		.reclaimed_slab = 0,
	};
3355
	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
L
Linus Torvalds 已提交
3356

3357 3358
	lockdep_set_current_reclaim_state(GFP_KERNEL);

R
Rusty Russell 已提交
3359
	if (!cpumask_empty(cpumask))
3360
		set_cpus_allowed_ptr(tsk, cpumask);
L
Linus Torvalds 已提交
3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374
	current->reclaim_state = &reclaim_state;

	/*
	 * Tell the memory management that we're a "memory allocator",
	 * and that if we need more memory we should get access to it
	 * regardless (see "__alloc_pages()"). "kswapd" should
	 * never get caught in the normal page freeing logic.
	 *
	 * (Kswapd normally doesn't need memory anyway, but sometimes
	 * you need a small amount of memory in order to be able to
	 * page out something else, and this flag essentially protects
	 * us from recursively trying to free more memory as we're
	 * trying to free the first piece of memory in the first place).
	 */
3375
	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3376
	set_freezable();
L
Linus Torvalds 已提交
3377

3378 3379
	order = new_order = 0;
	classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
3380
	balanced_classzone_idx = classzone_idx;
L
Linus Torvalds 已提交
3381
	for ( ; ; ) {
3382
		bool ret;
3383

3384
		/*
3385 3386
		 * While we were reclaiming, there might have been another
		 * wakeup, so check the values.
3387
		 */
3388 3389 3390 3391
		new_order = pgdat->kswapd_max_order;
		new_classzone_idx = pgdat->classzone_idx;
		pgdat->kswapd_max_order =  0;
		pgdat->classzone_idx = pgdat->nr_zones - 1;
3392

3393
		if (order < new_order || classzone_idx > new_classzone_idx) {
L
Linus Torvalds 已提交
3394 3395
			/*
			 * Don't sleep if someone wants a larger 'order'
3396
			 * allocation or has tigher zone constraints
L
Linus Torvalds 已提交
3397 3398
			 */
			order = new_order;
3399
			classzone_idx = new_classzone_idx;
L
Linus Torvalds 已提交
3400
		} else {
3401
			kswapd_try_to_sleep(pgdat, order, classzone_idx,
3402
						balanced_classzone_idx);
L
Linus Torvalds 已提交
3403
			order = pgdat->kswapd_max_order;
3404
			classzone_idx = pgdat->classzone_idx;
3405 3406
			new_order = order;
			new_classzone_idx = classzone_idx;
3407
			pgdat->kswapd_max_order = 0;
3408
			pgdat->classzone_idx = pgdat->nr_zones - 1;
L
Linus Torvalds 已提交
3409 3410
		}

3411 3412 3413 3414 3415 3416 3417 3418
		ret = try_to_freeze();
		if (kthread_should_stop())
			break;

		/*
		 * We can speed up thawing tasks if we don't call balance_pgdat
		 * after returning from the refrigerator
		 */
3419 3420
		if (!ret) {
			trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
3421 3422
			balanced_classzone_idx = balance_pgdat(pgdat, order,
								classzone_idx);
3423
		}
L
Linus Torvalds 已提交
3424
	}
3425

3426
	tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
3427
	current->reclaim_state = NULL;
3428 3429
	lockdep_clear_current_reclaim_state();

L
Linus Torvalds 已提交
3430 3431 3432 3433 3434 3435
	return 0;
}

/*
 * A zone is low on free memory, so wake its kswapd task to service it.
 */
3436
void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
L
Linus Torvalds 已提交
3437 3438 3439
{
	pg_data_t *pgdat;

3440
	if (!populated_zone(zone))
L
Linus Torvalds 已提交
3441 3442
		return;

3443
	if (!cpuset_zone_allowed(zone, GFP_KERNEL | __GFP_HARDWALL))
L
Linus Torvalds 已提交
3444
		return;
3445
	pgdat = zone->zone_pgdat;
3446
	if (pgdat->kswapd_max_order < order) {
L
Linus Torvalds 已提交
3447
		pgdat->kswapd_max_order = order;
3448 3449
		pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
	}
3450
	if (!waitqueue_active(&pgdat->kswapd_wait))
L
Linus Torvalds 已提交
3451
		return;
3452
	if (zone_balanced(zone, order, true, 0, 0))
3453 3454 3455
		return;

