igb_main.c 179.9 KB
Newer Older
1 2 3
/*******************************************************************************

  Intel(R) Gigabit Ethernet Linux driver
4
  Copyright(c) 2007-2009 Intel Corporation.
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

  This program is free software; you can redistribute it and/or modify it
  under the terms and conditions of the GNU General Public License,
  version 2, as published by the Free Software Foundation.

  This program is distributed in the hope it will be useful, but WITHOUT
  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  more details.

  You should have received a copy of the GNU General Public License along with
  this program; if not, write to the Free Software Foundation, Inc.,
  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.

  The full GNU General Public License is included in this distribution in
  the file called "COPYING".

  Contact Information:
  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497

*******************************************************************************/

#include <linux/module.h>
#include <linux/types.h>
#include <linux/init.h>
#include <linux/vmalloc.h>
#include <linux/pagemap.h>
#include <linux/netdevice.h>
#include <linux/ipv6.h>
35
#include <linux/slab.h>
36 37
#include <net/checksum.h>
#include <net/ip6_checksum.h>
38
#include <linux/net_tstamp.h>
39 40 41 42
#include <linux/mii.h>
#include <linux/ethtool.h>
#include <linux/if_vlan.h>
#include <linux/pci.h>
43
#include <linux/pci-aspm.h>
44 45 46
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/if_ether.h>
47
#include <linux/aer.h>
48
#ifdef CONFIG_IGB_DCA
J
Jeb Cramer 已提交
49 50
#include <linux/dca.h>
#endif
51 52
#include "igb.h"

53
#define DRV_VERSION "2.1.0-k2"
54 55 56 57
char igb_driver_name[] = "igb";
char igb_driver_version[] = DRV_VERSION;
static const char igb_driver_string[] =
				"Intel(R) Gigabit Ethernet Network Driver";
58
static const char igb_copyright[] = "Copyright (c) 2007-2009 Intel Corporation.";
59 60 61 62 63

static const struct e1000_info *igb_info_tbl[] = {
	[board_82575] = &e1000_82575_info,
};

64
static DEFINE_PCI_DEVICE_TABLE(igb_pci_tbl) = {
65 66 67 68
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
69 70 71 72 73
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
74 75
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
A
Alexander Duyck 已提交
76
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
77
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
78
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
A
Alexander Duyck 已提交
79 80
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
81
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
82
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
83
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
84 85 86 87 88 89 90 91 92 93 94 95 96 97
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
	/* required last entry */
	{0, }
};

MODULE_DEVICE_TABLE(pci, igb_pci_tbl);

void igb_reset(struct igb_adapter *);
static int igb_setup_all_tx_resources(struct igb_adapter *);
static int igb_setup_all_rx_resources(struct igb_adapter *);
static void igb_free_all_tx_resources(struct igb_adapter *);
static void igb_free_all_rx_resources(struct igb_adapter *);
98
static void igb_setup_mrqc(struct igb_adapter *);
99 100 101 102 103 104 105 106 107 108
void igb_update_stats(struct igb_adapter *);
static int igb_probe(struct pci_dev *, const struct pci_device_id *);
static void __devexit igb_remove(struct pci_dev *pdev);
static int igb_sw_init(struct igb_adapter *);
static int igb_open(struct net_device *);
static int igb_close(struct net_device *);
static void igb_configure_tx(struct igb_adapter *);
static void igb_configure_rx(struct igb_adapter *);
static void igb_clean_all_tx_rings(struct igb_adapter *);
static void igb_clean_all_rx_rings(struct igb_adapter *);
109 110
static void igb_clean_tx_ring(struct igb_ring *);
static void igb_clean_rx_ring(struct igb_ring *);
111
static void igb_set_rx_mode(struct net_device *);
112 113 114
static void igb_update_phy_info(unsigned long);
static void igb_watchdog(unsigned long);
static void igb_watchdog_task(struct work_struct *);
115
static netdev_tx_t igb_xmit_frame_adv(struct sk_buff *skb, struct net_device *);
116 117 118
static struct net_device_stats *igb_get_stats(struct net_device *);
static int igb_change_mtu(struct net_device *, int);
static int igb_set_mac(struct net_device *, void *);
119
static void igb_set_uta(struct igb_adapter *adapter);
120 121 122
static irqreturn_t igb_intr(int irq, void *);
static irqreturn_t igb_intr_msi(int irq, void *);
static irqreturn_t igb_msix_other(int irq, void *);
123
static irqreturn_t igb_msix_ring(int irq, void *);
124
#ifdef CONFIG_IGB_DCA
125
static void igb_update_dca(struct igb_q_vector *);
J
Jeb Cramer 已提交
126
static void igb_setup_dca(struct igb_adapter *);
127
#endif /* CONFIG_IGB_DCA */
128
static bool igb_clean_tx_irq(struct igb_q_vector *);
129
static int igb_poll(struct napi_struct *, int);
130
static bool igb_clean_rx_irq_adv(struct igb_q_vector *, int *, int);
131 132 133 134 135 136 137
static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
static void igb_tx_timeout(struct net_device *);
static void igb_reset_task(struct work_struct *);
static void igb_vlan_rx_register(struct net_device *, struct vlan_group *);
static void igb_vlan_rx_add_vid(struct net_device *, u16);
static void igb_vlan_rx_kill_vid(struct net_device *, u16);
static void igb_restore_vlan(struct igb_adapter *);
138
static void igb_rar_set_qsel(struct igb_adapter *, u8 *, u32 , u8);
139 140 141
static void igb_ping_all_vfs(struct igb_adapter *);
static void igb_msg_task(struct igb_adapter *);
static void igb_vmm_control(struct igb_adapter *);
142
static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
143
static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
144 145 146 147 148 149
static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
static int igb_ndo_set_vf_vlan(struct net_device *netdev,
			       int vf, u16 vlan, u8 qos);
static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate);
static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
				 struct ifla_vf_info *ivi);
150 151

#ifdef CONFIG_PM
152
static int igb_suspend(struct pci_dev *, pm_message_t);
153 154 155
static int igb_resume(struct pci_dev *);
#endif
static void igb_shutdown(struct pci_dev *);
156
#ifdef CONFIG_IGB_DCA
J
Jeb Cramer 已提交
157 158 159 160 161 162 163
static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
static struct notifier_block dca_notifier = {
	.notifier_call	= igb_notify_dca,
	.next		= NULL,
	.priority	= 0
};
#endif
164 165 166 167
#ifdef CONFIG_NET_POLL_CONTROLLER
/* for netdump / net console */
static void igb_netpoll(struct net_device *);
#endif
168
#ifdef CONFIG_PCI_IOV
169 170 171 172 173 174
static unsigned int max_vfs = 0;
module_param(max_vfs, uint, 0);
MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate "
                 "per physical function");
#endif /* CONFIG_PCI_IOV */

175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
		     pci_channel_state_t);
static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
static void igb_io_resume(struct pci_dev *);

static struct pci_error_handlers igb_err_handler = {
	.error_detected = igb_io_error_detected,
	.slot_reset = igb_io_slot_reset,
	.resume = igb_io_resume,
};


static struct pci_driver igb_driver = {
	.name     = igb_driver_name,
	.id_table = igb_pci_tbl,
	.probe    = igb_probe,
	.remove   = __devexit_p(igb_remove),
#ifdef CONFIG_PM
	/* Power Managment Hooks */
	.suspend  = igb_suspend,
	.resume   = igb_resume,
#endif
	.shutdown = igb_shutdown,
	.err_handler = &igb_err_handler
};

MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
MODULE_LICENSE("GPL");
MODULE_VERSION(DRV_VERSION);

206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535
struct igb_reg_info {
	u32 ofs;
	char *name;
};

static const struct igb_reg_info igb_reg_info_tbl[] = {

	/* General Registers */
	{E1000_CTRL, "CTRL"},
	{E1000_STATUS, "STATUS"},
	{E1000_CTRL_EXT, "CTRL_EXT"},

	/* Interrupt Registers */
	{E1000_ICR, "ICR"},

	/* RX Registers */
	{E1000_RCTL, "RCTL"},
	{E1000_RDLEN(0), "RDLEN"},
	{E1000_RDH(0), "RDH"},
	{E1000_RDT(0), "RDT"},
	{E1000_RXDCTL(0), "RXDCTL"},
	{E1000_RDBAL(0), "RDBAL"},
	{E1000_RDBAH(0), "RDBAH"},

	/* TX Registers */
	{E1000_TCTL, "TCTL"},
	{E1000_TDBAL(0), "TDBAL"},
	{E1000_TDBAH(0), "TDBAH"},
	{E1000_TDLEN(0), "TDLEN"},
	{E1000_TDH(0), "TDH"},
	{E1000_TDT(0), "TDT"},
	{E1000_TXDCTL(0), "TXDCTL"},
	{E1000_TDFH, "TDFH"},
	{E1000_TDFT, "TDFT"},
	{E1000_TDFHS, "TDFHS"},
	{E1000_TDFPC, "TDFPC"},

	/* List Terminator */
	{}
};

/*
 * igb_regdump - register printout routine
 */
static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
{
	int n = 0;
	char rname[16];
	u32 regs[8];

	switch (reginfo->ofs) {
	case E1000_RDLEN(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_RDLEN(n));
		break;
	case E1000_RDH(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_RDH(n));
		break;
	case E1000_RDT(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_RDT(n));
		break;
	case E1000_RXDCTL(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_RXDCTL(n));
		break;
	case E1000_RDBAL(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_RDBAL(n));
		break;
	case E1000_RDBAH(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_RDBAH(n));
		break;
	case E1000_TDBAL(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_RDBAL(n));
		break;
	case E1000_TDBAH(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_TDBAH(n));
		break;
	case E1000_TDLEN(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_TDLEN(n));
		break;
	case E1000_TDH(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_TDH(n));
		break;
	case E1000_TDT(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_TDT(n));
		break;
	case E1000_TXDCTL(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_TXDCTL(n));
		break;
	default:
		printk(KERN_INFO "%-15s %08x\n",
			reginfo->name, rd32(reginfo->ofs));
		return;
	}

	snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
	printk(KERN_INFO "%-15s ", rname);
	for (n = 0; n < 4; n++)
		printk(KERN_CONT "%08x ", regs[n]);
	printk(KERN_CONT "\n");
}

/*
 * igb_dump - Print registers, tx-rings and rx-rings
 */
static void igb_dump(struct igb_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
	struct e1000_hw *hw = &adapter->hw;
	struct igb_reg_info *reginfo;
	int n = 0;
	struct igb_ring *tx_ring;
	union e1000_adv_tx_desc *tx_desc;
	struct my_u0 { u64 a; u64 b; } *u0;
	struct igb_buffer *buffer_info;
	struct igb_ring *rx_ring;
	union e1000_adv_rx_desc *rx_desc;
	u32 staterr;
	int i = 0;

	if (!netif_msg_hw(adapter))
		return;

	/* Print netdevice Info */
	if (netdev) {
		dev_info(&adapter->pdev->dev, "Net device Info\n");
		printk(KERN_INFO "Device Name     state            "
			"trans_start      last_rx\n");
		printk(KERN_INFO "%-15s %016lX %016lX %016lX\n",
		netdev->name,
		netdev->state,
		netdev->trans_start,
		netdev->last_rx);
	}

	/* Print Registers */
	dev_info(&adapter->pdev->dev, "Register Dump\n");
	printk(KERN_INFO " Register Name   Value\n");
	for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
	     reginfo->name; reginfo++) {
		igb_regdump(hw, reginfo);
	}

	/* Print TX Ring Summary */
	if (!netdev || !netif_running(netdev))
		goto exit;

	dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
	printk(KERN_INFO "Queue [NTU] [NTC] [bi(ntc)->dma  ]"
		" leng ntw timestamp\n");
	for (n = 0; n < adapter->num_tx_queues; n++) {
		tx_ring = adapter->tx_ring[n];
		buffer_info = &tx_ring->buffer_info[tx_ring->next_to_clean];
		printk(KERN_INFO " %5d %5X %5X %016llX %04X %3X %016llX\n",
			   n, tx_ring->next_to_use, tx_ring->next_to_clean,
			   (u64)buffer_info->dma,
			   buffer_info->length,
			   buffer_info->next_to_watch,
			   (u64)buffer_info->time_stamp);
	}

	/* Print TX Rings */
	if (!netif_msg_tx_done(adapter))
		goto rx_ring_summary;

	dev_info(&adapter->pdev->dev, "TX Rings Dump\n");

	/* Transmit Descriptor Formats
	 *
	 * Advanced Transmit Descriptor
	 *   +--------------------------------------------------------------+
	 * 0 |         Buffer Address [63:0]                                |
	 *   +--------------------------------------------------------------+
	 * 8 | PAYLEN  | PORTS  |CC|IDX | STA | DCMD  |DTYP|MAC|RSV| DTALEN |
	 *   +--------------------------------------------------------------+
	 *   63      46 45    40 39 38 36 35 32 31   24             15       0
	 */

	for (n = 0; n < adapter->num_tx_queues; n++) {
		tx_ring = adapter->tx_ring[n];
		printk(KERN_INFO "------------------------------------\n");
		printk(KERN_INFO "TX QUEUE INDEX = %d\n", tx_ring->queue_index);
		printk(KERN_INFO "------------------------------------\n");
		printk(KERN_INFO "T [desc]     [address 63:0  ] "
			"[PlPOCIStDDM Ln] [bi->dma       ] "
			"leng  ntw timestamp        bi->skb\n");

		for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
			tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
			buffer_info = &tx_ring->buffer_info[i];
			u0 = (struct my_u0 *)tx_desc;
			printk(KERN_INFO "T [0x%03X]    %016llX %016llX %016llX"
				" %04X  %3X %016llX %p", i,
				le64_to_cpu(u0->a),
				le64_to_cpu(u0->b),
				(u64)buffer_info->dma,
				buffer_info->length,
				buffer_info->next_to_watch,
				(u64)buffer_info->time_stamp,
				buffer_info->skb);
			if (i == tx_ring->next_to_use &&
				i == tx_ring->next_to_clean)
				printk(KERN_CONT " NTC/U\n");
			else if (i == tx_ring->next_to_use)
				printk(KERN_CONT " NTU\n");
			else if (i == tx_ring->next_to_clean)
				printk(KERN_CONT " NTC\n");
			else
				printk(KERN_CONT "\n");

			if (netif_msg_pktdata(adapter) && buffer_info->dma != 0)
				print_hex_dump(KERN_INFO, "",
					DUMP_PREFIX_ADDRESS,
					16, 1, phys_to_virt(buffer_info->dma),
					buffer_info->length, true);
		}
	}

	/* Print RX Rings Summary */
rx_ring_summary:
	dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
	printk(KERN_INFO "Queue [NTU] [NTC]\n");
	for (n = 0; n < adapter->num_rx_queues; n++) {
		rx_ring = adapter->rx_ring[n];
		printk(KERN_INFO " %5d %5X %5X\n", n,
			   rx_ring->next_to_use, rx_ring->next_to_clean);
	}

	/* Print RX Rings */
	if (!netif_msg_rx_status(adapter))
		goto exit;

	dev_info(&adapter->pdev->dev, "RX Rings Dump\n");

	/* Advanced Receive Descriptor (Read) Format
	 *    63                                           1        0
	 *    +-----------------------------------------------------+
	 *  0 |       Packet Buffer Address [63:1]           |A0/NSE|
	 *    +----------------------------------------------+------+
	 *  8 |       Header Buffer Address [63:1]           |  DD  |
	 *    +-----------------------------------------------------+
	 *
	 *
	 * Advanced Receive Descriptor (Write-Back) Format
	 *
	 *   63       48 47    32 31  30      21 20 17 16   4 3     0
	 *   +------------------------------------------------------+
	 * 0 | Packet     IP     |SPH| HDR_LEN   | RSV|Packet|  RSS |
	 *   | Checksum   Ident  |   |           |    | Type | Type |
	 *   +------------------------------------------------------+
	 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
	 *   +------------------------------------------------------+
	 *   63       48 47    32 31            20 19               0
	 */

	for (n = 0; n < adapter->num_rx_queues; n++) {
		rx_ring = adapter->rx_ring[n];
		printk(KERN_INFO "------------------------------------\n");
		printk(KERN_INFO "RX QUEUE INDEX = %d\n", rx_ring->queue_index);
		printk(KERN_INFO "------------------------------------\n");
		printk(KERN_INFO "R  [desc]      [ PktBuf     A0] "
			"[  HeadBuf   DD] [bi->dma       ] [bi->skb] "
			"<-- Adv Rx Read format\n");
		printk(KERN_INFO "RWB[desc]      [PcsmIpSHl PtRs] "
			"[vl er S cks ln] ---------------- [bi->skb] "
			"<-- Adv Rx Write-Back format\n");

		for (i = 0; i < rx_ring->count; i++) {
			buffer_info = &rx_ring->buffer_info[i];
			rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
			u0 = (struct my_u0 *)rx_desc;
			staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
			if (staterr & E1000_RXD_STAT_DD) {
				/* Descriptor Done */
				printk(KERN_INFO "RWB[0x%03X]     %016llX "
					"%016llX ---------------- %p", i,
					le64_to_cpu(u0->a),
					le64_to_cpu(u0->b),
					buffer_info->skb);
			} else {
				printk(KERN_INFO "R  [0x%03X]     %016llX "
					"%016llX %016llX %p", i,
					le64_to_cpu(u0->a),
					le64_to_cpu(u0->b),
					(u64)buffer_info->dma,
					buffer_info->skb);

				if (netif_msg_pktdata(adapter)) {
					print_hex_dump(KERN_INFO, "",
						DUMP_PREFIX_ADDRESS,
						16, 1,
						phys_to_virt(buffer_info->dma),
						rx_ring->rx_buffer_len, true);
					if (rx_ring->rx_buffer_len
						< IGB_RXBUFFER_1024)
						print_hex_dump(KERN_INFO, "",
						  DUMP_PREFIX_ADDRESS,
						  16, 1,
						  phys_to_virt(
						    buffer_info->page_dma +
						    buffer_info->page_offset),
						  PAGE_SIZE/2, true);
				}
			}

			if (i == rx_ring->next_to_use)
				printk(KERN_CONT " NTU\n");
			else if (i == rx_ring->next_to_clean)
				printk(KERN_CONT " NTC\n");
			else
				printk(KERN_CONT "\n");

		}
	}

exit:
	return;
}


P
Patrick Ohly 已提交
536 537 538 539 540 541 542 543
/**
 * igb_read_clock - read raw cycle counter (to be used by time counter)
 */
static cycle_t igb_read_clock(const struct cyclecounter *tc)
{
	struct igb_adapter *adapter =
		container_of(tc, struct igb_adapter, cycles);
	struct e1000_hw *hw = &adapter->hw;
544 545
	u64 stamp = 0;
	int shift = 0;
P
Patrick Ohly 已提交
546

547 548 549 550 551 552 553 554 555 556
	/*
	 * The timestamp latches on lowest register read. For the 82580
	 * the lowest register is SYSTIMR instead of SYSTIML.  However we never
	 * adjusted TIMINCA so SYSTIMR will just read as all 0s so ignore it.
	 */
	if (hw->mac.type == e1000_82580) {
		stamp = rd32(E1000_SYSTIMR) >> 8;
		shift = IGB_82580_TSYNC_SHIFT;
	}

557 558
	stamp |= (u64)rd32(E1000_SYSTIML) << shift;
	stamp |= (u64)rd32(E1000_SYSTIMH) << (shift + 32);
P
Patrick Ohly 已提交
559 560 561
	return stamp;
}

562
/**
563
 * igb_get_hw_dev - return device
564 565
 * used by hardware layer to print debugging information
 **/
566
struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
567 568
{
	struct igb_adapter *adapter = hw->back;
569
	return adapter->netdev;
570
}
P
Patrick Ohly 已提交
571

572 573 574 575 576 577 578 579 580 581 582 583 584 585
/**
 * igb_init_module - Driver Registration Routine
 *
 * igb_init_module is the first routine called when the driver is
 * loaded. All it does is register with the PCI subsystem.
 **/
static int __init igb_init_module(void)
{
	int ret;
	printk(KERN_INFO "%s - version %s\n",
	       igb_driver_string, igb_driver_version);

	printk(KERN_INFO "%s\n", igb_copyright);

586
#ifdef CONFIG_IGB_DCA
J
Jeb Cramer 已提交
587 588
	dca_register_notify(&dca_notifier);
#endif
589
	ret = pci_register_driver(&igb_driver);
590 591 592 593 594 595 596 597 598 599 600 601 602
	return ret;
}

module_init(igb_init_module);

/**
 * igb_exit_module - Driver Exit Cleanup Routine
 *
 * igb_exit_module is called just before the driver is removed
 * from memory.
 **/
static void __exit igb_exit_module(void)
{
603
#ifdef CONFIG_IGB_DCA
J
Jeb Cramer 已提交
604 605
	dca_unregister_notify(&dca_notifier);
#endif
606 607 608 609 610
	pci_unregister_driver(&igb_driver);
}

module_exit(igb_exit_module);

611 612 613 614 615 616 617 618 619 620
#define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
/**
 * igb_cache_ring_register - Descriptor ring to register mapping
 * @adapter: board private structure to initialize
 *
 * Once we know the feature-set enabled for the device, we'll cache
 * the register offset the descriptor ring is assigned to.
 **/
static void igb_cache_ring_register(struct igb_adapter *adapter)
{
621
	int i = 0, j = 0;
622
	u32 rbase_offset = adapter->vfs_allocated_count;
623 624 625 626 627 628 629 630

	switch (adapter->hw.mac.type) {
	case e1000_82576:
		/* The queues are allocated for virtualization such that VF 0
		 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
		 * In order to avoid collision we start at the first free queue
		 * and continue consuming queues in the same sequence
		 */
631
		if (adapter->vfs_allocated_count) {
632
			for (; i < adapter->rss_queues; i++)
633 634
				adapter->rx_ring[i]->reg_idx = rbase_offset +
				                               Q_IDX_82576(i);
635
		}
636
	case e1000_82575:
637
	case e1000_82580:
638
	case e1000_i350:
639
	default:
640
		for (; i < adapter->num_rx_queues; i++)
641
			adapter->rx_ring[i]->reg_idx = rbase_offset + i;
642
		for (; j < adapter->num_tx_queues; j++)
643
			adapter->tx_ring[j]->reg_idx = rbase_offset + j;
644 645 646 647
		break;
	}
}

648 649
static void igb_free_queues(struct igb_adapter *adapter)
{
650
	int i;
651

652 653 654 655 656 657 658 659
	for (i = 0; i < adapter->num_tx_queues; i++) {
		kfree(adapter->tx_ring[i]);
		adapter->tx_ring[i] = NULL;
	}
	for (i = 0; i < adapter->num_rx_queues; i++) {
		kfree(adapter->rx_ring[i]);
		adapter->rx_ring[i] = NULL;
	}
660 661 662 663
	adapter->num_rx_queues = 0;
	adapter->num_tx_queues = 0;
}

664 665 666 667 668 669 670 671 672
/**
 * igb_alloc_queues - Allocate memory for all rings
 * @adapter: board private structure to initialize
 *
 * We allocate one ring per queue at run-time since we don't know the
 * number of queues at compile-time.
 **/
static int igb_alloc_queues(struct igb_adapter *adapter)
{
673
	struct igb_ring *ring;
674 675
	int i;

676
	for (i = 0; i < adapter->num_tx_queues; i++) {
677 678 679
		ring = kzalloc(sizeof(struct igb_ring), GFP_KERNEL);
		if (!ring)
			goto err;
680
		ring->count = adapter->tx_ring_count;
681
		ring->queue_index = i;
682
		ring->dev = &adapter->pdev->dev;
683
		ring->netdev = adapter->netdev;
684 685 686
		/* For 82575, context index must be unique per ring. */
		if (adapter->hw.mac.type == e1000_82575)
			ring->flags = IGB_RING_FLAG_TX_CTX_IDX;
687
		adapter->tx_ring[i] = ring;
688
	}
689

690
	for (i = 0; i < adapter->num_rx_queues; i++) {
691 692 693
		ring = kzalloc(sizeof(struct igb_ring), GFP_KERNEL);
		if (!ring)
			goto err;
694
		ring->count = adapter->rx_ring_count;
P
PJ Waskiewicz 已提交
695
		ring->queue_index = i;
696
		ring->dev = &adapter->pdev->dev;
697
		ring->netdev = adapter->netdev;
698
		ring->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
699 700 701 702
		ring->flags = IGB_RING_FLAG_RX_CSUM; /* enable rx checksum */
		/* set flag indicating ring supports SCTP checksum offload */
		if (adapter->hw.mac.type >= e1000_82576)
			ring->flags |= IGB_RING_FLAG_RX_SCTP_CSUM;
703
		adapter->rx_ring[i] = ring;
704
	}
705 706

	igb_cache_ring_register(adapter);
707

708
	return 0;
A
Alexander Duyck 已提交
709

710 711
err:
	igb_free_queues(adapter);
712

713
	return -ENOMEM;
A
Alexander Duyck 已提交
714 715
}

716
#define IGB_N0_QUEUE -1
717
static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
718 719
{
	u32 msixbm = 0;
720
	struct igb_adapter *adapter = q_vector->adapter;
721
	struct e1000_hw *hw = &adapter->hw;
A
Alexander Duyck 已提交
722
	u32 ivar, index;
723 724 725 726 727 728 729
	int rx_queue = IGB_N0_QUEUE;
	int tx_queue = IGB_N0_QUEUE;

	if (q_vector->rx_ring)
		rx_queue = q_vector->rx_ring->reg_idx;
	if (q_vector->tx_ring)
		tx_queue = q_vector->tx_ring->reg_idx;
A
Alexander Duyck 已提交
730 731 732

	switch (hw->mac.type) {
	case e1000_82575:
733 734 735 736
		/* The 82575 assigns vectors using a bitmask, which matches the
		   bitmask for the EICR/EIMS/EIMC registers.  To assign one
		   or more queues to a vector, we write the appropriate bits
		   into the MSIXBM register for that vector. */
737
		if (rx_queue > IGB_N0_QUEUE)
738
			msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
739
		if (tx_queue > IGB_N0_QUEUE)
740
			msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
741 742
		if (!adapter->msix_entries && msix_vector == 0)
			msixbm |= E1000_EIMS_OTHER;
743
		array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
744
		q_vector->eims_value = msixbm;
A
Alexander Duyck 已提交
745 746
		break;
	case e1000_82576:
747
		/* 82576 uses a table-based method for assigning vectors.
A
Alexander Duyck 已提交
748 749 750 751
		   Each queue has a single entry in the table to which we write
		   a vector number along with a "valid" bit.  Sadly, the layout
		   of the table is somewhat counterintuitive. */
		if (rx_queue > IGB_N0_QUEUE) {
752
			index = (rx_queue & 0x7);
A
Alexander Duyck 已提交
753
			ivar = array_rd32(E1000_IVAR0, index);
754
			if (rx_queue < 8) {
755 756 757
				/* vector goes into low byte of register */
				ivar = ivar & 0xFFFFFF00;
				ivar |= msix_vector | E1000_IVAR_VALID;
758 759 760 761
			} else {
				/* vector goes into third byte of register */
				ivar = ivar & 0xFF00FFFF;
				ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
A
Alexander Duyck 已提交
762 763 764 765
			}
			array_wr32(E1000_IVAR0, index, ivar);
		}
		if (tx_queue > IGB_N0_QUEUE) {
766
			index = (tx_queue & 0x7);
A
Alexander Duyck 已提交
767
			ivar = array_rd32(E1000_IVAR0, index);
768
			if (tx_queue < 8) {
769 770 771
				/* vector goes into second byte of register */
				ivar = ivar & 0xFFFF00FF;
				ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
772 773 774 775
			} else {
				/* vector goes into high byte of register */
				ivar = ivar & 0x00FFFFFF;
				ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
A
Alexander Duyck 已提交
776 777 778
			}
			array_wr32(E1000_IVAR0, index, ivar);
		}
779
		q_vector->eims_value = 1 << msix_vector;
A
Alexander Duyck 已提交
780
		break;
781
	case e1000_82580:
782
	case e1000_i350:
783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814
		/* 82580 uses the same table-based approach as 82576 but has fewer
		   entries as a result we carry over for queues greater than 4. */
		if (rx_queue > IGB_N0_QUEUE) {
			index = (rx_queue >> 1);
			ivar = array_rd32(E1000_IVAR0, index);
			if (rx_queue & 0x1) {
				/* vector goes into third byte of register */
				ivar = ivar & 0xFF00FFFF;
				ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
			} else {
				/* vector goes into low byte of register */
				ivar = ivar & 0xFFFFFF00;
				ivar |= msix_vector | E1000_IVAR_VALID;
			}
			array_wr32(E1000_IVAR0, index, ivar);
		}
		if (tx_queue > IGB_N0_QUEUE) {
			index = (tx_queue >> 1);
			ivar = array_rd32(E1000_IVAR0, index);
			if (tx_queue & 0x1) {
				/* vector goes into high byte of register */
				ivar = ivar & 0x00FFFFFF;
				ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
			} else {
				/* vector goes into second byte of register */
				ivar = ivar & 0xFFFF00FF;
				ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
			}
			array_wr32(E1000_IVAR0, index, ivar);
		}
		q_vector->eims_value = 1 << msix_vector;
		break;
A
Alexander Duyck 已提交
815 816 817 818
	default:
		BUG();
		break;
	}
819 820 821 822 823 824

	/* add q_vector eims value to global eims_enable_mask */
	adapter->eims_enable_mask |= q_vector->eims_value;

