vmscan.c 115.6 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
L
Linus Torvalds 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14
/*
 *  linux/mm/vmscan.c
 *
 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 *
 *  Swap reorganised 29.12.95, Stephen Tweedie.
 *  kswapd added: 7.1.96  sct
 *  Removed kswapd_ctl limits, and swap out as many pages as needed
 *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
 *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
 *  Multiqueue VM started 5.8.00, Rik van Riel.
 */

15 16
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

L
Linus Torvalds 已提交
17
#include <linux/mm.h>
18
#include <linux/sched/mm.h>
L
Linus Torvalds 已提交
19
#include <linux/module.h>
20
#include <linux/gfp.h>
L
Linus Torvalds 已提交
21 22 23 24 25
#include <linux/kernel_stat.h>
#include <linux/swap.h>
#include <linux/pagemap.h>
#include <linux/init.h>
#include <linux/highmem.h>
26
#include <linux/vmpressure.h>
27
#include <linux/vmstat.h>
L
Linus Torvalds 已提交
28 29 30 31 32 33 34 35 36 37 38
#include <linux/file.h>
#include <linux/writeback.h>
#include <linux/blkdev.h>
#include <linux/buffer_head.h>	/* for try_to_release_page(),
					buffer_heads_over_limit */
#include <linux/mm_inline.h>
#include <linux/backing-dev.h>
#include <linux/rmap.h>
#include <linux/topology.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
39
#include <linux/compaction.h>
L
Linus Torvalds 已提交
40 41
#include <linux/notifier.h>
#include <linux/rwsem.h>
42
#include <linux/delay.h>
43
#include <linux/kthread.h>
44
#include <linux/freezer.h>
45
#include <linux/memcontrol.h>
46
#include <linux/delayacct.h>
47
#include <linux/sysctl.h>
48
#include <linux/oom.h>
49
#include <linux/prefetch.h>
50
#include <linux/printk.h>
51
#include <linux/dax.h>
L
Linus Torvalds 已提交
52 53 54 55 56

#include <asm/tlbflush.h>
#include <asm/div64.h>

#include <linux/swapops.h>
57
#include <linux/balloon_compaction.h>
L
Linus Torvalds 已提交
58

59 60
#include "internal.h"

61 62 63
#define CREATE_TRACE_POINTS
#include <trace/events/vmscan.h>

L
Linus Torvalds 已提交
64
struct scan_control {
65 66 67
	/* How many pages shrink_list() should reclaim */
	unsigned long nr_to_reclaim;

L
Linus Torvalds 已提交
68
	/* This context's GFP mask */
A
Al Viro 已提交
69
	gfp_t gfp_mask;
L
Linus Torvalds 已提交
70

71
	/* Allocation order */
A
Andy Whitcroft 已提交
72
	int order;
73

74 75 76 77 78
	/*
	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
	 * are scanned.
	 */
	nodemask_t	*nodemask;
79

80 81 82 83 84
	/*
	 * The memory cgroup that hit its limit and as a result is the
	 * primary target of this reclaim invocation.
	 */
	struct mem_cgroup *target_mem_cgroup;
85

86 87 88
	/* Scan (total_size >> priority) pages at once */
	int priority;

89 90 91
	/* The highest zone to isolate pages for reclaim from */
	enum zone_type reclaim_idx;

92
	/* Writepage batching in laptop mode; RECLAIM_WRITE */
93 94 95 96 97 98 99 100
	unsigned int may_writepage:1;

	/* Can mapped pages be reclaimed? */
	unsigned int may_unmap:1;

	/* Can pages be swapped as part of reclaim? */
	unsigned int may_swap:1;

101 102 103 104 105 106 107
	/*
	 * Cgroups are not reclaimed below their configured memory.low,
	 * unless we threaten to OOM. If any cgroups are skipped due to
	 * memory.low and nothing was reclaimed, go back for memory.low.
	 */
	unsigned int memcg_low_reclaim:1;
	unsigned int memcg_low_skipped:1;
108

109 110 111 112 113 114 115 116 117 118
	unsigned int hibernation_mode:1;

	/* One of the zones is ready for compaction */
	unsigned int compaction_ready:1;

	/* Incremented by the number of inactive pages that were scanned */
	unsigned long nr_scanned;

	/* Number of pages freed so far during a call to shrink_zones() */
	unsigned long nr_reclaimed;
119 120 121 122 123 124 125 126 127 128

	struct {
		unsigned int dirty;
		unsigned int unqueued_dirty;
		unsigned int congested;
		unsigned int writeback;
		unsigned int immediate;
		unsigned int file_taken;
		unsigned int taken;
	} nr;
L
Linus Torvalds 已提交
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
};

#ifdef ARCH_HAS_PREFETCH
#define prefetch_prev_lru_page(_page, _base, _field)			\
	do {								\
		if ((_page)->lru.prev != _base) {			\
			struct page *prev;				\
									\
			prev = lru_to_page(&(_page->lru));		\
			prefetch(&prev->_field);			\
		}							\
	} while (0)
#else
#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
#endif

#ifdef ARCH_HAS_PREFETCHW
#define prefetchw_prev_lru_page(_page, _base, _field)			\
	do {								\
		if ((_page)->lru.prev != _base) {			\
			struct page *prev;				\
									\
			prev = lru_to_page(&(_page->lru));		\
			prefetchw(&prev->_field);			\
		}							\
	} while (0)
#else
#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
#endif

/*
 * From 0 .. 100.  Higher means more swappy.
 */
int vm_swappiness = 60;
163 164 165 166 167
/*
 * The total number of pages which are beyond the high watermark within all
 * zones.
 */
unsigned long vm_total_pages;
L
Linus Torvalds 已提交
168 169 170 171

static LIST_HEAD(shrinker_list);
static DECLARE_RWSEM(shrinker_rwsem);

A
Andrew Morton 已提交
172
#ifdef CONFIG_MEMCG
173 174
static bool global_reclaim(struct scan_control *sc)
{
175
	return !sc->target_mem_cgroup;
176
}
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197

/**
 * sane_reclaim - is the usual dirty throttling mechanism operational?
 * @sc: scan_control in question
 *
 * The normal page dirty throttling mechanism in balance_dirty_pages() is
 * completely broken with the legacy memcg and direct stalling in
 * shrink_page_list() is used for throttling instead, which lacks all the
 * niceties such as fairness, adaptive pausing, bandwidth proportional
 * allocation and configurability.
 *
 * This function tests whether the vmscan currently in progress can assume
 * that the normal dirty throttling mechanism is operational.
 */
static bool sane_reclaim(struct scan_control *sc)
{
	struct mem_cgroup *memcg = sc->target_mem_cgroup;

	if (!memcg)
		return true;
#ifdef CONFIG_CGROUP_WRITEBACK
198
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
199 200 201 202
		return true;
#endif
	return false;
}
203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225

static void set_memcg_congestion(pg_data_t *pgdat,
				struct mem_cgroup *memcg,
				bool congested)
{
	struct mem_cgroup_per_node *mn;

	if (!memcg)
		return;

	mn = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
	WRITE_ONCE(mn->congested, congested);
}

static bool memcg_congested(pg_data_t *pgdat,
			struct mem_cgroup *memcg)
{
	struct mem_cgroup_per_node *mn;

	mn = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
	return READ_ONCE(mn->congested);

}
226
#else
227 228 229 230
static bool global_reclaim(struct scan_control *sc)
{
	return true;
}
231 232 233 234 235

static bool sane_reclaim(struct scan_control *sc)
{
	return true;
}
236 237 238 239 240 241 242 243 244 245 246 247

static inline void set_memcg_congestion(struct pglist_data *pgdat,
				struct mem_cgroup *memcg, bool congested)
{
}

static inline bool memcg_congested(struct pglist_data *pgdat,
			struct mem_cgroup *memcg)
{
	return false;

}
248 249
#endif

250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
/*
 * This misses isolated pages which are not accounted for to save counters.
 * As the data only determines if reclaim or compaction continues, it is
 * not expected that isolated pages will be a dominating factor.
 */
unsigned long zone_reclaimable_pages(struct zone *zone)
{
	unsigned long nr;

	nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
		zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
	if (get_nr_swap_pages() > 0)
		nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
			zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);

	return nr;
}

268 269 270 271 272 273 274
/**
 * lruvec_lru_size -  Returns the number of pages on the given LRU list.
 * @lruvec: lru vector
 * @lru: lru to use
 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
 */
unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx)
275
{
276 277 278
	unsigned long lru_size;
	int zid;

279
	if (!mem_cgroup_disabled())
280 281 282
		lru_size = mem_cgroup_get_lru_size(lruvec, lru);
	else
		lru_size = node_page_state(lruvec_pgdat(lruvec), NR_LRU_BASE + lru);
283

284 285 286
	for (zid = zone_idx + 1; zid < MAX_NR_ZONES; zid++) {
		struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
		unsigned long size;
287

288 289 290 291 292 293 294 295 296 297 298 299
		if (!managed_zone(zone))
			continue;

		if (!mem_cgroup_disabled())
			size = mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
		else
			size = zone_page_state(&lruvec_pgdat(lruvec)->node_zones[zid],
				       NR_ZONE_LRU_BASE + lru);
		lru_size -= min(size, lru_size);
	}

	return lru_size;
300 301 302

}

L
Linus Torvalds 已提交
303
/*
G
Glauber Costa 已提交
304
 * Add a shrinker callback to be called from the vm.
L
Linus Torvalds 已提交
305
 */
306
int prealloc_shrinker(struct shrinker *shrinker)
L
Linus Torvalds 已提交
307
{
G
Glauber Costa 已提交
308 309 310 311 312 313 314 315
	size_t size = sizeof(*shrinker->nr_deferred);

	if (shrinker->flags & SHRINKER_NUMA_AWARE)
		size *= nr_node_ids;

	shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
	if (!shrinker->nr_deferred)
		return -ENOMEM;
316 317 318 319 320 321 322 323
	return 0;
}

void free_prealloced_shrinker(struct shrinker *shrinker)
{
	kfree(shrinker->nr_deferred);
	shrinker->nr_deferred = NULL;
}
G
Glauber Costa 已提交
324

325 326
void register_shrinker_prepared(struct shrinker *shrinker)
{
327 328 329
	down_write(&shrinker_rwsem);
	list_add_tail(&shrinker->list, &shrinker_list);
	up_write(&shrinker_rwsem);
330 331 332 333 334 335 336 337 338
}

int register_shrinker(struct shrinker *shrinker)
{
	int err = prealloc_shrinker(shrinker);

	if (err)
		return err;
	register_shrinker_prepared(shrinker);
G
Glauber Costa 已提交
339
	return 0;
L
Linus Torvalds 已提交
340
}
341
EXPORT_SYMBOL(register_shrinker);
L
Linus Torvalds 已提交
342 343 344 345

/*
 * Remove one
 */
346
void unregister_shrinker(struct shrinker *shrinker)
L
Linus Torvalds 已提交
347
{
348 349
	if (!shrinker->nr_deferred)
		return;
L
Linus Torvalds 已提交
350 351 352
	down_write(&shrinker_rwsem);
	list_del(&shrinker->list);
	up_write(&shrinker_rwsem);
353
	kfree(shrinker->nr_deferred);
354
	shrinker->nr_deferred = NULL;
L
Linus Torvalds 已提交
355
}
356
EXPORT_SYMBOL(unregister_shrinker);
L
Linus Torvalds 已提交
357 358

#define SHRINK_BATCH 128
G
Glauber Costa 已提交
359

360
static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
361
				    struct shrinker *shrinker, int priority)
G
Glauber Costa 已提交
362 363 364 365
{
	unsigned long freed = 0;
	unsigned long long delta;
	long total_scan;
366
	long freeable;
G
Glauber Costa 已提交
367 368 369 370 371
	long nr;
	long new_nr;
	int nid = shrinkctl->nid;
	long batch_size = shrinker->batch ? shrinker->batch
					  : SHRINK_BATCH;
372
	long scanned = 0, next_deferred;
G
Glauber Costa 已提交
373

374 375
	freeable = shrinker->count_objects(shrinker, shrinkctl);
	if (freeable == 0)
G
Glauber Costa 已提交
376 377 378 379 380 381 382 383 384 385
		return 0;

	/*
	 * copy the current shrinker scan count into a local variable
	 * and zero it so that other concurrent shrinker invocations
	 * don't also do this scanning work.
	 */
	nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);

	total_scan = nr;
386 387 388
	delta = freeable >> priority;
	delta *= 4;
	do_div(delta, shrinker->seeks);
G
Glauber Costa 已提交
389 390
	total_scan += delta;
	if (total_scan < 0) {
391
		pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n",
D
Dave Chinner 已提交
392
		       shrinker->scan_objects, total_scan);
393
		total_scan = freeable;
394 395 396
		next_deferred = nr;
	} else
		next_deferred = total_scan;
G
Glauber Costa 已提交
397 398 399 400 401 402 403

	/*
	 * We need to avoid excessive windup on filesystem shrinkers
	 * due to large numbers of GFP_NOFS allocations causing the
	 * shrinkers to return -1 all the time. This results in a large
	 * nr being built up so when a shrink that can do some work
	 * comes along it empties the entire cache due to nr >>>
404
	 * freeable. This is bad for sustaining a working set in
G
Glauber Costa 已提交
405 406 407 408 409
	 * memory.
	 *
	 * Hence only allow the shrinker to scan the entire cache when
	 * a large delta change is calculated directly.
	 */
410 411
	if (delta < freeable / 4)
		total_scan = min(total_scan, freeable / 2);
G
Glauber Costa 已提交
412 413 414 415 416 417

	/*
	 * Avoid risking looping forever due to too large nr value:
	 * never try to free more than twice the estimate number of
	 * freeable entries.
	 */
418 419
	if (total_scan > freeable * 2)
		total_scan = freeable * 2;
G
Glauber Costa 已提交
420 421

	trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
422
				   freeable, delta, total_scan, priority);
G
Glauber Costa 已提交
423

424 425 426 427 428 429 430 431 432 433 434
	/*
	 * Normally, we should not scan less than batch_size objects in one
	 * pass to avoid too frequent shrinker calls, but if the slab has less
	 * than batch_size objects in total and we are really tight on memory,
	 * we will try to reclaim all available objects, otherwise we can end
	 * up failing allocations although there are plenty of reclaimable
	 * objects spread over several slabs with usage less than the
	 * batch_size.
	 *
	 * We detect the "tight on memory" situations by looking at the total
	 * number of objects we want to scan (total_scan). If it is greater
435
	 * than the total number of objects on slab (freeable), we must be
436 437 438 439
	 * scanning at high prio and therefore should try to reclaim as much as
	 * possible.
	 */
	while (total_scan >= batch_size ||
440
	       total_scan >= freeable) {
D
Dave Chinner 已提交
441
		unsigned long ret;
442
		unsigned long nr_to_scan = min(batch_size, total_scan);
G
Glauber Costa 已提交
443

444
		shrinkctl->nr_to_scan = nr_to_scan;
445
		shrinkctl->nr_scanned = nr_to_scan;
D
Dave Chinner 已提交
446 447 448 449
		ret = shrinker->scan_objects(shrinker, shrinkctl);
		if (ret == SHRINK_STOP)
			break;
		freed += ret;
G
Glauber Costa 已提交
450

451 452 453
		count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
		total_scan -= shrinkctl->nr_scanned;
		scanned += shrinkctl->nr_scanned;
G
Glauber Costa 已提交
454 455 456 457

		cond_resched();
	}

458 459 460 461
	if (next_deferred >= scanned)
		next_deferred -= scanned;
	else
		next_deferred = 0;
G
Glauber Costa 已提交
462 463 464 465 466
	/*
	 * move the unused scan count back into the shrinker in a
	 * manner that handles concurrent updates. If we exhausted the
	 * scan, there is no need to do an update.
	 */
467 468
	if (next_deferred > 0)
		new_nr = atomic_long_add_return(next_deferred,
G
Glauber Costa 已提交
469 470 471 472
						&shrinker->nr_deferred[nid]);
	else
		new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);

473
	trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
G
Glauber Costa 已提交
474
	return freed;
475 476
}

477
/**
478
 * shrink_slab - shrink slab caches
479 480
 * @gfp_mask: allocation context
 * @nid: node whose slab caches to target
481
 * @memcg: memory cgroup whose slab caches to target
482
 * @priority: the reclaim priority
L
Linus Torvalds 已提交
483
 *
484
 * Call the shrink functions to age shrinkable caches.
L
Linus Torvalds 已提交
485
 *
486 487
 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
 * unaware shrinkers will receive a node id of 0 instead.
L
Linus Torvalds 已提交
488
 *
489 490
 * @memcg specifies the memory cgroup to target. If it is not NULL,
 * only shrinkers with SHRINKER_MEMCG_AWARE set will be called to scan
491 492
 * objects from the memory cgroup specified. Otherwise, only unaware
 * shrinkers are called.
493
 *
494 495
 * @priority is sc->priority, we take the number of objects and >> by priority
 * in order to get the scan target.
496
 *
497
 * Returns the number of reclaimed slab objects.
L
Linus Torvalds 已提交
498
 */
499 500
static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
				 struct mem_cgroup *memcg,
501
				 int priority)
L
Linus Torvalds 已提交
502 503
{
	struct shrinker *shrinker;
D
Dave Chinner 已提交
504
	unsigned long freed = 0;
L
Linus Torvalds 已提交
505

506
	if (memcg && (!memcg_kmem_enabled() || !mem_cgroup_online(memcg)))
507 508
		return 0;

509
	if (!down_read_trylock(&shrinker_rwsem))
510
		goto out;
L
Linus Torvalds 已提交
511 512

	list_for_each_entry(shrinker, &shrinker_list, list) {
513 514 515
		struct shrink_control sc = {
			.gfp_mask = gfp_mask,
			.nid = nid,
516
			.memcg = memcg,
517
		};
518

519 520 521 522 523 524 525
		/*
		 * If kernel memory accounting is disabled, we ignore
		 * SHRINKER_MEMCG_AWARE flag and call all shrinkers
		 * passing NULL for memcg.
		 */
		if (memcg_kmem_enabled() &&
		    !!memcg != !!(shrinker->flags & SHRINKER_MEMCG_AWARE))
526 527
			continue;

528 529
		if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
			sc.nid = 0;
L
Linus Torvalds 已提交
530

531
		freed += do_shrink_slab(&sc, shrinker, priority);
532 533 534 535 536 537 538 539 540
		/*
		 * Bail out if someone want to register a new shrinker to
		 * prevent the regsitration from being stalled for long periods
		 * by parallel ongoing shrinking.
		 */
		if (rwsem_is_contended(&shrinker_rwsem)) {
			freed = freed ? : 1;
			break;
		}
L
Linus Torvalds 已提交
541
	}
542

L
Linus Torvalds 已提交
543
	up_read(&shrinker_rwsem);
544 545
out:
	cond_resched();
D
Dave Chinner 已提交
546
	return freed;
L
Linus Torvalds 已提交
547 548
}

