igb_main.c 169.9 KB
Newer Older
1 2 3
/*******************************************************************************

  Intel(R) Gigabit Ethernet Linux driver
4
  Copyright(c) 2007-2009 Intel Corporation.
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

  This program is free software; you can redistribute it and/or modify it
  under the terms and conditions of the GNU General Public License,
  version 2, as published by the Free Software Foundation.

  This program is distributed in the hope it will be useful, but WITHOUT
  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  more details.

  You should have received a copy of the GNU General Public License along with
  this program; if not, write to the Free Software Foundation, Inc.,
  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.

  The full GNU General Public License is included in this distribution in
  the file called "COPYING".

  Contact Information:
  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497

*******************************************************************************/

#include <linux/module.h>
#include <linux/types.h>
#include <linux/init.h>
#include <linux/vmalloc.h>
#include <linux/pagemap.h>
#include <linux/netdevice.h>
#include <linux/ipv6.h>
#include <net/checksum.h>
#include <net/ip6_checksum.h>
37
#include <linux/net_tstamp.h>
38 39 40 41
#include <linux/mii.h>
#include <linux/ethtool.h>
#include <linux/if_vlan.h>
#include <linux/pci.h>
42
#include <linux/pci-aspm.h>
43 44 45
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/if_ether.h>
46
#include <linux/aer.h>
47
#ifdef CONFIG_IGB_DCA
J
Jeb Cramer 已提交
48 49
#include <linux/dca.h>
#endif
50 51
#include "igb.h"

52
#define DRV_VERSION "2.1.0-k2"
53 54 55 56
char igb_driver_name[] = "igb";
char igb_driver_version[] = DRV_VERSION;
static const char igb_driver_string[] =
				"Intel(R) Gigabit Ethernet Network Driver";
57
static const char igb_copyright[] = "Copyright (c) 2007-2009 Intel Corporation.";
58 59 60 61 62

static const struct e1000_info *igb_info_tbl[] = {
	[board_82575] = &e1000_82575_info,
};

63
static DEFINE_PCI_DEVICE_TABLE(igb_pci_tbl) = {
64 65 66 67
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
68 69 70 71 72
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
A
Alexander Duyck 已提交
73
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
74
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
75
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
A
Alexander Duyck 已提交
76 77
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
78
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
79
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
80
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
81 82 83 84 85 86 87 88 89 90 91 92 93 94
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
	/* required last entry */
	{0, }
};

MODULE_DEVICE_TABLE(pci, igb_pci_tbl);

void igb_reset(struct igb_adapter *);
static int igb_setup_all_tx_resources(struct igb_adapter *);
static int igb_setup_all_rx_resources(struct igb_adapter *);
static void igb_free_all_tx_resources(struct igb_adapter *);
static void igb_free_all_rx_resources(struct igb_adapter *);
95
static void igb_setup_mrqc(struct igb_adapter *);
96 97 98 99 100 101 102 103 104 105
void igb_update_stats(struct igb_adapter *);
static int igb_probe(struct pci_dev *, const struct pci_device_id *);
static void __devexit igb_remove(struct pci_dev *pdev);
static int igb_sw_init(struct igb_adapter *);
static int igb_open(struct net_device *);
static int igb_close(struct net_device *);
static void igb_configure_tx(struct igb_adapter *);
static void igb_configure_rx(struct igb_adapter *);
static void igb_clean_all_tx_rings(struct igb_adapter *);
static void igb_clean_all_rx_rings(struct igb_adapter *);
106 107
static void igb_clean_tx_ring(struct igb_ring *);
static void igb_clean_rx_ring(struct igb_ring *);
108
static void igb_set_rx_mode(struct net_device *);
109 110 111
static void igb_update_phy_info(unsigned long);
static void igb_watchdog(unsigned long);
static void igb_watchdog_task(struct work_struct *);
112
static netdev_tx_t igb_xmit_frame_adv(struct sk_buff *skb, struct net_device *);
113 114 115
static struct net_device_stats *igb_get_stats(struct net_device *);
static int igb_change_mtu(struct net_device *, int);
static int igb_set_mac(struct net_device *, void *);
116
static void igb_set_uta(struct igb_adapter *adapter);
117 118 119
static irqreturn_t igb_intr(int irq, void *);
static irqreturn_t igb_intr_msi(int irq, void *);
static irqreturn_t igb_msix_other(int irq, void *);
120
static irqreturn_t igb_msix_ring(int irq, void *);
121
#ifdef CONFIG_IGB_DCA
122
static void igb_update_dca(struct igb_q_vector *);
J
Jeb Cramer 已提交
123
static void igb_setup_dca(struct igb_adapter *);
124
#endif /* CONFIG_IGB_DCA */
125
static bool igb_clean_tx_irq(struct igb_q_vector *);
126
static int igb_poll(struct napi_struct *, int);
127
static bool igb_clean_rx_irq_adv(struct igb_q_vector *, int *, int);
128 129 130 131 132 133 134
static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
static void igb_tx_timeout(struct net_device *);
static void igb_reset_task(struct work_struct *);
static void igb_vlan_rx_register(struct net_device *, struct vlan_group *);
static void igb_vlan_rx_add_vid(struct net_device *, u16);
static void igb_vlan_rx_kill_vid(struct net_device *, u16);
static void igb_restore_vlan(struct igb_adapter *);
135
static void igb_rar_set_qsel(struct igb_adapter *, u8 *, u32 , u8);
136 137 138
static void igb_ping_all_vfs(struct igb_adapter *);
static void igb_msg_task(struct igb_adapter *);
static void igb_vmm_control(struct igb_adapter *);
139
static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
140
static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
141 142 143 144 145 146
static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
static int igb_ndo_set_vf_vlan(struct net_device *netdev,
			       int vf, u16 vlan, u8 qos);
static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate);
static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
				 struct ifla_vf_info *ivi);
147 148

#ifdef CONFIG_PM
149
static int igb_suspend(struct pci_dev *, pm_message_t);
150 151 152
static int igb_resume(struct pci_dev *);
#endif
static void igb_shutdown(struct pci_dev *);
153
#ifdef CONFIG_IGB_DCA
J
Jeb Cramer 已提交
154 155 156 157 158 159 160
static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
static struct notifier_block dca_notifier = {
	.notifier_call	= igb_notify_dca,
	.next		= NULL,
	.priority	= 0
};
#endif
161 162 163 164
#ifdef CONFIG_NET_POLL_CONTROLLER
/* for netdump / net console */
static void igb_netpoll(struct net_device *);
#endif
165
#ifdef CONFIG_PCI_IOV
166 167 168 169 170 171
static unsigned int max_vfs = 0;
module_param(max_vfs, uint, 0);
MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate "
                 "per physical function");
#endif /* CONFIG_PCI_IOV */

172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
		     pci_channel_state_t);
static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
static void igb_io_resume(struct pci_dev *);

static struct pci_error_handlers igb_err_handler = {
	.error_detected = igb_io_error_detected,
	.slot_reset = igb_io_slot_reset,
	.resume = igb_io_resume,
};


static struct pci_driver igb_driver = {
	.name     = igb_driver_name,
	.id_table = igb_pci_tbl,
	.probe    = igb_probe,
	.remove   = __devexit_p(igb_remove),
#ifdef CONFIG_PM
	/* Power Managment Hooks */
	.suspend  = igb_suspend,
	.resume   = igb_resume,
#endif
	.shutdown = igb_shutdown,
	.err_handler = &igb_err_handler
};

MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
MODULE_LICENSE("GPL");
MODULE_VERSION(DRV_VERSION);

P
Patrick Ohly 已提交
203 204 205 206 207 208 209 210
/**
 * igb_read_clock - read raw cycle counter (to be used by time counter)
 */
static cycle_t igb_read_clock(const struct cyclecounter *tc)
{
	struct igb_adapter *adapter =
		container_of(tc, struct igb_adapter, cycles);
	struct e1000_hw *hw = &adapter->hw;
211 212
	u64 stamp = 0;
	int shift = 0;
P
Patrick Ohly 已提交
213

214 215 216 217 218 219 220 221 222 223
	/*
	 * The timestamp latches on lowest register read. For the 82580
	 * the lowest register is SYSTIMR instead of SYSTIML.  However we never
	 * adjusted TIMINCA so SYSTIMR will just read as all 0s so ignore it.
	 */
	if (hw->mac.type == e1000_82580) {
		stamp = rd32(E1000_SYSTIMR) >> 8;
		shift = IGB_82580_TSYNC_SHIFT;
	}

224 225
	stamp |= (u64)rd32(E1000_SYSTIML) << shift;
	stamp |= (u64)rd32(E1000_SYSTIMH) << (shift + 32);
P
Patrick Ohly 已提交
226 227 228
	return stamp;
}

229 230 231 232 233 234 235 236 237 238
#ifdef DEBUG
/**
 * igb_get_hw_dev_name - return device name string
 * used by hardware layer to print debugging information
 **/
char *igb_get_hw_dev_name(struct e1000_hw *hw)
{
	struct igb_adapter *adapter = hw->back;
	return adapter->netdev->name;
}
P
Patrick Ohly 已提交
239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254

/**
 * igb_get_time_str - format current NIC and system time as string
 */
static char *igb_get_time_str(struct igb_adapter *adapter,
			      char buffer[160])
{
	cycle_t hw = adapter->cycles.read(&adapter->cycles);
	struct timespec nic = ns_to_timespec(timecounter_read(&adapter->clock));
	struct timespec sys;
	struct timespec delta;
	getnstimeofday(&sys);

	delta = timespec_sub(nic, sys);

	sprintf(buffer,
255 256
		"HW %llu, NIC %ld.%09lus, SYS %ld.%09lus, NIC-SYS %lds + %09luns",
		hw,
P
Patrick Ohly 已提交
257 258 259 260 261 262
		(long)nic.tv_sec, nic.tv_nsec,
		(long)sys.tv_sec, sys.tv_nsec,
		(long)delta.tv_sec, delta.tv_nsec);

	return buffer;
}
263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
#endif

/**
 * igb_init_module - Driver Registration Routine
 *
 * igb_init_module is the first routine called when the driver is
 * loaded. All it does is register with the PCI subsystem.
 **/
static int __init igb_init_module(void)
{
	int ret;
	printk(KERN_INFO "%s - version %s\n",
	       igb_driver_string, igb_driver_version);

	printk(KERN_INFO "%s\n", igb_copyright);

279
#ifdef CONFIG_IGB_DCA
J
Jeb Cramer 已提交
280 281
	dca_register_notify(&dca_notifier);
#endif
282
	ret = pci_register_driver(&igb_driver);
283 284 285 286 287 288 289 290 291 292 293 294 295
	return ret;
}

module_init(igb_init_module);

/**
 * igb_exit_module - Driver Exit Cleanup Routine
 *
 * igb_exit_module is called just before the driver is removed
 * from memory.
 **/
static void __exit igb_exit_module(void)
{
296
#ifdef CONFIG_IGB_DCA
J
Jeb Cramer 已提交
297 298
	dca_unregister_notify(&dca_notifier);
#endif
299 300 301 302 303
	pci_unregister_driver(&igb_driver);
}

module_exit(igb_exit_module);

304 305 306 307 308 309 310 311 312 313
#define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
/**
 * igb_cache_ring_register - Descriptor ring to register mapping
 * @adapter: board private structure to initialize
 *
 * Once we know the feature-set enabled for the device, we'll cache
 * the register offset the descriptor ring is assigned to.
 **/
static void igb_cache_ring_register(struct igb_adapter *adapter)
{
314
	int i = 0, j = 0;
315
	u32 rbase_offset = adapter->vfs_allocated_count;
316 317 318 319 320 321 322 323

	switch (adapter->hw.mac.type) {
	case e1000_82576:
		/* The queues are allocated for virtualization such that VF 0
		 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
		 * In order to avoid collision we start at the first free queue
		 * and continue consuming queues in the same sequence
		 */
324
		if (adapter->vfs_allocated_count) {
325
			for (; i < adapter->rss_queues; i++)
326 327
				adapter->rx_ring[i]->reg_idx = rbase_offset +
				                               Q_IDX_82576(i);
328
			for (; j < adapter->rss_queues; j++)
329 330
				adapter->tx_ring[j]->reg_idx = rbase_offset +
				                               Q_IDX_82576(j);
331
		}
332
	case e1000_82575:
333
	case e1000_82580:
334
	case e1000_i350:
335
	default:
336
		for (; i < adapter->num_rx_queues; i++)
337
			adapter->rx_ring[i]->reg_idx = rbase_offset + i;
338
		for (; j < adapter->num_tx_queues; j++)
339
			adapter->tx_ring[j]->reg_idx = rbase_offset + j;
340 341 342 343
		break;
	}
}

344 345
static void igb_free_queues(struct igb_adapter *adapter)
{
346
	int i;
347

348 349 350 351 352 353 354 355
	for (i = 0; i < adapter->num_tx_queues; i++) {
		kfree(adapter->tx_ring[i]);
		adapter->tx_ring[i] = NULL;
	}
	for (i = 0; i < adapter->num_rx_queues; i++) {
		kfree(adapter->rx_ring[i]);
		adapter->rx_ring[i] = NULL;
	}
356 357 358 359
	adapter->num_rx_queues = 0;
	adapter->num_tx_queues = 0;
}

360 361 362 363 364 365 366 367 368
/**
 * igb_alloc_queues - Allocate memory for all rings
 * @adapter: board private structure to initialize
 *
 * We allocate one ring per queue at run-time since we don't know the
 * number of queues at compile-time.
 **/
static int igb_alloc_queues(struct igb_adapter *adapter)
{
369
	struct igb_ring *ring;
370 371
	int i;

372
	for (i = 0; i < adapter->num_tx_queues; i++) {
373 374 375
		ring = kzalloc(sizeof(struct igb_ring), GFP_KERNEL);
		if (!ring)
			goto err;
376
		ring->count = adapter->tx_ring_count;
377
		ring->queue_index = i;
378
		ring->pdev = adapter->pdev;
379
		ring->netdev = adapter->netdev;
380 381 382
		/* For 82575, context index must be unique per ring. */
		if (adapter->hw.mac.type == e1000_82575)
			ring->flags = IGB_RING_FLAG_TX_CTX_IDX;
383
		adapter->tx_ring[i] = ring;
384
	}
385

386
	for (i = 0; i < adapter->num_rx_queues; i++) {
387 388 389
		ring = kzalloc(sizeof(struct igb_ring), GFP_KERNEL);
		if (!ring)
			goto err;
390
		ring->count = adapter->rx_ring_count;
P
PJ Waskiewicz 已提交
391
		ring->queue_index = i;
392
		ring->pdev = adapter->pdev;
393
		ring->netdev = adapter->netdev;
394
		ring->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
395 396 397 398
		ring->flags = IGB_RING_FLAG_RX_CSUM; /* enable rx checksum */
		/* set flag indicating ring supports SCTP checksum offload */
		if (adapter->hw.mac.type >= e1000_82576)
			ring->flags |= IGB_RING_FLAG_RX_SCTP_CSUM;
399
		adapter->rx_ring[i] = ring;
400
	}
401 402

	igb_cache_ring_register(adapter);
403

404
	return 0;
A
Alexander Duyck 已提交
405

406 407
err:
	igb_free_queues(adapter);
408

409
	return -ENOMEM;
A
Alexander Duyck 已提交
410 411
}

412
#define IGB_N0_QUEUE -1
413
static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
414 415
{
	u32 msixbm = 0;
416
	struct igb_adapter *adapter = q_vector->adapter;
417
	struct e1000_hw *hw = &adapter->hw;
A
Alexander Duyck 已提交
418
	u32 ivar, index;
419 420 421 422 423 424 425
	int rx_queue = IGB_N0_QUEUE;
	int tx_queue = IGB_N0_QUEUE;

	if (q_vector->rx_ring)
		rx_queue = q_vector->rx_ring->reg_idx;
	if (q_vector->tx_ring)
		tx_queue = q_vector->tx_ring->reg_idx;
A
Alexander Duyck 已提交
426 427 428

	switch (hw->mac.type) {
	case e1000_82575:
429 430 431 432
		/* The 82575 assigns vectors using a bitmask, which matches the
		   bitmask for the EICR/EIMS/EIMC registers.  To assign one
		   or more queues to a vector, we write the appropriate bits
		   into the MSIXBM register for that vector. */
433
		if (rx_queue > IGB_N0_QUEUE)
434
			msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
435
		if (tx_queue > IGB_N0_QUEUE)
436
			msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
437 438
		if (!adapter->msix_entries && msix_vector == 0)
			msixbm |= E1000_EIMS_OTHER;
439
		array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
440
		q_vector->eims_value = msixbm;
A
Alexander Duyck 已提交
441 442
		break;
	case e1000_82576:
443
		/* 82576 uses a table-based method for assigning vectors.
A
Alexander Duyck 已提交
444 445 446 447
		   Each queue has a single entry in the table to which we write
		   a vector number along with a "valid" bit.  Sadly, the layout
		   of the table is somewhat counterintuitive. */
		if (rx_queue > IGB_N0_QUEUE) {
448
			index = (rx_queue & 0x7);
A
Alexander Duyck 已提交
449
			ivar = array_rd32(E1000_IVAR0, index);
450
			if (rx_queue < 8) {
451 452 453
				/* vector goes into low byte of register */
				ivar = ivar & 0xFFFFFF00;
				ivar |= msix_vector | E1000_IVAR_VALID;
454 455 456 457
			} else {
				/* vector goes into third byte of register */
				ivar = ivar & 0xFF00FFFF;
				ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
A
Alexander Duyck 已提交
458 459 460 461
			}
			array_wr32(E1000_IVAR0, index, ivar);
		}
		if (tx_queue > IGB_N0_QUEUE) {
462
			index = (tx_queue & 0x7);
A
Alexander Duyck 已提交
463
			ivar = array_rd32(E1000_IVAR0, index);
464
			if (tx_queue < 8) {
465 466 467
				/* vector goes into second byte of register */
				ivar = ivar & 0xFFFF00FF;
				ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
468 469 470 471
			} else {
				/* vector goes into high byte of register */
				ivar = ivar & 0x00FFFFFF;
				ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
A
Alexander Duyck 已提交
472 473 474
			}
			array_wr32(E1000_IVAR0, index, ivar);
		}
475
		q_vector->eims_value = 1 << msix_vector;
A
Alexander Duyck 已提交
476
		break;
477
	case e1000_82580:
478
	case e1000_i350:
479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510
		/* 82580 uses the same table-based approach as 82576 but has fewer
		   entries as a result we carry over for queues greater than 4. */
		if (rx_queue > IGB_N0_QUEUE) {
			index = (rx_queue >> 1);
			ivar = array_rd32(E1000_IVAR0, index);
			if (rx_queue & 0x1) {
				/* vector goes into third byte of register */
				ivar = ivar & 0xFF00FFFF;
				ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
			} else {
				/* vector goes into low byte of register */
				ivar = ivar & 0xFFFFFF00;
				ivar |= msix_vector | E1000_IVAR_VALID;
			}
			array_wr32(E1000_IVAR0, index, ivar);
		}
		if (tx_queue > IGB_N0_QUEUE) {
			index = (tx_queue >> 1);
			ivar = array_rd32(E1000_IVAR0, index);
			if (tx_queue & 0x1) {
				/* vector goes into high byte of register */
				ivar = ivar & 0x00FFFFFF;
				ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
			} else {
				/* vector goes into second byte of register */
				ivar = ivar & 0xFFFF00FF;
				ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
			}
			array_wr32(E1000_IVAR0, index, ivar);
		}
		q_vector->eims_value = 1 << msix_vector;
		break;
A
Alexander Duyck 已提交
511 512 513 514
	default:
		BUG();
		break;
	}
515 516 517 518 519 520

	/* add q_vector eims value to global eims_enable_mask */
	adapter->eims_enable_mask |= q_vector->eims_value;

	/* configure q_vector to set itr on first interrupt */
	q_vector->set_itr = 1;
521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537
}

/**
 * igb_configure_msix - Configure MSI-X hardware
 *
 * igb_configure_msix sets up the hardware to properly
 * generate MSI-X interrupts.
 **/
static void igb_configure_msix(struct igb_adapter *adapter)
{
	u32 tmp;
	int i, vector = 0;
	struct e1000_hw *hw = &adapter->hw;

	adapter->eims_enable_mask = 0;

	/* set vector for other causes, i.e. link changes */
A
Alexander Duyck 已提交
538 539
	switch (hw->mac.type) {
	case e1000_82575:
540 541 542 543 544 545 546 547 548
		tmp = rd32(E1000_CTRL_EXT);
		/* enable MSI-X PBA support*/
		tmp |= E1000_CTRL_EXT_PBA_CLR;

		/* Auto-Mask interrupts upon ICR read. */
		tmp |= E1000_CTRL_EXT_EIAME;
		tmp |= E1000_CTRL_EXT_IRCA;

		wr32(E1000_CTRL_EXT, tmp);
549 550 551 552

		/* enable msix_other interrupt */
		array_wr32(E1000_MSIXBM(0), vector++,
		                      E1000_EIMS_OTHER);
P
PJ Waskiewicz 已提交
553
		adapter->eims_other = E1000_EIMS_OTHER;
554

A
Alexander Duyck 已提交
555 556 557
		break;

	case e1000_82576:
558
	case e1000_82580:
559
	case e1000_i350:
560 561 562 563 564 565 566 567
		/* Turn on MSI-X capability first, or our settings
		 * won't stick.  And it will take days to debug. */
		wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
		                E1000_GPIE_PBA | E1000_GPIE_EIAME |
		                E1000_GPIE_NSICR);

		/* enable msix_other interrupt */
		adapter->eims_other = 1 << vector;
A
Alexander Duyck 已提交
568 569
		tmp = (vector++ | E1000_IVAR_VALID) << 8;

570
		wr32(E1000_IVAR_MISC, tmp);
A
Alexander Duyck 已提交
571 572 573 574 575
		break;
	default:
		/* do nothing, since nothing else supports MSI-X */
		break;
	} /* switch (hw->mac.type) */
576 577 578

	adapter->eims_enable_mask |= adapter->eims_other;

579 580
	for (i = 0; i < adapter->num_q_vectors; i++)
		igb_assign_vector(adapter->q_vector[i], vector++);
581

582 583 584 585 586 587 588 589 590 591 592 593
	wrfl();
}

/**
 * igb_request_msix - Initialize MSI-X interrupts
 *
 * igb_request_msix allocates MSI-X vectors and requests interrupts from the
 * kernel.
 **/
static int igb_request_msix(struct igb_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
594
	struct e1000_hw *hw = &adapter->hw;
595 596
	int i, err = 0, vector = 0;

597
	err = request_irq(adapter->msix_entries[vector].vector,
598
	                  igb_msix_other, 0, netdev->name, adapter);
599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616
	if (err)
		goto out;
	vector++;

	for (i = 0; i < adapter->num_q_vectors; i++) {
		struct igb_q_vector *q_vector = adapter->q_vector[i];

		q_vector->itr_register = hw->hw_addr + E1000_EITR(vector);

		if (q_vector->rx_ring && q_vector->tx_ring)
			sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
			        q_vector->rx_ring->queue_index);
		else if (q_vector->tx_ring)
			sprintf(q_vector->name, "%s-tx-%u", netdev->name,
			        q_vector->tx_ring->queue_index);
		else if (q_vector->rx_ring)
			sprintf(q_vector->name, "%s-rx-%u", netdev->name,
			        q_vector->rx_ring->queue_index);
617
		else
618 619
			sprintf(q_vector->name, "%s-unused", netdev->name);

620
		err = request_irq(adapter->msix_entries[vector].vector,
621
		                  igb_msix_ring, 0, q_vector->name,
622
		                  q_vector);
623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639
		if (err)
			goto out;
		vector++;
	}

	igb_configure_msix(adapter);
	return 0;
out:
	return err;
}

static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
{
	if (adapter->msix_entries) {
		pci_disable_msix(adapter->pdev);
		kfree(adapter->msix_entries);
		adapter->msix_entries = NULL;
640
	} else if (adapter->flags & IGB_FLAG_HAS_MSI) {
641
		pci_disable_msi(adapter->pdev);
642
	}
643 644
}

645 646 647 648 649 650 651 652 653 654 655 656 657 658 659
/**
 * igb_free_q_vectors - Free memory allocated for interrupt vectors
 * @adapter: board private structure to initialize
 *
 * This function frees the memory allocated to the q_vectors.  In addition if
 * NAPI is enabled it will delete any references to the NAPI struct prior
 * to freeing the q_vector.
 **/
static void igb_free_q_vectors(struct igb_adapter *adapter)
{
	int v_idx;

	for (v_idx = 0; v_idx < adapter->num_q_vectors; v_idx++) {
		struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
		adapter->q_vector[v_idx] = NULL;
660 661
		if (!q_vector)
			continue;
662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679
		netif_napi_del(&q_vector->napi);
		kfree(q_vector);
	}
	adapter->num_q_vectors = 0;
}

/**
 * igb_clear_interrupt_scheme - reset the device to a state of no interrupts
 *
 * This function resets the device so that it has 0 rx queues, tx queues, and
 * MSI-X interrupts allocated.
 */
static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
{
	igb_free_queues(adapter);
	igb_free_q_vectors(adapter);
	igb_reset_interrupt_capability(adapter);
}
680 681 682 683 684 685 686 687 688 689 690 691

/**
 * igb_set_interrupt_capability - set MSI or MSI-X if supported
 *
 * Attempt to configure interrupts using the best available
 * capabilities of the hardware and kernel.
 **/
static void igb_set_interrupt_capability(struct igb_adapter *adapter)
{
	int err;
	int numvecs, i;

692
	/* Number of supported queues. */
693 694
	adapter->num_rx_queues = adapter->rss_queues;
	adapter->num_tx_queues = adapter->rss_queues;
695

696 697 698
	/* start with one vector for every rx queue */
	numvecs = adapter->num_rx_queues;

D
Daniel Mack 已提交
699
	/* if tx handler is separate add 1 for every tx queue */
700 701
	if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
		numvecs += adapter->num_tx_queues;
702 703 704 705 706 707

	/* store the number of vectors reserved for queues */
	adapter->num_q_vectors = numvecs;

	/* add 1 vector for link status interrupts */
	numvecs++;
708 709 710 711 712 713 714 715 716 717 718 719
	adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
					GFP_KERNEL);
	if (!adapter->msix_entries)
		goto msi_only;

	for (i = 0; i < numvecs; i++)
		adapter->msix_entries[i].entry = i;

	err = pci_enable_msix(adapter->pdev,
			      adapter->msix_entries,
			      numvecs);
	if (err == 0)
720
		goto out;
721 722 723 724 725

	igb_reset_interrupt_capability(adapter);

	/* If we can't do MSI-X, try MSI */
msi_only:
726 727 728 729 730 731 732 733 734 735 736 737 738 739 740
#ifdef CONFIG_PCI_IOV
	/* disable SR-IOV for non MSI-X configurations */
	if (adapter->vf_data) {
		struct e1000_hw *hw = &adapter->hw;
		/* disable iov and allow time for transactions to clear */
		pci_disable_sriov(adapter->pdev);
		msleep(500);

		kfree(adapter->vf_data);
		adapter->vf_data = NULL;
		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
		msleep(100);
		dev_info(&adapter->pdev->dev, "IOV Disabled\n");
	}
#endif
741
	adapter->vfs_allocated_count = 0;
742
	adapter->rss_queues = 1;
743
	adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
744
	adapter->num_rx_queues = 1;
745
	adapter->num_tx_queues = 1;
746
	adapter->num_q_vectors = 1;
747
	if (!pci_enable_msi(adapter->pdev))
748
		adapter->flags |= IGB_FLAG_HAS_MSI;
749
out:
750
	/* Notify the stack of the (possibly) reduced Tx Queue count. */
751
	adapter->netdev->real_num_tx_queues = adapter->num_tx_queues;
752 753 754
	return;
}

