igb_main.c 159.1 KB
Newer Older
1 2 3
/*******************************************************************************

  Intel(R) Gigabit Ethernet Linux driver
4
  Copyright(c) 2007-2009 Intel Corporation.
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

  This program is free software; you can redistribute it and/or modify it
  under the terms and conditions of the GNU General Public License,
  version 2, as published by the Free Software Foundation.

  This program is distributed in the hope it will be useful, but WITHOUT
  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  more details.

  You should have received a copy of the GNU General Public License along with
  this program; if not, write to the Free Software Foundation, Inc.,
  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.

  The full GNU General Public License is included in this distribution in
  the file called "COPYING".

  Contact Information:
  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497

*******************************************************************************/

#include <linux/module.h>
#include <linux/types.h>
#include <linux/init.h>
#include <linux/vmalloc.h>
#include <linux/pagemap.h>
#include <linux/netdevice.h>
#include <linux/ipv6.h>
#include <net/checksum.h>
#include <net/ip6_checksum.h>
37
#include <linux/net_tstamp.h>
38 39 40 41
#include <linux/mii.h>
#include <linux/ethtool.h>
#include <linux/if_vlan.h>
#include <linux/pci.h>
42
#include <linux/pci-aspm.h>
43 44 45
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/if_ether.h>
46
#include <linux/aer.h>
47
#ifdef CONFIG_IGB_DCA
J
Jeb Cramer 已提交
48 49
#include <linux/dca.h>
#endif
50 51
#include "igb.h"

52
#define DRV_VERSION "1.3.16-k2"
53 54 55 56
char igb_driver_name[] = "igb";
char igb_driver_version[] = DRV_VERSION;
static const char igb_driver_string[] =
				"Intel(R) Gigabit Ethernet Network Driver";
57
static const char igb_copyright[] = "Copyright (c) 2007-2009 Intel Corporation.";
58 59 60 61 62 63

static const struct e1000_info *igb_info_tbl[] = {
	[board_82575] = &e1000_82575_info,
};

static struct pci_device_id igb_pci_tbl[] = {
A
Alexander Duyck 已提交
64
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
65
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
66
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
A
Alexander Duyck 已提交
67 68
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
69
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
70
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
71 72 73 74 75 76 77 78 79 80 81 82 83 84
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
	/* required last entry */
	{0, }
};

MODULE_DEVICE_TABLE(pci, igb_pci_tbl);

void igb_reset(struct igb_adapter *);
static int igb_setup_all_tx_resources(struct igb_adapter *);
static int igb_setup_all_rx_resources(struct igb_adapter *);
static void igb_free_all_tx_resources(struct igb_adapter *);
static void igb_free_all_rx_resources(struct igb_adapter *);
85
static void igb_setup_mrqc(struct igb_adapter *);
86 87 88 89 90 91 92 93 94 95
void igb_update_stats(struct igb_adapter *);
static int igb_probe(struct pci_dev *, const struct pci_device_id *);
static void __devexit igb_remove(struct pci_dev *pdev);
static int igb_sw_init(struct igb_adapter *);
static int igb_open(struct net_device *);
static int igb_close(struct net_device *);
static void igb_configure_tx(struct igb_adapter *);
static void igb_configure_rx(struct igb_adapter *);
static void igb_clean_all_tx_rings(struct igb_adapter *);
static void igb_clean_all_rx_rings(struct igb_adapter *);
96 97
static void igb_clean_tx_ring(struct igb_ring *);
static void igb_clean_rx_ring(struct igb_ring *);
98
static void igb_set_rx_mode(struct net_device *);
99 100 101
static void igb_update_phy_info(unsigned long);
static void igb_watchdog(unsigned long);
static void igb_watchdog_task(struct work_struct *);
102
static netdev_tx_t igb_xmit_frame_adv(struct sk_buff *skb, struct net_device *);
103 104 105
static struct net_device_stats *igb_get_stats(struct net_device *);
static int igb_change_mtu(struct net_device *, int);
static int igb_set_mac(struct net_device *, void *);
106
static void igb_set_uta(struct igb_adapter *adapter);
107 108 109
static irqreturn_t igb_intr(int irq, void *);
static irqreturn_t igb_intr_msi(int irq, void *);
static irqreturn_t igb_msix_other(int irq, void *);
110
static irqreturn_t igb_msix_ring(int irq, void *);
111
#ifdef CONFIG_IGB_DCA
112
static void igb_update_dca(struct igb_q_vector *);
J
Jeb Cramer 已提交
113
static void igb_setup_dca(struct igb_adapter *);
114
#endif /* CONFIG_IGB_DCA */
115
static bool igb_clean_tx_irq(struct igb_q_vector *);
116
static int igb_poll(struct napi_struct *, int);
117
static bool igb_clean_rx_irq_adv(struct igb_q_vector *, int *, int);
118 119 120 121 122 123 124
static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
static void igb_tx_timeout(struct net_device *);
static void igb_reset_task(struct work_struct *);
static void igb_vlan_rx_register(struct net_device *, struct vlan_group *);
static void igb_vlan_rx_add_vid(struct net_device *, u16);
static void igb_vlan_rx_kill_vid(struct net_device *, u16);
static void igb_restore_vlan(struct igb_adapter *);
125
static void igb_rar_set_qsel(struct igb_adapter *, u8 *, u32 , u8);
126 127 128
static void igb_ping_all_vfs(struct igb_adapter *);
static void igb_msg_task(struct igb_adapter *);
static void igb_vmm_control(struct igb_adapter *);
129
static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
130
static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
131 132

#ifdef CONFIG_PM
133
static int igb_suspend(struct pci_dev *, pm_message_t);
134 135 136
static int igb_resume(struct pci_dev *);
#endif
static void igb_shutdown(struct pci_dev *);
137
#ifdef CONFIG_IGB_DCA
J
Jeb Cramer 已提交
138 139 140 141 142 143 144
static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
static struct notifier_block dca_notifier = {
	.notifier_call	= igb_notify_dca,
	.next		= NULL,
	.priority	= 0
};
#endif
145 146 147 148
#ifdef CONFIG_NET_POLL_CONTROLLER
/* for netdump / net console */
static void igb_netpoll(struct net_device *);
#endif
149
#ifdef CONFIG_PCI_IOV
150 151 152 153 154 155
static unsigned int max_vfs = 0;
module_param(max_vfs, uint, 0);
MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate "
                 "per physical function");
#endif /* CONFIG_PCI_IOV */

156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
		     pci_channel_state_t);
static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
static void igb_io_resume(struct pci_dev *);

static struct pci_error_handlers igb_err_handler = {
	.error_detected = igb_io_error_detected,
	.slot_reset = igb_io_slot_reset,
	.resume = igb_io_resume,
};


static struct pci_driver igb_driver = {
	.name     = igb_driver_name,
	.id_table = igb_pci_tbl,
	.probe    = igb_probe,
	.remove   = __devexit_p(igb_remove),
#ifdef CONFIG_PM
	/* Power Managment Hooks */
	.suspend  = igb_suspend,
	.resume   = igb_resume,
#endif
	.shutdown = igb_shutdown,
	.err_handler = &igb_err_handler
};

MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
MODULE_LICENSE("GPL");
MODULE_VERSION(DRV_VERSION);

P
Patrick Ohly 已提交
187 188 189 190 191 192 193 194
/**
 * igb_read_clock - read raw cycle counter (to be used by time counter)
 */
static cycle_t igb_read_clock(const struct cyclecounter *tc)
{
	struct igb_adapter *adapter =
		container_of(tc, struct igb_adapter, cycles);
	struct e1000_hw *hw = &adapter->hw;
195 196
	u64 stamp = 0;
	int shift = 0;
P
Patrick Ohly 已提交
197

198 199
	stamp |= (u64)rd32(E1000_SYSTIML) << shift;
	stamp |= (u64)rd32(E1000_SYSTIMH) << (shift + 32);
P
Patrick Ohly 已提交
200 201 202
	return stamp;
}

203 204 205 206 207 208 209 210 211 212
#ifdef DEBUG
/**
 * igb_get_hw_dev_name - return device name string
 * used by hardware layer to print debugging information
 **/
char *igb_get_hw_dev_name(struct e1000_hw *hw)
{
	struct igb_adapter *adapter = hw->back;
	return adapter->netdev->name;
}
P
Patrick Ohly 已提交
213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228

/**
 * igb_get_time_str - format current NIC and system time as string
 */
static char *igb_get_time_str(struct igb_adapter *adapter,
			      char buffer[160])
{
	cycle_t hw = adapter->cycles.read(&adapter->cycles);
	struct timespec nic = ns_to_timespec(timecounter_read(&adapter->clock));
	struct timespec sys;
	struct timespec delta;
	getnstimeofday(&sys);

	delta = timespec_sub(nic, sys);

	sprintf(buffer,
229 230
		"HW %llu, NIC %ld.%09lus, SYS %ld.%09lus, NIC-SYS %lds + %09luns",
		hw,
P
Patrick Ohly 已提交
231 232 233 234 235 236
		(long)nic.tv_sec, nic.tv_nsec,
		(long)sys.tv_sec, sys.tv_nsec,
		(long)delta.tv_sec, delta.tv_nsec);

	return buffer;
}
237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
#endif

/**
 * igb_init_module - Driver Registration Routine
 *
 * igb_init_module is the first routine called when the driver is
 * loaded. All it does is register with the PCI subsystem.
 **/
static int __init igb_init_module(void)
{
	int ret;
	printk(KERN_INFO "%s - version %s\n",
	       igb_driver_string, igb_driver_version);

	printk(KERN_INFO "%s\n", igb_copyright);

253
#ifdef CONFIG_IGB_DCA
J
Jeb Cramer 已提交
254 255
	dca_register_notify(&dca_notifier);
#endif
256
	ret = pci_register_driver(&igb_driver);
257 258 259 260 261 262 263 264 265 266 267 268 269
	return ret;
}

module_init(igb_init_module);

/**
 * igb_exit_module - Driver Exit Cleanup Routine
 *
 * igb_exit_module is called just before the driver is removed
 * from memory.
 **/
static void __exit igb_exit_module(void)
{
270
#ifdef CONFIG_IGB_DCA
J
Jeb Cramer 已提交
271 272
	dca_unregister_notify(&dca_notifier);
#endif
273 274 275 276 277
	pci_unregister_driver(&igb_driver);
}

module_exit(igb_exit_module);

278 279 280 281 282 283 284 285 286 287
#define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
/**
 * igb_cache_ring_register - Descriptor ring to register mapping
 * @adapter: board private structure to initialize
 *
 * Once we know the feature-set enabled for the device, we'll cache
 * the register offset the descriptor ring is assigned to.
 **/
static void igb_cache_ring_register(struct igb_adapter *adapter)
{
288
	int i = 0, j = 0;
289
	u32 rbase_offset = adapter->vfs_allocated_count;
290 291 292 293 294 295 296 297

	switch (adapter->hw.mac.type) {
	case e1000_82576:
		/* The queues are allocated for virtualization such that VF 0
		 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
		 * In order to avoid collision we start at the first free queue
		 * and continue consuming queues in the same sequence
		 */
298 299 300 301 302 303 304 305
		if (adapter->vfs_allocated_count) {
			for (; i < adapter->num_rx_queues; i++)
				adapter->rx_ring[i].reg_idx = rbase_offset +
				                              Q_IDX_82576(i);
			for (; j < adapter->num_tx_queues; j++)
				adapter->tx_ring[j].reg_idx = rbase_offset +
				                              Q_IDX_82576(j);
		}
306 307
	case e1000_82575:
	default:
308 309 310 311
		for (; i < adapter->num_rx_queues; i++)
			adapter->rx_ring[i].reg_idx = rbase_offset + i;
		for (; j < adapter->num_tx_queues; j++)
			adapter->tx_ring[j].reg_idx = rbase_offset + j;
312 313 314 315
		break;
	}
}

316 317 318 319 320 321 322 323 324 325 326 327
static void igb_free_queues(struct igb_adapter *adapter)
{
	kfree(adapter->tx_ring);
	kfree(adapter->rx_ring);

	adapter->tx_ring = NULL;
	adapter->rx_ring = NULL;

	adapter->num_rx_queues = 0;
	adapter->num_tx_queues = 0;
}

328 329 330 331 332 333 334 335 336 337 338 339 340 341
/**
 * igb_alloc_queues - Allocate memory for all rings
 * @adapter: board private structure to initialize
 *
 * We allocate one ring per queue at run-time since we don't know the
 * number of queues at compile-time.
 **/
static int igb_alloc_queues(struct igb_adapter *adapter)
{
	int i;

	adapter->tx_ring = kcalloc(adapter->num_tx_queues,
				   sizeof(struct igb_ring), GFP_KERNEL);
	if (!adapter->tx_ring)
342
		goto err;
343 344 345

	adapter->rx_ring = kcalloc(adapter->num_rx_queues,
				   sizeof(struct igb_ring), GFP_KERNEL);
346 347
	if (!adapter->rx_ring)
		goto err;
348

349 350
	for (i = 0; i < adapter->num_tx_queues; i++) {
		struct igb_ring *ring = &(adapter->tx_ring[i]);
351
		ring->count = adapter->tx_ring_count;
352
		ring->queue_index = i;
353
		ring->pdev = adapter->pdev;
354
		ring->netdev = adapter->netdev;
355 356 357
		/* For 82575, context index must be unique per ring. */
		if (adapter->hw.mac.type == e1000_82575)
			ring->flags = IGB_RING_FLAG_TX_CTX_IDX;
358
	}
359

360 361
	for (i = 0; i < adapter->num_rx_queues; i++) {
		struct igb_ring *ring = &(adapter->rx_ring[i]);
362
		ring->count = adapter->rx_ring_count;
P
PJ Waskiewicz 已提交
363
		ring->queue_index = i;
364
		ring->pdev = adapter->pdev;
365
		ring->netdev = adapter->netdev;
366
		ring->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
367 368 369 370
		ring->flags = IGB_RING_FLAG_RX_CSUM; /* enable rx checksum */
		/* set flag indicating ring supports SCTP checksum offload */
		if (adapter->hw.mac.type >= e1000_82576)
			ring->flags |= IGB_RING_FLAG_RX_SCTP_CSUM;
371
	}
372 373

	igb_cache_ring_register(adapter);
374

375
	return 0;
A
Alexander Duyck 已提交
376

377 378
err:
	igb_free_queues(adapter);
379

380
	return -ENOMEM;
A
Alexander Duyck 已提交
381 382
}

383
#define IGB_N0_QUEUE -1
384
static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
385 386
{
	u32 msixbm = 0;
387
	struct igb_adapter *adapter = q_vector->adapter;
388
	struct e1000_hw *hw = &adapter->hw;
A
Alexander Duyck 已提交
389
	u32 ivar, index;
390 391 392 393 394 395 396
	int rx_queue = IGB_N0_QUEUE;
	int tx_queue = IGB_N0_QUEUE;

	if (q_vector->rx_ring)
		rx_queue = q_vector->rx_ring->reg_idx;
	if (q_vector->tx_ring)
		tx_queue = q_vector->tx_ring->reg_idx;
A
Alexander Duyck 已提交
397 398 399

	switch (hw->mac.type) {
	case e1000_82575:
400 401 402 403
		/* The 82575 assigns vectors using a bitmask, which matches the
		   bitmask for the EICR/EIMS/EIMC registers.  To assign one
		   or more queues to a vector, we write the appropriate bits
		   into the MSIXBM register for that vector. */
404
		if (rx_queue > IGB_N0_QUEUE)
405
			msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
406
		if (tx_queue > IGB_N0_QUEUE)
407 408
			msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
		array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
409
		q_vector->eims_value = msixbm;
A
Alexander Duyck 已提交
410 411
		break;
	case e1000_82576:
412
		/* 82576 uses a table-based method for assigning vectors.
A
Alexander Duyck 已提交
413 414 415 416
		   Each queue has a single entry in the table to which we write
		   a vector number along with a "valid" bit.  Sadly, the layout
		   of the table is somewhat counterintuitive. */
		if (rx_queue > IGB_N0_QUEUE) {
417
			index = (rx_queue & 0x7);
A
Alexander Duyck 已提交
418
			ivar = array_rd32(E1000_IVAR0, index);
419
			if (rx_queue < 8) {
420 421 422
				/* vector goes into low byte of register */
				ivar = ivar & 0xFFFFFF00;
				ivar |= msix_vector | E1000_IVAR_VALID;
423 424 425 426
			} else {
				/* vector goes into third byte of register */
				ivar = ivar & 0xFF00FFFF;
				ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
A
Alexander Duyck 已提交
427 428 429 430
			}
			array_wr32(E1000_IVAR0, index, ivar);
		}
		if (tx_queue > IGB_N0_QUEUE) {
431
			index = (tx_queue & 0x7);
A
Alexander Duyck 已提交
432
			ivar = array_rd32(E1000_IVAR0, index);
433
			if (tx_queue < 8) {
434 435 436
				/* vector goes into second byte of register */
				ivar = ivar & 0xFFFF00FF;
				ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
437 438 439 440
			} else {
				/* vector goes into high byte of register */
				ivar = ivar & 0x00FFFFFF;
				ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
A
Alexander Duyck 已提交
441 442 443
			}
			array_wr32(E1000_IVAR0, index, ivar);
		}
444
		q_vector->eims_value = 1 << msix_vector;
A
Alexander Duyck 已提交
445 446 447 448 449
		break;
	default:
		BUG();
		break;
	}
450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466
}

/**
 * igb_configure_msix - Configure MSI-X hardware
 *
 * igb_configure_msix sets up the hardware to properly
 * generate MSI-X interrupts.
 **/
static void igb_configure_msix(struct igb_adapter *adapter)
{
	u32 tmp;
	int i, vector = 0;
	struct e1000_hw *hw = &adapter->hw;

	adapter->eims_enable_mask = 0;

	/* set vector for other causes, i.e. link changes */
A
Alexander Duyck 已提交
467 468
	switch (hw->mac.type) {
	case e1000_82575:
469 470 471 472 473 474 475 476 477
		tmp = rd32(E1000_CTRL_EXT);
		/* enable MSI-X PBA support*/
		tmp |= E1000_CTRL_EXT_PBA_CLR;

		/* Auto-Mask interrupts upon ICR read. */
		tmp |= E1000_CTRL_EXT_EIAME;
		tmp |= E1000_CTRL_EXT_IRCA;

		wr32(E1000_CTRL_EXT, tmp);
478 479 480 481

		/* enable msix_other interrupt */
		array_wr32(E1000_MSIXBM(0), vector++,
		                      E1000_EIMS_OTHER);
P
PJ Waskiewicz 已提交
482
		adapter->eims_other = E1000_EIMS_OTHER;
483

A
Alexander Duyck 已提交
484 485 486
		break;

	case e1000_82576:
487 488 489 490 491 492 493 494
		/* Turn on MSI-X capability first, or our settings
		 * won't stick.  And it will take days to debug. */
		wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
		                E1000_GPIE_PBA | E1000_GPIE_EIAME |
		                E1000_GPIE_NSICR);

		/* enable msix_other interrupt */
		adapter->eims_other = 1 << vector;
A
Alexander Duyck 已提交
495 496
		tmp = (vector++ | E1000_IVAR_VALID) << 8;

497
		wr32(E1000_IVAR_MISC, tmp);
A
Alexander Duyck 已提交
498 499 500 501 502
		break;
	default:
		/* do nothing, since nothing else supports MSI-X */
		break;
	} /* switch (hw->mac.type) */
503 504 505 506 507 508 509 510 511

	adapter->eims_enable_mask |= adapter->eims_other;

	for (i = 0; i < adapter->num_q_vectors; i++) {
		struct igb_q_vector *q_vector = adapter->q_vector[i];
		igb_assign_vector(q_vector, vector++);
		adapter->eims_enable_mask |= q_vector->eims_value;
	}

512 513 514 515 516 517 518 519 520 521 522 523
	wrfl();
}

/**
 * igb_request_msix - Initialize MSI-X interrupts
 *
 * igb_request_msix allocates MSI-X vectors and requests interrupts from the
 * kernel.
 **/
static int igb_request_msix(struct igb_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
524
	struct e1000_hw *hw = &adapter->hw;
525 526
	int i, err = 0, vector = 0;

527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546
	err = request_irq(adapter->msix_entries[vector].vector,
	                  &igb_msix_other, 0, netdev->name, adapter);
	if (err)
		goto out;
	vector++;

	for (i = 0; i < adapter->num_q_vectors; i++) {
		struct igb_q_vector *q_vector = adapter->q_vector[i];

		q_vector->itr_register = hw->hw_addr + E1000_EITR(vector);

		if (q_vector->rx_ring && q_vector->tx_ring)
			sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
			        q_vector->rx_ring->queue_index);
		else if (q_vector->tx_ring)
			sprintf(q_vector->name, "%s-tx-%u", netdev->name,
			        q_vector->tx_ring->queue_index);
		else if (q_vector->rx_ring)
			sprintf(q_vector->name, "%s-rx-%u", netdev->name,
			        q_vector->rx_ring->queue_index);
547
		else
548 549
			sprintf(q_vector->name, "%s-unused", netdev->name);

550
		err = request_irq(adapter->msix_entries[vector].vector,
551 552
		                  &igb_msix_ring, 0, q_vector->name,
		                  q_vector);
553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569
		if (err)
			goto out;
		vector++;
	}

	igb_configure_msix(adapter);
	return 0;
out:
	return err;
}

static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
{
	if (adapter->msix_entries) {
		pci_disable_msix(adapter->pdev);
		kfree(adapter->msix_entries);
		adapter->msix_entries = NULL;
570
	} else if (adapter->flags & IGB_FLAG_HAS_MSI) {
571
		pci_disable_msi(adapter->pdev);
572
	}
573 574
}

575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607
/**
 * igb_free_q_vectors - Free memory allocated for interrupt vectors
 * @adapter: board private structure to initialize
 *
 * This function frees the memory allocated to the q_vectors.  In addition if
 * NAPI is enabled it will delete any references to the NAPI struct prior
 * to freeing the q_vector.
 **/
static void igb_free_q_vectors(struct igb_adapter *adapter)
{
	int v_idx;

	for (v_idx = 0; v_idx < adapter->num_q_vectors; v_idx++) {
		struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
		adapter->q_vector[v_idx] = NULL;
		netif_napi_del(&q_vector->napi);
		kfree(q_vector);
	}
	adapter->num_q_vectors = 0;
}

/**
 * igb_clear_interrupt_scheme - reset the device to a state of no interrupts
 *
 * This function resets the device so that it has 0 rx queues, tx queues, and
 * MSI-X interrupts allocated.
 */
static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
{
	igb_free_queues(adapter);
	igb_free_q_vectors(adapter);
	igb_reset_interrupt_capability(adapter);
}
608 609 610 611 612 613 614 615 616 617 618 619

/**
 * igb_set_interrupt_capability - set MSI or MSI-X if supported
 *
 * Attempt to configure interrupts using the best available
 * capabilities of the hardware and kernel.
 **/
static void igb_set_interrupt_capability(struct igb_adapter *adapter)
{
	int err;
	int numvecs, i;

620 621 622 623
	/* Number of supported queues. */
	adapter->num_rx_queues = min_t(u32, IGB_MAX_RX_QUEUES, num_online_cpus());
	adapter->num_tx_queues = min_t(u32, IGB_MAX_TX_QUEUES, num_online_cpus());

624 625 626 627 628 629 630 631 632 633 634
	/* start with one vector for every rx queue */
	numvecs = adapter->num_rx_queues;

	/* if tx handler is seperate add 1 for every tx queue */
	numvecs += adapter->num_tx_queues;

	/* store the number of vectors reserved for queues */
	adapter->num_q_vectors = numvecs;

	/* add 1 vector for link status interrupts */
	numvecs++;
635 636 637 638 639 640 641 642 643 644 645 646
	adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
					GFP_KERNEL);
	if (!adapter->msix_entries)
		goto msi_only;

	for (i = 0; i < numvecs; i++)
		adapter->msix_entries[i].entry = i;

	err = pci_enable_msix(adapter->pdev,
			      adapter->msix_entries,
			      numvecs);
	if (err == 0)
647
		goto out;
648 649 650 651 652

	igb_reset_interrupt_capability(adapter);

	/* If we can't do MSI-X, try MSI */
msi_only:
653 654 655 656 657 658 659 660 661 662 663 664 665 666 667
#ifdef CONFIG_PCI_IOV
	/* disable SR-IOV for non MSI-X configurations */
	if (adapter->vf_data) {
		struct e1000_hw *hw = &adapter->hw;
		/* disable iov and allow time for transactions to clear */
		pci_disable_sriov(adapter->pdev);
		msleep(500);

		kfree(adapter->vf_data);
		adapter->vf_data = NULL;
		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
		msleep(100);
		dev_info(&adapter->pdev->dev, "IOV Disabled\n");
	}
#endif
668 669
	adapter->vfs_allocated_count = 0;
	adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
670
	adapter->num_rx_queues = 1;
671
	adapter->num_tx_queues = 1;
672
	adapter->num_q_vectors = 1;
673
	if (!pci_enable_msi(adapter->pdev))
674
		adapter->flags |= IGB_FLAG_HAS_MSI;
675
out:
676
	/* Notify the stack of the (possibly) reduced Tx Queue count. */
677
	adapter->netdev->real_num_tx_queues = adapter->num_tx_queues;
678 679 680
	return;
}

