igb_main.c 165.1 KB
Newer Older
1 2 3
/*******************************************************************************

  Intel(R) Gigabit Ethernet Linux driver
4
  Copyright(c) 2007-2009 Intel Corporation.
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

  This program is free software; you can redistribute it and/or modify it
  under the terms and conditions of the GNU General Public License,
  version 2, as published by the Free Software Foundation.

  This program is distributed in the hope it will be useful, but WITHOUT
  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  more details.

  You should have received a copy of the GNU General Public License along with
  this program; if not, write to the Free Software Foundation, Inc.,
  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.

  The full GNU General Public License is included in this distribution in
  the file called "COPYING".

  Contact Information:
  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497

*******************************************************************************/

#include <linux/module.h>
#include <linux/types.h>
#include <linux/init.h>
#include <linux/vmalloc.h>
#include <linux/pagemap.h>
#include <linux/netdevice.h>
#include <linux/ipv6.h>
#include <net/checksum.h>
#include <net/ip6_checksum.h>
37
#include <linux/net_tstamp.h>
38 39 40 41
#include <linux/mii.h>
#include <linux/ethtool.h>
#include <linux/if_vlan.h>
#include <linux/pci.h>
42
#include <linux/pci-aspm.h>
43 44 45
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/if_ether.h>
46
#include <linux/aer.h>
47
#ifdef CONFIG_IGB_DCA
J
Jeb Cramer 已提交
48 49
#include <linux/dca.h>
#endif
50 51
#include "igb.h"

52
#define DRV_VERSION "2.1.0-k2"
53 54 55 56
char igb_driver_name[] = "igb";
char igb_driver_version[] = DRV_VERSION;
static const char igb_driver_string[] =
				"Intel(R) Gigabit Ethernet Network Driver";
57
static const char igb_copyright[] = "Copyright (c) 2007-2009 Intel Corporation.";
58 59 60 61 62 63

static const struct e1000_info *igb_info_tbl[] = {
	[board_82575] = &e1000_82575_info,
};

static struct pci_device_id igb_pci_tbl[] = {
64 65 66 67 68
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
A
Alexander Duyck 已提交
69
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
70
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
71
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
A
Alexander Duyck 已提交
72 73
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
74
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
75
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
76 77 78 79 80 81 82 83 84 85 86 87 88 89
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
	/* required last entry */
	{0, }
};

MODULE_DEVICE_TABLE(pci, igb_pci_tbl);

void igb_reset(struct igb_adapter *);
static int igb_setup_all_tx_resources(struct igb_adapter *);
static int igb_setup_all_rx_resources(struct igb_adapter *);
static void igb_free_all_tx_resources(struct igb_adapter *);
static void igb_free_all_rx_resources(struct igb_adapter *);
90
static void igb_setup_mrqc(struct igb_adapter *);
91 92 93 94 95 96 97 98 99 100
void igb_update_stats(struct igb_adapter *);
static int igb_probe(struct pci_dev *, const struct pci_device_id *);
static void __devexit igb_remove(struct pci_dev *pdev);
static int igb_sw_init(struct igb_adapter *);
static int igb_open(struct net_device *);
static int igb_close(struct net_device *);
static void igb_configure_tx(struct igb_adapter *);
static void igb_configure_rx(struct igb_adapter *);
static void igb_clean_all_tx_rings(struct igb_adapter *);
static void igb_clean_all_rx_rings(struct igb_adapter *);
101 102
static void igb_clean_tx_ring(struct igb_ring *);
static void igb_clean_rx_ring(struct igb_ring *);
103
static void igb_set_rx_mode(struct net_device *);
104 105 106
static void igb_update_phy_info(unsigned long);
static void igb_watchdog(unsigned long);
static void igb_watchdog_task(struct work_struct *);
107
static netdev_tx_t igb_xmit_frame_adv(struct sk_buff *skb, struct net_device *);
108 109 110
static struct net_device_stats *igb_get_stats(struct net_device *);
static int igb_change_mtu(struct net_device *, int);
static int igb_set_mac(struct net_device *, void *);
111
static void igb_set_uta(struct igb_adapter *adapter);
112 113 114
static irqreturn_t igb_intr(int irq, void *);
static irqreturn_t igb_intr_msi(int irq, void *);
static irqreturn_t igb_msix_other(int irq, void *);
115
static irqreturn_t igb_msix_ring(int irq, void *);
116
#ifdef CONFIG_IGB_DCA
117
static void igb_update_dca(struct igb_q_vector *);
J
Jeb Cramer 已提交
118
static void igb_setup_dca(struct igb_adapter *);
119
#endif /* CONFIG_IGB_DCA */
120
static bool igb_clean_tx_irq(struct igb_q_vector *);
121
static int igb_poll(struct napi_struct *, int);
122
static bool igb_clean_rx_irq_adv(struct igb_q_vector *, int *, int);
123 124 125 126 127 128 129
static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
static void igb_tx_timeout(struct net_device *);
static void igb_reset_task(struct work_struct *);
static void igb_vlan_rx_register(struct net_device *, struct vlan_group *);
static void igb_vlan_rx_add_vid(struct net_device *, u16);
static void igb_vlan_rx_kill_vid(struct net_device *, u16);
static void igb_restore_vlan(struct igb_adapter *);
130
static void igb_rar_set_qsel(struct igb_adapter *, u8 *, u32 , u8);
131 132 133
static void igb_ping_all_vfs(struct igb_adapter *);
static void igb_msg_task(struct igb_adapter *);
static void igb_vmm_control(struct igb_adapter *);
134
static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
135
static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
136 137

#ifdef CONFIG_PM
138
static int igb_suspend(struct pci_dev *, pm_message_t);
139 140 141
static int igb_resume(struct pci_dev *);
#endif
static void igb_shutdown(struct pci_dev *);
142
#ifdef CONFIG_IGB_DCA
J
Jeb Cramer 已提交
143 144 145 146 147 148 149
static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
static struct notifier_block dca_notifier = {
	.notifier_call	= igb_notify_dca,
	.next		= NULL,
	.priority	= 0
};
#endif
150 151 152 153
#ifdef CONFIG_NET_POLL_CONTROLLER
/* for netdump / net console */
static void igb_netpoll(struct net_device *);
#endif
154
#ifdef CONFIG_PCI_IOV
155 156 157 158 159 160
static unsigned int max_vfs = 0;
module_param(max_vfs, uint, 0);
MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate "
                 "per physical function");
#endif /* CONFIG_PCI_IOV */

161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
		     pci_channel_state_t);
static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
static void igb_io_resume(struct pci_dev *);

static struct pci_error_handlers igb_err_handler = {
	.error_detected = igb_io_error_detected,
	.slot_reset = igb_io_slot_reset,
	.resume = igb_io_resume,
};


static struct pci_driver igb_driver = {
	.name     = igb_driver_name,
	.id_table = igb_pci_tbl,
	.probe    = igb_probe,
	.remove   = __devexit_p(igb_remove),
#ifdef CONFIG_PM
	/* Power Managment Hooks */
	.suspend  = igb_suspend,
	.resume   = igb_resume,
#endif
	.shutdown = igb_shutdown,
	.err_handler = &igb_err_handler
};

MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
MODULE_LICENSE("GPL");
MODULE_VERSION(DRV_VERSION);

P
Patrick Ohly 已提交
192 193 194 195 196 197 198 199
/**
 * igb_read_clock - read raw cycle counter (to be used by time counter)
 */
static cycle_t igb_read_clock(const struct cyclecounter *tc)
{
	struct igb_adapter *adapter =
		container_of(tc, struct igb_adapter, cycles);
	struct e1000_hw *hw = &adapter->hw;
200 201
	u64 stamp = 0;
	int shift = 0;
P
Patrick Ohly 已提交
202

203 204 205 206 207 208 209 210 211 212
	/*
	 * The timestamp latches on lowest register read. For the 82580
	 * the lowest register is SYSTIMR instead of SYSTIML.  However we never
	 * adjusted TIMINCA so SYSTIMR will just read as all 0s so ignore it.
	 */
	if (hw->mac.type == e1000_82580) {
		stamp = rd32(E1000_SYSTIMR) >> 8;
		shift = IGB_82580_TSYNC_SHIFT;
	}

213 214
	stamp |= (u64)rd32(E1000_SYSTIML) << shift;
	stamp |= (u64)rd32(E1000_SYSTIMH) << (shift + 32);
P
Patrick Ohly 已提交
215 216 217
	return stamp;
}

218 219 220 221 222 223 224 225 226 227
#ifdef DEBUG
/**
 * igb_get_hw_dev_name - return device name string
 * used by hardware layer to print debugging information
 **/
char *igb_get_hw_dev_name(struct e1000_hw *hw)
{
	struct igb_adapter *adapter = hw->back;
	return adapter->netdev->name;
}
P
Patrick Ohly 已提交
228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243

/**
 * igb_get_time_str - format current NIC and system time as string
 */
static char *igb_get_time_str(struct igb_adapter *adapter,
			      char buffer[160])
{
	cycle_t hw = adapter->cycles.read(&adapter->cycles);
	struct timespec nic = ns_to_timespec(timecounter_read(&adapter->clock));
	struct timespec sys;
	struct timespec delta;
	getnstimeofday(&sys);

	delta = timespec_sub(nic, sys);

	sprintf(buffer,
244 245
		"HW %llu, NIC %ld.%09lus, SYS %ld.%09lus, NIC-SYS %lds + %09luns",
		hw,
P
Patrick Ohly 已提交
246 247 248 249 250 251
		(long)nic.tv_sec, nic.tv_nsec,
		(long)sys.tv_sec, sys.tv_nsec,
		(long)delta.tv_sec, delta.tv_nsec);

	return buffer;
}
252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
#endif

/**
 * igb_init_module - Driver Registration Routine
 *
 * igb_init_module is the first routine called when the driver is
 * loaded. All it does is register with the PCI subsystem.
 **/
static int __init igb_init_module(void)
{
	int ret;
	printk(KERN_INFO "%s - version %s\n",
	       igb_driver_string, igb_driver_version);

	printk(KERN_INFO "%s\n", igb_copyright);

268
#ifdef CONFIG_IGB_DCA
J
Jeb Cramer 已提交
269 270
	dca_register_notify(&dca_notifier);
#endif
271
	ret = pci_register_driver(&igb_driver);
272 273 274 275 276 277 278 279 280 281 282 283 284
	return ret;
}

module_init(igb_init_module);

/**
 * igb_exit_module - Driver Exit Cleanup Routine
 *
 * igb_exit_module is called just before the driver is removed
 * from memory.
 **/
static void __exit igb_exit_module(void)
{
285
#ifdef CONFIG_IGB_DCA
J
Jeb Cramer 已提交
286 287
	dca_unregister_notify(&dca_notifier);
#endif
288 289 290 291 292
	pci_unregister_driver(&igb_driver);
}

module_exit(igb_exit_module);

293 294 295 296 297 298 299 300 301 302
#define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
/**
 * igb_cache_ring_register - Descriptor ring to register mapping
 * @adapter: board private structure to initialize
 *
 * Once we know the feature-set enabled for the device, we'll cache
 * the register offset the descriptor ring is assigned to.
 **/
static void igb_cache_ring_register(struct igb_adapter *adapter)
{
303
	int i = 0, j = 0;
304
	u32 rbase_offset = adapter->vfs_allocated_count;
305 306 307 308 309 310 311 312

	switch (adapter->hw.mac.type) {
	case e1000_82576:
		/* The queues are allocated for virtualization such that VF 0
		 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
		 * In order to avoid collision we start at the first free queue
		 * and continue consuming queues in the same sequence
		 */
313
		if (adapter->vfs_allocated_count) {
314
			for (; i < adapter->rss_queues; i++)
315 316
				adapter->rx_ring[i].reg_idx = rbase_offset +
				                              Q_IDX_82576(i);
317
			for (; j < adapter->rss_queues; j++)
318 319 320
				adapter->tx_ring[j].reg_idx = rbase_offset +
				                              Q_IDX_82576(j);
		}
321
	case e1000_82575:
322
	case e1000_82580:
323
	default:
324 325 326 327
		for (; i < adapter->num_rx_queues; i++)
			adapter->rx_ring[i].reg_idx = rbase_offset + i;
		for (; j < adapter->num_tx_queues; j++)
			adapter->tx_ring[j].reg_idx = rbase_offset + j;
328 329 330 331
		break;
	}
}

332 333 334 335 336 337 338 339 340 341 342 343
static void igb_free_queues(struct igb_adapter *adapter)
{
	kfree(adapter->tx_ring);
	kfree(adapter->rx_ring);

	adapter->tx_ring = NULL;
	adapter->rx_ring = NULL;

	adapter->num_rx_queues = 0;
	adapter->num_tx_queues = 0;
}

344 345 346 347 348 349 350 351 352 353 354 355 356 357
/**
 * igb_alloc_queues - Allocate memory for all rings
 * @adapter: board private structure to initialize
 *
 * We allocate one ring per queue at run-time since we don't know the
 * number of queues at compile-time.
 **/
static int igb_alloc_queues(struct igb_adapter *adapter)
{
	int i;

	adapter->tx_ring = kcalloc(adapter->num_tx_queues,
				   sizeof(struct igb_ring), GFP_KERNEL);
	if (!adapter->tx_ring)
358
		goto err;
359 360 361

	adapter->rx_ring = kcalloc(adapter->num_rx_queues,
				   sizeof(struct igb_ring), GFP_KERNEL);
362 363
	if (!adapter->rx_ring)
		goto err;
364

365 366
	for (i = 0; i < adapter->num_tx_queues; i++) {
		struct igb_ring *ring = &(adapter->tx_ring[i]);
367
		ring->count = adapter->tx_ring_count;
368
		ring->queue_index = i;
369
		ring->pdev = adapter->pdev;
370
		ring->netdev = adapter->netdev;
371 372 373
		/* For 82575, context index must be unique per ring. */
		if (adapter->hw.mac.type == e1000_82575)
			ring->flags = IGB_RING_FLAG_TX_CTX_IDX;
374
	}
375

376 377
	for (i = 0; i < adapter->num_rx_queues; i++) {
		struct igb_ring *ring = &(adapter->rx_ring[i]);
378
		ring->count = adapter->rx_ring_count;
P
PJ Waskiewicz 已提交
379
		ring->queue_index = i;
380
		ring->pdev = adapter->pdev;
381
		ring->netdev = adapter->netdev;
382
		ring->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
383 384 385 386
		ring->flags = IGB_RING_FLAG_RX_CSUM; /* enable rx checksum */
		/* set flag indicating ring supports SCTP checksum offload */
		if (adapter->hw.mac.type >= e1000_82576)
			ring->flags |= IGB_RING_FLAG_RX_SCTP_CSUM;
387
	}
388 389

	igb_cache_ring_register(adapter);
390

391
	return 0;
A
Alexander Duyck 已提交
392

393 394
err:
	igb_free_queues(adapter);
395

396
	return -ENOMEM;
A
Alexander Duyck 已提交
397 398
}

399
#define IGB_N0_QUEUE -1
400
static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
401 402
{
	u32 msixbm = 0;
403
	struct igb_adapter *adapter = q_vector->adapter;
404
	struct e1000_hw *hw = &adapter->hw;
A
Alexander Duyck 已提交
405
	u32 ivar, index;
406 407 408 409 410 411 412
	int rx_queue = IGB_N0_QUEUE;
	int tx_queue = IGB_N0_QUEUE;

	if (q_vector->rx_ring)
		rx_queue = q_vector->rx_ring->reg_idx;
	if (q_vector->tx_ring)
		tx_queue = q_vector->tx_ring->reg_idx;
A
Alexander Duyck 已提交
413 414 415

	switch (hw->mac.type) {
	case e1000_82575:
416 417 418 419
		/* The 82575 assigns vectors using a bitmask, which matches the
		   bitmask for the EICR/EIMS/EIMC registers.  To assign one
		   or more queues to a vector, we write the appropriate bits
		   into the MSIXBM register for that vector. */
420
		if (rx_queue > IGB_N0_QUEUE)
421
			msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
422
		if (tx_queue > IGB_N0_QUEUE)
423 424
			msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
		array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
425
		q_vector->eims_value = msixbm;
A
Alexander Duyck 已提交
426 427
		break;
	case e1000_82576:
428
		/* 82576 uses a table-based method for assigning vectors.
A
Alexander Duyck 已提交
429 430 431 432
		   Each queue has a single entry in the table to which we write
		   a vector number along with a "valid" bit.  Sadly, the layout
		   of the table is somewhat counterintuitive. */
		if (rx_queue > IGB_N0_QUEUE) {
433
			index = (rx_queue & 0x7);
A
Alexander Duyck 已提交
434
			ivar = array_rd32(E1000_IVAR0, index);
435
			if (rx_queue < 8) {
436 437 438
				/* vector goes into low byte of register */
				ivar = ivar & 0xFFFFFF00;
				ivar |= msix_vector | E1000_IVAR_VALID;
439 440 441 442
			} else {
				/* vector goes into third byte of register */
				ivar = ivar & 0xFF00FFFF;
				ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
A
Alexander Duyck 已提交
443 444 445 446
			}
			array_wr32(E1000_IVAR0, index, ivar);
		}
		if (tx_queue > IGB_N0_QUEUE) {
447
			index = (tx_queue & 0x7);
A
Alexander Duyck 已提交
448
			ivar = array_rd32(E1000_IVAR0, index);
449
			if (tx_queue < 8) {
450 451 452
				/* vector goes into second byte of register */
				ivar = ivar & 0xFFFF00FF;
				ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
453 454 455 456
			} else {
				/* vector goes into high byte of register */
				ivar = ivar & 0x00FFFFFF;
				ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
A
Alexander Duyck 已提交
457 458 459
			}
			array_wr32(E1000_IVAR0, index, ivar);
		}
460
		q_vector->eims_value = 1 << msix_vector;
A
Alexander Duyck 已提交
461
		break;
462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494
	case e1000_82580:
		/* 82580 uses the same table-based approach as 82576 but has fewer
		   entries as a result we carry over for queues greater than 4. */
		if (rx_queue > IGB_N0_QUEUE) {
			index = (rx_queue >> 1);
			ivar = array_rd32(E1000_IVAR0, index);
			if (rx_queue & 0x1) {
				/* vector goes into third byte of register */
				ivar = ivar & 0xFF00FFFF;
				ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
			} else {
				/* vector goes into low byte of register */
				ivar = ivar & 0xFFFFFF00;
				ivar |= msix_vector | E1000_IVAR_VALID;
			}
			array_wr32(E1000_IVAR0, index, ivar);
		}
		if (tx_queue > IGB_N0_QUEUE) {
			index = (tx_queue >> 1);
			ivar = array_rd32(E1000_IVAR0, index);
			if (tx_queue & 0x1) {
				/* vector goes into high byte of register */
				ivar = ivar & 0x00FFFFFF;
				ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
			} else {
				/* vector goes into second byte of register */
				ivar = ivar & 0xFFFF00FF;
				ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
			}
			array_wr32(E1000_IVAR0, index, ivar);
		}
		q_vector->eims_value = 1 << msix_vector;
		break;
A
Alexander Duyck 已提交
495 496 497 498
	default:
		BUG();
		break;
	}
499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515
}

/**
 * igb_configure_msix - Configure MSI-X hardware
 *
 * igb_configure_msix sets up the hardware to properly
 * generate MSI-X interrupts.
 **/
static void igb_configure_msix(struct igb_adapter *adapter)
{
	u32 tmp;
	int i, vector = 0;
	struct e1000_hw *hw = &adapter->hw;

	adapter->eims_enable_mask = 0;

	/* set vector for other causes, i.e. link changes */
A
Alexander Duyck 已提交
516 517
	switch (hw->mac.type) {
	case e1000_82575:
518 519 520 521 522 523 524 525 526
		tmp = rd32(E1000_CTRL_EXT);
		/* enable MSI-X PBA support*/
		tmp |= E1000_CTRL_EXT_PBA_CLR;

		/* Auto-Mask interrupts upon ICR read. */
		tmp |= E1000_CTRL_EXT_EIAME;
		tmp |= E1000_CTRL_EXT_IRCA;

		wr32(E1000_CTRL_EXT, tmp);
527 528 529 530

		/* enable msix_other interrupt */
		array_wr32(E1000_MSIXBM(0), vector++,
		                      E1000_EIMS_OTHER);
P
PJ Waskiewicz 已提交
531
		adapter->eims_other = E1000_EIMS_OTHER;
532

A
Alexander Duyck 已提交
533 534 535
		break;

	case e1000_82576:
536
	case e1000_82580:
537 538 539 540 541 542 543 544
		/* Turn on MSI-X capability first, or our settings
		 * won't stick.  And it will take days to debug. */
		wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
		                E1000_GPIE_PBA | E1000_GPIE_EIAME |
		                E1000_GPIE_NSICR);

		/* enable msix_other interrupt */
		adapter->eims_other = 1 << vector;
A
Alexander Duyck 已提交
545 546
		tmp = (vector++ | E1000_IVAR_VALID) << 8;

547
		wr32(E1000_IVAR_MISC, tmp);
A
Alexander Duyck 已提交
548 549 550 551 552
		break;
	default:
		/* do nothing, since nothing else supports MSI-X */
		break;
	} /* switch (hw->mac.type) */
553 554 555 556 557 558 559 560 561

	adapter->eims_enable_mask |= adapter->eims_other;

	for (i = 0; i < adapter->num_q_vectors; i++) {
		struct igb_q_vector *q_vector = adapter->q_vector[i];
		igb_assign_vector(q_vector, vector++);
		adapter->eims_enable_mask |= q_vector->eims_value;
	}

562 563 564 565 566 567 568 569 570 571 572 573
	wrfl();
}

/**
 * igb_request_msix - Initialize MSI-X interrupts
 *
 * igb_request_msix allocates MSI-X vectors and requests interrupts from the
 * kernel.
 **/
static int igb_request_msix(struct igb_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
574
	struct e1000_hw *hw = &adapter->hw;
575 576
	int i, err = 0, vector = 0;

577
	err = request_irq(adapter->msix_entries[vector].vector,
578
	                  igb_msix_other, 0, netdev->name, adapter);
579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596
	if (err)
		goto out;
	vector++;

	for (i = 0; i < adapter->num_q_vectors; i++) {
		struct igb_q_vector *q_vector = adapter->q_vector[i];

		q_vector->itr_register = hw->hw_addr + E1000_EITR(vector);

		if (q_vector->rx_ring && q_vector->tx_ring)
			sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
			        q_vector->rx_ring->queue_index);
		else if (q_vector->tx_ring)
			sprintf(q_vector->name, "%s-tx-%u", netdev->name,
			        q_vector->tx_ring->queue_index);
		else if (q_vector->rx_ring)
			sprintf(q_vector->name, "%s-rx-%u", netdev->name,
			        q_vector->rx_ring->queue_index);
597
		else
598 599
			sprintf(q_vector->name, "%s-unused", netdev->name);

600
		err = request_irq(adapter->msix_entries[vector].vector,
601
		                  igb_msix_ring, 0, q_vector->name,
602
		                  q_vector);
603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619
		if (err)
			goto out;
		vector++;
	}

	igb_configure_msix(adapter);
	return 0;
out:
	return err;
}

static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
{
	if (adapter->msix_entries) {
		pci_disable_msix(adapter->pdev);
		kfree(adapter->msix_entries);
		adapter->msix_entries = NULL;
620
	} else if (adapter->flags & IGB_FLAG_HAS_MSI) {
621
		pci_disable_msi(adapter->pdev);
622
	}
623 624
}

625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657
/**
 * igb_free_q_vectors - Free memory allocated for interrupt vectors
 * @adapter: board private structure to initialize
 *
 * This function frees the memory allocated to the q_vectors.  In addition if
 * NAPI is enabled it will delete any references to the NAPI struct prior
 * to freeing the q_vector.
 **/
static void igb_free_q_vectors(struct igb_adapter *adapter)
{
	int v_idx;

	for (v_idx = 0; v_idx < adapter->num_q_vectors; v_idx++) {
		struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
		adapter->q_vector[v_idx] = NULL;
		netif_napi_del(&q_vector->napi);
		kfree(q_vector);
	}
	adapter->num_q_vectors = 0;
}

/**
 * igb_clear_interrupt_scheme - reset the device to a state of no interrupts
 *
 * This function resets the device so that it has 0 rx queues, tx queues, and
 * MSI-X interrupts allocated.
 */
static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
{
	igb_free_queues(adapter);
	igb_free_q_vectors(adapter);
	igb_reset_interrupt_capability(adapter);
}
658 659 660 661 662 663 664 665 666 667 668 669

/**
 * igb_set_interrupt_capability - set MSI or MSI-X if supported
 *
 * Attempt to configure interrupts using the best available
 * capabilities of the hardware and kernel.
 **/
static void igb_set_interrupt_capability(struct igb_adapter *adapter)
{
	int err;
	int numvecs, i;

670
	/* Number of supported queues. */
671 672
	adapter->num_rx_queues = adapter->rss_queues;
	adapter->num_tx_queues = adapter->rss_queues;
673

674 675 676 677
	/* start with one vector for every rx queue */
	numvecs = adapter->num_rx_queues;

	/* if tx handler is seperate add 1 for every tx queue */
678 679
	if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
		numvecs += adapter->num_tx_queues;
680 681 682 683 684 685

	/* store the number of vectors reserved for queues */
	adapter->num_q_vectors = numvecs;

	/* add 1 vector for link status interrupts */
	numvecs++;
686 687 688 689 690 691 692 693 694 695 696 697
	adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
					GFP_KERNEL);
	if (!adapter->msix_entries)
		goto msi_only;

	for (i = 0; i < numvecs; i++)
		adapter->msix_entries[i].entry = i;

	err = pci_enable_msix(adapter->pdev,
			      adapter->msix_entries,
			      numvecs);
	if (err == 0)
698
		goto out;
699 700 701 702 703

	igb_reset_interrupt_capability(adapter);

	/* If we can't do MSI-X, try MSI */
msi_only:
704 705 706 707 708 709 710 711 712 713 714 715 716 717 718
#ifdef CONFIG_PCI_IOV
	/* disable SR-IOV for non MSI-X configurations */
	if (adapter->vf_data) {
		struct e1000_hw *hw = &adapter->hw;
		/* disable iov and allow time for transactions to clear */
		pci_disable_sriov(adapter->pdev);
		msleep(500);

		kfree(adapter->vf_data);
		adapter->vf_data = NULL;
		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
		msleep(100);
		dev_info(&adapter->pdev->dev, "IOV Disabled\n");
	}
#endif
719
	adapter->vfs_allocated_count = 0;
720
	adapter->rss_queues = 1;
721
	adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
722
	adapter->num_rx_queues = 1;
723
	adapter->num_tx_queues = 1;
724
	adapter->num_q_vectors = 1;
725
	if (!pci_enable_msi(adapter->pdev))
726
		adapter->flags |= IGB_FLAG_HAS_MSI;
727
out:
728
	/* Notify the stack of the (possibly) reduced Tx Queue count. */
729
	adapter->netdev->real_num_tx_queues = adapter->num_tx_queues;
730 731 732
	return;
}