	/* configure q_vector to set itr on first interrupt */
	q_vector->set_itr = 1;
825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841
}

/**
 * igb_configure_msix - Configure MSI-X hardware
 *
 * igb_configure_msix sets up the hardware to properly
 * generate MSI-X interrupts.
 **/
static void igb_configure_msix(struct igb_adapter *adapter)
{
	u32 tmp;
	int i, vector = 0;
	struct e1000_hw *hw = &adapter->hw;

	adapter->eims_enable_mask = 0;

	/* set vector for other causes, i.e. link changes */
A
Alexander Duyck 已提交
842 843
	switch (hw->mac.type) {
	case e1000_82575:
844 845 846 847 848 849 850 851 852
		tmp = rd32(E1000_CTRL_EXT);
		/* enable MSI-X PBA support*/
		tmp |= E1000_CTRL_EXT_PBA_CLR;

		/* Auto-Mask interrupts upon ICR read. */
		tmp |= E1000_CTRL_EXT_EIAME;
		tmp |= E1000_CTRL_EXT_IRCA;

		wr32(E1000_CTRL_EXT, tmp);
853 854 855 856

		/* enable msix_other interrupt */
		array_wr32(E1000_MSIXBM(0), vector++,
		                      E1000_EIMS_OTHER);
P
PJ Waskiewicz 已提交
857
		adapter->eims_other = E1000_EIMS_OTHER;
858

A
Alexander Duyck 已提交
859 860 861
		break;

	case e1000_82576:
862
	case e1000_82580:
863
	case e1000_i350:
864 865 866 867 868 869 870 871
		/* Turn on MSI-X capability first, or our settings
		 * won't stick.  And it will take days to debug. */
		wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
		                E1000_GPIE_PBA | E1000_GPIE_EIAME |
		                E1000_GPIE_NSICR);

		/* enable msix_other interrupt */
		adapter->eims_other = 1 << vector;
A
Alexander Duyck 已提交
872 873
		tmp = (vector++ | E1000_IVAR_VALID) << 8;

874
		wr32(E1000_IVAR_MISC, tmp);
A
Alexander Duyck 已提交
875 876 877 878 879
		break;
	default:
		/* do nothing, since nothing else supports MSI-X */
		break;
	} /* switch (hw->mac.type) */
880 881 882

	adapter->eims_enable_mask |= adapter->eims_other;

883 884
	for (i = 0; i < adapter->num_q_vectors; i++)
		igb_assign_vector(adapter->q_vector[i], vector++);
885

886 887 888 889 890 891 892 893 894 895 896 897
	wrfl();
}

/**
 * igb_request_msix - Initialize MSI-X interrupts
 *
 * igb_request_msix allocates MSI-X vectors and requests interrupts from the
 * kernel.
 **/
static int igb_request_msix(struct igb_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
898
	struct e1000_hw *hw = &adapter->hw;
899 900
	int i, err = 0, vector = 0;

901
	err = request_irq(adapter->msix_entries[vector].vector,
902
	                  igb_msix_other, 0, netdev->name, adapter);
903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920
	if (err)
		goto out;
	vector++;

	for (i = 0; i < adapter->num_q_vectors; i++) {
		struct igb_q_vector *q_vector = adapter->q_vector[i];

		q_vector->itr_register = hw->hw_addr + E1000_EITR(vector);

		if (q_vector->rx_ring && q_vector->tx_ring)
			sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
			        q_vector->rx_ring->queue_index);
		else if (q_vector->tx_ring)
			sprintf(q_vector->name, "%s-tx-%u", netdev->name,
			        q_vector->tx_ring->queue_index);
		else if (q_vector->rx_ring)
			sprintf(q_vector->name, "%s-rx-%u", netdev->name,
			        q_vector->rx_ring->queue_index);
921
		else
922 923
			sprintf(q_vector->name, "%s-unused", netdev->name);

924
		err = request_irq(adapter->msix_entries[vector].vector,
925
		                  igb_msix_ring, 0, q_vector->name,
926
		                  q_vector);
927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943
		if (err)
			goto out;
		vector++;
	}

	igb_configure_msix(adapter);
	return 0;
out:
	return err;
}

static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
{
	if (adapter->msix_entries) {
		pci_disable_msix(adapter->pdev);
		kfree(adapter->msix_entries);
		adapter->msix_entries = NULL;
944
	} else if (adapter->flags & IGB_FLAG_HAS_MSI) {
945
		pci_disable_msi(adapter->pdev);
946
	}
947 948
}

949 950 951 952 953 954 955 956 957 958 959 960 961 962 963
/**
 * igb_free_q_vectors - Free memory allocated for interrupt vectors
 * @adapter: board private structure to initialize
 *
 * This function frees the memory allocated to the q_vectors.  In addition if
 * NAPI is enabled it will delete any references to the NAPI struct prior
 * to freeing the q_vector.
 **/
static void igb_free_q_vectors(struct igb_adapter *adapter)
{
	int v_idx;

	for (v_idx = 0; v_idx < adapter->num_q_vectors; v_idx++) {
		struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
		adapter->q_vector[v_idx] = NULL;
964 965
		if (!q_vector)
			continue;
966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983
		netif_napi_del(&q_vector->napi);
		kfree(q_vector);
	}
	adapter->num_q_vectors = 0;
}

/**
 * igb_clear_interrupt_scheme - reset the device to a state of no interrupts
 *
 * This function resets the device so that it has 0 rx queues, tx queues, and
 * MSI-X interrupts allocated.
 */
static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
{
	igb_free_queues(adapter);
	igb_free_q_vectors(adapter);
	igb_reset_interrupt_capability(adapter);
}
984 985 986 987 988 989 990 991 992 993 994 995

/**
 * igb_set_interrupt_capability - set MSI or MSI-X if supported
 *
 * Attempt to configure interrupts using the best available
 * capabilities of the hardware and kernel.
 **/
static void igb_set_interrupt_capability(struct igb_adapter *adapter)
{
	int err;
	int numvecs, i;

996
	/* Number of supported queues. */
997
	adapter->num_rx_queues = adapter->rss_queues;
998 999 1000 1001
	if (adapter->vfs_allocated_count)
		adapter->num_tx_queues = 1;
	else
		adapter->num_tx_queues = adapter->rss_queues;
1002

1003 1004 1005
	/* start with one vector for every rx queue */
	numvecs = adapter->num_rx_queues;

D
Daniel Mack 已提交
1006
	/* if tx handler is separate add 1 for every tx queue */
1007 1008
	if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
		numvecs += adapter->num_tx_queues;
1009 1010 1011 1012 1013 1014

	/* store the number of vectors reserved for queues */
	adapter->num_q_vectors = numvecs;

	/* add 1 vector for link status interrupts */
	numvecs++;
1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026
	adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
					GFP_KERNEL);
	if (!adapter->msix_entries)
		goto msi_only;

	for (i = 0; i < numvecs; i++)
		adapter->msix_entries[i].entry = i;

	err = pci_enable_msix(adapter->pdev,
			      adapter->msix_entries,
			      numvecs);
	if (err == 0)
1027
		goto out;
1028 1029 1030 1031 1032

	igb_reset_interrupt_capability(adapter);

	/* If we can't do MSI-X, try MSI */
msi_only:
1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047
#ifdef CONFIG_PCI_IOV
	/* disable SR-IOV for non MSI-X configurations */
	if (adapter->vf_data) {
		struct e1000_hw *hw = &adapter->hw;
		/* disable iov and allow time for transactions to clear */
		pci_disable_sriov(adapter->pdev);
		msleep(500);

		kfree(adapter->vf_data);
		adapter->vf_data = NULL;
		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
		msleep(100);
		dev_info(&adapter->pdev->dev, "IOV Disabled\n");
	}
#endif
1048
	adapter->vfs_allocated_count = 0;
1049
	adapter->rss_queues = 1;
1050
	adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1051
	adapter->num_rx_queues = 1;
1052
	adapter->num_tx_queues = 1;
1053
	adapter->num_q_vectors = 1;
1054
	if (!pci_enable_msi(adapter->pdev))
1055
		adapter->flags |= IGB_FLAG_HAS_MSI;
1056
out:
1057
	/* Notify the stack of the (possibly) reduced Tx Queue count. */
1058
	adapter->netdev->real_num_tx_queues = adapter->num_tx_queues;
1059 1060
}

1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086
/**
 * igb_alloc_q_vectors - Allocate memory for interrupt vectors
 * @adapter: board private structure to initialize
 *
 * We allocate one q_vector per queue interrupt.  If allocation fails we
 * return -ENOMEM.
 **/
static int igb_alloc_q_vectors(struct igb_adapter *adapter)
{
	struct igb_q_vector *q_vector;
	struct e1000_hw *hw = &adapter->hw;
	int v_idx;

	for (v_idx = 0; v_idx < adapter->num_q_vectors; v_idx++) {
		q_vector = kzalloc(sizeof(struct igb_q_vector), GFP_KERNEL);
		if (!q_vector)
			goto err_out;
		q_vector->adapter = adapter;
		q_vector->itr_register = hw->hw_addr + E1000_EITR(0);
		q_vector->itr_val = IGB_START_ITR;
		netif_napi_add(adapter->netdev, &q_vector->napi, igb_poll, 64);
		adapter->q_vector[v_idx] = q_vector;
	}
	return 0;

err_out:
1087
	igb_free_q_vectors(adapter);
1088 1089 1090 1091 1092 1093
	return -ENOMEM;
}

static void igb_map_rx_ring_to_vector(struct igb_adapter *adapter,
                                      int ring_idx, int v_idx)
{
1094
	struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1095

1096
	q_vector->rx_ring = adapter->rx_ring[ring_idx];
1097
	q_vector->rx_ring->q_vector = q_vector;
1098 1099 1100
	q_vector->itr_val = adapter->rx_itr_setting;
	if (q_vector->itr_val && q_vector->itr_val <= 3)
		q_vector->itr_val = IGB_START_ITR;
1101 1102 1103 1104 1105
}

static void igb_map_tx_ring_to_vector(struct igb_adapter *adapter,
                                      int ring_idx, int v_idx)
{
1106
	struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1107

1108
	q_vector->tx_ring = adapter->tx_ring[ring_idx];
1109
	q_vector->tx_ring->q_vector = q_vector;
1110 1111 1112
	q_vector->itr_val = adapter->tx_itr_setting;
	if (q_vector->itr_val && q_vector->itr_val <= 3)
		q_vector->itr_val = IGB_START_ITR;
1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187
}

/**
 * igb_map_ring_to_vector - maps allocated queues to vectors
 *
 * This function maps the recently allocated queues to vectors.
 **/
static int igb_map_ring_to_vector(struct igb_adapter *adapter)
{
	int i;
	int v_idx = 0;

	if ((adapter->num_q_vectors < adapter->num_rx_queues) ||
	    (adapter->num_q_vectors < adapter->num_tx_queues))
		return -ENOMEM;

	if (adapter->num_q_vectors >=
	    (adapter->num_rx_queues + adapter->num_tx_queues)) {
		for (i = 0; i < adapter->num_rx_queues; i++)
			igb_map_rx_ring_to_vector(adapter, i, v_idx++);
		for (i = 0; i < adapter->num_tx_queues; i++)
			igb_map_tx_ring_to_vector(adapter, i, v_idx++);
	} else {
		for (i = 0; i < adapter->num_rx_queues; i++) {
			if (i < adapter->num_tx_queues)
				igb_map_tx_ring_to_vector(adapter, i, v_idx);
			igb_map_rx_ring_to_vector(adapter, i, v_idx++);
		}
		for (; i < adapter->num_tx_queues; i++)
			igb_map_tx_ring_to_vector(adapter, i, v_idx++);
	}
	return 0;
}

/**
 * igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
 *
 * This function initializes the interrupts and allocates all of the queues.
 **/
static int igb_init_interrupt_scheme(struct igb_adapter *adapter)
{
	struct pci_dev *pdev = adapter->pdev;
	int err;

	igb_set_interrupt_capability(adapter);

	err = igb_alloc_q_vectors(adapter);
	if (err) {
		dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
		goto err_alloc_q_vectors;
	}

	err = igb_alloc_queues(adapter);
	if (err) {
		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
		goto err_alloc_queues;
	}

	err = igb_map_ring_to_vector(adapter);
	if (err) {
		dev_err(&pdev->dev, "Invalid q_vector to ring mapping\n");
		goto err_map_queues;
	}


	return 0;
err_map_queues:
	igb_free_queues(adapter);
err_alloc_queues:
	igb_free_q_vectors(adapter);
err_alloc_q_vectors:
	igb_reset_interrupt_capability(adapter);
	return err;
}

1188 1189 1190 1191 1192 1193 1194 1195 1196
/**
 * igb_request_irq - initialize interrupts
 *
 * Attempts to configure interrupts using the best available
 * capabilities of the hardware and kernel.
 **/
static int igb_request_irq(struct igb_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
1197
	struct pci_dev *pdev = adapter->pdev;
1198 1199 1200 1201
	int err = 0;

	if (adapter->msix_entries) {
		err = igb_request_msix(adapter);
P
PJ Waskiewicz 已提交
1202
		if (!err)
1203 1204
			goto request_done;
		/* fall back to MSI */
1205
		igb_clear_interrupt_scheme(adapter);
1206
		if (!pci_enable_msi(adapter->pdev))
1207
			adapter->flags |= IGB_FLAG_HAS_MSI;
1208 1209
		igb_free_all_tx_resources(adapter);
		igb_free_all_rx_resources(adapter);
1210
		adapter->num_tx_queues = 1;
1211
		adapter->num_rx_queues = 1;
1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227
		adapter->num_q_vectors = 1;
		err = igb_alloc_q_vectors(adapter);
		if (err) {
			dev_err(&pdev->dev,
			        "Unable to allocate memory for vectors\n");
			goto request_done;
		}
		err = igb_alloc_queues(adapter);
		if (err) {
			dev_err(&pdev->dev,
			        "Unable to allocate memory for queues\n");
			igb_free_q_vectors(adapter);
			goto request_done;
		}
		igb_setup_all_tx_resources(adapter);
		igb_setup_all_rx_resources(adapter);
P
PJ Waskiewicz 已提交
1228
	} else {
1229
		igb_assign_vector(adapter->q_vector[0], 0);
1230
	}
P
PJ Waskiewicz 已提交
1231

1232
	if (adapter->flags & IGB_FLAG_HAS_MSI) {
1233
		err = request_irq(adapter->pdev->irq, igb_intr_msi, 0,
1234
				  netdev->name, adapter);
1235 1236
		if (!err)
			goto request_done;
1237

1238 1239
		/* fall back to legacy interrupts */
		igb_reset_interrupt_capability(adapter);
1240
		adapter->flags &= ~IGB_FLAG_HAS_MSI;
1241 1242
	}

1243
	err = request_irq(adapter->pdev->irq, igb_intr, IRQF_SHARED,
1244
			  netdev->name, adapter);
1245

A
Andy Gospodarek 已提交
1246
	if (err)
1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258
		dev_err(&adapter->pdev->dev, "Error %d getting interrupt\n",
			err);

request_done:
	return err;
}

static void igb_free_irq(struct igb_adapter *adapter)
{
	if (adapter->msix_entries) {
		int vector = 0, i;

1259
		free_irq(adapter->msix_entries[vector++].vector, adapter);
1260

1261 1262 1263 1264 1265 1266 1267
		for (i = 0; i < adapter->num_q_vectors; i++) {
			struct igb_q_vector *q_vector = adapter->q_vector[i];
			free_irq(adapter->msix_entries[vector++].vector,
			         q_vector);
		}
	} else {
		free_irq(adapter->pdev->irq, adapter);
1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278
	}
}

/**
 * igb_irq_disable - Mask off interrupt generation on the NIC
 * @adapter: board private structure
 **/
static void igb_irq_disable(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;

1279 1280 1281 1282 1283
	/*
	 * we need to be careful when disabling interrupts.  The VFs are also
	 * mapped into these registers and so clearing the bits can cause
	 * issues on the VF drivers so we only need to clear what we set
	 */
1284
	if (adapter->msix_entries) {
1285 1286 1287 1288 1289
		u32 regval = rd32(E1000_EIAM);
		wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
		wr32(E1000_EIMC, adapter->eims_enable_mask);
		regval = rd32(E1000_EIAC);
		wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
1290
	}
P
PJ Waskiewicz 已提交
1291 1292

	wr32(E1000_IAM, 0);
1293 1294
	wr32(E1000_IMC, ~0);
	wrfl();
1295 1296 1297 1298 1299 1300 1301
	if (adapter->msix_entries) {
		int i;
		for (i = 0; i < adapter->num_q_vectors; i++)
			synchronize_irq(adapter->msix_entries[i].vector);
	} else {
		synchronize_irq(adapter->pdev->irq);
	}
1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312
}

/**
 * igb_irq_enable - Enable default interrupt generation settings
 * @adapter: board private structure
 **/
static void igb_irq_enable(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;

	if (adapter->msix_entries) {
1313
		u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC;
1314 1315 1316 1317
		u32 regval = rd32(E1000_EIAC);
		wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
		regval = rd32(E1000_EIAM);
		wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
P
PJ Waskiewicz 已提交
1318
		wr32(E1000_EIMS, adapter->eims_enable_mask);
1319
		if (adapter->vfs_allocated_count) {
1320
			wr32(E1000_MBVFIMR, 0xFF);
1321 1322
			ims |= E1000_IMS_VMMB;
		}
1323 1324 1325
		if (adapter->hw.mac.type == e1000_82580)
			ims |= E1000_IMS_DRSTA;

1326
		wr32(E1000_IMS, ims);
P
PJ Waskiewicz 已提交
1327
	} else {
1328 1329 1330 1331
		wr32(E1000_IMS, IMS_ENABLE_MASK |
				E1000_IMS_DRSTA);
		wr32(E1000_IAM, IMS_ENABLE_MASK |
				E1000_IMS_DRSTA);
P
PJ Waskiewicz 已提交
1332
	}
1333 1334 1335 1336
}

static void igb_update_mng_vlan(struct igb_adapter *adapter)
{
1337
	struct e1000_hw *hw = &adapter->hw;
1338 1339
	u16 vid = adapter->hw.mng_cookie.vlan_id;
	u16 old_vid = adapter->mng_vlan_id;
1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353

	if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
		/* add VID to filter table */
		igb_vfta_set(hw, vid, true);
		adapter->mng_vlan_id = vid;
	} else {
		adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
	}

	if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
	    (vid != old_vid) &&
	    !vlan_group_get_device(adapter->vlgrp, old_vid)) {
		/* remove VID from filter table */
		igb_vfta_set(hw, old_vid, false);
1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406
	}
}

/**
 * igb_release_hw_control - release control of the h/w to f/w
 * @adapter: address of board private structure
 *
 * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
 * For ASF and Pass Through versions of f/w this means that the
 * driver is no longer loaded.
 *
 **/
static void igb_release_hw_control(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 ctrl_ext;

	/* Let firmware take over control of h/w */
	ctrl_ext = rd32(E1000_CTRL_EXT);
	wr32(E1000_CTRL_EXT,
			ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
}

/**
 * igb_get_hw_control - get control of the h/w from f/w
 * @adapter: address of board private structure
 *
 * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
 * For ASF and Pass Through versions of f/w this means that
 * the driver is loaded.
 *
 **/
static void igb_get_hw_control(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 ctrl_ext;

	/* Let firmware know the driver has taken over */
	ctrl_ext = rd32(E1000_CTRL_EXT);
	wr32(E1000_CTRL_EXT,
			ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
}

/**
 * igb_configure - configure the hardware for RX and TX
 * @adapter: private board structure
 **/
static void igb_configure(struct igb_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
	int i;

	igb_get_hw_control(adapter);
1407
	igb_set_rx_mode(netdev);
1408 1409 1410

	igb_restore_vlan(adapter);

1411
	igb_setup_tctl(adapter);
1412
	igb_setup_mrqc(adapter);
1413
	igb_setup_rctl(adapter);
1414 1415

	igb_configure_tx(adapter);
1416
	igb_configure_rx(adapter);
1417 1418 1419

	igb_rx_fifo_flush_82575(&adapter->hw);

1420
	/* call igb_desc_unused which always leaves
1421 1422 1423
	 * at least 1 descriptor unused to make sure
	 * next_to_use != next_to_clean */
	for (i = 0; i < adapter->num_rx_queues; i++) {
1424
		struct igb_ring *ring = adapter->rx_ring[i];
1425
		igb_alloc_rx_buffers_adv(ring, igb_desc_unused(ring));
1426 1427 1428
	}
}

1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451
/**
 * igb_power_up_link - Power up the phy/serdes link
 * @adapter: address of board private structure
 **/
void igb_power_up_link(struct igb_adapter *adapter)
{
	if (adapter->hw.phy.media_type == e1000_media_type_copper)
		igb_power_up_phy_copper(&adapter->hw);
	else
		igb_power_up_serdes_link_82575(&adapter->hw);
}

/**
 * igb_power_down_link - Power down the phy/serdes link
 * @adapter: address of board private structure
 */
static void igb_power_down_link(struct igb_adapter *adapter)
{
	if (adapter->hw.phy.media_type == e1000_media_type_copper)
		igb_power_down_phy_copper_82575(&adapter->hw);
	else
		igb_shutdown_serdes_link_82575(&adapter->hw);
}
1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466

/**
 * igb_up - Open the interface and prepare it to handle traffic
 * @adapter: board private structure
 **/
int igb_up(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	int i;

	/* hardware has been reset, we need to reload some things */
	igb_configure(adapter);

	clear_bit(__IGB_DOWN, &adapter->state);

1467 1468 1469 1470
	for (i = 0; i < adapter->num_q_vectors; i++) {
		struct igb_q_vector *q_vector = adapter->q_vector[i];
		napi_enable(&q_vector->napi);
	}
P
PJ Waskiewicz 已提交
1471
	if (adapter->msix_entries)
1472
		igb_configure_msix(adapter);
1473 1474
	else
		igb_assign_vector(adapter->q_vector[0], 0);
1475 1476 1477 1478 1479

	/* Clear any pending interrupts. */
	rd32(E1000_ICR);
	igb_irq_enable(adapter);

1480 1481 1482 1483 1484 1485 1486
	/* notify VFs that reset has been completed */
	if (adapter->vfs_allocated_count) {
		u32 reg_data = rd32(E1000_CTRL_EXT);
		reg_data |= E1000_CTRL_EXT_PFRSTD;
		wr32(E1000_CTRL_EXT, reg_data);
	}

1487 1488
	netif_tx_start_all_queues(adapter->netdev);

1489 1490 1491 1492
	/* start the watchdog. */
	hw->mac.get_link_status = 1;
	schedule_work(&adapter->watchdog_task);

1493 1494 1495 1496 1497 1498
	return 0;
}

void igb_down(struct igb_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
1499
	struct e1000_hw *hw = &adapter->hw;
1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511
	u32 tctl, rctl;
	int i;

	/* signal that we're down so the interrupt handler does not
	 * reschedule our watchdog timer */
	set_bit(__IGB_DOWN, &adapter->state);

	/* disable receives in the hardware */
	rctl = rd32(E1000_RCTL);
	wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
	/* flush and sleep below */

1512
	netif_tx_stop_all_queues(netdev);
1513 1514 1515 1516 1517 1518 1519 1520 1521

	/* disable transmits in the hardware */
	tctl = rd32(E1000_TCTL);
	tctl &= ~E1000_TCTL_EN;
	wr32(E1000_TCTL, tctl);
	/* flush both disables and wait for them to finish */
	wrfl();
	msleep(10);

1522 1523 1524 1525
	for (i = 0; i < adapter->num_q_vectors; i++) {
		struct igb_q_vector *q_vector = adapter->q_vector[i];
		napi_disable(&q_vector->napi);
	}
1526 1527 1528 1529 1530 1531 1532

	igb_irq_disable(adapter);

	del_timer_sync(&adapter->watchdog_timer);
	del_timer_sync(&adapter->phy_info_timer);

	netif_carrier_off(netdev);
1533 1534 1535 1536

	/* record the stats before reset*/
	igb_update_stats(adapter);

1537 1538 1539
	adapter->link_speed = 0;
	adapter->link_duplex = 0;

1540 1541
	if (!pci_channel_offline(adapter->pdev))
		igb_reset(adapter);
1542 1543
	igb_clean_all_tx_rings(adapter);
	igb_clean_all_rx_rings(adapter);
1544 1545 1546 1547 1548
#ifdef CONFIG_IGB_DCA

	/* since we reset the hardware DCA settings were cleared */
	igb_setup_dca(adapter);
#endif
1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562
}

void igb_reinit_locked(struct igb_adapter *adapter)
{
	WARN_ON(in_interrupt());
	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
		msleep(1);
	igb_down(adapter);
	igb_up(adapter);
	clear_bit(__IGB_RESETTING, &adapter->state);
}

void igb_reset(struct igb_adapter *adapter)
{
1563
	struct pci_dev *pdev = adapter->pdev;
1564
	struct e1000_hw *hw = &adapter->hw;
A
Alexander Duyck 已提交
1565 1566
	struct e1000_mac_info *mac = &hw->mac;
	struct e1000_fc_info *fc = &hw->fc;
1567 1568 1569 1570 1571 1572
	u32 pba = 0, tx_space, min_tx_space, min_rx_space;
	u16 hwm;

	/* Repartition Pba for greater than 9k mtu
	 * To take effect CTRL.RST is required.
	 */
1573
	switch (mac->type) {
1574
	case e1000_i350:
1575 1576 1577 1578
	case e1000_82580:
		pba = rd32(E1000_RXPBS);
		pba = igb_rxpbs_adjust_82580(pba);
		break;
1579
	case e1000_82576:
1580 1581
		pba = rd32(E1000_RXPBS);
		pba &= E1000_RXPBS_SIZE_MASK_82576;
1582 1583 1584 1585 1586
		break;
	case e1000_82575:
	default:
		pba = E1000_PBA_34K;
		break;
A
Alexander Duyck 已提交
1587
	}
1588

A
Alexander Duyck 已提交
1589 1590
	if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
	    (mac->type < e1000_82576)) {
1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607
		/* adjust PBA for jumbo frames */
		wr32(E1000_PBA, pba);

		/* To maintain wire speed transmits, the Tx FIFO should be
		 * large enough to accommodate two full transmit packets,
		 * rounded up to the next 1KB and expressed in KB.  Likewise,
		 * the Rx FIFO should be large enough to accommodate at least
		 * one full receive packet and is similarly rounded up and
		 * expressed in KB. */
		pba = rd32(E1000_PBA);
		/* upper 16 bits has Tx packet buffer allocation size in KB */
		tx_space = pba >> 16;
		/* lower 16 bits has Rx packet buffer allocation size in KB */
		pba &= 0xffff;
		/* the tx fifo also stores 16 bytes of information about the tx
		 * but don't include ethernet FCS because hardware appends it */
		min_tx_space = (adapter->max_frame_size +
1608
				sizeof(union e1000_adv_tx_desc) -
1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628
				ETH_FCS_LEN) * 2;
		min_tx_space = ALIGN(min_tx_space, 1024);
		min_tx_space >>= 10;
		/* software strips receive CRC, so leave room for it */
		min_rx_space = adapter->max_frame_size;
		min_rx_space = ALIGN(min_rx_space, 1024);
		min_rx_space >>= 10;

		/* If current Tx allocation is less than the min Tx FIFO size,
		 * and the min Tx FIFO size is less than the current Rx FIFO
		 * allocation, take space away from current Rx allocation */
		if (tx_space < min_tx_space &&
		    ((min_tx_space - tx_space) < pba)) {
			pba = pba - (min_tx_space - tx_space);

			/* if short on rx space, rx wins and must trump tx
			 * adjustment */
			if (pba < min_rx_space)
				pba = min_rx_space;
		}
A
Alexander Duyck 已提交
1629
		wr32(E1000_PBA, pba);
1630 1631 1632 1633 1634 1635 1636 1637 1638
	}

	/* flow control settings */
	/* The high water mark must be low enough to fit one full frame
	 * (or the size used for early receive) above it in the Rx FIFO.
	 * Set it to the lower of:
	 * - 90% of the Rx FIFO size, or
	 * - the full Rx FIFO size minus one full frame */
	hwm = min(((pba << 10) * 9 / 10),
A
Alexander Duyck 已提交
1639
			((pba << 10) - 2 * adapter->max_frame_size));
1640

1641 1642
	fc->high_water = hwm & 0xFFF0;	/* 16-byte granularity */
	fc->low_water = fc->high_water - 16;
1643 1644
	fc->pause_time = 0xFFFF;
	fc->send_xon = 1;
1645
	fc->current_mode = fc->requested_mode;
1646

1647 1648 1649 1650
	/* disable receive for all VFs and wait one second */
	if (adapter->vfs_allocated_count) {
		int i;
		for (i = 0 ; i < adapter->vfs_allocated_count; i++)
1651
			adapter->vf_data[i].flags = 0;
1652 1653

		/* ping all the active vfs to let them know we are going down */
1654
		igb_ping_all_vfs(adapter);
1655 1656 1657 1658 1659 1660

		/* disable transmits and receives */
		wr32(E1000_VFRE, 0);
		wr32(E1000_VFTE, 0);
	}

1661
	/* Allow time for pending master requests to run */
1662
	hw->mac.ops.reset_hw(hw);
1663 1664
	wr32(E1000_WUC, 0);

1665
	if (hw->mac.ops.init_hw(hw))
1666
		dev_err(&pdev->dev, "Hardware Error\n");
1667