755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780
/**
 * igb_alloc_q_vectors - Allocate memory for interrupt vectors
 * @adapter: board private structure to initialize
 *
 * We allocate one q_vector per queue interrupt.  If allocation fails we
 * return -ENOMEM.
 **/
static int igb_alloc_q_vectors(struct igb_adapter *adapter)
{
	struct igb_q_vector *q_vector;
	struct e1000_hw *hw = &adapter->hw;
	int v_idx;

	for (v_idx = 0; v_idx < adapter->num_q_vectors; v_idx++) {
		q_vector = kzalloc(sizeof(struct igb_q_vector), GFP_KERNEL);
		if (!q_vector)
			goto err_out;
		q_vector->adapter = adapter;
		q_vector->itr_register = hw->hw_addr + E1000_EITR(0);
		q_vector->itr_val = IGB_START_ITR;
		netif_napi_add(adapter->netdev, &q_vector->napi, igb_poll, 64);
		adapter->q_vector[v_idx] = q_vector;
	}
	return 0;

err_out:
781
	igb_free_q_vectors(adapter);
782 783 784 785 786 787
	return -ENOMEM;
}

static void igb_map_rx_ring_to_vector(struct igb_adapter *adapter,
                                      int ring_idx, int v_idx)
{
788
	struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
789

790
	q_vector->rx_ring = adapter->rx_ring[ring_idx];
791
	q_vector->rx_ring->q_vector = q_vector;
792 793 794
	q_vector->itr_val = adapter->rx_itr_setting;
	if (q_vector->itr_val && q_vector->itr_val <= 3)
		q_vector->itr_val = IGB_START_ITR;
795 796 797 798 799
}

static void igb_map_tx_ring_to_vector(struct igb_adapter *adapter,
                                      int ring_idx, int v_idx)
{
800
	struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
801

802
	q_vector->tx_ring = adapter->tx_ring[ring_idx];
803
	q_vector->tx_ring->q_vector = q_vector;
804 805 806
	q_vector->itr_val = adapter->tx_itr_setting;
	if (q_vector->itr_val && q_vector->itr_val <= 3)
		q_vector->itr_val = IGB_START_ITR;
807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881
}

/**
 * igb_map_ring_to_vector - maps allocated queues to vectors
 *
 * This function maps the recently allocated queues to vectors.
 **/
static int igb_map_ring_to_vector(struct igb_adapter *adapter)
{
	int i;
	int v_idx = 0;

	if ((adapter->num_q_vectors < adapter->num_rx_queues) ||
	    (adapter->num_q_vectors < adapter->num_tx_queues))
		return -ENOMEM;

	if (adapter->num_q_vectors >=
	    (adapter->num_rx_queues + adapter->num_tx_queues)) {
		for (i = 0; i < adapter->num_rx_queues; i++)
			igb_map_rx_ring_to_vector(adapter, i, v_idx++);
		for (i = 0; i < adapter->num_tx_queues; i++)
			igb_map_tx_ring_to_vector(adapter, i, v_idx++);
	} else {
		for (i = 0; i < adapter->num_rx_queues; i++) {
			if (i < adapter->num_tx_queues)
				igb_map_tx_ring_to_vector(adapter, i, v_idx);
			igb_map_rx_ring_to_vector(adapter, i, v_idx++);
		}
		for (; i < adapter->num_tx_queues; i++)
			igb_map_tx_ring_to_vector(adapter, i, v_idx++);
	}
	return 0;
}

/**
 * igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
 *
 * This function initializes the interrupts and allocates all of the queues.
 **/
static int igb_init_interrupt_scheme(struct igb_adapter *adapter)
{
	struct pci_dev *pdev = adapter->pdev;
	int err;

	igb_set_interrupt_capability(adapter);

	err = igb_alloc_q_vectors(adapter);
	if (err) {
		dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
		goto err_alloc_q_vectors;
	}

	err = igb_alloc_queues(adapter);
	if (err) {
		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
		goto err_alloc_queues;
	}

	err = igb_map_ring_to_vector(adapter);
	if (err) {
		dev_err(&pdev->dev, "Invalid q_vector to ring mapping\n");
		goto err_map_queues;
	}


	return 0;
err_map_queues:
	igb_free_queues(adapter);
err_alloc_queues:
	igb_free_q_vectors(adapter);
err_alloc_q_vectors:
	igb_reset_interrupt_capability(adapter);
	return err;
}

882 883 884 885 886 887 888 889 890
/**
 * igb_request_irq - initialize interrupts
 *
 * Attempts to configure interrupts using the best available
 * capabilities of the hardware and kernel.
 **/
static int igb_request_irq(struct igb_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
891
	struct pci_dev *pdev = adapter->pdev;
892 893 894 895
	int err = 0;

	if (adapter->msix_entries) {
		err = igb_request_msix(adapter);
P
PJ Waskiewicz 已提交
896
		if (!err)
897 898
			goto request_done;
		/* fall back to MSI */
899
		igb_clear_interrupt_scheme(adapter);
900
		if (!pci_enable_msi(adapter->pdev))
901
			adapter->flags |= IGB_FLAG_HAS_MSI;
902 903
		igb_free_all_tx_resources(adapter);
		igb_free_all_rx_resources(adapter);
904
		adapter->num_tx_queues = 1;
905
		adapter->num_rx_queues = 1;
906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921
		adapter->num_q_vectors = 1;
		err = igb_alloc_q_vectors(adapter);
		if (err) {
			dev_err(&pdev->dev,
			        "Unable to allocate memory for vectors\n");
			goto request_done;
		}
		err = igb_alloc_queues(adapter);
		if (err) {
			dev_err(&pdev->dev,
			        "Unable to allocate memory for queues\n");
			igb_free_q_vectors(adapter);
			goto request_done;
		}
		igb_setup_all_tx_resources(adapter);
		igb_setup_all_rx_resources(adapter);
P
PJ Waskiewicz 已提交
922
	} else {
923
		igb_assign_vector(adapter->q_vector[0], 0);
924
	}
P
PJ Waskiewicz 已提交
925

926
	if (adapter->flags & IGB_FLAG_HAS_MSI) {
927
		err = request_irq(adapter->pdev->irq, igb_intr_msi, 0,
928
				  netdev->name, adapter);
929 930
		if (!err)
			goto request_done;
931

932 933
		/* fall back to legacy interrupts */
		igb_reset_interrupt_capability(adapter);
934
		adapter->flags &= ~IGB_FLAG_HAS_MSI;
935 936
	}

937
	err = request_irq(adapter->pdev->irq, igb_intr, IRQF_SHARED,
938
			  netdev->name, adapter);
939

A
Andy Gospodarek 已提交
940
	if (err)
941 942 943 944 945 946 947 948 949 950 951 952
		dev_err(&adapter->pdev->dev, "Error %d getting interrupt\n",
			err);

request_done:
	return err;
}

static void igb_free_irq(struct igb_adapter *adapter)
{
	if (adapter->msix_entries) {
		int vector = 0, i;

953
		free_irq(adapter->msix_entries[vector++].vector, adapter);
954

955 956 957 958 959 960 961
		for (i = 0; i < adapter->num_q_vectors; i++) {
			struct igb_q_vector *q_vector = adapter->q_vector[i];
			free_irq(adapter->msix_entries[vector++].vector,
			         q_vector);
		}
	} else {
		free_irq(adapter->pdev->irq, adapter);
962 963 964 965 966 967 968 969 970 971 972
	}
}

/**
 * igb_irq_disable - Mask off interrupt generation on the NIC
 * @adapter: board private structure
 **/
static void igb_irq_disable(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;

973 974 975 976 977
	/*
	 * we need to be careful when disabling interrupts.  The VFs are also
	 * mapped into these registers and so clearing the bits can cause
	 * issues on the VF drivers so we only need to clear what we set
	 */
978
	if (adapter->msix_entries) {
979 980 981 982 983
		u32 regval = rd32(E1000_EIAM);
		wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
		wr32(E1000_EIMC, adapter->eims_enable_mask);
		regval = rd32(E1000_EIAC);
		wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
984
	}
P
PJ Waskiewicz 已提交
985 986

	wr32(E1000_IAM, 0);
987 988 989 990 991 992 993 994 995 996 997 998 999 1000
	wr32(E1000_IMC, ~0);
	wrfl();
	synchronize_irq(adapter->pdev->irq);
}

/**
 * igb_irq_enable - Enable default interrupt generation settings
 * @adapter: board private structure
 **/
static void igb_irq_enable(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;

	if (adapter->msix_entries) {
1001
		u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC;
1002 1003 1004 1005
		u32 regval = rd32(E1000_EIAC);
		wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
		regval = rd32(E1000_EIAM);
		wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
P
PJ Waskiewicz 已提交
1006
		wr32(E1000_EIMS, adapter->eims_enable_mask);
1007
		if (adapter->vfs_allocated_count) {
1008
			wr32(E1000_MBVFIMR, 0xFF);
1009 1010
			ims |= E1000_IMS_VMMB;
		}
1011 1012 1013
		if (adapter->hw.mac.type == e1000_82580)
			ims |= E1000_IMS_DRSTA;

1014
		wr32(E1000_IMS, ims);
P
PJ Waskiewicz 已提交
1015
	} else {
1016 1017 1018 1019
		wr32(E1000_IMS, IMS_ENABLE_MASK |
				E1000_IMS_DRSTA);
		wr32(E1000_IAM, IMS_ENABLE_MASK |
				E1000_IMS_DRSTA);
P
PJ Waskiewicz 已提交
1020
	}
1021 1022 1023 1024
}

static void igb_update_mng_vlan(struct igb_adapter *adapter)
{
1025
	struct e1000_hw *hw = &adapter->hw;
1026 1027
	u16 vid = adapter->hw.mng_cookie.vlan_id;
	u16 old_vid = adapter->mng_vlan_id;
1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041

	if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
		/* add VID to filter table */
		igb_vfta_set(hw, vid, true);
		adapter->mng_vlan_id = vid;
	} else {
		adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
	}

	if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
	    (vid != old_vid) &&
	    !vlan_group_get_device(adapter->vlgrp, old_vid)) {
		/* remove VID from filter table */
		igb_vfta_set(hw, old_vid, false);
1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094
	}
}

/**
 * igb_release_hw_control - release control of the h/w to f/w
 * @adapter: address of board private structure
 *
 * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
 * For ASF and Pass Through versions of f/w this means that the
 * driver is no longer loaded.
 *
 **/
static void igb_release_hw_control(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 ctrl_ext;

	/* Let firmware take over control of h/w */
	ctrl_ext = rd32(E1000_CTRL_EXT);
	wr32(E1000_CTRL_EXT,
			ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
}

/**
 * igb_get_hw_control - get control of the h/w from f/w
 * @adapter: address of board private structure
 *
 * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
 * For ASF and Pass Through versions of f/w this means that
 * the driver is loaded.
 *
 **/
static void igb_get_hw_control(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 ctrl_ext;

	/* Let firmware know the driver has taken over */
	ctrl_ext = rd32(E1000_CTRL_EXT);
	wr32(E1000_CTRL_EXT,
			ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
}

/**
 * igb_configure - configure the hardware for RX and TX
 * @adapter: private board structure
 **/
static void igb_configure(struct igb_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
	int i;

	igb_get_hw_control(adapter);
1095
	igb_set_rx_mode(netdev);
1096 1097 1098

	igb_restore_vlan(adapter);

1099
	igb_setup_tctl(adapter);
1100
	igb_setup_mrqc(adapter);
1101
	igb_setup_rctl(adapter);
1102 1103

	igb_configure_tx(adapter);
1104
	igb_configure_rx(adapter);
1105 1106 1107

	igb_rx_fifo_flush_82575(&adapter->hw);

1108
	/* call igb_desc_unused which always leaves
1109 1110 1111
	 * at least 1 descriptor unused to make sure
	 * next_to_use != next_to_clean */
	for (i = 0; i < adapter->num_rx_queues; i++) {
1112
		struct igb_ring *ring = adapter->rx_ring[i];
1113
		igb_alloc_rx_buffers_adv(ring, igb_desc_unused(ring));
1114 1115 1116 1117 1118 1119
	}


	adapter->tx_queue_len = netdev->tx_queue_len;
}

1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142
/**
 * igb_power_up_link - Power up the phy/serdes link
 * @adapter: address of board private structure
 **/
void igb_power_up_link(struct igb_adapter *adapter)
{
	if (adapter->hw.phy.media_type == e1000_media_type_copper)
		igb_power_up_phy_copper(&adapter->hw);
	else
		igb_power_up_serdes_link_82575(&adapter->hw);
}

/**
 * igb_power_down_link - Power down the phy/serdes link
 * @adapter: address of board private structure
 */
static void igb_power_down_link(struct igb_adapter *adapter)
{
	if (adapter->hw.phy.media_type == e1000_media_type_copper)
		igb_power_down_phy_copper_82575(&adapter->hw);
	else
		igb_shutdown_serdes_link_82575(&adapter->hw);
}
1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157

/**
 * igb_up - Open the interface and prepare it to handle traffic
 * @adapter: board private structure
 **/
int igb_up(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	int i;

	/* hardware has been reset, we need to reload some things */
	igb_configure(adapter);

	clear_bit(__IGB_DOWN, &adapter->state);

1158 1159 1160 1161
	for (i = 0; i < adapter->num_q_vectors; i++) {
		struct igb_q_vector *q_vector = adapter->q_vector[i];
		napi_enable(&q_vector->napi);
	}
P
PJ Waskiewicz 已提交
1162
	if (adapter->msix_entries)
1163
		igb_configure_msix(adapter);
1164 1165
	else
		igb_assign_vector(adapter->q_vector[0], 0);
1166 1167 1168 1169 1170

	/* Clear any pending interrupts. */
	rd32(E1000_ICR);
	igb_irq_enable(adapter);

1171 1172 1173 1174 1175 1176 1177
	/* notify VFs that reset has been completed */
	if (adapter->vfs_allocated_count) {
		u32 reg_data = rd32(E1000_CTRL_EXT);
		reg_data |= E1000_CTRL_EXT_PFRSTD;
		wr32(E1000_CTRL_EXT, reg_data);
	}

1178 1179
	netif_tx_start_all_queues(adapter->netdev);

1180 1181 1182 1183
	/* start the watchdog. */
	hw->mac.get_link_status = 1;
	schedule_work(&adapter->watchdog_task);

1184 1185 1186 1187 1188 1189
	return 0;
}

void igb_down(struct igb_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
1190
	struct e1000_hw *hw = &adapter->hw;
1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202
	u32 tctl, rctl;
	int i;

	/* signal that we're down so the interrupt handler does not
	 * reschedule our watchdog timer */
	set_bit(__IGB_DOWN, &adapter->state);

	/* disable receives in the hardware */
	rctl = rd32(E1000_RCTL);
	wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
	/* flush and sleep below */

1203
	netif_tx_stop_all_queues(netdev);
1204 1205 1206 1207 1208 1209 1210 1211 1212

	/* disable transmits in the hardware */
	tctl = rd32(E1000_TCTL);
	tctl &= ~E1000_TCTL_EN;
	wr32(E1000_TCTL, tctl);
	/* flush both disables and wait for them to finish */
	wrfl();
	msleep(10);

1213 1214 1215 1216
	for (i = 0; i < adapter->num_q_vectors; i++) {
		struct igb_q_vector *q_vector = adapter->q_vector[i];
		napi_disable(&q_vector->napi);
	}
1217 1218 1219 1220 1221 1222 1223 1224

	igb_irq_disable(adapter);

	del_timer_sync(&adapter->watchdog_timer);
	del_timer_sync(&adapter->phy_info_timer);

	netdev->tx_queue_len = adapter->tx_queue_len;
	netif_carrier_off(netdev);
1225 1226 1227 1228

	/* record the stats before reset*/
	igb_update_stats(adapter);

1229 1230 1231
	adapter->link_speed = 0;
	adapter->link_duplex = 0;

1232 1233
	if (!pci_channel_offline(adapter->pdev))
		igb_reset(adapter);
1234 1235
	igb_clean_all_tx_rings(adapter);
	igb_clean_all_rx_rings(adapter);
1236 1237 1238 1239 1240
#ifdef CONFIG_IGB_DCA

	/* since we reset the hardware DCA settings were cleared */
	igb_setup_dca(adapter);
#endif
1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254
}

void igb_reinit_locked(struct igb_adapter *adapter)
{
	WARN_ON(in_interrupt());
	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
		msleep(1);
	igb_down(adapter);
	igb_up(adapter);
	clear_bit(__IGB_RESETTING, &adapter->state);
}

void igb_reset(struct igb_adapter *adapter)
{
1255
	struct pci_dev *pdev = adapter->pdev;
1256
	struct e1000_hw *hw = &adapter->hw;
A
Alexander Duyck 已提交
1257 1258
	struct e1000_mac_info *mac = &hw->mac;
	struct e1000_fc_info *fc = &hw->fc;
1259 1260 1261 1262 1263 1264
	u32 pba = 0, tx_space, min_tx_space, min_rx_space;
	u16 hwm;

	/* Repartition Pba for greater than 9k mtu
	 * To take effect CTRL.RST is required.
	 */
1265
	switch (mac->type) {
1266
	case e1000_i350:
1267 1268 1269 1270
	case e1000_82580:
		pba = rd32(E1000_RXPBS);
		pba = igb_rxpbs_adjust_82580(pba);
		break;
1271
	case e1000_82576:
1272 1273
		pba = rd32(E1000_RXPBS);
		pba &= E1000_RXPBS_SIZE_MASK_82576;
1274 1275 1276 1277 1278
		break;
	case e1000_82575:
	default:
		pba = E1000_PBA_34K;
		break;
A
Alexander Duyck 已提交
1279
	}
1280

A
Alexander Duyck 已提交
1281 1282
	if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
	    (mac->type < e1000_82576)) {
1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299
		/* adjust PBA for jumbo frames */
		wr32(E1000_PBA, pba);

		/* To maintain wire speed transmits, the Tx FIFO should be
		 * large enough to accommodate two full transmit packets,
		 * rounded up to the next 1KB and expressed in KB.  Likewise,
		 * the Rx FIFO should be large enough to accommodate at least
		 * one full receive packet and is similarly rounded up and
		 * expressed in KB. */
		pba = rd32(E1000_PBA);
		/* upper 16 bits has Tx packet buffer allocation size in KB */
		tx_space = pba >> 16;
		/* lower 16 bits has Rx packet buffer allocation size in KB */
		pba &= 0xffff;
		/* the tx fifo also stores 16 bytes of information about the tx
		 * but don't include ethernet FCS because hardware appends it */
		min_tx_space = (adapter->max_frame_size +
1300
				sizeof(union e1000_adv_tx_desc) -
1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320
				ETH_FCS_LEN) * 2;
		min_tx_space = ALIGN(min_tx_space, 1024);
		min_tx_space >>= 10;
		/* software strips receive CRC, so leave room for it */
		min_rx_space = adapter->max_frame_size;
		min_rx_space = ALIGN(min_rx_space, 1024);
		min_rx_space >>= 10;

		/* If current Tx allocation is less than the min Tx FIFO size,
		 * and the min Tx FIFO size is less than the current Rx FIFO
		 * allocation, take space away from current Rx allocation */
		if (tx_space < min_tx_space &&
		    ((min_tx_space - tx_space) < pba)) {
			pba = pba - (min_tx_space - tx_space);

			/* if short on rx space, rx wins and must trump tx
			 * adjustment */
			if (pba < min_rx_space)
				pba = min_rx_space;
		}
A
Alexander Duyck 已提交
1321
		wr32(E1000_PBA, pba);
1322 1323 1324 1325 1326 1327 1328 1329 1330
	}

	/* flow control settings */
	/* The high water mark must be low enough to fit one full frame
	 * (or the size used for early receive) above it in the Rx FIFO.
	 * Set it to the lower of:
	 * - 90% of the Rx FIFO size, or
	 * - the full Rx FIFO size minus one full frame */
	hwm = min(((pba << 10) * 9 / 10),
A
Alexander Duyck 已提交
1331
			((pba << 10) - 2 * adapter->max_frame_size));
1332

1333 1334
	fc->high_water = hwm & 0xFFF0;	/* 16-byte granularity */
	fc->low_water = fc->high_water - 16;
1335 1336
	fc->pause_time = 0xFFFF;
	fc->send_xon = 1;
1337
	fc->current_mode = fc->requested_mode;
1338

1339 1340 1341 1342
	/* disable receive for all VFs and wait one second */
	if (adapter->vfs_allocated_count) {
		int i;
		for (i = 0 ; i < adapter->vfs_allocated_count; i++)
1343
			adapter->vf_data[i].flags = 0;
1344 1345

		/* ping all the active vfs to let them know we are going down */
1346
		igb_ping_all_vfs(adapter);
1347 1348 1349 1350 1351 1352

		/* disable transmits and receives */
		wr32(E1000_VFRE, 0);
		wr32(E1000_VFTE, 0);
	}

1353
	/* Allow time for pending master requests to run */
1354
	hw->mac.ops.reset_hw(hw);
1355 1356
	wr32(E1000_WUC, 0);

1357
	if (hw->mac.ops.init_hw(hw))
1358
		dev_err(&pdev->dev, "Hardware Error\n");
1359

1360 1361 1362 1363 1364
	if (hw->mac.type == e1000_82580) {
		u32 reg = rd32(E1000_PCIEMISC);
		wr32(E1000_PCIEMISC,
		                reg & ~E1000_PCIEMISC_LX_DECISION);
	}
1365 1366 1367
	if (!netif_running(adapter->netdev))
		igb_power_down_link(adapter);

1368 1369 1370 1371 1372
	igb_update_mng_vlan(adapter);

	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
	wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);

1373
	igb_get_phy_info(hw);
1374 1375
}

S
Stephen Hemminger 已提交
1376
static const struct net_device_ops igb_netdev_ops = {
1377
	.ndo_open		= igb_open,
S
Stephen Hemminger 已提交
1378
	.ndo_stop		= igb_close,
1379
	.ndo_start_xmit		= igb_xmit_frame_adv,
S
Stephen Hemminger 已提交
1380
	.ndo_get_stats		= igb_get_stats,
1381 1382
	.ndo_set_rx_mode	= igb_set_rx_mode,
	.ndo_set_multicast_list	= igb_set_rx_mode,
S
Stephen Hemminger 已提交
1383 1384 1385 1386 1387 1388 1389 1390
	.ndo_set_mac_address	= igb_set_mac,
	.ndo_change_mtu		= igb_change_mtu,
	.ndo_do_ioctl		= igb_ioctl,
	.ndo_tx_timeout		= igb_tx_timeout,
	.ndo_validate_addr	= eth_validate_addr,
	.ndo_vlan_rx_register	= igb_vlan_rx_register,
	.ndo_vlan_rx_add_vid	= igb_vlan_rx_add_vid,
	.ndo_vlan_rx_kill_vid	= igb_vlan_rx_kill_vid,
1391 1392 1393 1394
	.ndo_set_vf_mac		= igb_ndo_set_vf_mac,
	.ndo_set_vf_vlan	= igb_ndo_set_vf_vlan,
	.ndo_set_vf_tx_rate	= igb_ndo_set_vf_bw,
	.ndo_get_vf_config	= igb_ndo_get_vf_config,
S
Stephen Hemminger 已提交
1395 1396 1397 1398 1399
#ifdef CONFIG_NET_POLL_CONTROLLER
	.ndo_poll_controller	= igb_netpoll,
#endif
};

1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416
/**
 * igb_probe - Device Initialization Routine
 * @pdev: PCI device information struct
 * @ent: entry in igb_pci_tbl
 *
 * Returns 0 on success, negative on failure
 *
 * igb_probe initializes an adapter identified by a pci_dev structure.
 * The OS initialization, configuring of the adapter private structure,
 * and a hardware reset occur.
 **/
static int __devinit igb_probe(struct pci_dev *pdev,
			       const struct pci_device_id *ent)
{
	struct net_device *netdev;
	struct igb_adapter *adapter;
	struct e1000_hw *hw;
1417 1418
	u16 eeprom_data = 0;
	static int global_quad_port_a; /* global quad port a indication */
1419 1420
	const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
	unsigned long mmio_start, mmio_len;
1421
	int err, pci_using_dac;
1422 1423 1424
	u16 eeprom_apme_mask = IGB_EEPROM_APME;
	u32 part_num;

1425
	err = pci_enable_device_mem(pdev);
1426 1427 1428 1429
	if (err)
		return err;

	pci_using_dac = 0;
1430
	err = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
1431
	if (!err) {
1432
		err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
1433 1434 1435
		if (!err)
			pci_using_dac = 1;
	} else {
1436
		err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
1437
		if (err) {
1438
			err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
1439 1440 1441 1442 1443 1444 1445 1446
			if (err) {
				dev_err(&pdev->dev, "No usable DMA "
					"configuration, aborting\n");
				goto err_dma;
			}
		}
	}

1447 1448 1449
	err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
	                                   IORESOURCE_MEM),
	                                   igb_driver_name);
1450 1451 1452
	if (err)
		goto err_pci_reg;

1453
	pci_enable_pcie_error_reporting(pdev);
1454

1455
	pci_set_master(pdev);
1456
	pci_save_state(pdev);
1457 1458

	err = -ENOMEM;
1459 1460
	netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
	                           IGB_ABS_MAX_TX_QUEUES);
1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477
	if (!netdev)
		goto err_alloc_etherdev;

	SET_NETDEV_DEV(netdev, &pdev->dev);

	pci_set_drvdata(pdev, netdev);
	adapter = netdev_priv(netdev);
	adapter->netdev = netdev;
	adapter->pdev = pdev;
	hw = &adapter->hw;
	hw->back = adapter;
	adapter->msg_enable = NETIF_MSG_DRV | NETIF_MSG_PROBE;

	mmio_start = pci_resource_start(pdev, 0);
	mmio_len = pci_resource_len(pdev, 0);

	err = -EIO;
1478 1479
	hw->hw_addr = ioremap(mmio_start, mmio_len);
	if (!hw->hw_addr)
1480 1481
		goto err_ioremap;

S
Stephen Hemminger 已提交
1482
	netdev->netdev_ops = &igb_netdev_ops;
1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504
	igb_set_ethtool_ops(netdev);
	netdev->watchdog_timeo = 5 * HZ;

	strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);

	netdev->mem_start = mmio_start;
	netdev->mem_end = mmio_start + mmio_len;

	/* PCI config space info */
	hw->vendor_id = pdev->vendor;
	hw->device_id = pdev->device;
	hw->revision_id = pdev->revision;
	hw->subsystem_vendor_id = pdev->subsystem_vendor;
	hw->subsystem_device_id = pdev->subsystem_device;

	/* Copy the default MAC, PHY and NVM function pointers */
	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
	memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
	/* Initialize skew-specific constants */
	err = ei->get_invariants(hw);
	if (err)
1505
		goto err_sw_init;
1506

1507
	/* setup the private structure */
1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527
	err = igb_sw_init(adapter);
	if (err)
		goto err_sw_init;

	igb_get_bus_info_pcie(hw);

	hw->phy.autoneg_wait_to_complete = false;

	/* Copper options */
	if (hw->phy.media_type == e1000_media_type_copper) {
		hw->phy.mdix = AUTO_ALL_MODES;
		hw->phy.disable_polarity_correction = false;
		hw->phy.ms_type = e1000_ms_hw_default;
	}

	if (igb_check_reset_block(hw))
		dev_info(&pdev->dev,
			"PHY reset is blocked due to SOL/IDER session.\n");

	netdev->features = NETIF_F_SG |
1528
			   NETIF_F_IP_CSUM |
1529 1530 1531 1532
			   NETIF_F_HW_VLAN_TX |
			   NETIF_F_HW_VLAN_RX |
			   NETIF_F_HW_VLAN_FILTER;

1533
	netdev->features |= NETIF_F_IPV6_CSUM;
1534 1535
	netdev->features |= NETIF_F_TSO;
	netdev->features |= NETIF_F_TSO6;
H
Herbert Xu 已提交
1536
	netdev->features |= NETIF_F_GRO;
1537