681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726
/**
 * igb_alloc_q_vectors - Allocate memory for interrupt vectors
 * @adapter: board private structure to initialize
 *
 * We allocate one q_vector per queue interrupt.  If allocation fails we
 * return -ENOMEM.
 **/
static int igb_alloc_q_vectors(struct igb_adapter *adapter)
{
	struct igb_q_vector *q_vector;
	struct e1000_hw *hw = &adapter->hw;
	int v_idx;

	for (v_idx = 0; v_idx < adapter->num_q_vectors; v_idx++) {
		q_vector = kzalloc(sizeof(struct igb_q_vector), GFP_KERNEL);
		if (!q_vector)
			goto err_out;
		q_vector->adapter = adapter;
		q_vector->itr_shift = (hw->mac.type == e1000_82575) ? 16 : 0;
		q_vector->itr_register = hw->hw_addr + E1000_EITR(0);
		q_vector->itr_val = IGB_START_ITR;
		q_vector->set_itr = 1;
		netif_napi_add(adapter->netdev, &q_vector->napi, igb_poll, 64);
		adapter->q_vector[v_idx] = q_vector;
	}
	return 0;

err_out:
	while (v_idx) {
		v_idx--;
		q_vector = adapter->q_vector[v_idx];
		netif_napi_del(&q_vector->napi);
		kfree(q_vector);
		adapter->q_vector[v_idx] = NULL;
	}
	return -ENOMEM;
}

static void igb_map_rx_ring_to_vector(struct igb_adapter *adapter,
                                      int ring_idx, int v_idx)
{
	struct igb_q_vector *q_vector;

	q_vector = adapter->q_vector[v_idx];
	q_vector->rx_ring = &adapter->rx_ring[ring_idx];
	q_vector->rx_ring->q_vector = q_vector;
727 728 729
	q_vector->itr_val = adapter->rx_itr_setting;
	if (q_vector->itr_val && q_vector->itr_val <= 3)
		q_vector->itr_val = IGB_START_ITR;
730 731 732 733 734 735 736 737 738 739
}

static void igb_map_tx_ring_to_vector(struct igb_adapter *adapter,
                                      int ring_idx, int v_idx)
{
	struct igb_q_vector *q_vector;

	q_vector = adapter->q_vector[v_idx];
	q_vector->tx_ring = &adapter->tx_ring[ring_idx];
	q_vector->tx_ring->q_vector = q_vector;
740 741 742
	q_vector->itr_val = adapter->tx_itr_setting;
	if (q_vector->itr_val && q_vector->itr_val <= 3)
		q_vector->itr_val = IGB_START_ITR;
743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817
}

/**
 * igb_map_ring_to_vector - maps allocated queues to vectors
 *
 * This function maps the recently allocated queues to vectors.
 **/
static int igb_map_ring_to_vector(struct igb_adapter *adapter)
{
	int i;
	int v_idx = 0;

	if ((adapter->num_q_vectors < adapter->num_rx_queues) ||
	    (adapter->num_q_vectors < adapter->num_tx_queues))
		return -ENOMEM;

	if (adapter->num_q_vectors >=
	    (adapter->num_rx_queues + adapter->num_tx_queues)) {
		for (i = 0; i < adapter->num_rx_queues; i++)
			igb_map_rx_ring_to_vector(adapter, i, v_idx++);
		for (i = 0; i < adapter->num_tx_queues; i++)
			igb_map_tx_ring_to_vector(adapter, i, v_idx++);
	} else {
		for (i = 0; i < adapter->num_rx_queues; i++) {
			if (i < adapter->num_tx_queues)
				igb_map_tx_ring_to_vector(adapter, i, v_idx);
			igb_map_rx_ring_to_vector(adapter, i, v_idx++);
		}
		for (; i < adapter->num_tx_queues; i++)
			igb_map_tx_ring_to_vector(adapter, i, v_idx++);
	}
	return 0;
}

/**
 * igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
 *
 * This function initializes the interrupts and allocates all of the queues.
 **/
static int igb_init_interrupt_scheme(struct igb_adapter *adapter)
{
	struct pci_dev *pdev = adapter->pdev;
	int err;

	igb_set_interrupt_capability(adapter);

	err = igb_alloc_q_vectors(adapter);
	if (err) {
		dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
		goto err_alloc_q_vectors;
	}

	err = igb_alloc_queues(adapter);
	if (err) {
		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
		goto err_alloc_queues;
	}

	err = igb_map_ring_to_vector(adapter);
	if (err) {
		dev_err(&pdev->dev, "Invalid q_vector to ring mapping\n");
		goto err_map_queues;
	}


	return 0;
err_map_queues:
	igb_free_queues(adapter);
err_alloc_queues:
	igb_free_q_vectors(adapter);
err_alloc_q_vectors:
	igb_reset_interrupt_capability(adapter);
	return err;
}

818 819 820 821 822 823 824 825 826
/**
 * igb_request_irq - initialize interrupts
 *
 * Attempts to configure interrupts using the best available
 * capabilities of the hardware and kernel.
 **/
static int igb_request_irq(struct igb_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
827
	struct pci_dev *pdev = adapter->pdev;
828 829 830 831 832
	struct e1000_hw *hw = &adapter->hw;
	int err = 0;

	if (adapter->msix_entries) {
		err = igb_request_msix(adapter);
P
PJ Waskiewicz 已提交
833
		if (!err)
834 835
			goto request_done;
		/* fall back to MSI */
836
		igb_clear_interrupt_scheme(adapter);
837
		if (!pci_enable_msi(adapter->pdev))
838
			adapter->flags |= IGB_FLAG_HAS_MSI;
839 840
		igb_free_all_tx_resources(adapter);
		igb_free_all_rx_resources(adapter);
841
		adapter->num_tx_queues = 1;
842
		adapter->num_rx_queues = 1;
843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858
		adapter->num_q_vectors = 1;
		err = igb_alloc_q_vectors(adapter);
		if (err) {
			dev_err(&pdev->dev,
			        "Unable to allocate memory for vectors\n");
			goto request_done;
		}
		err = igb_alloc_queues(adapter);
		if (err) {
			dev_err(&pdev->dev,
			        "Unable to allocate memory for queues\n");
			igb_free_q_vectors(adapter);
			goto request_done;
		}
		igb_setup_all_tx_resources(adapter);
		igb_setup_all_rx_resources(adapter);
P
PJ Waskiewicz 已提交
859
	} else {
A
Alexander Duyck 已提交
860 861 862
		switch (hw->mac.type) {
		case e1000_82575:
			wr32(E1000_MSIXBM(0),
863 864 865
			     (E1000_EICR_RX_QUEUE0 |
			      E1000_EICR_TX_QUEUE0 |
			      E1000_EIMS_OTHER));
A
Alexander Duyck 已提交
866 867 868 869 870 871 872
			break;
		case e1000_82576:
			wr32(E1000_IVAR0, E1000_IVAR_VALID);
			break;
		default:
			break;
		}
873
	}
P
PJ Waskiewicz 已提交
874

875
	if (adapter->flags & IGB_FLAG_HAS_MSI) {
876
		err = request_irq(adapter->pdev->irq, &igb_intr_msi, 0,
877
				  netdev->name, adapter);
878 879
		if (!err)
			goto request_done;
880

881 882
		/* fall back to legacy interrupts */
		igb_reset_interrupt_capability(adapter);
883
		adapter->flags &= ~IGB_FLAG_HAS_MSI;
884 885 886
	}

	err = request_irq(adapter->pdev->irq, &igb_intr, IRQF_SHARED,
887
			  netdev->name, adapter);
888

A
Andy Gospodarek 已提交
889
	if (err)
890 891 892 893 894 895 896 897 898 899 900 901
		dev_err(&adapter->pdev->dev, "Error %d getting interrupt\n",
			err);

request_done:
	return err;
}

static void igb_free_irq(struct igb_adapter *adapter)
{
	if (adapter->msix_entries) {
		int vector = 0, i;

902
		free_irq(adapter->msix_entries[vector++].vector, adapter);
903

904 905 906 907 908 909 910
		for (i = 0; i < adapter->num_q_vectors; i++) {
			struct igb_q_vector *q_vector = adapter->q_vector[i];
			free_irq(adapter->msix_entries[vector++].vector,
			         q_vector);
		}
	} else {
		free_irq(adapter->pdev->irq, adapter);
911 912 913 914 915 916 917 918 919 920 921
	}
}

/**
 * igb_irq_disable - Mask off interrupt generation on the NIC
 * @adapter: board private structure
 **/
static void igb_irq_disable(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;

922 923 924 925 926
	/*
	 * we need to be careful when disabling interrupts.  The VFs are also
	 * mapped into these registers and so clearing the bits can cause
	 * issues on the VF drivers so we only need to clear what we set
	 */
927
	if (adapter->msix_entries) {
928 929 930 931 932
		u32 regval = rd32(E1000_EIAM);
		wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
		wr32(E1000_EIMC, adapter->eims_enable_mask);
		regval = rd32(E1000_EIAC);
		wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
933
	}
P
PJ Waskiewicz 已提交
934 935

	wr32(E1000_IAM, 0);
936 937 938 939 940 941 942 943 944 945 946 947 948 949
	wr32(E1000_IMC, ~0);
	wrfl();
	synchronize_irq(adapter->pdev->irq);
}

/**
 * igb_irq_enable - Enable default interrupt generation settings
 * @adapter: board private structure
 **/
static void igb_irq_enable(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;

	if (adapter->msix_entries) {
950
		u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC;
951 952 953 954
		u32 regval = rd32(E1000_EIAC);
		wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
		regval = rd32(E1000_EIAM);
		wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
P
PJ Waskiewicz 已提交
955
		wr32(E1000_EIMS, adapter->eims_enable_mask);
956
		if (adapter->vfs_allocated_count) {
957
			wr32(E1000_MBVFIMR, 0xFF);
958 959 960
			ims |= E1000_IMS_VMMB;
		}
		wr32(E1000_IMS, ims);
P
PJ Waskiewicz 已提交
961 962 963 964
	} else {
		wr32(E1000_IMS, IMS_ENABLE_MASK);
		wr32(E1000_IAM, IMS_ENABLE_MASK);
	}
965 966 967 968
}

static void igb_update_mng_vlan(struct igb_adapter *adapter)
{
969
	struct e1000_hw *hw = &adapter->hw;
970 971
	u16 vid = adapter->hw.mng_cookie.vlan_id;
	u16 old_vid = adapter->mng_vlan_id;
972 973 974 975 976 977 978 979 980 981 982 983 984 985

	if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
		/* add VID to filter table */
		igb_vfta_set(hw, vid, true);
		adapter->mng_vlan_id = vid;
	} else {
		adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
	}

	if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
	    (vid != old_vid) &&
	    !vlan_group_get_device(adapter->vlgrp, old_vid)) {
		/* remove VID from filter table */
		igb_vfta_set(hw, old_vid, false);
986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
	}
}

/**
 * igb_release_hw_control - release control of the h/w to f/w
 * @adapter: address of board private structure
 *
 * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
 * For ASF and Pass Through versions of f/w this means that the
 * driver is no longer loaded.
 *
 **/
static void igb_release_hw_control(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 ctrl_ext;

	/* Let firmware take over control of h/w */
	ctrl_ext = rd32(E1000_CTRL_EXT);
	wr32(E1000_CTRL_EXT,
			ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
}


/**
 * igb_get_hw_control - get control of the h/w from f/w
 * @adapter: address of board private structure
 *
 * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
 * For ASF and Pass Through versions of f/w this means that
 * the driver is loaded.
 *
 **/
static void igb_get_hw_control(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 ctrl_ext;

	/* Let firmware know the driver has taken over */
	ctrl_ext = rd32(E1000_CTRL_EXT);
	wr32(E1000_CTRL_EXT,
			ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
}

/**
 * igb_configure - configure the hardware for RX and TX
 * @adapter: private board structure
 **/
static void igb_configure(struct igb_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
	int i;

	igb_get_hw_control(adapter);
1040
	igb_set_rx_mode(netdev);
1041 1042 1043

	igb_restore_vlan(adapter);

1044
	igb_setup_tctl(adapter);
1045
	igb_setup_mrqc(adapter);
1046
	igb_setup_rctl(adapter);
1047 1048

	igb_configure_tx(adapter);
1049
	igb_configure_rx(adapter);
1050 1051 1052

	igb_rx_fifo_flush_82575(&adapter->hw);

1053
	/* call igb_desc_unused which always leaves
1054 1055 1056 1057
	 * at least 1 descriptor unused to make sure
	 * next_to_use != next_to_clean */
	for (i = 0; i < adapter->num_rx_queues; i++) {
		struct igb_ring *ring = &adapter->rx_ring[i];
1058
		igb_alloc_rx_buffers_adv(ring, igb_desc_unused(ring));
1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080
	}


	adapter->tx_queue_len = netdev->tx_queue_len;
}


/**
 * igb_up - Open the interface and prepare it to handle traffic
 * @adapter: board private structure
 **/

int igb_up(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	int i;

	/* hardware has been reset, we need to reload some things */
	igb_configure(adapter);

	clear_bit(__IGB_DOWN, &adapter->state);

1081 1082 1083 1084
	for (i = 0; i < adapter->num_q_vectors; i++) {
		struct igb_q_vector *q_vector = adapter->q_vector[i];
		napi_enable(&q_vector->napi);
	}
P
PJ Waskiewicz 已提交
1085
	if (adapter->msix_entries)
1086 1087 1088 1089 1090 1091
		igb_configure_msix(adapter);

	/* Clear any pending interrupts. */
	rd32(E1000_ICR);
	igb_irq_enable(adapter);

1092 1093 1094 1095 1096 1097 1098
	/* notify VFs that reset has been completed */
	if (adapter->vfs_allocated_count) {
		u32 reg_data = rd32(E1000_CTRL_EXT);
		reg_data |= E1000_CTRL_EXT_PFRSTD;
		wr32(E1000_CTRL_EXT, reg_data);
	}

1099 1100
	netif_tx_start_all_queues(adapter->netdev);

1101 1102 1103 1104
	/* start the watchdog. */
	hw->mac.get_link_status = 1;
	schedule_work(&adapter->watchdog_task);

1105 1106 1107 1108 1109 1110
	return 0;
}

void igb_down(struct igb_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
1111
	struct e1000_hw *hw = &adapter->hw;
1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123
	u32 tctl, rctl;
	int i;

	/* signal that we're down so the interrupt handler does not
	 * reschedule our watchdog timer */
	set_bit(__IGB_DOWN, &adapter->state);

	/* disable receives in the hardware */
	rctl = rd32(E1000_RCTL);
	wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
	/* flush and sleep below */

1124
	netif_tx_stop_all_queues(netdev);
1125 1126 1127 1128 1129 1130 1131 1132 1133

	/* disable transmits in the hardware */
	tctl = rd32(E1000_TCTL);
	tctl &= ~E1000_TCTL_EN;
	wr32(E1000_TCTL, tctl);
	/* flush both disables and wait for them to finish */
	wrfl();
	msleep(10);

1134 1135 1136 1137
	for (i = 0; i < adapter->num_q_vectors; i++) {
		struct igb_q_vector *q_vector = adapter->q_vector[i];
		napi_disable(&q_vector->napi);
	}
1138 1139 1140 1141 1142 1143 1144 1145

	igb_irq_disable(adapter);

	del_timer_sync(&adapter->watchdog_timer);
	del_timer_sync(&adapter->phy_info_timer);

	netdev->tx_queue_len = adapter->tx_queue_len;
	netif_carrier_off(netdev);
1146 1147 1148 1149

	/* record the stats before reset*/
	igb_update_stats(adapter);

1150 1151 1152
	adapter->link_speed = 0;
	adapter->link_duplex = 0;

1153 1154
	if (!pci_channel_offline(adapter->pdev))
		igb_reset(adapter);
1155 1156
	igb_clean_all_tx_rings(adapter);
	igb_clean_all_rx_rings(adapter);
1157 1158 1159 1160 1161
#ifdef CONFIG_IGB_DCA

	/* since we reset the hardware DCA settings were cleared */
	igb_setup_dca(adapter);
#endif
1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175
}

void igb_reinit_locked(struct igb_adapter *adapter)
{
	WARN_ON(in_interrupt());
	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
		msleep(1);
	igb_down(adapter);
	igb_up(adapter);
	clear_bit(__IGB_RESETTING, &adapter->state);
}

void igb_reset(struct igb_adapter *adapter)
{
1176
	struct pci_dev *pdev = adapter->pdev;
1177
	struct e1000_hw *hw = &adapter->hw;
A
Alexander Duyck 已提交
1178 1179
	struct e1000_mac_info *mac = &hw->mac;
	struct e1000_fc_info *fc = &hw->fc;
1180 1181 1182 1183 1184 1185
	u32 pba = 0, tx_space, min_tx_space, min_rx_space;
	u16 hwm;

	/* Repartition Pba for greater than 9k mtu
	 * To take effect CTRL.RST is required.
	 */
1186 1187
	switch (mac->type) {
	case e1000_82576:
1188 1189
		pba = rd32(E1000_RXPBS);
		pba &= E1000_RXPBS_SIZE_MASK_82576;
1190 1191 1192 1193 1194
		break;
	case e1000_82575:
	default:
		pba = E1000_PBA_34K;
		break;
A
Alexander Duyck 已提交
1195
	}
1196

A
Alexander Duyck 已提交
1197 1198
	if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
	    (mac->type < e1000_82576)) {
1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215
		/* adjust PBA for jumbo frames */
		wr32(E1000_PBA, pba);

		/* To maintain wire speed transmits, the Tx FIFO should be
		 * large enough to accommodate two full transmit packets,
		 * rounded up to the next 1KB and expressed in KB.  Likewise,
		 * the Rx FIFO should be large enough to accommodate at least
		 * one full receive packet and is similarly rounded up and
		 * expressed in KB. */
		pba = rd32(E1000_PBA);
		/* upper 16 bits has Tx packet buffer allocation size in KB */
		tx_space = pba >> 16;
		/* lower 16 bits has Rx packet buffer allocation size in KB */
		pba &= 0xffff;
		/* the tx fifo also stores 16 bytes of information about the tx
		 * but don't include ethernet FCS because hardware appends it */
		min_tx_space = (adapter->max_frame_size +
1216
				sizeof(union e1000_adv_tx_desc) -
1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236
				ETH_FCS_LEN) * 2;
		min_tx_space = ALIGN(min_tx_space, 1024);
		min_tx_space >>= 10;
		/* software strips receive CRC, so leave room for it */
		min_rx_space = adapter->max_frame_size;
		min_rx_space = ALIGN(min_rx_space, 1024);
		min_rx_space >>= 10;

		/* If current Tx allocation is less than the min Tx FIFO size,
		 * and the min Tx FIFO size is less than the current Rx FIFO
		 * allocation, take space away from current Rx allocation */
		if (tx_space < min_tx_space &&
		    ((min_tx_space - tx_space) < pba)) {
			pba = pba - (min_tx_space - tx_space);

			/* if short on rx space, rx wins and must trump tx
			 * adjustment */
			if (pba < min_rx_space)
				pba = min_rx_space;
		}
A
Alexander Duyck 已提交
1237
		wr32(E1000_PBA, pba);
1238 1239 1240 1241 1242 1243 1244 1245 1246
	}

	/* flow control settings */
	/* The high water mark must be low enough to fit one full frame
	 * (or the size used for early receive) above it in the Rx FIFO.
	 * Set it to the lower of:
	 * - 90% of the Rx FIFO size, or
	 * - the full Rx FIFO size minus one full frame */
	hwm = min(((pba << 10) * 9 / 10),
A
Alexander Duyck 已提交
1247
			((pba << 10) - 2 * adapter->max_frame_size));
1248

A
Alexander Duyck 已提交
1249 1250 1251 1252 1253 1254 1255
	if (mac->type < e1000_82576) {
		fc->high_water = hwm & 0xFFF8;	/* 8-byte granularity */
		fc->low_water = fc->high_water - 8;
	} else {
		fc->high_water = hwm & 0xFFF0;	/* 16-byte granularity */
		fc->low_water = fc->high_water - 16;
	}
1256 1257
	fc->pause_time = 0xFFFF;
	fc->send_xon = 1;
1258
	fc->current_mode = fc->requested_mode;
1259

1260 1261 1262 1263
	/* disable receive for all VFs and wait one second */
	if (adapter->vfs_allocated_count) {
		int i;
		for (i = 0 ; i < adapter->vfs_allocated_count; i++)
1264
			adapter->vf_data[i].flags = 0;
1265 1266

		/* ping all the active vfs to let them know we are going down */
1267
		igb_ping_all_vfs(adapter);
1268 1269 1270 1271 1272 1273

		/* disable transmits and receives */
		wr32(E1000_VFRE, 0);
		wr32(E1000_VFTE, 0);
	}

1274
	/* Allow time for pending master requests to run */
1275
	hw->mac.ops.reset_hw(hw);
1276 1277
	wr32(E1000_WUC, 0);

1278
	if (hw->mac.ops.init_hw(hw))
1279
		dev_err(&pdev->dev, "Hardware Error\n");
1280 1281 1282 1283 1284 1285

	igb_update_mng_vlan(adapter);

	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
	wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);

1286 1287
	igb_reset_adaptive(hw);
	igb_get_phy_info(hw);
1288 1289
}

S
Stephen Hemminger 已提交
1290 1291 1292
static const struct net_device_ops igb_netdev_ops = {
	.ndo_open 		= igb_open,
	.ndo_stop		= igb_close,
1293
	.ndo_start_xmit		= igb_xmit_frame_adv,
S
Stephen Hemminger 已提交
1294
	.ndo_get_stats		= igb_get_stats,
1295 1296
	.ndo_set_rx_mode	= igb_set_rx_mode,
	.ndo_set_multicast_list	= igb_set_rx_mode,
S
Stephen Hemminger 已提交
1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309
	.ndo_set_mac_address	= igb_set_mac,
	.ndo_change_mtu		= igb_change_mtu,
	.ndo_do_ioctl		= igb_ioctl,
	.ndo_tx_timeout		= igb_tx_timeout,
	.ndo_validate_addr	= eth_validate_addr,
	.ndo_vlan_rx_register	= igb_vlan_rx_register,
	.ndo_vlan_rx_add_vid	= igb_vlan_rx_add_vid,
	.ndo_vlan_rx_kill_vid	= igb_vlan_rx_kill_vid,
#ifdef CONFIG_NET_POLL_CONTROLLER
	.ndo_poll_controller	= igb_netpoll,
#endif
};

1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326
/**
 * igb_probe - Device Initialization Routine
 * @pdev: PCI device information struct
 * @ent: entry in igb_pci_tbl
 *
 * Returns 0 on success, negative on failure
 *
 * igb_probe initializes an adapter identified by a pci_dev structure.
 * The OS initialization, configuring of the adapter private structure,
 * and a hardware reset occur.
 **/
static int __devinit igb_probe(struct pci_dev *pdev,
			       const struct pci_device_id *ent)
{
	struct net_device *netdev;
	struct igb_adapter *adapter;
	struct e1000_hw *hw;
1327 1328
	u16 eeprom_data = 0;
	static int global_quad_port_a; /* global quad port a indication */
1329 1330
	const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
	unsigned long mmio_start, mmio_len;
1331
	int err, pci_using_dac;
1332 1333 1334
	u16 eeprom_apme_mask = IGB_EEPROM_APME;
	u32 part_num;

1335
	err = pci_enable_device_mem(pdev);
1336 1337 1338 1339
	if (err)
		return err;

	pci_using_dac = 0;
1340
	err = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
1341
	if (!err) {
1342
		err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
1343 1344 1345
		if (!err)
			pci_using_dac = 1;
	} else {
1346
		err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
1347
		if (err) {
1348
			err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
1349 1350 1351 1352 1353 1354 1355 1356
			if (err) {
				dev_err(&pdev->dev, "No usable DMA "
					"configuration, aborting\n");
				goto err_dma;
			}
		}
	}

1357 1358 1359
	err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
	                                   IORESOURCE_MEM),
	                                   igb_driver_name);
1360 1361 1362
	if (err)
		goto err_pci_reg;

1363
	pci_enable_pcie_error_reporting(pdev);
1364

1365
	pci_set_master(pdev);
1366
	pci_save_state(pdev);
1367 1368

	err = -ENOMEM;
1369 1370
	netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
	                           IGB_ABS_MAX_TX_QUEUES);
1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387
	if (!netdev)
		goto err_alloc_etherdev;

	SET_NETDEV_DEV(netdev, &pdev->dev);

	pci_set_drvdata(pdev, netdev);
	adapter = netdev_priv(netdev);
	adapter->netdev = netdev;
	adapter->pdev = pdev;
	hw = &adapter->hw;
	hw->back = adapter;
	adapter->msg_enable = NETIF_MSG_DRV | NETIF_MSG_PROBE;

	mmio_start = pci_resource_start(pdev, 0);
	mmio_len = pci_resource_len(pdev, 0);

	err = -EIO;
1388 1389
	hw->hw_addr = ioremap(mmio_start, mmio_len);
	if (!hw->hw_addr)
1390 1391
		goto err_ioremap;

S
Stephen Hemminger 已提交
1392
	netdev->netdev_ops = &igb_netdev_ops;
1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414
	igb_set_ethtool_ops(netdev);
	netdev->watchdog_timeo = 5 * HZ;

	strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);

	netdev->mem_start = mmio_start;
	netdev->mem_end = mmio_start + mmio_len;

	/* PCI config space info */
	hw->vendor_id = pdev->vendor;
	hw->device_id = pdev->device;
	hw->revision_id = pdev->revision;
	hw->subsystem_vendor_id = pdev->subsystem_vendor;
	hw->subsystem_device_id = pdev->subsystem_device;

	/* Copy the default MAC, PHY and NVM function pointers */
	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
	memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
	/* Initialize skew-specific constants */
	err = ei->get_invariants(hw);
	if (err)
1415
		goto err_sw_init;
1416

1417
	/* setup the private structure */
1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438
	err = igb_sw_init(adapter);
	if (err)
		goto err_sw_init;

	igb_get_bus_info_pcie(hw);

	hw->phy.autoneg_wait_to_complete = false;
	hw->mac.adaptive_ifs = true;

	/* Copper options */
	if (hw->phy.media_type == e1000_media_type_copper) {
		hw->phy.mdix = AUTO_ALL_MODES;
		hw->phy.disable_polarity_correction = false;
		hw->phy.ms_type = e1000_ms_hw_default;
	}

	if (igb_check_reset_block(hw))
		dev_info(&pdev->dev,
			"PHY reset is blocked due to SOL/IDER session.\n");

	netdev->features = NETIF_F_SG |
1439
			   NETIF_F_IP_CSUM |
1440 1441 1442 1443
			   NETIF_F_HW_VLAN_TX |
			   NETIF_F_HW_VLAN_RX |
			   NETIF_F_HW_VLAN_FILTER;

1444
	netdev->features |= NETIF_F_IPV6_CSUM;
1445 1446
	netdev->features |= NETIF_F_TSO;
	netdev->features |= NETIF_F_TSO6;
1447

H
Herbert Xu 已提交
1448
	netdev->features |= NETIF_F_GRO;
1449

1450 1451
	netdev->vlan_features |= NETIF_F_TSO;
	netdev->vlan_features |= NETIF_F_TSO6;
1452
	netdev->vlan_features |= NETIF_F_IP_CSUM;
1453
	netdev->vlan_features |= NETIF_F_IPV6_CSUM;
1454 1455
	netdev->vlan_features |= NETIF_F_SG;