549 550 551 552 553 554 555 556 557
void drop_slab_node(int nid)
{
	unsigned long freed;

	do {
		struct mem_cgroup *memcg = NULL;

		freed = 0;
		do {
558
			freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
559 560 561 562 563 564 565 566 567 568 569 570
		} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
	} while (freed > 10);
}

void drop_slab(void)
{
	int nid;

	for_each_online_node(nid)
		drop_slab_node(nid);
}

L
Linus Torvalds 已提交
571 572
static inline int is_page_cache_freeable(struct page *page)
{
573 574 575 576 577
	/*
	 * A freeable page cache page is referenced only by the caller
	 * that isolated the page, the page cache radix tree and
	 * optional buffer heads at page->private.
	 */
578 579 580
	int radix_pins = PageTransHuge(page) && PageSwapCache(page) ?
		HPAGE_PMD_NR : 1;
	return page_count(page) - page_has_private(page) == 1 + radix_pins;
L
Linus Torvalds 已提交
581 582
}

583
static int may_write_to_inode(struct inode *inode, struct scan_control *sc)
L
Linus Torvalds 已提交
584
{
585
	if (current->flags & PF_SWAPWRITE)
L
Linus Torvalds 已提交
586
		return 1;
587
	if (!inode_write_congested(inode))
L
Linus Torvalds 已提交
588
		return 1;
589
	if (inode_to_bdi(inode) == current->backing_dev_info)
L
Linus Torvalds 已提交
590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608
		return 1;
	return 0;
}

/*
 * We detected a synchronous write error writing a page out.  Probably
 * -ENOSPC.  We need to propagate that into the address_space for a subsequent
 * fsync(), msync() or close().
 *
 * The tricky part is that after writepage we cannot touch the mapping: nothing
 * prevents it from being freed up.  But we have a ref on the page and once
 * that page is locked, the mapping is pinned.
 *
 * We're allowed to run sleeping lock_page() here because we know the caller has
 * __GFP_FS.
 */
static void handle_write_error(struct address_space *mapping,
				struct page *page, int error)
{
J
Jens Axboe 已提交
609
	lock_page(page);
610 611
	if (page_mapping(page) == mapping)
		mapping_set_error(mapping, error);
L
Linus Torvalds 已提交
612 613 614
	unlock_page(page);
}

615 616 617 618 619 620 621 622 623 624 625 626
/* possible outcome of pageout() */
typedef enum {
	/* failed to write page out, page is locked */
	PAGE_KEEP,
	/* move page to the active list, page is locked */
	PAGE_ACTIVATE,
	/* page has been sent to the disk successfully, page is unlocked */
	PAGE_SUCCESS,
	/* page is clean and locked */
	PAGE_CLEAN,
} pageout_t;

L
Linus Torvalds 已提交
627
/*
A
Andrew Morton 已提交
628 629
 * pageout is called by shrink_page_list() for each dirty page.
 * Calls ->writepage().
L
Linus Torvalds 已提交
630
 */
631
static pageout_t pageout(struct page *page, struct address_space *mapping,
632
			 struct scan_control *sc)
L
Linus Torvalds 已提交
633 634 635 636 637 638 639 640
{
	/*
	 * If the page is dirty, only perform writeback if that write
	 * will be non-blocking.  To prevent this allocation from being
	 * stalled by pagecache activity.  But note that there may be
	 * stalls if we need to run get_block().  We could test
	 * PagePrivate for that.
	 *
641
	 * If this process is currently in __generic_file_write_iter() against
L
Linus Torvalds 已提交
642 643 644 645 646 647 648 649 650 651 652 653 654 655 656
	 * this page's queue, we can perform writeback even if that
	 * will block.
	 *
	 * If the page is swapcache, write it back even if that would
	 * block, for some throttling. This happens by accident, because
	 * swap_backing_dev_info is bust: it doesn't reflect the
	 * congestion state of the swapdevs.  Easy to fix, if needed.
	 */
	if (!is_page_cache_freeable(page))
		return PAGE_KEEP;
	if (!mapping) {
		/*
		 * Some data journaling orphaned pages can have
		 * page->mapping == NULL while being dirty with clean buffers.
		 */
657
		if (page_has_private(page)) {
L
Linus Torvalds 已提交
658 659
			if (try_to_free_buffers(page)) {
				ClearPageDirty(page);
660
				pr_info("%s: orphaned page\n", __func__);
L
Linus Torvalds 已提交
661 662 663 664 665 666 667
				return PAGE_CLEAN;
			}
		}
		return PAGE_KEEP;
	}
	if (mapping->a_ops->writepage == NULL)
		return PAGE_ACTIVATE;
668
	if (!may_write_to_inode(mapping->host, sc))
L
Linus Torvalds 已提交
669 670 671 672 673 674 675
		return PAGE_KEEP;

	if (clear_page_dirty_for_io(page)) {
		int res;
		struct writeback_control wbc = {
			.sync_mode = WB_SYNC_NONE,
			.nr_to_write = SWAP_CLUSTER_MAX,
676 677
			.range_start = 0,
			.range_end = LLONG_MAX,
L
Linus Torvalds 已提交
678 679 680 681 682 683 684
			.for_reclaim = 1,
		};

		SetPageReclaim(page);
		res = mapping->a_ops->writepage(page, &wbc);
		if (res < 0)
			handle_write_error(mapping, page, res);
685
		if (res == AOP_WRITEPAGE_ACTIVATE) {
L
Linus Torvalds 已提交
686 687 688
			ClearPageReclaim(page);
			return PAGE_ACTIVATE;
		}
689

L
Linus Torvalds 已提交
690 691 692 693
		if (!PageWriteback(page)) {
			/* synchronous write or broken a_ops? */
			ClearPageReclaim(page);
		}
694
		trace_mm_vmscan_writepage(page);
695
		inc_node_page_state(page, NR_VMSCAN_WRITE);
L
Linus Torvalds 已提交
696 697 698 699 700 701
		return PAGE_SUCCESS;
	}

	return PAGE_CLEAN;
}

702
/*
N
Nick Piggin 已提交
703 704
 * Same as remove_mapping, but if the page is removed from the mapping, it
 * gets returned with a refcount of 0.
705
 */
706 707
static int __remove_mapping(struct address_space *mapping, struct page *page,
			    bool reclaimed)
708
{
709
	unsigned long flags;
710
	int refcount;
711

712 713
	BUG_ON(!PageLocked(page));
	BUG_ON(mapping != page_mapping(page));
714

M
Matthew Wilcox 已提交
715
	xa_lock_irqsave(&mapping->i_pages, flags);
716
	/*
N
Nick Piggin 已提交
717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735
	 * The non racy check for a busy page.
	 *
	 * Must be careful with the order of the tests. When someone has
	 * a ref to the page, it may be possible that they dirty it then
	 * drop the reference. So if PageDirty is tested before page_count
	 * here, then the following race may occur:
	 *
	 * get_user_pages(&page);
	 * [user mapping goes away]
	 * write_to(page);
	 *				!PageDirty(page)    [good]
	 * SetPageDirty(page);
	 * put_page(page);
	 *				!page_count(page)   [good, discard it]
	 *
	 * [oops, our write_to data is lost]
	 *
	 * Reversing the order of the tests ensures such a situation cannot
	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
736
	 * load is not satisfied before that of page->_refcount.
N
Nick Piggin 已提交
737 738
	 *
	 * Note that if SetPageDirty is always performed via set_page_dirty,
M
Matthew Wilcox 已提交
739
	 * and thus under the i_pages lock, then this ordering is not required.
740
	 */
741 742 743 744 745
	if (unlikely(PageTransHuge(page)) && PageSwapCache(page))
		refcount = 1 + HPAGE_PMD_NR;
	else
		refcount = 2;
	if (!page_ref_freeze(page, refcount))
746
		goto cannot_free;
N
Nick Piggin 已提交
747 748
	/* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
	if (unlikely(PageDirty(page))) {
749
		page_ref_unfreeze(page, refcount);
750
		goto cannot_free;
N
Nick Piggin 已提交
751
	}
752 753 754

	if (PageSwapCache(page)) {
		swp_entry_t swap = { .val = page_private(page) };
755
		mem_cgroup_swapout(page, swap);
756
		__delete_from_swap_cache(page);
M
Matthew Wilcox 已提交
757
		xa_unlock_irqrestore(&mapping->i_pages, flags);
758
		put_swap_page(page, swap);
N
Nick Piggin 已提交
759
	} else {
760
		void (*freepage)(struct page *);
761
		void *shadow = NULL;
762 763

		freepage = mapping->a_ops->freepage;
764 765 766 767 768 769 770 771 772
		/*
		 * Remember a shadow entry for reclaimed file cache in
		 * order to detect refaults, thus thrashing, later on.
		 *
		 * But don't store shadows in an address space that is
		 * already exiting.  This is not just an optizimation,
		 * inode reclaim needs to empty out the radix tree or
		 * the nodes are lost.  Don't plant shadows behind its
		 * back.
773 774 775 776 777
		 *
		 * We also don't store shadows for DAX mappings because the
		 * only page cache pages found in these are zero pages
		 * covering holes, and because we don't want to mix DAX
		 * exceptional entries and shadow exceptional entries in the
M
Matthew Wilcox 已提交
778
		 * same address_space.
779 780
		 */
		if (reclaimed && page_is_file_cache(page) &&
781
		    !mapping_exiting(mapping) && !dax_mapping(mapping))
782
			shadow = workingset_eviction(mapping, page);
J
Johannes Weiner 已提交
783
		__delete_from_page_cache(page, shadow);
M
Matthew Wilcox 已提交
784
		xa_unlock_irqrestore(&mapping->i_pages, flags);
785 786 787

		if (freepage != NULL)
			freepage(page);
788 789 790 791 792
	}

	return 1;

cannot_free:
M
Matthew Wilcox 已提交
793
	xa_unlock_irqrestore(&mapping->i_pages, flags);
794 795 796
	return 0;
}

N
Nick Piggin 已提交
797 798 799 800 801 802 803 804
/*
 * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
 * someone else has a ref on the page, abort and return 0.  If it was
 * successfully detached, return 1.  Assumes the caller has a single ref on
 * this page.
 */
int remove_mapping(struct address_space *mapping, struct page *page)
{
805
	if (__remove_mapping(mapping, page, false)) {
N
Nick Piggin 已提交
806 807 808 809 810
		/*
		 * Unfreezing the refcount with 1 rather than 2 effectively
		 * drops the pagecache ref for us without requiring another
		 * atomic operation.
		 */
811
		page_ref_unfreeze(page, 1);
N
Nick Piggin 已提交
812 813 814 815 816
		return 1;
	}
	return 0;
}

L
Lee Schermerhorn 已提交
817 818 819 820 821 822 823 824 825 826 827
/**
 * putback_lru_page - put previously isolated page onto appropriate LRU list
 * @page: page to be put back to appropriate lru list
 *
 * Add previously isolated @page to appropriate LRU list.
 * Page may still be unevictable for other reasons.
 *
 * lru_lock must not be held, interrupts must be enabled.
 */
void putback_lru_page(struct page *page)
{
828
	lru_cache_add(page);
L
Lee Schermerhorn 已提交
829 830 831
	put_page(page);		/* drop ref from isolate */
}

832 833 834
enum page_references {
	PAGEREF_RECLAIM,
	PAGEREF_RECLAIM_CLEAN,
835
	PAGEREF_KEEP,
836 837 838 839 840 841
	PAGEREF_ACTIVATE,
};

static enum page_references page_check_references(struct page *page,
						  struct scan_control *sc)
{
842
	int referenced_ptes, referenced_page;
843 844
	unsigned long vm_flags;

845 846
	referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
					  &vm_flags);
847
	referenced_page = TestClearPageReferenced(page);
848 849 850 851 852 853 854 855

	/*
	 * Mlock lost the isolation race with us.  Let try_to_unmap()
	 * move the page to the unevictable list.
	 */
	if (vm_flags & VM_LOCKED)
		return PAGEREF_RECLAIM;

856
	if (referenced_ptes) {
857
		if (PageSwapBacked(page))
858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874
			return PAGEREF_ACTIVATE;
		/*
		 * All mapped pages start out with page table
		 * references from the instantiating fault, so we need
		 * to look twice if a mapped file page is used more
		 * than once.
		 *
		 * Mark it and spare it for another trip around the
		 * inactive list.  Another page table reference will
		 * lead to its activation.
		 *
		 * Note: the mark is set for activated pages as well
		 * so that recently deactivated but used pages are
		 * quickly recovered.
		 */
		SetPageReferenced(page);

875
		if (referenced_page || referenced_ptes > 1)
876 877
			return PAGEREF_ACTIVATE;

878 879 880 881 882 883
		/*
		 * Activate file-backed executable pages after first usage.
		 */
		if (vm_flags & VM_EXEC)
			return PAGEREF_ACTIVATE;

884 885
		return PAGEREF_KEEP;
	}
886 887

	/* Reclaim if clean, defer dirty pages to writeback */
888
	if (referenced_page && !PageSwapBacked(page))
889 890 891
		return PAGEREF_RECLAIM_CLEAN;

	return PAGEREF_RECLAIM;
892 893
}

894 895 896 897
/* Check if a page is dirty or under writeback */
static void page_check_dirty_writeback(struct page *page,
				       bool *dirty, bool *writeback)
{
898 899
	struct address_space *mapping;

900 901 902 903
	/*
	 * Anonymous pages are not handled by flushers and must be written
	 * from reclaim context. Do not stall reclaim based on them
	 */
S
Shaohua Li 已提交
904 905
	if (!page_is_file_cache(page) ||
	    (PageAnon(page) && !PageSwapBacked(page))) {
906 907 908 909 910 911 912 913
		*dirty = false;
		*writeback = false;
		return;
	}

	/* By default assume that the page flags are accurate */
	*dirty = PageDirty(page);
	*writeback = PageWriteback(page);
914 915 916 917 918 919 920 921

	/* Verify dirty/writeback state if the filesystem supports it */
	if (!page_has_private(page))
		return;

	mapping = page_mapping(page);
	if (mapping && mapping->a_ops->is_dirty_writeback)
		mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
922 923
}

L
Linus Torvalds 已提交
924
/*
A
Andrew Morton 已提交
925
 * shrink_page_list() returns the number of reclaimed pages
L
Linus Torvalds 已提交
926
 */
A
Andrew Morton 已提交
927
static unsigned long shrink_page_list(struct list_head *page_list,
M
Mel Gorman 已提交
928
				      struct pglist_data *pgdat,
929
				      struct scan_control *sc,
930
				      enum ttu_flags ttu_flags,
931
				      struct reclaim_stat *stat,
932
				      bool force_reclaim)
L
Linus Torvalds 已提交
933 934
{
	LIST_HEAD(ret_pages);
935
	LIST_HEAD(free_pages);
L
Linus Torvalds 已提交
936
	int pgactivate = 0;
937 938 939 940 941 942
	unsigned nr_unqueued_dirty = 0;
	unsigned nr_dirty = 0;
	unsigned nr_congested = 0;
	unsigned nr_reclaimed = 0;
	unsigned nr_writeback = 0;
	unsigned nr_immediate = 0;
943 944
	unsigned nr_ref_keep = 0;
	unsigned nr_unmap_fail = 0;
L
Linus Torvalds 已提交
945 946 947 948 949 950 951

	cond_resched();

	while (!list_empty(page_list)) {
		struct address_space *mapping;
		struct page *page;
		int may_enter_fs;
952
		enum page_references references = PAGEREF_RECLAIM_CLEAN;
953
		bool dirty, writeback;
L
Linus Torvalds 已提交
954 955 956 957 958 959

		cond_resched();

		page = lru_to_page(page_list);
		list_del(&page->lru);

N
Nick Piggin 已提交
960
		if (!trylock_page(page))
L
Linus Torvalds 已提交
961 962
			goto keep;

963
		VM_BUG_ON_PAGE(PageActive(page), page);
L
Linus Torvalds 已提交
964 965

		sc->nr_scanned++;
966

967
		if (unlikely(!page_evictable(page)))
M
Minchan Kim 已提交
968
			goto activate_locked;
L
Lee Schermerhorn 已提交
969

970
		if (!sc->may_unmap && page_mapped(page))
971 972
			goto keep_locked;

L
Linus Torvalds 已提交
973
		/* Double the slab pressure for mapped and swapcache pages */
S
Shaohua Li 已提交
974 975
		if ((page_mapped(page) || PageSwapCache(page)) &&
		    !(PageAnon(page) && !PageSwapBacked(page)))
L
Linus Torvalds 已提交
976 977
			sc->nr_scanned++;

978 979 980
		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));

981
		/*
982
		 * The number of dirty pages determines if a node is marked
983 984 985 986 987 988 989 990 991 992 993
		 * reclaim_congested which affects wait_iff_congested. kswapd
		 * will stall and start writing pages if the tail of the LRU
		 * is all dirty unqueued pages.
		 */
		page_check_dirty_writeback(page, &dirty, &writeback);
		if (dirty || writeback)
			nr_dirty++;

		if (dirty && !writeback)
			nr_unqueued_dirty++;

994 995 996 997 998 999
		/*
		 * Treat this page as congested if the underlying BDI is or if
		 * pages are cycling through the LRU so quickly that the
		 * pages marked for immediate reclaim are making it to the
		 * end of the LRU a second time.
		 */
1000
		mapping = page_mapping(page);
1001
		if (((dirty || writeback) && mapping &&
1002
		     inode_write_congested(mapping->host)) ||
1003
		    (writeback && PageReclaim(page)))
1004 1005
			nr_congested++;

1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016
		/*
		 * If a page at the tail of the LRU is under writeback, there
		 * are three cases to consider.
		 *
		 * 1) If reclaim is encountering an excessive number of pages
		 *    under writeback and this page is both under writeback and
		 *    PageReclaim then it indicates that pages are being queued
		 *    for IO but are being recycled through the LRU before the
		 *    IO can complete. Waiting on the page itself risks an
		 *    indefinite stall if it is impossible to writeback the
		 *    page due to IO error or disconnected storage so instead
1017 1018
		 *    note that the LRU is being scanned too quickly and the
		 *    caller can stall after page list has been processed.
1019
		 *
1020
		 * 2) Global or new memcg reclaim encounters a page that is
1021 1022 1023
		 *    not marked for immediate reclaim, or the caller does not
		 *    have __GFP_FS (or __GFP_IO if it's simply going to swap,
		 *    not to fs). In this case mark the page for immediate
1024
		 *    reclaim and continue scanning.
1025
		 *
1026 1027
		 *    Require may_enter_fs because we would wait on fs, which
		 *    may not have submitted IO yet. And the loop driver might
1028 1029 1030 1031 1032
		 *    enter reclaim, and deadlock if it waits on a page for
		 *    which it is needed to do the write (loop masks off
		 *    __GFP_IO|__GFP_FS for this reason); but more thought
		 *    would probably show more reasons.
		 *
1033
		 * 3) Legacy memcg encounters a page that is already marked
1034 1035 1036 1037
		 *    PageReclaim. memcg does not have any dirty pages
		 *    throttling so we could easily OOM just because too many
		 *    pages are in writeback and there is nothing else to
		 *    reclaim. Wait for the writeback to complete.
1038 1039 1040 1041 1042 1043 1044 1045 1046
		 *
		 * In cases 1) and 2) we activate the pages to get them out of
		 * the way while we continue scanning for clean pages on the
		 * inactive list and refilling from the active list. The
		 * observation here is that waiting for disk writes is more
		 * expensive than potentially causing reloads down the line.
		 * Since they're marked for immediate reclaim, they won't put
		 * memory pressure on the cache working set any longer than it
		 * takes to write them to disk.
1047
		 */
1048
		if (PageWriteback(page)) {
1049 1050 1051
			/* Case 1 above */
			if (current_is_kswapd() &&
			    PageReclaim(page) &&
M
Mel Gorman 已提交
1052
			    test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1053
				nr_immediate++;
1054
				goto activate_locked;
1055 1056

