igb_main.c 158.4 KB
Newer Older
1 2 3
/*******************************************************************************

  Intel(R) Gigabit Ethernet Linux driver
4
  Copyright(c) 2007-2009 Intel Corporation.
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

  This program is free software; you can redistribute it and/or modify it
  under the terms and conditions of the GNU General Public License,
  version 2, as published by the Free Software Foundation.

  This program is distributed in the hope it will be useful, but WITHOUT
  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  more details.

  You should have received a copy of the GNU General Public License along with
  this program; if not, write to the Free Software Foundation, Inc.,
  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.

  The full GNU General Public License is included in this distribution in
  the file called "COPYING".

  Contact Information:
  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497

*******************************************************************************/

#include <linux/module.h>
#include <linux/types.h>
#include <linux/init.h>
#include <linux/vmalloc.h>
#include <linux/pagemap.h>
#include <linux/netdevice.h>
#include <linux/ipv6.h>
#include <net/checksum.h>
#include <net/ip6_checksum.h>
37
#include <linux/net_tstamp.h>
38 39 40 41
#include <linux/mii.h>
#include <linux/ethtool.h>
#include <linux/if_vlan.h>
#include <linux/pci.h>
42
#include <linux/pci-aspm.h>
43 44 45
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/if_ether.h>
46
#include <linux/aer.h>
47
#ifdef CONFIG_IGB_DCA
J
Jeb Cramer 已提交
48 49
#include <linux/dca.h>
#endif
50 51
#include "igb.h"

52
#define DRV_VERSION "1.3.16-k2"
53 54 55 56
char igb_driver_name[] = "igb";
char igb_driver_version[] = DRV_VERSION;
static const char igb_driver_string[] =
				"Intel(R) Gigabit Ethernet Network Driver";
57
static const char igb_copyright[] = "Copyright (c) 2007-2009 Intel Corporation.";
58 59 60 61 62 63

static const struct e1000_info *igb_info_tbl[] = {
	[board_82575] = &e1000_82575_info,
};

static struct pci_device_id igb_pci_tbl[] = {
A
Alexander Duyck 已提交
64
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
65
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
66
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
A
Alexander Duyck 已提交
67 68
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
69
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
70
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
71 72 73 74 75 76 77 78 79 80 81 82 83 84
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
	/* required last entry */
	{0, }
};

MODULE_DEVICE_TABLE(pci, igb_pci_tbl);

void igb_reset(struct igb_adapter *);
static int igb_setup_all_tx_resources(struct igb_adapter *);
static int igb_setup_all_rx_resources(struct igb_adapter *);
static void igb_free_all_tx_resources(struct igb_adapter *);
static void igb_free_all_rx_resources(struct igb_adapter *);
85
static void igb_setup_mrqc(struct igb_adapter *);
86 87 88 89 90 91 92 93 94 95
void igb_update_stats(struct igb_adapter *);
static int igb_probe(struct pci_dev *, const struct pci_device_id *);
static void __devexit igb_remove(struct pci_dev *pdev);
static int igb_sw_init(struct igb_adapter *);
static int igb_open(struct net_device *);
static int igb_close(struct net_device *);
static void igb_configure_tx(struct igb_adapter *);
static void igb_configure_rx(struct igb_adapter *);
static void igb_clean_all_tx_rings(struct igb_adapter *);
static void igb_clean_all_rx_rings(struct igb_adapter *);
96 97
static void igb_clean_tx_ring(struct igb_ring *);
static void igb_clean_rx_ring(struct igb_ring *);
98
static void igb_set_rx_mode(struct net_device *);
99 100 101
static void igb_update_phy_info(unsigned long);
static void igb_watchdog(unsigned long);
static void igb_watchdog_task(struct work_struct *);
102
static netdev_tx_t igb_xmit_frame_adv(struct sk_buff *skb, struct net_device *);
103 104 105
static struct net_device_stats *igb_get_stats(struct net_device *);
static int igb_change_mtu(struct net_device *, int);
static int igb_set_mac(struct net_device *, void *);
106
static void igb_set_uta(struct igb_adapter *adapter);
107 108 109
static irqreturn_t igb_intr(int irq, void *);
static irqreturn_t igb_intr_msi(int irq, void *);
static irqreturn_t igb_msix_other(int irq, void *);
110
static irqreturn_t igb_msix_ring(int irq, void *);
111
#ifdef CONFIG_IGB_DCA
112
static void igb_update_dca(struct igb_q_vector *);
J
Jeb Cramer 已提交
113
static void igb_setup_dca(struct igb_adapter *);
114
#endif /* CONFIG_IGB_DCA */
115
static bool igb_clean_tx_irq(struct igb_q_vector *);
116
static int igb_poll(struct napi_struct *, int);
117
static bool igb_clean_rx_irq_adv(struct igb_q_vector *, int *, int);
118 119 120 121 122 123 124
static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
static void igb_tx_timeout(struct net_device *);
static void igb_reset_task(struct work_struct *);
static void igb_vlan_rx_register(struct net_device *, struct vlan_group *);
static void igb_vlan_rx_add_vid(struct net_device *, u16);
static void igb_vlan_rx_kill_vid(struct net_device *, u16);
static void igb_restore_vlan(struct igb_adapter *);
125
static void igb_rar_set_qsel(struct igb_adapter *, u8 *, u32 , u8);
126 127 128 129 130 131
static void igb_ping_all_vfs(struct igb_adapter *);
static void igb_msg_task(struct igb_adapter *);
static int igb_rcv_msg_from_vf(struct igb_adapter *, u32);
static void igb_vmm_control(struct igb_adapter *);
static int igb_set_vf_mac(struct igb_adapter *adapter, int, unsigned char *);
static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
132

E
Eric Dumazet 已提交
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
static inline void igb_set_vmolr(struct e1000_hw *hw, int vfn)
{
	u32 reg_data;

	reg_data = rd32(E1000_VMOLR(vfn));
	reg_data |= E1000_VMOLR_BAM |	 /* Accept broadcast */
	            E1000_VMOLR_ROMPE |  /* Accept packets matched in MTA */
	            E1000_VMOLR_AUPE |   /* Accept untagged packets */
	            E1000_VMOLR_STRVLAN; /* Strip vlan tags */
	wr32(E1000_VMOLR(vfn), reg_data);
}

static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
                                 int vfn)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 vmolr;

151 152 153 154 155 156
	/* if it isn't the PF check to see if VFs are enabled and
	 * increase the size to support vlan tags */
	if (vfn < adapter->vfs_allocated_count &&
	    adapter->vf_data[vfn].vlans_enabled)
		size += VLAN_TAG_SIZE;

E
Eric Dumazet 已提交
157 158 159 160 161 162 163 164
	vmolr = rd32(E1000_VMOLR(vfn));
	vmolr &= ~E1000_VMOLR_RLPML_MASK;
	vmolr |= size | E1000_VMOLR_LPE;
	wr32(E1000_VMOLR(vfn), vmolr);

	return 0;
}

165
#ifdef CONFIG_PM
166
static int igb_suspend(struct pci_dev *, pm_message_t);
167 168 169
static int igb_resume(struct pci_dev *);
#endif
static void igb_shutdown(struct pci_dev *);
170
#ifdef CONFIG_IGB_DCA
J
Jeb Cramer 已提交
171 172 173 174 175 176 177
static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
static struct notifier_block dca_notifier = {
	.notifier_call	= igb_notify_dca,
	.next		= NULL,
	.priority	= 0
};
#endif
178 179 180 181
#ifdef CONFIG_NET_POLL_CONTROLLER
/* for netdump / net console */
static void igb_netpoll(struct net_device *);
#endif
182
#ifdef CONFIG_PCI_IOV
183 184 185 186 187 188
static unsigned int max_vfs = 0;
module_param(max_vfs, uint, 0);
MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate "
                 "per physical function");
#endif /* CONFIG_PCI_IOV */

189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
		     pci_channel_state_t);
static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
static void igb_io_resume(struct pci_dev *);

static struct pci_error_handlers igb_err_handler = {
	.error_detected = igb_io_error_detected,
	.slot_reset = igb_io_slot_reset,
	.resume = igb_io_resume,
};


static struct pci_driver igb_driver = {
	.name     = igb_driver_name,
	.id_table = igb_pci_tbl,
	.probe    = igb_probe,
	.remove   = __devexit_p(igb_remove),
#ifdef CONFIG_PM
	/* Power Managment Hooks */
	.suspend  = igb_suspend,
	.resume   = igb_resume,
#endif
	.shutdown = igb_shutdown,
	.err_handler = &igb_err_handler
};

215 216
static int global_quad_port_a; /* global quad port a indication */

217 218 219 220 221
MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
MODULE_LICENSE("GPL");
MODULE_VERSION(DRV_VERSION);

P
Patrick Ohly 已提交
222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
/**
 * Scale the NIC clock cycle by a large factor so that
 * relatively small clock corrections can be added or
 * substracted at each clock tick. The drawbacks of a
 * large factor are a) that the clock register overflows
 * more quickly (not such a big deal) and b) that the
 * increment per tick has to fit into 24 bits.
 *
 * Note that
 *   TIMINCA = IGB_TSYNC_CYCLE_TIME_IN_NANOSECONDS *
 *             IGB_TSYNC_SCALE
 *   TIMINCA += TIMINCA * adjustment [ppm] / 1e9
 *
 * The base scale factor is intentionally a power of two
 * so that the division in %struct timecounter can be done with
 * a shift.
 */
#define IGB_TSYNC_SHIFT (19)
#define IGB_TSYNC_SCALE (1<<IGB_TSYNC_SHIFT)

/**
 * The duration of one clock cycle of the NIC.
 *
 * @todo This hard-coded value is part of the specification and might change
 * in future hardware revisions. Add revision check.
 */
#define IGB_TSYNC_CYCLE_TIME_IN_NANOSECONDS 16

#if (IGB_TSYNC_SCALE * IGB_TSYNC_CYCLE_TIME_IN_NANOSECONDS) >= (1<<24)
# error IGB_TSYNC_SCALE and/or IGB_TSYNC_CYCLE_TIME_IN_NANOSECONDS are too large to fit into TIMINCA
#endif

/**
 * igb_read_clock - read raw cycle counter (to be used by time counter)
 */
static cycle_t igb_read_clock(const struct cyclecounter *tc)
{
	struct igb_adapter *adapter =
		container_of(tc, struct igb_adapter, cycles);
	struct e1000_hw *hw = &adapter->hw;
	u64 stamp;

	stamp =  rd32(E1000_SYSTIML);
	stamp |= (u64)rd32(E1000_SYSTIMH) << 32ULL;

	return stamp;
}

270 271 272 273 274 275 276 277 278 279
#ifdef DEBUG
/**
 * igb_get_hw_dev_name - return device name string
 * used by hardware layer to print debugging information
 **/
char *igb_get_hw_dev_name(struct e1000_hw *hw)
{
	struct igb_adapter *adapter = hw->back;
	return adapter->netdev->name;
}
P
Patrick Ohly 已提交
280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295

/**
 * igb_get_time_str - format current NIC and system time as string
 */
static char *igb_get_time_str(struct igb_adapter *adapter,
			      char buffer[160])
{
	cycle_t hw = adapter->cycles.read(&adapter->cycles);
	struct timespec nic = ns_to_timespec(timecounter_read(&adapter->clock));
	struct timespec sys;
	struct timespec delta;
	getnstimeofday(&sys);

	delta = timespec_sub(nic, sys);

	sprintf(buffer,
296 297
		"HW %llu, NIC %ld.%09lus, SYS %ld.%09lus, NIC-SYS %lds + %09luns",
		hw,
P
Patrick Ohly 已提交
298 299 300 301 302 303
		(long)nic.tv_sec, nic.tv_nsec,
		(long)sys.tv_sec, sys.tv_nsec,
		(long)delta.tv_sec, delta.tv_nsec);

	return buffer;
}
304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319
#endif

/**
 * igb_init_module - Driver Registration Routine
 *
 * igb_init_module is the first routine called when the driver is
 * loaded. All it does is register with the PCI subsystem.
 **/
static int __init igb_init_module(void)
{
	int ret;
	printk(KERN_INFO "%s - version %s\n",
	       igb_driver_string, igb_driver_version);

	printk(KERN_INFO "%s\n", igb_copyright);

320 321
	global_quad_port_a = 0;

322
#ifdef CONFIG_IGB_DCA
J
Jeb Cramer 已提交
323 324
	dca_register_notify(&dca_notifier);
#endif
325 326

	ret = pci_register_driver(&igb_driver);
327 328 329 330 331 332 333 334 335 336 337 338 339
	return ret;
}

module_init(igb_init_module);

/**
 * igb_exit_module - Driver Exit Cleanup Routine
 *
 * igb_exit_module is called just before the driver is removed
 * from memory.
 **/
static void __exit igb_exit_module(void)
{
340
#ifdef CONFIG_IGB_DCA
J
Jeb Cramer 已提交
341 342
	dca_unregister_notify(&dca_notifier);
#endif
343 344 345 346 347
	pci_unregister_driver(&igb_driver);
}

module_exit(igb_exit_module);

348 349 350 351 352 353 354 355 356 357 358
#define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
/**
 * igb_cache_ring_register - Descriptor ring to register mapping
 * @adapter: board private structure to initialize
 *
 * Once we know the feature-set enabled for the device, we'll cache
 * the register offset the descriptor ring is assigned to.
 **/
static void igb_cache_ring_register(struct igb_adapter *adapter)
{
	int i;
359
	u32 rbase_offset = adapter->vfs_allocated_count;
360 361 362 363 364 365 366 367 368

	switch (adapter->hw.mac.type) {
	case e1000_82576:
		/* The queues are allocated for virtualization such that VF 0
		 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
		 * In order to avoid collision we start at the first free queue
		 * and continue consuming queues in the same sequence
		 */
		for (i = 0; i < adapter->num_rx_queues; i++)
369 370
			adapter->rx_ring[i].reg_idx = rbase_offset +
			                              Q_IDX_82576(i);
371
		for (i = 0; i < adapter->num_tx_queues; i++)
372 373
			adapter->tx_ring[i].reg_idx = rbase_offset +
			                              Q_IDX_82576(i);
374 375 376 377 378 379 380 381 382 383 384
		break;
	case e1000_82575:
	default:
		for (i = 0; i < adapter->num_rx_queues; i++)
			adapter->rx_ring[i].reg_idx = i;
		for (i = 0; i < adapter->num_tx_queues; i++)
			adapter->tx_ring[i].reg_idx = i;
		break;
	}
}