1538 1539
	netdev->vlan_features |= NETIF_F_TSO;
	netdev->vlan_features |= NETIF_F_TSO6;
1540
	netdev->vlan_features |= NETIF_F_IP_CSUM;
1541
	netdev->vlan_features |= NETIF_F_IPV6_CSUM;
1542 1543
	netdev->vlan_features |= NETIF_F_SG;

1544 1545 1546
	if (pci_using_dac)
		netdev->features |= NETIF_F_HIGHDMA;

1547
	if (hw->mac.type >= e1000_82576)
1548 1549
		netdev->features |= NETIF_F_SCTP_CSUM;

1550
	adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575

	/* before reading the NVM, reset the controller to put the device in a
	 * known good starting state */
	hw->mac.ops.reset_hw(hw);

	/* make sure the NVM is good */
	if (igb_validate_nvm_checksum(hw) < 0) {
		dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
		err = -EIO;
		goto err_eeprom;
	}

	/* copy the MAC address out of the NVM */
	if (hw->mac.ops.read_mac_addr(hw))
		dev_err(&pdev->dev, "NVM Read Error\n");

	memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
	memcpy(netdev->perm_addr, hw->mac.addr, netdev->addr_len);

	if (!is_valid_ether_addr(netdev->perm_addr)) {
		dev_err(&pdev->dev, "Invalid MAC Address\n");
		err = -EIO;
		goto err_eeprom;
	}

1576 1577 1578 1579
	setup_timer(&adapter->watchdog_timer, &igb_watchdog,
	            (unsigned long) adapter);
	setup_timer(&adapter->phy_info_timer, &igb_update_phy_info,
	            (unsigned long) adapter);
1580 1581 1582 1583

	INIT_WORK(&adapter->reset_task, igb_reset_task);
	INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);

1584
	/* Initialize link properties that are user-changeable */
1585 1586 1587 1588
	adapter->fc_autoneg = true;
	hw->mac.autoneg = true;
	hw->phy.autoneg_advertised = 0x2f;

1589 1590
	hw->fc.requested_mode = e1000_fc_default;
	hw->fc.current_mode = e1000_fc_default;
1591 1592 1593 1594 1595 1596 1597

	igb_validate_mdi_setting(hw);

	/* Initial Wake on LAN setting If APM wake is enabled in the EEPROM,
	 * enable the ACPI Magic Packet filter
	 */

1598
	if (hw->bus.func == 0)
A
Alexander Duyck 已提交
1599
		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
1600 1601 1602 1603
	else if (hw->mac.type == e1000_82580)
		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
		                 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
		                 &eeprom_data);
1604 1605
	else if (hw->bus.func == 1)
		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617

	if (eeprom_data & eeprom_apme_mask)
		adapter->eeprom_wol |= E1000_WUFC_MAG;

	/* now that we have the eeprom settings, apply the special cases where
	 * the eeprom may be wrong or the board simply won't support wake on
	 * lan on a particular port */
	switch (pdev->device) {
	case E1000_DEV_ID_82575GB_QUAD_COPPER:
		adapter->eeprom_wol = 0;
		break;
	case E1000_DEV_ID_82575EB_FIBER_SERDES:
A
Alexander Duyck 已提交
1618 1619
	case E1000_DEV_ID_82576_FIBER:
	case E1000_DEV_ID_82576_SERDES:
1620 1621 1622 1623 1624
		/* Wake events only supported on port A for dual fiber
		 * regardless of eeprom setting */
		if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
			adapter->eeprom_wol = 0;
		break;
1625 1626 1627 1628 1629 1630 1631 1632 1633 1634
	case E1000_DEV_ID_82576_QUAD_COPPER:
		/* if quad port adapter, disable WoL on all but port A */
		if (global_quad_port_a != 0)
			adapter->eeprom_wol = 0;
		else
			adapter->flags |= IGB_FLAG_QUAD_PORT_A;
		/* Reset for multiple quad port adapters */
		if (++global_quad_port_a == 4)
			global_quad_port_a = 0;
		break;
1635 1636 1637 1638
	}

	/* initialize the wol settings based on the eeprom settings */
	adapter->wol = adapter->eeprom_wol;
1639
	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652

	/* reset the hardware with the new settings */
	igb_reset(adapter);

	/* let the f/w know that the h/w is now under the control of the
	 * driver. */
	igb_get_hw_control(adapter);

	strcpy(netdev->name, "eth%d");
	err = register_netdev(netdev);
	if (err)
		goto err_register;

1653 1654 1655
	/* carrier off reporting is important to ethtool even BEFORE open */
	netif_carrier_off(netdev);

1656
#ifdef CONFIG_IGB_DCA
1657
	if (dca_add_requester(&pdev->dev) == 0) {
1658
		adapter->flags |= IGB_FLAG_DCA_ENABLED;
J
Jeb Cramer 已提交
1659 1660 1661 1662
		dev_info(&pdev->dev, "DCA enabled\n");
		igb_setup_dca(adapter);
	}

P
Patrick Ohly 已提交
1663
#endif
1664 1665
	dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
	/* print bus type/speed/width info */
J
Johannes Berg 已提交
1666
	dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
1667
		 netdev->name,
1668 1669
		 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
		                                            "unknown"),
1670 1671 1672 1673
		 ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
		  (hw->bus.width == e1000_bus_width_pcie_x2) ? "Width x2" :
		  (hw->bus.width == e1000_bus_width_pcie_x1) ? "Width x1" :
		   "unknown"),
J
Johannes Berg 已提交
1674
		 netdev->dev_addr);
1675 1676 1677 1678 1679 1680 1681 1682

	igb_read_part_num(hw, &part_num);
	dev_info(&pdev->dev, "%s: PBA No: %06x-%03x\n", netdev->name,
		(part_num >> 8), (part_num & 0xff));

	dev_info(&pdev->dev,
		"Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
		adapter->msix_entries ? "MSI-X" :
1683
		(adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
1684 1685 1686 1687 1688 1689 1690 1691
		adapter->num_rx_queues, adapter->num_tx_queues);

	return 0;

err_register:
	igb_release_hw_control(adapter);
err_eeprom:
	if (!igb_check_reset_block(hw))
1692
		igb_reset_phy(hw);
1693 1694 1695 1696

	if (hw->flash_address)
		iounmap(hw->flash_address);
err_sw_init:
1697
	igb_clear_interrupt_scheme(adapter);
1698 1699 1700 1701
	iounmap(hw->hw_addr);
err_ioremap:
	free_netdev(netdev);
err_alloc_etherdev:
1702 1703
	pci_release_selected_regions(pdev,
	                             pci_select_bars(pdev, IORESOURCE_MEM));
1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722
err_pci_reg:
err_dma:
	pci_disable_device(pdev);
	return err;
}

/**
 * igb_remove - Device Removal Routine
 * @pdev: PCI device information struct
 *
 * igb_remove is called by the PCI subsystem to alert the driver
 * that it should release a PCI device.  The could be caused by a
 * Hot-Plug event, or because the driver is going to be removed from
 * memory.
 **/
static void __devexit igb_remove(struct pci_dev *pdev)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);
J
Jeb Cramer 已提交
1723
	struct e1000_hw *hw = &adapter->hw;
1724 1725 1726 1727 1728 1729 1730 1731 1732

	/* flush_scheduled work may reschedule our watchdog task, so
	 * explicitly disable watchdog tasks from being rescheduled  */
	set_bit(__IGB_DOWN, &adapter->state);
	del_timer_sync(&adapter->watchdog_timer);
	del_timer_sync(&adapter->phy_info_timer);

	flush_scheduled_work();

1733
#ifdef CONFIG_IGB_DCA
1734
	if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
J
Jeb Cramer 已提交
1735 1736
		dev_info(&pdev->dev, "DCA disabled\n");
		dca_remove_requester(&pdev->dev);
1737
		adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
A
Alexander Duyck 已提交
1738
		wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
J
Jeb Cramer 已提交
1739 1740 1741
	}
#endif

1742 1743 1744 1745 1746 1747
	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
	 * would have already happened in close and is redundant. */
	igb_release_hw_control(adapter);

	unregister_netdev(netdev);

1748
	igb_clear_interrupt_scheme(adapter);
1749

1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763
#ifdef CONFIG_PCI_IOV
	/* reclaim resources allocated to VFs */
	if (adapter->vf_data) {
		/* disable iov and allow time for transactions to clear */
		pci_disable_sriov(pdev);
		msleep(500);

		kfree(adapter->vf_data);
		adapter->vf_data = NULL;
		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
		msleep(100);
		dev_info(&pdev->dev, "IOV Disabled\n");
	}
#endif
1764

1765 1766 1767
	iounmap(hw->hw_addr);
	if (hw->flash_address)
		iounmap(hw->flash_address);
1768 1769
	pci_release_selected_regions(pdev,
	                             pci_select_bars(pdev, IORESOURCE_MEM));
1770 1771 1772

	free_netdev(netdev);

1773
	pci_disable_pcie_error_reporting(pdev);
1774

1775 1776 1777
	pci_disable_device(pdev);
}

1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825
/**
 * igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
 * @adapter: board private structure to initialize
 *
 * This function initializes the vf specific data storage and then attempts to
 * allocate the VFs.  The reason for ordering it this way is because it is much
 * mor expensive time wise to disable SR-IOV than it is to allocate and free
 * the memory for the VFs.
 **/
static void __devinit igb_probe_vfs(struct igb_adapter * adapter)
{
#ifdef CONFIG_PCI_IOV
	struct pci_dev *pdev = adapter->pdev;

	if (adapter->vfs_allocated_count > 7)
		adapter->vfs_allocated_count = 7;

	if (adapter->vfs_allocated_count) {
		adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
		                           sizeof(struct vf_data_storage),
		                           GFP_KERNEL);
		/* if allocation failed then we do not support SR-IOV */
		if (!adapter->vf_data) {
			adapter->vfs_allocated_count = 0;
			dev_err(&pdev->dev, "Unable to allocate memory for VF "
			        "Data Storage\n");
		}
	}

	if (pci_enable_sriov(pdev, adapter->vfs_allocated_count)) {
		kfree(adapter->vf_data);
		adapter->vf_data = NULL;
#endif /* CONFIG_PCI_IOV */
		adapter->vfs_allocated_count = 0;
#ifdef CONFIG_PCI_IOV
	} else {
		unsigned char mac_addr[ETH_ALEN];
		int i;
		dev_info(&pdev->dev, "%d vfs allocated\n",
		         adapter->vfs_allocated_count);
		for (i = 0; i < adapter->vfs_allocated_count; i++) {
			random_ether_addr(mac_addr);
			igb_set_vf_mac(adapter, i, mac_addr);
		}
	}
#endif /* CONFIG_PCI_IOV */
}

1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838

/**
 * igb_init_hw_timer - Initialize hardware timer used with IEEE 1588 timestamp
 * @adapter: board private structure to initialize
 *
 * igb_init_hw_timer initializes the function pointer and values for the hw
 * timer found in hardware.
 **/
static void igb_init_hw_timer(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;

	switch (hw->mac.type) {
1839
	case e1000_i350:
1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881
	case e1000_82580:
		memset(&adapter->cycles, 0, sizeof(adapter->cycles));
		adapter->cycles.read = igb_read_clock;
		adapter->cycles.mask = CLOCKSOURCE_MASK(64);
		adapter->cycles.mult = 1;
		/*
		 * The 82580 timesync updates the system timer every 8ns by 8ns
		 * and the value cannot be shifted.  Instead we need to shift
		 * the registers to generate a 64bit timer value.  As a result
		 * SYSTIMR/L/H, TXSTMPL/H, RXSTMPL/H all have to be shifted by
		 * 24 in order to generate a larger value for synchronization.
		 */
		adapter->cycles.shift = IGB_82580_TSYNC_SHIFT;
		/* disable system timer temporarily by setting bit 31 */
		wr32(E1000_TSAUXC, 0x80000000);
		wrfl();

		/* Set registers so that rollover occurs soon to test this. */
		wr32(E1000_SYSTIMR, 0x00000000);
		wr32(E1000_SYSTIML, 0x80000000);
		wr32(E1000_SYSTIMH, 0x000000FF);
		wrfl();

		/* enable system timer by clearing bit 31 */
		wr32(E1000_TSAUXC, 0x0);
		wrfl();

		timecounter_init(&adapter->clock,
				 &adapter->cycles,
				 ktime_to_ns(ktime_get_real()));
		/*
		 * Synchronize our NIC clock against system wall clock. NIC
		 * time stamp reading requires ~3us per sample, each sample
		 * was pretty stable even under load => only require 10
		 * samples for each offset comparison.
		 */
		memset(&adapter->compare, 0, sizeof(adapter->compare));
		adapter->compare.source = &adapter->clock;
		adapter->compare.target = ktime_get_real;
		adapter->compare.num_samples = 10;
		timecompare_update(&adapter->compare, 0);
		break;
1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932
	case e1000_82576:
		/*
		 * Initialize hardware timer: we keep it running just in case
		 * that some program needs it later on.
		 */
		memset(&adapter->cycles, 0, sizeof(adapter->cycles));
		adapter->cycles.read = igb_read_clock;
		adapter->cycles.mask = CLOCKSOURCE_MASK(64);
		adapter->cycles.mult = 1;
		/**
		 * Scale the NIC clock cycle by a large factor so that
		 * relatively small clock corrections can be added or
		 * substracted at each clock tick. The drawbacks of a large
		 * factor are a) that the clock register overflows more quickly
		 * (not such a big deal) and b) that the increment per tick has
		 * to fit into 24 bits.  As a result we need to use a shift of
		 * 19 so we can fit a value of 16 into the TIMINCA register.
		 */
		adapter->cycles.shift = IGB_82576_TSYNC_SHIFT;
		wr32(E1000_TIMINCA,
		                (1 << E1000_TIMINCA_16NS_SHIFT) |
		                (16 << IGB_82576_TSYNC_SHIFT));

		/* Set registers so that rollover occurs soon to test this. */
		wr32(E1000_SYSTIML, 0x00000000);
		wr32(E1000_SYSTIMH, 0xFF800000);
		wrfl();

		timecounter_init(&adapter->clock,
				 &adapter->cycles,
				 ktime_to_ns(ktime_get_real()));
		/*
		 * Synchronize our NIC clock against system wall clock. NIC
		 * time stamp reading requires ~3us per sample, each sample
		 * was pretty stable even under load => only require 10
		 * samples for each offset comparison.
		 */
		memset(&adapter->compare, 0, sizeof(adapter->compare));
		adapter->compare.source = &adapter->clock;
		adapter->compare.target = ktime_get_real;
		adapter->compare.num_samples = 10;
		timecompare_update(&adapter->compare, 0);
		break;
	case e1000_82575:
		/* 82575 does not support timesync */
	default:
		break;
	}

}

1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948
/**
 * igb_sw_init - Initialize general software structures (struct igb_adapter)
 * @adapter: board private structure to initialize
 *
 * igb_sw_init initializes the Adapter private data structure.
 * Fields are initialized based on PCI device information and
 * OS network device settings (MTU size).
 **/
static int __devinit igb_sw_init(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	struct net_device *netdev = adapter->netdev;
	struct pci_dev *pdev = adapter->pdev;

	pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);

1949 1950
	adapter->tx_ring_count = IGB_DEFAULT_TXD;
	adapter->rx_ring_count = IGB_DEFAULT_RXD;
1951 1952 1953
	adapter->rx_itr_setting = IGB_DEFAULT_ITR;
	adapter->tx_itr_setting = IGB_DEFAULT_ITR;

1954 1955 1956
	adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;

1957 1958 1959 1960 1961
#ifdef CONFIG_PCI_IOV
	if (hw->mac.type == e1000_82576)
		adapter->vfs_allocated_count = max_vfs;

#endif /* CONFIG_PCI_IOV */
1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972
	adapter->rss_queues = min_t(u32, IGB_MAX_RX_QUEUES, num_online_cpus());

	/*
	 * if rss_queues > 4 or vfs are going to be allocated with rss_queues
	 * then we should combine the queues into a queue pair in order to
	 * conserve interrupts due to limited supply
	 */
	if ((adapter->rss_queues > 4) ||
	    ((adapter->rss_queues > 1) && (adapter->vfs_allocated_count > 6)))
		adapter->flags |= IGB_FLAG_QUEUE_PAIRS;

1973
	/* This call may decrease the number of queues */
1974
	if (igb_init_interrupt_scheme(adapter)) {
1975 1976 1977 1978
		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
		return -ENOMEM;
	}

1979
	igb_init_hw_timer(adapter);
1980 1981
	igb_probe_vfs(adapter);

1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
	/* Explicitly disable IRQ since the NIC can be in any state. */
	igb_irq_disable(adapter);

	set_bit(__IGB_DOWN, &adapter->state);
	return 0;
}

/**
 * igb_open - Called when a network interface is made active
 * @netdev: network interface device structure
 *
 * Returns 0 on success, negative value on failure
 *
 * The open entry point is called when a network interface is made
 * active by the system (IFF_UP).  At this point all resources needed
 * for transmit and receive operations are allocated, the interrupt
 * handler is registered with the OS, the watchdog timer is started,
 * and the stack is notified that the interface is ready.
 **/
static int igb_open(struct net_device *netdev)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	int err;
	int i;

	/* disallow open during test */
	if (test_bit(__IGB_TESTING, &adapter->state))
		return -EBUSY;

2012 2013
	netif_carrier_off(netdev);

2014 2015 2016 2017 2018 2019 2020 2021 2022 2023
	/* allocate transmit descriptors */
	err = igb_setup_all_tx_resources(adapter);
	if (err)
		goto err_setup_tx;

	/* allocate receive descriptors */
	err = igb_setup_all_rx_resources(adapter);
	if (err)
		goto err_setup_rx;

2024
	igb_power_up_link(adapter);
2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038

	/* before we allocate an interrupt, we must be ready to handle it.
	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
	 * as soon as we call pci_request_irq, so we have to setup our
	 * clean_rx handler before we do so.  */
	igb_configure(adapter);

	err = igb_request_irq(adapter);
	if (err)
		goto err_req_irq;

	/* From here on the code is the same as igb_up() */
	clear_bit(__IGB_DOWN, &adapter->state);

2039 2040 2041 2042
	for (i = 0; i < adapter->num_q_vectors; i++) {
		struct igb_q_vector *q_vector = adapter->q_vector[i];
		napi_enable(&q_vector->napi);
	}
2043 2044 2045

	/* Clear any pending interrupts. */
	rd32(E1000_ICR);
P
PJ Waskiewicz 已提交
2046 2047 2048

	igb_irq_enable(adapter);

2049 2050 2051 2052 2053 2054 2055
	/* notify VFs that reset has been completed */
	if (adapter->vfs_allocated_count) {
		u32 reg_data = rd32(E1000_CTRL_EXT);
		reg_data |= E1000_CTRL_EXT_PFRSTD;
		wr32(E1000_CTRL_EXT, reg_data);
	}

2056 2057
	netif_tx_start_all_queues(netdev);

2058 2059 2060
	/* start the watchdog. */
	hw->mac.get_link_status = 1;
	schedule_work(&adapter->watchdog_task);
2061 2062 2063 2064 2065

	return 0;

err_req_irq:
	igb_release_hw_control(adapter);
2066
	igb_power_down_link(adapter);
2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107
	igb_free_all_rx_resources(adapter);
err_setup_rx:
	igb_free_all_tx_resources(adapter);
err_setup_tx:
	igb_reset(adapter);

	return err;
}

/**
 * igb_close - Disables a network interface
 * @netdev: network interface device structure
 *
 * Returns 0, this is not allowed to fail
 *
 * The close entry point is called when an interface is de-activated
 * by the OS.  The hardware is still under the driver's control, but
 * needs to be disabled.  A global MAC reset is issued to stop the
 * hardware, and all transmit and receive resources are freed.
 **/
static int igb_close(struct net_device *netdev)
{
	struct igb_adapter *adapter = netdev_priv(netdev);

	WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
	igb_down(adapter);

	igb_free_irq(adapter);

	igb_free_all_tx_resources(adapter);
	igb_free_all_rx_resources(adapter);

	return 0;
}

/**
 * igb_setup_tx_resources - allocate Tx resources (Descriptors)
 * @tx_ring: tx descriptor ring (for a specific queue) to setup
 *
 * Return 0 on success, negative on failure
 **/
2108
int igb_setup_tx_resources(struct igb_ring *tx_ring)
2109
{
2110
	struct pci_dev *pdev = tx_ring->pdev;
2111 2112 2113 2114 2115 2116 2117 2118 2119
	int size;

	size = sizeof(struct igb_buffer) * tx_ring->count;
	tx_ring->buffer_info = vmalloc(size);
	if (!tx_ring->buffer_info)
		goto err;
	memset(tx_ring->buffer_info, 0, size);

	/* round up to nearest 4K */
2120
	tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
2121 2122
	tx_ring->size = ALIGN(tx_ring->size, 4096);

2123 2124
	tx_ring->desc = pci_alloc_consistent(pdev,
	                                     tx_ring->size,
2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135
					     &tx_ring->dma);

	if (!tx_ring->desc)
		goto err;

	tx_ring->next_to_use = 0;
	tx_ring->next_to_clean = 0;
	return 0;

err:
	vfree(tx_ring->buffer_info);
2136
	dev_err(&pdev->dev,
2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149
		"Unable to allocate memory for the transmit descriptor ring\n");
	return -ENOMEM;
}

/**
 * igb_setup_all_tx_resources - wrapper to allocate Tx resources
 *				  (Descriptors) for all queues
 * @adapter: board private structure
 *
 * Return 0 on success, negative on failure
 **/
static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
{
2150
	struct pci_dev *pdev = adapter->pdev;
2151 2152 2153
	int i, err = 0;

	for (i = 0; i < adapter->num_tx_queues; i++) {
2154
		err = igb_setup_tx_resources(adapter->tx_ring[i]);
2155
		if (err) {
2156
			dev_err(&pdev->dev,
2157 2158
				"Allocation for Tx Queue %u failed\n", i);
			for (i--; i >= 0; i--)
2159
				igb_free_tx_resources(adapter->tx_ring[i]);
2160 2161 2162 2163
			break;
		}
	}

2164
	for (i = 0; i < IGB_ABS_MAX_TX_QUEUES; i++) {
2165
		int r_idx = i % adapter->num_tx_queues;
2166
		adapter->multi_tx_table[i] = adapter->tx_ring[r_idx];
2167
	}
2168 2169 2170 2171
	return err;
}

/**
2172 2173
 * igb_setup_tctl - configure the transmit control registers
 * @adapter: Board private structure
2174
 **/
2175
void igb_setup_tctl(struct igb_adapter *adapter)
2176 2177 2178 2179
{
	struct e1000_hw *hw = &adapter->hw;
	u32 tctl;

2180 2181
	/* disable queue 0 which is enabled by default on 82575 and 82576 */
	wr32(E1000_TXDCTL(0), 0);
2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196

	/* Program the Transmit Control Register */
	tctl = rd32(E1000_TCTL);
	tctl &= ~E1000_TCTL_CT;
	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);

	igb_config_collision_dist(hw);

	/* Enable transmits */
	tctl |= E1000_TCTL_EN;

	wr32(E1000_TCTL, tctl);
}

2197 2198 2199 2200 2201 2202 2203
/**
 * igb_configure_tx_ring - Configure transmit ring after Reset
 * @adapter: board private structure
 * @ring: tx ring to configure
 *
 * Configure a transmit ring after a reset.
 **/
2204 2205
void igb_configure_tx_ring(struct igb_adapter *adapter,
                           struct igb_ring *ring)
2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224
{
	struct e1000_hw *hw = &adapter->hw;
	u32 txdctl;
	u64 tdba = ring->dma;
	int reg_idx = ring->reg_idx;

	/* disable the queue */
	txdctl = rd32(E1000_TXDCTL(reg_idx));
	wr32(E1000_TXDCTL(reg_idx),
	                txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
	wrfl();
	mdelay(10);

	wr32(E1000_TDLEN(reg_idx),
	                ring->count * sizeof(union e1000_adv_tx_desc));
	wr32(E1000_TDBAL(reg_idx),
	                tdba & 0x00000000ffffffffULL);
	wr32(E1000_TDBAH(reg_idx), tdba >> 32);

2225 2226 2227 2228
	ring->head = hw->hw_addr + E1000_TDH(reg_idx);
	ring->tail = hw->hw_addr + E1000_TDT(reg_idx);
	writel(0, ring->head);
	writel(0, ring->tail);
2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248

	txdctl |= IGB_TX_PTHRESH;
	txdctl |= IGB_TX_HTHRESH << 8;
	txdctl |= IGB_TX_WTHRESH << 16;

	txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
	wr32(E1000_TXDCTL(reg_idx), txdctl);
}

/**
 * igb_configure_tx - Configure transmit Unit after Reset
 * @adapter: board private structure
 *
 * Configure the Tx unit of the MAC after a reset.
 **/
static void igb_configure_tx(struct igb_adapter *adapter)
{
	int i;

	for (i = 0; i < adapter->num_tx_queues; i++)
2249
		igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
2250 2251
}

2252 2253 2254 2255 2256 2257
/**
 * igb_setup_rx_resources - allocate Rx resources (Descriptors)
 * @rx_ring:    rx descriptor ring (for a specific queue) to setup
 *
 * Returns 0 on success, negative on failure
 **/
2258
int igb_setup_rx_resources(struct igb_ring *rx_ring)
2259
{
2260
	struct pci_dev *pdev = rx_ring->pdev;
2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287
	int size, desc_len;

	size = sizeof(struct igb_buffer) * rx_ring->count;
	rx_ring->buffer_info = vmalloc(size);
	if (!rx_ring->buffer_info)
		goto err;
	memset(rx_ring->buffer_info, 0, size);

	desc_len = sizeof(union e1000_adv_rx_desc);

	/* Round up to nearest 4K */
	rx_ring->size = rx_ring->count * desc_len;
	rx_ring->size = ALIGN(rx_ring->size, 4096);

	rx_ring->desc = pci_alloc_consistent(pdev, rx_ring->size,
					     &rx_ring->dma);

	if (!rx_ring->desc)
		goto err;

	rx_ring->next_to_clean = 0;
	rx_ring->next_to_use = 0;

	return 0;

err:
	vfree(rx_ring->buffer_info);
2288
	rx_ring->buffer_info = NULL;
2289
	dev_err(&pdev->dev, "Unable to allocate memory for "
2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302
		"the receive descriptor ring\n");
	return -ENOMEM;
}

/**
 * igb_setup_all_rx_resources - wrapper to allocate Rx resources
 *				  (Descriptors) for all queues
 * @adapter: board private structure
 *
 * Return 0 on success, negative on failure
 **/
static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
{
2303
	struct pci_dev *pdev = adapter->pdev;
2304 2305 2306
	int i, err = 0;

	for (i = 0; i < adapter->num_rx_queues; i++) {
2307
		err = igb_setup_rx_resources(adapter->rx_ring[i]);
2308
		if (err) {
2309
			dev_err(&pdev->dev,
2310 2311
				"Allocation for Rx Queue %u failed\n", i);
			for (i--; i >= 0; i--)
2312
				igb_free_rx_resources(adapter->rx_ring[i]);
2313 2314 2315 2316 2317 2318 2319
			break;
		}
	}

	return err;
}

2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347
/**
 * igb_setup_mrqc - configure the multiple receive queue control registers
 * @adapter: Board private structure
 **/
static void igb_setup_mrqc(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 mrqc, rxcsum;
	u32 j, num_rx_queues, shift = 0, shift2 = 0;
	union e1000_reta {
		u32 dword;
		u8  bytes[4];
	} reta;
	static const u8 rsshash[40] = {
		0x6d, 0x5a, 0x56, 0xda, 0x25, 0x5b, 0x0e, 0xc2, 0x41, 0x67,
		0x25, 0x3d, 0x43, 0xa3, 0x8f, 0xb0, 0xd0, 0xca, 0x2b, 0xcb,
		0xae, 0x7b, 0x30, 0xb4,	0x77, 0xcb, 0x2d, 0xa3, 0x80, 0x30,
		0xf2, 0x0c, 0x6a, 0x42, 0xb7, 0x3b, 0xbe, 0xac, 0x01, 0xfa };