			/* Case 2 above */
1057
			} else if (sane_reclaim(sc) ||
1058
			    !PageReclaim(page) || !may_enter_fs) {
1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070
				/*
				 * This is slightly racy - end_page_writeback()
				 * might have just cleared PageReclaim, then
				 * setting PageReclaim here end up interpreted
				 * as PageReadahead - but that does not matter
				 * enough to care.  What we do want is for this
				 * page to have PageReclaim set next time memcg
				 * reclaim reaches the tests above, so it will
				 * then wait_on_page_writeback() to avoid OOM;
				 * and it's also appropriate in global reclaim.
				 */
				SetPageReclaim(page);
1071
				nr_writeback++;
1072
				goto activate_locked;
1073 1074 1075

			/* Case 3 above */
			} else {
1076
				unlock_page(page);
1077
				wait_on_page_writeback(page);
1078 1079 1080
				/* then go back and try same page again */
				list_add_tail(&page->lru, page_list);
				continue;
1081
			}
1082
		}
L
Linus Torvalds 已提交
1083

1084 1085 1086
		if (!force_reclaim)
			references = page_check_references(page, sc);

1087 1088
		switch (references) {
		case PAGEREF_ACTIVATE:
L
Linus Torvalds 已提交
1089
			goto activate_locked;
1090
		case PAGEREF_KEEP:
1091
			nr_ref_keep++;
1092
			goto keep_locked;
1093 1094 1095 1096
		case PAGEREF_RECLAIM:
		case PAGEREF_RECLAIM_CLEAN:
			; /* try to reclaim the page below */
		}
L
Linus Torvalds 已提交
1097 1098 1099 1100

		/*
		 * Anonymous process memory has backing store?
		 * Try to allocate it some swap space here.
S
Shaohua Li 已提交
1101
		 * Lazyfree page could be freed directly
L
Linus Torvalds 已提交
1102
		 */
1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127
		if (PageAnon(page) && PageSwapBacked(page)) {
			if (!PageSwapCache(page)) {
				if (!(sc->gfp_mask & __GFP_IO))
					goto keep_locked;
				if (PageTransHuge(page)) {
					/* cannot split THP, skip it */
					if (!can_split_huge_page(page, NULL))
						goto activate_locked;
					/*
					 * Split pages without a PMD map right
					 * away. Chances are some or all of the
					 * tail pages can be freed without IO.
					 */
					if (!compound_mapcount(page) &&
					    split_huge_page_to_list(page,
								    page_list))
						goto activate_locked;
				}
				if (!add_to_swap(page)) {
					if (!PageTransHuge(page))
						goto activate_locked;
					/* Fallback to swap normal pages */
					if (split_huge_page_to_list(page,
								    page_list))
						goto activate_locked;
1128 1129 1130
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
					count_vm_event(THP_SWPOUT_FALLBACK);
#endif
1131 1132 1133
					if (!add_to_swap(page))
						goto activate_locked;
				}
1134

1135
				may_enter_fs = 1;
L
Linus Torvalds 已提交
1136

1137 1138 1139
				/* Adding to swap updated mapping */
				mapping = page_mapping(page);
			}
1140 1141 1142 1143
		} else if (unlikely(PageTransHuge(page))) {
			/* Split file THP */
			if (split_huge_page_to_list(page, page_list))
				goto keep_locked;
1144
		}
L
Linus Torvalds 已提交
1145 1146 1147 1148 1149

		/*
		 * The page is mapped into the page tables of one or more
		 * processes. Try to unmap it here.
		 */
S
Shaohua Li 已提交
1150
		if (page_mapped(page)) {
1151 1152 1153 1154 1155
			enum ttu_flags flags = ttu_flags | TTU_BATCH_FLUSH;

			if (unlikely(PageTransHuge(page)))
				flags |= TTU_SPLIT_HUGE_PMD;
			if (!try_to_unmap(page, flags)) {
1156
				nr_unmap_fail++;
L
Linus Torvalds 已提交
1157 1158 1159 1160 1161
				goto activate_locked;
			}
		}

		if (PageDirty(page)) {
1162
			/*
1163 1164 1165 1166 1167 1168 1169 1170
			 * Only kswapd can writeback filesystem pages
			 * to avoid risk of stack overflow. But avoid
			 * injecting inefficient single-page IO into
			 * flusher writeback as much as possible: only
			 * write pages when we've encountered many
			 * dirty pages, and when we've already scanned
			 * the rest of the LRU for clean pages and see
			 * the same dirty pages again (PageReclaim).
1171
			 */
1172
			if (page_is_file_cache(page) &&
1173 1174
			    (!current_is_kswapd() || !PageReclaim(page) ||
			     !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1175 1176 1177 1178 1179 1180
				/*
				 * Immediately reclaim when written back.
				 * Similar in principal to deactivate_page()
				 * except we already have the page isolated
				 * and know it's dirty
				 */
1181
				inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
1182 1183
				SetPageReclaim(page);

1184
				goto activate_locked;
1185 1186
			}

1187
			if (references == PAGEREF_RECLAIM_CLEAN)
L
Linus Torvalds 已提交
1188
				goto keep_locked;
1189
			if (!may_enter_fs)
L
Linus Torvalds 已提交
1190
				goto keep_locked;
1191
			if (!sc->may_writepage)
L
Linus Torvalds 已提交
1192 1193
				goto keep_locked;

1194 1195 1196 1197 1198 1199
			/*
			 * Page is dirty. Flush the TLB if a writable entry
			 * potentially exists to avoid CPU writes after IO
			 * starts and then write it out here.
			 */
			try_to_unmap_flush_dirty();
1200
			switch (pageout(page, mapping, sc)) {
L
Linus Torvalds 已提交
1201 1202 1203 1204 1205
			case PAGE_KEEP:
				goto keep_locked;
			case PAGE_ACTIVATE:
				goto activate_locked;
			case PAGE_SUCCESS:
1206
				if (PageWriteback(page))
1207
					goto keep;
1208
				if (PageDirty(page))
L
Linus Torvalds 已提交
1209
					goto keep;
1210

L
Linus Torvalds 已提交
1211 1212 1213 1214
				/*
				 * A synchronous write - probably a ramdisk.  Go
				 * ahead and try to reclaim the page.
				 */
N
Nick Piggin 已提交
1215
				if (!trylock_page(page))
L
Linus Torvalds 已提交
1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234
					goto keep;
				if (PageDirty(page) || PageWriteback(page))
					goto keep_locked;
				mapping = page_mapping(page);
			case PAGE_CLEAN:
				; /* try to free the page below */
			}
		}

		/*
		 * If the page has buffers, try to free the buffer mappings
		 * associated with this page. If we succeed we try to free
		 * the page as well.
		 *
		 * We do this even if the page is PageDirty().
		 * try_to_release_page() does not perform I/O, but it is
		 * possible for a page to have PageDirty set, but it is actually
		 * clean (all its buffers are clean).  This happens if the
		 * buffers were written out directly, with submit_bh(). ext3
L
Lee Schermerhorn 已提交
1235
		 * will do this, as well as the blockdev mapping.
L
Linus Torvalds 已提交
1236 1237 1238 1239 1240 1241 1242 1243 1244 1245
		 * try_to_release_page() will discover that cleanness and will
		 * drop the buffers and mark the page clean - it can be freed.
		 *
		 * Rarely, pages can have buffers and no ->mapping.  These are
		 * the pages which were not successfully invalidated in
		 * truncate_complete_page().  We try to drop those buffers here
		 * and if that worked, and the page is no longer mapped into
		 * process address space (page_count == 1) it can be freed.
		 * Otherwise, leave the page on the LRU so it is swappable.
		 */
1246
		if (page_has_private(page)) {
L
Linus Torvalds 已提交
1247 1248
			if (!try_to_release_page(page, sc->gfp_mask))
				goto activate_locked;
N
Nick Piggin 已提交
1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264
			if (!mapping && page_count(page) == 1) {
				unlock_page(page);
				if (put_page_testzero(page))
					goto free_it;
				else {
					/*
					 * rare race with speculative reference.
					 * the speculative reference will free
					 * this page shortly, so we may
					 * increment nr_reclaimed here (and
					 * leave it off the LRU).
					 */
					nr_reclaimed++;
					continue;
				}
			}
L
Linus Torvalds 已提交
1265 1266
		}

S
Shaohua Li 已提交
1267 1268 1269 1270 1271 1272 1273 1274
		if (PageAnon(page) && !PageSwapBacked(page)) {
			/* follow __remove_mapping for reference */
			if (!page_ref_freeze(page, 1))
				goto keep_locked;
			if (PageDirty(page)) {
				page_ref_unfreeze(page, 1);
				goto keep_locked;
			}
L
Linus Torvalds 已提交
1275

S
Shaohua Li 已提交
1276
			count_vm_event(PGLAZYFREED);
1277
			count_memcg_page_event(page, PGLAZYFREED);
S
Shaohua Li 已提交
1278 1279
		} else if (!mapping || !__remove_mapping(mapping, page, true))
			goto keep_locked;
N
Nick Piggin 已提交
1280 1281 1282 1283 1284 1285 1286
		/*
		 * At this point, we have no other references and there is
		 * no way to pick any more up (removed from LRU, removed
		 * from pagecache). Can use non-atomic bitops now (and
		 * we obviously don't have to worry about waking up a process
		 * waiting on the page lock, because there are no references.
		 */
1287
		__ClearPageLocked(page);
N
Nick Piggin 已提交
1288
free_it:
1289
		nr_reclaimed++;
1290 1291 1292 1293 1294

		/*
		 * Is there need to periodically free_page_list? It would
		 * appear not as the counts should be low
		 */
1295 1296 1297 1298 1299
		if (unlikely(PageTransHuge(page))) {
			mem_cgroup_uncharge(page);
			(*get_compound_page_dtor(page))(page);
		} else
			list_add(&page->lru, &free_pages);
L
Linus Torvalds 已提交
1300 1301 1302
		continue;

activate_locked:
1303
		/* Not a candidate for swapping, so reclaim swap space. */
M
Minchan Kim 已提交
1304 1305
		if (PageSwapCache(page) && (mem_cgroup_swap_full(page) ||
						PageMlocked(page)))
1306
			try_to_free_swap(page);
1307
		VM_BUG_ON_PAGE(PageActive(page), page);
M
Minchan Kim 已提交
1308 1309 1310
		if (!PageMlocked(page)) {
			SetPageActive(page);
			pgactivate++;
1311
			count_memcg_page_event(page, PGACTIVATE);
M
Minchan Kim 已提交
1312
		}
L
Linus Torvalds 已提交
1313 1314 1315 1316
keep_locked:
		unlock_page(page);
keep:
		list_add(&page->lru, &ret_pages);
1317
		VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
L
Linus Torvalds 已提交
1318
	}
1319

1320
	mem_cgroup_uncharge_list(&free_pages);
1321
	try_to_unmap_flush();
1322
	free_unref_page_list(&free_pages);
1323

L
Linus Torvalds 已提交
1324
	list_splice(&ret_pages, page_list);
1325
	count_vm_events(PGACTIVATE, pgactivate);
1326

1327 1328 1329 1330 1331 1332
	if (stat) {
		stat->nr_dirty = nr_dirty;
		stat->nr_congested = nr_congested;
		stat->nr_unqueued_dirty = nr_unqueued_dirty;
		stat->nr_writeback = nr_writeback;
		stat->nr_immediate = nr_immediate;
1333 1334 1335
		stat->nr_activate = pgactivate;
		stat->nr_ref_keep = nr_ref_keep;
		stat->nr_unmap_fail = nr_unmap_fail;
1336
	}
1337
	return nr_reclaimed;
L
Linus Torvalds 已提交
1338 1339
}

1340 1341 1342 1343 1344 1345 1346 1347
unsigned long reclaim_clean_pages_from_list(struct zone *zone,
					    struct list_head *page_list)
{
	struct scan_control sc = {
		.gfp_mask = GFP_KERNEL,
		.priority = DEF_PRIORITY,
		.may_unmap = 1,
	};
1348
	unsigned long ret;
1349 1350 1351 1352
	struct page *page, *next;
	LIST_HEAD(clean_pages);

	list_for_each_entry_safe(page, next, page_list, lru) {
1353
		if (page_is_file_cache(page) && !PageDirty(page) &&
1354
		    !__PageMovable(page)) {
1355 1356 1357 1358 1359
			ClearPageActive(page);
			list_move(&page->lru, &clean_pages);
		}
	}

M
Mel Gorman 已提交
1360
	ret = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
S
Shaohua Li 已提交
1361
			TTU_IGNORE_ACCESS, NULL, true);
1362
	list_splice(&clean_pages, page_list);
M
Mel Gorman 已提交
1363
	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -ret);
1364 1365 1366
	return ret;
}

A
Andy Whitcroft 已提交
1367 1368 1369 1370 1371 1372 1373 1374 1375 1376
/*
 * Attempt to remove the specified page from its LRU.  Only take this page
 * if it is of the appropriate PageActive status.  Pages which are being
 * freed elsewhere are also ignored.
 *
 * page:	page to consider
 * mode:	one of the LRU isolation modes defined above
 *
 * returns 0 on success, -ve errno on failure.
 */
1377
int __isolate_lru_page(struct page *page, isolate_mode_t mode)
A
Andy Whitcroft 已提交
1378 1379 1380 1381 1382 1383 1384
{
	int ret = -EINVAL;

	/* Only take pages on the LRU. */
	if (!PageLRU(page))
		return ret;

M
Minchan Kim 已提交
1385 1386
	/* Compaction should not handle unevictable pages but CMA can do so */
	if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
L
Lee Schermerhorn 已提交
1387 1388
		return ret;

A
Andy Whitcroft 已提交
1389
	ret = -EBUSY;
K
KAMEZAWA Hiroyuki 已提交
1390

1391 1392 1393 1394 1395 1396 1397 1398
	/*
	 * To minimise LRU disruption, the caller can indicate that it only
	 * wants to isolate pages it will be able to operate on without
	 * blocking - clean pages for the most part.
	 *
	 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
	 * that it is possible to migrate without blocking
	 */
1399
	if (mode & ISOLATE_ASYNC_MIGRATE) {
1400 1401 1402 1403 1404 1405
		/* All the caller can do on PageWriteback is block */
		if (PageWriteback(page))
			return ret;

		if (PageDirty(page)) {
			struct address_space *mapping;
1406
			bool migrate_dirty;
1407 1408 1409 1410

			/*
			 * Only pages without mappings or that have a
			 * ->migratepage callback are possible to migrate
1411 1412 1413 1414 1415
			 * without blocking. However, we can be racing with
			 * truncation so it's necessary to lock the page
			 * to stabilise the mapping as truncation holds
			 * the page lock until after the page is removed
			 * from the page cache.
1416
			 */
1417 1418 1419
			if (!trylock_page(page))
				return ret;

1420
			mapping = page_mapping(page);
1421
			migrate_dirty = !mapping || mapping->a_ops->migratepage;
1422 1423
			unlock_page(page);
			if (!migrate_dirty)
1424 1425 1426
				return ret;
		}
	}
1427

1428 1429 1430
	if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
		return ret;

A
Andy Whitcroft 已提交
1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443
	if (likely(get_page_unless_zero(page))) {
		/*
		 * Be careful not to clear PageLRU until after we're
		 * sure the page is not being freed elsewhere -- the
		 * page release code relies on it.
		 */
		ClearPageLRU(page);
		ret = 0;
	}

	return ret;
}

1444 1445 1446 1447 1448 1449

/*
 * Update LRU sizes after isolating pages. The LRU size updates must
 * be complete before mem_cgroup_update_lru_size due to a santity check.
 */
static __always_inline void update_lru_sizes(struct lruvec *lruvec,
1450
			enum lru_list lru, unsigned long *nr_zone_taken)
1451 1452 1453 1454 1455 1456 1457 1458 1459
{
	int zid;

	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
		if (!nr_zone_taken[zid])
			continue;

		__update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
#ifdef CONFIG_MEMCG
1460
		mem_cgroup_update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1461
#endif
1462 1463
	}

1464 1465
}

L
Linus Torvalds 已提交
1466
/*
1467
 * zone_lru_lock is heavily contended.  Some of the functions that
L
Linus Torvalds 已提交
1468 1469 1470 1471 1472 1473 1474 1475
 * shrink the lists perform better by taking out a batch of pages
 * and working on them outside the LRU lock.
 *
 * For pagecache intensive workloads, this function is the hottest
 * spot in the kernel (apart from copy_*_user functions).
 *
 * Appropriate locks must be held before calling this function.
 *
1476
 * @nr_to_scan:	The number of eligible pages to look through on the list.
1477
 * @lruvec:	The LRU vector to pull pages from.
L
Linus Torvalds 已提交
1478
 * @dst:	The temp list to put pages on to.
H
Hugh Dickins 已提交
1479
 * @nr_scanned:	The number of pages that were scanned.
1480
 * @sc:		The scan_control struct for this reclaim session
A
Andy Whitcroft 已提交
1481
 * @mode:	One of the LRU isolation modes
1482
 * @lru:	LRU list id for isolating
L
Linus Torvalds 已提交
1483 1484 1485
 *
 * returns how many pages were moved onto *@dst.
 */
1486
static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1487
		struct lruvec *lruvec, struct list_head *dst,
1488
		unsigned long *nr_scanned, struct scan_control *sc,
1489
		isolate_mode_t mode, enum lru_list lru)
L
Linus Torvalds 已提交
1490
{
H
Hugh Dickins 已提交
1491
	struct list_head *src = &lruvec->lists[lru];
1492
	unsigned long nr_taken = 0;
M
Mel Gorman 已提交
1493
	unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
1494
	unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
1495
	unsigned long skipped = 0;
1496
	unsigned long scan, total_scan, nr_pages;
1497
	LIST_HEAD(pages_skipped);
L
Linus Torvalds 已提交
1498

1499 1500 1501 1502
	scan = 0;
	for (total_scan = 0;
	     scan < nr_to_scan && nr_taken < nr_to_scan && !list_empty(src);
	     total_scan++) {
A
Andy Whitcroft 已提交
1503 1504
		struct page *page;

L
Linus Torvalds 已提交
1505 1506 1507
		page = lru_to_page(src);
		prefetchw_prev_lru_page(page, src, flags);