1456 1457 1458
	if (pci_using_dac)
		netdev->features |= NETIF_F_HIGHDMA;

1459
	if (hw->mac.type >= e1000_82576)
1460 1461
		netdev->features |= NETIF_F_SCTP_CSUM;

1462
	adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487

	/* before reading the NVM, reset the controller to put the device in a
	 * known good starting state */
	hw->mac.ops.reset_hw(hw);

	/* make sure the NVM is good */
	if (igb_validate_nvm_checksum(hw) < 0) {
		dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
		err = -EIO;
		goto err_eeprom;
	}

	/* copy the MAC address out of the NVM */
	if (hw->mac.ops.read_mac_addr(hw))
		dev_err(&pdev->dev, "NVM Read Error\n");

	memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
	memcpy(netdev->perm_addr, hw->mac.addr, netdev->addr_len);

	if (!is_valid_ether_addr(netdev->perm_addr)) {
		dev_err(&pdev->dev, "Invalid MAC Address\n");
		err = -EIO;
		goto err_eeprom;
	}

1488 1489 1490 1491
	setup_timer(&adapter->watchdog_timer, &igb_watchdog,
	            (unsigned long) adapter);
	setup_timer(&adapter->phy_info_timer, &igb_update_phy_info,
	            (unsigned long) adapter);
1492 1493 1494 1495

	INIT_WORK(&adapter->reset_task, igb_reset_task);
	INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);

1496
	/* Initialize link properties that are user-changeable */
1497 1498 1499 1500
	adapter->fc_autoneg = true;
	hw->mac.autoneg = true;
	hw->phy.autoneg_advertised = 0x2f;

1501 1502
	hw->fc.requested_mode = e1000_fc_default;
	hw->fc.current_mode = e1000_fc_default;
1503 1504 1505 1506 1507 1508 1509

	igb_validate_mdi_setting(hw);

	/* Initial Wake on LAN setting If APM wake is enabled in the EEPROM,
	 * enable the ACPI Magic Packet filter
	 */

1510
	if (hw->bus.func == 0)
A
Alexander Duyck 已提交
1511
		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
1512 1513
	else if (hw->bus.func == 1)
		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525

	if (eeprom_data & eeprom_apme_mask)
		adapter->eeprom_wol |= E1000_WUFC_MAG;

	/* now that we have the eeprom settings, apply the special cases where
	 * the eeprom may be wrong or the board simply won't support wake on
	 * lan on a particular port */
	switch (pdev->device) {
	case E1000_DEV_ID_82575GB_QUAD_COPPER:
		adapter->eeprom_wol = 0;
		break;
	case E1000_DEV_ID_82575EB_FIBER_SERDES:
A
Alexander Duyck 已提交
1526 1527
	case E1000_DEV_ID_82576_FIBER:
	case E1000_DEV_ID_82576_SERDES:
1528 1529 1530 1531 1532
		/* Wake events only supported on port A for dual fiber
		 * regardless of eeprom setting */
		if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
			adapter->eeprom_wol = 0;
		break;
1533 1534 1535 1536 1537 1538 1539 1540 1541 1542
	case E1000_DEV_ID_82576_QUAD_COPPER:
		/* if quad port adapter, disable WoL on all but port A */
		if (global_quad_port_a != 0)
			adapter->eeprom_wol = 0;
		else
			adapter->flags |= IGB_FLAG_QUAD_PORT_A;
		/* Reset for multiple quad port adapters */
		if (++global_quad_port_a == 4)
			global_quad_port_a = 0;
		break;
1543 1544 1545 1546
	}

	/* initialize the wol settings based on the eeprom settings */
	adapter->wol = adapter->eeprom_wol;
1547
	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560

	/* reset the hardware with the new settings */
	igb_reset(adapter);

	/* let the f/w know that the h/w is now under the control of the
	 * driver. */
	igb_get_hw_control(adapter);

	strcpy(netdev->name, "eth%d");
	err = register_netdev(netdev);
	if (err)
		goto err_register;

1561 1562 1563
	/* carrier off reporting is important to ethtool even BEFORE open */
	netif_carrier_off(netdev);

1564
#ifdef CONFIG_IGB_DCA
1565
	if (dca_add_requester(&pdev->dev) == 0) {
1566
		adapter->flags |= IGB_FLAG_DCA_ENABLED;
J
Jeb Cramer 已提交
1567 1568 1569 1570
		dev_info(&pdev->dev, "DCA enabled\n");
		igb_setup_dca(adapter);
	}

P
Patrick Ohly 已提交
1571 1572
#endif

1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620
	switch (hw->mac.type) {
	case e1000_82576:
		/*
		 * Initialize hardware timer: we keep it running just in case
		 * that some program needs it later on.
		 */
		memset(&adapter->cycles, 0, sizeof(adapter->cycles));
		adapter->cycles.read = igb_read_clock;
		adapter->cycles.mask = CLOCKSOURCE_MASK(64);
		adapter->cycles.mult = 1;
		/**
		 * Scale the NIC clock cycle by a large factor so that
		 * relatively small clock corrections can be added or
		 * substracted at each clock tick. The drawbacks of a large
		 * factor are a) that the clock register overflows more quickly
		 * (not such a big deal) and b) that the increment per tick has
		 * to fit into 24 bits.  As a result we need to use a shift of
		 * 19 so we can fit a value of 16 into the TIMINCA register.
		 */
		adapter->cycles.shift = IGB_82576_TSYNC_SHIFT;
		wr32(E1000_TIMINCA,
		                (1 << E1000_TIMINCA_16NS_SHIFT) |
		                (16 << IGB_82576_TSYNC_SHIFT));

		/* Set registers so that rollover occurs soon to test this. */
		wr32(E1000_SYSTIML, 0x00000000);
		wr32(E1000_SYSTIMH, 0xFF800000);
		wrfl();

		timecounter_init(&adapter->clock,
				 &adapter->cycles,
				 ktime_to_ns(ktime_get_real()));
		/*
		 * Synchronize our NIC clock against system wall clock. NIC
		 * time stamp reading requires ~3us per sample, each sample
		 * was pretty stable even under load => only require 10
		 * samples for each offset comparison.
		 */
		memset(&adapter->compare, 0, sizeof(adapter->compare));
		adapter->compare.source = &adapter->clock;
		adapter->compare.target = ktime_get_real;
		adapter->compare.num_samples = 10;
		timecompare_update(&adapter->compare, 0);
		break;
	case e1000_82575:
		/* 82575 does not support timesync */
	default:
		break;
P
Patrick Ohly 已提交
1621 1622
	}

1623 1624
	dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
	/* print bus type/speed/width info */
J
Johannes Berg 已提交
1625
	dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
1626 1627 1628
		 netdev->name,
		 ((hw->bus.speed == e1000_bus_speed_2500)
		  ? "2.5Gb/s" : "unknown"),
1629 1630 1631 1632
		 ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
		  (hw->bus.width == e1000_bus_width_pcie_x2) ? "Width x2" :
		  (hw->bus.width == e1000_bus_width_pcie_x1) ? "Width x1" :
		   "unknown"),
J
Johannes Berg 已提交
1633
		 netdev->dev_addr);
1634 1635 1636 1637 1638 1639 1640 1641

	igb_read_part_num(hw, &part_num);
	dev_info(&pdev->dev, "%s: PBA No: %06x-%03x\n", netdev->name,
		(part_num >> 8), (part_num & 0xff));

	dev_info(&pdev->dev,
		"Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
		adapter->msix_entries ? "MSI-X" :
1642
		(adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
1643 1644 1645 1646 1647 1648 1649 1650
		adapter->num_rx_queues, adapter->num_tx_queues);

	return 0;

err_register:
	igb_release_hw_control(adapter);
err_eeprom:
	if (!igb_check_reset_block(hw))
1651
		igb_reset_phy(hw);
1652 1653 1654 1655

	if (hw->flash_address)
		iounmap(hw->flash_address);
err_sw_init:
1656
	igb_clear_interrupt_scheme(adapter);
1657 1658 1659 1660
	iounmap(hw->hw_addr);
err_ioremap:
	free_netdev(netdev);
err_alloc_etherdev:
1661 1662
	pci_release_selected_regions(pdev, pci_select_bars(pdev,
	                             IORESOURCE_MEM));
1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681
err_pci_reg:
err_dma:
	pci_disable_device(pdev);
	return err;
}

/**
 * igb_remove - Device Removal Routine
 * @pdev: PCI device information struct
 *
 * igb_remove is called by the PCI subsystem to alert the driver
 * that it should release a PCI device.  The could be caused by a
 * Hot-Plug event, or because the driver is going to be removed from
 * memory.
 **/
static void __devexit igb_remove(struct pci_dev *pdev)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);
J
Jeb Cramer 已提交
1682
	struct e1000_hw *hw = &adapter->hw;
1683 1684 1685 1686 1687 1688 1689 1690 1691

	/* flush_scheduled work may reschedule our watchdog task, so
	 * explicitly disable watchdog tasks from being rescheduled  */
	set_bit(__IGB_DOWN, &adapter->state);
	del_timer_sync(&adapter->watchdog_timer);
	del_timer_sync(&adapter->phy_info_timer);

	flush_scheduled_work();

1692
#ifdef CONFIG_IGB_DCA
1693
	if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
J
Jeb Cramer 已提交
1694 1695
		dev_info(&pdev->dev, "DCA disabled\n");
		dca_remove_requester(&pdev->dev);
1696
		adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
A
Alexander Duyck 已提交
1697
		wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
J
Jeb Cramer 已提交
1698 1699 1700
	}
#endif

1701 1702 1703 1704 1705 1706
	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
	 * would have already happened in close and is redundant. */
	igb_release_hw_control(adapter);

	unregister_netdev(netdev);

1707 1708
	if (!igb_check_reset_block(hw))
		igb_reset_phy(hw);
1709

1710
	igb_clear_interrupt_scheme(adapter);
1711

1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725
#ifdef CONFIG_PCI_IOV
	/* reclaim resources allocated to VFs */
	if (adapter->vf_data) {
		/* disable iov and allow time for transactions to clear */
		pci_disable_sriov(pdev);
		msleep(500);

		kfree(adapter->vf_data);
		adapter->vf_data = NULL;
		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
		msleep(100);
		dev_info(&pdev->dev, "IOV Disabled\n");
	}
#endif
1726 1727 1728
	iounmap(hw->hw_addr);
	if (hw->flash_address)
		iounmap(hw->flash_address);
1729 1730
	pci_release_selected_regions(pdev, pci_select_bars(pdev,
	                             IORESOURCE_MEM));
1731 1732 1733

	free_netdev(netdev);

1734
	pci_disable_pcie_error_reporting(pdev);
1735

1736 1737 1738
	pci_disable_device(pdev);
}

1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786
/**
 * igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
 * @adapter: board private structure to initialize
 *
 * This function initializes the vf specific data storage and then attempts to
 * allocate the VFs.  The reason for ordering it this way is because it is much
 * mor expensive time wise to disable SR-IOV than it is to allocate and free
 * the memory for the VFs.
 **/
static void __devinit igb_probe_vfs(struct igb_adapter * adapter)
{
#ifdef CONFIG_PCI_IOV
	struct pci_dev *pdev = adapter->pdev;

	if (adapter->vfs_allocated_count > 7)
		adapter->vfs_allocated_count = 7;

	if (adapter->vfs_allocated_count) {
		adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
		                           sizeof(struct vf_data_storage),
		                           GFP_KERNEL);
		/* if allocation failed then we do not support SR-IOV */
		if (!adapter->vf_data) {
			adapter->vfs_allocated_count = 0;
			dev_err(&pdev->dev, "Unable to allocate memory for VF "
			        "Data Storage\n");
		}
	}

	if (pci_enable_sriov(pdev, adapter->vfs_allocated_count)) {
		kfree(adapter->vf_data);
		adapter->vf_data = NULL;
#endif /* CONFIG_PCI_IOV */
		adapter->vfs_allocated_count = 0;
#ifdef CONFIG_PCI_IOV
	} else {
		unsigned char mac_addr[ETH_ALEN];
		int i;
		dev_info(&pdev->dev, "%d vfs allocated\n",
		         adapter->vfs_allocated_count);
		for (i = 0; i < adapter->vfs_allocated_count; i++) {
			random_ether_addr(mac_addr);
			igb_set_vf_mac(adapter, i, mac_addr);
		}
	}
#endif /* CONFIG_PCI_IOV */
}

1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802
/**
 * igb_sw_init - Initialize general software structures (struct igb_adapter)
 * @adapter: board private structure to initialize
 *
 * igb_sw_init initializes the Adapter private data structure.
 * Fields are initialized based on PCI device information and
 * OS network device settings (MTU size).
 **/
static int __devinit igb_sw_init(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	struct net_device *netdev = adapter->netdev;
	struct pci_dev *pdev = adapter->pdev;

	pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);

1803 1804
	adapter->tx_ring_count = IGB_DEFAULT_TXD;
	adapter->rx_ring_count = IGB_DEFAULT_RXD;
1805 1806 1807
	adapter->rx_itr_setting = IGB_DEFAULT_ITR;
	adapter->tx_itr_setting = IGB_DEFAULT_ITR;

1808 1809 1810
	adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;

1811 1812 1813 1814 1815 1816
#ifdef CONFIG_PCI_IOV
	if (hw->mac.type == e1000_82576)
		adapter->vfs_allocated_count = max_vfs;

#endif /* CONFIG_PCI_IOV */
	/* This call may decrease the number of queues */
1817
	if (igb_init_interrupt_scheme(adapter)) {
1818 1819 1820 1821
		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
		return -ENOMEM;
	}

1822 1823
	igb_probe_vfs(adapter);

1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853
	/* Explicitly disable IRQ since the NIC can be in any state. */
	igb_irq_disable(adapter);

	set_bit(__IGB_DOWN, &adapter->state);
	return 0;
}

/**
 * igb_open - Called when a network interface is made active
 * @netdev: network interface device structure
 *
 * Returns 0 on success, negative value on failure
 *
 * The open entry point is called when a network interface is made
 * active by the system (IFF_UP).  At this point all resources needed
 * for transmit and receive operations are allocated, the interrupt
 * handler is registered with the OS, the watchdog timer is started,
 * and the stack is notified that the interface is ready.
 **/
static int igb_open(struct net_device *netdev)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	int err;
	int i;

	/* disallow open during test */
	if (test_bit(__IGB_TESTING, &adapter->state))
		return -EBUSY;

1854 1855
	netif_carrier_off(netdev);

1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880
	/* allocate transmit descriptors */
	err = igb_setup_all_tx_resources(adapter);
	if (err)
		goto err_setup_tx;

	/* allocate receive descriptors */
	err = igb_setup_all_rx_resources(adapter);
	if (err)
		goto err_setup_rx;

	/* e1000_power_up_phy(adapter); */

	/* before we allocate an interrupt, we must be ready to handle it.
	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
	 * as soon as we call pci_request_irq, so we have to setup our
	 * clean_rx handler before we do so.  */
	igb_configure(adapter);

	err = igb_request_irq(adapter);
	if (err)
		goto err_req_irq;

	/* From here on the code is the same as igb_up() */
	clear_bit(__IGB_DOWN, &adapter->state);

1881 1882 1883 1884
	for (i = 0; i < adapter->num_q_vectors; i++) {
		struct igb_q_vector *q_vector = adapter->q_vector[i];
		napi_enable(&q_vector->napi);
	}
1885 1886 1887

	/* Clear any pending interrupts. */
	rd32(E1000_ICR);
P
PJ Waskiewicz 已提交
1888 1889 1890

	igb_irq_enable(adapter);

1891 1892 1893 1894 1895 1896 1897
	/* notify VFs that reset has been completed */
	if (adapter->vfs_allocated_count) {
		u32 reg_data = rd32(E1000_CTRL_EXT);
		reg_data |= E1000_CTRL_EXT_PFRSTD;
		wr32(E1000_CTRL_EXT, reg_data);
	}

1898 1899
	netif_tx_start_all_queues(netdev);

1900 1901 1902
	/* start the watchdog. */
	hw->mac.get_link_status = 1;
	schedule_work(&adapter->watchdog_task);
1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949

	return 0;

err_req_irq:
	igb_release_hw_control(adapter);
	/* e1000_power_down_phy(adapter); */
	igb_free_all_rx_resources(adapter);
err_setup_rx:
	igb_free_all_tx_resources(adapter);
err_setup_tx:
	igb_reset(adapter);

	return err;
}

/**
 * igb_close - Disables a network interface
 * @netdev: network interface device structure
 *
 * Returns 0, this is not allowed to fail
 *
 * The close entry point is called when an interface is de-activated
 * by the OS.  The hardware is still under the driver's control, but
 * needs to be disabled.  A global MAC reset is issued to stop the
 * hardware, and all transmit and receive resources are freed.
 **/
static int igb_close(struct net_device *netdev)
{
	struct igb_adapter *adapter = netdev_priv(netdev);

	WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
	igb_down(adapter);

	igb_free_irq(adapter);

	igb_free_all_tx_resources(adapter);
	igb_free_all_rx_resources(adapter);

	return 0;
}

/**
 * igb_setup_tx_resources - allocate Tx resources (Descriptors)
 * @tx_ring: tx descriptor ring (for a specific queue) to setup
 *
 * Return 0 on success, negative on failure
 **/
1950
int igb_setup_tx_resources(struct igb_ring *tx_ring)
1951
{
1952
	struct pci_dev *pdev = tx_ring->pdev;
1953 1954 1955 1956 1957 1958 1959 1960 1961
	int size;

	size = sizeof(struct igb_buffer) * tx_ring->count;
	tx_ring->buffer_info = vmalloc(size);
	if (!tx_ring->buffer_info)
		goto err;
	memset(tx_ring->buffer_info, 0, size);

	/* round up to nearest 4K */
1962
	tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
1963 1964
	tx_ring->size = ALIGN(tx_ring->size, 4096);

1965 1966
	tx_ring->desc = pci_alloc_consistent(pdev,
	                                     tx_ring->size,
1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977
					     &tx_ring->dma);

	if (!tx_ring->desc)
		goto err;

	tx_ring->next_to_use = 0;
	tx_ring->next_to_clean = 0;
	return 0;

err:
	vfree(tx_ring->buffer_info);
1978
	dev_err(&pdev->dev,
1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991
		"Unable to allocate memory for the transmit descriptor ring\n");
	return -ENOMEM;
}

/**
 * igb_setup_all_tx_resources - wrapper to allocate Tx resources
 *				  (Descriptors) for all queues
 * @adapter: board private structure
 *
 * Return 0 on success, negative on failure
 **/
static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
{
1992
	struct pci_dev *pdev = adapter->pdev;
1993 1994 1995
	int i, err = 0;

	for (i = 0; i < adapter->num_tx_queues; i++) {
1996
		err = igb_setup_tx_resources(&adapter->tx_ring[i]);
1997
		if (err) {
1998
			dev_err(&pdev->dev,
1999 2000
				"Allocation for Tx Queue %u failed\n", i);
			for (i--; i >= 0; i--)
2001
				igb_free_tx_resources(&adapter->tx_ring[i]);
2002 2003 2004 2005
			break;
		}
	}

2006
	for (i = 0; i < IGB_MAX_TX_QUEUES; i++) {
2007
		int r_idx = i % adapter->num_tx_queues;
2008
		adapter->multi_tx_table[i] = &adapter->tx_ring[r_idx];
2009
	}
2010 2011 2012 2013
	return err;
}

/**
2014 2015
 * igb_setup_tctl - configure the transmit control registers
 * @adapter: Board private structure
2016
 **/
2017
void igb_setup_tctl(struct igb_adapter *adapter)
2018 2019 2020 2021
{
	struct e1000_hw *hw = &adapter->hw;
	u32 tctl;

2022 2023
	/* disable queue 0 which is enabled by default on 82575 and 82576 */
	wr32(E1000_TXDCTL(0), 0);
2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038

	/* Program the Transmit Control Register */
	tctl = rd32(E1000_TCTL);
	tctl &= ~E1000_TCTL_CT;
	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);

	igb_config_collision_dist(hw);

	/* Enable transmits */
	tctl |= E1000_TCTL_EN;

	wr32(E1000_TCTL, tctl);
}

2039 2040 2041 2042 2043 2044 2045
/**
 * igb_configure_tx_ring - Configure transmit ring after Reset
 * @adapter: board private structure
 * @ring: tx ring to configure
 *
 * Configure a transmit ring after a reset.
 **/
2046 2047
void igb_configure_tx_ring(struct igb_adapter *adapter,
                           struct igb_ring *ring)
2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066
{
	struct e1000_hw *hw = &adapter->hw;
	u32 txdctl;
	u64 tdba = ring->dma;
	int reg_idx = ring->reg_idx;

	/* disable the queue */
	txdctl = rd32(E1000_TXDCTL(reg_idx));
	wr32(E1000_TXDCTL(reg_idx),
	                txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
	wrfl();
	mdelay(10);

	wr32(E1000_TDLEN(reg_idx),
	                ring->count * sizeof(union e1000_adv_tx_desc));
	wr32(E1000_TDBAL(reg_idx),
	                tdba & 0x00000000ffffffffULL);
	wr32(E1000_TDBAH(reg_idx), tdba >> 32);

2067 2068 2069 2070
	ring->head = hw->hw_addr + E1000_TDH(reg_idx);
	ring->tail = hw->hw_addr + E1000_TDT(reg_idx);
	writel(0, ring->head);
	writel(0, ring->tail);
2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093

	txdctl |= IGB_TX_PTHRESH;
	txdctl |= IGB_TX_HTHRESH << 8;
	txdctl |= IGB_TX_WTHRESH << 16;

	txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
	wr32(E1000_TXDCTL(reg_idx), txdctl);
}

/**
 * igb_configure_tx - Configure transmit Unit after Reset
 * @adapter: board private structure
 *
 * Configure the Tx unit of the MAC after a reset.
 **/
static void igb_configure_tx(struct igb_adapter *adapter)
{
	int i;

	for (i = 0; i < adapter->num_tx_queues; i++)
		igb_configure_tx_ring(adapter, &adapter->tx_ring[i]);
}

2094 2095 2096 2097 2098 2099
/**
 * igb_setup_rx_resources - allocate Rx resources (Descriptors)
 * @rx_ring:    rx descriptor ring (for a specific queue) to setup
 *
 * Returns 0 on success, negative on failure
 **/
2100
int igb_setup_rx_resources(struct igb_ring *rx_ring)
2101
{
2102
	struct pci_dev *pdev = rx_ring->pdev;
2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129
	int size, desc_len;

	size = sizeof(struct igb_buffer) * rx_ring->count;
	rx_ring->buffer_info = vmalloc(size);
	if (!rx_ring->buffer_info)
		goto err;
	memset(rx_ring->buffer_info, 0, size);

	desc_len = sizeof(union e1000_adv_rx_desc);

	/* Round up to nearest 4K */
	rx_ring->size = rx_ring->count * desc_len;
	rx_ring->size = ALIGN(rx_ring->size, 4096);

	rx_ring->desc = pci_alloc_consistent(pdev, rx_ring->size,
					     &rx_ring->dma);

	if (!rx_ring->desc)
		goto err;

	rx_ring->next_to_clean = 0;
	rx_ring->next_to_use = 0;

	return 0;

err:
	vfree(rx_ring->buffer_info);
2130
	rx_ring->buffer_info = NULL;
2131
	dev_err(&pdev->dev, "Unable to allocate memory for "
2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144
		"the receive descriptor ring\n");
	return -ENOMEM;
}

/**
 * igb_setup_all_rx_resources - wrapper to allocate Rx resources
 *				  (Descriptors) for all queues
 * @adapter: board private structure
 *
 * Return 0 on success, negative on failure
 **/
static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
{
2145
	struct pci_dev *pdev = adapter->pdev;
2146 2147 2148
	int i, err = 0;

	for (i = 0; i < adapter->num_rx_queues; i++) {
2149
		err = igb_setup_rx_resources(&adapter->rx_ring[i]);
2150
		if (err) {
2151
			dev_err(&pdev->dev,
2152 2153
				"Allocation for Rx Queue %u failed\n", i);
			for (i--; i >= 0; i--)
2154
				igb_free_rx_resources(&adapter->rx_ring[i]);
2155 2156 2157 2158 2159 2160 2161
			break;
		}
	}

	return err;
}

2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266
/**
 * igb_setup_mrqc - configure the multiple receive queue control registers
 * @adapter: Board private structure
 **/
static void igb_setup_mrqc(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 mrqc, rxcsum;
	u32 j, num_rx_queues, shift = 0, shift2 = 0;
	union e1000_reta {
		u32 dword;
		u8  bytes[4];
	} reta;
	static const u8 rsshash[40] = {
		0x6d, 0x5a, 0x56, 0xda, 0x25, 0x5b, 0x0e, 0xc2, 0x41, 0x67,
		0x25, 0x3d, 0x43, 0xa3, 0x8f, 0xb0, 0xd0, 0xca, 0x2b, 0xcb,
		0xae, 0x7b, 0x30, 0xb4,	0x77, 0xcb, 0x2d, 0xa3, 0x80, 0x30,
		0xf2, 0x0c, 0x6a, 0x42, 0xb7, 0x3b, 0xbe, 0xac, 0x01, 0xfa };

	/* Fill out hash function seeds */
	for (j = 0; j < 10; j++) {
		u32 rsskey = rsshash[(j * 4)];
		rsskey |= rsshash[(j * 4) + 1] << 8;
		rsskey |= rsshash[(j * 4) + 2] << 16;
		rsskey |= rsshash[(j * 4) + 3] << 24;
		array_wr32(E1000_RSSRK(0), j, rsskey);
	}

	num_rx_queues = adapter->num_rx_queues;

	if (adapter->vfs_allocated_count) {
		/* 82575 and 82576 supports 2 RSS queues for VMDq */
		switch (hw->mac.type) {
		case e1000_82576:
			shift = 3;
			num_rx_queues = 2;
			break;
		case e1000_82575:
			shift = 2;
			shift2 = 6;
		default:
			break;
		}
	} else {
		if (hw->mac.type == e1000_82575)
			shift = 6;
	}

	for (j = 0; j < (32 * 4); j++) {
		reta.bytes[j & 3] = (j % num_rx_queues) << shift;
		if (shift2)
			reta.bytes[j & 3] |= num_rx_queues << shift2;
		if ((j & 3) == 3)
			wr32(E1000_RETA(j >> 2), reta.dword);
	}