1668 1669 1670 1671 1672
	if (hw->mac.type == e1000_82580) {
		u32 reg = rd32(E1000_PCIEMISC);
		wr32(E1000_PCIEMISC,
		                reg & ~E1000_PCIEMISC_LX_DECISION);
	}
1673 1674 1675
	if (!netif_running(adapter->netdev))
		igb_power_down_link(adapter);

1676 1677 1678 1679 1680
	igb_update_mng_vlan(adapter);

	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
	wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);

1681
	igb_get_phy_info(hw);
1682 1683
}

S
Stephen Hemminger 已提交
1684
static const struct net_device_ops igb_netdev_ops = {
1685
	.ndo_open		= igb_open,
S
Stephen Hemminger 已提交
1686
	.ndo_stop		= igb_close,
1687
	.ndo_start_xmit		= igb_xmit_frame_adv,
S
Stephen Hemminger 已提交
1688
	.ndo_get_stats		= igb_get_stats,
1689 1690
	.ndo_set_rx_mode	= igb_set_rx_mode,
	.ndo_set_multicast_list	= igb_set_rx_mode,
S
Stephen Hemminger 已提交
1691 1692 1693 1694 1695 1696 1697 1698
	.ndo_set_mac_address	= igb_set_mac,
	.ndo_change_mtu		= igb_change_mtu,
	.ndo_do_ioctl		= igb_ioctl,
	.ndo_tx_timeout		= igb_tx_timeout,
	.ndo_validate_addr	= eth_validate_addr,
	.ndo_vlan_rx_register	= igb_vlan_rx_register,
	.ndo_vlan_rx_add_vid	= igb_vlan_rx_add_vid,
	.ndo_vlan_rx_kill_vid	= igb_vlan_rx_kill_vid,
1699 1700 1701 1702
	.ndo_set_vf_mac		= igb_ndo_set_vf_mac,
	.ndo_set_vf_vlan	= igb_ndo_set_vf_vlan,
	.ndo_set_vf_tx_rate	= igb_ndo_set_vf_bw,
	.ndo_get_vf_config	= igb_ndo_get_vf_config,
S
Stephen Hemminger 已提交
1703 1704 1705 1706 1707
#ifdef CONFIG_NET_POLL_CONTROLLER
	.ndo_poll_controller	= igb_netpoll,
#endif
};

1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724
/**
 * igb_probe - Device Initialization Routine
 * @pdev: PCI device information struct
 * @ent: entry in igb_pci_tbl
 *
 * Returns 0 on success, negative on failure
 *
 * igb_probe initializes an adapter identified by a pci_dev structure.
 * The OS initialization, configuring of the adapter private structure,
 * and a hardware reset occur.
 **/
static int __devinit igb_probe(struct pci_dev *pdev,
			       const struct pci_device_id *ent)
{
	struct net_device *netdev;
	struct igb_adapter *adapter;
	struct e1000_hw *hw;
1725 1726
	u16 eeprom_data = 0;
	static int global_quad_port_a; /* global quad port a indication */
1727 1728
	const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
	unsigned long mmio_start, mmio_len;
1729
	int err, pci_using_dac;
1730 1731 1732
	u16 eeprom_apme_mask = IGB_EEPROM_APME;
	u32 part_num;

1733 1734 1735 1736 1737 1738 1739 1740 1741
	/* Catch broken hardware that put the wrong VF device ID in
	 * the PCIe SR-IOV capability.
	 */
	if (pdev->is_virtfn) {
		WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n",
		     pci_name(pdev), pdev->vendor, pdev->device);
		return -EINVAL;
	}

1742
	err = pci_enable_device_mem(pdev);
1743 1744 1745 1746
	if (err)
		return err;

	pci_using_dac = 0;
1747
	err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
1748
	if (!err) {
1749
		err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
1750 1751 1752
		if (!err)
			pci_using_dac = 1;
	} else {
1753
		err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
1754
		if (err) {
1755
			err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
1756 1757 1758 1759 1760 1761 1762 1763
			if (err) {
				dev_err(&pdev->dev, "No usable DMA "
					"configuration, aborting\n");
				goto err_dma;
			}
		}
	}

1764 1765 1766
	err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
	                                   IORESOURCE_MEM),
	                                   igb_driver_name);
1767 1768 1769
	if (err)
		goto err_pci_reg;

1770
	pci_enable_pcie_error_reporting(pdev);
1771

1772
	pci_set_master(pdev);
1773
	pci_save_state(pdev);
1774 1775

	err = -ENOMEM;
1776 1777
	netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
	                           IGB_ABS_MAX_TX_QUEUES);
1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794
	if (!netdev)
		goto err_alloc_etherdev;

	SET_NETDEV_DEV(netdev, &pdev->dev);

	pci_set_drvdata(pdev, netdev);
	adapter = netdev_priv(netdev);
	adapter->netdev = netdev;
	adapter->pdev = pdev;
	hw = &adapter->hw;
	hw->back = adapter;
	adapter->msg_enable = NETIF_MSG_DRV | NETIF_MSG_PROBE;

	mmio_start = pci_resource_start(pdev, 0);
	mmio_len = pci_resource_len(pdev, 0);

	err = -EIO;
1795 1796
	hw->hw_addr = ioremap(mmio_start, mmio_len);
	if (!hw->hw_addr)
1797 1798
		goto err_ioremap;

S
Stephen Hemminger 已提交
1799
	netdev->netdev_ops = &igb_netdev_ops;
1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821
	igb_set_ethtool_ops(netdev);
	netdev->watchdog_timeo = 5 * HZ;

	strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);

	netdev->mem_start = mmio_start;
	netdev->mem_end = mmio_start + mmio_len;

	/* PCI config space info */
	hw->vendor_id = pdev->vendor;
	hw->device_id = pdev->device;
	hw->revision_id = pdev->revision;
	hw->subsystem_vendor_id = pdev->subsystem_vendor;
	hw->subsystem_device_id = pdev->subsystem_device;

	/* Copy the default MAC, PHY and NVM function pointers */
	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
	memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
	/* Initialize skew-specific constants */
	err = ei->get_invariants(hw);
	if (err)
1822
		goto err_sw_init;
1823

1824
	/* setup the private structure */
1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844
	err = igb_sw_init(adapter);
	if (err)
		goto err_sw_init;

	igb_get_bus_info_pcie(hw);

	hw->phy.autoneg_wait_to_complete = false;

	/* Copper options */
	if (hw->phy.media_type == e1000_media_type_copper) {
		hw->phy.mdix = AUTO_ALL_MODES;
		hw->phy.disable_polarity_correction = false;
		hw->phy.ms_type = e1000_ms_hw_default;
	}

	if (igb_check_reset_block(hw))
		dev_info(&pdev->dev,
			"PHY reset is blocked due to SOL/IDER session.\n");

	netdev->features = NETIF_F_SG |
1845
			   NETIF_F_IP_CSUM |
1846 1847 1848 1849
			   NETIF_F_HW_VLAN_TX |
			   NETIF_F_HW_VLAN_RX |
			   NETIF_F_HW_VLAN_FILTER;

1850
	netdev->features |= NETIF_F_IPV6_CSUM;
1851 1852
	netdev->features |= NETIF_F_TSO;
	netdev->features |= NETIF_F_TSO6;
H
Herbert Xu 已提交
1853
	netdev->features |= NETIF_F_GRO;
1854

1855 1856
	netdev->vlan_features |= NETIF_F_TSO;
	netdev->vlan_features |= NETIF_F_TSO6;
1857
	netdev->vlan_features |= NETIF_F_IP_CSUM;
1858
	netdev->vlan_features |= NETIF_F_IPV6_CSUM;
1859 1860
	netdev->vlan_features |= NETIF_F_SG;

1861 1862 1863
	if (pci_using_dac)
		netdev->features |= NETIF_F_HIGHDMA;

1864
	if (hw->mac.type >= e1000_82576)
1865 1866
		netdev->features |= NETIF_F_SCTP_CSUM;

1867
	adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892

	/* before reading the NVM, reset the controller to put the device in a
	 * known good starting state */
	hw->mac.ops.reset_hw(hw);

	/* make sure the NVM is good */
	if (igb_validate_nvm_checksum(hw) < 0) {
		dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
		err = -EIO;
		goto err_eeprom;
	}

	/* copy the MAC address out of the NVM */
	if (hw->mac.ops.read_mac_addr(hw))
		dev_err(&pdev->dev, "NVM Read Error\n");

	memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
	memcpy(netdev->perm_addr, hw->mac.addr, netdev->addr_len);

	if (!is_valid_ether_addr(netdev->perm_addr)) {
		dev_err(&pdev->dev, "Invalid MAC Address\n");
		err = -EIO;
		goto err_eeprom;
	}

1893
	setup_timer(&adapter->watchdog_timer, igb_watchdog,
1894
	            (unsigned long) adapter);
1895
	setup_timer(&adapter->phy_info_timer, igb_update_phy_info,
1896
	            (unsigned long) adapter);
1897 1898 1899 1900

	INIT_WORK(&adapter->reset_task, igb_reset_task);
	INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);

1901
	/* Initialize link properties that are user-changeable */
1902 1903 1904 1905
	adapter->fc_autoneg = true;
	hw->mac.autoneg = true;
	hw->phy.autoneg_advertised = 0x2f;

1906 1907
	hw->fc.requested_mode = e1000_fc_default;
	hw->fc.current_mode = e1000_fc_default;
1908 1909 1910 1911 1912 1913 1914

	igb_validate_mdi_setting(hw);

	/* Initial Wake on LAN setting If APM wake is enabled in the EEPROM,
	 * enable the ACPI Magic Packet filter
	 */

1915
	if (hw->bus.func == 0)
A
Alexander Duyck 已提交
1916
		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
1917 1918 1919 1920
	else if (hw->mac.type == e1000_82580)
		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
		                 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
		                 &eeprom_data);
1921 1922
	else if (hw->bus.func == 1)
		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934

	if (eeprom_data & eeprom_apme_mask)
		adapter->eeprom_wol |= E1000_WUFC_MAG;

	/* now that we have the eeprom settings, apply the special cases where
	 * the eeprom may be wrong or the board simply won't support wake on
	 * lan on a particular port */
	switch (pdev->device) {
	case E1000_DEV_ID_82575GB_QUAD_COPPER:
		adapter->eeprom_wol = 0;
		break;
	case E1000_DEV_ID_82575EB_FIBER_SERDES:
A
Alexander Duyck 已提交
1935 1936
	case E1000_DEV_ID_82576_FIBER:
	case E1000_DEV_ID_82576_SERDES:
1937 1938 1939 1940 1941
		/* Wake events only supported on port A for dual fiber
		 * regardless of eeprom setting */
		if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
			adapter->eeprom_wol = 0;
		break;
1942
	case E1000_DEV_ID_82576_QUAD_COPPER:
1943
	case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
1944 1945 1946 1947 1948 1949 1950 1951 1952
		/* if quad port adapter, disable WoL on all but port A */
		if (global_quad_port_a != 0)
			adapter->eeprom_wol = 0;
		else
			adapter->flags |= IGB_FLAG_QUAD_PORT_A;
		/* Reset for multiple quad port adapters */
		if (++global_quad_port_a == 4)
			global_quad_port_a = 0;
		break;
1953 1954 1955 1956
	}

	/* initialize the wol settings based on the eeprom settings */
	adapter->wol = adapter->eeprom_wol;
1957
	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970

	/* reset the hardware with the new settings */
	igb_reset(adapter);

	/* let the f/w know that the h/w is now under the control of the
	 * driver. */
	igb_get_hw_control(adapter);

	strcpy(netdev->name, "eth%d");
	err = register_netdev(netdev);
	if (err)
		goto err_register;

1971 1972 1973
	/* carrier off reporting is important to ethtool even BEFORE open */
	netif_carrier_off(netdev);

1974
#ifdef CONFIG_IGB_DCA
1975
	if (dca_add_requester(&pdev->dev) == 0) {
1976
		adapter->flags |= IGB_FLAG_DCA_ENABLED;
J
Jeb Cramer 已提交
1977 1978 1979 1980
		dev_info(&pdev->dev, "DCA enabled\n");
		igb_setup_dca(adapter);
	}

P
Patrick Ohly 已提交
1981
#endif
1982 1983
	dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
	/* print bus type/speed/width info */
J
Johannes Berg 已提交
1984
	dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
1985
		 netdev->name,
1986
		 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
1987
		  (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
1988
		                                            "unknown"),
1989 1990 1991 1992
		 ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
		  (hw->bus.width == e1000_bus_width_pcie_x2) ? "Width x2" :
		  (hw->bus.width == e1000_bus_width_pcie_x1) ? "Width x1" :
		   "unknown"),
J
Johannes Berg 已提交
1993
		 netdev->dev_addr);
1994 1995 1996 1997 1998 1999 2000 2001

	igb_read_part_num(hw, &part_num);
	dev_info(&pdev->dev, "%s: PBA No: %06x-%03x\n", netdev->name,
		(part_num >> 8), (part_num & 0xff));

	dev_info(&pdev->dev,
		"Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
		adapter->msix_entries ? "MSI-X" :
2002
		(adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
2003 2004 2005 2006 2007 2008 2009 2010
		adapter->num_rx_queues, adapter->num_tx_queues);

	return 0;

err_register:
	igb_release_hw_control(adapter);
err_eeprom:
	if (!igb_check_reset_block(hw))
2011
		igb_reset_phy(hw);
2012 2013 2014 2015

	if (hw->flash_address)
		iounmap(hw->flash_address);
err_sw_init:
2016
	igb_clear_interrupt_scheme(adapter);
2017 2018 2019 2020
	iounmap(hw->hw_addr);
err_ioremap:
	free_netdev(netdev);
err_alloc_etherdev:
2021 2022
	pci_release_selected_regions(pdev,
	                             pci_select_bars(pdev, IORESOURCE_MEM));
2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041
err_pci_reg:
err_dma:
	pci_disable_device(pdev);
	return err;
}

/**
 * igb_remove - Device Removal Routine
 * @pdev: PCI device information struct
 *
 * igb_remove is called by the PCI subsystem to alert the driver
 * that it should release a PCI device.  The could be caused by a
 * Hot-Plug event, or because the driver is going to be removed from
 * memory.
 **/
static void __devexit igb_remove(struct pci_dev *pdev)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);
J
Jeb Cramer 已提交
2042
	struct e1000_hw *hw = &adapter->hw;
2043 2044 2045 2046 2047 2048 2049 2050 2051

	/* flush_scheduled work may reschedule our watchdog task, so
	 * explicitly disable watchdog tasks from being rescheduled  */
	set_bit(__IGB_DOWN, &adapter->state);
	del_timer_sync(&adapter->watchdog_timer);
	del_timer_sync(&adapter->phy_info_timer);

	flush_scheduled_work();

2052
#ifdef CONFIG_IGB_DCA
2053
	if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
J
Jeb Cramer 已提交
2054 2055
		dev_info(&pdev->dev, "DCA disabled\n");
		dca_remove_requester(&pdev->dev);
2056
		adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
A
Alexander Duyck 已提交
2057
		wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
J
Jeb Cramer 已提交
2058 2059 2060
	}
#endif

2061 2062 2063 2064 2065 2066
	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
	 * would have already happened in close and is redundant. */
	igb_release_hw_control(adapter);

	unregister_netdev(netdev);

2067
	igb_clear_interrupt_scheme(adapter);
2068

2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082
#ifdef CONFIG_PCI_IOV
	/* reclaim resources allocated to VFs */
	if (adapter->vf_data) {
		/* disable iov and allow time for transactions to clear */
		pci_disable_sriov(pdev);
		msleep(500);

		kfree(adapter->vf_data);
		adapter->vf_data = NULL;
		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
		msleep(100);
		dev_info(&pdev->dev, "IOV Disabled\n");
	}
#endif
2083

2084 2085 2086
	iounmap(hw->hw_addr);
	if (hw->flash_address)
		iounmap(hw->flash_address);
2087 2088
	pci_release_selected_regions(pdev,
	                             pci_select_bars(pdev, IORESOURCE_MEM));
2089 2090 2091

	free_netdev(netdev);

2092
	pci_disable_pcie_error_reporting(pdev);
2093

2094 2095 2096
	pci_disable_device(pdev);
}

2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141
/**
 * igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
 * @adapter: board private structure to initialize
 *
 * This function initializes the vf specific data storage and then attempts to
 * allocate the VFs.  The reason for ordering it this way is because it is much
 * mor expensive time wise to disable SR-IOV than it is to allocate and free
 * the memory for the VFs.
 **/
static void __devinit igb_probe_vfs(struct igb_adapter * adapter)
{
#ifdef CONFIG_PCI_IOV
	struct pci_dev *pdev = adapter->pdev;

	if (adapter->vfs_allocated_count) {
		adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
		                           sizeof(struct vf_data_storage),
		                           GFP_KERNEL);
		/* if allocation failed then we do not support SR-IOV */
		if (!adapter->vf_data) {
			adapter->vfs_allocated_count = 0;
			dev_err(&pdev->dev, "Unable to allocate memory for VF "
			        "Data Storage\n");
		}
	}

	if (pci_enable_sriov(pdev, adapter->vfs_allocated_count)) {
		kfree(adapter->vf_data);
		adapter->vf_data = NULL;
#endif /* CONFIG_PCI_IOV */
		adapter->vfs_allocated_count = 0;
#ifdef CONFIG_PCI_IOV
	} else {
		unsigned char mac_addr[ETH_ALEN];
		int i;
		dev_info(&pdev->dev, "%d vfs allocated\n",
		         adapter->vfs_allocated_count);
		for (i = 0; i < adapter->vfs_allocated_count; i++) {
			random_ether_addr(mac_addr);
			igb_set_vf_mac(adapter, i, mac_addr);
		}
	}
#endif /* CONFIG_PCI_IOV */
}

2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154

/**
 * igb_init_hw_timer - Initialize hardware timer used with IEEE 1588 timestamp
 * @adapter: board private structure to initialize
 *
 * igb_init_hw_timer initializes the function pointer and values for the hw
 * timer found in hardware.
 **/
static void igb_init_hw_timer(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;

	switch (hw->mac.type) {
2155
	case e1000_i350:
2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197
	case e1000_82580:
		memset(&adapter->cycles, 0, sizeof(adapter->cycles));
		adapter->cycles.read = igb_read_clock;
		adapter->cycles.mask = CLOCKSOURCE_MASK(64);
		adapter->cycles.mult = 1;
		/*
		 * The 82580 timesync updates the system timer every 8ns by 8ns
		 * and the value cannot be shifted.  Instead we need to shift
		 * the registers to generate a 64bit timer value.  As a result
		 * SYSTIMR/L/H, TXSTMPL/H, RXSTMPL/H all have to be shifted by
		 * 24 in order to generate a larger value for synchronization.
		 */
		adapter->cycles.shift = IGB_82580_TSYNC_SHIFT;
		/* disable system timer temporarily by setting bit 31 */
		wr32(E1000_TSAUXC, 0x80000000);
		wrfl();

		/* Set registers so that rollover occurs soon to test this. */
		wr32(E1000_SYSTIMR, 0x00000000);
		wr32(E1000_SYSTIML, 0x80000000);
		wr32(E1000_SYSTIMH, 0x000000FF);
		wrfl();

		/* enable system timer by clearing bit 31 */
		wr32(E1000_TSAUXC, 0x0);
		wrfl();

		timecounter_init(&adapter->clock,
				 &adapter->cycles,
				 ktime_to_ns(ktime_get_real()));
		/*
		 * Synchronize our NIC clock against system wall clock. NIC
		 * time stamp reading requires ~3us per sample, each sample
		 * was pretty stable even under load => only require 10
		 * samples for each offset comparison.
		 */
		memset(&adapter->compare, 0, sizeof(adapter->compare));
		adapter->compare.source = &adapter->clock;
		adapter->compare.target = ktime_get_real;
		adapter->compare.num_samples = 10;
		timecompare_update(&adapter->compare, 0);
		break;
2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248
	case e1000_82576:
		/*
		 * Initialize hardware timer: we keep it running just in case
		 * that some program needs it later on.
		 */
		memset(&adapter->cycles, 0, sizeof(adapter->cycles));
		adapter->cycles.read = igb_read_clock;
		adapter->cycles.mask = CLOCKSOURCE_MASK(64);
		adapter->cycles.mult = 1;
		/**
		 * Scale the NIC clock cycle by a large factor so that
		 * relatively small clock corrections can be added or
		 * substracted at each clock tick. The drawbacks of a large
		 * factor are a) that the clock register overflows more quickly
		 * (not such a big deal) and b) that the increment per tick has
		 * to fit into 24 bits.  As a result we need to use a shift of
		 * 19 so we can fit a value of 16 into the TIMINCA register.
		 */
		adapter->cycles.shift = IGB_82576_TSYNC_SHIFT;
		wr32(E1000_TIMINCA,
		                (1 << E1000_TIMINCA_16NS_SHIFT) |
		                (16 << IGB_82576_TSYNC_SHIFT));

		/* Set registers so that rollover occurs soon to test this. */
		wr32(E1000_SYSTIML, 0x00000000);
		wr32(E1000_SYSTIMH, 0xFF800000);
		wrfl();

		timecounter_init(&adapter->clock,
				 &adapter->cycles,
				 ktime_to_ns(ktime_get_real()));
		/*
		 * Synchronize our NIC clock against system wall clock. NIC
		 * time stamp reading requires ~3us per sample, each sample
		 * was pretty stable even under load => only require 10
		 * samples for each offset comparison.
		 */
		memset(&adapter->compare, 0, sizeof(adapter->compare));
		adapter->compare.source = &adapter->clock;
		adapter->compare.target = ktime_get_real;
		adapter->compare.num_samples = 10;
		timecompare_update(&adapter->compare, 0);
		break;
	case e1000_82575:
		/* 82575 does not support timesync */
	default:
		break;
	}

}

2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264
/**
 * igb_sw_init - Initialize general software structures (struct igb_adapter)
 * @adapter: board private structure to initialize
 *
 * igb_sw_init initializes the Adapter private data structure.
 * Fields are initialized based on PCI device information and
 * OS network device settings (MTU size).
 **/
static int __devinit igb_sw_init(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	struct net_device *netdev = adapter->netdev;
	struct pci_dev *pdev = adapter->pdev;

	pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);

2265 2266
	adapter->tx_ring_count = IGB_DEFAULT_TXD;
	adapter->rx_ring_count = IGB_DEFAULT_RXD;
2267 2268 2269
	adapter->rx_itr_setting = IGB_DEFAULT_ITR;
	adapter->tx_itr_setting = IGB_DEFAULT_ITR;

2270 2271 2272
	adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;

2273 2274
#ifdef CONFIG_PCI_IOV
	if (hw->mac.type == e1000_82576)
2275
		adapter->vfs_allocated_count = (max_vfs > 7) ? 7 : max_vfs;
2276 2277

#endif /* CONFIG_PCI_IOV */
2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288
	adapter->rss_queues = min_t(u32, IGB_MAX_RX_QUEUES, num_online_cpus());

	/*
	 * if rss_queues > 4 or vfs are going to be allocated with rss_queues
	 * then we should combine the queues into a queue pair in order to
	 * conserve interrupts due to limited supply
	 */
	if ((adapter->rss_queues > 4) ||
	    ((adapter->rss_queues > 1) && (adapter->vfs_allocated_count > 6)))
		adapter->flags |= IGB_FLAG_QUEUE_PAIRS;

2289
	/* This call may decrease the number of queues */
2290
	if (igb_init_interrupt_scheme(adapter)) {
2291 2292 2293 2294
		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
		return -ENOMEM;
	}

2295
	igb_init_hw_timer(adapter);
2296 2297
	igb_probe_vfs(adapter);

2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327
	/* Explicitly disable IRQ since the NIC can be in any state. */
	igb_irq_disable(adapter);

	set_bit(__IGB_DOWN, &adapter->state);
	return 0;
}

/**
 * igb_open - Called when a network interface is made active
 * @netdev: network interface device structure
 *
 * Returns 0 on success, negative value on failure
 *
 * The open entry point is called when a network interface is made
 * active by the system (IFF_UP).  At this point all resources needed
 * for transmit and receive operations are allocated, the interrupt
 * handler is registered with the OS, the watchdog timer is started,
 * and the stack is notified that the interface is ready.
 **/
static int igb_open(struct net_device *netdev)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	int err;
	int i;

	/* disallow open during test */
	if (test_bit(__IGB_TESTING, &adapter->state))
		return -EBUSY;

2328 2329
	netif_carrier_off(netdev);

2330 2331 2332 2333 2334 2335 2336 2337 2338 2339
	/* allocate transmit descriptors */
	err = igb_setup_all_tx_resources(adapter);
	if (err)
		goto err_setup_tx;

	/* allocate receive descriptors */
	err = igb_setup_all_rx_resources(adapter);
	if (err)
		goto err_setup_rx;

2340
	igb_power_up_link(adapter);
2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354

	/* before we allocate an interrupt, we must be ready to handle it.
	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
	 * as soon as we call pci_request_irq, so we have to setup our
	 * clean_rx handler before we do so.  */
	igb_configure(adapter);

	err = igb_request_irq(adapter);
	if (err)
		goto err_req_irq;

	/* From here on the code is the same as igb_up() */
	clear_bit(__IGB_DOWN, &adapter->state);

2355 2356 2357 2358
	for (i = 0; i < adapter->num_q_vectors; i++) {
		struct igb_q_vector *q_vector = adapter->q_vector[i];
		napi_enable(&q_vector->napi);
	}
2359 2360 2361

	/* Clear any pending interrupts. */
	rd32(E1000_ICR);
P
PJ Waskiewicz 已提交
2362 2363 2364

	igb_irq_enable(adapter);

2365 2366 2367 2368 2369 2370 2371
	/* notify VFs that reset has been completed */
	if (adapter->vfs_allocated_count) {
		u32 reg_data = rd32(E1000_CTRL_EXT);
		reg_data |= E1000_CTRL_EXT_PFRSTD;
		wr32(E1000_CTRL_EXT, reg_data);
	}

2372 2373
	netif_tx_start_all_queues(netdev);

2374 2375 2376
	/* start the watchdog. */
	hw->mac.get_link_status = 1;
	schedule_work(&adapter->watchdog_task);
2377 2378 2379 2380 2381

	return 0;

err_req_irq:
	igb_release_hw_control(adapter);
2382
	igb_power_down_link(adapter);
2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423
	igb_free_all_rx_resources(adapter);
err_setup_rx:
	igb_free_all_tx_resources(adapter);
err_setup_tx:
	igb_reset(adapter);

	return err;
}

/**
 * igb_close - Disables a network interface
 * @netdev: network interface device structure
 *
 * Returns 0, this is not allowed to fail
 *
 * The close entry point is called when an interface is de-activated
 * by the OS.  The hardware is still under the driver's control, but
 * needs to be disabled.  A global MAC reset is issued to stop the
 * hardware, and all transmit and receive resources are freed.
 **/
static int igb_close(struct net_device *netdev)
{
	struct igb_adapter *adapter = netdev_priv(netdev);

	WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
	igb_down(adapter);

	igb_free_irq(adapter);

	igb_free_all_tx_resources(adapter);
	igb_free_all_rx_resources(adapter);

	return 0;
}

/**
 * igb_setup_tx_resources - allocate Tx resources (Descriptors)
 * @tx_ring: tx descriptor ring (for a specific queue) to setup
 *
 * Return 0 on success, negative on failure
 **/
2424
int igb_setup_tx_resources(struct igb_ring *tx_ring)
2425
{
2426
	struct device *dev = tx_ring->dev;
2427 2428 2429 2430 2431 2432 2433 2434 2435
	int size;

	size = sizeof(struct igb_buffer) * tx_ring->count;
	tx_ring->buffer_info = vmalloc(size);
	if (!tx_ring->buffer_info)
		goto err;
	memset(tx_ring->buffer_info, 0, size);

	/* round up to nearest 4K */
2436
	tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
2437 2438
	tx_ring->size = ALIGN(tx_ring->size, 4096);

2439 2440 2441 2442
	tx_ring->desc = dma_alloc_coherent(dev,
					   tx_ring->size,
					   &tx_ring->dma,
					   GFP_KERNEL);
2443 2444 2445 2446 2447 2448 2449 2450 2451 2452

	if (!tx_ring->desc)
		goto err;

	tx_ring->next_to_use = 0;
	tx_ring->next_to_clean = 0;
	return 0;

err:
	vfree(tx_ring->buffer_info);
2453
	dev_err(dev,
2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466
		"Unable to allocate memory for the transmit descriptor ring\n");
	return -ENOMEM;
}

/**
 * igb_setup_all_tx_resources - wrapper to allocate Tx resources
 *				  (Descriptors) for all queues
 * @adapter: board private structure
 *
 * Return 0 on success, negative on failure
 **/
static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
{
2467
	struct pci_dev *pdev = adapter->pdev;
2468 2469 2470
	int i, err = 0;

	for (i = 0; i < adapter->num_tx_queues; i++) {
2471
		err = igb_setup_tx_resources(adapter->tx_ring[i]);
2472
		if (err) {
2473
			dev_err(&pdev->dev,
2474 2475
				"Allocation for Tx Queue %u failed\n", i);
			for (i--; i >= 0; i--)
2476
				igb_free_tx_resources(adapter->tx_ring[i]);
2477 2478 2479 2480
			break;
		}
	}

2481
	for (i = 0; i < IGB_ABS_MAX_TX_QUEUES; i++) {
2482
		int r_idx = i % adapter->num_tx_queues;
2483
		adapter->multi_tx_table[i] = adapter->tx_ring[r_idx];
2484
	}
2485 2486 2487 2488
	return err;
}