	/* Fill out hash function seeds */
	for (j = 0; j < 10; j++) {
		u32 rsskey = rsshash[(j * 4)];
		rsskey |= rsshash[(j * 4) + 1] << 8;
		rsskey |= rsshash[(j * 4) + 2] << 16;
		rsskey |= rsshash[(j * 4) + 3] << 24;
		array_wr32(E1000_RSSRK(0), j, rsskey);
	}

2348
	num_rx_queues = adapter->rss_queues;
2349 2350 2351 2352

	if (adapter->vfs_allocated_count) {
		/* 82575 and 82576 supports 2 RSS queues for VMDq */
		switch (hw->mac.type) {
2353
		case e1000_i350:
2354 2355 2356 2357
		case e1000_82580:
			num_rx_queues = 1;
			shift = 0;
			break;
2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408
		case e1000_82576:
			shift = 3;
			num_rx_queues = 2;
			break;
		case e1000_82575:
			shift = 2;
			shift2 = 6;
		default:
			break;
		}
	} else {
		if (hw->mac.type == e1000_82575)
			shift = 6;
	}

	for (j = 0; j < (32 * 4); j++) {
		reta.bytes[j & 3] = (j % num_rx_queues) << shift;
		if (shift2)
			reta.bytes[j & 3] |= num_rx_queues << shift2;
		if ((j & 3) == 3)
			wr32(E1000_RETA(j >> 2), reta.dword);
	}

	/*
	 * Disable raw packet checksumming so that RSS hash is placed in
	 * descriptor on writeback.  No need to enable TCP/UDP/IP checksum
	 * offloads as they are enabled by default
	 */
	rxcsum = rd32(E1000_RXCSUM);
	rxcsum |= E1000_RXCSUM_PCSD;

	if (adapter->hw.mac.type >= e1000_82576)
		/* Enable Receive Checksum Offload for SCTP */
		rxcsum |= E1000_RXCSUM_CRCOFL;

	/* Don't need to set TUOFL or IPOFL, they default to 1 */
	wr32(E1000_RXCSUM, rxcsum);

	/* If VMDq is enabled then we set the appropriate mode for that, else
	 * we default to RSS so that an RSS hash is calculated per packet even
	 * if we are only using one queue */
	if (adapter->vfs_allocated_count) {
		if (hw->mac.type > e1000_82575) {
			/* Set the default pool for the PF's first queue */
			u32 vtctl = rd32(E1000_VT_CTL);
			vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
				   E1000_VT_CTL_DISABLE_DEF_POOL);
			vtctl |= adapter->vfs_allocated_count <<
				E1000_VT_CTL_DEFAULT_POOL_SHIFT;
			wr32(E1000_VT_CTL, vtctl);
		}
2409
		if (adapter->rss_queues > 1)
2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429
			mrqc = E1000_MRQC_ENABLE_VMDQ_RSS_2Q;
		else
			mrqc = E1000_MRQC_ENABLE_VMDQ;
	} else {
		mrqc = E1000_MRQC_ENABLE_RSS_4Q;
	}
	igb_vmm_control(adapter);

	mrqc |= (E1000_MRQC_RSS_FIELD_IPV4 |
		 E1000_MRQC_RSS_FIELD_IPV4_TCP);
	mrqc |= (E1000_MRQC_RSS_FIELD_IPV6 |
		 E1000_MRQC_RSS_FIELD_IPV6_TCP);
	mrqc |= (E1000_MRQC_RSS_FIELD_IPV4_UDP |
		 E1000_MRQC_RSS_FIELD_IPV6_UDP);
	mrqc |= (E1000_MRQC_RSS_FIELD_IPV6_UDP_EX |
		 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);

	wr32(E1000_MRQC, mrqc);
}

2430 2431 2432 2433
/**
 * igb_setup_rctl - configure the receive control registers
 * @adapter: Board private structure
 **/
2434
void igb_setup_rctl(struct igb_adapter *adapter)
2435 2436 2437 2438 2439 2440 2441
{
	struct e1000_hw *hw = &adapter->hw;
	u32 rctl;

	rctl = rd32(E1000_RCTL);

	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
2442
	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
2443

2444
	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
2445
		(hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
2446

2447 2448 2449 2450
	/*
	 * enable stripping of CRC. It's unlikely this will break BMC
	 * redirection as it did with e1000. Newer features require
	 * that the HW strips the CRC.
2451
	 */
2452
	rctl |= E1000_RCTL_SECRC;
2453

2454
	/* disable store bad packets and clear size bits. */
2455
	rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
2456

A
Alexander Duyck 已提交
2457 2458
	/* enable LPE to prevent packets larger than max_frame_size */
	rctl |= E1000_RCTL_LPE;
2459

2460 2461
	/* disable queue 0 to prevent tail write w/o re-config */
	wr32(E1000_RXDCTL(0), 0);
2462

2463 2464 2465 2466 2467 2468 2469 2470 2471
	/* Attention!!!  For SR-IOV PF driver operations you must enable
	 * queue drop for all VF and PF queues to prevent head of line blocking
	 * if an un-trusted VF does not provide descriptors to hardware.
	 */
	if (adapter->vfs_allocated_count) {
		/* set all queue drop enable bits */
		wr32(E1000_QDE, ALL_QUEUES);
	}

2472 2473 2474
	wr32(E1000_RCTL, rctl);
}

2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494
static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
                                   int vfn)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 vmolr;

	/* if it isn't the PF check to see if VFs are enabled and
	 * increase the size to support vlan tags */
	if (vfn < adapter->vfs_allocated_count &&
	    adapter->vf_data[vfn].vlans_enabled)
		size += VLAN_TAG_SIZE;

	vmolr = rd32(E1000_VMOLR(vfn));
	vmolr &= ~E1000_VMOLR_RLPML_MASK;
	vmolr |= size | E1000_VMOLR_LPE;
	wr32(E1000_VMOLR(vfn), vmolr);

	return 0;
}

2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513
/**
 * igb_rlpml_set - set maximum receive packet size
 * @adapter: board private structure
 *
 * Configure maximum receivable packet size.
 **/
static void igb_rlpml_set(struct igb_adapter *adapter)
{
	u32 max_frame_size = adapter->max_frame_size;
	struct e1000_hw *hw = &adapter->hw;
	u16 pf_id = adapter->vfs_allocated_count;

	if (adapter->vlgrp)
		max_frame_size += VLAN_TAG_SIZE;

	/* if vfs are enabled we set RLPML to the largest possible request
	 * size and set the VMOLR RLPML to the size we need */
	if (pf_id) {
		igb_set_vf_rlpml(adapter, max_frame_size, pf_id);
2514
		max_frame_size = MAX_JUMBO_FRAME_SIZE;
2515 2516 2517 2518 2519
	}

	wr32(E1000_RLPML, max_frame_size);
}

2520 2521
static inline void igb_set_vmolr(struct igb_adapter *adapter,
				 int vfn, bool aupe)
2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533
{
	struct e1000_hw *hw = &adapter->hw;
	u32 vmolr;

	/*
	 * This register exists only on 82576 and newer so if we are older then
	 * we should exit and do nothing
	 */
	if (hw->mac.type < e1000_82576)
		return;

	vmolr = rd32(E1000_VMOLR(vfn));
2534 2535 2536 2537 2538
	vmolr |= E1000_VMOLR_STRVLAN;      /* Strip vlan tags */
	if (aupe)
		vmolr |= E1000_VMOLR_AUPE;        /* Accept untagged packets */
	else
		vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
2539 2540 2541 2542

	/* clear all bits that might not be set */
	vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);

2543
	if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554
		vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
	/*
	 * for VMDq only allow the VFs and pool 0 to accept broadcast and
	 * multicast packets
	 */
	if (vfn <= adapter->vfs_allocated_count)
		vmolr |= E1000_VMOLR_BAM;	   /* Accept broadcast */

	wr32(E1000_VMOLR(vfn), vmolr);
}

2555 2556 2557 2558 2559 2560 2561
/**
 * igb_configure_rx_ring - Configure a receive ring after Reset
 * @adapter: board private structure
 * @ring: receive ring to be configured
 *
 * Configure the Rx unit of the MAC after a reset.
 **/
2562 2563
void igb_configure_rx_ring(struct igb_adapter *adapter,
                           struct igb_ring *ring)
2564 2565 2566 2567
{
	struct e1000_hw *hw = &adapter->hw;
	u64 rdba = ring->dma;
	int reg_idx = ring->reg_idx;
2568
	u32 srrctl, rxdctl;
2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582

	/* disable the queue */
	rxdctl = rd32(E1000_RXDCTL(reg_idx));
	wr32(E1000_RXDCTL(reg_idx),
	                rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);

	/* Set DMA base address registers */
	wr32(E1000_RDBAL(reg_idx),
	     rdba & 0x00000000ffffffffULL);
	wr32(E1000_RDBAH(reg_idx), rdba >> 32);
	wr32(E1000_RDLEN(reg_idx),
	               ring->count * sizeof(union e1000_adv_rx_desc));

	/* initialize head and tail */
2583 2584 2585 2586
	ring->head = hw->hw_addr + E1000_RDH(reg_idx);
	ring->tail = hw->hw_addr + E1000_RDT(reg_idx);
	writel(0, ring->head);
	writel(0, ring->tail);
2587

2588
	/* set descriptor configuration */
2589 2590
	if (ring->rx_buffer_len < IGB_RXBUFFER_1024) {
		srrctl = ALIGN(ring->rx_buffer_len, 64) <<
2591 2592 2593 2594 2595 2596 2597 2598 2599 2600
		         E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
#if (PAGE_SIZE / 2) > IGB_RXBUFFER_16384
		srrctl |= IGB_RXBUFFER_16384 >>
		          E1000_SRRCTL_BSIZEPKT_SHIFT;
#else
		srrctl |= (PAGE_SIZE / 2) >>
		          E1000_SRRCTL_BSIZEPKT_SHIFT;
#endif
		srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
	} else {
2601
		srrctl = ALIGN(ring->rx_buffer_len, 1024) >>
2602 2603 2604
		         E1000_SRRCTL_BSIZEPKT_SHIFT;
		srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
	}
2605 2606 2607
	/* Only set Drop Enable if we are supporting multiple queues */
	if (adapter->vfs_allocated_count || adapter->num_rx_queues > 1)
		srrctl |= E1000_SRRCTL_DROP_EN;
2608 2609 2610

	wr32(E1000_SRRCTL(reg_idx), srrctl);

2611
	/* set filtering for VMDQ pools */
2612
	igb_set_vmolr(adapter, reg_idx & 0x7, true);
2613

2614 2615 2616 2617 2618 2619 2620 2621 2622 2623
	/* enable receive descriptor fetching */
	rxdctl = rd32(E1000_RXDCTL(reg_idx));
	rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
	rxdctl &= 0xFFF00000;
	rxdctl |= IGB_RX_PTHRESH;
	rxdctl |= IGB_RX_HTHRESH << 8;
	rxdctl |= IGB_RX_WTHRESH << 16;
	wr32(E1000_RXDCTL(reg_idx), rxdctl);
}

2624 2625 2626 2627 2628 2629 2630 2631
/**
 * igb_configure_rx - Configure receive Unit after Reset
 * @adapter: board private structure
 *
 * Configure the Rx unit of the MAC after a reset.
 **/
static void igb_configure_rx(struct igb_adapter *adapter)
{
2632
	int i;
2633

2634 2635 2636
	/* set UTA to appropriate mode */
	igb_set_uta(adapter);

2637 2638 2639 2640
	/* set the correct pool for the PF default MAC address in entry 0 */
	igb_rar_set_qsel(adapter, adapter->hw.mac.addr, 0,
	                 adapter->vfs_allocated_count);

2641 2642 2643
	/* Setup the HW Rx Head and Tail Descriptor Pointers and
	 * the Base and Length of the Rx Descriptor Ring */
	for (i = 0; i < adapter->num_rx_queues; i++)
2644
		igb_configure_rx_ring(adapter, adapter->rx_ring[i]);
2645 2646 2647 2648 2649 2650 2651 2652
}

/**
 * igb_free_tx_resources - Free Tx Resources per Queue
 * @tx_ring: Tx descriptor ring for a specific queue
 *
 * Free all transmit software resources
 **/
2653
void igb_free_tx_resources(struct igb_ring *tx_ring)
2654
{
2655
	igb_clean_tx_ring(tx_ring);
2656 2657 2658 2659

	vfree(tx_ring->buffer_info);
	tx_ring->buffer_info = NULL;

2660 2661 2662 2663
	/* if not set, then don't free */
	if (!tx_ring->desc)
		return;

2664 2665
	pci_free_consistent(tx_ring->pdev, tx_ring->size,
	                    tx_ring->desc, tx_ring->dma);
2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680

	tx_ring->desc = NULL;
}

/**
 * igb_free_all_tx_resources - Free Tx Resources for All Queues
 * @adapter: board private structure
 *
 * Free all transmit software resources
 **/
static void igb_free_all_tx_resources(struct igb_adapter *adapter)
{
	int i;

	for (i = 0; i < adapter->num_tx_queues; i++)
2681
		igb_free_tx_resources(adapter->tx_ring[i]);
2682 2683
}

2684 2685
void igb_unmap_and_free_tx_resource(struct igb_ring *tx_ring,
				    struct igb_buffer *buffer_info)
2686
{
2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699
	if (buffer_info->dma) {
		if (buffer_info->mapped_as_page)
			pci_unmap_page(tx_ring->pdev,
					buffer_info->dma,
					buffer_info->length,
					PCI_DMA_TODEVICE);
		else
			pci_unmap_single(tx_ring->pdev,
					buffer_info->dma,
					buffer_info->length,
					PCI_DMA_TODEVICE);
		buffer_info->dma = 0;
	}
2700 2701 2702 2703 2704
	if (buffer_info->skb) {
		dev_kfree_skb_any(buffer_info->skb);
		buffer_info->skb = NULL;
	}
	buffer_info->time_stamp = 0;
2705 2706 2707
	buffer_info->length = 0;
	buffer_info->next_to_watch = 0;
	buffer_info->mapped_as_page = false;
2708 2709 2710 2711 2712 2713
}

/**
 * igb_clean_tx_ring - Free Tx Buffers
 * @tx_ring: ring to be cleaned
 **/
2714
static void igb_clean_tx_ring(struct igb_ring *tx_ring)
2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725
{
	struct igb_buffer *buffer_info;
	unsigned long size;
	unsigned int i;

	if (!tx_ring->buffer_info)
		return;
	/* Free all the Tx ring sk_buffs */

	for (i = 0; i < tx_ring->count; i++) {
		buffer_info = &tx_ring->buffer_info[i];
2726
		igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747
	}

	size = sizeof(struct igb_buffer) * tx_ring->count;
	memset(tx_ring->buffer_info, 0, size);

	/* Zero out the descriptor ring */
	memset(tx_ring->desc, 0, tx_ring->size);

	tx_ring->next_to_use = 0;
	tx_ring->next_to_clean = 0;
}

/**
 * igb_clean_all_tx_rings - Free Tx Buffers for all queues
 * @adapter: board private structure
 **/
static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
{
	int i;

	for (i = 0; i < adapter->num_tx_queues; i++)
2748
		igb_clean_tx_ring(adapter->tx_ring[i]);
2749 2750 2751 2752 2753 2754 2755 2756
}

/**
 * igb_free_rx_resources - Free Rx Resources
 * @rx_ring: ring to clean the resources from
 *
 * Free all receive software resources
 **/
2757
void igb_free_rx_resources(struct igb_ring *rx_ring)
2758
{
2759
	igb_clean_rx_ring(rx_ring);
2760 2761 2762 2763

	vfree(rx_ring->buffer_info);
	rx_ring->buffer_info = NULL;

2764 2765 2766 2767
	/* if not set, then don't free */
	if (!rx_ring->desc)
		return;

2768 2769
	pci_free_consistent(rx_ring->pdev, rx_ring->size,
	                    rx_ring->desc, rx_ring->dma);
2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784

	rx_ring->desc = NULL;
}

/**
 * igb_free_all_rx_resources - Free Rx Resources for All Queues
 * @adapter: board private structure
 *
 * Free all receive software resources
 **/
static void igb_free_all_rx_resources(struct igb_adapter *adapter)
{
	int i;

	for (i = 0; i < adapter->num_rx_queues; i++)
2785
		igb_free_rx_resources(adapter->rx_ring[i]);
2786 2787 2788 2789 2790 2791
}

/**
 * igb_clean_rx_ring - Free Rx Buffers per Queue
 * @rx_ring: ring to free buffers from
 **/
2792
static void igb_clean_rx_ring(struct igb_ring *rx_ring)
2793 2794 2795 2796 2797 2798 2799
{
	struct igb_buffer *buffer_info;
	unsigned long size;
	unsigned int i;

	if (!rx_ring->buffer_info)
		return;
2800

2801 2802 2803 2804
	/* Free all the Rx ring sk_buffs */
	for (i = 0; i < rx_ring->count; i++) {
		buffer_info = &rx_ring->buffer_info[i];
		if (buffer_info->dma) {
2805 2806
			pci_unmap_single(rx_ring->pdev,
			                 buffer_info->dma,
2807
					 rx_ring->rx_buffer_len,
A
Alexander Duyck 已提交
2808
					 PCI_DMA_FROMDEVICE);
2809 2810 2811 2812 2813 2814 2815
			buffer_info->dma = 0;
		}

		if (buffer_info->skb) {
			dev_kfree_skb(buffer_info->skb);
			buffer_info->skb = NULL;
		}
A
Alexander Duyck 已提交
2816
		if (buffer_info->page_dma) {
2817 2818
			pci_unmap_page(rx_ring->pdev,
			               buffer_info->page_dma,
A
Alexander Duyck 已提交
2819 2820 2821 2822
				       PAGE_SIZE / 2,
				       PCI_DMA_FROMDEVICE);
			buffer_info->page_dma = 0;
		}
2823 2824 2825
		if (buffer_info->page) {
			put_page(buffer_info->page);
			buffer_info->page = NULL;
2826
			buffer_info->page_offset = 0;
2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848
		}
	}

	size = sizeof(struct igb_buffer) * rx_ring->count;
	memset(rx_ring->buffer_info, 0, size);

	/* Zero out the descriptor ring */
	memset(rx_ring->desc, 0, rx_ring->size);

	rx_ring->next_to_clean = 0;
	rx_ring->next_to_use = 0;
}

/**
 * igb_clean_all_rx_rings - Free Rx Buffers for all queues
 * @adapter: board private structure
 **/
static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
{
	int i;

	for (i = 0; i < adapter->num_rx_queues; i++)
2849
		igb_clean_rx_ring(adapter->rx_ring[i]);
2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861
}

/**
 * igb_set_mac - Change the Ethernet Address of the NIC
 * @netdev: network interface device structure
 * @p: pointer to an address structure
 *
 * Returns 0 on success, negative on failure
 **/
static int igb_set_mac(struct net_device *netdev, void *p)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
2862
	struct e1000_hw *hw = &adapter->hw;
2863 2864 2865 2866 2867 2868
	struct sockaddr *addr = p;

	if (!is_valid_ether_addr(addr->sa_data))
		return -EADDRNOTAVAIL;

	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2869
	memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
2870

2871 2872 2873
	/* set the correct pool for the new PF MAC address in entry 0 */
	igb_rar_set_qsel(adapter, hw->mac.addr, 0,
	                 adapter->vfs_allocated_count);
2874

2875 2876 2877 2878
	return 0;
}

/**
2879
 * igb_write_mc_addr_list - write multicast addresses to MTA
2880 2881
 * @netdev: network interface device structure
 *
2882 2883 2884 2885
 * Writes multicast address list to the MTA hash table.
 * Returns: -ENOMEM on failure
 *                0 on no addresses written
 *                X on writing X addresses to MTA
2886
 **/
2887
static int igb_write_mc_addr_list(struct net_device *netdev)
2888 2889 2890
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
2891
	struct dev_mc_list *mc_ptr;
2892
	u8  *mta_list;
2893 2894
	int i;

2895
	if (netdev_mc_empty(netdev)) {
2896 2897 2898 2899 2900
		/* nothing to program, so clear mc list */
		igb_update_mc_addr_list(hw, NULL, 0);
		igb_restore_vf_multicasts(adapter);
		return 0;
	}
2901

2902
	mta_list = kzalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
2903 2904
	if (!mta_list)
		return -ENOMEM;
2905

2906
	/* The shared function expects a packed array of only addresses. */
2907 2908 2909
	i = 0;
	netdev_for_each_mc_addr(mc_ptr, netdev)
		memcpy(mta_list + (i++ * ETH_ALEN), mc_ptr->dmi_addr, ETH_ALEN);
2910 2911 2912 2913

	igb_update_mc_addr_list(hw, mta_list, i);
	kfree(mta_list);

2914
	return netdev_mc_count(netdev);
2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934
}

/**
 * igb_write_uc_addr_list - write unicast addresses to RAR table
 * @netdev: network interface device structure
 *
 * Writes unicast address list to the RAR table.
 * Returns: -ENOMEM on failure/insufficient address space
 *                0 on no addresses written
 *                X on writing X addresses to the RAR table
 **/
static int igb_write_uc_addr_list(struct net_device *netdev)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	unsigned int vfn = adapter->vfs_allocated_count;
	unsigned int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
	int count = 0;

	/* return ENOMEM indicating insufficient memory for addresses */
2935
	if (netdev_uc_count(netdev) > rar_entries)
2936
		return -ENOMEM;
2937

2938
	if (!netdev_uc_empty(netdev) && rar_entries) {
2939
		struct netdev_hw_addr *ha;
2940 2941

		netdev_for_each_uc_addr(ha, netdev) {
2942 2943
			if (!rar_entries)
				break;
2944 2945
			igb_rar_set_qsel(adapter, ha->addr,
			                 rar_entries--,
2946 2947
			                 vfn);
			count++;
2948 2949 2950 2951 2952 2953 2954 2955 2956
		}
	}
	/* write the addresses in reverse order to avoid write combining */
	for (; rar_entries > 0 ; rar_entries--) {
		wr32(E1000_RAH(rar_entries), 0);
		wr32(E1000_RAL(rar_entries), 0);
	}
	wrfl();

2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014
	return count;
}

/**
 * igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
 * @netdev: network interface device structure
 *
 * The set_rx_mode entry point is called whenever the unicast or multicast
 * address lists or the network interface flags are updated.  This routine is
 * responsible for configuring the hardware for proper unicast, multicast,
 * promiscuous mode, and all-multi behavior.
 **/
static void igb_set_rx_mode(struct net_device *netdev)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	unsigned int vfn = adapter->vfs_allocated_count;
	u32 rctl, vmolr = 0;
	int count;

	/* Check for Promiscuous and All Multicast modes */
	rctl = rd32(E1000_RCTL);

	/* clear the effected bits */
	rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_VFE);

	if (netdev->flags & IFF_PROMISC) {
		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
		vmolr |= (E1000_VMOLR_ROPE | E1000_VMOLR_MPME);
	} else {
		if (netdev->flags & IFF_ALLMULTI) {
			rctl |= E1000_RCTL_MPE;
			vmolr |= E1000_VMOLR_MPME;
		} else {
			/*
			 * Write addresses to the MTA, if the attempt fails
			 * then we should just turn on promiscous mode so
			 * that we can at least receive multicast traffic
			 */
			count = igb_write_mc_addr_list(netdev);
			if (count < 0) {
				rctl |= E1000_RCTL_MPE;
				vmolr |= E1000_VMOLR_MPME;
			} else if (count) {
				vmolr |= E1000_VMOLR_ROMPE;
			}
		}
		/*
		 * Write addresses to available RAR registers, if there is not
		 * sufficient space to store all the addresses then enable
		 * unicast promiscous mode
		 */
		count = igb_write_uc_addr_list(netdev);
		if (count < 0) {
			rctl |= E1000_RCTL_UPE;
			vmolr |= E1000_VMOLR_ROPE;
		}
		rctl |= E1000_RCTL_VFE;
3015
	}
3016
	wr32(E1000_RCTL, rctl);
3017

3018 3019 3020 3021 3022 3023 3024
	/*
	 * In order to support SR-IOV and eventually VMDq it is necessary to set
	 * the VMOLR to enable the appropriate modes.  Without this workaround
	 * we will have issues with VLAN tag stripping not being done for frames
	 * that are only arriving because we are the default pool
	 */
	if (hw->mac.type < e1000_82576)
3025
		return;
3026

3027 3028 3029
	vmolr |= rd32(E1000_VMOLR(vfn)) &
	         ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
	wr32(E1000_VMOLR(vfn), vmolr);
3030
	igb_restore_vf_multicasts(adapter);
3031 3032 3033 3034 3035 3036 3037
}

/* Need to wait a few seconds after link up to get diagnostic information from
 * the phy */
static void igb_update_phy_info(unsigned long data)
{
	struct igb_adapter *adapter = (struct igb_adapter *) data;
3038
	igb_get_phy_info(&adapter->hw);
3039 3040
}

A
Alexander Duyck 已提交
3041 3042 3043 3044
/**
 * igb_has_link - check shared code for link and determine up/down
 * @adapter: pointer to driver private info
 **/
3045
bool igb_has_link(struct igb_adapter *adapter)
A
Alexander Duyck 已提交
3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076
{
	struct e1000_hw *hw = &adapter->hw;
	bool link_active = false;
	s32 ret_val = 0;

	/* get_link_status is set on LSC (link status) interrupt or
	 * rx sequence error interrupt.  get_link_status will stay
	 * false until the e1000_check_for_link establishes link
	 * for copper adapters ONLY
	 */
	switch (hw->phy.media_type) {
	case e1000_media_type_copper:
		if (hw->mac.get_link_status) {
			ret_val = hw->mac.ops.check_for_link(hw);
			link_active = !hw->mac.get_link_status;
		} else {
			link_active = true;
		}
		break;
	case e1000_media_type_internal_serdes:
		ret_val = hw->mac.ops.check_for_link(hw);
		link_active = hw->mac.serdes_has_link;
		break;
	default:
	case e1000_media_type_unknown:
		break;
	}

	return link_active;
}

3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090
/**
 * igb_watchdog - Timer Call-back
 * @data: pointer to adapter cast into an unsigned long
 **/
static void igb_watchdog(unsigned long data)
{
	struct igb_adapter *adapter = (struct igb_adapter *)data;
	/* Do the rest outside of interrupt context */
	schedule_work(&adapter->watchdog_task);
}

static void igb_watchdog_task(struct work_struct *work)
{
	struct igb_adapter *adapter = container_of(work,
3091 3092
	                                           struct igb_adapter,
                                                   watchdog_task);
3093 3094 3095
	struct e1000_hw *hw = &adapter->hw;
	struct net_device *netdev = adapter->netdev;
	u32 link;
3096
	int i;
3097

A
Alexander Duyck 已提交
3098
	link = igb_has_link(adapter);
3099 3100 3101
	if (link) {
		if (!netif_carrier_ok(netdev)) {
			u32 ctrl;
3102 3103 3104
			hw->mac.ops.get_speed_and_duplex(hw,
			                                 &adapter->link_speed,
			                                 &adapter->link_duplex);
3105 3106

			ctrl = rd32(E1000_CTRL);
3107 3108
			/* Links status message must follow this format */
			printk(KERN_INFO "igb: %s NIC Link is Up %d Mbps %s, "
3109
				 "Flow Control: %s\n",
3110 3111 3112
			       netdev->name,
			       adapter->link_speed,
			       adapter->link_duplex == FULL_DUPLEX ?
3113
				 "Full Duplex" : "Half Duplex",
3114 3115 3116 3117
			       ((ctrl & E1000_CTRL_TFCE) &&
			        (ctrl & E1000_CTRL_RFCE)) ? "RX/TX" :
			       ((ctrl & E1000_CTRL_RFCE) ?  "RX" :
			       ((ctrl & E1000_CTRL_TFCE) ?  "TX" : "None")));
3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135

