igb_main.c 185.9 KB
Newer Older
1 2 3
/*******************************************************************************

  Intel(R) Gigabit Ethernet Linux driver
4
  Copyright(c) 2007-2009 Intel Corporation.
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

  This program is free software; you can redistribute it and/or modify it
  under the terms and conditions of the GNU General Public License,
  version 2, as published by the Free Software Foundation.

  This program is distributed in the hope it will be useful, but WITHOUT
  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  more details.

  You should have received a copy of the GNU General Public License along with
  this program; if not, write to the Free Software Foundation, Inc.,
  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.

  The full GNU General Public License is included in this distribution in
  the file called "COPYING".

  Contact Information:
  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497

*******************************************************************************/

#include <linux/module.h>
#include <linux/types.h>
#include <linux/init.h>
#include <linux/vmalloc.h>
#include <linux/pagemap.h>
#include <linux/netdevice.h>
#include <linux/ipv6.h>
35
#include <linux/slab.h>
36 37
#include <net/checksum.h>
#include <net/ip6_checksum.h>
38
#include <linux/net_tstamp.h>
39 40 41 42
#include <linux/mii.h>
#include <linux/ethtool.h>
#include <linux/if_vlan.h>
#include <linux/pci.h>
43
#include <linux/pci-aspm.h>
44 45 46
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/if_ether.h>
47
#include <linux/aer.h>
48
#ifdef CONFIG_IGB_DCA
J
Jeb Cramer 已提交
49 50
#include <linux/dca.h>
#endif
51 52
#include "igb.h"

C
Carolyn Wyborny 已提交
53
#define DRV_VERSION "2.4.13-k2"
54 55 56 57
char igb_driver_name[] = "igb";
char igb_driver_version[] = DRV_VERSION;
static const char igb_driver_string[] =
				"Intel(R) Gigabit Ethernet Network Driver";
58
static const char igb_copyright[] = "Copyright (c) 2007-2011 Intel Corporation.";
59 60 61 62 63

static const struct e1000_info *igb_info_tbl[] = {
	[board_82575] = &e1000_82575_info,
};

64
static DEFINE_PCI_DEVICE_TABLE(igb_pci_tbl) = {
65 66 67 68
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
69 70
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
71
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
72 73 74
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
75 76
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
G
Gasparakis, Joseph 已提交
77 78
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
A
Alexander Duyck 已提交
79
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
80
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
81
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
A
Alexander Duyck 已提交
82 83
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
84
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
85
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
86
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
87 88 89 90 91 92 93 94 95 96 97 98 99 100
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
	/* required last entry */
	{0, }
};

MODULE_DEVICE_TABLE(pci, igb_pci_tbl);

void igb_reset(struct igb_adapter *);
static int igb_setup_all_tx_resources(struct igb_adapter *);
static int igb_setup_all_rx_resources(struct igb_adapter *);
static void igb_free_all_tx_resources(struct igb_adapter *);
static void igb_free_all_rx_resources(struct igb_adapter *);
101
static void igb_setup_mrqc(struct igb_adapter *);
102 103 104 105 106 107 108 109 110
static int igb_probe(struct pci_dev *, const struct pci_device_id *);
static void __devexit igb_remove(struct pci_dev *pdev);
static int igb_sw_init(struct igb_adapter *);
static int igb_open(struct net_device *);
static int igb_close(struct net_device *);
static void igb_configure_tx(struct igb_adapter *);
static void igb_configure_rx(struct igb_adapter *);
static void igb_clean_all_tx_rings(struct igb_adapter *);
static void igb_clean_all_rx_rings(struct igb_adapter *);
111 112
static void igb_clean_tx_ring(struct igb_ring *);
static void igb_clean_rx_ring(struct igb_ring *);
113
static void igb_set_rx_mode(struct net_device *);
114 115 116
static void igb_update_phy_info(unsigned long);
static void igb_watchdog(unsigned long);
static void igb_watchdog_task(struct work_struct *);
117
static netdev_tx_t igb_xmit_frame_adv(struct sk_buff *skb, struct net_device *);
E
Eric Dumazet 已提交
118 119
static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *dev,
						 struct rtnl_link_stats64 *stats);
120 121
static int igb_change_mtu(struct net_device *, int);
static int igb_set_mac(struct net_device *, void *);
122
static void igb_set_uta(struct igb_adapter *adapter);
123 124 125
static irqreturn_t igb_intr(int irq, void *);
static irqreturn_t igb_intr_msi(int irq, void *);
static irqreturn_t igb_msix_other(int irq, void *);
126
static irqreturn_t igb_msix_ring(int irq, void *);
127
#ifdef CONFIG_IGB_DCA
128
static void igb_update_dca(struct igb_q_vector *);
J
Jeb Cramer 已提交
129
static void igb_setup_dca(struct igb_adapter *);
130
#endif /* CONFIG_IGB_DCA */
131
static bool igb_clean_tx_irq(struct igb_q_vector *);
132
static int igb_poll(struct napi_struct *, int);
133
static bool igb_clean_rx_irq_adv(struct igb_q_vector *, int *, int);
134 135 136 137 138 139 140
static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
static void igb_tx_timeout(struct net_device *);
static void igb_reset_task(struct work_struct *);
static void igb_vlan_rx_register(struct net_device *, struct vlan_group *);
static void igb_vlan_rx_add_vid(struct net_device *, u16);
static void igb_vlan_rx_kill_vid(struct net_device *, u16);
static void igb_restore_vlan(struct igb_adapter *);
141
static void igb_rar_set_qsel(struct igb_adapter *, u8 *, u32 , u8);
142 143 144
static void igb_ping_all_vfs(struct igb_adapter *);
static void igb_msg_task(struct igb_adapter *);
static void igb_vmm_control(struct igb_adapter *);
145
static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
146
static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
147 148 149 150 151 152
static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
static int igb_ndo_set_vf_vlan(struct net_device *netdev,
			       int vf, u16 vlan, u8 qos);
static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate);
static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
				 struct ifla_vf_info *ivi);
153
static void igb_check_vf_rate_limit(struct igb_adapter *);
154 155

#ifdef CONFIG_PM
156
static int igb_suspend(struct pci_dev *, pm_message_t);
157 158 159
static int igb_resume(struct pci_dev *);
#endif
static void igb_shutdown(struct pci_dev *);
160
#ifdef CONFIG_IGB_DCA
J
Jeb Cramer 已提交
161 162 163 164 165 166 167
static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
static struct notifier_block dca_notifier = {
	.notifier_call	= igb_notify_dca,
	.next		= NULL,
	.priority	= 0
};
#endif
168 169 170 171
#ifdef CONFIG_NET_POLL_CONTROLLER
/* for netdump / net console */
static void igb_netpoll(struct net_device *);
#endif
172
#ifdef CONFIG_PCI_IOV
173 174 175 176 177 178
static unsigned int max_vfs = 0;
module_param(max_vfs, uint, 0);
MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate "
                 "per physical function");
#endif /* CONFIG_PCI_IOV */

179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
		     pci_channel_state_t);
static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
static void igb_io_resume(struct pci_dev *);

static struct pci_error_handlers igb_err_handler = {
	.error_detected = igb_io_error_detected,
	.slot_reset = igb_io_slot_reset,
	.resume = igb_io_resume,
};


static struct pci_driver igb_driver = {
	.name     = igb_driver_name,
	.id_table = igb_pci_tbl,
	.probe    = igb_probe,
	.remove   = __devexit_p(igb_remove),
#ifdef CONFIG_PM
	/* Power Managment Hooks */
	.suspend  = igb_suspend,
	.resume   = igb_resume,
#endif
	.shutdown = igb_shutdown,
	.err_handler = &igb_err_handler
};

MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
MODULE_LICENSE("GPL");
MODULE_VERSION(DRV_VERSION);

210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539
struct igb_reg_info {
	u32 ofs;
	char *name;
};

static const struct igb_reg_info igb_reg_info_tbl[] = {

	/* General Registers */
	{E1000_CTRL, "CTRL"},
	{E1000_STATUS, "STATUS"},
	{E1000_CTRL_EXT, "CTRL_EXT"},

	/* Interrupt Registers */
	{E1000_ICR, "ICR"},

	/* RX Registers */
	{E1000_RCTL, "RCTL"},
	{E1000_RDLEN(0), "RDLEN"},
	{E1000_RDH(0), "RDH"},
	{E1000_RDT(0), "RDT"},
	{E1000_RXDCTL(0), "RXDCTL"},
	{E1000_RDBAL(0), "RDBAL"},
	{E1000_RDBAH(0), "RDBAH"},

	/* TX Registers */
	{E1000_TCTL, "TCTL"},
	{E1000_TDBAL(0), "TDBAL"},
	{E1000_TDBAH(0), "TDBAH"},
	{E1000_TDLEN(0), "TDLEN"},
	{E1000_TDH(0), "TDH"},
	{E1000_TDT(0), "TDT"},
	{E1000_TXDCTL(0), "TXDCTL"},
	{E1000_TDFH, "TDFH"},
	{E1000_TDFT, "TDFT"},
	{E1000_TDFHS, "TDFHS"},
	{E1000_TDFPC, "TDFPC"},

	/* List Terminator */
	{}
};

/*
 * igb_regdump - register printout routine
 */
static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
{
	int n = 0;
	char rname[16];
	u32 regs[8];

	switch (reginfo->ofs) {
	case E1000_RDLEN(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_RDLEN(n));
		break;
	case E1000_RDH(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_RDH(n));
		break;
	case E1000_RDT(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_RDT(n));
		break;
	case E1000_RXDCTL(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_RXDCTL(n));
		break;
	case E1000_RDBAL(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_RDBAL(n));
		break;
	case E1000_RDBAH(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_RDBAH(n));
		break;
	case E1000_TDBAL(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_RDBAL(n));
		break;
	case E1000_TDBAH(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_TDBAH(n));
		break;
	case E1000_TDLEN(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_TDLEN(n));
		break;
	case E1000_TDH(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_TDH(n));
		break;
	case E1000_TDT(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_TDT(n));
		break;
	case E1000_TXDCTL(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_TXDCTL(n));
		break;
	default:
		printk(KERN_INFO "%-15s %08x\n",
			reginfo->name, rd32(reginfo->ofs));
		return;
	}

	snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
	printk(KERN_INFO "%-15s ", rname);
	for (n = 0; n < 4; n++)
		printk(KERN_CONT "%08x ", regs[n]);
	printk(KERN_CONT "\n");
}

/*
 * igb_dump - Print registers, tx-rings and rx-rings
 */
static void igb_dump(struct igb_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
	struct e1000_hw *hw = &adapter->hw;
	struct igb_reg_info *reginfo;
	int n = 0;
	struct igb_ring *tx_ring;
	union e1000_adv_tx_desc *tx_desc;
	struct my_u0 { u64 a; u64 b; } *u0;
	struct igb_buffer *buffer_info;
	struct igb_ring *rx_ring;
	union e1000_adv_rx_desc *rx_desc;
	u32 staterr;
	int i = 0;

	if (!netif_msg_hw(adapter))
		return;

	/* Print netdevice Info */
	if (netdev) {
		dev_info(&adapter->pdev->dev, "Net device Info\n");
		printk(KERN_INFO "Device Name     state            "
			"trans_start      last_rx\n");
		printk(KERN_INFO "%-15s %016lX %016lX %016lX\n",
		netdev->name,
		netdev->state,
		netdev->trans_start,
		netdev->last_rx);
	}

	/* Print Registers */
	dev_info(&adapter->pdev->dev, "Register Dump\n");
	printk(KERN_INFO " Register Name   Value\n");
	for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
	     reginfo->name; reginfo++) {
		igb_regdump(hw, reginfo);
	}

	/* Print TX Ring Summary */
	if (!netdev || !netif_running(netdev))
		goto exit;

	dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
	printk(KERN_INFO "Queue [NTU] [NTC] [bi(ntc)->dma  ]"
		" leng ntw timestamp\n");
	for (n = 0; n < adapter->num_tx_queues; n++) {
		tx_ring = adapter->tx_ring[n];
		buffer_info = &tx_ring->buffer_info[tx_ring->next_to_clean];
		printk(KERN_INFO " %5d %5X %5X %016llX %04X %3X %016llX\n",
			   n, tx_ring->next_to_use, tx_ring->next_to_clean,
			   (u64)buffer_info->dma,
			   buffer_info->length,
			   buffer_info->next_to_watch,
			   (u64)buffer_info->time_stamp);
	}

	/* Print TX Rings */
	if (!netif_msg_tx_done(adapter))
		goto rx_ring_summary;

	dev_info(&adapter->pdev->dev, "TX Rings Dump\n");

	/* Transmit Descriptor Formats
	 *
	 * Advanced Transmit Descriptor
	 *   +--------------------------------------------------------------+
	 * 0 |         Buffer Address [63:0]                                |
	 *   +--------------------------------------------------------------+
	 * 8 | PAYLEN  | PORTS  |CC|IDX | STA | DCMD  |DTYP|MAC|RSV| DTALEN |
	 *   +--------------------------------------------------------------+
	 *   63      46 45    40 39 38 36 35 32 31   24             15       0
	 */

	for (n = 0; n < adapter->num_tx_queues; n++) {
		tx_ring = adapter->tx_ring[n];
		printk(KERN_INFO "------------------------------------\n");
		printk(KERN_INFO "TX QUEUE INDEX = %d\n", tx_ring->queue_index);
		printk(KERN_INFO "------------------------------------\n");
		printk(KERN_INFO "T [desc]     [address 63:0  ] "
			"[PlPOCIStDDM Ln] [bi->dma       ] "
			"leng  ntw timestamp        bi->skb\n");

		for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
			tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
			buffer_info = &tx_ring->buffer_info[i];
			u0 = (struct my_u0 *)tx_desc;
			printk(KERN_INFO "T [0x%03X]    %016llX %016llX %016llX"
				" %04X  %3X %016llX %p", i,
				le64_to_cpu(u0->a),
				le64_to_cpu(u0->b),
				(u64)buffer_info->dma,
				buffer_info->length,
				buffer_info->next_to_watch,
				(u64)buffer_info->time_stamp,
				buffer_info->skb);
			if (i == tx_ring->next_to_use &&
				i == tx_ring->next_to_clean)
				printk(KERN_CONT " NTC/U\n");
			else if (i == tx_ring->next_to_use)
				printk(KERN_CONT " NTU\n");
			else if (i == tx_ring->next_to_clean)
				printk(KERN_CONT " NTC\n");
			else
				printk(KERN_CONT "\n");

			if (netif_msg_pktdata(adapter) && buffer_info->dma != 0)
				print_hex_dump(KERN_INFO, "",
					DUMP_PREFIX_ADDRESS,
					16, 1, phys_to_virt(buffer_info->dma),
					buffer_info->length, true);
		}
	}

	/* Print RX Rings Summary */
rx_ring_summary:
	dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
	printk(KERN_INFO "Queue [NTU] [NTC]\n");
	for (n = 0; n < adapter->num_rx_queues; n++) {
		rx_ring = adapter->rx_ring[n];
		printk(KERN_INFO " %5d %5X %5X\n", n,
			   rx_ring->next_to_use, rx_ring->next_to_clean);
	}

	/* Print RX Rings */
	if (!netif_msg_rx_status(adapter))
		goto exit;

	dev_info(&adapter->pdev->dev, "RX Rings Dump\n");

	/* Advanced Receive Descriptor (Read) Format
	 *    63                                           1        0
	 *    +-----------------------------------------------------+
	 *  0 |       Packet Buffer Address [63:1]           |A0/NSE|
	 *    +----------------------------------------------+------+
	 *  8 |       Header Buffer Address [63:1]           |  DD  |
	 *    +-----------------------------------------------------+
	 *
	 *
	 * Advanced Receive Descriptor (Write-Back) Format
	 *
	 *   63       48 47    32 31  30      21 20 17 16   4 3     0
	 *   +------------------------------------------------------+
	 * 0 | Packet     IP     |SPH| HDR_LEN   | RSV|Packet|  RSS |
	 *   | Checksum   Ident  |   |           |    | Type | Type |
	 *   +------------------------------------------------------+
	 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
	 *   +------------------------------------------------------+
	 *   63       48 47    32 31            20 19               0
	 */

	for (n = 0; n < adapter->num_rx_queues; n++) {
		rx_ring = adapter->rx_ring[n];
		printk(KERN_INFO "------------------------------------\n");
		printk(KERN_INFO "RX QUEUE INDEX = %d\n", rx_ring->queue_index);
		printk(KERN_INFO "------------------------------------\n");
		printk(KERN_INFO "R  [desc]      [ PktBuf     A0] "
			"[  HeadBuf   DD] [bi->dma       ] [bi->skb] "
			"<-- Adv Rx Read format\n");
		printk(KERN_INFO "RWB[desc]      [PcsmIpSHl PtRs] "
			"[vl er S cks ln] ---------------- [bi->skb] "
			"<-- Adv Rx Write-Back format\n");

		for (i = 0; i < rx_ring->count; i++) {
			buffer_info = &rx_ring->buffer_info[i];
			rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
			u0 = (struct my_u0 *)rx_desc;
			staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
			if (staterr & E1000_RXD_STAT_DD) {
				/* Descriptor Done */
				printk(KERN_INFO "RWB[0x%03X]     %016llX "
					"%016llX ---------------- %p", i,
					le64_to_cpu(u0->a),
					le64_to_cpu(u0->b),
					buffer_info->skb);
			} else {
				printk(KERN_INFO "R  [0x%03X]     %016llX "
					"%016llX %016llX %p", i,
					le64_to_cpu(u0->a),
					le64_to_cpu(u0->b),
					(u64)buffer_info->dma,
					buffer_info->skb);

				if (netif_msg_pktdata(adapter)) {
					print_hex_dump(KERN_INFO, "",
						DUMP_PREFIX_ADDRESS,
						16, 1,
						phys_to_virt(buffer_info->dma),
						rx_ring->rx_buffer_len, true);
					if (rx_ring->rx_buffer_len
						< IGB_RXBUFFER_1024)
						print_hex_dump(KERN_INFO, "",
						  DUMP_PREFIX_ADDRESS,
						  16, 1,
						  phys_to_virt(
						    buffer_info->page_dma +
						    buffer_info->page_offset),
						  PAGE_SIZE/2, true);
				}
			}

			if (i == rx_ring->next_to_use)
				printk(KERN_CONT " NTU\n");
			else if (i == rx_ring->next_to_clean)
				printk(KERN_CONT " NTC\n");
			else
				printk(KERN_CONT "\n");

		}
	}

exit:
	return;
}


P
Patrick Ohly 已提交
540 541 542 543 544 545 546 547
/**
 * igb_read_clock - read raw cycle counter (to be used by time counter)
 */
static cycle_t igb_read_clock(const struct cyclecounter *tc)
{
	struct igb_adapter *adapter =
		container_of(tc, struct igb_adapter, cycles);
	struct e1000_hw *hw = &adapter->hw;
548 549
	u64 stamp = 0;
	int shift = 0;
P
Patrick Ohly 已提交
550

551 552 553 554 555 556 557 558 559 560
	/*
	 * The timestamp latches on lowest register read. For the 82580
	 * the lowest register is SYSTIMR instead of SYSTIML.  However we never
	 * adjusted TIMINCA so SYSTIMR will just read as all 0s so ignore it.
	 */
	if (hw->mac.type == e1000_82580) {
		stamp = rd32(E1000_SYSTIMR) >> 8;
		shift = IGB_82580_TSYNC_SHIFT;
	}

561 562
	stamp |= (u64)rd32(E1000_SYSTIML) << shift;
	stamp |= (u64)rd32(E1000_SYSTIMH) << (shift + 32);
P
Patrick Ohly 已提交
563 564 565
	return stamp;
}

566
/**
567
 * igb_get_hw_dev - return device
568 569
 * used by hardware layer to print debugging information
 **/
570
struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
571 572
{
	struct igb_adapter *adapter = hw->back;
573
	return adapter->netdev;
574
}
P
Patrick Ohly 已提交
575

576 577 578 579 580 581 582 583 584 585 586 587 588 589
/**
 * igb_init_module - Driver Registration Routine
 *
 * igb_init_module is the first routine called when the driver is
 * loaded. All it does is register with the PCI subsystem.
 **/
static int __init igb_init_module(void)
{
	int ret;
	printk(KERN_INFO "%s - version %s\n",
	       igb_driver_string, igb_driver_version);

	printk(KERN_INFO "%s\n", igb_copyright);

590
#ifdef CONFIG_IGB_DCA
J
Jeb Cramer 已提交
591 592
	dca_register_notify(&dca_notifier);
#endif
593
	ret = pci_register_driver(&igb_driver);
594 595 596 597 598 599 600 601 602 603 604 605 606
	return ret;
}

module_init(igb_init_module);

/**
 * igb_exit_module - Driver Exit Cleanup Routine
 *
 * igb_exit_module is called just before the driver is removed
 * from memory.
 **/
static void __exit igb_exit_module(void)
{
607
#ifdef CONFIG_IGB_DCA
J
Jeb Cramer 已提交
608 609
	dca_unregister_notify(&dca_notifier);
#endif
610 611 612 613 614
	pci_unregister_driver(&igb_driver);
}

module_exit(igb_exit_module);

615 616 617 618 619 620 621 622 623 624
#define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
/**
 * igb_cache_ring_register - Descriptor ring to register mapping
 * @adapter: board private structure to initialize
 *
 * Once we know the feature-set enabled for the device, we'll cache
 * the register offset the descriptor ring is assigned to.
 **/
static void igb_cache_ring_register(struct igb_adapter *adapter)
{
625
	int i = 0, j = 0;
626
	u32 rbase_offset = adapter->vfs_allocated_count;
627 628 629 630 631 632 633 634

	switch (adapter->hw.mac.type) {
	case e1000_82576:
		/* The queues are allocated for virtualization such that VF 0
		 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
		 * In order to avoid collision we start at the first free queue
		 * and continue consuming queues in the same sequence
		 */
635
		if (adapter->vfs_allocated_count) {
636
			for (; i < adapter->rss_queues; i++)
637 638
				adapter->rx_ring[i]->reg_idx = rbase_offset +
				                               Q_IDX_82576(i);
639
		}
640
	case e1000_82575:
641
	case e1000_82580:
642
	case e1000_i350:
643
	default:
644
		for (; i < adapter->num_rx_queues; i++)
645
			adapter->rx_ring[i]->reg_idx = rbase_offset + i;
646
		for (; j < adapter->num_tx_queues; j++)
647
			adapter->tx_ring[j]->reg_idx = rbase_offset + j;
648 649 650 651
		break;
	}
}

652 653
static void igb_free_queues(struct igb_adapter *adapter)
{
654
	int i;
655

656 657 658 659 660 661 662 663
	for (i = 0; i < adapter->num_tx_queues; i++) {
		kfree(adapter->tx_ring[i]);
		adapter->tx_ring[i] = NULL;
	}
	for (i = 0; i < adapter->num_rx_queues; i++) {
		kfree(adapter->rx_ring[i]);
		adapter->rx_ring[i] = NULL;
	}
664 665 666 667
	adapter->num_rx_queues = 0;
	adapter->num_tx_queues = 0;
}

668 669 670 671 672 673 674 675 676
/**
 * igb_alloc_queues - Allocate memory for all rings
 * @adapter: board private structure to initialize
 *
 * We allocate one ring per queue at run-time since we don't know the
 * number of queues at compile-time.
 **/
static int igb_alloc_queues(struct igb_adapter *adapter)
{
677
	struct igb_ring *ring;
678 679
	int i;

680
	for (i = 0; i < adapter->num_tx_queues; i++) {
681 682 683
		ring = kzalloc(sizeof(struct igb_ring), GFP_KERNEL);
		if (!ring)
			goto err;
684
		ring->count = adapter->tx_ring_count;
685
		ring->queue_index = i;
686
		ring->dev = &adapter->pdev->dev;
687
		ring->netdev = adapter->netdev;
688 689 690
		/* For 82575, context index must be unique per ring. */
		if (adapter->hw.mac.type == e1000_82575)
			ring->flags = IGB_RING_FLAG_TX_CTX_IDX;
691
		adapter->tx_ring[i] = ring;
692
	}
693

694
	for (i = 0; i < adapter->num_rx_queues; i++) {
695 696 697
		ring = kzalloc(sizeof(struct igb_ring), GFP_KERNEL);
		if (!ring)
			goto err;
698
		ring->count = adapter->rx_ring_count;
P
PJ Waskiewicz 已提交
699
		ring->queue_index = i;
700
		ring->dev = &adapter->pdev->dev;
701
		ring->netdev = adapter->netdev;
702
		ring->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
703 704 705 706
		ring->flags = IGB_RING_FLAG_RX_CSUM; /* enable rx checksum */
		/* set flag indicating ring supports SCTP checksum offload */
		if (adapter->hw.mac.type >= e1000_82576)
			ring->flags |= IGB_RING_FLAG_RX_SCTP_CSUM;
707
		adapter->rx_ring[i] = ring;
708
	}
709 710

	igb_cache_ring_register(adapter);
711

712
	return 0;
A
Alexander Duyck 已提交
713

714 715
err:
	igb_free_queues(adapter);
716

717
	return -ENOMEM;
A
Alexander Duyck 已提交
718 719
}

720
#define IGB_N0_QUEUE -1
721
static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
722 723
{
	u32 msixbm = 0;
724
	struct igb_adapter *adapter = q_vector->adapter;
725
	struct e1000_hw *hw = &adapter->hw;
A
Alexander Duyck 已提交
726
	u32 ivar, index;
727 728 729 730 731 732 733
	int rx_queue = IGB_N0_QUEUE;
	int tx_queue = IGB_N0_QUEUE;

	if (q_vector->rx_ring)
		rx_queue = q_vector->rx_ring->reg_idx;
	if (q_vector->tx_ring)
		tx_queue = q_vector->tx_ring->reg_idx;
A
Alexander Duyck 已提交
734 735 736

	switch (hw->mac.type) {
	case e1000_82575:
737 738 739 740
		/* The 82575 assigns vectors using a bitmask, which matches the
		   bitmask for the EICR/EIMS/EIMC registers.  To assign one
		   or more queues to a vector, we write the appropriate bits
		   into the MSIXBM register for that vector. */
741
		if (rx_queue > IGB_N0_QUEUE)
742
			msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
743
		if (tx_queue > IGB_N0_QUEUE)
744
			msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
745 746
		if (!adapter->msix_entries && msix_vector == 0)
			msixbm |= E1000_EIMS_OTHER;
747
		array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
748
		q_vector->eims_value = msixbm;
A
Alexander Duyck 已提交
749 750
		break;
	case e1000_82576:
751
		/* 82576 uses a table-based method for assigning vectors.
A
Alexander Duyck 已提交
752 753 754 755
		   Each queue has a single entry in the table to which we write
		   a vector number along with a "valid" bit.  Sadly, the layout
		   of the table is somewhat counterintuitive. */
		if (rx_queue > IGB_N0_QUEUE) {
756
			index = (rx_queue & 0x7);
A
Alexander Duyck 已提交
757
			ivar = array_rd32(E1000_IVAR0, index);
758
			if (rx_queue < 8) {
759 760 761
				/* vector goes into low byte of register */
				ivar = ivar & 0xFFFFFF00;
				ivar |= msix_vector | E1000_IVAR_VALID;
762 763 764 765
			} else {
				/* vector goes into third byte of register */
				ivar = ivar & 0xFF00FFFF;
				ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
A
Alexander Duyck 已提交
766 767 768 769
			}
			array_wr32(E1000_IVAR0, index, ivar);
		}
		if (tx_queue > IGB_N0_QUEUE) {
770
			index = (tx_queue & 0x7);
A
Alexander Duyck 已提交
771
			ivar = array_rd32(E1000_IVAR0, index);
772
			if (tx_queue < 8) {
773 774 775
				/* vector goes into second byte of register */
				ivar = ivar & 0xFFFF00FF;
				ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
776 777 778 779
			} else {
				/* vector goes into high byte of register */
				ivar = ivar & 0x00FFFFFF;
				ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
A
Alexander Duyck 已提交
780 781 782
			}
			array_wr32(E1000_IVAR0, index, ivar);
		}
783
		q_vector->eims_value = 1 << msix_vector;
A
Alexander Duyck 已提交
784
		break;
785
	case e1000_82580:
786
	case e1000_i350:
787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818
		/* 82580 uses the same table-based approach as 82576 but has fewer
		   entries as a result we carry over for queues greater than 4. */
		if (rx_queue > IGB_N0_QUEUE) {
			index = (rx_queue >> 1);
			ivar = array_rd32(E1000_IVAR0, index);
			if (rx_queue & 0x1) {
				/* vector goes into third byte of register */
				ivar = ivar & 0xFF00FFFF;
				ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
			} else {
				/* vector goes into low byte of register */
				ivar = ivar & 0xFFFFFF00;
				ivar |= msix_vector | E1000_IVAR_VALID;
			}
			array_wr32(E1000_IVAR0, index, ivar);
		}
		if (tx_queue > IGB_N0_QUEUE) {
			index = (tx_queue >> 1);
			ivar = array_rd32(E1000_IVAR0, index);
			if (tx_queue & 0x1) {
				/* vector goes into high byte of register */
				ivar = ivar & 0x00FFFFFF;
				ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
			} else {
				/* vector goes into second byte of register */
				ivar = ivar & 0xFFFF00FF;
				ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
			}
			array_wr32(E1000_IVAR0, index, ivar);
		}
		q_vector->eims_value = 1 << msix_vector;
		break;
A
Alexander Duyck 已提交
819 820 821 822
	default:
		BUG();
		break;
	}
823 824 825 826 827 828

	/* add q_vector eims value to global eims_enable_mask */
	adapter->eims_enable_mask |= q_vector->eims_value;

	/* configure q_vector to set itr on first interrupt */
	q_vector->set_itr = 1;
829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845
}

/**
 * igb_configure_msix - Configure MSI-X hardware
 *
 * igb_configure_msix sets up the hardware to properly
 * generate MSI-X interrupts.
 **/
static void igb_configure_msix(struct igb_adapter *adapter)
{
	u32 tmp;
	int i, vector = 0;
	struct e1000_hw *hw = &adapter->hw;

	adapter->eims_enable_mask = 0;

	/* set vector for other causes, i.e. link changes */
A
Alexander Duyck 已提交
846 847
	switch (hw->mac.type) {
	case e1000_82575:
848 849 850 851 852 853 854 855 856
		tmp = rd32(E1000_CTRL_EXT);
		/* enable MSI-X PBA support*/
		tmp |= E1000_CTRL_EXT_PBA_CLR;