1508
		VM_BUG_ON_PAGE(!PageLRU(page), page);
N
Nick Piggin 已提交
1509

1510 1511
		if (page_zonenum(page) > sc->reclaim_idx) {
			list_move(&page->lru, &pages_skipped);
1512
			nr_skipped[page_zonenum(page)]++;
1513 1514 1515
			continue;
		}

1516 1517 1518 1519 1520 1521 1522
		/*
		 * Do not count skipped pages because that makes the function
		 * return with no isolated pages if the LRU mostly contains
		 * ineligible pages.  This causes the VM to not reclaim any
		 * pages, triggering a premature OOM.
		 */
		scan++;
1523
		switch (__isolate_lru_page(page, mode)) {
A
Andy Whitcroft 已提交
1524
		case 0:
M
Mel Gorman 已提交
1525 1526 1527
			nr_pages = hpage_nr_pages(page);
			nr_taken += nr_pages;
			nr_zone_taken[page_zonenum(page)] += nr_pages;
A
Andy Whitcroft 已提交
1528 1529 1530 1531 1532 1533 1534
			list_move(&page->lru, dst);
			break;

		case -EBUSY:
			/* else it is being freed elsewhere */
			list_move(&page->lru, src);
			continue;
1535

A
Andy Whitcroft 已提交
1536 1537 1538
		default:
			BUG();
		}
L
Linus Torvalds 已提交
1539 1540
	}

1541 1542 1543 1544 1545 1546 1547
	/*
	 * Splice any skipped pages to the start of the LRU list. Note that
	 * this disrupts the LRU order when reclaiming for lower zones but
	 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
	 * scanning would soon rescan the same pages to skip and put the
	 * system at risk of premature OOM.
	 */
1548 1549 1550
	if (!list_empty(&pages_skipped)) {
		int zid;

1551
		list_splice(&pages_skipped, src);
1552 1553 1554 1555 1556
		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
			if (!nr_skipped[zid])
				continue;

			__count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1557
			skipped += nr_skipped[zid];
1558 1559
		}
	}
1560
	*nr_scanned = total_scan;
1561
	trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
1562
				    total_scan, skipped, nr_taken, mode, lru);
1563
	update_lru_sizes(lruvec, lru, nr_zone_taken);
L
Linus Torvalds 已提交
1564 1565 1566
	return nr_taken;
}

1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577
/**
 * isolate_lru_page - tries to isolate a page from its LRU list
 * @page: page to isolate from its LRU list
 *
 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
 * vmstat statistic corresponding to whatever LRU list the page was on.
 *
 * Returns 0 if the page was removed from an LRU list.
 * Returns -EBUSY if the page was not on an LRU list.
 *
 * The returned page will have PageLRU() cleared.  If it was found on
L
Lee Schermerhorn 已提交
1578 1579 1580
 * the active list, it will have PageActive set.  If it was found on
 * the unevictable list, it will have the PageUnevictable bit set. That flag
 * may need to be cleared by the caller before letting the page go.
1581 1582 1583 1584 1585
 *
 * The vmstat statistic corresponding to the list on which the page was
 * found will be decremented.
 *
 * Restrictions:
1586
 *
1587 1588 1589 1590 1591 1592 1593 1594 1595 1596
 * (1) Must be called with an elevated refcount on the page. This is a
 *     fundamentnal difference from isolate_lru_pages (which is called
 *     without a stable reference).
 * (2) the lru_lock must not be held.
 * (3) interrupts must be enabled.
 */
int isolate_lru_page(struct page *page)
{
	int ret = -EBUSY;

1597
	VM_BUG_ON_PAGE(!page_count(page), page);
1598
	WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
1599

1600 1601
	if (PageLRU(page)) {
		struct zone *zone = page_zone(page);
1602
		struct lruvec *lruvec;
1603

1604
		spin_lock_irq(zone_lru_lock(zone));
M
Mel Gorman 已提交
1605
		lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
1606
		if (PageLRU(page)) {
L
Lee Schermerhorn 已提交
1607
			int lru = page_lru(page);
1608
			get_page(page);
1609
			ClearPageLRU(page);
1610 1611
			del_page_from_lru_list(page, lruvec, lru);
			ret = 0;
1612
		}
1613
		spin_unlock_irq(zone_lru_lock(zone));
1614 1615 1616 1617
	}
	return ret;
}

1618
/*
F
Fengguang Wu 已提交
1619 1620 1621 1622 1623
 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
 * then get resheduled. When there are massive number of tasks doing page
 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
 * the LRU list will go small and be scanned faster than necessary, leading to
 * unnecessary swapping, thrashing and OOM.
1624
 */
M
Mel Gorman 已提交
1625
static int too_many_isolated(struct pglist_data *pgdat, int file,
1626 1627 1628 1629 1630 1631 1632
		struct scan_control *sc)
{
	unsigned long inactive, isolated;

	if (current_is_kswapd())
		return 0;

1633
	if (!sane_reclaim(sc))
1634 1635 1636
		return 0;

	if (file) {
M
Mel Gorman 已提交
1637 1638
		inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
		isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
1639
	} else {
M
Mel Gorman 已提交
1640 1641
		inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
		isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
1642 1643
	}

1644 1645 1646 1647 1648
	/*
	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
	 * won't get blocked by normal direct-reclaimers, forming a circular
	 * deadlock.
	 */
1649
	if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
1650 1651
		inactive >>= 3;

1652 1653 1654
	return isolated > inactive;
}

1655
static noinline_for_stack void
H
Hugh Dickins 已提交
1656
putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1657
{
1658
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
M
Mel Gorman 已提交
1659
	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1660
	LIST_HEAD(pages_to_free);
1661 1662 1663 1664 1665

	/*
	 * Put back any unfreeable pages.
	 */
	while (!list_empty(page_list)) {
1666
		struct page *page = lru_to_page(page_list);
1667
		int lru;
1668

1669
		VM_BUG_ON_PAGE(PageLRU(page), page);
1670
		list_del(&page->lru);
1671
		if (unlikely(!page_evictable(page))) {
M
Mel Gorman 已提交
1672
			spin_unlock_irq(&pgdat->lru_lock);
1673
			putback_lru_page(page);
M
Mel Gorman 已提交
1674
			spin_lock_irq(&pgdat->lru_lock);
1675 1676
			continue;
		}
1677

M
Mel Gorman 已提交
1678
		lruvec = mem_cgroup_page_lruvec(page, pgdat);
1679

1680
		SetPageLRU(page);
1681
		lru = page_lru(page);
1682 1683
		add_page_to_lru_list(page, lruvec, lru);

1684 1685
		if (is_active_lru(lru)) {
			int file = is_file_lru(lru);
1686 1687
			int numpages = hpage_nr_pages(page);
			reclaim_stat->recent_rotated[file] += numpages;
1688
		}
1689 1690 1691
		if (put_page_testzero(page)) {
			__ClearPageLRU(page);
			__ClearPageActive(page);
1692
			del_page_from_lru_list(page, lruvec, lru);
1693 1694

			if (unlikely(PageCompound(page))) {
M
Mel Gorman 已提交
1695
				spin_unlock_irq(&pgdat->lru_lock);
1696
				mem_cgroup_uncharge(page);
1697
				(*get_compound_page_dtor(page))(page);
M
Mel Gorman 已提交
1698
				spin_lock_irq(&pgdat->lru_lock);
1699 1700
			} else
				list_add(&page->lru, &pages_to_free);
1701 1702 1703
		}
	}

1704 1705 1706 1707
	/*
	 * To save our caller's stack, now use input list for pages to free.
	 */
	list_splice(&pages_to_free, page_list);
1708 1709
}

1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722
/*
 * If a kernel thread (such as nfsd for loop-back mounts) services
 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
 * In that case we should only throttle if the backing device it is
 * writing to is congested.  In other cases it is safe to throttle.
 */
static int current_may_throttle(void)
{
	return !(current->flags & PF_LESS_THROTTLE) ||
		current->backing_dev_info == NULL ||
		bdi_write_congested(current->backing_dev_info);
}

L
Linus Torvalds 已提交
1723
/*
1724
 * shrink_inactive_list() is a helper for shrink_node().  It returns the number
A
Andrew Morton 已提交
1725
 * of reclaimed pages
L
Linus Torvalds 已提交
1726
 */
1727
static noinline_for_stack unsigned long
1728
shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1729
		     struct scan_control *sc, enum lru_list lru)
L
Linus Torvalds 已提交
1730 1731
{
	LIST_HEAD(page_list);
1732
	unsigned long nr_scanned;
1733
	unsigned long nr_reclaimed = 0;
1734
	unsigned long nr_taken;
1735
	struct reclaim_stat stat = {};
1736
	isolate_mode_t isolate_mode = 0;
1737
	int file = is_file_lru(lru);
M
Mel Gorman 已提交
1738
	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1739
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1740
	bool stalled = false;
1741

M
Mel Gorman 已提交
1742
	while (unlikely(too_many_isolated(pgdat, file, sc))) {
1743 1744 1745 1746 1747 1748
		if (stalled)
			return 0;

		/* wait a bit for the reclaimer. */
		msleep(100);
		stalled = true;
1749 1750 1751 1752 1753 1754

		/* We are about to die and free our memory. Return now. */
		if (fatal_signal_pending(current))
			return SWAP_CLUSTER_MAX;
	}

L
Linus Torvalds 已提交
1755
	lru_add_drain();
1756 1757

	if (!sc->may_unmap)
1758
		isolate_mode |= ISOLATE_UNMAPPED;
1759

M
Mel Gorman 已提交
1760
	spin_lock_irq(&pgdat->lru_lock);
1761

1762 1763
	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
				     &nr_scanned, sc, isolate_mode, lru);
1764

M
Mel Gorman 已提交
1765
	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1766
	reclaim_stat->recent_scanned[file] += nr_taken;
1767

1768 1769
	if (current_is_kswapd()) {
		if (global_reclaim(sc))
M
Mel Gorman 已提交
1770
			__count_vm_events(PGSCAN_KSWAPD, nr_scanned);
1771 1772 1773 1774
		count_memcg_events(lruvec_memcg(lruvec), PGSCAN_KSWAPD,
				   nr_scanned);
	} else {
		if (global_reclaim(sc))
M
Mel Gorman 已提交
1775
			__count_vm_events(PGSCAN_DIRECT, nr_scanned);
1776 1777
		count_memcg_events(lruvec_memcg(lruvec), PGSCAN_DIRECT,
				   nr_scanned);
1778
	}
M
Mel Gorman 已提交
1779
	spin_unlock_irq(&pgdat->lru_lock);
1780

1781
	if (nr_taken == 0)
1782
		return 0;
A
Andy Whitcroft 已提交
1783

S
Shaohua Li 已提交
1784
	nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, 0,
1785
				&stat, false);
1786

M
Mel Gorman 已提交
1787
	spin_lock_irq(&pgdat->lru_lock);
1788

1789 1790
	if (current_is_kswapd()) {
		if (global_reclaim(sc))
M
Mel Gorman 已提交
1791
			__count_vm_events(PGSTEAL_KSWAPD, nr_reclaimed);
1792 1793 1794 1795
		count_memcg_events(lruvec_memcg(lruvec), PGSTEAL_KSWAPD,
				   nr_reclaimed);
	} else {
		if (global_reclaim(sc))
M
Mel Gorman 已提交
1796
			__count_vm_events(PGSTEAL_DIRECT, nr_reclaimed);
1797 1798
		count_memcg_events(lruvec_memcg(lruvec), PGSTEAL_DIRECT,
				   nr_reclaimed);
Y
Ying Han 已提交
1799
	}
N
Nick Piggin 已提交
1800

1801
	putback_inactive_pages(lruvec, &page_list);
1802

M
Mel Gorman 已提交
1803
	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
1804

M
Mel Gorman 已提交
1805
	spin_unlock_irq(&pgdat->lru_lock);
1806

1807
	mem_cgroup_uncharge_list(&page_list);
1808
	free_unref_page_list(&page_list);
1809

1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823
	/*
	 * If dirty pages are scanned that are not queued for IO, it
	 * implies that flushers are not doing their job. This can
	 * happen when memory pressure pushes dirty pages to the end of
	 * the LRU before the dirty limits are breached and the dirty
	 * data has expired. It can also happen when the proportion of
	 * dirty pages grows not through writes but through memory
	 * pressure reclaiming all the clean cache. And in some cases,
	 * the flushers simply cannot keep up with the allocation
	 * rate. Nudge the flusher threads in case they are asleep.
	 */
	if (stat.nr_unqueued_dirty == nr_taken)
		wakeup_flusher_threads(WB_REASON_VMSCAN);

1824 1825 1826 1827 1828 1829 1830 1831
	sc->nr.dirty += stat.nr_dirty;
	sc->nr.congested += stat.nr_congested;
	sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
	sc->nr.writeback += stat.nr_writeback;
	sc->nr.immediate += stat.nr_immediate;
	sc->nr.taken += nr_taken;
	if (file)
		sc->nr.file_taken += nr_taken;
1832

M
Mel Gorman 已提交
1833
	trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
1834
			nr_scanned, nr_reclaimed, &stat, sc->priority, file);
1835
	return nr_reclaimed;
L
Linus Torvalds 已提交
1836 1837 1838 1839 1840 1841 1842 1843 1844
}

/*
 * This moves pages from the active list to the inactive list.
 *
 * We move them the other way if the page is referenced by one or more
 * processes, from rmap.
 *
 * If the pages are mostly unmapped, the processing is fast and it is
1845
 * appropriate to hold zone_lru_lock across the whole operation.  But if
L
Linus Torvalds 已提交
1846
 * the pages are mapped, the processing is slow (page_referenced()) so we
1847
 * should drop zone_lru_lock around each page.  It's impossible to balance
L
Linus Torvalds 已提交
1848 1849 1850 1851
 * this, so instead we remove the pages from the LRU while processing them.
 * It is safe to rely on PG_active against the non-LRU pages in here because
 * nobody will play with that bit on a non-LRU page.
 *
1852
 * The downside is that we have to touch page->_refcount against each page.
L
Linus Torvalds 已提交
1853
 * But we had to alter page->flags anyway.
1854 1855
 *
 * Returns the number of pages moved to the given lru.
L
Linus Torvalds 已提交
1856
 */
1857

1858
static unsigned move_active_pages_to_lru(struct lruvec *lruvec,
1859
				     struct list_head *list,
1860
				     struct list_head *pages_to_free,
1861 1862
				     enum lru_list lru)
{
M
Mel Gorman 已提交
1863
	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1864
	struct page *page;
1865
	int nr_pages;
1866
	int nr_moved = 0;
1867 1868 1869

	while (!list_empty(list)) {
		page = lru_to_page(list);
M
Mel Gorman 已提交
1870
		lruvec = mem_cgroup_page_lruvec(page, pgdat);
1871

1872
		VM_BUG_ON_PAGE(PageLRU(page), page);
1873 1874
		SetPageLRU(page);

1875
		nr_pages = hpage_nr_pages(page);
M
Mel Gorman 已提交
1876
		update_lru_size(lruvec, lru, page_zonenum(page), nr_pages);
1877
		list_move(&page->lru, &lruvec->lists[lru]);
1878

1879 1880 1881
		if (put_page_testzero(page)) {
			__ClearPageLRU(page);
			__ClearPageActive(page);
1882
			del_page_from_lru_list(page, lruvec, lru);
1883 1884

			if (unlikely(PageCompound(page))) {
M
Mel Gorman 已提交
1885
				spin_unlock_irq(&pgdat->lru_lock);
1886
				mem_cgroup_uncharge(page);
1887
				(*get_compound_page_dtor(page))(page);
M
Mel Gorman 已提交
1888
				spin_lock_irq(&pgdat->lru_lock);
1889 1890
			} else
				list_add(&page->lru, pages_to_free);
1891 1892
		} else {
			nr_moved += nr_pages;
1893 1894
		}
	}
1895

1896
	if (!is_active_lru(lru)) {
1897
		__count_vm_events(PGDEACTIVATE, nr_moved);
1898 1899 1900
		count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE,
				   nr_moved);
	}
1901 1902

	return nr_moved;
1903
}
1904

H
Hugh Dickins 已提交
1905
static void shrink_active_list(unsigned long nr_to_scan,
1906
			       struct lruvec *lruvec,
1907
			       struct scan_control *sc,
1908
			       enum lru_list lru)
L
Linus Torvalds 已提交
1909
{
1910
	unsigned long nr_taken;
H
Hugh Dickins 已提交
1911
	unsigned long nr_scanned;
1912
	unsigned long vm_flags;
L
Linus Torvalds 已提交
1913
	LIST_HEAD(l_hold);	/* The pages which were snipped off */
1914
	LIST_HEAD(l_active);
1915
	LIST_HEAD(l_inactive);
L
Linus Torvalds 已提交
1916
	struct page *page;
1917
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1918 1919
	unsigned nr_deactivate, nr_activate;
	unsigned nr_rotated = 0;
1920
	isolate_mode_t isolate_mode = 0;
1921
	int file = is_file_lru(lru);
M
Mel Gorman 已提交
1922
	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
L
Linus Torvalds 已提交
1923 1924

	lru_add_drain();
1925 1926

	if (!sc->may_unmap)
1927
		isolate_mode |= ISOLATE_UNMAPPED;
1928

M
Mel Gorman 已提交
1929
	spin_lock_irq(&pgdat->lru_lock);
1930

1931 1932
	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
				     &nr_scanned, sc, isolate_mode, lru);
1933

M
Mel Gorman 已提交
1934
	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1935
	reclaim_stat->recent_scanned[file] += nr_taken;
1936

M
Mel Gorman 已提交
1937
	__count_vm_events(PGREFILL, nr_scanned);
1938
	count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
1939

M
Mel Gorman 已提交
1940
	spin_unlock_irq(&pgdat->lru_lock);
L
Linus Torvalds 已提交
1941 1942 1943 1944 1945

	while (!list_empty(&l_hold)) {
		cond_resched();
		page = lru_to_page(&l_hold);
		list_del(&page->lru);
1946

1947
		if (unlikely(!page_evictable(page))) {
L
Lee Schermerhorn 已提交
1948 1949 1950 1951
			putback_lru_page(page);
			continue;
		}

1952 1953 1954 1955 1956 1957 1958 1959
		if (unlikely(buffer_heads_over_limit)) {
			if (page_has_private(page) && trylock_page(page)) {
				if (page_has_private(page))
					try_to_release_page(page, 0);
				unlock_page(page);
			}
		}

1960 1961
		if (page_referenced(page, 0, sc->target_mem_cgroup,
				    &vm_flags)) {
1962
			nr_rotated += hpage_nr_pages(page);
1963 1964 1965 1966 1967 1968 1969 1970 1971
			/*
			 * Identify referenced, file-backed active pages and
			 * give them one more trip around the active list. So
			 * that executable code get better chances to stay in
			 * memory under moderate memory pressure.  Anon pages
			 * are not likely to be evicted by use-once streaming
			 * IO, plus JVM can create lots of anon VM_EXEC pages,
			 * so we ignore them here.
			 */
1972
			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1973 1974 1975 1976
				list_add(&page->lru, &l_active);
				continue;
			}
		}
1977