	/*
	 * Disable raw packet checksumming so that RSS hash is placed in
	 * descriptor on writeback.  No need to enable TCP/UDP/IP checksum
	 * offloads as they are enabled by default
	 */
	rxcsum = rd32(E1000_RXCSUM);
	rxcsum |= E1000_RXCSUM_PCSD;

	if (adapter->hw.mac.type >= e1000_82576)
		/* Enable Receive Checksum Offload for SCTP */
		rxcsum |= E1000_RXCSUM_CRCOFL;

	/* Don't need to set TUOFL or IPOFL, they default to 1 */
	wr32(E1000_RXCSUM, rxcsum);

	/* If VMDq is enabled then we set the appropriate mode for that, else
	 * we default to RSS so that an RSS hash is calculated per packet even
	 * if we are only using one queue */
	if (adapter->vfs_allocated_count) {
		if (hw->mac.type > e1000_82575) {
			/* Set the default pool for the PF's first queue */
			u32 vtctl = rd32(E1000_VT_CTL);
			vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
				   E1000_VT_CTL_DISABLE_DEF_POOL);
			vtctl |= adapter->vfs_allocated_count <<
				E1000_VT_CTL_DEFAULT_POOL_SHIFT;
			wr32(E1000_VT_CTL, vtctl);
		}
		if (adapter->num_rx_queues > 1)
			mrqc = E1000_MRQC_ENABLE_VMDQ_RSS_2Q;
		else
			mrqc = E1000_MRQC_ENABLE_VMDQ;
	} else {
		mrqc = E1000_MRQC_ENABLE_RSS_4Q;
	}
	igb_vmm_control(adapter);

	mrqc |= (E1000_MRQC_RSS_FIELD_IPV4 |
		 E1000_MRQC_RSS_FIELD_IPV4_TCP);
	mrqc |= (E1000_MRQC_RSS_FIELD_IPV6 |
		 E1000_MRQC_RSS_FIELD_IPV6_TCP);
	mrqc |= (E1000_MRQC_RSS_FIELD_IPV4_UDP |
		 E1000_MRQC_RSS_FIELD_IPV6_UDP);
	mrqc |= (E1000_MRQC_RSS_FIELD_IPV6_UDP_EX |
		 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);

	wr32(E1000_MRQC, mrqc);
}

2267 2268 2269 2270
/**
 * igb_setup_rctl - configure the receive control registers
 * @adapter: Board private structure
 **/
2271
void igb_setup_rctl(struct igb_adapter *adapter)
2272 2273 2274 2275 2276 2277 2278
{
	struct e1000_hw *hw = &adapter->hw;
	u32 rctl;

	rctl = rd32(E1000_RCTL);

	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
2279
	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
2280

2281
	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
2282
		(hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
2283

2284 2285 2286 2287
	/*
	 * enable stripping of CRC. It's unlikely this will break BMC
	 * redirection as it did with e1000. Newer features require
	 * that the HW strips the CRC.
2288
	 */
2289
	rctl |= E1000_RCTL_SECRC;
2290

2291
	/*
2292
	 * disable store bad packets and clear size bits.
2293
	 */
2294
	rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
2295

A
Alexander Duyck 已提交
2296 2297
	/* enable LPE to prevent packets larger than max_frame_size */
	rctl |= E1000_RCTL_LPE;
2298

2299 2300
	/* disable queue 0 to prevent tail write w/o re-config */
	wr32(E1000_RXDCTL(0), 0);
2301

2302 2303 2304 2305 2306 2307 2308 2309 2310
	/* Attention!!!  For SR-IOV PF driver operations you must enable
	 * queue drop for all VF and PF queues to prevent head of line blocking
	 * if an un-trusted VF does not provide descriptors to hardware.
	 */
	if (adapter->vfs_allocated_count) {
		/* set all queue drop enable bits */
		wr32(E1000_QDE, ALL_QUEUES);
	}

2311 2312 2313
	wr32(E1000_RCTL, rctl);
}

2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333
static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
                                   int vfn)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 vmolr;

	/* if it isn't the PF check to see if VFs are enabled and
	 * increase the size to support vlan tags */
	if (vfn < adapter->vfs_allocated_count &&
	    adapter->vf_data[vfn].vlans_enabled)
		size += VLAN_TAG_SIZE;

	vmolr = rd32(E1000_VMOLR(vfn));
	vmolr &= ~E1000_VMOLR_RLPML_MASK;
	vmolr |= size | E1000_VMOLR_LPE;
	wr32(E1000_VMOLR(vfn), vmolr);

	return 0;
}

2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352
/**
 * igb_rlpml_set - set maximum receive packet size
 * @adapter: board private structure
 *
 * Configure maximum receivable packet size.
 **/
static void igb_rlpml_set(struct igb_adapter *adapter)
{
	u32 max_frame_size = adapter->max_frame_size;
	struct e1000_hw *hw = &adapter->hw;
	u16 pf_id = adapter->vfs_allocated_count;

	if (adapter->vlgrp)
		max_frame_size += VLAN_TAG_SIZE;

	/* if vfs are enabled we set RLPML to the largest possible request
	 * size and set the VMOLR RLPML to the size we need */
	if (pf_id) {
		igb_set_vf_rlpml(adapter, max_frame_size, pf_id);
2353
		max_frame_size = MAX_JUMBO_FRAME_SIZE;
2354 2355 2356 2357 2358
	}

	wr32(E1000_RLPML, max_frame_size);
}

2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389
static inline void igb_set_vmolr(struct igb_adapter *adapter, int vfn)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 vmolr;

	/*
	 * This register exists only on 82576 and newer so if we are older then
	 * we should exit and do nothing
	 */
	if (hw->mac.type < e1000_82576)
		return;

	vmolr = rd32(E1000_VMOLR(vfn));
	vmolr |= E1000_VMOLR_AUPE |        /* Accept untagged packets */
	         E1000_VMOLR_STRVLAN;      /* Strip vlan tags */

	/* clear all bits that might not be set */
	vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);

	if (adapter->num_rx_queues > 1 && vfn == adapter->vfs_allocated_count)
		vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
	/*
	 * for VMDq only allow the VFs and pool 0 to accept broadcast and
	 * multicast packets
	 */
	if (vfn <= adapter->vfs_allocated_count)
		vmolr |= E1000_VMOLR_BAM;	   /* Accept broadcast */

	wr32(E1000_VMOLR(vfn), vmolr);
}

2390 2391 2392 2393 2394 2395 2396
/**
 * igb_configure_rx_ring - Configure a receive ring after Reset
 * @adapter: board private structure
 * @ring: receive ring to be configured
 *
 * Configure the Rx unit of the MAC after a reset.
 **/
2397 2398
void igb_configure_rx_ring(struct igb_adapter *adapter,
                           struct igb_ring *ring)
2399 2400 2401 2402
{
	struct e1000_hw *hw = &adapter->hw;
	u64 rdba = ring->dma;
	int reg_idx = ring->reg_idx;
2403
	u32 srrctl, rxdctl;
2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417

	/* disable the queue */
	rxdctl = rd32(E1000_RXDCTL(reg_idx));
	wr32(E1000_RXDCTL(reg_idx),
	                rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);

	/* Set DMA base address registers */
	wr32(E1000_RDBAL(reg_idx),
	     rdba & 0x00000000ffffffffULL);
	wr32(E1000_RDBAH(reg_idx), rdba >> 32);
	wr32(E1000_RDLEN(reg_idx),
	               ring->count * sizeof(union e1000_adv_rx_desc));

	/* initialize head and tail */
2418 2419 2420 2421
	ring->head = hw->hw_addr + E1000_RDH(reg_idx);
	ring->tail = hw->hw_addr + E1000_RDT(reg_idx);
	writel(0, ring->head);
	writel(0, ring->tail);
2422

2423
	/* set descriptor configuration */
2424 2425
	if (ring->rx_buffer_len < IGB_RXBUFFER_1024) {
		srrctl = ALIGN(ring->rx_buffer_len, 64) <<
2426 2427 2428 2429 2430 2431 2432 2433 2434 2435
		         E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
#if (PAGE_SIZE / 2) > IGB_RXBUFFER_16384
		srrctl |= IGB_RXBUFFER_16384 >>
		          E1000_SRRCTL_BSIZEPKT_SHIFT;
#else
		srrctl |= (PAGE_SIZE / 2) >>
		          E1000_SRRCTL_BSIZEPKT_SHIFT;
#endif
		srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
	} else {
2436
		srrctl = ALIGN(ring->rx_buffer_len, 1024) >>
2437 2438 2439 2440 2441 2442
		         E1000_SRRCTL_BSIZEPKT_SHIFT;
		srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
	}

	wr32(E1000_SRRCTL(reg_idx), srrctl);

2443 2444 2445
	/* set filtering for VMDQ pools */
	igb_set_vmolr(adapter, reg_idx & 0x7);

2446 2447 2448 2449 2450 2451 2452 2453 2454 2455
	/* enable receive descriptor fetching */
	rxdctl = rd32(E1000_RXDCTL(reg_idx));
	rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
	rxdctl &= 0xFFF00000;
	rxdctl |= IGB_RX_PTHRESH;
	rxdctl |= IGB_RX_HTHRESH << 8;
	rxdctl |= IGB_RX_WTHRESH << 16;
	wr32(E1000_RXDCTL(reg_idx), rxdctl);
}

2456 2457 2458 2459 2460 2461 2462 2463
/**
 * igb_configure_rx - Configure receive Unit after Reset
 * @adapter: board private structure
 *
 * Configure the Rx unit of the MAC after a reset.
 **/
static void igb_configure_rx(struct igb_adapter *adapter)
{
2464
	int i;
2465

2466 2467 2468
	/* set UTA to appropriate mode */
	igb_set_uta(adapter);

2469 2470 2471 2472
	/* set the correct pool for the PF default MAC address in entry 0 */
	igb_rar_set_qsel(adapter, adapter->hw.mac.addr, 0,
	                 adapter->vfs_allocated_count);

2473 2474 2475 2476
	/* Setup the HW Rx Head and Tail Descriptor Pointers and
	 * the Base and Length of the Rx Descriptor Ring */
	for (i = 0; i < adapter->num_rx_queues; i++)
		igb_configure_rx_ring(adapter, &adapter->rx_ring[i]);
2477 2478 2479 2480 2481 2482 2483 2484
}

/**
 * igb_free_tx_resources - Free Tx Resources per Queue
 * @tx_ring: Tx descriptor ring for a specific queue
 *
 * Free all transmit software resources
 **/
2485
void igb_free_tx_resources(struct igb_ring *tx_ring)
2486
{
2487
	igb_clean_tx_ring(tx_ring);
2488 2489 2490 2491

	vfree(tx_ring->buffer_info);
	tx_ring->buffer_info = NULL;

2492 2493 2494 2495
	/* if not set, then don't free */
	if (!tx_ring->desc)
		return;

2496 2497
	pci_free_consistent(tx_ring->pdev, tx_ring->size,
	                    tx_ring->desc, tx_ring->dma);
2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512

	tx_ring->desc = NULL;
}

/**
 * igb_free_all_tx_resources - Free Tx Resources for All Queues
 * @adapter: board private structure
 *
 * Free all transmit software resources
 **/
static void igb_free_all_tx_resources(struct igb_adapter *adapter)
{
	int i;

	for (i = 0; i < adapter->num_tx_queues; i++)
2513
		igb_free_tx_resources(&adapter->tx_ring[i]);
2514 2515
}

2516 2517
void igb_unmap_and_free_tx_resource(struct igb_ring *tx_ring,
				    struct igb_buffer *buffer_info)
2518
{
2519
	buffer_info->dma = 0;
2520
	if (buffer_info->skb) {
2521 2522
		skb_dma_unmap(&tx_ring->pdev->dev,
		              buffer_info->skb,
2523
		              DMA_TO_DEVICE);
2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534
		dev_kfree_skb_any(buffer_info->skb);
		buffer_info->skb = NULL;
	}
	buffer_info->time_stamp = 0;
	/* buffer_info must be completely set up in the transmit path */
}

/**
 * igb_clean_tx_ring - Free Tx Buffers
 * @tx_ring: ring to be cleaned
 **/
2535
static void igb_clean_tx_ring(struct igb_ring *tx_ring)
2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546
{
	struct igb_buffer *buffer_info;
	unsigned long size;
	unsigned int i;

	if (!tx_ring->buffer_info)
		return;
	/* Free all the Tx ring sk_buffs */

	for (i = 0; i < tx_ring->count; i++) {
		buffer_info = &tx_ring->buffer_info[i];
2547
		igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568
	}

	size = sizeof(struct igb_buffer) * tx_ring->count;
	memset(tx_ring->buffer_info, 0, size);

	/* Zero out the descriptor ring */
	memset(tx_ring->desc, 0, tx_ring->size);

	tx_ring->next_to_use = 0;
	tx_ring->next_to_clean = 0;
}

/**
 * igb_clean_all_tx_rings - Free Tx Buffers for all queues
 * @adapter: board private structure
 **/
static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
{
	int i;

	for (i = 0; i < adapter->num_tx_queues; i++)
2569
		igb_clean_tx_ring(&adapter->tx_ring[i]);
2570 2571 2572 2573 2574 2575 2576 2577
}

/**
 * igb_free_rx_resources - Free Rx Resources
 * @rx_ring: ring to clean the resources from
 *
 * Free all receive software resources
 **/
2578
void igb_free_rx_resources(struct igb_ring *rx_ring)
2579
{
2580
	igb_clean_rx_ring(rx_ring);
2581 2582 2583 2584

	vfree(rx_ring->buffer_info);
	rx_ring->buffer_info = NULL;

2585 2586 2587 2588
	/* if not set, then don't free */
	if (!rx_ring->desc)
		return;

2589 2590
	pci_free_consistent(rx_ring->pdev, rx_ring->size,
	                    rx_ring->desc, rx_ring->dma);
2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605

	rx_ring->desc = NULL;
}

/**
 * igb_free_all_rx_resources - Free Rx Resources for All Queues
 * @adapter: board private structure
 *
 * Free all receive software resources
 **/
static void igb_free_all_rx_resources(struct igb_adapter *adapter)
{
	int i;

	for (i = 0; i < adapter->num_rx_queues; i++)
2606
		igb_free_rx_resources(&adapter->rx_ring[i]);
2607 2608 2609 2610 2611 2612
}

/**
 * igb_clean_rx_ring - Free Rx Buffers per Queue
 * @rx_ring: ring to free buffers from
 **/
2613
static void igb_clean_rx_ring(struct igb_ring *rx_ring)
2614 2615 2616 2617 2618 2619 2620
{
	struct igb_buffer *buffer_info;
	unsigned long size;
	unsigned int i;

	if (!rx_ring->buffer_info)
		return;
2621

2622 2623 2624 2625
	/* Free all the Rx ring sk_buffs */
	for (i = 0; i < rx_ring->count; i++) {
		buffer_info = &rx_ring->buffer_info[i];
		if (buffer_info->dma) {
2626 2627
			pci_unmap_single(rx_ring->pdev,
			                 buffer_info->dma,
2628
					 rx_ring->rx_buffer_len,
A
Alexander Duyck 已提交
2629
					 PCI_DMA_FROMDEVICE);
2630 2631 2632 2633 2634 2635 2636
			buffer_info->dma = 0;
		}

		if (buffer_info->skb) {
			dev_kfree_skb(buffer_info->skb);
			buffer_info->skb = NULL;
		}
A
Alexander Duyck 已提交
2637
		if (buffer_info->page_dma) {
2638 2639
			pci_unmap_page(rx_ring->pdev,
			               buffer_info->page_dma,
A
Alexander Duyck 已提交
2640 2641 2642 2643
				       PAGE_SIZE / 2,
				       PCI_DMA_FROMDEVICE);
			buffer_info->page_dma = 0;
		}
2644 2645 2646
		if (buffer_info->page) {
			put_page(buffer_info->page);
			buffer_info->page = NULL;
2647
			buffer_info->page_offset = 0;
2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669
		}
	}

	size = sizeof(struct igb_buffer) * rx_ring->count;
	memset(rx_ring->buffer_info, 0, size);

	/* Zero out the descriptor ring */
	memset(rx_ring->desc, 0, rx_ring->size);

	rx_ring->next_to_clean = 0;
	rx_ring->next_to_use = 0;
}

/**
 * igb_clean_all_rx_rings - Free Rx Buffers for all queues
 * @adapter: board private structure
 **/
static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
{
	int i;

	for (i = 0; i < adapter->num_rx_queues; i++)
2670
		igb_clean_rx_ring(&adapter->rx_ring[i]);
2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682
}

/**
 * igb_set_mac - Change the Ethernet Address of the NIC
 * @netdev: network interface device structure
 * @p: pointer to an address structure
 *
 * Returns 0 on success, negative on failure
 **/
static int igb_set_mac(struct net_device *netdev, void *p)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
2683
	struct e1000_hw *hw = &adapter->hw;
2684 2685 2686 2687 2688 2689
	struct sockaddr *addr = p;

	if (!is_valid_ether_addr(addr->sa_data))
		return -EADDRNOTAVAIL;

	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2690
	memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
2691

2692 2693 2694
	/* set the correct pool for the new PF MAC address in entry 0 */
	igb_rar_set_qsel(adapter, hw->mac.addr, 0,
	                 adapter->vfs_allocated_count);
2695

2696 2697 2698 2699
	return 0;
}

/**
2700
 * igb_write_mc_addr_list - write multicast addresses to MTA
2701 2702
 * @netdev: network interface device structure
 *
2703 2704 2705 2706
 * Writes multicast address list to the MTA hash table.
 * Returns: -ENOMEM on failure
 *                0 on no addresses written
 *                X on writing X addresses to MTA
2707
 **/
2708
static int igb_write_mc_addr_list(struct net_device *netdev)
2709 2710 2711
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
2712
	struct dev_mc_list *mc_ptr = netdev->mc_list;
2713 2714
	u8  *mta_list;
	u32 vmolr = 0;
2715 2716
	int i;

2717 2718 2719 2720 2721 2722
	if (!netdev->mc_count) {
		/* nothing to program, so clear mc list */
		igb_update_mc_addr_list(hw, NULL, 0);
		igb_restore_vf_multicasts(adapter);
		return 0;
	}
2723

2724 2725 2726
	mta_list = kzalloc(netdev->mc_count * 6, GFP_ATOMIC);
	if (!mta_list)
		return -ENOMEM;
2727

2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738
	/* set vmolr receive overflow multicast bit */
	vmolr |= E1000_VMOLR_ROMPE;

	/* The shared function expects a packed array of only addresses. */
	mc_ptr = netdev->mc_list;

	for (i = 0; i < netdev->mc_count; i++) {
		if (!mc_ptr)
			break;
		memcpy(mta_list + (i*ETH_ALEN), mc_ptr->dmi_addr, ETH_ALEN);
		mc_ptr = mc_ptr->next;
2739
	}
2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765
	igb_update_mc_addr_list(hw, mta_list, i);
	kfree(mta_list);

	return netdev->mc_count;
}

/**
 * igb_write_uc_addr_list - write unicast addresses to RAR table
 * @netdev: network interface device structure
 *
 * Writes unicast address list to the RAR table.
 * Returns: -ENOMEM on failure/insufficient address space
 *                0 on no addresses written
 *                X on writing X addresses to the RAR table
 **/
static int igb_write_uc_addr_list(struct net_device *netdev)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	unsigned int vfn = adapter->vfs_allocated_count;
	unsigned int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
	int count = 0;

	/* return ENOMEM indicating insufficient memory for addresses */
	if (netdev->uc.count > rar_entries)
		return -ENOMEM;
2766

2767 2768 2769 2770 2771
	if (netdev->uc.count && rar_entries) {
		struct netdev_hw_addr *ha;
		list_for_each_entry(ha, &netdev->uc.list, list) {
			if (!rar_entries)
				break;
2772 2773
			igb_rar_set_qsel(adapter, ha->addr,
			                 rar_entries--,
2774 2775
			                 vfn);
			count++;
2776 2777 2778 2779 2780 2781 2782 2783 2784
		}
	}
	/* write the addresses in reverse order to avoid write combining */
	for (; rar_entries > 0 ; rar_entries--) {
		wr32(E1000_RAH(rar_entries), 0);
		wr32(E1000_RAL(rar_entries), 0);
	}
	wrfl();

2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842
	return count;
}

/**
 * igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
 * @netdev: network interface device structure
 *
 * The set_rx_mode entry point is called whenever the unicast or multicast
 * address lists or the network interface flags are updated.  This routine is
 * responsible for configuring the hardware for proper unicast, multicast,
 * promiscuous mode, and all-multi behavior.
 **/
static void igb_set_rx_mode(struct net_device *netdev)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	unsigned int vfn = adapter->vfs_allocated_count;
	u32 rctl, vmolr = 0;
	int count;

	/* Check for Promiscuous and All Multicast modes */
	rctl = rd32(E1000_RCTL);

	/* clear the effected bits */
	rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_VFE);

	if (netdev->flags & IFF_PROMISC) {
		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
		vmolr |= (E1000_VMOLR_ROPE | E1000_VMOLR_MPME);
	} else {
		if (netdev->flags & IFF_ALLMULTI) {
			rctl |= E1000_RCTL_MPE;
			vmolr |= E1000_VMOLR_MPME;
		} else {
			/*
			 * Write addresses to the MTA, if the attempt fails
			 * then we should just turn on promiscous mode so
			 * that we can at least receive multicast traffic
			 */
			count = igb_write_mc_addr_list(netdev);
			if (count < 0) {
				rctl |= E1000_RCTL_MPE;
				vmolr |= E1000_VMOLR_MPME;
			} else if (count) {
				vmolr |= E1000_VMOLR_ROMPE;
			}
		}
		/*
		 * Write addresses to available RAR registers, if there is not
		 * sufficient space to store all the addresses then enable
		 * unicast promiscous mode
		 */
		count = igb_write_uc_addr_list(netdev);
		if (count < 0) {
			rctl |= E1000_RCTL_UPE;
			vmolr |= E1000_VMOLR_ROPE;
		}
		rctl |= E1000_RCTL_VFE;
2843
	}
2844
	wr32(E1000_RCTL, rctl);
2845

2846 2847 2848 2849 2850 2851 2852
	/*
	 * In order to support SR-IOV and eventually VMDq it is necessary to set
	 * the VMOLR to enable the appropriate modes.  Without this workaround
	 * we will have issues with VLAN tag stripping not being done for frames
	 * that are only arriving because we are the default pool
	 */
	if (hw->mac.type < e1000_82576)
2853
		return;
2854

2855 2856 2857
	vmolr |= rd32(E1000_VMOLR(vfn)) &
	         ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
	wr32(E1000_VMOLR(vfn), vmolr);
2858
	igb_restore_vf_multicasts(adapter);
2859 2860 2861 2862 2863 2864 2865
}

/* Need to wait a few seconds after link up to get diagnostic information from
 * the phy */
static void igb_update_phy_info(unsigned long data)
{
	struct igb_adapter *adapter = (struct igb_adapter *) data;
2866
	igb_get_phy_info(&adapter->hw);
2867 2868
}

A
Alexander Duyck 已提交
2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904
/**
 * igb_has_link - check shared code for link and determine up/down
 * @adapter: pointer to driver private info
 **/
static bool igb_has_link(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	bool link_active = false;
	s32 ret_val = 0;

	/* get_link_status is set on LSC (link status) interrupt or
	 * rx sequence error interrupt.  get_link_status will stay
	 * false until the e1000_check_for_link establishes link
	 * for copper adapters ONLY
	 */
	switch (hw->phy.media_type) {
	case e1000_media_type_copper:
		if (hw->mac.get_link_status) {
			ret_val = hw->mac.ops.check_for_link(hw);
			link_active = !hw->mac.get_link_status;
		} else {
			link_active = true;
		}
		break;
	case e1000_media_type_internal_serdes:
		ret_val = hw->mac.ops.check_for_link(hw);
		link_active = hw->mac.serdes_has_link;
		break;
	default:
	case e1000_media_type_unknown:
		break;
	}

	return link_active;
}

2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923
/**
 * igb_watchdog - Timer Call-back
 * @data: pointer to adapter cast into an unsigned long
 **/
static void igb_watchdog(unsigned long data)
{
	struct igb_adapter *adapter = (struct igb_adapter *)data;
	/* Do the rest outside of interrupt context */
	schedule_work(&adapter->watchdog_task);
}

static void igb_watchdog_task(struct work_struct *work)
{
	struct igb_adapter *adapter = container_of(work,
					struct igb_adapter, watchdog_task);
	struct e1000_hw *hw = &adapter->hw;
	struct net_device *netdev = adapter->netdev;
	struct igb_ring *tx_ring = adapter->tx_ring;
	u32 link;
2924
	int i;
2925

A
Alexander Duyck 已提交
2926
	link = igb_has_link(adapter);
2927 2928 2929
	if (link) {
		if (!netif_carrier_ok(netdev)) {
			u32 ctrl;
2930 2931 2932
			hw->mac.ops.get_speed_and_duplex(hw,
			                                 &adapter->link_speed,
			                                 &adapter->link_duplex);
2933 2934

			ctrl = rd32(E1000_CTRL);
2935 2936
			/* Links status message must follow this format */
			printk(KERN_INFO "igb: %s NIC Link is Up %d Mbps %s, "
2937
				 "Flow Control: %s\n",
2938
			         netdev->name,
2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963
				 adapter->link_speed,
				 adapter->link_duplex == FULL_DUPLEX ?
				 "Full Duplex" : "Half Duplex",
				 ((ctrl & E1000_CTRL_TFCE) && (ctrl &
				 E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
				 E1000_CTRL_RFCE) ? "RX" : ((ctrl &
				 E1000_CTRL_TFCE) ? "TX" : "None")));

			/* tweak tx_queue_len according to speed/duplex and
			 * adjust the timeout factor */
			netdev->tx_queue_len = adapter->tx_queue_len;
			adapter->tx_timeout_factor = 1;
			switch (adapter->link_speed) {
			case SPEED_10:
				netdev->tx_queue_len = 10;
				adapter->tx_timeout_factor = 14;
				break;
			case SPEED_100:
				netdev->tx_queue_len = 100;
				/* maybe add some timeout factor ? */
				break;
			}

			netif_carrier_on(netdev);