		/* Auto-Mask interrupts upon ICR read. */
		tmp |= E1000_CTRL_EXT_EIAME;
		tmp |= E1000_CTRL_EXT_IRCA;

		wr32(E1000_CTRL_EXT, tmp);
857 858 859 860

		/* enable msix_other interrupt */
		array_wr32(E1000_MSIXBM(0), vector++,
		                      E1000_EIMS_OTHER);
P
PJ Waskiewicz 已提交
861
		adapter->eims_other = E1000_EIMS_OTHER;
862

A
Alexander Duyck 已提交
863 864 865
		break;

	case e1000_82576:
866
	case e1000_82580:
867
	case e1000_i350:
868 869 870 871 872 873 874 875
		/* Turn on MSI-X capability first, or our settings
		 * won't stick.  And it will take days to debug. */
		wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
		                E1000_GPIE_PBA | E1000_GPIE_EIAME |
		                E1000_GPIE_NSICR);

		/* enable msix_other interrupt */
		adapter->eims_other = 1 << vector;
A
Alexander Duyck 已提交
876 877
		tmp = (vector++ | E1000_IVAR_VALID) << 8;

878
		wr32(E1000_IVAR_MISC, tmp);
A
Alexander Duyck 已提交
879 880 881 882 883
		break;
	default:
		/* do nothing, since nothing else supports MSI-X */
		break;
	} /* switch (hw->mac.type) */
884 885 886

	adapter->eims_enable_mask |= adapter->eims_other;

887 888
	for (i = 0; i < adapter->num_q_vectors; i++)
		igb_assign_vector(adapter->q_vector[i], vector++);
889

890 891 892 893 894 895 896 897 898 899 900 901
	wrfl();
}

/**
 * igb_request_msix - Initialize MSI-X interrupts
 *
 * igb_request_msix allocates MSI-X vectors and requests interrupts from the
 * kernel.
 **/
static int igb_request_msix(struct igb_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
902
	struct e1000_hw *hw = &adapter->hw;
903 904
	int i, err = 0, vector = 0;

905
	err = request_irq(adapter->msix_entries[vector].vector,
906
	                  igb_msix_other, 0, netdev->name, adapter);
907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924
	if (err)
		goto out;
	vector++;

	for (i = 0; i < adapter->num_q_vectors; i++) {
		struct igb_q_vector *q_vector = adapter->q_vector[i];

		q_vector->itr_register = hw->hw_addr + E1000_EITR(vector);

		if (q_vector->rx_ring && q_vector->tx_ring)
			sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
			        q_vector->rx_ring->queue_index);
		else if (q_vector->tx_ring)
			sprintf(q_vector->name, "%s-tx-%u", netdev->name,
			        q_vector->tx_ring->queue_index);
		else if (q_vector->rx_ring)
			sprintf(q_vector->name, "%s-rx-%u", netdev->name,
			        q_vector->rx_ring->queue_index);
925
		else
926 927
			sprintf(q_vector->name, "%s-unused", netdev->name);

928
		err = request_irq(adapter->msix_entries[vector].vector,
929
		                  igb_msix_ring, 0, q_vector->name,
930
		                  q_vector);
931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947
		if (err)
			goto out;
		vector++;
	}

	igb_configure_msix(adapter);
	return 0;
out:
	return err;
}

static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
{
	if (adapter->msix_entries) {
		pci_disable_msix(adapter->pdev);
		kfree(adapter->msix_entries);
		adapter->msix_entries = NULL;
948
	} else if (adapter->flags & IGB_FLAG_HAS_MSI) {
949
		pci_disable_msi(adapter->pdev);
950
	}
951 952
}

953 954 955 956 957 958 959 960 961 962 963 964 965 966 967
/**
 * igb_free_q_vectors - Free memory allocated for interrupt vectors
 * @adapter: board private structure to initialize
 *
 * This function frees the memory allocated to the q_vectors.  In addition if
 * NAPI is enabled it will delete any references to the NAPI struct prior
 * to freeing the q_vector.
 **/
static void igb_free_q_vectors(struct igb_adapter *adapter)
{
	int v_idx;

	for (v_idx = 0; v_idx < adapter->num_q_vectors; v_idx++) {
		struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
		adapter->q_vector[v_idx] = NULL;
968 969
		if (!q_vector)
			continue;
970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987
		netif_napi_del(&q_vector->napi);
		kfree(q_vector);
	}
	adapter->num_q_vectors = 0;
}

/**
 * igb_clear_interrupt_scheme - reset the device to a state of no interrupts
 *
 * This function resets the device so that it has 0 rx queues, tx queues, and
 * MSI-X interrupts allocated.
 */
static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
{
	igb_free_queues(adapter);
	igb_free_q_vectors(adapter);
	igb_reset_interrupt_capability(adapter);
}
988 989 990 991 992 993 994

/**
 * igb_set_interrupt_capability - set MSI or MSI-X if supported
 *
 * Attempt to configure interrupts using the best available
 * capabilities of the hardware and kernel.
 **/
995
static int igb_set_interrupt_capability(struct igb_adapter *adapter)
996 997 998 999
{
	int err;
	int numvecs, i;

1000
	/* Number of supported queues. */
1001
	adapter->num_rx_queues = adapter->rss_queues;
1002 1003 1004 1005
	if (adapter->vfs_allocated_count)
		adapter->num_tx_queues = 1;
	else
		adapter->num_tx_queues = adapter->rss_queues;
1006

1007 1008 1009
	/* start with one vector for every rx queue */
	numvecs = adapter->num_rx_queues;

D
Daniel Mack 已提交
1010
	/* if tx handler is separate add 1 for every tx queue */
1011 1012
	if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
		numvecs += adapter->num_tx_queues;
1013 1014 1015 1016 1017 1018

	/* store the number of vectors reserved for queues */
	adapter->num_q_vectors = numvecs;

	/* add 1 vector for link status interrupts */
	numvecs++;
1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030
	adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
					GFP_KERNEL);
	if (!adapter->msix_entries)
		goto msi_only;

	for (i = 0; i < numvecs; i++)
		adapter->msix_entries[i].entry = i;

	err = pci_enable_msix(adapter->pdev,
			      adapter->msix_entries,
			      numvecs);
	if (err == 0)
1031
		goto out;
1032 1033 1034 1035 1036

	igb_reset_interrupt_capability(adapter);

	/* If we can't do MSI-X, try MSI */
msi_only:
1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051
#ifdef CONFIG_PCI_IOV
	/* disable SR-IOV for non MSI-X configurations */
	if (adapter->vf_data) {
		struct e1000_hw *hw = &adapter->hw;
		/* disable iov and allow time for transactions to clear */
		pci_disable_sriov(adapter->pdev);
		msleep(500);

		kfree(adapter->vf_data);
		adapter->vf_data = NULL;
		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
		msleep(100);
		dev_info(&adapter->pdev->dev, "IOV Disabled\n");
	}
#endif
1052
	adapter->vfs_allocated_count = 0;
1053
	adapter->rss_queues = 1;
1054
	adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1055
	adapter->num_rx_queues = 1;
1056
	adapter->num_tx_queues = 1;
1057
	adapter->num_q_vectors = 1;
1058
	if (!pci_enable_msi(adapter->pdev))
1059
		adapter->flags |= IGB_FLAG_HAS_MSI;
1060
out:
1061 1062 1063 1064
	/* Notify the stack of the (possibly) reduced queue counts. */
	netif_set_real_num_tx_queues(adapter->netdev, adapter->num_tx_queues);
	return netif_set_real_num_rx_queues(adapter->netdev,
					    adapter->num_rx_queues);
1065 1066
}

1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092
/**
 * igb_alloc_q_vectors - Allocate memory for interrupt vectors
 * @adapter: board private structure to initialize
 *
 * We allocate one q_vector per queue interrupt.  If allocation fails we
 * return -ENOMEM.
 **/
static int igb_alloc_q_vectors(struct igb_adapter *adapter)
{
	struct igb_q_vector *q_vector;
	struct e1000_hw *hw = &adapter->hw;
	int v_idx;

	for (v_idx = 0; v_idx < adapter->num_q_vectors; v_idx++) {
		q_vector = kzalloc(sizeof(struct igb_q_vector), GFP_KERNEL);
		if (!q_vector)
			goto err_out;
		q_vector->adapter = adapter;
		q_vector->itr_register = hw->hw_addr + E1000_EITR(0);
		q_vector->itr_val = IGB_START_ITR;
		netif_napi_add(adapter->netdev, &q_vector->napi, igb_poll, 64);
		adapter->q_vector[v_idx] = q_vector;
	}
	return 0;

err_out:
1093
	igb_free_q_vectors(adapter);
1094 1095 1096 1097 1098 1099
	return -ENOMEM;
}

static void igb_map_rx_ring_to_vector(struct igb_adapter *adapter,
                                      int ring_idx, int v_idx)
{
1100
	struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1101

1102
	q_vector->rx_ring = adapter->rx_ring[ring_idx];
1103
	q_vector->rx_ring->q_vector = q_vector;
1104 1105 1106
	q_vector->itr_val = adapter->rx_itr_setting;
	if (q_vector->itr_val && q_vector->itr_val <= 3)
		q_vector->itr_val = IGB_START_ITR;
1107 1108 1109 1110 1111
}

static void igb_map_tx_ring_to_vector(struct igb_adapter *adapter,
                                      int ring_idx, int v_idx)
{
1112
	struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1113

1114
	q_vector->tx_ring = adapter->tx_ring[ring_idx];
1115
	q_vector->tx_ring->q_vector = q_vector;
1116 1117 1118
	q_vector->itr_val = adapter->tx_itr_setting;
	if (q_vector->itr_val && q_vector->itr_val <= 3)
		q_vector->itr_val = IGB_START_ITR;
1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162
}

/**
 * igb_map_ring_to_vector - maps allocated queues to vectors
 *
 * This function maps the recently allocated queues to vectors.
 **/
static int igb_map_ring_to_vector(struct igb_adapter *adapter)
{
	int i;
	int v_idx = 0;

	if ((adapter->num_q_vectors < adapter->num_rx_queues) ||
	    (adapter->num_q_vectors < adapter->num_tx_queues))
		return -ENOMEM;

	if (adapter->num_q_vectors >=
	    (adapter->num_rx_queues + adapter->num_tx_queues)) {
		for (i = 0; i < adapter->num_rx_queues; i++)
			igb_map_rx_ring_to_vector(adapter, i, v_idx++);
		for (i = 0; i < adapter->num_tx_queues; i++)
			igb_map_tx_ring_to_vector(adapter, i, v_idx++);
	} else {
		for (i = 0; i < adapter->num_rx_queues; i++) {
			if (i < adapter->num_tx_queues)
				igb_map_tx_ring_to_vector(adapter, i, v_idx);
			igb_map_rx_ring_to_vector(adapter, i, v_idx++);
		}
		for (; i < adapter->num_tx_queues; i++)
			igb_map_tx_ring_to_vector(adapter, i, v_idx++);
	}
	return 0;
}

/**
 * igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
 *
 * This function initializes the interrupts and allocates all of the queues.
 **/
static int igb_init_interrupt_scheme(struct igb_adapter *adapter)
{
	struct pci_dev *pdev = adapter->pdev;
	int err;

1163 1164 1165
	err = igb_set_interrupt_capability(adapter);
	if (err)
		return err;
1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195

	err = igb_alloc_q_vectors(adapter);
	if (err) {
		dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
		goto err_alloc_q_vectors;
	}

	err = igb_alloc_queues(adapter);
	if (err) {
		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
		goto err_alloc_queues;
	}

	err = igb_map_ring_to_vector(adapter);
	if (err) {
		dev_err(&pdev->dev, "Invalid q_vector to ring mapping\n");
		goto err_map_queues;
	}


	return 0;
err_map_queues:
	igb_free_queues(adapter);
err_alloc_queues:
	igb_free_q_vectors(adapter);
err_alloc_q_vectors:
	igb_reset_interrupt_capability(adapter);
	return err;
}

1196 1197 1198 1199 1200 1201 1202 1203 1204
/**
 * igb_request_irq - initialize interrupts
 *
 * Attempts to configure interrupts using the best available
 * capabilities of the hardware and kernel.
 **/
static int igb_request_irq(struct igb_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
1205
	struct pci_dev *pdev = adapter->pdev;
1206 1207 1208 1209
	int err = 0;

	if (adapter->msix_entries) {
		err = igb_request_msix(adapter);
P
PJ Waskiewicz 已提交
1210
		if (!err)
1211 1212
			goto request_done;
		/* fall back to MSI */
1213
		igb_clear_interrupt_scheme(adapter);
1214
		if (!pci_enable_msi(adapter->pdev))
1215
			adapter->flags |= IGB_FLAG_HAS_MSI;
1216 1217
		igb_free_all_tx_resources(adapter);
		igb_free_all_rx_resources(adapter);
1218
		adapter->num_tx_queues = 1;
1219
		adapter->num_rx_queues = 1;
1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235
		adapter->num_q_vectors = 1;
		err = igb_alloc_q_vectors(adapter);
		if (err) {
			dev_err(&pdev->dev,
			        "Unable to allocate memory for vectors\n");
			goto request_done;
		}
		err = igb_alloc_queues(adapter);
		if (err) {
			dev_err(&pdev->dev,
			        "Unable to allocate memory for queues\n");
			igb_free_q_vectors(adapter);
			goto request_done;
		}
		igb_setup_all_tx_resources(adapter);
		igb_setup_all_rx_resources(adapter);
P
PJ Waskiewicz 已提交
1236
	} else {
1237
		igb_assign_vector(adapter->q_vector[0], 0);
1238
	}
P
PJ Waskiewicz 已提交
1239

1240
	if (adapter->flags & IGB_FLAG_HAS_MSI) {
1241
		err = request_irq(adapter->pdev->irq, igb_intr_msi, 0,
1242
				  netdev->name, adapter);
1243 1244
		if (!err)
			goto request_done;
1245

1246 1247
		/* fall back to legacy interrupts */
		igb_reset_interrupt_capability(adapter);
1248
		adapter->flags &= ~IGB_FLAG_HAS_MSI;
1249 1250
	}

1251
	err = request_irq(adapter->pdev->irq, igb_intr, IRQF_SHARED,
1252
			  netdev->name, adapter);
1253

A
Andy Gospodarek 已提交
1254
	if (err)
1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266
		dev_err(&adapter->pdev->dev, "Error %d getting interrupt\n",
			err);

request_done:
	return err;
}

static void igb_free_irq(struct igb_adapter *adapter)
{
	if (adapter->msix_entries) {
		int vector = 0, i;

1267
		free_irq(adapter->msix_entries[vector++].vector, adapter);
1268

1269 1270 1271 1272 1273 1274 1275
		for (i = 0; i < adapter->num_q_vectors; i++) {
			struct igb_q_vector *q_vector = adapter->q_vector[i];
			free_irq(adapter->msix_entries[vector++].vector,
			         q_vector);
		}
	} else {
		free_irq(adapter->pdev->irq, adapter);
1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286
	}
}

/**
 * igb_irq_disable - Mask off interrupt generation on the NIC
 * @adapter: board private structure
 **/
static void igb_irq_disable(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;

1287 1288 1289 1290 1291
	/*
	 * we need to be careful when disabling interrupts.  The VFs are also
	 * mapped into these registers and so clearing the bits can cause
	 * issues on the VF drivers so we only need to clear what we set
	 */
1292
	if (adapter->msix_entries) {
1293 1294 1295 1296 1297
		u32 regval = rd32(E1000_EIAM);
		wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
		wr32(E1000_EIMC, adapter->eims_enable_mask);
		regval = rd32(E1000_EIAC);
		wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
1298
	}
P
PJ Waskiewicz 已提交
1299 1300

	wr32(E1000_IAM, 0);
1301 1302
	wr32(E1000_IMC, ~0);
	wrfl();
1303 1304 1305 1306 1307 1308 1309
	if (adapter->msix_entries) {
		int i;
		for (i = 0; i < adapter->num_q_vectors; i++)
			synchronize_irq(adapter->msix_entries[i].vector);
	} else {
		synchronize_irq(adapter->pdev->irq);
	}
1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320
}

/**
 * igb_irq_enable - Enable default interrupt generation settings
 * @adapter: board private structure
 **/
static void igb_irq_enable(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;

	if (adapter->msix_entries) {
1321
		u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC;
1322 1323 1324 1325
		u32 regval = rd32(E1000_EIAC);
		wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
		regval = rd32(E1000_EIAM);
		wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
P
PJ Waskiewicz 已提交
1326
		wr32(E1000_EIMS, adapter->eims_enable_mask);
1327
		if (adapter->vfs_allocated_count) {
1328
			wr32(E1000_MBVFIMR, 0xFF);
1329 1330
			ims |= E1000_IMS_VMMB;
		}
1331 1332 1333
		if (adapter->hw.mac.type == e1000_82580)
			ims |= E1000_IMS_DRSTA;

1334
		wr32(E1000_IMS, ims);
P
PJ Waskiewicz 已提交
1335
	} else {
1336 1337 1338 1339
		wr32(E1000_IMS, IMS_ENABLE_MASK |
				E1000_IMS_DRSTA);
		wr32(E1000_IAM, IMS_ENABLE_MASK |
				E1000_IMS_DRSTA);
P
PJ Waskiewicz 已提交
1340
	}
1341 1342 1343 1344
}

static void igb_update_mng_vlan(struct igb_adapter *adapter)
{
1345
	struct e1000_hw *hw = &adapter->hw;
1346 1347
	u16 vid = adapter->hw.mng_cookie.vlan_id;
	u16 old_vid = adapter->mng_vlan_id;
1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361

	if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
		/* add VID to filter table */
		igb_vfta_set(hw, vid, true);
		adapter->mng_vlan_id = vid;
	} else {
		adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
	}

	if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
	    (vid != old_vid) &&
	    !vlan_group_get_device(adapter->vlgrp, old_vid)) {
		/* remove VID from filter table */
		igb_vfta_set(hw, old_vid, false);
1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414
	}
}

/**
 * igb_release_hw_control - release control of the h/w to f/w
 * @adapter: address of board private structure
 *
 * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
 * For ASF and Pass Through versions of f/w this means that the
 * driver is no longer loaded.
 *
 **/
static void igb_release_hw_control(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 ctrl_ext;

	/* Let firmware take over control of h/w */
	ctrl_ext = rd32(E1000_CTRL_EXT);
	wr32(E1000_CTRL_EXT,
			ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
}

/**
 * igb_get_hw_control - get control of the h/w from f/w
 * @adapter: address of board private structure
 *
 * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
 * For ASF and Pass Through versions of f/w this means that
 * the driver is loaded.
 *
 **/
static void igb_get_hw_control(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 ctrl_ext;

	/* Let firmware know the driver has taken over */
	ctrl_ext = rd32(E1000_CTRL_EXT);
	wr32(E1000_CTRL_EXT,
			ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
}

/**
 * igb_configure - configure the hardware for RX and TX
 * @adapter: private board structure
 **/
static void igb_configure(struct igb_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
	int i;

	igb_get_hw_control(adapter);
1415
	igb_set_rx_mode(netdev);
1416 1417 1418

	igb_restore_vlan(adapter);

1419
	igb_setup_tctl(adapter);
1420
	igb_setup_mrqc(adapter);
1421
	igb_setup_rctl(adapter);
1422 1423

	igb_configure_tx(adapter);
1424
	igb_configure_rx(adapter);
1425 1426 1427

	igb_rx_fifo_flush_82575(&adapter->hw);

1428
	/* call igb_desc_unused which always leaves
1429 1430 1431
	 * at least 1 descriptor unused to make sure
	 * next_to_use != next_to_clean */
	for (i = 0; i < adapter->num_rx_queues; i++) {
1432
		struct igb_ring *ring = adapter->rx_ring[i];
1433
		igb_alloc_rx_buffers_adv(ring, igb_desc_unused(ring));
1434 1435 1436
	}
}

1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459
/**
 * igb_power_up_link - Power up the phy/serdes link
 * @adapter: address of board private structure
 **/
void igb_power_up_link(struct igb_adapter *adapter)
{
	if (adapter->hw.phy.media_type == e1000_media_type_copper)
		igb_power_up_phy_copper(&adapter->hw);
	else
		igb_power_up_serdes_link_82575(&adapter->hw);
}

/**
 * igb_power_down_link - Power down the phy/serdes link
 * @adapter: address of board private structure
 */
static void igb_power_down_link(struct igb_adapter *adapter)
{
	if (adapter->hw.phy.media_type == e1000_media_type_copper)
		igb_power_down_phy_copper_82575(&adapter->hw);
	else
		igb_shutdown_serdes_link_82575(&adapter->hw);
}
1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474

/**
 * igb_up - Open the interface and prepare it to handle traffic
 * @adapter: board private structure
 **/
int igb_up(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	int i;

	/* hardware has been reset, we need to reload some things */
	igb_configure(adapter);

	clear_bit(__IGB_DOWN, &adapter->state);

1475 1476 1477 1478
	for (i = 0; i < adapter->num_q_vectors; i++) {
		struct igb_q_vector *q_vector = adapter->q_vector[i];
		napi_enable(&q_vector->napi);
	}
P
PJ Waskiewicz 已提交
1479
	if (adapter->msix_entries)
1480
		igb_configure_msix(adapter);
1481 1482
	else
		igb_assign_vector(adapter->q_vector[0], 0);
1483 1484 1485 1486 1487

	/* Clear any pending interrupts. */
	rd32(E1000_ICR);
	igb_irq_enable(adapter);

1488 1489 1490 1491 1492 1493 1494
	/* notify VFs that reset has been completed */
	if (adapter->vfs_allocated_count) {
		u32 reg_data = rd32(E1000_CTRL_EXT);
		reg_data |= E1000_CTRL_EXT_PFRSTD;
		wr32(E1000_CTRL_EXT, reg_data);
	}

1495 1496
	netif_tx_start_all_queues(adapter->netdev);

1497 1498 1499 1500
	/* start the watchdog. */
	hw->mac.get_link_status = 1;
	schedule_work(&adapter->watchdog_task);

1501 1502 1503 1504 1505 1506
	return 0;
}

void igb_down(struct igb_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
1507
	struct e1000_hw *hw = &adapter->hw;
1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519
	u32 tctl, rctl;
	int i;

	/* signal that we're down so the interrupt handler does not
	 * reschedule our watchdog timer */
	set_bit(__IGB_DOWN, &adapter->state);

	/* disable receives in the hardware */
	rctl = rd32(E1000_RCTL);
	wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
	/* flush and sleep below */

1520
	netif_tx_stop_all_queues(netdev);
1521 1522 1523 1524 1525 1526 1527 1528 1529

	/* disable transmits in the hardware */
	tctl = rd32(E1000_TCTL);
	tctl &= ~E1000_TCTL_EN;
	wr32(E1000_TCTL, tctl);
	/* flush both disables and wait for them to finish */
	wrfl();
	msleep(10);

1530 1531 1532 1533
	for (i = 0; i < adapter->num_q_vectors; i++) {
		struct igb_q_vector *q_vector = adapter->q_vector[i];
		napi_disable(&q_vector->napi);
	}
1534 1535 1536 1537 1538 1539 1540

	igb_irq_disable(adapter);

	del_timer_sync(&adapter->watchdog_timer);
	del_timer_sync(&adapter->phy_info_timer);

	netif_carrier_off(netdev);
1541 1542

	/* record the stats before reset*/
E
Eric Dumazet 已提交
1543 1544 1545
	spin_lock(&adapter->stats64_lock);
	igb_update_stats(adapter, &adapter->stats64);
	spin_unlock(&adapter->stats64_lock);
1546

1547 1548 1549
	adapter->link_speed = 0;
	adapter->link_duplex = 0;

1550 1551
	if (!pci_channel_offline(adapter->pdev))
		igb_reset(adapter);
1552 1553
	igb_clean_all_tx_rings(adapter);
	igb_clean_all_rx_rings(adapter);
1554 1555 1556 1557 1558
#ifdef CONFIG_IGB_DCA

	/* since we reset the hardware DCA settings were cleared */
	igb_setup_dca(adapter);
#endif
1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572
}

void igb_reinit_locked(struct igb_adapter *adapter)
{
	WARN_ON(in_interrupt());
	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
		msleep(1);
	igb_down(adapter);
	igb_up(adapter);
	clear_bit(__IGB_RESETTING, &adapter->state);
}

void igb_reset(struct igb_adapter *adapter)
{
1573
	struct pci_dev *pdev = adapter->pdev;
1574
	struct e1000_hw *hw = &adapter->hw;
A
Alexander Duyck 已提交
1575 1576
	struct e1000_mac_info *mac = &hw->mac;
	struct e1000_fc_info *fc = &hw->fc;
1577 1578 1579 1580 1581 1582
	u32 pba = 0, tx_space, min_tx_space, min_rx_space;
	u16 hwm;

	/* Repartition Pba for greater than 9k mtu
	 * To take effect CTRL.RST is required.
	 */
1583
	switch (mac->type) {
1584
	case e1000_i350:
1585 1586 1587 1588
	case e1000_82580:
		pba = rd32(E1000_RXPBS);
		pba = igb_rxpbs_adjust_82580(pba);
		break;
1589
	case e1000_82576:
1590 1591
		pba = rd32(E1000_RXPBS);
		pba &= E1000_RXPBS_SIZE_MASK_82576;
1592 1593 1594 1595 1596
		break;
	case e1000_82575:
	default:
		pba = E1000_PBA_34K;
		break;
A
Alexander Duyck 已提交
1597
	}
1598

A
Alexander Duyck 已提交
1599 1600
	if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
	    (mac->type < e1000_82576)) {
1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617
		/* adjust PBA for jumbo frames */
		wr32(E1000_PBA, pba);

		/* To maintain wire speed transmits, the Tx FIFO should be
		 * large enough to accommodate two full transmit packets,
		 * rounded up to the next 1KB and expressed in KB.  Likewise,
		 * the Rx FIFO should be large enough to accommodate at least
		 * one full receive packet and is similarly rounded up and
		 * expressed in KB. */
		pba = rd32(E1000_PBA);
		/* upper 16 bits has Tx packet buffer allocation size in KB */
		tx_space = pba >> 16;
		/* lower 16 bits has Rx packet buffer allocation size in KB */
		pba &= 0xffff;
		/* the tx fifo also stores 16 bytes of information about the tx
		 * but don't include ethernet FCS because hardware appends it */
		min_tx_space = (adapter->max_frame_size +
1618
				sizeof(union e1000_adv_tx_desc) -
1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638
				ETH_FCS_LEN) * 2;
		min_tx_space = ALIGN(min_tx_space, 1024);
		min_tx_space >>= 10;
		/* software strips receive CRC, so leave room for it */
		min_rx_space = adapter->max_frame_size;
		min_rx_space = ALIGN(min_rx_space, 1024);
		min_rx_space >>= 10;

		/* If current Tx allocation is less than the min Tx FIFO size,
		 * and the min Tx FIFO size is less than the current Rx FIFO
		 * allocation, take space away from current Rx allocation */
		if (tx_space < min_tx_space &&
		    ((min_tx_space - tx_space) < pba)) {
			pba = pba - (min_tx_space - tx_space);

			/* if short on rx space, rx wins and must trump tx
			 * adjustment */
			if (pba < min_rx_space)
				pba = min_rx_space;
		}
A
Alexander Duyck 已提交
1639
		wr32(E1000_PBA, pba);
1640 1641 1642 1643 1644 1645 1646 1647 1648
	}

	/* flow control settings */
	/* The high water mark must be low enough to fit one full frame
	 * (or the size used for early receive) above it in the Rx FIFO.
	 * Set it to the lower of:
	 * - 90% of the Rx FIFO size, or
	 * - the full Rx FIFO size minus one full frame */
	hwm = min(((pba << 10) * 9 / 10),
A
Alexander Duyck 已提交
1649
			((pba << 10) - 2 * adapter->max_frame_size));
1650

1651 1652
	fc->high_water = hwm & 0xFFF0;	/* 16-byte granularity */
	fc->low_water = fc->high_water - 16;
1653 1654
	fc->pause_time = 0xFFFF;
	fc->send_xon = 1;
1655
	fc->current_mode = fc->requested_mode;
1656

1657 1658 1659 1660
	/* disable receive for all VFs and wait one second */
	if (adapter->vfs_allocated_count) {
		int i;
		for (i = 0 ; i < adapter->vfs_allocated_count; i++)
G
Greg Rose 已提交
1661
			adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
1662 1663

		/* ping all the active vfs to let them know we are going down */
1664
		igb_ping_all_vfs(adapter);
1665 1666 1667 1668 1669 1670

		/* disable transmits and receives */
		wr32(E1000_VFRE, 0);
		wr32(E1000_VFTE, 0);
	}

1671
	/* Allow time for pending master requests to run */
1672
	hw->mac.ops.reset_hw(hw);
1673 1674
	wr32(E1000_WUC, 0);

1675
	if (hw->mac.ops.init_hw(hw))
1676
		dev_err(&pdev->dev, "Hardware Error\n");
1677

1678 1679 1680 1681 1682
	if (hw->mac.type == e1000_82580) {
		u32 reg = rd32(E1000_PCIEMISC);
		wr32(E1000_PCIEMISC,
		                reg & ~E1000_PCIEMISC_LX_DECISION);
	}
1683 1684 1685
	if (!netif_running(adapter->netdev))
		igb_power_down_link(adapter);

1686 1687 1688 1689 1690
	igb_update_mng_vlan(adapter);

	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
	wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);

1691
	igb_get_phy_info(hw);
1692 1693
}

S
Stephen Hemminger 已提交
1694
static const struct net_device_ops igb_netdev_ops = {
1695
	.ndo_open		= igb_open,
S
Stephen Hemminger 已提交
1696
	.ndo_stop		= igb_close,
1697
	.ndo_start_xmit		= igb_xmit_frame_adv,
E
Eric Dumazet 已提交
1698
	.ndo_get_stats64	= igb_get_stats64,
1699 1700
	.ndo_set_rx_mode	= igb_set_rx_mode,
	.ndo_set_multicast_list	= igb_set_rx_mode,
S
Stephen Hemminger 已提交
1701 1702 1703 1704 1705 1706 1707 1708
	.ndo_set_mac_address	= igb_set_mac,
	.ndo_change_mtu		= igb_change_mtu,
	.ndo_do_ioctl		= igb_ioctl,
	.ndo_tx_timeout		= igb_tx_timeout,
	.ndo_validate_addr	= eth_validate_addr,
	.ndo_vlan_rx_register	= igb_vlan_rx_register,
	.ndo_vlan_rx_add_vid	= igb_vlan_rx_add_vid,
	.ndo_vlan_rx_kill_vid	= igb_vlan_rx_kill_vid,
1709 1710 1711 1712
	.ndo_set_vf_mac		= igb_ndo_set_vf_mac,
	.ndo_set_vf_vlan	= igb_ndo_set_vf_vlan,
	.ndo_set_vf_tx_rate	= igb_ndo_set_vf_bw,
	.ndo_get_vf_config	= igb_ndo_get_vf_config,
S
Stephen Hemminger 已提交
1713 1714 1715 1716 1717
#ifdef CONFIG_NET_POLL_CONTROLLER
	.ndo_poll_controller	= igb_netpoll,
#endif
};