733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778
/**
 * igb_alloc_q_vectors - Allocate memory for interrupt vectors
 * @adapter: board private structure to initialize
 *
 * We allocate one q_vector per queue interrupt.  If allocation fails we
 * return -ENOMEM.
 **/
static int igb_alloc_q_vectors(struct igb_adapter *adapter)
{
	struct igb_q_vector *q_vector;
	struct e1000_hw *hw = &adapter->hw;
	int v_idx;

	for (v_idx = 0; v_idx < adapter->num_q_vectors; v_idx++) {
		q_vector = kzalloc(sizeof(struct igb_q_vector), GFP_KERNEL);
		if (!q_vector)
			goto err_out;
		q_vector->adapter = adapter;
		q_vector->itr_shift = (hw->mac.type == e1000_82575) ? 16 : 0;
		q_vector->itr_register = hw->hw_addr + E1000_EITR(0);
		q_vector->itr_val = IGB_START_ITR;
		q_vector->set_itr = 1;
		netif_napi_add(adapter->netdev, &q_vector->napi, igb_poll, 64);
		adapter->q_vector[v_idx] = q_vector;
	}
	return 0;

err_out:
	while (v_idx) {
		v_idx--;
		q_vector = adapter->q_vector[v_idx];
		netif_napi_del(&q_vector->napi);
		kfree(q_vector);
		adapter->q_vector[v_idx] = NULL;
	}
	return -ENOMEM;
}

static void igb_map_rx_ring_to_vector(struct igb_adapter *adapter,
                                      int ring_idx, int v_idx)
{
	struct igb_q_vector *q_vector;

	q_vector = adapter->q_vector[v_idx];
	q_vector->rx_ring = &adapter->rx_ring[ring_idx];
	q_vector->rx_ring->q_vector = q_vector;
779 780 781
	q_vector->itr_val = adapter->rx_itr_setting;
	if (q_vector->itr_val && q_vector->itr_val <= 3)
		q_vector->itr_val = IGB_START_ITR;
782 783 784 785 786 787 788 789 790 791
}

static void igb_map_tx_ring_to_vector(struct igb_adapter *adapter,
                                      int ring_idx, int v_idx)
{
	struct igb_q_vector *q_vector;

	q_vector = adapter->q_vector[v_idx];
	q_vector->tx_ring = &adapter->tx_ring[ring_idx];
	q_vector->tx_ring->q_vector = q_vector;
792 793 794
	q_vector->itr_val = adapter->tx_itr_setting;
	if (q_vector->itr_val && q_vector->itr_val <= 3)
		q_vector->itr_val = IGB_START_ITR;
795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869
}

/**
 * igb_map_ring_to_vector - maps allocated queues to vectors
 *
 * This function maps the recently allocated queues to vectors.
 **/
static int igb_map_ring_to_vector(struct igb_adapter *adapter)
{
	int i;
	int v_idx = 0;

	if ((adapter->num_q_vectors < adapter->num_rx_queues) ||
	    (adapter->num_q_vectors < adapter->num_tx_queues))
		return -ENOMEM;

	if (adapter->num_q_vectors >=
	    (adapter->num_rx_queues + adapter->num_tx_queues)) {
		for (i = 0; i < adapter->num_rx_queues; i++)
			igb_map_rx_ring_to_vector(adapter, i, v_idx++);
		for (i = 0; i < adapter->num_tx_queues; i++)
			igb_map_tx_ring_to_vector(adapter, i, v_idx++);
	} else {
		for (i = 0; i < adapter->num_rx_queues; i++) {
			if (i < adapter->num_tx_queues)
				igb_map_tx_ring_to_vector(adapter, i, v_idx);
			igb_map_rx_ring_to_vector(adapter, i, v_idx++);
		}
		for (; i < adapter->num_tx_queues; i++)
			igb_map_tx_ring_to_vector(adapter, i, v_idx++);
	}
	return 0;
}

/**
 * igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
 *
 * This function initializes the interrupts and allocates all of the queues.
 **/
static int igb_init_interrupt_scheme(struct igb_adapter *adapter)
{
	struct pci_dev *pdev = adapter->pdev;
	int err;

	igb_set_interrupt_capability(adapter);

	err = igb_alloc_q_vectors(adapter);
	if (err) {
		dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
		goto err_alloc_q_vectors;
	}

	err = igb_alloc_queues(adapter);
	if (err) {
		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
		goto err_alloc_queues;
	}

	err = igb_map_ring_to_vector(adapter);
	if (err) {
		dev_err(&pdev->dev, "Invalid q_vector to ring mapping\n");
		goto err_map_queues;
	}


	return 0;
err_map_queues:
	igb_free_queues(adapter);
err_alloc_queues:
	igb_free_q_vectors(adapter);
err_alloc_q_vectors:
	igb_reset_interrupt_capability(adapter);
	return err;
}

870 871 872 873 874 875 876 877 878
/**
 * igb_request_irq - initialize interrupts
 *
 * Attempts to configure interrupts using the best available
 * capabilities of the hardware and kernel.
 **/
static int igb_request_irq(struct igb_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
879
	struct pci_dev *pdev = adapter->pdev;
880 881 882 883 884
	struct e1000_hw *hw = &adapter->hw;
	int err = 0;

	if (adapter->msix_entries) {
		err = igb_request_msix(adapter);
P
PJ Waskiewicz 已提交
885
		if (!err)
886 887
			goto request_done;
		/* fall back to MSI */
888
		igb_clear_interrupt_scheme(adapter);
889
		if (!pci_enable_msi(adapter->pdev))
890
			adapter->flags |= IGB_FLAG_HAS_MSI;
891 892
		igb_free_all_tx_resources(adapter);
		igb_free_all_rx_resources(adapter);
893
		adapter->num_tx_queues = 1;
894
		adapter->num_rx_queues = 1;
895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910
		adapter->num_q_vectors = 1;
		err = igb_alloc_q_vectors(adapter);
		if (err) {
			dev_err(&pdev->dev,
			        "Unable to allocate memory for vectors\n");
			goto request_done;
		}
		err = igb_alloc_queues(adapter);
		if (err) {
			dev_err(&pdev->dev,
			        "Unable to allocate memory for queues\n");
			igb_free_q_vectors(adapter);
			goto request_done;
		}
		igb_setup_all_tx_resources(adapter);
		igb_setup_all_rx_resources(adapter);
P
PJ Waskiewicz 已提交
911
	} else {
A
Alexander Duyck 已提交
912 913 914
		switch (hw->mac.type) {
		case e1000_82575:
			wr32(E1000_MSIXBM(0),
915 916 917
			     (E1000_EICR_RX_QUEUE0 |
			      E1000_EICR_TX_QUEUE0 |
			      E1000_EIMS_OTHER));
A
Alexander Duyck 已提交
918
			break;
919
		case e1000_82580:
A
Alexander Duyck 已提交
920 921 922 923 924 925
		case e1000_82576:
			wr32(E1000_IVAR0, E1000_IVAR_VALID);
			break;
		default:
			break;
		}
926
	}
P
PJ Waskiewicz 已提交
927

928
	if (adapter->flags & IGB_FLAG_HAS_MSI) {
929
		err = request_irq(adapter->pdev->irq, igb_intr_msi, 0,
930
				  netdev->name, adapter);
931 932
		if (!err)
			goto request_done;
933

934 935
		/* fall back to legacy interrupts */
		igb_reset_interrupt_capability(adapter);
936
		adapter->flags &= ~IGB_FLAG_HAS_MSI;
937 938
	}

939
	err = request_irq(adapter->pdev->irq, igb_intr, IRQF_SHARED,
940
			  netdev->name, adapter);
941

A
Andy Gospodarek 已提交
942
	if (err)
943 944 945 946 947 948 949 950 951 952 953 954
		dev_err(&adapter->pdev->dev, "Error %d getting interrupt\n",
			err);

request_done:
	return err;
}

static void igb_free_irq(struct igb_adapter *adapter)
{
	if (adapter->msix_entries) {
		int vector = 0, i;

955
		free_irq(adapter->msix_entries[vector++].vector, adapter);
956

957 958 959 960 961 962 963
		for (i = 0; i < adapter->num_q_vectors; i++) {
			struct igb_q_vector *q_vector = adapter->q_vector[i];
			free_irq(adapter->msix_entries[vector++].vector,
			         q_vector);
		}
	} else {
		free_irq(adapter->pdev->irq, adapter);
964 965 966 967 968 969 970 971 972 973 974
	}
}

/**
 * igb_irq_disable - Mask off interrupt generation on the NIC
 * @adapter: board private structure
 **/
static void igb_irq_disable(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;

975 976 977 978 979
	/*
	 * we need to be careful when disabling interrupts.  The VFs are also
	 * mapped into these registers and so clearing the bits can cause
	 * issues on the VF drivers so we only need to clear what we set
	 */
980
	if (adapter->msix_entries) {
981 982 983 984 985
		u32 regval = rd32(E1000_EIAM);
		wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
		wr32(E1000_EIMC, adapter->eims_enable_mask);
		regval = rd32(E1000_EIAC);
		wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
986
	}
P
PJ Waskiewicz 已提交
987 988

	wr32(E1000_IAM, 0);
989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002
	wr32(E1000_IMC, ~0);
	wrfl();
	synchronize_irq(adapter->pdev->irq);
}

/**
 * igb_irq_enable - Enable default interrupt generation settings
 * @adapter: board private structure
 **/
static void igb_irq_enable(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;

	if (adapter->msix_entries) {
1003
		u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC;
1004 1005 1006 1007
		u32 regval = rd32(E1000_EIAC);
		wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
		regval = rd32(E1000_EIAM);
		wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
P
PJ Waskiewicz 已提交
1008
		wr32(E1000_EIMS, adapter->eims_enable_mask);
1009
		if (adapter->vfs_allocated_count) {
1010
			wr32(E1000_MBVFIMR, 0xFF);
1011 1012
			ims |= E1000_IMS_VMMB;
		}
1013 1014 1015
		if (adapter->hw.mac.type == e1000_82580)
			ims |= E1000_IMS_DRSTA;

1016
		wr32(E1000_IMS, ims);
P
PJ Waskiewicz 已提交
1017
	} else {
1018 1019 1020 1021
		wr32(E1000_IMS, IMS_ENABLE_MASK |
				E1000_IMS_DRSTA);
		wr32(E1000_IAM, IMS_ENABLE_MASK |
				E1000_IMS_DRSTA);
P
PJ Waskiewicz 已提交
1022
	}
1023 1024 1025 1026
}

static void igb_update_mng_vlan(struct igb_adapter *adapter)
{
1027
	struct e1000_hw *hw = &adapter->hw;
1028 1029
	u16 vid = adapter->hw.mng_cookie.vlan_id;
	u16 old_vid = adapter->mng_vlan_id;
1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043

	if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
		/* add VID to filter table */
		igb_vfta_set(hw, vid, true);
		adapter->mng_vlan_id = vid;
	} else {
		adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
	}

	if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
	    (vid != old_vid) &&
	    !vlan_group_get_device(adapter->vlgrp, old_vid)) {
		/* remove VID from filter table */
		igb_vfta_set(hw, old_vid, false);
1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096
	}
}

/**
 * igb_release_hw_control - release control of the h/w to f/w
 * @adapter: address of board private structure
 *
 * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
 * For ASF and Pass Through versions of f/w this means that the
 * driver is no longer loaded.
 *
 **/
static void igb_release_hw_control(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 ctrl_ext;

	/* Let firmware take over control of h/w */
	ctrl_ext = rd32(E1000_CTRL_EXT);
	wr32(E1000_CTRL_EXT,
			ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
}

/**
 * igb_get_hw_control - get control of the h/w from f/w
 * @adapter: address of board private structure
 *
 * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
 * For ASF and Pass Through versions of f/w this means that
 * the driver is loaded.
 *
 **/
static void igb_get_hw_control(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 ctrl_ext;

	/* Let firmware know the driver has taken over */
	ctrl_ext = rd32(E1000_CTRL_EXT);
	wr32(E1000_CTRL_EXT,
			ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
}

/**
 * igb_configure - configure the hardware for RX and TX
 * @adapter: private board structure
 **/
static void igb_configure(struct igb_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
	int i;

	igb_get_hw_control(adapter);
1097
	igb_set_rx_mode(netdev);
1098 1099 1100

	igb_restore_vlan(adapter);

1101
	igb_setup_tctl(adapter);
1102
	igb_setup_mrqc(adapter);
1103
	igb_setup_rctl(adapter);
1104 1105

	igb_configure_tx(adapter);
1106
	igb_configure_rx(adapter);
1107 1108 1109

	igb_rx_fifo_flush_82575(&adapter->hw);

1110
	/* call igb_desc_unused which always leaves
1111 1112 1113 1114
	 * at least 1 descriptor unused to make sure
	 * next_to_use != next_to_clean */
	for (i = 0; i < adapter->num_rx_queues; i++) {
		struct igb_ring *ring = &adapter->rx_ring[i];
1115
		igb_alloc_rx_buffers_adv(ring, igb_desc_unused(ring));
1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136
	}


	adapter->tx_queue_len = netdev->tx_queue_len;
}


/**
 * igb_up - Open the interface and prepare it to handle traffic
 * @adapter: board private structure
 **/
int igb_up(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	int i;

	/* hardware has been reset, we need to reload some things */
	igb_configure(adapter);

	clear_bit(__IGB_DOWN, &adapter->state);

1137 1138 1139 1140
	for (i = 0; i < adapter->num_q_vectors; i++) {
		struct igb_q_vector *q_vector = adapter->q_vector[i];
		napi_enable(&q_vector->napi);
	}
P
PJ Waskiewicz 已提交
1141
	if (adapter->msix_entries)
1142 1143 1144 1145 1146 1147
		igb_configure_msix(adapter);

	/* Clear any pending interrupts. */
	rd32(E1000_ICR);
	igb_irq_enable(adapter);

1148 1149 1150 1151 1152 1153 1154
	/* notify VFs that reset has been completed */
	if (adapter->vfs_allocated_count) {
		u32 reg_data = rd32(E1000_CTRL_EXT);
		reg_data |= E1000_CTRL_EXT_PFRSTD;
		wr32(E1000_CTRL_EXT, reg_data);
	}

1155 1156
	netif_tx_start_all_queues(adapter->netdev);

1157 1158 1159 1160
	/* start the watchdog. */
	hw->mac.get_link_status = 1;
	schedule_work(&adapter->watchdog_task);

1161 1162 1163 1164 1165 1166
	return 0;
}

void igb_down(struct igb_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
1167
	struct e1000_hw *hw = &adapter->hw;
1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179
	u32 tctl, rctl;
	int i;

	/* signal that we're down so the interrupt handler does not
	 * reschedule our watchdog timer */
	set_bit(__IGB_DOWN, &adapter->state);

	/* disable receives in the hardware */
	rctl = rd32(E1000_RCTL);
	wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
	/* flush and sleep below */

1180
	netif_tx_stop_all_queues(netdev);
1181 1182 1183 1184 1185 1186 1187 1188 1189

	/* disable transmits in the hardware */
	tctl = rd32(E1000_TCTL);
	tctl &= ~E1000_TCTL_EN;
	wr32(E1000_TCTL, tctl);
	/* flush both disables and wait for them to finish */
	wrfl();
	msleep(10);

1190 1191 1192 1193
	for (i = 0; i < adapter->num_q_vectors; i++) {
		struct igb_q_vector *q_vector = adapter->q_vector[i];
		napi_disable(&q_vector->napi);
	}
1194 1195 1196 1197 1198 1199 1200 1201

	igb_irq_disable(adapter);

	del_timer_sync(&adapter->watchdog_timer);
	del_timer_sync(&adapter->phy_info_timer);

	netdev->tx_queue_len = adapter->tx_queue_len;
	netif_carrier_off(netdev);
1202 1203 1204 1205

	/* record the stats before reset*/
	igb_update_stats(adapter);

1206 1207 1208
	adapter->link_speed = 0;
	adapter->link_duplex = 0;

1209 1210
	if (!pci_channel_offline(adapter->pdev))
		igb_reset(adapter);
1211 1212
	igb_clean_all_tx_rings(adapter);
	igb_clean_all_rx_rings(adapter);
1213 1214 1215 1216 1217
#ifdef CONFIG_IGB_DCA

	/* since we reset the hardware DCA settings were cleared */
	igb_setup_dca(adapter);
#endif
1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231
}

void igb_reinit_locked(struct igb_adapter *adapter)
{
	WARN_ON(in_interrupt());
	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
		msleep(1);
	igb_down(adapter);
	igb_up(adapter);
	clear_bit(__IGB_RESETTING, &adapter->state);
}

void igb_reset(struct igb_adapter *adapter)
{
1232
	struct pci_dev *pdev = adapter->pdev;
1233
	struct e1000_hw *hw = &adapter->hw;
A
Alexander Duyck 已提交
1234 1235
	struct e1000_mac_info *mac = &hw->mac;
	struct e1000_fc_info *fc = &hw->fc;
1236 1237 1238 1239 1240 1241
	u32 pba = 0, tx_space, min_tx_space, min_rx_space;
	u16 hwm;

	/* Repartition Pba for greater than 9k mtu
	 * To take effect CTRL.RST is required.
	 */
1242
	switch (mac->type) {
1243 1244 1245 1246
	case e1000_82580:
		pba = rd32(E1000_RXPBS);
		pba = igb_rxpbs_adjust_82580(pba);
		break;
1247
	case e1000_82576:
1248 1249
		pba = rd32(E1000_RXPBS);
		pba &= E1000_RXPBS_SIZE_MASK_82576;
1250 1251 1252 1253 1254
		break;
	case e1000_82575:
	default:
		pba = E1000_PBA_34K;
		break;
A
Alexander Duyck 已提交
1255
	}
1256

A
Alexander Duyck 已提交
1257 1258
	if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
	    (mac->type < e1000_82576)) {
1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275
		/* adjust PBA for jumbo frames */
		wr32(E1000_PBA, pba);

		/* To maintain wire speed transmits, the Tx FIFO should be
		 * large enough to accommodate two full transmit packets,
		 * rounded up to the next 1KB and expressed in KB.  Likewise,
		 * the Rx FIFO should be large enough to accommodate at least
		 * one full receive packet and is similarly rounded up and
		 * expressed in KB. */
		pba = rd32(E1000_PBA);
		/* upper 16 bits has Tx packet buffer allocation size in KB */
		tx_space = pba >> 16;
		/* lower 16 bits has Rx packet buffer allocation size in KB */
		pba &= 0xffff;
		/* the tx fifo also stores 16 bytes of information about the tx
		 * but don't include ethernet FCS because hardware appends it */
		min_tx_space = (adapter->max_frame_size +
1276
				sizeof(union e1000_adv_tx_desc) -
1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296
				ETH_FCS_LEN) * 2;
		min_tx_space = ALIGN(min_tx_space, 1024);
		min_tx_space >>= 10;
		/* software strips receive CRC, so leave room for it */
		min_rx_space = adapter->max_frame_size;
		min_rx_space = ALIGN(min_rx_space, 1024);
		min_rx_space >>= 10;

		/* If current Tx allocation is less than the min Tx FIFO size,
		 * and the min Tx FIFO size is less than the current Rx FIFO
		 * allocation, take space away from current Rx allocation */
		if (tx_space < min_tx_space &&
		    ((min_tx_space - tx_space) < pba)) {
			pba = pba - (min_tx_space - tx_space);

			/* if short on rx space, rx wins and must trump tx
			 * adjustment */
			if (pba < min_rx_space)
				pba = min_rx_space;
		}
A
Alexander Duyck 已提交
1297
		wr32(E1000_PBA, pba);
1298 1299 1300 1301 1302 1303 1304 1305 1306
	}

	/* flow control settings */
	/* The high water mark must be low enough to fit one full frame
	 * (or the size used for early receive) above it in the Rx FIFO.
	 * Set it to the lower of:
	 * - 90% of the Rx FIFO size, or
	 * - the full Rx FIFO size minus one full frame */
	hwm = min(((pba << 10) * 9 / 10),
A
Alexander Duyck 已提交
1307
			((pba << 10) - 2 * adapter->max_frame_size));
1308

1309 1310
	fc->high_water = hwm & 0xFFF0;	/* 16-byte granularity */
	fc->low_water = fc->high_water - 16;
1311 1312
	fc->pause_time = 0xFFFF;
	fc->send_xon = 1;
1313
	fc->current_mode = fc->requested_mode;
1314

1315 1316 1317 1318
	/* disable receive for all VFs and wait one second */
	if (adapter->vfs_allocated_count) {
		int i;
		for (i = 0 ; i < adapter->vfs_allocated_count; i++)
1319
			adapter->vf_data[i].flags = 0;
1320 1321

		/* ping all the active vfs to let them know we are going down */
1322
		igb_ping_all_vfs(adapter);
1323 1324 1325 1326 1327 1328

		/* disable transmits and receives */
		wr32(E1000_VFRE, 0);
		wr32(E1000_VFTE, 0);
	}

1329
	/* Allow time for pending master requests to run */
1330
	hw->mac.ops.reset_hw(hw);
1331 1332
	wr32(E1000_WUC, 0);

1333
	if (hw->mac.ops.init_hw(hw))
1334
		dev_err(&pdev->dev, "Hardware Error\n");
1335

1336 1337 1338 1339 1340
	if (hw->mac.type == e1000_82580) {
		u32 reg = rd32(E1000_PCIEMISC);
		wr32(E1000_PCIEMISC,
		                reg & ~E1000_PCIEMISC_LX_DECISION);
	}
1341 1342 1343 1344 1345
	igb_update_mng_vlan(adapter);

	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
	wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);

1346 1347
	igb_reset_adaptive(hw);
	igb_get_phy_info(hw);
1348 1349
}

S
Stephen Hemminger 已提交
1350
static const struct net_device_ops igb_netdev_ops = {
1351
	.ndo_open		= igb_open,
S
Stephen Hemminger 已提交
1352
	.ndo_stop		= igb_close,
1353
	.ndo_start_xmit		= igb_xmit_frame_adv,
S
Stephen Hemminger 已提交
1354
	.ndo_get_stats		= igb_get_stats,
1355 1356
	.ndo_set_rx_mode	= igb_set_rx_mode,
	.ndo_set_multicast_list	= igb_set_rx_mode,
S
Stephen Hemminger 已提交
1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369
	.ndo_set_mac_address	= igb_set_mac,
	.ndo_change_mtu		= igb_change_mtu,
	.ndo_do_ioctl		= igb_ioctl,
	.ndo_tx_timeout		= igb_tx_timeout,
	.ndo_validate_addr	= eth_validate_addr,
	.ndo_vlan_rx_register	= igb_vlan_rx_register,
	.ndo_vlan_rx_add_vid	= igb_vlan_rx_add_vid,
	.ndo_vlan_rx_kill_vid	= igb_vlan_rx_kill_vid,
#ifdef CONFIG_NET_POLL_CONTROLLER
	.ndo_poll_controller	= igb_netpoll,
#endif
};

1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386
/**
 * igb_probe - Device Initialization Routine
 * @pdev: PCI device information struct
 * @ent: entry in igb_pci_tbl
 *
 * Returns 0 on success, negative on failure
 *
 * igb_probe initializes an adapter identified by a pci_dev structure.
 * The OS initialization, configuring of the adapter private structure,
 * and a hardware reset occur.
 **/
static int __devinit igb_probe(struct pci_dev *pdev,
			       const struct pci_device_id *ent)
{
	struct net_device *netdev;
	struct igb_adapter *adapter;
	struct e1000_hw *hw;
1387 1388
	u16 eeprom_data = 0;
	static int global_quad_port_a; /* global quad port a indication */
1389 1390
	const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
	unsigned long mmio_start, mmio_len;
1391
	int err, pci_using_dac;
1392 1393 1394
	u16 eeprom_apme_mask = IGB_EEPROM_APME;
	u32 part_num;

1395
	err = pci_enable_device_mem(pdev);
1396 1397 1398 1399
	if (err)
		return err;

	pci_using_dac = 0;
1400
	err = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
1401
	if (!err) {
1402
		err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
1403 1404 1405
		if (!err)
			pci_using_dac = 1;
	} else {
1406
		err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
1407
		if (err) {
1408
			err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
1409 1410 1411 1412 1413 1414 1415 1416
			if (err) {
				dev_err(&pdev->dev, "No usable DMA "
					"configuration, aborting\n");
				goto err_dma;
			}
		}
	}

1417 1418 1419
	err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
	                                   IORESOURCE_MEM),
	                                   igb_driver_name);
1420 1421 1422
	if (err)
		goto err_pci_reg;

1423
	pci_enable_pcie_error_reporting(pdev);
1424

1425
	pci_set_master(pdev);
1426
	pci_save_state(pdev);
1427 1428

	err = -ENOMEM;
1429 1430
	netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
	                           IGB_ABS_MAX_TX_QUEUES);
1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447
	if (!netdev)
		goto err_alloc_etherdev;

	SET_NETDEV_DEV(netdev, &pdev->dev);

	pci_set_drvdata(pdev, netdev);
	adapter = netdev_priv(netdev);
	adapter->netdev = netdev;
	adapter->pdev = pdev;
	hw = &adapter->hw;
	hw->back = adapter;
	adapter->msg_enable = NETIF_MSG_DRV | NETIF_MSG_PROBE;

	mmio_start = pci_resource_start(pdev, 0);
	mmio_len = pci_resource_len(pdev, 0);

	err = -EIO;
1448 1449
	hw->hw_addr = ioremap(mmio_start, mmio_len);
	if (!hw->hw_addr)
1450 1451
		goto err_ioremap;

S
Stephen Hemminger 已提交
1452
	netdev->netdev_ops = &igb_netdev_ops;
1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474
	igb_set_ethtool_ops(netdev);
	netdev->watchdog_timeo = 5 * HZ;

	strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);

	netdev->mem_start = mmio_start;
	netdev->mem_end = mmio_start + mmio_len;

	/* PCI config space info */
	hw->vendor_id = pdev->vendor;
	hw->device_id = pdev->device;
	hw->revision_id = pdev->revision;
	hw->subsystem_vendor_id = pdev->subsystem_vendor;
	hw->subsystem_device_id = pdev->subsystem_device;

	/* Copy the default MAC, PHY and NVM function pointers */
	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
	memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
	/* Initialize skew-specific constants */
	err = ei->get_invariants(hw);
	if (err)
1475
		goto err_sw_init;
1476

1477
	/* setup the private structure */
1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498
	err = igb_sw_init(adapter);
	if (err)
		goto err_sw_init;

	igb_get_bus_info_pcie(hw);

	hw->phy.autoneg_wait_to_complete = false;
	hw->mac.adaptive_ifs = true;

	/* Copper options */
	if (hw->phy.media_type == e1000_media_type_copper) {
		hw->phy.mdix = AUTO_ALL_MODES;
		hw->phy.disable_polarity_correction = false;
		hw->phy.ms_type = e1000_ms_hw_default;
	}

	if (igb_check_reset_block(hw))
		dev_info(&pdev->dev,
			"PHY reset is blocked due to SOL/IDER session.\n");

	netdev->features = NETIF_F_SG |
1499
			   NETIF_F_IP_CSUM |
1500 1501 1502 1503
			   NETIF_F_HW_VLAN_TX |
			   NETIF_F_HW_VLAN_RX |
			   NETIF_F_HW_VLAN_FILTER;