385 386 387 388 389 390 391 392 393 394 395 396
static void igb_free_queues(struct igb_adapter *adapter)
{
	kfree(adapter->tx_ring);
	kfree(adapter->rx_ring);

	adapter->tx_ring = NULL;
	adapter->rx_ring = NULL;

	adapter->num_rx_queues = 0;
	adapter->num_tx_queues = 0;
}

397 398 399 400 401 402 403 404 405 406 407 408 409 410
/**
 * igb_alloc_queues - Allocate memory for all rings
 * @adapter: board private structure to initialize
 *
 * We allocate one ring per queue at run-time since we don't know the
 * number of queues at compile-time.
 **/
static int igb_alloc_queues(struct igb_adapter *adapter)
{
	int i;

	adapter->tx_ring = kcalloc(adapter->num_tx_queues,
				   sizeof(struct igb_ring), GFP_KERNEL);
	if (!adapter->tx_ring)
411
		goto err;
412 413 414

	adapter->rx_ring = kcalloc(adapter->num_rx_queues,
				   sizeof(struct igb_ring), GFP_KERNEL);
415 416
	if (!adapter->rx_ring)
		goto err;
417

418 419
	for (i = 0; i < adapter->num_tx_queues; i++) {
		struct igb_ring *ring = &(adapter->tx_ring[i]);
420
		ring->count = adapter->tx_ring_count;
421
		ring->queue_index = i;
422
		ring->pdev = adapter->pdev;
423
		ring->netdev = adapter->netdev;
424 425 426
		/* For 82575, context index must be unique per ring. */
		if (adapter->hw.mac.type == e1000_82575)
			ring->flags = IGB_RING_FLAG_TX_CTX_IDX;
427
	}
428

429 430
	for (i = 0; i < adapter->num_rx_queues; i++) {
		struct igb_ring *ring = &(adapter->rx_ring[i]);
431
		ring->count = adapter->rx_ring_count;
P
PJ Waskiewicz 已提交
432
		ring->queue_index = i;
433
		ring->pdev = adapter->pdev;
434
		ring->netdev = adapter->netdev;
435
		ring->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
436 437 438 439
		ring->flags = IGB_RING_FLAG_RX_CSUM; /* enable rx checksum */
		/* set flag indicating ring supports SCTP checksum offload */
		if (adapter->hw.mac.type >= e1000_82576)
			ring->flags |= IGB_RING_FLAG_RX_SCTP_CSUM;
440
	}
441 442

	igb_cache_ring_register(adapter);
443

444
	return 0;
A
Alexander Duyck 已提交
445

446 447
err:
	igb_free_queues(adapter);
448

449
	return -ENOMEM;
A
Alexander Duyck 已提交
450 451
}

452
#define IGB_N0_QUEUE -1
453
static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
454 455
{
	u32 msixbm = 0;
456
	struct igb_adapter *adapter = q_vector->adapter;
457
	struct e1000_hw *hw = &adapter->hw;
A
Alexander Duyck 已提交
458
	u32 ivar, index;
459 460 461 462 463 464 465
	int rx_queue = IGB_N0_QUEUE;
	int tx_queue = IGB_N0_QUEUE;

	if (q_vector->rx_ring)
		rx_queue = q_vector->rx_ring->reg_idx;
	if (q_vector->tx_ring)
		tx_queue = q_vector->tx_ring->reg_idx;
A
Alexander Duyck 已提交
466 467 468

	switch (hw->mac.type) {
	case e1000_82575:
469 470 471 472
		/* The 82575 assigns vectors using a bitmask, which matches the
		   bitmask for the EICR/EIMS/EIMC registers.  To assign one
		   or more queues to a vector, we write the appropriate bits
		   into the MSIXBM register for that vector. */
473
		if (rx_queue > IGB_N0_QUEUE)
474
			msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
475
		if (tx_queue > IGB_N0_QUEUE)
476 477
			msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
		array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
478
		q_vector->eims_value = msixbm;
A
Alexander Duyck 已提交
479 480
		break;
	case e1000_82576:
481
		/* 82576 uses a table-based method for assigning vectors.
A
Alexander Duyck 已提交
482 483 484 485
		   Each queue has a single entry in the table to which we write
		   a vector number along with a "valid" bit.  Sadly, the layout
		   of the table is somewhat counterintuitive. */
		if (rx_queue > IGB_N0_QUEUE) {
486
			index = (rx_queue & 0x7);
A
Alexander Duyck 已提交
487
			ivar = array_rd32(E1000_IVAR0, index);
488
			if (rx_queue < 8) {
489 490 491
				/* vector goes into low byte of register */
				ivar = ivar & 0xFFFFFF00;
				ivar |= msix_vector | E1000_IVAR_VALID;
492 493 494 495
			} else {
				/* vector goes into third byte of register */
				ivar = ivar & 0xFF00FFFF;
				ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
A
Alexander Duyck 已提交
496 497 498 499
			}
			array_wr32(E1000_IVAR0, index, ivar);
		}
		if (tx_queue > IGB_N0_QUEUE) {
500
			index = (tx_queue & 0x7);
A
Alexander Duyck 已提交
501
			ivar = array_rd32(E1000_IVAR0, index);
502
			if (tx_queue < 8) {
503 504 505
				/* vector goes into second byte of register */
				ivar = ivar & 0xFFFF00FF;
				ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
506 507 508 509
			} else {
				/* vector goes into high byte of register */
				ivar = ivar & 0x00FFFFFF;
				ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
A
Alexander Duyck 已提交
510 511 512
			}
			array_wr32(E1000_IVAR0, index, ivar);
		}
513
		q_vector->eims_value = 1 << msix_vector;
A
Alexander Duyck 已提交
514 515 516 517 518
		break;
	default:
		BUG();
		break;
	}
519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535
}

/**
 * igb_configure_msix - Configure MSI-X hardware
 *
 * igb_configure_msix sets up the hardware to properly
 * generate MSI-X interrupts.
 **/
static void igb_configure_msix(struct igb_adapter *adapter)
{
	u32 tmp;
	int i, vector = 0;
	struct e1000_hw *hw = &adapter->hw;

	adapter->eims_enable_mask = 0;

	/* set vector for other causes, i.e. link changes */
A
Alexander Duyck 已提交
536 537
	switch (hw->mac.type) {
	case e1000_82575:
538 539 540 541 542 543 544 545 546
		tmp = rd32(E1000_CTRL_EXT);
		/* enable MSI-X PBA support*/
		tmp |= E1000_CTRL_EXT_PBA_CLR;

		/* Auto-Mask interrupts upon ICR read. */
		tmp |= E1000_CTRL_EXT_EIAME;
		tmp |= E1000_CTRL_EXT_IRCA;

		wr32(E1000_CTRL_EXT, tmp);
547 548 549 550

		/* enable msix_other interrupt */
		array_wr32(E1000_MSIXBM(0), vector++,
		                      E1000_EIMS_OTHER);
P
PJ Waskiewicz 已提交
551
		adapter->eims_other = E1000_EIMS_OTHER;
552

A
Alexander Duyck 已提交
553 554 555
		break;

	case e1000_82576:
556 557 558 559 560 561 562 563
		/* Turn on MSI-X capability first, or our settings
		 * won't stick.  And it will take days to debug. */
		wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
		                E1000_GPIE_PBA | E1000_GPIE_EIAME |
		                E1000_GPIE_NSICR);

		/* enable msix_other interrupt */
		adapter->eims_other = 1 << vector;
A
Alexander Duyck 已提交
564 565
		tmp = (vector++ | E1000_IVAR_VALID) << 8;

566
		wr32(E1000_IVAR_MISC, tmp);
A
Alexander Duyck 已提交
567 568 569 570 571
		break;
	default:
		/* do nothing, since nothing else supports MSI-X */
		break;
	} /* switch (hw->mac.type) */
572 573 574 575 576 577 578 579 580

	adapter->eims_enable_mask |= adapter->eims_other;

	for (i = 0; i < adapter->num_q_vectors; i++) {
		struct igb_q_vector *q_vector = adapter->q_vector[i];
		igb_assign_vector(q_vector, vector++);
		adapter->eims_enable_mask |= q_vector->eims_value;
	}

581 582 583 584 585 586 587 588 589 590 591 592
	wrfl();
}

/**
 * igb_request_msix - Initialize MSI-X interrupts
 *
 * igb_request_msix allocates MSI-X vectors and requests interrupts from the
 * kernel.
 **/
static int igb_request_msix(struct igb_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
593
	struct e1000_hw *hw = &adapter->hw;
594 595
	int i, err = 0, vector = 0;

596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615
	err = request_irq(adapter->msix_entries[vector].vector,
	                  &igb_msix_other, 0, netdev->name, adapter);
	if (err)
		goto out;
	vector++;

	for (i = 0; i < adapter->num_q_vectors; i++) {
		struct igb_q_vector *q_vector = adapter->q_vector[i];

		q_vector->itr_register = hw->hw_addr + E1000_EITR(vector);

		if (q_vector->rx_ring && q_vector->tx_ring)
			sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
			        q_vector->rx_ring->queue_index);
		else if (q_vector->tx_ring)
			sprintf(q_vector->name, "%s-tx-%u", netdev->name,
			        q_vector->tx_ring->queue_index);
		else if (q_vector->rx_ring)
			sprintf(q_vector->name, "%s-rx-%u", netdev->name,
			        q_vector->rx_ring->queue_index);
616
		else
617 618
			sprintf(q_vector->name, "%s-unused", netdev->name);

619
		err = request_irq(adapter->msix_entries[vector].vector,
620 621
		                  &igb_msix_ring, 0, q_vector->name,
		                  q_vector);
622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638
		if (err)
			goto out;
		vector++;
	}

	igb_configure_msix(adapter);
	return 0;
out:
	return err;
}

static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
{
	if (adapter->msix_entries) {
		pci_disable_msix(adapter->pdev);
		kfree(adapter->msix_entries);
		adapter->msix_entries = NULL;
639
	} else if (adapter->flags & IGB_FLAG_HAS_MSI) {
640
		pci_disable_msi(adapter->pdev);
641
	}
642 643
}

644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676
/**
 * igb_free_q_vectors - Free memory allocated for interrupt vectors
 * @adapter: board private structure to initialize
 *
 * This function frees the memory allocated to the q_vectors.  In addition if
 * NAPI is enabled it will delete any references to the NAPI struct prior
 * to freeing the q_vector.
 **/
static void igb_free_q_vectors(struct igb_adapter *adapter)
{
	int v_idx;

	for (v_idx = 0; v_idx < adapter->num_q_vectors; v_idx++) {
		struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
		adapter->q_vector[v_idx] = NULL;
		netif_napi_del(&q_vector->napi);
		kfree(q_vector);
	}
	adapter->num_q_vectors = 0;
}

/**
 * igb_clear_interrupt_scheme - reset the device to a state of no interrupts
 *
 * This function resets the device so that it has 0 rx queues, tx queues, and
 * MSI-X interrupts allocated.
 */
static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
{
	igb_free_queues(adapter);
	igb_free_q_vectors(adapter);
	igb_reset_interrupt_capability(adapter);
}
677 678 679 680 681 682 683 684 685 686 687 688

/**
 * igb_set_interrupt_capability - set MSI or MSI-X if supported
 *
 * Attempt to configure interrupts using the best available
 * capabilities of the hardware and kernel.
 **/
static void igb_set_interrupt_capability(struct igb_adapter *adapter)
{
	int err;
	int numvecs, i;

689 690 691 692
	/* Number of supported queues. */
	adapter->num_rx_queues = min_t(u32, IGB_MAX_RX_QUEUES, num_online_cpus());
	adapter->num_tx_queues = min_t(u32, IGB_MAX_TX_QUEUES, num_online_cpus());

693 694 695 696 697 698 699 700 701 702 703
	/* start with one vector for every rx queue */
	numvecs = adapter->num_rx_queues;

	/* if tx handler is seperate add 1 for every tx queue */
	numvecs += adapter->num_tx_queues;

	/* store the number of vectors reserved for queues */
	adapter->num_q_vectors = numvecs;

	/* add 1 vector for link status interrupts */
	numvecs++;
704 705 706 707 708 709 710 711 712 713 714 715
	adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
					GFP_KERNEL);
	if (!adapter->msix_entries)
		goto msi_only;

	for (i = 0; i < numvecs; i++)
		adapter->msix_entries[i].entry = i;

	err = pci_enable_msix(adapter->pdev,
			      adapter->msix_entries,
			      numvecs);
	if (err == 0)
716
		goto out;
717 718 719 720 721

	igb_reset_interrupt_capability(adapter);

	/* If we can't do MSI-X, try MSI */
msi_only:
722 723 724 725 726 727 728 729 730 731 732 733 734 735 736
#ifdef CONFIG_PCI_IOV
	/* disable SR-IOV for non MSI-X configurations */
	if (adapter->vf_data) {
		struct e1000_hw *hw = &adapter->hw;
		/* disable iov and allow time for transactions to clear */
		pci_disable_sriov(adapter->pdev);
		msleep(500);

		kfree(adapter->vf_data);
		adapter->vf_data = NULL;
		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
		msleep(100);
		dev_info(&adapter->pdev->dev, "IOV Disabled\n");
	}
#endif
737
	adapter->num_rx_queues = 1;
738
	adapter->num_tx_queues = 1;
739
	adapter->num_q_vectors = 1;
740
	if (!pci_enable_msi(adapter->pdev))
741
		adapter->flags |= IGB_FLAG_HAS_MSI;
742
out:
743
	/* Notify the stack of the (possibly) reduced Tx Queue count. */
744
	adapter->netdev->real_num_tx_queues = adapter->num_tx_queues;
745 746 747
	return;
}

748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880
/**
 * igb_alloc_q_vectors - Allocate memory for interrupt vectors
 * @adapter: board private structure to initialize
 *
 * We allocate one q_vector per queue interrupt.  If allocation fails we
 * return -ENOMEM.
 **/
static int igb_alloc_q_vectors(struct igb_adapter *adapter)
{
	struct igb_q_vector *q_vector;
	struct e1000_hw *hw = &adapter->hw;
	int v_idx;

	for (v_idx = 0; v_idx < adapter->num_q_vectors; v_idx++) {
		q_vector = kzalloc(sizeof(struct igb_q_vector), GFP_KERNEL);
		if (!q_vector)
			goto err_out;
		q_vector->adapter = adapter;
		q_vector->itr_shift = (hw->mac.type == e1000_82575) ? 16 : 0;
		q_vector->itr_register = hw->hw_addr + E1000_EITR(0);
		q_vector->itr_val = IGB_START_ITR;
		q_vector->set_itr = 1;
		netif_napi_add(adapter->netdev, &q_vector->napi, igb_poll, 64);
		adapter->q_vector[v_idx] = q_vector;
	}
	return 0;

err_out:
	while (v_idx) {
		v_idx--;
		q_vector = adapter->q_vector[v_idx];
		netif_napi_del(&q_vector->napi);
		kfree(q_vector);
		adapter->q_vector[v_idx] = NULL;
	}
	return -ENOMEM;
}

static void igb_map_rx_ring_to_vector(struct igb_adapter *adapter,
                                      int ring_idx, int v_idx)
{
	struct igb_q_vector *q_vector;

	q_vector = adapter->q_vector[v_idx];
	q_vector->rx_ring = &adapter->rx_ring[ring_idx];
	q_vector->rx_ring->q_vector = q_vector;
	q_vector->itr_val = adapter->itr;
}

static void igb_map_tx_ring_to_vector(struct igb_adapter *adapter,
                                      int ring_idx, int v_idx)
{
	struct igb_q_vector *q_vector;

	q_vector = adapter->q_vector[v_idx];
	q_vector->tx_ring = &adapter->tx_ring[ring_idx];
	q_vector->tx_ring->q_vector = q_vector;
	q_vector->itr_val = adapter->itr;
}