1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734
/**
 * igb_probe - Device Initialization Routine
 * @pdev: PCI device information struct
 * @ent: entry in igb_pci_tbl
 *
 * Returns 0 on success, negative on failure
 *
 * igb_probe initializes an adapter identified by a pci_dev structure.
 * The OS initialization, configuring of the adapter private structure,
 * and a hardware reset occur.
 **/
static int __devinit igb_probe(struct pci_dev *pdev,
			       const struct pci_device_id *ent)
{
	struct net_device *netdev;
	struct igb_adapter *adapter;
	struct e1000_hw *hw;
1735
	u16 eeprom_data = 0;
1736
	s32 ret_val;
1737
	static int global_quad_port_a; /* global quad port a indication */
1738 1739
	const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
	unsigned long mmio_start, mmio_len;
1740
	int err, pci_using_dac;
1741
	u16 eeprom_apme_mask = IGB_EEPROM_APME;
1742
	u8 part_str[E1000_PBANUM_LENGTH];
1743

1744 1745 1746 1747 1748 1749 1750 1751 1752
	/* Catch broken hardware that put the wrong VF device ID in
	 * the PCIe SR-IOV capability.
	 */
	if (pdev->is_virtfn) {
		WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n",
		     pci_name(pdev), pdev->vendor, pdev->device);
		return -EINVAL;
	}

1753
	err = pci_enable_device_mem(pdev);
1754 1755 1756 1757
	if (err)
		return err;

	pci_using_dac = 0;
1758
	err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
1759
	if (!err) {
1760
		err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
1761 1762 1763
		if (!err)
			pci_using_dac = 1;
	} else {
1764
		err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
1765
		if (err) {
1766
			err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
1767 1768 1769 1770 1771 1772 1773 1774
			if (err) {
				dev_err(&pdev->dev, "No usable DMA "
					"configuration, aborting\n");
				goto err_dma;
			}
		}
	}

1775 1776 1777
	err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
	                                   IORESOURCE_MEM),
	                                   igb_driver_name);
1778 1779 1780
	if (err)
		goto err_pci_reg;

1781
	pci_enable_pcie_error_reporting(pdev);
1782

1783
	pci_set_master(pdev);
1784
	pci_save_state(pdev);
1785 1786

	err = -ENOMEM;
1787 1788
	netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
	                           IGB_ABS_MAX_TX_QUEUES);
1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805
	if (!netdev)
		goto err_alloc_etherdev;

	SET_NETDEV_DEV(netdev, &pdev->dev);

	pci_set_drvdata(pdev, netdev);
	adapter = netdev_priv(netdev);
	adapter->netdev = netdev;
	adapter->pdev = pdev;
	hw = &adapter->hw;
	hw->back = adapter;
	adapter->msg_enable = NETIF_MSG_DRV | NETIF_MSG_PROBE;

	mmio_start = pci_resource_start(pdev, 0);
	mmio_len = pci_resource_len(pdev, 0);

	err = -EIO;
1806 1807
	hw->hw_addr = ioremap(mmio_start, mmio_len);
	if (!hw->hw_addr)
1808 1809
		goto err_ioremap;

S
Stephen Hemminger 已提交
1810
	netdev->netdev_ops = &igb_netdev_ops;
1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832
	igb_set_ethtool_ops(netdev);
	netdev->watchdog_timeo = 5 * HZ;

	strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);

	netdev->mem_start = mmio_start;
	netdev->mem_end = mmio_start + mmio_len;

	/* PCI config space info */
	hw->vendor_id = pdev->vendor;
	hw->device_id = pdev->device;
	hw->revision_id = pdev->revision;
	hw->subsystem_vendor_id = pdev->subsystem_vendor;
	hw->subsystem_device_id = pdev->subsystem_device;

	/* Copy the default MAC, PHY and NVM function pointers */
	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
	memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
	/* Initialize skew-specific constants */
	err = ei->get_invariants(hw);
	if (err)
1833
		goto err_sw_init;
1834

1835
	/* setup the private structure */
1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855
	err = igb_sw_init(adapter);
	if (err)
		goto err_sw_init;

	igb_get_bus_info_pcie(hw);

	hw->phy.autoneg_wait_to_complete = false;

	/* Copper options */
	if (hw->phy.media_type == e1000_media_type_copper) {
		hw->phy.mdix = AUTO_ALL_MODES;
		hw->phy.disable_polarity_correction = false;
		hw->phy.ms_type = e1000_ms_hw_default;
	}

	if (igb_check_reset_block(hw))
		dev_info(&pdev->dev,
			"PHY reset is blocked due to SOL/IDER session.\n");

	netdev->features = NETIF_F_SG |
1856
			   NETIF_F_IP_CSUM |
1857 1858 1859 1860
			   NETIF_F_HW_VLAN_TX |
			   NETIF_F_HW_VLAN_RX |
			   NETIF_F_HW_VLAN_FILTER;

1861
	netdev->features |= NETIF_F_IPV6_CSUM;
1862 1863
	netdev->features |= NETIF_F_TSO;
	netdev->features |= NETIF_F_TSO6;
H
Herbert Xu 已提交
1864
	netdev->features |= NETIF_F_GRO;
1865

1866 1867
	netdev->vlan_features |= NETIF_F_TSO;
	netdev->vlan_features |= NETIF_F_TSO6;
1868
	netdev->vlan_features |= NETIF_F_IP_CSUM;
1869
	netdev->vlan_features |= NETIF_F_IPV6_CSUM;
1870 1871
	netdev->vlan_features |= NETIF_F_SG;

1872
	if (pci_using_dac) {
1873
		netdev->features |= NETIF_F_HIGHDMA;
1874 1875
		netdev->vlan_features |= NETIF_F_HIGHDMA;
	}
1876

1877
	if (hw->mac.type >= e1000_82576)
1878 1879
		netdev->features |= NETIF_F_SCTP_CSUM;

1880
	adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905

	/* before reading the NVM, reset the controller to put the device in a
	 * known good starting state */
	hw->mac.ops.reset_hw(hw);

	/* make sure the NVM is good */
	if (igb_validate_nvm_checksum(hw) < 0) {
		dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
		err = -EIO;
		goto err_eeprom;
	}

	/* copy the MAC address out of the NVM */
	if (hw->mac.ops.read_mac_addr(hw))
		dev_err(&pdev->dev, "NVM Read Error\n");

	memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
	memcpy(netdev->perm_addr, hw->mac.addr, netdev->addr_len);

	if (!is_valid_ether_addr(netdev->perm_addr)) {
		dev_err(&pdev->dev, "Invalid MAC Address\n");
		err = -EIO;
		goto err_eeprom;
	}

1906
	setup_timer(&adapter->watchdog_timer, igb_watchdog,
1907
	            (unsigned long) adapter);
1908
	setup_timer(&adapter->phy_info_timer, igb_update_phy_info,
1909
	            (unsigned long) adapter);
1910 1911 1912 1913

	INIT_WORK(&adapter->reset_task, igb_reset_task);
	INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);

1914
	/* Initialize link properties that are user-changeable */
1915 1916 1917 1918
	adapter->fc_autoneg = true;
	hw->mac.autoneg = true;
	hw->phy.autoneg_advertised = 0x2f;

1919 1920
	hw->fc.requested_mode = e1000_fc_default;
	hw->fc.current_mode = e1000_fc_default;
1921 1922 1923 1924 1925 1926 1927

	igb_validate_mdi_setting(hw);

	/* Initial Wake on LAN setting If APM wake is enabled in the EEPROM,
	 * enable the ACPI Magic Packet filter
	 */

1928
	if (hw->bus.func == 0)
A
Alexander Duyck 已提交
1929
		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
1930 1931 1932 1933
	else if (hw->mac.type == e1000_82580)
		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
		                 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
		                 &eeprom_data);
1934 1935
	else if (hw->bus.func == 1)
		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947

	if (eeprom_data & eeprom_apme_mask)
		adapter->eeprom_wol |= E1000_WUFC_MAG;

	/* now that we have the eeprom settings, apply the special cases where
	 * the eeprom may be wrong or the board simply won't support wake on
	 * lan on a particular port */
	switch (pdev->device) {
	case E1000_DEV_ID_82575GB_QUAD_COPPER:
		adapter->eeprom_wol = 0;
		break;
	case E1000_DEV_ID_82575EB_FIBER_SERDES:
A
Alexander Duyck 已提交
1948 1949
	case E1000_DEV_ID_82576_FIBER:
	case E1000_DEV_ID_82576_SERDES:
1950 1951 1952 1953 1954
		/* Wake events only supported on port A for dual fiber
		 * regardless of eeprom setting */
		if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
			adapter->eeprom_wol = 0;
		break;
1955
	case E1000_DEV_ID_82576_QUAD_COPPER:
1956
	case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
1957 1958 1959 1960 1961 1962 1963 1964 1965
		/* if quad port adapter, disable WoL on all but port A */
		if (global_quad_port_a != 0)
			adapter->eeprom_wol = 0;
		else
			adapter->flags |= IGB_FLAG_QUAD_PORT_A;
		/* Reset for multiple quad port adapters */
		if (++global_quad_port_a == 4)
			global_quad_port_a = 0;
		break;
1966 1967 1968 1969
	}

	/* initialize the wol settings based on the eeprom settings */
	adapter->wol = adapter->eeprom_wol;
1970
	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983

	/* reset the hardware with the new settings */
	igb_reset(adapter);

	/* let the f/w know that the h/w is now under the control of the
	 * driver. */
	igb_get_hw_control(adapter);

	strcpy(netdev->name, "eth%d");
	err = register_netdev(netdev);
	if (err)
		goto err_register;

1984 1985 1986
	/* carrier off reporting is important to ethtool even BEFORE open */
	netif_carrier_off(netdev);

1987
#ifdef CONFIG_IGB_DCA
1988
	if (dca_add_requester(&pdev->dev) == 0) {
1989
		adapter->flags |= IGB_FLAG_DCA_ENABLED;
J
Jeb Cramer 已提交
1990 1991 1992 1993
		dev_info(&pdev->dev, "DCA enabled\n");
		igb_setup_dca(adapter);
	}

P
Patrick Ohly 已提交
1994
#endif
1995 1996
	dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
	/* print bus type/speed/width info */
J
Johannes Berg 已提交
1997
	dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
1998
		 netdev->name,
1999
		 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
2000
		  (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
2001
		                                            "unknown"),
2002 2003 2004 2005
		 ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
		  (hw->bus.width == e1000_bus_width_pcie_x2) ? "Width x2" :
		  (hw->bus.width == e1000_bus_width_pcie_x1) ? "Width x1" :
		   "unknown"),
J
Johannes Berg 已提交
2006
		 netdev->dev_addr);
2007

2008 2009 2010 2011
	ret_val = igb_read_part_string(hw, part_str, E1000_PBANUM_LENGTH);
	if (ret_val)
		strcpy(part_str, "Unknown");
	dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
2012 2013 2014
	dev_info(&pdev->dev,
		"Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
		adapter->msix_entries ? "MSI-X" :
2015
		(adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
2016 2017 2018 2019 2020 2021 2022 2023
		adapter->num_rx_queues, adapter->num_tx_queues);

	return 0;

err_register:
	igb_release_hw_control(adapter);
err_eeprom:
	if (!igb_check_reset_block(hw))
2024
		igb_reset_phy(hw);
2025 2026 2027 2028

	if (hw->flash_address)
		iounmap(hw->flash_address);
err_sw_init:
2029
	igb_clear_interrupt_scheme(adapter);
2030 2031 2032 2033
	iounmap(hw->hw_addr);
err_ioremap:
	free_netdev(netdev);
err_alloc_etherdev:
2034 2035
	pci_release_selected_regions(pdev,
	                             pci_select_bars(pdev, IORESOURCE_MEM));
2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054
err_pci_reg:
err_dma:
	pci_disable_device(pdev);
	return err;
}

/**
 * igb_remove - Device Removal Routine
 * @pdev: PCI device information struct
 *
 * igb_remove is called by the PCI subsystem to alert the driver
 * that it should release a PCI device.  The could be caused by a
 * Hot-Plug event, or because the driver is going to be removed from
 * memory.
 **/
static void __devexit igb_remove(struct pci_dev *pdev)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);
J
Jeb Cramer 已提交
2055
	struct e1000_hw *hw = &adapter->hw;
2056

2057 2058 2059 2060
	/*
	 * The watchdog timer may be rescheduled, so explicitly
	 * disable watchdog from being rescheduled.
	 */
2061 2062 2063 2064
	set_bit(__IGB_DOWN, &adapter->state);
	del_timer_sync(&adapter->watchdog_timer);
	del_timer_sync(&adapter->phy_info_timer);

2065 2066
	cancel_work_sync(&adapter->reset_task);
	cancel_work_sync(&adapter->watchdog_task);
2067

2068
#ifdef CONFIG_IGB_DCA
2069
	if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
J
Jeb Cramer 已提交
2070 2071
		dev_info(&pdev->dev, "DCA disabled\n");
		dca_remove_requester(&pdev->dev);
2072
		adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
A
Alexander Duyck 已提交
2073
		wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
J
Jeb Cramer 已提交
2074 2075 2076
	}
#endif

2077 2078 2079 2080 2081 2082
	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
	 * would have already happened in close and is redundant. */
	igb_release_hw_control(adapter);

	unregister_netdev(netdev);

2083
	igb_clear_interrupt_scheme(adapter);
2084

2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098
#ifdef CONFIG_PCI_IOV
	/* reclaim resources allocated to VFs */
	if (adapter->vf_data) {
		/* disable iov and allow time for transactions to clear */
		pci_disable_sriov(pdev);
		msleep(500);

		kfree(adapter->vf_data);
		adapter->vf_data = NULL;
		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
		msleep(100);
		dev_info(&pdev->dev, "IOV Disabled\n");
	}
#endif
2099

2100 2101 2102
	iounmap(hw->hw_addr);
	if (hw->flash_address)
		iounmap(hw->flash_address);
2103 2104
	pci_release_selected_regions(pdev,
	                             pci_select_bars(pdev, IORESOURCE_MEM));
2105 2106 2107

	free_netdev(netdev);

2108
	pci_disable_pcie_error_reporting(pdev);
2109

2110 2111 2112
	pci_disable_device(pdev);
}

2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157
/**
 * igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
 * @adapter: board private structure to initialize
 *
 * This function initializes the vf specific data storage and then attempts to
 * allocate the VFs.  The reason for ordering it this way is because it is much
 * mor expensive time wise to disable SR-IOV than it is to allocate and free
 * the memory for the VFs.
 **/
static void __devinit igb_probe_vfs(struct igb_adapter * adapter)
{
#ifdef CONFIG_PCI_IOV
	struct pci_dev *pdev = adapter->pdev;

	if (adapter->vfs_allocated_count) {
		adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
		                           sizeof(struct vf_data_storage),
		                           GFP_KERNEL);
		/* if allocation failed then we do not support SR-IOV */
		if (!adapter->vf_data) {
			adapter->vfs_allocated_count = 0;
			dev_err(&pdev->dev, "Unable to allocate memory for VF "
			        "Data Storage\n");
		}
	}

	if (pci_enable_sriov(pdev, adapter->vfs_allocated_count)) {
		kfree(adapter->vf_data);
		adapter->vf_data = NULL;
#endif /* CONFIG_PCI_IOV */
		adapter->vfs_allocated_count = 0;
#ifdef CONFIG_PCI_IOV
	} else {
		unsigned char mac_addr[ETH_ALEN];
		int i;
		dev_info(&pdev->dev, "%d vfs allocated\n",
		         adapter->vfs_allocated_count);
		for (i = 0; i < adapter->vfs_allocated_count; i++) {
			random_ether_addr(mac_addr);
			igb_set_vf_mac(adapter, i, mac_addr);
		}
	}
#endif /* CONFIG_PCI_IOV */
}

2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170

/**
 * igb_init_hw_timer - Initialize hardware timer used with IEEE 1588 timestamp
 * @adapter: board private structure to initialize
 *
 * igb_init_hw_timer initializes the function pointer and values for the hw
 * timer found in hardware.
 **/
static void igb_init_hw_timer(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;

	switch (hw->mac.type) {
2171
	case e1000_i350:
2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213
	case e1000_82580:
		memset(&adapter->cycles, 0, sizeof(adapter->cycles));
		adapter->cycles.read = igb_read_clock;
		adapter->cycles.mask = CLOCKSOURCE_MASK(64);
		adapter->cycles.mult = 1;
		/*
		 * The 82580 timesync updates the system timer every 8ns by 8ns
		 * and the value cannot be shifted.  Instead we need to shift
		 * the registers to generate a 64bit timer value.  As a result
		 * SYSTIMR/L/H, TXSTMPL/H, RXSTMPL/H all have to be shifted by
		 * 24 in order to generate a larger value for synchronization.
		 */
		adapter->cycles.shift = IGB_82580_TSYNC_SHIFT;
		/* disable system timer temporarily by setting bit 31 */
		wr32(E1000_TSAUXC, 0x80000000);
		wrfl();

		/* Set registers so that rollover occurs soon to test this. */
		wr32(E1000_SYSTIMR, 0x00000000);
		wr32(E1000_SYSTIML, 0x80000000);
		wr32(E1000_SYSTIMH, 0x000000FF);
		wrfl();

		/* enable system timer by clearing bit 31 */
		wr32(E1000_TSAUXC, 0x0);
		wrfl();

		timecounter_init(&adapter->clock,
				 &adapter->cycles,
				 ktime_to_ns(ktime_get_real()));
		/*
		 * Synchronize our NIC clock against system wall clock. NIC
		 * time stamp reading requires ~3us per sample, each sample
		 * was pretty stable even under load => only require 10
		 * samples for each offset comparison.
		 */
		memset(&adapter->compare, 0, sizeof(adapter->compare));
		adapter->compare.source = &adapter->clock;
		adapter->compare.target = ktime_get_real;
		adapter->compare.num_samples = 10;
		timecompare_update(&adapter->compare, 0);
		break;
2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264
	case e1000_82576:
		/*
		 * Initialize hardware timer: we keep it running just in case
		 * that some program needs it later on.
		 */
		memset(&adapter->cycles, 0, sizeof(adapter->cycles));
		adapter->cycles.read = igb_read_clock;
		adapter->cycles.mask = CLOCKSOURCE_MASK(64);
		adapter->cycles.mult = 1;
		/**
		 * Scale the NIC clock cycle by a large factor so that
		 * relatively small clock corrections can be added or
		 * substracted at each clock tick. The drawbacks of a large
		 * factor are a) that the clock register overflows more quickly
		 * (not such a big deal) and b) that the increment per tick has
		 * to fit into 24 bits.  As a result we need to use a shift of
		 * 19 so we can fit a value of 16 into the TIMINCA register.
		 */
		adapter->cycles.shift = IGB_82576_TSYNC_SHIFT;
		wr32(E1000_TIMINCA,
		                (1 << E1000_TIMINCA_16NS_SHIFT) |
		                (16 << IGB_82576_TSYNC_SHIFT));

		/* Set registers so that rollover occurs soon to test this. */
		wr32(E1000_SYSTIML, 0x00000000);
		wr32(E1000_SYSTIMH, 0xFF800000);
		wrfl();

		timecounter_init(&adapter->clock,
				 &adapter->cycles,
				 ktime_to_ns(ktime_get_real()));
		/*
		 * Synchronize our NIC clock against system wall clock. NIC
		 * time stamp reading requires ~3us per sample, each sample
		 * was pretty stable even under load => only require 10
		 * samples for each offset comparison.
		 */
		memset(&adapter->compare, 0, sizeof(adapter->compare));
		adapter->compare.source = &adapter->clock;
		adapter->compare.target = ktime_get_real;
		adapter->compare.num_samples = 10;
		timecompare_update(&adapter->compare, 0);
		break;
	case e1000_82575:
		/* 82575 does not support timesync */
	default:
		break;
	}

}

2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280
/**
 * igb_sw_init - Initialize general software structures (struct igb_adapter)
 * @adapter: board private structure to initialize
 *
 * igb_sw_init initializes the Adapter private data structure.
 * Fields are initialized based on PCI device information and
 * OS network device settings (MTU size).
 **/
static int __devinit igb_sw_init(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	struct net_device *netdev = adapter->netdev;
	struct pci_dev *pdev = adapter->pdev;

	pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);

2281 2282
	adapter->tx_ring_count = IGB_DEFAULT_TXD;
	adapter->rx_ring_count = IGB_DEFAULT_RXD;
2283 2284 2285
	adapter->rx_itr_setting = IGB_DEFAULT_ITR;
	adapter->tx_itr_setting = IGB_DEFAULT_ITR;

2286 2287 2288
	adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;

E
Eric Dumazet 已提交
2289
	spin_lock_init(&adapter->stats64_lock);
2290
#ifdef CONFIG_PCI_IOV
2291 2292 2293
	switch (hw->mac.type) {
	case e1000_82576:
	case e1000_i350:
2294 2295 2296 2297 2298 2299
		if (max_vfs > 7) {
			dev_warn(&pdev->dev,
				 "Maximum of 7 VFs per PF, using max\n");
			adapter->vfs_allocated_count = 7;
		} else
			adapter->vfs_allocated_count = max_vfs;
2300 2301 2302 2303
		break;
	default:
		break;
	}
2304
#endif /* CONFIG_PCI_IOV */
2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315
	adapter->rss_queues = min_t(u32, IGB_MAX_RX_QUEUES, num_online_cpus());

	/*
	 * if rss_queues > 4 or vfs are going to be allocated with rss_queues
	 * then we should combine the queues into a queue pair in order to
	 * conserve interrupts due to limited supply
	 */
	if ((adapter->rss_queues > 4) ||
	    ((adapter->rss_queues > 1) && (adapter->vfs_allocated_count > 6)))
		adapter->flags |= IGB_FLAG_QUEUE_PAIRS;

2316
	/* This call may decrease the number of queues */
2317
	if (igb_init_interrupt_scheme(adapter)) {
2318 2319 2320 2321
		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
		return -ENOMEM;
	}

2322
	igb_init_hw_timer(adapter);
2323 2324
	igb_probe_vfs(adapter);

2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354
	/* Explicitly disable IRQ since the NIC can be in any state. */
	igb_irq_disable(adapter);

	set_bit(__IGB_DOWN, &adapter->state);
	return 0;
}

/**
 * igb_open - Called when a network interface is made active
 * @netdev: network interface device structure
 *
 * Returns 0 on success, negative value on failure
 *
 * The open entry point is called when a network interface is made
 * active by the system (IFF_UP).  At this point all resources needed
 * for transmit and receive operations are allocated, the interrupt
 * handler is registered with the OS, the watchdog timer is started,
 * and the stack is notified that the interface is ready.
 **/
static int igb_open(struct net_device *netdev)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	int err;
	int i;

	/* disallow open during test */
	if (test_bit(__IGB_TESTING, &adapter->state))
		return -EBUSY;

2355 2356
	netif_carrier_off(netdev);

2357 2358 2359 2360 2361 2362 2363 2364 2365 2366
	/* allocate transmit descriptors */
	err = igb_setup_all_tx_resources(adapter);
	if (err)
		goto err_setup_tx;

	/* allocate receive descriptors */
	err = igb_setup_all_rx_resources(adapter);
	if (err)
		goto err_setup_rx;

2367
	igb_power_up_link(adapter);
2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381

	/* before we allocate an interrupt, we must be ready to handle it.
	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
	 * as soon as we call pci_request_irq, so we have to setup our
	 * clean_rx handler before we do so.  */
	igb_configure(adapter);

	err = igb_request_irq(adapter);
	if (err)
		goto err_req_irq;

	/* From here on the code is the same as igb_up() */
	clear_bit(__IGB_DOWN, &adapter->state);

2382 2383 2384 2385
	for (i = 0; i < adapter->num_q_vectors; i++) {
		struct igb_q_vector *q_vector = adapter->q_vector[i];
		napi_enable(&q_vector->napi);
	}
2386 2387 2388

	/* Clear any pending interrupts. */
	rd32(E1000_ICR);
P
PJ Waskiewicz 已提交
2389 2390 2391

	igb_irq_enable(adapter);

2392 2393 2394 2395 2396 2397 2398
	/* notify VFs that reset has been completed */
	if (adapter->vfs_allocated_count) {
		u32 reg_data = rd32(E1000_CTRL_EXT);
		reg_data |= E1000_CTRL_EXT_PFRSTD;
		wr32(E1000_CTRL_EXT, reg_data);
	}

2399 2400
	netif_tx_start_all_queues(netdev);

2401 2402 2403
	/* start the watchdog. */
	hw->mac.get_link_status = 1;
	schedule_work(&adapter->watchdog_task);
2404 2405 2406 2407 2408

	return 0;

err_req_irq:
	igb_release_hw_control(adapter);
2409
	igb_power_down_link(adapter);
2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450
	igb_free_all_rx_resources(adapter);
err_setup_rx:
	igb_free_all_tx_resources(adapter);
err_setup_tx:
	igb_reset(adapter);

	return err;
}

/**
 * igb_close - Disables a network interface
 * @netdev: network interface device structure
 *
 * Returns 0, this is not allowed to fail
 *
 * The close entry point is called when an interface is de-activated
 * by the OS.  The hardware is still under the driver's control, but
 * needs to be disabled.  A global MAC reset is issued to stop the
 * hardware, and all transmit and receive resources are freed.
 **/
static int igb_close(struct net_device *netdev)
{
	struct igb_adapter *adapter = netdev_priv(netdev);

	WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
	igb_down(adapter);

	igb_free_irq(adapter);

	igb_free_all_tx_resources(adapter);
	igb_free_all_rx_resources(adapter);

	return 0;
}

/**
 * igb_setup_tx_resources - allocate Tx resources (Descriptors)
 * @tx_ring: tx descriptor ring (for a specific queue) to setup
 *
 * Return 0 on success, negative on failure
 **/
2451
int igb_setup_tx_resources(struct igb_ring *tx_ring)
2452
{
2453
	struct device *dev = tx_ring->dev;
2454 2455 2456
	int size;

	size = sizeof(struct igb_buffer) * tx_ring->count;
E
Eric Dumazet 已提交
2457
	tx_ring->buffer_info = vzalloc(size);
2458 2459 2460 2461
	if (!tx_ring->buffer_info)
		goto err;

	/* round up to nearest 4K */
2462
	tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
2463 2464
	tx_ring->size = ALIGN(tx_ring->size, 4096);

2465 2466 2467 2468
	tx_ring->desc = dma_alloc_coherent(dev,
					   tx_ring->size,
					   &tx_ring->dma,
					   GFP_KERNEL);
2469 2470 2471 2472 2473 2474 2475 2476 2477 2478

	if (!tx_ring->desc)
		goto err;

	tx_ring->next_to_use = 0;
	tx_ring->next_to_clean = 0;
	return 0;

err:
	vfree(tx_ring->buffer_info);
2479
	dev_err(dev,
2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492
		"Unable to allocate memory for the transmit descriptor ring\n");
	return -ENOMEM;
}

/**
 * igb_setup_all_tx_resources - wrapper to allocate Tx resources
 *				  (Descriptors) for all queues
 * @adapter: board private structure
 *
 * Return 0 on success, negative on failure
 **/
static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
{
2493
	struct pci_dev *pdev = adapter->pdev;
2494 2495 2496
	int i, err = 0;

	for (i = 0; i < adapter->num_tx_queues; i++) {
2497
		err = igb_setup_tx_resources(adapter->tx_ring[i]);
2498
		if (err) {
2499
			dev_err(&pdev->dev,
2500 2501
				"Allocation for Tx Queue %u failed\n", i);
			for (i--; i >= 0; i--)
2502
				igb_free_tx_resources(adapter->tx_ring[i]);
2503 2504 2505 2506
			break;
		}
	}

2507
	for (i = 0; i < IGB_ABS_MAX_TX_QUEUES; i++) {
2508
		int r_idx = i % adapter->num_tx_queues;
2509
		adapter->multi_tx_table[i] = adapter->tx_ring[r_idx];
2510
	}
2511 2512 2513 2514
	return err;
}

/**
2515 2516
 * igb_setup_tctl - configure the transmit control registers
 * @adapter: Board private structure
2517
 **/
2518
void igb_setup_tctl(struct igb_adapter *adapter)
2519 2520 2521 2522
{
	struct e1000_hw *hw = &adapter->hw;
	u32 tctl;

2523 2524
	/* disable queue 0 which is enabled by default on 82575 and 82576 */
	wr32(E1000_TXDCTL(0), 0);
2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539

	/* Program the Transmit Control Register */
	tctl = rd32(E1000_TCTL);
	tctl &= ~E1000_TCTL_CT;
	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);

	igb_config_collision_dist(hw);

	/* Enable transmits */
	tctl |= E1000_TCTL_EN;

	wr32(E1000_TCTL, tctl);
}

2540 2541 2542 2543 2544 2545 2546
/**
 * igb_configure_tx_ring - Configure transmit ring after Reset
 * @adapter: board private structure
 * @ring: tx ring to configure
 *
 * Configure a transmit ring after a reset.
 **/
2547 2548
void igb_configure_tx_ring(struct igb_adapter *adapter,
                           struct igb_ring *ring)
2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567
{
	struct e1000_hw *hw = &adapter->hw;
	u32 txdctl;
	u64 tdba = ring->dma;
	int reg_idx = ring->reg_idx;

	/* disable the queue */
	txdctl = rd32(E1000_TXDCTL(reg_idx));
	wr32(E1000_TXDCTL(reg_idx),
	                txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
	wrfl();
	mdelay(10);

	wr32(E1000_TDLEN(reg_idx),
	                ring->count * sizeof(union e1000_adv_tx_desc));
	wr32(E1000_TDBAL(reg_idx),
	                tdba & 0x00000000ffffffffULL);
	wr32(E1000_TDBAH(reg_idx), tdba >> 32);

2568 2569 2570 2571
	ring->head = hw->hw_addr + E1000_TDH(reg_idx);
	ring->tail = hw->hw_addr + E1000_TDT(reg_idx);
	writel(0, ring->head);
	writel(0, ring->tail);
2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591

	txdctl |= IGB_TX_PTHRESH;
	txdctl |= IGB_TX_HTHRESH << 8;
	txdctl |= IGB_TX_WTHRESH << 16;

	txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
	wr32(E1000_TXDCTL(reg_idx), txdctl);
}

/**
 * igb_configure_tx - Configure transmit Unit after Reset
 * @adapter: board private structure
 *
 * Configure the Tx unit of the MAC after a reset.
 **/
static void igb_configure_tx(struct igb_adapter *adapter)
{
	int i;

	for (i = 0; i < adapter->num_tx_queues; i++)
2592
		igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
2593 2594
}