1978
		ClearPageActive(page);	/* we are de-activating */
L
Linus Torvalds 已提交
1979 1980 1981
		list_add(&page->lru, &l_inactive);
	}

1982
	/*
1983
	 * Move pages back to the lru list.
1984
	 */
M
Mel Gorman 已提交
1985
	spin_lock_irq(&pgdat->lru_lock);
1986
	/*
1987 1988 1989
	 * Count referenced pages from currently used mappings as rotated,
	 * even though only some of them are actually re-activated.  This
	 * helps balance scan pressure between file and anonymous pages in
1990
	 * get_scan_count.
1991
	 */
1992
	reclaim_stat->recent_rotated[file] += nr_rotated;
1993

1994 1995
	nr_activate = move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
	nr_deactivate = move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
M
Mel Gorman 已提交
1996 1997
	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
	spin_unlock_irq(&pgdat->lru_lock);
1998

1999
	mem_cgroup_uncharge_list(&l_hold);
2000
	free_unref_page_list(&l_hold);
2001 2002
	trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
			nr_deactivate, nr_rotated, sc->priority, file);
L
Linus Torvalds 已提交
2003 2004
}

2005 2006 2007
/*
 * The inactive anon list should be small enough that the VM never has
 * to do too much work.
2008
 *
2009 2010 2011
 * The inactive file list should be small enough to leave most memory
 * to the established workingset on the scan-resistant active list,
 * but large enough to avoid thrashing the aggregate readahead window.
2012
 *
2013 2014
 * Both inactive lists should also be large enough that each inactive
 * page has a chance to be referenced again before it is reclaimed.
2015
 *
2016 2017
 * If that fails and refaulting is observed, the inactive list grows.
 *
2018
 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
2019
 * on this LRU, maintained by the pageout code. An inactive_ratio
2020
 * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
2021
 *
2022 2023 2024 2025 2026 2027 2028 2029 2030 2031
 * total     target    max
 * memory    ratio     inactive
 * -------------------------------------
 *   10MB       1         5MB
 *  100MB       1        50MB
 *    1GB       3       250MB
 *   10GB      10       0.9GB
 *  100GB      31         3GB
 *    1TB     101        10GB
 *   10TB     320        32GB
2032
 */
2033
static bool inactive_list_is_low(struct lruvec *lruvec, bool file,
2034 2035
				 struct mem_cgroup *memcg,
				 struct scan_control *sc, bool actual_reclaim)
2036
{
2037
	enum lru_list active_lru = file * LRU_FILE + LRU_ACTIVE;
2038 2039 2040 2041 2042
	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
	enum lru_list inactive_lru = file * LRU_FILE;
	unsigned long inactive, active;
	unsigned long inactive_ratio;
	unsigned long refaults;
2043
	unsigned long gb;
2044

2045 2046 2047 2048 2049 2050
	/*
	 * If we don't have swap space, anonymous page deactivation
	 * is pointless.
	 */
	if (!file && !total_swap_pages)
		return false;
2051

2052 2053
	inactive = lruvec_lru_size(lruvec, inactive_lru, sc->reclaim_idx);
	active = lruvec_lru_size(lruvec, active_lru, sc->reclaim_idx);
2054

2055
	if (memcg)
2056
		refaults = memcg_page_state(memcg, WORKINGSET_ACTIVATE);
2057
	else
2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073
		refaults = node_page_state(pgdat, WORKINGSET_ACTIVATE);

	/*
	 * When refaults are being observed, it means a new workingset
	 * is being established. Disable active list protection to get
	 * rid of the stale workingset quickly.
	 */
	if (file && actual_reclaim && lruvec->refaults != refaults) {
		inactive_ratio = 0;
	} else {
		gb = (inactive + active) >> (30 - PAGE_SHIFT);
		if (gb)
			inactive_ratio = int_sqrt(10 * gb);
		else
			inactive_ratio = 1;
	}
2074

2075 2076 2077 2078 2079
	if (actual_reclaim)
		trace_mm_vmscan_inactive_list_is_low(pgdat->node_id, sc->reclaim_idx,
			lruvec_lru_size(lruvec, inactive_lru, MAX_NR_ZONES), inactive,
			lruvec_lru_size(lruvec, active_lru, MAX_NR_ZONES), active,
			inactive_ratio, file);
2080

2081
	return inactive * inactive_ratio < active;
2082 2083
}

2084
static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2085 2086
				 struct lruvec *lruvec, struct mem_cgroup *memcg,
				 struct scan_control *sc)
2087
{
2088
	if (is_active_lru(lru)) {
2089 2090
		if (inactive_list_is_low(lruvec, is_file_lru(lru),
					 memcg, sc, true))
2091
			shrink_active_list(nr_to_scan, lruvec, sc, lru);
2092 2093 2094
		return 0;
	}

2095
	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2096 2097
}

2098 2099 2100 2101 2102 2103 2104
enum scan_balance {
	SCAN_EQUAL,
	SCAN_FRACT,
	SCAN_ANON,
	SCAN_FILE,
};

2105 2106 2107 2108 2109 2110
/*
 * Determine how aggressively the anon and file LRU lists should be
 * scanned.  The relative value of each set of LRU lists is determined
 * by looking at the fraction of the pages scanned we did rotate back
 * onto the active list instead of evict.
 *
W
Wanpeng Li 已提交
2111 2112
 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
2113
 */
2114
static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg,
2115 2116
			   struct scan_control *sc, unsigned long *nr,
			   unsigned long *lru_pages)
2117
{
2118
	int swappiness = mem_cgroup_swappiness(memcg);
2119 2120 2121
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
	u64 fraction[2];
	u64 denominator = 0;	/* gcc */
M
Mel Gorman 已提交
2122
	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2123
	unsigned long anon_prio, file_prio;
2124
	enum scan_balance scan_balance;
2125
	unsigned long anon, file;
2126
	unsigned long ap, fp;
H
Hugh Dickins 已提交
2127
	enum lru_list lru;
2128 2129

	/* If we have no swap space, do not bother scanning anon pages. */
2130
	if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
2131
		scan_balance = SCAN_FILE;
2132 2133
		goto out;
	}
2134

2135 2136 2137 2138 2139 2140 2141
	/*
	 * Global reclaim will swap to prevent OOM even with no
	 * swappiness, but memcg users want to use this knob to
	 * disable swapping for individual groups completely when
	 * using the memory controller's swap limit feature would be
	 * too expensive.
	 */
2142
	if (!global_reclaim(sc) && !swappiness) {
2143
		scan_balance = SCAN_FILE;
2144 2145 2146 2147 2148 2149 2150 2151
		goto out;
	}

	/*
	 * Do not apply any pressure balancing cleverness when the
	 * system is close to OOM, scan both anon and file equally
	 * (unless the swappiness setting disagrees with swapping).
	 */
2152
	if (!sc->priority && swappiness) {
2153
		scan_balance = SCAN_EQUAL;
2154 2155 2156
		goto out;
	}

2157 2158 2159 2160 2161 2162 2163 2164 2165 2166
	/*
	 * Prevent the reclaimer from falling into the cache trap: as
	 * cache pages start out inactive, every cache fault will tip
	 * the scan balance towards the file LRU.  And as the file LRU
	 * shrinks, so does the window for rotation from references.
	 * This means we have a runaway feedback loop where a tiny
	 * thrashing file LRU becomes infinitely more attractive than
	 * anon pages.  Try to detect this based on file LRU size.
	 */
	if (global_reclaim(sc)) {
M
Mel Gorman 已提交
2167 2168 2169 2170
		unsigned long pgdatfile;
		unsigned long pgdatfree;
		int z;
		unsigned long total_high_wmark = 0;
2171

M
Mel Gorman 已提交
2172 2173 2174 2175 2176 2177
		pgdatfree = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
		pgdatfile = node_page_state(pgdat, NR_ACTIVE_FILE) +
			   node_page_state(pgdat, NR_INACTIVE_FILE);

		for (z = 0; z < MAX_NR_ZONES; z++) {
			struct zone *zone = &pgdat->node_zones[z];
2178
			if (!managed_zone(zone))
M
Mel Gorman 已提交
2179 2180 2181 2182
				continue;

			total_high_wmark += high_wmark_pages(zone);
		}
2183

M
Mel Gorman 已提交
2184
		if (unlikely(pgdatfile + pgdatfree <= total_high_wmark)) {
2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195
			/*
			 * Force SCAN_ANON if there are enough inactive
			 * anonymous pages on the LRU in eligible zones.
			 * Otherwise, the small LRU gets thrashed.
			 */
			if (!inactive_list_is_low(lruvec, false, memcg, sc, false) &&
			    lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, sc->reclaim_idx)
					>> sc->priority) {
				scan_balance = SCAN_ANON;
				goto out;
			}
2196 2197 2198
		}
	}

2199
	/*
2200 2201 2202 2203 2204 2205 2206
	 * If there is enough inactive page cache, i.e. if the size of the
	 * inactive list is greater than that of the active list *and* the
	 * inactive list actually has some pages to scan on this priority, we
	 * do not reclaim anything from the anonymous working set right now.
	 * Without the second condition we could end up never scanning an
	 * lruvec even if it has plenty of old anonymous pages unless the
	 * system is under heavy pressure.
2207
	 */
2208
	if (!inactive_list_is_low(lruvec, true, memcg, sc, false) &&
2209
	    lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, sc->reclaim_idx) >> sc->priority) {
2210
		scan_balance = SCAN_FILE;
2211 2212 2213
		goto out;
	}

2214 2215
	scan_balance = SCAN_FRACT;

2216 2217 2218 2219
	/*
	 * With swappiness at 100, anonymous and file have the same priority.
	 * This scanning priority is essentially the inverse of IO cost.
	 */
2220
	anon_prio = swappiness;
H
Hugh Dickins 已提交
2221
	file_prio = 200 - anon_prio;
2222

2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233
	/*
	 * OK, so we have swap space and a fair amount of page cache
	 * pages.  We use the recently rotated / recently scanned
	 * ratios to determine how valuable each cache is.
	 *
	 * Because workloads change over time (and to avoid overflow)
	 * we keep these statistics as a floating average, which ends
	 * up weighing recent references more than old ones.
	 *
	 * anon in [0], file in [1]
	 */
2234

2235 2236 2237 2238
	anon  = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON, MAX_NR_ZONES) +
		lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, MAX_NR_ZONES);
	file  = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE, MAX_NR_ZONES) +
		lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, MAX_NR_ZONES);
2239

M
Mel Gorman 已提交
2240
	spin_lock_irq(&pgdat->lru_lock);
2241 2242 2243
	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
		reclaim_stat->recent_scanned[0] /= 2;
		reclaim_stat->recent_rotated[0] /= 2;
2244 2245
	}

2246 2247 2248
	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
		reclaim_stat->recent_scanned[1] /= 2;
		reclaim_stat->recent_rotated[1] /= 2;
2249 2250 2251
	}

	/*
2252 2253 2254
	 * The amount of pressure on anon vs file pages is inversely
	 * proportional to the fraction of recently scanned pages on
	 * each list that were recently referenced and in active use.
2255
	 */
2256
	ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
2257
	ap /= reclaim_stat->recent_rotated[0] + 1;
2258

2259
	fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
2260
	fp /= reclaim_stat->recent_rotated[1] + 1;
M
Mel Gorman 已提交
2261
	spin_unlock_irq(&pgdat->lru_lock);
2262

2263 2264 2265 2266
	fraction[0] = ap;
	fraction[1] = fp;
	denominator = ap + fp + 1;
out:
2267 2268 2269 2270 2271
	*lru_pages = 0;
	for_each_evictable_lru(lru) {
		int file = is_file_lru(lru);
		unsigned long size;
		unsigned long scan;
2272

2273 2274 2275 2276 2277 2278 2279 2280
		size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
		scan = size >> sc->priority;
		/*
		 * If the cgroup's already been deleted, make sure to
		 * scrape out the remaining cache.
		 */
		if (!scan && !mem_cgroup_online(memcg))
			scan = min(size, SWAP_CLUSTER_MAX);
2281

2282 2283 2284 2285 2286
		switch (scan_balance) {
		case SCAN_EQUAL:
			/* Scan lists relative to size */
			break;
		case SCAN_FRACT:
2287
			/*
2288 2289
			 * Scan types proportional to swappiness and
			 * their relative recent reclaim efficiency.
2290
			 */
2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304
			scan = div64_u64(scan * fraction[file],
					 denominator);
			break;
		case SCAN_FILE:
		case SCAN_ANON:
			/* Scan one type exclusively */
			if ((scan_balance == SCAN_FILE) != file) {
				size = 0;
				scan = 0;
			}
			break;
		default:
			/* Look ma, no brain */
			BUG();
2305
		}
2306 2307 2308

		*lru_pages += size;
		nr[lru] = scan;
2309
	}
2310
}
2311

2312
/*
2313
 * This is a basic per-node page freer.  Used by both kswapd and direct reclaim.
2314
 */
2315
static void shrink_node_memcg(struct pglist_data *pgdat, struct mem_cgroup *memcg,
2316
			      struct scan_control *sc, unsigned long *lru_pages)
2317
{
2318
	struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
2319
	unsigned long nr[NR_LRU_LISTS];
2320
	unsigned long targets[NR_LRU_LISTS];
2321 2322 2323 2324 2325
	unsigned long nr_to_scan;
	enum lru_list lru;
	unsigned long nr_reclaimed = 0;
	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
	struct blk_plug plug;
2326
	bool scan_adjusted;
2327

2328
	get_scan_count(lruvec, memcg, sc, nr, lru_pages);
2329

2330 2331 2332
	/* Record the original scan target for proportional adjustments later */
	memcpy(targets, nr, sizeof(nr));

2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346
	/*
	 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
	 * event that can occur when there is little memory pressure e.g.
	 * multiple streaming readers/writers. Hence, we do not abort scanning
	 * when the requested number of pages are reclaimed when scanning at
	 * DEF_PRIORITY on the assumption that the fact we are direct
	 * reclaiming implies that kswapd is not keeping up and it is best to
	 * do a batch of work at once. For memcg reclaim one check is made to
	 * abort proportional reclaim if either the file or anon lru has already
	 * dropped to zero at the first pass.
	 */
	scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
			 sc->priority == DEF_PRIORITY);

2347 2348 2349
	blk_start_plug(&plug);
	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
					nr[LRU_INACTIVE_FILE]) {
2350 2351 2352
		unsigned long nr_anon, nr_file, percentage;
		unsigned long nr_scanned;

2353 2354 2355 2356 2357 2358
		for_each_evictable_lru(lru) {
			if (nr[lru]) {
				nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
				nr[lru] -= nr_to_scan;

				nr_reclaimed += shrink_list(lru, nr_to_scan,
2359
							    lruvec, memcg, sc);
2360 2361
			}
		}
2362

2363 2364
		cond_resched();

2365 2366 2367 2368 2369
		if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
			continue;

		/*
		 * For kswapd and memcg, reclaim at least the number of pages
2370
		 * requested. Ensure that the anon and file LRUs are scanned
2371 2372 2373 2374 2375 2376 2377
		 * proportionally what was requested by get_scan_count(). We
		 * stop reclaiming one LRU and reduce the amount scanning
		 * proportional to the original scan target.
		 */
		nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
		nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];

2378 2379 2380 2381 2382 2383 2384 2385 2386
		/*
		 * It's just vindictive to attack the larger once the smaller
		 * has gone to zero.  And given the way we stop scanning the
		 * smaller below, this makes sure that we only make one nudge
		 * towards proportionality once we've got nr_to_reclaim.
		 */
		if (!nr_file || !nr_anon)
			break;

2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417
		if (nr_file > nr_anon) {
			unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
						targets[LRU_ACTIVE_ANON] + 1;
			lru = LRU_BASE;
			percentage = nr_anon * 100 / scan_target;
		} else {
			unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
						targets[LRU_ACTIVE_FILE] + 1;
			lru = LRU_FILE;
			percentage = nr_file * 100 / scan_target;
		}

		/* Stop scanning the smaller of the LRU */
		nr[lru] = 0;
		nr[lru + LRU_ACTIVE] = 0;

		/*
		 * Recalculate the other LRU scan count based on its original
		 * scan target and the percentage scanning already complete
		 */
		lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
		nr_scanned = targets[lru] - nr[lru];
		nr[lru] = targets[lru] * (100 - percentage) / 100;
		nr[lru] -= min(nr[lru], nr_scanned);

		lru += LRU_ACTIVE;
		nr_scanned = targets[lru] - nr[lru];
		nr[lru] = targets[lru] * (100 - percentage) / 100;
		nr[lru] -= min(nr[lru], nr_scanned);

		scan_adjusted = true;
2418 2419 2420 2421 2422 2423 2424 2425
	}
	blk_finish_plug(&plug);
	sc->nr_reclaimed += nr_reclaimed;

	/*
	 * Even if we did not try to evict anon pages at all, we want to
	 * rebalance the anon lru active/inactive ratio.
	 */
2426
	if (inactive_list_is_low(lruvec, false, memcg, sc, true))
2427 2428 2429 2430
		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
				   sc, LRU_ACTIVE_ANON);
}

M
Mel Gorman 已提交
2431
/* Use reclaim/compaction for costly allocs or under memory pressure */
2432
static bool in_reclaim_compaction(struct scan_control *sc)
M
Mel Gorman 已提交
2433
{
2434
	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
M
Mel Gorman 已提交
2435
			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2436
			 sc->priority < DEF_PRIORITY - 2))
M
Mel Gorman 已提交
2437 2438 2439 2440 2441
		return true;

	return false;
}

2442
/*
M
Mel Gorman 已提交
2443 2444 2445 2446 2447
 * Reclaim/compaction is used for high-order allocation requests. It reclaims
 * order-0 pages before compacting the zone. should_continue_reclaim() returns
 * true if more pages should be reclaimed such that when the page allocator
 * calls try_to_compact_zone() that it will have enough free pages to succeed.
 * It will give up earlier than that if there is difficulty reclaiming pages.
2448
 */
2449
static inline bool should_continue_reclaim(struct pglist_data *pgdat,
2450 2451 2452 2453 2454 2455
					unsigned long nr_reclaimed,
					unsigned long nr_scanned,
					struct scan_control *sc)
{
	unsigned long pages_for_compaction;
	unsigned long inactive_lru_pages;
2456
	int z;
2457 2458

	/* If not in reclaim/compaction mode, stop */
2459
	if (!in_reclaim_compaction(sc))
2460 2461
		return false;

2462
	/* Consider stopping depending on scan and reclaim activity */
2463
	if (sc->gfp_mask & __GFP_RETRY_MAYFAIL) {
2464
		/*
2465
		 * For __GFP_RETRY_MAYFAIL allocations, stop reclaiming if the
2466 2467
		 * full LRU list has been scanned and we are still failing
		 * to reclaim pages. This full LRU scan is potentially
2468
		 * expensive but a __GFP_RETRY_MAYFAIL caller really wants to succeed
2469 2470 2471 2472 2473
		 */
		if (!nr_reclaimed && !nr_scanned)
			return false;
	} else {
		/*
2474
		 * For non-__GFP_RETRY_MAYFAIL allocations which can presumably
2475 2476 2477 2478 2479 2480 2481 2482 2483
		 * fail without consequence, stop if we failed to reclaim
		 * any pages from the last SWAP_CLUSTER_MAX number of
		 * pages that were scanned. This will return to the
		 * caller faster at the risk reclaim/compaction and
		 * the resulting allocation attempt fails
		 */
		if (!nr_reclaimed)
			return false;
	}
2484 2485 2486 2487 2488