			/* tweak tx_queue_len according to speed/duplex and
			 * adjust the timeout factor */
			netdev->tx_queue_len = adapter->tx_queue_len;
			adapter->tx_timeout_factor = 1;
			switch (adapter->link_speed) {
			case SPEED_10:
				netdev->tx_queue_len = 10;
				adapter->tx_timeout_factor = 14;
				break;
			case SPEED_100:
				netdev->tx_queue_len = 100;
				/* maybe add some timeout factor ? */
				break;
			}

			netif_carrier_on(netdev);

3136 3137
			igb_ping_all_vfs(adapter);

3138
			/* link state has changed, schedule phy info update */
3139 3140 3141 3142 3143 3144 3145 3146
			if (!test_bit(__IGB_DOWN, &adapter->state))
				mod_timer(&adapter->phy_info_timer,
					  round_jiffies(jiffies + 2 * HZ));
		}
	} else {
		if (netif_carrier_ok(netdev)) {
			adapter->link_speed = 0;
			adapter->link_duplex = 0;
3147 3148 3149
			/* Links status message must follow this format */
			printk(KERN_INFO "igb: %s NIC Link is Down\n",
			       netdev->name);
3150
			netif_carrier_off(netdev);
3151

3152 3153
			igb_ping_all_vfs(adapter);

3154
			/* link state has changed, schedule phy info update */
3155 3156 3157 3158 3159 3160 3161 3162
			if (!test_bit(__IGB_DOWN, &adapter->state))
				mod_timer(&adapter->phy_info_timer,
					  round_jiffies(jiffies + 2 * HZ));
		}
	}

	igb_update_stats(adapter);

3163
	for (i = 0; i < adapter->num_tx_queues; i++) {
3164
		struct igb_ring *tx_ring = adapter->tx_ring[i];
3165
		if (!netif_carrier_ok(netdev)) {
3166 3167 3168 3169
			/* We've lost link, so the controller stops DMA,
			 * but we've got queued Tx work that's never going
			 * to get done, so reset controller to flush Tx.
			 * (Do the reset outside of interrupt context). */
3170 3171 3172 3173 3174 3175
			if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
				adapter->tx_timeout_count++;
				schedule_work(&adapter->reset_task);
				/* return immediately since reset is imminent */
				return;
			}
3176 3177
		}

3178 3179 3180
		/* Force detection of hung controller every watchdog period */
		tx_ring->detect_tx_hung = true;
	}
3181

3182
	/* Cause software interrupt to ensure rx ring is cleaned */
3183
	if (adapter->msix_entries) {
3184 3185 3186 3187 3188
		u32 eics = 0;
		for (i = 0; i < adapter->num_q_vectors; i++) {
			struct igb_q_vector *q_vector = adapter->q_vector[i];
			eics |= q_vector->eims_value;
		}
3189 3190 3191 3192
		wr32(E1000_EICS, eics);
	} else {
		wr32(E1000_ICS, E1000_ICS_RXDMT0);
	}
3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206

	/* Reset the timer */
	if (!test_bit(__IGB_DOWN, &adapter->state))
		mod_timer(&adapter->watchdog_timer,
			  round_jiffies(jiffies + 2 * HZ));
}

enum latency_range {
	lowest_latency = 0,
	low_latency = 1,
	bulk_latency = 2,
	latency_invalid = 255
};

3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220
/**
 * igb_update_ring_itr - update the dynamic ITR value based on packet size
 *
 *      Stores a new ITR value based on strictly on packet size.  This
 *      algorithm is less sophisticated than that used in igb_update_itr,
 *      due to the difficulty of synchronizing statistics across multiple
 *      receive rings.  The divisors and thresholds used by this fuction
 *      were determined based on theoretical maximum wire speed and testing
 *      data, in order to minimize response time while increasing bulk
 *      throughput.
 *      This functionality is controlled by the InterruptThrottleRate module
 *      parameter (see igb_param.c)
 *      NOTE:  This function is called only when operating in a multiqueue
 *             receive environment.
3221
 * @q_vector: pointer to q_vector
3222
 **/
3223
static void igb_update_ring_itr(struct igb_q_vector *q_vector)
3224
{
3225
	int new_val = q_vector->itr_val;
3226
	int avg_wire_size = 0;
3227
	struct igb_adapter *adapter = q_vector->adapter;
3228

3229 3230 3231 3232
	/* For non-gigabit speeds, just fix the interrupt rate at 4000
	 * ints/sec - ITR timer value of 120 ticks.
	 */
	if (adapter->link_speed != SPEED_1000) {
3233
		new_val = 976;
3234
		goto set_itr_val;
3235
	}
3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251

	if (q_vector->rx_ring && q_vector->rx_ring->total_packets) {
		struct igb_ring *ring = q_vector->rx_ring;
		avg_wire_size = ring->total_bytes / ring->total_packets;
	}

	if (q_vector->tx_ring && q_vector->tx_ring->total_packets) {
		struct igb_ring *ring = q_vector->tx_ring;
		avg_wire_size = max_t(u32, avg_wire_size,
		                      (ring->total_bytes /
		                       ring->total_packets));
	}

	/* if avg_wire_size isn't set no work was done */
	if (!avg_wire_size)
		goto clear_counts;
3252

3253 3254 3255 3256 3257
	/* Add 24 bytes to size to account for CRC, preamble, and gap */
	avg_wire_size += 24;

	/* Don't starve jumbo frames */
	avg_wire_size = min(avg_wire_size, 3000);
3258

3259 3260 3261 3262 3263
	/* Give a little boost to mid-size frames */
	if ((avg_wire_size > 300) && (avg_wire_size < 1200))
		new_val = avg_wire_size / 3;
	else
		new_val = avg_wire_size / 2;
3264

3265 3266 3267 3268
	/* when in itr mode 3 do not exceed 20K ints/sec */
	if (adapter->rx_itr_setting == 3 && new_val < 196)
		new_val = 196;

3269
set_itr_val:
3270 3271 3272
	if (new_val != q_vector->itr_val) {
		q_vector->itr_val = new_val;
		q_vector->set_itr = 1;
3273
	}
3274
clear_counts:
3275 3276 3277 3278 3279 3280 3281 3282
	if (q_vector->rx_ring) {
		q_vector->rx_ring->total_bytes = 0;
		q_vector->rx_ring->total_packets = 0;
	}
	if (q_vector->tx_ring) {
		q_vector->tx_ring->total_bytes = 0;
		q_vector->tx_ring->total_packets = 0;
	}
3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298
}

/**
 * igb_update_itr - update the dynamic ITR value based on statistics
 *      Stores a new ITR value based on packets and byte
 *      counts during the last interrupt.  The advantage of per interrupt
 *      computation is faster updates and more accurate ITR for the current
 *      traffic pattern.  Constants in this function were computed
 *      based on theoretical maximum wire speed and thresholds were set based
 *      on testing data as well as attempting to minimize response time
 *      while increasing bulk throughput.
 *      this functionality is controlled by the InterruptThrottleRate module
 *      parameter (see igb_param.c)
 *      NOTE:  These calculations are only valid when operating in a single-
 *             queue environment.
 * @adapter: pointer to adapter
3299
 * @itr_setting: current q_vector->itr_val
3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338
 * @packets: the number of packets during this measurement interval
 * @bytes: the number of bytes during this measurement interval
 **/
static unsigned int igb_update_itr(struct igb_adapter *adapter, u16 itr_setting,
				   int packets, int bytes)
{
	unsigned int retval = itr_setting;

	if (packets == 0)
		goto update_itr_done;

	switch (itr_setting) {
	case lowest_latency:
		/* handle TSO and jumbo frames */
		if (bytes/packets > 8000)
			retval = bulk_latency;
		else if ((packets < 5) && (bytes > 512))
			retval = low_latency;
		break;
	case low_latency:  /* 50 usec aka 20000 ints/s */
		if (bytes > 10000) {
			/* this if handles the TSO accounting */
			if (bytes/packets > 8000) {
				retval = bulk_latency;
			} else if ((packets < 10) || ((bytes/packets) > 1200)) {
				retval = bulk_latency;
			} else if ((packets > 35)) {
				retval = lowest_latency;
			}
		} else if (bytes/packets > 2000) {
			retval = bulk_latency;
		} else if (packets <= 2 && bytes < 512) {
			retval = lowest_latency;
		}
		break;
	case bulk_latency: /* 250 usec aka 4000 ints/s */
		if (bytes > 25000) {
			if (packets > 35)
				retval = low_latency;
3339
		} else if (bytes < 1500) {
3340 3341 3342 3343 3344 3345 3346 3347 3348
			retval = low_latency;
		}
		break;
	}

update_itr_done:
	return retval;
}

3349
static void igb_set_itr(struct igb_adapter *adapter)
3350
{
3351
	struct igb_q_vector *q_vector = adapter->q_vector[0];
3352
	u16 current_itr;
3353
	u32 new_itr = q_vector->itr_val;
3354 3355 3356 3357 3358 3359 3360 3361 3362 3363

	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
	if (adapter->link_speed != SPEED_1000) {
		current_itr = 0;
		new_itr = 4000;
		goto set_itr_now;
	}

	adapter->rx_itr = igb_update_itr(adapter,
				    adapter->rx_itr,
3364 3365
				    q_vector->rx_ring->total_packets,
				    q_vector->rx_ring->total_bytes);
3366

3367 3368
	adapter->tx_itr = igb_update_itr(adapter,
				    adapter->tx_itr,
3369 3370
				    q_vector->tx_ring->total_packets,
				    q_vector->tx_ring->total_bytes);
3371
	current_itr = max(adapter->rx_itr, adapter->tx_itr);
3372

3373
	/* conservative mode (itr 3) eliminates the lowest_latency setting */
3374
	if (adapter->rx_itr_setting == 3 && current_itr == lowest_latency)
3375 3376
		current_itr = low_latency;

3377 3378 3379
	switch (current_itr) {
	/* counts and packets in update_itr are dependent on these numbers */
	case lowest_latency:
3380
		new_itr = 56;  /* aka 70,000 ints/sec */
3381 3382
		break;
	case low_latency:
3383
		new_itr = 196; /* aka 20,000 ints/sec */
3384 3385
		break;
	case bulk_latency:
3386
		new_itr = 980; /* aka 4,000 ints/sec */
3387 3388 3389 3390 3391 3392
		break;
	default:
		break;
	}

set_itr_now:
3393 3394 3395 3396
	q_vector->rx_ring->total_bytes = 0;
	q_vector->rx_ring->total_packets = 0;
	q_vector->tx_ring->total_bytes = 0;
	q_vector->tx_ring->total_packets = 0;
3397

3398
	if (new_itr != q_vector->itr_val) {
3399 3400 3401
		/* this attempts to bias the interrupt rate towards Bulk
		 * by adding intermediate steps when interrupt rate is
		 * increasing */
3402 3403 3404 3405
		new_itr = new_itr > q_vector->itr_val ?
		             max((new_itr * q_vector->itr_val) /
		                 (new_itr + (q_vector->itr_val >> 2)),
		                 new_itr) :
3406 3407 3408 3409 3410 3411 3412
			     new_itr;
		/* Don't write the value here; it resets the adapter's
		 * internal timer, and causes us to delay far longer than
		 * we should between interrupts.  Instead, we write the ITR
		 * value at the beginning of the next interrupt so the timing
		 * ends up being correct.
		 */
3413 3414
		q_vector->itr_val = new_itr;
		q_vector->set_itr = 1;
3415 3416 3417 3418 3419 3420 3421 3422 3423
	}

	return;
}

#define IGB_TX_FLAGS_CSUM		0x00000001
#define IGB_TX_FLAGS_VLAN		0x00000002
#define IGB_TX_FLAGS_TSO		0x00000004
#define IGB_TX_FLAGS_IPV4		0x00000008
A
Alexander Duyck 已提交
3424 3425 3426
#define IGB_TX_FLAGS_TSTAMP		0x00000010
#define IGB_TX_FLAGS_VLAN_MASK		0xffff0000
#define IGB_TX_FLAGS_VLAN_SHIFT		        16
3427

3428
static inline int igb_tso_adv(struct igb_ring *tx_ring,
3429 3430 3431 3432 3433 3434 3435
			      struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
{
	struct e1000_adv_tx_context_desc *context_desc;
	unsigned int i;
	int err;
	struct igb_buffer *buffer_info;
	u32 info = 0, tu_cmd = 0;
N
Nick Nunley 已提交
3436 3437
	u32 mss_l4len_idx;
	u8 l4len;
3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455

	if (skb_header_cloned(skb)) {
		err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
		if (err)
			return err;
	}

	l4len = tcp_hdrlen(skb);
	*hdr_len += l4len;

	if (skb->protocol == htons(ETH_P_IP)) {
		struct iphdr *iph = ip_hdr(skb);
		iph->tot_len = 0;
		iph->check = 0;
		tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
							 iph->daddr, 0,
							 IPPROTO_TCP,
							 0);
3456
	} else if (skb_is_gso_v6(skb)) {
3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488
		ipv6_hdr(skb)->payload_len = 0;
		tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
						       &ipv6_hdr(skb)->daddr,
						       0, IPPROTO_TCP, 0);
	}

	i = tx_ring->next_to_use;

	buffer_info = &tx_ring->buffer_info[i];
	context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);
	/* VLAN MACLEN IPLEN */
	if (tx_flags & IGB_TX_FLAGS_VLAN)
		info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
	info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
	*hdr_len += skb_network_offset(skb);
	info |= skb_network_header_len(skb);
	*hdr_len += skb_network_header_len(skb);
	context_desc->vlan_macip_lens = cpu_to_le32(info);

	/* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
	tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);

	if (skb->protocol == htons(ETH_P_IP))
		tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
	tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;

	context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);

	/* MSS L4LEN IDX */
	mss_l4len_idx = (skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT);
	mss_l4len_idx |= (l4len << E1000_ADVTXD_L4LEN_SHIFT);

3489
	/* For 82575, context index must be unique per ring. */
3490 3491
	if (tx_ring->flags & IGB_RING_FLAG_TX_CTX_IDX)
		mss_l4len_idx |= tx_ring->reg_idx << 4;
3492 3493 3494 3495 3496

	context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
	context_desc->seqnum_seed = 0;

	buffer_info->time_stamp = jiffies;
A
Alexander Duyck 已提交
3497
	buffer_info->next_to_watch = i;
3498 3499 3500 3501 3502 3503 3504 3505 3506 3507
	buffer_info->dma = 0;
	i++;
	if (i == tx_ring->count)
		i = 0;

	tx_ring->next_to_use = i;

	return true;
}

3508 3509
static inline bool igb_tx_csum_adv(struct igb_ring *tx_ring,
				   struct sk_buff *skb, u32 tx_flags)
3510 3511
{
	struct e1000_adv_tx_context_desc *context_desc;
3512
	struct pci_dev *pdev = tx_ring->pdev;
3513 3514
	struct igb_buffer *buffer_info;
	u32 info = 0, tu_cmd = 0;
3515
	unsigned int i;
3516 3517 3518 3519 3520 3521 3522 3523 3524

	if ((skb->ip_summed == CHECKSUM_PARTIAL) ||
	    (tx_flags & IGB_TX_FLAGS_VLAN)) {
		i = tx_ring->next_to_use;
		buffer_info = &tx_ring->buffer_info[i];
		context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);

		if (tx_flags & IGB_TX_FLAGS_VLAN)
			info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
A
Alexander Duyck 已提交
3525

3526 3527 3528 3529 3530 3531 3532 3533 3534
		info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
		if (skb->ip_summed == CHECKSUM_PARTIAL)
			info |= skb_network_header_len(skb);

		context_desc->vlan_macip_lens = cpu_to_le32(info);

		tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);

		if (skb->ip_summed == CHECKSUM_PARTIAL) {
3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546
			__be16 protocol;

			if (skb->protocol == cpu_to_be16(ETH_P_8021Q)) {
				const struct vlan_ethhdr *vhdr =
				          (const struct vlan_ethhdr*)skb->data;

				protocol = vhdr->h_vlan_encapsulated_proto;
			} else {
				protocol = skb->protocol;
			}

			switch (protocol) {
3547
			case cpu_to_be16(ETH_P_IP):
3548
				tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
3549 3550
				if (ip_hdr(skb)->protocol == IPPROTO_TCP)
					tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
3551 3552
				else if (ip_hdr(skb)->protocol == IPPROTO_SCTP)
					tu_cmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
3553
				break;
3554
			case cpu_to_be16(ETH_P_IPV6):
3555 3556 3557
				/* XXX what about other V6 headers?? */
				if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
					tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
3558 3559
				else if (ipv6_hdr(skb)->nexthdr == IPPROTO_SCTP)
					tu_cmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
3560 3561 3562
				break;
			default:
				if (unlikely(net_ratelimit()))
3563
					dev_warn(&pdev->dev,
3564 3565 3566 3567
					    "partial checksum but proto=%x!\n",
					    skb->protocol);
				break;
			}
3568 3569 3570 3571
		}

		context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
		context_desc->seqnum_seed = 0;
3572
		if (tx_ring->flags & IGB_RING_FLAG_TX_CTX_IDX)
3573
			context_desc->mss_l4len_idx =
3574
				cpu_to_le32(tx_ring->reg_idx << 4);
3575 3576

		buffer_info->time_stamp = jiffies;
A
Alexander Duyck 已提交
3577
		buffer_info->next_to_watch = i;
3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592
		buffer_info->dma = 0;

		i++;
		if (i == tx_ring->count)
			i = 0;
		tx_ring->next_to_use = i;

		return true;
	}
	return false;
}

#define IGB_MAX_TXD_PWR	16
#define IGB_MAX_DATA_PER_TXD	(1<<IGB_MAX_TXD_PWR)

3593
static inline int igb_tx_map_adv(struct igb_ring *tx_ring, struct sk_buff *skb,
A
Alexander Duyck 已提交
3594
				 unsigned int first)
3595 3596
{
	struct igb_buffer *buffer_info;
3597
	struct pci_dev *pdev = tx_ring->pdev;
3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608
	unsigned int len = skb_headlen(skb);
	unsigned int count = 0, i;
	unsigned int f;

	i = tx_ring->next_to_use;

	buffer_info = &tx_ring->buffer_info[i];
	BUG_ON(len >= IGB_MAX_DATA_PER_TXD);
	buffer_info->length = len;
	/* set time_stamp *before* dma to help avoid a possible race */
	buffer_info->time_stamp = jiffies;
A
Alexander Duyck 已提交
3609
	buffer_info->next_to_watch = i;
3610 3611 3612 3613
	buffer_info->dma = pci_map_single(pdev, skb->data, len,
					  PCI_DMA_TODEVICE);
	if (pci_dma_mapping_error(pdev, buffer_info->dma))
		goto dma_error;
3614 3615 3616 3617

	for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
		struct skb_frag_struct *frag;

3618
		count++;
3619 3620 3621 3622
		i++;
		if (i == tx_ring->count)
			i = 0;

3623 3624 3625 3626 3627 3628 3629
		frag = &skb_shinfo(skb)->frags[f];
		len = frag->size;

		buffer_info = &tx_ring->buffer_info[i];
		BUG_ON(len >= IGB_MAX_DATA_PER_TXD);
		buffer_info->length = len;
		buffer_info->time_stamp = jiffies;
A
Alexander Duyck 已提交
3630
		buffer_info->next_to_watch = i;
3631 3632 3633 3634 3635 3636 3637 3638 3639
		buffer_info->mapped_as_page = true;
		buffer_info->dma = pci_map_page(pdev,
						frag->page,
						frag->page_offset,
						len,
						PCI_DMA_TODEVICE);
		if (pci_dma_mapping_error(pdev, buffer_info->dma))
			goto dma_error;

3640 3641 3642
	}

	tx_ring->buffer_info[i].skb = skb;
3643
	tx_ring->buffer_info[i].gso_segs = skb_shinfo(skb)->gso_segs ?: 1;
A
Alexander Duyck 已提交
3644
	tx_ring->buffer_info[first].next_to_watch = i;
3645

A
Alexander Duyck 已提交
3646
	return ++count;
3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658

dma_error:
	dev_err(&pdev->dev, "TX DMA map failed\n");

	/* clear timestamp and dma mappings for failed buffer_info mapping */
	buffer_info->dma = 0;
	buffer_info->time_stamp = 0;
	buffer_info->length = 0;
	buffer_info->next_to_watch = 0;
	buffer_info->mapped_as_page = false;

	/* clear timestamp and dma mappings for remaining portion of packet */
3659 3660 3661
	while (count--) {
		if (i == 0)
			i = tx_ring->count;
3662 3663 3664 3665 3666 3667
		i--;
		buffer_info = &tx_ring->buffer_info[i];
		igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
	}

	return 0;
3668 3669
}

3670
static inline void igb_tx_queue_adv(struct igb_ring *tx_ring,
N
Nick Nunley 已提交
3671
				    u32 tx_flags, int count, u32 paylen,
3672 3673
				    u8 hdr_len)
{
A
Alexander Duyck 已提交
3674
	union e1000_adv_tx_desc *tx_desc;
3675 3676
	struct igb_buffer *buffer_info;
	u32 olinfo_status = 0, cmd_type_len;
A
Alexander Duyck 已提交
3677
	unsigned int i = tx_ring->next_to_use;
3678 3679 3680 3681 3682 3683 3684

	cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS |
			E1000_ADVTXD_DCMD_DEXT);

	if (tx_flags & IGB_TX_FLAGS_VLAN)
		cmd_type_len |= E1000_ADVTXD_DCMD_VLE;

3685 3686 3687
	if (tx_flags & IGB_TX_FLAGS_TSTAMP)
		cmd_type_len |= E1000_ADVTXD_MAC_TSTAMP;

3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701
	if (tx_flags & IGB_TX_FLAGS_TSO) {
		cmd_type_len |= E1000_ADVTXD_DCMD_TSE;

		/* insert tcp checksum */
		olinfo_status |= E1000_TXD_POPTS_TXSM << 8;

		/* insert ip checksum */
		if (tx_flags & IGB_TX_FLAGS_IPV4)
			olinfo_status |= E1000_TXD_POPTS_IXSM << 8;

	} else if (tx_flags & IGB_TX_FLAGS_CSUM) {
		olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
	}

3702 3703 3704
	if ((tx_ring->flags & IGB_RING_FLAG_TX_CTX_IDX) &&
	    (tx_flags & (IGB_TX_FLAGS_CSUM |
	                 IGB_TX_FLAGS_TSO |
3705
			 IGB_TX_FLAGS_VLAN)))
3706
		olinfo_status |= tx_ring->reg_idx << 4;
3707 3708 3709

	olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT);

A
Alexander Duyck 已提交
3710
	do {
3711 3712 3713 3714 3715 3716
		buffer_info = &tx_ring->buffer_info[i];
		tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
		tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
		tx_desc->read.cmd_type_len =
			cpu_to_le32(cmd_type_len | buffer_info->length);
		tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
A
Alexander Duyck 已提交
3717
		count--;
3718 3719 3720
		i++;
		if (i == tx_ring->count)
			i = 0;
A
Alexander Duyck 已提交
3721
	} while (count > 0);
3722

3723
	tx_desc->read.cmd_type_len |= cpu_to_le32(IGB_ADVTXD_DCMD);
3724 3725 3726 3727 3728 3729 3730
	/* Force memory writes to complete before letting h/w
	 * know there are new descriptors to fetch.  (Only
	 * applicable for weak-ordered memory model archs,
	 * such as IA-64). */
	wmb();

	tx_ring->next_to_use = i;
3731
	writel(i, tx_ring->tail);
3732 3733 3734 3735 3736
	/* we need this if more than one processor can write to our tail
	 * at a time, it syncronizes IO on IA64/Altix systems */
	mmiowb();
}

3737
static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, int size)
3738
{
3739 3740
	struct net_device *netdev = tx_ring->netdev;

3741 3742
	netif_stop_subqueue(netdev, tx_ring->queue_index);

3743 3744 3745 3746 3747 3748 3749
	/* Herbert's original patch had:
	 *  smp_mb__after_netif_stop_queue();
	 * but since that doesn't exist yet, just open code it. */
	smp_mb();

	/* We need to check again in a case another CPU has just
	 * made room available. */
3750
	if (igb_desc_unused(tx_ring) < size)
3751 3752 3753
		return -EBUSY;

	/* A reprieve! */
3754
	netif_wake_subqueue(netdev, tx_ring->queue_index);
3755
	tx_ring->tx_stats.restart_queue++;
3756 3757 3758
	return 0;
}

N
Nick Nunley 已提交
3759
static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, int size)
3760
{
3761
	if (igb_desc_unused(tx_ring) >= size)
3762
		return 0;
3763
	return __igb_maybe_stop_tx(tx_ring, size);
3764 3765
}

3766 3767
netdev_tx_t igb_xmit_frame_ring_adv(struct sk_buff *skb,
				    struct igb_ring *tx_ring)
3768
{
3769
	struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
A
Alexander Duyck 已提交
3770
	int tso = 0, count;
N
Nick Nunley 已提交
3771 3772 3773
	u32 tx_flags = 0;
	u16 first;
	u8 hdr_len = 0;
3774
	union skb_shared_tx *shtx = skb_tx(skb);
3775 3776 3777 3778 3779 3780

	/* need: 1 descriptor per page,
	 *       + 2 desc gap to keep tail from touching head,
	 *       + 1 desc for skb->data,
	 *       + 1 desc for context descriptor,
	 * otherwise try next time */
3781
	if (igb_maybe_stop_tx(tx_ring, skb_shinfo(skb)->nr_frags + 4)) {
3782 3783 3784
		/* this is a hard error */
		return NETDEV_TX_BUSY;
	}
3785 3786 3787 3788 3789

	if (unlikely(shtx->hardware)) {
		shtx->in_progress = 1;
		tx_flags |= IGB_TX_FLAGS_TSTAMP;
	}
3790

A
Alexander Duyck 已提交
3791
	if (vlan_tx_tag_present(skb) && adapter->vlgrp) {
3792 3793 3794 3795
		tx_flags |= IGB_TX_FLAGS_VLAN;
		tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
	}

3796 3797 3798
	if (skb->protocol == htons(ETH_P_IP))
		tx_flags |= IGB_TX_FLAGS_IPV4;

A
Alexander Duyck 已提交
3799
	first = tx_ring->next_to_use;
3800 3801
	if (skb_is_gso(skb)) {
		tso = igb_tso_adv(tx_ring, skb, tx_flags, &hdr_len);
A
Alexander Duyck 已提交
3802

3803 3804 3805 3806
		if (tso < 0) {
			dev_kfree_skb_any(skb);
			return NETDEV_TX_OK;
		}
3807 3808 3809 3810
	}

	if (tso)
		tx_flags |= IGB_TX_FLAGS_TSO;
3811
	else if (igb_tx_csum_adv(tx_ring, skb, tx_flags) &&
3812 3813
	         (skb->ip_summed == CHECKSUM_PARTIAL))
		tx_flags |= IGB_TX_FLAGS_CSUM;
3814

3815
	/*
A
Alexander Duyck 已提交
3816
	 * count reflects descriptors mapped, if 0 or less then mapping error
3817 3818
	 * has occured and we need to rewind the descriptor queue
	 */
3819
	count = igb_tx_map_adv(tx_ring, skb, first);
3820
	if (!count) {
3821 3822 3823
		dev_kfree_skb_any(skb);
		tx_ring->buffer_info[first].time_stamp = 0;
		tx_ring->next_to_use = first;
3824
		return NETDEV_TX_OK;
3825
	}
3826

3827 3828 3829
	igb_tx_queue_adv(tx_ring, tx_flags, count, skb->len, hdr_len);

	/* Make sure there is space in the ring for the next send. */
3830
	igb_maybe_stop_tx(tx_ring, MAX_SKB_FRAGS + 4);
3831