/**
 * igb_map_ring_to_vector - maps allocated queues to vectors
 *
 * This function maps the recently allocated queues to vectors.
 **/
static int igb_map_ring_to_vector(struct igb_adapter *adapter)
{
	int i;
	int v_idx = 0;

	if ((adapter->num_q_vectors < adapter->num_rx_queues) ||
	    (adapter->num_q_vectors < adapter->num_tx_queues))
		return -ENOMEM;

	if (adapter->num_q_vectors >=
	    (adapter->num_rx_queues + adapter->num_tx_queues)) {
		for (i = 0; i < adapter->num_rx_queues; i++)
			igb_map_rx_ring_to_vector(adapter, i, v_idx++);
		for (i = 0; i < adapter->num_tx_queues; i++)
			igb_map_tx_ring_to_vector(adapter, i, v_idx++);
	} else {
		for (i = 0; i < adapter->num_rx_queues; i++) {
			if (i < adapter->num_tx_queues)
				igb_map_tx_ring_to_vector(adapter, i, v_idx);
			igb_map_rx_ring_to_vector(adapter, i, v_idx++);
		}
		for (; i < adapter->num_tx_queues; i++)
			igb_map_tx_ring_to_vector(adapter, i, v_idx++);
	}
	return 0;
}

/**
 * igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
 *
 * This function initializes the interrupts and allocates all of the queues.
 **/
static int igb_init_interrupt_scheme(struct igb_adapter *adapter)
{
	struct pci_dev *pdev = adapter->pdev;
	int err;

	igb_set_interrupt_capability(adapter);

	err = igb_alloc_q_vectors(adapter);
	if (err) {
		dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
		goto err_alloc_q_vectors;
	}

	err = igb_alloc_queues(adapter);
	if (err) {
		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
		goto err_alloc_queues;
	}

	err = igb_map_ring_to_vector(adapter);
	if (err) {
		dev_err(&pdev->dev, "Invalid q_vector to ring mapping\n");
		goto err_map_queues;
	}


	return 0;
err_map_queues:
	igb_free_queues(adapter);
err_alloc_queues:
	igb_free_q_vectors(adapter);
err_alloc_q_vectors:
	igb_reset_interrupt_capability(adapter);
	return err;
}

881 882 883 884 885 886 887 888 889
/**
 * igb_request_irq - initialize interrupts
 *
 * Attempts to configure interrupts using the best available
 * capabilities of the hardware and kernel.
 **/
static int igb_request_irq(struct igb_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
890
	struct pci_dev *pdev = adapter->pdev;
891 892 893 894 895
	struct e1000_hw *hw = &adapter->hw;
	int err = 0;

	if (adapter->msix_entries) {
		err = igb_request_msix(adapter);
P
PJ Waskiewicz 已提交
896
		if (!err)
897 898
			goto request_done;
		/* fall back to MSI */
899
		igb_clear_interrupt_scheme(adapter);
900
		if (!pci_enable_msi(adapter->pdev))
901
			adapter->flags |= IGB_FLAG_HAS_MSI;
902 903
		igb_free_all_tx_resources(adapter);
		igb_free_all_rx_resources(adapter);
904
		adapter->num_tx_queues = 1;
905
		adapter->num_rx_queues = 1;
906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921
		adapter->num_q_vectors = 1;
		err = igb_alloc_q_vectors(adapter);
		if (err) {
			dev_err(&pdev->dev,
			        "Unable to allocate memory for vectors\n");
			goto request_done;
		}
		err = igb_alloc_queues(adapter);
		if (err) {
			dev_err(&pdev->dev,
			        "Unable to allocate memory for queues\n");
			igb_free_q_vectors(adapter);
			goto request_done;
		}
		igb_setup_all_tx_resources(adapter);
		igb_setup_all_rx_resources(adapter);
P
PJ Waskiewicz 已提交
922
	} else {
A
Alexander Duyck 已提交
923 924 925
		switch (hw->mac.type) {
		case e1000_82575:
			wr32(E1000_MSIXBM(0),
926 927 928
			     (E1000_EICR_RX_QUEUE0 |
			      E1000_EICR_TX_QUEUE0 |
			      E1000_EIMS_OTHER));
A
Alexander Duyck 已提交
929 930 931 932 933 934 935
			break;
		case e1000_82576:
			wr32(E1000_IVAR0, E1000_IVAR_VALID);
			break;
		default:
			break;
		}
936
	}
P
PJ Waskiewicz 已提交
937

938
	if (adapter->flags & IGB_FLAG_HAS_MSI) {
939
		err = request_irq(adapter->pdev->irq, &igb_intr_msi, 0,
940
				  netdev->name, adapter);
941 942
		if (!err)
			goto request_done;
943

944 945
		/* fall back to legacy interrupts */
		igb_reset_interrupt_capability(adapter);
946
		adapter->flags &= ~IGB_FLAG_HAS_MSI;
947 948 949
	}

	err = request_irq(adapter->pdev->irq, &igb_intr, IRQF_SHARED,
950
			  netdev->name, adapter);
951

A
Andy Gospodarek 已提交
952
	if (err)
953 954 955 956 957 958 959 960 961 962 963 964
		dev_err(&adapter->pdev->dev, "Error %d getting interrupt\n",
			err);

request_done:
	return err;
}

static void igb_free_irq(struct igb_adapter *adapter)
{
	if (adapter->msix_entries) {
		int vector = 0, i;

965
		free_irq(adapter->msix_entries[vector++].vector, adapter);
966

967 968 969 970 971 972 973
		for (i = 0; i < adapter->num_q_vectors; i++) {
			struct igb_q_vector *q_vector = adapter->q_vector[i];
			free_irq(adapter->msix_entries[vector++].vector,
			         q_vector);
		}
	} else {
		free_irq(adapter->pdev->irq, adapter);
974 975 976 977 978 979 980 981 982 983 984 985
	}
}

/**
 * igb_irq_disable - Mask off interrupt generation on the NIC
 * @adapter: board private structure
 **/
static void igb_irq_disable(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;

	if (adapter->msix_entries) {
986 987 988 989 990
		u32 regval = rd32(E1000_EIAM);
		wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
		wr32(E1000_EIMC, adapter->eims_enable_mask);
		regval = rd32(E1000_EIAC);
		wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
991
	}
P
PJ Waskiewicz 已提交
992 993

	wr32(E1000_IAM, 0);
994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007
	wr32(E1000_IMC, ~0);
	wrfl();
	synchronize_irq(adapter->pdev->irq);
}

/**
 * igb_irq_enable - Enable default interrupt generation settings
 * @adapter: board private structure
 **/
static void igb_irq_enable(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;

	if (adapter->msix_entries) {
1008 1009 1010 1011
		u32 regval = rd32(E1000_EIAC);
		wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
		regval = rd32(E1000_EIAM);
		wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
P
PJ Waskiewicz 已提交
1012
		wr32(E1000_EIMS, adapter->eims_enable_mask);
1013 1014 1015 1016
		if (adapter->vfs_allocated_count)
			wr32(E1000_MBVFIMR, 0xFF);
		wr32(E1000_IMS, (E1000_IMS_LSC | E1000_IMS_VMMB |
		                 E1000_IMS_DOUTSYNC));
P
PJ Waskiewicz 已提交
1017 1018 1019 1020
	} else {
		wr32(E1000_IMS, IMS_ENABLE_MASK);
		wr32(E1000_IAM, IMS_ENABLE_MASK);
	}
1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096
}

static void igb_update_mng_vlan(struct igb_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
	u16 vid = adapter->hw.mng_cookie.vlan_id;
	u16 old_vid = adapter->mng_vlan_id;
	if (adapter->vlgrp) {
		if (!vlan_group_get_device(adapter->vlgrp, vid)) {
			if (adapter->hw.mng_cookie.status &
				E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
				igb_vlan_rx_add_vid(netdev, vid);
				adapter->mng_vlan_id = vid;
			} else
				adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;

			if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
					(vid != old_vid) &&
			    !vlan_group_get_device(adapter->vlgrp, old_vid))
				igb_vlan_rx_kill_vid(netdev, old_vid);
		} else
			adapter->mng_vlan_id = vid;
	}
}

/**
 * igb_release_hw_control - release control of the h/w to f/w
 * @adapter: address of board private structure
 *
 * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
 * For ASF and Pass Through versions of f/w this means that the
 * driver is no longer loaded.
 *
 **/
static void igb_release_hw_control(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 ctrl_ext;

	/* Let firmware take over control of h/w */
	ctrl_ext = rd32(E1000_CTRL_EXT);
	wr32(E1000_CTRL_EXT,
			ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
}


/**
 * igb_get_hw_control - get control of the h/w from f/w
 * @adapter: address of board private structure
 *
 * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
 * For ASF and Pass Through versions of f/w this means that
 * the driver is loaded.
 *
 **/
static void igb_get_hw_control(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 ctrl_ext;

	/* Let firmware know the driver has taken over */
	ctrl_ext = rd32(E1000_CTRL_EXT);
	wr32(E1000_CTRL_EXT,
			ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
}

/**
 * igb_configure - configure the hardware for RX and TX
 * @adapter: private board structure
 **/
static void igb_configure(struct igb_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
	int i;

	igb_get_hw_control(adapter);
1097
	igb_set_rx_mode(netdev);
1098 1099 1100

	igb_restore_vlan(adapter);

1101
	igb_setup_tctl(adapter);
1102
	igb_setup_mrqc(adapter);
1103
	igb_setup_rctl(adapter);
1104 1105

	igb_configure_tx(adapter);
1106
	igb_configure_rx(adapter);
1107 1108 1109

	igb_rx_fifo_flush_82575(&adapter->hw);

1110
	/* call igb_desc_unused which always leaves
1111 1112 1113 1114
	 * at least 1 descriptor unused to make sure
	 * next_to_use != next_to_clean */
	for (i = 0; i < adapter->num_rx_queues; i++) {
		struct igb_ring *ring = &adapter->rx_ring[i];
1115
		igb_alloc_rx_buffers_adv(ring, igb_desc_unused(ring));
1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137
	}


	adapter->tx_queue_len = netdev->tx_queue_len;
}


/**
 * igb_up - Open the interface and prepare it to handle traffic
 * @adapter: board private structure
 **/

int igb_up(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	int i;

	/* hardware has been reset, we need to reload some things */
	igb_configure(adapter);

	clear_bit(__IGB_DOWN, &adapter->state);

1138 1139 1140 1141
	for (i = 0; i < adapter->num_q_vectors; i++) {
		struct igb_q_vector *q_vector = adapter->q_vector[i];
		napi_enable(&q_vector->napi);
	}
P
PJ Waskiewicz 已提交
1142
	if (adapter->msix_entries)
1143 1144
		igb_configure_msix(adapter);

1145 1146
	igb_set_vmolr(hw, adapter->vfs_allocated_count);

1147 1148 1149 1150
	/* Clear any pending interrupts. */
	rd32(E1000_ICR);
	igb_irq_enable(adapter);

1151 1152 1153 1154 1155 1156 1157
	/* notify VFs that reset has been completed */
	if (adapter->vfs_allocated_count) {
		u32 reg_data = rd32(E1000_CTRL_EXT);
		reg_data |= E1000_CTRL_EXT_PFRSTD;
		wr32(E1000_CTRL_EXT, reg_data);
	}

1158 1159
	netif_tx_start_all_queues(adapter->netdev);

1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180
	/* Fire a link change interrupt to start the watchdog. */
	wr32(E1000_ICS, E1000_ICS_LSC);
	return 0;
}

void igb_down(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	struct net_device *netdev = adapter->netdev;
	u32 tctl, rctl;
	int i;

	/* signal that we're down so the interrupt handler does not
	 * reschedule our watchdog timer */
	set_bit(__IGB_DOWN, &adapter->state);

	/* disable receives in the hardware */
	rctl = rd32(E1000_RCTL);
	wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
	/* flush and sleep below */

1181
	netif_tx_stop_all_queues(netdev);
1182 1183 1184 1185 1186 1187 1188 1189 1190

	/* disable transmits in the hardware */
	tctl = rd32(E1000_TCTL);
	tctl &= ~E1000_TCTL_EN;
	wr32(E1000_TCTL, tctl);
	/* flush both disables and wait for them to finish */
	wrfl();
	msleep(10);

1191 1192 1193 1194
	for (i = 0; i < adapter->num_q_vectors; i++) {
		struct igb_q_vector *q_vector = adapter->q_vector[i];
		napi_disable(&q_vector->napi);
	}
1195 1196 1197 1198 1199 1200 1201 1202

	igb_irq_disable(adapter);

	del_timer_sync(&adapter->watchdog_timer);
	del_timer_sync(&adapter->phy_info_timer);

	netdev->tx_queue_len = adapter->tx_queue_len;
	netif_carrier_off(netdev);
1203 1204 1205 1206

	/* record the stats before reset*/
	igb_update_stats(adapter);

1207 1208 1209
	adapter->link_speed = 0;
	adapter->link_duplex = 0;

1210 1211
	if (!pci_channel_offline(adapter->pdev))
		igb_reset(adapter);
1212 1213
	igb_clean_all_tx_rings(adapter);
	igb_clean_all_rx_rings(adapter);
1214 1215 1216 1217 1218
#ifdef CONFIG_IGB_DCA

	/* since we reset the hardware DCA settings were cleared */
	igb_setup_dca(adapter);
#endif
1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233
}

void igb_reinit_locked(struct igb_adapter *adapter)
{
	WARN_ON(in_interrupt());
	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
		msleep(1);
	igb_down(adapter);
	igb_up(adapter);
	clear_bit(__IGB_RESETTING, &adapter->state);
}

void igb_reset(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
A
Alexander Duyck 已提交
1234 1235
	struct e1000_mac_info *mac = &hw->mac;
	struct e1000_fc_info *fc = &hw->fc;
1236 1237 1238 1239 1240 1241
	u32 pba = 0, tx_space, min_tx_space, min_rx_space;
	u16 hwm;

	/* Repartition Pba for greater than 9k mtu
	 * To take effect CTRL.RST is required.
	 */
1242 1243
	switch (mac->type) {
	case e1000_82576:
A
Alexander Duyck 已提交
1244
		pba = E1000_PBA_64K;
1245 1246 1247 1248 1249
		break;
	case e1000_82575:
	default:
		pba = E1000_PBA_34K;
		break;
A
Alexander Duyck 已提交
1250
	}
1251