2595 2596 2597 2598 2599 2600
/**
 * igb_setup_rx_resources - allocate Rx resources (Descriptors)
 * @rx_ring:    rx descriptor ring (for a specific queue) to setup
 *
 * Returns 0 on success, negative on failure
 **/
2601
int igb_setup_rx_resources(struct igb_ring *rx_ring)
2602
{
2603
	struct device *dev = rx_ring->dev;
2604 2605 2606
	int size, desc_len;

	size = sizeof(struct igb_buffer) * rx_ring->count;
E
Eric Dumazet 已提交
2607
	rx_ring->buffer_info = vzalloc(size);
2608 2609 2610 2611 2612 2613 2614 2615 2616
	if (!rx_ring->buffer_info)
		goto err;

	desc_len = sizeof(union e1000_adv_rx_desc);

	/* Round up to nearest 4K */
	rx_ring->size = rx_ring->count * desc_len;
	rx_ring->size = ALIGN(rx_ring->size, 4096);

2617 2618 2619 2620
	rx_ring->desc = dma_alloc_coherent(dev,
					   rx_ring->size,
					   &rx_ring->dma,
					   GFP_KERNEL);
2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631

	if (!rx_ring->desc)
		goto err;

	rx_ring->next_to_clean = 0;
	rx_ring->next_to_use = 0;

	return 0;

err:
	vfree(rx_ring->buffer_info);
2632
	rx_ring->buffer_info = NULL;
2633 2634
	dev_err(dev, "Unable to allocate memory for the receive descriptor"
		" ring\n");
2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646
	return -ENOMEM;
}

/**
 * igb_setup_all_rx_resources - wrapper to allocate Rx resources
 *				  (Descriptors) for all queues
 * @adapter: board private structure
 *
 * Return 0 on success, negative on failure
 **/
static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
{
2647
	struct pci_dev *pdev = adapter->pdev;
2648 2649 2650
	int i, err = 0;

	for (i = 0; i < adapter->num_rx_queues; i++) {
2651
		err = igb_setup_rx_resources(adapter->rx_ring[i]);
2652
		if (err) {
2653
			dev_err(&pdev->dev,
2654 2655
				"Allocation for Rx Queue %u failed\n", i);
			for (i--; i >= 0; i--)
2656
				igb_free_rx_resources(adapter->rx_ring[i]);
2657 2658 2659 2660 2661 2662 2663
			break;
		}
	}

	return err;
}

2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691
/**
 * igb_setup_mrqc - configure the multiple receive queue control registers
 * @adapter: Board private structure
 **/
static void igb_setup_mrqc(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 mrqc, rxcsum;
	u32 j, num_rx_queues, shift = 0, shift2 = 0;
	union e1000_reta {
		u32 dword;
		u8  bytes[4];
	} reta;
	static const u8 rsshash[40] = {
		0x6d, 0x5a, 0x56, 0xda, 0x25, 0x5b, 0x0e, 0xc2, 0x41, 0x67,
		0x25, 0x3d, 0x43, 0xa3, 0x8f, 0xb0, 0xd0, 0xca, 0x2b, 0xcb,
		0xae, 0x7b, 0x30, 0xb4,	0x77, 0xcb, 0x2d, 0xa3, 0x80, 0x30,
		0xf2, 0x0c, 0x6a, 0x42, 0xb7, 0x3b, 0xbe, 0xac, 0x01, 0xfa };

	/* Fill out hash function seeds */
	for (j = 0; j < 10; j++) {
		u32 rsskey = rsshash[(j * 4)];
		rsskey |= rsshash[(j * 4) + 1] << 8;
		rsskey |= rsshash[(j * 4) + 2] << 16;
		rsskey |= rsshash[(j * 4) + 3] << 24;
		array_wr32(E1000_RSSRK(0), j, rsskey);
	}

2692
	num_rx_queues = adapter->rss_queues;
2693 2694 2695 2696

	if (adapter->vfs_allocated_count) {
		/* 82575 and 82576 supports 2 RSS queues for VMDq */
		switch (hw->mac.type) {
2697
		case e1000_i350:
2698 2699 2700 2701
		case e1000_82580:
			num_rx_queues = 1;
			shift = 0;
			break;
2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752
		case e1000_82576:
			shift = 3;
			num_rx_queues = 2;
			break;
		case e1000_82575:
			shift = 2;
			shift2 = 6;
		default:
			break;
		}
	} else {
		if (hw->mac.type == e1000_82575)
			shift = 6;
	}

	for (j = 0; j < (32 * 4); j++) {
		reta.bytes[j & 3] = (j % num_rx_queues) << shift;
		if (shift2)
			reta.bytes[j & 3] |= num_rx_queues << shift2;
		if ((j & 3) == 3)
			wr32(E1000_RETA(j >> 2), reta.dword);
	}

	/*
	 * Disable raw packet checksumming so that RSS hash is placed in
	 * descriptor on writeback.  No need to enable TCP/UDP/IP checksum
	 * offloads as they are enabled by default
	 */
	rxcsum = rd32(E1000_RXCSUM);
	rxcsum |= E1000_RXCSUM_PCSD;

	if (adapter->hw.mac.type >= e1000_82576)
		/* Enable Receive Checksum Offload for SCTP */
		rxcsum |= E1000_RXCSUM_CRCOFL;

	/* Don't need to set TUOFL or IPOFL, they default to 1 */
	wr32(E1000_RXCSUM, rxcsum);

	/* If VMDq is enabled then we set the appropriate mode for that, else
	 * we default to RSS so that an RSS hash is calculated per packet even
	 * if we are only using one queue */
	if (adapter->vfs_allocated_count) {
		if (hw->mac.type > e1000_82575) {
			/* Set the default pool for the PF's first queue */
			u32 vtctl = rd32(E1000_VT_CTL);
			vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
				   E1000_VT_CTL_DISABLE_DEF_POOL);
			vtctl |= adapter->vfs_allocated_count <<
				E1000_VT_CTL_DEFAULT_POOL_SHIFT;
			wr32(E1000_VT_CTL, vtctl);
		}
2753
		if (adapter->rss_queues > 1)
2754 2755 2756 2757 2758 2759 2760 2761
			mrqc = E1000_MRQC_ENABLE_VMDQ_RSS_2Q;
		else
			mrqc = E1000_MRQC_ENABLE_VMDQ;
	} else {
		mrqc = E1000_MRQC_ENABLE_RSS_4Q;
	}
	igb_vmm_control(adapter);

2762 2763 2764 2765 2766 2767 2768 2769 2770 2771
	/*
	 * Generate RSS hash based on TCP port numbers and/or
	 * IPv4/v6 src and dst addresses since UDP cannot be
	 * hashed reliably due to IP fragmentation
	 */
	mrqc |= E1000_MRQC_RSS_FIELD_IPV4 |
		E1000_MRQC_RSS_FIELD_IPV4_TCP |
		E1000_MRQC_RSS_FIELD_IPV6 |
		E1000_MRQC_RSS_FIELD_IPV6_TCP |
		E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
2772 2773 2774 2775

	wr32(E1000_MRQC, mrqc);
}

2776 2777 2778 2779
/**
 * igb_setup_rctl - configure the receive control registers
 * @adapter: Board private structure
 **/
2780
void igb_setup_rctl(struct igb_adapter *adapter)
2781 2782 2783 2784 2785 2786 2787
{
	struct e1000_hw *hw = &adapter->hw;
	u32 rctl;

	rctl = rd32(E1000_RCTL);

	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
2788
	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
2789

2790
	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
2791
		(hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
2792

2793 2794 2795 2796
	/*
	 * enable stripping of CRC. It's unlikely this will break BMC
	 * redirection as it did with e1000. Newer features require
	 * that the HW strips the CRC.
2797
	 */
2798
	rctl |= E1000_RCTL_SECRC;
2799

2800
	/* disable store bad packets and clear size bits. */
2801
	rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
2802

A
Alexander Duyck 已提交
2803 2804
	/* enable LPE to prevent packets larger than max_frame_size */
	rctl |= E1000_RCTL_LPE;
2805

2806 2807
	/* disable queue 0 to prevent tail write w/o re-config */
	wr32(E1000_RXDCTL(0), 0);
2808

2809 2810 2811 2812 2813 2814 2815 2816 2817
	/* Attention!!!  For SR-IOV PF driver operations you must enable
	 * queue drop for all VF and PF queues to prevent head of line blocking
	 * if an un-trusted VF does not provide descriptors to hardware.
	 */
	if (adapter->vfs_allocated_count) {
		/* set all queue drop enable bits */
		wr32(E1000_QDE, ALL_QUEUES);
	}

2818 2819 2820
	wr32(E1000_RCTL, rctl);
}

2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840
static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
                                   int vfn)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 vmolr;

	/* if it isn't the PF check to see if VFs are enabled and
	 * increase the size to support vlan tags */
	if (vfn < adapter->vfs_allocated_count &&
	    adapter->vf_data[vfn].vlans_enabled)
		size += VLAN_TAG_SIZE;

	vmolr = rd32(E1000_VMOLR(vfn));
	vmolr &= ~E1000_VMOLR_RLPML_MASK;
	vmolr |= size | E1000_VMOLR_LPE;
	wr32(E1000_VMOLR(vfn), vmolr);

	return 0;
}

2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859
/**
 * igb_rlpml_set - set maximum receive packet size
 * @adapter: board private structure
 *
 * Configure maximum receivable packet size.
 **/
static void igb_rlpml_set(struct igb_adapter *adapter)
{
	u32 max_frame_size = adapter->max_frame_size;
	struct e1000_hw *hw = &adapter->hw;
	u16 pf_id = adapter->vfs_allocated_count;

	if (adapter->vlgrp)
		max_frame_size += VLAN_TAG_SIZE;

	/* if vfs are enabled we set RLPML to the largest possible request
	 * size and set the VMOLR RLPML to the size we need */
	if (pf_id) {
		igb_set_vf_rlpml(adapter, max_frame_size, pf_id);
2860
		max_frame_size = MAX_JUMBO_FRAME_SIZE;
2861 2862 2863 2864 2865
	}

	wr32(E1000_RLPML, max_frame_size);
}

2866 2867
static inline void igb_set_vmolr(struct igb_adapter *adapter,
				 int vfn, bool aupe)
2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879
{
	struct e1000_hw *hw = &adapter->hw;
	u32 vmolr;

	/*
	 * This register exists only on 82576 and newer so if we are older then
	 * we should exit and do nothing
	 */
	if (hw->mac.type < e1000_82576)
		return;

	vmolr = rd32(E1000_VMOLR(vfn));
2880 2881 2882 2883 2884
	vmolr |= E1000_VMOLR_STRVLAN;      /* Strip vlan tags */
	if (aupe)
		vmolr |= E1000_VMOLR_AUPE;        /* Accept untagged packets */
	else
		vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
2885 2886 2887 2888

	/* clear all bits that might not be set */
	vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);

2889
	if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900
		vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
	/*
	 * for VMDq only allow the VFs and pool 0 to accept broadcast and
	 * multicast packets
	 */
	if (vfn <= adapter->vfs_allocated_count)
		vmolr |= E1000_VMOLR_BAM;	   /* Accept broadcast */

	wr32(E1000_VMOLR(vfn), vmolr);
}

2901 2902 2903 2904 2905 2906 2907
/**
 * igb_configure_rx_ring - Configure a receive ring after Reset
 * @adapter: board private structure
 * @ring: receive ring to be configured
 *
 * Configure the Rx unit of the MAC after a reset.
 **/
2908 2909
void igb_configure_rx_ring(struct igb_adapter *adapter,
                           struct igb_ring *ring)
2910 2911 2912 2913
{
	struct e1000_hw *hw = &adapter->hw;
	u64 rdba = ring->dma;
	int reg_idx = ring->reg_idx;
2914
	u32 srrctl, rxdctl;
2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928

	/* disable the queue */
	rxdctl = rd32(E1000_RXDCTL(reg_idx));
	wr32(E1000_RXDCTL(reg_idx),
	                rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);

	/* Set DMA base address registers */
	wr32(E1000_RDBAL(reg_idx),
	     rdba & 0x00000000ffffffffULL);
	wr32(E1000_RDBAH(reg_idx), rdba >> 32);
	wr32(E1000_RDLEN(reg_idx),
	               ring->count * sizeof(union e1000_adv_rx_desc));

	/* initialize head and tail */
2929 2930 2931 2932
	ring->head = hw->hw_addr + E1000_RDH(reg_idx);
	ring->tail = hw->hw_addr + E1000_RDT(reg_idx);
	writel(0, ring->head);
	writel(0, ring->tail);
2933

2934
	/* set descriptor configuration */
2935 2936
	if (ring->rx_buffer_len < IGB_RXBUFFER_1024) {
		srrctl = ALIGN(ring->rx_buffer_len, 64) <<
2937 2938 2939 2940 2941 2942 2943 2944 2945 2946
		         E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
#if (PAGE_SIZE / 2) > IGB_RXBUFFER_16384
		srrctl |= IGB_RXBUFFER_16384 >>
		          E1000_SRRCTL_BSIZEPKT_SHIFT;
#else
		srrctl |= (PAGE_SIZE / 2) >>
		          E1000_SRRCTL_BSIZEPKT_SHIFT;
#endif
		srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
	} else {
2947
		srrctl = ALIGN(ring->rx_buffer_len, 1024) >>
2948 2949 2950
		         E1000_SRRCTL_BSIZEPKT_SHIFT;
		srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
	}
N
Nick Nunley 已提交
2951 2952
	if (hw->mac.type == e1000_82580)
		srrctl |= E1000_SRRCTL_TIMESTAMP;
2953 2954 2955
	/* Only set Drop Enable if we are supporting multiple queues */
	if (adapter->vfs_allocated_count || adapter->num_rx_queues > 1)
		srrctl |= E1000_SRRCTL_DROP_EN;
2956 2957 2958

	wr32(E1000_SRRCTL(reg_idx), srrctl);

2959
	/* set filtering for VMDQ pools */
2960
	igb_set_vmolr(adapter, reg_idx & 0x7, true);
2961

2962 2963 2964 2965 2966 2967 2968 2969 2970 2971
	/* enable receive descriptor fetching */
	rxdctl = rd32(E1000_RXDCTL(reg_idx));
	rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
	rxdctl &= 0xFFF00000;
	rxdctl |= IGB_RX_PTHRESH;
	rxdctl |= IGB_RX_HTHRESH << 8;
	rxdctl |= IGB_RX_WTHRESH << 16;
	wr32(E1000_RXDCTL(reg_idx), rxdctl);
}

2972 2973 2974 2975 2976 2977 2978 2979
/**
 * igb_configure_rx - Configure receive Unit after Reset
 * @adapter: board private structure
 *
 * Configure the Rx unit of the MAC after a reset.
 **/
static void igb_configure_rx(struct igb_adapter *adapter)
{
2980
	int i;
2981

2982 2983 2984
	/* set UTA to appropriate mode */
	igb_set_uta(adapter);

2985 2986 2987 2988
	/* set the correct pool for the PF default MAC address in entry 0 */
	igb_rar_set_qsel(adapter, adapter->hw.mac.addr, 0,
	                 adapter->vfs_allocated_count);

2989 2990 2991
	/* Setup the HW Rx Head and Tail Descriptor Pointers and
	 * the Base and Length of the Rx Descriptor Ring */
	for (i = 0; i < adapter->num_rx_queues; i++)
2992
		igb_configure_rx_ring(adapter, adapter->rx_ring[i]);
2993 2994 2995 2996 2997 2998 2999 3000
}

/**
 * igb_free_tx_resources - Free Tx Resources per Queue
 * @tx_ring: Tx descriptor ring for a specific queue
 *
 * Free all transmit software resources
 **/
3001
void igb_free_tx_resources(struct igb_ring *tx_ring)
3002
{
3003
	igb_clean_tx_ring(tx_ring);
3004 3005 3006 3007

	vfree(tx_ring->buffer_info);
	tx_ring->buffer_info = NULL;

3008 3009 3010 3011
	/* if not set, then don't free */
	if (!tx_ring->desc)
		return;

3012 3013
	dma_free_coherent(tx_ring->dev, tx_ring->size,
			  tx_ring->desc, tx_ring->dma);
3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028

	tx_ring->desc = NULL;
}

/**
 * igb_free_all_tx_resources - Free Tx Resources for All Queues
 * @adapter: board private structure
 *
 * Free all transmit software resources
 **/
static void igb_free_all_tx_resources(struct igb_adapter *adapter)
{
	int i;

	for (i = 0; i < adapter->num_tx_queues; i++)
3029
		igb_free_tx_resources(adapter->tx_ring[i]);
3030 3031
}

3032 3033
void igb_unmap_and_free_tx_resource(struct igb_ring *tx_ring,
				    struct igb_buffer *buffer_info)
3034
{
3035 3036
	if (buffer_info->dma) {
		if (buffer_info->mapped_as_page)
3037
			dma_unmap_page(tx_ring->dev,
3038 3039
					buffer_info->dma,
					buffer_info->length,
3040
					DMA_TO_DEVICE);
3041
		else
3042
			dma_unmap_single(tx_ring->dev,
3043 3044
					buffer_info->dma,
					buffer_info->length,
3045
					DMA_TO_DEVICE);
3046 3047
		buffer_info->dma = 0;
	}
3048 3049 3050 3051 3052
	if (buffer_info->skb) {
		dev_kfree_skb_any(buffer_info->skb);
		buffer_info->skb = NULL;
	}
	buffer_info->time_stamp = 0;
3053 3054 3055
	buffer_info->length = 0;
	buffer_info->next_to_watch = 0;
	buffer_info->mapped_as_page = false;
3056 3057 3058 3059 3060 3061
}

/**
 * igb_clean_tx_ring - Free Tx Buffers
 * @tx_ring: ring to be cleaned
 **/
3062
static void igb_clean_tx_ring(struct igb_ring *tx_ring)
3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073
{
	struct igb_buffer *buffer_info;
	unsigned long size;
	unsigned int i;

	if (!tx_ring->buffer_info)
		return;
	/* Free all the Tx ring sk_buffs */

	for (i = 0; i < tx_ring->count; i++) {
		buffer_info = &tx_ring->buffer_info[i];
3074
		igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095
	}

	size = sizeof(struct igb_buffer) * tx_ring->count;
	memset(tx_ring->buffer_info, 0, size);

	/* Zero out the descriptor ring */
	memset(tx_ring->desc, 0, tx_ring->size);

	tx_ring->next_to_use = 0;
	tx_ring->next_to_clean = 0;
}

/**
 * igb_clean_all_tx_rings - Free Tx Buffers for all queues
 * @adapter: board private structure
 **/
static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
{
	int i;

	for (i = 0; i < adapter->num_tx_queues; i++)
3096
		igb_clean_tx_ring(adapter->tx_ring[i]);
3097 3098 3099 3100 3101 3102 3103 3104
}

/**
 * igb_free_rx_resources - Free Rx Resources
 * @rx_ring: ring to clean the resources from
 *
 * Free all receive software resources
 **/
3105
void igb_free_rx_resources(struct igb_ring *rx_ring)
3106
{
3107
	igb_clean_rx_ring(rx_ring);
3108 3109 3110 3111

	vfree(rx_ring->buffer_info);
	rx_ring->buffer_info = NULL;

3112 3113 3114 3115
	/* if not set, then don't free */
	if (!rx_ring->desc)
		return;

3116 3117
	dma_free_coherent(rx_ring->dev, rx_ring->size,
			  rx_ring->desc, rx_ring->dma);
3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132

	rx_ring->desc = NULL;
}

/**
 * igb_free_all_rx_resources - Free Rx Resources for All Queues
 * @adapter: board private structure
 *
 * Free all receive software resources
 **/
static void igb_free_all_rx_resources(struct igb_adapter *adapter)
{
	int i;

	for (i = 0; i < adapter->num_rx_queues; i++)
3133
		igb_free_rx_resources(adapter->rx_ring[i]);
3134 3135 3136 3137 3138 3139
}

/**
 * igb_clean_rx_ring - Free Rx Buffers per Queue
 * @rx_ring: ring to free buffers from
 **/
3140
static void igb_clean_rx_ring(struct igb_ring *rx_ring)
3141 3142 3143 3144 3145 3146 3147
{
	struct igb_buffer *buffer_info;
	unsigned long size;
	unsigned int i;

	if (!rx_ring->buffer_info)
		return;
3148

3149 3150 3151 3152
	/* Free all the Rx ring sk_buffs */
	for (i = 0; i < rx_ring->count; i++) {
		buffer_info = &rx_ring->buffer_info[i];
		if (buffer_info->dma) {
3153
			dma_unmap_single(rx_ring->dev,
3154
			                 buffer_info->dma,
3155
					 rx_ring->rx_buffer_len,
3156
					 DMA_FROM_DEVICE);
3157 3158 3159 3160 3161 3162 3163
			buffer_info->dma = 0;
		}

		if (buffer_info->skb) {
			dev_kfree_skb(buffer_info->skb);
			buffer_info->skb = NULL;
		}
A
Alexander Duyck 已提交
3164
		if (buffer_info->page_dma) {
3165
			dma_unmap_page(rx_ring->dev,
3166
			               buffer_info->page_dma,
A
Alexander Duyck 已提交
3167
				       PAGE_SIZE / 2,
3168
				       DMA_FROM_DEVICE);
A
Alexander Duyck 已提交
3169 3170
			buffer_info->page_dma = 0;
		}
3171 3172 3173
		if (buffer_info->page) {
			put_page(buffer_info->page);
			buffer_info->page = NULL;
3174
			buffer_info->page_offset = 0;
3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196
		}
	}

	size = sizeof(struct igb_buffer) * rx_ring->count;
	memset(rx_ring->buffer_info, 0, size);

	/* Zero out the descriptor ring */
	memset(rx_ring->desc, 0, rx_ring->size);

	rx_ring->next_to_clean = 0;
	rx_ring->next_to_use = 0;
}

/**
 * igb_clean_all_rx_rings - Free Rx Buffers for all queues
 * @adapter: board private structure
 **/
static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
{
	int i;

	for (i = 0; i < adapter->num_rx_queues; i++)
3197
		igb_clean_rx_ring(adapter->rx_ring[i]);
3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209
}

/**
 * igb_set_mac - Change the Ethernet Address of the NIC
 * @netdev: network interface device structure
 * @p: pointer to an address structure
 *
 * Returns 0 on success, negative on failure
 **/
static int igb_set_mac(struct net_device *netdev, void *p)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
3210
	struct e1000_hw *hw = &adapter->hw;
3211 3212 3213 3214 3215 3216
	struct sockaddr *addr = p;

	if (!is_valid_ether_addr(addr->sa_data))
		return -EADDRNOTAVAIL;

	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
3217
	memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
3218

3219 3220 3221
	/* set the correct pool for the new PF MAC address in entry 0 */
	igb_rar_set_qsel(adapter, hw->mac.addr, 0,
	                 adapter->vfs_allocated_count);
3222

3223 3224 3225 3226
	return 0;
}

/**
3227
 * igb_write_mc_addr_list - write multicast addresses to MTA
3228 3229
 * @netdev: network interface device structure
 *
3230 3231 3232 3233
 * Writes multicast address list to the MTA hash table.
 * Returns: -ENOMEM on failure
 *                0 on no addresses written
 *                X on writing X addresses to MTA
3234
 **/
3235
static int igb_write_mc_addr_list(struct net_device *netdev)
3236 3237 3238
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
3239
	struct netdev_hw_addr *ha;
3240
	u8  *mta_list;
3241 3242
	int i;

3243
	if (netdev_mc_empty(netdev)) {
3244 3245 3246 3247 3248
		/* nothing to program, so clear mc list */
		igb_update_mc_addr_list(hw, NULL, 0);
		igb_restore_vf_multicasts(adapter);
		return 0;
	}
3249

3250
	mta_list = kzalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
3251 3252
	if (!mta_list)
		return -ENOMEM;
3253

3254
	/* The shared function expects a packed array of only addresses. */
3255
	i = 0;
3256 3257
	netdev_for_each_mc_addr(ha, netdev)
		memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3258 3259 3260 3261

	igb_update_mc_addr_list(hw, mta_list, i);
	kfree(mta_list);

3262
	return netdev_mc_count(netdev);
3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282
}

/**
 * igb_write_uc_addr_list - write unicast addresses to RAR table
 * @netdev: network interface device structure
 *
 * Writes unicast address list to the RAR table.
 * Returns: -ENOMEM on failure/insufficient address space
 *                0 on no addresses written
 *                X on writing X addresses to the RAR table
 **/
static int igb_write_uc_addr_list(struct net_device *netdev)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	unsigned int vfn = adapter->vfs_allocated_count;
	unsigned int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
	int count = 0;

	/* return ENOMEM indicating insufficient memory for addresses */
3283
	if (netdev_uc_count(netdev) > rar_entries)
3284
		return -ENOMEM;
3285

3286
	if (!netdev_uc_empty(netdev) && rar_entries) {
3287
		struct netdev_hw_addr *ha;
3288 3289

		netdev_for_each_uc_addr(ha, netdev) {
3290 3291
			if (!rar_entries)
				break;
3292 3293
			igb_rar_set_qsel(adapter, ha->addr,
			                 rar_entries--,
3294 3295
			                 vfn);
			count++;
3296 3297 3298 3299 3300 3301 3302 3303 3304
		}
	}
	/* write the addresses in reverse order to avoid write combining */
	for (; rar_entries > 0 ; rar_entries--) {
		wr32(E1000_RAH(rar_entries), 0);
		wr32(E1000_RAL(rar_entries), 0);
	}
	wrfl();

3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362
	return count;
}

/**
 * igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
 * @netdev: network interface device structure
 *
 * The set_rx_mode entry point is called whenever the unicast or multicast
 * address lists or the network interface flags are updated.  This routine is
 * responsible for configuring the hardware for proper unicast, multicast,
 * promiscuous mode, and all-multi behavior.
 **/
static void igb_set_rx_mode(struct net_device *netdev)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	unsigned int vfn = adapter->vfs_allocated_count;
	u32 rctl, vmolr = 0;
	int count;

	/* Check for Promiscuous and All Multicast modes */
	rctl = rd32(E1000_RCTL);

	/* clear the effected bits */
	rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_VFE);

	if (netdev->flags & IFF_PROMISC) {
		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
		vmolr |= (E1000_VMOLR_ROPE | E1000_VMOLR_MPME);
	} else {
		if (netdev->flags & IFF_ALLMULTI) {
			rctl |= E1000_RCTL_MPE;
			vmolr |= E1000_VMOLR_MPME;
		} else {
			/*
			 * Write addresses to the MTA, if the attempt fails
			 * then we should just turn on promiscous mode so
			 * that we can at least receive multicast traffic
			 */
			count = igb_write_mc_addr_list(netdev);
			if (count < 0) {
				rctl |= E1000_RCTL_MPE;
				vmolr |= E1000_VMOLR_MPME;
			} else if (count) {
				vmolr |= E1000_VMOLR_ROMPE;
			}
		}
		/*
		 * Write addresses to available RAR registers, if there is not
		 * sufficient space to store all the addresses then enable
		 * unicast promiscous mode
		 */
		count = igb_write_uc_addr_list(netdev);
		if (count < 0) {
			rctl |= E1000_RCTL_UPE;
			vmolr |= E1000_VMOLR_ROPE;
		}
		rctl |= E1000_RCTL_VFE;
3363
	}
3364
	wr32(E1000_RCTL, rctl);
3365

3366 3367 3368 3369 3370 3371 3372
	/*
	 * In order to support SR-IOV and eventually VMDq it is necessary to set
	 * the VMOLR to enable the appropriate modes.  Without this workaround
	 * we will have issues with VLAN tag stripping not being done for frames
	 * that are only arriving because we are the default pool
	 */
	if (hw->mac.type < e1000_82576)
3373
		return;
3374

3375 3376 3377
	vmolr |= rd32(E1000_VMOLR(vfn)) &
	         ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
	wr32(E1000_VMOLR(vfn), vmolr);
3378
	igb_restore_vf_multicasts(adapter);
3379 3380
}

G
Greg Rose 已提交
3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419
static void igb_check_wvbr(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 wvbr = 0;

	switch (hw->mac.type) {
	case e1000_82576:
	case e1000_i350:
		if (!(wvbr = rd32(E1000_WVBR)))
			return;
		break;
	default:
		break;
	}

	adapter->wvbr |= wvbr;
}

#define IGB_STAGGERED_QUEUE_OFFSET 8

static void igb_spoof_check(struct igb_adapter *adapter)
{
	int j;

	if (!adapter->wvbr)
		return;

	for(j = 0; j < adapter->vfs_allocated_count; j++) {
		if (adapter->wvbr & (1 << j) ||
		    adapter->wvbr & (1 << (j + IGB_STAGGERED_QUEUE_OFFSET))) {
			dev_warn(&adapter->pdev->dev,
				"Spoof event(s) detected on VF %d\n", j);
			adapter->wvbr &=
				~((1 << j) |
				  (1 << (j + IGB_STAGGERED_QUEUE_OFFSET)));
		}
	}
}

3420 3421 3422 3423 3424
/* Need to wait a few seconds after link up to get diagnostic information from
 * the phy */
static void igb_update_phy_info(unsigned long data)
{
	struct igb_adapter *adapter = (struct igb_adapter *) data;
3425
	igb_get_phy_info(&adapter->hw);
3426 3427
}

A
Alexander Duyck 已提交
3428 3429 3430 3431
/**
 * igb_has_link - check shared code for link and determine up/down
 * @adapter: pointer to driver private info
 **/
3432
bool igb_has_link(struct igb_adapter *adapter)
A
Alexander Duyck 已提交
3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463
{
	struct e1000_hw *hw = &adapter->hw;
	bool link_active = false;
	s32 ret_val = 0;

	/* get_link_status is set on LSC (link status) interrupt or
	 * rx sequence error interrupt.  get_link_status will stay
	 * false until the e1000_check_for_link establishes link
	 * for copper adapters ONLY
	 */
	switch (hw->phy.media_type) {
	case e1000_media_type_copper:
		if (hw->mac.get_link_status) {
			ret_val = hw->mac.ops.check_for_link(hw);
			link_active = !hw->mac.get_link_status;
		} else {
			link_active = true;
		}
		break;
	case e1000_media_type_internal_serdes:
		ret_val = hw->mac.ops.check_for_link(hw);
		link_active = hw->mac.serdes_has_link;
		break;
	default:
	case e1000_media_type_unknown:
		break;
	}

	return link_active;
}

3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477
/**
 * igb_watchdog - Timer Call-back
 * @data: pointer to adapter cast into an unsigned long
 **/
static void igb_watchdog(unsigned long data)
{
	struct igb_adapter *adapter = (struct igb_adapter *)data;
	/* Do the rest outside of interrupt context */
	schedule_work(&adapter->watchdog_task);
}

static void igb_watchdog_task(struct work_struct *work)
{
	struct igb_adapter *adapter = container_of(work,
3478 3479
	                                           struct igb_adapter,
                                                   watchdog_task);
3480 3481 3482
	struct e1000_hw *hw = &adapter->hw;
	struct net_device *netdev = adapter->netdev;
	u32 link;
3483
	int i;
3484