	/*
	 * If we have not reclaimed enough pages for compaction and the
	 * inactive lists are large enough, continue reclaiming
	 */
2489
	pages_for_compaction = compact_gap(sc->order);
2490
	inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
2491
	if (get_nr_swap_pages() > 0)
2492
		inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
2493 2494 2495 2496 2497
	if (sc->nr_reclaimed < pages_for_compaction &&
			inactive_lru_pages > pages_for_compaction)
		return true;

	/* If compaction would go ahead or the allocation would succeed, stop */
2498 2499
	for (z = 0; z <= sc->reclaim_idx; z++) {
		struct zone *zone = &pgdat->node_zones[z];
2500
		if (!managed_zone(zone))
2501 2502 2503
			continue;

		switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
2504
		case COMPACT_SUCCESS:
2505 2506 2507 2508 2509 2510
		case COMPACT_CONTINUE:
			return false;
		default:
			/* check next zone */
			;
		}
2511
	}
2512
	return true;
2513 2514
}

2515 2516 2517 2518 2519 2520
static bool pgdat_memcg_congested(pg_data_t *pgdat, struct mem_cgroup *memcg)
{
	return test_bit(PGDAT_CONGESTED, &pgdat->flags) ||
		(memcg && memcg_congested(pgdat, memcg));
}

2521
static bool shrink_node(pg_data_t *pgdat, struct scan_control *sc)
L
Linus Torvalds 已提交
2522
{
2523
	struct reclaim_state *reclaim_state = current->reclaim_state;
2524
	unsigned long nr_reclaimed, nr_scanned;
2525
	bool reclaimable = false;
L
Linus Torvalds 已提交
2526

2527 2528 2529
	do {
		struct mem_cgroup *root = sc->target_mem_cgroup;
		struct mem_cgroup_reclaim_cookie reclaim = {
2530
			.pgdat = pgdat,
2531 2532
			.priority = sc->priority,
		};
2533
		unsigned long node_lru_pages = 0;
2534
		struct mem_cgroup *memcg;
2535

2536 2537
		memset(&sc->nr, 0, sizeof(sc->nr));

2538 2539
		nr_reclaimed = sc->nr_reclaimed;
		nr_scanned = sc->nr_scanned;
L
Linus Torvalds 已提交
2540

2541 2542
		memcg = mem_cgroup_iter(root, NULL, &reclaim);
		do {
2543
			unsigned long lru_pages;
2544
			unsigned long reclaimed;
2545
			unsigned long scanned;
2546

2547
			if (mem_cgroup_low(root, memcg)) {
2548 2549
				if (!sc->memcg_low_reclaim) {
					sc->memcg_low_skipped = 1;
2550
					continue;
2551
				}
2552
				memcg_memory_event(memcg, MEMCG_LOW);
2553 2554
			}

2555
			reclaimed = sc->nr_reclaimed;
2556
			scanned = sc->nr_scanned;
2557 2558
			shrink_node_memcg(pgdat, memcg, sc, &lru_pages);
			node_lru_pages += lru_pages;
2559

2560
			if (memcg)
2561
				shrink_slab(sc->gfp_mask, pgdat->node_id,
2562
					    memcg, sc->priority);
2563

2564 2565 2566 2567 2568
			/* Record the group's reclaim efficiency */
			vmpressure(sc->gfp_mask, memcg, false,
				   sc->nr_scanned - scanned,
				   sc->nr_reclaimed - reclaimed);

2569
			/*
2570 2571
			 * Direct reclaim and kswapd have to scan all memory
			 * cgroups to fulfill the overall scan target for the
2572
			 * node.
2573 2574 2575 2576 2577
			 *
			 * Limit reclaim, on the other hand, only cares about
			 * nr_to_reclaim pages to be reclaimed and it will
			 * retry with decreasing priority if one round over the
			 * whole hierarchy is not sufficient.
2578
			 */
2579 2580
			if (!global_reclaim(sc) &&
					sc->nr_reclaimed >= sc->nr_to_reclaim) {
2581 2582 2583
				mem_cgroup_iter_break(root, memcg);
				break;
			}
2584
		} while ((memcg = mem_cgroup_iter(root, memcg, &reclaim)));
2585

2586
		if (global_reclaim(sc))
2587
			shrink_slab(sc->gfp_mask, pgdat->node_id, NULL,
2588
				    sc->priority);
2589 2590 2591 2592

		if (reclaim_state) {
			sc->nr_reclaimed += reclaim_state->reclaimed_slab;
			reclaim_state->reclaimed_slab = 0;
2593 2594
		}

2595 2596
		/* Record the subtree's reclaim efficiency */
		vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
2597 2598 2599
			   sc->nr_scanned - nr_scanned,
			   sc->nr_reclaimed - nr_reclaimed);

2600 2601 2602
		if (sc->nr_reclaimed - nr_reclaimed)
			reclaimable = true;

2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622
		if (current_is_kswapd()) {
			/*
			 * If reclaim is isolating dirty pages under writeback,
			 * it implies that the long-lived page allocation rate
			 * is exceeding the page laundering rate. Either the
			 * global limits are not being effective at throttling
			 * processes due to the page distribution throughout
			 * zones or there is heavy usage of a slow backing
			 * device. The only option is to throttle from reclaim
			 * context which is not ideal as there is no guarantee
			 * the dirtying process is throttled in the same way
			 * balance_dirty_pages() manages.
			 *
			 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
			 * count the number of pages under pages flagged for
			 * immediate reclaim and stall if any are encountered
			 * in the nr_immediate check below.
			 */
			if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
				set_bit(PGDAT_WRITEBACK, &pgdat->flags);
2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645

			/*
			 * Tag a node as congested if all the dirty pages
			 * scanned were backed by a congested BDI and
			 * wait_iff_congested will stall.
			 */
			if (sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
				set_bit(PGDAT_CONGESTED, &pgdat->flags);

			/* Allow kswapd to start writing pages during reclaim.*/
			if (sc->nr.unqueued_dirty == sc->nr.file_taken)
				set_bit(PGDAT_DIRTY, &pgdat->flags);

			/*
			 * If kswapd scans pages marked marked for immediate
			 * reclaim and under writeback (nr_immediate), it
			 * implies that pages are cycling through the LRU
			 * faster than they are written so also forcibly stall.
			 */
			if (sc->nr.immediate)
				congestion_wait(BLK_RW_ASYNC, HZ/10);
		}

2646 2647 2648 2649 2650 2651 2652 2653
		/*
		 * Legacy memcg will stall in page writeback so avoid forcibly
		 * stalling in wait_iff_congested().
		 */
		if (!global_reclaim(sc) && sane_reclaim(sc) &&
		    sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
			set_memcg_congestion(pgdat, root, true);

2654 2655 2656 2657 2658 2659 2660
		/*
		 * Stall direct reclaim for IO completions if underlying BDIs
		 * and node is congested. Allow kswapd to continue until it
		 * starts encountering unqueued dirty pages or cycling through
		 * the LRU too quickly.
		 */
		if (!sc->hibernation_mode && !current_is_kswapd() &&
2661 2662
		   current_may_throttle() && pgdat_memcg_congested(pgdat, root))
			wait_iff_congested(BLK_RW_ASYNC, HZ/10);
2663

2664
	} while (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
2665
					 sc->nr_scanned - nr_scanned, sc));
2666

2667 2668 2669 2670 2671 2672 2673 2674 2675
	/*
	 * Kswapd gives up on balancing particular nodes after too
	 * many failures to reclaim anything from them and goes to
	 * sleep. On reclaim progress, reset the failure counter. A
	 * successful direct reclaim run will revive a dormant kswapd.
	 */
	if (reclaimable)
		pgdat->kswapd_failures = 0;

2676
	return reclaimable;
2677 2678
}

2679
/*
2680 2681 2682
 * Returns true if compaction should go ahead for a costly-order request, or
 * the allocation would already succeed without compaction. Return false if we
 * should reclaim first.
2683
 */
2684
static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2685
{
M
Mel Gorman 已提交
2686
	unsigned long watermark;
2687
	enum compact_result suitable;
2688

2689 2690 2691 2692 2693 2694 2695
	suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
	if (suitable == COMPACT_SUCCESS)
		/* Allocation should succeed already. Don't reclaim. */
		return true;
	if (suitable == COMPACT_SKIPPED)
		/* Compaction cannot yet proceed. Do reclaim. */
		return false;
2696

2697
	/*
2698 2699 2700 2701 2702 2703 2704
	 * Compaction is already possible, but it takes time to run and there
	 * are potentially other callers using the pages just freed. So proceed
	 * with reclaim to make a buffer of free pages available to give
	 * compaction a reasonable chance of completing and allocating the page.
	 * Note that we won't actually reclaim the whole buffer in one attempt
	 * as the target watermark in should_continue_reclaim() is lower. But if
	 * we are already above the high+gap watermark, don't reclaim at all.
2705
	 */
2706
	watermark = high_wmark_pages(zone) + compact_gap(sc->order);
2707

2708
	return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
2709 2710
}

L
Linus Torvalds 已提交
2711 2712 2713 2714 2715 2716 2717 2718
/*
 * This is the direct reclaim path, for page-allocating processes.  We only
 * try to reclaim pages from zones which will satisfy the caller's allocation
 * request.
 *
 * If a zone is deemed to be full of pinned pages then just give it a light
 * scan then give up on it.
 */
M
Michal Hocko 已提交
2719
static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
L
Linus Torvalds 已提交
2720
{
2721
	struct zoneref *z;
2722
	struct zone *zone;
2723 2724
	unsigned long nr_soft_reclaimed;
	unsigned long nr_soft_scanned;
2725
	gfp_t orig_mask;
2726
	pg_data_t *last_pgdat = NULL;
2727

2728 2729 2730 2731 2732
	/*
	 * If the number of buffer_heads in the machine exceeds the maximum
	 * allowed level, force direct reclaim to scan the highmem zone as
	 * highmem pages could be pinning lowmem pages storing buffer_heads
	 */
2733
	orig_mask = sc->gfp_mask;
2734
	if (buffer_heads_over_limit) {
2735
		sc->gfp_mask |= __GFP_HIGHMEM;
2736
		sc->reclaim_idx = gfp_zone(sc->gfp_mask);
2737
	}
2738

2739
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2740
					sc->reclaim_idx, sc->nodemask) {
2741 2742 2743 2744
		/*
		 * Take care memory controller reclaiming has small influence
		 * to global LRU.
		 */
2745
		if (global_reclaim(sc)) {
2746 2747
			if (!cpuset_zone_allowed(zone,
						 GFP_KERNEL | __GFP_HARDWALL))
2748
				continue;
2749

2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760
			/*
			 * If we already have plenty of memory free for
			 * compaction in this zone, don't free any more.
			 * Even though compaction is invoked for any
			 * non-zero order, only frequent costly order
			 * reclamation is disruptive enough to become a
			 * noticeable problem, like transparent huge
			 * page allocations.
			 */
			if (IS_ENABLED(CONFIG_COMPACTION) &&
			    sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2761
			    compaction_ready(zone, sc)) {
2762 2763
				sc->compaction_ready = true;
				continue;
2764
			}
2765

2766 2767 2768 2769 2770 2771 2772 2773 2774
			/*
			 * Shrink each node in the zonelist once. If the
			 * zonelist is ordered by zone (not the default) then a
			 * node may be shrunk multiple times but in that case
			 * the user prefers lower zones being preserved.
			 */
			if (zone->zone_pgdat == last_pgdat)
				continue;

2775 2776 2777 2778 2779 2780 2781
			/*
			 * This steals pages from memory cgroups over softlimit
			 * and returns the number of reclaimed pages and
			 * scanned pages. This works for global memory pressure
			 * and balancing, not for a memcg's limit.
			 */
			nr_soft_scanned = 0;
2782
			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
2783 2784 2785 2786
						sc->order, sc->gfp_mask,
						&nr_soft_scanned);
			sc->nr_reclaimed += nr_soft_reclaimed;
			sc->nr_scanned += nr_soft_scanned;
2787
			/* need some check for avoid more shrink_zone() */
2788
		}
2789

2790 2791 2792 2793
		/* See comment about same check for global reclaim above */
		if (zone->zone_pgdat == last_pgdat)
			continue;
		last_pgdat = zone->zone_pgdat;
2794
		shrink_node(zone->zone_pgdat, sc);
L
Linus Torvalds 已提交
2795
	}
2796

2797 2798 2799 2800 2801
	/*
	 * Restore to original mask to avoid the impact on the caller if we
	 * promoted it to __GFP_HIGHMEM.
	 */
	sc->gfp_mask = orig_mask;
L
Linus Torvalds 已提交
2802
}
2803

2804 2805 2806 2807 2808 2809 2810 2811 2812 2813
static void snapshot_refaults(struct mem_cgroup *root_memcg, pg_data_t *pgdat)
{
	struct mem_cgroup *memcg;

	memcg = mem_cgroup_iter(root_memcg, NULL, NULL);
	do {
		unsigned long refaults;
		struct lruvec *lruvec;

		if (memcg)
2814
			refaults = memcg_page_state(memcg, WORKINGSET_ACTIVATE);
2815 2816 2817 2818 2819 2820 2821 2822
		else
			refaults = node_page_state(pgdat, WORKINGSET_ACTIVATE);

		lruvec = mem_cgroup_lruvec(pgdat, memcg);
		lruvec->refaults = refaults;
	} while ((memcg = mem_cgroup_iter(root_memcg, memcg, NULL)));
}

L
Linus Torvalds 已提交
2823 2824 2825 2826 2827 2828 2829 2830
/*
 * This is the main entry point to direct page reclaim.
 *
 * If a full scan of the inactive list fails to free enough memory then we
 * are "out of memory" and something needs to be killed.
 *
 * If the caller is !__GFP_FS then the probability of a failure is reasonably
 * high - the zone may be full of dirty or under-writeback pages, which this
2831 2832 2833 2834
 * caller can't do much about.  We kick the writeback threads and take explicit
 * naps in the hope that some of these pages can be written.  But if the
 * allocating task holds filesystem locks which prevent writeout this might not
 * work, and the allocation attempt will fail.
2835 2836 2837
 *
 * returns:	0, if no pages reclaimed
 * 		else, the number of pages reclaimed
L
Linus Torvalds 已提交
2838
 */
2839
static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2840
					  struct scan_control *sc)
L
Linus Torvalds 已提交
2841
{
2842
	int initial_priority = sc->priority;
2843 2844 2845
	pg_data_t *last_pgdat;
	struct zoneref *z;
	struct zone *zone;
2846
retry:
2847 2848
	delayacct_freepages_start();

2849
	if (global_reclaim(sc))
2850
		__count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
L
Linus Torvalds 已提交
2851

2852
	do {
2853 2854
		vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
				sc->priority);
2855
		sc->nr_scanned = 0;
M
Michal Hocko 已提交
2856
		shrink_zones(zonelist, sc);
2857

2858
		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2859 2860 2861 2862
			break;

		if (sc->compaction_ready)
			break;
L
Linus Torvalds 已提交
2863

2864 2865 2866 2867 2868 2869
		/*
		 * If we're getting trouble reclaiming, start doing
		 * writepage even in laptop mode.
		 */
		if (sc->priority < DEF_PRIORITY - 2)
			sc->may_writepage = 1;
2870
	} while (--sc->priority >= 0);
2871

2872 2873 2874 2875 2876 2877 2878
	last_pgdat = NULL;
	for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
					sc->nodemask) {
		if (zone->zone_pgdat == last_pgdat)
			continue;
		last_pgdat = zone->zone_pgdat;
		snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
2879
		set_memcg_congestion(last_pgdat, sc->target_mem_cgroup, false);
2880 2881
	}

2882 2883
	delayacct_freepages_end();

2884 2885 2886
	if (sc->nr_reclaimed)
		return sc->nr_reclaimed;

2887
	/* Aborted reclaim to try compaction? don't OOM, then */
2888
	if (sc->compaction_ready)
2889 2890
		return 1;

2891
	/* Untapped cgroup reserves?  Don't OOM, retry. */
2892
	if (sc->memcg_low_skipped) {
2893
		sc->priority = initial_priority;
2894 2895
		sc->memcg_low_reclaim = 1;
		sc->memcg_low_skipped = 0;
2896 2897 2898
		goto retry;
	}

2899
	return 0;
L
Linus Torvalds 已提交
2900 2901
}

2902
static bool allow_direct_reclaim(pg_data_t *pgdat)
2903 2904 2905 2906 2907 2908 2909
{
	struct zone *zone;
	unsigned long pfmemalloc_reserve = 0;
	unsigned long free_pages = 0;
	int i;
	bool wmark_ok;

2910 2911 2912
	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
		return true;

2913 2914
	for (i = 0; i <= ZONE_NORMAL; i++) {
		zone = &pgdat->node_zones[i];
2915 2916 2917 2918
		if (!managed_zone(zone))
			continue;

		if (!zone_reclaimable_pages(zone))
2919 2920
			continue;

2921 2922 2923 2924
		pfmemalloc_reserve += min_wmark_pages(zone);
		free_pages += zone_page_state(zone, NR_FREE_PAGES);
	}

2925 2926 2927 2928
	/* If there are no reserves (unexpected config) then do not throttle */
	if (!pfmemalloc_reserve)
		return true;

2929 2930 2931 2932
	wmark_ok = free_pages > pfmemalloc_reserve / 2;

	/* kswapd must be awake if processes are being throttled */
	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
2933
		pgdat->kswapd_classzone_idx = min(pgdat->kswapd_classzone_idx,
2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944
						(enum zone_type)ZONE_NORMAL);
		wake_up_interruptible(&pgdat->kswapd_wait);
	}

	return wmark_ok;
}

/*
 * Throttle direct reclaimers if backing storage is backed by the network
 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
 * depleted. kswapd will continue to make progress and wake the processes
2945 2946 2947 2948
 * when the low watermark is reached.
 *
 * Returns true if a fatal signal was delivered during throttling. If this
 * happens, the page allocator should not consider triggering the OOM killer.
2949
 */
2950
static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
2951 2952
					nodemask_t *nodemask)
{
2953
	struct zoneref *z;
2954
	struct zone *zone;
2955
	pg_data_t *pgdat = NULL;
2956 2957 2958 2959 2960 2961 2962 2963 2964

	/*
	 * Kernel threads should not be throttled as they may be indirectly
	 * responsible for cleaning pages necessary for reclaim to make forward
	 * progress. kjournald for example may enter direct reclaim while
	 * committing a transaction where throttling it could forcing other
	 * processes to block on log_wait_commit().
	 */
	if (current->flags & PF_KTHREAD)
2965 2966 2967 2968 2969 2970 2971 2972
		goto out;