A
Alexander Duyck 已提交
1252 1253
	if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
	    (mac->type < e1000_82576)) {
1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270
		/* adjust PBA for jumbo frames */
		wr32(E1000_PBA, pba);

		/* To maintain wire speed transmits, the Tx FIFO should be
		 * large enough to accommodate two full transmit packets,
		 * rounded up to the next 1KB and expressed in KB.  Likewise,
		 * the Rx FIFO should be large enough to accommodate at least
		 * one full receive packet and is similarly rounded up and
		 * expressed in KB. */
		pba = rd32(E1000_PBA);
		/* upper 16 bits has Tx packet buffer allocation size in KB */
		tx_space = pba >> 16;
		/* lower 16 bits has Rx packet buffer allocation size in KB */
		pba &= 0xffff;
		/* the tx fifo also stores 16 bytes of information about the tx
		 * but don't include ethernet FCS because hardware appends it */
		min_tx_space = (adapter->max_frame_size +
1271
				sizeof(union e1000_adv_tx_desc) -
1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291
				ETH_FCS_LEN) * 2;
		min_tx_space = ALIGN(min_tx_space, 1024);
		min_tx_space >>= 10;
		/* software strips receive CRC, so leave room for it */
		min_rx_space = adapter->max_frame_size;
		min_rx_space = ALIGN(min_rx_space, 1024);
		min_rx_space >>= 10;

		/* If current Tx allocation is less than the min Tx FIFO size,
		 * and the min Tx FIFO size is less than the current Rx FIFO
		 * allocation, take space away from current Rx allocation */
		if (tx_space < min_tx_space &&
		    ((min_tx_space - tx_space) < pba)) {
			pba = pba - (min_tx_space - tx_space);

			/* if short on rx space, rx wins and must trump tx
			 * adjustment */
			if (pba < min_rx_space)
				pba = min_rx_space;
		}
A
Alexander Duyck 已提交
1292
		wr32(E1000_PBA, pba);
1293 1294 1295 1296 1297 1298 1299 1300 1301
	}

	/* flow control settings */
	/* The high water mark must be low enough to fit one full frame
	 * (or the size used for early receive) above it in the Rx FIFO.
	 * Set it to the lower of:
	 * - 90% of the Rx FIFO size, or
	 * - the full Rx FIFO size minus one full frame */
	hwm = min(((pba << 10) * 9 / 10),
A
Alexander Duyck 已提交
1302
			((pba << 10) - 2 * adapter->max_frame_size));
1303

A
Alexander Duyck 已提交
1304 1305 1306 1307 1308 1309 1310
	if (mac->type < e1000_82576) {
		fc->high_water = hwm & 0xFFF8;	/* 8-byte granularity */
		fc->low_water = fc->high_water - 8;
	} else {
		fc->high_water = hwm & 0xFFF0;	/* 16-byte granularity */
		fc->low_water = fc->high_water - 16;
	}
1311 1312
	fc->pause_time = 0xFFFF;
	fc->send_xon = 1;
1313
	fc->current_mode = fc->requested_mode;
1314

1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328
	/* disable receive for all VFs and wait one second */
	if (adapter->vfs_allocated_count) {
		int i;
		for (i = 0 ; i < adapter->vfs_allocated_count; i++)
			adapter->vf_data[i].clear_to_send = false;

		/* ping all the active vfs to let them know we are going down */
			igb_ping_all_vfs(adapter);

		/* disable transmits and receives */
		wr32(E1000_VFRE, 0);
		wr32(E1000_VFTE, 0);
	}

1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341
	/* Allow time for pending master requests to run */
	adapter->hw.mac.ops.reset_hw(&adapter->hw);
	wr32(E1000_WUC, 0);

	if (adapter->hw.mac.ops.init_hw(&adapter->hw))
		dev_err(&adapter->pdev->dev, "Hardware Error\n");

	igb_update_mng_vlan(adapter);

	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
	wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);

	igb_reset_adaptive(&adapter->hw);
1342
	igb_get_phy_info(&adapter->hw);
1343 1344
}

S
Stephen Hemminger 已提交
1345 1346 1347
static const struct net_device_ops igb_netdev_ops = {
	.ndo_open 		= igb_open,
	.ndo_stop		= igb_close,
1348
	.ndo_start_xmit		= igb_xmit_frame_adv,
S
Stephen Hemminger 已提交
1349
	.ndo_get_stats		= igb_get_stats,
1350 1351
	.ndo_set_rx_mode	= igb_set_rx_mode,
	.ndo_set_multicast_list	= igb_set_rx_mode,
S
Stephen Hemminger 已提交
1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364
	.ndo_set_mac_address	= igb_set_mac,
	.ndo_change_mtu		= igb_change_mtu,
	.ndo_do_ioctl		= igb_ioctl,
	.ndo_tx_timeout		= igb_tx_timeout,
	.ndo_validate_addr	= eth_validate_addr,
	.ndo_vlan_rx_register	= igb_vlan_rx_register,
	.ndo_vlan_rx_add_vid	= igb_vlan_rx_add_vid,
	.ndo_vlan_rx_kill_vid	= igb_vlan_rx_kill_vid,
#ifdef CONFIG_NET_POLL_CONTROLLER
	.ndo_poll_controller	= igb_netpoll,
#endif
};

1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383
/**
 * igb_probe - Device Initialization Routine
 * @pdev: PCI device information struct
 * @ent: entry in igb_pci_tbl
 *
 * Returns 0 on success, negative on failure
 *
 * igb_probe initializes an adapter identified by a pci_dev structure.
 * The OS initialization, configuring of the adapter private structure,
 * and a hardware reset occur.
 **/
static int __devinit igb_probe(struct pci_dev *pdev,
			       const struct pci_device_id *ent)
{
	struct net_device *netdev;
	struct igb_adapter *adapter;
	struct e1000_hw *hw;
	const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
	unsigned long mmio_start, mmio_len;
1384
	int err, pci_using_dac;
1385
	u16 eeprom_data = 0;
1386 1387 1388
	u16 eeprom_apme_mask = IGB_EEPROM_APME;
	u32 part_num;

1389
	err = pci_enable_device_mem(pdev);
1390 1391 1392 1393
	if (err)
		return err;

	pci_using_dac = 0;
1394
	err = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
1395
	if (!err) {
1396
		err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
1397 1398 1399
		if (!err)
			pci_using_dac = 1;
	} else {
1400
		err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
1401
		if (err) {
1402
			err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
1403 1404 1405 1406 1407 1408 1409 1410
			if (err) {
				dev_err(&pdev->dev, "No usable DMA "
					"configuration, aborting\n");
				goto err_dma;
			}
		}
	}

1411 1412 1413
	err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
	                                   IORESOURCE_MEM),
	                                   igb_driver_name);
1414 1415 1416
	if (err)
		goto err_pci_reg;

1417
	pci_enable_pcie_error_reporting(pdev);
1418

1419
	pci_set_master(pdev);
1420
	pci_save_state(pdev);
1421 1422

	err = -ENOMEM;
1423 1424
	netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
	                           IGB_ABS_MAX_TX_QUEUES);
1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441
	if (!netdev)
		goto err_alloc_etherdev;

	SET_NETDEV_DEV(netdev, &pdev->dev);

	pci_set_drvdata(pdev, netdev);
	adapter = netdev_priv(netdev);
	adapter->netdev = netdev;
	adapter->pdev = pdev;
	hw = &adapter->hw;
	hw->back = adapter;
	adapter->msg_enable = NETIF_MSG_DRV | NETIF_MSG_PROBE;

	mmio_start = pci_resource_start(pdev, 0);
	mmio_len = pci_resource_len(pdev, 0);

	err = -EIO;
1442 1443
	hw->hw_addr = ioremap(mmio_start, mmio_len);
	if (!hw->hw_addr)
1444 1445
		goto err_ioremap;

S
Stephen Hemminger 已提交
1446
	netdev->netdev_ops = &igb_netdev_ops;
1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470
	igb_set_ethtool_ops(netdev);
	netdev->watchdog_timeo = 5 * HZ;

	strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);

	netdev->mem_start = mmio_start;
	netdev->mem_end = mmio_start + mmio_len;

	/* PCI config space info */
	hw->vendor_id = pdev->vendor;
	hw->device_id = pdev->device;
	hw->revision_id = pdev->revision;
	hw->subsystem_vendor_id = pdev->subsystem_vendor;
	hw->subsystem_device_id = pdev->subsystem_device;

	/* setup the private structure */
	hw->back = adapter;
	/* Copy the default MAC, PHY and NVM function pointers */
	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
	memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
	/* Initialize skew-specific constants */
	err = ei->get_invariants(hw);
	if (err)
1471
		goto err_sw_init;
1472

1473 1474 1475 1476 1477 1478 1479 1480 1481
#ifdef CONFIG_PCI_IOV
	/* since iov functionality isn't critical to base device function we
	 * can accept failure.  If it fails we don't allow iov to be enabled */
	if (hw->mac.type == e1000_82576) {
		/* 82576 supports a maximum of 7 VFs in addition to the PF */
		unsigned int num_vfs = (max_vfs > 7) ? 7 : max_vfs;
		int i;
		unsigned char mac_addr[ETH_ALEN];

1482
		if (num_vfs) {
1483 1484 1485
			adapter->vf_data = kcalloc(num_vfs,
						sizeof(struct vf_data_storage),
						GFP_KERNEL);
1486 1487 1488 1489
			if (!adapter->vf_data) {
				dev_err(&pdev->dev,
				        "Could not allocate VF private data - "
					"IOV enable failed\n");
1490
			} else {
1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507
				err = pci_enable_sriov(pdev, num_vfs);
				if (!err) {
					adapter->vfs_allocated_count = num_vfs;
					dev_info(&pdev->dev,
					         "%d vfs allocated\n",
					         num_vfs);
					for (i = 0;
					     i < adapter->vfs_allocated_count;
					     i++) {
						random_ether_addr(mac_addr);
						igb_set_vf_mac(adapter, i,
						               mac_addr);
					}
				} else {
					kfree(adapter->vf_data);
					adapter->vf_data = NULL;
				}
1508 1509 1510 1511 1512
			}
		}
	}

#endif
1513
	/* setup the private structure */
1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534
	err = igb_sw_init(adapter);
	if (err)
		goto err_sw_init;

	igb_get_bus_info_pcie(hw);

	hw->phy.autoneg_wait_to_complete = false;
	hw->mac.adaptive_ifs = true;

	/* Copper options */
	if (hw->phy.media_type == e1000_media_type_copper) {
		hw->phy.mdix = AUTO_ALL_MODES;
		hw->phy.disable_polarity_correction = false;
		hw->phy.ms_type = e1000_ms_hw_default;
	}

	if (igb_check_reset_block(hw))
		dev_info(&pdev->dev,
			"PHY reset is blocked due to SOL/IDER session.\n");

	netdev->features = NETIF_F_SG |
1535
			   NETIF_F_IP_CSUM |
1536 1537 1538 1539
			   NETIF_F_HW_VLAN_TX |
			   NETIF_F_HW_VLAN_RX |
			   NETIF_F_HW_VLAN_FILTER;

1540
	netdev->features |= NETIF_F_IPV6_CSUM;
1541 1542
	netdev->features |= NETIF_F_TSO;
	netdev->features |= NETIF_F_TSO6;
1543

H
Herbert Xu 已提交
1544
	netdev->features |= NETIF_F_GRO;
1545

1546 1547
	netdev->vlan_features |= NETIF_F_TSO;
	netdev->vlan_features |= NETIF_F_TSO6;
1548
	netdev->vlan_features |= NETIF_F_IP_CSUM;
1549
	netdev->vlan_features |= NETIF_F_IPV6_CSUM;
1550 1551
	netdev->vlan_features |= NETIF_F_SG;

1552 1553 1554
	if (pci_using_dac)
		netdev->features |= NETIF_F_HIGHDMA;

1555 1556 1557
	if (adapter->hw.mac.type == e1000_82576)
		netdev->features |= NETIF_F_SCTP_CSUM;

1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583
	adapter->en_mng_pt = igb_enable_mng_pass_thru(&adapter->hw);

	/* before reading the NVM, reset the controller to put the device in a
	 * known good starting state */
	hw->mac.ops.reset_hw(hw);

	/* make sure the NVM is good */
	if (igb_validate_nvm_checksum(hw) < 0) {
		dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
		err = -EIO;
		goto err_eeprom;
	}

	/* copy the MAC address out of the NVM */
	if (hw->mac.ops.read_mac_addr(hw))
		dev_err(&pdev->dev, "NVM Read Error\n");

	memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
	memcpy(netdev->perm_addr, hw->mac.addr, netdev->addr_len);

	if (!is_valid_ether_addr(netdev->perm_addr)) {
		dev_err(&pdev->dev, "Invalid MAC Address\n");
		err = -EIO;
		goto err_eeprom;
	}

1584 1585 1586 1587
	setup_timer(&adapter->watchdog_timer, &igb_watchdog,
	            (unsigned long) adapter);
	setup_timer(&adapter->phy_info_timer, &igb_update_phy_info,
	            (unsigned long) adapter);
1588 1589 1590 1591

	INIT_WORK(&adapter->reset_task, igb_reset_task);
	INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);

1592
	/* Initialize link properties that are user-changeable */
1593 1594 1595 1596
	adapter->fc_autoneg = true;
	hw->mac.autoneg = true;
	hw->phy.autoneg_advertised = 0x2f;

1597 1598
	hw->fc.requested_mode = e1000_fc_default;
	hw->fc.current_mode = e1000_fc_default;
1599

A
Alexander Duyck 已提交
1600
	adapter->itr_setting = IGB_DEFAULT_ITR;
1601 1602 1603 1604 1605 1606 1607 1608
	adapter->itr = IGB_START_ITR;

	igb_validate_mdi_setting(hw);

	/* Initial Wake on LAN setting If APM wake is enabled in the EEPROM,
	 * enable the ACPI Magic Packet filter
	 */

1609
	if (hw->bus.func == 0)
A
Alexander Duyck 已提交
1610
		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
1611 1612
	else if (hw->bus.func == 1)
		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624

	if (eeprom_data & eeprom_apme_mask)
		adapter->eeprom_wol |= E1000_WUFC_MAG;