	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
3456
	wake_up_interruptible(&pgdat->kswapd_wait);
L
Linus Torvalds 已提交
3457 3458
}

3459
#ifdef CONFIG_HIBERNATION
L
Linus Torvalds 已提交
3460
/*
3461
 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3462 3463 3464 3465 3466
 * freed pages.
 *
 * Rather than trying to age LRUs the aim is to preserve the overall
 * LRU order by reclaiming preferentially
 * inactive > active > active referenced > active mapped
L
Linus Torvalds 已提交
3467
 */
3468
unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
L
Linus Torvalds 已提交
3469
{
3470 3471
	struct reclaim_state reclaim_state;
	struct scan_control sc = {
3472
		.nr_to_reclaim = nr_to_reclaim,
3473
		.gfp_mask = GFP_HIGHUSER_MOVABLE,
3474
		.priority = DEF_PRIORITY,
3475
		.may_writepage = 1,
3476 3477
		.may_unmap = 1,
		.may_swap = 1,
3478
		.hibernation_mode = 1,
L
Linus Torvalds 已提交
3479
	};
3480
	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3481 3482
	struct task_struct *p = current;
	unsigned long nr_reclaimed;
L
Linus Torvalds 已提交
3483

3484 3485 3486 3487
	p->flags |= PF_MEMALLOC;
	lockdep_set_current_reclaim_state(sc.gfp_mask);
	reclaim_state.reclaimed_slab = 0;
	p->reclaim_state = &reclaim_state;
3488

3489
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3490

3491 3492 3493
	p->reclaim_state = NULL;
	lockdep_clear_current_reclaim_state();
	p->flags &= ~PF_MEMALLOC;
3494

3495
	return nr_reclaimed;
L
Linus Torvalds 已提交
3496
}
3497
#endif /* CONFIG_HIBERNATION */
L
Linus Torvalds 已提交
3498 3499 3500 3501 3502

/* It's optimal to keep kswapds on the same CPUs as their memory, but
   not required for correctness.  So if the last cpu in a node goes
   away, we get changed to run anywhere: as the first one comes back,
   restore their cpu bindings. */
3503 3504
static int cpu_callback(struct notifier_block *nfb, unsigned long action,
			void *hcpu)
L
Linus Torvalds 已提交
3505
{
3506
	int nid;
L
Linus Torvalds 已提交
3507

3508
	if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
3509
		for_each_node_state(nid, N_MEMORY) {
3510
			pg_data_t *pgdat = NODE_DATA(nid);
3511 3512 3513
			const struct cpumask *mask;

			mask = cpumask_of_node(pgdat->node_id);
3514

3515
			if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
L
Linus Torvalds 已提交
3516
				/* One of our CPUs online: restore mask */
3517
				set_cpus_allowed_ptr(pgdat->kswapd, mask);
L
Linus Torvalds 已提交
3518 3519 3520 3521 3522
		}
	}
	return NOTIFY_OK;
}

3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538
/*
 * This kswapd start function will be called by init and node-hot-add.
 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
 */
int kswapd_run(int nid)
{
	pg_data_t *pgdat = NODE_DATA(nid);
	int ret = 0;

	if (pgdat->kswapd)
		return 0;

	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
	if (IS_ERR(pgdat->kswapd)) {
		/* failure at boot is fatal */
		BUG_ON(system_state == SYSTEM_BOOTING);
3539 3540
		pr_err("Failed to start kswapd on node %d\n", nid);
		ret = PTR_ERR(pgdat->kswapd);
3541
		pgdat->kswapd = NULL;
3542 3543 3544 3545
	}
	return ret;
}

3546
/*
3547
 * Called by memory hotplug when all memory in a node is offlined.  Caller must
3548
 * hold mem_hotplug_begin/end().
3549 3550 3551 3552 3553
 */
void kswapd_stop(int nid)
{
	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;

3554
	if (kswapd) {
3555
		kthread_stop(kswapd);
3556 3557
		NODE_DATA(nid)->kswapd = NULL;
	}
3558 3559
}

L
Linus Torvalds 已提交
3560 3561
static int __init kswapd_init(void)
{
3562
	int nid;
3563