/**
2489 2490
 * igb_setup_tctl - configure the transmit control registers
 * @adapter: Board private structure
2491
 **/
2492
void igb_setup_tctl(struct igb_adapter *adapter)
2493 2494 2495 2496
{
	struct e1000_hw *hw = &adapter->hw;
	u32 tctl;

2497 2498
	/* disable queue 0 which is enabled by default on 82575 and 82576 */
	wr32(E1000_TXDCTL(0), 0);
2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513

	/* Program the Transmit Control Register */
	tctl = rd32(E1000_TCTL);
	tctl &= ~E1000_TCTL_CT;
	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);

	igb_config_collision_dist(hw);

	/* Enable transmits */
	tctl |= E1000_TCTL_EN;

	wr32(E1000_TCTL, tctl);
}

2514 2515 2516 2517 2518 2519 2520
/**
 * igb_configure_tx_ring - Configure transmit ring after Reset
 * @adapter: board private structure
 * @ring: tx ring to configure
 *
 * Configure a transmit ring after a reset.
 **/
2521 2522
void igb_configure_tx_ring(struct igb_adapter *adapter,
                           struct igb_ring *ring)
2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541
{
	struct e1000_hw *hw = &adapter->hw;
	u32 txdctl;
	u64 tdba = ring->dma;
	int reg_idx = ring->reg_idx;

	/* disable the queue */
	txdctl = rd32(E1000_TXDCTL(reg_idx));
	wr32(E1000_TXDCTL(reg_idx),
	                txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
	wrfl();
	mdelay(10);

	wr32(E1000_TDLEN(reg_idx),
	                ring->count * sizeof(union e1000_adv_tx_desc));
	wr32(E1000_TDBAL(reg_idx),
	                tdba & 0x00000000ffffffffULL);
	wr32(E1000_TDBAH(reg_idx), tdba >> 32);

2542 2543 2544 2545
	ring->head = hw->hw_addr + E1000_TDH(reg_idx);
	ring->tail = hw->hw_addr + E1000_TDT(reg_idx);
	writel(0, ring->head);
	writel(0, ring->tail);
2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565

	txdctl |= IGB_TX_PTHRESH;
	txdctl |= IGB_TX_HTHRESH << 8;
	txdctl |= IGB_TX_WTHRESH << 16;

	txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
	wr32(E1000_TXDCTL(reg_idx), txdctl);
}

/**
 * igb_configure_tx - Configure transmit Unit after Reset
 * @adapter: board private structure
 *
 * Configure the Tx unit of the MAC after a reset.
 **/
static void igb_configure_tx(struct igb_adapter *adapter)
{
	int i;

	for (i = 0; i < adapter->num_tx_queues; i++)
2566
		igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
2567 2568
}

2569 2570 2571 2572 2573 2574
/**
 * igb_setup_rx_resources - allocate Rx resources (Descriptors)
 * @rx_ring:    rx descriptor ring (for a specific queue) to setup
 *
 * Returns 0 on success, negative on failure
 **/
2575
int igb_setup_rx_resources(struct igb_ring *rx_ring)
2576
{
2577
	struct device *dev = rx_ring->dev;
2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591
	int size, desc_len;

	size = sizeof(struct igb_buffer) * rx_ring->count;
	rx_ring->buffer_info = vmalloc(size);
	if (!rx_ring->buffer_info)
		goto err;
	memset(rx_ring->buffer_info, 0, size);

	desc_len = sizeof(union e1000_adv_rx_desc);

	/* Round up to nearest 4K */
	rx_ring->size = rx_ring->count * desc_len;
	rx_ring->size = ALIGN(rx_ring->size, 4096);

2592 2593 2594 2595
	rx_ring->desc = dma_alloc_coherent(dev,
					   rx_ring->size,
					   &rx_ring->dma,
					   GFP_KERNEL);
2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606

	if (!rx_ring->desc)
		goto err;

	rx_ring->next_to_clean = 0;
	rx_ring->next_to_use = 0;

	return 0;

err:
	vfree(rx_ring->buffer_info);
2607
	rx_ring->buffer_info = NULL;
2608 2609
	dev_err(dev, "Unable to allocate memory for the receive descriptor"
		" ring\n");
2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621
	return -ENOMEM;
}

/**
 * igb_setup_all_rx_resources - wrapper to allocate Rx resources
 *				  (Descriptors) for all queues
 * @adapter: board private structure
 *
 * Return 0 on success, negative on failure
 **/
static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
{
2622
	struct pci_dev *pdev = adapter->pdev;
2623 2624 2625
	int i, err = 0;

	for (i = 0; i < adapter->num_rx_queues; i++) {
2626
		err = igb_setup_rx_resources(adapter->rx_ring[i]);
2627
		if (err) {
2628
			dev_err(&pdev->dev,
2629 2630
				"Allocation for Rx Queue %u failed\n", i);
			for (i--; i >= 0; i--)
2631
				igb_free_rx_resources(adapter->rx_ring[i]);
2632 2633 2634 2635 2636 2637 2638
			break;
		}
	}

	return err;
}

2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666
/**
 * igb_setup_mrqc - configure the multiple receive queue control registers
 * @adapter: Board private structure
 **/
static void igb_setup_mrqc(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 mrqc, rxcsum;
	u32 j, num_rx_queues, shift = 0, shift2 = 0;
	union e1000_reta {
		u32 dword;
		u8  bytes[4];
	} reta;
	static const u8 rsshash[40] = {
		0x6d, 0x5a, 0x56, 0xda, 0x25, 0x5b, 0x0e, 0xc2, 0x41, 0x67,
		0x25, 0x3d, 0x43, 0xa3, 0x8f, 0xb0, 0xd0, 0xca, 0x2b, 0xcb,
		0xae, 0x7b, 0x30, 0xb4,	0x77, 0xcb, 0x2d, 0xa3, 0x80, 0x30,
		0xf2, 0x0c, 0x6a, 0x42, 0xb7, 0x3b, 0xbe, 0xac, 0x01, 0xfa };

	/* Fill out hash function seeds */
	for (j = 0; j < 10; j++) {
		u32 rsskey = rsshash[(j * 4)];
		rsskey |= rsshash[(j * 4) + 1] << 8;
		rsskey |= rsshash[(j * 4) + 2] << 16;
		rsskey |= rsshash[(j * 4) + 3] << 24;
		array_wr32(E1000_RSSRK(0), j, rsskey);
	}

2667
	num_rx_queues = adapter->rss_queues;
2668 2669 2670 2671

	if (adapter->vfs_allocated_count) {
		/* 82575 and 82576 supports 2 RSS queues for VMDq */
		switch (hw->mac.type) {
2672
		case e1000_i350:
2673 2674 2675 2676
		case e1000_82580:
			num_rx_queues = 1;
			shift = 0;
			break;
2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727
		case e1000_82576:
			shift = 3;
			num_rx_queues = 2;
			break;
		case e1000_82575:
			shift = 2;
			shift2 = 6;
		default:
			break;
		}
	} else {
		if (hw->mac.type == e1000_82575)
			shift = 6;
	}

	for (j = 0; j < (32 * 4); j++) {
		reta.bytes[j & 3] = (j % num_rx_queues) << shift;
		if (shift2)
			reta.bytes[j & 3] |= num_rx_queues << shift2;
		if ((j & 3) == 3)
			wr32(E1000_RETA(j >> 2), reta.dword);
	}

	/*
	 * Disable raw packet checksumming so that RSS hash is placed in
	 * descriptor on writeback.  No need to enable TCP/UDP/IP checksum
	 * offloads as they are enabled by default
	 */
	rxcsum = rd32(E1000_RXCSUM);
	rxcsum |= E1000_RXCSUM_PCSD;

	if (adapter->hw.mac.type >= e1000_82576)
		/* Enable Receive Checksum Offload for SCTP */
		rxcsum |= E1000_RXCSUM_CRCOFL;

	/* Don't need to set TUOFL or IPOFL, they default to 1 */
	wr32(E1000_RXCSUM, rxcsum);

	/* If VMDq is enabled then we set the appropriate mode for that, else
	 * we default to RSS so that an RSS hash is calculated per packet even
	 * if we are only using one queue */
	if (adapter->vfs_allocated_count) {
		if (hw->mac.type > e1000_82575) {
			/* Set the default pool for the PF's first queue */
			u32 vtctl = rd32(E1000_VT_CTL);
			vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
				   E1000_VT_CTL_DISABLE_DEF_POOL);
			vtctl |= adapter->vfs_allocated_count <<
				E1000_VT_CTL_DEFAULT_POOL_SHIFT;
			wr32(E1000_VT_CTL, vtctl);
		}
2728
		if (adapter->rss_queues > 1)
2729 2730 2731 2732 2733 2734 2735 2736
			mrqc = E1000_MRQC_ENABLE_VMDQ_RSS_2Q;
		else
			mrqc = E1000_MRQC_ENABLE_VMDQ;
	} else {
		mrqc = E1000_MRQC_ENABLE_RSS_4Q;
	}
	igb_vmm_control(adapter);

2737 2738 2739 2740 2741 2742 2743 2744 2745 2746
	/*
	 * Generate RSS hash based on TCP port numbers and/or
	 * IPv4/v6 src and dst addresses since UDP cannot be
	 * hashed reliably due to IP fragmentation
	 */
	mrqc |= E1000_MRQC_RSS_FIELD_IPV4 |
		E1000_MRQC_RSS_FIELD_IPV4_TCP |
		E1000_MRQC_RSS_FIELD_IPV6 |
		E1000_MRQC_RSS_FIELD_IPV6_TCP |
		E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
2747 2748 2749 2750

	wr32(E1000_MRQC, mrqc);
}

2751 2752 2753 2754
/**
 * igb_setup_rctl - configure the receive control registers
 * @adapter: Board private structure
 **/
2755
void igb_setup_rctl(struct igb_adapter *adapter)
2756 2757 2758 2759 2760 2761 2762
{
	struct e1000_hw *hw = &adapter->hw;
	u32 rctl;

	rctl = rd32(E1000_RCTL);

	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
2763
	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
2764

2765
	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
2766
		(hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
2767

2768 2769 2770 2771
	/*
	 * enable stripping of CRC. It's unlikely this will break BMC
	 * redirection as it did with e1000. Newer features require
	 * that the HW strips the CRC.
2772
	 */
2773
	rctl |= E1000_RCTL_SECRC;
2774

2775
	/* disable store bad packets and clear size bits. */
2776
	rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
2777

A
Alexander Duyck 已提交
2778 2779
	/* enable LPE to prevent packets larger than max_frame_size */
	rctl |= E1000_RCTL_LPE;
2780

2781 2782
	/* disable queue 0 to prevent tail write w/o re-config */
	wr32(E1000_RXDCTL(0), 0);
2783

2784 2785 2786 2787 2788 2789 2790 2791 2792
	/* Attention!!!  For SR-IOV PF driver operations you must enable
	 * queue drop for all VF and PF queues to prevent head of line blocking
	 * if an un-trusted VF does not provide descriptors to hardware.
	 */
	if (adapter->vfs_allocated_count) {
		/* set all queue drop enable bits */
		wr32(E1000_QDE, ALL_QUEUES);
	}

2793 2794 2795
	wr32(E1000_RCTL, rctl);
}

2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815
static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
                                   int vfn)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 vmolr;

	/* if it isn't the PF check to see if VFs are enabled and
	 * increase the size to support vlan tags */
	if (vfn < adapter->vfs_allocated_count &&
	    adapter->vf_data[vfn].vlans_enabled)
		size += VLAN_TAG_SIZE;

	vmolr = rd32(E1000_VMOLR(vfn));
	vmolr &= ~E1000_VMOLR_RLPML_MASK;
	vmolr |= size | E1000_VMOLR_LPE;
	wr32(E1000_VMOLR(vfn), vmolr);

	return 0;
}

2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834
/**
 * igb_rlpml_set - set maximum receive packet size
 * @adapter: board private structure
 *
 * Configure maximum receivable packet size.
 **/
static void igb_rlpml_set(struct igb_adapter *adapter)
{
	u32 max_frame_size = adapter->max_frame_size;
	struct e1000_hw *hw = &adapter->hw;
	u16 pf_id = adapter->vfs_allocated_count;

	if (adapter->vlgrp)
		max_frame_size += VLAN_TAG_SIZE;

	/* if vfs are enabled we set RLPML to the largest possible request
	 * size and set the VMOLR RLPML to the size we need */
	if (pf_id) {
		igb_set_vf_rlpml(adapter, max_frame_size, pf_id);
2835
		max_frame_size = MAX_JUMBO_FRAME_SIZE;
2836 2837 2838 2839 2840
	}

	wr32(E1000_RLPML, max_frame_size);
}

2841 2842
static inline void igb_set_vmolr(struct igb_adapter *adapter,
				 int vfn, bool aupe)
2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854
{
	struct e1000_hw *hw = &adapter->hw;
	u32 vmolr;

	/*
	 * This register exists only on 82576 and newer so if we are older then
	 * we should exit and do nothing
	 */
	if (hw->mac.type < e1000_82576)
		return;

	vmolr = rd32(E1000_VMOLR(vfn));
2855 2856 2857 2858 2859
	vmolr |= E1000_VMOLR_STRVLAN;      /* Strip vlan tags */
	if (aupe)
		vmolr |= E1000_VMOLR_AUPE;        /* Accept untagged packets */
	else
		vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
2860 2861 2862 2863

	/* clear all bits that might not be set */
	vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);

2864
	if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875
		vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
	/*
	 * for VMDq only allow the VFs and pool 0 to accept broadcast and
	 * multicast packets
	 */
	if (vfn <= adapter->vfs_allocated_count)
		vmolr |= E1000_VMOLR_BAM;	   /* Accept broadcast */

	wr32(E1000_VMOLR(vfn), vmolr);
}

2876 2877 2878 2879 2880 2881 2882
/**
 * igb_configure_rx_ring - Configure a receive ring after Reset
 * @adapter: board private structure
 * @ring: receive ring to be configured
 *
 * Configure the Rx unit of the MAC after a reset.
 **/
2883 2884
void igb_configure_rx_ring(struct igb_adapter *adapter,
                           struct igb_ring *ring)
2885 2886 2887 2888
{
	struct e1000_hw *hw = &adapter->hw;
	u64 rdba = ring->dma;
	int reg_idx = ring->reg_idx;
2889
	u32 srrctl, rxdctl;
2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903

	/* disable the queue */
	rxdctl = rd32(E1000_RXDCTL(reg_idx));
	wr32(E1000_RXDCTL(reg_idx),
	                rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);

	/* Set DMA base address registers */
	wr32(E1000_RDBAL(reg_idx),
	     rdba & 0x00000000ffffffffULL);
	wr32(E1000_RDBAH(reg_idx), rdba >> 32);
	wr32(E1000_RDLEN(reg_idx),
	               ring->count * sizeof(union e1000_adv_rx_desc));

	/* initialize head and tail */
2904 2905 2906 2907
	ring->head = hw->hw_addr + E1000_RDH(reg_idx);
	ring->tail = hw->hw_addr + E1000_RDT(reg_idx);
	writel(0, ring->head);
	writel(0, ring->tail);
2908

2909
	/* set descriptor configuration */
2910 2911
	if (ring->rx_buffer_len < IGB_RXBUFFER_1024) {
		srrctl = ALIGN(ring->rx_buffer_len, 64) <<
2912 2913 2914 2915 2916 2917 2918 2919 2920 2921
		         E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
#if (PAGE_SIZE / 2) > IGB_RXBUFFER_16384
		srrctl |= IGB_RXBUFFER_16384 >>
		          E1000_SRRCTL_BSIZEPKT_SHIFT;
#else
		srrctl |= (PAGE_SIZE / 2) >>
		          E1000_SRRCTL_BSIZEPKT_SHIFT;
#endif
		srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
	} else {
2922
		srrctl = ALIGN(ring->rx_buffer_len, 1024) >>
2923 2924 2925
		         E1000_SRRCTL_BSIZEPKT_SHIFT;
		srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
	}
N
Nick Nunley 已提交
2926 2927
	if (hw->mac.type == e1000_82580)
		srrctl |= E1000_SRRCTL_TIMESTAMP;
2928 2929 2930
	/* Only set Drop Enable if we are supporting multiple queues */
	if (adapter->vfs_allocated_count || adapter->num_rx_queues > 1)
		srrctl |= E1000_SRRCTL_DROP_EN;
2931 2932 2933

	wr32(E1000_SRRCTL(reg_idx), srrctl);

2934
	/* set filtering for VMDQ pools */
2935
	igb_set_vmolr(adapter, reg_idx & 0x7, true);
2936

2937 2938 2939 2940 2941 2942 2943 2944 2945 2946
	/* enable receive descriptor fetching */
	rxdctl = rd32(E1000_RXDCTL(reg_idx));
	rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
	rxdctl &= 0xFFF00000;
	rxdctl |= IGB_RX_PTHRESH;
	rxdctl |= IGB_RX_HTHRESH << 8;
	rxdctl |= IGB_RX_WTHRESH << 16;
	wr32(E1000_RXDCTL(reg_idx), rxdctl);
}

2947 2948 2949 2950 2951 2952 2953 2954
/**
 * igb_configure_rx - Configure receive Unit after Reset
 * @adapter: board private structure
 *
 * Configure the Rx unit of the MAC after a reset.
 **/
static void igb_configure_rx(struct igb_adapter *adapter)
{
2955
	int i;
2956

2957 2958 2959
	/* set UTA to appropriate mode */
	igb_set_uta(adapter);

2960 2961 2962 2963
	/* set the correct pool for the PF default MAC address in entry 0 */
	igb_rar_set_qsel(adapter, adapter->hw.mac.addr, 0,
	                 adapter->vfs_allocated_count);

2964 2965 2966
	/* Setup the HW Rx Head and Tail Descriptor Pointers and
	 * the Base and Length of the Rx Descriptor Ring */
	for (i = 0; i < adapter->num_rx_queues; i++)
2967
		igb_configure_rx_ring(adapter, adapter->rx_ring[i]);
2968 2969 2970 2971 2972 2973 2974 2975
}

/**
 * igb_free_tx_resources - Free Tx Resources per Queue
 * @tx_ring: Tx descriptor ring for a specific queue
 *
 * Free all transmit software resources
 **/
2976
void igb_free_tx_resources(struct igb_ring *tx_ring)
2977
{
2978
	igb_clean_tx_ring(tx_ring);
2979 2980 2981 2982

	vfree(tx_ring->buffer_info);
	tx_ring->buffer_info = NULL;

2983 2984 2985 2986
	/* if not set, then don't free */
	if (!tx_ring->desc)
		return;

2987 2988
	dma_free_coherent(tx_ring->dev, tx_ring->size,
			  tx_ring->desc, tx_ring->dma);
2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003

	tx_ring->desc = NULL;
}

/**
 * igb_free_all_tx_resources - Free Tx Resources for All Queues
 * @adapter: board private structure
 *
 * Free all transmit software resources
 **/
static void igb_free_all_tx_resources(struct igb_adapter *adapter)
{
	int i;

	for (i = 0; i < adapter->num_tx_queues; i++)
3004
		igb_free_tx_resources(adapter->tx_ring[i]);
3005 3006
}

3007 3008
void igb_unmap_and_free_tx_resource(struct igb_ring *tx_ring,
				    struct igb_buffer *buffer_info)
3009
{
3010 3011
	if (buffer_info->dma) {
		if (buffer_info->mapped_as_page)
3012
			dma_unmap_page(tx_ring->dev,
3013 3014
					buffer_info->dma,
					buffer_info->length,
3015
					DMA_TO_DEVICE);
3016
		else
3017
			dma_unmap_single(tx_ring->dev,
3018 3019
					buffer_info->dma,
					buffer_info->length,
3020
					DMA_TO_DEVICE);
3021 3022
		buffer_info->dma = 0;
	}
3023 3024 3025 3026 3027
	if (buffer_info->skb) {
		dev_kfree_skb_any(buffer_info->skb);
		buffer_info->skb = NULL;
	}
	buffer_info->time_stamp = 0;
3028 3029 3030
	buffer_info->length = 0;
	buffer_info->next_to_watch = 0;
	buffer_info->mapped_as_page = false;
3031 3032 3033 3034 3035 3036
}

/**
 * igb_clean_tx_ring - Free Tx Buffers
 * @tx_ring: ring to be cleaned
 **/
3037
static void igb_clean_tx_ring(struct igb_ring *tx_ring)
3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048
{
	struct igb_buffer *buffer_info;
	unsigned long size;
	unsigned int i;

	if (!tx_ring->buffer_info)
		return;
	/* Free all the Tx ring sk_buffs */

	for (i = 0; i < tx_ring->count; i++) {
		buffer_info = &tx_ring->buffer_info[i];
3049
		igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070
	}

	size = sizeof(struct igb_buffer) * tx_ring->count;
	memset(tx_ring->buffer_info, 0, size);

	/* Zero out the descriptor ring */
	memset(tx_ring->desc, 0, tx_ring->size);

	tx_ring->next_to_use = 0;
	tx_ring->next_to_clean = 0;
}

/**
 * igb_clean_all_tx_rings - Free Tx Buffers for all queues
 * @adapter: board private structure
 **/
static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
{
	int i;

	for (i = 0; i < adapter->num_tx_queues; i++)
3071
		igb_clean_tx_ring(adapter->tx_ring[i]);
3072 3073 3074 3075 3076 3077 3078 3079
}

/**
 * igb_free_rx_resources - Free Rx Resources
 * @rx_ring: ring to clean the resources from
 *
 * Free all receive software resources
 **/
3080
void igb_free_rx_resources(struct igb_ring *rx_ring)
3081
{
3082
	igb_clean_rx_ring(rx_ring);
3083 3084 3085 3086

	vfree(rx_ring->buffer_info);
	rx_ring->buffer_info = NULL;

3087 3088 3089 3090
	/* if not set, then don't free */
	if (!rx_ring->desc)
		return;

3091 3092
	dma_free_coherent(rx_ring->dev, rx_ring->size,
			  rx_ring->desc, rx_ring->dma);
3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107

	rx_ring->desc = NULL;
}

/**
 * igb_free_all_rx_resources - Free Rx Resources for All Queues
 * @adapter: board private structure
 *
 * Free all receive software resources
 **/
static void igb_free_all_rx_resources(struct igb_adapter *adapter)
{
	int i;

	for (i = 0; i < adapter->num_rx_queues; i++)
3108
		igb_free_rx_resources(adapter->rx_ring[i]);
3109 3110 3111 3112 3113 3114
}

/**
 * igb_clean_rx_ring - Free Rx Buffers per Queue
 * @rx_ring: ring to free buffers from
 **/
3115
static void igb_clean_rx_ring(struct igb_ring *rx_ring)
3116 3117 3118 3119 3120 3121 3122
{
	struct igb_buffer *buffer_info;
	unsigned long size;
	unsigned int i;

	if (!rx_ring->buffer_info)
		return;
3123

3124 3125 3126 3127
	/* Free all the Rx ring sk_buffs */
	for (i = 0; i < rx_ring->count; i++) {
		buffer_info = &rx_ring->buffer_info[i];
		if (buffer_info->dma) {
3128
			dma_unmap_single(rx_ring->dev,
3129
			                 buffer_info->dma,
3130
					 rx_ring->rx_buffer_len,
3131
					 DMA_FROM_DEVICE);
3132 3133 3134 3135 3136 3137 3138
			buffer_info->dma = 0;
		}

		if (buffer_info->skb) {
			dev_kfree_skb(buffer_info->skb);
			buffer_info->skb = NULL;
		}
A
Alexander Duyck 已提交
3139
		if (buffer_info->page_dma) {
3140
			dma_unmap_page(rx_ring->dev,
3141
			               buffer_info->page_dma,
A
Alexander Duyck 已提交
3142
				       PAGE_SIZE / 2,
3143
				       DMA_FROM_DEVICE);
A
Alexander Duyck 已提交
3144 3145
			buffer_info->page_dma = 0;
		}
3146 3147 3148
		if (buffer_info->page) {
			put_page(buffer_info->page);
			buffer_info->page = NULL;
3149
			buffer_info->page_offset = 0;
3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171
		}
	}

	size = sizeof(struct igb_buffer) * rx_ring->count;
	memset(rx_ring->buffer_info, 0, size);

	/* Zero out the descriptor ring */
	memset(rx_ring->desc, 0, rx_ring->size);

	rx_ring->next_to_clean = 0;
	rx_ring->next_to_use = 0;
}

/**
 * igb_clean_all_rx_rings - Free Rx Buffers for all queues
 * @adapter: board private structure
 **/
static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
{
	int i;

	for (i = 0; i < adapter->num_rx_queues; i++)
3172
		igb_clean_rx_ring(adapter->rx_ring[i]);
3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184
}

/**
 * igb_set_mac - Change the Ethernet Address of the NIC
 * @netdev: network interface device structure
 * @p: pointer to an address structure
 *
 * Returns 0 on success, negative on failure
 **/
static int igb_set_mac(struct net_device *netdev, void *p)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
3185
	struct e1000_hw *hw = &adapter->hw;
3186 3187 3188 3189 3190 3191
	struct sockaddr *addr = p;

	if (!is_valid_ether_addr(addr->sa_data))
		return -EADDRNOTAVAIL;

	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
3192
	memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
3193

3194 3195 3196
	/* set the correct pool for the new PF MAC address in entry 0 */
	igb_rar_set_qsel(adapter, hw->mac.addr, 0,
	                 adapter->vfs_allocated_count);
3197

3198 3199 3200 3201
	return 0;
}

/**
3202
 * igb_write_mc_addr_list - write multicast addresses to MTA
3203 3204
 * @netdev: network interface device structure
 *
3205 3206 3207 3208
 * Writes multicast address list to the MTA hash table.
 * Returns: -ENOMEM on failure
 *                0 on no addresses written
 *                X on writing X addresses to MTA
3209
 **/
3210
static int igb_write_mc_addr_list(struct net_device *netdev)
3211 3212 3213
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
3214
	struct netdev_hw_addr *ha;
3215
	u8  *mta_list;
3216 3217
	int i;

3218
	if (netdev_mc_empty(netdev)) {
3219 3220 3221 3222 3223
		/* nothing to program, so clear mc list */
		igb_update_mc_addr_list(hw, NULL, 0);
		igb_restore_vf_multicasts(adapter);
		return 0;
	}
3224

3225
	mta_list = kzalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
3226 3227
	if (!mta_list)
		return -ENOMEM;
3228

3229
	/* The shared function expects a packed array of only addresses. */
3230
	i = 0;
3231 3232
	netdev_for_each_mc_addr(ha, netdev)
		memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3233 3234 3235 3236

	igb_update_mc_addr_list(hw, mta_list, i);
	kfree(mta_list);

3237
	return netdev_mc_count(netdev);
3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257
}

/**
 * igb_write_uc_addr_list - write unicast addresses to RAR table
 * @netdev: network interface device structure
 *
 * Writes unicast address list to the RAR table.
 * Returns: -ENOMEM on failure/insufficient address space
 *                0 on no addresses written
 *                X on writing X addresses to the RAR table
 **/
static int igb_write_uc_addr_list(struct net_device *netdev)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	unsigned int vfn = adapter->vfs_allocated_count;
	unsigned int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
	int count = 0;

	/* return ENOMEM indicating insufficient memory for addresses */
3258
	if (netdev_uc_count(netdev) > rar_entries)
3259
		return -ENOMEM;
3260

3261
	if (!netdev_uc_empty(netdev) && rar_entries) {
3262
		struct netdev_hw_addr *ha;
3263 3264

		netdev_for_each_uc_addr(ha, netdev) {
3265 3266
			if (!rar_entries)
				break;
3267 3268
			igb_rar_set_qsel(adapter, ha->addr,
			                 rar_entries--,
3269 3270
			                 vfn);
			count++;
3271 3272 3273 3274 3275 3276 3277 3278 3279
		}
	}
	/* write the addresses in reverse order to avoid write combining */
	for (; rar_entries > 0 ; rar_entries--) {
		wr32(E1000_RAH(rar_entries), 0);
		wr32(E1000_RAL(rar_entries), 0);
	}
	wrfl();

3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337
	return count;
}

/**
 * igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
 * @netdev: network interface device structure
 *
 * The set_rx_mode entry point is called whenever the unicast or multicast
 * address lists or the network interface flags are updated.  This routine is
 * responsible for configuring the hardware for proper unicast, multicast,
 * promiscuous mode, and all-multi behavior.
 **/
static void igb_set_rx_mode(struct net_device *netdev)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	unsigned int vfn = adapter->vfs_allocated_count;
	u32 rctl, vmolr = 0;
	int count;

	/* Check for Promiscuous and All Multicast modes */
	rctl = rd32(E1000_RCTL);

	/* clear the effected bits */
	rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_VFE);

	if (netdev->flags & IFF_PROMISC) {
		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
		vmolr |= (E1000_VMOLR_ROPE | E1000_VMOLR_MPME);
	} else {
		if (netdev->flags & IFF_ALLMULTI) {
			rctl |= E1000_RCTL_MPE;
			vmolr |= E1000_VMOLR_MPME;
		} else {
			/*
			 * Write addresses to the MTA, if the attempt fails
			 * then we should just turn on promiscous mode so
			 * that we can at least receive multicast traffic
			 */
			count = igb_write_mc_addr_list(netdev);
			if (count < 0) {
				rctl |= E1000_RCTL_MPE;
				vmolr |= E1000_VMOLR_MPME;
			} else if (count) {
				vmolr |= E1000_VMOLR_ROMPE;
			}
		}
		/*
		 * Write addresses to available RAR registers, if there is not
		 * sufficient space to store all the addresses then enable
		 * unicast promiscous mode
		 */
		count = igb_write_uc_addr_list(netdev);
		if (count < 0) {
			rctl |= E1000_RCTL_UPE;
			vmolr |= E1000_VMOLR_ROPE;
		}
		rctl |= E1000_RCTL_VFE;
3338
	}
3339
	wr32(E1000_RCTL, rctl);
3340