2964 2965
			igb_ping_all_vfs(adapter);

2966
			/* link state has changed, schedule phy info update */
2967 2968 2969 2970 2971 2972 2973 2974
			if (!test_bit(__IGB_DOWN, &adapter->state))
				mod_timer(&adapter->phy_info_timer,
					  round_jiffies(jiffies + 2 * HZ));
		}
	} else {
		if (netif_carrier_ok(netdev)) {
			adapter->link_speed = 0;
			adapter->link_duplex = 0;
2975 2976 2977
			/* Links status message must follow this format */
			printk(KERN_INFO "igb: %s NIC Link is Down\n",
			       netdev->name);
2978
			netif_carrier_off(netdev);
2979

2980 2981
			igb_ping_all_vfs(adapter);

2982
			/* link state has changed, schedule phy info update */
2983 2984 2985 2986 2987 2988 2989
			if (!test_bit(__IGB_DOWN, &adapter->state))
				mod_timer(&adapter->phy_info_timer,
					  round_jiffies(jiffies + 2 * HZ));
		}
	}

	igb_update_stats(adapter);
2990
	igb_update_adaptive(hw);
2991 2992

	if (!netif_carrier_ok(netdev)) {
2993
		if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
2994 2995 2996 2997 2998 2999
			/* We've lost link, so the controller stops DMA,
			 * but we've got queued Tx work that's never going
			 * to get done, so reset controller to flush Tx.
			 * (Do the reset outside of interrupt context). */
			adapter->tx_timeout_count++;
			schedule_work(&adapter->reset_task);
3000 3001
			/* return immediately since reset is imminent */
			return;
3002 3003 3004
		}
	}

3005 3006 3007 3008
	/* Force detection of hung controller every watchdog period */
	for (i = 0; i < adapter->num_tx_queues; i++)
		adapter->tx_ring[i].detect_tx_hung = true;

3009
	/* Cause software interrupt to ensure rx ring is cleaned */
3010
	if (adapter->msix_entries) {
3011 3012 3013 3014 3015
		u32 eics = 0;
		for (i = 0; i < adapter->num_q_vectors; i++) {
			struct igb_q_vector *q_vector = adapter->q_vector[i];
			eics |= q_vector->eims_value;
		}
3016 3017 3018 3019
		wr32(E1000_EICS, eics);
	} else {
		wr32(E1000_ICS, E1000_ICS_RXDMT0);
	}
3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033

	/* Reset the timer */
	if (!test_bit(__IGB_DOWN, &adapter->state))
		mod_timer(&adapter->watchdog_timer,
			  round_jiffies(jiffies + 2 * HZ));
}

enum latency_range {
	lowest_latency = 0,
	low_latency = 1,
	bulk_latency = 2,
	latency_invalid = 255
};

3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047
/**
 * igb_update_ring_itr - update the dynamic ITR value based on packet size
 *
 *      Stores a new ITR value based on strictly on packet size.  This
 *      algorithm is less sophisticated than that used in igb_update_itr,
 *      due to the difficulty of synchronizing statistics across multiple
 *      receive rings.  The divisors and thresholds used by this fuction
 *      were determined based on theoretical maximum wire speed and testing
 *      data, in order to minimize response time while increasing bulk
 *      throughput.
 *      This functionality is controlled by the InterruptThrottleRate module
 *      parameter (see igb_param.c)
 *      NOTE:  This function is called only when operating in a multiqueue
 *             receive environment.
3048
 * @q_vector: pointer to q_vector
3049
 **/
3050
static void igb_update_ring_itr(struct igb_q_vector *q_vector)
3051
{
3052
	int new_val = q_vector->itr_val;
3053
	int avg_wire_size = 0;
3054
	struct igb_adapter *adapter = q_vector->adapter;
3055

3056 3057 3058 3059
	/* For non-gigabit speeds, just fix the interrupt rate at 4000
	 * ints/sec - ITR timer value of 120 ticks.
	 */
	if (adapter->link_speed != SPEED_1000) {
3060
		new_val = 976;
3061
		goto set_itr_val;
3062
	}
3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078

	if (q_vector->rx_ring && q_vector->rx_ring->total_packets) {
		struct igb_ring *ring = q_vector->rx_ring;
		avg_wire_size = ring->total_bytes / ring->total_packets;
	}

	if (q_vector->tx_ring && q_vector->tx_ring->total_packets) {
		struct igb_ring *ring = q_vector->tx_ring;
		avg_wire_size = max_t(u32, avg_wire_size,
		                      (ring->total_bytes /
		                       ring->total_packets));
	}

	/* if avg_wire_size isn't set no work was done */
	if (!avg_wire_size)
		goto clear_counts;
3079

3080 3081 3082 3083 3084
	/* Add 24 bytes to size to account for CRC, preamble, and gap */
	avg_wire_size += 24;

	/* Don't starve jumbo frames */
	avg_wire_size = min(avg_wire_size, 3000);
3085

3086 3087 3088 3089 3090
	/* Give a little boost to mid-size frames */
	if ((avg_wire_size > 300) && (avg_wire_size < 1200))
		new_val = avg_wire_size / 3;
	else
		new_val = avg_wire_size / 2;
3091

3092
set_itr_val:
3093 3094 3095
	if (new_val != q_vector->itr_val) {
		q_vector->itr_val = new_val;
		q_vector->set_itr = 1;
3096
	}
3097
clear_counts:
3098 3099 3100 3101 3102 3103 3104 3105
	if (q_vector->rx_ring) {
		q_vector->rx_ring->total_bytes = 0;
		q_vector->rx_ring->total_packets = 0;
	}
	if (q_vector->tx_ring) {
		q_vector->tx_ring->total_bytes = 0;
		q_vector->tx_ring->total_packets = 0;
	}
3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121
}

/**
 * igb_update_itr - update the dynamic ITR value based on statistics
 *      Stores a new ITR value based on packets and byte
 *      counts during the last interrupt.  The advantage of per interrupt
 *      computation is faster updates and more accurate ITR for the current
 *      traffic pattern.  Constants in this function were computed
 *      based on theoretical maximum wire speed and thresholds were set based
 *      on testing data as well as attempting to minimize response time
 *      while increasing bulk throughput.
 *      this functionality is controlled by the InterruptThrottleRate module
 *      parameter (see igb_param.c)
 *      NOTE:  These calculations are only valid when operating in a single-
 *             queue environment.
 * @adapter: pointer to adapter
3122
 * @itr_setting: current q_vector->itr_val
3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161
 * @packets: the number of packets during this measurement interval
 * @bytes: the number of bytes during this measurement interval
 **/
static unsigned int igb_update_itr(struct igb_adapter *adapter, u16 itr_setting,
				   int packets, int bytes)
{
	unsigned int retval = itr_setting;

	if (packets == 0)
		goto update_itr_done;

	switch (itr_setting) {
	case lowest_latency:
		/* handle TSO and jumbo frames */
		if (bytes/packets > 8000)
			retval = bulk_latency;
		else if ((packets < 5) && (bytes > 512))
			retval = low_latency;
		break;
	case low_latency:  /* 50 usec aka 20000 ints/s */
		if (bytes > 10000) {
			/* this if handles the TSO accounting */
			if (bytes/packets > 8000) {
				retval = bulk_latency;
			} else if ((packets < 10) || ((bytes/packets) > 1200)) {
				retval = bulk_latency;
			} else if ((packets > 35)) {
				retval = lowest_latency;
			}
		} else if (bytes/packets > 2000) {
			retval = bulk_latency;
		} else if (packets <= 2 && bytes < 512) {
			retval = lowest_latency;
		}
		break;
	case bulk_latency: /* 250 usec aka 4000 ints/s */
		if (bytes > 25000) {
			if (packets > 35)
				retval = low_latency;
3162
		} else if (bytes < 1500) {
3163 3164 3165 3166 3167 3168 3169 3170 3171
			retval = low_latency;
		}
		break;
	}

update_itr_done:
	return retval;
}

3172
static void igb_set_itr(struct igb_adapter *adapter)
3173
{
3174
	struct igb_q_vector *q_vector = adapter->q_vector[0];
3175
	u16 current_itr;
3176
	u32 new_itr = q_vector->itr_val;
3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189

	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
	if (adapter->link_speed != SPEED_1000) {
		current_itr = 0;
		new_itr = 4000;
		goto set_itr_now;
	}

	adapter->rx_itr = igb_update_itr(adapter,
				    adapter->rx_itr,
				    adapter->rx_ring->total_packets,
				    adapter->rx_ring->total_bytes);

3190 3191 3192 3193 3194
	adapter->tx_itr = igb_update_itr(adapter,
				    adapter->tx_itr,
				    adapter->tx_ring->total_packets,
				    adapter->tx_ring->total_bytes);
	current_itr = max(adapter->rx_itr, adapter->tx_itr);
3195

3196
	/* conservative mode (itr 3) eliminates the lowest_latency setting */
3197
	if (adapter->rx_itr_setting == 3 && current_itr == lowest_latency)
3198 3199
		current_itr = low_latency;

3200 3201 3202
	switch (current_itr) {
	/* counts and packets in update_itr are dependent on these numbers */
	case lowest_latency:
3203
		new_itr = 56;  /* aka 70,000 ints/sec */
3204 3205
		break;
	case low_latency:
3206
		new_itr = 196; /* aka 20,000 ints/sec */
3207 3208
		break;
	case bulk_latency:
3209
		new_itr = 980; /* aka 4,000 ints/sec */
3210 3211 3212 3213 3214 3215
		break;
	default:
		break;
	}

set_itr_now:
3216 3217
	adapter->rx_ring->total_bytes = 0;
	adapter->rx_ring->total_packets = 0;
3218 3219
	adapter->tx_ring->total_bytes = 0;
	adapter->tx_ring->total_packets = 0;
3220

3221
	if (new_itr != q_vector->itr_val) {
3222 3223 3224
		/* this attempts to bias the interrupt rate towards Bulk
		 * by adding intermediate steps when interrupt rate is
		 * increasing */
3225 3226 3227 3228
		new_itr = new_itr > q_vector->itr_val ?
		             max((new_itr * q_vector->itr_val) /
		                 (new_itr + (q_vector->itr_val >> 2)),
		                 new_itr) :
3229 3230 3231 3232 3233 3234 3235
			     new_itr;
		/* Don't write the value here; it resets the adapter's
		 * internal timer, and causes us to delay far longer than
		 * we should between interrupts.  Instead, we write the ITR
		 * value at the beginning of the next interrupt so the timing
		 * ends up being correct.
		 */
3236 3237
		q_vector->itr_val = new_itr;
		q_vector->set_itr = 1;
3238 3239 3240 3241 3242 3243 3244 3245 3246
	}

	return;
}

#define IGB_TX_FLAGS_CSUM		0x00000001
#define IGB_TX_FLAGS_VLAN		0x00000002
#define IGB_TX_FLAGS_TSO		0x00000004
#define IGB_TX_FLAGS_IPV4		0x00000008
A
Alexander Duyck 已提交
3247 3248 3249
#define IGB_TX_FLAGS_TSTAMP		0x00000010
#define IGB_TX_FLAGS_VLAN_MASK		0xffff0000
#define IGB_TX_FLAGS_VLAN_SHIFT		        16
3250

3251
static inline int igb_tso_adv(struct igb_ring *tx_ring,
3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311
			      struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
{
	struct e1000_adv_tx_context_desc *context_desc;
	unsigned int i;
	int err;
	struct igb_buffer *buffer_info;
	u32 info = 0, tu_cmd = 0;
	u32 mss_l4len_idx, l4len;
	*hdr_len = 0;

	if (skb_header_cloned(skb)) {
		err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
		if (err)
			return err;
	}

	l4len = tcp_hdrlen(skb);
	*hdr_len += l4len;

	if (skb->protocol == htons(ETH_P_IP)) {
		struct iphdr *iph = ip_hdr(skb);
		iph->tot_len = 0;
		iph->check = 0;
		tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
							 iph->daddr, 0,
							 IPPROTO_TCP,
							 0);
	} else if (skb_shinfo(skb)->gso_type == SKB_GSO_TCPV6) {
		ipv6_hdr(skb)->payload_len = 0;
		tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
						       &ipv6_hdr(skb)->daddr,
						       0, IPPROTO_TCP, 0);
	}

	i = tx_ring->next_to_use;

	buffer_info = &tx_ring->buffer_info[i];
	context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);
	/* VLAN MACLEN IPLEN */
	if (tx_flags & IGB_TX_FLAGS_VLAN)
		info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
	info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
	*hdr_len += skb_network_offset(skb);
	info |= skb_network_header_len(skb);
	*hdr_len += skb_network_header_len(skb);
	context_desc->vlan_macip_lens = cpu_to_le32(info);

	/* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
	tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);

	if (skb->protocol == htons(ETH_P_IP))
		tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
	tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;

	context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);

	/* MSS L4LEN IDX */
	mss_l4len_idx = (skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT);
	mss_l4len_idx |= (l4len << E1000_ADVTXD_L4LEN_SHIFT);

3312
	/* For 82575, context index must be unique per ring. */
3313 3314
	if (tx_ring->flags & IGB_RING_FLAG_TX_CTX_IDX)
		mss_l4len_idx |= tx_ring->reg_idx << 4;
3315 3316 3317 3318 3319

	context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
	context_desc->seqnum_seed = 0;

	buffer_info->time_stamp = jiffies;
A
Alexander Duyck 已提交
3320
	buffer_info->next_to_watch = i;
3321 3322 3323 3324 3325 3326 3327 3328 3329 3330
	buffer_info->dma = 0;
	i++;
	if (i == tx_ring->count)
		i = 0;

	tx_ring->next_to_use = i;

	return true;
}

3331 3332
static inline bool igb_tx_csum_adv(struct igb_ring *tx_ring,
				   struct sk_buff *skb, u32 tx_flags)
3333 3334
{
	struct e1000_adv_tx_context_desc *context_desc;
3335
	struct pci_dev *pdev = tx_ring->pdev;
3336 3337
	struct igb_buffer *buffer_info;
	u32 info = 0, tu_cmd = 0;
3338
	unsigned int i;
3339 3340 3341 3342 3343 3344 3345 3346 3347

	if ((skb->ip_summed == CHECKSUM_PARTIAL) ||
	    (tx_flags & IGB_TX_FLAGS_VLAN)) {
		i = tx_ring->next_to_use;
		buffer_info = &tx_ring->buffer_info[i];
		context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);

		if (tx_flags & IGB_TX_FLAGS_VLAN)
			info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
A
Alexander Duyck 已提交
3348

3349 3350 3351 3352 3353 3354 3355 3356 3357
		info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
		if (skb->ip_summed == CHECKSUM_PARTIAL)
			info |= skb_network_header_len(skb);

		context_desc->vlan_macip_lens = cpu_to_le32(info);

		tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);

		if (skb->ip_summed == CHECKSUM_PARTIAL) {
3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369
			__be16 protocol;

			if (skb->protocol == cpu_to_be16(ETH_P_8021Q)) {
				const struct vlan_ethhdr *vhdr =
				          (const struct vlan_ethhdr*)skb->data;

				protocol = vhdr->h_vlan_encapsulated_proto;
			} else {
				protocol = skb->protocol;
			}

			switch (protocol) {
3370
			case cpu_to_be16(ETH_P_IP):
3371
				tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
3372 3373
				if (ip_hdr(skb)->protocol == IPPROTO_TCP)
					tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
3374 3375
				else if (ip_hdr(skb)->protocol == IPPROTO_SCTP)
					tu_cmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
3376
				break;
3377
			case cpu_to_be16(ETH_P_IPV6):
3378 3379 3380
				/* XXX what about other V6 headers?? */
				if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
					tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
3381 3382
				else if (ipv6_hdr(skb)->nexthdr == IPPROTO_SCTP)
					tu_cmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
3383 3384 3385
				break;
			default:
				if (unlikely(net_ratelimit()))
3386
					dev_warn(&pdev->dev,
3387 3388 3389 3390
					    "partial checksum but proto=%x!\n",
					    skb->protocol);
				break;
			}
3391 3392 3393 3394
		}

		context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
		context_desc->seqnum_seed = 0;
3395
		if (tx_ring->flags & IGB_RING_FLAG_TX_CTX_IDX)
3396
			context_desc->mss_l4len_idx =
3397
				cpu_to_le32(tx_ring->reg_idx << 4);
3398 3399

		buffer_info->time_stamp = jiffies;
A
Alexander Duyck 已提交
3400
		buffer_info->next_to_watch = i;
3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415
		buffer_info->dma = 0;

		i++;
		if (i == tx_ring->count)
			i = 0;
		tx_ring->next_to_use = i;

		return true;
	}
	return false;
}

#define IGB_MAX_TXD_PWR	16
#define IGB_MAX_DATA_PER_TXD	(1<<IGB_MAX_TXD_PWR)

3416
static inline int igb_tx_map_adv(struct igb_ring *tx_ring, struct sk_buff *skb,
A
Alexander Duyck 已提交
3417
				 unsigned int first)
3418 3419
{
	struct igb_buffer *buffer_info;
3420
	struct pci_dev *pdev = tx_ring->pdev;
3421 3422 3423
	unsigned int len = skb_headlen(skb);
	unsigned int count = 0, i;
	unsigned int f;
3424
	dma_addr_t *map;
3425 3426 3427

	i = tx_ring->next_to_use;

3428 3429
	if (skb_dma_map(&pdev->dev, skb, DMA_TO_DEVICE)) {
		dev_err(&pdev->dev, "TX DMA map failed\n");
3430 3431 3432 3433 3434
		return 0;
	}

	map = skb_shinfo(skb)->dma_maps;

3435 3436 3437 3438 3439
	buffer_info = &tx_ring->buffer_info[i];
	BUG_ON(len >= IGB_MAX_DATA_PER_TXD);
	buffer_info->length = len;
	/* set time_stamp *before* dma to help avoid a possible race */
	buffer_info->time_stamp = jiffies;
A
Alexander Duyck 已提交
3440
	buffer_info->next_to_watch = i;
E
Eric Dumazet 已提交
3441
	buffer_info->dma = skb_shinfo(skb)->dma_head;
3442 3443 3444 3445

	for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
		struct skb_frag_struct *frag;

3446 3447 3448 3449
		i++;
		if (i == tx_ring->count)
			i = 0;

3450 3451 3452 3453 3454 3455 3456
		frag = &skb_shinfo(skb)->frags[f];
		len = frag->size;

		buffer_info = &tx_ring->buffer_info[i];
		BUG_ON(len >= IGB_MAX_DATA_PER_TXD);
		buffer_info->length = len;
		buffer_info->time_stamp = jiffies;
A
Alexander Duyck 已提交
3457
		buffer_info->next_to_watch = i;
3458
		buffer_info->dma = map[count];
3459 3460 3461 3462
		count++;
	}

	tx_ring->buffer_info[i].skb = skb;
A
Alexander Duyck 已提交
3463
	tx_ring->buffer_info[first].next_to_watch = i;
3464

A
Alexander Duyck 已提交
3465
	return ++count;
3466 3467
}

3468
static inline void igb_tx_queue_adv(struct igb_ring *tx_ring,
3469 3470 3471
				    int tx_flags, int count, u32 paylen,
				    u8 hdr_len)
{
A
Alexander Duyck 已提交
3472
	union e1000_adv_tx_desc *tx_desc;
3473 3474
	struct igb_buffer *buffer_info;
	u32 olinfo_status = 0, cmd_type_len;
A
Alexander Duyck 已提交
3475
	unsigned int i = tx_ring->next_to_use;
3476 3477 3478 3479 3480 3481 3482

	cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS |
			E1000_ADVTXD_DCMD_DEXT);

	if (tx_flags & IGB_TX_FLAGS_VLAN)
		cmd_type_len |= E1000_ADVTXD_DCMD_VLE;

3483 3484 3485
	if (tx_flags & IGB_TX_FLAGS_TSTAMP)
		cmd_type_len |= E1000_ADVTXD_MAC_TSTAMP;

3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499
	if (tx_flags & IGB_TX_FLAGS_TSO) {
		cmd_type_len |= E1000_ADVTXD_DCMD_TSE;

		/* insert tcp checksum */
		olinfo_status |= E1000_TXD_POPTS_TXSM << 8;

		/* insert ip checksum */
		if (tx_flags & IGB_TX_FLAGS_IPV4)
			olinfo_status |= E1000_TXD_POPTS_IXSM << 8;

	} else if (tx_flags & IGB_TX_FLAGS_CSUM) {
		olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
	}

3500 3501 3502
	if ((tx_ring->flags & IGB_RING_FLAG_TX_CTX_IDX) &&
	    (tx_flags & (IGB_TX_FLAGS_CSUM |
	                 IGB_TX_FLAGS_TSO |
3503
			 IGB_TX_FLAGS_VLAN)))
3504
		olinfo_status |= tx_ring->reg_idx << 4;
3505 3506 3507

	olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT);

A
Alexander Duyck 已提交
3508
	do {
3509 3510 3511 3512 3513 3514
		buffer_info = &tx_ring->buffer_info[i];
		tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
		tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
		tx_desc->read.cmd_type_len =
			cpu_to_le32(cmd_type_len | buffer_info->length);
		tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
A
Alexander Duyck 已提交
3515
		count--;
3516 3517 3518
		i++;
		if (i == tx_ring->count)
			i = 0;
A
Alexander Duyck 已提交
3519
	} while (count > 0);
3520

3521
	tx_desc->read.cmd_type_len |= cpu_to_le32(IGB_ADVTXD_DCMD);
3522 3523 3524 3525 3526 3527 3528
	/* Force memory writes to complete before letting h/w
	 * know there are new descriptors to fetch.  (Only
	 * applicable for weak-ordered memory model archs,
	 * such as IA-64). */
	wmb();

	tx_ring->next_to_use = i;
3529
	writel(i, tx_ring->tail);
3530 3531 3532 3533 3534
	/* we need this if more than one processor can write to our tail
	 * at a time, it syncronizes IO on IA64/Altix systems */
	mmiowb();
}

3535
static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, int size)
3536
{
3537 3538
	struct net_device *netdev = tx_ring->netdev;

3539 3540
	netif_stop_subqueue(netdev, tx_ring->queue_index);

3541 3542 3543 3544 3545 3546 3547
	/* Herbert's original patch had:
	 *  smp_mb__after_netif_stop_queue();
	 * but since that doesn't exist yet, just open code it. */
	smp_mb();

	/* We need to check again in a case another CPU has just
	 * made room available. */
3548
	if (igb_desc_unused(tx_ring) < size)
3549 3550 3551
		return -EBUSY;

	/* A reprieve! */
3552
	netif_wake_subqueue(netdev, tx_ring->queue_index);
3553
	tx_ring->tx_stats.restart_queue++;
3554 3555 3556
	return 0;
}

3557
static int igb_maybe_stop_tx(struct igb_ring *tx_ring, int size)
3558
{
3559
	if (igb_desc_unused(tx_ring) >= size)
3560
		return 0;
3561
	return __igb_maybe_stop_tx(tx_ring, size);
3562 3563
}

3564 3565
netdev_tx_t igb_xmit_frame_ring_adv(struct sk_buff *skb,
				    struct igb_ring *tx_ring)
3566
{
3567
	struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
A
Alexander Duyck 已提交
3568
	unsigned int first;
3569 3570
	unsigned int tx_flags = 0;
	u8 hdr_len = 0;
A
Alexander Duyck 已提交
3571
	int tso = 0, count;
3572
	union skb_shared_tx *shtx = skb_tx(skb);
3573 3574 3575 3576 3577 3578

	/* need: 1 descriptor per page,
	 *       + 2 desc gap to keep tail from touching head,
	 *       + 1 desc for skb->data,
	 *       + 1 desc for context descriptor,
	 * otherwise try next time */
3579
	if (igb_maybe_stop_tx(tx_ring, skb_shinfo(skb)->nr_frags + 4)) {
3580 3581 3582
		/* this is a hard error */
		return NETDEV_TX_BUSY;
	}
3583 3584 3585 3586 3587

	if (unlikely(shtx->hardware)) {
		shtx->in_progress = 1;
		tx_flags |= IGB_TX_FLAGS_TSTAMP;
	}
3588

A
Alexander Duyck 已提交
3589
	if (vlan_tx_tag_present(skb) && adapter->vlgrp) {
3590 3591 3592 3593
		tx_flags |= IGB_TX_FLAGS_VLAN;
		tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
	}

3594 3595 3596
	if (skb->protocol == htons(ETH_P_IP))
		tx_flags |= IGB_TX_FLAGS_IPV4;

A
Alexander Duyck 已提交
3597
	first = tx_ring->next_to_use;
3598 3599
	if (skb_is_gso(skb)) {
		tso = igb_tso_adv(tx_ring, skb, tx_flags, &hdr_len);
A
Alexander Duyck 已提交
3600

3601 3602 3603 3604
		if (tso < 0) {
			dev_kfree_skb_any(skb);
			return NETDEV_TX_OK;
		}
3605 3606 3607 3608
	}

	if (tso)
		tx_flags |= IGB_TX_FLAGS_TSO;
3609
	else if (igb_tx_csum_adv(tx_ring, skb, tx_flags) &&
3610 3611
	         (skb->ip_summed == CHECKSUM_PARTIAL))
		tx_flags |= IGB_TX_FLAGS_CSUM;
3612

3613
	/*
A
Alexander Duyck 已提交
3614
	 * count reflects descriptors mapped, if 0 or less then mapping error
3615 3616
	 * has occured and we need to rewind the descriptor queue
	 */
3617
	count = igb_tx_map_adv(tx_ring, skb, first);
A
Alexander Duyck 已提交
3618
	if (count <= 0) {
3619 3620 3621
		dev_kfree_skb_any(skb);
		tx_ring->buffer_info[first].time_stamp = 0;
		tx_ring->next_to_use = first;
3622
		return NETDEV_TX_OK;
3623
	}
3624

3625 3626 3627
	igb_tx_queue_adv(tx_ring, tx_flags, count, skb->len, hdr_len);

	/* Make sure there is space in the ring for the next send. */
3628
	igb_maybe_stop_tx(tx_ring, MAX_SKB_FRAGS + 4);
3629