A
Alexander Duyck 已提交
3485
	link = igb_has_link(adapter);
3486 3487 3488
	if (link) {
		if (!netif_carrier_ok(netdev)) {
			u32 ctrl;
3489 3490 3491
			hw->mac.ops.get_speed_and_duplex(hw,
			                                 &adapter->link_speed,
			                                 &adapter->link_duplex);
3492 3493

			ctrl = rd32(E1000_CTRL);
3494 3495
			/* Links status message must follow this format */
			printk(KERN_INFO "igb: %s NIC Link is Up %d Mbps %s, "
3496
				 "Flow Control: %s\n",
3497 3498 3499
			       netdev->name,
			       adapter->link_speed,
			       adapter->link_duplex == FULL_DUPLEX ?
3500
				 "Full Duplex" : "Half Duplex",
3501 3502 3503 3504
			       ((ctrl & E1000_CTRL_TFCE) &&
			        (ctrl & E1000_CTRL_RFCE)) ? "RX/TX" :
			       ((ctrl & E1000_CTRL_RFCE) ?  "RX" :
			       ((ctrl & E1000_CTRL_TFCE) ?  "TX" : "None")));
3505

3506
			/* adjust timeout factor according to speed/duplex */
3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518
			adapter->tx_timeout_factor = 1;
			switch (adapter->link_speed) {
			case SPEED_10:
				adapter->tx_timeout_factor = 14;
				break;
			case SPEED_100:
				/* maybe add some timeout factor ? */
				break;
			}

			netif_carrier_on(netdev);

3519
			igb_ping_all_vfs(adapter);
3520
			igb_check_vf_rate_limit(adapter);
3521

3522
			/* link state has changed, schedule phy info update */
3523 3524 3525 3526 3527 3528 3529 3530
			if (!test_bit(__IGB_DOWN, &adapter->state))
				mod_timer(&adapter->phy_info_timer,
					  round_jiffies(jiffies + 2 * HZ));
		}
	} else {
		if (netif_carrier_ok(netdev)) {
			adapter->link_speed = 0;
			adapter->link_duplex = 0;
3531 3532 3533
			/* Links status message must follow this format */
			printk(KERN_INFO "igb: %s NIC Link is Down\n",
			       netdev->name);
3534
			netif_carrier_off(netdev);
3535

3536 3537
			igb_ping_all_vfs(adapter);

3538
			/* link state has changed, schedule phy info update */
3539 3540 3541 3542 3543 3544
			if (!test_bit(__IGB_DOWN, &adapter->state))
				mod_timer(&adapter->phy_info_timer,
					  round_jiffies(jiffies + 2 * HZ));
		}
	}

E
Eric Dumazet 已提交
3545 3546 3547
	spin_lock(&adapter->stats64_lock);
	igb_update_stats(adapter, &adapter->stats64);
	spin_unlock(&adapter->stats64_lock);
3548

3549
	for (i = 0; i < adapter->num_tx_queues; i++) {
3550
		struct igb_ring *tx_ring = adapter->tx_ring[i];
3551
		if (!netif_carrier_ok(netdev)) {
3552 3553 3554 3555
			/* We've lost link, so the controller stops DMA,
			 * but we've got queued Tx work that's never going
			 * to get done, so reset controller to flush Tx.
			 * (Do the reset outside of interrupt context). */
3556 3557 3558 3559 3560 3561
			if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
				adapter->tx_timeout_count++;
				schedule_work(&adapter->reset_task);
				/* return immediately since reset is imminent */
				return;
			}
3562 3563
		}

3564 3565 3566
		/* Force detection of hung controller every watchdog period */
		tx_ring->detect_tx_hung = true;
	}
3567

3568
	/* Cause software interrupt to ensure rx ring is cleaned */
3569
	if (adapter->msix_entries) {
3570 3571 3572 3573 3574
		u32 eics = 0;
		for (i = 0; i < adapter->num_q_vectors; i++) {
			struct igb_q_vector *q_vector = adapter->q_vector[i];
			eics |= q_vector->eims_value;
		}
3575 3576 3577 3578
		wr32(E1000_EICS, eics);
	} else {
		wr32(E1000_ICS, E1000_ICS_RXDMT0);
	}
3579

G
Greg Rose 已提交
3580 3581
	igb_spoof_check(adapter);

3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594
	/* Reset the timer */
	if (!test_bit(__IGB_DOWN, &adapter->state))
		mod_timer(&adapter->watchdog_timer,
			  round_jiffies(jiffies + 2 * HZ));
}

enum latency_range {
	lowest_latency = 0,
	low_latency = 1,
	bulk_latency = 2,
	latency_invalid = 255
};

3595 3596 3597 3598 3599 3600
/**
 * igb_update_ring_itr - update the dynamic ITR value based on packet size
 *
 *      Stores a new ITR value based on strictly on packet size.  This
 *      algorithm is less sophisticated than that used in igb_update_itr,
 *      due to the difficulty of synchronizing statistics across multiple
3601
 *      receive rings.  The divisors and thresholds used by this function
3602 3603 3604 3605 3606 3607 3608
 *      were determined based on theoretical maximum wire speed and testing
 *      data, in order to minimize response time while increasing bulk
 *      throughput.
 *      This functionality is controlled by the InterruptThrottleRate module
 *      parameter (see igb_param.c)
 *      NOTE:  This function is called only when operating in a multiqueue
 *             receive environment.
3609
 * @q_vector: pointer to q_vector
3610
 **/
3611
static void igb_update_ring_itr(struct igb_q_vector *q_vector)
3612
{
3613
	int new_val = q_vector->itr_val;
3614
	int avg_wire_size = 0;
3615
	struct igb_adapter *adapter = q_vector->adapter;
E
Eric Dumazet 已提交
3616 3617
	struct igb_ring *ring;
	unsigned int packets;
3618

3619 3620 3621 3622
	/* For non-gigabit speeds, just fix the interrupt rate at 4000
	 * ints/sec - ITR timer value of 120 ticks.
	 */
	if (adapter->link_speed != SPEED_1000) {
3623
		new_val = 976;
3624
		goto set_itr_val;
3625
	}
3626

E
Eric Dumazet 已提交
3627 3628 3629 3630 3631 3632
	ring = q_vector->rx_ring;
	if (ring) {
		packets = ACCESS_ONCE(ring->total_packets);

		if (packets)
			avg_wire_size = ring->total_bytes / packets;
3633 3634
	}

E
Eric Dumazet 已提交
3635 3636 3637 3638 3639 3640 3641
	ring = q_vector->tx_ring;
	if (ring) {
		packets = ACCESS_ONCE(ring->total_packets);

		if (packets)
			avg_wire_size = max_t(u32, avg_wire_size,
			                      ring->total_bytes / packets);
3642 3643 3644 3645 3646
	}

	/* if avg_wire_size isn't set no work was done */
	if (!avg_wire_size)
		goto clear_counts;
3647

3648 3649 3650 3651 3652
	/* Add 24 bytes to size to account for CRC, preamble, and gap */
	avg_wire_size += 24;

	/* Don't starve jumbo frames */
	avg_wire_size = min(avg_wire_size, 3000);
3653

3654 3655 3656 3657 3658
	/* Give a little boost to mid-size frames */
	if ((avg_wire_size > 300) && (avg_wire_size < 1200))
		new_val = avg_wire_size / 3;
	else
		new_val = avg_wire_size / 2;
3659

3660 3661 3662 3663
	/* when in itr mode 3 do not exceed 20K ints/sec */
	if (adapter->rx_itr_setting == 3 && new_val < 196)
		new_val = 196;

3664
set_itr_val:
3665 3666 3667
	if (new_val != q_vector->itr_val) {
		q_vector->itr_val = new_val;
		q_vector->set_itr = 1;
3668
	}
3669
clear_counts:
3670 3671 3672 3673 3674 3675 3676 3677
	if (q_vector->rx_ring) {
		q_vector->rx_ring->total_bytes = 0;
		q_vector->rx_ring->total_packets = 0;
	}
	if (q_vector->tx_ring) {
		q_vector->tx_ring->total_bytes = 0;
		q_vector->tx_ring->total_packets = 0;
	}
3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693
}

/**
 * igb_update_itr - update the dynamic ITR value based on statistics
 *      Stores a new ITR value based on packets and byte
 *      counts during the last interrupt.  The advantage of per interrupt
 *      computation is faster updates and more accurate ITR for the current
 *      traffic pattern.  Constants in this function were computed
 *      based on theoretical maximum wire speed and thresholds were set based
 *      on testing data as well as attempting to minimize response time
 *      while increasing bulk throughput.
 *      this functionality is controlled by the InterruptThrottleRate module
 *      parameter (see igb_param.c)
 *      NOTE:  These calculations are only valid when operating in a single-
 *             queue environment.
 * @adapter: pointer to adapter
3694
 * @itr_setting: current q_vector->itr_val
3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733
 * @packets: the number of packets during this measurement interval
 * @bytes: the number of bytes during this measurement interval
 **/
static unsigned int igb_update_itr(struct igb_adapter *adapter, u16 itr_setting,
				   int packets, int bytes)
{
	unsigned int retval = itr_setting;

	if (packets == 0)
		goto update_itr_done;

	switch (itr_setting) {
	case lowest_latency:
		/* handle TSO and jumbo frames */
		if (bytes/packets > 8000)
			retval = bulk_latency;
		else if ((packets < 5) && (bytes > 512))
			retval = low_latency;
		break;
	case low_latency:  /* 50 usec aka 20000 ints/s */
		if (bytes > 10000) {
			/* this if handles the TSO accounting */
			if (bytes/packets > 8000) {
				retval = bulk_latency;
			} else if ((packets < 10) || ((bytes/packets) > 1200)) {
				retval = bulk_latency;
			} else if ((packets > 35)) {
				retval = lowest_latency;
			}
		} else if (bytes/packets > 2000) {
			retval = bulk_latency;
		} else if (packets <= 2 && bytes < 512) {
			retval = lowest_latency;
		}
		break;
	case bulk_latency: /* 250 usec aka 4000 ints/s */
		if (bytes > 25000) {
			if (packets > 35)
				retval = low_latency;
3734
		} else if (bytes < 1500) {
3735 3736 3737 3738 3739 3740 3741 3742 3743
			retval = low_latency;
		}
		break;
	}

update_itr_done:
	return retval;
}

3744
static void igb_set_itr(struct igb_adapter *adapter)
3745
{
3746
	struct igb_q_vector *q_vector = adapter->q_vector[0];
3747
	u16 current_itr;
3748
	u32 new_itr = q_vector->itr_val;
3749 3750 3751 3752 3753 3754 3755 3756 3757 3758

	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
	if (adapter->link_speed != SPEED_1000) {
		current_itr = 0;
		new_itr = 4000;
		goto set_itr_now;
	}

	adapter->rx_itr = igb_update_itr(adapter,
				    adapter->rx_itr,
3759 3760
				    q_vector->rx_ring->total_packets,
				    q_vector->rx_ring->total_bytes);
3761

3762 3763
	adapter->tx_itr = igb_update_itr(adapter,
				    adapter->tx_itr,
3764 3765
				    q_vector->tx_ring->total_packets,
				    q_vector->tx_ring->total_bytes);
3766
	current_itr = max(adapter->rx_itr, adapter->tx_itr);
3767

3768
	/* conservative mode (itr 3) eliminates the lowest_latency setting */
3769
	if (adapter->rx_itr_setting == 3 && current_itr == lowest_latency)
3770 3771
		current_itr = low_latency;

3772 3773 3774
	switch (current_itr) {
	/* counts and packets in update_itr are dependent on these numbers */
	case lowest_latency:
3775
		new_itr = 56;  /* aka 70,000 ints/sec */
3776 3777
		break;
	case low_latency:
3778
		new_itr = 196; /* aka 20,000 ints/sec */
3779 3780
		break;
	case bulk_latency:
3781
		new_itr = 980; /* aka 4,000 ints/sec */
3782 3783 3784 3785 3786 3787
		break;
	default:
		break;
	}

set_itr_now:
3788 3789 3790 3791
	q_vector->rx_ring->total_bytes = 0;
	q_vector->rx_ring->total_packets = 0;
	q_vector->tx_ring->total_bytes = 0;
	q_vector->tx_ring->total_packets = 0;
3792

3793
	if (new_itr != q_vector->itr_val) {
3794 3795 3796
		/* this attempts to bias the interrupt rate towards Bulk
		 * by adding intermediate steps when interrupt rate is
		 * increasing */
3797 3798 3799 3800
		new_itr = new_itr > q_vector->itr_val ?
		             max((new_itr * q_vector->itr_val) /
		                 (new_itr + (q_vector->itr_val >> 2)),
		                 new_itr) :
3801 3802 3803 3804 3805 3806 3807
			     new_itr;
		/* Don't write the value here; it resets the adapter's
		 * internal timer, and causes us to delay far longer than
		 * we should between interrupts.  Instead, we write the ITR
		 * value at the beginning of the next interrupt so the timing
		 * ends up being correct.
		 */
3808 3809
		q_vector->itr_val = new_itr;
		q_vector->set_itr = 1;
3810 3811 3812 3813 3814 3815 3816
	}
}

#define IGB_TX_FLAGS_CSUM		0x00000001
#define IGB_TX_FLAGS_VLAN		0x00000002
#define IGB_TX_FLAGS_TSO		0x00000004
#define IGB_TX_FLAGS_IPV4		0x00000008
A
Alexander Duyck 已提交
3817 3818 3819
#define IGB_TX_FLAGS_TSTAMP		0x00000010
#define IGB_TX_FLAGS_VLAN_MASK		0xffff0000
#define IGB_TX_FLAGS_VLAN_SHIFT		        16
3820

3821
static inline int igb_tso_adv(struct igb_ring *tx_ring,
3822 3823 3824 3825 3826 3827 3828
			      struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
{
	struct e1000_adv_tx_context_desc *context_desc;
	unsigned int i;
	int err;
	struct igb_buffer *buffer_info;
	u32 info = 0, tu_cmd = 0;
N
Nick Nunley 已提交
3829 3830
	u32 mss_l4len_idx;
	u8 l4len;
3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848

	if (skb_header_cloned(skb)) {
		err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
		if (err)
			return err;
	}

	l4len = tcp_hdrlen(skb);
	*hdr_len += l4len;

	if (skb->protocol == htons(ETH_P_IP)) {
		struct iphdr *iph = ip_hdr(skb);
		iph->tot_len = 0;
		iph->check = 0;
		tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
							 iph->daddr, 0,
							 IPPROTO_TCP,
							 0);
3849
	} else if (skb_is_gso_v6(skb)) {
3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881
		ipv6_hdr(skb)->payload_len = 0;
		tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
						       &ipv6_hdr(skb)->daddr,
						       0, IPPROTO_TCP, 0);
	}

	i = tx_ring->next_to_use;

	buffer_info = &tx_ring->buffer_info[i];
	context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);
	/* VLAN MACLEN IPLEN */
	if (tx_flags & IGB_TX_FLAGS_VLAN)
		info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
	info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
	*hdr_len += skb_network_offset(skb);
	info |= skb_network_header_len(skb);
	*hdr_len += skb_network_header_len(skb);
	context_desc->vlan_macip_lens = cpu_to_le32(info);

	/* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
	tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);

	if (skb->protocol == htons(ETH_P_IP))
		tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
	tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;

	context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);

	/* MSS L4LEN IDX */
	mss_l4len_idx = (skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT);
	mss_l4len_idx |= (l4len << E1000_ADVTXD_L4LEN_SHIFT);

3882
	/* For 82575, context index must be unique per ring. */
3883 3884
	if (tx_ring->flags & IGB_RING_FLAG_TX_CTX_IDX)
		mss_l4len_idx |= tx_ring->reg_idx << 4;
3885 3886 3887 3888 3889

	context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
	context_desc->seqnum_seed = 0;

	buffer_info->time_stamp = jiffies;
A
Alexander Duyck 已提交
3890
	buffer_info->next_to_watch = i;
3891 3892 3893 3894 3895 3896 3897 3898 3899 3900
	buffer_info->dma = 0;
	i++;
	if (i == tx_ring->count)
		i = 0;

	tx_ring->next_to_use = i;

	return true;
}

3901 3902
static inline bool igb_tx_csum_adv(struct igb_ring *tx_ring,
				   struct sk_buff *skb, u32 tx_flags)
3903 3904
{
	struct e1000_adv_tx_context_desc *context_desc;
3905
	struct device *dev = tx_ring->dev;
3906 3907
	struct igb_buffer *buffer_info;
	u32 info = 0, tu_cmd = 0;
3908
	unsigned int i;
3909 3910 3911 3912 3913 3914 3915 3916 3917

	if ((skb->ip_summed == CHECKSUM_PARTIAL) ||
	    (tx_flags & IGB_TX_FLAGS_VLAN)) {
		i = tx_ring->next_to_use;
		buffer_info = &tx_ring->buffer_info[i];
		context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);

		if (tx_flags & IGB_TX_FLAGS_VLAN)
			info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
A
Alexander Duyck 已提交
3918

3919 3920 3921 3922 3923 3924 3925 3926 3927
		info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
		if (skb->ip_summed == CHECKSUM_PARTIAL)
			info |= skb_network_header_len(skb);

		context_desc->vlan_macip_lens = cpu_to_le32(info);

		tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);

		if (skb->ip_summed == CHECKSUM_PARTIAL) {
3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939
			__be16 protocol;

			if (skb->protocol == cpu_to_be16(ETH_P_8021Q)) {
				const struct vlan_ethhdr *vhdr =
				          (const struct vlan_ethhdr*)skb->data;

				protocol = vhdr->h_vlan_encapsulated_proto;
			} else {
				protocol = skb->protocol;
			}

			switch (protocol) {
3940
			case cpu_to_be16(ETH_P_IP):
3941
				tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
3942 3943
				if (ip_hdr(skb)->protocol == IPPROTO_TCP)
					tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
3944 3945
				else if (ip_hdr(skb)->protocol == IPPROTO_SCTP)
					tu_cmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
3946
				break;
3947
			case cpu_to_be16(ETH_P_IPV6):
3948 3949 3950
				/* XXX what about other V6 headers?? */
				if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
					tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
3951 3952
				else if (ipv6_hdr(skb)->nexthdr == IPPROTO_SCTP)
					tu_cmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
3953 3954 3955
				break;
			default:
				if (unlikely(net_ratelimit()))
3956
					dev_warn(dev,
3957 3958 3959 3960
					    "partial checksum but proto=%x!\n",
					    skb->protocol);
				break;
			}
3961 3962 3963 3964
		}

		context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
		context_desc->seqnum_seed = 0;
3965
		if (tx_ring->flags & IGB_RING_FLAG_TX_CTX_IDX)
3966
			context_desc->mss_l4len_idx =
3967
				cpu_to_le32(tx_ring->reg_idx << 4);
3968 3969

		buffer_info->time_stamp = jiffies;
A
Alexander Duyck 已提交
3970
		buffer_info->next_to_watch = i;
3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985
		buffer_info->dma = 0;

		i++;
		if (i == tx_ring->count)
			i = 0;
		tx_ring->next_to_use = i;

		return true;
	}
	return false;
}

#define IGB_MAX_TXD_PWR	16
#define IGB_MAX_DATA_PER_TXD	(1<<IGB_MAX_TXD_PWR)

3986
static inline int igb_tx_map_adv(struct igb_ring *tx_ring, struct sk_buff *skb,
A
Alexander Duyck 已提交
3987
				 unsigned int first)
3988 3989
{
	struct igb_buffer *buffer_info;
3990
	struct device *dev = tx_ring->dev;
3991
	unsigned int hlen = skb_headlen(skb);
3992 3993
	unsigned int count = 0, i;
	unsigned int f;
3994
	u16 gso_segs = skb_shinfo(skb)->gso_segs ?: 1;
3995 3996 3997 3998

	i = tx_ring->next_to_use;

	buffer_info = &tx_ring->buffer_info[i];
3999 4000
	BUG_ON(hlen >= IGB_MAX_DATA_PER_TXD);
	buffer_info->length = hlen;
4001 4002
	/* set time_stamp *before* dma to help avoid a possible race */
	buffer_info->time_stamp = jiffies;
A
Alexander Duyck 已提交
4003
	buffer_info->next_to_watch = i;
4004
	buffer_info->dma = dma_map_single(dev, skb->data, hlen,
4005 4006
					  DMA_TO_DEVICE);
	if (dma_mapping_error(dev, buffer_info->dma))
4007
		goto dma_error;
4008 4009

	for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
4010 4011
		struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[f];
		unsigned int len = frag->size;
4012

4013
		count++;
4014 4015 4016 4017
		i++;
		if (i == tx_ring->count)
			i = 0;

4018 4019 4020 4021
		buffer_info = &tx_ring->buffer_info[i];
		BUG_ON(len >= IGB_MAX_DATA_PER_TXD);
		buffer_info->length = len;
		buffer_info->time_stamp = jiffies;
A
Alexander Duyck 已提交
4022
		buffer_info->next_to_watch = i;
4023
		buffer_info->mapped_as_page = true;
4024
		buffer_info->dma = dma_map_page(dev,
4025 4026 4027
						frag->page,
						frag->page_offset,
						len,
4028 4029
						DMA_TO_DEVICE);
		if (dma_mapping_error(dev, buffer_info->dma))
4030 4031
			goto dma_error;

4032 4033 4034
	}

	tx_ring->buffer_info[i].skb = skb;
4035
	tx_ring->buffer_info[i].tx_flags = skb_shinfo(skb)->tx_flags;
4036 4037 4038
	/* multiply data chunks by size of headers */
	tx_ring->buffer_info[i].bytecount = ((gso_segs - 1) * hlen) + skb->len;
	tx_ring->buffer_info[i].gso_segs = gso_segs;
A
Alexander Duyck 已提交
4039
	tx_ring->buffer_info[first].next_to_watch = i;
4040

A
Alexander Duyck 已提交
4041
	return ++count;
4042 4043

dma_error:
4044
	dev_err(dev, "TX DMA map failed\n");
4045 4046 4047 4048 4049 4050 4051 4052 4053

	/* clear timestamp and dma mappings for failed buffer_info mapping */
	buffer_info->dma = 0;
	buffer_info->time_stamp = 0;
	buffer_info->length = 0;
	buffer_info->next_to_watch = 0;
	buffer_info->mapped_as_page = false;

	/* clear timestamp and dma mappings for remaining portion of packet */
4054 4055 4056
	while (count--) {
		if (i == 0)
			i = tx_ring->count;
4057 4058 4059 4060 4061 4062
		i--;
		buffer_info = &tx_ring->buffer_info[i];
		igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
	}

	return 0;
4063 4064
}

4065
static inline void igb_tx_queue_adv(struct igb_ring *tx_ring,
N
Nick Nunley 已提交
4066
				    u32 tx_flags, int count, u32 paylen,
4067 4068
				    u8 hdr_len)
{
A
Alexander Duyck 已提交
4069
	union e1000_adv_tx_desc *tx_desc;
4070 4071
	struct igb_buffer *buffer_info;
	u32 olinfo_status = 0, cmd_type_len;
A
Alexander Duyck 已提交
4072
	unsigned int i = tx_ring->next_to_use;
4073 4074 4075 4076 4077 4078 4079

	cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS |
			E1000_ADVTXD_DCMD_DEXT);

	if (tx_flags & IGB_TX_FLAGS_VLAN)
		cmd_type_len |= E1000_ADVTXD_DCMD_VLE;

4080 4081 4082
	if (tx_flags & IGB_TX_FLAGS_TSTAMP)
		cmd_type_len |= E1000_ADVTXD_MAC_TSTAMP;

4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096
	if (tx_flags & IGB_TX_FLAGS_TSO) {
		cmd_type_len |= E1000_ADVTXD_DCMD_TSE;

		/* insert tcp checksum */
		olinfo_status |= E1000_TXD_POPTS_TXSM << 8;

		/* insert ip checksum */
		if (tx_flags & IGB_TX_FLAGS_IPV4)
			olinfo_status |= E1000_TXD_POPTS_IXSM << 8;

	} else if (tx_flags & IGB_TX_FLAGS_CSUM) {
		olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
	}

4097 4098 4099
	if ((tx_ring->flags & IGB_RING_FLAG_TX_CTX_IDX) &&
	    (tx_flags & (IGB_TX_FLAGS_CSUM |
	                 IGB_TX_FLAGS_TSO |
4100
			 IGB_TX_FLAGS_VLAN)))
4101
		olinfo_status |= tx_ring->reg_idx << 4;
4102 4103 4104

	olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT);

A
Alexander Duyck 已提交
4105
	do {
4106 4107 4108 4109 4110 4111
		buffer_info = &tx_ring->buffer_info[i];
		tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
		tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
		tx_desc->read.cmd_type_len =
			cpu_to_le32(cmd_type_len | buffer_info->length);
		tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
A
Alexander Duyck 已提交
4112
		count--;
4113 4114 4115
		i++;
		if (i == tx_ring->count)
			i = 0;
A
Alexander Duyck 已提交
4116
	} while (count > 0);
4117

4118
	tx_desc->read.cmd_type_len |= cpu_to_le32(IGB_ADVTXD_DCMD);
4119 4120 4121 4122 4123 4124 4125
	/* Force memory writes to complete before letting h/w
	 * know there are new descriptors to fetch.  (Only
	 * applicable for weak-ordered memory model archs,
	 * such as IA-64). */
	wmb();

	tx_ring->next_to_use = i;
4126
	writel(i, tx_ring->tail);
4127 4128 4129 4130 4131
	/* we need this if more than one processor can write to our tail
	 * at a time, it syncronizes IO on IA64/Altix systems */
	mmiowb();
}

4132
static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, int size)
4133
{
4134 4135
	struct net_device *netdev = tx_ring->netdev;

4136 4137
	netif_stop_subqueue(netdev, tx_ring->queue_index);

4138 4139 4140 4141 4142 4143 4144
	/* Herbert's original patch had:
	 *  smp_mb__after_netif_stop_queue();
	 * but since that doesn't exist yet, just open code it. */
	smp_mb();

	/* We need to check again in a case another CPU has just
	 * made room available. */
4145
	if (igb_desc_unused(tx_ring) < size)
4146 4147 4148
		return -EBUSY;

	/* A reprieve! */
4149
	netif_wake_subqueue(netdev, tx_ring->queue_index);
E
Eric Dumazet 已提交
4150 4151 4152 4153 4154

	u64_stats_update_begin(&tx_ring->tx_syncp2);
	tx_ring->tx_stats.restart_queue2++;
	u64_stats_update_end(&tx_ring->tx_syncp2);

4155 4156 4157
	return 0;
}

N
Nick Nunley 已提交
4158
static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, int size)
4159
{
4160
	if (igb_desc_unused(tx_ring) >= size)
4161
		return 0;
4162
	return __igb_maybe_stop_tx(tx_ring, size);
4163 4164
}

4165 4166
netdev_tx_t igb_xmit_frame_ring_adv(struct sk_buff *skb,
				    struct igb_ring *tx_ring)
4167
{
A
Alexander Duyck 已提交
4168
	int tso = 0, count;
N
Nick Nunley 已提交
4169 4170 4171
	u32 tx_flags = 0;
	u16 first;
	u8 hdr_len = 0;
4172 4173 4174 4175 4176 4177

	/* need: 1 descriptor per page,
	 *       + 2 desc gap to keep tail from touching head,
	 *       + 1 desc for skb->data,
	 *       + 1 desc for context descriptor,
	 * otherwise try next time */
4178
	if (igb_maybe_stop_tx(tx_ring, skb_shinfo(skb)->nr_frags + 4)) {
4179 4180 4181
		/* this is a hard error */
		return NETDEV_TX_BUSY;
	}
4182

4183 4184
	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
4185 4186
		tx_flags |= IGB_TX_FLAGS_TSTAMP;
	}
4187

4188
	if (vlan_tx_tag_present(skb)) {
4189 4190 4191 4192
		tx_flags |= IGB_TX_FLAGS_VLAN;
		tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
	}

4193 4194 4195
	if (skb->protocol == htons(ETH_P_IP))
		tx_flags |= IGB_TX_FLAGS_IPV4;

A
Alexander Duyck 已提交
4196
	first = tx_ring->next_to_use;
4197 4198
	if (skb_is_gso(skb)) {
		tso = igb_tso_adv(tx_ring, skb, tx_flags, &hdr_len);
A
Alexander Duyck 已提交
4199

4200 4201 4202 4203
		if (tso < 0) {
			dev_kfree_skb_any(skb);
			return NETDEV_TX_OK;
		}
4204 4205 4206 4207
	}

	if (tso)
		tx_flags |= IGB_TX_FLAGS_TSO;
4208
	else if (igb_tx_csum_adv(tx_ring, skb, tx_flags) &&
4209 4210
	         (skb->ip_summed == CHECKSUM_PARTIAL))
		tx_flags |= IGB_TX_FLAGS_CSUM;
4211

4212
	/*
A
Alexander Duyck 已提交
4213
	 * count reflects descriptors mapped, if 0 or less then mapping error
4214 4215
	 * has occured and we need to rewind the descriptor queue
	 */
4216
	count = igb_tx_map_adv(tx_ring, skb, first);
4217
	if (!count) {
4218 4219 4220
		dev_kfree_skb_any(skb);
		tx_ring->buffer_info[first].time_stamp = 0;
		tx_ring->next_to_use = first;
4221
		return NETDEV_TX_OK;
4222
	}
4223

4224 4225 4226
	igb_tx_queue_adv(tx_ring, tx_flags, count, skb->len, hdr_len);

	/* Make sure there is space in the ring for the next send. */
4227
	igb_maybe_stop_tx(tx_ring, MAX_SKB_FRAGS + 4);
4228

4229 4230 4231
	return NETDEV_TX_OK;
}

4232 4233
static netdev_tx_t igb_xmit_frame_adv(struct sk_buff *skb,
				      struct net_device *netdev)
4234 4235
{
	struct igb_adapter *adapter = netdev_priv(netdev);
4236 4237
	struct igb_ring *tx_ring;
	int r_idx = 0;
4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248

	if (test_bit(__IGB_DOWN, &adapter->state)) {
		dev_kfree_skb_any(skb);
		return NETDEV_TX_OK;
	}

	if (skb->len <= 0) {
		dev_kfree_skb_any(skb);
		return NETDEV_TX_OK;
	}

4249
	r_idx = skb->queue_mapping & (IGB_ABS_MAX_TX_QUEUES - 1);
4250
	tx_ring = adapter->multi_tx_table[r_idx];
4251 4252 4253 4254 4255