3341 3342 3343 3344 3345 3346 3347
	/*
	 * In order to support SR-IOV and eventually VMDq it is necessary to set
	 * the VMOLR to enable the appropriate modes.  Without this workaround
	 * we will have issues with VLAN tag stripping not being done for frames
	 * that are only arriving because we are the default pool
	 */
	if (hw->mac.type < e1000_82576)
3348
		return;
3349

3350 3351 3352
	vmolr |= rd32(E1000_VMOLR(vfn)) &
	         ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
	wr32(E1000_VMOLR(vfn), vmolr);
3353
	igb_restore_vf_multicasts(adapter);
3354 3355 3356 3357 3358 3359 3360
}

/* Need to wait a few seconds after link up to get diagnostic information from
 * the phy */
static void igb_update_phy_info(unsigned long data)
{
	struct igb_adapter *adapter = (struct igb_adapter *) data;
3361
	igb_get_phy_info(&adapter->hw);
3362 3363
}

A
Alexander Duyck 已提交
3364 3365 3366 3367
/**
 * igb_has_link - check shared code for link and determine up/down
 * @adapter: pointer to driver private info
 **/
3368
bool igb_has_link(struct igb_adapter *adapter)
A
Alexander Duyck 已提交
3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399
{
	struct e1000_hw *hw = &adapter->hw;
	bool link_active = false;
	s32 ret_val = 0;

	/* get_link_status is set on LSC (link status) interrupt or
	 * rx sequence error interrupt.  get_link_status will stay
	 * false until the e1000_check_for_link establishes link
	 * for copper adapters ONLY
	 */
	switch (hw->phy.media_type) {
	case e1000_media_type_copper:
		if (hw->mac.get_link_status) {
			ret_val = hw->mac.ops.check_for_link(hw);
			link_active = !hw->mac.get_link_status;
		} else {
			link_active = true;
		}
		break;
	case e1000_media_type_internal_serdes:
		ret_val = hw->mac.ops.check_for_link(hw);
		link_active = hw->mac.serdes_has_link;
		break;
	default:
	case e1000_media_type_unknown:
		break;
	}

	return link_active;
}

3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413
/**
 * igb_watchdog - Timer Call-back
 * @data: pointer to adapter cast into an unsigned long
 **/
static void igb_watchdog(unsigned long data)
{
	struct igb_adapter *adapter = (struct igb_adapter *)data;
	/* Do the rest outside of interrupt context */
	schedule_work(&adapter->watchdog_task);
}

static void igb_watchdog_task(struct work_struct *work)
{
	struct igb_adapter *adapter = container_of(work,
3414 3415
	                                           struct igb_adapter,
                                                   watchdog_task);
3416 3417 3418
	struct e1000_hw *hw = &adapter->hw;
	struct net_device *netdev = adapter->netdev;
	u32 link;
3419
	int i;
3420

A
Alexander Duyck 已提交
3421
	link = igb_has_link(adapter);
3422 3423 3424
	if (link) {
		if (!netif_carrier_ok(netdev)) {
			u32 ctrl;
3425 3426 3427
			hw->mac.ops.get_speed_and_duplex(hw,
			                                 &adapter->link_speed,
			                                 &adapter->link_duplex);
3428 3429

			ctrl = rd32(E1000_CTRL);
3430 3431
			/* Links status message must follow this format */
			printk(KERN_INFO "igb: %s NIC Link is Up %d Mbps %s, "
3432
				 "Flow Control: %s\n",
3433 3434 3435
			       netdev->name,
			       adapter->link_speed,
			       adapter->link_duplex == FULL_DUPLEX ?
3436
				 "Full Duplex" : "Half Duplex",
3437 3438 3439 3440
			       ((ctrl & E1000_CTRL_TFCE) &&
			        (ctrl & E1000_CTRL_RFCE)) ? "RX/TX" :
			       ((ctrl & E1000_CTRL_RFCE) ?  "RX" :
			       ((ctrl & E1000_CTRL_TFCE) ?  "TX" : "None")));
3441

3442
			/* adjust timeout factor according to speed/duplex */
3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454
			adapter->tx_timeout_factor = 1;
			switch (adapter->link_speed) {
			case SPEED_10:
				adapter->tx_timeout_factor = 14;
				break;
			case SPEED_100:
				/* maybe add some timeout factor ? */
				break;
			}

			netif_carrier_on(netdev);

3455 3456
			igb_ping_all_vfs(adapter);

3457
			/* link state has changed, schedule phy info update */
3458 3459 3460 3461 3462 3463 3464 3465
			if (!test_bit(__IGB_DOWN, &adapter->state))
				mod_timer(&adapter->phy_info_timer,
					  round_jiffies(jiffies + 2 * HZ));
		}
	} else {
		if (netif_carrier_ok(netdev)) {
			adapter->link_speed = 0;
			adapter->link_duplex = 0;
3466 3467 3468
			/* Links status message must follow this format */
			printk(KERN_INFO "igb: %s NIC Link is Down\n",
			       netdev->name);
3469
			netif_carrier_off(netdev);
3470

3471 3472
			igb_ping_all_vfs(adapter);

3473
			/* link state has changed, schedule phy info update */
3474 3475 3476 3477 3478 3479 3480 3481
			if (!test_bit(__IGB_DOWN, &adapter->state))
				mod_timer(&adapter->phy_info_timer,
					  round_jiffies(jiffies + 2 * HZ));
		}
	}

	igb_update_stats(adapter);

3482
	for (i = 0; i < adapter->num_tx_queues; i++) {
3483
		struct igb_ring *tx_ring = adapter->tx_ring[i];
3484
		if (!netif_carrier_ok(netdev)) {
3485 3486 3487 3488
			/* We've lost link, so the controller stops DMA,
			 * but we've got queued Tx work that's never going
			 * to get done, so reset controller to flush Tx.
			 * (Do the reset outside of interrupt context). */
3489 3490 3491 3492 3493 3494
			if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
				adapter->tx_timeout_count++;
				schedule_work(&adapter->reset_task);
				/* return immediately since reset is imminent */
				return;
			}
3495 3496
		}

3497 3498 3499
		/* Force detection of hung controller every watchdog period */
		tx_ring->detect_tx_hung = true;
	}
3500

3501
	/* Cause software interrupt to ensure rx ring is cleaned */
3502
	if (adapter->msix_entries) {
3503 3504 3505 3506 3507
		u32 eics = 0;
		for (i = 0; i < adapter->num_q_vectors; i++) {
			struct igb_q_vector *q_vector = adapter->q_vector[i];
			eics |= q_vector->eims_value;
		}
3508 3509 3510 3511
		wr32(E1000_EICS, eics);
	} else {
		wr32(E1000_ICS, E1000_ICS_RXDMT0);
	}
3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525

	/* Reset the timer */
	if (!test_bit(__IGB_DOWN, &adapter->state))
		mod_timer(&adapter->watchdog_timer,
			  round_jiffies(jiffies + 2 * HZ));
}

enum latency_range {
	lowest_latency = 0,
	low_latency = 1,
	bulk_latency = 2,
	latency_invalid = 255
};

3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539
/**
 * igb_update_ring_itr - update the dynamic ITR value based on packet size
 *
 *      Stores a new ITR value based on strictly on packet size.  This
 *      algorithm is less sophisticated than that used in igb_update_itr,
 *      due to the difficulty of synchronizing statistics across multiple
 *      receive rings.  The divisors and thresholds used by this fuction
 *      were determined based on theoretical maximum wire speed and testing
 *      data, in order to minimize response time while increasing bulk
 *      throughput.
 *      This functionality is controlled by the InterruptThrottleRate module
 *      parameter (see igb_param.c)
 *      NOTE:  This function is called only when operating in a multiqueue
 *             receive environment.
3540
 * @q_vector: pointer to q_vector
3541
 **/
3542
static void igb_update_ring_itr(struct igb_q_vector *q_vector)
3543
{
3544
	int new_val = q_vector->itr_val;
3545
	int avg_wire_size = 0;
3546
	struct igb_adapter *adapter = q_vector->adapter;
3547

3548 3549 3550 3551
	/* For non-gigabit speeds, just fix the interrupt rate at 4000
	 * ints/sec - ITR timer value of 120 ticks.
	 */
	if (adapter->link_speed != SPEED_1000) {
3552
		new_val = 976;
3553
		goto set_itr_val;
3554
	}
3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570

	if (q_vector->rx_ring && q_vector->rx_ring->total_packets) {
		struct igb_ring *ring = q_vector->rx_ring;
		avg_wire_size = ring->total_bytes / ring->total_packets;
	}

	if (q_vector->tx_ring && q_vector->tx_ring->total_packets) {
		struct igb_ring *ring = q_vector->tx_ring;
		avg_wire_size = max_t(u32, avg_wire_size,
		                      (ring->total_bytes /
		                       ring->total_packets));
	}

	/* if avg_wire_size isn't set no work was done */
	if (!avg_wire_size)
		goto clear_counts;
3571

3572 3573 3574 3575 3576
	/* Add 24 bytes to size to account for CRC, preamble, and gap */
	avg_wire_size += 24;

	/* Don't starve jumbo frames */
	avg_wire_size = min(avg_wire_size, 3000);
3577

3578 3579 3580 3581 3582
	/* Give a little boost to mid-size frames */
	if ((avg_wire_size > 300) && (avg_wire_size < 1200))
		new_val = avg_wire_size / 3;
	else
		new_val = avg_wire_size / 2;
3583

3584 3585 3586 3587
	/* when in itr mode 3 do not exceed 20K ints/sec */
	if (adapter->rx_itr_setting == 3 && new_val < 196)
		new_val = 196;

3588
set_itr_val:
3589 3590 3591
	if (new_val != q_vector->itr_val) {
		q_vector->itr_val = new_val;
		q_vector->set_itr = 1;
3592
	}
3593
clear_counts:
3594 3595 3596 3597 3598 3599 3600 3601
	if (q_vector->rx_ring) {
		q_vector->rx_ring->total_bytes = 0;
		q_vector->rx_ring->total_packets = 0;
	}
	if (q_vector->tx_ring) {
		q_vector->tx_ring->total_bytes = 0;
		q_vector->tx_ring->total_packets = 0;
	}
3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617
}

/**
 * igb_update_itr - update the dynamic ITR value based on statistics
 *      Stores a new ITR value based on packets and byte
 *      counts during the last interrupt.  The advantage of per interrupt
 *      computation is faster updates and more accurate ITR for the current
 *      traffic pattern.  Constants in this function were computed
 *      based on theoretical maximum wire speed and thresholds were set based
 *      on testing data as well as attempting to minimize response time
 *      while increasing bulk throughput.
 *      this functionality is controlled by the InterruptThrottleRate module
 *      parameter (see igb_param.c)
 *      NOTE:  These calculations are only valid when operating in a single-
 *             queue environment.
 * @adapter: pointer to adapter
3618
 * @itr_setting: current q_vector->itr_val
3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657
 * @packets: the number of packets during this measurement interval
 * @bytes: the number of bytes during this measurement interval
 **/
static unsigned int igb_update_itr(struct igb_adapter *adapter, u16 itr_setting,
				   int packets, int bytes)
{
	unsigned int retval = itr_setting;

	if (packets == 0)
		goto update_itr_done;

	switch (itr_setting) {
	case lowest_latency:
		/* handle TSO and jumbo frames */
		if (bytes/packets > 8000)
			retval = bulk_latency;
		else if ((packets < 5) && (bytes > 512))
			retval = low_latency;
		break;
	case low_latency:  /* 50 usec aka 20000 ints/s */
		if (bytes > 10000) {
			/* this if handles the TSO accounting */
			if (bytes/packets > 8000) {
				retval = bulk_latency;
			} else if ((packets < 10) || ((bytes/packets) > 1200)) {
				retval = bulk_latency;
			} else if ((packets > 35)) {
				retval = lowest_latency;
			}
		} else if (bytes/packets > 2000) {
			retval = bulk_latency;
		} else if (packets <= 2 && bytes < 512) {
			retval = lowest_latency;
		}
		break;
	case bulk_latency: /* 250 usec aka 4000 ints/s */
		if (bytes > 25000) {
			if (packets > 35)
				retval = low_latency;
3658
		} else if (bytes < 1500) {
3659 3660 3661 3662 3663 3664 3665 3666 3667
			retval = low_latency;
		}
		break;
	}

update_itr_done:
	return retval;
}

3668
static void igb_set_itr(struct igb_adapter *adapter)
3669
{
3670
	struct igb_q_vector *q_vector = adapter->q_vector[0];
3671
	u16 current_itr;
3672
	u32 new_itr = q_vector->itr_val;
3673 3674 3675 3676 3677 3678 3679 3680 3681 3682

	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
	if (adapter->link_speed != SPEED_1000) {
		current_itr = 0;
		new_itr = 4000;
		goto set_itr_now;
	}

	adapter->rx_itr = igb_update_itr(adapter,
				    adapter->rx_itr,
3683 3684
				    q_vector->rx_ring->total_packets,
				    q_vector->rx_ring->total_bytes);
3685

3686 3687
	adapter->tx_itr = igb_update_itr(adapter,
				    adapter->tx_itr,
3688 3689
				    q_vector->tx_ring->total_packets,
				    q_vector->tx_ring->total_bytes);
3690
	current_itr = max(adapter->rx_itr, adapter->tx_itr);
3691

3692
	/* conservative mode (itr 3) eliminates the lowest_latency setting */
3693
	if (adapter->rx_itr_setting == 3 && current_itr == lowest_latency)
3694 3695
		current_itr = low_latency;

3696 3697 3698
	switch (current_itr) {
	/* counts and packets in update_itr are dependent on these numbers */
	case lowest_latency:
3699
		new_itr = 56;  /* aka 70,000 ints/sec */
3700 3701
		break;
	case low_latency:
3702
		new_itr = 196; /* aka 20,000 ints/sec */
3703 3704
		break;
	case bulk_latency:
3705
		new_itr = 980; /* aka 4,000 ints/sec */
3706 3707 3708 3709 3710 3711
		break;
	default:
		break;
	}

set_itr_now:
3712 3713 3714 3715
	q_vector->rx_ring->total_bytes = 0;
	q_vector->rx_ring->total_packets = 0;
	q_vector->tx_ring->total_bytes = 0;
	q_vector->tx_ring->total_packets = 0;
3716

3717
	if (new_itr != q_vector->itr_val) {
3718 3719 3720
		/* this attempts to bias the interrupt rate towards Bulk
		 * by adding intermediate steps when interrupt rate is
		 * increasing */
3721 3722 3723 3724
		new_itr = new_itr > q_vector->itr_val ?
		             max((new_itr * q_vector->itr_val) /
		                 (new_itr + (q_vector->itr_val >> 2)),
		                 new_itr) :
3725 3726 3727 3728 3729 3730 3731
			     new_itr;
		/* Don't write the value here; it resets the adapter's
		 * internal timer, and causes us to delay far longer than
		 * we should between interrupts.  Instead, we write the ITR
		 * value at the beginning of the next interrupt so the timing
		 * ends up being correct.
		 */
3732 3733
		q_vector->itr_val = new_itr;
		q_vector->set_itr = 1;
3734 3735 3736 3737 3738 3739 3740
	}
}

#define IGB_TX_FLAGS_CSUM		0x00000001
#define IGB_TX_FLAGS_VLAN		0x00000002
#define IGB_TX_FLAGS_TSO		0x00000004
#define IGB_TX_FLAGS_IPV4		0x00000008
A
Alexander Duyck 已提交
3741 3742 3743
#define IGB_TX_FLAGS_TSTAMP		0x00000010
#define IGB_TX_FLAGS_VLAN_MASK		0xffff0000
#define IGB_TX_FLAGS_VLAN_SHIFT		        16
3744

3745
static inline int igb_tso_adv(struct igb_ring *tx_ring,
3746 3747 3748 3749 3750 3751 3752
			      struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
{
	struct e1000_adv_tx_context_desc *context_desc;
	unsigned int i;
	int err;
	struct igb_buffer *buffer_info;
	u32 info = 0, tu_cmd = 0;
N
Nick Nunley 已提交
3753 3754
	u32 mss_l4len_idx;
	u8 l4len;
3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772

	if (skb_header_cloned(skb)) {
		err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
		if (err)
			return err;
	}

	l4len = tcp_hdrlen(skb);
	*hdr_len += l4len;

	if (skb->protocol == htons(ETH_P_IP)) {
		struct iphdr *iph = ip_hdr(skb);
		iph->tot_len = 0;
		iph->check = 0;
		tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
							 iph->daddr, 0,
							 IPPROTO_TCP,
							 0);
3773
	} else if (skb_is_gso_v6(skb)) {
3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805
		ipv6_hdr(skb)->payload_len = 0;
		tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
						       &ipv6_hdr(skb)->daddr,
						       0, IPPROTO_TCP, 0);
	}

	i = tx_ring->next_to_use;

	buffer_info = &tx_ring->buffer_info[i];
	context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);
	/* VLAN MACLEN IPLEN */
	if (tx_flags & IGB_TX_FLAGS_VLAN)
		info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
	info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
	*hdr_len += skb_network_offset(skb);
	info |= skb_network_header_len(skb);
	*hdr_len += skb_network_header_len(skb);
	context_desc->vlan_macip_lens = cpu_to_le32(info);

	/* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
	tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);

	if (skb->protocol == htons(ETH_P_IP))
		tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
	tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;

	context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);

	/* MSS L4LEN IDX */
	mss_l4len_idx = (skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT);
	mss_l4len_idx |= (l4len << E1000_ADVTXD_L4LEN_SHIFT);

3806
	/* For 82575, context index must be unique per ring. */
3807 3808
	if (tx_ring->flags & IGB_RING_FLAG_TX_CTX_IDX)
		mss_l4len_idx |= tx_ring->reg_idx << 4;
3809 3810 3811 3812 3813

	context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
	context_desc->seqnum_seed = 0;

	buffer_info->time_stamp = jiffies;
A
Alexander Duyck 已提交
3814
	buffer_info->next_to_watch = i;
3815 3816 3817 3818 3819 3820 3821 3822 3823 3824
	buffer_info->dma = 0;
	i++;
	if (i == tx_ring->count)
		i = 0;

	tx_ring->next_to_use = i;

	return true;
}

3825 3826
static inline bool igb_tx_csum_adv(struct igb_ring *tx_ring,
				   struct sk_buff *skb, u32 tx_flags)
3827 3828
{
	struct e1000_adv_tx_context_desc *context_desc;
3829
	struct device *dev = tx_ring->dev;
3830 3831
	struct igb_buffer *buffer_info;
	u32 info = 0, tu_cmd = 0;
3832
	unsigned int i;
3833 3834 3835 3836 3837 3838 3839 3840 3841

	if ((skb->ip_summed == CHECKSUM_PARTIAL) ||
	    (tx_flags & IGB_TX_FLAGS_VLAN)) {
		i = tx_ring->next_to_use;
		buffer_info = &tx_ring->buffer_info[i];
		context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);

		if (tx_flags & IGB_TX_FLAGS_VLAN)
			info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
A
Alexander Duyck 已提交
3842

3843 3844 3845 3846 3847 3848 3849 3850 3851
		info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
		if (skb->ip_summed == CHECKSUM_PARTIAL)
			info |= skb_network_header_len(skb);

		context_desc->vlan_macip_lens = cpu_to_le32(info);

		tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);

		if (skb->ip_summed == CHECKSUM_PARTIAL) {
3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863
			__be16 protocol;

			if (skb->protocol == cpu_to_be16(ETH_P_8021Q)) {
				const struct vlan_ethhdr *vhdr =
				          (const struct vlan_ethhdr*)skb->data;

				protocol = vhdr->h_vlan_encapsulated_proto;
			} else {
				protocol = skb->protocol;
			}

			switch (protocol) {
3864
			case cpu_to_be16(ETH_P_IP):
3865
				tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
3866 3867
				if (ip_hdr(skb)->protocol == IPPROTO_TCP)
					tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
3868 3869
				else if (ip_hdr(skb)->protocol == IPPROTO_SCTP)
					tu_cmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
3870
				break;
3871
			case cpu_to_be16(ETH_P_IPV6):
3872 3873 3874
				/* XXX what about other V6 headers?? */
				if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
					tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
3875 3876
				else if (ipv6_hdr(skb)->nexthdr == IPPROTO_SCTP)
					tu_cmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
3877 3878 3879
				break;
			default:
				if (unlikely(net_ratelimit()))
3880
					dev_warn(dev,
3881 3882 3883 3884
					    "partial checksum but proto=%x!\n",
					    skb->protocol);
				break;
			}
3885 3886 3887 3888
		}

		context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
		context_desc->seqnum_seed = 0;
3889
		if (tx_ring->flags & IGB_RING_FLAG_TX_CTX_IDX)
3890
			context_desc->mss_l4len_idx =
3891
				cpu_to_le32(tx_ring->reg_idx << 4);
3892 3893

		buffer_info->time_stamp = jiffies;
A
Alexander Duyck 已提交
3894
		buffer_info->next_to_watch = i;
3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909
		buffer_info->dma = 0;

		i++;
		if (i == tx_ring->count)
			i = 0;
		tx_ring->next_to_use = i;

		return true;
	}
	return false;
}

#define IGB_MAX_TXD_PWR	16
#define IGB_MAX_DATA_PER_TXD	(1<<IGB_MAX_TXD_PWR)

3910
static inline int igb_tx_map_adv(struct igb_ring *tx_ring, struct sk_buff *skb,
A
Alexander Duyck 已提交
3911
				 unsigned int first)
3912 3913
{
	struct igb_buffer *buffer_info;
3914
	struct device *dev = tx_ring->dev;
3915
	unsigned int hlen = skb_headlen(skb);
3916 3917
	unsigned int count = 0, i;
	unsigned int f;
3918
	u16 gso_segs = skb_shinfo(skb)->gso_segs ?: 1;
3919 3920 3921 3922

	i = tx_ring->next_to_use;

	buffer_info = &tx_ring->buffer_info[i];
3923 3924
	BUG_ON(hlen >= IGB_MAX_DATA_PER_TXD);
	buffer_info->length = hlen;
3925 3926
	/* set time_stamp *before* dma to help avoid a possible race */
	buffer_info->time_stamp = jiffies;
A
Alexander Duyck 已提交
3927
	buffer_info->next_to_watch = i;
3928
	buffer_info->dma = dma_map_single(dev, skb->data, hlen,
3929 3930
					  DMA_TO_DEVICE);
	if (dma_mapping_error(dev, buffer_info->dma))
3931
		goto dma_error;
3932 3933

	for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
3934 3935
		struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[f];
		unsigned int len = frag->size;
3936

3937
		count++;
3938 3939 3940 3941
		i++;
		if (i == tx_ring->count)
			i = 0;

3942 3943 3944 3945
		buffer_info = &tx_ring->buffer_info[i];
		BUG_ON(len >= IGB_MAX_DATA_PER_TXD);
		buffer_info->length = len;
		buffer_info->time_stamp = jiffies;
A
Alexander Duyck 已提交
3946
		buffer_info->next_to_watch = i;
3947
		buffer_info->mapped_as_page = true;
3948
		buffer_info->dma = dma_map_page(dev,
3949 3950 3951
						frag->page,
						frag->page_offset,
						len,
3952 3953
						DMA_TO_DEVICE);
		if (dma_mapping_error(dev, buffer_info->dma))
3954 3955
			goto dma_error;

3956 3957 3958
	}

	tx_ring->buffer_info[i].skb = skb;
3959
	tx_ring->buffer_info[i].tx_flags = skb_shinfo(skb)->tx_flags;
3960 3961 3962
	/* multiply data chunks by size of headers */
	tx_ring->buffer_info[i].bytecount = ((gso_segs - 1) * hlen) + skb->len;
	tx_ring->buffer_info[i].gso_segs = gso_segs;
A
Alexander Duyck 已提交
3963
	tx_ring->buffer_info[first].next_to_watch = i;
3964

A
Alexander Duyck 已提交
3965
	return ++count;
3966 3967

dma_error:
3968
	dev_err(dev, "TX DMA map failed\n");
3969 3970 3971 3972 3973 3974 3975 3976 3977

	/* clear timestamp and dma mappings for failed buffer_info mapping */
	buffer_info->dma = 0;
	buffer_info->time_stamp = 0;
	buffer_info->length = 0;
	buffer_info->next_to_watch = 0;
	buffer_info->mapped_as_page = false;

	/* clear timestamp and dma mappings for remaining portion of packet */
3978 3979 3980
	while (count--) {
		if (i == 0)
			i = tx_ring->count;
3981 3982 3983 3984 3985 3986
		i--;
		buffer_info = &tx_ring->buffer_info[i];
		igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
	}

	return 0;
3987 3988
}

3989
static inline void igb_tx_queue_adv(struct igb_ring *tx_ring,
N
Nick Nunley 已提交
3990
				    u32 tx_flags, int count, u32 paylen,
3991 3992
				    u8 hdr_len)
{
A
Alexander Duyck 已提交
3993
	union e1000_adv_tx_desc *tx_desc;
3994 3995
	struct igb_buffer *buffer_info;
	u32 olinfo_status = 0, cmd_type_len;
A
Alexander Duyck 已提交
3996
	unsigned int i = tx_ring->next_to_use;
3997 3998 3999 4000 4001 4002 4003

	cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS |
			E1000_ADVTXD_DCMD_DEXT);

	if (tx_flags & IGB_TX_FLAGS_VLAN)
		cmd_type_len |= E1000_ADVTXD_DCMD_VLE;

4004 4005 4006
	if (tx_flags & IGB_TX_FLAGS_TSTAMP)
		cmd_type_len |= E1000_ADVTXD_MAC_TSTAMP;

4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020
	if (tx_flags & IGB_TX_FLAGS_TSO) {
		cmd_type_len |= E1000_ADVTXD_DCMD_TSE;

		/* insert tcp checksum */
		olinfo_status |= E1000_TXD_POPTS_TXSM << 8;

		/* insert ip checksum */
		if (tx_flags & IGB_TX_FLAGS_IPV4)
			olinfo_status |= E1000_TXD_POPTS_IXSM << 8;

	} else if (tx_flags & IGB_TX_FLAGS_CSUM) {
		olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
	}

4021 4022 4023
	if ((tx_ring->flags & IGB_RING_FLAG_TX_CTX_IDX) &&
	    (tx_flags & (IGB_TX_FLAGS_CSUM |
	                 IGB_TX_FLAGS_TSO |
4024
			 IGB_TX_FLAGS_VLAN)))
4025
		olinfo_status |= tx_ring->reg_idx << 4;
4026 4027 4028

	olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT);

A
Alexander Duyck 已提交
4029
	do {
4030 4031 4032 4033 4034 4035
		buffer_info = &tx_ring->buffer_info[i];
		tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
		tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
		tx_desc->read.cmd_type_len =
			cpu_to_le32(cmd_type_len | buffer_info->length);
		tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
A
Alexander Duyck 已提交
4036
		count--;
4037 4038 4039
		i++;
		if (i == tx_ring->count)
			i = 0;
A
Alexander Duyck 已提交
4040
	} while (count > 0);
4041

4042
	tx_desc->read.cmd_type_len |= cpu_to_le32(IGB_ADVTXD_DCMD);
4043 4044 4045 4046 4047 4048 4049
	/* Force memory writes to complete before letting h/w
	 * know there are new descriptors to fetch.  (Only
	 * applicable for weak-ordered memory model archs,
	 * such as IA-64). */
	wmb();

	tx_ring->next_to_use = i;
4050
	writel(i, tx_ring->tail);
4051 4052 4053 4054 4055
	/* we need this if more than one processor can write to our tail
	 * at a time, it syncronizes IO on IA64/Altix systems */
	mmiowb();
}

4056
static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, int size)
4057
{
4058 4059
	struct net_device *netdev = tx_ring->netdev;

4060 4061
	netif_stop_subqueue(netdev, tx_ring->queue_index);

4062 4063 4064 4065 4066 4067 4068
	/* Herbert's original patch had:
	 *  smp_mb__after_netif_stop_queue();
	 * but since that doesn't exist yet, just open code it. */
	smp_mb();

	/* We need to check again in a case another CPU has just
	 * made room available. */
4069
	if (igb_desc_unused(tx_ring) < size)
4070 4071 4072
		return -EBUSY;

	/* A reprieve! */
4073
	netif_wake_subqueue(netdev, tx_ring->queue_index);
4074
	tx_ring->tx_stats.restart_queue++;
4075 4076 4077
	return 0;
}

N
Nick Nunley 已提交
4078
static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, int size)
4079
{
4080
	if (igb_desc_unused(tx_ring) >= size)
4081
		return 0;
4082
	return __igb_maybe_stop_tx(tx_ring, size);
4083 4084
}

4085 4086
netdev_tx_t igb_xmit_frame_ring_adv(struct sk_buff *skb,
				    struct igb_ring *tx_ring)
4087
{
4088
	struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
A
Alexander Duyck 已提交
4089
	int tso = 0, count;
N
Nick Nunley 已提交
4090 4091 4092
	u32 tx_flags = 0;
	u16 first;
	u8 hdr_len = 0;
4093 4094 4095 4096 4097 4098