1504
	netdev->features |= NETIF_F_IPV6_CSUM;
1505 1506
	netdev->features |= NETIF_F_TSO;
	netdev->features |= NETIF_F_TSO6;
H
Herbert Xu 已提交
1507
	netdev->features |= NETIF_F_GRO;
1508

1509 1510
	netdev->vlan_features |= NETIF_F_TSO;
	netdev->vlan_features |= NETIF_F_TSO6;
1511
	netdev->vlan_features |= NETIF_F_IP_CSUM;
1512
	netdev->vlan_features |= NETIF_F_IPV6_CSUM;
1513 1514
	netdev->vlan_features |= NETIF_F_SG;

1515 1516 1517
	if (pci_using_dac)
		netdev->features |= NETIF_F_HIGHDMA;

1518
	if (hw->mac.type >= e1000_82576)
1519 1520
		netdev->features |= NETIF_F_SCTP_CSUM;

1521
	adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546

	/* before reading the NVM, reset the controller to put the device in a
	 * known good starting state */
	hw->mac.ops.reset_hw(hw);

	/* make sure the NVM is good */
	if (igb_validate_nvm_checksum(hw) < 0) {
		dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
		err = -EIO;
		goto err_eeprom;
	}

	/* copy the MAC address out of the NVM */
	if (hw->mac.ops.read_mac_addr(hw))
		dev_err(&pdev->dev, "NVM Read Error\n");

	memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
	memcpy(netdev->perm_addr, hw->mac.addr, netdev->addr_len);

	if (!is_valid_ether_addr(netdev->perm_addr)) {
		dev_err(&pdev->dev, "Invalid MAC Address\n");
		err = -EIO;
		goto err_eeprom;
	}

1547 1548 1549 1550
	setup_timer(&adapter->watchdog_timer, &igb_watchdog,
	            (unsigned long) adapter);
	setup_timer(&adapter->phy_info_timer, &igb_update_phy_info,
	            (unsigned long) adapter);
1551 1552 1553 1554

	INIT_WORK(&adapter->reset_task, igb_reset_task);
	INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);

1555
	/* Initialize link properties that are user-changeable */
1556 1557 1558 1559
	adapter->fc_autoneg = true;
	hw->mac.autoneg = true;
	hw->phy.autoneg_advertised = 0x2f;

1560 1561
	hw->fc.requested_mode = e1000_fc_default;
	hw->fc.current_mode = e1000_fc_default;
1562 1563 1564 1565 1566 1567 1568

	igb_validate_mdi_setting(hw);

	/* Initial Wake on LAN setting If APM wake is enabled in the EEPROM,
	 * enable the ACPI Magic Packet filter
	 */

1569
	if (hw->bus.func == 0)
A
Alexander Duyck 已提交
1570
		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
1571 1572 1573 1574
	else if (hw->mac.type == e1000_82580)
		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
		                 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
		                 &eeprom_data);
1575 1576
	else if (hw->bus.func == 1)
		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588

	if (eeprom_data & eeprom_apme_mask)
		adapter->eeprom_wol |= E1000_WUFC_MAG;

	/* now that we have the eeprom settings, apply the special cases where
	 * the eeprom may be wrong or the board simply won't support wake on
	 * lan on a particular port */
	switch (pdev->device) {
	case E1000_DEV_ID_82575GB_QUAD_COPPER:
		adapter->eeprom_wol = 0;
		break;
	case E1000_DEV_ID_82575EB_FIBER_SERDES:
A
Alexander Duyck 已提交
1589 1590
	case E1000_DEV_ID_82576_FIBER:
	case E1000_DEV_ID_82576_SERDES:
1591 1592 1593 1594 1595
		/* Wake events only supported on port A for dual fiber
		 * regardless of eeprom setting */
		if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
			adapter->eeprom_wol = 0;
		break;
1596 1597 1598 1599 1600 1601 1602 1603 1604 1605
	case E1000_DEV_ID_82576_QUAD_COPPER:
		/* if quad port adapter, disable WoL on all but port A */
		if (global_quad_port_a != 0)
			adapter->eeprom_wol = 0;
		else
			adapter->flags |= IGB_FLAG_QUAD_PORT_A;
		/* Reset for multiple quad port adapters */
		if (++global_quad_port_a == 4)
			global_quad_port_a = 0;
		break;
1606 1607 1608 1609
	}

	/* initialize the wol settings based on the eeprom settings */
	adapter->wol = adapter->eeprom_wol;
1610
	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623

	/* reset the hardware with the new settings */
	igb_reset(adapter);

	/* let the f/w know that the h/w is now under the control of the
	 * driver. */
	igb_get_hw_control(adapter);

	strcpy(netdev->name, "eth%d");
	err = register_netdev(netdev);
	if (err)
		goto err_register;

1624 1625 1626
	/* carrier off reporting is important to ethtool even BEFORE open */
	netif_carrier_off(netdev);

1627
#ifdef CONFIG_IGB_DCA
1628
	if (dca_add_requester(&pdev->dev) == 0) {
1629
		adapter->flags |= IGB_FLAG_DCA_ENABLED;
J
Jeb Cramer 已提交
1630 1631 1632 1633
		dev_info(&pdev->dev, "DCA enabled\n");
		igb_setup_dca(adapter);
	}

P
Patrick Ohly 已提交
1634
#endif
1635 1636
	dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
	/* print bus type/speed/width info */
J
Johannes Berg 已提交
1637
	dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
1638
		 netdev->name,
1639 1640
		 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
		                                            "unknown"),
1641 1642 1643 1644
		 ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
		  (hw->bus.width == e1000_bus_width_pcie_x2) ? "Width x2" :
		  (hw->bus.width == e1000_bus_width_pcie_x1) ? "Width x1" :
		   "unknown"),
J
Johannes Berg 已提交
1645
		 netdev->dev_addr);
1646 1647 1648 1649 1650 1651 1652 1653

	igb_read_part_num(hw, &part_num);
	dev_info(&pdev->dev, "%s: PBA No: %06x-%03x\n", netdev->name,
		(part_num >> 8), (part_num & 0xff));

	dev_info(&pdev->dev,
		"Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
		adapter->msix_entries ? "MSI-X" :
1654
		(adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
1655 1656 1657 1658 1659 1660 1661 1662
		adapter->num_rx_queues, adapter->num_tx_queues);

	return 0;

err_register:
	igb_release_hw_control(adapter);
err_eeprom:
	if (!igb_check_reset_block(hw))
1663
		igb_reset_phy(hw);
1664 1665 1666 1667

	if (hw->flash_address)
		iounmap(hw->flash_address);
err_sw_init:
1668
	igb_clear_interrupt_scheme(adapter);
1669 1670 1671 1672
	iounmap(hw->hw_addr);
err_ioremap:
	free_netdev(netdev);
err_alloc_etherdev:
1673 1674
	pci_release_selected_regions(pdev,
	                             pci_select_bars(pdev, IORESOURCE_MEM));
1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693
err_pci_reg:
err_dma:
	pci_disable_device(pdev);
	return err;
}

/**
 * igb_remove - Device Removal Routine
 * @pdev: PCI device information struct
 *
 * igb_remove is called by the PCI subsystem to alert the driver
 * that it should release a PCI device.  The could be caused by a
 * Hot-Plug event, or because the driver is going to be removed from
 * memory.
 **/
static void __devexit igb_remove(struct pci_dev *pdev)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);
J
Jeb Cramer 已提交
1694
	struct e1000_hw *hw = &adapter->hw;
1695 1696 1697 1698 1699 1700 1701 1702 1703

	/* flush_scheduled work may reschedule our watchdog task, so
	 * explicitly disable watchdog tasks from being rescheduled  */
	set_bit(__IGB_DOWN, &adapter->state);
	del_timer_sync(&adapter->watchdog_timer);
	del_timer_sync(&adapter->phy_info_timer);

	flush_scheduled_work();

1704
#ifdef CONFIG_IGB_DCA
1705
	if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
J
Jeb Cramer 已提交
1706 1707
		dev_info(&pdev->dev, "DCA disabled\n");
		dca_remove_requester(&pdev->dev);
1708
		adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
A
Alexander Duyck 已提交
1709
		wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
J
Jeb Cramer 已提交
1710 1711 1712
	}
#endif

1713 1714 1715 1716 1717 1718
	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
	 * would have already happened in close and is redundant. */
	igb_release_hw_control(adapter);

	unregister_netdev(netdev);

1719 1720
	if (!igb_check_reset_block(hw))
		igb_reset_phy(hw);
1721

1722
	igb_clear_interrupt_scheme(adapter);
1723

1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737
#ifdef CONFIG_PCI_IOV
	/* reclaim resources allocated to VFs */
	if (adapter->vf_data) {
		/* disable iov and allow time for transactions to clear */
		pci_disable_sriov(pdev);
		msleep(500);

		kfree(adapter->vf_data);
		adapter->vf_data = NULL;
		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
		msleep(100);
		dev_info(&pdev->dev, "IOV Disabled\n");
	}
#endif
1738

1739 1740 1741
	iounmap(hw->hw_addr);
	if (hw->flash_address)
		iounmap(hw->flash_address);
1742 1743
	pci_release_selected_regions(pdev,
	                             pci_select_bars(pdev, IORESOURCE_MEM));
1744 1745 1746

	free_netdev(netdev);

1747
	pci_disable_pcie_error_reporting(pdev);
1748

1749 1750 1751
	pci_disable_device(pdev);
}

1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799
/**
 * igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
 * @adapter: board private structure to initialize
 *
 * This function initializes the vf specific data storage and then attempts to
 * allocate the VFs.  The reason for ordering it this way is because it is much
 * mor expensive time wise to disable SR-IOV than it is to allocate and free
 * the memory for the VFs.
 **/
static void __devinit igb_probe_vfs(struct igb_adapter * adapter)
{
#ifdef CONFIG_PCI_IOV
	struct pci_dev *pdev = adapter->pdev;

	if (adapter->vfs_allocated_count > 7)
		adapter->vfs_allocated_count = 7;

	if (adapter->vfs_allocated_count) {
		adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
		                           sizeof(struct vf_data_storage),
		                           GFP_KERNEL);
		/* if allocation failed then we do not support SR-IOV */
		if (!adapter->vf_data) {
			adapter->vfs_allocated_count = 0;
			dev_err(&pdev->dev, "Unable to allocate memory for VF "
			        "Data Storage\n");
		}
	}

	if (pci_enable_sriov(pdev, adapter->vfs_allocated_count)) {
		kfree(adapter->vf_data);
		adapter->vf_data = NULL;
#endif /* CONFIG_PCI_IOV */
		adapter->vfs_allocated_count = 0;
#ifdef CONFIG_PCI_IOV
	} else {
		unsigned char mac_addr[ETH_ALEN];
		int i;
		dev_info(&pdev->dev, "%d vfs allocated\n",
		         adapter->vfs_allocated_count);
		for (i = 0; i < adapter->vfs_allocated_count; i++) {
			random_ether_addr(mac_addr);
			igb_set_vf_mac(adapter, i, mac_addr);
		}
	}
#endif /* CONFIG_PCI_IOV */
}

1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812

/**
 * igb_init_hw_timer - Initialize hardware timer used with IEEE 1588 timestamp
 * @adapter: board private structure to initialize
 *
 * igb_init_hw_timer initializes the function pointer and values for the hw
 * timer found in hardware.
 **/
static void igb_init_hw_timer(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;

	switch (hw->mac.type) {
1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854
	case e1000_82580:
		memset(&adapter->cycles, 0, sizeof(adapter->cycles));
		adapter->cycles.read = igb_read_clock;
		adapter->cycles.mask = CLOCKSOURCE_MASK(64);
		adapter->cycles.mult = 1;
		/*
		 * The 82580 timesync updates the system timer every 8ns by 8ns
		 * and the value cannot be shifted.  Instead we need to shift
		 * the registers to generate a 64bit timer value.  As a result
		 * SYSTIMR/L/H, TXSTMPL/H, RXSTMPL/H all have to be shifted by
		 * 24 in order to generate a larger value for synchronization.
		 */
		adapter->cycles.shift = IGB_82580_TSYNC_SHIFT;
		/* disable system timer temporarily by setting bit 31 */
		wr32(E1000_TSAUXC, 0x80000000);
		wrfl();

		/* Set registers so that rollover occurs soon to test this. */
		wr32(E1000_SYSTIMR, 0x00000000);
		wr32(E1000_SYSTIML, 0x80000000);
		wr32(E1000_SYSTIMH, 0x000000FF);
		wrfl();

		/* enable system timer by clearing bit 31 */
		wr32(E1000_TSAUXC, 0x0);
		wrfl();

		timecounter_init(&adapter->clock,
				 &adapter->cycles,
				 ktime_to_ns(ktime_get_real()));
		/*
		 * Synchronize our NIC clock against system wall clock. NIC
		 * time stamp reading requires ~3us per sample, each sample
		 * was pretty stable even under load => only require 10
		 * samples for each offset comparison.
		 */
		memset(&adapter->compare, 0, sizeof(adapter->compare));
		adapter->compare.source = &adapter->clock;
		adapter->compare.target = ktime_get_real;
		adapter->compare.num_samples = 10;
		timecompare_update(&adapter->compare, 0);
		break;
1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905
	case e1000_82576:
		/*
		 * Initialize hardware timer: we keep it running just in case
		 * that some program needs it later on.
		 */
		memset(&adapter->cycles, 0, sizeof(adapter->cycles));
		adapter->cycles.read = igb_read_clock;
		adapter->cycles.mask = CLOCKSOURCE_MASK(64);
		adapter->cycles.mult = 1;
		/**
		 * Scale the NIC clock cycle by a large factor so that
		 * relatively small clock corrections can be added or
		 * substracted at each clock tick. The drawbacks of a large
		 * factor are a) that the clock register overflows more quickly
		 * (not such a big deal) and b) that the increment per tick has
		 * to fit into 24 bits.  As a result we need to use a shift of
		 * 19 so we can fit a value of 16 into the TIMINCA register.
		 */
		adapter->cycles.shift = IGB_82576_TSYNC_SHIFT;
		wr32(E1000_TIMINCA,
		                (1 << E1000_TIMINCA_16NS_SHIFT) |
		                (16 << IGB_82576_TSYNC_SHIFT));

		/* Set registers so that rollover occurs soon to test this. */
		wr32(E1000_SYSTIML, 0x00000000);
		wr32(E1000_SYSTIMH, 0xFF800000);
		wrfl();

		timecounter_init(&adapter->clock,
				 &adapter->cycles,
				 ktime_to_ns(ktime_get_real()));
		/*
		 * Synchronize our NIC clock against system wall clock. NIC
		 * time stamp reading requires ~3us per sample, each sample
		 * was pretty stable even under load => only require 10
		 * samples for each offset comparison.
		 */
		memset(&adapter->compare, 0, sizeof(adapter->compare));
		adapter->compare.source = &adapter->clock;
		adapter->compare.target = ktime_get_real;
		adapter->compare.num_samples = 10;
		timecompare_update(&adapter->compare, 0);
		break;
	case e1000_82575:
		/* 82575 does not support timesync */
	default:
		break;
	}

}

1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921
/**
 * igb_sw_init - Initialize general software structures (struct igb_adapter)
 * @adapter: board private structure to initialize
 *
 * igb_sw_init initializes the Adapter private data structure.
 * Fields are initialized based on PCI device information and
 * OS network device settings (MTU size).
 **/
static int __devinit igb_sw_init(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	struct net_device *netdev = adapter->netdev;
	struct pci_dev *pdev = adapter->pdev;

	pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);

1922 1923
	adapter->tx_ring_count = IGB_DEFAULT_TXD;
	adapter->rx_ring_count = IGB_DEFAULT_RXD;
1924 1925 1926
	adapter->rx_itr_setting = IGB_DEFAULT_ITR;
	adapter->tx_itr_setting = IGB_DEFAULT_ITR;

1927 1928 1929
	adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;

1930 1931 1932 1933 1934
#ifdef CONFIG_PCI_IOV
	if (hw->mac.type == e1000_82576)
		adapter->vfs_allocated_count = max_vfs;

#endif /* CONFIG_PCI_IOV */
1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945
	adapter->rss_queues = min_t(u32, IGB_MAX_RX_QUEUES, num_online_cpus());

	/*
	 * if rss_queues > 4 or vfs are going to be allocated with rss_queues
	 * then we should combine the queues into a queue pair in order to
	 * conserve interrupts due to limited supply
	 */
	if ((adapter->rss_queues > 4) ||
	    ((adapter->rss_queues > 1) && (adapter->vfs_allocated_count > 6)))
		adapter->flags |= IGB_FLAG_QUEUE_PAIRS;

1946
	/* This call may decrease the number of queues */
1947
	if (igb_init_interrupt_scheme(adapter)) {
1948 1949 1950 1951
		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
		return -ENOMEM;
	}

1952
	igb_init_hw_timer(adapter);
1953 1954
	igb_probe_vfs(adapter);

1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984
	/* Explicitly disable IRQ since the NIC can be in any state. */
	igb_irq_disable(adapter);

	set_bit(__IGB_DOWN, &adapter->state);
	return 0;
}

/**
 * igb_open - Called when a network interface is made active
 * @netdev: network interface device structure
 *
 * Returns 0 on success, negative value on failure
 *
 * The open entry point is called when a network interface is made
 * active by the system (IFF_UP).  At this point all resources needed
 * for transmit and receive operations are allocated, the interrupt
 * handler is registered with the OS, the watchdog timer is started,
 * and the stack is notified that the interface is ready.
 **/
static int igb_open(struct net_device *netdev)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	int err;
	int i;

	/* disallow open during test */
	if (test_bit(__IGB_TESTING, &adapter->state))
		return -EBUSY;

1985 1986
	netif_carrier_off(netdev);

1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
	/* allocate transmit descriptors */
	err = igb_setup_all_tx_resources(adapter);
	if (err)
		goto err_setup_tx;

	/* allocate receive descriptors */
	err = igb_setup_all_rx_resources(adapter);
	if (err)
		goto err_setup_rx;

	/* e1000_power_up_phy(adapter); */

	/* before we allocate an interrupt, we must be ready to handle it.
	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
	 * as soon as we call pci_request_irq, so we have to setup our
	 * clean_rx handler before we do so.  */
	igb_configure(adapter);

	err = igb_request_irq(adapter);
	if (err)
		goto err_req_irq;

	/* From here on the code is the same as igb_up() */
	clear_bit(__IGB_DOWN, &adapter->state);

2012 2013 2014 2015
	for (i = 0; i < adapter->num_q_vectors; i++) {
		struct igb_q_vector *q_vector = adapter->q_vector[i];
		napi_enable(&q_vector->napi);
	}
2016 2017 2018

	/* Clear any pending interrupts. */
	rd32(E1000_ICR);
P
PJ Waskiewicz 已提交
2019 2020 2021

	igb_irq_enable(adapter);

2022 2023 2024 2025 2026 2027 2028
	/* notify VFs that reset has been completed */
	if (adapter->vfs_allocated_count) {
		u32 reg_data = rd32(E1000_CTRL_EXT);
		reg_data |= E1000_CTRL_EXT_PFRSTD;
		wr32(E1000_CTRL_EXT, reg_data);
	}

2029 2030
	netif_tx_start_all_queues(netdev);

2031 2032 2033
	/* start the watchdog. */
	hw->mac.get_link_status = 1;
	schedule_work(&adapter->watchdog_task);
2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080

	return 0;

err_req_irq:
	igb_release_hw_control(adapter);
	/* e1000_power_down_phy(adapter); */
	igb_free_all_rx_resources(adapter);
err_setup_rx:
	igb_free_all_tx_resources(adapter);
err_setup_tx:
	igb_reset(adapter);

	return err;
}

/**
 * igb_close - Disables a network interface
 * @netdev: network interface device structure
 *
 * Returns 0, this is not allowed to fail
 *
 * The close entry point is called when an interface is de-activated
 * by the OS.  The hardware is still under the driver's control, but
 * needs to be disabled.  A global MAC reset is issued to stop the
 * hardware, and all transmit and receive resources are freed.
 **/
static int igb_close(struct net_device *netdev)
{
	struct igb_adapter *adapter = netdev_priv(netdev);

	WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
	igb_down(adapter);

	igb_free_irq(adapter);

	igb_free_all_tx_resources(adapter);
	igb_free_all_rx_resources(adapter);

	return 0;
}

/**
 * igb_setup_tx_resources - allocate Tx resources (Descriptors)
 * @tx_ring: tx descriptor ring (for a specific queue) to setup
 *
 * Return 0 on success, negative on failure
 **/
2081
int igb_setup_tx_resources(struct igb_ring *tx_ring)
2082
{
2083
	struct pci_dev *pdev = tx_ring->pdev;
2084 2085 2086 2087 2088 2089 2090 2091 2092
	int size;

	size = sizeof(struct igb_buffer) * tx_ring->count;
	tx_ring->buffer_info = vmalloc(size);
	if (!tx_ring->buffer_info)
		goto err;
	memset(tx_ring->buffer_info, 0, size);

	/* round up to nearest 4K */
2093
	tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
2094 2095
	tx_ring->size = ALIGN(tx_ring->size, 4096);

2096 2097
	tx_ring->desc = pci_alloc_consistent(pdev,
	                                     tx_ring->size,
2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108
					     &tx_ring->dma);

	if (!tx_ring->desc)
		goto err;

	tx_ring->next_to_use = 0;
	tx_ring->next_to_clean = 0;
	return 0;

err:
	vfree(tx_ring->buffer_info);
2109
	dev_err(&pdev->dev,
2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122
		"Unable to allocate memory for the transmit descriptor ring\n");
	return -ENOMEM;
}

/**
 * igb_setup_all_tx_resources - wrapper to allocate Tx resources
 *				  (Descriptors) for all queues
 * @adapter: board private structure
 *
 * Return 0 on success, negative on failure
 **/
static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
{
2123
	struct pci_dev *pdev = adapter->pdev;
2124 2125 2126
	int i, err = 0;

	for (i = 0; i < adapter->num_tx_queues; i++) {
2127
		err = igb_setup_tx_resources(&adapter->tx_ring[i]);
2128
		if (err) {
2129
			dev_err(&pdev->dev,
2130 2131
				"Allocation for Tx Queue %u failed\n", i);
			for (i--; i >= 0; i--)
2132
				igb_free_tx_resources(&adapter->tx_ring[i]);
2133 2134 2135 2136
			break;
		}
	}

2137
	for (i = 0; i < IGB_ABS_MAX_TX_QUEUES; i++) {
2138
		int r_idx = i % adapter->num_tx_queues;
2139
		adapter->multi_tx_table[i] = &adapter->tx_ring[r_idx];
2140
	}
2141 2142 2143 2144
	return err;
}

/**
2145 2146
 * igb_setup_tctl - configure the transmit control registers
 * @adapter: Board private structure
2147
 **/
2148
void igb_setup_tctl(struct igb_adapter *adapter)
2149 2150 2151 2152
{
	struct e1000_hw *hw = &adapter->hw;
	u32 tctl;

2153 2154
	/* disable queue 0 which is enabled by default on 82575 and 82576 */
	wr32(E1000_TXDCTL(0), 0);
2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169

	/* Program the Transmit Control Register */
	tctl = rd32(E1000_TCTL);
	tctl &= ~E1000_TCTL_CT;
	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);

	igb_config_collision_dist(hw);

	/* Enable transmits */
	tctl |= E1000_TCTL_EN;

	wr32(E1000_TCTL, tctl);
}

2170 2171 2172 2173 2174 2175 2176
/**
 * igb_configure_tx_ring - Configure transmit ring after Reset
 * @adapter: board private structure
 * @ring: tx ring to configure
 *
 * Configure a transmit ring after a reset.
 **/
2177 2178
void igb_configure_tx_ring(struct igb_adapter *adapter,
                           struct igb_ring *ring)
2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197
{
	struct e1000_hw *hw = &adapter->hw;
	u32 txdctl;
	u64 tdba = ring->dma;
	int reg_idx = ring->reg_idx;

	/* disable the queue */
	txdctl = rd32(E1000_TXDCTL(reg_idx));
	wr32(E1000_TXDCTL(reg_idx),
	                txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
	wrfl();
	mdelay(10);

	wr32(E1000_TDLEN(reg_idx),
	                ring->count * sizeof(union e1000_adv_tx_desc));
	wr32(E1000_TDBAL(reg_idx),
	                tdba & 0x00000000ffffffffULL);
	wr32(E1000_TDBAH(reg_idx), tdba >> 32);

2198 2199 2200 2201
	ring->head = hw->hw_addr + E1000_TDH(reg_idx);
	ring->tail = hw->hw_addr + E1000_TDT(reg_idx);
	writel(0, ring->head);
	writel(0, ring->tail);
2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224

	txdctl |= IGB_TX_PTHRESH;
	txdctl |= IGB_TX_HTHRESH << 8;
	txdctl |= IGB_TX_WTHRESH << 16;

	txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
	wr32(E1000_TXDCTL(reg_idx), txdctl);
}

/**
 * igb_configure_tx - Configure transmit Unit after Reset
 * @adapter: board private structure
 *
 * Configure the Tx unit of the MAC after a reset.
 **/
static void igb_configure_tx(struct igb_adapter *adapter)
{
	int i;

	for (i = 0; i < adapter->num_tx_queues; i++)
		igb_configure_tx_ring(adapter, &adapter->tx_ring[i]);
}

2225 2226 2227 2228 2229 2230
/**
 * igb_setup_rx_resources - allocate Rx resources (Descriptors)
 * @rx_ring:    rx descriptor ring (for a specific queue) to setup
 *
 * Returns 0 on success, negative on failure
 **/
2231
int igb_setup_rx_resources(struct igb_ring *rx_ring)
2232
{
2233
	struct pci_dev *pdev = rx_ring->pdev;
2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260
	int size, desc_len;

	size = sizeof(struct igb_buffer) * rx_ring->count;
	rx_ring->buffer_info = vmalloc(size);
	if (!rx_ring->buffer_info)
		goto err;
	memset(rx_ring->buffer_info, 0, size);

	desc_len = sizeof(union e1000_adv_rx_desc);

	/* Round up to nearest 4K */
	rx_ring->size = rx_ring->count * desc_len;
	rx_ring->size = ALIGN(rx_ring->size, 4096);

	rx_ring->desc = pci_alloc_consistent(pdev, rx_ring->size,
					     &rx_ring->dma);

	if (!rx_ring->desc)
		goto err;

	rx_ring->next_to_clean = 0;
	rx_ring->next_to_use = 0;

	return 0;

err:
	vfree(rx_ring->buffer_info);
2261
	rx_ring->buffer_info = NULL;
2262
	dev_err(&pdev->dev, "Unable to allocate memory for "
2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275
		"the receive descriptor ring\n");
	return -ENOMEM;
}