3630 3631 3632
	return NETDEV_TX_OK;
}

3633 3634
static netdev_tx_t igb_xmit_frame_adv(struct sk_buff *skb,
				      struct net_device *netdev)
3635 3636
{
	struct igb_adapter *adapter = netdev_priv(netdev);
3637 3638
	struct igb_ring *tx_ring;
	int r_idx = 0;
3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649

	if (test_bit(__IGB_DOWN, &adapter->state)) {
		dev_kfree_skb_any(skb);
		return NETDEV_TX_OK;
	}

	if (skb->len <= 0) {
		dev_kfree_skb_any(skb);
		return NETDEV_TX_OK;
	}

3650
	r_idx = skb->queue_mapping & (IGB_ABS_MAX_TX_QUEUES - 1);
3651
	tx_ring = adapter->multi_tx_table[r_idx];
3652 3653 3654 3655 3656

	/* This goes back to the question of how to logically map a tx queue
	 * to a flow.  Right now, performance is impacted slightly negatively
	 * if using multiple tx queues.  If the stack breaks away from a
	 * single qdisc implementation, we can look at this again. */
3657
	return igb_xmit_frame_ring_adv(skb, tx_ring);
3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670
}

/**
 * igb_tx_timeout - Respond to a Tx Hang
 * @netdev: network interface device structure
 **/
static void igb_tx_timeout(struct net_device *netdev)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;

	/* Do the reset outside of interrupt context */
	adapter->tx_timeout_count++;
3671

3672
	schedule_work(&adapter->reset_task);
3673 3674
	wr32(E1000_EICS,
	     (adapter->eims_enable_mask & ~adapter->eims_other));
3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691
}

static void igb_reset_task(struct work_struct *work)
{
	struct igb_adapter *adapter;
	adapter = container_of(work, struct igb_adapter, reset_task);

	igb_reinit_locked(adapter);
}

/**
 * igb_get_stats - Get System Network Statistics
 * @netdev: network interface device structure
 *
 * Returns the address of the device statistics structure.
 * The statistics are actually updated from the timer callback.
 **/
3692
static struct net_device_stats *igb_get_stats(struct net_device *netdev)
3693 3694
{
	/* only return the current stats */
3695
	return &netdev->stats;
3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707
}

/**
 * igb_change_mtu - Change the Maximum Transfer Unit
 * @netdev: network interface device structure
 * @new_mtu: new value for maximum frame size
 *
 * Returns 0 on success, negative on failure
 **/
static int igb_change_mtu(struct net_device *netdev, int new_mtu)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
3708
	struct pci_dev *pdev = adapter->pdev;
3709
	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
3710
	u32 rx_buffer_len, i;
3711

3712
	if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3713
		dev_err(&pdev->dev, "Invalid MTU setting\n");
3714 3715 3716 3717
		return -EINVAL;
	}

	if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
3718
		dev_err(&pdev->dev, "MTU > 9216 not supported.\n");
3719 3720 3721 3722 3723
		return -EINVAL;
	}

	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
		msleep(1);
3724

3725 3726 3727 3728 3729 3730 3731 3732
	/* igb_down has a dependency on max_frame_size */
	adapter->max_frame_size = max_frame;
	/* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
	 * means we reserve 2 more, this pushes us to allocate from the next
	 * larger slab size.
	 * i.e. RXBUFFER_2048 --> size-4096 slab
	 */

3733
	if (max_frame <= IGB_RXBUFFER_1024)
3734
		rx_buffer_len = IGB_RXBUFFER_1024;
A
Alexander Duyck 已提交
3735
	else if (max_frame <= MAXIMUM_ETHERNET_VLAN_SIZE)
3736
		rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
A
Alexander Duyck 已提交
3737
	else
3738 3739 3740 3741
		rx_buffer_len = IGB_RXBUFFER_128;

	if (netif_running(netdev))
		igb_down(adapter);
3742

3743
	dev_info(&pdev->dev, "changing MTU from %d to %d\n",
3744 3745 3746
		 netdev->mtu, new_mtu);
	netdev->mtu = new_mtu;

3747 3748 3749
	for (i = 0; i < adapter->num_rx_queues; i++)
		adapter->rx_ring[i].rx_buffer_len = rx_buffer_len;

3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766
	if (netif_running(netdev))
		igb_up(adapter);
	else
		igb_reset(adapter);

	clear_bit(__IGB_RESETTING, &adapter->state);

	return 0;
}

/**
 * igb_update_stats - Update the board statistics counters
 * @adapter: board private structure
 **/

void igb_update_stats(struct igb_adapter *adapter)
{
3767
	struct net_device *netdev = adapter->netdev;
3768 3769
	struct e1000_hw *hw = &adapter->hw;
	struct pci_dev *pdev = adapter->pdev;
3770
	u32 rnbc;
3771
	u16 phy_tmp;
3772 3773
	int i;
	u64 bytes, packets;
3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785

#define PHY_IDLE_ERROR_COUNT_MASK 0x00FF

	/*
	 * Prevent stats update while adapter is being reset, or if the pci
	 * connection is down.
	 */
	if (adapter->link_speed == 0)
		return;
	if (pci_channel_offline(pdev))
		return;

3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808
	bytes = 0;
	packets = 0;
	for (i = 0; i < adapter->num_rx_queues; i++) {
		u32 rqdpc_tmp = rd32(E1000_RQDPC(i)) & 0x0FFF;
		adapter->rx_ring[i].rx_stats.drops += rqdpc_tmp;
		netdev->stats.rx_fifo_errors += rqdpc_tmp;
		bytes += adapter->rx_ring[i].rx_stats.bytes;
		packets += adapter->rx_ring[i].rx_stats.packets;
	}

	netdev->stats.rx_bytes = bytes;
	netdev->stats.rx_packets = packets;

	bytes = 0;
	packets = 0;
	for (i = 0; i < adapter->num_tx_queues; i++) {
		bytes += adapter->tx_ring[i].tx_stats.bytes;
		packets += adapter->tx_ring[i].tx_stats.packets;
	}
	netdev->stats.tx_bytes = bytes;
	netdev->stats.tx_packets = packets;

	/* read stats registers */
3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840
	adapter->stats.crcerrs += rd32(E1000_CRCERRS);
	adapter->stats.gprc += rd32(E1000_GPRC);
	adapter->stats.gorc += rd32(E1000_GORCL);
	rd32(E1000_GORCH); /* clear GORCL */
	adapter->stats.bprc += rd32(E1000_BPRC);
	adapter->stats.mprc += rd32(E1000_MPRC);
	adapter->stats.roc += rd32(E1000_ROC);

	adapter->stats.prc64 += rd32(E1000_PRC64);
	adapter->stats.prc127 += rd32(E1000_PRC127);
	adapter->stats.prc255 += rd32(E1000_PRC255);
	adapter->stats.prc511 += rd32(E1000_PRC511);
	adapter->stats.prc1023 += rd32(E1000_PRC1023);
	adapter->stats.prc1522 += rd32(E1000_PRC1522);
	adapter->stats.symerrs += rd32(E1000_SYMERRS);
	adapter->stats.sec += rd32(E1000_SEC);

	adapter->stats.mpc += rd32(E1000_MPC);
	adapter->stats.scc += rd32(E1000_SCC);
	adapter->stats.ecol += rd32(E1000_ECOL);
	adapter->stats.mcc += rd32(E1000_MCC);
	adapter->stats.latecol += rd32(E1000_LATECOL);
	adapter->stats.dc += rd32(E1000_DC);
	adapter->stats.rlec += rd32(E1000_RLEC);
	adapter->stats.xonrxc += rd32(E1000_XONRXC);
	adapter->stats.xontxc += rd32(E1000_XONTXC);
	adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
	adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
	adapter->stats.fcruc += rd32(E1000_FCRUC);
	adapter->stats.gptc += rd32(E1000_GPTC);
	adapter->stats.gotc += rd32(E1000_GOTCL);
	rd32(E1000_GOTCH); /* clear GOTCL */
3841 3842 3843
	rnbc = rd32(E1000_RNBC);
	adapter->stats.rnbc += rnbc;
	netdev->stats.rx_fifo_errors += rnbc;
3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883
	adapter->stats.ruc += rd32(E1000_RUC);
	adapter->stats.rfc += rd32(E1000_RFC);
	adapter->stats.rjc += rd32(E1000_RJC);
	adapter->stats.tor += rd32(E1000_TORH);
	adapter->stats.tot += rd32(E1000_TOTH);
	adapter->stats.tpr += rd32(E1000_TPR);

	adapter->stats.ptc64 += rd32(E1000_PTC64);
	adapter->stats.ptc127 += rd32(E1000_PTC127);
	adapter->stats.ptc255 += rd32(E1000_PTC255);
	adapter->stats.ptc511 += rd32(E1000_PTC511);
	adapter->stats.ptc1023 += rd32(E1000_PTC1023);
	adapter->stats.ptc1522 += rd32(E1000_PTC1522);

	adapter->stats.mptc += rd32(E1000_MPTC);
	adapter->stats.bptc += rd32(E1000_BPTC);

	/* used for adaptive IFS */
	hw->mac.tx_packet_delta = rd32(E1000_TPT);
	adapter->stats.tpt += hw->mac.tx_packet_delta;
	hw->mac.collision_delta = rd32(E1000_COLC);
	adapter->stats.colc += hw->mac.collision_delta;

	adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
	adapter->stats.rxerrc += rd32(E1000_RXERRC);
	adapter->stats.tncrs += rd32(E1000_TNCRS);
	adapter->stats.tsctc += rd32(E1000_TSCTC);
	adapter->stats.tsctfc += rd32(E1000_TSCTFC);

	adapter->stats.iac += rd32(E1000_IAC);
	adapter->stats.icrxoc += rd32(E1000_ICRXOC);
	adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
	adapter->stats.icrxatc += rd32(E1000_ICRXATC);
	adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
	adapter->stats.ictxatc += rd32(E1000_ICTXATC);
	adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
	adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
	adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);

	/* Fill out the OS statistics structure */
3884 3885
	netdev->stats.multicast = adapter->stats.mprc;
	netdev->stats.collisions = adapter->stats.colc;
3886 3887 3888 3889

	/* Rx Errors */

	/* RLEC on some newer hardware can be incorrect so build
3890
	 * our own version based on RUC and ROC */
3891
	netdev->stats.rx_errors = adapter->stats.rxerrc +
3892 3893 3894
		adapter->stats.crcerrs + adapter->stats.algnerrc +
		adapter->stats.ruc + adapter->stats.roc +
		adapter->stats.cexterr;
3895
	netdev->stats.rx_length_errors = adapter->stats.ruc +
3896
					      adapter->stats.roc;
3897 3898 3899
	netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
	netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
	netdev->stats.rx_missed_errors = adapter->stats.mpc;
3900 3901

	/* Tx Errors */
3902
	netdev->stats.tx_errors = adapter->stats.ecol +
3903
				       adapter->stats.latecol;
3904 3905 3906
	netdev->stats.tx_aborted_errors = adapter->stats.ecol;
	netdev->stats.tx_window_errors = adapter->stats.latecol;
	netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
3907 3908 3909 3910 3911 3912

	/* Tx Dropped needs to be maintained elsewhere */

	/* Phy Stats */
	if (hw->phy.media_type == e1000_media_type_copper) {
		if ((adapter->link_speed == SPEED_1000) &&
3913
		   (!igb_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926
			phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
			adapter->phy_stats.idle_errors += phy_tmp;
		}
	}

	/* Management Stats */
	adapter->stats.mgptc += rd32(E1000_MGTPTC);
	adapter->stats.mgprc += rd32(E1000_MGTPRC);
	adapter->stats.mgpdc += rd32(E1000_MGTPDC);
}

static irqreturn_t igb_msix_other(int irq, void *data)
{
3927
	struct igb_adapter *adapter = data;
3928
	struct e1000_hw *hw = &adapter->hw;
P
PJ Waskiewicz 已提交
3929 3930
	u32 icr = rd32(E1000_ICR);
	/* reading ICR causes bit 31 of EICR to be cleared */
3931

3932
	if (icr & E1000_ICR_DOUTSYNC) {
3933 3934 3935
		/* HW is reporting DMA is out of sync */
		adapter->stats.doosync++;
	}
3936

3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947
	/* Check for a mailbox event */
	if (icr & E1000_ICR_VMMB)
		igb_msg_task(adapter);

	if (icr & E1000_ICR_LSC) {
		hw->mac.get_link_status = 1;
		/* guard against interrupt when we're going down */
		if (!test_bit(__IGB_DOWN, &adapter->state))
			mod_timer(&adapter->watchdog_timer, jiffies + 1);
	}

3948 3949 3950 3951 3952 3953
	if (adapter->vfs_allocated_count)
		wr32(E1000_IMS, E1000_IMS_LSC |
				E1000_IMS_VMMB |
				E1000_IMS_DOUTSYNC);
	else
		wr32(E1000_IMS, E1000_IMS_LSC | E1000_IMS_DOUTSYNC);
P
PJ Waskiewicz 已提交
3954
	wr32(E1000_EIMS, adapter->eims_other);
3955 3956 3957 3958

	return IRQ_HANDLED;
}

3959
static void igb_write_itr(struct igb_q_vector *q_vector)
3960
{
3961
	u32 itr_val = q_vector->itr_val & 0x7FFC;
3962

3963 3964
	if (!q_vector->set_itr)
		return;
3965

3966 3967
	if (!itr_val)
		itr_val = 0x4;
3968

3969 3970
	if (q_vector->itr_shift)
		itr_val |= itr_val << q_vector->itr_shift;
3971
	else
3972
		itr_val |= 0x8000000;
3973

3974 3975
	writel(itr_val, q_vector->itr_register);
	q_vector->set_itr = 0;
3976 3977
}

3978
static irqreturn_t igb_msix_ring(int irq, void *data)
3979
{
3980
	struct igb_q_vector *q_vector = data;
3981

3982 3983
	/* Write the ITR value calculated from the previous interrupt. */
	igb_write_itr(q_vector);
3984

3985
	napi_schedule(&q_vector->napi);
P
PJ Waskiewicz 已提交
3986

3987
	return IRQ_HANDLED;
J
Jeb Cramer 已提交
3988 3989
}

3990
#ifdef CONFIG_IGB_DCA
3991
static void igb_update_dca(struct igb_q_vector *q_vector)
J
Jeb Cramer 已提交
3992
{
3993
	struct igb_adapter *adapter = q_vector->adapter;
J
Jeb Cramer 已提交
3994 3995 3996
	struct e1000_hw *hw = &adapter->hw;
	int cpu = get_cpu();

3997 3998 3999 4000 4001 4002 4003 4004 4005
	if (q_vector->cpu == cpu)
		goto out_no_update;

	if (q_vector->tx_ring) {
		int q = q_vector->tx_ring->reg_idx;
		u32 dca_txctrl = rd32(E1000_DCA_TXCTRL(q));
		if (hw->mac.type == e1000_82575) {
			dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK;
			dca_txctrl |= dca3_get_tag(&adapter->pdev->dev, cpu);
A
Alexander Duyck 已提交
4006
		} else {
4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017
			dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK_82576;
			dca_txctrl |= dca3_get_tag(&adapter->pdev->dev, cpu) <<
			              E1000_DCA_TXCTRL_CPUID_SHIFT;
		}
		dca_txctrl |= E1000_DCA_TXCTRL_DESC_DCA_EN;
		wr32(E1000_DCA_TXCTRL(q), dca_txctrl);
	}
	if (q_vector->rx_ring) {
		int q = q_vector->rx_ring->reg_idx;
		u32 dca_rxctrl = rd32(E1000_DCA_RXCTRL(q));
		if (hw->mac.type == e1000_82575) {
A
Alexander Duyck 已提交
4018
			dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK;
M
Maciej Sosnowski 已提交
4019
			dca_rxctrl |= dca3_get_tag(&adapter->pdev->dev, cpu);
4020 4021 4022 4023
		} else {
			dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK_82576;
			dca_rxctrl |= dca3_get_tag(&adapter->pdev->dev, cpu) <<
			              E1000_DCA_RXCTRL_CPUID_SHIFT;
A
Alexander Duyck 已提交
4024
		}
J
Jeb Cramer 已提交
4025 4026 4027 4028 4029
		dca_rxctrl |= E1000_DCA_RXCTRL_DESC_DCA_EN;
		dca_rxctrl |= E1000_DCA_RXCTRL_HEAD_DCA_EN;
		dca_rxctrl |= E1000_DCA_RXCTRL_DATA_DCA_EN;
		wr32(E1000_DCA_RXCTRL(q), dca_rxctrl);
	}
4030 4031
	q_vector->cpu = cpu;
out_no_update:
J
Jeb Cramer 已提交
4032 4033 4034 4035 4036
	put_cpu();
}

static void igb_setup_dca(struct igb_adapter *adapter)
{
4037
	struct e1000_hw *hw = &adapter->hw;
J
Jeb Cramer 已提交
4038 4039
	int i;

4040
	if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
J
Jeb Cramer 已提交
4041 4042
		return;

4043 4044 4045
	/* Always use CB2 mode, difference is masked in the CB driver. */
	wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);

4046 4047 4048 4049
	for (i = 0; i < adapter->num_q_vectors; i++) {
		struct igb_q_vector *q_vector = adapter->q_vector[i];
		q_vector->cpu = -1;
		igb_update_dca(q_vector);
J
Jeb Cramer 已提交
4050 4051 4052 4053 4054 4055 4056
	}
}

static int __igb_notify_dca(struct device *dev, void *data)
{
	struct net_device *netdev = dev_get_drvdata(dev);
	struct igb_adapter *adapter = netdev_priv(netdev);
4057
	struct pci_dev *pdev = adapter->pdev;
J
Jeb Cramer 已提交
4058 4059 4060 4061 4062 4063
	struct e1000_hw *hw = &adapter->hw;
	unsigned long event = *(unsigned long *)data;

	switch (event) {
	case DCA_PROVIDER_ADD:
		/* if already enabled, don't do it again */
4064
		if (adapter->flags & IGB_FLAG_DCA_ENABLED)
J
Jeb Cramer 已提交
4065 4066
			break;
		if (dca_add_requester(dev) == 0) {
4067
			adapter->flags |= IGB_FLAG_DCA_ENABLED;
4068
			dev_info(&pdev->dev, "DCA enabled\n");
J
Jeb Cramer 已提交
4069 4070 4071 4072 4073
			igb_setup_dca(adapter);
			break;
		}
		/* Fall Through since DCA is disabled. */
	case DCA_PROVIDER_REMOVE:
4074
		if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
J
Jeb Cramer 已提交
4075
			/* without this a class_device is left
4076
			 * hanging around in the sysfs model */
J
Jeb Cramer 已提交
4077
			dca_remove_requester(dev);
4078
			dev_info(&pdev->dev, "DCA disabled\n");
4079
			adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
A
Alexander Duyck 已提交
4080
			wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
J
Jeb Cramer 已提交
4081 4082 4083
		}
		break;
	}
4084

J
Jeb Cramer 已提交
4085
	return 0;
4086 4087
}

J
Jeb Cramer 已提交
4088 4089 4090 4091 4092 4093 4094 4095 4096 4097
static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
                          void *p)
{
	int ret_val;

	ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
	                                 __igb_notify_dca);

	return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
}
4098
#endif /* CONFIG_IGB_DCA */
4099

4100 4101 4102 4103 4104 4105 4106 4107
static void igb_ping_all_vfs(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 ping;
	int i;

	for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
		ping = E1000_PF_CONTROL_MSG;
4108
		if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
4109 4110 4111 4112 4113
			ping |= E1000_VT_MSGTYPE_CTS;
		igb_write_mbx(hw, &ping, 1, i);
	}
}

4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152
static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 vmolr = rd32(E1000_VMOLR(vf));
	struct vf_data_storage *vf_data = &adapter->vf_data[vf];

	vf_data->flags |= ~(IGB_VF_FLAG_UNI_PROMISC |
	                    IGB_VF_FLAG_MULTI_PROMISC);
	vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);

	if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
		vmolr |= E1000_VMOLR_MPME;
		*msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
	} else {
		/*
		 * if we have hashes and we are clearing a multicast promisc
		 * flag we need to write the hashes to the MTA as this step
		 * was previously skipped
		 */
		if (vf_data->num_vf_mc_hashes > 30) {
			vmolr |= E1000_VMOLR_MPME;
		} else if (vf_data->num_vf_mc_hashes) {
			int j;
			vmolr |= E1000_VMOLR_ROMPE;
			for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
				igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
		}
	}

	wr32(E1000_VMOLR(vf), vmolr);

	/* there are flags left unprocessed, likely not supported */
	if (*msgbuf & E1000_VT_MSGINFO_MASK)
		return -EINVAL;

	return 0;

}

4153 4154 4155 4156 4157 4158 4159 4160
static int igb_set_vf_multicasts(struct igb_adapter *adapter,
				  u32 *msgbuf, u32 vf)
{
	int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
	u16 *hash_list = (u16 *)&msgbuf[1];
	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
	int i;

4161
	/* salt away the number of multicast addresses assigned
4162 4163 4164 4165 4166
	 * to this VF for later use to restore when the PF multi cast
	 * list changes
	 */
	vf_data->num_vf_mc_hashes = n;

4167 4168 4169 4170 4171
	/* only up to 30 hash values supported */
	if (n > 30)
		n = 30;

	/* store the hashes for later use */
4172
	for (i = 0; i < n; i++)
4173
		vf_data->vf_mc_hashes[i] = hash_list[i];
4174 4175

	/* Flush and reset the mta with the new values */
4176
	igb_set_rx_mode(adapter->netdev);
4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187

	return 0;
}

static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	struct vf_data_storage *vf_data;
	int i, j;

	for (i = 0; i < adapter->vfs_allocated_count; i++) {
4188 4189 4190
		u32 vmolr = rd32(E1000_VMOLR(i));
		vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);

4191
		vf_data = &adapter->vf_data[i];
4192 4193 4194 4195 4196 4197 4198 4199 4200 4201

		if ((vf_data->num_vf_mc_hashes > 30) ||
		    (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
			vmolr |= E1000_VMOLR_MPME;
		} else if (vf_data->num_vf_mc_hashes) {
			vmolr |= E1000_VMOLR_ROMPE;
			for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
				igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
		}
		wr32(E1000_VMOLR(i), vmolr);
4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229
	}
}

static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 pool_mask, reg, vid;
	int i;

	pool_mask = 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);

	/* Find the vlan filter for this id */
	for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
		reg = rd32(E1000_VLVF(i));

		/* remove the vf from the pool */
		reg &= ~pool_mask;

		/* if pool is empty then remove entry from vfta */
		if (!(reg & E1000_VLVF_POOLSEL_MASK) &&
		    (reg & E1000_VLVF_VLANID_ENABLE)) {
			reg = 0;
			vid = reg & E1000_VLVF_VLANID_MASK;
			igb_vfta_set(hw, vid, false);
		}

		wr32(E1000_VLVF(i), reg);
	}
4230 4231

	adapter->vf_data[vf].vlans_enabled = 0;
4232 4233 4234 4235 4236 4237 4238
}

static s32 igb_vlvf_set(struct igb_adapter *adapter, u32 vid, bool add, u32 vf)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 reg, i;

4239 4240 4241 4242 4243
	/* The vlvf table only exists on 82576 hardware and newer */
	if (hw->mac.type < e1000_82576)
		return -1;

	/* we only need to do this if VMDq is enabled */
4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272
	if (!adapter->vfs_allocated_count)
		return -1;

	/* Find the vlan filter for this id */
	for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
		reg = rd32(E1000_VLVF(i));
		if ((reg & E1000_VLVF_VLANID_ENABLE) &&
		    vid == (reg & E1000_VLVF_VLANID_MASK))
			break;
	}

	if (add) {
		if (i == E1000_VLVF_ARRAY_SIZE) {
			/* Did not find a matching VLAN ID entry that was
			 * enabled.  Search for a free filter entry, i.e.
			 * one without the enable bit set
			 */
			for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
				reg = rd32(E1000_VLVF(i));
				if (!(reg & E1000_VLVF_VLANID_ENABLE))
					break;
			}
		}
		if (i < E1000_VLVF_ARRAY_SIZE) {
			/* Found an enabled/available entry */
			reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);

			/* if !enabled we need to set this up in vfta */
			if (!(reg & E1000_VLVF_VLANID_ENABLE)) {
4273 4274
				/* add VID to filter table */
				igb_vfta_set(hw, vid, true);
4275 4276
				reg |= E1000_VLVF_VLANID_ENABLE;
			}
A
Alexander Duyck 已提交
4277 4278
			reg &= ~E1000_VLVF_VLANID_MASK;
			reg |= vid;
4279
			wr32(E1000_VLVF(i), reg);
4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294

			/* do not modify RLPML for PF devices */
			if (vf >= adapter->vfs_allocated_count)
				return 0;

			if (!adapter->vf_data[vf].vlans_enabled) {
				u32 size;
				reg = rd32(E1000_VMOLR(vf));
				size = reg & E1000_VMOLR_RLPML_MASK;
				size += 4;
				reg &= ~E1000_VMOLR_RLPML_MASK;
				reg |= size;
				wr32(E1000_VMOLR(vf), reg);
			}

4295
			adapter->vf_data[vf].vlans_enabled++;
4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307
			return 0;
		}
	} else {
		if (i < E1000_VLVF_ARRAY_SIZE) {
			/* remove vf from the pool */
			reg &= ~(1 << (E1000_VLVF_POOLSEL_SHIFT + vf));
			/* if pool is empty then remove entry from vfta */
			if (!(reg & E1000_VLVF_POOLSEL_MASK)) {
				reg = 0;
				igb_vfta_set(hw, vid, false);
			}
			wr32(E1000_VLVF(i), reg);
4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322

			/* do not modify RLPML for PF devices */
			if (vf >= adapter->vfs_allocated_count)
				return 0;

			adapter->vf_data[vf].vlans_enabled--;
			if (!adapter->vf_data[vf].vlans_enabled) {
				u32 size;
				reg = rd32(E1000_VMOLR(vf));
				size = reg & E1000_VMOLR_RLPML_MASK;
				size -= 4;
				reg &= ~E1000_VMOLR_RLPML_MASK;
				reg |= size;
				wr32(E1000_VMOLR(vf), reg);
			}
4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336
			return 0;
		}
	}
	return -1;
}

static int igb_set_vf_vlan(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
{
	int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
	int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);

	return igb_vlvf_set(adapter, vid, add, vf);
}

4337
static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
4338
{
4339 4340 4341
	/* clear all flags */
	adapter->vf_data[vf].flags = 0;
	adapter->vf_data[vf].last_nack = jiffies;
4342 4343