	/* need: 1 descriptor per page,
	 *       + 2 desc gap to keep tail from touching head,
	 *       + 1 desc for skb->data,
	 *       + 1 desc for context descriptor,
	 * otherwise try next time */
4099
	if (igb_maybe_stop_tx(tx_ring, skb_shinfo(skb)->nr_frags + 4)) {
4100 4101 4102
		/* this is a hard error */
		return NETDEV_TX_BUSY;
	}
4103

4104 4105
	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
4106 4107
		tx_flags |= IGB_TX_FLAGS_TSTAMP;
	}
4108

A
Alexander Duyck 已提交
4109
	if (vlan_tx_tag_present(skb) && adapter->vlgrp) {
4110 4111 4112 4113
		tx_flags |= IGB_TX_FLAGS_VLAN;
		tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
	}

4114 4115 4116
	if (skb->protocol == htons(ETH_P_IP))
		tx_flags |= IGB_TX_FLAGS_IPV4;

A
Alexander Duyck 已提交
4117
	first = tx_ring->next_to_use;
4118 4119
	if (skb_is_gso(skb)) {
		tso = igb_tso_adv(tx_ring, skb, tx_flags, &hdr_len);
A
Alexander Duyck 已提交
4120

4121 4122 4123 4124
		if (tso < 0) {
			dev_kfree_skb_any(skb);
			return NETDEV_TX_OK;
		}
4125 4126 4127 4128
	}

	if (tso)
		tx_flags |= IGB_TX_FLAGS_TSO;
4129
	else if (igb_tx_csum_adv(tx_ring, skb, tx_flags) &&
4130 4131
	         (skb->ip_summed == CHECKSUM_PARTIAL))
		tx_flags |= IGB_TX_FLAGS_CSUM;
4132

4133
	/*
A
Alexander Duyck 已提交
4134
	 * count reflects descriptors mapped, if 0 or less then mapping error
4135 4136
	 * has occured and we need to rewind the descriptor queue
	 */
4137
	count = igb_tx_map_adv(tx_ring, skb, first);
4138
	if (!count) {
4139 4140 4141
		dev_kfree_skb_any(skb);
		tx_ring->buffer_info[first].time_stamp = 0;
		tx_ring->next_to_use = first;
4142
		return NETDEV_TX_OK;
4143
	}
4144

4145 4146 4147
	igb_tx_queue_adv(tx_ring, tx_flags, count, skb->len, hdr_len);

	/* Make sure there is space in the ring for the next send. */
4148
	igb_maybe_stop_tx(tx_ring, MAX_SKB_FRAGS + 4);
4149

4150 4151 4152
	return NETDEV_TX_OK;
}

4153 4154
static netdev_tx_t igb_xmit_frame_adv(struct sk_buff *skb,
				      struct net_device *netdev)
4155 4156
{
	struct igb_adapter *adapter = netdev_priv(netdev);
4157 4158
	struct igb_ring *tx_ring;
	int r_idx = 0;
4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169

	if (test_bit(__IGB_DOWN, &adapter->state)) {
		dev_kfree_skb_any(skb);
		return NETDEV_TX_OK;
	}

	if (skb->len <= 0) {
		dev_kfree_skb_any(skb);
		return NETDEV_TX_OK;
	}

4170
	r_idx = skb->queue_mapping & (IGB_ABS_MAX_TX_QUEUES - 1);
4171
	tx_ring = adapter->multi_tx_table[r_idx];
4172 4173 4174 4175 4176

	/* This goes back to the question of how to logically map a tx queue
	 * to a flow.  Right now, performance is impacted slightly negatively
	 * if using multiple tx queues.  If the stack breaks away from a
	 * single qdisc implementation, we can look at this again. */
4177
	return igb_xmit_frame_ring_adv(skb, tx_ring);
4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190
}

/**
 * igb_tx_timeout - Respond to a Tx Hang
 * @netdev: network interface device structure
 **/
static void igb_tx_timeout(struct net_device *netdev)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;

	/* Do the reset outside of interrupt context */
	adapter->tx_timeout_count++;
4191

4192 4193 4194
	if (hw->mac.type == e1000_82580)
		hw->dev_spec._82575.global_device_reset = true;

4195
	schedule_work(&adapter->reset_task);
4196 4197
	wr32(E1000_EICS,
	     (adapter->eims_enable_mask & ~adapter->eims_other));
4198 4199 4200 4201 4202 4203 4204
}

static void igb_reset_task(struct work_struct *work)
{
	struct igb_adapter *adapter;
	adapter = container_of(work, struct igb_adapter, reset_task);

4205 4206
	igb_dump(adapter);
	netdev_err(adapter->netdev, "Reset adapter\n");
4207 4208 4209 4210 4211 4212 4213 4214 4215 4216
	igb_reinit_locked(adapter);
}

/**
 * igb_get_stats - Get System Network Statistics
 * @netdev: network interface device structure
 *
 * Returns the address of the device statistics structure.
 * The statistics are actually updated from the timer callback.
 **/
4217
static struct net_device_stats *igb_get_stats(struct net_device *netdev)
4218 4219
{
	/* only return the current stats */
4220
	return &netdev->stats;
4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232
}

/**
 * igb_change_mtu - Change the Maximum Transfer Unit
 * @netdev: network interface device structure
 * @new_mtu: new value for maximum frame size
 *
 * Returns 0 on success, negative on failure
 **/
static int igb_change_mtu(struct net_device *netdev, int new_mtu)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
4233
	struct pci_dev *pdev = adapter->pdev;
4234
	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
4235
	u32 rx_buffer_len, i;
4236

4237
	if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
4238
		dev_err(&pdev->dev, "Invalid MTU setting\n");
4239 4240 4241 4242
		return -EINVAL;
	}

	if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
4243
		dev_err(&pdev->dev, "MTU > 9216 not supported.\n");
4244 4245 4246 4247 4248
		return -EINVAL;
	}

	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
		msleep(1);
4249

4250 4251
	/* igb_down has a dependency on max_frame_size */
	adapter->max_frame_size = max_frame;
4252

4253 4254 4255 4256 4257 4258
	/* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
	 * means we reserve 2 more, this pushes us to allocate from the next
	 * larger slab size.
	 * i.e. RXBUFFER_2048 --> size-4096 slab
	 */

N
Nick Nunley 已提交
4259 4260 4261
	if (adapter->hw.mac.type == e1000_82580)
		max_frame += IGB_TS_HDR_LEN;

4262
	if (max_frame <= IGB_RXBUFFER_1024)
4263
		rx_buffer_len = IGB_RXBUFFER_1024;
A
Alexander Duyck 已提交
4264
	else if (max_frame <= MAXIMUM_ETHERNET_VLAN_SIZE)
4265
		rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
A
Alexander Duyck 已提交
4266
	else
4267 4268
		rx_buffer_len = IGB_RXBUFFER_128;

N
Nick Nunley 已提交
4269 4270 4271 4272 4273 4274 4275 4276
	if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN + IGB_TS_HDR_LEN) ||
	     (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE + IGB_TS_HDR_LEN))
		rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE + IGB_TS_HDR_LEN;

	if ((adapter->hw.mac.type == e1000_82580) &&
	    (rx_buffer_len == IGB_RXBUFFER_128))
		rx_buffer_len += IGB_RXBUFFER_64;

4277 4278
	if (netif_running(netdev))
		igb_down(adapter);
4279

4280
	dev_info(&pdev->dev, "changing MTU from %d to %d\n",
4281 4282 4283
		 netdev->mtu, new_mtu);
	netdev->mtu = new_mtu;

4284
	for (i = 0; i < adapter->num_rx_queues; i++)
4285
		adapter->rx_ring[i]->rx_buffer_len = rx_buffer_len;
4286

4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303
	if (netif_running(netdev))
		igb_up(adapter);
	else
		igb_reset(adapter);

	clear_bit(__IGB_RESETTING, &adapter->state);

	return 0;
}

/**
 * igb_update_stats - Update the board statistics counters
 * @adapter: board private structure
 **/

void igb_update_stats(struct igb_adapter *adapter)
{
4304
	struct net_device_stats *net_stats = igb_get_stats(adapter->netdev);
4305 4306
	struct e1000_hw *hw = &adapter->hw;
	struct pci_dev *pdev = adapter->pdev;
4307
	u32 reg, mpc;
4308
	u16 phy_tmp;
4309 4310
	int i;
	u64 bytes, packets;
4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322

#define PHY_IDLE_ERROR_COUNT_MASK 0x00FF

	/*
	 * Prevent stats update while adapter is being reset, or if the pci
	 * connection is down.
	 */
	if (adapter->link_speed == 0)
		return;
	if (pci_channel_offline(pdev))
		return;

4323 4324 4325 4326
	bytes = 0;
	packets = 0;
	for (i = 0; i < adapter->num_rx_queues; i++) {
		u32 rqdpc_tmp = rd32(E1000_RQDPC(i)) & 0x0FFF;
4327 4328
		struct igb_ring *ring = adapter->rx_ring[i];
		ring->rx_stats.drops += rqdpc_tmp;
4329
		net_stats->rx_fifo_errors += rqdpc_tmp;
4330 4331
		bytes += ring->rx_stats.bytes;
		packets += ring->rx_stats.packets;
4332 4333
	}

4334 4335
	net_stats->rx_bytes = bytes;
	net_stats->rx_packets = packets;
4336 4337 4338 4339

	bytes = 0;
	packets = 0;
	for (i = 0; i < adapter->num_tx_queues; i++) {
4340 4341 4342
		struct igb_ring *ring = adapter->tx_ring[i];
		bytes += ring->tx_stats.bytes;
		packets += ring->tx_stats.packets;
4343
	}
4344 4345
	net_stats->tx_bytes = bytes;
	net_stats->tx_packets = packets;
4346 4347

	/* read stats registers */
4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364
	adapter->stats.crcerrs += rd32(E1000_CRCERRS);
	adapter->stats.gprc += rd32(E1000_GPRC);
	adapter->stats.gorc += rd32(E1000_GORCL);
	rd32(E1000_GORCH); /* clear GORCL */
	adapter->stats.bprc += rd32(E1000_BPRC);
	adapter->stats.mprc += rd32(E1000_MPRC);
	adapter->stats.roc += rd32(E1000_ROC);

	adapter->stats.prc64 += rd32(E1000_PRC64);
	adapter->stats.prc127 += rd32(E1000_PRC127);
	adapter->stats.prc255 += rd32(E1000_PRC255);
	adapter->stats.prc511 += rd32(E1000_PRC511);
	adapter->stats.prc1023 += rd32(E1000_PRC1023);
	adapter->stats.prc1522 += rd32(E1000_PRC1522);
	adapter->stats.symerrs += rd32(E1000_SYMERRS);
	adapter->stats.sec += rd32(E1000_SEC);

4365 4366 4367
	mpc = rd32(E1000_MPC);
	adapter->stats.mpc += mpc;
	net_stats->rx_fifo_errors += mpc;
4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381
	adapter->stats.scc += rd32(E1000_SCC);
	adapter->stats.ecol += rd32(E1000_ECOL);
	adapter->stats.mcc += rd32(E1000_MCC);
	adapter->stats.latecol += rd32(E1000_LATECOL);
	adapter->stats.dc += rd32(E1000_DC);
	adapter->stats.rlec += rd32(E1000_RLEC);
	adapter->stats.xonrxc += rd32(E1000_XONRXC);
	adapter->stats.xontxc += rd32(E1000_XONTXC);
	adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
	adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
	adapter->stats.fcruc += rd32(E1000_FCRUC);
	adapter->stats.gptc += rd32(E1000_GPTC);
	adapter->stats.gotc += rd32(E1000_GOTCL);
	rd32(E1000_GOTCH); /* clear GOTCL */
4382
	adapter->stats.rnbc += rd32(E1000_RNBC);
4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399
	adapter->stats.ruc += rd32(E1000_RUC);
	adapter->stats.rfc += rd32(E1000_RFC);
	adapter->stats.rjc += rd32(E1000_RJC);
	adapter->stats.tor += rd32(E1000_TORH);
	adapter->stats.tot += rd32(E1000_TOTH);
	adapter->stats.tpr += rd32(E1000_TPR);

	adapter->stats.ptc64 += rd32(E1000_PTC64);
	adapter->stats.ptc127 += rd32(E1000_PTC127);
	adapter->stats.ptc255 += rd32(E1000_PTC255);
	adapter->stats.ptc511 += rd32(E1000_PTC511);
	adapter->stats.ptc1023 += rd32(E1000_PTC1023);
	adapter->stats.ptc1522 += rd32(E1000_PTC1522);

	adapter->stats.mptc += rd32(E1000_MPTC);
	adapter->stats.bptc += rd32(E1000_BPTC);

4400 4401
	adapter->stats.tpt += rd32(E1000_TPT);
	adapter->stats.colc += rd32(E1000_COLC);
4402 4403

	adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
4404 4405 4406 4407 4408 4409 4410
	/* read internal phy specific stats */
	reg = rd32(E1000_CTRL_EXT);
	if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
		adapter->stats.rxerrc += rd32(E1000_RXERRC);
		adapter->stats.tncrs += rd32(E1000_TNCRS);
	}

4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424
	adapter->stats.tsctc += rd32(E1000_TSCTC);
	adapter->stats.tsctfc += rd32(E1000_TSCTFC);

	adapter->stats.iac += rd32(E1000_IAC);
	adapter->stats.icrxoc += rd32(E1000_ICRXOC);
	adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
	adapter->stats.icrxatc += rd32(E1000_ICRXATC);
	adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
	adapter->stats.ictxatc += rd32(E1000_ICTXATC);
	adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
	adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
	adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);

	/* Fill out the OS statistics structure */
4425 4426
	net_stats->multicast = adapter->stats.mprc;
	net_stats->collisions = adapter->stats.colc;
4427 4428 4429 4430

	/* Rx Errors */

	/* RLEC on some newer hardware can be incorrect so build
4431
	 * our own version based on RUC and ROC */
4432
	net_stats->rx_errors = adapter->stats.rxerrc +
4433 4434 4435
		adapter->stats.crcerrs + adapter->stats.algnerrc +
		adapter->stats.ruc + adapter->stats.roc +
		adapter->stats.cexterr;
4436 4437 4438 4439 4440
	net_stats->rx_length_errors = adapter->stats.ruc +
				      adapter->stats.roc;
	net_stats->rx_crc_errors = adapter->stats.crcerrs;
	net_stats->rx_frame_errors = adapter->stats.algnerrc;
	net_stats->rx_missed_errors = adapter->stats.mpc;
4441 4442

	/* Tx Errors */
4443 4444 4445 4446 4447
	net_stats->tx_errors = adapter->stats.ecol +
			       adapter->stats.latecol;
	net_stats->tx_aborted_errors = adapter->stats.ecol;
	net_stats->tx_window_errors = adapter->stats.latecol;
	net_stats->tx_carrier_errors = adapter->stats.tncrs;
4448 4449 4450 4451 4452 4453

	/* Tx Dropped needs to be maintained elsewhere */

	/* Phy Stats */
	if (hw->phy.media_type == e1000_media_type_copper) {
		if ((adapter->link_speed == SPEED_1000) &&
4454
		   (!igb_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467
			phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
			adapter->phy_stats.idle_errors += phy_tmp;
		}
	}

	/* Management Stats */
	adapter->stats.mgptc += rd32(E1000_MGTPTC);
	adapter->stats.mgprc += rd32(E1000_MGTPRC);
	adapter->stats.mgpdc += rd32(E1000_MGTPDC);
}

static irqreturn_t igb_msix_other(int irq, void *data)
{
4468
	struct igb_adapter *adapter = data;
4469
	struct e1000_hw *hw = &adapter->hw;
P
PJ Waskiewicz 已提交
4470 4471
	u32 icr = rd32(E1000_ICR);
	/* reading ICR causes bit 31 of EICR to be cleared */
4472

4473 4474 4475
	if (icr & E1000_ICR_DRSTA)
		schedule_work(&adapter->reset_task);

4476
	if (icr & E1000_ICR_DOUTSYNC) {
4477 4478 4479
		/* HW is reporting DMA is out of sync */
		adapter->stats.doosync++;
	}
4480

4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491
	/* Check for a mailbox event */
	if (icr & E1000_ICR_VMMB)
		igb_msg_task(adapter);

	if (icr & E1000_ICR_LSC) {
		hw->mac.get_link_status = 1;
		/* guard against interrupt when we're going down */
		if (!test_bit(__IGB_DOWN, &adapter->state))
			mod_timer(&adapter->watchdog_timer, jiffies + 1);
	}

4492 4493 4494 4495 4496 4497
	if (adapter->vfs_allocated_count)
		wr32(E1000_IMS, E1000_IMS_LSC |
				E1000_IMS_VMMB |
				E1000_IMS_DOUTSYNC);
	else
		wr32(E1000_IMS, E1000_IMS_LSC | E1000_IMS_DOUTSYNC);
P
PJ Waskiewicz 已提交
4498
	wr32(E1000_EIMS, adapter->eims_other);
4499 4500 4501 4502

	return IRQ_HANDLED;
}

4503
static void igb_write_itr(struct igb_q_vector *q_vector)
4504
{
4505
	struct igb_adapter *adapter = q_vector->adapter;
4506
	u32 itr_val = q_vector->itr_val & 0x7FFC;
4507

4508 4509
	if (!q_vector->set_itr)
		return;
4510

4511 4512
	if (!itr_val)
		itr_val = 0x4;
4513

4514 4515
	if (adapter->hw.mac.type == e1000_82575)
		itr_val |= itr_val << 16;
4516
	else
4517
		itr_val |= 0x8000000;
4518

4519 4520
	writel(itr_val, q_vector->itr_register);
	q_vector->set_itr = 0;
4521 4522
}

4523
static irqreturn_t igb_msix_ring(int irq, void *data)
4524
{
4525
	struct igb_q_vector *q_vector = data;
4526

4527 4528
	/* Write the ITR value calculated from the previous interrupt. */
	igb_write_itr(q_vector);
4529

4530
	napi_schedule(&q_vector->napi);
P
PJ Waskiewicz 已提交
4531

4532
	return IRQ_HANDLED;
J
Jeb Cramer 已提交
4533 4534
}

4535
#ifdef CONFIG_IGB_DCA
4536
static void igb_update_dca(struct igb_q_vector *q_vector)
J
Jeb Cramer 已提交
4537
{
4538
	struct igb_adapter *adapter = q_vector->adapter;
J
Jeb Cramer 已提交
4539 4540 4541
	struct e1000_hw *hw = &adapter->hw;
	int cpu = get_cpu();

4542 4543 4544 4545 4546 4547 4548 4549 4550
	if (q_vector->cpu == cpu)
		goto out_no_update;

	if (q_vector->tx_ring) {
		int q = q_vector->tx_ring->reg_idx;
		u32 dca_txctrl = rd32(E1000_DCA_TXCTRL(q));
		if (hw->mac.type == e1000_82575) {
			dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK;
			dca_txctrl |= dca3_get_tag(&adapter->pdev->dev, cpu);
A
Alexander Duyck 已提交
4551
		} else {
4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562
			dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK_82576;
			dca_txctrl |= dca3_get_tag(&adapter->pdev->dev, cpu) <<
			              E1000_DCA_TXCTRL_CPUID_SHIFT;
		}
		dca_txctrl |= E1000_DCA_TXCTRL_DESC_DCA_EN;
		wr32(E1000_DCA_TXCTRL(q), dca_txctrl);
	}
	if (q_vector->rx_ring) {
		int q = q_vector->rx_ring->reg_idx;
		u32 dca_rxctrl = rd32(E1000_DCA_RXCTRL(q));
		if (hw->mac.type == e1000_82575) {
A
Alexander Duyck 已提交
4563
			dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK;
M
Maciej Sosnowski 已提交
4564
			dca_rxctrl |= dca3_get_tag(&adapter->pdev->dev, cpu);
4565 4566 4567 4568
		} else {
			dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK_82576;
			dca_rxctrl |= dca3_get_tag(&adapter->pdev->dev, cpu) <<
			              E1000_DCA_RXCTRL_CPUID_SHIFT;
A
Alexander Duyck 已提交
4569
		}
J
Jeb Cramer 已提交
4570 4571 4572 4573 4574
		dca_rxctrl |= E1000_DCA_RXCTRL_DESC_DCA_EN;
		dca_rxctrl |= E1000_DCA_RXCTRL_HEAD_DCA_EN;
		dca_rxctrl |= E1000_DCA_RXCTRL_DATA_DCA_EN;
		wr32(E1000_DCA_RXCTRL(q), dca_rxctrl);
	}
4575 4576
	q_vector->cpu = cpu;
out_no_update:
J
Jeb Cramer 已提交
4577 4578 4579 4580 4581
	put_cpu();
}

static void igb_setup_dca(struct igb_adapter *adapter)
{
4582
	struct e1000_hw *hw = &adapter->hw;
J
Jeb Cramer 已提交
4583 4584
	int i;

4585
	if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
J
Jeb Cramer 已提交
4586 4587
		return;

4588 4589 4590
	/* Always use CB2 mode, difference is masked in the CB driver. */
	wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);

4591
	for (i = 0; i < adapter->num_q_vectors; i++) {
4592 4593
		adapter->q_vector[i]->cpu = -1;
		igb_update_dca(adapter->q_vector[i]);
J
Jeb Cramer 已提交
4594 4595 4596 4597 4598 4599 4600
	}
}

static int __igb_notify_dca(struct device *dev, void *data)
{
	struct net_device *netdev = dev_get_drvdata(dev);
	struct igb_adapter *adapter = netdev_priv(netdev);
4601
	struct pci_dev *pdev = adapter->pdev;
J
Jeb Cramer 已提交
4602 4603 4604 4605 4606 4607
	struct e1000_hw *hw = &adapter->hw;
	unsigned long event = *(unsigned long *)data;

	switch (event) {
	case DCA_PROVIDER_ADD:
		/* if already enabled, don't do it again */
4608
		if (adapter->flags & IGB_FLAG_DCA_ENABLED)
J
Jeb Cramer 已提交
4609 4610
			break;
		if (dca_add_requester(dev) == 0) {
4611
			adapter->flags |= IGB_FLAG_DCA_ENABLED;
4612
			dev_info(&pdev->dev, "DCA enabled\n");
J
Jeb Cramer 已提交
4613 4614 4615 4616 4617
			igb_setup_dca(adapter);
			break;
		}
		/* Fall Through since DCA is disabled. */
	case DCA_PROVIDER_REMOVE:
4618
		if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
J
Jeb Cramer 已提交
4619
			/* without this a class_device is left
4620
			 * hanging around in the sysfs model */
J
Jeb Cramer 已提交
4621
			dca_remove_requester(dev);
4622
			dev_info(&pdev->dev, "DCA disabled\n");
4623
			adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
A
Alexander Duyck 已提交
4624
			wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
J
Jeb Cramer 已提交
4625 4626 4627
		}
		break;
	}
4628

J
Jeb Cramer 已提交
4629
	return 0;
4630 4631
}

J
Jeb Cramer 已提交
4632 4633 4634 4635 4636 4637 4638 4639 4640 4641
static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
                          void *p)
{
	int ret_val;

	ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
	                                 __igb_notify_dca);

	return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
}
4642
#endif /* CONFIG_IGB_DCA */
4643

4644 4645 4646 4647 4648 4649 4650 4651
static void igb_ping_all_vfs(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 ping;
	int i;

	for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
		ping = E1000_PF_CONTROL_MSG;
4652
		if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
4653 4654 4655 4656 4657
			ping |= E1000_VT_MSGTYPE_CTS;
		igb_write_mbx(hw, &ping, 1, i);
	}
}

4658 4659 4660 4661 4662 4663
static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 vmolr = rd32(E1000_VMOLR(vf));
	struct vf_data_storage *vf_data = &adapter->vf_data[vf];

4664
	vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
4665 4666 4667 4668 4669
	                    IGB_VF_FLAG_MULTI_PROMISC);
	vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);

	if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
		vmolr |= E1000_VMOLR_MPME;
4670
		vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697
		*msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
	} else {
		/*
		 * if we have hashes and we are clearing a multicast promisc
		 * flag we need to write the hashes to the MTA as this step
		 * was previously skipped
		 */
		if (vf_data->num_vf_mc_hashes > 30) {
			vmolr |= E1000_VMOLR_MPME;
		} else if (vf_data->num_vf_mc_hashes) {
			int j;
			vmolr |= E1000_VMOLR_ROMPE;
			for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
				igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
		}
	}

	wr32(E1000_VMOLR(vf), vmolr);

	/* there are flags left unprocessed, likely not supported */
	if (*msgbuf & E1000_VT_MSGINFO_MASK)
		return -EINVAL;

	return 0;

}

4698 4699 4700 4701 4702 4703 4704 4705
static int igb_set_vf_multicasts(struct igb_adapter *adapter,
				  u32 *msgbuf, u32 vf)
{
	int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
	u16 *hash_list = (u16 *)&msgbuf[1];
	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
	int i;

4706
	/* salt away the number of multicast addresses assigned
4707 4708 4709 4710 4711
	 * to this VF for later use to restore when the PF multi cast
	 * list changes
	 */
	vf_data->num_vf_mc_hashes = n;

4712 4713 4714 4715 4716
	/* only up to 30 hash values supported */
	if (n > 30)
		n = 30;

	/* store the hashes for later use */
4717
	for (i = 0; i < n; i++)
4718
		vf_data->vf_mc_hashes[i] = hash_list[i];
4719 4720

	/* Flush and reset the mta with the new values */
4721
	igb_set_rx_mode(adapter->netdev);
4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732

	return 0;
}

static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	struct vf_data_storage *vf_data;
	int i, j;

	for (i = 0; i < adapter->vfs_allocated_count; i++) {
4733 4734 4735
		u32 vmolr = rd32(E1000_VMOLR(i));
		vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);

4736
		vf_data = &adapter->vf_data[i];
4737 4738 4739 4740 4741 4742 4743 4744 4745 4746

		if ((vf_data->num_vf_mc_hashes > 30) ||
		    (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
			vmolr |= E1000_VMOLR_MPME;
		} else if (vf_data->num_vf_mc_hashes) {
			vmolr |= E1000_VMOLR_ROMPE;
			for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
				igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
		}
		wr32(E1000_VMOLR(i), vmolr);
4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774
	}
}

static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 pool_mask, reg, vid;
	int i;

	pool_mask = 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);

	/* Find the vlan filter for this id */
	for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
		reg = rd32(E1000_VLVF(i));

		/* remove the vf from the pool */
		reg &= ~pool_mask;

		/* if pool is empty then remove entry from vfta */
		if (!(reg & E1000_VLVF_POOLSEL_MASK) &&
		    (reg & E1000_VLVF_VLANID_ENABLE)) {
			reg = 0;
			vid = reg & E1000_VLVF_VLANID_MASK;
			igb_vfta_set(hw, vid, false);
		}

		wr32(E1000_VLVF(i), reg);
	}
4775 4776

	adapter->vf_data[vf].vlans_enabled = 0;
4777 4778 4779 4780 4781 4782 4783
}

static s32 igb_vlvf_set(struct igb_adapter *adapter, u32 vid, bool add, u32 vf)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 reg, i;

4784 4785 4786 4787 4788
	/* The vlvf table only exists on 82576 hardware and newer */
	if (hw->mac.type < e1000_82576)
		return -1;

	/* we only need to do this if VMDq is enabled */
4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817
	if (!adapter->vfs_allocated_count)
		return -1;

	/* Find the vlan filter for this id */
	for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
		reg = rd32(E1000_VLVF(i));
		if ((reg & E1000_VLVF_VLANID_ENABLE) &&
		    vid == (reg & E1000_VLVF_VLANID_MASK))
			break;
	}

	if (add) {
		if (i == E1000_VLVF_ARRAY_SIZE) {
			/* Did not find a matching VLAN ID entry that was
			 * enabled.  Search for a free filter entry, i.e.
			 * one without the enable bit set
			 */
			for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
				reg = rd32(E1000_VLVF(i));
				if (!(reg & E1000_VLVF_VLANID_ENABLE))
					break;
			}
		}
		if (i < E1000_VLVF_ARRAY_SIZE) {
			/* Found an enabled/available entry */
			reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);

			/* if !enabled we need to set this up in vfta */
			if (!(reg & E1000_VLVF_VLANID_ENABLE)) {
4818 4819
				/* add VID to filter table */
				igb_vfta_set(hw, vid, true);
4820 4821
				reg |= E1000_VLVF_VLANID_ENABLE;
			}
A
Alexander Duyck 已提交
4822 4823
			reg &= ~E1000_VLVF_VLANID_MASK;
			reg |= vid;
4824
			wr32(E1000_VLVF(i), reg);
4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839

			/* do not modify RLPML for PF devices */
			if (vf >= adapter->vfs_allocated_count)
				return 0;

			if (!adapter->vf_data[vf].vlans_enabled) {
				u32 size;
				reg = rd32(E1000_VMOLR(vf));
				size = reg & E1000_VMOLR_RLPML_MASK;
				size += 4;
				reg &= ~E1000_VMOLR_RLPML_MASK;
				reg |= size;
				wr32(E1000_VMOLR(vf), reg);
			}

4840
			adapter->vf_data[vf].vlans_enabled++;
4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852
			return 0;
		}
	} else {
		if (i < E1000_VLVF_ARRAY_SIZE) {
			/* remove vf from the pool */
			reg &= ~(1 << (E1000_VLVF_POOLSEL_SHIFT + vf));
			/* if pool is empty then remove entry from vfta */
			if (!(reg & E1000_VLVF_POOLSEL_MASK)) {
				reg = 0;
				igb_vfta_set(hw, vid, false);
			}
			wr32(E1000_VLVF(i), reg);
4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867