/**
 * igb_setup_all_rx_resources - wrapper to allocate Rx resources
 *				  (Descriptors) for all queues
 * @adapter: board private structure
 *
 * Return 0 on success, negative on failure
 **/
static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
{
2276
	struct pci_dev *pdev = adapter->pdev;
2277 2278 2279
	int i, err = 0;

	for (i = 0; i < adapter->num_rx_queues; i++) {
2280
		err = igb_setup_rx_resources(&adapter->rx_ring[i]);
2281
		if (err) {
2282
			dev_err(&pdev->dev,
2283 2284
				"Allocation for Rx Queue %u failed\n", i);
			for (i--; i >= 0; i--)
2285
				igb_free_rx_resources(&adapter->rx_ring[i]);
2286 2287 2288 2289 2290 2291 2292
			break;
		}
	}

	return err;
}

2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320
/**
 * igb_setup_mrqc - configure the multiple receive queue control registers
 * @adapter: Board private structure
 **/
static void igb_setup_mrqc(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 mrqc, rxcsum;
	u32 j, num_rx_queues, shift = 0, shift2 = 0;
	union e1000_reta {
		u32 dword;
		u8  bytes[4];
	} reta;
	static const u8 rsshash[40] = {
		0x6d, 0x5a, 0x56, 0xda, 0x25, 0x5b, 0x0e, 0xc2, 0x41, 0x67,
		0x25, 0x3d, 0x43, 0xa3, 0x8f, 0xb0, 0xd0, 0xca, 0x2b, 0xcb,
		0xae, 0x7b, 0x30, 0xb4,	0x77, 0xcb, 0x2d, 0xa3, 0x80, 0x30,
		0xf2, 0x0c, 0x6a, 0x42, 0xb7, 0x3b, 0xbe, 0xac, 0x01, 0xfa };

	/* Fill out hash function seeds */
	for (j = 0; j < 10; j++) {
		u32 rsskey = rsshash[(j * 4)];
		rsskey |= rsshash[(j * 4) + 1] << 8;
		rsskey |= rsshash[(j * 4) + 2] << 16;
		rsskey |= rsshash[(j * 4) + 3] << 24;
		array_wr32(E1000_RSSRK(0), j, rsskey);
	}

2321
	num_rx_queues = adapter->rss_queues;
2322 2323 2324 2325

	if (adapter->vfs_allocated_count) {
		/* 82575 and 82576 supports 2 RSS queues for VMDq */
		switch (hw->mac.type) {
2326 2327 2328 2329
		case e1000_82580:
			num_rx_queues = 1;
			shift = 0;
			break;
2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380
		case e1000_82576:
			shift = 3;
			num_rx_queues = 2;
			break;
		case e1000_82575:
			shift = 2;
			shift2 = 6;
		default:
			break;
		}
	} else {
		if (hw->mac.type == e1000_82575)
			shift = 6;
	}

	for (j = 0; j < (32 * 4); j++) {
		reta.bytes[j & 3] = (j % num_rx_queues) << shift;
		if (shift2)
			reta.bytes[j & 3] |= num_rx_queues << shift2;
		if ((j & 3) == 3)
			wr32(E1000_RETA(j >> 2), reta.dword);
	}

	/*
	 * Disable raw packet checksumming so that RSS hash is placed in
	 * descriptor on writeback.  No need to enable TCP/UDP/IP checksum
	 * offloads as they are enabled by default
	 */
	rxcsum = rd32(E1000_RXCSUM);
	rxcsum |= E1000_RXCSUM_PCSD;

	if (adapter->hw.mac.type >= e1000_82576)
		/* Enable Receive Checksum Offload for SCTP */
		rxcsum |= E1000_RXCSUM_CRCOFL;

	/* Don't need to set TUOFL or IPOFL, they default to 1 */
	wr32(E1000_RXCSUM, rxcsum);

	/* If VMDq is enabled then we set the appropriate mode for that, else
	 * we default to RSS so that an RSS hash is calculated per packet even
	 * if we are only using one queue */
	if (adapter->vfs_allocated_count) {
		if (hw->mac.type > e1000_82575) {
			/* Set the default pool for the PF's first queue */
			u32 vtctl = rd32(E1000_VT_CTL);
			vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
				   E1000_VT_CTL_DISABLE_DEF_POOL);
			vtctl |= adapter->vfs_allocated_count <<
				E1000_VT_CTL_DEFAULT_POOL_SHIFT;
			wr32(E1000_VT_CTL, vtctl);
		}
2381
		if (adapter->rss_queues > 1)
2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401
			mrqc = E1000_MRQC_ENABLE_VMDQ_RSS_2Q;
		else
			mrqc = E1000_MRQC_ENABLE_VMDQ;
	} else {
		mrqc = E1000_MRQC_ENABLE_RSS_4Q;
	}
	igb_vmm_control(adapter);

	mrqc |= (E1000_MRQC_RSS_FIELD_IPV4 |
		 E1000_MRQC_RSS_FIELD_IPV4_TCP);
	mrqc |= (E1000_MRQC_RSS_FIELD_IPV6 |
		 E1000_MRQC_RSS_FIELD_IPV6_TCP);
	mrqc |= (E1000_MRQC_RSS_FIELD_IPV4_UDP |
		 E1000_MRQC_RSS_FIELD_IPV6_UDP);
	mrqc |= (E1000_MRQC_RSS_FIELD_IPV6_UDP_EX |
		 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);

	wr32(E1000_MRQC, mrqc);
}

2402 2403 2404 2405
/**
 * igb_setup_rctl - configure the receive control registers
 * @adapter: Board private structure
 **/
2406
void igb_setup_rctl(struct igb_adapter *adapter)
2407 2408 2409 2410 2411 2412 2413
{
	struct e1000_hw *hw = &adapter->hw;
	u32 rctl;

	rctl = rd32(E1000_RCTL);

	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
2414
	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
2415

2416
	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
2417
		(hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
2418

2419 2420 2421 2422
	/*
	 * enable stripping of CRC. It's unlikely this will break BMC
	 * redirection as it did with e1000. Newer features require
	 * that the HW strips the CRC.
2423
	 */
2424
	rctl |= E1000_RCTL_SECRC;
2425

2426
	/* disable store bad packets and clear size bits. */
2427
	rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
2428

A
Alexander Duyck 已提交
2429 2430
	/* enable LPE to prevent packets larger than max_frame_size */
	rctl |= E1000_RCTL_LPE;
2431

2432 2433
	/* disable queue 0 to prevent tail write w/o re-config */
	wr32(E1000_RXDCTL(0), 0);
2434

2435 2436 2437 2438 2439 2440 2441 2442 2443
	/* Attention!!!  For SR-IOV PF driver operations you must enable
	 * queue drop for all VF and PF queues to prevent head of line blocking
	 * if an un-trusted VF does not provide descriptors to hardware.
	 */
	if (adapter->vfs_allocated_count) {
		/* set all queue drop enable bits */
		wr32(E1000_QDE, ALL_QUEUES);
	}

2444 2445 2446
	wr32(E1000_RCTL, rctl);
}

2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466
static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
                                   int vfn)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 vmolr;

	/* if it isn't the PF check to see if VFs are enabled and
	 * increase the size to support vlan tags */
	if (vfn < adapter->vfs_allocated_count &&
	    adapter->vf_data[vfn].vlans_enabled)
		size += VLAN_TAG_SIZE;

	vmolr = rd32(E1000_VMOLR(vfn));
	vmolr &= ~E1000_VMOLR_RLPML_MASK;
	vmolr |= size | E1000_VMOLR_LPE;
	wr32(E1000_VMOLR(vfn), vmolr);

	return 0;
}

2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485
/**
 * igb_rlpml_set - set maximum receive packet size
 * @adapter: board private structure
 *
 * Configure maximum receivable packet size.
 **/
static void igb_rlpml_set(struct igb_adapter *adapter)
{
	u32 max_frame_size = adapter->max_frame_size;
	struct e1000_hw *hw = &adapter->hw;
	u16 pf_id = adapter->vfs_allocated_count;

	if (adapter->vlgrp)
		max_frame_size += VLAN_TAG_SIZE;

	/* if vfs are enabled we set RLPML to the largest possible request
	 * size and set the VMOLR RLPML to the size we need */
	if (pf_id) {
		igb_set_vf_rlpml(adapter, max_frame_size, pf_id);
2486
		max_frame_size = MAX_JUMBO_FRAME_SIZE;
2487 2488 2489 2490 2491
	}

	wr32(E1000_RLPML, max_frame_size);
}

2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510
static inline void igb_set_vmolr(struct igb_adapter *adapter, int vfn)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 vmolr;

	/*
	 * This register exists only on 82576 and newer so if we are older then
	 * we should exit and do nothing
	 */
	if (hw->mac.type < e1000_82576)
		return;

	vmolr = rd32(E1000_VMOLR(vfn));
	vmolr |= E1000_VMOLR_AUPE |        /* Accept untagged packets */
	         E1000_VMOLR_STRVLAN;      /* Strip vlan tags */

	/* clear all bits that might not be set */
	vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);

2511
	if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522
		vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
	/*
	 * for VMDq only allow the VFs and pool 0 to accept broadcast and
	 * multicast packets
	 */
	if (vfn <= adapter->vfs_allocated_count)
		vmolr |= E1000_VMOLR_BAM;	   /* Accept broadcast */

	wr32(E1000_VMOLR(vfn), vmolr);
}

2523 2524 2525 2526 2527 2528 2529
/**
 * igb_configure_rx_ring - Configure a receive ring after Reset
 * @adapter: board private structure
 * @ring: receive ring to be configured
 *
 * Configure the Rx unit of the MAC after a reset.
 **/
2530 2531
void igb_configure_rx_ring(struct igb_adapter *adapter,
                           struct igb_ring *ring)
2532 2533 2534 2535
{
	struct e1000_hw *hw = &adapter->hw;
	u64 rdba = ring->dma;
	int reg_idx = ring->reg_idx;
2536
	u32 srrctl, rxdctl;
2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550

	/* disable the queue */
	rxdctl = rd32(E1000_RXDCTL(reg_idx));
	wr32(E1000_RXDCTL(reg_idx),
	                rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);

	/* Set DMA base address registers */
	wr32(E1000_RDBAL(reg_idx),
	     rdba & 0x00000000ffffffffULL);
	wr32(E1000_RDBAH(reg_idx), rdba >> 32);
	wr32(E1000_RDLEN(reg_idx),
	               ring->count * sizeof(union e1000_adv_rx_desc));

	/* initialize head and tail */
2551 2552 2553 2554
	ring->head = hw->hw_addr + E1000_RDH(reg_idx);
	ring->tail = hw->hw_addr + E1000_RDT(reg_idx);
	writel(0, ring->head);
	writel(0, ring->tail);
2555

2556
	/* set descriptor configuration */
2557 2558
	if (ring->rx_buffer_len < IGB_RXBUFFER_1024) {
		srrctl = ALIGN(ring->rx_buffer_len, 64) <<
2559 2560 2561 2562 2563 2564 2565 2566 2567 2568
		         E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
#if (PAGE_SIZE / 2) > IGB_RXBUFFER_16384
		srrctl |= IGB_RXBUFFER_16384 >>
		          E1000_SRRCTL_BSIZEPKT_SHIFT;
#else
		srrctl |= (PAGE_SIZE / 2) >>
		          E1000_SRRCTL_BSIZEPKT_SHIFT;
#endif
		srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
	} else {
2569
		srrctl = ALIGN(ring->rx_buffer_len, 1024) >>
2570 2571 2572 2573 2574 2575
		         E1000_SRRCTL_BSIZEPKT_SHIFT;
		srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
	}

	wr32(E1000_SRRCTL(reg_idx), srrctl);

2576 2577 2578
	/* set filtering for VMDQ pools */
	igb_set_vmolr(adapter, reg_idx & 0x7);

2579 2580 2581 2582 2583 2584 2585 2586 2587 2588
	/* enable receive descriptor fetching */
	rxdctl = rd32(E1000_RXDCTL(reg_idx));
	rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
	rxdctl &= 0xFFF00000;
	rxdctl |= IGB_RX_PTHRESH;
	rxdctl |= IGB_RX_HTHRESH << 8;
	rxdctl |= IGB_RX_WTHRESH << 16;
	wr32(E1000_RXDCTL(reg_idx), rxdctl);
}

2589 2590 2591 2592 2593 2594 2595 2596
/**
 * igb_configure_rx - Configure receive Unit after Reset
 * @adapter: board private structure
 *
 * Configure the Rx unit of the MAC after a reset.
 **/
static void igb_configure_rx(struct igb_adapter *adapter)
{
2597
	int i;
2598

2599 2600 2601
	/* set UTA to appropriate mode */
	igb_set_uta(adapter);

2602 2603 2604 2605
	/* set the correct pool for the PF default MAC address in entry 0 */
	igb_rar_set_qsel(adapter, adapter->hw.mac.addr, 0,
	                 adapter->vfs_allocated_count);

2606 2607 2608 2609
	/* Setup the HW Rx Head and Tail Descriptor Pointers and
	 * the Base and Length of the Rx Descriptor Ring */
	for (i = 0; i < adapter->num_rx_queues; i++)
		igb_configure_rx_ring(adapter, &adapter->rx_ring[i]);
2610 2611 2612 2613 2614 2615 2616 2617
}

/**
 * igb_free_tx_resources - Free Tx Resources per Queue
 * @tx_ring: Tx descriptor ring for a specific queue
 *
 * Free all transmit software resources
 **/
2618
void igb_free_tx_resources(struct igb_ring *tx_ring)
2619
{
2620
	igb_clean_tx_ring(tx_ring);
2621 2622 2623 2624

	vfree(tx_ring->buffer_info);
	tx_ring->buffer_info = NULL;

2625 2626 2627 2628
	/* if not set, then don't free */
	if (!tx_ring->desc)
		return;

2629 2630
	pci_free_consistent(tx_ring->pdev, tx_ring->size,
	                    tx_ring->desc, tx_ring->dma);
2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645

	tx_ring->desc = NULL;
}

/**
 * igb_free_all_tx_resources - Free Tx Resources for All Queues
 * @adapter: board private structure
 *
 * Free all transmit software resources
 **/
static void igb_free_all_tx_resources(struct igb_adapter *adapter)
{
	int i;

	for (i = 0; i < adapter->num_tx_queues; i++)
2646
		igb_free_tx_resources(&adapter->tx_ring[i]);
2647 2648
}

2649 2650
void igb_unmap_and_free_tx_resource(struct igb_ring *tx_ring,
				    struct igb_buffer *buffer_info)
2651
{
2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664
	if (buffer_info->dma) {
		if (buffer_info->mapped_as_page)
			pci_unmap_page(tx_ring->pdev,
					buffer_info->dma,
					buffer_info->length,
					PCI_DMA_TODEVICE);
		else
			pci_unmap_single(tx_ring->pdev,
					buffer_info->dma,
					buffer_info->length,
					PCI_DMA_TODEVICE);
		buffer_info->dma = 0;
	}
2665 2666 2667 2668 2669
	if (buffer_info->skb) {
		dev_kfree_skb_any(buffer_info->skb);
		buffer_info->skb = NULL;
	}
	buffer_info->time_stamp = 0;
2670 2671 2672
	buffer_info->length = 0;
	buffer_info->next_to_watch = 0;
	buffer_info->mapped_as_page = false;
2673 2674 2675 2676 2677 2678
}

/**
 * igb_clean_tx_ring - Free Tx Buffers
 * @tx_ring: ring to be cleaned
 **/
2679
static void igb_clean_tx_ring(struct igb_ring *tx_ring)
2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690
{
	struct igb_buffer *buffer_info;
	unsigned long size;
	unsigned int i;

	if (!tx_ring->buffer_info)
		return;
	/* Free all the Tx ring sk_buffs */

	for (i = 0; i < tx_ring->count; i++) {
		buffer_info = &tx_ring->buffer_info[i];
2691
		igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712
	}

	size = sizeof(struct igb_buffer) * tx_ring->count;
	memset(tx_ring->buffer_info, 0, size);

	/* Zero out the descriptor ring */
	memset(tx_ring->desc, 0, tx_ring->size);

	tx_ring->next_to_use = 0;
	tx_ring->next_to_clean = 0;
}

/**
 * igb_clean_all_tx_rings - Free Tx Buffers for all queues
 * @adapter: board private structure
 **/
static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
{
	int i;

	for (i = 0; i < adapter->num_tx_queues; i++)
2713
		igb_clean_tx_ring(&adapter->tx_ring[i]);
2714 2715 2716 2717 2718 2719 2720 2721
}

/**
 * igb_free_rx_resources - Free Rx Resources
 * @rx_ring: ring to clean the resources from
 *
 * Free all receive software resources
 **/
2722
void igb_free_rx_resources(struct igb_ring *rx_ring)
2723
{
2724
	igb_clean_rx_ring(rx_ring);
2725 2726 2727 2728

	vfree(rx_ring->buffer_info);
	rx_ring->buffer_info = NULL;

2729 2730 2731 2732
	/* if not set, then don't free */
	if (!rx_ring->desc)
		return;

2733 2734
	pci_free_consistent(rx_ring->pdev, rx_ring->size,
	                    rx_ring->desc, rx_ring->dma);
2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749

	rx_ring->desc = NULL;
}

/**
 * igb_free_all_rx_resources - Free Rx Resources for All Queues
 * @adapter: board private structure
 *
 * Free all receive software resources
 **/
static void igb_free_all_rx_resources(struct igb_adapter *adapter)
{
	int i;

	for (i = 0; i < adapter->num_rx_queues; i++)
2750
		igb_free_rx_resources(&adapter->rx_ring[i]);
2751 2752 2753 2754 2755 2756
}

/**
 * igb_clean_rx_ring - Free Rx Buffers per Queue
 * @rx_ring: ring to free buffers from
 **/
2757
static void igb_clean_rx_ring(struct igb_ring *rx_ring)
2758 2759 2760 2761 2762 2763 2764
{
	struct igb_buffer *buffer_info;
	unsigned long size;
	unsigned int i;

	if (!rx_ring->buffer_info)
		return;
2765

2766 2767 2768 2769
	/* Free all the Rx ring sk_buffs */
	for (i = 0; i < rx_ring->count; i++) {
		buffer_info = &rx_ring->buffer_info[i];
		if (buffer_info->dma) {
2770 2771
			pci_unmap_single(rx_ring->pdev,
			                 buffer_info->dma,
2772
					 rx_ring->rx_buffer_len,
A
Alexander Duyck 已提交
2773
					 PCI_DMA_FROMDEVICE);
2774 2775 2776 2777 2778 2779 2780
			buffer_info->dma = 0;
		}

		if (buffer_info->skb) {
			dev_kfree_skb(buffer_info->skb);
			buffer_info->skb = NULL;
		}
A
Alexander Duyck 已提交
2781
		if (buffer_info->page_dma) {
2782 2783
			pci_unmap_page(rx_ring->pdev,
			               buffer_info->page_dma,
A
Alexander Duyck 已提交
2784 2785 2786 2787
				       PAGE_SIZE / 2,
				       PCI_DMA_FROMDEVICE);
			buffer_info->page_dma = 0;
		}
2788 2789 2790
		if (buffer_info->page) {
			put_page(buffer_info->page);
			buffer_info->page = NULL;
2791
			buffer_info->page_offset = 0;
2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813
		}
	}

	size = sizeof(struct igb_buffer) * rx_ring->count;
	memset(rx_ring->buffer_info, 0, size);

	/* Zero out the descriptor ring */
	memset(rx_ring->desc, 0, rx_ring->size);

	rx_ring->next_to_clean = 0;
	rx_ring->next_to_use = 0;
}

/**
 * igb_clean_all_rx_rings - Free Rx Buffers for all queues
 * @adapter: board private structure
 **/
static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
{
	int i;

	for (i = 0; i < adapter->num_rx_queues; i++)
2814
		igb_clean_rx_ring(&adapter->rx_ring[i]);
2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826
}

/**
 * igb_set_mac - Change the Ethernet Address of the NIC
 * @netdev: network interface device structure
 * @p: pointer to an address structure
 *
 * Returns 0 on success, negative on failure
 **/
static int igb_set_mac(struct net_device *netdev, void *p)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
2827
	struct e1000_hw *hw = &adapter->hw;
2828 2829 2830 2831 2832 2833
	struct sockaddr *addr = p;

	if (!is_valid_ether_addr(addr->sa_data))
		return -EADDRNOTAVAIL;

	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2834
	memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
2835

2836 2837 2838
	/* set the correct pool for the new PF MAC address in entry 0 */
	igb_rar_set_qsel(adapter, hw->mac.addr, 0,
	                 adapter->vfs_allocated_count);
2839

2840 2841 2842 2843
	return 0;
}

/**
2844
 * igb_write_mc_addr_list - write multicast addresses to MTA
2845 2846
 * @netdev: network interface device structure
 *
2847 2848 2849 2850
 * Writes multicast address list to the MTA hash table.
 * Returns: -ENOMEM on failure
 *                0 on no addresses written
 *                X on writing X addresses to MTA
2851
 **/
2852
static int igb_write_mc_addr_list(struct net_device *netdev)
2853 2854 2855
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
2856
	struct dev_mc_list *mc_ptr = netdev->mc_list;
2857 2858
	u8  *mta_list;
	u32 vmolr = 0;
2859 2860
	int i;

2861 2862 2863 2864 2865 2866
	if (!netdev->mc_count) {
		/* nothing to program, so clear mc list */
		igb_update_mc_addr_list(hw, NULL, 0);
		igb_restore_vf_multicasts(adapter);
		return 0;
	}
2867

2868 2869 2870
	mta_list = kzalloc(netdev->mc_count * 6, GFP_ATOMIC);
	if (!mta_list)
		return -ENOMEM;
2871

2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882
	/* set vmolr receive overflow multicast bit */
	vmolr |= E1000_VMOLR_ROMPE;

	/* The shared function expects a packed array of only addresses. */
	mc_ptr = netdev->mc_list;

	for (i = 0; i < netdev->mc_count; i++) {
		if (!mc_ptr)
			break;
		memcpy(mta_list + (i*ETH_ALEN), mc_ptr->dmi_addr, ETH_ALEN);
		mc_ptr = mc_ptr->next;
2883
	}
2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909
	igb_update_mc_addr_list(hw, mta_list, i);
	kfree(mta_list);

	return netdev->mc_count;
}

/**
 * igb_write_uc_addr_list - write unicast addresses to RAR table
 * @netdev: network interface device structure
 *
 * Writes unicast address list to the RAR table.
 * Returns: -ENOMEM on failure/insufficient address space
 *                0 on no addresses written
 *                X on writing X addresses to the RAR table
 **/
static int igb_write_uc_addr_list(struct net_device *netdev)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	unsigned int vfn = adapter->vfs_allocated_count;
	unsigned int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
	int count = 0;

	/* return ENOMEM indicating insufficient memory for addresses */
	if (netdev->uc.count > rar_entries)
		return -ENOMEM;
2910

2911 2912 2913 2914 2915
	if (netdev->uc.count && rar_entries) {
		struct netdev_hw_addr *ha;
		list_for_each_entry(ha, &netdev->uc.list, list) {
			if (!rar_entries)
				break;
2916 2917
			igb_rar_set_qsel(adapter, ha->addr,
			                 rar_entries--,
2918 2919
			                 vfn);
			count++;
2920 2921 2922 2923 2924 2925 2926 2927 2928
		}
	}
	/* write the addresses in reverse order to avoid write combining */
	for (; rar_entries > 0 ; rar_entries--) {
		wr32(E1000_RAH(rar_entries), 0);
		wr32(E1000_RAL(rar_entries), 0);
	}
	wrfl();

2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986
	return count;
}

/**
 * igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
 * @netdev: network interface device structure
 *
 * The set_rx_mode entry point is called whenever the unicast or multicast
 * address lists or the network interface flags are updated.  This routine is
 * responsible for configuring the hardware for proper unicast, multicast,
 * promiscuous mode, and all-multi behavior.
 **/
static void igb_set_rx_mode(struct net_device *netdev)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	unsigned int vfn = adapter->vfs_allocated_count;
	u32 rctl, vmolr = 0;
	int count;

	/* Check for Promiscuous and All Multicast modes */
	rctl = rd32(E1000_RCTL);

	/* clear the effected bits */
	rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_VFE);

	if (netdev->flags & IFF_PROMISC) {
		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
		vmolr |= (E1000_VMOLR_ROPE | E1000_VMOLR_MPME);
	} else {
		if (netdev->flags & IFF_ALLMULTI) {
			rctl |= E1000_RCTL_MPE;
			vmolr |= E1000_VMOLR_MPME;
		} else {
			/*
			 * Write addresses to the MTA, if the attempt fails
			 * then we should just turn on promiscous mode so
			 * that we can at least receive multicast traffic
			 */
			count = igb_write_mc_addr_list(netdev);
			if (count < 0) {
				rctl |= E1000_RCTL_MPE;
				vmolr |= E1000_VMOLR_MPME;
			} else if (count) {
				vmolr |= E1000_VMOLR_ROMPE;
			}
		}
		/*
		 * Write addresses to available RAR registers, if there is not
		 * sufficient space to store all the addresses then enable
		 * unicast promiscous mode
		 */
		count = igb_write_uc_addr_list(netdev);
		if (count < 0) {
			rctl |= E1000_RCTL_UPE;
			vmolr |= E1000_VMOLR_ROPE;
		}
		rctl |= E1000_RCTL_VFE;
2987
	}
2988
	wr32(E1000_RCTL, rctl);
2989

2990 2991 2992 2993 2994 2995 2996
	/*
	 * In order to support SR-IOV and eventually VMDq it is necessary to set
	 * the VMOLR to enable the appropriate modes.  Without this workaround
	 * we will have issues with VLAN tag stripping not being done for frames
	 * that are only arriving because we are the default pool
	 */
	if (hw->mac.type < e1000_82576)
2997
		return;
2998

2999 3000 3001
	vmolr |= rd32(E1000_VMOLR(vfn)) &
	         ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
	wr32(E1000_VMOLR(vfn), vmolr);
3002
	igb_restore_vf_multicasts(adapter);
3003 3004 3005 3006 3007 3008 3009
}

/* Need to wait a few seconds after link up to get diagnostic information from
 * the phy */
static void igb_update_phy_info(unsigned long data)
{
	struct igb_adapter *adapter = (struct igb_adapter *) data;
3010
	igb_get_phy_info(&adapter->hw);
3011 3012
}

A
Alexander Duyck 已提交
3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048
/**
 * igb_has_link - check shared code for link and determine up/down
 * @adapter: pointer to driver private info
 **/
static bool igb_has_link(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	bool link_active = false;
	s32 ret_val = 0;

	/* get_link_status is set on LSC (link status) interrupt or
	 * rx sequence error interrupt.  get_link_status will stay
	 * false until the e1000_check_for_link establishes link
	 * for copper adapters ONLY
	 */
	switch (hw->phy.media_type) {
	case e1000_media_type_copper:
		if (hw->mac.get_link_status) {
			ret_val = hw->mac.ops.check_for_link(hw);
			link_active = !hw->mac.get_link_status;
		} else {
			link_active = true;
		}
		break;
	case e1000_media_type_internal_serdes:
		ret_val = hw->mac.ops.check_for_link(hw);
		link_active = hw->mac.serdes_has_link;
		break;
	default:
	case e1000_media_type_unknown:
		break;
	}

	return link_active;
}

3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062
/**
 * igb_watchdog - Timer Call-back
 * @data: pointer to adapter cast into an unsigned long
 **/
static void igb_watchdog(unsigned long data)
{
	struct igb_adapter *adapter = (struct igb_adapter *)data;
	/* Do the rest outside of interrupt context */
	schedule_work(&adapter->watchdog_task);
}

static void igb_watchdog_task(struct work_struct *work)
{
	struct igb_adapter *adapter = container_of(work,
3063 3064
	                                           struct igb_adapter,
                                                   watchdog_task);
3065 3066 3067
	struct e1000_hw *hw = &adapter->hw;
	struct net_device *netdev = adapter->netdev;
	u32 link;
3068
	int i;
3069