3832 3833 3834
	return NETDEV_TX_OK;
}

3835 3836
static netdev_tx_t igb_xmit_frame_adv(struct sk_buff *skb,
				      struct net_device *netdev)
3837 3838
{
	struct igb_adapter *adapter = netdev_priv(netdev);
3839 3840
	struct igb_ring *tx_ring;
	int r_idx = 0;
3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851

	if (test_bit(__IGB_DOWN, &adapter->state)) {
		dev_kfree_skb_any(skb);
		return NETDEV_TX_OK;
	}

	if (skb->len <= 0) {
		dev_kfree_skb_any(skb);
		return NETDEV_TX_OK;
	}

3852
	r_idx = skb->queue_mapping & (IGB_ABS_MAX_TX_QUEUES - 1);
3853
	tx_ring = adapter->multi_tx_table[r_idx];
3854 3855 3856 3857 3858

	/* This goes back to the question of how to logically map a tx queue
	 * to a flow.  Right now, performance is impacted slightly negatively
	 * if using multiple tx queues.  If the stack breaks away from a
	 * single qdisc implementation, we can look at this again. */
3859
	return igb_xmit_frame_ring_adv(skb, tx_ring);
3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872
}

/**
 * igb_tx_timeout - Respond to a Tx Hang
 * @netdev: network interface device structure
 **/
static void igb_tx_timeout(struct net_device *netdev)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;

	/* Do the reset outside of interrupt context */
	adapter->tx_timeout_count++;
3873

3874 3875 3876
	if (hw->mac.type == e1000_82580)
		hw->dev_spec._82575.global_device_reset = true;

3877
	schedule_work(&adapter->reset_task);
3878 3879
	wr32(E1000_EICS,
	     (adapter->eims_enable_mask & ~adapter->eims_other));
3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896
}

static void igb_reset_task(struct work_struct *work)
{
	struct igb_adapter *adapter;
	adapter = container_of(work, struct igb_adapter, reset_task);

	igb_reinit_locked(adapter);
}

/**
 * igb_get_stats - Get System Network Statistics
 * @netdev: network interface device structure
 *
 * Returns the address of the device statistics structure.
 * The statistics are actually updated from the timer callback.
 **/
3897
static struct net_device_stats *igb_get_stats(struct net_device *netdev)
3898 3899
{
	/* only return the current stats */
3900
	return &netdev->stats;
3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912
}

/**
 * igb_change_mtu - Change the Maximum Transfer Unit
 * @netdev: network interface device structure
 * @new_mtu: new value for maximum frame size
 *
 * Returns 0 on success, negative on failure
 **/
static int igb_change_mtu(struct net_device *netdev, int new_mtu)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
3913
	struct pci_dev *pdev = adapter->pdev;
3914
	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
3915
	u32 rx_buffer_len, i;
3916

3917
	if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3918
		dev_err(&pdev->dev, "Invalid MTU setting\n");
3919 3920 3921 3922
		return -EINVAL;
	}

	if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
3923
		dev_err(&pdev->dev, "MTU > 9216 not supported.\n");
3924 3925 3926 3927 3928
		return -EINVAL;
	}

	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
		msleep(1);
3929

3930 3931
	/* igb_down has a dependency on max_frame_size */
	adapter->max_frame_size = max_frame;
3932

3933 3934 3935 3936 3937 3938
	/* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
	 * means we reserve 2 more, this pushes us to allocate from the next
	 * larger slab size.
	 * i.e. RXBUFFER_2048 --> size-4096 slab
	 */

3939
	if (max_frame <= IGB_RXBUFFER_1024)
3940
		rx_buffer_len = IGB_RXBUFFER_1024;
A
Alexander Duyck 已提交
3941
	else if (max_frame <= MAXIMUM_ETHERNET_VLAN_SIZE)
3942
		rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
A
Alexander Duyck 已提交
3943
	else
3944 3945 3946 3947
		rx_buffer_len = IGB_RXBUFFER_128;

	if (netif_running(netdev))
		igb_down(adapter);
3948

3949
	dev_info(&pdev->dev, "changing MTU from %d to %d\n",
3950 3951 3952
		 netdev->mtu, new_mtu);
	netdev->mtu = new_mtu;

3953
	for (i = 0; i < adapter->num_rx_queues; i++)
3954
		adapter->rx_ring[i]->rx_buffer_len = rx_buffer_len;
3955

3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972
	if (netif_running(netdev))
		igb_up(adapter);
	else
		igb_reset(adapter);

	clear_bit(__IGB_RESETTING, &adapter->state);

	return 0;
}

/**
 * igb_update_stats - Update the board statistics counters
 * @adapter: board private structure
 **/

void igb_update_stats(struct igb_adapter *adapter)
{
3973
	struct net_device_stats *net_stats = igb_get_stats(adapter->netdev);
3974 3975
	struct e1000_hw *hw = &adapter->hw;
	struct pci_dev *pdev = adapter->pdev;
3976
	u32 rnbc, reg;
3977
	u16 phy_tmp;
3978 3979
	int i;
	u64 bytes, packets;
3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991

#define PHY_IDLE_ERROR_COUNT_MASK 0x00FF

	/*
	 * Prevent stats update while adapter is being reset, or if the pci
	 * connection is down.
	 */
	if (adapter->link_speed == 0)
		return;
	if (pci_channel_offline(pdev))
		return;

3992 3993 3994 3995
	bytes = 0;
	packets = 0;
	for (i = 0; i < adapter->num_rx_queues; i++) {
		u32 rqdpc_tmp = rd32(E1000_RQDPC(i)) & 0x0FFF;
3996 3997
		struct igb_ring *ring = adapter->rx_ring[i];
		ring->rx_stats.drops += rqdpc_tmp;
3998
		net_stats->rx_fifo_errors += rqdpc_tmp;
3999 4000
		bytes += ring->rx_stats.bytes;
		packets += ring->rx_stats.packets;
4001 4002
	}

4003 4004
	net_stats->rx_bytes = bytes;
	net_stats->rx_packets = packets;
4005 4006 4007 4008

	bytes = 0;
	packets = 0;
	for (i = 0; i < adapter->num_tx_queues; i++) {
4009 4010 4011
		struct igb_ring *ring = adapter->tx_ring[i];
		bytes += ring->tx_stats.bytes;
		packets += ring->tx_stats.packets;
4012
	}
4013 4014
	net_stats->tx_bytes = bytes;
	net_stats->tx_packets = packets;
4015 4016

	/* read stats registers */
4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048
	adapter->stats.crcerrs += rd32(E1000_CRCERRS);
	adapter->stats.gprc += rd32(E1000_GPRC);
	adapter->stats.gorc += rd32(E1000_GORCL);
	rd32(E1000_GORCH); /* clear GORCL */
	adapter->stats.bprc += rd32(E1000_BPRC);
	adapter->stats.mprc += rd32(E1000_MPRC);
	adapter->stats.roc += rd32(E1000_ROC);

	adapter->stats.prc64 += rd32(E1000_PRC64);
	adapter->stats.prc127 += rd32(E1000_PRC127);
	adapter->stats.prc255 += rd32(E1000_PRC255);
	adapter->stats.prc511 += rd32(E1000_PRC511);
	adapter->stats.prc1023 += rd32(E1000_PRC1023);
	adapter->stats.prc1522 += rd32(E1000_PRC1522);
	adapter->stats.symerrs += rd32(E1000_SYMERRS);
	adapter->stats.sec += rd32(E1000_SEC);

	adapter->stats.mpc += rd32(E1000_MPC);
	adapter->stats.scc += rd32(E1000_SCC);
	adapter->stats.ecol += rd32(E1000_ECOL);
	adapter->stats.mcc += rd32(E1000_MCC);
	adapter->stats.latecol += rd32(E1000_LATECOL);
	adapter->stats.dc += rd32(E1000_DC);
	adapter->stats.rlec += rd32(E1000_RLEC);
	adapter->stats.xonrxc += rd32(E1000_XONRXC);
	adapter->stats.xontxc += rd32(E1000_XONTXC);
	adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
	adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
	adapter->stats.fcruc += rd32(E1000_FCRUC);
	adapter->stats.gptc += rd32(E1000_GPTC);
	adapter->stats.gotc += rd32(E1000_GOTCL);
	rd32(E1000_GOTCH); /* clear GOTCL */
4049 4050
	rnbc = rd32(E1000_RNBC);
	adapter->stats.rnbc += rnbc;
4051
	net_stats->rx_fifo_errors += rnbc;
4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068
	adapter->stats.ruc += rd32(E1000_RUC);
	adapter->stats.rfc += rd32(E1000_RFC);
	adapter->stats.rjc += rd32(E1000_RJC);
	adapter->stats.tor += rd32(E1000_TORH);
	adapter->stats.tot += rd32(E1000_TOTH);
	adapter->stats.tpr += rd32(E1000_TPR);

	adapter->stats.ptc64 += rd32(E1000_PTC64);
	adapter->stats.ptc127 += rd32(E1000_PTC127);
	adapter->stats.ptc255 += rd32(E1000_PTC255);
	adapter->stats.ptc511 += rd32(E1000_PTC511);
	adapter->stats.ptc1023 += rd32(E1000_PTC1023);
	adapter->stats.ptc1522 += rd32(E1000_PTC1522);

	adapter->stats.mptc += rd32(E1000_MPTC);
	adapter->stats.bptc += rd32(E1000_BPTC);

4069 4070
	adapter->stats.tpt += rd32(E1000_TPT);
	adapter->stats.colc += rd32(E1000_COLC);
4071 4072

	adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
4073 4074 4075 4076 4077 4078 4079
	/* read internal phy specific stats */
	reg = rd32(E1000_CTRL_EXT);
	if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
		adapter->stats.rxerrc += rd32(E1000_RXERRC);
		adapter->stats.tncrs += rd32(E1000_TNCRS);
	}

4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093
	adapter->stats.tsctc += rd32(E1000_TSCTC);
	adapter->stats.tsctfc += rd32(E1000_TSCTFC);

	adapter->stats.iac += rd32(E1000_IAC);
	adapter->stats.icrxoc += rd32(E1000_ICRXOC);
	adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
	adapter->stats.icrxatc += rd32(E1000_ICRXATC);
	adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
	adapter->stats.ictxatc += rd32(E1000_ICTXATC);
	adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
	adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
	adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);

	/* Fill out the OS statistics structure */
4094 4095
	net_stats->multicast = adapter->stats.mprc;
	net_stats->collisions = adapter->stats.colc;
4096 4097 4098 4099

	/* Rx Errors */

	/* RLEC on some newer hardware can be incorrect so build
4100
	 * our own version based on RUC and ROC */
4101
	net_stats->rx_errors = adapter->stats.rxerrc +
4102 4103 4104
		adapter->stats.crcerrs + adapter->stats.algnerrc +
		adapter->stats.ruc + adapter->stats.roc +
		adapter->stats.cexterr;
4105 4106 4107 4108 4109
	net_stats->rx_length_errors = adapter->stats.ruc +
				      adapter->stats.roc;
	net_stats->rx_crc_errors = adapter->stats.crcerrs;
	net_stats->rx_frame_errors = adapter->stats.algnerrc;
	net_stats->rx_missed_errors = adapter->stats.mpc;
4110 4111

	/* Tx Errors */
4112 4113 4114 4115 4116
	net_stats->tx_errors = adapter->stats.ecol +
			       adapter->stats.latecol;
	net_stats->tx_aborted_errors = adapter->stats.ecol;
	net_stats->tx_window_errors = adapter->stats.latecol;
	net_stats->tx_carrier_errors = adapter->stats.tncrs;
4117 4118 4119 4120 4121 4122

	/* Tx Dropped needs to be maintained elsewhere */

	/* Phy Stats */
	if (hw->phy.media_type == e1000_media_type_copper) {
		if ((adapter->link_speed == SPEED_1000) &&
4123
		   (!igb_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136
			phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
			adapter->phy_stats.idle_errors += phy_tmp;
		}
	}

	/* Management Stats */
	adapter->stats.mgptc += rd32(E1000_MGTPTC);
	adapter->stats.mgprc += rd32(E1000_MGTPRC);
	adapter->stats.mgpdc += rd32(E1000_MGTPDC);
}

static irqreturn_t igb_msix_other(int irq, void *data)
{
4137
	struct igb_adapter *adapter = data;
4138
	struct e1000_hw *hw = &adapter->hw;
P
PJ Waskiewicz 已提交
4139 4140
	u32 icr = rd32(E1000_ICR);
	/* reading ICR causes bit 31 of EICR to be cleared */
4141

4142 4143 4144
	if (icr & E1000_ICR_DRSTA)
		schedule_work(&adapter->reset_task);

4145
	if (icr & E1000_ICR_DOUTSYNC) {
4146 4147 4148
		/* HW is reporting DMA is out of sync */
		adapter->stats.doosync++;
	}
4149

4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160
	/* Check for a mailbox event */
	if (icr & E1000_ICR_VMMB)
		igb_msg_task(adapter);

	if (icr & E1000_ICR_LSC) {
		hw->mac.get_link_status = 1;
		/* guard against interrupt when we're going down */
		if (!test_bit(__IGB_DOWN, &adapter->state))
			mod_timer(&adapter->watchdog_timer, jiffies + 1);
	}

4161 4162 4163 4164 4165 4166
	if (adapter->vfs_allocated_count)
		wr32(E1000_IMS, E1000_IMS_LSC |
				E1000_IMS_VMMB |
				E1000_IMS_DOUTSYNC);
	else
		wr32(E1000_IMS, E1000_IMS_LSC | E1000_IMS_DOUTSYNC);
P
PJ Waskiewicz 已提交
4167
	wr32(E1000_EIMS, adapter->eims_other);
4168 4169 4170 4171

	return IRQ_HANDLED;
}

4172
static void igb_write_itr(struct igb_q_vector *q_vector)
4173
{
4174
	struct igb_adapter *adapter = q_vector->adapter;
4175
	u32 itr_val = q_vector->itr_val & 0x7FFC;
4176

4177 4178
	if (!q_vector->set_itr)
		return;
4179

4180 4181
	if (!itr_val)
		itr_val = 0x4;
4182

4183 4184
	if (adapter->hw.mac.type == e1000_82575)
		itr_val |= itr_val << 16;
4185
	else
4186
		itr_val |= 0x8000000;
4187

4188 4189
	writel(itr_val, q_vector->itr_register);
	q_vector->set_itr = 0;
4190 4191
}

4192
static irqreturn_t igb_msix_ring(int irq, void *data)
4193
{
4194
	struct igb_q_vector *q_vector = data;
4195

4196 4197
	/* Write the ITR value calculated from the previous interrupt. */
	igb_write_itr(q_vector);
4198

4199
	napi_schedule(&q_vector->napi);
P
PJ Waskiewicz 已提交
4200

4201
	return IRQ_HANDLED;
J
Jeb Cramer 已提交
4202 4203
}

4204
#ifdef CONFIG_IGB_DCA
4205
static void igb_update_dca(struct igb_q_vector *q_vector)
J
Jeb Cramer 已提交
4206
{
4207
	struct igb_adapter *adapter = q_vector->adapter;
J
Jeb Cramer 已提交
4208 4209 4210
	struct e1000_hw *hw = &adapter->hw;
	int cpu = get_cpu();

4211 4212 4213 4214 4215 4216 4217 4218 4219
	if (q_vector->cpu == cpu)
		goto out_no_update;

	if (q_vector->tx_ring) {
		int q = q_vector->tx_ring->reg_idx;
		u32 dca_txctrl = rd32(E1000_DCA_TXCTRL(q));
		if (hw->mac.type == e1000_82575) {
			dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK;
			dca_txctrl |= dca3_get_tag(&adapter->pdev->dev, cpu);
A
Alexander Duyck 已提交
4220
		} else {
4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231
			dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK_82576;
			dca_txctrl |= dca3_get_tag(&adapter->pdev->dev, cpu) <<
			              E1000_DCA_TXCTRL_CPUID_SHIFT;
		}
		dca_txctrl |= E1000_DCA_TXCTRL_DESC_DCA_EN;
		wr32(E1000_DCA_TXCTRL(q), dca_txctrl);
	}
	if (q_vector->rx_ring) {
		int q = q_vector->rx_ring->reg_idx;
		u32 dca_rxctrl = rd32(E1000_DCA_RXCTRL(q));
		if (hw->mac.type == e1000_82575) {
A
Alexander Duyck 已提交
4232
			dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK;
M
Maciej Sosnowski 已提交
4233
			dca_rxctrl |= dca3_get_tag(&adapter->pdev->dev, cpu);
4234 4235 4236 4237
		} else {
			dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK_82576;
			dca_rxctrl |= dca3_get_tag(&adapter->pdev->dev, cpu) <<
			              E1000_DCA_RXCTRL_CPUID_SHIFT;
A
Alexander Duyck 已提交
4238
		}
J
Jeb Cramer 已提交
4239 4240 4241 4242 4243
		dca_rxctrl |= E1000_DCA_RXCTRL_DESC_DCA_EN;
		dca_rxctrl |= E1000_DCA_RXCTRL_HEAD_DCA_EN;
		dca_rxctrl |= E1000_DCA_RXCTRL_DATA_DCA_EN;
		wr32(E1000_DCA_RXCTRL(q), dca_rxctrl);
	}
4244 4245
	q_vector->cpu = cpu;
out_no_update:
J
Jeb Cramer 已提交
4246 4247 4248 4249 4250
	put_cpu();
}

static void igb_setup_dca(struct igb_adapter *adapter)
{
4251
	struct e1000_hw *hw = &adapter->hw;
J
Jeb Cramer 已提交
4252 4253
	int i;

4254
	if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
J
Jeb Cramer 已提交
4255 4256
		return;

4257 4258 4259
	/* Always use CB2 mode, difference is masked in the CB driver. */
	wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);

4260
	for (i = 0; i < adapter->num_q_vectors; i++) {
4261 4262
		adapter->q_vector[i]->cpu = -1;
		igb_update_dca(adapter->q_vector[i]);
J
Jeb Cramer 已提交
4263 4264 4265 4266 4267 4268 4269
	}
}

static int __igb_notify_dca(struct device *dev, void *data)
{
	struct net_device *netdev = dev_get_drvdata(dev);
	struct igb_adapter *adapter = netdev_priv(netdev);
4270
	struct pci_dev *pdev = adapter->pdev;
J
Jeb Cramer 已提交
4271 4272 4273 4274 4275 4276
	struct e1000_hw *hw = &adapter->hw;
	unsigned long event = *(unsigned long *)data;

	switch (event) {
	case DCA_PROVIDER_ADD:
		/* if already enabled, don't do it again */
4277
		if (adapter->flags & IGB_FLAG_DCA_ENABLED)
J
Jeb Cramer 已提交
4278 4279
			break;
		if (dca_add_requester(dev) == 0) {
4280
			adapter->flags |= IGB_FLAG_DCA_ENABLED;
4281
			dev_info(&pdev->dev, "DCA enabled\n");
J
Jeb Cramer 已提交
4282 4283 4284 4285 4286
			igb_setup_dca(adapter);
			break;
		}
		/* Fall Through since DCA is disabled. */
	case DCA_PROVIDER_REMOVE:
4287
		if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
J
Jeb Cramer 已提交
4288
			/* without this a class_device is left
4289
			 * hanging around in the sysfs model */
J
Jeb Cramer 已提交
4290
			dca_remove_requester(dev);
4291
			dev_info(&pdev->dev, "DCA disabled\n");
4292
			adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
A
Alexander Duyck 已提交
4293
			wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
J
Jeb Cramer 已提交
4294 4295 4296
		}
		break;
	}
4297

J
Jeb Cramer 已提交
4298
	return 0;
4299 4300
}

J
Jeb Cramer 已提交
4301 4302 4303 4304 4305 4306 4307 4308 4309 4310
static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
                          void *p)
{
	int ret_val;

	ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
	                                 __igb_notify_dca);

	return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
}
4311
#endif /* CONFIG_IGB_DCA */
4312

4313 4314 4315 4316 4317 4318 4319 4320
static void igb_ping_all_vfs(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 ping;
	int i;

	for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
		ping = E1000_PF_CONTROL_MSG;
4321
		if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
4322 4323 4324 4325 4326
			ping |= E1000_VT_MSGTYPE_CTS;
		igb_write_mbx(hw, &ping, 1, i);
	}
}

4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365
static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 vmolr = rd32(E1000_VMOLR(vf));
	struct vf_data_storage *vf_data = &adapter->vf_data[vf];

	vf_data->flags |= ~(IGB_VF_FLAG_UNI_PROMISC |
	                    IGB_VF_FLAG_MULTI_PROMISC);
	vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);

	if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
		vmolr |= E1000_VMOLR_MPME;
		*msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
	} else {
		/*
		 * if we have hashes and we are clearing a multicast promisc
		 * flag we need to write the hashes to the MTA as this step
		 * was previously skipped
		 */
		if (vf_data->num_vf_mc_hashes > 30) {
			vmolr |= E1000_VMOLR_MPME;
		} else if (vf_data->num_vf_mc_hashes) {
			int j;
			vmolr |= E1000_VMOLR_ROMPE;
			for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
				igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
		}
	}

	wr32(E1000_VMOLR(vf), vmolr);

	/* there are flags left unprocessed, likely not supported */
	if (*msgbuf & E1000_VT_MSGINFO_MASK)
		return -EINVAL;

	return 0;

}

4366 4367 4368 4369 4370 4371 4372 4373
static int igb_set_vf_multicasts(struct igb_adapter *adapter,
				  u32 *msgbuf, u32 vf)
{
	int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
	u16 *hash_list = (u16 *)&msgbuf[1];
	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
	int i;

4374
	/* salt away the number of multicast addresses assigned
4375 4376 4377 4378 4379
	 * to this VF for later use to restore when the PF multi cast
	 * list changes
	 */
	vf_data->num_vf_mc_hashes = n;

4380 4381 4382 4383 4384
	/* only up to 30 hash values supported */
	if (n > 30)
		n = 30;

	/* store the hashes for later use */
4385
	for (i = 0; i < n; i++)
4386
		vf_data->vf_mc_hashes[i] = hash_list[i];
4387 4388

	/* Flush and reset the mta with the new values */
4389
	igb_set_rx_mode(adapter->netdev);
4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400

	return 0;
}

static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	struct vf_data_storage *vf_data;
	int i, j;

	for (i = 0; i < adapter->vfs_allocated_count; i++) {
4401 4402 4403
		u32 vmolr = rd32(E1000_VMOLR(i));
		vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);

4404
		vf_data = &adapter->vf_data[i];
4405 4406 4407 4408 4409 4410 4411 4412 4413 4414

		if ((vf_data->num_vf_mc_hashes > 30) ||
		    (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
			vmolr |= E1000_VMOLR_MPME;
		} else if (vf_data->num_vf_mc_hashes) {
			vmolr |= E1000_VMOLR_ROMPE;
			for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
				igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
		}
		wr32(E1000_VMOLR(i), vmolr);
4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442
	}
}

static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 pool_mask, reg, vid;
	int i;

	pool_mask = 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);

	/* Find the vlan filter for this id */
	for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
		reg = rd32(E1000_VLVF(i));

		/* remove the vf from the pool */
		reg &= ~pool_mask;

		/* if pool is empty then remove entry from vfta */
		if (!(reg & E1000_VLVF_POOLSEL_MASK) &&
		    (reg & E1000_VLVF_VLANID_ENABLE)) {
			reg = 0;
			vid = reg & E1000_VLVF_VLANID_MASK;
			igb_vfta_set(hw, vid, false);
		}

		wr32(E1000_VLVF(i), reg);
	}
4443 4444

	adapter->vf_data[vf].vlans_enabled = 0;
4445 4446 4447 4448 4449 4450 4451
}

static s32 igb_vlvf_set(struct igb_adapter *adapter, u32 vid, bool add, u32 vf)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 reg, i;

4452 4453 4454 4455 4456
	/* The vlvf table only exists on 82576 hardware and newer */
	if (hw->mac.type < e1000_82576)
		return -1;

	/* we only need to do this if VMDq is enabled */
4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485
	if (!adapter->vfs_allocated_count)
		return -1;

	/* Find the vlan filter for this id */
	for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
		reg = rd32(E1000_VLVF(i));
		if ((reg & E1000_VLVF_VLANID_ENABLE) &&
		    vid == (reg & E1000_VLVF_VLANID_MASK))
			break;
	}

	if (add) {
		if (i == E1000_VLVF_ARRAY_SIZE) {
			/* Did not find a matching VLAN ID entry that was
			 * enabled.  Search for a free filter entry, i.e.
			 * one without the enable bit set
			 */
			for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
				reg = rd32(E1000_VLVF(i));
				if (!(reg & E1000_VLVF_VLANID_ENABLE))
					break;
			}
		}
		if (i < E1000_VLVF_ARRAY_SIZE) {
			/* Found an enabled/available entry */
			reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);

			/* if !enabled we need to set this up in vfta */
			if (!(reg & E1000_VLVF_VLANID_ENABLE)) {
4486 4487
				/* add VID to filter table */
				igb_vfta_set(hw, vid, true);
4488 4489
				reg |= E1000_VLVF_VLANID_ENABLE;
			}
A
Alexander Duyck 已提交
4490 4491
			reg &= ~E1000_VLVF_VLANID_MASK;
			reg |= vid;
4492
			wr32(E1000_VLVF(i), reg);
4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507

			/* do not modify RLPML for PF devices */
			if (vf >= adapter->vfs_allocated_count)
				return 0;

			if (!adapter->vf_data[vf].vlans_enabled) {
				u32 size;
				reg = rd32(E1000_VMOLR(vf));
				size = reg & E1000_VMOLR_RLPML_MASK;
				size += 4;
				reg &= ~E1000_VMOLR_RLPML_MASK;
				reg |= size;
				wr32(E1000_VMOLR(vf), reg);
			}

4508
			adapter->vf_data[vf].vlans_enabled++;
4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520
			return 0;
		}
	} else {
		if (i < E1000_VLVF_ARRAY_SIZE) {
			/* remove vf from the pool */
			reg &= ~(1 << (E1000_VLVF_POOLSEL_SHIFT + vf));
			/* if pool is empty then remove entry from vfta */
			if (!(reg & E1000_VLVF_POOLSEL_MASK)) {
				reg = 0;
				igb_vfta_set(hw, vid, false);
			}
			wr32(E1000_VLVF(i), reg);
4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535

			/* do not modify RLPML for PF devices */
			if (vf >= adapter->vfs_allocated_count)
				return 0;

			adapter->vf_data[vf].vlans_enabled--;
			if (!adapter->vf_data[vf].vlans_enabled) {
				u32 size;
				reg = rd32(E1000_VMOLR(vf));
				size = reg & E1000_VMOLR_RLPML_MASK;
				size -= 4;
				reg &= ~E1000_VMOLR_RLPML_MASK;
				reg |= size;
				wr32(E1000_VMOLR(vf), reg);
			}
4536 4537
		}
	}
4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586
	return 0;
}

static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
{
	struct e1000_hw *hw = &adapter->hw;

	if (vid)
		wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
	else
		wr32(E1000_VMVIR(vf), 0);
}

static int igb_ndo_set_vf_vlan(struct net_device *netdev,
			       int vf, u16 vlan, u8 qos)
{
	int err = 0;
	struct igb_adapter *adapter = netdev_priv(netdev);

	if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
		return -EINVAL;
	if (vlan || qos) {
		err = igb_vlvf_set(adapter, vlan, !!vlan, vf);
		if (err)
			goto out;
		igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
		igb_set_vmolr(adapter, vf, !vlan);
		adapter->vf_data[vf].pf_vlan = vlan;
		adapter->vf_data[vf].pf_qos = qos;
		dev_info(&adapter->pdev->dev,
			 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
		if (test_bit(__IGB_DOWN, &adapter->state)) {
			dev_warn(&adapter->pdev->dev,
				 "The VF VLAN has been set,"
				 " but the PF device is not up.\n");
			dev_warn(&adapter->pdev->dev,
				 "Bring the PF device up before"
				 " attempting to use the VF device.\n");
		}
	} else {
		igb_vlvf_set(adapter, adapter->vf_data[vf].pf_vlan,
				   false, vf);
		igb_set_vmvir(adapter, vlan, vf);
		igb_set_vmolr(adapter, vf, true);
		adapter->vf_data[vf].pf_vlan = 0;
		adapter->vf_data[vf].pf_qos = 0;
       }
out:
       return err;
4587 4588 4589 4590 4591 4592 4593 4594 4595 4596
}

static int igb_set_vf_vlan(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
{
	int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
	int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);

	return igb_vlvf_set(adapter, vid, add, vf);
}

4597
static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
4598
{
4599 4600
	/* clear flags */
	adapter->vf_data[vf].flags &= ~(IGB_VF_FLAG_PF_SET_MAC);
4601
	adapter->vf_data[vf].last_nack = jiffies;
4602 4603