			/* do not modify RLPML for PF devices */
			if (vf >= adapter->vfs_allocated_count)
				return 0;

			adapter->vf_data[vf].vlans_enabled--;
			if (!adapter->vf_data[vf].vlans_enabled) {
				u32 size;
				reg = rd32(E1000_VMOLR(vf));
				size = reg & E1000_VMOLR_RLPML_MASK;
				size -= 4;
				reg &= ~E1000_VMOLR_RLPML_MASK;
				reg |= size;
				wr32(E1000_VMOLR(vf), reg);
			}
4868 4869
		}
	}
4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918
	return 0;
}

static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
{
	struct e1000_hw *hw = &adapter->hw;

	if (vid)
		wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
	else
		wr32(E1000_VMVIR(vf), 0);
}

static int igb_ndo_set_vf_vlan(struct net_device *netdev,
			       int vf, u16 vlan, u8 qos)
{
	int err = 0;
	struct igb_adapter *adapter = netdev_priv(netdev);

	if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
		return -EINVAL;
	if (vlan || qos) {
		err = igb_vlvf_set(adapter, vlan, !!vlan, vf);
		if (err)
			goto out;
		igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
		igb_set_vmolr(adapter, vf, !vlan);
		adapter->vf_data[vf].pf_vlan = vlan;
		adapter->vf_data[vf].pf_qos = qos;
		dev_info(&adapter->pdev->dev,
			 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
		if (test_bit(__IGB_DOWN, &adapter->state)) {
			dev_warn(&adapter->pdev->dev,
				 "The VF VLAN has been set,"
				 " but the PF device is not up.\n");
			dev_warn(&adapter->pdev->dev,
				 "Bring the PF device up before"
				 " attempting to use the VF device.\n");
		}
	} else {
		igb_vlvf_set(adapter, adapter->vf_data[vf].pf_vlan,
				   false, vf);
		igb_set_vmvir(adapter, vlan, vf);
		igb_set_vmolr(adapter, vf, true);
		adapter->vf_data[vf].pf_vlan = 0;
		adapter->vf_data[vf].pf_qos = 0;
       }
out:
       return err;
4919 4920 4921 4922 4923 4924 4925 4926 4927 4928
}

static int igb_set_vf_vlan(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
{
	int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
	int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);

	return igb_vlvf_set(adapter, vid, add, vf);
}

4929
static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
4930
{
4931 4932
	/* clear flags */
	adapter->vf_data[vf].flags &= ~(IGB_VF_FLAG_PF_SET_MAC);
4933
	adapter->vf_data[vf].last_nack = jiffies;
4934 4935

	/* reset offloads to defaults */
4936
	igb_set_vmolr(adapter, vf, true);
4937 4938 4939

	/* reset vlans for device */
	igb_clear_vf_vfta(adapter, vf);
4940 4941 4942 4943 4944 4945
	if (adapter->vf_data[vf].pf_vlan)
		igb_ndo_set_vf_vlan(adapter->netdev, vf,
				    adapter->vf_data[vf].pf_vlan,
				    adapter->vf_data[vf].pf_qos);
	else
		igb_clear_vf_vfta(adapter, vf);
4946 4947 4948 4949 4950

	/* reset multicast table array for vf */
	adapter->vf_data[vf].num_vf_mc_hashes = 0;

	/* Flush and reset the mta with the new values */
4951
	igb_set_rx_mode(adapter->netdev);
4952 4953
}

4954 4955 4956 4957 4958
static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
{
	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;

	/* generate a new mac address as we were hotplug removed/added */
4959 4960
	if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
		random_ether_addr(vf_mac);
4961 4962 4963 4964 4965 4966

	/* process remaining reset events */
	igb_vf_reset(adapter, vf);
}

static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
4967 4968 4969
{
	struct e1000_hw *hw = &adapter->hw;
	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
4970
	int rar_entry = hw->mac.rar_entry_count - (vf + 1);
4971 4972 4973 4974
	u32 reg, msgbuf[3];
	u8 *addr = (u8 *)(&msgbuf[1]);

	/* process all the same items cleared in a function level reset */
4975
	igb_vf_reset(adapter, vf);
4976 4977

	/* set vf mac address */
4978
	igb_rar_set_qsel(adapter, vf_mac, rar_entry, vf);
4979 4980 4981 4982 4983 4984 4985

	/* enable transmit and receive for vf */
	reg = rd32(E1000_VFTE);
	wr32(E1000_VFTE, reg | (1 << vf));
	reg = rd32(E1000_VFRE);
	wr32(E1000_VFRE, reg | (1 << vf));

4986
	adapter->vf_data[vf].flags = IGB_VF_FLAG_CTS;
4987 4988 4989 4990 4991 4992 4993 4994 4995

	/* reply to reset with ack and vf mac address */
	msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
	memcpy(addr, vf_mac, 6);
	igb_write_mbx(hw, msgbuf, 3, vf);
}

static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
{
G
Greg Rose 已提交
4996 4997 4998 4999
	/*
	 * The VF MAC Address is stored in a packed array of bytes
	 * starting at the second 32 bit word of the msg array
	 */
5000 5001
	unsigned char *addr = (char *)&msg[1];
	int err = -1;
5002

5003 5004
	if (is_valid_ether_addr(addr))
		err = igb_set_vf_mac(adapter, vf, addr);
5005

5006
	return err;
5007 5008 5009 5010 5011
}

static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
{
	struct e1000_hw *hw = &adapter->hw;
5012
	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5013 5014 5015
	u32 msg = E1000_VT_MSGTYPE_NACK;

	/* if device isn't clear to send it shouldn't be reading either */
5016 5017
	if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
	    time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
5018
		igb_write_mbx(hw, &msg, 1, vf);
5019
		vf_data->last_nack = jiffies;
5020 5021 5022
	}
}

5023
static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
5024
{
5025 5026
	struct pci_dev *pdev = adapter->pdev;
	u32 msgbuf[E1000_VFMAILBOX_SIZE];
5027
	struct e1000_hw *hw = &adapter->hw;
5028
	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5029 5030
	s32 retval;

5031
	retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf);
5032

5033 5034
	if (retval) {
		/* if receive failed revoke VF CTS stats and restart init */
5035
		dev_err(&pdev->dev, "Error receiving message from VF\n");
5036 5037 5038 5039 5040
		vf_data->flags &= ~IGB_VF_FLAG_CTS;
		if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
			return;
		goto out;
	}
5041 5042 5043

	/* this is a message we already processed, do nothing */
	if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
5044
		return;
5045 5046 5047 5048 5049 5050 5051 5052

	/*
	 * until the vf completes a reset it should not be
	 * allowed to start any configuration.
	 */

	if (msgbuf[0] == E1000_VF_RESET) {
		igb_vf_reset_msg(adapter, vf);
5053
		return;
5054 5055
	}

5056
	if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
5057 5058 5059 5060
		if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
			return;
		retval = -1;
		goto out;
5061 5062 5063 5064 5065 5066
	}

	switch ((msgbuf[0] & 0xFFFF)) {
	case E1000_VF_SET_MAC_ADDR:
		retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
		break;
5067 5068 5069
	case E1000_VF_SET_PROMISC:
		retval = igb_set_vf_promisc(adapter, msgbuf, vf);
		break;
5070 5071 5072 5073 5074 5075 5076
	case E1000_VF_SET_MULTICAST:
		retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
		break;
	case E1000_VF_SET_LPE:
		retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
		break;
	case E1000_VF_SET_VLAN:
5077 5078 5079 5080
		if (adapter->vf_data[vf].pf_vlan)
			retval = -1;
		else
			retval = igb_set_vf_vlan(adapter, msgbuf, vf);
5081 5082
		break;
	default:
5083
		dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
5084 5085 5086 5087
		retval = -1;
		break;
	}

5088 5089
	msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
out:
5090 5091 5092 5093 5094 5095 5096
	/* notify the VF of the results of what it sent us */
	if (retval)
		msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
	else
		msgbuf[0] |= E1000_VT_MSGTYPE_ACK;

	igb_write_mbx(hw, msgbuf, 1, vf);
5097
}
5098

5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116
static void igb_msg_task(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 vf;

	for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
		/* process any reset requests */
		if (!igb_check_for_rst(hw, vf))
			igb_vf_reset_event(adapter, vf);

		/* process any messages pending */
		if (!igb_check_for_msg(hw, vf))
			igb_rcv_msg_from_vf(adapter, vf);

		/* process any acks */
		if (!igb_check_for_ack(hw, vf))
			igb_rcv_ack_from_vf(adapter, vf);
	}
5117 5118
}

5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145
/**
 *  igb_set_uta - Set unicast filter table address
 *  @adapter: board private structure
 *
 *  The unicast table address is a register array of 32-bit registers.
 *  The table is meant to be used in a way similar to how the MTA is used
 *  however due to certain limitations in the hardware it is necessary to
 *  set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscous
 *  enable bit to allow vlan tag stripping when promiscous mode is enabled
 **/
static void igb_set_uta(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	int i;

	/* The UTA table only exists on 82576 hardware and newer */
	if (hw->mac.type < e1000_82576)
		return;

	/* we only need to do this if VMDq is enabled */
	if (!adapter->vfs_allocated_count)
		return;

	for (i = 0; i < hw->mac.uta_reg_count; i++)
		array_wr32(E1000_UTA, i, ~0);
}

5146 5147 5148 5149 5150 5151 5152
/**
 * igb_intr_msi - Interrupt Handler
 * @irq: interrupt number
 * @data: pointer to a network interface device structure
 **/
static irqreturn_t igb_intr_msi(int irq, void *data)
{
5153 5154
	struct igb_adapter *adapter = data;
	struct igb_q_vector *q_vector = adapter->q_vector[0];
5155 5156 5157 5158
	struct e1000_hw *hw = &adapter->hw;
	/* read ICR disables interrupts using IAM */
	u32 icr = rd32(E1000_ICR);

5159
	igb_write_itr(q_vector);
5160

5161 5162 5163
	if (icr & E1000_ICR_DRSTA)
		schedule_work(&adapter->reset_task);

5164
	if (icr & E1000_ICR_DOUTSYNC) {
5165 5166 5167 5168
		/* HW is reporting DMA is out of sync */
		adapter->stats.doosync++;
	}

5169 5170 5171 5172 5173 5174
	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
		hw->mac.get_link_status = 1;
		if (!test_bit(__IGB_DOWN, &adapter->state))
			mod_timer(&adapter->watchdog_timer, jiffies + 1);
	}

5175
	napi_schedule(&q_vector->napi);
5176 5177 5178 5179 5180

	return IRQ_HANDLED;
}

/**
5181
 * igb_intr - Legacy Interrupt Handler
5182 5183 5184 5185 5186
 * @irq: interrupt number
 * @data: pointer to a network interface device structure
 **/
static irqreturn_t igb_intr(int irq, void *data)
{
5187 5188
	struct igb_adapter *adapter = data;
	struct igb_q_vector *q_vector = adapter->q_vector[0];
5189 5190 5191 5192 5193 5194 5195
	struct e1000_hw *hw = &adapter->hw;
	/* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
	 * need for the IMC write */
	u32 icr = rd32(E1000_ICR);
	if (!icr)
		return IRQ_NONE;  /* Not our interrupt */

5196
	igb_write_itr(q_vector);
5197 5198 5199 5200 5201 5202

	/* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
	 * not set, then the adapter didn't send an interrupt */
	if (!(icr & E1000_ICR_INT_ASSERTED))
		return IRQ_NONE;

5203 5204 5205
	if (icr & E1000_ICR_DRSTA)
		schedule_work(&adapter->reset_task);

5206
	if (icr & E1000_ICR_DOUTSYNC) {
5207 5208 5209 5210
		/* HW is reporting DMA is out of sync */
		adapter->stats.doosync++;
	}

5211 5212 5213 5214 5215 5216 5217
	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
		hw->mac.get_link_status = 1;
		/* guard against interrupt when we're going down */
		if (!test_bit(__IGB_DOWN, &adapter->state))
			mod_timer(&adapter->watchdog_timer, jiffies + 1);
	}

5218
	napi_schedule(&q_vector->napi);
5219 5220 5221 5222

	return IRQ_HANDLED;
}

5223
static inline void igb_ring_irq_enable(struct igb_q_vector *q_vector)
5224
{
5225
	struct igb_adapter *adapter = q_vector->adapter;
5226
	struct e1000_hw *hw = &adapter->hw;
5227

5228 5229
	if ((q_vector->rx_ring && (adapter->rx_itr_setting & 3)) ||
	    (!q_vector->rx_ring && (adapter->tx_itr_setting & 3))) {
5230
		if (!adapter->msix_entries)
5231
			igb_set_itr(adapter);
5232
		else
5233
			igb_update_ring_itr(q_vector);
5234 5235
	}

5236 5237
	if (!test_bit(__IGB_DOWN, &adapter->state)) {
		if (adapter->msix_entries)
5238
			wr32(E1000_EIMS, q_vector->eims_value);
5239 5240 5241
		else
			igb_irq_enable(adapter);
	}
5242 5243
}

5244 5245 5246 5247 5248 5249
/**
 * igb_poll - NAPI Rx polling callback
 * @napi: napi polling structure
 * @budget: count of how many packets we should handle
 **/
static int igb_poll(struct napi_struct *napi, int budget)
5250
{
5251 5252 5253 5254
	struct igb_q_vector *q_vector = container_of(napi,
	                                             struct igb_q_vector,
	                                             napi);
	int tx_clean_complete = 1, work_done = 0;
5255

5256
#ifdef CONFIG_IGB_DCA
5257 5258
	if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
		igb_update_dca(q_vector);
J
Jeb Cramer 已提交
5259
#endif
5260 5261
	if (q_vector->tx_ring)
		tx_clean_complete = igb_clean_tx_irq(q_vector);
5262

5263 5264 5265 5266 5267
	if (q_vector->rx_ring)
		igb_clean_rx_irq_adv(q_vector, &work_done, budget);

	if (!tx_clean_complete)
		work_done = budget;
5268

5269
	/* If not enough Rx work done, exit the polling mode */
5270
	if (work_done < budget) {
5271
		napi_complete(napi);
5272
		igb_ring_irq_enable(q_vector);
5273 5274
	}

5275
	return work_done;
5276
}
A
Al Viro 已提交
5277

5278
/**
5279
 * igb_systim_to_hwtstamp - convert system time value to hw timestamp
5280
 * @adapter: board private structure
5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292
 * @shhwtstamps: timestamp structure to update
 * @regval: unsigned 64bit system time value.
 *
 * We need to convert the system time value stored in the RX/TXSTMP registers
 * into a hwtstamp which can be used by the upper level timestamping functions
 */
static void igb_systim_to_hwtstamp(struct igb_adapter *adapter,
                                   struct skb_shared_hwtstamps *shhwtstamps,
                                   u64 regval)
{
	u64 ns;

5293 5294 5295 5296 5297 5298 5299
	/*
	 * The 82580 starts with 1ns at bit 0 in RX/TXSTMPL, shift this up to
	 * 24 to match clock shift we setup earlier.
	 */
	if (adapter->hw.mac.type == e1000_82580)
		regval <<= IGB_82580_TSYNC_SHIFT;

5300 5301 5302 5303 5304 5305 5306 5307 5308 5309
	ns = timecounter_cyc2time(&adapter->clock, regval);
	timecompare_update(&adapter->compare, ns);
	memset(shhwtstamps, 0, sizeof(struct skb_shared_hwtstamps));
	shhwtstamps->hwtstamp = ns_to_ktime(ns);
	shhwtstamps->syststamp = timecompare_transform(&adapter->compare, ns);
}

/**
 * igb_tx_hwtstamp - utility function which checks for TX time stamp
 * @q_vector: pointer to q_vector containing needed info
5310
 * @buffer: pointer to igb_buffer structure
5311 5312 5313 5314 5315
 *
 * If we were asked to do hardware stamping and such a time stamp is
 * available, then it must have been for this skb here because we only
 * allow only one such packet into the queue.
 */
5316
static void igb_tx_hwtstamp(struct igb_q_vector *q_vector, struct igb_buffer *buffer_info)
5317
{
5318
	struct igb_adapter *adapter = q_vector->adapter;
5319
	struct e1000_hw *hw = &adapter->hw;
5320 5321
	struct skb_shared_hwtstamps shhwtstamps;
	u64 regval;
5322

5323
	/* if skb does not support hw timestamp or TX stamp not valid exit */
5324
	if (likely(!(buffer_info->tx_flags & SKBTX_HW_TSTAMP)) ||
5325 5326 5327 5328 5329 5330 5331
	    !(rd32(E1000_TSYNCTXCTL) & E1000_TSYNCTXCTL_VALID))
		return;

	regval = rd32(E1000_TXSTMPL);
	regval |= (u64)rd32(E1000_TXSTMPH) << 32;

	igb_systim_to_hwtstamp(adapter, &shhwtstamps, regval);
5332
	skb_tstamp_tx(buffer_info->skb, &shhwtstamps);
5333 5334
}

5335 5336
/**
 * igb_clean_tx_irq - Reclaim resources after transmit completes
5337
 * @q_vector: pointer to q_vector containing needed info
5338 5339
 * returns true if ring is completely cleaned
 **/
5340
static bool igb_clean_tx_irq(struct igb_q_vector *q_vector)
5341
{
5342 5343
	struct igb_adapter *adapter = q_vector->adapter;
	struct igb_ring *tx_ring = q_vector->tx_ring;
5344
	struct net_device *netdev = tx_ring->netdev;
A
Alexander Duyck 已提交
5345
	struct e1000_hw *hw = &adapter->hw;
5346
	struct igb_buffer *buffer_info;
A
Alexander Duyck 已提交
5347
	union e1000_adv_tx_desc *tx_desc, *eop_desc;
5348
	unsigned int total_bytes = 0, total_packets = 0;
A
Alexander Duyck 已提交
5349 5350
	unsigned int i, eop, count = 0;
	bool cleaned = false;
5351 5352

	i = tx_ring->next_to_clean;
A
Alexander Duyck 已提交
5353 5354 5355 5356 5357
	eop = tx_ring->buffer_info[i].next_to_watch;
	eop_desc = E1000_TX_DESC_ADV(*tx_ring, eop);

	while ((eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)) &&
	       (count < tx_ring->count)) {
5358
		rmb();	/* read buffer_info after eop_desc status */
A
Alexander Duyck 已提交
5359 5360
		for (cleaned = false; !cleaned; count++) {
			tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
5361
			buffer_info = &tx_ring->buffer_info[i];
A
Alexander Duyck 已提交
5362
			cleaned = (i == eop);
5363

5364 5365
			if (buffer_info->skb) {
				total_bytes += buffer_info->bytecount;
5366
				/* gso_segs is currently only valid for tcp */
5367 5368
				total_packets += buffer_info->gso_segs;
				igb_tx_hwtstamp(q_vector, buffer_info);
5369 5370
			}

5371
			igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
A
Alexander Duyck 已提交
5372
			tx_desc->wb.status = 0;
5373 5374 5375 5376 5377

			i++;
			if (i == tx_ring->count)
				i = 0;
		}
A
Alexander Duyck 已提交
5378 5379 5380 5381
		eop = tx_ring->buffer_info[i].next_to_watch;
		eop_desc = E1000_TX_DESC_ADV(*tx_ring, eop);
	}

5382 5383
	tx_ring->next_to_clean = i;

5384
	if (unlikely(count &&
5385
		     netif_carrier_ok(netdev) &&
5386
		     igb_desc_unused(tx_ring) >= IGB_TX_QUEUE_WAKE)) {
5387 5388 5389 5390
		/* Make sure that anybody stopping the queue after this
		 * sees the new next_to_clean.
		 */
		smp_mb();
5391 5392 5393
		if (__netif_subqueue_stopped(netdev, tx_ring->queue_index) &&
		    !(test_bit(__IGB_DOWN, &adapter->state))) {
			netif_wake_subqueue(netdev, tx_ring->queue_index);
5394
			tx_ring->tx_stats.restart_queue++;
5395
		}
5396 5397 5398 5399 5400 5401 5402 5403
	}

	if (tx_ring->detect_tx_hung) {
		/* Detect a transmit hang in hardware, this serializes the
		 * check with the clearing of time_stamp and movement of i */
		tx_ring->detect_tx_hung = false;
		if (tx_ring->buffer_info[i].time_stamp &&
		    time_after(jiffies, tx_ring->buffer_info[i].time_stamp +
5404 5405
			       (adapter->tx_timeout_factor * HZ)) &&
		    !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
5406 5407

			/* detected Tx unit hang */
5408
			dev_err(tx_ring->dev,
5409
				"Detected Tx Unit Hang\n"
A
Alexander Duyck 已提交
5410
				"  Tx Queue             <%d>\n"
5411 5412 5413 5414 5415 5416
				"  TDH                  <%x>\n"
				"  TDT                  <%x>\n"
				"  next_to_use          <%x>\n"
				"  next_to_clean        <%x>\n"
				"buffer_info[next_to_clean]\n"
				"  time_stamp           <%lx>\n"
A
Alexander Duyck 已提交
5417
				"  next_to_watch        <%x>\n"
5418 5419
				"  jiffies              <%lx>\n"
				"  desc.status          <%x>\n",
A
Alexander Duyck 已提交
5420
				tx_ring->queue_index,
5421 5422
				readl(tx_ring->head),
				readl(tx_ring->tail),
5423 5424
				tx_ring->next_to_use,
				tx_ring->next_to_clean,
5425
				tx_ring->buffer_info[eop].time_stamp,
A
Alexander Duyck 已提交
5426
				eop,
5427
				jiffies,
A
Alexander Duyck 已提交
5428
				eop_desc->wb.status);
5429
			netif_stop_subqueue(netdev, tx_ring->queue_index);
5430 5431 5432 5433
		}
	}
	tx_ring->total_bytes += total_bytes;
	tx_ring->total_packets += total_packets;
5434 5435
	tx_ring->tx_stats.bytes += total_bytes;
	tx_ring->tx_stats.packets += total_packets;
A
Alexander Duyck 已提交
5436
	return (count < tx_ring->count);
5437 5438 5439 5440
}

/**
 * igb_receive_skb - helper function to handle rx indications
5441 5442 5443
 * @q_vector: structure containing interrupt and ring information
 * @skb: packet to send up
 * @vlan_tag: vlan tag for packet
5444
 **/
5445 5446 5447 5448 5449 5450
static void igb_receive_skb(struct igb_q_vector *q_vector,
                            struct sk_buff *skb,
                            u16 vlan_tag)
{
	struct igb_adapter *adapter = q_vector->adapter;

5451
	if (vlan_tag && adapter->vlgrp)
5452 5453
		vlan_gro_receive(&q_vector->napi, adapter->vlgrp,
		                 vlan_tag, skb);
5454
	else
5455
		napi_gro_receive(&q_vector->napi, skb);
5456 5457
}

5458
static inline void igb_rx_checksum_adv(struct igb_ring *ring,
5459 5460
				       u32 status_err, struct sk_buff *skb)
{
5461
	skb_checksum_none_assert(skb);
5462 5463

	/* Ignore Checksum bit is set or checksum is disabled through ethtool */
5464 5465
	if (!(ring->flags & IGB_RING_FLAG_RX_CSUM) ||
	     (status_err & E1000_RXD_STAT_IXSM))
5466
		return;
5467

5468 5469 5470
	/* TCP/UDP checksum error bit is set */
	if (status_err &
	    (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) {
5471 5472 5473 5474 5475
		/*
		 * work around errata with sctp packets where the TCPE aka
		 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
		 * packets, (aka let the stack check the crc32c)
		 */
5476 5477
		if ((skb->len == 60) &&
		    (ring->flags & IGB_RING_FLAG_RX_SCTP_CSUM))
5478
			ring->rx_stats.csum_err++;
5479

5480 5481 5482 5483 5484 5485 5486
		/* let the stack verify checksum errors */
		return;
	}
	/* It must be a TCP or UDP packet with a valid checksum */
	if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))
		skb->ip_summed = CHECKSUM_UNNECESSARY;

5487
	dev_dbg(ring->dev, "cksum success: bits %08X\n", status_err);
5488 5489
}

N
Nick Nunley 已提交
5490
static void igb_rx_hwtstamp(struct igb_q_vector *q_vector, u32 staterr,
5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504
                                   struct sk_buff *skb)
{
	struct igb_adapter *adapter = q_vector->adapter;
	struct e1000_hw *hw = &adapter->hw;
	u64 regval;

	/*
	 * If this bit is set, then the RX registers contain the time stamp. No
	 * other packet will be time stamped until we read these registers, so
	 * read the registers to make them available again. Because only one
	 * packet can be time stamped at a time, we know that the register
	 * values must belong to this one here and therefore we don't need to
	 * compare any of the additional attributes stored for it.
	 *
5505
	 * If nothing went wrong, then it should have a shared tx_flags that we
5506 5507
	 * can turn into a skb_shared_hwtstamps.
	 */
N
Nick Nunley 已提交
5508 5509 5510 5511 5512 5513 5514 5515
	if (staterr & E1000_RXDADV_STAT_TSIP) {
		u32 *stamp = (u32 *)skb->data;
		regval = le32_to_cpu(*(stamp + 2));
		regval |= (u64)le32_to_cpu(*(stamp + 3)) << 32;
		skb_pull(skb, IGB_TS_HDR_LEN);
	} else {
		if(!(rd32(E1000_TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
			return;
5516

N
Nick Nunley 已提交
5517 5518 5519
		regval = rd32(E1000_RXSTMPL);
		regval |= (u64)rd32(E1000_RXSTMPH) << 32;
	}
5520 5521 5522

	igb_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), regval);
}
5523
static inline u16 igb_get_hlen(struct igb_ring *rx_ring,
5524 5525 5526 5527 5528 5529 5530 5531
                               union e1000_adv_rx_desc *rx_desc)
{
	/* HW will not DMA in data larger than the given buffer, even if it
	 * parses the (NFS, of course) header to be larger.  In that case, it
	 * fills the header buffer and spills the rest into the page.
	 */
	u16 hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hdr_info) &
	           E1000_RXDADV_HDRBUFLEN_MASK) >> E1000_RXDADV_HDRBUFLEN_SHIFT;
5532 5533
	if (hlen > rx_ring->rx_buffer_len)
		hlen = rx_ring->rx_buffer_len;
5534 5535 5536
	return hlen;
}

5537 5538
static bool igb_clean_rx_irq_adv(struct igb_q_vector *q_vector,
                                 int *work_done, int budget)
5539
{
5540
	struct igb_ring *rx_ring = q_vector->rx_ring;
5541
	struct net_device *netdev = rx_ring->netdev;
5542
	struct device *dev = rx_ring->dev;
5543 5544 5545 5546 5547
	union e1000_adv_rx_desc *rx_desc , *next_rxd;
	struct igb_buffer *buffer_info , *next_buffer;
	struct sk_buff *skb;
	bool cleaned = false;
	int cleaned_count = 0;
5548
	int current_node = numa_node_id();
5549
	unsigned int total_bytes = 0, total_packets = 0;
5550
	unsigned int i;
5551 5552
	u32 staterr;
	u16 length;
5553
	u16 vlan_tag;
5554 5555

	i = rx_ring->next_to_clean;
5556
	buffer_info = &rx_ring->buffer_info[i];
5557 5558 5559 5560 5561 5562 5563
	rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
	staterr = le32_to_cpu(rx_desc->wb.upper.status_error);

	while (staterr & E1000_RXD_STAT_DD) {
		if (*work_done >= budget)
			break;
		(*work_done)++;
5564
		rmb(); /* read descriptor and rx_buffer_info after status DD */
5565

5566 5567 5568 5569 5570 5571 5572
		skb = buffer_info->skb;
		prefetch(skb->data - NET_IP_ALIGN);
		buffer_info->skb = NULL;

		i++;
		if (i == rx_ring->count)
			i = 0;
5573

5574 5575 5576
		next_rxd = E1000_RX_DESC_ADV(*rx_ring, i);
		prefetch(next_rxd);
		next_buffer = &rx_ring->buffer_info[i];
5577 5578 5579 5580 5581

		length = le16_to_cpu(rx_desc->wb.upper.length);
		cleaned = true;
		cleaned_count++;

5582
		if (buffer_info->dma) {
5583
			dma_unmap_single(dev, buffer_info->dma,
5584
					 rx_ring->rx_buffer_len,
5585
					 DMA_FROM_DEVICE);
J
Jesse Brandeburg 已提交
5586
			buffer_info->dma = 0;
5587
			if (rx_ring->rx_buffer_len >= IGB_RXBUFFER_1024) {
A
Alexander Duyck 已提交
5588 5589 5590
				skb_put(skb, length);
				goto send_up;
			}
5591
			skb_put(skb, igb_get_hlen(rx_ring, rx_desc));
5592 5593 5594
		}

		if (length) {
5595 5596
			dma_unmap_page(dev, buffer_info->page_dma,
				       PAGE_SIZE / 2, DMA_FROM_DEVICE);
5597
			buffer_info->page_dma = 0;
5598

K
Koki Sanagi 已提交
5599
			skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
5600 5601 5602 5603
						buffer_info->page,
						buffer_info->page_offset,
						length);

5604 5605
			if ((page_count(buffer_info->page) != 1) ||
			    (page_to_nid(buffer_info->page) != current_node))
5606 5607 5608
				buffer_info->page = NULL;
			else
				get_page(buffer_info->page);
5609 5610 5611

			skb->len += length;
			skb->data_len += length;
5612
			skb->truesize += length;
5613 5614
		}