	/* now that we have the eeprom settings, apply the special cases where
	 * the eeprom may be wrong or the board simply won't support wake on
	 * lan on a particular port */
	switch (pdev->device) {
	case E1000_DEV_ID_82575GB_QUAD_COPPER:
		adapter->eeprom_wol = 0;
		break;
	case E1000_DEV_ID_82575EB_FIBER_SERDES:
A
Alexander Duyck 已提交
1625 1626
	case E1000_DEV_ID_82576_FIBER:
	case E1000_DEV_ID_82576_SERDES:
1627 1628 1629 1630 1631
		/* Wake events only supported on port A for dual fiber
		 * regardless of eeprom setting */
		if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
			adapter->eeprom_wol = 0;
		break;
1632 1633 1634 1635 1636 1637 1638 1639 1640 1641
	case E1000_DEV_ID_82576_QUAD_COPPER:
		/* if quad port adapter, disable WoL on all but port A */
		if (global_quad_port_a != 0)
			adapter->eeprom_wol = 0;
		else
			adapter->flags |= IGB_FLAG_QUAD_PORT_A;
		/* Reset for multiple quad port adapters */
		if (++global_quad_port_a == 4)
			global_quad_port_a = 0;
		break;
1642 1643 1644 1645
	}

	/* initialize the wol settings based on the eeprom settings */
	adapter->wol = adapter->eeprom_wol;
1646
	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659

	/* reset the hardware with the new settings */
	igb_reset(adapter);

	/* let the f/w know that the h/w is now under the control of the
	 * driver. */
	igb_get_hw_control(adapter);

	strcpy(netdev->name, "eth%d");
	err = register_netdev(netdev);
	if (err)
		goto err_register;

1660 1661 1662
	/* carrier off reporting is important to ethtool even BEFORE open */
	netif_carrier_off(netdev);

1663
#ifdef CONFIG_IGB_DCA
1664
	if (dca_add_requester(&pdev->dev) == 0) {
1665
		adapter->flags |= IGB_FLAG_DCA_ENABLED;
J
Jeb Cramer 已提交
1666 1667 1668 1669 1670
		dev_info(&pdev->dev, "DCA enabled\n");
		igb_setup_dca(adapter);
	}
#endif

P
Patrick Ohly 已提交
1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700
	/*
	 * Initialize hardware timer: we keep it running just in case
	 * that some program needs it later on.
	 */
	memset(&adapter->cycles, 0, sizeof(adapter->cycles));
	adapter->cycles.read = igb_read_clock;
	adapter->cycles.mask = CLOCKSOURCE_MASK(64);
	adapter->cycles.mult = 1;
	adapter->cycles.shift = IGB_TSYNC_SHIFT;
	wr32(E1000_TIMINCA,
	     (1<<24) |
	     IGB_TSYNC_CYCLE_TIME_IN_NANOSECONDS * IGB_TSYNC_SCALE);
#if 0
	/*
	 * Avoid rollover while we initialize by resetting the time counter.
	 */
	wr32(E1000_SYSTIML, 0x00000000);
	wr32(E1000_SYSTIMH, 0x00000000);
#else
	/*
	 * Set registers so that rollover occurs soon to test this.
	 */
	wr32(E1000_SYSTIML, 0x00000000);
	wr32(E1000_SYSTIMH, 0xFF800000);
#endif
	wrfl();
	timecounter_init(&adapter->clock,
			 &adapter->cycles,
			 ktime_to_ns(ktime_get_real()));

1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712
	/*
	 * Synchronize our NIC clock against system wall clock. NIC
	 * time stamp reading requires ~3us per sample, each sample
	 * was pretty stable even under load => only require 10
	 * samples for each offset comparison.
	 */
	memset(&adapter->compare, 0, sizeof(adapter->compare));
	adapter->compare.source = &adapter->clock;
	adapter->compare.target = ktime_get_real;
	adapter->compare.num_samples = 10;
	timecompare_update(&adapter->compare, 0);

P
Patrick Ohly 已提交
1713 1714 1715 1716 1717 1718 1719 1720 1721 1722
#ifdef DEBUG
	{
		char buffer[160];
		printk(KERN_DEBUG
			"igb: %s: hw %p initialized timer\n",
			igb_get_time_str(adapter, buffer),
			&adapter->hw);
	}
#endif

1723 1724
	dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
	/* print bus type/speed/width info */
J
Johannes Berg 已提交
1725
	dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
1726 1727 1728
		 netdev->name,
		 ((hw->bus.speed == e1000_bus_speed_2500)
		  ? "2.5Gb/s" : "unknown"),
1729 1730 1731 1732
		 ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
		  (hw->bus.width == e1000_bus_width_pcie_x2) ? "Width x2" :
		  (hw->bus.width == e1000_bus_width_pcie_x1) ? "Width x1" :
		   "unknown"),
J
Johannes Berg 已提交
1733
		 netdev->dev_addr);
1734 1735 1736 1737 1738 1739 1740 1741

	igb_read_part_num(hw, &part_num);
	dev_info(&pdev->dev, "%s: PBA No: %06x-%03x\n", netdev->name,
		(part_num >> 8), (part_num & 0xff));

	dev_info(&pdev->dev,
		"Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
		adapter->msix_entries ? "MSI-X" :
1742
		(adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
1743 1744 1745 1746 1747 1748 1749 1750
		adapter->num_rx_queues, adapter->num_tx_queues);

	return 0;

err_register:
	igb_release_hw_control(adapter);
err_eeprom:
	if (!igb_check_reset_block(hw))
1751
		igb_reset_phy(hw);
1752 1753 1754 1755

	if (hw->flash_address)
		iounmap(hw->flash_address);
err_sw_init:
1756
	igb_clear_interrupt_scheme(adapter);
1757 1758 1759 1760
	iounmap(hw->hw_addr);
err_ioremap:
	free_netdev(netdev);
err_alloc_etherdev:
1761 1762
	pci_release_selected_regions(pdev, pci_select_bars(pdev,
	                             IORESOURCE_MEM));
1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781
err_pci_reg:
err_dma:
	pci_disable_device(pdev);
	return err;
}

/**
 * igb_remove - Device Removal Routine
 * @pdev: PCI device information struct
 *
 * igb_remove is called by the PCI subsystem to alert the driver
 * that it should release a PCI device.  The could be caused by a
 * Hot-Plug event, or because the driver is going to be removed from
 * memory.
 **/
static void __devexit igb_remove(struct pci_dev *pdev)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);
J
Jeb Cramer 已提交
1782
	struct e1000_hw *hw = &adapter->hw;
1783 1784 1785 1786 1787 1788 1789 1790 1791

	/* flush_scheduled work may reschedule our watchdog task, so
	 * explicitly disable watchdog tasks from being rescheduled  */
	set_bit(__IGB_DOWN, &adapter->state);
	del_timer_sync(&adapter->watchdog_timer);
	del_timer_sync(&adapter->phy_info_timer);

	flush_scheduled_work();

1792
#ifdef CONFIG_IGB_DCA
1793
	if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
J
Jeb Cramer 已提交
1794 1795
		dev_info(&pdev->dev, "DCA disabled\n");
		dca_remove_requester(&pdev->dev);
1796
		adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
A
Alexander Duyck 已提交
1797
		wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
J
Jeb Cramer 已提交
1798 1799 1800
	}
#endif

1801 1802 1803 1804 1805 1806
	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
	 * would have already happened in close and is redundant. */
	igb_release_hw_control(adapter);

	unregister_netdev(netdev);

1807 1808
	if (!igb_check_reset_block(&adapter->hw))
		igb_reset_phy(&adapter->hw);
1809

1810
	igb_clear_interrupt_scheme(adapter);
1811

1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825
#ifdef CONFIG_PCI_IOV
	/* reclaim resources allocated to VFs */
	if (adapter->vf_data) {
		/* disable iov and allow time for transactions to clear */
		pci_disable_sriov(pdev);
		msleep(500);

		kfree(adapter->vf_data);
		adapter->vf_data = NULL;
		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
		msleep(100);
		dev_info(&pdev->dev, "IOV Disabled\n");
	}
#endif
1826 1827 1828
	iounmap(hw->hw_addr);
	if (hw->flash_address)
		iounmap(hw->flash_address);
1829 1830
	pci_release_selected_regions(pdev, pci_select_bars(pdev,
	                             IORESOURCE_MEM));
1831 1832 1833

	free_netdev(netdev);

1834
	pci_disable_pcie_error_reporting(pdev);
1835

1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854
	pci_disable_device(pdev);
}

/**
 * igb_sw_init - Initialize general software structures (struct igb_adapter)
 * @adapter: board private structure to initialize
 *
 * igb_sw_init initializes the Adapter private data structure.
 * Fields are initialized based on PCI device information and
 * OS network device settings (MTU size).
 **/
static int __devinit igb_sw_init(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	struct net_device *netdev = adapter->netdev;
	struct pci_dev *pdev = adapter->pdev;

	pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);

1855 1856
	adapter->tx_ring_count = IGB_DEFAULT_TXD;
	adapter->rx_ring_count = IGB_DEFAULT_RXD;
1857 1858 1859
	adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;

1860 1861
	/* This call may decrease the number of queues depending on
	 * interrupt mode. */
1862
	if (igb_init_interrupt_scheme(adapter)) {
1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896
		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
		return -ENOMEM;
	}

	/* Explicitly disable IRQ since the NIC can be in any state. */
	igb_irq_disable(adapter);

	set_bit(__IGB_DOWN, &adapter->state);
	return 0;
}

/**
 * igb_open - Called when a network interface is made active
 * @netdev: network interface device structure
 *
 * Returns 0 on success, negative value on failure
 *
 * The open entry point is called when a network interface is made
 * active by the system (IFF_UP).  At this point all resources needed
 * for transmit and receive operations are allocated, the interrupt
 * handler is registered with the OS, the watchdog timer is started,
 * and the stack is notified that the interface is ready.
 **/
static int igb_open(struct net_device *netdev)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	int err;
	int i;

	/* disallow open during test */
	if (test_bit(__IGB_TESTING, &adapter->state))
		return -EBUSY;

1897 1898
	netif_carrier_off(netdev);

1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921
	/* allocate transmit descriptors */
	err = igb_setup_all_tx_resources(adapter);
	if (err)
		goto err_setup_tx;

	/* allocate receive descriptors */
	err = igb_setup_all_rx_resources(adapter);
	if (err)
		goto err_setup_rx;

	/* e1000_power_up_phy(adapter); */

	adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
	if ((adapter->hw.mng_cookie.status &
	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
		igb_update_mng_vlan(adapter);

	/* before we allocate an interrupt, we must be ready to handle it.
	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
	 * as soon as we call pci_request_irq, so we have to setup our
	 * clean_rx handler before we do so.  */
	igb_configure(adapter);

1922 1923
	igb_set_vmolr(hw, adapter->vfs_allocated_count);

1924 1925 1926 1927 1928 1929 1930
	err = igb_request_irq(adapter);
	if (err)
		goto err_req_irq;

	/* From here on the code is the same as igb_up() */
	clear_bit(__IGB_DOWN, &adapter->state);

1931 1932 1933 1934
	for (i = 0; i < adapter->num_q_vectors; i++) {
		struct igb_q_vector *q_vector = adapter->q_vector[i];
		napi_enable(&q_vector->napi);
	}
1935 1936 1937

	/* Clear any pending interrupts. */
	rd32(E1000_ICR);
P
PJ Waskiewicz 已提交
1938 1939 1940

	igb_irq_enable(adapter);

1941 1942 1943 1944 1945 1946 1947
	/* notify VFs that reset has been completed */
	if (adapter->vfs_allocated_count) {
		u32 reg_data = rd32(E1000_CTRL_EXT);
		reg_data |= E1000_CTRL_EXT_PFRSTD;
		wr32(E1000_CTRL_EXT, reg_data);
	}

1948 1949
	netif_tx_start_all_queues(netdev);

1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006
	/* Fire a link status change interrupt to start the watchdog. */
	wr32(E1000_ICS, E1000_ICS_LSC);

	return 0;

err_req_irq:
	igb_release_hw_control(adapter);
	/* e1000_power_down_phy(adapter); */
	igb_free_all_rx_resources(adapter);
err_setup_rx:
	igb_free_all_tx_resources(adapter);
err_setup_tx:
	igb_reset(adapter);

	return err;
}

/**
 * igb_close - Disables a network interface
 * @netdev: network interface device structure
 *
 * Returns 0, this is not allowed to fail
 *
 * The close entry point is called when an interface is de-activated
 * by the OS.  The hardware is still under the driver's control, but
 * needs to be disabled.  A global MAC reset is issued to stop the
 * hardware, and all transmit and receive resources are freed.
 **/
static int igb_close(struct net_device *netdev)
{
	struct igb_adapter *adapter = netdev_priv(netdev);

	WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
	igb_down(adapter);

	igb_free_irq(adapter);

	igb_free_all_tx_resources(adapter);
	igb_free_all_rx_resources(adapter);

	/* kill manageability vlan ID if supported, but not if a vlan with
	 * the same ID is registered on the host OS (let 8021q kill it) */
	if ((adapter->hw.mng_cookie.status &
			  E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
	     !(adapter->vlgrp &&
	       vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id)))
		igb_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);

	return 0;
}

/**
 * igb_setup_tx_resources - allocate Tx resources (Descriptors)
 * @tx_ring: tx descriptor ring (for a specific queue) to setup
 *
 * Return 0 on success, negative on failure
 **/
2007
int igb_setup_tx_resources(struct igb_ring *tx_ring)
2008
{
2009
	struct pci_dev *pdev = tx_ring->pdev;
2010 2011 2012 2013 2014 2015 2016 2017 2018
	int size;

	size = sizeof(struct igb_buffer) * tx_ring->count;
	tx_ring->buffer_info = vmalloc(size);
	if (!tx_ring->buffer_info)
		goto err;
	memset(tx_ring->buffer_info, 0, size);

	/* round up to nearest 4K */
2019
	tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033
	tx_ring->size = ALIGN(tx_ring->size, 4096);

	tx_ring->desc = pci_alloc_consistent(pdev, tx_ring->size,
					     &tx_ring->dma);

	if (!tx_ring->desc)
		goto err;

	tx_ring->next_to_use = 0;
	tx_ring->next_to_clean = 0;
	return 0;

err:
	vfree(tx_ring->buffer_info);
2034
	dev_err(&pdev->dev,
2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048
		"Unable to allocate memory for the transmit descriptor ring\n");
	return -ENOMEM;
}

/**
 * igb_setup_all_tx_resources - wrapper to allocate Tx resources
 *				  (Descriptors) for all queues
 * @adapter: board private structure
 *
 * Return 0 on success, negative on failure
 **/
static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
{
	int i, err = 0;
2049
	int r_idx;
2050 2051

	for (i = 0; i < adapter->num_tx_queues; i++) {
2052
		err = igb_setup_tx_resources(&adapter->tx_ring[i]);
2053 2054 2055 2056
		if (err) {
			dev_err(&adapter->pdev->dev,
				"Allocation for Tx Queue %u failed\n", i);
			for (i--; i >= 0; i--)
2057
				igb_free_tx_resources(&adapter->tx_ring[i]);
2058 2059 2060 2061
			break;
		}
	}

2062 2063 2064
	for (i = 0; i < IGB_MAX_TX_QUEUES; i++) {
		r_idx = i % adapter->num_tx_queues;
		adapter->multi_tx_table[i] = &adapter->tx_ring[r_idx];
2065
	}
2066 2067 2068 2069
	return err;
}