	/* reset offloads to defaults */
4344
	igb_set_vmolr(adapter, vf);
4345 4346 4347 4348 4349 4350 4351 4352

	/* reset vlans for device */
	igb_clear_vf_vfta(adapter, vf);

	/* reset multicast table array for vf */
	adapter->vf_data[vf].num_vf_mc_hashes = 0;

	/* Flush and reset the mta with the new values */
4353
	igb_set_rx_mode(adapter->netdev);
4354 4355
}

4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367
static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
{
	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;

	/* generate a new mac address as we were hotplug removed/added */
	random_ether_addr(vf_mac);

	/* process remaining reset events */
	igb_vf_reset(adapter, vf);
}

static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
4368 4369 4370
{
	struct e1000_hw *hw = &adapter->hw;
	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
4371
	int rar_entry = hw->mac.rar_entry_count - (vf + 1);
4372 4373 4374 4375
	u32 reg, msgbuf[3];
	u8 *addr = (u8 *)(&msgbuf[1]);

	/* process all the same items cleared in a function level reset */
4376
	igb_vf_reset(adapter, vf);
4377 4378

	/* set vf mac address */
4379
	igb_rar_set_qsel(adapter, vf_mac, rar_entry, vf);
4380 4381 4382 4383 4384 4385 4386

	/* enable transmit and receive for vf */
	reg = rd32(E1000_VFTE);
	wr32(E1000_VFTE, reg | (1 << vf));
	reg = rd32(E1000_VFRE);
	wr32(E1000_VFRE, reg | (1 << vf));

4387
	adapter->vf_data[vf].flags = IGB_VF_FLAG_CTS;
4388 4389 4390 4391 4392 4393 4394 4395 4396

	/* reply to reset with ack and vf mac address */
	msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
	memcpy(addr, vf_mac, 6);
	igb_write_mbx(hw, msgbuf, 3, vf);
}

static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
{
4397 4398
	unsigned char *addr = (char *)&msg[1];
	int err = -1;
4399

4400 4401
	if (is_valid_ether_addr(addr))
		err = igb_set_vf_mac(adapter, vf, addr);
4402

4403
	return err;
4404 4405 4406 4407 4408
}

static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
{
	struct e1000_hw *hw = &adapter->hw;
4409
	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
4410 4411 4412
	u32 msg = E1000_VT_MSGTYPE_NACK;

	/* if device isn't clear to send it shouldn't be reading either */
4413 4414
	if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
	    time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
4415
		igb_write_mbx(hw, &msg, 1, vf);
4416
		vf_data->last_nack = jiffies;
4417 4418 4419
	}
}

4420
static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
4421
{
4422 4423
	struct pci_dev *pdev = adapter->pdev;
	u32 msgbuf[E1000_VFMAILBOX_SIZE];
4424
	struct e1000_hw *hw = &adapter->hw;
4425
	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
4426 4427
	s32 retval;

4428
	retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf);
4429 4430

	if (retval)
4431
		dev_err(&pdev->dev, "Error receiving message from VF\n");
4432 4433 4434

	/* this is a message we already processed, do nothing */
	if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
4435
		return;
4436 4437 4438 4439 4440 4441 4442 4443

	/*
	 * until the vf completes a reset it should not be
	 * allowed to start any configuration.
	 */

	if (msgbuf[0] == E1000_VF_RESET) {
		igb_vf_reset_msg(adapter, vf);
4444
		return;
4445 4446
	}

4447 4448 4449 4450 4451 4452 4453
	if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
		msgbuf[0] = E1000_VT_MSGTYPE_NACK;
		if (time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
			igb_write_mbx(hw, msgbuf, 1, vf);
			vf_data->last_nack = jiffies;
		}
		return;
4454 4455 4456 4457 4458 4459
	}

	switch ((msgbuf[0] & 0xFFFF)) {
	case E1000_VF_SET_MAC_ADDR:
		retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
		break;
4460 4461 4462
	case E1000_VF_SET_PROMISC:
		retval = igb_set_vf_promisc(adapter, msgbuf, vf);
		break;
4463 4464 4465 4466 4467 4468 4469 4470 4471 4472
	case E1000_VF_SET_MULTICAST:
		retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
		break;
	case E1000_VF_SET_LPE:
		retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
		break;
	case E1000_VF_SET_VLAN:
		retval = igb_set_vf_vlan(adapter, msgbuf, vf);
		break;
	default:
4473
		dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486
		retval = -1;
		break;
	}

	/* notify the VF of the results of what it sent us */
	if (retval)
		msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
	else
		msgbuf[0] |= E1000_VT_MSGTYPE_ACK;

	msgbuf[0] |= E1000_VT_MSGTYPE_CTS;

	igb_write_mbx(hw, msgbuf, 1, vf);
4487
}
4488

4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506
static void igb_msg_task(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 vf;

	for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
		/* process any reset requests */
		if (!igb_check_for_rst(hw, vf))
			igb_vf_reset_event(adapter, vf);

		/* process any messages pending */
		if (!igb_check_for_msg(hw, vf))
			igb_rcv_msg_from_vf(adapter, vf);

		/* process any acks */
		if (!igb_check_for_ack(hw, vf))
			igb_rcv_ack_from_vf(adapter, vf);
	}
4507 4508
}

4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535
/**
 *  igb_set_uta - Set unicast filter table address
 *  @adapter: board private structure
 *
 *  The unicast table address is a register array of 32-bit registers.
 *  The table is meant to be used in a way similar to how the MTA is used
 *  however due to certain limitations in the hardware it is necessary to
 *  set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscous
 *  enable bit to allow vlan tag stripping when promiscous mode is enabled
 **/
static void igb_set_uta(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	int i;

	/* The UTA table only exists on 82576 hardware and newer */
	if (hw->mac.type < e1000_82576)
		return;

	/* we only need to do this if VMDq is enabled */
	if (!adapter->vfs_allocated_count)
		return;

	for (i = 0; i < hw->mac.uta_reg_count; i++)
		array_wr32(E1000_UTA, i, ~0);
}

4536 4537 4538 4539 4540 4541 4542
/**
 * igb_intr_msi - Interrupt Handler
 * @irq: interrupt number
 * @data: pointer to a network interface device structure
 **/
static irqreturn_t igb_intr_msi(int irq, void *data)
{
4543 4544
	struct igb_adapter *adapter = data;
	struct igb_q_vector *q_vector = adapter->q_vector[0];
4545 4546 4547 4548
	struct e1000_hw *hw = &adapter->hw;
	/* read ICR disables interrupts using IAM */
	u32 icr = rd32(E1000_ICR);

4549
	igb_write_itr(q_vector);
4550

4551
	if (icr & E1000_ICR_DOUTSYNC) {
4552 4553 4554 4555
		/* HW is reporting DMA is out of sync */
		adapter->stats.doosync++;
	}

4556 4557 4558 4559 4560 4561
	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
		hw->mac.get_link_status = 1;
		if (!test_bit(__IGB_DOWN, &adapter->state))
			mod_timer(&adapter->watchdog_timer, jiffies + 1);
	}

4562
	napi_schedule(&q_vector->napi);
4563 4564 4565 4566 4567

	return IRQ_HANDLED;
}

/**
4568
 * igb_intr - Legacy Interrupt Handler
4569 4570 4571 4572 4573
 * @irq: interrupt number
 * @data: pointer to a network interface device structure
 **/
static irqreturn_t igb_intr(int irq, void *data)
{
4574 4575
	struct igb_adapter *adapter = data;
	struct igb_q_vector *q_vector = adapter->q_vector[0];
4576 4577 4578 4579 4580 4581 4582
	struct e1000_hw *hw = &adapter->hw;
	/* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
	 * need for the IMC write */
	u32 icr = rd32(E1000_ICR);
	if (!icr)
		return IRQ_NONE;  /* Not our interrupt */

4583
	igb_write_itr(q_vector);
4584 4585 4586 4587 4588 4589

	/* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
	 * not set, then the adapter didn't send an interrupt */
	if (!(icr & E1000_ICR_INT_ASSERTED))
		return IRQ_NONE;

4590
	if (icr & E1000_ICR_DOUTSYNC) {
4591 4592 4593 4594
		/* HW is reporting DMA is out of sync */
		adapter->stats.doosync++;
	}

4595 4596 4597 4598 4599 4600 4601
	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
		hw->mac.get_link_status = 1;
		/* guard against interrupt when we're going down */
		if (!test_bit(__IGB_DOWN, &adapter->state))
			mod_timer(&adapter->watchdog_timer, jiffies + 1);
	}

4602
	napi_schedule(&q_vector->napi);
4603 4604 4605 4606

	return IRQ_HANDLED;
}

4607
static inline void igb_ring_irq_enable(struct igb_q_vector *q_vector)
4608
{
4609
	struct igb_adapter *adapter = q_vector->adapter;
4610
	struct e1000_hw *hw = &adapter->hw;
4611

4612 4613
	if ((q_vector->rx_ring && (adapter->rx_itr_setting & 3)) ||
	    (!q_vector->rx_ring && (adapter->tx_itr_setting & 3))) {
4614
		if (!adapter->msix_entries)
4615
			igb_set_itr(adapter);
4616
		else
4617
			igb_update_ring_itr(q_vector);
4618 4619
	}

4620 4621
	if (!test_bit(__IGB_DOWN, &adapter->state)) {
		if (adapter->msix_entries)
4622
			wr32(E1000_EIMS, q_vector->eims_value);
4623 4624 4625
		else
			igb_irq_enable(adapter);
	}
4626 4627
}

4628 4629 4630 4631 4632 4633
/**
 * igb_poll - NAPI Rx polling callback
 * @napi: napi polling structure
 * @budget: count of how many packets we should handle
 **/
static int igb_poll(struct napi_struct *napi, int budget)
4634
{
4635 4636 4637 4638
	struct igb_q_vector *q_vector = container_of(napi,
	                                             struct igb_q_vector,
	                                             napi);
	int tx_clean_complete = 1, work_done = 0;
4639

4640
#ifdef CONFIG_IGB_DCA
4641 4642
	if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
		igb_update_dca(q_vector);
J
Jeb Cramer 已提交
4643
#endif
4644 4645
	if (q_vector->tx_ring)
		tx_clean_complete = igb_clean_tx_irq(q_vector);
4646

4647 4648 4649 4650 4651
	if (q_vector->rx_ring)
		igb_clean_rx_irq_adv(q_vector, &work_done, budget);

	if (!tx_clean_complete)
		work_done = budget;
4652

4653
	/* If not enough Rx work done, exit the polling mode */
4654
	if (work_done < budget) {
4655
		napi_complete(napi);
4656
		igb_ring_irq_enable(q_vector);
4657 4658
	}

4659
	return work_done;
4660
}
A
Al Viro 已提交
4661

4662
/**
4663
 * igb_systim_to_hwtstamp - convert system time value to hw timestamp
4664
 * @adapter: board private structure
4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686
 * @shhwtstamps: timestamp structure to update
 * @regval: unsigned 64bit system time value.
 *
 * We need to convert the system time value stored in the RX/TXSTMP registers
 * into a hwtstamp which can be used by the upper level timestamping functions
 */
static void igb_systim_to_hwtstamp(struct igb_adapter *adapter,
                                   struct skb_shared_hwtstamps *shhwtstamps,
                                   u64 regval)
{
	u64 ns;

	ns = timecounter_cyc2time(&adapter->clock, regval);
	timecompare_update(&adapter->compare, ns);
	memset(shhwtstamps, 0, sizeof(struct skb_shared_hwtstamps));
	shhwtstamps->hwtstamp = ns_to_ktime(ns);
	shhwtstamps->syststamp = timecompare_transform(&adapter->compare, ns);
}

/**
 * igb_tx_hwtstamp - utility function which checks for TX time stamp
 * @q_vector: pointer to q_vector containing needed info
4687 4688 4689 4690 4691 4692
 * @skb: packet that was just sent
 *
 * If we were asked to do hardware stamping and such a time stamp is
 * available, then it must have been for this skb here because we only
 * allow only one such packet into the queue.
 */
4693
static void igb_tx_hwtstamp(struct igb_q_vector *q_vector, struct sk_buff *skb)
4694
{
4695
	struct igb_adapter *adapter = q_vector->adapter;
4696 4697
	union skb_shared_tx *shtx = skb_tx(skb);
	struct e1000_hw *hw = &adapter->hw;
4698 4699
	struct skb_shared_hwtstamps shhwtstamps;
	u64 regval;
4700

4701 4702 4703 4704 4705 4706 4707 4708 4709 4710
	/* if skb does not support hw timestamp or TX stamp not valid exit */
	if (likely(!shtx->hardware) ||
	    !(rd32(E1000_TSYNCTXCTL) & E1000_TSYNCTXCTL_VALID))
		return;

	regval = rd32(E1000_TXSTMPL);
	regval |= (u64)rd32(E1000_TXSTMPH) << 32;

	igb_systim_to_hwtstamp(adapter, &shhwtstamps, regval);
	skb_tstamp_tx(skb, &shhwtstamps);
4711 4712
}

4713 4714
/**
 * igb_clean_tx_irq - Reclaim resources after transmit completes
4715
 * @q_vector: pointer to q_vector containing needed info
4716 4717
 * returns true if ring is completely cleaned
 **/
4718
static bool igb_clean_tx_irq(struct igb_q_vector *q_vector)
4719
{
4720 4721
	struct igb_adapter *adapter = q_vector->adapter;
	struct igb_ring *tx_ring = q_vector->tx_ring;
4722
	struct net_device *netdev = tx_ring->netdev;
A
Alexander Duyck 已提交
4723
	struct e1000_hw *hw = &adapter->hw;
4724 4725
	struct igb_buffer *buffer_info;
	struct sk_buff *skb;
A
Alexander Duyck 已提交
4726
	union e1000_adv_tx_desc *tx_desc, *eop_desc;
4727
	unsigned int total_bytes = 0, total_packets = 0;
A
Alexander Duyck 已提交
4728 4729
	unsigned int i, eop, count = 0;
	bool cleaned = false;
4730 4731

	i = tx_ring->next_to_clean;
A
Alexander Duyck 已提交
4732 4733 4734 4735 4736 4737 4738
	eop = tx_ring->buffer_info[i].next_to_watch;
	eop_desc = E1000_TX_DESC_ADV(*tx_ring, eop);

	while ((eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)) &&
	       (count < tx_ring->count)) {
		for (cleaned = false; !cleaned; count++) {
			tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
4739
			buffer_info = &tx_ring->buffer_info[i];
A
Alexander Duyck 已提交
4740
			cleaned = (i == eop);
4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751
			skb = buffer_info->skb;

			if (skb) {
				unsigned int segs, bytecount;
				/* gso_segs is currently only valid for tcp */
				segs = skb_shinfo(skb)->gso_segs ?: 1;
				/* multiply data chunks by size of headers */
				bytecount = ((segs - 1) * skb_headlen(skb)) +
					    skb->len;
				total_packets += segs;
				total_bytes += bytecount;
4752

4753
				igb_tx_hwtstamp(q_vector, skb);
4754 4755
			}

4756
			igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
A
Alexander Duyck 已提交
4757
			tx_desc->wb.status = 0;
4758 4759 4760 4761 4762

			i++;
			if (i == tx_ring->count)
				i = 0;
		}
A
Alexander Duyck 已提交
4763 4764 4765 4766
		eop = tx_ring->buffer_info[i].next_to_watch;
		eop_desc = E1000_TX_DESC_ADV(*tx_ring, eop);
	}

4767 4768
	tx_ring->next_to_clean = i;

4769
	if (unlikely(count &&
4770
		     netif_carrier_ok(netdev) &&
4771
		     igb_desc_unused(tx_ring) >= IGB_TX_QUEUE_WAKE)) {
4772 4773 4774 4775
		/* Make sure that anybody stopping the queue after this
		 * sees the new next_to_clean.
		 */
		smp_mb();
4776 4777 4778
		if (__netif_subqueue_stopped(netdev, tx_ring->queue_index) &&
		    !(test_bit(__IGB_DOWN, &adapter->state))) {
			netif_wake_subqueue(netdev, tx_ring->queue_index);
4779
			tx_ring->tx_stats.restart_queue++;
4780
		}
4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793
	}

	if (tx_ring->detect_tx_hung) {
		/* Detect a transmit hang in hardware, this serializes the
		 * check with the clearing of time_stamp and movement of i */
		tx_ring->detect_tx_hung = false;
		if (tx_ring->buffer_info[i].time_stamp &&
		    time_after(jiffies, tx_ring->buffer_info[i].time_stamp +
			       (adapter->tx_timeout_factor * HZ))
		    && !(rd32(E1000_STATUS) &
			 E1000_STATUS_TXOFF)) {

			/* detected Tx unit hang */
4794
			dev_err(&tx_ring->pdev->dev,
4795
				"Detected Tx Unit Hang\n"
A
Alexander Duyck 已提交
4796
				"  Tx Queue             <%d>\n"
4797 4798 4799 4800 4801 4802
				"  TDH                  <%x>\n"
				"  TDT                  <%x>\n"
				"  next_to_use          <%x>\n"
				"  next_to_clean        <%x>\n"
				"buffer_info[next_to_clean]\n"
				"  time_stamp           <%lx>\n"
A
Alexander Duyck 已提交
4803
				"  next_to_watch        <%x>\n"
4804 4805
				"  jiffies              <%lx>\n"
				"  desc.status          <%x>\n",
A
Alexander Duyck 已提交
4806
				tx_ring->queue_index,
4807 4808
				readl(tx_ring->head),
				readl(tx_ring->tail),
4809 4810
				tx_ring->next_to_use,
				tx_ring->next_to_clean,
4811
				tx_ring->buffer_info[eop].time_stamp,
A
Alexander Duyck 已提交
4812
				eop,
4813
				jiffies,
A
Alexander Duyck 已提交
4814
				eop_desc->wb.status);
4815
			netif_stop_subqueue(netdev, tx_ring->queue_index);
4816 4817 4818 4819
		}
	}
	tx_ring->total_bytes += total_bytes;
	tx_ring->total_packets += total_packets;
4820 4821
	tx_ring->tx_stats.bytes += total_bytes;
	tx_ring->tx_stats.packets += total_packets;
A
Alexander Duyck 已提交
4822
	return (count < tx_ring->count);
4823 4824 4825 4826
}

/**
 * igb_receive_skb - helper function to handle rx indications
4827 4828 4829
 * @q_vector: structure containing interrupt and ring information
 * @skb: packet to send up
 * @vlan_tag: vlan tag for packet
4830
 **/
4831 4832 4833 4834 4835 4836 4837 4838 4839
static void igb_receive_skb(struct igb_q_vector *q_vector,
                            struct sk_buff *skb,
                            u16 vlan_tag)
{
	struct igb_adapter *adapter = q_vector->adapter;

	if (vlan_tag)
		vlan_gro_receive(&q_vector->napi, adapter->vlgrp,
		                 vlan_tag, skb);
4840
	else
4841
		napi_gro_receive(&q_vector->napi, skb);
4842 4843
}

4844
static inline void igb_rx_checksum_adv(struct igb_ring *ring,
4845 4846 4847 4848 4849
				       u32 status_err, struct sk_buff *skb)
{
	skb->ip_summed = CHECKSUM_NONE;

	/* Ignore Checksum bit is set or checksum is disabled through ethtool */
4850 4851
	if (!(ring->flags & IGB_RING_FLAG_RX_CSUM) ||
	     (status_err & E1000_RXD_STAT_IXSM))
4852
		return;
4853

4854 4855 4856
	/* TCP/UDP checksum error bit is set */
	if (status_err &
	    (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) {
4857 4858 4859 4860 4861
		/*
		 * work around errata with sctp packets where the TCPE aka
		 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
		 * packets, (aka let the stack check the crc32c)
		 */
4862 4863
		if ((skb->len == 60) &&
		    (ring->flags & IGB_RING_FLAG_RX_SCTP_CSUM))
4864
			ring->rx_stats.csum_err++;
4865

4866 4867 4868 4869 4870 4871 4872
		/* let the stack verify checksum errors */
		return;
	}
	/* It must be a TCP or UDP packet with a valid checksum */
	if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))
		skb->ip_summed = CHECKSUM_UNNECESSARY;

4873
	dev_dbg(&ring->pdev->dev, "cksum success: bits %08X\n", status_err);
4874 4875
}

4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903
static inline void igb_rx_hwtstamp(struct igb_q_vector *q_vector, u32 staterr,
                                   struct sk_buff *skb)
{
	struct igb_adapter *adapter = q_vector->adapter;
	struct e1000_hw *hw = &adapter->hw;
	u64 regval;

	/*
	 * If this bit is set, then the RX registers contain the time stamp. No
	 * other packet will be time stamped until we read these registers, so
	 * read the registers to make them available again. Because only one
	 * packet can be time stamped at a time, we know that the register
	 * values must belong to this one here and therefore we don't need to
	 * compare any of the additional attributes stored for it.
	 *
	 * If nothing went wrong, then it should have a skb_shared_tx that we
	 * can turn into a skb_shared_hwtstamps.
	 */
	if (likely(!(staterr & E1000_RXDADV_STAT_TS)))
		return;
	if (!(rd32(E1000_TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
		return;

	regval = rd32(E1000_RXSTMPL);
	regval |= (u64)rd32(E1000_RXSTMPH) << 32;

	igb_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), regval);
}
4904
static inline u16 igb_get_hlen(struct igb_ring *rx_ring,
4905 4906 4907 4908 4909 4910 4911 4912
                               union e1000_adv_rx_desc *rx_desc)
{
	/* HW will not DMA in data larger than the given buffer, even if it
	 * parses the (NFS, of course) header to be larger.  In that case, it
	 * fills the header buffer and spills the rest into the page.
	 */
	u16 hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hdr_info) &
	           E1000_RXDADV_HDRBUFLEN_MASK) >> E1000_RXDADV_HDRBUFLEN_SHIFT;
4913 4914
	if (hlen > rx_ring->rx_buffer_len)
		hlen = rx_ring->rx_buffer_len;
4915 4916 4917
	return hlen;
}

4918 4919
static bool igb_clean_rx_irq_adv(struct igb_q_vector *q_vector,
                                 int *work_done, int budget)
4920
{
4921
	struct igb_ring *rx_ring = q_vector->rx_ring;
4922
	struct net_device *netdev = rx_ring->netdev;
4923
	struct pci_dev *pdev = rx_ring->pdev;
4924 4925 4926 4927 4928 4929
	union e1000_adv_rx_desc *rx_desc , *next_rxd;
	struct igb_buffer *buffer_info , *next_buffer;
	struct sk_buff *skb;
	bool cleaned = false;
	int cleaned_count = 0;
	unsigned int total_bytes = 0, total_packets = 0;
4930
	unsigned int i;
4931 4932
	u32 staterr;
	u16 length;
4933
	u16 vlan_tag;
4934 4935

	i = rx_ring->next_to_clean;
4936
	buffer_info = &rx_ring->buffer_info[i];
4937 4938 4939 4940 4941 4942 4943 4944
	rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
	staterr = le32_to_cpu(rx_desc->wb.upper.status_error);

	while (staterr & E1000_RXD_STAT_DD) {
		if (*work_done >= budget)
			break;
		(*work_done)++;

4945 4946 4947 4948 4949 4950 4951
		skb = buffer_info->skb;
		prefetch(skb->data - NET_IP_ALIGN);
		buffer_info->skb = NULL;

		i++;
		if (i == rx_ring->count)
			i = 0;
4952

4953 4954 4955
		next_rxd = E1000_RX_DESC_ADV(*rx_ring, i);
		prefetch(next_rxd);
		next_buffer = &rx_ring->buffer_info[i];
4956 4957 4958 4959 4960

		length = le16_to_cpu(rx_desc->wb.upper.length);
		cleaned = true;
		cleaned_count++;

4961
		if (buffer_info->dma) {
4962
			pci_unmap_single(pdev, buffer_info->dma,
4963
					 rx_ring->rx_buffer_len,
4964
					 PCI_DMA_FROMDEVICE);
J
Jesse Brandeburg 已提交
4965
			buffer_info->dma = 0;
4966
			if (rx_ring->rx_buffer_len >= IGB_RXBUFFER_1024) {
A
Alexander Duyck 已提交
4967 4968 4969
				skb_put(skb, length);
				goto send_up;
			}
4970
			skb_put(skb, igb_get_hlen(rx_ring, rx_desc));
4971 4972 4973
		}

		if (length) {
4974
			pci_unmap_page(pdev, buffer_info->page_dma,
4975
				       PAGE_SIZE / 2, PCI_DMA_FROMDEVICE);
4976
			buffer_info->page_dma = 0;
4977 4978 4979 4980 4981 4982

			skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags++,
						buffer_info->page,
						buffer_info->page_offset,
						length);

A
Alexander Duyck 已提交
4983
			if (page_count(buffer_info->page) != 1)
4984 4985 4986
				buffer_info->page = NULL;
			else
				get_page(buffer_info->page);
4987 4988 4989

			skb->len += length;
			skb->data_len += length;
4990
			skb->truesize += length;
4991 4992
		}

4993
		if (!(staterr & E1000_RXD_STAT_EOP)) {
4994 4995 4996 4997
			buffer_info->skb = next_buffer->skb;
			buffer_info->dma = next_buffer->dma;
			next_buffer->skb = skb;
			next_buffer->dma = 0;
4998 4999
			goto next_desc;
		}
5000
send_up:
5001 5002 5003 5004 5005
		if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
			dev_kfree_skb_irq(skb);
			goto next_desc;
		}

5006
		igb_rx_hwtstamp(q_vector, staterr, skb);
5007 5008 5009
		total_bytes += skb->len;
		total_packets++;

5010
		igb_rx_checksum_adv(rx_ring, staterr, skb);
5011 5012

		skb->protocol = eth_type_trans(skb, netdev);
5013 5014 5015 5016
		skb_record_rx_queue(skb, rx_ring->queue_index);

		vlan_tag = ((staterr & E1000_RXD_STAT_VP) ?
		            le16_to_cpu(rx_desc->wb.upper.vlan) : 0);
5017

5018
		igb_receive_skb(q_vector, skb, vlan_tag);
5019 5020 5021 5022 5023 5024

next_desc:
		rx_desc->wb.upper.status_error = 0;