5615
		if (!(staterr & E1000_RXD_STAT_EOP)) {
5616 5617 5618 5619
			buffer_info->skb = next_buffer->skb;
			buffer_info->dma = next_buffer->dma;
			next_buffer->skb = skb;
			next_buffer->dma = 0;
5620 5621
			goto next_desc;
		}
5622
send_up:
5623 5624 5625 5626 5627
		if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
			dev_kfree_skb_irq(skb);
			goto next_desc;
		}

N
Nick Nunley 已提交
5628 5629
		if (staterr & (E1000_RXDADV_STAT_TSIP | E1000_RXDADV_STAT_TS))
			igb_rx_hwtstamp(q_vector, staterr, skb);
5630 5631 5632
		total_bytes += skb->len;
		total_packets++;

5633
		igb_rx_checksum_adv(rx_ring, staterr, skb);
5634 5635

		skb->protocol = eth_type_trans(skb, netdev);
5636 5637 5638 5639
		skb_record_rx_queue(skb, rx_ring->queue_index);

		vlan_tag = ((staterr & E1000_RXD_STAT_VP) ?
		            le16_to_cpu(rx_desc->wb.upper.vlan) : 0);
5640

5641
		igb_receive_skb(q_vector, skb, vlan_tag);
5642 5643 5644 5645 5646 5647

next_desc:
		rx_desc->wb.upper.status_error = 0;

		/* return some buffers to hardware, one at a time is too slow */
		if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
5648
			igb_alloc_rx_buffers_adv(rx_ring, cleaned_count);
5649 5650 5651 5652 5653 5654 5655 5656
			cleaned_count = 0;
		}

		/* use prefetched values */
		rx_desc = next_rxd;
		buffer_info = next_buffer;
		staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
	}
5657

5658
	rx_ring->next_to_clean = i;
5659
	cleaned_count = igb_desc_unused(rx_ring);
5660 5661

	if (cleaned_count)
5662
		igb_alloc_rx_buffers_adv(rx_ring, cleaned_count);
5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674

	rx_ring->total_packets += total_packets;
	rx_ring->total_bytes += total_bytes;
	rx_ring->rx_stats.packets += total_packets;
	rx_ring->rx_stats.bytes += total_bytes;
	return cleaned;
}

/**
 * igb_alloc_rx_buffers_adv - Replace used receive buffers; packet split
 * @adapter: address of board private structure
 **/
5675
void igb_alloc_rx_buffers_adv(struct igb_ring *rx_ring, int cleaned_count)
5676
{
5677
	struct net_device *netdev = rx_ring->netdev;
5678 5679 5680 5681
	union e1000_adv_rx_desc *rx_desc;
	struct igb_buffer *buffer_info;
	struct sk_buff *skb;
	unsigned int i;
5682
	int bufsz;
5683 5684 5685 5686

	i = rx_ring->next_to_use;
	buffer_info = &rx_ring->buffer_info[i];

5687
	bufsz = rx_ring->rx_buffer_len;
5688

5689 5690 5691
	while (cleaned_count--) {
		rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);

A
Alexander Duyck 已提交
5692
		if ((bufsz < IGB_RXBUFFER_1024) && !buffer_info->page_dma) {
5693
			if (!buffer_info->page) {
5694
				buffer_info->page = netdev_alloc_page(netdev);
5695
				if (!buffer_info->page) {
5696
					rx_ring->rx_stats.alloc_failed++;
5697 5698 5699 5700 5701
					goto no_buffers;
				}
				buffer_info->page_offset = 0;
			} else {
				buffer_info->page_offset ^= PAGE_SIZE / 2;
5702 5703
			}
			buffer_info->page_dma =
5704
				dma_map_page(rx_ring->dev, buffer_info->page,
5705 5706
					     buffer_info->page_offset,
					     PAGE_SIZE / 2,
5707 5708 5709
					     DMA_FROM_DEVICE);
			if (dma_mapping_error(rx_ring->dev,
					      buffer_info->page_dma)) {
5710 5711 5712 5713
				buffer_info->page_dma = 0;
				rx_ring->rx_stats.alloc_failed++;
				goto no_buffers;
			}
5714 5715
		}

5716 5717
		skb = buffer_info->skb;
		if (!skb) {
5718
			skb = netdev_alloc_skb_ip_align(netdev, bufsz);
5719
			if (!skb) {
5720
				rx_ring->rx_stats.alloc_failed++;
5721 5722 5723 5724
				goto no_buffers;
			}

			buffer_info->skb = skb;
5725 5726
		}
		if (!buffer_info->dma) {
5727
			buffer_info->dma = dma_map_single(rx_ring->dev,
5728
			                                  skb->data,
5729
							  bufsz,
5730 5731 5732
							  DMA_FROM_DEVICE);
			if (dma_mapping_error(rx_ring->dev,
					      buffer_info->dma)) {
5733 5734 5735 5736
				buffer_info->dma = 0;
				rx_ring->rx_stats.alloc_failed++;
				goto no_buffers;
			}
5737 5738 5739
		}
		/* Refresh the desc even if buffer_addrs didn't change because
		 * each write-back erases this info. */
A
Alexander Duyck 已提交
5740
		if (bufsz < IGB_RXBUFFER_1024) {
5741 5742 5743 5744
			rx_desc->read.pkt_addr =
			     cpu_to_le64(buffer_info->page_dma);
			rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma);
		} else {
5745
			rx_desc->read.pkt_addr = cpu_to_le64(buffer_info->dma);
5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767
			rx_desc->read.hdr_addr = 0;
		}

		i++;
		if (i == rx_ring->count)
			i = 0;
		buffer_info = &rx_ring->buffer_info[i];
	}

no_buffers:
	if (rx_ring->next_to_use != i) {
		rx_ring->next_to_use = i;
		if (i == 0)
			i = (rx_ring->count - 1);
		else
			i--;

		/* Force memory writes to complete before letting h/w
		 * know there are new descriptors to fetch.  (Only
		 * applicable for weak-ordered memory model archs,
		 * such as IA-64). */
		wmb();
5768
		writel(i, rx_ring->tail);
5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790
	}
}

/**
 * igb_mii_ioctl -
 * @netdev:
 * @ifreq:
 * @cmd:
 **/
static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct mii_ioctl_data *data = if_mii(ifr);

	if (adapter->hw.phy.media_type != e1000_media_type_copper)
		return -EOPNOTSUPP;

	switch (cmd) {
	case SIOCGMIIPHY:
		data->phy_id = adapter->hw.phy.addr;
		break;
	case SIOCGMIIREG:
5791 5792
		if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
		                     &data->val_out))
5793 5794 5795 5796 5797 5798 5799 5800 5801
			return -EIO;
		break;
	case SIOCSMIIREG:
	default:
		return -EOPNOTSUPP;
	}
	return 0;
}

5802 5803 5804 5805 5806 5807
/**
 * igb_hwtstamp_ioctl - control hardware time stamping
 * @netdev:
 * @ifreq:
 * @cmd:
 *
5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819
 * Outgoing time stamping can be enabled and disabled. Play nice and
 * disable it when requested, although it shouldn't case any overhead
 * when no packet needs it. At most one packet in the queue may be
 * marked for time stamping, otherwise it would be impossible to tell
 * for sure to which packet the hardware time stamp belongs.
 *
 * Incoming time stamping has to be configured via the hardware
 * filters. Not all combinations are supported, in particular event
 * type has to be specified. Matching the kind of event packet is
 * not supported, with the exception of "all V2 events regardless of
 * level 2 or 4".
 *
5820 5821 5822 5823
 **/
static int igb_hwtstamp_ioctl(struct net_device *netdev,
			      struct ifreq *ifr, int cmd)
{
5824 5825
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
5826
	struct hwtstamp_config config;
5827 5828
	u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
	u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
5829
	u32 tsync_rx_cfg = 0;
5830 5831
	bool is_l4 = false;
	bool is_l2 = false;
5832
	u32 regval;
5833 5834 5835 5836 5837 5838 5839 5840

	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
		return -EFAULT;

	/* reserved for future extensions */
	if (config.flags)
		return -EINVAL;

5841 5842
	switch (config.tx_type) {
	case HWTSTAMP_TX_OFF:
5843
		tsync_tx_ctl = 0;
5844 5845 5846 5847 5848 5849 5850 5851
	case HWTSTAMP_TX_ON:
		break;
	default:
		return -ERANGE;
	}

	switch (config.rx_filter) {
	case HWTSTAMP_FILTER_NONE:
5852
		tsync_rx_ctl = 0;
5853 5854 5855 5856 5857 5858 5859 5860 5861 5862
		break;
	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
	case HWTSTAMP_FILTER_ALL:
		/*
		 * register TSYNCRXCFG must be set, therefore it is not
		 * possible to time stamp both Sync and Delay_Req messages
		 * => fall back to time stamping all packets
		 */
5863
		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
5864 5865 5866
		config.rx_filter = HWTSTAMP_FILTER_ALL;
		break;
	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
5867
		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
5868
		tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE;
5869
		is_l4 = true;
5870 5871
		break;
	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
5872
		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
5873
		tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE;
5874
		is_l4 = true;
5875 5876 5877
		break;
	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
5878
		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
5879
		tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V2_SYNC_MESSAGE;
5880 5881
		is_l2 = true;
		is_l4 = true;
5882 5883 5884 5885
		config.rx_filter = HWTSTAMP_FILTER_SOME;
		break;
	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
5886
		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
5887
		tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V2_DELAY_REQ_MESSAGE;
5888 5889
		is_l2 = true;
		is_l4 = true;
5890 5891 5892 5893 5894
		config.rx_filter = HWTSTAMP_FILTER_SOME;
		break;
	case HWTSTAMP_FILTER_PTP_V2_EVENT:
	case HWTSTAMP_FILTER_PTP_V2_SYNC:
	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
5895
		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
5896
		config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
5897
		is_l2 = true;
5898 5899 5900 5901 5902
		break;
	default:
		return -ERANGE;
	}

5903 5904 5905 5906 5907 5908
	if (hw->mac.type == e1000_82575) {
		if (tsync_rx_ctl | tsync_tx_ctl)
			return -EINVAL;
		return 0;
	}

N
Nick Nunley 已提交
5909 5910 5911 5912 5913 5914 5915 5916 5917 5918
	/*
	 * Per-packet timestamping only works if all packets are
	 * timestamped, so enable timestamping in all packets as
	 * long as one rx filter was configured.
	 */
	if ((hw->mac.type == e1000_82580) && tsync_rx_ctl) {
		tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
	}

5919 5920
	/* enable/disable TX */
	regval = rd32(E1000_TSYNCTXCTL);
5921 5922
	regval &= ~E1000_TSYNCTXCTL_ENABLED;
	regval |= tsync_tx_ctl;
5923 5924
	wr32(E1000_TSYNCTXCTL, regval);

5925
	/* enable/disable RX */
5926
	regval = rd32(E1000_TSYNCRXCTL);
5927 5928
	regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
	regval |= tsync_rx_ctl;
5929 5930
	wr32(E1000_TSYNCRXCTL, regval);

5931 5932
	/* define which PTP packets are time stamped */
	wr32(E1000_TSYNCRXCFG, tsync_rx_cfg);
5933

5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963
	/* define ethertype filter for timestamped packets */
	if (is_l2)
		wr32(E1000_ETQF(3),
		                (E1000_ETQF_FILTER_ENABLE | /* enable filter */
		                 E1000_ETQF_1588 | /* enable timestamping */
		                 ETH_P_1588));     /* 1588 eth protocol type */
	else
		wr32(E1000_ETQF(3), 0);

#define PTP_PORT 319
	/* L4 Queue Filter[3]: filter by destination port and protocol */
	if (is_l4) {
		u32 ftqf = (IPPROTO_UDP /* UDP */
			| E1000_FTQF_VF_BP /* VF not compared */
			| E1000_FTQF_1588_TIME_STAMP /* Enable Timestamping */
			| E1000_FTQF_MASK); /* mask all inputs */
		ftqf &= ~E1000_FTQF_MASK_PROTO_BP; /* enable protocol check */

		wr32(E1000_IMIR(3), htons(PTP_PORT));
		wr32(E1000_IMIREXT(3),
		     (E1000_IMIREXT_SIZE_BP | E1000_IMIREXT_CTRL_BP));
		if (hw->mac.type == e1000_82576) {
			/* enable source port check */
			wr32(E1000_SPQF(3), htons(PTP_PORT));
			ftqf &= ~E1000_FTQF_MASK_SOURCE_PORT_BP;
		}
		wr32(E1000_FTQF(3), ftqf);
	} else {
		wr32(E1000_FTQF(3), E1000_FTQF_MASK);
	}
5964 5965 5966 5967 5968 5969 5970
	wrfl();

	adapter->hwtstamp_config = config;

	/* clear TX/RX time stamp registers, just to be sure */
	regval = rd32(E1000_TXSTMPH);
	regval = rd32(E1000_RXSTMPH);
5971

5972 5973
	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
		-EFAULT : 0;
5974 5975
}

5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988
/**
 * igb_ioctl -
 * @netdev:
 * @ifreq:
 * @cmd:
 **/
static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
{
	switch (cmd) {
	case SIOCGMIIPHY:
	case SIOCGMIIREG:
	case SIOCSMIIREG:
		return igb_mii_ioctl(netdev, ifr, cmd);
5989 5990
	case SIOCSHWTSTAMP:
		return igb_hwtstamp_ioctl(netdev, ifr, cmd);
5991 5992 5993 5994 5995
	default:
		return -EOPNOTSUPP;
	}
}

5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023
s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
{
	struct igb_adapter *adapter = hw->back;
	u16 cap_offset;

	cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
	if (!cap_offset)
		return -E1000_ERR_CONFIG;

	pci_read_config_word(adapter->pdev, cap_offset + reg, value);

	return 0;
}

s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
{
	struct igb_adapter *adapter = hw->back;
	u16 cap_offset;

	cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
	if (!cap_offset)
		return -E1000_ERR_CONFIG;

	pci_write_config_word(adapter->pdev, cap_offset + reg, *value);

	return 0;
}

6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039
static void igb_vlan_rx_register(struct net_device *netdev,
				 struct vlan_group *grp)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 ctrl, rctl;

	igb_irq_disable(adapter);
	adapter->vlgrp = grp;

	if (grp) {
		/* enable VLAN tag insert/strip */
		ctrl = rd32(E1000_CTRL);
		ctrl |= E1000_CTRL_VME;
		wr32(E1000_CTRL, ctrl);

6040
		/* Disable CFI check */
6041 6042 6043 6044 6045 6046 6047 6048 6049 6050
		rctl = rd32(E1000_RCTL);
		rctl &= ~E1000_RCTL_CFIEN;
		wr32(E1000_RCTL, rctl);
	} else {
		/* disable VLAN tag insert/strip */
		ctrl = rd32(E1000_CTRL);
		ctrl &= ~E1000_CTRL_VME;
		wr32(E1000_CTRL, ctrl);
	}

6051 6052
	igb_rlpml_set(adapter);

6053 6054 6055 6056 6057 6058 6059 6060
	if (!test_bit(__IGB_DOWN, &adapter->state))
		igb_irq_enable(adapter);
}

static void igb_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
6061
	int pf_id = adapter->vfs_allocated_count;
6062

6063 6064
	/* attempt to add filter to vlvf array */
	igb_vlvf_set(adapter, vid, true, pf_id);
6065

6066 6067
	/* add the filter since PF can receive vlans w/o entry in vlvf */
	igb_vfta_set(hw, vid, true);
6068 6069 6070 6071 6072 6073
}

static void igb_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
6074
	int pf_id = adapter->vfs_allocated_count;
6075
	s32 err;
6076 6077 6078 6079 6080 6081 6082

	igb_irq_disable(adapter);
	vlan_group_set_device(adapter->vlgrp, vid, NULL);

	if (!test_bit(__IGB_DOWN, &adapter->state))
		igb_irq_enable(adapter);

6083 6084
	/* remove vlan from VLVF table array */
	err = igb_vlvf_set(adapter, vid, false, pf_id);
6085

6086 6087
	/* if vid was not present in VLVF just remove it from table */
	if (err)
6088
		igb_vfta_set(hw, vid, false);
6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106
}

static void igb_restore_vlan(struct igb_adapter *adapter)
{
	igb_vlan_rx_register(adapter->netdev, adapter->vlgrp);

	if (adapter->vlgrp) {
		u16 vid;
		for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
			if (!vlan_group_get_device(adapter->vlgrp, vid))
				continue;
			igb_vlan_rx_add_vid(adapter->netdev, vid);
		}
	}
}

int igb_set_spd_dplx(struct igb_adapter *adapter, u16 spddplx)
{
6107
	struct pci_dev *pdev = adapter->pdev;
6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130
	struct e1000_mac_info *mac = &adapter->hw.mac;

	mac->autoneg = 0;

	switch (spddplx) {
	case SPEED_10 + DUPLEX_HALF:
		mac->forced_speed_duplex = ADVERTISE_10_HALF;
		break;
	case SPEED_10 + DUPLEX_FULL:
		mac->forced_speed_duplex = ADVERTISE_10_FULL;
		break;
	case SPEED_100 + DUPLEX_HALF:
		mac->forced_speed_duplex = ADVERTISE_100_HALF;
		break;
	case SPEED_100 + DUPLEX_FULL:
		mac->forced_speed_duplex = ADVERTISE_100_FULL;
		break;
	case SPEED_1000 + DUPLEX_FULL:
		mac->autoneg = 1;
		adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
		break;
	case SPEED_1000 + DUPLEX_HALF: /* not supported */
	default:
6131
		dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
6132 6133 6134 6135 6136
		return -EINVAL;
	}
	return 0;
}

6137
static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake)
6138 6139 6140 6141
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
A
Alexander Duyck 已提交
6142
	u32 ctrl, rctl, status;
6143 6144 6145 6146 6147 6148 6149
	u32 wufc = adapter->wol;
#ifdef CONFIG_PM
	int retval = 0;
#endif

	netif_device_detach(netdev);

A
Alexander Duyck 已提交
6150 6151 6152
	if (netif_running(netdev))
		igb_close(netdev);

6153
	igb_clear_interrupt_scheme(adapter);
6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166

#ifdef CONFIG_PM
	retval = pci_save_state(pdev);
	if (retval)
		return retval;
#endif

	status = rd32(E1000_STATUS);
	if (status & E1000_STATUS_LU)
		wufc &= ~E1000_WUFC_LNKC;

	if (wufc) {
		igb_setup_rctl(adapter);
6167
		igb_set_rx_mode(netdev);
6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184

		/* turn on all-multi mode if wake on multicast is enabled */
		if (wufc & E1000_WUFC_MC) {
			rctl = rd32(E1000_RCTL);
			rctl |= E1000_RCTL_MPE;
			wr32(E1000_RCTL, rctl);
		}

		ctrl = rd32(E1000_CTRL);
		/* advertise wake from D3Cold */
		#define E1000_CTRL_ADVD3WUC 0x00100000
		/* phy power management enable */
		#define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
		ctrl |= E1000_CTRL_ADVD3WUC;
		wr32(E1000_CTRL, ctrl);

		/* Allow time for pending master requests to run */
6185
		igb_disable_pcie_master(hw);
6186 6187 6188 6189 6190 6191 6192 6193

		wr32(E1000_WUC, E1000_WUC_PME_EN);
		wr32(E1000_WUFC, wufc);
	} else {
		wr32(E1000_WUC, 0);
		wr32(E1000_WUFC, 0);
	}

6194 6195
	*enable_wake = wufc || adapter->en_mng_pt;
	if (!*enable_wake)
6196 6197 6198
		igb_power_down_link(adapter);
	else
		igb_power_up_link(adapter);
6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209

	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
	 * would have already happened in close and is redundant. */
	igb_release_hw_control(adapter);

	pci_disable_device(pdev);

	return 0;
}

#ifdef CONFIG_PM
6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228
static int igb_suspend(struct pci_dev *pdev, pm_message_t state)
{
	int retval;
	bool wake;

	retval = __igb_shutdown(pdev, &wake);
	if (retval)
		return retval;

	if (wake) {
		pci_prepare_to_sleep(pdev);
	} else {
		pci_wake_from_d3(pdev, false);
		pci_set_power_state(pdev, PCI_D3hot);
	}

	return 0;
}

6229 6230 6231 6232 6233 6234 6235 6236 6237
static int igb_resume(struct pci_dev *pdev)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 err;

	pci_set_power_state(pdev, PCI_D0);
	pci_restore_state(pdev);
6238
	pci_save_state(pdev);
T
Taku Izumi 已提交
6239

6240
	err = pci_enable_device_mem(pdev);
6241 6242 6243 6244 6245 6246 6247 6248 6249 6250
	if (err) {
		dev_err(&pdev->dev,
			"igb: Cannot enable PCI device from suspend\n");
		return err;
	}
	pci_set_master(pdev);

	pci_enable_wake(pdev, PCI_D3hot, 0);
	pci_enable_wake(pdev, PCI_D3cold, 0);

6251
	if (igb_init_interrupt_scheme(adapter)) {
A
Alexander Duyck 已提交
6252 6253
		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
		return -ENOMEM;
6254 6255 6256
	}

	igb_reset(adapter);
6257 6258 6259 6260 6261

	/* let the f/w know that the h/w is now under the control of the
	 * driver. */
	igb_get_hw_control(adapter);

6262 6263
	wr32(E1000_WUS, ~0);

A
Alexander Duyck 已提交
6264 6265 6266 6267 6268
	if (netif_running(netdev)) {
		err = igb_open(netdev);
		if (err)
			return err;
	}
6269 6270 6271 6272 6273 6274 6275 6276 6277

	netif_device_attach(netdev);

	return 0;
}
#endif

static void igb_shutdown(struct pci_dev *pdev)
{
6278 6279 6280 6281 6282 6283 6284 6285
	bool wake;

	__igb_shutdown(pdev, &wake);

	if (system_state == SYSTEM_POWER_OFF) {
		pci_wake_from_d3(pdev, wake);
		pci_set_power_state(pdev, PCI_D3hot);
	}
6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296
}

#ifdef CONFIG_NET_POLL_CONTROLLER
/*
 * Polling 'interrupt' - used by things like netconsole to send skbs
 * without having to re-enable interrupts. It's not called while
 * the interrupt routine is executing.
 */
static void igb_netpoll(struct net_device *netdev)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
6297
	struct e1000_hw *hw = &adapter->hw;
6298 6299
	int i;

6300
	if (!adapter->msix_entries) {
6301
		struct igb_q_vector *q_vector = adapter->q_vector[0];
6302
		igb_irq_disable(adapter);
6303
		napi_schedule(&q_vector->napi);
6304 6305
		return;
	}
6306

6307 6308 6309 6310
	for (i = 0; i < adapter->num_q_vectors; i++) {
		struct igb_q_vector *q_vector = adapter->q_vector[i];
		wr32(E1000_EIMC, q_vector->eims_value);
		napi_schedule(&q_vector->napi);
6311
	}
6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330
}
#endif /* CONFIG_NET_POLL_CONTROLLER */

/**
 * igb_io_error_detected - called when PCI error is detected
 * @pdev: Pointer to PCI device
 * @state: The current pci connection state
 *
 * This function is called after a PCI bus error affecting
 * this device has been detected.
 */
static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
					      pci_channel_state_t state)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);

	netif_device_detach(netdev);

6331 6332 6333
	if (state == pci_channel_io_perm_failure)
		return PCI_ERS_RESULT_DISCONNECT;

6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353
	if (netif_running(netdev))
		igb_down(adapter);
	pci_disable_device(pdev);

	/* Request a slot slot reset. */
	return PCI_ERS_RESULT_NEED_RESET;
}

/**
 * igb_io_slot_reset - called after the pci bus has been reset.
 * @pdev: Pointer to PCI device
 *
 * Restart the card from scratch, as if from a cold-boot. Implementation
 * resembles the first-half of the igb_resume routine.
 */
static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
6354
	pci_ers_result_t result;
T
Taku Izumi 已提交
6355
	int err;
6356

6357
	if (pci_enable_device_mem(pdev)) {
6358 6359
		dev_err(&pdev->dev,
			"Cannot re-enable PCI device after reset.\n");
6360 6361 6362 6363
		result = PCI_ERS_RESULT_DISCONNECT;
	} else {
		pci_set_master(pdev);
		pci_restore_state(pdev);
6364
		pci_save_state(pdev);
6365

6366 6367
		pci_enable_wake(pdev, PCI_D3hot, 0);
		pci_enable_wake(pdev, PCI_D3cold, 0);
6368

6369 6370 6371 6372
		igb_reset(adapter);
		wr32(E1000_WUS, ~0);
		result = PCI_ERS_RESULT_RECOVERED;
	}
6373

6374 6375 6376 6377 6378 6379
	err = pci_cleanup_aer_uncorrect_error_status(pdev);
	if (err) {
		dev_err(&pdev->dev, "pci_cleanup_aer_uncorrect_error_status "
		        "failed 0x%0x\n", err);
		/* non-fatal, continue */
	}
6380 6381

	return result;
6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410
}

/**
 * igb_io_resume - called when traffic can start flowing again.
 * @pdev: Pointer to PCI device
 *
 * This callback is called when the error recovery driver tells us that
 * its OK to resume normal operation. Implementation resembles the
 * second-half of the igb_resume routine.
 */
static void igb_io_resume(struct pci_dev *pdev)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);

	if (netif_running(netdev)) {
		if (igb_up(adapter)) {
			dev_err(&pdev->dev, "igb_up failed after reset\n");
			return;
		}
	}

	netif_device_attach(netdev);

	/* let the f/w know that the h/w is now under the control of the
	 * driver. */
	igb_get_hw_control(adapter);
}

6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437
static void igb_rar_set_qsel(struct igb_adapter *adapter, u8 *addr, u32 index,
                             u8 qsel)
{
	u32 rar_low, rar_high;
	struct e1000_hw *hw = &adapter->hw;

	/* HW expects these in little endian so we reverse the byte order
	 * from network order (big endian) to little endian
	 */
	rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
	          ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
	rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));

	/* Indicate to hardware the Address is Valid. */
	rar_high |= E1000_RAH_AV;

	if (hw->mac.type == e1000_82575)
		rar_high |= E1000_RAH_POOL_1 * qsel;
	else
		rar_high |= E1000_RAH_POOL_1 << qsel;

	wr32(E1000_RAL(index), rar_low);
	wrfl();
	wr32(E1000_RAH(index), rar_high);
	wrfl();
}

6438 6439 6440 6441
static int igb_set_vf_mac(struct igb_adapter *adapter,
                          int vf, unsigned char *mac_addr)
{
	struct e1000_hw *hw = &adapter->hw;
6442 6443 6444
	/* VF MAC addresses start at end of receive addresses and moves
	 * torwards the first, as a result a collision should not be possible */
	int rar_entry = hw->mac.rar_entry_count - (vf + 1);
6445

6446
	memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN);
6447

6448
	igb_rar_set_qsel(adapter, mac_addr, rar_entry, vf);
6449 6450 6451 6452

	return 0;
}

6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489
static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	if (!is_valid_ether_addr(mac) || (vf >= adapter->vfs_allocated_count))
		return -EINVAL;
	adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
	dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n", mac, vf);
	dev_info(&adapter->pdev->dev, "Reload the VF driver to make this"
				      " change effective.");
	if (test_bit(__IGB_DOWN, &adapter->state)) {
		dev_warn(&adapter->pdev->dev, "The VF MAC address has been set,"
			 " but the PF device is not up.\n");
		dev_warn(&adapter->pdev->dev, "Bring the PF device up before"
			 " attempting to use the VF device.\n");
	}
	return igb_set_vf_mac(adapter, vf, mac);
}

static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate)
{
	return -EOPNOTSUPP;
}

static int igb_ndo_get_vf_config(struct net_device *netdev,
				 int vf, struct ifla_vf_info *ivi)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	if (vf >= adapter->vfs_allocated_count)
		return -EINVAL;
	ivi->vf = vf;
	memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
	ivi->tx_rate = 0;
	ivi->vlan = adapter->vf_data[vf].pf_vlan;
	ivi->qos = adapter->vf_data[vf].pf_qos;
	return 0;
}

6490 6491 6492
static void igb_vmm_control(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
6493
	u32 reg;
6494

6495 6496 6497 6498
	switch (hw->mac.type) {
	case e1000_82575:
	default:
		/* replication is not supported for 82575 */
6499
		return;
6500 6501 6502 6503 6504 6505 6506 6507 6508 6509
	case e1000_82576:
		/* notify HW that the MAC is adding vlan tags */
		reg = rd32(E1000_DTXCTL);
		reg |= E1000_DTXCTL_VLAN_ADDED;
		wr32(E1000_DTXCTL, reg);
	case e1000_82580:
		/* enable replication vlan tag stripping */
		reg = rd32(E1000_RPLOLR);
		reg |= E1000_RPLOLR_STRVLAN;
		wr32(E1000_RPLOLR, reg);
6510 6511
	case e1000_i350:
		/* none of the above registers are supported by i350 */
6512 6513
		break;
	}
6514

6515 6516 6517 6518 6519 6520 6521
	if (adapter->vfs_allocated_count) {
		igb_vmdq_set_loopback_pf(hw, true);
		igb_vmdq_set_replication_pf(hw, true);
	} else {
		igb_vmdq_set_loopback_pf(hw, false);
		igb_vmdq_set_replication_pf(hw, false);
	}
6522 6523
}

6524
/* igb_main.c */