L
Linus Torvalds 已提交
3564
	swap_setup();
3565
	for_each_node_state(nid, N_MEMORY)
3566
 		kswapd_run(nid);
L
Linus Torvalds 已提交
3567 3568 3569 3570 3571
	hotcpu_notifier(cpu_callback, 0);
	return 0;
}

module_init(kswapd_init)
3572 3573 3574 3575 3576 3577 3578 3579 3580 3581

#ifdef CONFIG_NUMA
/*
 * Zone reclaim mode
 *
 * If non-zero call zone_reclaim when the number of free pages falls below
 * the watermarks.
 */
int zone_reclaim_mode __read_mostly;

3582
#define RECLAIM_OFF 0
3583
#define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
3584
#define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
3585
#define RECLAIM_UNMAP (1<<2)	/* Unmap pages during reclaim */
3586

3587 3588 3589 3590 3591 3592 3593
/*
 * Priority for ZONE_RECLAIM. This determines the fraction of pages
 * of a node considered for each zone_reclaim. 4 scans 1/16th of
 * a zone.
 */
#define ZONE_RECLAIM_PRIORITY 4

3594 3595 3596 3597 3598 3599
/*
 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
 * occur.
 */
int sysctl_min_unmapped_ratio = 1;

3600 3601 3602 3603 3604 3605
/*
 * If the number of slab pages in a zone grows beyond this percentage then
 * slab reclaim needs to occur.
 */
int sysctl_min_slab_ratio = 5;

3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620
static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
{
	unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
	unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
		zone_page_state(zone, NR_ACTIVE_FILE);

	/*
	 * It's possible for there to be more file mapped pages than
	 * accounted for by the pages on the file LRU lists because
	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
	 */
	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
}

/* Work out how many page cache pages we can reclaim in this reclaim_mode */
3621
static unsigned long zone_pagecache_reclaimable(struct zone *zone)
3622
{
3623 3624
	unsigned long nr_pagecache_reclaimable;
	unsigned long delta = 0;
3625 3626

	/*
3627
	 * If RECLAIM_UNMAP is set, then all file pages are considered
3628 3629 3630 3631
	 * potentially reclaimable. Otherwise, we have to worry about
	 * pages like swapcache and zone_unmapped_file_pages() provides
	 * a better estimate
	 */
3632
	if (zone_reclaim_mode & RECLAIM_UNMAP)
3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647
		nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
	else
		nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);

	/* If we can't clean pages, remove dirty pages from consideration */
	if (!(zone_reclaim_mode & RECLAIM_WRITE))
		delta += zone_page_state(zone, NR_FILE_DIRTY);

	/* Watch for any possible underflows due to delta */
	if (unlikely(delta > nr_pagecache_reclaimable))
		delta = nr_pagecache_reclaimable;

	return nr_pagecache_reclaimable - delta;
}

3648 3649 3650
/*
 * Try to free up some pages from this zone through reclaim.
 */
3651
static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3652
{
3653
	/* Minimum pages needed in order to stay on node */
3654
	const unsigned long nr_pages = 1 << order;
3655 3656
	struct task_struct *p = current;
	struct reclaim_state reclaim_state;
3657
	struct scan_control sc = {
3658
		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3659
		.gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
3660
		.order = order,
3661
		.priority = ZONE_RECLAIM_PRIORITY,
3662
		.may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3663
		.may_unmap = !!(zone_reclaim_mode & RECLAIM_UNMAP),
3664
		.may_swap = 1,
3665
	};
3666 3667

	cond_resched();
3668
	/*
3669
	 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
3670
	 * and we also need to be able to write out pages for RECLAIM_WRITE
3671
	 * and RECLAIM_UNMAP.
3672 3673
	 */
	p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3674
	lockdep_set_current_reclaim_state(gfp_mask);
3675 3676
	reclaim_state.reclaimed_slab = 0;
	p->reclaim_state = &reclaim_state;
3677

3678
	if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3679 3680 3681 3682 3683
		/*
		 * Free memory by calling shrink zone with increasing
		 * priorities until we have enough memory freed.
		 */
		do {
3684
			shrink_zone(zone, &sc, true);
3685
		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3686
	}
3687

3688
	p->reclaim_state = NULL;
3689
	current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3690
	lockdep_clear_current_reclaim_state();
3691
	return sc.nr_reclaimed >= nr_pages;
3692
}
3693 3694 3695 3696

int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
{
	int node_id;
3697
	int ret;
3698 3699