A
Alexander Duyck 已提交
3070
	link = igb_has_link(adapter);
3071 3072 3073
	if (link) {
		if (!netif_carrier_ok(netdev)) {
			u32 ctrl;
3074 3075 3076
			hw->mac.ops.get_speed_and_duplex(hw,
			                                 &adapter->link_speed,
			                                 &adapter->link_duplex);
3077 3078

			ctrl = rd32(E1000_CTRL);
3079 3080
			/* Links status message must follow this format */
			printk(KERN_INFO "igb: %s NIC Link is Up %d Mbps %s, "
3081
				 "Flow Control: %s\n",
3082 3083 3084
			       netdev->name,
			       adapter->link_speed,
			       adapter->link_duplex == FULL_DUPLEX ?
3085
				 "Full Duplex" : "Half Duplex",
3086 3087 3088 3089
			       ((ctrl & E1000_CTRL_TFCE) &&
			        (ctrl & E1000_CTRL_RFCE)) ? "RX/TX" :
			       ((ctrl & E1000_CTRL_RFCE) ?  "RX" :
			       ((ctrl & E1000_CTRL_TFCE) ?  "TX" : "None")));
3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107

			/* tweak tx_queue_len according to speed/duplex and
			 * adjust the timeout factor */
			netdev->tx_queue_len = adapter->tx_queue_len;
			adapter->tx_timeout_factor = 1;
			switch (adapter->link_speed) {
			case SPEED_10:
				netdev->tx_queue_len = 10;
				adapter->tx_timeout_factor = 14;
				break;
			case SPEED_100:
				netdev->tx_queue_len = 100;
				/* maybe add some timeout factor ? */
				break;
			}

			netif_carrier_on(netdev);

3108 3109
			igb_ping_all_vfs(adapter);

3110
			/* link state has changed, schedule phy info update */
3111 3112 3113 3114 3115 3116 3117 3118
			if (!test_bit(__IGB_DOWN, &adapter->state))
				mod_timer(&adapter->phy_info_timer,
					  round_jiffies(jiffies + 2 * HZ));
		}
	} else {
		if (netif_carrier_ok(netdev)) {
			adapter->link_speed = 0;
			adapter->link_duplex = 0;
3119 3120 3121
			/* Links status message must follow this format */
			printk(KERN_INFO "igb: %s NIC Link is Down\n",
			       netdev->name);
3122
			netif_carrier_off(netdev);
3123

3124 3125
			igb_ping_all_vfs(adapter);

3126
			/* link state has changed, schedule phy info update */
3127 3128 3129 3130 3131 3132 3133
			if (!test_bit(__IGB_DOWN, &adapter->state))
				mod_timer(&adapter->phy_info_timer,
					  round_jiffies(jiffies + 2 * HZ));
		}
	}

	igb_update_stats(adapter);
3134
	igb_update_adaptive(hw);
3135

3136 3137 3138
	for (i = 0; i < adapter->num_tx_queues; i++) {
		struct igb_ring *tx_ring = &adapter->tx_ring[i];
		if (!netif_carrier_ok(netdev)) {
3139 3140 3141 3142
			/* We've lost link, so the controller stops DMA,
			 * but we've got queued Tx work that's never going
			 * to get done, so reset controller to flush Tx.
			 * (Do the reset outside of interrupt context). */
3143 3144 3145 3146 3147 3148
			if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
				adapter->tx_timeout_count++;
				schedule_work(&adapter->reset_task);
				/* return immediately since reset is imminent */
				return;
			}
3149 3150
		}

3151 3152 3153
		/* Force detection of hung controller every watchdog period */
		tx_ring->detect_tx_hung = true;
	}
3154

3155
	/* Cause software interrupt to ensure rx ring is cleaned */
3156
	if (adapter->msix_entries) {
3157 3158 3159 3160 3161
		u32 eics = 0;
		for (i = 0; i < adapter->num_q_vectors; i++) {
			struct igb_q_vector *q_vector = adapter->q_vector[i];
			eics |= q_vector->eims_value;
		}
3162 3163 3164 3165
		wr32(E1000_EICS, eics);
	} else {
		wr32(E1000_ICS, E1000_ICS_RXDMT0);
	}
3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179

	/* Reset the timer */
	if (!test_bit(__IGB_DOWN, &adapter->state))
		mod_timer(&adapter->watchdog_timer,
			  round_jiffies(jiffies + 2 * HZ));
}

enum latency_range {
	lowest_latency = 0,
	low_latency = 1,
	bulk_latency = 2,
	latency_invalid = 255
};

3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193
/**
 * igb_update_ring_itr - update the dynamic ITR value based on packet size
 *
 *      Stores a new ITR value based on strictly on packet size.  This
 *      algorithm is less sophisticated than that used in igb_update_itr,
 *      due to the difficulty of synchronizing statistics across multiple
 *      receive rings.  The divisors and thresholds used by this fuction
 *      were determined based on theoretical maximum wire speed and testing
 *      data, in order to minimize response time while increasing bulk
 *      throughput.
 *      This functionality is controlled by the InterruptThrottleRate module
 *      parameter (see igb_param.c)
 *      NOTE:  This function is called only when operating in a multiqueue
 *             receive environment.
3194
 * @q_vector: pointer to q_vector
3195
 **/
3196
static void igb_update_ring_itr(struct igb_q_vector *q_vector)
3197
{
3198
	int new_val = q_vector->itr_val;
3199
	int avg_wire_size = 0;
3200
	struct igb_adapter *adapter = q_vector->adapter;
3201

3202 3203 3204 3205
	/* For non-gigabit speeds, just fix the interrupt rate at 4000
	 * ints/sec - ITR timer value of 120 ticks.
	 */
	if (adapter->link_speed != SPEED_1000) {
3206
		new_val = 976;
3207
		goto set_itr_val;
3208
	}
3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224

	if (q_vector->rx_ring && q_vector->rx_ring->total_packets) {
		struct igb_ring *ring = q_vector->rx_ring;
		avg_wire_size = ring->total_bytes / ring->total_packets;
	}

	if (q_vector->tx_ring && q_vector->tx_ring->total_packets) {
		struct igb_ring *ring = q_vector->tx_ring;
		avg_wire_size = max_t(u32, avg_wire_size,
		                      (ring->total_bytes /
		                       ring->total_packets));
	}

	/* if avg_wire_size isn't set no work was done */
	if (!avg_wire_size)
		goto clear_counts;
3225

3226 3227 3228 3229 3230
	/* Add 24 bytes to size to account for CRC, preamble, and gap */
	avg_wire_size += 24;

	/* Don't starve jumbo frames */
	avg_wire_size = min(avg_wire_size, 3000);
3231

3232 3233 3234 3235 3236
	/* Give a little boost to mid-size frames */
	if ((avg_wire_size > 300) && (avg_wire_size < 1200))
		new_val = avg_wire_size / 3;
	else
		new_val = avg_wire_size / 2;
3237

3238
set_itr_val:
3239 3240 3241
	if (new_val != q_vector->itr_val) {
		q_vector->itr_val = new_val;
		q_vector->set_itr = 1;
3242
	}
3243
clear_counts:
3244 3245 3246 3247 3248 3249 3250 3251
	if (q_vector->rx_ring) {
		q_vector->rx_ring->total_bytes = 0;
		q_vector->rx_ring->total_packets = 0;
	}
	if (q_vector->tx_ring) {
		q_vector->tx_ring->total_bytes = 0;
		q_vector->tx_ring->total_packets = 0;
	}
3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267
}

/**
 * igb_update_itr - update the dynamic ITR value based on statistics
 *      Stores a new ITR value based on packets and byte
 *      counts during the last interrupt.  The advantage of per interrupt
 *      computation is faster updates and more accurate ITR for the current
 *      traffic pattern.  Constants in this function were computed
 *      based on theoretical maximum wire speed and thresholds were set based
 *      on testing data as well as attempting to minimize response time
 *      while increasing bulk throughput.
 *      this functionality is controlled by the InterruptThrottleRate module
 *      parameter (see igb_param.c)
 *      NOTE:  These calculations are only valid when operating in a single-
 *             queue environment.
 * @adapter: pointer to adapter
3268
 * @itr_setting: current q_vector->itr_val
3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307
 * @packets: the number of packets during this measurement interval
 * @bytes: the number of bytes during this measurement interval
 **/
static unsigned int igb_update_itr(struct igb_adapter *adapter, u16 itr_setting,
				   int packets, int bytes)
{
	unsigned int retval = itr_setting;

	if (packets == 0)
		goto update_itr_done;

	switch (itr_setting) {
	case lowest_latency:
		/* handle TSO and jumbo frames */
		if (bytes/packets > 8000)
			retval = bulk_latency;
		else if ((packets < 5) && (bytes > 512))
			retval = low_latency;
		break;
	case low_latency:  /* 50 usec aka 20000 ints/s */
		if (bytes > 10000) {
			/* this if handles the TSO accounting */
			if (bytes/packets > 8000) {
				retval = bulk_latency;
			} else if ((packets < 10) || ((bytes/packets) > 1200)) {
				retval = bulk_latency;
			} else if ((packets > 35)) {
				retval = lowest_latency;
			}
		} else if (bytes/packets > 2000) {
			retval = bulk_latency;
		} else if (packets <= 2 && bytes < 512) {
			retval = lowest_latency;
		}
		break;
	case bulk_latency: /* 250 usec aka 4000 ints/s */
		if (bytes > 25000) {
			if (packets > 35)
				retval = low_latency;
3308
		} else if (bytes < 1500) {
3309 3310 3311 3312 3313 3314 3315 3316 3317
			retval = low_latency;
		}
		break;
	}

update_itr_done:
	return retval;
}

3318
static void igb_set_itr(struct igb_adapter *adapter)
3319
{
3320
	struct igb_q_vector *q_vector = adapter->q_vector[0];
3321
	u16 current_itr;
3322
	u32 new_itr = q_vector->itr_val;
3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335

	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
	if (adapter->link_speed != SPEED_1000) {
		current_itr = 0;
		new_itr = 4000;
		goto set_itr_now;
	}

	adapter->rx_itr = igb_update_itr(adapter,
				    adapter->rx_itr,
				    adapter->rx_ring->total_packets,
				    adapter->rx_ring->total_bytes);

3336 3337 3338 3339 3340
	adapter->tx_itr = igb_update_itr(adapter,
				    adapter->tx_itr,
				    adapter->tx_ring->total_packets,
				    adapter->tx_ring->total_bytes);
	current_itr = max(adapter->rx_itr, adapter->tx_itr);
3341

3342
	/* conservative mode (itr 3) eliminates the lowest_latency setting */
3343
	if (adapter->rx_itr_setting == 3 && current_itr == lowest_latency)
3344 3345
		current_itr = low_latency;

3346 3347 3348
	switch (current_itr) {
	/* counts and packets in update_itr are dependent on these numbers */
	case lowest_latency:
3349
		new_itr = 56;  /* aka 70,000 ints/sec */
3350 3351
		break;
	case low_latency:
3352
		new_itr = 196; /* aka 20,000 ints/sec */
3353 3354
		break;
	case bulk_latency:
3355
		new_itr = 980; /* aka 4,000 ints/sec */
3356 3357 3358 3359 3360 3361
		break;
	default:
		break;
	}

set_itr_now:
3362 3363
	adapter->rx_ring->total_bytes = 0;
	adapter->rx_ring->total_packets = 0;
3364 3365
	adapter->tx_ring->total_bytes = 0;
	adapter->tx_ring->total_packets = 0;
3366

3367
	if (new_itr != q_vector->itr_val) {
3368 3369 3370
		/* this attempts to bias the interrupt rate towards Bulk
		 * by adding intermediate steps when interrupt rate is
		 * increasing */
3371 3372 3373 3374
		new_itr = new_itr > q_vector->itr_val ?
		             max((new_itr * q_vector->itr_val) /
		                 (new_itr + (q_vector->itr_val >> 2)),
		                 new_itr) :
3375 3376 3377 3378 3379 3380 3381
			     new_itr;
		/* Don't write the value here; it resets the adapter's
		 * internal timer, and causes us to delay far longer than
		 * we should between interrupts.  Instead, we write the ITR
		 * value at the beginning of the next interrupt so the timing
		 * ends up being correct.
		 */
3382 3383
		q_vector->itr_val = new_itr;
		q_vector->set_itr = 1;
3384 3385 3386 3387 3388 3389 3390 3391 3392
	}

	return;
}

#define IGB_TX_FLAGS_CSUM		0x00000001
#define IGB_TX_FLAGS_VLAN		0x00000002
#define IGB_TX_FLAGS_TSO		0x00000004
#define IGB_TX_FLAGS_IPV4		0x00000008
A
Alexander Duyck 已提交
3393 3394 3395
#define IGB_TX_FLAGS_TSTAMP		0x00000010
#define IGB_TX_FLAGS_VLAN_MASK		0xffff0000
#define IGB_TX_FLAGS_VLAN_SHIFT		        16
3396

3397
static inline int igb_tso_adv(struct igb_ring *tx_ring,
3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424
			      struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
{
	struct e1000_adv_tx_context_desc *context_desc;
	unsigned int i;
	int err;
	struct igb_buffer *buffer_info;
	u32 info = 0, tu_cmd = 0;
	u32 mss_l4len_idx, l4len;
	*hdr_len = 0;

	if (skb_header_cloned(skb)) {
		err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
		if (err)
			return err;
	}

	l4len = tcp_hdrlen(skb);
	*hdr_len += l4len;

	if (skb->protocol == htons(ETH_P_IP)) {
		struct iphdr *iph = ip_hdr(skb);
		iph->tot_len = 0;
		iph->check = 0;
		tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
							 iph->daddr, 0,
							 IPPROTO_TCP,
							 0);
3425
	} else if (skb_is_gso_v6(skb)) {
3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457
		ipv6_hdr(skb)->payload_len = 0;
		tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
						       &ipv6_hdr(skb)->daddr,
						       0, IPPROTO_TCP, 0);
	}

	i = tx_ring->next_to_use;

	buffer_info = &tx_ring->buffer_info[i];
	context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);
	/* VLAN MACLEN IPLEN */
	if (tx_flags & IGB_TX_FLAGS_VLAN)
		info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
	info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
	*hdr_len += skb_network_offset(skb);
	info |= skb_network_header_len(skb);
	*hdr_len += skb_network_header_len(skb);
	context_desc->vlan_macip_lens = cpu_to_le32(info);

	/* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
	tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);

	if (skb->protocol == htons(ETH_P_IP))
		tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
	tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;

	context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);

	/* MSS L4LEN IDX */
	mss_l4len_idx = (skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT);
	mss_l4len_idx |= (l4len << E1000_ADVTXD_L4LEN_SHIFT);

3458
	/* For 82575, context index must be unique per ring. */
3459 3460
	if (tx_ring->flags & IGB_RING_FLAG_TX_CTX_IDX)
		mss_l4len_idx |= tx_ring->reg_idx << 4;
3461 3462 3463 3464 3465

	context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
	context_desc->seqnum_seed = 0;

	buffer_info->time_stamp = jiffies;
A
Alexander Duyck 已提交
3466
	buffer_info->next_to_watch = i;
3467 3468 3469 3470 3471 3472 3473 3474 3475 3476
	buffer_info->dma = 0;
	i++;
	if (i == tx_ring->count)
		i = 0;

	tx_ring->next_to_use = i;

	return true;
}

3477 3478
static inline bool igb_tx_csum_adv(struct igb_ring *tx_ring,
				   struct sk_buff *skb, u32 tx_flags)
3479 3480
{
	struct e1000_adv_tx_context_desc *context_desc;
3481
	struct pci_dev *pdev = tx_ring->pdev;
3482 3483
	struct igb_buffer *buffer_info;
	u32 info = 0, tu_cmd = 0;
3484
	unsigned int i;
3485 3486 3487 3488 3489 3490 3491 3492 3493

	if ((skb->ip_summed == CHECKSUM_PARTIAL) ||
	    (tx_flags & IGB_TX_FLAGS_VLAN)) {
		i = tx_ring->next_to_use;
		buffer_info = &tx_ring->buffer_info[i];
		context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);

		if (tx_flags & IGB_TX_FLAGS_VLAN)
			info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
A
Alexander Duyck 已提交
3494

3495 3496 3497 3498 3499 3500 3501 3502 3503
		info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
		if (skb->ip_summed == CHECKSUM_PARTIAL)
			info |= skb_network_header_len(skb);

		context_desc->vlan_macip_lens = cpu_to_le32(info);

		tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);

		if (skb->ip_summed == CHECKSUM_PARTIAL) {
3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515
			__be16 protocol;

			if (skb->protocol == cpu_to_be16(ETH_P_8021Q)) {
				const struct vlan_ethhdr *vhdr =
				          (const struct vlan_ethhdr*)skb->data;

				protocol = vhdr->h_vlan_encapsulated_proto;
			} else {
				protocol = skb->protocol;
			}

			switch (protocol) {
3516
			case cpu_to_be16(ETH_P_IP):
3517
				tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
3518 3519
				if (ip_hdr(skb)->protocol == IPPROTO_TCP)
					tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
3520 3521
				else if (ip_hdr(skb)->protocol == IPPROTO_SCTP)
					tu_cmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
3522
				break;
3523
			case cpu_to_be16(ETH_P_IPV6):
3524 3525 3526
				/* XXX what about other V6 headers?? */
				if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
					tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
3527 3528
				else if (ipv6_hdr(skb)->nexthdr == IPPROTO_SCTP)
					tu_cmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
3529 3530 3531
				break;
			default:
				if (unlikely(net_ratelimit()))
3532
					dev_warn(&pdev->dev,
3533 3534 3535 3536
					    "partial checksum but proto=%x!\n",
					    skb->protocol);
				break;
			}
3537 3538 3539 3540
		}

		context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
		context_desc->seqnum_seed = 0;
3541
		if (tx_ring->flags & IGB_RING_FLAG_TX_CTX_IDX)
3542
			context_desc->mss_l4len_idx =
3543
				cpu_to_le32(tx_ring->reg_idx << 4);
3544 3545

		buffer_info->time_stamp = jiffies;
A
Alexander Duyck 已提交
3546
		buffer_info->next_to_watch = i;
3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561
		buffer_info->dma = 0;

		i++;
		if (i == tx_ring->count)
			i = 0;
		tx_ring->next_to_use = i;

		return true;
	}
	return false;
}

#define IGB_MAX_TXD_PWR	16
#define IGB_MAX_DATA_PER_TXD	(1<<IGB_MAX_TXD_PWR)

3562
static inline int igb_tx_map_adv(struct igb_ring *tx_ring, struct sk_buff *skb,
A
Alexander Duyck 已提交
3563
				 unsigned int first)
3564 3565
{
	struct igb_buffer *buffer_info;
3566
	struct pci_dev *pdev = tx_ring->pdev;
3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577
	unsigned int len = skb_headlen(skb);
	unsigned int count = 0, i;
	unsigned int f;

	i = tx_ring->next_to_use;

	buffer_info = &tx_ring->buffer_info[i];
	BUG_ON(len >= IGB_MAX_DATA_PER_TXD);
	buffer_info->length = len;
	/* set time_stamp *before* dma to help avoid a possible race */
	buffer_info->time_stamp = jiffies;
A
Alexander Duyck 已提交
3578
	buffer_info->next_to_watch = i;
3579 3580 3581 3582
	buffer_info->dma = pci_map_single(pdev, skb->data, len,
					  PCI_DMA_TODEVICE);
	if (pci_dma_mapping_error(pdev, buffer_info->dma))
		goto dma_error;
3583 3584 3585 3586

	for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
		struct skb_frag_struct *frag;

3587
		count++;
3588 3589 3590 3591
		i++;
		if (i == tx_ring->count)
			i = 0;

3592 3593 3594 3595 3596 3597 3598
		frag = &skb_shinfo(skb)->frags[f];
		len = frag->size;

		buffer_info = &tx_ring->buffer_info[i];
		BUG_ON(len >= IGB_MAX_DATA_PER_TXD);
		buffer_info->length = len;
		buffer_info->time_stamp = jiffies;
A
Alexander Duyck 已提交
3599
		buffer_info->next_to_watch = i;
3600 3601 3602 3603 3604 3605 3606 3607 3608
		buffer_info->mapped_as_page = true;
		buffer_info->dma = pci_map_page(pdev,
						frag->page,
						frag->page_offset,
						len,
						PCI_DMA_TODEVICE);
		if (pci_dma_mapping_error(pdev, buffer_info->dma))
			goto dma_error;

3609 3610 3611
	}

	tx_ring->buffer_info[i].skb = skb;
A
Alexander Duyck 已提交
3612
	tx_ring->buffer_info[first].next_to_watch = i;
3613

A
Alexander Duyck 已提交
3614
	return ++count;
3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637

dma_error:
	dev_err(&pdev->dev, "TX DMA map failed\n");

	/* clear timestamp and dma mappings for failed buffer_info mapping */
	buffer_info->dma = 0;
	buffer_info->time_stamp = 0;
	buffer_info->length = 0;
	buffer_info->next_to_watch = 0;
	buffer_info->mapped_as_page = false;
	count--;

	/* clear timestamp and dma mappings for remaining portion of packet */
	while (count >= 0) {
		count--;
		i--;
		if (i < 0)
			i += tx_ring->count;
		buffer_info = &tx_ring->buffer_info[i];
		igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
	}

	return 0;
3638 3639
}

3640
static inline void igb_tx_queue_adv(struct igb_ring *tx_ring,
3641 3642 3643
				    int tx_flags, int count, u32 paylen,
				    u8 hdr_len)
{
A
Alexander Duyck 已提交
3644
	union e1000_adv_tx_desc *tx_desc;
3645 3646
	struct igb_buffer *buffer_info;
	u32 olinfo_status = 0, cmd_type_len;
A
Alexander Duyck 已提交
3647
	unsigned int i = tx_ring->next_to_use;
3648 3649 3650 3651 3652 3653 3654

	cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS |
			E1000_ADVTXD_DCMD_DEXT);

	if (tx_flags & IGB_TX_FLAGS_VLAN)
		cmd_type_len |= E1000_ADVTXD_DCMD_VLE;

3655 3656 3657
	if (tx_flags & IGB_TX_FLAGS_TSTAMP)
		cmd_type_len |= E1000_ADVTXD_MAC_TSTAMP;

3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671
	if (tx_flags & IGB_TX_FLAGS_TSO) {
		cmd_type_len |= E1000_ADVTXD_DCMD_TSE;

		/* insert tcp checksum */
		olinfo_status |= E1000_TXD_POPTS_TXSM << 8;

		/* insert ip checksum */
		if (tx_flags & IGB_TX_FLAGS_IPV4)
			olinfo_status |= E1000_TXD_POPTS_IXSM << 8;

	} else if (tx_flags & IGB_TX_FLAGS_CSUM) {
		olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
	}

3672 3673 3674
	if ((tx_ring->flags & IGB_RING_FLAG_TX_CTX_IDX) &&
	    (tx_flags & (IGB_TX_FLAGS_CSUM |
	                 IGB_TX_FLAGS_TSO |
3675
			 IGB_TX_FLAGS_VLAN)))
3676
		olinfo_status |= tx_ring->reg_idx << 4;
3677 3678 3679

	olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT);

A
Alexander Duyck 已提交
3680
	do {
3681 3682 3683 3684 3685 3686
		buffer_info = &tx_ring->buffer_info[i];
		tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
		tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
		tx_desc->read.cmd_type_len =
			cpu_to_le32(cmd_type_len | buffer_info->length);
		tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
A
Alexander Duyck 已提交
3687
		count--;
3688 3689 3690
		i++;
		if (i == tx_ring->count)
			i = 0;
A
Alexander Duyck 已提交
3691
	} while (count > 0);
3692

3693
	tx_desc->read.cmd_type_len |= cpu_to_le32(IGB_ADVTXD_DCMD);
3694 3695 3696 3697 3698 3699 3700
	/* Force memory writes to complete before letting h/w
	 * know there are new descriptors to fetch.  (Only
	 * applicable for weak-ordered memory model archs,
	 * such as IA-64). */
	wmb();

	tx_ring->next_to_use = i;
3701
	writel(i, tx_ring->tail);
3702 3703 3704 3705 3706
	/* we need this if more than one processor can write to our tail
	 * at a time, it syncronizes IO on IA64/Altix systems */
	mmiowb();
}

3707
static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, int size)
3708
{
3709 3710
	struct net_device *netdev = tx_ring->netdev;

3711 3712
	netif_stop_subqueue(netdev, tx_ring->queue_index);

3713 3714 3715 3716 3717 3718 3719
	/* Herbert's original patch had:
	 *  smp_mb__after_netif_stop_queue();
	 * but since that doesn't exist yet, just open code it. */
	smp_mb();

	/* We need to check again in a case another CPU has just
	 * made room available. */
3720
	if (igb_desc_unused(tx_ring) < size)
3721 3722 3723
		return -EBUSY;

	/* A reprieve! */
3724
	netif_wake_subqueue(netdev, tx_ring->queue_index);
3725
	tx_ring->tx_stats.restart_queue++;
3726 3727 3728
	return 0;
}

3729
static int igb_maybe_stop_tx(struct igb_ring *tx_ring, int size)
3730
{
3731
	if (igb_desc_unused(tx_ring) >= size)
3732
		return 0;
3733
	return __igb_maybe_stop_tx(tx_ring, size);
3734 3735
}

3736 3737
netdev_tx_t igb_xmit_frame_ring_adv(struct sk_buff *skb,
				    struct igb_ring *tx_ring)
3738
{
3739
	struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
A
Alexander Duyck 已提交
3740
	unsigned int first;
3741 3742
	unsigned int tx_flags = 0;
	u8 hdr_len = 0;
A
Alexander Duyck 已提交
3743
	int tso = 0, count;
3744
	union skb_shared_tx *shtx = skb_tx(skb);
3745 3746 3747 3748 3749 3750

	/* need: 1 descriptor per page,
	 *       + 2 desc gap to keep tail from touching head,
	 *       + 1 desc for skb->data,
	 *       + 1 desc for context descriptor,
	 * otherwise try next time */
3751
	if (igb_maybe_stop_tx(tx_ring, skb_shinfo(skb)->nr_frags + 4)) {
3752 3753 3754
		/* this is a hard error */
		return NETDEV_TX_BUSY;
	}
3755 3756 3757 3758 3759

	if (unlikely(shtx->hardware)) {
		shtx->in_progress = 1;
		tx_flags |= IGB_TX_FLAGS_TSTAMP;
	}
3760

A
Alexander Duyck 已提交
3761
	if (vlan_tx_tag_present(skb) && adapter->vlgrp) {
3762 3763 3764 3765
		tx_flags |= IGB_TX_FLAGS_VLAN;
		tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
	}

3766 3767 3768
	if (skb->protocol == htons(ETH_P_IP))
		tx_flags |= IGB_TX_FLAGS_IPV4;