	/* reset offloads to defaults */
4604
	igb_set_vmolr(adapter, vf, true);
4605 4606 4607

	/* reset vlans for device */
	igb_clear_vf_vfta(adapter, vf);
4608 4609 4610 4611 4612 4613
	if (adapter->vf_data[vf].pf_vlan)
		igb_ndo_set_vf_vlan(adapter->netdev, vf,
				    adapter->vf_data[vf].pf_vlan,
				    adapter->vf_data[vf].pf_qos);
	else
		igb_clear_vf_vfta(adapter, vf);
4614 4615 4616 4617 4618

	/* reset multicast table array for vf */
	adapter->vf_data[vf].num_vf_mc_hashes = 0;

	/* Flush and reset the mta with the new values */
4619
	igb_set_rx_mode(adapter->netdev);
4620 4621
}

4622 4623 4624 4625 4626
static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
{
	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;

	/* generate a new mac address as we were hotplug removed/added */
4627 4628
	if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
		random_ether_addr(vf_mac);
4629 4630 4631 4632 4633 4634

	/* process remaining reset events */
	igb_vf_reset(adapter, vf);
}

static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
4635 4636 4637
{
	struct e1000_hw *hw = &adapter->hw;
	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
4638
	int rar_entry = hw->mac.rar_entry_count - (vf + 1);
4639 4640 4641 4642
	u32 reg, msgbuf[3];
	u8 *addr = (u8 *)(&msgbuf[1]);

	/* process all the same items cleared in a function level reset */
4643
	igb_vf_reset(adapter, vf);
4644 4645

	/* set vf mac address */
4646
	igb_rar_set_qsel(adapter, vf_mac, rar_entry, vf);
4647 4648 4649 4650 4651 4652 4653

	/* enable transmit and receive for vf */
	reg = rd32(E1000_VFTE);
	wr32(E1000_VFTE, reg | (1 << vf));
	reg = rd32(E1000_VFRE);
	wr32(E1000_VFRE, reg | (1 << vf));

4654
	adapter->vf_data[vf].flags = IGB_VF_FLAG_CTS;
4655 4656 4657 4658 4659 4660 4661 4662 4663

	/* reply to reset with ack and vf mac address */
	msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
	memcpy(addr, vf_mac, 6);
	igb_write_mbx(hw, msgbuf, 3, vf);
}

static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
{
4664 4665
	unsigned char *addr = (char *)&msg[1];
	int err = -1;
4666

4667 4668
	if (is_valid_ether_addr(addr))
		err = igb_set_vf_mac(adapter, vf, addr);
4669

4670
	return err;
4671 4672 4673 4674 4675
}

static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
{
	struct e1000_hw *hw = &adapter->hw;
4676
	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
4677 4678 4679
	u32 msg = E1000_VT_MSGTYPE_NACK;

	/* if device isn't clear to send it shouldn't be reading either */
4680 4681
	if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
	    time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
4682
		igb_write_mbx(hw, &msg, 1, vf);
4683
		vf_data->last_nack = jiffies;
4684 4685 4686
	}
}

4687
static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
4688
{
4689 4690
	struct pci_dev *pdev = adapter->pdev;
	u32 msgbuf[E1000_VFMAILBOX_SIZE];
4691
	struct e1000_hw *hw = &adapter->hw;
4692
	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
4693 4694
	s32 retval;

4695
	retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf);
4696

4697 4698
	if (retval) {
		/* if receive failed revoke VF CTS stats and restart init */
4699
		dev_err(&pdev->dev, "Error receiving message from VF\n");
4700 4701 4702 4703 4704
		vf_data->flags &= ~IGB_VF_FLAG_CTS;
		if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
			return;
		goto out;
	}
4705 4706 4707

	/* this is a message we already processed, do nothing */
	if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
4708
		return;
4709 4710 4711 4712 4713 4714 4715 4716

	/*
	 * until the vf completes a reset it should not be
	 * allowed to start any configuration.
	 */

	if (msgbuf[0] == E1000_VF_RESET) {
		igb_vf_reset_msg(adapter, vf);
4717
		return;
4718 4719
	}

4720
	if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
4721 4722 4723 4724
		if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
			return;
		retval = -1;
		goto out;
4725 4726 4727 4728 4729 4730
	}

	switch ((msgbuf[0] & 0xFFFF)) {
	case E1000_VF_SET_MAC_ADDR:
		retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
		break;
4731 4732 4733
	case E1000_VF_SET_PROMISC:
		retval = igb_set_vf_promisc(adapter, msgbuf, vf);
		break;
4734 4735 4736 4737 4738 4739 4740
	case E1000_VF_SET_MULTICAST:
		retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
		break;
	case E1000_VF_SET_LPE:
		retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
		break;
	case E1000_VF_SET_VLAN:
4741 4742 4743 4744
		if (adapter->vf_data[vf].pf_vlan)
			retval = -1;
		else
			retval = igb_set_vf_vlan(adapter, msgbuf, vf);
4745 4746
		break;
	default:
4747
		dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
4748 4749 4750 4751
		retval = -1;
		break;
	}

4752 4753
	msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
out:
4754 4755 4756 4757 4758 4759 4760
	/* notify the VF of the results of what it sent us */
	if (retval)
		msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
	else
		msgbuf[0] |= E1000_VT_MSGTYPE_ACK;

	igb_write_mbx(hw, msgbuf, 1, vf);
4761
}
4762

4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780
static void igb_msg_task(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 vf;

	for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
		/* process any reset requests */
		if (!igb_check_for_rst(hw, vf))
			igb_vf_reset_event(adapter, vf);

		/* process any messages pending */
		if (!igb_check_for_msg(hw, vf))
			igb_rcv_msg_from_vf(adapter, vf);

		/* process any acks */
		if (!igb_check_for_ack(hw, vf))
			igb_rcv_ack_from_vf(adapter, vf);
	}
4781 4782
}

4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809
/**
 *  igb_set_uta - Set unicast filter table address
 *  @adapter: board private structure
 *
 *  The unicast table address is a register array of 32-bit registers.
 *  The table is meant to be used in a way similar to how the MTA is used
 *  however due to certain limitations in the hardware it is necessary to
 *  set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscous
 *  enable bit to allow vlan tag stripping when promiscous mode is enabled
 **/
static void igb_set_uta(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	int i;

	/* The UTA table only exists on 82576 hardware and newer */
	if (hw->mac.type < e1000_82576)
		return;

	/* we only need to do this if VMDq is enabled */
	if (!adapter->vfs_allocated_count)
		return;

	for (i = 0; i < hw->mac.uta_reg_count; i++)
		array_wr32(E1000_UTA, i, ~0);
}

4810 4811 4812 4813 4814 4815 4816
/**
 * igb_intr_msi - Interrupt Handler
 * @irq: interrupt number
 * @data: pointer to a network interface device structure
 **/
static irqreturn_t igb_intr_msi(int irq, void *data)
{
4817 4818
	struct igb_adapter *adapter = data;
	struct igb_q_vector *q_vector = adapter->q_vector[0];
4819 4820 4821 4822
	struct e1000_hw *hw = &adapter->hw;
	/* read ICR disables interrupts using IAM */
	u32 icr = rd32(E1000_ICR);

4823
	igb_write_itr(q_vector);
4824

4825 4826 4827
	if (icr & E1000_ICR_DRSTA)
		schedule_work(&adapter->reset_task);

4828
	if (icr & E1000_ICR_DOUTSYNC) {
4829 4830 4831 4832
		/* HW is reporting DMA is out of sync */
		adapter->stats.doosync++;
	}

4833 4834 4835 4836 4837 4838
	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
		hw->mac.get_link_status = 1;
		if (!test_bit(__IGB_DOWN, &adapter->state))
			mod_timer(&adapter->watchdog_timer, jiffies + 1);
	}

4839
	napi_schedule(&q_vector->napi);
4840 4841 4842 4843 4844

	return IRQ_HANDLED;
}

/**
4845
 * igb_intr - Legacy Interrupt Handler
4846 4847 4848 4849 4850
 * @irq: interrupt number
 * @data: pointer to a network interface device structure
 **/
static irqreturn_t igb_intr(int irq, void *data)
{
4851 4852
	struct igb_adapter *adapter = data;
	struct igb_q_vector *q_vector = adapter->q_vector[0];
4853 4854 4855 4856 4857 4858 4859
	struct e1000_hw *hw = &adapter->hw;
	/* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
	 * need for the IMC write */
	u32 icr = rd32(E1000_ICR);
	if (!icr)
		return IRQ_NONE;  /* Not our interrupt */

4860
	igb_write_itr(q_vector);
4861 4862 4863 4864 4865 4866

	/* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
	 * not set, then the adapter didn't send an interrupt */
	if (!(icr & E1000_ICR_INT_ASSERTED))
		return IRQ_NONE;

4867 4868 4869
	if (icr & E1000_ICR_DRSTA)
		schedule_work(&adapter->reset_task);

4870
	if (icr & E1000_ICR_DOUTSYNC) {
4871 4872 4873 4874
		/* HW is reporting DMA is out of sync */
		adapter->stats.doosync++;
	}

4875 4876 4877 4878 4879 4880 4881
	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
		hw->mac.get_link_status = 1;
		/* guard against interrupt when we're going down */
		if (!test_bit(__IGB_DOWN, &adapter->state))
			mod_timer(&adapter->watchdog_timer, jiffies + 1);
	}

4882
	napi_schedule(&q_vector->napi);
4883 4884 4885 4886

	return IRQ_HANDLED;
}

4887
static inline void igb_ring_irq_enable(struct igb_q_vector *q_vector)
4888
{
4889
	struct igb_adapter *adapter = q_vector->adapter;
4890
	struct e1000_hw *hw = &adapter->hw;
4891

4892 4893
	if ((q_vector->rx_ring && (adapter->rx_itr_setting & 3)) ||
	    (!q_vector->rx_ring && (adapter->tx_itr_setting & 3))) {
4894
		if (!adapter->msix_entries)
4895
			igb_set_itr(adapter);
4896
		else
4897
			igb_update_ring_itr(q_vector);
4898 4899
	}

4900 4901
	if (!test_bit(__IGB_DOWN, &adapter->state)) {
		if (adapter->msix_entries)
4902
			wr32(E1000_EIMS, q_vector->eims_value);
4903 4904 4905
		else
			igb_irq_enable(adapter);
	}
4906 4907
}

4908 4909 4910 4911 4912 4913
/**
 * igb_poll - NAPI Rx polling callback
 * @napi: napi polling structure
 * @budget: count of how many packets we should handle
 **/
static int igb_poll(struct napi_struct *napi, int budget)
4914
{
4915 4916 4917 4918
	struct igb_q_vector *q_vector = container_of(napi,
	                                             struct igb_q_vector,
	                                             napi);
	int tx_clean_complete = 1, work_done = 0;
4919

4920
#ifdef CONFIG_IGB_DCA
4921 4922
	if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
		igb_update_dca(q_vector);
J
Jeb Cramer 已提交
4923
#endif
4924 4925
	if (q_vector->tx_ring)
		tx_clean_complete = igb_clean_tx_irq(q_vector);
4926

4927 4928 4929 4930 4931
	if (q_vector->rx_ring)
		igb_clean_rx_irq_adv(q_vector, &work_done, budget);

	if (!tx_clean_complete)
		work_done = budget;
4932

4933
	/* If not enough Rx work done, exit the polling mode */
4934
	if (work_done < budget) {
4935
		napi_complete(napi);
4936
		igb_ring_irq_enable(q_vector);
4937 4938
	}

4939
	return work_done;
4940
}
A
Al Viro 已提交
4941

4942
/**
4943
 * igb_systim_to_hwtstamp - convert system time value to hw timestamp
4944
 * @adapter: board private structure
4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956
 * @shhwtstamps: timestamp structure to update
 * @regval: unsigned 64bit system time value.
 *
 * We need to convert the system time value stored in the RX/TXSTMP registers
 * into a hwtstamp which can be used by the upper level timestamping functions
 */
static void igb_systim_to_hwtstamp(struct igb_adapter *adapter,
                                   struct skb_shared_hwtstamps *shhwtstamps,
                                   u64 regval)
{
	u64 ns;

4957 4958 4959 4960 4961 4962 4963
	/*
	 * The 82580 starts with 1ns at bit 0 in RX/TXSTMPL, shift this up to
	 * 24 to match clock shift we setup earlier.
	 */
	if (adapter->hw.mac.type == e1000_82580)
		regval <<= IGB_82580_TSYNC_SHIFT;

4964 4965 4966 4967 4968 4969 4970 4971 4972 4973
	ns = timecounter_cyc2time(&adapter->clock, regval);
	timecompare_update(&adapter->compare, ns);
	memset(shhwtstamps, 0, sizeof(struct skb_shared_hwtstamps));
	shhwtstamps->hwtstamp = ns_to_ktime(ns);
	shhwtstamps->syststamp = timecompare_transform(&adapter->compare, ns);
}

/**
 * igb_tx_hwtstamp - utility function which checks for TX time stamp
 * @q_vector: pointer to q_vector containing needed info
4974 4975 4976 4977 4978 4979
 * @skb: packet that was just sent
 *
 * If we were asked to do hardware stamping and such a time stamp is
 * available, then it must have been for this skb here because we only
 * allow only one such packet into the queue.
 */
4980
static void igb_tx_hwtstamp(struct igb_q_vector *q_vector, struct sk_buff *skb)
4981
{
4982
	struct igb_adapter *adapter = q_vector->adapter;
4983 4984
	union skb_shared_tx *shtx = skb_tx(skb);
	struct e1000_hw *hw = &adapter->hw;
4985 4986
	struct skb_shared_hwtstamps shhwtstamps;
	u64 regval;
4987

4988 4989 4990 4991 4992 4993 4994 4995 4996 4997
	/* if skb does not support hw timestamp or TX stamp not valid exit */
	if (likely(!shtx->hardware) ||
	    !(rd32(E1000_TSYNCTXCTL) & E1000_TSYNCTXCTL_VALID))
		return;

	regval = rd32(E1000_TXSTMPL);
	regval |= (u64)rd32(E1000_TXSTMPH) << 32;

	igb_systim_to_hwtstamp(adapter, &shhwtstamps, regval);
	skb_tstamp_tx(skb, &shhwtstamps);
4998 4999
}

5000 5001
/**
 * igb_clean_tx_irq - Reclaim resources after transmit completes
5002
 * @q_vector: pointer to q_vector containing needed info
5003 5004
 * returns true if ring is completely cleaned
 **/
5005
static bool igb_clean_tx_irq(struct igb_q_vector *q_vector)
5006
{
5007 5008
	struct igb_adapter *adapter = q_vector->adapter;
	struct igb_ring *tx_ring = q_vector->tx_ring;
5009
	struct net_device *netdev = tx_ring->netdev;
A
Alexander Duyck 已提交
5010
	struct e1000_hw *hw = &adapter->hw;
5011 5012
	struct igb_buffer *buffer_info;
	struct sk_buff *skb;
A
Alexander Duyck 已提交
5013
	union e1000_adv_tx_desc *tx_desc, *eop_desc;
5014
	unsigned int total_bytes = 0, total_packets = 0;
A
Alexander Duyck 已提交
5015 5016
	unsigned int i, eop, count = 0;
	bool cleaned = false;
5017 5018

	i = tx_ring->next_to_clean;
A
Alexander Duyck 已提交
5019 5020 5021 5022 5023 5024 5025
	eop = tx_ring->buffer_info[i].next_to_watch;
	eop_desc = E1000_TX_DESC_ADV(*tx_ring, eop);

	while ((eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)) &&
	       (count < tx_ring->count)) {
		for (cleaned = false; !cleaned; count++) {
			tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
5026
			buffer_info = &tx_ring->buffer_info[i];
A
Alexander Duyck 已提交
5027
			cleaned = (i == eop);
5028 5029 5030 5031 5032
			skb = buffer_info->skb;

			if (skb) {
				unsigned int segs, bytecount;
				/* gso_segs is currently only valid for tcp */
5033
				segs = buffer_info->gso_segs;
5034 5035 5036 5037 5038
				/* multiply data chunks by size of headers */
				bytecount = ((segs - 1) * skb_headlen(skb)) +
					    skb->len;
				total_packets += segs;
				total_bytes += bytecount;
5039

5040
				igb_tx_hwtstamp(q_vector, skb);
5041 5042
			}

5043
			igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
A
Alexander Duyck 已提交
5044
			tx_desc->wb.status = 0;
5045 5046 5047 5048 5049

			i++;
			if (i == tx_ring->count)
				i = 0;
		}
A
Alexander Duyck 已提交
5050 5051 5052 5053
		eop = tx_ring->buffer_info[i].next_to_watch;
		eop_desc = E1000_TX_DESC_ADV(*tx_ring, eop);
	}

5054 5055
	tx_ring->next_to_clean = i;

5056
	if (unlikely(count &&
5057
		     netif_carrier_ok(netdev) &&
5058
		     igb_desc_unused(tx_ring) >= IGB_TX_QUEUE_WAKE)) {
5059 5060 5061 5062
		/* Make sure that anybody stopping the queue after this
		 * sees the new next_to_clean.
		 */
		smp_mb();
5063 5064 5065
		if (__netif_subqueue_stopped(netdev, tx_ring->queue_index) &&
		    !(test_bit(__IGB_DOWN, &adapter->state))) {
			netif_wake_subqueue(netdev, tx_ring->queue_index);
5066
			tx_ring->tx_stats.restart_queue++;
5067
		}
5068 5069 5070 5071 5072 5073 5074 5075
	}

	if (tx_ring->detect_tx_hung) {
		/* Detect a transmit hang in hardware, this serializes the
		 * check with the clearing of time_stamp and movement of i */
		tx_ring->detect_tx_hung = false;
		if (tx_ring->buffer_info[i].time_stamp &&
		    time_after(jiffies, tx_ring->buffer_info[i].time_stamp +
5076 5077
			       (adapter->tx_timeout_factor * HZ)) &&
		    !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
5078 5079

			/* detected Tx unit hang */
5080
			dev_err(&tx_ring->pdev->dev,
5081
				"Detected Tx Unit Hang\n"
A
Alexander Duyck 已提交
5082
				"  Tx Queue             <%d>\n"
5083 5084 5085 5086 5087 5088
				"  TDH                  <%x>\n"
				"  TDT                  <%x>\n"
				"  next_to_use          <%x>\n"
				"  next_to_clean        <%x>\n"
				"buffer_info[next_to_clean]\n"
				"  time_stamp           <%lx>\n"
A
Alexander Duyck 已提交
5089
				"  next_to_watch        <%x>\n"
5090 5091
				"  jiffies              <%lx>\n"
				"  desc.status          <%x>\n",
A
Alexander Duyck 已提交
5092
				tx_ring->queue_index,
5093 5094
				readl(tx_ring->head),
				readl(tx_ring->tail),
5095 5096
				tx_ring->next_to_use,
				tx_ring->next_to_clean,
5097
				tx_ring->buffer_info[eop].time_stamp,
A
Alexander Duyck 已提交
5098
				eop,
5099
				jiffies,
A
Alexander Duyck 已提交
5100
				eop_desc->wb.status);
5101
			netif_stop_subqueue(netdev, tx_ring->queue_index);
5102 5103 5104 5105
		}
	}
	tx_ring->total_bytes += total_bytes;
	tx_ring->total_packets += total_packets;
5106 5107
	tx_ring->tx_stats.bytes += total_bytes;
	tx_ring->tx_stats.packets += total_packets;
A
Alexander Duyck 已提交
5108
	return (count < tx_ring->count);
5109 5110 5111 5112
}

/**
 * igb_receive_skb - helper function to handle rx indications
5113 5114 5115
 * @q_vector: structure containing interrupt and ring information
 * @skb: packet to send up
 * @vlan_tag: vlan tag for packet
5116
 **/
5117 5118 5119 5120 5121 5122 5123 5124 5125
static void igb_receive_skb(struct igb_q_vector *q_vector,
                            struct sk_buff *skb,
                            u16 vlan_tag)
{
	struct igb_adapter *adapter = q_vector->adapter;

	if (vlan_tag)
		vlan_gro_receive(&q_vector->napi, adapter->vlgrp,
		                 vlan_tag, skb);
5126
	else
5127
		napi_gro_receive(&q_vector->napi, skb);
5128 5129
}

5130
static inline void igb_rx_checksum_adv(struct igb_ring *ring,
5131 5132 5133 5134 5135
				       u32 status_err, struct sk_buff *skb)
{
	skb->ip_summed = CHECKSUM_NONE;

	/* Ignore Checksum bit is set or checksum is disabled through ethtool */
5136 5137
	if (!(ring->flags & IGB_RING_FLAG_RX_CSUM) ||
	     (status_err & E1000_RXD_STAT_IXSM))
5138
		return;
5139

5140 5141 5142
	/* TCP/UDP checksum error bit is set */
	if (status_err &
	    (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) {
5143 5144 5145 5146 5147
		/*
		 * work around errata with sctp packets where the TCPE aka
		 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
		 * packets, (aka let the stack check the crc32c)
		 */
5148 5149
		if ((skb->len == 60) &&
		    (ring->flags & IGB_RING_FLAG_RX_SCTP_CSUM))
5150
			ring->rx_stats.csum_err++;
5151

5152 5153 5154 5155 5156 5157 5158
		/* let the stack verify checksum errors */
		return;
	}
	/* It must be a TCP or UDP packet with a valid checksum */
	if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))
		skb->ip_summed = CHECKSUM_UNNECESSARY;

5159
	dev_dbg(&ring->pdev->dev, "cksum success: bits %08X\n", status_err);
5160 5161
}

5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189
static inline void igb_rx_hwtstamp(struct igb_q_vector *q_vector, u32 staterr,
                                   struct sk_buff *skb)
{
	struct igb_adapter *adapter = q_vector->adapter;
	struct e1000_hw *hw = &adapter->hw;
	u64 regval;

	/*
	 * If this bit is set, then the RX registers contain the time stamp. No
	 * other packet will be time stamped until we read these registers, so
	 * read the registers to make them available again. Because only one
	 * packet can be time stamped at a time, we know that the register
	 * values must belong to this one here and therefore we don't need to
	 * compare any of the additional attributes stored for it.
	 *
	 * If nothing went wrong, then it should have a skb_shared_tx that we
	 * can turn into a skb_shared_hwtstamps.
	 */
	if (likely(!(staterr & E1000_RXDADV_STAT_TS)))
		return;
	if (!(rd32(E1000_TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
		return;

	regval = rd32(E1000_RXSTMPL);
	regval |= (u64)rd32(E1000_RXSTMPH) << 32;

	igb_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), regval);
}
5190
static inline u16 igb_get_hlen(struct igb_ring *rx_ring,
5191 5192 5193 5194 5195 5196 5197 5198
                               union e1000_adv_rx_desc *rx_desc)
{
	/* HW will not DMA in data larger than the given buffer, even if it
	 * parses the (NFS, of course) header to be larger.  In that case, it
	 * fills the header buffer and spills the rest into the page.
	 */
	u16 hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hdr_info) &
	           E1000_RXDADV_HDRBUFLEN_MASK) >> E1000_RXDADV_HDRBUFLEN_SHIFT;
5199 5200
	if (hlen > rx_ring->rx_buffer_len)
		hlen = rx_ring->rx_buffer_len;
5201 5202 5203
	return hlen;
}

5204 5205
static bool igb_clean_rx_irq_adv(struct igb_q_vector *q_vector,
                                 int *work_done, int budget)
5206
{
5207
	struct igb_ring *rx_ring = q_vector->rx_ring;
5208
	struct net_device *netdev = rx_ring->netdev;
5209
	struct pci_dev *pdev = rx_ring->pdev;
5210 5211 5212 5213 5214
	union e1000_adv_rx_desc *rx_desc , *next_rxd;
	struct igb_buffer *buffer_info , *next_buffer;
	struct sk_buff *skb;
	bool cleaned = false;
	int cleaned_count = 0;
5215
	int current_node = numa_node_id();
5216
	unsigned int total_bytes = 0, total_packets = 0;
5217
	unsigned int i;
5218 5219
	u32 staterr;
	u16 length;
5220
	u16 vlan_tag;
5221 5222

	i = rx_ring->next_to_clean;
5223
	buffer_info = &rx_ring->buffer_info[i];
5224 5225 5226 5227 5228 5229 5230 5231
	rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
	staterr = le32_to_cpu(rx_desc->wb.upper.status_error);

	while (staterr & E1000_RXD_STAT_DD) {
		if (*work_done >= budget)
			break;
		(*work_done)++;

5232 5233 5234 5235 5236 5237 5238
		skb = buffer_info->skb;
		prefetch(skb->data - NET_IP_ALIGN);
		buffer_info->skb = NULL;

		i++;
		if (i == rx_ring->count)
			i = 0;
5239

5240 5241 5242
		next_rxd = E1000_RX_DESC_ADV(*rx_ring, i);
		prefetch(next_rxd);
		next_buffer = &rx_ring->buffer_info[i];
5243 5244 5245 5246 5247

		length = le16_to_cpu(rx_desc->wb.upper.length);
		cleaned = true;
		cleaned_count++;

5248
		if (buffer_info->dma) {
5249
			pci_unmap_single(pdev, buffer_info->dma,
5250
					 rx_ring->rx_buffer_len,
5251
					 PCI_DMA_FROMDEVICE);
J
Jesse Brandeburg 已提交
5252
			buffer_info->dma = 0;
5253
			if (rx_ring->rx_buffer_len >= IGB_RXBUFFER_1024) {
A
Alexander Duyck 已提交
5254 5255 5256
				skb_put(skb, length);
				goto send_up;
			}
5257
			skb_put(skb, igb_get_hlen(rx_ring, rx_desc));
5258 5259 5260
		}

		if (length) {
5261
			pci_unmap_page(pdev, buffer_info->page_dma,
5262
				       PAGE_SIZE / 2, PCI_DMA_FROMDEVICE);
5263
			buffer_info->page_dma = 0;
5264 5265 5266 5267 5268 5269

			skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags++,
						buffer_info->page,
						buffer_info->page_offset,
						length);

5270 5271
			if ((page_count(buffer_info->page) != 1) ||
			    (page_to_nid(buffer_info->page) != current_node))
5272 5273 5274
				buffer_info->page = NULL;
			else
				get_page(buffer_info->page);
5275 5276 5277

			skb->len += length;
			skb->data_len += length;
5278
			skb->truesize += length;
5279 5280
		}

5281
		if (!(staterr & E1000_RXD_STAT_EOP)) {
5282 5283 5284 5285
			buffer_info->skb = next_buffer->skb;
			buffer_info->dma = next_buffer->dma;
			next_buffer->skb = skb;
			next_buffer->dma = 0;
5286 5287
			goto next_desc;
		}
5288
send_up:
5289 5290 5291 5292 5293
		if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
			dev_kfree_skb_irq(skb);
			goto next_desc;
		}

5294
		igb_rx_hwtstamp(q_vector, staterr, skb);
5295 5296 5297
		total_bytes += skb->len;
		total_packets++;

5298
		igb_rx_checksum_adv(rx_ring, staterr, skb);
5299 5300

		skb->protocol = eth_type_trans(skb, netdev);
5301 5302 5303 5304
		skb_record_rx_queue(skb, rx_ring->queue_index);

		vlan_tag = ((staterr & E1000_RXD_STAT_VP) ?
		            le16_to_cpu(rx_desc->wb.upper.vlan) : 0);
5305