	/* This goes back to the question of how to logically map a tx queue
	 * to a flow.  Right now, performance is impacted slightly negatively
	 * if using multiple tx queues.  If the stack breaks away from a
	 * single qdisc implementation, we can look at this again. */
4256
	return igb_xmit_frame_ring_adv(skb, tx_ring);
4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269
}

/**
 * igb_tx_timeout - Respond to a Tx Hang
 * @netdev: network interface device structure
 **/
static void igb_tx_timeout(struct net_device *netdev)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;

	/* Do the reset outside of interrupt context */
	adapter->tx_timeout_count++;
4270

4271 4272 4273
	if (hw->mac.type == e1000_82580)
		hw->dev_spec._82575.global_device_reset = true;

4274
	schedule_work(&adapter->reset_task);
4275 4276
	wr32(E1000_EICS,
	     (adapter->eims_enable_mask & ~adapter->eims_other));
4277 4278 4279 4280 4281 4282 4283
}

static void igb_reset_task(struct work_struct *work)
{
	struct igb_adapter *adapter;
	adapter = container_of(work, struct igb_adapter, reset_task);

4284 4285
	igb_dump(adapter);
	netdev_err(adapter->netdev, "Reset adapter\n");
4286 4287 4288 4289
	igb_reinit_locked(adapter);
}

/**
E
Eric Dumazet 已提交
4290
 * igb_get_stats64 - Get System Network Statistics
4291
 * @netdev: network interface device structure
E
Eric Dumazet 已提交
4292
 * @stats: rtnl_link_stats64 pointer
4293 4294
 *
 **/
E
Eric Dumazet 已提交
4295 4296
static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *netdev,
						 struct rtnl_link_stats64 *stats)
4297
{
E
Eric Dumazet 已提交
4298 4299 4300 4301 4302 4303 4304 4305
	struct igb_adapter *adapter = netdev_priv(netdev);

	spin_lock(&adapter->stats64_lock);
	igb_update_stats(adapter, &adapter->stats64);
	memcpy(stats, &adapter->stats64, sizeof(*stats));
	spin_unlock(&adapter->stats64_lock);

	return stats;
4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317
}

/**
 * igb_change_mtu - Change the Maximum Transfer Unit
 * @netdev: network interface device structure
 * @new_mtu: new value for maximum frame size
 *
 * Returns 0 on success, negative on failure
 **/
static int igb_change_mtu(struct net_device *netdev, int new_mtu)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
4318
	struct pci_dev *pdev = adapter->pdev;
4319
	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
4320
	u32 rx_buffer_len, i;
4321

4322
	if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
4323
		dev_err(&pdev->dev, "Invalid MTU setting\n");
4324 4325 4326 4327
		return -EINVAL;
	}

	if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
4328
		dev_err(&pdev->dev, "MTU > 9216 not supported.\n");
4329 4330 4331 4332 4333
		return -EINVAL;
	}

	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
		msleep(1);
4334

4335 4336
	/* igb_down has a dependency on max_frame_size */
	adapter->max_frame_size = max_frame;
4337

4338 4339 4340 4341 4342 4343
	/* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
	 * means we reserve 2 more, this pushes us to allocate from the next
	 * larger slab size.
	 * i.e. RXBUFFER_2048 --> size-4096 slab
	 */

N
Nick Nunley 已提交
4344 4345 4346
	if (adapter->hw.mac.type == e1000_82580)
		max_frame += IGB_TS_HDR_LEN;

4347
	if (max_frame <= IGB_RXBUFFER_1024)
4348
		rx_buffer_len = IGB_RXBUFFER_1024;
A
Alexander Duyck 已提交
4349
	else if (max_frame <= MAXIMUM_ETHERNET_VLAN_SIZE)
4350
		rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
A
Alexander Duyck 已提交
4351
	else
4352 4353
		rx_buffer_len = IGB_RXBUFFER_128;

N
Nick Nunley 已提交
4354 4355 4356 4357 4358 4359 4360 4361
	if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN + IGB_TS_HDR_LEN) ||
	     (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE + IGB_TS_HDR_LEN))
		rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE + IGB_TS_HDR_LEN;

	if ((adapter->hw.mac.type == e1000_82580) &&
	    (rx_buffer_len == IGB_RXBUFFER_128))
		rx_buffer_len += IGB_RXBUFFER_64;

4362 4363
	if (netif_running(netdev))
		igb_down(adapter);
4364

4365
	dev_info(&pdev->dev, "changing MTU from %d to %d\n",
4366 4367 4368
		 netdev->mtu, new_mtu);
	netdev->mtu = new_mtu;

4369
	for (i = 0; i < adapter->num_rx_queues; i++)
4370
		adapter->rx_ring[i]->rx_buffer_len = rx_buffer_len;
4371

4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386
	if (netif_running(netdev))
		igb_up(adapter);
	else
		igb_reset(adapter);

	clear_bit(__IGB_RESETTING, &adapter->state);

	return 0;
}

/**
 * igb_update_stats - Update the board statistics counters
 * @adapter: board private structure
 **/

E
Eric Dumazet 已提交
4387 4388
void igb_update_stats(struct igb_adapter *adapter,
		      struct rtnl_link_stats64 *net_stats)
4389 4390 4391
{
	struct e1000_hw *hw = &adapter->hw;
	struct pci_dev *pdev = adapter->pdev;
4392
	u32 reg, mpc;
4393
	u16 phy_tmp;
4394 4395
	int i;
	u64 bytes, packets;
E
Eric Dumazet 已提交
4396 4397
	unsigned int start;
	u64 _bytes, _packets;
4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409

#define PHY_IDLE_ERROR_COUNT_MASK 0x00FF

	/*
	 * Prevent stats update while adapter is being reset, or if the pci
	 * connection is down.
	 */
	if (adapter->link_speed == 0)
		return;
	if (pci_channel_offline(pdev))
		return;

4410 4411 4412 4413
	bytes = 0;
	packets = 0;
	for (i = 0; i < adapter->num_rx_queues; i++) {
		u32 rqdpc_tmp = rd32(E1000_RQDPC(i)) & 0x0FFF;
4414
		struct igb_ring *ring = adapter->rx_ring[i];
E
Eric Dumazet 已提交
4415

4416
		ring->rx_stats.drops += rqdpc_tmp;
4417
		net_stats->rx_fifo_errors += rqdpc_tmp;
E
Eric Dumazet 已提交
4418 4419 4420 4421 4422 4423 4424 4425

		do {
			start = u64_stats_fetch_begin_bh(&ring->rx_syncp);
			_bytes = ring->rx_stats.bytes;
			_packets = ring->rx_stats.packets;
		} while (u64_stats_fetch_retry_bh(&ring->rx_syncp, start));
		bytes += _bytes;
		packets += _packets;
4426 4427
	}

4428 4429
	net_stats->rx_bytes = bytes;
	net_stats->rx_packets = packets;
4430 4431 4432 4433

	bytes = 0;
	packets = 0;
	for (i = 0; i < adapter->num_tx_queues; i++) {
4434
		struct igb_ring *ring = adapter->tx_ring[i];
E
Eric Dumazet 已提交
4435 4436 4437 4438 4439 4440 4441
		do {
			start = u64_stats_fetch_begin_bh(&ring->tx_syncp);
			_bytes = ring->tx_stats.bytes;
			_packets = ring->tx_stats.packets;
		} while (u64_stats_fetch_retry_bh(&ring->tx_syncp, start));
		bytes += _bytes;
		packets += _packets;
4442
	}
4443 4444
	net_stats->tx_bytes = bytes;
	net_stats->tx_packets = packets;
4445 4446

	/* read stats registers */
4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463
	adapter->stats.crcerrs += rd32(E1000_CRCERRS);
	adapter->stats.gprc += rd32(E1000_GPRC);
	adapter->stats.gorc += rd32(E1000_GORCL);
	rd32(E1000_GORCH); /* clear GORCL */
	adapter->stats.bprc += rd32(E1000_BPRC);
	adapter->stats.mprc += rd32(E1000_MPRC);
	adapter->stats.roc += rd32(E1000_ROC);

	adapter->stats.prc64 += rd32(E1000_PRC64);
	adapter->stats.prc127 += rd32(E1000_PRC127);
	adapter->stats.prc255 += rd32(E1000_PRC255);
	adapter->stats.prc511 += rd32(E1000_PRC511);
	adapter->stats.prc1023 += rd32(E1000_PRC1023);
	adapter->stats.prc1522 += rd32(E1000_PRC1522);
	adapter->stats.symerrs += rd32(E1000_SYMERRS);
	adapter->stats.sec += rd32(E1000_SEC);

4464 4465 4466
	mpc = rd32(E1000_MPC);
	adapter->stats.mpc += mpc;
	net_stats->rx_fifo_errors += mpc;
4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480
	adapter->stats.scc += rd32(E1000_SCC);
	adapter->stats.ecol += rd32(E1000_ECOL);
	adapter->stats.mcc += rd32(E1000_MCC);
	adapter->stats.latecol += rd32(E1000_LATECOL);
	adapter->stats.dc += rd32(E1000_DC);
	adapter->stats.rlec += rd32(E1000_RLEC);
	adapter->stats.xonrxc += rd32(E1000_XONRXC);
	adapter->stats.xontxc += rd32(E1000_XONTXC);
	adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
	adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
	adapter->stats.fcruc += rd32(E1000_FCRUC);
	adapter->stats.gptc += rd32(E1000_GPTC);
	adapter->stats.gotc += rd32(E1000_GOTCL);
	rd32(E1000_GOTCH); /* clear GOTCL */
4481
	adapter->stats.rnbc += rd32(E1000_RNBC);
4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498
	adapter->stats.ruc += rd32(E1000_RUC);
	adapter->stats.rfc += rd32(E1000_RFC);
	adapter->stats.rjc += rd32(E1000_RJC);
	adapter->stats.tor += rd32(E1000_TORH);
	adapter->stats.tot += rd32(E1000_TOTH);
	adapter->stats.tpr += rd32(E1000_TPR);

	adapter->stats.ptc64 += rd32(E1000_PTC64);
	adapter->stats.ptc127 += rd32(E1000_PTC127);
	adapter->stats.ptc255 += rd32(E1000_PTC255);
	adapter->stats.ptc511 += rd32(E1000_PTC511);
	adapter->stats.ptc1023 += rd32(E1000_PTC1023);
	adapter->stats.ptc1522 += rd32(E1000_PTC1522);

	adapter->stats.mptc += rd32(E1000_MPTC);
	adapter->stats.bptc += rd32(E1000_BPTC);

4499 4500
	adapter->stats.tpt += rd32(E1000_TPT);
	adapter->stats.colc += rd32(E1000_COLC);
4501 4502

	adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
4503 4504 4505 4506 4507 4508 4509
	/* read internal phy specific stats */
	reg = rd32(E1000_CTRL_EXT);
	if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
		adapter->stats.rxerrc += rd32(E1000_RXERRC);
		adapter->stats.tncrs += rd32(E1000_TNCRS);
	}

4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523
	adapter->stats.tsctc += rd32(E1000_TSCTC);
	adapter->stats.tsctfc += rd32(E1000_TSCTFC);

	adapter->stats.iac += rd32(E1000_IAC);
	adapter->stats.icrxoc += rd32(E1000_ICRXOC);
	adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
	adapter->stats.icrxatc += rd32(E1000_ICRXATC);
	adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
	adapter->stats.ictxatc += rd32(E1000_ICTXATC);
	adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
	adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
	adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);

	/* Fill out the OS statistics structure */
4524 4525
	net_stats->multicast = adapter->stats.mprc;
	net_stats->collisions = adapter->stats.colc;
4526 4527 4528 4529

	/* Rx Errors */

	/* RLEC on some newer hardware can be incorrect so build
4530
	 * our own version based on RUC and ROC */
4531
	net_stats->rx_errors = adapter->stats.rxerrc +
4532 4533 4534
		adapter->stats.crcerrs + adapter->stats.algnerrc +
		adapter->stats.ruc + adapter->stats.roc +
		adapter->stats.cexterr;
4535 4536 4537 4538 4539
	net_stats->rx_length_errors = adapter->stats.ruc +
				      adapter->stats.roc;
	net_stats->rx_crc_errors = adapter->stats.crcerrs;
	net_stats->rx_frame_errors = adapter->stats.algnerrc;
	net_stats->rx_missed_errors = adapter->stats.mpc;
4540 4541

	/* Tx Errors */
4542 4543 4544 4545 4546
	net_stats->tx_errors = adapter->stats.ecol +
			       adapter->stats.latecol;
	net_stats->tx_aborted_errors = adapter->stats.ecol;
	net_stats->tx_window_errors = adapter->stats.latecol;
	net_stats->tx_carrier_errors = adapter->stats.tncrs;
4547 4548 4549 4550 4551 4552

	/* Tx Dropped needs to be maintained elsewhere */

	/* Phy Stats */
	if (hw->phy.media_type == e1000_media_type_copper) {
		if ((adapter->link_speed == SPEED_1000) &&
4553
		   (!igb_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566
			phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
			adapter->phy_stats.idle_errors += phy_tmp;
		}
	}

	/* Management Stats */
	adapter->stats.mgptc += rd32(E1000_MGTPTC);
	adapter->stats.mgprc += rd32(E1000_MGTPRC);
	adapter->stats.mgpdc += rd32(E1000_MGTPDC);
}

static irqreturn_t igb_msix_other(int irq, void *data)
{
4567
	struct igb_adapter *adapter = data;
4568
	struct e1000_hw *hw = &adapter->hw;
P
PJ Waskiewicz 已提交
4569 4570
	u32 icr = rd32(E1000_ICR);
	/* reading ICR causes bit 31 of EICR to be cleared */
4571

4572 4573 4574
	if (icr & E1000_ICR_DRSTA)
		schedule_work(&adapter->reset_task);

4575
	if (icr & E1000_ICR_DOUTSYNC) {
4576 4577
		/* HW is reporting DMA is out of sync */
		adapter->stats.doosync++;
G
Greg Rose 已提交
4578 4579 4580 4581
		/* The DMA Out of Sync is also indication of a spoof event
		 * in IOV mode. Check the Wrong VM Behavior register to
		 * see if it is really a spoof event. */
		igb_check_wvbr(adapter);
4582
	}
4583

4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594
	/* Check for a mailbox event */
	if (icr & E1000_ICR_VMMB)
		igb_msg_task(adapter);

	if (icr & E1000_ICR_LSC) {
		hw->mac.get_link_status = 1;
		/* guard against interrupt when we're going down */
		if (!test_bit(__IGB_DOWN, &adapter->state))
			mod_timer(&adapter->watchdog_timer, jiffies + 1);
	}

4595 4596 4597 4598 4599 4600
	if (adapter->vfs_allocated_count)
		wr32(E1000_IMS, E1000_IMS_LSC |
				E1000_IMS_VMMB |
				E1000_IMS_DOUTSYNC);
	else
		wr32(E1000_IMS, E1000_IMS_LSC | E1000_IMS_DOUTSYNC);
P
PJ Waskiewicz 已提交
4601
	wr32(E1000_EIMS, adapter->eims_other);
4602 4603 4604 4605

	return IRQ_HANDLED;
}

4606
static void igb_write_itr(struct igb_q_vector *q_vector)
4607
{
4608
	struct igb_adapter *adapter = q_vector->adapter;
4609
	u32 itr_val = q_vector->itr_val & 0x7FFC;
4610

4611 4612
	if (!q_vector->set_itr)
		return;
4613

4614 4615
	if (!itr_val)
		itr_val = 0x4;
4616

4617 4618
	if (adapter->hw.mac.type == e1000_82575)
		itr_val |= itr_val << 16;
4619
	else
4620
		itr_val |= 0x8000000;
4621

4622 4623
	writel(itr_val, q_vector->itr_register);
	q_vector->set_itr = 0;
4624 4625
}

4626
static irqreturn_t igb_msix_ring(int irq, void *data)
4627
{
4628
	struct igb_q_vector *q_vector = data;
4629

4630 4631
	/* Write the ITR value calculated from the previous interrupt. */
	igb_write_itr(q_vector);
4632

4633
	napi_schedule(&q_vector->napi);
P
PJ Waskiewicz 已提交
4634

4635
	return IRQ_HANDLED;
J
Jeb Cramer 已提交
4636 4637
}

4638
#ifdef CONFIG_IGB_DCA
4639
static void igb_update_dca(struct igb_q_vector *q_vector)
J
Jeb Cramer 已提交
4640
{
4641
	struct igb_adapter *adapter = q_vector->adapter;
J
Jeb Cramer 已提交
4642 4643 4644
	struct e1000_hw *hw = &adapter->hw;
	int cpu = get_cpu();

4645 4646 4647 4648 4649 4650 4651 4652 4653
	if (q_vector->cpu == cpu)
		goto out_no_update;

	if (q_vector->tx_ring) {
		int q = q_vector->tx_ring->reg_idx;
		u32 dca_txctrl = rd32(E1000_DCA_TXCTRL(q));
		if (hw->mac.type == e1000_82575) {
			dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK;
			dca_txctrl |= dca3_get_tag(&adapter->pdev->dev, cpu);
A
Alexander Duyck 已提交
4654
		} else {
4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665
			dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK_82576;
			dca_txctrl |= dca3_get_tag(&adapter->pdev->dev, cpu) <<
			              E1000_DCA_TXCTRL_CPUID_SHIFT;
		}
		dca_txctrl |= E1000_DCA_TXCTRL_DESC_DCA_EN;
		wr32(E1000_DCA_TXCTRL(q), dca_txctrl);
	}
	if (q_vector->rx_ring) {
		int q = q_vector->rx_ring->reg_idx;
		u32 dca_rxctrl = rd32(E1000_DCA_RXCTRL(q));
		if (hw->mac.type == e1000_82575) {
A
Alexander Duyck 已提交
4666
			dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK;
M
Maciej Sosnowski 已提交
4667
			dca_rxctrl |= dca3_get_tag(&adapter->pdev->dev, cpu);
4668 4669 4670 4671
		} else {
			dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK_82576;
			dca_rxctrl |= dca3_get_tag(&adapter->pdev->dev, cpu) <<
			              E1000_DCA_RXCTRL_CPUID_SHIFT;
A
Alexander Duyck 已提交
4672
		}
J
Jeb Cramer 已提交
4673 4674 4675 4676 4677
		dca_rxctrl |= E1000_DCA_RXCTRL_DESC_DCA_EN;
		dca_rxctrl |= E1000_DCA_RXCTRL_HEAD_DCA_EN;
		dca_rxctrl |= E1000_DCA_RXCTRL_DATA_DCA_EN;
		wr32(E1000_DCA_RXCTRL(q), dca_rxctrl);
	}
4678 4679
	q_vector->cpu = cpu;
out_no_update:
J
Jeb Cramer 已提交
4680 4681 4682 4683 4684
	put_cpu();
}

static void igb_setup_dca(struct igb_adapter *adapter)
{
4685
	struct e1000_hw *hw = &adapter->hw;
J
Jeb Cramer 已提交
4686 4687
	int i;

4688
	if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
J
Jeb Cramer 已提交
4689 4690
		return;

4691 4692 4693
	/* Always use CB2 mode, difference is masked in the CB driver. */
	wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);

4694
	for (i = 0; i < adapter->num_q_vectors; i++) {
4695 4696
		adapter->q_vector[i]->cpu = -1;
		igb_update_dca(adapter->q_vector[i]);
J
Jeb Cramer 已提交
4697 4698 4699 4700 4701 4702 4703
	}
}

static int __igb_notify_dca(struct device *dev, void *data)
{
	struct net_device *netdev = dev_get_drvdata(dev);
	struct igb_adapter *adapter = netdev_priv(netdev);
4704
	struct pci_dev *pdev = adapter->pdev;
J
Jeb Cramer 已提交
4705 4706 4707 4708 4709 4710
	struct e1000_hw *hw = &adapter->hw;
	unsigned long event = *(unsigned long *)data;

	switch (event) {
	case DCA_PROVIDER_ADD:
		/* if already enabled, don't do it again */
4711
		if (adapter->flags & IGB_FLAG_DCA_ENABLED)
J
Jeb Cramer 已提交
4712 4713
			break;
		if (dca_add_requester(dev) == 0) {
4714
			adapter->flags |= IGB_FLAG_DCA_ENABLED;
4715
			dev_info(&pdev->dev, "DCA enabled\n");
J
Jeb Cramer 已提交
4716 4717 4718 4719 4720
			igb_setup_dca(adapter);
			break;
		}
		/* Fall Through since DCA is disabled. */
	case DCA_PROVIDER_REMOVE:
4721
		if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
J
Jeb Cramer 已提交
4722
			/* without this a class_device is left
4723
			 * hanging around in the sysfs model */
J
Jeb Cramer 已提交
4724
			dca_remove_requester(dev);
4725
			dev_info(&pdev->dev, "DCA disabled\n");
4726
			adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
A
Alexander Duyck 已提交
4727
			wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
J
Jeb Cramer 已提交
4728 4729 4730
		}
		break;
	}
4731

J
Jeb Cramer 已提交
4732
	return 0;
4733 4734
}

J
Jeb Cramer 已提交
4735 4736 4737 4738 4739 4740 4741 4742 4743 4744
static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
                          void *p)
{
	int ret_val;

	ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
	                                 __igb_notify_dca);

	return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
}
4745
#endif /* CONFIG_IGB_DCA */
4746

4747 4748 4749 4750 4751 4752 4753 4754
static void igb_ping_all_vfs(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 ping;
	int i;

	for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
		ping = E1000_PF_CONTROL_MSG;
4755
		if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
4756 4757 4758 4759 4760
			ping |= E1000_VT_MSGTYPE_CTS;
		igb_write_mbx(hw, &ping, 1, i);
	}
}

4761 4762 4763 4764 4765 4766
static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 vmolr = rd32(E1000_VMOLR(vf));
	struct vf_data_storage *vf_data = &adapter->vf_data[vf];

4767
	vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
4768 4769 4770 4771 4772
	                    IGB_VF_FLAG_MULTI_PROMISC);
	vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);

	if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
		vmolr |= E1000_VMOLR_MPME;
4773
		vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800
		*msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
	} else {
		/*
		 * if we have hashes and we are clearing a multicast promisc
		 * flag we need to write the hashes to the MTA as this step
		 * was previously skipped
		 */
		if (vf_data->num_vf_mc_hashes > 30) {
			vmolr |= E1000_VMOLR_MPME;
		} else if (vf_data->num_vf_mc_hashes) {
			int j;
			vmolr |= E1000_VMOLR_ROMPE;
			for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
				igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
		}
	}

	wr32(E1000_VMOLR(vf), vmolr);

	/* there are flags left unprocessed, likely not supported */
	if (*msgbuf & E1000_VT_MSGINFO_MASK)
		return -EINVAL;

	return 0;

}

4801 4802 4803 4804 4805 4806 4807 4808
static int igb_set_vf_multicasts(struct igb_adapter *adapter,
				  u32 *msgbuf, u32 vf)
{
	int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
	u16 *hash_list = (u16 *)&msgbuf[1];
	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
	int i;

4809
	/* salt away the number of multicast addresses assigned
4810 4811 4812 4813 4814
	 * to this VF for later use to restore when the PF multi cast
	 * list changes
	 */
	vf_data->num_vf_mc_hashes = n;

4815 4816 4817 4818 4819
	/* only up to 30 hash values supported */
	if (n > 30)
		n = 30;

	/* store the hashes for later use */
4820
	for (i = 0; i < n; i++)
4821
		vf_data->vf_mc_hashes[i] = hash_list[i];
4822 4823

	/* Flush and reset the mta with the new values */
4824
	igb_set_rx_mode(adapter->netdev);
4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835

	return 0;
}

static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	struct vf_data_storage *vf_data;
	int i, j;

	for (i = 0; i < adapter->vfs_allocated_count; i++) {
4836 4837 4838
		u32 vmolr = rd32(E1000_VMOLR(i));
		vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);

4839
		vf_data = &adapter->vf_data[i];
4840 4841 4842 4843 4844 4845 4846 4847 4848 4849

		if ((vf_data->num_vf_mc_hashes > 30) ||
		    (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
			vmolr |= E1000_VMOLR_MPME;
		} else if (vf_data->num_vf_mc_hashes) {
			vmolr |= E1000_VMOLR_ROMPE;
			for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
				igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
		}
		wr32(E1000_VMOLR(i), vmolr);
4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877
	}
}

static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 pool_mask, reg, vid;
	int i;

	pool_mask = 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);

	/* Find the vlan filter for this id */
	for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
		reg = rd32(E1000_VLVF(i));

		/* remove the vf from the pool */
		reg &= ~pool_mask;

		/* if pool is empty then remove entry from vfta */
		if (!(reg & E1000_VLVF_POOLSEL_MASK) &&
		    (reg & E1000_VLVF_VLANID_ENABLE)) {
			reg = 0;
			vid = reg & E1000_VLVF_VLANID_MASK;
			igb_vfta_set(hw, vid, false);
		}

		wr32(E1000_VLVF(i), reg);
	}
4878 4879

	adapter->vf_data[vf].vlans_enabled = 0;
4880 4881 4882 4883 4884 4885 4886
}

static s32 igb_vlvf_set(struct igb_adapter *adapter, u32 vid, bool add, u32 vf)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 reg, i;

4887 4888 4889 4890 4891
	/* The vlvf table only exists on 82576 hardware and newer */
	if (hw->mac.type < e1000_82576)
		return -1;

	/* we only need to do this if VMDq is enabled */
4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920
	if (!adapter->vfs_allocated_count)
		return -1;

	/* Find the vlan filter for this id */
	for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
		reg = rd32(E1000_VLVF(i));
		if ((reg & E1000_VLVF_VLANID_ENABLE) &&
		    vid == (reg & E1000_VLVF_VLANID_MASK))
			break;
	}

	if (add) {
		if (i == E1000_VLVF_ARRAY_SIZE) {
			/* Did not find a matching VLAN ID entry that was
			 * enabled.  Search for a free filter entry, i.e.
			 * one without the enable bit set
			 */
			for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
				reg = rd32(E1000_VLVF(i));
				if (!(reg & E1000_VLVF_VLANID_ENABLE))
					break;
			}
		}
		if (i < E1000_VLVF_ARRAY_SIZE) {
			/* Found an enabled/available entry */
			reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);

			/* if !enabled we need to set this up in vfta */
			if (!(reg & E1000_VLVF_VLANID_ENABLE)) {
4921 4922
				/* add VID to filter table */
				igb_vfta_set(hw, vid, true);
4923 4924
				reg |= E1000_VLVF_VLANID_ENABLE;
			}
A
Alexander Duyck 已提交
4925 4926
			reg &= ~E1000_VLVF_VLANID_MASK;
			reg |= vid;
4927
			wr32(E1000_VLVF(i), reg);
4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942

			/* do not modify RLPML for PF devices */
			if (vf >= adapter->vfs_allocated_count)
				return 0;

			if (!adapter->vf_data[vf].vlans_enabled) {
				u32 size;
				reg = rd32(E1000_VMOLR(vf));
				size = reg & E1000_VMOLR_RLPML_MASK;
				size += 4;
				reg &= ~E1000_VMOLR_RLPML_MASK;
				reg |= size;
				wr32(E1000_VMOLR(vf), reg);
			}

4943
			adapter->vf_data[vf].vlans_enabled++;
4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955
			return 0;
		}
	} else {
		if (i < E1000_VLVF_ARRAY_SIZE) {
			/* remove vf from the pool */
			reg &= ~(1 << (E1000_VLVF_POOLSEL_SHIFT + vf));
			/* if pool is empty then remove entry from vfta */
			if (!(reg & E1000_VLVF_POOLSEL_MASK)) {
				reg = 0;
				igb_vfta_set(hw, vid, false);
			}
			wr32(E1000_VLVF(i), reg);
4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970

			/* do not modify RLPML for PF devices */
			if (vf >= adapter->vfs_allocated_count)
				return 0;

			adapter->vf_data[vf].vlans_enabled--;
			if (!adapter->vf_data[vf].vlans_enabled) {
				u32 size;
				reg = rd32(E1000_VMOLR(vf));
				size = reg & E1000_VMOLR_RLPML_MASK;
				size -= 4;
				reg &= ~E1000_VMOLR_RLPML_MASK;
				reg |= size;
				wr32(E1000_VMOLR(vf), reg);
			}
4971 4972
		}
	}
4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021
	return 0;
}

static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
{
	struct e1000_hw *hw = &adapter->hw;

	if (vid)
		wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
	else
		wr32(E1000_VMVIR(vf), 0);
}

static int igb_ndo_set_vf_vlan(struct net_device *netdev,
			       int vf, u16 vlan, u8 qos)
{
	int err = 0;
	struct igb_adapter *adapter = netdev_priv(netdev);

	if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
		return -EINVAL;
	if (vlan || qos) {
		err = igb_vlvf_set(adapter, vlan, !!vlan, vf);
		if (err)
			goto out;
		igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
		igb_set_vmolr(adapter, vf, !vlan);
		adapter->vf_data[vf].pf_vlan = vlan;
		adapter->vf_data[vf].pf_qos = qos;
		dev_info(&adapter->pdev->dev,
			 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
		if (test_bit(__IGB_DOWN, &adapter->state)) {
			dev_warn(&adapter->pdev->dev,
				 "The VF VLAN has been set,"
				 " but the PF device is not up.\n");
			dev_warn(&adapter->pdev->dev,
				 "Bring the PF device up before"
				 " attempting to use the VF device.\n");
		}
	} else {
		igb_vlvf_set(adapter, adapter->vf_data[vf].pf_vlan,
				   false, vf);
		igb_set_vmvir(adapter, vlan, vf);
		igb_set_vmolr(adapter, vf, true);
		adapter->vf_data[vf].pf_vlan = 0;
		adapter->vf_data[vf].pf_qos = 0;
       }
out:
       return err;
5022 5023 5024 5025 5026 5027 5028 5029 5030 5031
}

static int igb_set_vf_vlan(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
{
	int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
	int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);

	return igb_vlvf_set(adapter, vid, add, vf);
}

5032
static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
5033
{
G
Greg Rose 已提交
5034 5035
	/* clear flags - except flag that indicates PF has set the MAC */
	adapter->vf_data[vf].flags &= IGB_VF_FLAG_PF_SET_MAC;
5036
	adapter->vf_data[vf].last_nack = jiffies;
5037 5038

	/* reset offloads to defaults */
5039
	igb_set_vmolr(adapter, vf, true);
5040 5041 5042

	/* reset vlans for device */
	igb_clear_vf_vfta(adapter, vf);
5043 5044 5045 5046 5047 5048
	if (adapter->vf_data[vf].pf_vlan)
		igb_ndo_set_vf_vlan(adapter->netdev, vf,
				    adapter->vf_data[vf].pf_vlan,
				    adapter->vf_data[vf].pf_qos);
	else
		igb_clear_vf_vfta(adapter, vf);
5049 5050 5051 5052 5053