	/*
	 * If a fatal signal is pending, this process should not throttle.
	 * It should return quickly so it can exit and free its memory
	 */
	if (fatal_signal_pending(current))
		goto out;
2973

2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988
	/*
	 * Check if the pfmemalloc reserves are ok by finding the first node
	 * with a usable ZONE_NORMAL or lower zone. The expectation is that
	 * GFP_KERNEL will be required for allocating network buffers when
	 * swapping over the network so ZONE_HIGHMEM is unusable.
	 *
	 * Throttling is based on the first usable node and throttled processes
	 * wait on a queue until kswapd makes progress and wakes them. There
	 * is an affinity then between processes waking up and where reclaim
	 * progress has been made assuming the process wakes on the same node.
	 * More importantly, processes running on remote nodes will not compete
	 * for remote pfmemalloc reserves and processes on different nodes
	 * should make reasonable progress.
	 */
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2989
					gfp_zone(gfp_mask), nodemask) {
2990 2991 2992 2993 2994
		if (zone_idx(zone) > ZONE_NORMAL)
			continue;

		/* Throttle based on the first usable node */
		pgdat = zone->zone_pgdat;
2995
		if (allow_direct_reclaim(pgdat))
2996 2997 2998 2999 3000 3001
			goto out;
		break;
	}

	/* If no zone was usable by the allocation flags then do not throttle */
	if (!pgdat)
3002
		goto out;
3003

3004 3005 3006
	/* Account for the throttling */
	count_vm_event(PGSCAN_DIRECT_THROTTLE);

3007 3008 3009 3010 3011 3012 3013 3014 3015 3016
	/*
	 * If the caller cannot enter the filesystem, it's possible that it
	 * is due to the caller holding an FS lock or performing a journal
	 * transaction in the case of a filesystem like ext[3|4]. In this case,
	 * it is not safe to block on pfmemalloc_wait as kswapd could be
	 * blocked waiting on the same lock. Instead, throttle for up to a
	 * second before continuing.
	 */
	if (!(gfp_mask & __GFP_FS)) {
		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
3017
			allow_direct_reclaim(pgdat), HZ);
3018 3019

		goto check_pending;
3020 3021 3022 3023
	}

	/* Throttle until kswapd wakes the process */
	wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
3024
		allow_direct_reclaim(pgdat));
3025 3026 3027 3028 3029 3030 3031

check_pending:
	if (fatal_signal_pending(current))
		return true;

out:
	return false;
3032 3033
}

3034
unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
3035
				gfp_t gfp_mask, nodemask_t *nodemask)
3036
{
3037
	unsigned long nr_reclaimed;
3038
	struct scan_control sc = {
3039
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
3040
		.gfp_mask = current_gfp_context(gfp_mask),
3041
		.reclaim_idx = gfp_zone(gfp_mask),
3042 3043 3044
		.order = order,
		.nodemask = nodemask,
		.priority = DEF_PRIORITY,
3045
		.may_writepage = !laptop_mode,
3046
		.may_unmap = 1,
3047
		.may_swap = 1,
3048 3049
	};

3050
	/*
3051 3052 3053
	 * Do not enter reclaim if fatal signal was delivered while throttled.
	 * 1 is returned so that the page allocator does not OOM kill at this
	 * point.
3054
	 */
3055
	if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
3056 3057
		return 1;

3058 3059
	trace_mm_vmscan_direct_reclaim_begin(order,
				sc.may_writepage,
3060
				sc.gfp_mask,
3061
				sc.reclaim_idx);
3062

3063
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3064 3065 3066 3067

	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);

	return nr_reclaimed;
3068 3069
}

A
Andrew Morton 已提交
3070
#ifdef CONFIG_MEMCG
3071

3072
unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
3073
						gfp_t gfp_mask, bool noswap,
3074
						pg_data_t *pgdat,
3075
						unsigned long *nr_scanned)
3076 3077
{
	struct scan_control sc = {
3078
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
3079
		.target_mem_cgroup = memcg,
3080 3081
		.may_writepage = !laptop_mode,
		.may_unmap = 1,
3082
		.reclaim_idx = MAX_NR_ZONES - 1,
3083 3084
		.may_swap = !noswap,
	};
3085
	unsigned long lru_pages;
3086

3087 3088
	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
3089

3090
	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
3091
						      sc.may_writepage,
3092 3093
						      sc.gfp_mask,
						      sc.reclaim_idx);
3094

3095 3096 3097
	/*
	 * NOTE: Although we can get the priority field, using it
	 * here is not a good idea, since it limits the pages we can scan.
3098
	 * if we don't reclaim here, the shrink_node from balance_pgdat
3099 3100 3101
	 * will pick up pages from other mem cgroup's as well. We hack
	 * the priority and make it zero.
	 */
3102
	shrink_node_memcg(pgdat, memcg, &sc, &lru_pages);
3103 3104 3105

	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);

3106
	*nr_scanned = sc.nr_scanned;
3107 3108 3109
	return sc.nr_reclaimed;
}

3110
unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
3111
					   unsigned long nr_pages,
K
KOSAKI Motohiro 已提交
3112
					   gfp_t gfp_mask,
3113
					   bool may_swap)
3114
{
3115
	struct zonelist *zonelist;
3116
	unsigned long nr_reclaimed;
3117
	int nid;
3118
	unsigned int noreclaim_flag;
3119
	struct scan_control sc = {
3120
		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3121
		.gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
3122
				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
3123
		.reclaim_idx = MAX_NR_ZONES - 1,
3124 3125 3126 3127
		.target_mem_cgroup = memcg,
		.priority = DEF_PRIORITY,
		.may_writepage = !laptop_mode,
		.may_unmap = 1,
3128
		.may_swap = may_swap,
3129
	};
3130

3131 3132 3133 3134 3135
	/*
	 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
	 * take care of from where we get pages. So the node where we start the
	 * scan does not need to be the current node.
	 */
3136
	nid = mem_cgroup_select_victim_node(memcg);
3137

3138
	zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK];
3139 3140 3141

	trace_mm_vmscan_memcg_reclaim_begin(0,
					    sc.may_writepage,
3142 3143
					    sc.gfp_mask,
					    sc.reclaim_idx);
3144

3145
	noreclaim_flag = memalloc_noreclaim_save();
3146
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3147
	memalloc_noreclaim_restore(noreclaim_flag);
3148 3149 3150 3151

	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);

	return nr_reclaimed;
3152 3153 3154
}
#endif

3155
static void age_active_anon(struct pglist_data *pgdat,
3156
				struct scan_control *sc)
3157
{
3158
	struct mem_cgroup *memcg;
3159

3160 3161 3162 3163 3164
	if (!total_swap_pages)
		return;

	memcg = mem_cgroup_iter(NULL, NULL, NULL);
	do {
3165
		struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
3166

3167
		if (inactive_list_is_low(lruvec, false, memcg, sc, true))
3168
			shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3169
					   sc, LRU_ACTIVE_ANON);
3170 3171 3172

		memcg = mem_cgroup_iter(NULL, memcg, NULL);
	} while (memcg);
3173 3174
}

3175 3176 3177 3178 3179
/*
 * Returns true if there is an eligible zone balanced for the request order
 * and classzone_idx
 */
static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
3180
{
3181 3182 3183
	int i;
	unsigned long mark = -1;
	struct zone *zone;
3184

3185 3186
	for (i = 0; i <= classzone_idx; i++) {
		zone = pgdat->node_zones + i;
3187

3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204
		if (!managed_zone(zone))
			continue;

		mark = high_wmark_pages(zone);
		if (zone_watermark_ok_safe(zone, order, mark, classzone_idx))
			return true;
	}

	/*
	 * If a node has no populated zone within classzone_idx, it does not
	 * need balancing by definition. This can happen if a zone-restricted
	 * allocation tries to wake a remote kswapd.
	 */
	if (mark == -1)
		return true;

	return false;
3205 3206
}

3207 3208 3209 3210 3211 3212 3213 3214
/* Clear pgdat state for congested, dirty or under writeback. */
static void clear_pgdat_congested(pg_data_t *pgdat)
{
	clear_bit(PGDAT_CONGESTED, &pgdat->flags);
	clear_bit(PGDAT_DIRTY, &pgdat->flags);
	clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
}

3215 3216 3217 3218 3219 3220
/*
 * Prepare kswapd for sleeping. This verifies that there are no processes
 * waiting in throttle_direct_reclaim() and that watermarks have been met.
 *
 * Returns true if kswapd is ready to sleep
 */
3221
static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3222
{
3223
	/*
3224
	 * The throttled processes are normally woken up in balance_pgdat() as
3225
	 * soon as allow_direct_reclaim() is true. But there is a potential
3226 3227 3228 3229 3230 3231 3232 3233 3234
	 * race between when kswapd checks the watermarks and a process gets
	 * throttled. There is also a potential race if processes get
	 * throttled, kswapd wakes, a large process exits thereby balancing the
	 * zones, which causes kswapd to exit balance_pgdat() before reaching
	 * the wake up checks. If kswapd is going to sleep, no process should
	 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
	 * the wake up is premature, processes will wake kswapd and get
	 * throttled again. The difference from wake ups in balance_pgdat() is
	 * that here we are under prepare_to_wait().
3235
	 */
3236 3237
	if (waitqueue_active(&pgdat->pfmemalloc_wait))
		wake_up_all(&pgdat->pfmemalloc_wait);
3238

3239 3240 3241 3242
	/* Hopeless node, leave it to direct reclaim */
	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
		return true;

3243 3244 3245
	if (pgdat_balanced(pgdat, order, classzone_idx)) {
		clear_pgdat_congested(pgdat);
		return true;
3246 3247
	}

3248
	return false;
3249 3250
}

3251
/*
3252 3253
 * kswapd shrinks a node of pages that are at or below the highest usable
 * zone that is currently unbalanced.
3254 3255
 *
 * Returns true if kswapd scanned at least the requested number of pages to
3256 3257
 * reclaim or if the lack of progress was due to pages under writeback.
 * This is used to determine if the scanning priority needs to be raised.
3258
 */
3259
static bool kswapd_shrink_node(pg_data_t *pgdat,
3260
			       struct scan_control *sc)
3261
{
3262 3263
	struct zone *zone;
	int z;
3264

3265 3266
	/* Reclaim a number of pages proportional to the number of zones */
	sc->nr_to_reclaim = 0;
3267
	for (z = 0; z <= sc->reclaim_idx; z++) {
3268
		zone = pgdat->node_zones + z;
3269
		if (!managed_zone(zone))
3270
			continue;
3271

3272 3273
		sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
	}
3274 3275

	/*
3276 3277
	 * Historically care was taken to put equal pressure on all zones but
	 * now pressure is applied based on node LRU order.
3278
	 */
3279
	shrink_node(pgdat, sc);
3280

3281
	/*
3282 3283 3284 3285 3286
	 * Fragmentation may mean that the system cannot be rebalanced for
	 * high-order allocations. If twice the allocation size has been
	 * reclaimed then recheck watermarks only at order-0 to prevent
	 * excessive reclaim. Assume that a process requested a high-order
	 * can direct reclaim/compact.
3287
	 */
3288
	if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
3289
		sc->order = 0;
3290

3291
	return sc->nr_scanned >= sc->nr_to_reclaim;
3292 3293
}

L
Linus Torvalds 已提交
3294
/*
3295 3296 3297
 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
 * that are eligible for use by the caller until at least one zone is
 * balanced.
L
Linus Torvalds 已提交
3298
 *
3299
 * Returns the order kswapd finished reclaiming at.
L
Linus Torvalds 已提交
3300 3301
 *
 * kswapd scans the zones in the highmem->normal->dma direction.  It skips
3302
 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3303 3304 3305
 * found to have free_pages <= high_wmark_pages(zone), any page is that zone
 * or lower is eligible for reclaim until at least one usable zone is
 * balanced.
L
Linus Torvalds 已提交
3306
 */
3307
static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx)
L
Linus Torvalds 已提交
3308 3309
{
	int i;
3310 3311
	unsigned long nr_soft_reclaimed;
	unsigned long nr_soft_scanned;
3312
	struct zone *zone;
3313 3314
	struct scan_control sc = {
		.gfp_mask = GFP_KERNEL,
3315
		.order = order,
3316
		.priority = DEF_PRIORITY,
3317
		.may_writepage = !laptop_mode,
3318
		.may_unmap = 1,
3319
		.may_swap = 1,
3320
	};
3321
	count_vm_event(PAGEOUTRUN);
L
Linus Torvalds 已提交
3322

3323
	do {
3324
		unsigned long nr_reclaimed = sc.nr_reclaimed;
3325 3326
		bool raise_priority = true;

3327
		sc.reclaim_idx = classzone_idx;
L
Linus Torvalds 已提交
3328

3329
		/*
3330 3331 3332 3333 3334 3335 3336 3337
		 * If the number of buffer_heads exceeds the maximum allowed
		 * then consider reclaiming from all zones. This has a dual
		 * purpose -- on 64-bit systems it is expected that
		 * buffer_heads are stripped during active rotation. On 32-bit
		 * systems, highmem pages can pin lowmem memory and shrinking
		 * buffers can relieve lowmem pressure. Reclaim may still not
		 * go ahead if all eligible zones for the original allocation
		 * request are balanced to avoid excessive reclaim from kswapd.
3338 3339 3340 3341
		 */
		if (buffer_heads_over_limit) {
			for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
				zone = pgdat->node_zones + i;
3342
				if (!managed_zone(zone))
3343
					continue;
3344

3345
				sc.reclaim_idx = i;
A
Andrew Morton 已提交
3346
				break;
L
Linus Torvalds 已提交
3347 3348
			}
		}
3349

3350
		/*
3351 3352 3353
		 * Only reclaim if there are no eligible zones. Note that
		 * sc.reclaim_idx is not used as buffer_heads_over_limit may
		 * have adjusted it.
3354
		 */
3355 3356
		if (pgdat_balanced(pgdat, sc.order, classzone_idx))
			goto out;
A
Andrew Morton 已提交
3357

3358 3359 3360 3361 3362 3363
		/*
		 * Do some background aging of the anon list, to give
		 * pages a chance to be referenced before reclaiming. All
		 * pages are rotated regardless of classzone as this is
		 * about consistent aging.
		 */
3364
		age_active_anon(pgdat, &sc);
3365

3366 3367 3368 3369
		/*
		 * If we're getting trouble reclaiming, start doing writepage
		 * even in laptop mode.
		 */
3370
		if (sc.priority < DEF_PRIORITY - 2)
3371 3372
			sc.may_writepage = 1;

3373 3374 3375
		/* Call soft limit reclaim before calling shrink_node. */
		sc.nr_scanned = 0;
		nr_soft_scanned = 0;
3376
		nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
3377 3378 3379
						sc.gfp_mask, &nr_soft_scanned);
		sc.nr_reclaimed += nr_soft_reclaimed;

L
Linus Torvalds 已提交
3380
		/*
3381 3382 3383
		 * There should be no need to raise the scanning priority if
		 * enough pages are already being scanned that that high
		 * watermark would be met at 100% efficiency.
L
Linus Torvalds 已提交
3384
		 */
3385
		if (kswapd_shrink_node(pgdat, &sc))
3386
			raise_priority = false;
3387 3388 3389 3390 3391 3392 3393

		/*
		 * If the low watermark is met there is no need for processes
		 * to be throttled on pfmemalloc_wait as they should not be
		 * able to safely make forward progress. Wake them
		 */
		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3394
				allow_direct_reclaim(pgdat))
3395
			wake_up_all(&pgdat->pfmemalloc_wait);
3396

3397 3398 3399
		/* Check if kswapd should be suspending */
		if (try_to_freeze() || kthread_should_stop())
			break;
3400

3401
		/*
3402 3403
		 * Raise priority if scanning rate is too low or there was no
		 * progress in reclaiming pages
3404
		 */
3405 3406
		nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
		if (raise_priority || !nr_reclaimed)
3407
			sc.priority--;
3408
	} while (sc.priority >= 1);
L
Linus Torvalds 已提交
3409

3410 3411 3412
	if (!sc.nr_reclaimed)
		pgdat->kswapd_failures++;

3413
out:
3414
	snapshot_refaults(NULL, pgdat);
3415
	/*
3416 3417 3418 3419
	 * Return the order kswapd stopped reclaiming at as
	 * prepare_kswapd_sleep() takes it into account. If another caller
	 * entered the allocator slow path while kswapd was awake, order will
	 * remain at the higher level.
3420
	 */
3421
	return sc.order;
L
Linus Torvalds 已提交
3422 3423
}

3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439
/*
 * pgdat->kswapd_classzone_idx is the highest zone index that a recent
 * allocation request woke kswapd for. When kswapd has not woken recently,
 * the value is MAX_NR_ZONES which is not a valid index. This compares a
 * given classzone and returns it or the highest classzone index kswapd
 * was recently woke for.
 */
static enum zone_type kswapd_classzone_idx(pg_data_t *pgdat,
					   enum zone_type classzone_idx)
{
	if (pgdat->kswapd_classzone_idx == MAX_NR_ZONES)
		return classzone_idx;

	return max(pgdat->kswapd_classzone_idx, classzone_idx);
}

3440 3441
static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
				unsigned int classzone_idx)
3442 3443 3444 3445 3446 3447 3448 3449 3450
{
	long remaining = 0;
	DEFINE_WAIT(wait);

	if (freezing(current) || kthread_should_stop())
		return;

	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);

3451 3452 3453 3454 3455 3456 3457
	/*
	 * Try to sleep for a short interval. Note that kcompactd will only be
	 * woken if it is possible to sleep for a short interval. This is
	 * deliberate on the assumption that if reclaim cannot keep an
	 * eligible zone balanced that it's also unlikely that compaction will
	 * succeed.
	 */
3458
	if (prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470
		/*
		 * Compaction records what page blocks it recently failed to
		 * isolate pages from and skips them in the future scanning.
		 * When kswapd is going to sleep, it is reasonable to assume
		 * that pages and compaction may succeed so reset the cache.
		 */
		reset_isolation_suitable(pgdat);

		/*
		 * We have freed the memory, now we should compact it to make
		 * allocation of the requested order possible.
		 */
3471
		wakeup_kcompactd(pgdat, alloc_order, classzone_idx);
3472

3473
		remaining = schedule_timeout(HZ/10);
3474 3475 3476 3477 3478 3479 3480

		/*
		 * If woken prematurely then reset kswapd_classzone_idx and
		 * order. The values will either be from a wakeup request or
		 * the previous request that slept prematurely.
		 */
		if (remaining) {
3481
			pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3482 3483 3484
			pgdat->kswapd_order = max(pgdat->kswapd_order, reclaim_order);
		}

3485 3486 3487 3488 3489 3490 3491 3492
		finish_wait(&pgdat->kswapd_wait, &wait);
		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
	}

	/*
	 * After a short sleep, check if it was a premature sleep. If not, then
	 * go fully to sleep until explicitly woken up.
	 */
3493 3494
	if (!remaining &&
	    prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505
		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);