5306
		igb_receive_skb(q_vector, skb, vlan_tag);
5307 5308 5309 5310 5311 5312

next_desc:
		rx_desc->wb.upper.status_error = 0;

		/* return some buffers to hardware, one at a time is too slow */
		if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
5313
			igb_alloc_rx_buffers_adv(rx_ring, cleaned_count);
5314 5315 5316 5317 5318 5319 5320 5321
			cleaned_count = 0;
		}

		/* use prefetched values */
		rx_desc = next_rxd;
		buffer_info = next_buffer;
		staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
	}
5322

5323
	rx_ring->next_to_clean = i;
5324
	cleaned_count = igb_desc_unused(rx_ring);
5325 5326

	if (cleaned_count)
5327
		igb_alloc_rx_buffers_adv(rx_ring, cleaned_count);
5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339

	rx_ring->total_packets += total_packets;
	rx_ring->total_bytes += total_bytes;
	rx_ring->rx_stats.packets += total_packets;
	rx_ring->rx_stats.bytes += total_bytes;
	return cleaned;
}

/**
 * igb_alloc_rx_buffers_adv - Replace used receive buffers; packet split
 * @adapter: address of board private structure
 **/
5340
void igb_alloc_rx_buffers_adv(struct igb_ring *rx_ring, int cleaned_count)
5341
{
5342
	struct net_device *netdev = rx_ring->netdev;
5343 5344 5345 5346
	union e1000_adv_rx_desc *rx_desc;
	struct igb_buffer *buffer_info;
	struct sk_buff *skb;
	unsigned int i;
5347
	int bufsz;
5348 5349 5350 5351

	i = rx_ring->next_to_use;
	buffer_info = &rx_ring->buffer_info[i];

5352
	bufsz = rx_ring->rx_buffer_len;
5353

5354 5355 5356
	while (cleaned_count--) {
		rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);

A
Alexander Duyck 已提交
5357
		if ((bufsz < IGB_RXBUFFER_1024) && !buffer_info->page_dma) {
5358
			if (!buffer_info->page) {
5359
				buffer_info->page = netdev_alloc_page(netdev);
5360
				if (!buffer_info->page) {
5361
					rx_ring->rx_stats.alloc_failed++;
5362 5363 5364 5365 5366
					goto no_buffers;
				}
				buffer_info->page_offset = 0;
			} else {
				buffer_info->page_offset ^= PAGE_SIZE / 2;
5367 5368
			}
			buffer_info->page_dma =
5369
				pci_map_page(rx_ring->pdev, buffer_info->page,
5370 5371
					     buffer_info->page_offset,
					     PAGE_SIZE / 2,
5372
					     PCI_DMA_FROMDEVICE);
5373 5374 5375 5376 5377 5378
			if (pci_dma_mapping_error(rx_ring->pdev,
			                          buffer_info->page_dma)) {
				buffer_info->page_dma = 0;
				rx_ring->rx_stats.alloc_failed++;
				goto no_buffers;
			}
5379 5380
		}

5381 5382
		skb = buffer_info->skb;
		if (!skb) {
5383
			skb = netdev_alloc_skb_ip_align(netdev, bufsz);
5384
			if (!skb) {
5385
				rx_ring->rx_stats.alloc_failed++;
5386 5387 5388 5389
				goto no_buffers;
			}

			buffer_info->skb = skb;
5390 5391
		}
		if (!buffer_info->dma) {
5392 5393
			buffer_info->dma = pci_map_single(rx_ring->pdev,
			                                  skb->data,
5394 5395
							  bufsz,
							  PCI_DMA_FROMDEVICE);
5396 5397 5398 5399 5400 5401
			if (pci_dma_mapping_error(rx_ring->pdev,
			                          buffer_info->dma)) {
				buffer_info->dma = 0;
				rx_ring->rx_stats.alloc_failed++;
				goto no_buffers;
			}
5402 5403 5404
		}
		/* Refresh the desc even if buffer_addrs didn't change because
		 * each write-back erases this info. */
A
Alexander Duyck 已提交
5405
		if (bufsz < IGB_RXBUFFER_1024) {
5406 5407 5408 5409
			rx_desc->read.pkt_addr =
			     cpu_to_le64(buffer_info->page_dma);
			rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma);
		} else {
5410
			rx_desc->read.pkt_addr = cpu_to_le64(buffer_info->dma);
5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432
			rx_desc->read.hdr_addr = 0;
		}

		i++;
		if (i == rx_ring->count)
			i = 0;
		buffer_info = &rx_ring->buffer_info[i];
	}

no_buffers:
	if (rx_ring->next_to_use != i) {
		rx_ring->next_to_use = i;
		if (i == 0)
			i = (rx_ring->count - 1);
		else
			i--;

		/* Force memory writes to complete before letting h/w
		 * know there are new descriptors to fetch.  (Only
		 * applicable for weak-ordered memory model archs,
		 * such as IA-64). */
		wmb();
5433
		writel(i, rx_ring->tail);
5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455
	}
}

/**
 * igb_mii_ioctl -
 * @netdev:
 * @ifreq:
 * @cmd:
 **/
static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct mii_ioctl_data *data = if_mii(ifr);

	if (adapter->hw.phy.media_type != e1000_media_type_copper)
		return -EOPNOTSUPP;

	switch (cmd) {
	case SIOCGMIIPHY:
		data->phy_id = adapter->hw.phy.addr;
		break;
	case SIOCGMIIREG:
5456 5457
		if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
		                     &data->val_out))
5458 5459 5460 5461 5462 5463 5464 5465 5466
			return -EIO;
		break;
	case SIOCSMIIREG:
	default:
		return -EOPNOTSUPP;
	}
	return 0;
}

5467 5468 5469 5470 5471 5472
/**
 * igb_hwtstamp_ioctl - control hardware time stamping
 * @netdev:
 * @ifreq:
 * @cmd:
 *
5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484
 * Outgoing time stamping can be enabled and disabled. Play nice and
 * disable it when requested, although it shouldn't case any overhead
 * when no packet needs it. At most one packet in the queue may be
 * marked for time stamping, otherwise it would be impossible to tell
 * for sure to which packet the hardware time stamp belongs.
 *
 * Incoming time stamping has to be configured via the hardware
 * filters. Not all combinations are supported, in particular event
 * type has to be specified. Matching the kind of event packet is
 * not supported, with the exception of "all V2 events regardless of
 * level 2 or 4".
 *
5485 5486 5487 5488
 **/
static int igb_hwtstamp_ioctl(struct net_device *netdev,
			      struct ifreq *ifr, int cmd)
{
5489 5490
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
5491
	struct hwtstamp_config config;
5492 5493
	u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
	u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
5494
	u32 tsync_rx_cfg = 0;
5495 5496
	bool is_l4 = false;
	bool is_l2 = false;
5497
	u32 regval;
5498 5499 5500 5501 5502 5503 5504 5505

	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
		return -EFAULT;

	/* reserved for future extensions */
	if (config.flags)
		return -EINVAL;

5506 5507
	switch (config.tx_type) {
	case HWTSTAMP_TX_OFF:
5508
		tsync_tx_ctl = 0;
5509 5510 5511 5512 5513 5514 5515 5516
	case HWTSTAMP_TX_ON:
		break;
	default:
		return -ERANGE;
	}

	switch (config.rx_filter) {
	case HWTSTAMP_FILTER_NONE:
5517
		tsync_rx_ctl = 0;
5518 5519 5520 5521 5522 5523 5524 5525 5526 5527
		break;
	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
	case HWTSTAMP_FILTER_ALL:
		/*
		 * register TSYNCRXCFG must be set, therefore it is not
		 * possible to time stamp both Sync and Delay_Req messages
		 * => fall back to time stamping all packets
		 */
5528
		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
5529 5530 5531
		config.rx_filter = HWTSTAMP_FILTER_ALL;
		break;
	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
5532
		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
5533
		tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE;
5534
		is_l4 = true;
5535 5536
		break;
	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
5537
		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
5538
		tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE;
5539
		is_l4 = true;
5540 5541 5542
		break;
	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
5543
		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
5544
		tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V2_SYNC_MESSAGE;
5545 5546
		is_l2 = true;
		is_l4 = true;
5547 5548 5549 5550
		config.rx_filter = HWTSTAMP_FILTER_SOME;
		break;
	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
5551
		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
5552
		tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V2_DELAY_REQ_MESSAGE;
5553 5554
		is_l2 = true;
		is_l4 = true;
5555 5556 5557 5558 5559
		config.rx_filter = HWTSTAMP_FILTER_SOME;
		break;
	case HWTSTAMP_FILTER_PTP_V2_EVENT:
	case HWTSTAMP_FILTER_PTP_V2_SYNC:
	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
5560
		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
5561
		config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
5562
		is_l2 = true;
5563 5564 5565 5566 5567
		break;
	default:
		return -ERANGE;
	}

5568 5569 5570 5571 5572 5573
	if (hw->mac.type == e1000_82575) {
		if (tsync_rx_ctl | tsync_tx_ctl)
			return -EINVAL;
		return 0;
	}

5574 5575
	/* enable/disable TX */
	regval = rd32(E1000_TSYNCTXCTL);
5576 5577
	regval &= ~E1000_TSYNCTXCTL_ENABLED;
	regval |= tsync_tx_ctl;
5578 5579
	wr32(E1000_TSYNCTXCTL, regval);

5580
	/* enable/disable RX */
5581
	regval = rd32(E1000_TSYNCRXCTL);
5582 5583
	regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
	regval |= tsync_rx_ctl;
5584 5585
	wr32(E1000_TSYNCRXCTL, regval);

5586 5587
	/* define which PTP packets are time stamped */
	wr32(E1000_TSYNCRXCFG, tsync_rx_cfg);
5588

5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618
	/* define ethertype filter for timestamped packets */
	if (is_l2)
		wr32(E1000_ETQF(3),
		                (E1000_ETQF_FILTER_ENABLE | /* enable filter */
		                 E1000_ETQF_1588 | /* enable timestamping */
		                 ETH_P_1588));     /* 1588 eth protocol type */
	else
		wr32(E1000_ETQF(3), 0);

#define PTP_PORT 319
	/* L4 Queue Filter[3]: filter by destination port and protocol */
	if (is_l4) {
		u32 ftqf = (IPPROTO_UDP /* UDP */
			| E1000_FTQF_VF_BP /* VF not compared */
			| E1000_FTQF_1588_TIME_STAMP /* Enable Timestamping */
			| E1000_FTQF_MASK); /* mask all inputs */
		ftqf &= ~E1000_FTQF_MASK_PROTO_BP; /* enable protocol check */

		wr32(E1000_IMIR(3), htons(PTP_PORT));
		wr32(E1000_IMIREXT(3),
		     (E1000_IMIREXT_SIZE_BP | E1000_IMIREXT_CTRL_BP));
		if (hw->mac.type == e1000_82576) {
			/* enable source port check */
			wr32(E1000_SPQF(3), htons(PTP_PORT));
			ftqf &= ~E1000_FTQF_MASK_SOURCE_PORT_BP;
		}
		wr32(E1000_FTQF(3), ftqf);
	} else {
		wr32(E1000_FTQF(3), E1000_FTQF_MASK);
	}
5619 5620 5621 5622 5623 5624 5625
	wrfl();

	adapter->hwtstamp_config = config;

	/* clear TX/RX time stamp registers, just to be sure */
	regval = rd32(E1000_TXSTMPH);
	regval = rd32(E1000_RXSTMPH);
5626

5627 5628
	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
		-EFAULT : 0;
5629 5630
}

5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643
/**
 * igb_ioctl -
 * @netdev:
 * @ifreq:
 * @cmd:
 **/
static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
{
	switch (cmd) {
	case SIOCGMIIPHY:
	case SIOCGMIIREG:
	case SIOCSMIIREG:
		return igb_mii_ioctl(netdev, ifr, cmd);
5644 5645
	case SIOCSHWTSTAMP:
		return igb_hwtstamp_ioctl(netdev, ifr, cmd);
5646 5647 5648 5649 5650
	default:
		return -EOPNOTSUPP;
	}
}

5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678
s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
{
	struct igb_adapter *adapter = hw->back;
	u16 cap_offset;

	cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
	if (!cap_offset)
		return -E1000_ERR_CONFIG;

	pci_read_config_word(adapter->pdev, cap_offset + reg, value);

	return 0;
}

s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
{
	struct igb_adapter *adapter = hw->back;
	u16 cap_offset;

	cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
	if (!cap_offset)
		return -E1000_ERR_CONFIG;

	pci_write_config_word(adapter->pdev, cap_offset + reg, *value);

	return 0;
}

5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694
static void igb_vlan_rx_register(struct net_device *netdev,
				 struct vlan_group *grp)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 ctrl, rctl;

	igb_irq_disable(adapter);
	adapter->vlgrp = grp;

	if (grp) {
		/* enable VLAN tag insert/strip */
		ctrl = rd32(E1000_CTRL);
		ctrl |= E1000_CTRL_VME;
		wr32(E1000_CTRL, ctrl);

5695
		/* Disable CFI check */
5696 5697 5698 5699 5700 5701 5702 5703 5704 5705
		rctl = rd32(E1000_RCTL);
		rctl &= ~E1000_RCTL_CFIEN;
		wr32(E1000_RCTL, rctl);
	} else {
		/* disable VLAN tag insert/strip */
		ctrl = rd32(E1000_CTRL);
		ctrl &= ~E1000_CTRL_VME;
		wr32(E1000_CTRL, ctrl);
	}

5706 5707
	igb_rlpml_set(adapter);

5708 5709 5710 5711 5712 5713 5714 5715
	if (!test_bit(__IGB_DOWN, &adapter->state))
		igb_irq_enable(adapter);
}

static void igb_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
5716
	int pf_id = adapter->vfs_allocated_count;
5717

5718 5719
	/* attempt to add filter to vlvf array */
	igb_vlvf_set(adapter, vid, true, pf_id);
5720

5721 5722
	/* add the filter since PF can receive vlans w/o entry in vlvf */
	igb_vfta_set(hw, vid, true);
5723 5724 5725 5726 5727 5728
}

static void igb_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
5729
	int pf_id = adapter->vfs_allocated_count;
5730
	s32 err;
5731 5732 5733 5734 5735 5736 5737

	igb_irq_disable(adapter);
	vlan_group_set_device(adapter->vlgrp, vid, NULL);

	if (!test_bit(__IGB_DOWN, &adapter->state))
		igb_irq_enable(adapter);

5738 5739
	/* remove vlan from VLVF table array */
	err = igb_vlvf_set(adapter, vid, false, pf_id);
5740

5741 5742
	/* if vid was not present in VLVF just remove it from table */
	if (err)
5743
		igb_vfta_set(hw, vid, false);
5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761
}

static void igb_restore_vlan(struct igb_adapter *adapter)
{
	igb_vlan_rx_register(adapter->netdev, adapter->vlgrp);

	if (adapter->vlgrp) {
		u16 vid;
		for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
			if (!vlan_group_get_device(adapter->vlgrp, vid))
				continue;
			igb_vlan_rx_add_vid(adapter->netdev, vid);
		}
	}
}

int igb_set_spd_dplx(struct igb_adapter *adapter, u16 spddplx)
{
5762
	struct pci_dev *pdev = adapter->pdev;
5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785
	struct e1000_mac_info *mac = &adapter->hw.mac;

	mac->autoneg = 0;

	switch (spddplx) {
	case SPEED_10 + DUPLEX_HALF:
		mac->forced_speed_duplex = ADVERTISE_10_HALF;
		break;
	case SPEED_10 + DUPLEX_FULL:
		mac->forced_speed_duplex = ADVERTISE_10_FULL;
		break;
	case SPEED_100 + DUPLEX_HALF:
		mac->forced_speed_duplex = ADVERTISE_100_HALF;
		break;
	case SPEED_100 + DUPLEX_FULL:
		mac->forced_speed_duplex = ADVERTISE_100_FULL;
		break;
	case SPEED_1000 + DUPLEX_FULL:
		mac->autoneg = 1;
		adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
		break;
	case SPEED_1000 + DUPLEX_HALF: /* not supported */
	default:
5786
		dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
5787 5788 5789 5790 5791
		return -EINVAL;
	}
	return 0;
}

5792
static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake)
5793 5794 5795 5796
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
A
Alexander Duyck 已提交
5797
	u32 ctrl, rctl, status;
5798 5799 5800 5801 5802 5803 5804
	u32 wufc = adapter->wol;
#ifdef CONFIG_PM
	int retval = 0;
#endif

	netif_device_detach(netdev);

A
Alexander Duyck 已提交
5805 5806 5807
	if (netif_running(netdev))
		igb_close(netdev);

5808
	igb_clear_interrupt_scheme(adapter);
5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821

#ifdef CONFIG_PM
	retval = pci_save_state(pdev);
	if (retval)
		return retval;
#endif

	status = rd32(E1000_STATUS);
	if (status & E1000_STATUS_LU)
		wufc &= ~E1000_WUFC_LNKC;

	if (wufc) {
		igb_setup_rctl(adapter);
5822
		igb_set_rx_mode(netdev);
5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839

		/* turn on all-multi mode if wake on multicast is enabled */
		if (wufc & E1000_WUFC_MC) {
			rctl = rd32(E1000_RCTL);
			rctl |= E1000_RCTL_MPE;
			wr32(E1000_RCTL, rctl);
		}

		ctrl = rd32(E1000_CTRL);
		/* advertise wake from D3Cold */
		#define E1000_CTRL_ADVD3WUC 0x00100000
		/* phy power management enable */
		#define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
		ctrl |= E1000_CTRL_ADVD3WUC;
		wr32(E1000_CTRL, ctrl);

		/* Allow time for pending master requests to run */
5840
		igb_disable_pcie_master(hw);
5841 5842 5843 5844 5845 5846 5847 5848

		wr32(E1000_WUC, E1000_WUC_PME_EN);
		wr32(E1000_WUFC, wufc);
	} else {
		wr32(E1000_WUC, 0);
		wr32(E1000_WUFC, 0);
	}

5849 5850
	*enable_wake = wufc || adapter->en_mng_pt;
	if (!*enable_wake)
5851 5852 5853
		igb_power_down_link(adapter);
	else
		igb_power_up_link(adapter);
5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864

	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
	 * would have already happened in close and is redundant. */
	igb_release_hw_control(adapter);

	pci_disable_device(pdev);

	return 0;
}

#ifdef CONFIG_PM
5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883
static int igb_suspend(struct pci_dev *pdev, pm_message_t state)
{
	int retval;
	bool wake;

	retval = __igb_shutdown(pdev, &wake);
	if (retval)
		return retval;

	if (wake) {
		pci_prepare_to_sleep(pdev);
	} else {
		pci_wake_from_d3(pdev, false);
		pci_set_power_state(pdev, PCI_D3hot);
	}

	return 0;
}

5884 5885 5886 5887 5888 5889 5890 5891 5892
static int igb_resume(struct pci_dev *pdev)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 err;

	pci_set_power_state(pdev, PCI_D0);
	pci_restore_state(pdev);
5893
	pci_save_state(pdev);
T
Taku Izumi 已提交
5894

5895
	err = pci_enable_device_mem(pdev);
5896 5897 5898 5899 5900 5901 5902 5903 5904 5905
	if (err) {
		dev_err(&pdev->dev,
			"igb: Cannot enable PCI device from suspend\n");
		return err;
	}
	pci_set_master(pdev);

	pci_enable_wake(pdev, PCI_D3hot, 0);
	pci_enable_wake(pdev, PCI_D3cold, 0);

5906
	if (igb_init_interrupt_scheme(adapter)) {
A
Alexander Duyck 已提交
5907 5908
		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
		return -ENOMEM;
5909 5910 5911
	}

	igb_reset(adapter);
5912 5913 5914 5915 5916

	/* let the f/w know that the h/w is now under the control of the
	 * driver. */
	igb_get_hw_control(adapter);

5917 5918
	wr32(E1000_WUS, ~0);

A
Alexander Duyck 已提交
5919 5920 5921 5922 5923
	if (netif_running(netdev)) {
		err = igb_open(netdev);
		if (err)
			return err;
	}
5924 5925 5926 5927 5928 5929 5930 5931 5932

	netif_device_attach(netdev);

	return 0;
}
#endif

static void igb_shutdown(struct pci_dev *pdev)
{
5933 5934 5935 5936 5937 5938 5939 5940
	bool wake;

	__igb_shutdown(pdev, &wake);

	if (system_state == SYSTEM_POWER_OFF) {
		pci_wake_from_d3(pdev, wake);
		pci_set_power_state(pdev, PCI_D3hot);
	}
5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951
}

#ifdef CONFIG_NET_POLL_CONTROLLER
/*
 * Polling 'interrupt' - used by things like netconsole to send skbs
 * without having to re-enable interrupts. It's not called while
 * the interrupt routine is executing.
 */
static void igb_netpoll(struct net_device *netdev)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
5952
	struct e1000_hw *hw = &adapter->hw;
5953 5954
	int i;

5955
	if (!adapter->msix_entries) {
5956
		struct igb_q_vector *q_vector = adapter->q_vector[0];
5957
		igb_irq_disable(adapter);
5958
		napi_schedule(&q_vector->napi);
5959 5960
		return;
	}
5961

5962 5963 5964 5965
	for (i = 0; i < adapter->num_q_vectors; i++) {
		struct igb_q_vector *q_vector = adapter->q_vector[i];
		wr32(E1000_EIMC, q_vector->eims_value);
		napi_schedule(&q_vector->napi);
5966
	}
5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985
}
#endif /* CONFIG_NET_POLL_CONTROLLER */

/**
 * igb_io_error_detected - called when PCI error is detected
 * @pdev: Pointer to PCI device
 * @state: The current pci connection state
 *
 * This function is called after a PCI bus error affecting
 * this device has been detected.
 */
static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
					      pci_channel_state_t state)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);

	netif_device_detach(netdev);

5986 5987 5988
	if (state == pci_channel_io_perm_failure)
		return PCI_ERS_RESULT_DISCONNECT;

5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008
	if (netif_running(netdev))
		igb_down(adapter);
	pci_disable_device(pdev);

	/* Request a slot slot reset. */
	return PCI_ERS_RESULT_NEED_RESET;
}

/**
 * igb_io_slot_reset - called after the pci bus has been reset.
 * @pdev: Pointer to PCI device
 *
 * Restart the card from scratch, as if from a cold-boot. Implementation
 * resembles the first-half of the igb_resume routine.
 */
static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
6009
	pci_ers_result_t result;
T
Taku Izumi 已提交
6010
	int err;
6011

6012
	if (pci_enable_device_mem(pdev)) {
6013 6014
		dev_err(&pdev->dev,
			"Cannot re-enable PCI device after reset.\n");
6015 6016 6017 6018
		result = PCI_ERS_RESULT_DISCONNECT;
	} else {
		pci_set_master(pdev);
		pci_restore_state(pdev);
6019
		pci_save_state(pdev);
6020

6021 6022
		pci_enable_wake(pdev, PCI_D3hot, 0);
		pci_enable_wake(pdev, PCI_D3cold, 0);
6023

6024 6025 6026 6027
		igb_reset(adapter);
		wr32(E1000_WUS, ~0);
		result = PCI_ERS_RESULT_RECOVERED;
	}
6028

6029 6030 6031 6032 6033 6034
	err = pci_cleanup_aer_uncorrect_error_status(pdev);
	if (err) {
		dev_err(&pdev->dev, "pci_cleanup_aer_uncorrect_error_status "
		        "failed 0x%0x\n", err);
		/* non-fatal, continue */
	}
6035 6036

	return result;
6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065
}

/**
 * igb_io_resume - called when traffic can start flowing again.
 * @pdev: Pointer to PCI device
 *
 * This callback is called when the error recovery driver tells us that
 * its OK to resume normal operation. Implementation resembles the
 * second-half of the igb_resume routine.
 */
static void igb_io_resume(struct pci_dev *pdev)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);

	if (netif_running(netdev)) {
		if (igb_up(adapter)) {
			dev_err(&pdev->dev, "igb_up failed after reset\n");
			return;
		}
	}

	netif_device_attach(netdev);

	/* let the f/w know that the h/w is now under the control of the
	 * driver. */
	igb_get_hw_control(adapter);
}

6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092
static void igb_rar_set_qsel(struct igb_adapter *adapter, u8 *addr, u32 index,
                             u8 qsel)
{
	u32 rar_low, rar_high;
	struct e1000_hw *hw = &adapter->hw;

	/* HW expects these in little endian so we reverse the byte order
	 * from network order (big endian) to little endian
	 */
	rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
	          ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
	rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));

	/* Indicate to hardware the Address is Valid. */
	rar_high |= E1000_RAH_AV;

	if (hw->mac.type == e1000_82575)
		rar_high |= E1000_RAH_POOL_1 * qsel;
	else
		rar_high |= E1000_RAH_POOL_1 << qsel;

	wr32(E1000_RAL(index), rar_low);
	wrfl();
	wr32(E1000_RAH(index), rar_high);
	wrfl();
}

6093 6094 6095 6096
static int igb_set_vf_mac(struct igb_adapter *adapter,
                          int vf, unsigned char *mac_addr)
{
	struct e1000_hw *hw = &adapter->hw;
6097 6098 6099
	/* VF MAC addresses start at end of receive addresses and moves
	 * torwards the first, as a result a collision should not be possible */
	int rar_entry = hw->mac.rar_entry_count - (vf + 1);
6100

6101
	memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN);
6102

6103
	igb_rar_set_qsel(adapter, mac_addr, rar_entry, vf);
6104 6105 6106 6107

	return 0;
}

6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144
static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	if (!is_valid_ether_addr(mac) || (vf >= adapter->vfs_allocated_count))
		return -EINVAL;
	adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
	dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n", mac, vf);
	dev_info(&adapter->pdev->dev, "Reload the VF driver to make this"
				      " change effective.");
	if (test_bit(__IGB_DOWN, &adapter->state)) {
		dev_warn(&adapter->pdev->dev, "The VF MAC address has been set,"
			 " but the PF device is not up.\n");
		dev_warn(&adapter->pdev->dev, "Bring the PF device up before"
			 " attempting to use the VF device.\n");
	}
	return igb_set_vf_mac(adapter, vf, mac);
}

static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate)
{
	return -EOPNOTSUPP;
}

static int igb_ndo_get_vf_config(struct net_device *netdev,
				 int vf, struct ifla_vf_info *ivi)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	if (vf >= adapter->vfs_allocated_count)
		return -EINVAL;
	ivi->vf = vf;
	memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
	ivi->tx_rate = 0;
	ivi->vlan = adapter->vf_data[vf].pf_vlan;
	ivi->qos = adapter->vf_data[vf].pf_qos;
	return 0;
}

6145 6146 6147
static void igb_vmm_control(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
6148
	u32 reg;
6149

6150 6151 6152 6153
	switch (hw->mac.type) {
	case e1000_82575:
	default:
		/* replication is not supported for 82575 */
6154
		return;
6155 6156 6157 6158 6159 6160 6161 6162 6163 6164
	case e1000_82576:
		/* notify HW that the MAC is adding vlan tags */
		reg = rd32(E1000_DTXCTL);
		reg |= E1000_DTXCTL_VLAN_ADDED;
		wr32(E1000_DTXCTL, reg);
	case e1000_82580:
		/* enable replication vlan tag stripping */
		reg = rd32(E1000_RPLOLR);
		reg |= E1000_RPLOLR_STRVLAN;
		wr32(E1000_RPLOLR, reg);
6165 6166
	case e1000_i350:
		/* none of the above registers are supported by i350 */
6167 6168
		break;
	}
6169

6170 6171 6172 6173 6174 6175 6176
	if (adapter->vfs_allocated_count) {
		igb_vmdq_set_loopback_pf(hw, true);
		igb_vmdq_set_replication_pf(hw, true);
	} else {
		igb_vmdq_set_loopback_pf(hw, false);
		igb_vmdq_set_replication_pf(hw, false);
	}
6177 6178
}

6179
/* igb_main.c */