	/* reset multicast table array for vf */
	adapter->vf_data[vf].num_vf_mc_hashes = 0;

	/* Flush and reset the mta with the new values */
5054
	igb_set_rx_mode(adapter->netdev);
5055 5056
}

5057 5058 5059 5060 5061
static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
{
	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;

	/* generate a new mac address as we were hotplug removed/added */
5062 5063
	if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
		random_ether_addr(vf_mac);
5064 5065 5066 5067 5068 5069

	/* process remaining reset events */
	igb_vf_reset(adapter, vf);
}

static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
5070 5071 5072
{
	struct e1000_hw *hw = &adapter->hw;
	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
5073
	int rar_entry = hw->mac.rar_entry_count - (vf + 1);
5074 5075 5076 5077
	u32 reg, msgbuf[3];
	u8 *addr = (u8 *)(&msgbuf[1]);

	/* process all the same items cleared in a function level reset */
5078
	igb_vf_reset(adapter, vf);
5079 5080

	/* set vf mac address */
5081
	igb_rar_set_qsel(adapter, vf_mac, rar_entry, vf);
5082 5083 5084 5085 5086 5087 5088

	/* enable transmit and receive for vf */
	reg = rd32(E1000_VFTE);
	wr32(E1000_VFTE, reg | (1 << vf));
	reg = rd32(E1000_VFRE);
	wr32(E1000_VFRE, reg | (1 << vf));

G
Greg Rose 已提交
5089
	adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
5090 5091 5092 5093 5094 5095 5096 5097 5098

	/* reply to reset with ack and vf mac address */
	msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
	memcpy(addr, vf_mac, 6);
	igb_write_mbx(hw, msgbuf, 3, vf);
}

static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
{
G
Greg Rose 已提交
5099 5100 5101 5102
	/*
	 * The VF MAC Address is stored in a packed array of bytes
	 * starting at the second 32 bit word of the msg array
	 */
5103 5104
	unsigned char *addr = (char *)&msg[1];
	int err = -1;
5105

5106 5107
	if (is_valid_ether_addr(addr))
		err = igb_set_vf_mac(adapter, vf, addr);
5108

5109
	return err;
5110 5111 5112 5113 5114
}

static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
{
	struct e1000_hw *hw = &adapter->hw;
5115
	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5116 5117 5118
	u32 msg = E1000_VT_MSGTYPE_NACK;

	/* if device isn't clear to send it shouldn't be reading either */
5119 5120
	if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
	    time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
5121
		igb_write_mbx(hw, &msg, 1, vf);
5122
		vf_data->last_nack = jiffies;
5123 5124 5125
	}
}

5126
static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
5127
{
5128 5129
	struct pci_dev *pdev = adapter->pdev;
	u32 msgbuf[E1000_VFMAILBOX_SIZE];
5130
	struct e1000_hw *hw = &adapter->hw;
5131
	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5132 5133
	s32 retval;

5134
	retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf);
5135

5136 5137
	if (retval) {
		/* if receive failed revoke VF CTS stats and restart init */
5138
		dev_err(&pdev->dev, "Error receiving message from VF\n");
5139 5140 5141 5142 5143
		vf_data->flags &= ~IGB_VF_FLAG_CTS;
		if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
			return;
		goto out;
	}
5144 5145 5146

	/* this is a message we already processed, do nothing */
	if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
5147
		return;
5148 5149 5150 5151 5152 5153 5154 5155

	/*
	 * until the vf completes a reset it should not be
	 * allowed to start any configuration.
	 */

	if (msgbuf[0] == E1000_VF_RESET) {
		igb_vf_reset_msg(adapter, vf);
5156
		return;
5157 5158
	}

5159
	if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
5160 5161 5162 5163
		if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
			return;
		retval = -1;
		goto out;
5164 5165 5166 5167
	}

	switch ((msgbuf[0] & 0xFFFF)) {
	case E1000_VF_SET_MAC_ADDR:
5168 5169 5170 5171 5172 5173 5174 5175
		retval = -EINVAL;
		if (!(vf_data->flags & IGB_VF_FLAG_PF_SET_MAC))
			retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
		else
			dev_warn(&pdev->dev,
				 "VF %d attempted to override administratively "
				 "set MAC address\nReload the VF driver to "
				 "resume operations\n", vf);
5176
		break;
5177 5178 5179
	case E1000_VF_SET_PROMISC:
		retval = igb_set_vf_promisc(adapter, msgbuf, vf);
		break;
5180 5181 5182 5183 5184 5185 5186
	case E1000_VF_SET_MULTICAST:
		retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
		break;
	case E1000_VF_SET_LPE:
		retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
		break;
	case E1000_VF_SET_VLAN:
5187 5188 5189 5190 5191 5192
		retval = -1;
		if (vf_data->pf_vlan)
			dev_warn(&pdev->dev,
				 "VF %d attempted to override administratively "
				 "set VLAN tag\nReload the VF driver to "
				 "resume operations\n", vf);
5193 5194
		else
			retval = igb_set_vf_vlan(adapter, msgbuf, vf);
5195 5196
		break;
	default:
5197
		dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
5198 5199 5200 5201
		retval = -1;
		break;
	}

5202 5203
	msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
out:
5204 5205 5206 5207 5208 5209 5210
	/* notify the VF of the results of what it sent us */
	if (retval)
		msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
	else
		msgbuf[0] |= E1000_VT_MSGTYPE_ACK;

	igb_write_mbx(hw, msgbuf, 1, vf);
5211
}
5212

5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230
static void igb_msg_task(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 vf;

	for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
		/* process any reset requests */
		if (!igb_check_for_rst(hw, vf))
			igb_vf_reset_event(adapter, vf);

		/* process any messages pending */
		if (!igb_check_for_msg(hw, vf))
			igb_rcv_msg_from_vf(adapter, vf);

		/* process any acks */
		if (!igb_check_for_ack(hw, vf))
			igb_rcv_ack_from_vf(adapter, vf);
	}
5231 5232
}

5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259
/**
 *  igb_set_uta - Set unicast filter table address
 *  @adapter: board private structure
 *
 *  The unicast table address is a register array of 32-bit registers.
 *  The table is meant to be used in a way similar to how the MTA is used
 *  however due to certain limitations in the hardware it is necessary to
 *  set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscous
 *  enable bit to allow vlan tag stripping when promiscous mode is enabled
 **/
static void igb_set_uta(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	int i;

	/* The UTA table only exists on 82576 hardware and newer */
	if (hw->mac.type < e1000_82576)
		return;

	/* we only need to do this if VMDq is enabled */
	if (!adapter->vfs_allocated_count)
		return;

	for (i = 0; i < hw->mac.uta_reg_count; i++)
		array_wr32(E1000_UTA, i, ~0);
}

5260 5261 5262 5263 5264 5265 5266
/**
 * igb_intr_msi - Interrupt Handler
 * @irq: interrupt number
 * @data: pointer to a network interface device structure
 **/
static irqreturn_t igb_intr_msi(int irq, void *data)
{
5267 5268
	struct igb_adapter *adapter = data;
	struct igb_q_vector *q_vector = adapter->q_vector[0];
5269 5270 5271 5272
	struct e1000_hw *hw = &adapter->hw;
	/* read ICR disables interrupts using IAM */
	u32 icr = rd32(E1000_ICR);

5273
	igb_write_itr(q_vector);
5274

5275 5276 5277
	if (icr & E1000_ICR_DRSTA)
		schedule_work(&adapter->reset_task);

5278
	if (icr & E1000_ICR_DOUTSYNC) {
5279 5280 5281 5282
		/* HW is reporting DMA is out of sync */
		adapter->stats.doosync++;
	}

5283 5284 5285 5286 5287 5288
	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
		hw->mac.get_link_status = 1;
		if (!test_bit(__IGB_DOWN, &adapter->state))
			mod_timer(&adapter->watchdog_timer, jiffies + 1);
	}

5289
	napi_schedule(&q_vector->napi);
5290 5291 5292 5293 5294

	return IRQ_HANDLED;
}

/**
5295
 * igb_intr - Legacy Interrupt Handler
5296 5297 5298 5299 5300
 * @irq: interrupt number
 * @data: pointer to a network interface device structure
 **/
static irqreturn_t igb_intr(int irq, void *data)
{
5301 5302
	struct igb_adapter *adapter = data;
	struct igb_q_vector *q_vector = adapter->q_vector[0];
5303 5304 5305 5306 5307 5308 5309
	struct e1000_hw *hw = &adapter->hw;
	/* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
	 * need for the IMC write */
	u32 icr = rd32(E1000_ICR);
	if (!icr)
		return IRQ_NONE;  /* Not our interrupt */

5310
	igb_write_itr(q_vector);
5311 5312 5313 5314 5315 5316

	/* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
	 * not set, then the adapter didn't send an interrupt */
	if (!(icr & E1000_ICR_INT_ASSERTED))
		return IRQ_NONE;

5317 5318 5319
	if (icr & E1000_ICR_DRSTA)
		schedule_work(&adapter->reset_task);

5320
	if (icr & E1000_ICR_DOUTSYNC) {
5321 5322 5323 5324
		/* HW is reporting DMA is out of sync */
		adapter->stats.doosync++;
	}

5325 5326 5327 5328 5329 5330 5331
	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
		hw->mac.get_link_status = 1;
		/* guard against interrupt when we're going down */
		if (!test_bit(__IGB_DOWN, &adapter->state))
			mod_timer(&adapter->watchdog_timer, jiffies + 1);
	}

5332
	napi_schedule(&q_vector->napi);
5333 5334 5335 5336

	return IRQ_HANDLED;
}

5337
static inline void igb_ring_irq_enable(struct igb_q_vector *q_vector)
5338
{
5339
	struct igb_adapter *adapter = q_vector->adapter;
5340
	struct e1000_hw *hw = &adapter->hw;
5341

5342 5343
	if ((q_vector->rx_ring && (adapter->rx_itr_setting & 3)) ||
	    (!q_vector->rx_ring && (adapter->tx_itr_setting & 3))) {
5344
		if (!adapter->msix_entries)
5345
			igb_set_itr(adapter);
5346
		else
5347
			igb_update_ring_itr(q_vector);
5348 5349
	}

5350 5351
	if (!test_bit(__IGB_DOWN, &adapter->state)) {
		if (adapter->msix_entries)
5352
			wr32(E1000_EIMS, q_vector->eims_value);
5353 5354 5355
		else
			igb_irq_enable(adapter);
	}
5356 5357
}

5358 5359 5360 5361 5362 5363
/**
 * igb_poll - NAPI Rx polling callback
 * @napi: napi polling structure
 * @budget: count of how many packets we should handle
 **/
static int igb_poll(struct napi_struct *napi, int budget)
5364
{
5365 5366 5367 5368
	struct igb_q_vector *q_vector = container_of(napi,
	                                             struct igb_q_vector,
	                                             napi);
	int tx_clean_complete = 1, work_done = 0;
5369

5370
#ifdef CONFIG_IGB_DCA
5371 5372
	if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
		igb_update_dca(q_vector);
J
Jeb Cramer 已提交
5373
#endif
5374 5375
	if (q_vector->tx_ring)
		tx_clean_complete = igb_clean_tx_irq(q_vector);
5376

5377 5378 5379 5380 5381
	if (q_vector->rx_ring)
		igb_clean_rx_irq_adv(q_vector, &work_done, budget);

	if (!tx_clean_complete)
		work_done = budget;
5382

5383
	/* If not enough Rx work done, exit the polling mode */
5384
	if (work_done < budget) {
5385
		napi_complete(napi);
5386
		igb_ring_irq_enable(q_vector);
5387 5388
	}

5389
	return work_done;
5390
}
A
Al Viro 已提交
5391

5392
/**
5393
 * igb_systim_to_hwtstamp - convert system time value to hw timestamp
5394
 * @adapter: board private structure
5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406
 * @shhwtstamps: timestamp structure to update
 * @regval: unsigned 64bit system time value.
 *
 * We need to convert the system time value stored in the RX/TXSTMP registers
 * into a hwtstamp which can be used by the upper level timestamping functions
 */
static void igb_systim_to_hwtstamp(struct igb_adapter *adapter,
                                   struct skb_shared_hwtstamps *shhwtstamps,
                                   u64 regval)
{
	u64 ns;

5407 5408 5409 5410 5411 5412 5413
	/*
	 * The 82580 starts with 1ns at bit 0 in RX/TXSTMPL, shift this up to
	 * 24 to match clock shift we setup earlier.
	 */
	if (adapter->hw.mac.type == e1000_82580)
		regval <<= IGB_82580_TSYNC_SHIFT;

5414 5415 5416 5417 5418 5419 5420 5421 5422 5423
	ns = timecounter_cyc2time(&adapter->clock, regval);
	timecompare_update(&adapter->compare, ns);
	memset(shhwtstamps, 0, sizeof(struct skb_shared_hwtstamps));
	shhwtstamps->hwtstamp = ns_to_ktime(ns);
	shhwtstamps->syststamp = timecompare_transform(&adapter->compare, ns);
}

/**
 * igb_tx_hwtstamp - utility function which checks for TX time stamp
 * @q_vector: pointer to q_vector containing needed info
5424
 * @buffer: pointer to igb_buffer structure
5425 5426 5427 5428 5429
 *
 * If we were asked to do hardware stamping and such a time stamp is
 * available, then it must have been for this skb here because we only
 * allow only one such packet into the queue.
 */
5430
static void igb_tx_hwtstamp(struct igb_q_vector *q_vector, struct igb_buffer *buffer_info)
5431
{
5432
	struct igb_adapter *adapter = q_vector->adapter;
5433
	struct e1000_hw *hw = &adapter->hw;
5434 5435
	struct skb_shared_hwtstamps shhwtstamps;
	u64 regval;
5436

5437
	/* if skb does not support hw timestamp or TX stamp not valid exit */
5438
	if (likely(!(buffer_info->tx_flags & SKBTX_HW_TSTAMP)) ||
5439 5440 5441 5442 5443 5444 5445
	    !(rd32(E1000_TSYNCTXCTL) & E1000_TSYNCTXCTL_VALID))
		return;

	regval = rd32(E1000_TXSTMPL);
	regval |= (u64)rd32(E1000_TXSTMPH) << 32;

	igb_systim_to_hwtstamp(adapter, &shhwtstamps, regval);
5446
	skb_tstamp_tx(buffer_info->skb, &shhwtstamps);
5447 5448
}

5449 5450
/**
 * igb_clean_tx_irq - Reclaim resources after transmit completes
5451
 * @q_vector: pointer to q_vector containing needed info
5452 5453
 * returns true if ring is completely cleaned
 **/
5454
static bool igb_clean_tx_irq(struct igb_q_vector *q_vector)
5455
{
5456 5457
	struct igb_adapter *adapter = q_vector->adapter;
	struct igb_ring *tx_ring = q_vector->tx_ring;
5458
	struct net_device *netdev = tx_ring->netdev;
A
Alexander Duyck 已提交
5459
	struct e1000_hw *hw = &adapter->hw;
5460
	struct igb_buffer *buffer_info;
A
Alexander Duyck 已提交
5461
	union e1000_adv_tx_desc *tx_desc, *eop_desc;
5462
	unsigned int total_bytes = 0, total_packets = 0;
A
Alexander Duyck 已提交
5463 5464
	unsigned int i, eop, count = 0;
	bool cleaned = false;
5465 5466

	i = tx_ring->next_to_clean;
A
Alexander Duyck 已提交
5467 5468 5469 5470 5471
	eop = tx_ring->buffer_info[i].next_to_watch;
	eop_desc = E1000_TX_DESC_ADV(*tx_ring, eop);

	while ((eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)) &&
	       (count < tx_ring->count)) {
5472
		rmb();	/* read buffer_info after eop_desc status */
A
Alexander Duyck 已提交
5473 5474
		for (cleaned = false; !cleaned; count++) {
			tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
5475
			buffer_info = &tx_ring->buffer_info[i];
A
Alexander Duyck 已提交
5476
			cleaned = (i == eop);
5477

5478 5479
			if (buffer_info->skb) {
				total_bytes += buffer_info->bytecount;
5480
				/* gso_segs is currently only valid for tcp */
5481 5482
				total_packets += buffer_info->gso_segs;
				igb_tx_hwtstamp(q_vector, buffer_info);
5483 5484
			}

5485
			igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
A
Alexander Duyck 已提交
5486
			tx_desc->wb.status = 0;
5487 5488 5489 5490 5491

			i++;
			if (i == tx_ring->count)
				i = 0;
		}
A
Alexander Duyck 已提交
5492 5493 5494 5495
		eop = tx_ring->buffer_info[i].next_to_watch;
		eop_desc = E1000_TX_DESC_ADV(*tx_ring, eop);
	}

5496 5497
	tx_ring->next_to_clean = i;

5498
	if (unlikely(count &&
5499
		     netif_carrier_ok(netdev) &&
5500
		     igb_desc_unused(tx_ring) >= IGB_TX_QUEUE_WAKE)) {
5501 5502 5503 5504
		/* Make sure that anybody stopping the queue after this
		 * sees the new next_to_clean.
		 */
		smp_mb();
5505 5506 5507
		if (__netif_subqueue_stopped(netdev, tx_ring->queue_index) &&
		    !(test_bit(__IGB_DOWN, &adapter->state))) {
			netif_wake_subqueue(netdev, tx_ring->queue_index);
E
Eric Dumazet 已提交
5508 5509

			u64_stats_update_begin(&tx_ring->tx_syncp);
5510
			tx_ring->tx_stats.restart_queue++;
E
Eric Dumazet 已提交
5511
			u64_stats_update_end(&tx_ring->tx_syncp);
5512
		}
5513 5514 5515 5516 5517 5518 5519 5520
	}

	if (tx_ring->detect_tx_hung) {
		/* Detect a transmit hang in hardware, this serializes the
		 * check with the clearing of time_stamp and movement of i */
		tx_ring->detect_tx_hung = false;
		if (tx_ring->buffer_info[i].time_stamp &&
		    time_after(jiffies, tx_ring->buffer_info[i].time_stamp +
5521 5522
			       (adapter->tx_timeout_factor * HZ)) &&
		    !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
5523 5524

			/* detected Tx unit hang */
5525
			dev_err(tx_ring->dev,
5526
				"Detected Tx Unit Hang\n"
A
Alexander Duyck 已提交
5527
				"  Tx Queue             <%d>\n"
5528 5529 5530 5531 5532 5533
				"  TDH                  <%x>\n"
				"  TDT                  <%x>\n"
				"  next_to_use          <%x>\n"
				"  next_to_clean        <%x>\n"
				"buffer_info[next_to_clean]\n"
				"  time_stamp           <%lx>\n"
A
Alexander Duyck 已提交
5534
				"  next_to_watch        <%x>\n"
5535 5536
				"  jiffies              <%lx>\n"
				"  desc.status          <%x>\n",
A
Alexander Duyck 已提交
5537
				tx_ring->queue_index,
5538 5539
				readl(tx_ring->head),
				readl(tx_ring->tail),
5540 5541
				tx_ring->next_to_use,
				tx_ring->next_to_clean,
5542
				tx_ring->buffer_info[eop].time_stamp,
A
Alexander Duyck 已提交
5543
				eop,
5544
				jiffies,
A
Alexander Duyck 已提交
5545
				eop_desc->wb.status);
5546
			netif_stop_subqueue(netdev, tx_ring->queue_index);
5547 5548 5549 5550
		}
	}
	tx_ring->total_bytes += total_bytes;
	tx_ring->total_packets += total_packets;
E
Eric Dumazet 已提交
5551
	u64_stats_update_begin(&tx_ring->tx_syncp);
5552 5553
	tx_ring->tx_stats.bytes += total_bytes;
	tx_ring->tx_stats.packets += total_packets;
E
Eric Dumazet 已提交
5554
	u64_stats_update_end(&tx_ring->tx_syncp);
5555
	return count < tx_ring->count;
5556 5557 5558 5559
}

/**
 * igb_receive_skb - helper function to handle rx indications
5560 5561 5562
 * @q_vector: structure containing interrupt and ring information
 * @skb: packet to send up
 * @vlan_tag: vlan tag for packet
5563
 **/
5564 5565 5566 5567 5568 5569
static void igb_receive_skb(struct igb_q_vector *q_vector,
                            struct sk_buff *skb,
                            u16 vlan_tag)
{
	struct igb_adapter *adapter = q_vector->adapter;

5570
	if (vlan_tag && adapter->vlgrp)
5571 5572
		vlan_gro_receive(&q_vector->napi, adapter->vlgrp,
		                 vlan_tag, skb);
5573
	else
5574
		napi_gro_receive(&q_vector->napi, skb);
5575 5576
}

5577
static inline void igb_rx_checksum_adv(struct igb_ring *ring,
5578 5579
				       u32 status_err, struct sk_buff *skb)
{
5580
	skb_checksum_none_assert(skb);
5581 5582

	/* Ignore Checksum bit is set or checksum is disabled through ethtool */
5583 5584
	if (!(ring->flags & IGB_RING_FLAG_RX_CSUM) ||
	     (status_err & E1000_RXD_STAT_IXSM))
5585
		return;
5586

5587 5588 5589
	/* TCP/UDP checksum error bit is set */
	if (status_err &
	    (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) {
5590 5591 5592 5593 5594
		/*
		 * work around errata with sctp packets where the TCPE aka
		 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
		 * packets, (aka let the stack check the crc32c)
		 */
5595
		if ((skb->len == 60) &&
E
Eric Dumazet 已提交
5596 5597
		    (ring->flags & IGB_RING_FLAG_RX_SCTP_CSUM)) {
			u64_stats_update_begin(&ring->rx_syncp);
5598
			ring->rx_stats.csum_err++;
E
Eric Dumazet 已提交
5599 5600
			u64_stats_update_end(&ring->rx_syncp);
		}
5601 5602 5603 5604 5605 5606 5607
		/* let the stack verify checksum errors */
		return;
	}
	/* It must be a TCP or UDP packet with a valid checksum */
	if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))
		skb->ip_summed = CHECKSUM_UNNECESSARY;

5608
	dev_dbg(ring->dev, "cksum success: bits %08X\n", status_err);
5609 5610
}

N
Nick Nunley 已提交
5611
static void igb_rx_hwtstamp(struct igb_q_vector *q_vector, u32 staterr,
5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625
                                   struct sk_buff *skb)
{
	struct igb_adapter *adapter = q_vector->adapter;
	struct e1000_hw *hw = &adapter->hw;
	u64 regval;

	/*
	 * If this bit is set, then the RX registers contain the time stamp. No
	 * other packet will be time stamped until we read these registers, so
	 * read the registers to make them available again. Because only one
	 * packet can be time stamped at a time, we know that the register
	 * values must belong to this one here and therefore we don't need to
	 * compare any of the additional attributes stored for it.
	 *
5626
	 * If nothing went wrong, then it should have a shared tx_flags that we
5627 5628
	 * can turn into a skb_shared_hwtstamps.
	 */
N
Nick Nunley 已提交
5629 5630 5631 5632 5633 5634 5635 5636
	if (staterr & E1000_RXDADV_STAT_TSIP) {
		u32 *stamp = (u32 *)skb->data;
		regval = le32_to_cpu(*(stamp + 2));
		regval |= (u64)le32_to_cpu(*(stamp + 3)) << 32;
		skb_pull(skb, IGB_TS_HDR_LEN);
	} else {
		if(!(rd32(E1000_TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
			return;
5637

N
Nick Nunley 已提交
5638 5639 5640
		regval = rd32(E1000_RXSTMPL);
		regval |= (u64)rd32(E1000_RXSTMPH) << 32;
	}
5641 5642 5643

	igb_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), regval);
}
5644
static inline u16 igb_get_hlen(struct igb_ring *rx_ring,
5645 5646 5647 5648 5649 5650 5651 5652
                               union e1000_adv_rx_desc *rx_desc)
{
	/* HW will not DMA in data larger than the given buffer, even if it
	 * parses the (NFS, of course) header to be larger.  In that case, it
	 * fills the header buffer and spills the rest into the page.
	 */
	u16 hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hdr_info) &
	           E1000_RXDADV_HDRBUFLEN_MASK) >> E1000_RXDADV_HDRBUFLEN_SHIFT;
5653 5654
	if (hlen > rx_ring->rx_buffer_len)
		hlen = rx_ring->rx_buffer_len;
5655 5656 5657
	return hlen;
}

5658 5659
static bool igb_clean_rx_irq_adv(struct igb_q_vector *q_vector,
                                 int *work_done, int budget)
5660
{
5661
	struct igb_ring *rx_ring = q_vector->rx_ring;
5662
	struct net_device *netdev = rx_ring->netdev;
5663
	struct device *dev = rx_ring->dev;
5664 5665 5666 5667 5668
	union e1000_adv_rx_desc *rx_desc , *next_rxd;
	struct igb_buffer *buffer_info , *next_buffer;
	struct sk_buff *skb;
	bool cleaned = false;
	int cleaned_count = 0;
5669
	int current_node = numa_node_id();
5670
	unsigned int total_bytes = 0, total_packets = 0;
5671
	unsigned int i;
5672 5673
	u32 staterr;
	u16 length;
5674
	u16 vlan_tag;
5675 5676

	i = rx_ring->next_to_clean;
5677
	buffer_info = &rx_ring->buffer_info[i];
5678 5679 5680 5681 5682 5683 5684
	rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
	staterr = le32_to_cpu(rx_desc->wb.upper.status_error);

	while (staterr & E1000_RXD_STAT_DD) {
		if (*work_done >= budget)
			break;
		(*work_done)++;
5685
		rmb(); /* read descriptor and rx_buffer_info after status DD */
5686

5687 5688 5689 5690 5691 5692 5693
		skb = buffer_info->skb;
		prefetch(skb->data - NET_IP_ALIGN);
		buffer_info->skb = NULL;

		i++;
		if (i == rx_ring->count)
			i = 0;
5694

5695 5696 5697
		next_rxd = E1000_RX_DESC_ADV(*rx_ring, i);
		prefetch(next_rxd);
		next_buffer = &rx_ring->buffer_info[i];
5698 5699 5700 5701 5702

		length = le16_to_cpu(rx_desc->wb.upper.length);
		cleaned = true;
		cleaned_count++;

5703
		if (buffer_info->dma) {
5704
			dma_unmap_single(dev, buffer_info->dma,
5705
					 rx_ring->rx_buffer_len,
5706
					 DMA_FROM_DEVICE);
J
Jesse Brandeburg 已提交
5707
			buffer_info->dma = 0;
5708
			if (rx_ring->rx_buffer_len >= IGB_RXBUFFER_1024) {
A
Alexander Duyck 已提交
5709 5710 5711
				skb_put(skb, length);
				goto send_up;
			}
5712
			skb_put(skb, igb_get_hlen(rx_ring, rx_desc));
5713 5714 5715
		}

		if (length) {
5716 5717
			dma_unmap_page(dev, buffer_info->page_dma,
				       PAGE_SIZE / 2, DMA_FROM_DEVICE);
5718
			buffer_info->page_dma = 0;
5719

K
Koki Sanagi 已提交
5720
			skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
5721 5722 5723 5724
						buffer_info->page,
						buffer_info->page_offset,
						length);

5725 5726
			if ((page_count(buffer_info->page) != 1) ||
			    (page_to_nid(buffer_info->page) != current_node))
5727 5728 5729
				buffer_info->page = NULL;
			else
				get_page(buffer_info->page);
5730 5731 5732

			skb->len += length;
			skb->data_len += length;
5733
			skb->truesize += length;
5734 5735
		}

5736
		if (!(staterr & E1000_RXD_STAT_EOP)) {
5737 5738 5739 5740
			buffer_info->skb = next_buffer->skb;
			buffer_info->dma = next_buffer->dma;
			next_buffer->skb = skb;
			next_buffer->dma = 0;
5741 5742
			goto next_desc;
		}
5743
send_up:
5744 5745 5746 5747 5748
		if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
			dev_kfree_skb_irq(skb);
			goto next_desc;
		}

N
Nick Nunley 已提交
5749 5750
		if (staterr & (E1000_RXDADV_STAT_TSIP | E1000_RXDADV_STAT_TS))
			igb_rx_hwtstamp(q_vector, staterr, skb);
5751 5752 5753
		total_bytes += skb->len;
		total_packets++;

5754
		igb_rx_checksum_adv(rx_ring, staterr, skb);
5755 5756

		skb->protocol = eth_type_trans(skb, netdev);
5757 5758 5759 5760
		skb_record_rx_queue(skb, rx_ring->queue_index);

		vlan_tag = ((staterr & E1000_RXD_STAT_VP) ?
		            le16_to_cpu(rx_desc->wb.upper.vlan) : 0);
5761

5762
		igb_receive_skb(q_vector, skb, vlan_tag);
5763 5764 5765 5766 5767 5768

next_desc:
		rx_desc->wb.upper.status_error = 0;

		/* return some buffers to hardware, one at a time is too slow */
		if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
5769
			igb_alloc_rx_buffers_adv(rx_ring, cleaned_count);
5770 5771 5772 5773 5774 5775 5776 5777
			cleaned_count = 0;
		}

		/* use prefetched values */
		rx_desc = next_rxd;
		buffer_info = next_buffer;
		staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
	}
5778

5779
	rx_ring->next_to_clean = i;
5780
	cleaned_count = igb_desc_unused(rx_ring);
5781 5782

	if (cleaned_count)
5783
		igb_alloc_rx_buffers_adv(rx_ring, cleaned_count);
5784 5785 5786

	rx_ring->total_packets += total_packets;
	rx_ring->total_bytes += total_bytes;
E
Eric Dumazet 已提交
5787
	u64_stats_update_begin(&rx_ring->rx_syncp);
5788 5789
	rx_ring->rx_stats.packets += total_packets;
	rx_ring->rx_stats.bytes += total_bytes;
E
Eric Dumazet 已提交
5790
	u64_stats_update_end(&rx_ring->rx_syncp);
5791 5792 5793 5794 5795 5796 5797
	return cleaned;
}

/**
 * igb_alloc_rx_buffers_adv - Replace used receive buffers; packet split
 * @adapter: address of board private structure
 **/
5798
void igb_alloc_rx_buffers_adv(struct igb_ring *rx_ring, int cleaned_count)
5799
{
5800
	struct net_device *netdev = rx_ring->netdev;
5801 5802 5803 5804
	union e1000_adv_rx_desc *rx_desc;
	struct igb_buffer *buffer_info;
	struct sk_buff *skb;
	unsigned int i;
5805
	int bufsz;
5806 5807 5808 5809

	i = rx_ring->next_to_use;
	buffer_info = &rx_ring->buffer_info[i];