		/* return some buffers to hardware, one at a time is too slow */
		if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
5025
			igb_alloc_rx_buffers_adv(rx_ring, cleaned_count);
5026 5027 5028 5029 5030 5031 5032 5033
			cleaned_count = 0;
		}

		/* use prefetched values */
		rx_desc = next_rxd;
		buffer_info = next_buffer;
		staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
	}
5034

5035
	rx_ring->next_to_clean = i;
5036
	cleaned_count = igb_desc_unused(rx_ring);
5037 5038

	if (cleaned_count)
5039
		igb_alloc_rx_buffers_adv(rx_ring, cleaned_count);
5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051

	rx_ring->total_packets += total_packets;
	rx_ring->total_bytes += total_bytes;
	rx_ring->rx_stats.packets += total_packets;
	rx_ring->rx_stats.bytes += total_bytes;
	return cleaned;
}

/**
 * igb_alloc_rx_buffers_adv - Replace used receive buffers; packet split
 * @adapter: address of board private structure
 **/
5052
void igb_alloc_rx_buffers_adv(struct igb_ring *rx_ring, int cleaned_count)
5053
{
5054
	struct net_device *netdev = rx_ring->netdev;
5055 5056 5057 5058
	union e1000_adv_rx_desc *rx_desc;
	struct igb_buffer *buffer_info;
	struct sk_buff *skb;
	unsigned int i;
5059
	int bufsz;
5060 5061 5062 5063

	i = rx_ring->next_to_use;
	buffer_info = &rx_ring->buffer_info[i];

5064
	bufsz = rx_ring->rx_buffer_len;
5065

5066 5067 5068
	while (cleaned_count--) {
		rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);

A
Alexander Duyck 已提交
5069
		if ((bufsz < IGB_RXBUFFER_1024) && !buffer_info->page_dma) {
5070
			if (!buffer_info->page) {
5071
				buffer_info->page = netdev_alloc_page(netdev);
5072
				if (!buffer_info->page) {
5073
					rx_ring->rx_stats.alloc_failed++;
5074 5075 5076 5077 5078
					goto no_buffers;
				}
				buffer_info->page_offset = 0;
			} else {
				buffer_info->page_offset ^= PAGE_SIZE / 2;
5079 5080
			}
			buffer_info->page_dma =
5081
				pci_map_page(rx_ring->pdev, buffer_info->page,
5082 5083
					     buffer_info->page_offset,
					     PAGE_SIZE / 2,
5084
					     PCI_DMA_FROMDEVICE);
5085 5086 5087 5088 5089 5090
			if (pci_dma_mapping_error(rx_ring->pdev,
			                          buffer_info->page_dma)) {
				buffer_info->page_dma = 0;
				rx_ring->rx_stats.alloc_failed++;
				goto no_buffers;
			}
5091 5092
		}

5093 5094
		skb = buffer_info->skb;
		if (!skb) {
5095
			skb = netdev_alloc_skb_ip_align(netdev, bufsz);
5096
			if (!skb) {
5097
				rx_ring->rx_stats.alloc_failed++;
5098 5099 5100 5101
				goto no_buffers;
			}

			buffer_info->skb = skb;
5102 5103
		}
		if (!buffer_info->dma) {
5104 5105
			buffer_info->dma = pci_map_single(rx_ring->pdev,
			                                  skb->data,
5106 5107
							  bufsz,
							  PCI_DMA_FROMDEVICE);
5108 5109 5110 5111 5112 5113
			if (pci_dma_mapping_error(rx_ring->pdev,
			                          buffer_info->dma)) {
				buffer_info->dma = 0;
				rx_ring->rx_stats.alloc_failed++;
				goto no_buffers;
			}
5114 5115 5116
		}
		/* Refresh the desc even if buffer_addrs didn't change because
		 * each write-back erases this info. */
A
Alexander Duyck 已提交
5117
		if (bufsz < IGB_RXBUFFER_1024) {
5118 5119 5120 5121
			rx_desc->read.pkt_addr =
			     cpu_to_le64(buffer_info->page_dma);
			rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma);
		} else {
5122
			rx_desc->read.pkt_addr = cpu_to_le64(buffer_info->dma);
5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144
			rx_desc->read.hdr_addr = 0;
		}

		i++;
		if (i == rx_ring->count)
			i = 0;
		buffer_info = &rx_ring->buffer_info[i];
	}

no_buffers:
	if (rx_ring->next_to_use != i) {
		rx_ring->next_to_use = i;
		if (i == 0)
			i = (rx_ring->count - 1);
		else
			i--;

		/* Force memory writes to complete before letting h/w
		 * know there are new descriptors to fetch.  (Only
		 * applicable for weak-ordered memory model archs,
		 * such as IA-64). */
		wmb();
5145
		writel(i, rx_ring->tail);
5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167
	}
}

/**
 * igb_mii_ioctl -
 * @netdev:
 * @ifreq:
 * @cmd:
 **/
static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct mii_ioctl_data *data = if_mii(ifr);

	if (adapter->hw.phy.media_type != e1000_media_type_copper)
		return -EOPNOTSUPP;

	switch (cmd) {
	case SIOCGMIIPHY:
		data->phy_id = adapter->hw.phy.addr;
		break;
	case SIOCGMIIREG:
5168 5169
		if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
		                     &data->val_out))
5170 5171 5172 5173 5174 5175 5176 5177 5178
			return -EIO;
		break;
	case SIOCSMIIREG:
	default:
		return -EOPNOTSUPP;
	}
	return 0;
}

5179 5180 5181 5182 5183 5184
/**
 * igb_hwtstamp_ioctl - control hardware time stamping
 * @netdev:
 * @ifreq:
 * @cmd:
 *
5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196
 * Outgoing time stamping can be enabled and disabled. Play nice and
 * disable it when requested, although it shouldn't case any overhead
 * when no packet needs it. At most one packet in the queue may be
 * marked for time stamping, otherwise it would be impossible to tell
 * for sure to which packet the hardware time stamp belongs.
 *
 * Incoming time stamping has to be configured via the hardware
 * filters. Not all combinations are supported, in particular event
 * type has to be specified. Matching the kind of event packet is
 * not supported, with the exception of "all V2 events regardless of
 * level 2 or 4".
 *
5197 5198 5199 5200
 **/
static int igb_hwtstamp_ioctl(struct net_device *netdev,
			      struct ifreq *ifr, int cmd)
{
5201 5202
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
5203
	struct hwtstamp_config config;
5204 5205
	u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
	u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
5206
	u32 tsync_rx_cfg = 0;
5207 5208
	bool is_l4 = false;
	bool is_l2 = false;
5209
	u32 regval;
5210 5211 5212 5213 5214 5215 5216 5217

	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
		return -EFAULT;

	/* reserved for future extensions */
	if (config.flags)
		return -EINVAL;

5218 5219
	switch (config.tx_type) {
	case HWTSTAMP_TX_OFF:
5220
		tsync_tx_ctl = 0;
5221 5222 5223 5224 5225 5226 5227 5228
	case HWTSTAMP_TX_ON:
		break;
	default:
		return -ERANGE;
	}

	switch (config.rx_filter) {
	case HWTSTAMP_FILTER_NONE:
5229
		tsync_rx_ctl = 0;
5230 5231 5232 5233 5234 5235 5236 5237 5238 5239
		break;
	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
	case HWTSTAMP_FILTER_ALL:
		/*
		 * register TSYNCRXCFG must be set, therefore it is not
		 * possible to time stamp both Sync and Delay_Req messages
		 * => fall back to time stamping all packets
		 */
5240
		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
5241 5242 5243
		config.rx_filter = HWTSTAMP_FILTER_ALL;
		break;
	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
5244
		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
5245
		tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE;
5246
		is_l4 = true;
5247 5248
		break;
	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
5249
		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
5250
		tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE;
5251
		is_l4 = true;
5252 5253 5254
		break;
	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
5255
		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
5256
		tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V2_SYNC_MESSAGE;
5257 5258
		is_l2 = true;
		is_l4 = true;
5259 5260 5261 5262
		config.rx_filter = HWTSTAMP_FILTER_SOME;
		break;
	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
5263
		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
5264
		tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V2_DELAY_REQ_MESSAGE;
5265 5266
		is_l2 = true;
		is_l4 = true;
5267 5268 5269 5270 5271
		config.rx_filter = HWTSTAMP_FILTER_SOME;
		break;
	case HWTSTAMP_FILTER_PTP_V2_EVENT:
	case HWTSTAMP_FILTER_PTP_V2_SYNC:
	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
5272
		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
5273
		config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
5274
		is_l2 = true;
5275 5276 5277 5278 5279
		break;
	default:
		return -ERANGE;
	}

5280 5281 5282 5283 5284 5285
	if (hw->mac.type == e1000_82575) {
		if (tsync_rx_ctl | tsync_tx_ctl)
			return -EINVAL;
		return 0;
	}

5286 5287
	/* enable/disable TX */
	regval = rd32(E1000_TSYNCTXCTL);
5288 5289
	regval &= ~E1000_TSYNCTXCTL_ENABLED;
	regval |= tsync_tx_ctl;
5290 5291
	wr32(E1000_TSYNCTXCTL, regval);

5292
	/* enable/disable RX */
5293
	regval = rd32(E1000_TSYNCRXCTL);
5294 5295
	regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
	regval |= tsync_rx_ctl;
5296 5297
	wr32(E1000_TSYNCRXCTL, regval);

5298 5299
	/* define which PTP packets are time stamped */
	wr32(E1000_TSYNCRXCFG, tsync_rx_cfg);
5300

5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330
	/* define ethertype filter for timestamped packets */
	if (is_l2)
		wr32(E1000_ETQF(3),
		                (E1000_ETQF_FILTER_ENABLE | /* enable filter */
		                 E1000_ETQF_1588 | /* enable timestamping */
		                 ETH_P_1588));     /* 1588 eth protocol type */
	else
		wr32(E1000_ETQF(3), 0);

#define PTP_PORT 319
	/* L4 Queue Filter[3]: filter by destination port and protocol */
	if (is_l4) {
		u32 ftqf = (IPPROTO_UDP /* UDP */
			| E1000_FTQF_VF_BP /* VF not compared */
			| E1000_FTQF_1588_TIME_STAMP /* Enable Timestamping */
			| E1000_FTQF_MASK); /* mask all inputs */
		ftqf &= ~E1000_FTQF_MASK_PROTO_BP; /* enable protocol check */

		wr32(E1000_IMIR(3), htons(PTP_PORT));
		wr32(E1000_IMIREXT(3),
		     (E1000_IMIREXT_SIZE_BP | E1000_IMIREXT_CTRL_BP));
		if (hw->mac.type == e1000_82576) {
			/* enable source port check */
			wr32(E1000_SPQF(3), htons(PTP_PORT));
			ftqf &= ~E1000_FTQF_MASK_SOURCE_PORT_BP;
		}
		wr32(E1000_FTQF(3), ftqf);
	} else {
		wr32(E1000_FTQF(3), E1000_FTQF_MASK);
	}
5331 5332 5333 5334 5335 5336 5337
	wrfl();

	adapter->hwtstamp_config = config;

	/* clear TX/RX time stamp registers, just to be sure */
	regval = rd32(E1000_TXSTMPH);
	regval = rd32(E1000_RXSTMPH);
5338

5339 5340
	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
		-EFAULT : 0;
5341 5342
}

5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355
/**
 * igb_ioctl -
 * @netdev:
 * @ifreq:
 * @cmd:
 **/
static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
{
	switch (cmd) {
	case SIOCGMIIPHY:
	case SIOCGMIIREG:
	case SIOCSMIIREG:
		return igb_mii_ioctl(netdev, ifr, cmd);
5356 5357
	case SIOCSHWTSTAMP:
		return igb_hwtstamp_ioctl(netdev, ifr, cmd);
5358 5359 5360 5361 5362
	default:
		return -EOPNOTSUPP;
	}
}

5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390
s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
{
	struct igb_adapter *adapter = hw->back;
	u16 cap_offset;

	cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
	if (!cap_offset)
		return -E1000_ERR_CONFIG;

	pci_read_config_word(adapter->pdev, cap_offset + reg, value);

	return 0;
}

s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
{
	struct igb_adapter *adapter = hw->back;
	u16 cap_offset;

	cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
	if (!cap_offset)
		return -E1000_ERR_CONFIG;

	pci_write_config_word(adapter->pdev, cap_offset + reg, *value);

	return 0;
}

5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406
static void igb_vlan_rx_register(struct net_device *netdev,
				 struct vlan_group *grp)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 ctrl, rctl;

	igb_irq_disable(adapter);
	adapter->vlgrp = grp;

	if (grp) {
		/* enable VLAN tag insert/strip */
		ctrl = rd32(E1000_CTRL);
		ctrl |= E1000_CTRL_VME;
		wr32(E1000_CTRL, ctrl);

5407
		/* Disable CFI check */
5408 5409 5410 5411 5412 5413 5414 5415 5416 5417
		rctl = rd32(E1000_RCTL);
		rctl &= ~E1000_RCTL_CFIEN;
		wr32(E1000_RCTL, rctl);
	} else {
		/* disable VLAN tag insert/strip */
		ctrl = rd32(E1000_CTRL);
		ctrl &= ~E1000_CTRL_VME;
		wr32(E1000_CTRL, ctrl);
	}

5418 5419
	igb_rlpml_set(adapter);

5420 5421 5422 5423 5424 5425 5426 5427
	if (!test_bit(__IGB_DOWN, &adapter->state))
		igb_irq_enable(adapter);
}

static void igb_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
5428
	int pf_id = adapter->vfs_allocated_count;
5429

5430 5431
	/* attempt to add filter to vlvf array */
	igb_vlvf_set(adapter, vid, true, pf_id);
5432

5433 5434
	/* add the filter since PF can receive vlans w/o entry in vlvf */
	igb_vfta_set(hw, vid, true);
5435 5436 5437 5438 5439 5440
}

static void igb_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
5441
	int pf_id = adapter->vfs_allocated_count;
5442
	s32 err;
5443 5444 5445 5446 5447 5448 5449

	igb_irq_disable(adapter);
	vlan_group_set_device(adapter->vlgrp, vid, NULL);

	if (!test_bit(__IGB_DOWN, &adapter->state))
		igb_irq_enable(adapter);

5450 5451
	/* remove vlan from VLVF table array */
	err = igb_vlvf_set(adapter, vid, false, pf_id);
5452

5453 5454
	/* if vid was not present in VLVF just remove it from table */
	if (err)
5455
		igb_vfta_set(hw, vid, false);
5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473
}

static void igb_restore_vlan(struct igb_adapter *adapter)
{
	igb_vlan_rx_register(adapter->netdev, adapter->vlgrp);

	if (adapter->vlgrp) {
		u16 vid;
		for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
			if (!vlan_group_get_device(adapter->vlgrp, vid))
				continue;
			igb_vlan_rx_add_vid(adapter->netdev, vid);
		}
	}
}

int igb_set_spd_dplx(struct igb_adapter *adapter, u16 spddplx)
{
5474
	struct pci_dev *pdev = adapter->pdev;
5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497
	struct e1000_mac_info *mac = &adapter->hw.mac;

	mac->autoneg = 0;

	switch (spddplx) {
	case SPEED_10 + DUPLEX_HALF:
		mac->forced_speed_duplex = ADVERTISE_10_HALF;
		break;
	case SPEED_10 + DUPLEX_FULL:
		mac->forced_speed_duplex = ADVERTISE_10_FULL;
		break;
	case SPEED_100 + DUPLEX_HALF:
		mac->forced_speed_duplex = ADVERTISE_100_HALF;
		break;
	case SPEED_100 + DUPLEX_FULL:
		mac->forced_speed_duplex = ADVERTISE_100_FULL;
		break;
	case SPEED_1000 + DUPLEX_FULL:
		mac->autoneg = 1;
		adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
		break;
	case SPEED_1000 + DUPLEX_HALF: /* not supported */
	default:
5498
		dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
5499 5500 5501 5502 5503
		return -EINVAL;
	}
	return 0;
}

5504
static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake)
5505 5506 5507 5508
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
A
Alexander Duyck 已提交
5509
	u32 ctrl, rctl, status;
5510 5511 5512 5513 5514 5515 5516
	u32 wufc = adapter->wol;
#ifdef CONFIG_PM
	int retval = 0;
#endif

	netif_device_detach(netdev);

A
Alexander Duyck 已提交
5517 5518 5519
	if (netif_running(netdev))
		igb_close(netdev);

5520
	igb_clear_interrupt_scheme(adapter);
5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533

#ifdef CONFIG_PM
	retval = pci_save_state(pdev);
	if (retval)
		return retval;
#endif

	status = rd32(E1000_STATUS);
	if (status & E1000_STATUS_LU)
		wufc &= ~E1000_WUFC_LNKC;

	if (wufc) {
		igb_setup_rctl(adapter);
5534
		igb_set_rx_mode(netdev);
5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551

		/* turn on all-multi mode if wake on multicast is enabled */
		if (wufc & E1000_WUFC_MC) {
			rctl = rd32(E1000_RCTL);
			rctl |= E1000_RCTL_MPE;
			wr32(E1000_RCTL, rctl);
		}

		ctrl = rd32(E1000_CTRL);
		/* advertise wake from D3Cold */
		#define E1000_CTRL_ADVD3WUC 0x00100000
		/* phy power management enable */
		#define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
		ctrl |= E1000_CTRL_ADVD3WUC;
		wr32(E1000_CTRL, ctrl);

		/* Allow time for pending master requests to run */
5552
		igb_disable_pcie_master(hw);
5553 5554 5555 5556 5557 5558 5559 5560

		wr32(E1000_WUC, E1000_WUC_PME_EN);
		wr32(E1000_WUFC, wufc);
	} else {
		wr32(E1000_WUC, 0);
		wr32(E1000_WUFC, 0);
	}

5561 5562
	*enable_wake = wufc || adapter->en_mng_pt;
	if (!*enable_wake)
5563
		igb_shutdown_serdes_link_82575(hw);
5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574

	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
	 * would have already happened in close and is redundant. */
	igb_release_hw_control(adapter);

	pci_disable_device(pdev);

	return 0;
}

#ifdef CONFIG_PM
5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593
static int igb_suspend(struct pci_dev *pdev, pm_message_t state)
{
	int retval;
	bool wake;

	retval = __igb_shutdown(pdev, &wake);
	if (retval)
		return retval;

	if (wake) {
		pci_prepare_to_sleep(pdev);
	} else {
		pci_wake_from_d3(pdev, false);
		pci_set_power_state(pdev, PCI_D3hot);
	}

	return 0;
}

5594 5595 5596 5597 5598 5599 5600 5601 5602
static int igb_resume(struct pci_dev *pdev)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 err;

	pci_set_power_state(pdev, PCI_D0);
	pci_restore_state(pdev);
T
Taku Izumi 已提交
5603

5604
	err = pci_enable_device_mem(pdev);
5605 5606 5607 5608 5609 5610 5611 5612 5613 5614
	if (err) {
		dev_err(&pdev->dev,
			"igb: Cannot enable PCI device from suspend\n");
		return err;
	}
	pci_set_master(pdev);

	pci_enable_wake(pdev, PCI_D3hot, 0);
	pci_enable_wake(pdev, PCI_D3cold, 0);

5615
	if (igb_init_interrupt_scheme(adapter)) {
A
Alexander Duyck 已提交
5616 5617
		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
		return -ENOMEM;
5618 5619 5620 5621 5622
	}

	/* e1000_power_up_phy(adapter); */

	igb_reset(adapter);
5623 5624 5625 5626 5627

	/* let the f/w know that the h/w is now under the control of the
	 * driver. */
	igb_get_hw_control(adapter);

5628 5629
	wr32(E1000_WUS, ~0);

A
Alexander Duyck 已提交
5630 5631 5632 5633 5634
	if (netif_running(netdev)) {
		err = igb_open(netdev);
		if (err)
			return err;
	}
5635 5636 5637 5638 5639 5640 5641 5642 5643

	netif_device_attach(netdev);

	return 0;
}
#endif

static void igb_shutdown(struct pci_dev *pdev)
{
5644 5645 5646 5647 5648 5649 5650 5651
	bool wake;

	__igb_shutdown(pdev, &wake);

	if (system_state == SYSTEM_POWER_OFF) {
		pci_wake_from_d3(pdev, wake);
		pci_set_power_state(pdev, PCI_D3hot);
	}
5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662
}

#ifdef CONFIG_NET_POLL_CONTROLLER
/*
 * Polling 'interrupt' - used by things like netconsole to send skbs
 * without having to re-enable interrupts. It's not called while
 * the interrupt routine is executing.
 */
static void igb_netpoll(struct net_device *netdev)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
5663
	struct e1000_hw *hw = &adapter->hw;
5664 5665
	int i;

5666
	if (!adapter->msix_entries) {
5667
		struct igb_q_vector *q_vector = adapter->q_vector[0];
5668
		igb_irq_disable(adapter);
5669
		napi_schedule(&q_vector->napi);
5670 5671
		return;
	}
5672

5673 5674 5675 5676
	for (i = 0; i < adapter->num_q_vectors; i++) {
		struct igb_q_vector *q_vector = adapter->q_vector[i];
		wr32(E1000_EIMC, q_vector->eims_value);
		napi_schedule(&q_vector->napi);
5677
	}
5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696
}
#endif /* CONFIG_NET_POLL_CONTROLLER */

/**
 * igb_io_error_detected - called when PCI error is detected
 * @pdev: Pointer to PCI device
 * @state: The current pci connection state
 *
 * This function is called after a PCI bus error affecting
 * this device has been detected.
 */
static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
					      pci_channel_state_t state)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);

	netif_device_detach(netdev);

5697 5698 5699
	if (state == pci_channel_io_perm_failure)
		return PCI_ERS_RESULT_DISCONNECT;

5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719
	if (netif_running(netdev))
		igb_down(adapter);
	pci_disable_device(pdev);

	/* Request a slot slot reset. */
	return PCI_ERS_RESULT_NEED_RESET;
}

/**
 * igb_io_slot_reset - called after the pci bus has been reset.
 * @pdev: Pointer to PCI device
 *
 * Restart the card from scratch, as if from a cold-boot. Implementation
 * resembles the first-half of the igb_resume routine.
 */
static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
5720
	pci_ers_result_t result;
T
Taku Izumi 已提交
5721
	int err;
5722

5723
	if (pci_enable_device_mem(pdev)) {
5724 5725
		dev_err(&pdev->dev,
			"Cannot re-enable PCI device after reset.\n");
5726 5727 5728 5729
		result = PCI_ERS_RESULT_DISCONNECT;
	} else {
		pci_set_master(pdev);
		pci_restore_state(pdev);
5730

5731 5732
		pci_enable_wake(pdev, PCI_D3hot, 0);
		pci_enable_wake(pdev, PCI_D3cold, 0);
5733

5734 5735 5736 5737
		igb_reset(adapter);
		wr32(E1000_WUS, ~0);
		result = PCI_ERS_RESULT_RECOVERED;
	}
5738

5739 5740 5741 5742 5743 5744
	err = pci_cleanup_aer_uncorrect_error_status(pdev);
	if (err) {
		dev_err(&pdev->dev, "pci_cleanup_aer_uncorrect_error_status "
		        "failed 0x%0x\n", err);
		/* non-fatal, continue */
	}
5745 5746

	return result;
5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775
}

/**
 * igb_io_resume - called when traffic can start flowing again.
 * @pdev: Pointer to PCI device
 *
 * This callback is called when the error recovery driver tells us that
 * its OK to resume normal operation. Implementation resembles the
 * second-half of the igb_resume routine.
 */
static void igb_io_resume(struct pci_dev *pdev)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);

	if (netif_running(netdev)) {
		if (igb_up(adapter)) {
			dev_err(&pdev->dev, "igb_up failed after reset\n");
			return;
		}
	}

	netif_device_attach(netdev);

	/* let the f/w know that the h/w is now under the control of the
	 * driver. */
	igb_get_hw_control(adapter);
}

5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802
static void igb_rar_set_qsel(struct igb_adapter *adapter, u8 *addr, u32 index,
                             u8 qsel)
{
	u32 rar_low, rar_high;
	struct e1000_hw *hw = &adapter->hw;

	/* HW expects these in little endian so we reverse the byte order
	 * from network order (big endian) to little endian
	 */
	rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
	          ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
	rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));

	/* Indicate to hardware the Address is Valid. */
	rar_high |= E1000_RAH_AV;

	if (hw->mac.type == e1000_82575)
		rar_high |= E1000_RAH_POOL_1 * qsel;
	else
		rar_high |= E1000_RAH_POOL_1 << qsel;

	wr32(E1000_RAL(index), rar_low);
	wrfl();
	wr32(E1000_RAH(index), rar_high);
	wrfl();
}

5803 5804 5805 5806
static int igb_set_vf_mac(struct igb_adapter *adapter,
                          int vf, unsigned char *mac_addr)
{
	struct e1000_hw *hw = &adapter->hw;
5807 5808 5809
	/* VF MAC addresses start at end of receive addresses and moves
	 * torwards the first, as a result a collision should not be possible */
	int rar_entry = hw->mac.rar_entry_count - (vf + 1);
5810

5811
	memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN);
5812

5813
	igb_rar_set_qsel(adapter, mac_addr, rar_entry, vf);
5814 5815 5816 5817 5818 5819 5820

	return 0;
}

static void igb_vmm_control(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
5821
	u32 reg;
5822

5823 5824
	/* replication is not supported for 82575 */
	if (hw->mac.type == e1000_82575)
5825 5826
		return;

5827 5828 5829 5830 5831 5832 5833 5834 5835 5836
	/* enable replication vlan tag stripping */
	reg = rd32(E1000_RPLOLR);
	reg |= E1000_RPLOLR_STRVLAN;
	wr32(E1000_RPLOLR, reg);

	/* notify HW that the MAC is adding vlan tags */
	reg = rd32(E1000_DTXCTL);
	reg |= E1000_DTXCTL_VLAN_ADDED;
	wr32(E1000_DTXCTL, reg);

5837 5838 5839 5840 5841 5842 5843
	if (adapter->vfs_allocated_count) {
		igb_vmdq_set_loopback_pf(hw, true);
		igb_vmdq_set_replication_pf(hw, true);
	} else {
		igb_vmdq_set_loopback_pf(hw, false);
		igb_vmdq_set_replication_pf(hw, false);
	}
5844 5845
}

5846
/* igb_main.c */