/**
2070 2071
 * igb_setup_tctl - configure the transmit control registers
 * @adapter: Board private structure
2072
 **/
2073
void igb_setup_tctl(struct igb_adapter *adapter)
2074 2075 2076 2077
{
	struct e1000_hw *hw = &adapter->hw;
	u32 tctl;

2078 2079
	/* disable queue 0 which is enabled by default on 82575 and 82576 */
	wr32(E1000_TXDCTL(0), 0);
2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094

	/* Program the Transmit Control Register */
	tctl = rd32(E1000_TCTL);
	tctl &= ~E1000_TCTL_CT;
	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);

	igb_config_collision_dist(hw);

	/* Enable transmits */
	tctl |= E1000_TCTL_EN;

	wr32(E1000_TCTL, tctl);
}

2095 2096 2097 2098 2099 2100 2101
/**
 * igb_configure_tx_ring - Configure transmit ring after Reset
 * @adapter: board private structure
 * @ring: tx ring to configure
 *
 * Configure a transmit ring after a reset.
 **/
2102 2103
void igb_configure_tx_ring(struct igb_adapter *adapter,
                           struct igb_ring *ring)
2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122
{
	struct e1000_hw *hw = &adapter->hw;
	u32 txdctl;
	u64 tdba = ring->dma;
	int reg_idx = ring->reg_idx;

	/* disable the queue */
	txdctl = rd32(E1000_TXDCTL(reg_idx));
	wr32(E1000_TXDCTL(reg_idx),
	                txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
	wrfl();
	mdelay(10);

	wr32(E1000_TDLEN(reg_idx),
	                ring->count * sizeof(union e1000_adv_tx_desc));
	wr32(E1000_TDBAL(reg_idx),
	                tdba & 0x00000000ffffffffULL);
	wr32(E1000_TDBAH(reg_idx), tdba >> 32);

2123 2124 2125 2126
	ring->head = hw->hw_addr + E1000_TDH(reg_idx);
	ring->tail = hw->hw_addr + E1000_TDT(reg_idx);
	writel(0, ring->head);
	writel(0, ring->tail);
2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149

	txdctl |= IGB_TX_PTHRESH;
	txdctl |= IGB_TX_HTHRESH << 8;
	txdctl |= IGB_TX_WTHRESH << 16;

	txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
	wr32(E1000_TXDCTL(reg_idx), txdctl);
}

/**
 * igb_configure_tx - Configure transmit Unit after Reset
 * @adapter: board private structure
 *
 * Configure the Tx unit of the MAC after a reset.
 **/
static void igb_configure_tx(struct igb_adapter *adapter)
{
	int i;

	for (i = 0; i < adapter->num_tx_queues; i++)
		igb_configure_tx_ring(adapter, &adapter->tx_ring[i]);
}

2150 2151 2152 2153 2154 2155
/**
 * igb_setup_rx_resources - allocate Rx resources (Descriptors)
 * @rx_ring:    rx descriptor ring (for a specific queue) to setup
 *
 * Returns 0 on success, negative on failure
 **/
2156
int igb_setup_rx_resources(struct igb_ring *rx_ring)
2157
{
2158
	struct pci_dev *pdev = rx_ring->pdev;
2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185
	int size, desc_len;

	size = sizeof(struct igb_buffer) * rx_ring->count;
	rx_ring->buffer_info = vmalloc(size);
	if (!rx_ring->buffer_info)
		goto err;
	memset(rx_ring->buffer_info, 0, size);

	desc_len = sizeof(union e1000_adv_rx_desc);

	/* Round up to nearest 4K */
	rx_ring->size = rx_ring->count * desc_len;
	rx_ring->size = ALIGN(rx_ring->size, 4096);

	rx_ring->desc = pci_alloc_consistent(pdev, rx_ring->size,
					     &rx_ring->dma);

	if (!rx_ring->desc)
		goto err;

	rx_ring->next_to_clean = 0;
	rx_ring->next_to_use = 0;

	return 0;

err:
	vfree(rx_ring->buffer_info);
2186
	dev_err(&pdev->dev, "Unable to allocate memory for "
2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202
		"the receive descriptor ring\n");
	return -ENOMEM;
}

/**
 * igb_setup_all_rx_resources - wrapper to allocate Rx resources
 *				  (Descriptors) for all queues
 * @adapter: board private structure
 *
 * Return 0 on success, negative on failure
 **/
static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
{
	int i, err = 0;

	for (i = 0; i < adapter->num_rx_queues; i++) {
2203
		err = igb_setup_rx_resources(&adapter->rx_ring[i]);
2204 2205 2206 2207
		if (err) {
			dev_err(&adapter->pdev->dev,
				"Allocation for Rx Queue %u failed\n", i);
			for (i--; i >= 0; i--)
2208
				igb_free_rx_resources(&adapter->rx_ring[i]);
2209 2210 2211 2212 2213 2214 2215
			break;
		}
	}

	return err;
}

2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320
/**
 * igb_setup_mrqc - configure the multiple receive queue control registers
 * @adapter: Board private structure
 **/
static void igb_setup_mrqc(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 mrqc, rxcsum;
	u32 j, num_rx_queues, shift = 0, shift2 = 0;
	union e1000_reta {
		u32 dword;
		u8  bytes[4];
	} reta;
	static const u8 rsshash[40] = {
		0x6d, 0x5a, 0x56, 0xda, 0x25, 0x5b, 0x0e, 0xc2, 0x41, 0x67,
		0x25, 0x3d, 0x43, 0xa3, 0x8f, 0xb0, 0xd0, 0xca, 0x2b, 0xcb,
		0xae, 0x7b, 0x30, 0xb4,	0x77, 0xcb, 0x2d, 0xa3, 0x80, 0x30,
		0xf2, 0x0c, 0x6a, 0x42, 0xb7, 0x3b, 0xbe, 0xac, 0x01, 0xfa };

	/* Fill out hash function seeds */
	for (j = 0; j < 10; j++) {
		u32 rsskey = rsshash[(j * 4)];
		rsskey |= rsshash[(j * 4) + 1] << 8;
		rsskey |= rsshash[(j * 4) + 2] << 16;
		rsskey |= rsshash[(j * 4) + 3] << 24;
		array_wr32(E1000_RSSRK(0), j, rsskey);
	}

	num_rx_queues = adapter->num_rx_queues;

	if (adapter->vfs_allocated_count) {
		/* 82575 and 82576 supports 2 RSS queues for VMDq */
		switch (hw->mac.type) {
		case e1000_82576:
			shift = 3;
			num_rx_queues = 2;
			break;
		case e1000_82575:
			shift = 2;
			shift2 = 6;
		default:
			break;
		}
	} else {
		if (hw->mac.type == e1000_82575)
			shift = 6;
	}

	for (j = 0; j < (32 * 4); j++) {
		reta.bytes[j & 3] = (j % num_rx_queues) << shift;
		if (shift2)
			reta.bytes[j & 3] |= num_rx_queues << shift2;
		if ((j & 3) == 3)
			wr32(E1000_RETA(j >> 2), reta.dword);
	}

	/*
	 * Disable raw packet checksumming so that RSS hash is placed in
	 * descriptor on writeback.  No need to enable TCP/UDP/IP checksum
	 * offloads as they are enabled by default
	 */
	rxcsum = rd32(E1000_RXCSUM);
	rxcsum |= E1000_RXCSUM_PCSD;

	if (adapter->hw.mac.type >= e1000_82576)
		/* Enable Receive Checksum Offload for SCTP */
		rxcsum |= E1000_RXCSUM_CRCOFL;

	/* Don't need to set TUOFL or IPOFL, they default to 1 */
	wr32(E1000_RXCSUM, rxcsum);

	/* If VMDq is enabled then we set the appropriate mode for that, else
	 * we default to RSS so that an RSS hash is calculated per packet even
	 * if we are only using one queue */
	if (adapter->vfs_allocated_count) {
		if (hw->mac.type > e1000_82575) {
			/* Set the default pool for the PF's first queue */
			u32 vtctl = rd32(E1000_VT_CTL);
			vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
				   E1000_VT_CTL_DISABLE_DEF_POOL);
			vtctl |= adapter->vfs_allocated_count <<
				E1000_VT_CTL_DEFAULT_POOL_SHIFT;
			wr32(E1000_VT_CTL, vtctl);
		}
		if (adapter->num_rx_queues > 1)
			mrqc = E1000_MRQC_ENABLE_VMDQ_RSS_2Q;
		else
			mrqc = E1000_MRQC_ENABLE_VMDQ;
	} else {
		mrqc = E1000_MRQC_ENABLE_RSS_4Q;
	}
	igb_vmm_control(adapter);

	mrqc |= (E1000_MRQC_RSS_FIELD_IPV4 |
		 E1000_MRQC_RSS_FIELD_IPV4_TCP);
	mrqc |= (E1000_MRQC_RSS_FIELD_IPV6 |
		 E1000_MRQC_RSS_FIELD_IPV6_TCP);
	mrqc |= (E1000_MRQC_RSS_FIELD_IPV4_UDP |
		 E1000_MRQC_RSS_FIELD_IPV6_UDP);
	mrqc |= (E1000_MRQC_RSS_FIELD_IPV6_UDP_EX |
		 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);

	wr32(E1000_MRQC, mrqc);
}

2321 2322 2323 2324
/**
 * igb_setup_rctl - configure the receive control registers
 * @adapter: Board private structure
 **/
2325
void igb_setup_rctl(struct igb_adapter *adapter)
2326 2327 2328 2329 2330 2331 2332
{
	struct e1000_hw *hw = &adapter->hw;
	u32 rctl;

	rctl = rd32(E1000_RCTL);

	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
2333
	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
2334

2335
	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
2336
		(hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
2337

2338 2339 2340 2341
	/*
	 * enable stripping of CRC. It's unlikely this will break BMC
	 * redirection as it did with e1000. Newer features require
	 * that the HW strips the CRC.
2342
	 */
2343
	rctl |= E1000_RCTL_SECRC;
2344

2345
	/*
2346
	 * disable store bad packets and clear size bits.
2347
	 */
2348
	rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
2349

A
Alexander Duyck 已提交
2350 2351
	/* enable LPE to prevent packets larger than max_frame_size */
	rctl |= E1000_RCTL_LPE;
2352

2353 2354
	/* disable queue 0 to prevent tail write w/o re-config */
	wr32(E1000_RXDCTL(0), 0);
2355

2356 2357 2358 2359 2360 2361 2362 2363 2364 2365
	/* Attention!!!  For SR-IOV PF driver operations you must enable
	 * queue drop for all VF and PF queues to prevent head of line blocking
	 * if an un-trusted VF does not provide descriptors to hardware.
	 */
	if (adapter->vfs_allocated_count) {
		u32 vmolr;

		/* set all queue drop enable bits */
		wr32(E1000_QDE, ALL_QUEUES);

2366
		vmolr = rd32(E1000_VMOLR(adapter->vfs_allocated_count));
2367 2368
		if (rctl & E1000_RCTL_LPE)
			vmolr |= E1000_VMOLR_LPE;
2369
		if (adapter->num_rx_queues > 1)
2370
			vmolr |= E1000_VMOLR_RSSE;
2371
		wr32(E1000_VMOLR(adapter->vfs_allocated_count), vmolr);
2372 2373
	}

2374 2375 2376
	wr32(E1000_RCTL, rctl);
}

2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401
/**
 * igb_rlpml_set - set maximum receive packet size
 * @adapter: board private structure
 *
 * Configure maximum receivable packet size.
 **/
static void igb_rlpml_set(struct igb_adapter *adapter)
{
	u32 max_frame_size = adapter->max_frame_size;
	struct e1000_hw *hw = &adapter->hw;
	u16 pf_id = adapter->vfs_allocated_count;

	if (adapter->vlgrp)
		max_frame_size += VLAN_TAG_SIZE;

	/* if vfs are enabled we set RLPML to the largest possible request
	 * size and set the VMOLR RLPML to the size we need */
	if (pf_id) {
		igb_set_vf_rlpml(adapter, max_frame_size, pf_id);
		max_frame_size = MAX_STD_JUMBO_FRAME_SIZE + VLAN_TAG_SIZE;
	}

	wr32(E1000_RLPML, max_frame_size);
}

2402 2403 2404 2405 2406 2407 2408
/**
 * igb_configure_rx_ring - Configure a receive ring after Reset
 * @adapter: board private structure
 * @ring: receive ring to be configured
 *
 * Configure the Rx unit of the MAC after a reset.
 **/
2409 2410
void igb_configure_rx_ring(struct igb_adapter *adapter,
                           struct igb_ring *ring)
2411 2412 2413 2414
{
	struct e1000_hw *hw = &adapter->hw;
	u64 rdba = ring->dma;
	int reg_idx = ring->reg_idx;
2415
	u32 srrctl, rxdctl;
2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429

	/* disable the queue */
	rxdctl = rd32(E1000_RXDCTL(reg_idx));
	wr32(E1000_RXDCTL(reg_idx),
	                rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);

	/* Set DMA base address registers */
	wr32(E1000_RDBAL(reg_idx),
	     rdba & 0x00000000ffffffffULL);
	wr32(E1000_RDBAH(reg_idx), rdba >> 32);
	wr32(E1000_RDLEN(reg_idx),
	               ring->count * sizeof(union e1000_adv_rx_desc));

	/* initialize head and tail */
2430 2431 2432 2433
	ring->head = hw->hw_addr + E1000_RDH(reg_idx);
	ring->tail = hw->hw_addr + E1000_RDT(reg_idx);
	writel(0, ring->head);
	writel(0, ring->tail);
2434

2435
	/* set descriptor configuration */
2436 2437
	if (ring->rx_buffer_len < IGB_RXBUFFER_1024) {
		srrctl = ALIGN(ring->rx_buffer_len, 64) <<
2438 2439 2440 2441 2442 2443 2444 2445 2446 2447
		         E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
#if (PAGE_SIZE / 2) > IGB_RXBUFFER_16384
		srrctl |= IGB_RXBUFFER_16384 >>
		          E1000_SRRCTL_BSIZEPKT_SHIFT;
#else
		srrctl |= (PAGE_SIZE / 2) >>
		          E1000_SRRCTL_BSIZEPKT_SHIFT;
#endif
		srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
	} else {
2448
		srrctl = ALIGN(ring->rx_buffer_len, 1024) >>
2449 2450 2451 2452 2453 2454
		         E1000_SRRCTL_BSIZEPKT_SHIFT;
		srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
	}

	wr32(E1000_SRRCTL(reg_idx), srrctl);