		/*
		 * vmstat counters are not perfectly accurate and the estimated
		 * value for counters such as NR_FREE_PAGES can deviate from the
		 * true value by nr_online_cpus * threshold. To avoid the zone
		 * watermarks being breached while under pressure, we reduce the
		 * per-cpu vmstat threshold while kswapd is awake and restore
		 * them before going back to sleep.
		 */
		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3506 3507 3508 3509

		if (!kthread_should_stop())
			schedule();

3510 3511 3512 3513 3514 3515 3516 3517 3518 3519
		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
	} else {
		if (remaining)
			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
		else
			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
	}
	finish_wait(&pgdat->kswapd_wait, &wait);
}

L
Linus Torvalds 已提交
3520 3521
/*
 * The background pageout daemon, started as a kernel thread
3522
 * from the init process.
L
Linus Torvalds 已提交
3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534
 *
 * This basically trickles out pages so that we have _some_
 * free memory available even if there is no other activity
 * that frees anything up. This is needed for things like routing
 * etc, where we otherwise might have all activity going on in
 * asynchronous contexts that cannot page things out.
 *
 * If there are applications that are active memory-allocators
 * (most normal use), this basically shouldn't matter.
 */
static int kswapd(void *p)
{
3535 3536
	unsigned int alloc_order, reclaim_order;
	unsigned int classzone_idx = MAX_NR_ZONES - 1;
L
Linus Torvalds 已提交
3537 3538
	pg_data_t *pgdat = (pg_data_t*)p;
	struct task_struct *tsk = current;
3539

L
Linus Torvalds 已提交
3540 3541 3542
	struct reclaim_state reclaim_state = {
		.reclaimed_slab = 0,
	};
3543
	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
L
Linus Torvalds 已提交
3544

R
Rusty Russell 已提交
3545
	if (!cpumask_empty(cpumask))
3546
		set_cpus_allowed_ptr(tsk, cpumask);
L
Linus Torvalds 已提交
3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560
	current->reclaim_state = &reclaim_state;

	/*
	 * Tell the memory management that we're a "memory allocator",
	 * and that if we need more memory we should get access to it
	 * regardless (see "__alloc_pages()"). "kswapd" should
	 * never get caught in the normal page freeing logic.
	 *
	 * (Kswapd normally doesn't need memory anyway, but sometimes
	 * you need a small amount of memory in order to be able to
	 * page out something else, and this flag essentially protects
	 * us from recursively trying to free more memory as we're
	 * trying to free the first piece of memory in the first place).
	 */
3561
	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3562
	set_freezable();
L
Linus Torvalds 已提交
3563

3564 3565
	pgdat->kswapd_order = 0;
	pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
L
Linus Torvalds 已提交
3566
	for ( ; ; ) {
3567
		bool ret;
3568

3569 3570 3571
		alloc_order = reclaim_order = pgdat->kswapd_order;
		classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);

3572 3573 3574
kswapd_try_sleep:
		kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
					classzone_idx);
3575

3576 3577
		/* Read the new order and classzone_idx */
		alloc_order = reclaim_order = pgdat->kswapd_order;
3578
		classzone_idx = kswapd_classzone_idx(pgdat, 0);
3579
		pgdat->kswapd_order = 0;
3580
		pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
L
Linus Torvalds 已提交
3581

3582 3583 3584 3585 3586 3587 3588 3589
		ret = try_to_freeze();
		if (kthread_should_stop())
			break;

		/*
		 * We can speed up thawing tasks if we don't call balance_pgdat
		 * after returning from the refrigerator
		 */
3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600
		if (ret)
			continue;

		/*
		 * Reclaim begins at the requested order but if a high-order
		 * reclaim fails then kswapd falls back to reclaiming for
		 * order-0. If that happens, kswapd will consider sleeping
		 * for the order it finished reclaiming at (reclaim_order)
		 * but kcompactd is woken to compact for the original
		 * request (alloc_order).
		 */
3601 3602
		trace_mm_vmscan_kswapd_wake(pgdat->node_id, classzone_idx,
						alloc_order);
3603
		fs_reclaim_acquire(GFP_KERNEL);
3604
		reclaim_order = balance_pgdat(pgdat, alloc_order, classzone_idx);
3605
		fs_reclaim_release(GFP_KERNEL);
3606 3607
		if (reclaim_order < alloc_order)
			goto kswapd_try_sleep;
L
Linus Torvalds 已提交
3608
	}
3609

3610
	tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
3611
	current->reclaim_state = NULL;
3612

L
Linus Torvalds 已提交
3613 3614 3615 3616
	return 0;
}

/*
3617 3618 3619 3620 3621
 * A zone is low on free memory or too fragmented for high-order memory.  If
 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
 * pgdat.  It will wake up kcompactd after reclaiming memory.  If kswapd reclaim
 * has failed or is not needed, still wake up kcompactd if only compaction is
 * needed.
L
Linus Torvalds 已提交
3622
 */
3623 3624
void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
		   enum zone_type classzone_idx)
L
Linus Torvalds 已提交
3625 3626 3627
{
	pg_data_t *pgdat;

3628
	if (!managed_zone(zone))
L
Linus Torvalds 已提交
3629 3630
		return;

3631
	if (!cpuset_zone_allowed(zone, gfp_flags))
L
Linus Torvalds 已提交
3632
		return;
3633
	pgdat = zone->zone_pgdat;
3634 3635
	pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat,
							   classzone_idx);
3636
	pgdat->kswapd_order = max(pgdat->kswapd_order, order);
3637
	if (!waitqueue_active(&pgdat->kswapd_wait))
L
Linus Torvalds 已提交
3638
		return;
3639

3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651
	/* Hopeless node, leave it to direct reclaim if possible */
	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
	    pgdat_balanced(pgdat, order, classzone_idx)) {
		/*
		 * There may be plenty of free memory available, but it's too
		 * fragmented for high-order allocations.  Wake up kcompactd
		 * and rely on compaction_suitable() to determine if it's
		 * needed.  If it fails, it will defer subsequent attempts to
		 * ratelimit its work.
		 */
		if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
			wakeup_kcompactd(pgdat, order, classzone_idx);
3652
		return;
3653
	}
3654

3655 3656
	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, classzone_idx, order,
				      gfp_flags);
3657
	wake_up_interruptible(&pgdat->kswapd_wait);
L
Linus Torvalds 已提交
3658 3659
}

3660
#ifdef CONFIG_HIBERNATION
L
Linus Torvalds 已提交
3661
/*
3662
 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3663 3664 3665 3666 3667
 * freed pages.
 *
 * Rather than trying to age LRUs the aim is to preserve the overall
 * LRU order by reclaiming preferentially
 * inactive > active > active referenced > active mapped
L
Linus Torvalds 已提交
3668
 */
3669
unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
L
Linus Torvalds 已提交
3670
{
3671 3672
	struct reclaim_state reclaim_state;
	struct scan_control sc = {
3673
		.nr_to_reclaim = nr_to_reclaim,
3674
		.gfp_mask = GFP_HIGHUSER_MOVABLE,
3675
		.reclaim_idx = MAX_NR_ZONES - 1,
3676
		.priority = DEF_PRIORITY,
3677
		.may_writepage = 1,
3678 3679
		.may_unmap = 1,
		.may_swap = 1,
3680
		.hibernation_mode = 1,
L
Linus Torvalds 已提交
3681
	};
3682
	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3683 3684
	struct task_struct *p = current;
	unsigned long nr_reclaimed;
3685
	unsigned int noreclaim_flag;
L
Linus Torvalds 已提交
3686

3687
	noreclaim_flag = memalloc_noreclaim_save();
3688
	fs_reclaim_acquire(sc.gfp_mask);
3689 3690
	reclaim_state.reclaimed_slab = 0;
	p->reclaim_state = &reclaim_state;
3691

3692
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3693

3694
	p->reclaim_state = NULL;
3695
	fs_reclaim_release(sc.gfp_mask);
3696
	memalloc_noreclaim_restore(noreclaim_flag);
3697

3698
	return nr_reclaimed;
L
Linus Torvalds 已提交
3699
}
3700
#endif /* CONFIG_HIBERNATION */
L
Linus Torvalds 已提交
3701 3702 3703 3704 3705

/* It's optimal to keep kswapds on the same CPUs as their memory, but
   not required for correctness.  So if the last cpu in a node goes
   away, we get changed to run anywhere: as the first one comes back,
   restore their cpu bindings. */
3706
static int kswapd_cpu_online(unsigned int cpu)
L
Linus Torvalds 已提交
3707
{
3708
	int nid;
L
Linus Torvalds 已提交
3709

3710 3711 3712
	for_each_node_state(nid, N_MEMORY) {
		pg_data_t *pgdat = NODE_DATA(nid);
		const struct cpumask *mask;
3713

3714
		mask = cpumask_of_node(pgdat->node_id);
3715

3716 3717 3718
		if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
			/* One of our CPUs online: restore mask */
			set_cpus_allowed_ptr(pgdat->kswapd, mask);
L
Linus Torvalds 已提交
3719
	}
3720
	return 0;
L
Linus Torvalds 已提交
3721 3722
}

3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737
/*
 * This kswapd start function will be called by init and node-hot-add.
 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
 */
int kswapd_run(int nid)
{
	pg_data_t *pgdat = NODE_DATA(nid);
	int ret = 0;

	if (pgdat->kswapd)
		return 0;

	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
	if (IS_ERR(pgdat->kswapd)) {
		/* failure at boot is fatal */
3738
		BUG_ON(system_state < SYSTEM_RUNNING);
3739 3740
		pr_err("Failed to start kswapd on node %d\n", nid);
		ret = PTR_ERR(pgdat->kswapd);
3741
		pgdat->kswapd = NULL;
3742 3743 3744 3745
	}
	return ret;
}

3746
/*
3747
 * Called by memory hotplug when all memory in a node is offlined.  Caller must
3748
 * hold mem_hotplug_begin/end().
3749 3750 3751 3752 3753
 */
void kswapd_stop(int nid)
{
	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;

3754
	if (kswapd) {
3755
		kthread_stop(kswapd);
3756 3757
		NODE_DATA(nid)->kswapd = NULL;
	}
3758 3759
}

L
Linus Torvalds 已提交
3760 3761
static int __init kswapd_init(void)
{
3762
	int nid, ret;
3763

L
Linus Torvalds 已提交
3764
	swap_setup();
3765
	for_each_node_state(nid, N_MEMORY)
3766
 		kswapd_run(nid);
3767 3768 3769 3770
	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
					"mm/vmscan:online", kswapd_cpu_online,
					NULL);
	WARN_ON(ret < 0);
L
Linus Torvalds 已提交
3771 3772 3773 3774
	return 0;
}

module_init(kswapd_init)
3775 3776 3777

#ifdef CONFIG_NUMA
/*
3778
 * Node reclaim mode
3779
 *
3780
 * If non-zero call node_reclaim when the number of free pages falls below
3781 3782
 * the watermarks.
 */
3783
int node_reclaim_mode __read_mostly;
3784

3785
#define RECLAIM_OFF 0
3786
#define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
3787
#define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
3788
#define RECLAIM_UNMAP (1<<2)	/* Unmap pages during reclaim */
3789

3790
/*
3791
 * Priority for NODE_RECLAIM. This determines the fraction of pages
3792 3793 3794
 * of a node considered for each zone_reclaim. 4 scans 1/16th of
 * a zone.
 */
3795
#define NODE_RECLAIM_PRIORITY 4
3796

3797
/*
3798
 * Percentage of pages in a zone that must be unmapped for node_reclaim to
3799 3800 3801 3802
 * occur.
 */
int sysctl_min_unmapped_ratio = 1;

3803 3804 3805 3806 3807 3808
/*
 * If the number of slab pages in a zone grows beyond this percentage then
 * slab reclaim needs to occur.
 */
int sysctl_min_slab_ratio = 5;

3809
static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
3810
{
3811 3812 3813
	unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
	unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
		node_page_state(pgdat, NR_ACTIVE_FILE);
3814 3815 3816 3817 3818 3819 3820 3821 3822 3823

	/*
	 * It's possible for there to be more file mapped pages than
	 * accounted for by the pages on the file LRU lists because
	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
	 */
	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
}

/* Work out how many page cache pages we can reclaim in this reclaim_mode */
3824
static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
3825
{
3826 3827
	unsigned long nr_pagecache_reclaimable;
	unsigned long delta = 0;
3828 3829

	/*
3830
	 * If RECLAIM_UNMAP is set, then all file pages are considered
3831
	 * potentially reclaimable. Otherwise, we have to worry about
3832
	 * pages like swapcache and node_unmapped_file_pages() provides
3833 3834
	 * a better estimate
	 */
3835 3836
	if (node_reclaim_mode & RECLAIM_UNMAP)
		nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
3837
	else
3838
		nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
3839 3840

	/* If we can't clean pages, remove dirty pages from consideration */
3841 3842
	if (!(node_reclaim_mode & RECLAIM_WRITE))
		delta += node_page_state(pgdat, NR_FILE_DIRTY);
3843 3844 3845 3846 3847 3848 3849 3850

	/* Watch for any possible underflows due to delta */
	if (unlikely(delta > nr_pagecache_reclaimable))
		delta = nr_pagecache_reclaimable;

	return nr_pagecache_reclaimable - delta;
}

3851
/*
3852
 * Try to free up some pages from this node through reclaim.
3853
 */
3854
static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
3855
{
3856
	/* Minimum pages needed in order to stay on node */
3857
	const unsigned long nr_pages = 1 << order;
3858 3859
	struct task_struct *p = current;
	struct reclaim_state reclaim_state;
3860
	unsigned int noreclaim_flag;
3861
	struct scan_control sc = {
3862
		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3863
		.gfp_mask = current_gfp_context(gfp_mask),
3864
		.order = order,
3865 3866 3867
		.priority = NODE_RECLAIM_PRIORITY,
		.may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
		.may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
3868
		.may_swap = 1,
3869
		.reclaim_idx = gfp_zone(gfp_mask),
3870
	};
3871 3872

	cond_resched();
3873
	/*
3874
	 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
3875
	 * and we also need to be able to write out pages for RECLAIM_WRITE
3876
	 * and RECLAIM_UNMAP.
3877
	 */
3878 3879
	noreclaim_flag = memalloc_noreclaim_save();
	p->flags |= PF_SWAPWRITE;
3880
	fs_reclaim_acquire(sc.gfp_mask);
3881 3882
	reclaim_state.reclaimed_slab = 0;
	p->reclaim_state = &reclaim_state;
3883

3884
	if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
3885
		/*
3886
		 * Free memory by calling shrink node with increasing
3887 3888 3889
		 * priorities until we have enough memory freed.
		 */
		do {
3890
			shrink_node(pgdat, &sc);
3891
		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3892
	}
3893

3894
	p->reclaim_state = NULL;
3895
	fs_reclaim_release(gfp_mask);
3896 3897
	current->flags &= ~PF_SWAPWRITE;
	memalloc_noreclaim_restore(noreclaim_flag);
3898
	return sc.nr_reclaimed >= nr_pages;
3899
}
3900

3901
int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
3902
{
3903
	int ret;
3904 3905

	/*
3906
	 * Node reclaim reclaims unmapped file backed pages and
3907
	 * slab pages if we are over the defined limits.
3908
	 *
3909 3910
	 * A small portion of unmapped file backed pages is needed for
	 * file I/O otherwise pages read by file I/O will be immediately
3911 3912
	 * thrown out if the node is overallocated. So we do not reclaim
	 * if less than a specified percentage of the node is used by
3913
	 * unmapped file backed pages.
3914
	 */
3915
	if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
3916
	    node_page_state(pgdat, NR_SLAB_RECLAIMABLE) <= pgdat->min_slab_pages)
3917
		return NODE_RECLAIM_FULL;
3918 3919

	/*
3920
	 * Do not scan if the allocation should not be delayed.
3921
	 */
3922
	if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
3923
		return NODE_RECLAIM_NOSCAN;
3924 3925

	/*
3926
	 * Only run node reclaim on the local node or on nodes that do not
3927 3928 3929 3930
	 * have associated processors. This will favor the local processor
	 * over remote processors and spread off node memory allocations
	 * as wide as possible.
	 */
3931 3932
	if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
		return NODE_RECLAIM_NOSCAN;
3933

3934 3935
	if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
		return NODE_RECLAIM_NOSCAN;
3936

3937 3938
	ret = __node_reclaim(pgdat, gfp_mask, order);
	clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
3939

3940 3941 3942
	if (!ret)
		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);

3943
	return ret;
3944
}
3945
#endif
L
Lee Schermerhorn 已提交
3946 3947 3948 3949 3950 3951

/*
 * page_evictable - test whether a page is evictable
 * @page: the page to test
 *
 * Test whether page is evictable--i.e., should be placed on active/inactive
3952
 * lists vs unevictable list.
L
Lee Schermerhorn 已提交
3953 3954
 *
 * Reasons page might not be evictable:
3955
 * (1) page's mapping marked unevictable
N
Nick Piggin 已提交
3956
 * (2) page is part of an mlocked VMA
3957
 *
L
Lee Schermerhorn 已提交
3958
 */
3959
int page_evictable(struct page *page)
L
Lee Schermerhorn 已提交
3960
{
3961 3962 3963 3964 3965 3966 3967
	int ret;

	/* Prevent address_space of inode and swap cache from being freed */
	rcu_read_lock();
	ret = !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
	rcu_read_unlock();
	return ret;
L
Lee Schermerhorn 已提交
3968
}
3969

3970
#ifdef CONFIG_SHMEM
3971
/**
3972 3973 3974
 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
 * @pages:	array of pages to check
 * @nr_pages:	number of pages to check
3975
 *
3976
 * Checks pages for evictability and moves them to the appropriate lru list.
3977 3978
 *
 * This function is only used for SysV IPC SHM_UNLOCK.
3979
 */
3980
void check_move_unevictable_pages(struct page **pages, int nr_pages)
3981
{
3982
	struct lruvec *lruvec;
3983
	struct pglist_data *pgdat = NULL;
3984 3985 3986
	int pgscanned = 0;
	int pgrescued = 0;
	int i;
3987

3988 3989
	for (i = 0; i < nr_pages; i++) {
		struct page *page = pages[i];
3990
		struct pglist_data *pagepgdat = page_pgdat(page);
3991

3992
		pgscanned++;
3993 3994 3995 3996 3997
		if (pagepgdat != pgdat) {
			if (pgdat)
				spin_unlock_irq(&pgdat->lru_lock);
			pgdat = pagepgdat;
			spin_lock_irq(&pgdat->lru_lock);
3998
		}
3999
		lruvec = mem_cgroup_page_lruvec(page, pgdat);
4000

4001 4002
		if (!PageLRU(page) || !PageUnevictable(page))
			continue;
4003

4004
		if (page_evictable(page)) {
4005 4006
			enum lru_list lru = page_lru_base_type(page);

4007
			VM_BUG_ON_PAGE(PageActive(page), page);
4008
			ClearPageUnevictable(page);
4009 4010
			del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
			add_page_to_lru_list(page, lruvec, lru);
4011
			pgrescued++;
4012
		}
4013
	}
4014

4015
	if (pgdat) {
4016 4017
		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
4018
		spin_unlock_irq(&pgdat->lru_lock);
4019 4020
	}
}
4021
#endif /* CONFIG_SHMEM */