A
Alexander Duyck 已提交
3769
	first = tx_ring->next_to_use;
3770 3771
	if (skb_is_gso(skb)) {
		tso = igb_tso_adv(tx_ring, skb, tx_flags, &hdr_len);
A
Alexander Duyck 已提交
3772

3773 3774 3775 3776
		if (tso < 0) {
			dev_kfree_skb_any(skb);
			return NETDEV_TX_OK;
		}
3777 3778 3779 3780
	}

	if (tso)
		tx_flags |= IGB_TX_FLAGS_TSO;
3781
	else if (igb_tx_csum_adv(tx_ring, skb, tx_flags) &&
3782 3783
	         (skb->ip_summed == CHECKSUM_PARTIAL))
		tx_flags |= IGB_TX_FLAGS_CSUM;
3784

3785
	/*
A
Alexander Duyck 已提交
3786
	 * count reflects descriptors mapped, if 0 or less then mapping error
3787 3788
	 * has occured and we need to rewind the descriptor queue
	 */
3789
	count = igb_tx_map_adv(tx_ring, skb, first);
3790
	if (!count) {
3791 3792 3793
		dev_kfree_skb_any(skb);
		tx_ring->buffer_info[first].time_stamp = 0;
		tx_ring->next_to_use = first;
3794
		return NETDEV_TX_OK;
3795
	}
3796

3797 3798 3799
	igb_tx_queue_adv(tx_ring, tx_flags, count, skb->len, hdr_len);

	/* Make sure there is space in the ring for the next send. */
3800
	igb_maybe_stop_tx(tx_ring, MAX_SKB_FRAGS + 4);
3801

3802 3803 3804
	return NETDEV_TX_OK;
}

3805 3806
static netdev_tx_t igb_xmit_frame_adv(struct sk_buff *skb,
				      struct net_device *netdev)
3807 3808
{
	struct igb_adapter *adapter = netdev_priv(netdev);
3809 3810
	struct igb_ring *tx_ring;
	int r_idx = 0;
3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821

	if (test_bit(__IGB_DOWN, &adapter->state)) {
		dev_kfree_skb_any(skb);
		return NETDEV_TX_OK;
	}

	if (skb->len <= 0) {
		dev_kfree_skb_any(skb);
		return NETDEV_TX_OK;
	}

3822
	r_idx = skb->queue_mapping & (IGB_ABS_MAX_TX_QUEUES - 1);
3823
	tx_ring = adapter->multi_tx_table[r_idx];
3824 3825 3826 3827 3828

	/* This goes back to the question of how to logically map a tx queue
	 * to a flow.  Right now, performance is impacted slightly negatively
	 * if using multiple tx queues.  If the stack breaks away from a
	 * single qdisc implementation, we can look at this again. */
3829
	return igb_xmit_frame_ring_adv(skb, tx_ring);
3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842
}

/**
 * igb_tx_timeout - Respond to a Tx Hang
 * @netdev: network interface device structure
 **/
static void igb_tx_timeout(struct net_device *netdev)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;

	/* Do the reset outside of interrupt context */
	adapter->tx_timeout_count++;
3843

3844 3845 3846
	if (hw->mac.type == e1000_82580)
		hw->dev_spec._82575.global_device_reset = true;

3847
	schedule_work(&adapter->reset_task);
3848 3849
	wr32(E1000_EICS,
	     (adapter->eims_enable_mask & ~adapter->eims_other));
3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866
}

static void igb_reset_task(struct work_struct *work)
{
	struct igb_adapter *adapter;
	adapter = container_of(work, struct igb_adapter, reset_task);

	igb_reinit_locked(adapter);
}

/**
 * igb_get_stats - Get System Network Statistics
 * @netdev: network interface device structure
 *
 * Returns the address of the device statistics structure.
 * The statistics are actually updated from the timer callback.
 **/
3867
static struct net_device_stats *igb_get_stats(struct net_device *netdev)
3868 3869
{
	/* only return the current stats */
3870
	return &netdev->stats;
3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882
}

/**
 * igb_change_mtu - Change the Maximum Transfer Unit
 * @netdev: network interface device structure
 * @new_mtu: new value for maximum frame size
 *
 * Returns 0 on success, negative on failure
 **/
static int igb_change_mtu(struct net_device *netdev, int new_mtu)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
3883
	struct pci_dev *pdev = adapter->pdev;
3884
	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
3885
	u32 rx_buffer_len, i;
3886

3887
	if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3888
		dev_err(&pdev->dev, "Invalid MTU setting\n");
3889 3890 3891 3892
		return -EINVAL;
	}

	if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
3893
		dev_err(&pdev->dev, "MTU > 9216 not supported.\n");
3894 3895 3896 3897 3898
		return -EINVAL;
	}

	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
		msleep(1);
3899

3900 3901
	/* igb_down has a dependency on max_frame_size */
	adapter->max_frame_size = max_frame;
3902

3903 3904 3905 3906 3907 3908
	/* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
	 * means we reserve 2 more, this pushes us to allocate from the next
	 * larger slab size.
	 * i.e. RXBUFFER_2048 --> size-4096 slab
	 */

3909
	if (max_frame <= IGB_RXBUFFER_1024)
3910
		rx_buffer_len = IGB_RXBUFFER_1024;
A
Alexander Duyck 已提交
3911
	else if (max_frame <= MAXIMUM_ETHERNET_VLAN_SIZE)
3912
		rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
A
Alexander Duyck 已提交
3913
	else
3914 3915 3916 3917
		rx_buffer_len = IGB_RXBUFFER_128;

	if (netif_running(netdev))
		igb_down(adapter);
3918

3919
	dev_info(&pdev->dev, "changing MTU from %d to %d\n",
3920 3921 3922
		 netdev->mtu, new_mtu);
	netdev->mtu = new_mtu;

3923 3924 3925
	for (i = 0; i < adapter->num_rx_queues; i++)
		adapter->rx_ring[i].rx_buffer_len = rx_buffer_len;

3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942
	if (netif_running(netdev))
		igb_up(adapter);
	else
		igb_reset(adapter);

	clear_bit(__IGB_RESETTING, &adapter->state);

	return 0;
}

/**
 * igb_update_stats - Update the board statistics counters
 * @adapter: board private structure
 **/

void igb_update_stats(struct igb_adapter *adapter)
{
3943
	struct net_device_stats *net_stats = igb_get_stats(adapter->netdev);
3944 3945
	struct e1000_hw *hw = &adapter->hw;
	struct pci_dev *pdev = adapter->pdev;
3946
	u32 rnbc;
3947
	u16 phy_tmp;
3948 3949
	int i;
	u64 bytes, packets;
3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961

#define PHY_IDLE_ERROR_COUNT_MASK 0x00FF

	/*
	 * Prevent stats update while adapter is being reset, or if the pci
	 * connection is down.
	 */
	if (adapter->link_speed == 0)
		return;
	if (pci_channel_offline(pdev))
		return;

3962 3963 3964 3965 3966
	bytes = 0;
	packets = 0;
	for (i = 0; i < adapter->num_rx_queues; i++) {
		u32 rqdpc_tmp = rd32(E1000_RQDPC(i)) & 0x0FFF;
		adapter->rx_ring[i].rx_stats.drops += rqdpc_tmp;
3967
		net_stats->rx_fifo_errors += rqdpc_tmp;
3968 3969 3970 3971
		bytes += adapter->rx_ring[i].rx_stats.bytes;
		packets += adapter->rx_ring[i].rx_stats.packets;
	}

3972 3973
	net_stats->rx_bytes = bytes;
	net_stats->rx_packets = packets;
3974 3975 3976 3977 3978 3979 3980

	bytes = 0;
	packets = 0;
	for (i = 0; i < adapter->num_tx_queues; i++) {
		bytes += adapter->tx_ring[i].tx_stats.bytes;
		packets += adapter->tx_ring[i].tx_stats.packets;
	}
3981 3982
	net_stats->tx_bytes = bytes;
	net_stats->tx_packets = packets;
3983 3984

	/* read stats registers */
3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016
	adapter->stats.crcerrs += rd32(E1000_CRCERRS);
	adapter->stats.gprc += rd32(E1000_GPRC);
	adapter->stats.gorc += rd32(E1000_GORCL);
	rd32(E1000_GORCH); /* clear GORCL */
	adapter->stats.bprc += rd32(E1000_BPRC);
	adapter->stats.mprc += rd32(E1000_MPRC);
	adapter->stats.roc += rd32(E1000_ROC);

	adapter->stats.prc64 += rd32(E1000_PRC64);
	adapter->stats.prc127 += rd32(E1000_PRC127);
	adapter->stats.prc255 += rd32(E1000_PRC255);
	adapter->stats.prc511 += rd32(E1000_PRC511);
	adapter->stats.prc1023 += rd32(E1000_PRC1023);
	adapter->stats.prc1522 += rd32(E1000_PRC1522);
	adapter->stats.symerrs += rd32(E1000_SYMERRS);
	adapter->stats.sec += rd32(E1000_SEC);

	adapter->stats.mpc += rd32(E1000_MPC);
	adapter->stats.scc += rd32(E1000_SCC);
	adapter->stats.ecol += rd32(E1000_ECOL);
	adapter->stats.mcc += rd32(E1000_MCC);
	adapter->stats.latecol += rd32(E1000_LATECOL);
	adapter->stats.dc += rd32(E1000_DC);
	adapter->stats.rlec += rd32(E1000_RLEC);
	adapter->stats.xonrxc += rd32(E1000_XONRXC);
	adapter->stats.xontxc += rd32(E1000_XONTXC);
	adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
	adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
	adapter->stats.fcruc += rd32(E1000_FCRUC);
	adapter->stats.gptc += rd32(E1000_GPTC);
	adapter->stats.gotc += rd32(E1000_GOTCL);
	rd32(E1000_GOTCH); /* clear GOTCL */
4017 4018
	rnbc = rd32(E1000_RNBC);
	adapter->stats.rnbc += rnbc;
4019
	net_stats->rx_fifo_errors += rnbc;
4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059
	adapter->stats.ruc += rd32(E1000_RUC);
	adapter->stats.rfc += rd32(E1000_RFC);
	adapter->stats.rjc += rd32(E1000_RJC);
	adapter->stats.tor += rd32(E1000_TORH);
	adapter->stats.tot += rd32(E1000_TOTH);
	adapter->stats.tpr += rd32(E1000_TPR);

	adapter->stats.ptc64 += rd32(E1000_PTC64);
	adapter->stats.ptc127 += rd32(E1000_PTC127);
	adapter->stats.ptc255 += rd32(E1000_PTC255);
	adapter->stats.ptc511 += rd32(E1000_PTC511);
	adapter->stats.ptc1023 += rd32(E1000_PTC1023);
	adapter->stats.ptc1522 += rd32(E1000_PTC1522);

	adapter->stats.mptc += rd32(E1000_MPTC);
	adapter->stats.bptc += rd32(E1000_BPTC);

	/* used for adaptive IFS */
	hw->mac.tx_packet_delta = rd32(E1000_TPT);
	adapter->stats.tpt += hw->mac.tx_packet_delta;
	hw->mac.collision_delta = rd32(E1000_COLC);
	adapter->stats.colc += hw->mac.collision_delta;

	adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
	adapter->stats.rxerrc += rd32(E1000_RXERRC);
	adapter->stats.tncrs += rd32(E1000_TNCRS);
	adapter->stats.tsctc += rd32(E1000_TSCTC);
	adapter->stats.tsctfc += rd32(E1000_TSCTFC);

	adapter->stats.iac += rd32(E1000_IAC);
	adapter->stats.icrxoc += rd32(E1000_ICRXOC);
	adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
	adapter->stats.icrxatc += rd32(E1000_ICRXATC);
	adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
	adapter->stats.ictxatc += rd32(E1000_ICTXATC);
	adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
	adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
	adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);

	/* Fill out the OS statistics structure */
4060 4061
	net_stats->multicast = adapter->stats.mprc;
	net_stats->collisions = adapter->stats.colc;
4062 4063 4064 4065

	/* Rx Errors */

	/* RLEC on some newer hardware can be incorrect so build
4066
	 * our own version based on RUC and ROC */
4067
	net_stats->rx_errors = adapter->stats.rxerrc +
4068 4069 4070
		adapter->stats.crcerrs + adapter->stats.algnerrc +
		adapter->stats.ruc + adapter->stats.roc +
		adapter->stats.cexterr;
4071 4072 4073 4074 4075
	net_stats->rx_length_errors = adapter->stats.ruc +
				      adapter->stats.roc;
	net_stats->rx_crc_errors = adapter->stats.crcerrs;
	net_stats->rx_frame_errors = adapter->stats.algnerrc;
	net_stats->rx_missed_errors = adapter->stats.mpc;
4076 4077

	/* Tx Errors */
4078 4079 4080 4081 4082
	net_stats->tx_errors = adapter->stats.ecol +
			       adapter->stats.latecol;
	net_stats->tx_aborted_errors = adapter->stats.ecol;
	net_stats->tx_window_errors = adapter->stats.latecol;
	net_stats->tx_carrier_errors = adapter->stats.tncrs;
4083 4084 4085 4086 4087 4088

	/* Tx Dropped needs to be maintained elsewhere */

	/* Phy Stats */
	if (hw->phy.media_type == e1000_media_type_copper) {
		if ((adapter->link_speed == SPEED_1000) &&
4089
		   (!igb_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102
			phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
			adapter->phy_stats.idle_errors += phy_tmp;
		}
	}

	/* Management Stats */
	adapter->stats.mgptc += rd32(E1000_MGTPTC);
	adapter->stats.mgprc += rd32(E1000_MGTPRC);
	adapter->stats.mgpdc += rd32(E1000_MGTPDC);
}

static irqreturn_t igb_msix_other(int irq, void *data)
{
4103
	struct igb_adapter *adapter = data;
4104
	struct e1000_hw *hw = &adapter->hw;
P
PJ Waskiewicz 已提交
4105 4106
	u32 icr = rd32(E1000_ICR);
	/* reading ICR causes bit 31 of EICR to be cleared */
4107

4108
	if (icr & E1000_ICR_DOUTSYNC) {
4109 4110 4111
		/* HW is reporting DMA is out of sync */
		adapter->stats.doosync++;
	}
4112

4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123
	/* Check for a mailbox event */
	if (icr & E1000_ICR_VMMB)
		igb_msg_task(adapter);

	if (icr & E1000_ICR_LSC) {
		hw->mac.get_link_status = 1;
		/* guard against interrupt when we're going down */
		if (!test_bit(__IGB_DOWN, &adapter->state))
			mod_timer(&adapter->watchdog_timer, jiffies + 1);
	}

4124 4125 4126 4127 4128 4129
	if (adapter->vfs_allocated_count)
		wr32(E1000_IMS, E1000_IMS_LSC |
				E1000_IMS_VMMB |
				E1000_IMS_DOUTSYNC);
	else
		wr32(E1000_IMS, E1000_IMS_LSC | E1000_IMS_DOUTSYNC);
P
PJ Waskiewicz 已提交
4130
	wr32(E1000_EIMS, adapter->eims_other);
4131 4132 4133 4134

	return IRQ_HANDLED;
}

4135
static void igb_write_itr(struct igb_q_vector *q_vector)
4136
{
4137
	u32 itr_val = q_vector->itr_val & 0x7FFC;
4138

4139 4140
	if (!q_vector->set_itr)
		return;
4141

4142 4143
	if (!itr_val)
		itr_val = 0x4;
4144

4145 4146
	if (q_vector->itr_shift)
		itr_val |= itr_val << q_vector->itr_shift;
4147
	else
4148
		itr_val |= 0x8000000;
4149

4150 4151
	writel(itr_val, q_vector->itr_register);
	q_vector->set_itr = 0;
4152 4153
}

4154
static irqreturn_t igb_msix_ring(int irq, void *data)
4155
{
4156
	struct igb_q_vector *q_vector = data;
4157

4158 4159
	/* Write the ITR value calculated from the previous interrupt. */
	igb_write_itr(q_vector);
4160

4161
	napi_schedule(&q_vector->napi);
P
PJ Waskiewicz 已提交
4162

4163
	return IRQ_HANDLED;
J
Jeb Cramer 已提交
4164 4165
}

4166
#ifdef CONFIG_IGB_DCA
4167
static void igb_update_dca(struct igb_q_vector *q_vector)
J
Jeb Cramer 已提交
4168
{
4169
	struct igb_adapter *adapter = q_vector->adapter;
J
Jeb Cramer 已提交
4170 4171 4172
	struct e1000_hw *hw = &adapter->hw;
	int cpu = get_cpu();

4173 4174 4175 4176 4177 4178 4179 4180 4181
	if (q_vector->cpu == cpu)
		goto out_no_update;

	if (q_vector->tx_ring) {
		int q = q_vector->tx_ring->reg_idx;
		u32 dca_txctrl = rd32(E1000_DCA_TXCTRL(q));
		if (hw->mac.type == e1000_82575) {
			dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK;
			dca_txctrl |= dca3_get_tag(&adapter->pdev->dev, cpu);
A
Alexander Duyck 已提交
4182
		} else {
4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193
			dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK_82576;
			dca_txctrl |= dca3_get_tag(&adapter->pdev->dev, cpu) <<
			              E1000_DCA_TXCTRL_CPUID_SHIFT;
		}
		dca_txctrl |= E1000_DCA_TXCTRL_DESC_DCA_EN;
		wr32(E1000_DCA_TXCTRL(q), dca_txctrl);
	}
	if (q_vector->rx_ring) {
		int q = q_vector->rx_ring->reg_idx;
		u32 dca_rxctrl = rd32(E1000_DCA_RXCTRL(q));
		if (hw->mac.type == e1000_82575) {
A
Alexander Duyck 已提交
4194
			dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK;
M
Maciej Sosnowski 已提交
4195
			dca_rxctrl |= dca3_get_tag(&adapter->pdev->dev, cpu);
4196 4197 4198 4199
		} else {
			dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK_82576;
			dca_rxctrl |= dca3_get_tag(&adapter->pdev->dev, cpu) <<
			              E1000_DCA_RXCTRL_CPUID_SHIFT;
A
Alexander Duyck 已提交
4200
		}
J
Jeb Cramer 已提交
4201 4202 4203 4204 4205
		dca_rxctrl |= E1000_DCA_RXCTRL_DESC_DCA_EN;
		dca_rxctrl |= E1000_DCA_RXCTRL_HEAD_DCA_EN;
		dca_rxctrl |= E1000_DCA_RXCTRL_DATA_DCA_EN;
		wr32(E1000_DCA_RXCTRL(q), dca_rxctrl);
	}
4206 4207
	q_vector->cpu = cpu;
out_no_update:
J
Jeb Cramer 已提交
4208 4209 4210 4211 4212
	put_cpu();
}

static void igb_setup_dca(struct igb_adapter *adapter)
{
4213
	struct e1000_hw *hw = &adapter->hw;
J
Jeb Cramer 已提交
4214 4215
	int i;

4216
	if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
J
Jeb Cramer 已提交
4217 4218
		return;

4219 4220 4221
	/* Always use CB2 mode, difference is masked in the CB driver. */
	wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);

4222 4223 4224 4225
	for (i = 0; i < adapter->num_q_vectors; i++) {
		struct igb_q_vector *q_vector = adapter->q_vector[i];
		q_vector->cpu = -1;
		igb_update_dca(q_vector);
J
Jeb Cramer 已提交
4226 4227 4228 4229 4230 4231 4232
	}
}

static int __igb_notify_dca(struct device *dev, void *data)
{
	struct net_device *netdev = dev_get_drvdata(dev);
	struct igb_adapter *adapter = netdev_priv(netdev);
4233
	struct pci_dev *pdev = adapter->pdev;
J
Jeb Cramer 已提交
4234 4235 4236 4237 4238 4239
	struct e1000_hw *hw = &adapter->hw;
	unsigned long event = *(unsigned long *)data;

	switch (event) {
	case DCA_PROVIDER_ADD:
		/* if already enabled, don't do it again */
4240
		if (adapter->flags & IGB_FLAG_DCA_ENABLED)
J
Jeb Cramer 已提交
4241 4242
			break;
		if (dca_add_requester(dev) == 0) {
4243
			adapter->flags |= IGB_FLAG_DCA_ENABLED;
4244
			dev_info(&pdev->dev, "DCA enabled\n");
J
Jeb Cramer 已提交
4245 4246 4247 4248 4249
			igb_setup_dca(adapter);
			break;
		}
		/* Fall Through since DCA is disabled. */
	case DCA_PROVIDER_REMOVE:
4250
		if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
J
Jeb Cramer 已提交
4251
			/* without this a class_device is left
4252
			 * hanging around in the sysfs model */
J
Jeb Cramer 已提交
4253
			dca_remove_requester(dev);
4254
			dev_info(&pdev->dev, "DCA disabled\n");
4255
			adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
A
Alexander Duyck 已提交
4256
			wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
J
Jeb Cramer 已提交
4257 4258 4259
		}
		break;
	}
4260

J
Jeb Cramer 已提交
4261
	return 0;
4262 4263
}

J
Jeb Cramer 已提交
4264 4265 4266 4267 4268 4269 4270 4271 4272 4273
static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
                          void *p)
{
	int ret_val;

	ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
	                                 __igb_notify_dca);

	return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
}
4274
#endif /* CONFIG_IGB_DCA */
4275

4276 4277 4278 4279 4280 4281 4282 4283
static void igb_ping_all_vfs(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 ping;
	int i;

	for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
		ping = E1000_PF_CONTROL_MSG;
4284
		if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
4285 4286 4287 4288 4289
			ping |= E1000_VT_MSGTYPE_CTS;
		igb_write_mbx(hw, &ping, 1, i);
	}
}

4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328
static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 vmolr = rd32(E1000_VMOLR(vf));
	struct vf_data_storage *vf_data = &adapter->vf_data[vf];

	vf_data->flags |= ~(IGB_VF_FLAG_UNI_PROMISC |
	                    IGB_VF_FLAG_MULTI_PROMISC);
	vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);

	if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
		vmolr |= E1000_VMOLR_MPME;
		*msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
	} else {
		/*
		 * if we have hashes and we are clearing a multicast promisc
		 * flag we need to write the hashes to the MTA as this step
		 * was previously skipped
		 */
		if (vf_data->num_vf_mc_hashes > 30) {
			vmolr |= E1000_VMOLR_MPME;
		} else if (vf_data->num_vf_mc_hashes) {
			int j;
			vmolr |= E1000_VMOLR_ROMPE;
			for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
				igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
		}
	}

	wr32(E1000_VMOLR(vf), vmolr);

	/* there are flags left unprocessed, likely not supported */
	if (*msgbuf & E1000_VT_MSGINFO_MASK)
		return -EINVAL;

	return 0;

}

4329 4330 4331 4332 4333 4334 4335 4336
static int igb_set_vf_multicasts(struct igb_adapter *adapter,
				  u32 *msgbuf, u32 vf)
{
	int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
	u16 *hash_list = (u16 *)&msgbuf[1];
	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
	int i;

4337
	/* salt away the number of multicast addresses assigned
4338 4339 4340 4341 4342
	 * to this VF for later use to restore when the PF multi cast
	 * list changes
	 */
	vf_data->num_vf_mc_hashes = n;

4343 4344 4345 4346 4347
	/* only up to 30 hash values supported */
	if (n > 30)
		n = 30;

	/* store the hashes for later use */
4348
	for (i = 0; i < n; i++)
4349
		vf_data->vf_mc_hashes[i] = hash_list[i];
4350 4351

	/* Flush and reset the mta with the new values */
4352
	igb_set_rx_mode(adapter->netdev);
4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363

	return 0;
}

static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	struct vf_data_storage *vf_data;
	int i, j;

	for (i = 0; i < adapter->vfs_allocated_count; i++) {
4364 4365 4366
		u32 vmolr = rd32(E1000_VMOLR(i));
		vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);

4367
		vf_data = &adapter->vf_data[i];
4368 4369 4370 4371 4372 4373 4374 4375 4376 4377

		if ((vf_data->num_vf_mc_hashes > 30) ||
		    (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
			vmolr |= E1000_VMOLR_MPME;
		} else if (vf_data->num_vf_mc_hashes) {
			vmolr |= E1000_VMOLR_ROMPE;
			for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
				igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
		}
		wr32(E1000_VMOLR(i), vmolr);
4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405
	}
}

static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 pool_mask, reg, vid;
	int i;

	pool_mask = 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);

	/* Find the vlan filter for this id */
	for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
		reg = rd32(E1000_VLVF(i));

		/* remove the vf from the pool */
		reg &= ~pool_mask;

		/* if pool is empty then remove entry from vfta */
		if (!(reg & E1000_VLVF_POOLSEL_MASK) &&
		    (reg & E1000_VLVF_VLANID_ENABLE)) {
			reg = 0;
			vid = reg & E1000_VLVF_VLANID_MASK;
			igb_vfta_set(hw, vid, false);
		}

		wr32(E1000_VLVF(i), reg);
	}
4406 4407

	adapter->vf_data[vf].vlans_enabled = 0;
4408 4409 4410 4411 4412 4413 4414
}

static s32 igb_vlvf_set(struct igb_adapter *adapter, u32 vid, bool add, u32 vf)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 reg, i;

4415 4416 4417 4418 4419
	/* The vlvf table only exists on 82576 hardware and newer */
	if (hw->mac.type < e1000_82576)
		return -1;

	/* we only need to do this if VMDq is enabled */
4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448
	if (!adapter->vfs_allocated_count)
		return -1;

	/* Find the vlan filter for this id */
	for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
		reg = rd32(E1000_VLVF(i));
		if ((reg & E1000_VLVF_VLANID_ENABLE) &&
		    vid == (reg & E1000_VLVF_VLANID_MASK))
			break;
	}

	if (add) {
		if (i == E1000_VLVF_ARRAY_SIZE) {
			/* Did not find a matching VLAN ID entry that was
			 * enabled.  Search for a free filter entry, i.e.
			 * one without the enable bit set
			 */
			for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
				reg = rd32(E1000_VLVF(i));
				if (!(reg & E1000_VLVF_VLANID_ENABLE))
					break;
			}
		}
		if (i < E1000_VLVF_ARRAY_SIZE) {
			/* Found an enabled/available entry */
			reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);

			/* if !enabled we need to set this up in vfta */
			if (!(reg & E1000_VLVF_VLANID_ENABLE)) {
4449 4450
				/* add VID to filter table */
				igb_vfta_set(hw, vid, true);
4451 4452
				reg |= E1000_VLVF_VLANID_ENABLE;
			}
A
Alexander Duyck 已提交
4453 4454
			reg &= ~E1000_VLVF_VLANID_MASK;
			reg |= vid;
4455
			wr32(E1000_VLVF(i), reg);
4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470

			/* do not modify RLPML for PF devices */
			if (vf >= adapter->vfs_allocated_count)
				return 0;

			if (!adapter->vf_data[vf].vlans_enabled) {
				u32 size;
				reg = rd32(E1000_VMOLR(vf));
				size = reg & E1000_VMOLR_RLPML_MASK;
				size += 4;
				reg &= ~E1000_VMOLR_RLPML_MASK;
				reg |= size;
				wr32(E1000_VMOLR(vf), reg);
			}