2455 2456 2457 2458 2459 2460 2461 2462 2463 2464
	/* enable receive descriptor fetching */
	rxdctl = rd32(E1000_RXDCTL(reg_idx));
	rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
	rxdctl &= 0xFFF00000;
	rxdctl |= IGB_RX_PTHRESH;
	rxdctl |= IGB_RX_HTHRESH << 8;
	rxdctl |= IGB_RX_WTHRESH << 16;
	wr32(E1000_RXDCTL(reg_idx), rxdctl);
}

2465 2466 2467 2468 2469 2470 2471 2472
/**
 * igb_configure_rx - Configure receive Unit after Reset
 * @adapter: board private structure
 *
 * Configure the Rx unit of the MAC after a reset.
 **/
static void igb_configure_rx(struct igb_adapter *adapter)
{
2473
	int i;
2474

2475 2476 2477
	/* set UTA to appropriate mode */
	igb_set_uta(adapter);

2478 2479 2480 2481
	/* set the correct pool for the PF default MAC address in entry 0 */
	igb_rar_set_qsel(adapter, adapter->hw.mac.addr, 0,
	                 adapter->vfs_allocated_count);

2482 2483 2484 2485
	/* Setup the HW Rx Head and Tail Descriptor Pointers and
	 * the Base and Length of the Rx Descriptor Ring */
	for (i = 0; i < adapter->num_rx_queues; i++)
		igb_configure_rx_ring(adapter, &adapter->rx_ring[i]);
2486 2487 2488 2489 2490 2491 2492 2493
}

/**
 * igb_free_tx_resources - Free Tx Resources per Queue
 * @tx_ring: Tx descriptor ring for a specific queue
 *
 * Free all transmit software resources
 **/
2494
void igb_free_tx_resources(struct igb_ring *tx_ring)
2495
{
2496
	igb_clean_tx_ring(tx_ring);
2497 2498 2499 2500

	vfree(tx_ring->buffer_info);
	tx_ring->buffer_info = NULL;

2501 2502
	pci_free_consistent(tx_ring->pdev, tx_ring->size,
	                    tx_ring->desc, tx_ring->dma);
2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517

	tx_ring->desc = NULL;
}

/**
 * igb_free_all_tx_resources - Free Tx Resources for All Queues
 * @adapter: board private structure
 *
 * Free all transmit software resources
 **/
static void igb_free_all_tx_resources(struct igb_adapter *adapter)
{
	int i;

	for (i = 0; i < adapter->num_tx_queues; i++)
2518
		igb_free_tx_resources(&adapter->tx_ring[i]);
2519 2520
}

2521 2522
void igb_unmap_and_free_tx_resource(struct igb_ring *tx_ring,
				    struct igb_buffer *buffer_info)
2523
{
2524
	buffer_info->dma = 0;
2525
	if (buffer_info->skb) {
2526 2527
		skb_dma_unmap(&tx_ring->pdev->dev,
		              buffer_info->skb,
2528
		              DMA_TO_DEVICE);
2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539
		dev_kfree_skb_any(buffer_info->skb);
		buffer_info->skb = NULL;
	}
	buffer_info->time_stamp = 0;
	/* buffer_info must be completely set up in the transmit path */
}

/**
 * igb_clean_tx_ring - Free Tx Buffers
 * @tx_ring: ring to be cleaned
 **/
2540
static void igb_clean_tx_ring(struct igb_ring *tx_ring)
2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551
{
	struct igb_buffer *buffer_info;
	unsigned long size;
	unsigned int i;

	if (!tx_ring->buffer_info)
		return;
	/* Free all the Tx ring sk_buffs */

	for (i = 0; i < tx_ring->count; i++) {
		buffer_info = &tx_ring->buffer_info[i];
2552
		igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564
	}

	size = sizeof(struct igb_buffer) * tx_ring->count;
	memset(tx_ring->buffer_info, 0, size);

	/* Zero out the descriptor ring */

	memset(tx_ring->desc, 0, tx_ring->size);

	tx_ring->next_to_use = 0;
	tx_ring->next_to_clean = 0;

2565 2566
	writel(0, tx_ring->head);
	writel(0, tx_ring->tail);
2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577
}

/**
 * igb_clean_all_tx_rings - Free Tx Buffers for all queues
 * @adapter: board private structure
 **/
static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
{
	int i;

	for (i = 0; i < adapter->num_tx_queues; i++)
2578
		igb_clean_tx_ring(&adapter->tx_ring[i]);
2579 2580 2581 2582 2583 2584 2585 2586
}

/**
 * igb_free_rx_resources - Free Rx Resources
 * @rx_ring: ring to clean the resources from
 *
 * Free all receive software resources
 **/
2587
void igb_free_rx_resources(struct igb_ring *rx_ring)
2588
{
2589
	igb_clean_rx_ring(rx_ring);
2590 2591 2592 2593

	vfree(rx_ring->buffer_info);
	rx_ring->buffer_info = NULL;

2594 2595
	pci_free_consistent(rx_ring->pdev, rx_ring->size,
	                    rx_ring->desc, rx_ring->dma);
2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610

	rx_ring->desc = NULL;
}

/**
 * igb_free_all_rx_resources - Free Rx Resources for All Queues
 * @adapter: board private structure
 *
 * Free all receive software resources
 **/
static void igb_free_all_rx_resources(struct igb_adapter *adapter)
{
	int i;

	for (i = 0; i < adapter->num_rx_queues; i++)
2611
		igb_free_rx_resources(&adapter->rx_ring[i]);
2612 2613 2614 2615 2616 2617
}

/**
 * igb_clean_rx_ring - Free Rx Buffers per Queue
 * @rx_ring: ring to free buffers from
 **/
2618
static void igb_clean_rx_ring(struct igb_ring *rx_ring)
2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629
{
	struct igb_buffer *buffer_info;
	unsigned long size;
	unsigned int i;

	if (!rx_ring->buffer_info)
		return;
	/* Free all the Rx ring sk_buffs */
	for (i = 0; i < rx_ring->count; i++) {
		buffer_info = &rx_ring->buffer_info[i];
		if (buffer_info->dma) {
2630 2631
			pci_unmap_single(rx_ring->pdev,
			                 buffer_info->dma,
2632
					 rx_ring->rx_buffer_len,
A
Alexander Duyck 已提交
2633
					 PCI_DMA_FROMDEVICE);
2634 2635 2636 2637 2638 2639 2640
			buffer_info->dma = 0;
		}

		if (buffer_info->skb) {
			dev_kfree_skb(buffer_info->skb);
			buffer_info->skb = NULL;
		}
A
Alexander Duyck 已提交
2641
		if (buffer_info->page_dma) {
2642 2643
			pci_unmap_page(rx_ring->pdev,
			               buffer_info->page_dma,
A
Alexander Duyck 已提交
2644 2645 2646 2647
				       PAGE_SIZE / 2,
				       PCI_DMA_FROMDEVICE);
			buffer_info->page_dma = 0;
		}
2648 2649 2650
		if (buffer_info->page) {
			put_page(buffer_info->page);
			buffer_info->page = NULL;
2651
			buffer_info->page_offset = 0;
2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663
		}
	}

	size = sizeof(struct igb_buffer) * rx_ring->count;
	memset(rx_ring->buffer_info, 0, size);

	/* Zero out the descriptor ring */
	memset(rx_ring->desc, 0, rx_ring->size);

	rx_ring->next_to_clean = 0;
	rx_ring->next_to_use = 0;

2664 2665
	writel(0, rx_ring->head);
	writel(0, rx_ring->tail);
2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676
}

/**
 * igb_clean_all_rx_rings - Free Rx Buffers for all queues
 * @adapter: board private structure
 **/
static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
{
	int i;

	for (i = 0; i < adapter->num_rx_queues; i++)
2677
		igb_clean_rx_ring(&adapter->rx_ring[i]);
2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689
}

/**
 * igb_set_mac - Change the Ethernet Address of the NIC
 * @netdev: network interface device structure
 * @p: pointer to an address structure
 *
 * Returns 0 on success, negative on failure
 **/
static int igb_set_mac(struct net_device *netdev, void *p)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
2690
	struct e1000_hw *hw = &adapter->hw;
2691 2692 2693 2694 2695 2696
	struct sockaddr *addr = p;

	if (!is_valid_ether_addr(addr->sa_data))
		return -EADDRNOTAVAIL;

	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2697
	memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
2698

2699 2700 2701
	/* set the correct pool for the new PF MAC address in entry 0 */
	igb_rar_set_qsel(adapter, hw->mac.addr, 0,
	                 adapter->vfs_allocated_count);
2702

2703 2704 2705 2706
	return 0;
}

/**
2707
 * igb_write_mc_addr_list - write multicast addresses to MTA
2708 2709
 * @netdev: network interface device structure
 *
2710 2711 2712 2713
 * Writes multicast address list to the MTA hash table.
 * Returns: -ENOMEM on failure
 *                0 on no addresses written
 *                X on writing X addresses to MTA
2714
 **/
2715
static int igb_write_mc_addr_list(struct net_device *netdev)
2716 2717 2718
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
2719
	struct dev_mc_list *mc_ptr = netdev->mc_list;
2720 2721
	u8  *mta_list;
	u32 vmolr = 0;
2722 2723
	int i;

2724 2725 2726 2727 2728 2729
	if (!netdev->mc_count) {
		/* nothing to program, so clear mc list */
		igb_update_mc_addr_list(hw, NULL, 0);
		igb_restore_vf_multicasts(adapter);
		return 0;
	}
2730

2731 2732 2733
	mta_list = kzalloc(netdev->mc_count * 6, GFP_ATOMIC);
	if (!mta_list)
		return -ENOMEM;
2734

2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745
	/* set vmolr receive overflow multicast bit */
	vmolr |= E1000_VMOLR_ROMPE;

	/* The shared function expects a packed array of only addresses. */
	mc_ptr = netdev->mc_list;

	for (i = 0; i < netdev->mc_count; i++) {
		if (!mc_ptr)
			break;
		memcpy(mta_list + (i*ETH_ALEN), mc_ptr->dmi_addr, ETH_ALEN);
		mc_ptr = mc_ptr->next;
2746
	}
2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772
	igb_update_mc_addr_list(hw, mta_list, i);
	kfree(mta_list);

	return netdev->mc_count;
}

/**
 * igb_write_uc_addr_list - write unicast addresses to RAR table
 * @netdev: network interface device structure
 *
 * Writes unicast address list to the RAR table.
 * Returns: -ENOMEM on failure/insufficient address space
 *                0 on no addresses written
 *                X on writing X addresses to the RAR table
 **/
static int igb_write_uc_addr_list(struct net_device *netdev)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	unsigned int vfn = adapter->vfs_allocated_count;
	unsigned int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
	int count = 0;

	/* return ENOMEM indicating insufficient memory for addresses */
	if (netdev->uc.count > rar_entries)
		return -ENOMEM;
2773

2774 2775 2776 2777 2778
	if (netdev->uc.count && rar_entries) {
		struct netdev_hw_addr *ha;
		list_for_each_entry(ha, &netdev->uc.list, list) {
			if (!rar_entries)
				break;
2779 2780
			igb_rar_set_qsel(adapter, ha->addr,
			                 rar_entries--,
2781 2782
			                 vfn);
			count++;
2783 2784 2785 2786 2787 2788 2789 2790 2791
		}
	}
	/* write the addresses in reverse order to avoid write combining */
	for (; rar_entries > 0 ; rar_entries--) {
		wr32(E1000_RAH(rar_entries), 0);
		wr32(E1000_RAL(rar_entries), 0);
	}
	wrfl();

2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849
	return count;
}

/**
 * igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
 * @netdev: network interface device structure
 *
 * The set_rx_mode entry point is called whenever the unicast or multicast
 * address lists or the network interface flags are updated.  This routine is
 * responsible for configuring the hardware for proper unicast, multicast,
 * promiscuous mode, and all-multi behavior.
 **/
static void igb_set_rx_mode(struct net_device *netdev)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	unsigned int vfn = adapter->vfs_allocated_count;
	u32 rctl, vmolr = 0;
	int count;

	/* Check for Promiscuous and All Multicast modes */
	rctl = rd32(E1000_RCTL);

	/* clear the effected bits */
	rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_VFE);

	if (netdev->flags & IFF_PROMISC) {
		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
		vmolr |= (E1000_VMOLR_ROPE | E1000_VMOLR_MPME);
	} else {
		if (netdev->flags & IFF_ALLMULTI) {
			rctl |= E1000_RCTL_MPE;
			vmolr |= E1000_VMOLR_MPME;
		} else {
			/*
			 * Write addresses to the MTA, if the attempt fails
			 * then we should just turn on promiscous mode so
			 * that we can at least receive multicast traffic
			 */
			count = igb_write_mc_addr_list(netdev);
			if (count < 0) {
				rctl |= E1000_RCTL_MPE;
				vmolr |= E1000_VMOLR_MPME;
			} else if (count) {
				vmolr |= E1000_VMOLR_ROMPE;
			}
		}
		/*
		 * Write addresses to available RAR registers, if there is not
		 * sufficient space to store all the addresses then enable
		 * unicast promiscous mode
		 */
		count = igb_write_uc_addr_list(netdev);
		if (count < 0) {
			rctl |= E1000_RCTL_UPE;
			vmolr |= E1000_VMOLR_ROPE;
		}
		rctl |= E1000_RCTL_VFE;
2850
	}
2851
	wr32(E1000_RCTL, rctl);
2852

2853 2854 2855 2856 2857 2858 2859
	/*
	 * In order to support SR-IOV and eventually VMDq it is necessary to set
	 * the VMOLR to enable the appropriate modes.  Without this workaround
	 * we will have issues with VLAN tag stripping not being done for frames
	 * that are only arriving because we are the default pool
	 */
	if (hw->mac.type < e1000_82576)
2860
		return;
2861

2862 2863 2864
	vmolr |= rd32(E1000_VMOLR(vfn)) &
	         ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
	wr32(E1000_VMOLR(vfn), vmolr);
2865
	igb_restore_vf_multicasts(adapter);
2866 2867 2868 2869 2870 2871 2872
}

/* Need to wait a few seconds after link up to get diagnostic information from
 * the phy */
static void igb_update_phy_info(unsigned long data)
{
	struct igb_adapter *adapter = (struct igb_adapter *) data;
2873
	igb_get_phy_info(&adapter->hw);
2874 2875
}

A
Alexander Duyck 已提交
2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911
/**
 * igb_has_link - check shared code for link and determine up/down
 * @adapter: pointer to driver private info
 **/
static bool igb_has_link(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	bool link_active = false;
	s32 ret_val = 0;