	/*
3700 3701
	 * Zone reclaim reclaims unmapped file backed pages and
	 * slab pages if we are over the defined limits.
3702
	 *
3703 3704 3705 3706 3707
	 * A small portion of unmapped file backed pages is needed for
	 * file I/O otherwise pages read by file I/O will be immediately
	 * thrown out if the zone is overallocated. So we do not reclaim
	 * if less than a specified percentage of the zone is used by
	 * unmapped file backed pages.
3708
	 */
3709 3710
	if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
	    zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3711
		return ZONE_RECLAIM_FULL;
3712

3713
	if (!zone_reclaimable(zone))
3714
		return ZONE_RECLAIM_FULL;
3715

3716
	/*
3717
	 * Do not scan if the allocation should not be delayed.
3718
	 */
3719
	if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
3720
		return ZONE_RECLAIM_NOSCAN;
3721 3722 3723 3724 3725 3726 3727

	/*
	 * Only run zone reclaim on the local zone or on zones that do not
	 * have associated processors. This will favor the local processor
	 * over remote processors and spread off node memory allocations
	 * as wide as possible.
	 */
3728
	node_id = zone_to_nid(zone);
3729
	if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3730
		return ZONE_RECLAIM_NOSCAN;
3731

J
Johannes Weiner 已提交
3732
	if (test_and_set_bit(ZONE_RECLAIM_LOCKED, &zone->flags))
3733 3734
		return ZONE_RECLAIM_NOSCAN;

3735
	ret = __zone_reclaim(zone, gfp_mask, order);
J
Johannes Weiner 已提交
3736
	clear_bit(ZONE_RECLAIM_LOCKED, &zone->flags);
3737

3738 3739 3740
	if (!ret)
		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);

3741
	return ret;
3742
}
3743
#endif
L
Lee Schermerhorn 已提交
3744 3745 3746 3747 3748 3749

/*
 * page_evictable - test whether a page is evictable
 * @page: the page to test
 *
 * Test whether page is evictable--i.e., should be placed on active/inactive
3750
 * lists vs unevictable list.
L
Lee Schermerhorn 已提交
3751 3752
 *
 * Reasons page might not be evictable:
3753
 * (1) page's mapping marked unevictable
N
Nick Piggin 已提交
3754
 * (2) page is part of an mlocked VMA
3755
 *
L
Lee Schermerhorn 已提交
3756
 */
3757
int page_evictable(struct page *page)
L
Lee Schermerhorn 已提交
3758
{
3759
	return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
L
Lee Schermerhorn 已提交
3760
}
3761

3762
#ifdef CONFIG_SHMEM
3763
/**
3764 3765 3766
 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
 * @pages:	array of pages to check
 * @nr_pages:	number of pages to check
3767
 *
3768
 * Checks pages for evictability and moves them to the appropriate lru list.
3769 3770
 *
 * This function is only used for SysV IPC SHM_UNLOCK.
3771
 */
3772
void check_move_unevictable_pages(struct page **pages, int nr_pages)
3773
{
3774
	struct lruvec *lruvec;
3775 3776 3777 3778
	struct zone *zone = NULL;
	int pgscanned = 0;
	int pgrescued = 0;
	int i;
3779

3780 3781 3782
	for (i = 0; i < nr_pages; i++) {
		struct page *page = pages[i];
		struct zone *pagezone;
3783

3784 3785 3786 3787 3788 3789 3790 3791
		pgscanned++;
		pagezone = page_zone(page);
		if (pagezone != zone) {
			if (zone)
				spin_unlock_irq(&zone->lru_lock);
			zone = pagezone;
			spin_lock_irq(&zone->lru_lock);
		}
3792
		lruvec = mem_cgroup_page_lruvec(page, zone);
3793

3794 3795
		if (!PageLRU(page) || !PageUnevictable(page))
			continue;
3796

3797
		if (page_evictable(page)) {
3798 3799
			enum lru_list lru = page_lru_base_type(page);

3800
			VM_BUG_ON_PAGE(PageActive(page), page);
3801
			ClearPageUnevictable(page);
3802 3803
			del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
			add_page_to_lru_list(page, lruvec, lru);
3804
			pgrescued++;
3805
		}
3806
	}
3807

3808 3809 3810 3811
	if (zone) {
		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
		spin_unlock_irq(&zone->lru_lock);
3812 3813
	}
}
3814
#endif /* CONFIG_SHMEM */