5810
	bufsz = rx_ring->rx_buffer_len;
5811

5812 5813 5814
	while (cleaned_count--) {
		rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);

A
Alexander Duyck 已提交
5815
		if ((bufsz < IGB_RXBUFFER_1024) && !buffer_info->page_dma) {
5816
			if (!buffer_info->page) {
5817
				buffer_info->page = netdev_alloc_page(netdev);
E
Eric Dumazet 已提交
5818 5819
				if (unlikely(!buffer_info->page)) {
					u64_stats_update_begin(&rx_ring->rx_syncp);
5820
					rx_ring->rx_stats.alloc_failed++;
E
Eric Dumazet 已提交
5821
					u64_stats_update_end(&rx_ring->rx_syncp);
5822 5823 5824 5825 5826
					goto no_buffers;
				}
				buffer_info->page_offset = 0;
			} else {
				buffer_info->page_offset ^= PAGE_SIZE / 2;
5827 5828
			}
			buffer_info->page_dma =
5829
				dma_map_page(rx_ring->dev, buffer_info->page,
5830 5831
					     buffer_info->page_offset,
					     PAGE_SIZE / 2,
5832 5833 5834
					     DMA_FROM_DEVICE);
			if (dma_mapping_error(rx_ring->dev,
					      buffer_info->page_dma)) {
5835
				buffer_info->page_dma = 0;
E
Eric Dumazet 已提交
5836
				u64_stats_update_begin(&rx_ring->rx_syncp);
5837
				rx_ring->rx_stats.alloc_failed++;
E
Eric Dumazet 已提交
5838
				u64_stats_update_end(&rx_ring->rx_syncp);
5839 5840
				goto no_buffers;
			}
5841 5842
		}

5843 5844
		skb = buffer_info->skb;
		if (!skb) {
5845
			skb = netdev_alloc_skb_ip_align(netdev, bufsz);
E
Eric Dumazet 已提交
5846 5847
			if (unlikely(!skb)) {
				u64_stats_update_begin(&rx_ring->rx_syncp);
5848
				rx_ring->rx_stats.alloc_failed++;
E
Eric Dumazet 已提交
5849
				u64_stats_update_end(&rx_ring->rx_syncp);
5850 5851 5852 5853
				goto no_buffers;
			}

			buffer_info->skb = skb;
5854 5855
		}
		if (!buffer_info->dma) {
5856
			buffer_info->dma = dma_map_single(rx_ring->dev,
5857
			                                  skb->data,
5858
							  bufsz,
5859 5860 5861
							  DMA_FROM_DEVICE);
			if (dma_mapping_error(rx_ring->dev,
					      buffer_info->dma)) {
5862
				buffer_info->dma = 0;
E
Eric Dumazet 已提交
5863
				u64_stats_update_begin(&rx_ring->rx_syncp);
5864
				rx_ring->rx_stats.alloc_failed++;
E
Eric Dumazet 已提交
5865
				u64_stats_update_end(&rx_ring->rx_syncp);
5866 5867
				goto no_buffers;
			}
5868 5869 5870
		}
		/* Refresh the desc even if buffer_addrs didn't change because
		 * each write-back erases this info. */
A
Alexander Duyck 已提交
5871
		if (bufsz < IGB_RXBUFFER_1024) {
5872 5873 5874 5875
			rx_desc->read.pkt_addr =
			     cpu_to_le64(buffer_info->page_dma);
			rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma);
		} else {
5876
			rx_desc->read.pkt_addr = cpu_to_le64(buffer_info->dma);
5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898
			rx_desc->read.hdr_addr = 0;
		}

		i++;
		if (i == rx_ring->count)
			i = 0;
		buffer_info = &rx_ring->buffer_info[i];
	}

no_buffers:
	if (rx_ring->next_to_use != i) {
		rx_ring->next_to_use = i;
		if (i == 0)
			i = (rx_ring->count - 1);
		else
			i--;

		/* Force memory writes to complete before letting h/w
		 * know there are new descriptors to fetch.  (Only
		 * applicable for weak-ordered memory model archs,
		 * such as IA-64). */
		wmb();
5899
		writel(i, rx_ring->tail);
5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921
	}
}

/**
 * igb_mii_ioctl -
 * @netdev:
 * @ifreq:
 * @cmd:
 **/
static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct mii_ioctl_data *data = if_mii(ifr);

	if (adapter->hw.phy.media_type != e1000_media_type_copper)
		return -EOPNOTSUPP;

	switch (cmd) {
	case SIOCGMIIPHY:
		data->phy_id = adapter->hw.phy.addr;
		break;
	case SIOCGMIIREG:
5922 5923
		if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
		                     &data->val_out))
5924 5925 5926 5927 5928 5929 5930 5931 5932
			return -EIO;
		break;
	case SIOCSMIIREG:
	default:
		return -EOPNOTSUPP;
	}
	return 0;
}

5933 5934 5935 5936 5937 5938
/**
 * igb_hwtstamp_ioctl - control hardware time stamping
 * @netdev:
 * @ifreq:
 * @cmd:
 *
5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950
 * Outgoing time stamping can be enabled and disabled. Play nice and
 * disable it when requested, although it shouldn't case any overhead
 * when no packet needs it. At most one packet in the queue may be
 * marked for time stamping, otherwise it would be impossible to tell
 * for sure to which packet the hardware time stamp belongs.
 *
 * Incoming time stamping has to be configured via the hardware
 * filters. Not all combinations are supported, in particular event
 * type has to be specified. Matching the kind of event packet is
 * not supported, with the exception of "all V2 events regardless of
 * level 2 or 4".
 *
5951 5952 5953 5954
 **/
static int igb_hwtstamp_ioctl(struct net_device *netdev,
			      struct ifreq *ifr, int cmd)
{
5955 5956
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
5957
	struct hwtstamp_config config;
5958 5959
	u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
	u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
5960
	u32 tsync_rx_cfg = 0;
5961 5962
	bool is_l4 = false;
	bool is_l2 = false;
5963
	u32 regval;
5964 5965 5966 5967 5968 5969 5970 5971

	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
		return -EFAULT;

	/* reserved for future extensions */
	if (config.flags)
		return -EINVAL;

5972 5973
	switch (config.tx_type) {
	case HWTSTAMP_TX_OFF:
5974
		tsync_tx_ctl = 0;
5975 5976 5977 5978 5979 5980 5981 5982
	case HWTSTAMP_TX_ON:
		break;
	default:
		return -ERANGE;
	}

	switch (config.rx_filter) {
	case HWTSTAMP_FILTER_NONE:
5983
		tsync_rx_ctl = 0;
5984 5985 5986 5987 5988 5989 5990 5991 5992 5993
		break;
	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
	case HWTSTAMP_FILTER_ALL:
		/*
		 * register TSYNCRXCFG must be set, therefore it is not
		 * possible to time stamp both Sync and Delay_Req messages
		 * => fall back to time stamping all packets
		 */
5994
		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
5995 5996 5997
		config.rx_filter = HWTSTAMP_FILTER_ALL;
		break;
	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
5998
		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
5999
		tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE;
6000
		is_l4 = true;
6001 6002
		break;
	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
6003
		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
6004
		tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE;
6005
		is_l4 = true;
6006 6007 6008
		break;
	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
6009
		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
6010
		tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V2_SYNC_MESSAGE;
6011 6012
		is_l2 = true;
		is_l4 = true;
6013 6014 6015 6016
		config.rx_filter = HWTSTAMP_FILTER_SOME;
		break;
	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
6017
		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
6018
		tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V2_DELAY_REQ_MESSAGE;
6019 6020
		is_l2 = true;
		is_l4 = true;
6021 6022 6023 6024 6025
		config.rx_filter = HWTSTAMP_FILTER_SOME;
		break;
	case HWTSTAMP_FILTER_PTP_V2_EVENT:
	case HWTSTAMP_FILTER_PTP_V2_SYNC:
	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
6026
		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
6027
		config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
6028
		is_l2 = true;
6029 6030 6031 6032 6033
		break;
	default:
		return -ERANGE;
	}

6034 6035 6036 6037 6038 6039
	if (hw->mac.type == e1000_82575) {
		if (tsync_rx_ctl | tsync_tx_ctl)
			return -EINVAL;
		return 0;
	}

N
Nick Nunley 已提交
6040 6041 6042 6043 6044 6045 6046 6047 6048 6049
	/*
	 * Per-packet timestamping only works if all packets are
	 * timestamped, so enable timestamping in all packets as
	 * long as one rx filter was configured.
	 */
	if ((hw->mac.type == e1000_82580) && tsync_rx_ctl) {
		tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
	}

6050 6051
	/* enable/disable TX */
	regval = rd32(E1000_TSYNCTXCTL);
6052 6053
	regval &= ~E1000_TSYNCTXCTL_ENABLED;
	regval |= tsync_tx_ctl;
6054 6055
	wr32(E1000_TSYNCTXCTL, regval);

6056
	/* enable/disable RX */
6057
	regval = rd32(E1000_TSYNCRXCTL);
6058 6059
	regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
	regval |= tsync_rx_ctl;
6060 6061
	wr32(E1000_TSYNCRXCTL, regval);

6062 6063
	/* define which PTP packets are time stamped */
	wr32(E1000_TSYNCRXCFG, tsync_rx_cfg);
6064

6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094
	/* define ethertype filter for timestamped packets */
	if (is_l2)
		wr32(E1000_ETQF(3),
		                (E1000_ETQF_FILTER_ENABLE | /* enable filter */
		                 E1000_ETQF_1588 | /* enable timestamping */
		                 ETH_P_1588));     /* 1588 eth protocol type */
	else
		wr32(E1000_ETQF(3), 0);

#define PTP_PORT 319
	/* L4 Queue Filter[3]: filter by destination port and protocol */
	if (is_l4) {
		u32 ftqf = (IPPROTO_UDP /* UDP */
			| E1000_FTQF_VF_BP /* VF not compared */
			| E1000_FTQF_1588_TIME_STAMP /* Enable Timestamping */
			| E1000_FTQF_MASK); /* mask all inputs */
		ftqf &= ~E1000_FTQF_MASK_PROTO_BP; /* enable protocol check */

		wr32(E1000_IMIR(3), htons(PTP_PORT));
		wr32(E1000_IMIREXT(3),
		     (E1000_IMIREXT_SIZE_BP | E1000_IMIREXT_CTRL_BP));
		if (hw->mac.type == e1000_82576) {
			/* enable source port check */
			wr32(E1000_SPQF(3), htons(PTP_PORT));
			ftqf &= ~E1000_FTQF_MASK_SOURCE_PORT_BP;
		}
		wr32(E1000_FTQF(3), ftqf);
	} else {
		wr32(E1000_FTQF(3), E1000_FTQF_MASK);
	}
6095 6096 6097 6098 6099 6100 6101
	wrfl();

	adapter->hwtstamp_config = config;

	/* clear TX/RX time stamp registers, just to be sure */
	regval = rd32(E1000_TXSTMPH);
	regval = rd32(E1000_RXSTMPH);
6102

6103 6104
	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
		-EFAULT : 0;
6105 6106
}

6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119
/**
 * igb_ioctl -
 * @netdev:
 * @ifreq:
 * @cmd:
 **/
static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
{
	switch (cmd) {
	case SIOCGMIIPHY:
	case SIOCGMIIREG:
	case SIOCSMIIREG:
		return igb_mii_ioctl(netdev, ifr, cmd);
6120 6121
	case SIOCSHWTSTAMP:
		return igb_hwtstamp_ioctl(netdev, ifr, cmd);
6122 6123 6124 6125 6126
	default:
		return -EOPNOTSUPP;
	}
}

6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154
s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
{
	struct igb_adapter *adapter = hw->back;
	u16 cap_offset;

	cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
	if (!cap_offset)
		return -E1000_ERR_CONFIG;

	pci_read_config_word(adapter->pdev, cap_offset + reg, value);

	return 0;
}

s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
{
	struct igb_adapter *adapter = hw->back;
	u16 cap_offset;

	cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
	if (!cap_offset)
		return -E1000_ERR_CONFIG;

	pci_write_config_word(adapter->pdev, cap_offset + reg, *value);

	return 0;
}

6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170
static void igb_vlan_rx_register(struct net_device *netdev,
				 struct vlan_group *grp)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 ctrl, rctl;

	igb_irq_disable(adapter);
	adapter->vlgrp = grp;

	if (grp) {
		/* enable VLAN tag insert/strip */
		ctrl = rd32(E1000_CTRL);
		ctrl |= E1000_CTRL_VME;
		wr32(E1000_CTRL, ctrl);

6171
		/* Disable CFI check */
6172 6173 6174 6175 6176 6177 6178 6179 6180 6181
		rctl = rd32(E1000_RCTL);
		rctl &= ~E1000_RCTL_CFIEN;
		wr32(E1000_RCTL, rctl);
	} else {
		/* disable VLAN tag insert/strip */
		ctrl = rd32(E1000_CTRL);
		ctrl &= ~E1000_CTRL_VME;
		wr32(E1000_CTRL, ctrl);
	}

6182 6183
	igb_rlpml_set(adapter);

6184 6185 6186 6187 6188 6189 6190 6191
	if (!test_bit(__IGB_DOWN, &adapter->state))
		igb_irq_enable(adapter);
}

static void igb_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
6192
	int pf_id = adapter->vfs_allocated_count;
6193

6194 6195
	/* attempt to add filter to vlvf array */
	igb_vlvf_set(adapter, vid, true, pf_id);
6196

6197 6198
	/* add the filter since PF can receive vlans w/o entry in vlvf */
	igb_vfta_set(hw, vid, true);
6199 6200 6201 6202 6203 6204
}

static void igb_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
6205
	int pf_id = adapter->vfs_allocated_count;
6206
	s32 err;
6207 6208 6209 6210 6211 6212 6213

	igb_irq_disable(adapter);
	vlan_group_set_device(adapter->vlgrp, vid, NULL);

	if (!test_bit(__IGB_DOWN, &adapter->state))
		igb_irq_enable(adapter);

6214 6215
	/* remove vlan from VLVF table array */
	err = igb_vlvf_set(adapter, vid, false, pf_id);
6216

6217 6218
	/* if vid was not present in VLVF just remove it from table */
	if (err)
6219
		igb_vfta_set(hw, vid, false);
6220 6221 6222 6223 6224 6225 6226 6227
}

static void igb_restore_vlan(struct igb_adapter *adapter)
{
	igb_vlan_rx_register(adapter->netdev, adapter->vlgrp);

	if (adapter->vlgrp) {
		u16 vid;
6228
		for (vid = 0; vid < VLAN_N_VID; vid++) {
6229 6230 6231 6232 6233 6234 6235 6236 6237
			if (!vlan_group_get_device(adapter->vlgrp, vid))
				continue;
			igb_vlan_rx_add_vid(adapter->netdev, vid);
		}
	}
}

int igb_set_spd_dplx(struct igb_adapter *adapter, u16 spddplx)
{
6238
	struct pci_dev *pdev = adapter->pdev;
6239 6240 6241 6242
	struct e1000_mac_info *mac = &adapter->hw.mac;

	mac->autoneg = 0;

6243 6244 6245 6246 6247 6248 6249
	/* Fiber NIC's only allow 1000 Gbps Full duplex */
	if ((adapter->hw.phy.media_type == e1000_media_type_internal_serdes) &&
		spddplx != (SPEED_1000 + DUPLEX_FULL)) {
		dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
		return -EINVAL;
	}

6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268
	switch (spddplx) {
	case SPEED_10 + DUPLEX_HALF:
		mac->forced_speed_duplex = ADVERTISE_10_HALF;
		break;
	case SPEED_10 + DUPLEX_FULL:
		mac->forced_speed_duplex = ADVERTISE_10_FULL;
		break;
	case SPEED_100 + DUPLEX_HALF:
		mac->forced_speed_duplex = ADVERTISE_100_HALF;
		break;
	case SPEED_100 + DUPLEX_FULL:
		mac->forced_speed_duplex = ADVERTISE_100_FULL;
		break;
	case SPEED_1000 + DUPLEX_FULL:
		mac->autoneg = 1;
		adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
		break;
	case SPEED_1000 + DUPLEX_HALF: /* not supported */
	default:
6269
		dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
6270 6271 6272 6273 6274
		return -EINVAL;
	}
	return 0;
}

6275
static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake)
6276 6277 6278 6279
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
A
Alexander Duyck 已提交
6280
	u32 ctrl, rctl, status;
6281 6282 6283 6284 6285 6286 6287
	u32 wufc = adapter->wol;
#ifdef CONFIG_PM
	int retval = 0;
#endif

	netif_device_detach(netdev);

A
Alexander Duyck 已提交
6288 6289 6290
	if (netif_running(netdev))
		igb_close(netdev);

6291
	igb_clear_interrupt_scheme(adapter);
6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304

#ifdef CONFIG_PM
	retval = pci_save_state(pdev);
	if (retval)
		return retval;
#endif

	status = rd32(E1000_STATUS);
	if (status & E1000_STATUS_LU)
		wufc &= ~E1000_WUFC_LNKC;

	if (wufc) {
		igb_setup_rctl(adapter);
6305
		igb_set_rx_mode(netdev);
6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322

		/* turn on all-multi mode if wake on multicast is enabled */
		if (wufc & E1000_WUFC_MC) {
			rctl = rd32(E1000_RCTL);
			rctl |= E1000_RCTL_MPE;
			wr32(E1000_RCTL, rctl);
		}

		ctrl = rd32(E1000_CTRL);
		/* advertise wake from D3Cold */
		#define E1000_CTRL_ADVD3WUC 0x00100000
		/* phy power management enable */
		#define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
		ctrl |= E1000_CTRL_ADVD3WUC;
		wr32(E1000_CTRL, ctrl);

		/* Allow time for pending master requests to run */
6323
		igb_disable_pcie_master(hw);
6324 6325 6326 6327 6328 6329 6330 6331

		wr32(E1000_WUC, E1000_WUC_PME_EN);
		wr32(E1000_WUFC, wufc);
	} else {
		wr32(E1000_WUC, 0);
		wr32(E1000_WUFC, 0);
	}

6332 6333
	*enable_wake = wufc || adapter->en_mng_pt;
	if (!*enable_wake)
6334 6335 6336
		igb_power_down_link(adapter);
	else
		igb_power_up_link(adapter);
6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347

	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
	 * would have already happened in close and is redundant. */
	igb_release_hw_control(adapter);

	pci_disable_device(pdev);

	return 0;
}

#ifdef CONFIG_PM
6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366
static int igb_suspend(struct pci_dev *pdev, pm_message_t state)
{
	int retval;
	bool wake;

	retval = __igb_shutdown(pdev, &wake);
	if (retval)
		return retval;

	if (wake) {
		pci_prepare_to_sleep(pdev);
	} else {
		pci_wake_from_d3(pdev, false);
		pci_set_power_state(pdev, PCI_D3hot);
	}

	return 0;
}

6367 6368 6369 6370 6371 6372 6373 6374 6375
static int igb_resume(struct pci_dev *pdev)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 err;

	pci_set_power_state(pdev, PCI_D0);
	pci_restore_state(pdev);
6376
	pci_save_state(pdev);
T
Taku Izumi 已提交
6377

6378
	err = pci_enable_device_mem(pdev);
6379 6380 6381 6382 6383 6384 6385 6386 6387 6388
	if (err) {
		dev_err(&pdev->dev,
			"igb: Cannot enable PCI device from suspend\n");
		return err;
	}
	pci_set_master(pdev);

	pci_enable_wake(pdev, PCI_D3hot, 0);
	pci_enable_wake(pdev, PCI_D3cold, 0);

6389
	if (igb_init_interrupt_scheme(adapter)) {
A
Alexander Duyck 已提交
6390 6391
		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
		return -ENOMEM;
6392 6393 6394
	}

	igb_reset(adapter);
6395 6396 6397 6398 6399

	/* let the f/w know that the h/w is now under the control of the
	 * driver. */
	igb_get_hw_control(adapter);

6400 6401
	wr32(E1000_WUS, ~0);

A
Alexander Duyck 已提交
6402 6403 6404 6405 6406
	if (netif_running(netdev)) {
		err = igb_open(netdev);
		if (err)
			return err;
	}
6407 6408 6409 6410 6411 6412 6413 6414 6415

	netif_device_attach(netdev);

	return 0;
}
#endif

static void igb_shutdown(struct pci_dev *pdev)
{
6416 6417 6418 6419 6420 6421 6422 6423
	bool wake;

	__igb_shutdown(pdev, &wake);

	if (system_state == SYSTEM_POWER_OFF) {
		pci_wake_from_d3(pdev, wake);
		pci_set_power_state(pdev, PCI_D3hot);
	}
6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434
}

#ifdef CONFIG_NET_POLL_CONTROLLER
/*
 * Polling 'interrupt' - used by things like netconsole to send skbs
 * without having to re-enable interrupts. It's not called while
 * the interrupt routine is executing.
 */
static void igb_netpoll(struct net_device *netdev)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
6435
	struct e1000_hw *hw = &adapter->hw;
6436 6437
	int i;

6438
	if (!adapter->msix_entries) {
6439
		struct igb_q_vector *q_vector = adapter->q_vector[0];
6440
		igb_irq_disable(adapter);
6441
		napi_schedule(&q_vector->napi);
6442 6443
		return;
	}
6444

6445 6446 6447 6448
	for (i = 0; i < adapter->num_q_vectors; i++) {
		struct igb_q_vector *q_vector = adapter->q_vector[i];
		wr32(E1000_EIMC, q_vector->eims_value);
		napi_schedule(&q_vector->napi);
6449
	}
6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468
}
#endif /* CONFIG_NET_POLL_CONTROLLER */

/**
 * igb_io_error_detected - called when PCI error is detected
 * @pdev: Pointer to PCI device
 * @state: The current pci connection state
 *
 * This function is called after a PCI bus error affecting
 * this device has been detected.
 */
static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
					      pci_channel_state_t state)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);

	netif_device_detach(netdev);

6469 6470 6471
	if (state == pci_channel_io_perm_failure)
		return PCI_ERS_RESULT_DISCONNECT;

6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491
	if (netif_running(netdev))
		igb_down(adapter);
	pci_disable_device(pdev);

	/* Request a slot slot reset. */
	return PCI_ERS_RESULT_NEED_RESET;
}

/**
 * igb_io_slot_reset - called after the pci bus has been reset.
 * @pdev: Pointer to PCI device
 *
 * Restart the card from scratch, as if from a cold-boot. Implementation
 * resembles the first-half of the igb_resume routine.
 */
static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
6492
	pci_ers_result_t result;
T
Taku Izumi 已提交
6493
	int err;
6494

6495
	if (pci_enable_device_mem(pdev)) {
6496 6497
		dev_err(&pdev->dev,
			"Cannot re-enable PCI device after reset.\n");
6498 6499 6500 6501
		result = PCI_ERS_RESULT_DISCONNECT;
	} else {
		pci_set_master(pdev);
		pci_restore_state(pdev);
6502
		pci_save_state(pdev);
6503

6504 6505
		pci_enable_wake(pdev, PCI_D3hot, 0);
		pci_enable_wake(pdev, PCI_D3cold, 0);
6506

6507 6508 6509 6510
		igb_reset(adapter);
		wr32(E1000_WUS, ~0);
		result = PCI_ERS_RESULT_RECOVERED;
	}
6511

6512 6513 6514 6515 6516 6517
	err = pci_cleanup_aer_uncorrect_error_status(pdev);
	if (err) {
		dev_err(&pdev->dev, "pci_cleanup_aer_uncorrect_error_status "
		        "failed 0x%0x\n", err);
		/* non-fatal, continue */
	}
6518 6519

	return result;
6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548
}

/**
 * igb_io_resume - called when traffic can start flowing again.
 * @pdev: Pointer to PCI device
 *
 * This callback is called when the error recovery driver tells us that
 * its OK to resume normal operation. Implementation resembles the
 * second-half of the igb_resume routine.
 */
static void igb_io_resume(struct pci_dev *pdev)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);

	if (netif_running(netdev)) {
		if (igb_up(adapter)) {
			dev_err(&pdev->dev, "igb_up failed after reset\n");
			return;
		}
	}

	netif_device_attach(netdev);

	/* let the f/w know that the h/w is now under the control of the
	 * driver. */
	igb_get_hw_control(adapter);
}

6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575
static void igb_rar_set_qsel(struct igb_adapter *adapter, u8 *addr, u32 index,
                             u8 qsel)
{
	u32 rar_low, rar_high;
	struct e1000_hw *hw = &adapter->hw;

	/* HW expects these in little endian so we reverse the byte order
	 * from network order (big endian) to little endian
	 */
	rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
	          ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
	rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));

	/* Indicate to hardware the Address is Valid. */
	rar_high |= E1000_RAH_AV;

	if (hw->mac.type == e1000_82575)
		rar_high |= E1000_RAH_POOL_1 * qsel;
	else
		rar_high |= E1000_RAH_POOL_1 << qsel;

	wr32(E1000_RAL(index), rar_low);
	wrfl();
	wr32(E1000_RAH(index), rar_high);
	wrfl();
}

6576 6577 6578 6579
static int igb_set_vf_mac(struct igb_adapter *adapter,
                          int vf, unsigned char *mac_addr)
{
	struct e1000_hw *hw = &adapter->hw;
6580 6581 6582
	/* VF MAC addresses start at end of receive addresses and moves
	 * torwards the first, as a result a collision should not be possible */
	int rar_entry = hw->mac.rar_entry_count - (vf + 1);
6583

6584
	memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN);
6585

6586
	igb_rar_set_qsel(adapter, mac_addr, rar_entry, vf);
6587 6588 6589 6590

	return 0;
}

6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608
static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	if (!is_valid_ether_addr(mac) || (vf >= adapter->vfs_allocated_count))
		return -EINVAL;
	adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
	dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n", mac, vf);
	dev_info(&adapter->pdev->dev, "Reload the VF driver to make this"
				      " change effective.");
	if (test_bit(__IGB_DOWN, &adapter->state)) {
		dev_warn(&adapter->pdev->dev, "The VF MAC address has been set,"
			 " but the PF device is not up.\n");
		dev_warn(&adapter->pdev->dev, "Bring the PF device up before"
			 " attempting to use the VF device.\n");
	}
	return igb_set_vf_mac(adapter, vf, mac);
}

6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673
static int igb_link_mbps(int internal_link_speed)
{
	switch (internal_link_speed) {
	case SPEED_100:
		return 100;
	case SPEED_1000:
		return 1000;
	default:
		return 0;
	}
}

static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
				  int link_speed)
{
	int rf_dec, rf_int;
	u32 bcnrc_val;

	if (tx_rate != 0) {
		/* Calculate the rate factor values to set */
		rf_int = link_speed / tx_rate;
		rf_dec = (link_speed - (rf_int * tx_rate));
		rf_dec = (rf_dec * (1<<E1000_RTTBCNRC_RF_INT_SHIFT)) / tx_rate;

		bcnrc_val = E1000_RTTBCNRC_RS_ENA;
		bcnrc_val |= ((rf_int<<E1000_RTTBCNRC_RF_INT_SHIFT) &
		               E1000_RTTBCNRC_RF_INT_MASK);
		bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
	} else {
		bcnrc_val = 0;
	}

	wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
	wr32(E1000_RTTBCNRC, bcnrc_val);
}

static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
{
	int actual_link_speed, i;
	bool reset_rate = false;

	/* VF TX rate limit was not set or not supported */
	if ((adapter->vf_rate_link_speed == 0) ||
	    (adapter->hw.mac.type != e1000_82576))
		return;

	actual_link_speed = igb_link_mbps(adapter->link_speed);
	if (actual_link_speed != adapter->vf_rate_link_speed) {
		reset_rate = true;
		adapter->vf_rate_link_speed = 0;
		dev_info(&adapter->pdev->dev,
		         "Link speed has been changed. VF Transmit "
		         "rate is disabled\n");
	}

	for (i = 0; i < adapter->vfs_allocated_count; i++) {
		if (reset_rate)
			adapter->vf_data[i].tx_rate = 0;

		igb_set_vf_rate_limit(&adapter->hw, i,
		                      adapter->vf_data[i].tx_rate,
		                      actual_link_speed);
	}
}

6674 6675
static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate)
{
6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	int actual_link_speed;

	if (hw->mac.type != e1000_82576)
		return -EOPNOTSUPP;

	actual_link_speed = igb_link_mbps(adapter->link_speed);
	if ((vf >= adapter->vfs_allocated_count) ||
	    (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
	    (tx_rate < 0) || (tx_rate > actual_link_speed))
		return -EINVAL;

	adapter->vf_rate_link_speed = actual_link_speed;
	adapter->vf_data[vf].tx_rate = (u16)tx_rate;
	igb_set_vf_rate_limit(hw, vf, tx_rate, actual_link_speed);

	return 0;
6694 6695 6696 6697 6698 6699 6700 6701 6702 6703
}

static int igb_ndo_get_vf_config(struct net_device *netdev,
				 int vf, struct ifla_vf_info *ivi)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	if (vf >= adapter->vfs_allocated_count)
		return -EINVAL;
	ivi->vf = vf;
	memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
6704
	ivi->tx_rate = adapter->vf_data[vf].tx_rate;
6705 6706 6707 6708 6709
	ivi->vlan = adapter->vf_data[vf].pf_vlan;
	ivi->qos = adapter->vf_data[vf].pf_qos;
	return 0;
}

6710 6711 6712
static void igb_vmm_control(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
6713
	u32 reg;
6714

6715 6716 6717 6718
	switch (hw->mac.type) {
	case e1000_82575:
	default:
		/* replication is not supported for 82575 */
6719
		return;
6720 6721 6722 6723 6724 6725 6726 6727 6728 6729
	case e1000_82576:
		/* notify HW that the MAC is adding vlan tags */
		reg = rd32(E1000_DTXCTL);
		reg |= E1000_DTXCTL_VLAN_ADDED;
		wr32(E1000_DTXCTL, reg);
	case e1000_82580:
		/* enable replication vlan tag stripping */
		reg = rd32(E1000_RPLOLR);
		reg |= E1000_RPLOLR_STRVLAN;
		wr32(E1000_RPLOLR, reg);
6730 6731
	case e1000_i350:
		/* none of the above registers are supported by i350 */
6732 6733
		break;
	}
6734

6735 6736 6737
	if (adapter->vfs_allocated_count) {
		igb_vmdq_set_loopback_pf(hw, true);
		igb_vmdq_set_replication_pf(hw, true);
G
Greg Rose 已提交
6738 6739
		igb_vmdq_set_anti_spoofing_pf(hw, true,
						adapter->vfs_allocated_count);
6740 6741 6742 6743
	} else {
		igb_vmdq_set_loopback_pf(hw, false);
		igb_vmdq_set_replication_pf(hw, false);
	}
6744 6745
}

6746
/* igb_main.c */