4471
			adapter->vf_data[vf].vlans_enabled++;
4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483
			return 0;
		}
	} else {
		if (i < E1000_VLVF_ARRAY_SIZE) {
			/* remove vf from the pool */
			reg &= ~(1 << (E1000_VLVF_POOLSEL_SHIFT + vf));
			/* if pool is empty then remove entry from vfta */
			if (!(reg & E1000_VLVF_POOLSEL_MASK)) {
				reg = 0;
				igb_vfta_set(hw, vid, false);
			}
			wr32(E1000_VLVF(i), reg);
4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498

			/* do not modify RLPML for PF devices */
			if (vf >= adapter->vfs_allocated_count)
				return 0;

			adapter->vf_data[vf].vlans_enabled--;
			if (!adapter->vf_data[vf].vlans_enabled) {
				u32 size;
				reg = rd32(E1000_VMOLR(vf));
				size = reg & E1000_VMOLR_RLPML_MASK;
				size -= 4;
				reg &= ~E1000_VMOLR_RLPML_MASK;
				reg |= size;
				wr32(E1000_VMOLR(vf), reg);
			}
4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512
			return 0;
		}
	}
	return -1;
}

static int igb_set_vf_vlan(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
{
	int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
	int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);

	return igb_vlvf_set(adapter, vid, add, vf);
}

4513
static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
4514
{
4515 4516 4517
	/* clear all flags */
	adapter->vf_data[vf].flags = 0;
	adapter->vf_data[vf].last_nack = jiffies;
4518 4519

	/* reset offloads to defaults */
4520
	igb_set_vmolr(adapter, vf);
4521 4522 4523 4524 4525 4526 4527 4528

	/* reset vlans for device */
	igb_clear_vf_vfta(adapter, vf);

	/* reset multicast table array for vf */
	adapter->vf_data[vf].num_vf_mc_hashes = 0;

	/* Flush and reset the mta with the new values */
4529
	igb_set_rx_mode(adapter->netdev);
4530 4531
}

4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543
static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
{
	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;

	/* generate a new mac address as we were hotplug removed/added */
	random_ether_addr(vf_mac);

	/* process remaining reset events */
	igb_vf_reset(adapter, vf);
}

static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
4544 4545 4546
{
	struct e1000_hw *hw = &adapter->hw;
	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
4547
	int rar_entry = hw->mac.rar_entry_count - (vf + 1);
4548 4549 4550 4551
	u32 reg, msgbuf[3];
	u8 *addr = (u8 *)(&msgbuf[1]);

	/* process all the same items cleared in a function level reset */
4552
	igb_vf_reset(adapter, vf);
4553 4554

	/* set vf mac address */
4555
	igb_rar_set_qsel(adapter, vf_mac, rar_entry, vf);
4556 4557 4558 4559 4560 4561 4562

	/* enable transmit and receive for vf */
	reg = rd32(E1000_VFTE);
	wr32(E1000_VFTE, reg | (1 << vf));
	reg = rd32(E1000_VFRE);
	wr32(E1000_VFRE, reg | (1 << vf));

4563
	adapter->vf_data[vf].flags = IGB_VF_FLAG_CTS;
4564 4565 4566 4567 4568 4569 4570 4571 4572

	/* reply to reset with ack and vf mac address */
	msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
	memcpy(addr, vf_mac, 6);
	igb_write_mbx(hw, msgbuf, 3, vf);
}

static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
{
4573 4574
	unsigned char *addr = (char *)&msg[1];
	int err = -1;
4575

4576 4577
	if (is_valid_ether_addr(addr))
		err = igb_set_vf_mac(adapter, vf, addr);
4578

4579
	return err;
4580 4581 4582 4583 4584
}

static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
{
	struct e1000_hw *hw = &adapter->hw;
4585
	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
4586 4587 4588
	u32 msg = E1000_VT_MSGTYPE_NACK;

	/* if device isn't clear to send it shouldn't be reading either */
4589 4590
	if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
	    time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
4591
		igb_write_mbx(hw, &msg, 1, vf);
4592
		vf_data->last_nack = jiffies;
4593 4594 4595
	}
}

4596
static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
4597
{
4598 4599
	struct pci_dev *pdev = adapter->pdev;
	u32 msgbuf[E1000_VFMAILBOX_SIZE];
4600
	struct e1000_hw *hw = &adapter->hw;
4601
	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
4602 4603
	s32 retval;

4604
	retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf);
4605

4606 4607
	if (retval) {
		/* if receive failed revoke VF CTS stats and restart init */
4608
		dev_err(&pdev->dev, "Error receiving message from VF\n");
4609 4610 4611 4612 4613
		vf_data->flags &= ~IGB_VF_FLAG_CTS;
		if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
			return;
		goto out;
	}
4614 4615 4616

	/* this is a message we already processed, do nothing */
	if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
4617
		return;
4618 4619 4620 4621 4622 4623 4624 4625

	/*
	 * until the vf completes a reset it should not be
	 * allowed to start any configuration.
	 */

	if (msgbuf[0] == E1000_VF_RESET) {
		igb_vf_reset_msg(adapter, vf);
4626
		return;
4627 4628
	}

4629
	if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
4630 4631 4632 4633
		if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
			return;
		retval = -1;
		goto out;
4634 4635 4636 4637 4638 4639
	}

	switch ((msgbuf[0] & 0xFFFF)) {
	case E1000_VF_SET_MAC_ADDR:
		retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
		break;
4640 4641 4642
	case E1000_VF_SET_PROMISC:
		retval = igb_set_vf_promisc(adapter, msgbuf, vf);
		break;
4643 4644 4645 4646 4647 4648 4649 4650 4651 4652
	case E1000_VF_SET_MULTICAST:
		retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
		break;
	case E1000_VF_SET_LPE:
		retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
		break;
	case E1000_VF_SET_VLAN:
		retval = igb_set_vf_vlan(adapter, msgbuf, vf);
		break;
	default:
4653
		dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
4654 4655 4656 4657
		retval = -1;
		break;
	}

4658 4659
	msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
out:
4660 4661 4662 4663 4664 4665 4666
	/* notify the VF of the results of what it sent us */
	if (retval)
		msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
	else
		msgbuf[0] |= E1000_VT_MSGTYPE_ACK;

	igb_write_mbx(hw, msgbuf, 1, vf);
4667
}
4668

4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686
static void igb_msg_task(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 vf;

	for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
		/* process any reset requests */
		if (!igb_check_for_rst(hw, vf))
			igb_vf_reset_event(adapter, vf);

		/* process any messages pending */
		if (!igb_check_for_msg(hw, vf))
			igb_rcv_msg_from_vf(adapter, vf);

		/* process any acks */
		if (!igb_check_for_ack(hw, vf))
			igb_rcv_ack_from_vf(adapter, vf);
	}
4687 4688
}

4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715
/**
 *  igb_set_uta - Set unicast filter table address
 *  @adapter: board private structure
 *
 *  The unicast table address is a register array of 32-bit registers.
 *  The table is meant to be used in a way similar to how the MTA is used
 *  however due to certain limitations in the hardware it is necessary to
 *  set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscous
 *  enable bit to allow vlan tag stripping when promiscous mode is enabled
 **/
static void igb_set_uta(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	int i;

	/* The UTA table only exists on 82576 hardware and newer */
	if (hw->mac.type < e1000_82576)
		return;

	/* we only need to do this if VMDq is enabled */
	if (!adapter->vfs_allocated_count)
		return;

	for (i = 0; i < hw->mac.uta_reg_count; i++)
		array_wr32(E1000_UTA, i, ~0);
}

4716 4717 4718 4719 4720 4721 4722
/**
 * igb_intr_msi - Interrupt Handler
 * @irq: interrupt number
 * @data: pointer to a network interface device structure
 **/
static irqreturn_t igb_intr_msi(int irq, void *data)
{
4723 4724
	struct igb_adapter *adapter = data;
	struct igb_q_vector *q_vector = adapter->q_vector[0];
4725 4726 4727 4728
	struct e1000_hw *hw = &adapter->hw;
	/* read ICR disables interrupts using IAM */
	u32 icr = rd32(E1000_ICR);

4729
	igb_write_itr(q_vector);
4730

4731
	if (icr & E1000_ICR_DOUTSYNC) {
4732 4733 4734 4735
		/* HW is reporting DMA is out of sync */
		adapter->stats.doosync++;
	}

4736 4737 4738 4739 4740 4741
	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
		hw->mac.get_link_status = 1;
		if (!test_bit(__IGB_DOWN, &adapter->state))
			mod_timer(&adapter->watchdog_timer, jiffies + 1);
	}

4742
	napi_schedule(&q_vector->napi);
4743 4744 4745 4746 4747

	return IRQ_HANDLED;
}

/**
4748
 * igb_intr - Legacy Interrupt Handler
4749 4750 4751 4752 4753
 * @irq: interrupt number
 * @data: pointer to a network interface device structure
 **/
static irqreturn_t igb_intr(int irq, void *data)
{
4754 4755
	struct igb_adapter *adapter = data;
	struct igb_q_vector *q_vector = adapter->q_vector[0];
4756 4757 4758 4759 4760 4761 4762
	struct e1000_hw *hw = &adapter->hw;
	/* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
	 * need for the IMC write */
	u32 icr = rd32(E1000_ICR);
	if (!icr)
		return IRQ_NONE;  /* Not our interrupt */

4763
	igb_write_itr(q_vector);
4764 4765 4766 4767 4768 4769

	/* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
	 * not set, then the adapter didn't send an interrupt */
	if (!(icr & E1000_ICR_INT_ASSERTED))
		return IRQ_NONE;

4770
	if (icr & E1000_ICR_DOUTSYNC) {
4771 4772 4773 4774
		/* HW is reporting DMA is out of sync */
		adapter->stats.doosync++;
	}

4775 4776 4777 4778 4779 4780 4781
	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
		hw->mac.get_link_status = 1;
		/* guard against interrupt when we're going down */
		if (!test_bit(__IGB_DOWN, &adapter->state))
			mod_timer(&adapter->watchdog_timer, jiffies + 1);
	}

4782
	napi_schedule(&q_vector->napi);
4783 4784 4785 4786

	return IRQ_HANDLED;
}

4787
static inline void igb_ring_irq_enable(struct igb_q_vector *q_vector)
4788
{
4789
	struct igb_adapter *adapter = q_vector->adapter;
4790
	struct e1000_hw *hw = &adapter->hw;
4791

4792 4793
	if ((q_vector->rx_ring && (adapter->rx_itr_setting & 3)) ||
	    (!q_vector->rx_ring && (adapter->tx_itr_setting & 3))) {
4794
		if (!adapter->msix_entries)
4795
			igb_set_itr(adapter);
4796
		else
4797
			igb_update_ring_itr(q_vector);
4798 4799
	}

4800 4801
	if (!test_bit(__IGB_DOWN, &adapter->state)) {
		if (adapter->msix_entries)
4802
			wr32(E1000_EIMS, q_vector->eims_value);
4803 4804 4805
		else
			igb_irq_enable(adapter);
	}
4806 4807
}

4808 4809 4810 4811 4812 4813
/**
 * igb_poll - NAPI Rx polling callback
 * @napi: napi polling structure
 * @budget: count of how many packets we should handle
 **/
static int igb_poll(struct napi_struct *napi, int budget)
4814
{
4815 4816 4817 4818
	struct igb_q_vector *q_vector = container_of(napi,
	                                             struct igb_q_vector,
	                                             napi);
	int tx_clean_complete = 1, work_done = 0;
4819

4820
#ifdef CONFIG_IGB_DCA
4821 4822
	if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
		igb_update_dca(q_vector);
J
Jeb Cramer 已提交
4823
#endif
4824 4825
	if (q_vector->tx_ring)
		tx_clean_complete = igb_clean_tx_irq(q_vector);
4826

4827 4828 4829 4830 4831
	if (q_vector->rx_ring)
		igb_clean_rx_irq_adv(q_vector, &work_done, budget);

	if (!tx_clean_complete)
		work_done = budget;
4832

4833
	/* If not enough Rx work done, exit the polling mode */
4834
	if (work_done < budget) {
4835
		napi_complete(napi);
4836
		igb_ring_irq_enable(q_vector);
4837 4838
	}

4839
	return work_done;
4840
}
A
Al Viro 已提交
4841

4842
/**
4843
 * igb_systim_to_hwtstamp - convert system time value to hw timestamp
4844
 * @adapter: board private structure
4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856
 * @shhwtstamps: timestamp structure to update
 * @regval: unsigned 64bit system time value.
 *
 * We need to convert the system time value stored in the RX/TXSTMP registers
 * into a hwtstamp which can be used by the upper level timestamping functions
 */
static void igb_systim_to_hwtstamp(struct igb_adapter *adapter,
                                   struct skb_shared_hwtstamps *shhwtstamps,
                                   u64 regval)
{
	u64 ns;

4857 4858 4859 4860 4861 4862 4863
	/*
	 * The 82580 starts with 1ns at bit 0 in RX/TXSTMPL, shift this up to
	 * 24 to match clock shift we setup earlier.
	 */
	if (adapter->hw.mac.type == e1000_82580)
		regval <<= IGB_82580_TSYNC_SHIFT;

4864 4865 4866 4867 4868 4869 4870 4871 4872 4873
	ns = timecounter_cyc2time(&adapter->clock, regval);
	timecompare_update(&adapter->compare, ns);
	memset(shhwtstamps, 0, sizeof(struct skb_shared_hwtstamps));
	shhwtstamps->hwtstamp = ns_to_ktime(ns);
	shhwtstamps->syststamp = timecompare_transform(&adapter->compare, ns);
}

/**
 * igb_tx_hwtstamp - utility function which checks for TX time stamp
 * @q_vector: pointer to q_vector containing needed info
4874 4875 4876 4877 4878 4879
 * @skb: packet that was just sent
 *
 * If we were asked to do hardware stamping and such a time stamp is
 * available, then it must have been for this skb here because we only
 * allow only one such packet into the queue.
 */
4880
static void igb_tx_hwtstamp(struct igb_q_vector *q_vector, struct sk_buff *skb)
4881
{
4882
	struct igb_adapter *adapter = q_vector->adapter;
4883 4884
	union skb_shared_tx *shtx = skb_tx(skb);
	struct e1000_hw *hw = &adapter->hw;
4885 4886
	struct skb_shared_hwtstamps shhwtstamps;
	u64 regval;
4887

4888 4889 4890 4891 4892 4893 4894 4895 4896 4897
	/* if skb does not support hw timestamp or TX stamp not valid exit */
	if (likely(!shtx->hardware) ||
	    !(rd32(E1000_TSYNCTXCTL) & E1000_TSYNCTXCTL_VALID))
		return;

	regval = rd32(E1000_TXSTMPL);
	regval |= (u64)rd32(E1000_TXSTMPH) << 32;

	igb_systim_to_hwtstamp(adapter, &shhwtstamps, regval);
	skb_tstamp_tx(skb, &shhwtstamps);
4898 4899
}

4900 4901
/**
 * igb_clean_tx_irq - Reclaim resources after transmit completes
4902
 * @q_vector: pointer to q_vector containing needed info
4903 4904
 * returns true if ring is completely cleaned
 **/
4905
static bool igb_clean_tx_irq(struct igb_q_vector *q_vector)
4906
{
4907 4908
	struct igb_adapter *adapter = q_vector->adapter;
	struct igb_ring *tx_ring = q_vector->tx_ring;
4909
	struct net_device *netdev = tx_ring->netdev;
A
Alexander Duyck 已提交
4910
	struct e1000_hw *hw = &adapter->hw;
4911 4912
	struct igb_buffer *buffer_info;
	struct sk_buff *skb;
A
Alexander Duyck 已提交
4913
	union e1000_adv_tx_desc *tx_desc, *eop_desc;
4914
	unsigned int total_bytes = 0, total_packets = 0;
A
Alexander Duyck 已提交
4915 4916
	unsigned int i, eop, count = 0;
	bool cleaned = false;
4917 4918

	i = tx_ring->next_to_clean;
A
Alexander Duyck 已提交
4919 4920 4921 4922 4923 4924 4925
	eop = tx_ring->buffer_info[i].next_to_watch;
	eop_desc = E1000_TX_DESC_ADV(*tx_ring, eop);

	while ((eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)) &&
	       (count < tx_ring->count)) {
		for (cleaned = false; !cleaned; count++) {
			tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
4926
			buffer_info = &tx_ring->buffer_info[i];
A
Alexander Duyck 已提交
4927
			cleaned = (i == eop);
4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938
			skb = buffer_info->skb;

			if (skb) {
				unsigned int segs, bytecount;
				/* gso_segs is currently only valid for tcp */
				segs = skb_shinfo(skb)->gso_segs ?: 1;
				/* multiply data chunks by size of headers */
				bytecount = ((segs - 1) * skb_headlen(skb)) +
					    skb->len;
				total_packets += segs;
				total_bytes += bytecount;
4939

4940
				igb_tx_hwtstamp(q_vector, skb);
4941 4942
			}

4943
			igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
A
Alexander Duyck 已提交
4944
			tx_desc->wb.status = 0;
4945 4946 4947 4948 4949

			i++;
			if (i == tx_ring->count)
				i = 0;
		}
A
Alexander Duyck 已提交
4950 4951 4952 4953
		eop = tx_ring->buffer_info[i].next_to_watch;
		eop_desc = E1000_TX_DESC_ADV(*tx_ring, eop);
	}

4954 4955
	tx_ring->next_to_clean = i;

4956
	if (unlikely(count &&
4957
		     netif_carrier_ok(netdev) &&
4958
		     igb_desc_unused(tx_ring) >= IGB_TX_QUEUE_WAKE)) {
4959 4960 4961 4962
		/* Make sure that anybody stopping the queue after this
		 * sees the new next_to_clean.
		 */
		smp_mb();
4963 4964 4965
		if (__netif_subqueue_stopped(netdev, tx_ring->queue_index) &&
		    !(test_bit(__IGB_DOWN, &adapter->state))) {
			netif_wake_subqueue(netdev, tx_ring->queue_index);
4966
			tx_ring->tx_stats.restart_queue++;
4967
		}
4968 4969 4970 4971 4972 4973 4974 4975
	}

	if (tx_ring->detect_tx_hung) {
		/* Detect a transmit hang in hardware, this serializes the
		 * check with the clearing of time_stamp and movement of i */
		tx_ring->detect_tx_hung = false;
		if (tx_ring->buffer_info[i].time_stamp &&
		    time_after(jiffies, tx_ring->buffer_info[i].time_stamp +
4976 4977
			       (adapter->tx_timeout_factor * HZ)) &&
		    !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
4978 4979

			/* detected Tx unit hang */
4980
			dev_err(&tx_ring->pdev->dev,
4981
				"Detected Tx Unit Hang\n"
A
Alexander Duyck 已提交
4982
				"  Tx Queue             <%d>\n"
4983 4984 4985 4986 4987 4988
				"  TDH                  <%x>\n"
				"  TDT                  <%x>\n"
				"  next_to_use          <%x>\n"
				"  next_to_clean        <%x>\n"
				"buffer_info[next_to_clean]\n"
				"  time_stamp           <%lx>\n"
A
Alexander Duyck 已提交
4989
				"  next_to_watch        <%x>\n"
4990 4991
				"  jiffies              <%lx>\n"
				"  desc.status          <%x>\n",
A
Alexander Duyck 已提交
4992
				tx_ring->queue_index,
4993 4994
				readl(tx_ring->head),
				readl(tx_ring->tail),
4995 4996
				tx_ring->next_to_use,
				tx_ring->next_to_clean,
4997
				tx_ring->buffer_info[eop].time_stamp,
A
Alexander Duyck 已提交
4998
				eop,
4999
				jiffies,
A
Alexander Duyck 已提交
5000
				eop_desc->wb.status);
5001
			netif_stop_subqueue(netdev, tx_ring->queue_index);
5002 5003 5004 5005
		}
	}
	tx_ring->total_bytes += total_bytes;
	tx_ring->total_packets += total_packets;
5006 5007
	tx_ring->tx_stats.bytes += total_bytes;
	tx_ring->tx_stats.packets += total_packets;
A
Alexander Duyck 已提交
5008
	return (count < tx_ring->count);
5009 5010 5011 5012
}

/**
 * igb_receive_skb - helper function to handle rx indications
5013 5014 5015
 * @q_vector: structure containing interrupt and ring information
 * @skb: packet to send up
 * @vlan_tag: vlan tag for packet
5016
 **/
5017 5018 5019 5020 5021 5022 5023 5024 5025
static void igb_receive_skb(struct igb_q_vector *q_vector,
                            struct sk_buff *skb,
                            u16 vlan_tag)
{
	struct igb_adapter *adapter = q_vector->adapter;

	if (vlan_tag)
		vlan_gro_receive(&q_vector->napi, adapter->vlgrp,
		                 vlan_tag, skb);
5026
	else
5027
		napi_gro_receive(&q_vector->napi, skb);
5028 5029
}

5030
static inline void igb_rx_checksum_adv(struct igb_ring *ring,
5031 5032 5033 5034 5035
				       u32 status_err, struct sk_buff *skb)
{
	skb->ip_summed = CHECKSUM_NONE;

	/* Ignore Checksum bit is set or checksum is disabled through ethtool */
5036 5037
	if (!(ring->flags & IGB_RING_FLAG_RX_CSUM) ||
	     (status_err & E1000_RXD_STAT_IXSM))
5038
		return;
5039

5040 5041 5042
	/* TCP/UDP checksum error bit is set */
	if (status_err &
	    (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) {
5043 5044 5045 5046 5047
		/*
		 * work around errata with sctp packets where the TCPE aka
		 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
		 * packets, (aka let the stack check the crc32c)
		 */
5048 5049
		if ((skb->len == 60) &&
		    (ring->flags & IGB_RING_FLAG_RX_SCTP_CSUM))
5050
			ring->rx_stats.csum_err++;
5051

5052 5053 5054 5055 5056 5057 5058
		/* let the stack verify checksum errors */
		return;
	}
	/* It must be a TCP or UDP packet with a valid checksum */
	if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))
		skb->ip_summed = CHECKSUM_UNNECESSARY;

5059
	dev_dbg(&ring->pdev->dev, "cksum success: bits %08X\n", status_err);
5060 5061
}

5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089
static inline void igb_rx_hwtstamp(struct igb_q_vector *q_vector, u32 staterr,
                                   struct sk_buff *skb)
{
	struct igb_adapter *adapter = q_vector->adapter;
	struct e1000_hw *hw = &adapter->hw;
	u64 regval;

	/*
	 * If this bit is set, then the RX registers contain the time stamp. No
	 * other packet will be time stamped until we read these registers, so
	 * read the registers to make them available again. Because only one
	 * packet can be time stamped at a time, we know that the register
	 * values must belong to this one here and therefore we don't need to
	 * compare any of the additional attributes stored for it.
	 *
	 * If nothing went wrong, then it should have a skb_shared_tx that we
	 * can turn into a skb_shared_hwtstamps.
	 */
	if (likely(!(staterr & E1000_RXDADV_STAT_TS)))
		return;
	if (!(rd32(E1000_TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
		return;

	regval = rd32(E1000_RXSTMPL);
	regval |= (u64)rd32(E1000_RXSTMPH) << 32;

	igb_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), regval);
}
5090
static inline u16 igb_get_hlen(struct igb_ring *rx_ring,
5091 5092 5093 5094 5095 5096 5097 5098
                               union e1000_adv_rx_desc *rx_desc)
{
	/* HW will not DMA in data larger than the given buffer, even if it
	 * parses the (NFS, of course) header to be larger.  In that case, it
	 * fills the header buffer and spills the rest into the page.
	 */
	u16 hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hdr_info) &
	           E1000_RXDADV_HDRBUFLEN_MASK) >> E1000_RXDADV_HDRBUFLEN_SHIFT;
5099 5100
	if (hlen > rx_ring->rx_buffer_len)
		hlen = rx_ring->rx_buffer_len;
5101 5102 5103
	return hlen;
}

5104 5105
static bool igb_clean_rx_irq_adv(struct igb_q_vector *q_vector,
                                 int *work_done, int budget)
5106
{
5107
	struct igb_ring *rx_ring = q_vector->rx_ring;
5108
	struct net_device *netdev = rx_ring->netdev;
5109
	struct pci_dev *pdev = rx_ring->pdev;
5110 5111 5112 5113 5114
	union e1000_adv_rx_desc *rx_desc , *next_rxd;
	struct igb_buffer *buffer_info , *next_buffer;
	struct sk_buff *skb;
	bool cleaned = false;
	int cleaned_count = 0;
5115
	int current_node = numa_node_id();
5116
	unsigned int total_bytes = 0, total_packets = 0;
5117
	unsigned int i;
5118 5119
	u32 staterr;
	u16 length;
5120
	u16 vlan_tag;
5121 5122

	i = rx_ring->next_to_clean;
5123
	buffer_info = &rx_ring->buffer_info[i];
5124 5125 5126 5127 5128 5129 5130 5131
	rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
	staterr = le32_to_cpu(rx_desc->wb.upper.status_error);

	while (staterr & E1000_RXD_STAT_DD) {
		if (*work_done >= budget)
			break;
		(*work_done)++;

5132 5133 5134 5135 5136 5137 5138
		skb = buffer_info->skb;
		prefetch(skb->data - NET_IP_ALIGN);
		buffer_info->skb = NULL;

		i++;
		if (i == rx_ring->count)
			i = 0;
5139

5140 5141 5142
		next_rxd = E1000_RX_DESC_ADV(*rx_ring, i);
		prefetch(next_rxd);
		next_buffer = &rx_ring->buffer_info[i];
5143 5144 5145 5146 5147

		length = le16_to_cpu(rx_desc->wb.upper.length);
		cleaned = true;
		cleaned_count++;

5148
		if (buffer_info->dma) {
5149
			pci_unmap_single(pdev, buffer_info->dma,
5150
					 rx_ring->rx_buffer_len,
5151
					 PCI_DMA_FROMDEVICE);
J
Jesse Brandeburg 已提交
5152
			buffer_info->dma = 0;
5153
			if (rx_ring->rx_buffer_len >= IGB_RXBUFFER_1024) {
A
Alexander Duyck 已提交
5154 5155 5156
				skb_put(skb, length);
				goto send_up;
			}
5157
			skb_put(skb, igb_get_hlen(rx_ring, rx_desc));
5158 5159 5160
		}

		if (length) {
5161
			pci_unmap_page(pdev, buffer_info->page_dma,
5162
				       PAGE_SIZE / 2, PCI_DMA_FROMDEVICE);
5163
			buffer_info->page_dma = 0;
5164 5165 5166 5167 5168 5169

			skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags++,
						buffer_info->page,
						buffer_info->page_offset,
						length);

5170 5171
			if ((page_count(buffer_info->page) != 1) ||
			    (page_to_nid(buffer_info->page) != current_node))
5172 5173 5174
				buffer_info->page = NULL;
			else
				get_page(buffer_info->page);
5175 5176 5177

			skb->len += length;
			skb->data_len += length;
5178
			skb->truesize += length;
5179 5180
		}

5181
		if (!(staterr & E1000_RXD_STAT_EOP)) {
5182 5183 5184 5185
			buffer_info->skb = next_buffer->skb;
			buffer_info->dma = next_buffer->dma;
			next_buffer->skb = skb;
			next_buffer->dma = 0;
5186 5187
			goto next_desc;
		}
5188
send_up:
5189 5190 5191 5192 5193
		if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
			dev_kfree_skb_irq(skb);
			goto next_desc;
		}

5194
		igb_rx_hwtstamp(q_vector, staterr, skb);
5195 5196 5197
		total_bytes += skb->len;
		total_packets++;

5198
		igb_rx_checksum_adv(rx_ring, staterr, skb);
5199 5200

		skb->protocol = eth_type_trans(skb, netdev);
5201 5202 5203 5204
		skb_record_rx_queue(skb, rx_ring->queue_index);

		vlan_tag = ((staterr & E1000_RXD_STAT_VP) ?
		            le16_to_cpu(rx_desc->wb.upper.vlan) : 0);
5205

5206
		igb_receive_skb(q_vector, skb, vlan_tag);
5207 5208 5209 5210 5211 5212

next_desc:
		rx_desc->wb.upper.status_error = 0;

		/* return some buffers to hardware, one at a time is too slow */
		if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
5213
			igb_alloc_rx_buffers_adv(rx_ring, cleaned_count);
5214 5215 5216 5217 5218 5219 5220 5221
			cleaned_count = 0;
		}

		/* use prefetched values */
		rx_desc = next_rxd;
		buffer_info = next_buffer;
		staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
	}
5222

5223
	rx_ring->next_to_clean = i;
5224
	cleaned_count = igb_desc_unused(rx_ring);
5225 5226

	if (cleaned_count)
5227
		igb_alloc_rx_buffers_adv(rx_ring, cleaned_count);
5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239

	rx_ring->total_packets += total_packets;
	rx_ring->total_bytes += total_bytes;
	rx_ring->rx_stats.packets += total_packets;
	rx_ring->rx_stats.bytes += total_bytes;
	return cleaned;
}

/**
 * igb_alloc_rx_buffers_adv - Replace used receive buffers; packet split
 * @adapter: address of board private structure
 **/
5240
void igb_alloc_rx_buffers_adv(struct igb_ring *rx_ring, int cleaned_count)
5241
{
5242
	struct net_device *netdev = rx_ring->netdev;
5243 5244 5245 5246
	union e1000_adv_rx_desc *rx_desc;
	struct igb_buffer *buffer_info;
	struct sk_buff *skb;
	unsigned int i;
5247
	int bufsz;
5248 5249 5250 5251

	i = rx_ring->next_to_use;
	buffer_info = &rx_ring->buffer_info[i];

5252
	bufsz = rx_ring->rx_buffer_len;
5253

5254 5255 5256
	while (cleaned_count--) {
		rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);

A
Alexander Duyck 已提交
5257
		if ((bufsz < IGB_RXBUFFER_1024) && !buffer_info->page_dma) {
5258
			if (!buffer_info->page) {
5259
				buffer_info->page = netdev_alloc_page(netdev);
5260
				if (!buffer_info->page) {
5261
					rx_ring->rx_stats.alloc_failed++;
5262 5263 5264 5265 5266
					goto no_buffers;
				}
				buffer_info->page_offset = 0;
			} else {
				buffer_info->page_offset ^= PAGE_SIZE / 2;
5267 5268
			}
			buffer_info->page_dma =
5269
				pci_map_page(rx_ring->pdev, buffer_info->page,
5270 5271
					     buffer_info->page_offset,
					     PAGE_SIZE / 2,
5272
					     PCI_DMA_FROMDEVICE);
5273 5274 5275 5276 5277 5278
			if (pci_dma_mapping_error(rx_ring->pdev,
			                          buffer_info->page_dma)) {
				buffer_info->page_dma = 0;
				rx_ring->rx_stats.alloc_failed++;
				goto no_buffers;
			}
5279 5280
		}

5281 5282
		skb = buffer_info->skb;
		if (!skb) {
5283
			skb = netdev_alloc_skb_ip_align(netdev, bufsz);
5284
			if (!skb) {
5285
				rx_ring->rx_stats.alloc_failed++;
5286 5287 5288 5289
				goto no_buffers;
			}

			buffer_info->skb = skb;
5290 5291
		}
		if (!buffer_info->dma) {
5292 5293
			buffer_info->dma = pci_map_single(rx_ring->pdev,
			                                  skb->data,
5294 5295
							  bufsz,
							  PCI_DMA_FROMDEVICE);
5296 5297 5298 5299 5300 5301
			if (pci_dma_mapping_error(rx_ring->pdev,
			                          buffer_info->dma)) {
				buffer_info->dma = 0;
				rx_ring->rx_stats.alloc_failed++;
				goto no_buffers;
			}
5302 5303 5304
		}
		/* Refresh the desc even if buffer_addrs didn't change because
		 * each write-back erases this info. */
A
Alexander Duyck 已提交
5305
		if (bufsz < IGB_RXBUFFER_1024) {
5306 5307 5308 5309
			rx_desc->read.pkt_addr =
			     cpu_to_le64(buffer_info->page_dma);
			rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma);
		} else {
5310
			rx_desc->read.pkt_addr = cpu_to_le64(buffer_info->dma);
5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332
			rx_desc->read.hdr_addr = 0;
		}

		i++;
		if (i == rx_ring->count)
			i = 0;
		buffer_info = &rx_ring->buffer_info[i];
	}

no_buffers:
	if (rx_ring->next_to_use != i) {
		rx_ring->next_to_use = i;
		if (i == 0)
			i = (rx_ring->count - 1);
		else
			i--;

		/* Force memory writes to complete before letting h/w
		 * know there are new descriptors to fetch.  (Only
		 * applicable for weak-ordered memory model archs,
		 * such as IA-64). */
		wmb();
5333
		writel(i, rx_ring->tail);
5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355
	}
}

/**
 * igb_mii_ioctl -
 * @netdev:
 * @ifreq:
 * @cmd:
 **/
static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct mii_ioctl_data *data = if_mii(ifr);

	if (adapter->hw.phy.media_type != e1000_media_type_copper)
		return -EOPNOTSUPP;

	switch (cmd) {
	case SIOCGMIIPHY:
		data->phy_id = adapter->hw.phy.addr;
		break;
	case SIOCGMIIREG:
5356 5357
		if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
		                     &data->val_out))
5358 5359 5360 5361 5362 5363 5364 5365 5366
			return -EIO;
		break;
	case SIOCSMIIREG:
	default:
		return -EOPNOTSUPP;
	}
	return 0;
}

5367 5368 5369 5370 5371 5372
/**
 * igb_hwtstamp_ioctl - control hardware time stamping
 * @netdev:
 * @ifreq:
 * @cmd:
 *
5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384
 * Outgoing time stamping can be enabled and disabled. Play nice and
 * disable it when requested, although it shouldn't case any overhead
 * when no packet needs it. At most one packet in the queue may be
 * marked for time stamping, otherwise it would be impossible to tell
 * for sure to which packet the hardware time stamp belongs.
 *
 * Incoming time stamping has to be configured via the hardware
 * filters. Not all combinations are supported, in particular event
 * type has to be specified. Matching the kind of event packet is
 * not supported, with the exception of "all V2 events regardless of
 * level 2 or 4".
 *
5385 5386 5387 5388
 **/
static int igb_hwtstamp_ioctl(struct net_device *netdev,
			      struct ifreq *ifr, int cmd)
{
5389 5390
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
5391
	struct hwtstamp_config config;
5392 5393
	u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
	u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
5394
	u32 tsync_rx_cfg = 0;
5395 5396
	bool is_l4 = false;
	bool is_l2 = false;
5397
	u32 regval;
5398 5399 5400 5401 5402 5403 5404 5405

	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
		return -EFAULT;

	/* reserved for future extensions */
	if (config.flags)
		return -EINVAL;

5406 5407
	switch (config.tx_type) {
	case HWTSTAMP_TX_OFF:
5408
		tsync_tx_ctl = 0;
5409 5410 5411 5412 5413 5414 5415 5416
	case HWTSTAMP_TX_ON:
		break;
	default:
		return -ERANGE;
	}

	switch (config.rx_filter) {
	case HWTSTAMP_FILTER_NONE:
5417
		tsync_rx_ctl = 0;
5418 5419 5420 5421 5422 5423 5424 5425 5426 5427
		break;
	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
	case HWTSTAMP_FILTER_ALL:
		/*
		 * register TSYNCRXCFG must be set, therefore it is not
		 * possible to time stamp both Sync and Delay_Req messages
		 * => fall back to time stamping all packets
		 */
5428
		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
5429 5430 5431
		config.rx_filter = HWTSTAMP_FILTER_ALL;
		break;
	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
5432
		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
5433
		tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE;
5434
		is_l4 = true;
5435 5436
		break;
	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
5437
		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
5438
		tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE;
5439
		is_l4 = true;
5440 5441 5442
		break;
	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
5443
		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
5444
		tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V2_SYNC_MESSAGE;
5445 5446
		is_l2 = true;
		is_l4 = true;
5447 5448 5449 5450
		config.rx_filter = HWTSTAMP_FILTER_SOME;
		break;
	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
5451
		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
5452
		tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V2_DELAY_REQ_MESSAGE;
5453 5454
		is_l2 = true;
		is_l4 = true;
5455 5456 5457 5458 5459
		config.rx_filter = HWTSTAMP_FILTER_SOME;
		break;
	case HWTSTAMP_FILTER_PTP_V2_EVENT:
	case HWTSTAMP_FILTER_PTP_V2_SYNC:
	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
5460
		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
5461
		config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
5462
		is_l2 = true;
5463 5464 5465 5466 5467
		break;
	default:
		return -ERANGE;
	}

5468 5469 5470 5471 5472 5473
	if (hw->mac.type == e1000_82575) {
		if (tsync_rx_ctl | tsync_tx_ctl)
			return -EINVAL;
		return 0;
	}

5474 5475
	/* enable/disable TX */
	regval = rd32(E1000_TSYNCTXCTL);
5476 5477
	regval &= ~E1000_TSYNCTXCTL_ENABLED;
	regval |= tsync_tx_ctl;
5478 5479
	wr32(E1000_TSYNCTXCTL, regval);

5480
	/* enable/disable RX */
5481
	regval = rd32(E1000_TSYNCRXCTL);
5482 5483
	regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
	regval |= tsync_rx_ctl;
5484 5485
	wr32(E1000_TSYNCRXCTL, regval);

5486 5487
	/* define which PTP packets are time stamped */
	wr32(E1000_TSYNCRXCFG, tsync_rx_cfg);
5488

5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518
	/* define ethertype filter for timestamped packets */
	if (is_l2)
		wr32(E1000_ETQF(3),
		                (E1000_ETQF_FILTER_ENABLE | /* enable filter */
		                 E1000_ETQF_1588 | /* enable timestamping */
		                 ETH_P_1588));     /* 1588 eth protocol type */
	else
		wr32(E1000_ETQF(3), 0);

#define PTP_PORT 319
	/* L4 Queue Filter[3]: filter by destination port and protocol */
	if (is_l4) {
		u32 ftqf = (IPPROTO_UDP /* UDP */
			| E1000_FTQF_VF_BP /* VF not compared */
			| E1000_FTQF_1588_TIME_STAMP /* Enable Timestamping */
			| E1000_FTQF_MASK); /* mask all inputs */
		ftqf &= ~E1000_FTQF_MASK_PROTO_BP; /* enable protocol check */

		wr32(E1000_IMIR(3), htons(PTP_PORT));
		wr32(E1000_IMIREXT(3),
		     (E1000_IMIREXT_SIZE_BP | E1000_IMIREXT_CTRL_BP));
		if (hw->mac.type == e1000_82576) {
			/* enable source port check */
			wr32(E1000_SPQF(3), htons(PTP_PORT));
			ftqf &= ~E1000_FTQF_MASK_SOURCE_PORT_BP;
		}
		wr32(E1000_FTQF(3), ftqf);
	} else {
		wr32(E1000_FTQF(3), E1000_FTQF_MASK);
	}
5519 5520 5521 5522 5523 5524 5525
	wrfl();

	adapter->hwtstamp_config = config;

	/* clear TX/RX time stamp registers, just to be sure */
	regval = rd32(E1000_TXSTMPH);
	regval = rd32(E1000_RXSTMPH);
5526

5527 5528
	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
		-EFAULT : 0;
5529 5530
}

5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543
/**
 * igb_ioctl -
 * @netdev:
 * @ifreq:
 * @cmd:
 **/
static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
{
	switch (cmd) {
	case SIOCGMIIPHY:
	case SIOCGMIIREG:
	case SIOCSMIIREG:
		return igb_mii_ioctl(netdev, ifr, cmd);
5544 5545
	case SIOCSHWTSTAMP:
		return igb_hwtstamp_ioctl(netdev, ifr, cmd);
5546 5547 5548 5549 5550
	default:
		return -EOPNOTSUPP;
	}
}

5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578
s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
{
	struct igb_adapter *adapter = hw->back;
	u16 cap_offset;

	cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
	if (!cap_offset)
		return -E1000_ERR_CONFIG;

	pci_read_config_word(adapter->pdev, cap_offset + reg, value);

	return 0;
}

s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
{
	struct igb_adapter *adapter = hw->back;
	u16 cap_offset;

	cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
	if (!cap_offset)
		return -E1000_ERR_CONFIG;

	pci_write_config_word(adapter->pdev, cap_offset + reg, *value);

	return 0;
}

5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594
static void igb_vlan_rx_register(struct net_device *netdev,
				 struct vlan_group *grp)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 ctrl, rctl;

	igb_irq_disable(adapter);
	adapter->vlgrp = grp;

	if (grp) {
		/* enable VLAN tag insert/strip */
		ctrl = rd32(E1000_CTRL);
		ctrl |= E1000_CTRL_VME;
		wr32(E1000_CTRL, ctrl);

5595
		/* Disable CFI check */
5596 5597 5598 5599 5600 5601 5602 5603 5604 5605
		rctl = rd32(E1000_RCTL);
		rctl &= ~E1000_RCTL_CFIEN;
		wr32(E1000_RCTL, rctl);
	} else {
		/* disable VLAN tag insert/strip */
		ctrl = rd32(E1000_CTRL);
		ctrl &= ~E1000_CTRL_VME;
		wr32(E1000_CTRL, ctrl);
	}

5606 5607
	igb_rlpml_set(adapter);

5608 5609 5610 5611 5612 5613 5614 5615
	if (!test_bit(__IGB_DOWN, &adapter->state))
		igb_irq_enable(adapter);
}

static void igb_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
5616
	int pf_id = adapter->vfs_allocated_count;
5617

5618 5619
	/* attempt to add filter to vlvf array */
	igb_vlvf_set(adapter, vid, true, pf_id);
5620

5621 5622
	/* add the filter since PF can receive vlans w/o entry in vlvf */
	igb_vfta_set(hw, vid, true);
5623 5624 5625 5626 5627 5628
}

static void igb_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
5629
	int pf_id = adapter->vfs_allocated_count;
5630
	s32 err;
5631 5632 5633 5634 5635 5636 5637

	igb_irq_disable(adapter);
	vlan_group_set_device(adapter->vlgrp, vid, NULL);

	if (!test_bit(__IGB_DOWN, &adapter->state))
		igb_irq_enable(adapter);

5638 5639
	/* remove vlan from VLVF table array */
	err = igb_vlvf_set(adapter, vid, false, pf_id);
5640

5641 5642
	/* if vid was not present in VLVF just remove it from table */
	if (err)
5643
		igb_vfta_set(hw, vid, false);
5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661
}

static void igb_restore_vlan(struct igb_adapter *adapter)
{
	igb_vlan_rx_register(adapter->netdev, adapter->vlgrp);

	if (adapter->vlgrp) {
		u16 vid;
		for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
			if (!vlan_group_get_device(adapter->vlgrp, vid))
				continue;
			igb_vlan_rx_add_vid(adapter->netdev, vid);
		}
	}
}

int igb_set_spd_dplx(struct igb_adapter *adapter, u16 spddplx)
{
5662
	struct pci_dev *pdev = adapter->pdev;
5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685
	struct e1000_mac_info *mac = &adapter->hw.mac;

	mac->autoneg = 0;

	switch (spddplx) {
	case SPEED_10 + DUPLEX_HALF:
		mac->forced_speed_duplex = ADVERTISE_10_HALF;
		break;
	case SPEED_10 + DUPLEX_FULL:
		mac->forced_speed_duplex = ADVERTISE_10_FULL;
		break;
	case SPEED_100 + DUPLEX_HALF:
		mac->forced_speed_duplex = ADVERTISE_100_HALF;
		break;
	case SPEED_100 + DUPLEX_FULL:
		mac->forced_speed_duplex = ADVERTISE_100_FULL;
		break;
	case SPEED_1000 + DUPLEX_FULL:
		mac->autoneg = 1;
		adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
		break;
	case SPEED_1000 + DUPLEX_HALF: /* not supported */
	default:
5686
		dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
5687 5688 5689 5690 5691
		return -EINVAL;
	}
	return 0;
}

5692
static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake)
5693 5694 5695 5696
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
A
Alexander Duyck 已提交
5697
	u32 ctrl, rctl, status;
5698 5699 5700 5701 5702 5703 5704
	u32 wufc = adapter->wol;
#ifdef CONFIG_PM
	int retval = 0;
#endif

	netif_device_detach(netdev);

A
Alexander Duyck 已提交
5705 5706 5707
	if (netif_running(netdev))
		igb_close(netdev);

5708
	igb_clear_interrupt_scheme(adapter);
5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721

#ifdef CONFIG_PM
	retval = pci_save_state(pdev);
	if (retval)
		return retval;
#endif

	status = rd32(E1000_STATUS);
	if (status & E1000_STATUS_LU)
		wufc &= ~E1000_WUFC_LNKC;

	if (wufc) {
		igb_setup_rctl(adapter);
5722
		igb_set_rx_mode(netdev);
5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739

		/* turn on all-multi mode if wake on multicast is enabled */
		if (wufc & E1000_WUFC_MC) {
			rctl = rd32(E1000_RCTL);
			rctl |= E1000_RCTL_MPE;
			wr32(E1000_RCTL, rctl);
		}

		ctrl = rd32(E1000_CTRL);
		/* advertise wake from D3Cold */
		#define E1000_CTRL_ADVD3WUC 0x00100000
		/* phy power management enable */
		#define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
		ctrl |= E1000_CTRL_ADVD3WUC;
		wr32(E1000_CTRL, ctrl);

		/* Allow time for pending master requests to run */
5740
		igb_disable_pcie_master(hw);
5741 5742 5743 5744 5745 5746 5747 5748

		wr32(E1000_WUC, E1000_WUC_PME_EN);
		wr32(E1000_WUFC, wufc);
	} else {
		wr32(E1000_WUC, 0);
		wr32(E1000_WUFC, 0);
	}

5749 5750
	*enable_wake = wufc || adapter->en_mng_pt;
	if (!*enable_wake)
5751
		igb_shutdown_serdes_link_82575(hw);
5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762

	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
	 * would have already happened in close and is redundant. */
	igb_release_hw_control(adapter);

	pci_disable_device(pdev);

	return 0;
}

#ifdef CONFIG_PM
5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781
static int igb_suspend(struct pci_dev *pdev, pm_message_t state)
{
	int retval;
	bool wake;

	retval = __igb_shutdown(pdev, &wake);
	if (retval)
		return retval;

	if (wake) {
		pci_prepare_to_sleep(pdev);
	} else {
		pci_wake_from_d3(pdev, false);
		pci_set_power_state(pdev, PCI_D3hot);
	}

	return 0;
}

5782 5783 5784 5785 5786 5787 5788 5789 5790
static int igb_resume(struct pci_dev *pdev)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 err;

	pci_set_power_state(pdev, PCI_D0);
	pci_restore_state(pdev);
T
Taku Izumi 已提交
5791

5792
	err = pci_enable_device_mem(pdev);
5793 5794 5795 5796 5797 5798 5799 5800 5801 5802
	if (err) {
		dev_err(&pdev->dev,
			"igb: Cannot enable PCI device from suspend\n");
		return err;
	}
	pci_set_master(pdev);

	pci_enable_wake(pdev, PCI_D3hot, 0);
	pci_enable_wake(pdev, PCI_D3cold, 0);

5803
	if (igb_init_interrupt_scheme(adapter)) {
A
Alexander Duyck 已提交
5804 5805
		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
		return -ENOMEM;
5806 5807 5808 5809 5810
	}

	/* e1000_power_up_phy(adapter); */

	igb_reset(adapter);
5811 5812 5813 5814 5815

	/* let the f/w know that the h/w is now under the control of the
	 * driver. */
	igb_get_hw_control(adapter);

5816 5817
	wr32(E1000_WUS, ~0);

A
Alexander Duyck 已提交
5818 5819 5820 5821 5822
	if (netif_running(netdev)) {
		err = igb_open(netdev);
		if (err)
			return err;
	}
5823 5824 5825 5826 5827 5828 5829 5830 5831

	netif_device_attach(netdev);

	return 0;
}
#endif

static void igb_shutdown(struct pci_dev *pdev)
{
5832 5833 5834 5835 5836 5837 5838 5839
	bool wake;

	__igb_shutdown(pdev, &wake);

	if (system_state == SYSTEM_POWER_OFF) {
		pci_wake_from_d3(pdev, wake);
		pci_set_power_state(pdev, PCI_D3hot);
	}
5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850
}

#ifdef CONFIG_NET_POLL_CONTROLLER
/*
 * Polling 'interrupt' - used by things like netconsole to send skbs
 * without having to re-enable interrupts. It's not called while
 * the interrupt routine is executing.
 */
static void igb_netpoll(struct net_device *netdev)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
5851
	struct e1000_hw *hw = &adapter->hw;
5852 5853
	int i;

5854
	if (!adapter->msix_entries) {
5855
		struct igb_q_vector *q_vector = adapter->q_vector[0];
5856
		igb_irq_disable(adapter);
5857
		napi_schedule(&q_vector->napi);
5858 5859
		return;
	}
5860

5861 5862 5863 5864
	for (i = 0; i < adapter->num_q_vectors; i++) {
		struct igb_q_vector *q_vector = adapter->q_vector[i];
		wr32(E1000_EIMC, q_vector->eims_value);
		napi_schedule(&q_vector->napi);
5865
	}
5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884
}
#endif /* CONFIG_NET_POLL_CONTROLLER */

/**
 * igb_io_error_detected - called when PCI error is detected
 * @pdev: Pointer to PCI device
 * @state: The current pci connection state
 *
 * This function is called after a PCI bus error affecting
 * this device has been detected.
 */
static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
					      pci_channel_state_t state)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);

	netif_device_detach(netdev);

5885 5886 5887
	if (state == pci_channel_io_perm_failure)
		return PCI_ERS_RESULT_DISCONNECT;

5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907
	if (netif_running(netdev))
		igb_down(adapter);
	pci_disable_device(pdev);

	/* Request a slot slot reset. */
	return PCI_ERS_RESULT_NEED_RESET;
}

/**
 * igb_io_slot_reset - called after the pci bus has been reset.
 * @pdev: Pointer to PCI device
 *
 * Restart the card from scratch, as if from a cold-boot. Implementation
 * resembles the first-half of the igb_resume routine.
 */
static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
5908
	pci_ers_result_t result;
T
Taku Izumi 已提交
5909
	int err;
5910

5911
	if (pci_enable_device_mem(pdev)) {
5912 5913
		dev_err(&pdev->dev,
			"Cannot re-enable PCI device after reset.\n");
5914 5915 5916 5917
		result = PCI_ERS_RESULT_DISCONNECT;
	} else {
		pci_set_master(pdev);
		pci_restore_state(pdev);
5918

5919 5920
		pci_enable_wake(pdev, PCI_D3hot, 0);
		pci_enable_wake(pdev, PCI_D3cold, 0);
5921

5922 5923 5924 5925
		igb_reset(adapter);
		wr32(E1000_WUS, ~0);
		result = PCI_ERS_RESULT_RECOVERED;
	}
5926

5927 5928 5929 5930 5931 5932
	err = pci_cleanup_aer_uncorrect_error_status(pdev);
	if (err) {
		dev_err(&pdev->dev, "pci_cleanup_aer_uncorrect_error_status "
		        "failed 0x%0x\n", err);
		/* non-fatal, continue */
	}
5933 5934

	return result;
5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963
}

/**
 * igb_io_resume - called when traffic can start flowing again.
 * @pdev: Pointer to PCI device
 *
 * This callback is called when the error recovery driver tells us that
 * its OK to resume normal operation. Implementation resembles the
 * second-half of the igb_resume routine.
 */
static void igb_io_resume(struct pci_dev *pdev)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);

	if (netif_running(netdev)) {
		if (igb_up(adapter)) {
			dev_err(&pdev->dev, "igb_up failed after reset\n");
			return;
		}
	}

	netif_device_attach(netdev);

	/* let the f/w know that the h/w is now under the control of the
	 * driver. */
	igb_get_hw_control(adapter);
}

5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990
static void igb_rar_set_qsel(struct igb_adapter *adapter, u8 *addr, u32 index,
                             u8 qsel)
{
	u32 rar_low, rar_high;
	struct e1000_hw *hw = &adapter->hw;

	/* HW expects these in little endian so we reverse the byte order
	 * from network order (big endian) to little endian
	 */
	rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
	          ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
	rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));

	/* Indicate to hardware the Address is Valid. */
	rar_high |= E1000_RAH_AV;

	if (hw->mac.type == e1000_82575)
		rar_high |= E1000_RAH_POOL_1 * qsel;
	else
		rar_high |= E1000_RAH_POOL_1 << qsel;

	wr32(E1000_RAL(index), rar_low);
	wrfl();
	wr32(E1000_RAH(index), rar_high);
	wrfl();
}

5991 5992 5993 5994
static int igb_set_vf_mac(struct igb_adapter *adapter,
                          int vf, unsigned char *mac_addr)
{
	struct e1000_hw *hw = &adapter->hw;
5995 5996 5997
	/* VF MAC addresses start at end of receive addresses and moves
	 * torwards the first, as a result a collision should not be possible */
	int rar_entry = hw->mac.rar_entry_count - (vf + 1);
5998

5999
	memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN);
6000

6001
	igb_rar_set_qsel(adapter, mac_addr, rar_entry, vf);
6002 6003 6004 6005 6006 6007 6008

	return 0;
}

static void igb_vmm_control(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
6009
	u32 reg;
6010

6011 6012
	/* replication is not supported for 82575 */
	if (hw->mac.type == e1000_82575)
6013 6014
		return;

6015 6016 6017 6018 6019 6020 6021 6022 6023 6024
	/* enable replication vlan tag stripping */
	reg = rd32(E1000_RPLOLR);
	reg |= E1000_RPLOLR_STRVLAN;
	wr32(E1000_RPLOLR, reg);

	/* notify HW that the MAC is adding vlan tags */
	reg = rd32(E1000_DTXCTL);
	reg |= E1000_DTXCTL_VLAN_ADDED;
	wr32(E1000_DTXCTL, reg);

6025 6026 6027 6028 6029 6030 6031
	if (adapter->vfs_allocated_count) {
		igb_vmdq_set_loopback_pf(hw, true);
		igb_vmdq_set_replication_pf(hw, true);
	} else {
		igb_vmdq_set_loopback_pf(hw, false);
		igb_vmdq_set_replication_pf(hw, false);
	}
6032 6033
}

6034
/* igb_main.c */