	/* get_link_status is set on LSC (link status) interrupt or
	 * rx sequence error interrupt.  get_link_status will stay
	 * false until the e1000_check_for_link establishes link
	 * for copper adapters ONLY
	 */
	switch (hw->phy.media_type) {
	case e1000_media_type_copper:
		if (hw->mac.get_link_status) {
			ret_val = hw->mac.ops.check_for_link(hw);
			link_active = !hw->mac.get_link_status;
		} else {
			link_active = true;
		}
		break;
	case e1000_media_type_internal_serdes:
		ret_val = hw->mac.ops.check_for_link(hw);
		link_active = hw->mac.serdes_has_link;
		break;
	default:
	case e1000_media_type_unknown:
		break;
	}

	return link_active;
}

2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930
/**
 * igb_watchdog - Timer Call-back
 * @data: pointer to adapter cast into an unsigned long
 **/
static void igb_watchdog(unsigned long data)
{
	struct igb_adapter *adapter = (struct igb_adapter *)data;
	/* Do the rest outside of interrupt context */
	schedule_work(&adapter->watchdog_task);
}

static void igb_watchdog_task(struct work_struct *work)
{
	struct igb_adapter *adapter = container_of(work,
					struct igb_adapter, watchdog_task);
	struct e1000_hw *hw = &adapter->hw;
	struct net_device *netdev = adapter->netdev;
	struct igb_ring *tx_ring = adapter->tx_ring;
	u32 link;
2931
	int i;
2932

A
Alexander Duyck 已提交
2933 2934
	link = igb_has_link(adapter);
	if ((netif_carrier_ok(netdev)) && link)
2935 2936 2937 2938 2939 2940 2941 2942 2943 2944
		goto link_up;

	if (link) {
		if (!netif_carrier_ok(netdev)) {
			u32 ctrl;
			hw->mac.ops.get_speed_and_duplex(&adapter->hw,
						   &adapter->link_speed,
						   &adapter->link_duplex);

			ctrl = rd32(E1000_CTRL);
2945 2946
			/* Links status message must follow this format */
			printk(KERN_INFO "igb: %s NIC Link is Up %d Mbps %s, "
2947
				 "Flow Control: %s\n",
2948
			         netdev->name,
2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973
				 adapter->link_speed,
				 adapter->link_duplex == FULL_DUPLEX ?
				 "Full Duplex" : "Half Duplex",
				 ((ctrl & E1000_CTRL_TFCE) && (ctrl &
				 E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
				 E1000_CTRL_RFCE) ? "RX" : ((ctrl &
				 E1000_CTRL_TFCE) ? "TX" : "None")));

			/* tweak tx_queue_len according to speed/duplex and
			 * adjust the timeout factor */
			netdev->tx_queue_len = adapter->tx_queue_len;
			adapter->tx_timeout_factor = 1;
			switch (adapter->link_speed) {
			case SPEED_10:
				netdev->tx_queue_len = 10;
				adapter->tx_timeout_factor = 14;
				break;
			case SPEED_100:
				netdev->tx_queue_len = 100;
				/* maybe add some timeout factor ? */
				break;
			}

			netif_carrier_on(netdev);

2974 2975
			igb_ping_all_vfs(adapter);

2976
			/* link state has changed, schedule phy info update */
2977 2978 2979 2980 2981 2982 2983 2984
			if (!test_bit(__IGB_DOWN, &adapter->state))
				mod_timer(&adapter->phy_info_timer,
					  round_jiffies(jiffies + 2 * HZ));
		}
	} else {
		if (netif_carrier_ok(netdev)) {
			adapter->link_speed = 0;
			adapter->link_duplex = 0;
2985 2986 2987
			/* Links status message must follow this format */
			printk(KERN_INFO "igb: %s NIC Link is Down\n",
			       netdev->name);
2988
			netif_carrier_off(netdev);
2989

2990 2991
			igb_ping_all_vfs(adapter);

2992
			/* link state has changed, schedule phy info update */
2993 2994 2995 2996 2997 2998 2999 3000 3001
			if (!test_bit(__IGB_DOWN, &adapter->state))
				mod_timer(&adapter->phy_info_timer,
					  round_jiffies(jiffies + 2 * HZ));
		}
	}

link_up:
	igb_update_stats(adapter);

3002
	hw->mac.tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
3003
	adapter->tpt_old = adapter->stats.tpt;
3004
	hw->mac.collision_delta = adapter->stats.colc - adapter->colc_old;
3005 3006 3007 3008 3009 3010 3011 3012 3013 3014
	adapter->colc_old = adapter->stats.colc;

	adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
	adapter->gorc_old = adapter->stats.gorc;
	adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
	adapter->gotc_old = adapter->stats.gotc;

	igb_update_adaptive(&adapter->hw);

	if (!netif_carrier_ok(netdev)) {
3015
		if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
3016 3017 3018 3019 3020 3021
			/* We've lost link, so the controller stops DMA,
			 * but we've got queued Tx work that's never going
			 * to get done, so reset controller to flush Tx.
			 * (Do the reset outside of interrupt context). */
			adapter->tx_timeout_count++;
			schedule_work(&adapter->reset_task);
3022 3023
			/* return immediately since reset is imminent */
			return;
3024 3025 3026 3027
		}
	}

	/* Cause software interrupt to ensure rx ring is cleaned */
3028
	if (adapter->msix_entries) {
3029 3030 3031 3032 3033
		u32 eics = 0;
		for (i = 0; i < adapter->num_q_vectors; i++) {
			struct igb_q_vector *q_vector = adapter->q_vector[i];
			eics |= q_vector->eims_value;
		}
3034 3035 3036 3037
		wr32(E1000_EICS, eics);
	} else {
		wr32(E1000_ICS, E1000_ICS_RXDMT0);
	}
3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055

	/* Force detection of hung controller every watchdog period */
	tx_ring->detect_tx_hung = true;

	/* Reset the timer */
	if (!test_bit(__IGB_DOWN, &adapter->state))
		mod_timer(&adapter->watchdog_timer,
			  round_jiffies(jiffies + 2 * HZ));
}

enum latency_range {
	lowest_latency = 0,
	low_latency = 1,
	bulk_latency = 2,
	latency_invalid = 255
};


3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069
/**
 * igb_update_ring_itr - update the dynamic ITR value based on packet size
 *
 *      Stores a new ITR value based on strictly on packet size.  This
 *      algorithm is less sophisticated than that used in igb_update_itr,
 *      due to the difficulty of synchronizing statistics across multiple
 *      receive rings.  The divisors and thresholds used by this fuction
 *      were determined based on theoretical maximum wire speed and testing
 *      data, in order to minimize response time while increasing bulk
 *      throughput.
 *      This functionality is controlled by the InterruptThrottleRate module
 *      parameter (see igb_param.c)
 *      NOTE:  This function is called only when operating in a multiqueue
 *             receive environment.
3070
 * @q_vector: pointer to q_vector
3071
 **/
3072
static void igb_update_ring_itr(struct igb_q_vector *q_vector)
3073
{
3074
	int new_val = q_vector->itr_val;
3075
	int avg_wire_size = 0;
3076
	struct igb_adapter *adapter = q_vector->adapter;
3077

3078 3079 3080 3081
	/* For non-gigabit speeds, just fix the interrupt rate at 4000
	 * ints/sec - ITR timer value of 120 ticks.
	 */
	if (adapter->link_speed != SPEED_1000) {
3082
		new_val = 976;
3083
		goto set_itr_val;
3084
	}
3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100

	if (q_vector->rx_ring && q_vector->rx_ring->total_packets) {
		struct igb_ring *ring = q_vector->rx_ring;
		avg_wire_size = ring->total_bytes / ring->total_packets;
	}

	if (q_vector->tx_ring && q_vector->tx_ring->total_packets) {
		struct igb_ring *ring = q_vector->tx_ring;
		avg_wire_size = max_t(u32, avg_wire_size,
		                      (ring->total_bytes /
		                       ring->total_packets));
	}

	/* if avg_wire_size isn't set no work was done */
	if (!avg_wire_size)
		goto clear_counts;
3101

3102 3103 3104 3105 3106
	/* Add 24 bytes to size to account for CRC, preamble, and gap */
	avg_wire_size += 24;

	/* Don't starve jumbo frames */
	avg_wire_size = min(avg_wire_size, 3000);
3107

3108 3109 3110 3111 3112
	/* Give a little boost to mid-size frames */
	if ((avg_wire_size > 300) && (avg_wire_size < 1200))
		new_val = avg_wire_size / 3;
	else
		new_val = avg_wire_size / 2;
3113

3114
set_itr_val:
3115 3116 3117
	if (new_val != q_vector->itr_val) {
		q_vector->itr_val = new_val;
		q_vector->set_itr = 1;
3118
	}
3119
clear_counts:
3120 3121 3122 3123 3124 3125 3126 3127
	if (q_vector->rx_ring) {
		q_vector->rx_ring->total_bytes = 0;
		q_vector->rx_ring->total_packets = 0;
	}
	if (q_vector->tx_ring) {
		q_vector->tx_ring->total_bytes = 0;
		q_vector->tx_ring->total_packets = 0;
	}
3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143
}

/**
 * igb_update_itr - update the dynamic ITR value based on statistics
 *      Stores a new ITR value based on packets and byte
 *      counts during the last interrupt.  The advantage of per interrupt
 *      computation is faster updates and more accurate ITR for the current
 *      traffic pattern.  Constants in this function were computed
 *      based on theoretical maximum wire speed and thresholds were set based
 *      on testing data as well as attempting to minimize response time
 *      while increasing bulk throughput.
 *      this functionality is controlled by the InterruptThrottleRate module
 *      parameter (see igb_param.c)
 *      NOTE:  These calculations are only valid when operating in a single-
 *             queue environment.
 * @adapter: pointer to adapter
3144
 * @itr_setting: current q_vector->itr_val
3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183
 * @packets: the number of packets during this measurement interval
 * @bytes: the number of bytes during this measurement interval
 **/
static unsigned int igb_update_itr(struct igb_adapter *adapter, u16 itr_setting,
				   int packets, int bytes)
{
	unsigned int retval = itr_setting;

	if (packets == 0)
		goto update_itr_done;

	switch (itr_setting) {
	case lowest_latency:
		/* handle TSO and jumbo frames */
		if (bytes/packets > 8000)
			retval = bulk_latency;
		else if ((packets < 5) && (bytes > 512))
			retval = low_latency;
		break;
	case low_latency:  /* 50 usec aka 20000 ints/s */
		if (bytes > 10000) {
			/* this if handles the TSO accounting */
			if (bytes/packets > 8000) {
				retval = bulk_latency;
			} else if ((packets < 10) || ((bytes/packets) > 1200)) {
				retval = bulk_latency;
			} else if ((packets > 35)) {
				retval = lowest_latency;
			}
		} else if (bytes/packets > 2000) {
			retval = bulk_latency;
		} else if (packets <= 2 && bytes < 512) {
			retval = lowest_latency;
		}
		break;
	case bulk_latency: /* 250 usec aka 4000 ints/s */
		if (bytes > 25000) {
			if (packets > 35)
				retval = low_latency;
3184
		} else if (bytes < 1500) {
3185 3186 3187 3188 3189 3190 3191 3192 3193
			retval = low_latency;
		}
		break;
	}

update_itr_done:
	return retval;
}

3194
static void igb_set_itr(struct igb_adapter *adapter)
3195
{
3196
	struct igb_q_vector *q_vector = adapter->q_vector[0];
3197
	u16 current_itr;
3198
	u32 new_itr = q_vector->itr_val;
3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211

	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
	if (adapter->link_speed != SPEED_1000) {
		current_itr = 0;
		new_itr = 4000;
		goto set_itr_now;
	}

	adapter->rx_itr = igb_update_itr(adapter,
				    adapter->rx_itr,
				    adapter->rx_ring->total_packets,
				    adapter->rx_ring->total_bytes);

3212 3213 3214 3215 3216
	adapter->tx_itr = igb_update_itr(adapter,
				    adapter->tx_itr,
				    adapter->tx_ring->total_packets,
				    adapter->tx_ring->total_bytes);
	current_itr = max(adapter->rx_itr, adapter->tx_itr);
3217

3218
	/* conservative mode (itr 3) eliminates the lowest_latency setting */
3219
	if (adapter->itr_setting == 3 && current_itr == lowest_latency)
3220 3221
		current_itr = low_latency;

3222 3223 3224
	switch (current_itr) {
	/* counts and packets in update_itr are dependent on these numbers */
	case lowest_latency:
3225
		new_itr = 56;  /* aka 70,000 ints/sec */
3226 3227
		break;
	case low_latency:
3228
		new_itr = 196; /* aka 20,000 ints/sec */
3229 3230
		break;
	case bulk_latency:
3231
		new_itr = 980; /* aka 4,000 ints/sec */
3232 3233 3234 3235 3236 3237
		break;
	default:
		break;
	}

set_itr_now:
3238 3239
	adapter->rx_ring->total_bytes = 0;
	adapter->rx_ring->total_packets = 0;
3240 3241
	adapter->tx_ring->total_bytes = 0;
	adapter->tx_ring->total_packets = 0;
3242

3243
	if (new_itr != q_vector->itr_val) {
3244 3245 3246
		/* this attempts to bias the interrupt rate towards Bulk
		 * by adding intermediate steps when interrupt rate is
		 * increasing */
3247 3248 3249 3250
		new_itr = new_itr > q_vector->itr_val ?
		             max((new_itr * q_vector->itr_val) /
		                 (new_itr + (q_vector->itr_val >> 2)),
		                 new_itr) :
3251 3252 3253 3254 3255 3256 3257
			     new_itr;
		/* Don't write the value here; it resets the adapter's
		 * internal timer, and causes us to delay far longer than
		 * we should between interrupts.  Instead, we write the ITR
		 * value at the beginning of the next interrupt so the timing
		 * ends up being correct.
		 */
3258 3259
		q_vector->itr_val = new_itr;
		q_vector->set_itr = 1;
3260 3261 3262 3263 3264 3265 3266 3267 3268
	}

	return;
}

#define IGB_TX_FLAGS_CSUM		0x00000001
#define IGB_TX_FLAGS_VLAN		0x00000002
#define IGB_TX_FLAGS_TSO		0x00000004
#define IGB_TX_FLAGS_IPV4		0x00000008
3269
#define IGB_TX_FLAGS_TSTAMP             0x00000010
3270 3271 3272
#define IGB_TX_FLAGS_VLAN_MASK	0xffff0000
#define IGB_TX_FLAGS_VLAN_SHIFT	16

3273
static inline int igb_tso_adv(struct igb_ring *tx_ring,
3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333
			      struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
{
	struct e1000_adv_tx_context_desc *context_desc;
	unsigned int i;
	int err;
	struct igb_buffer *buffer_info;
	u32 info = 0, tu_cmd = 0;
	u32 mss_l4len_idx, l4len;
	*hdr_len = 0;

	if (skb_header_cloned(skb)) {
		err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
		if (err)
			return err;
	}

	l4len = tcp_hdrlen(skb);
	*hdr_len += l4len;

	if (skb->protocol == htons(ETH_P_IP)) {
		struct iphdr *iph = ip_hdr(skb);
		iph->tot_len = 0;
		iph->check = 0;
		tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
							 iph->daddr, 0,
							 IPPROTO_TCP,
							 0);
	} else if (skb_shinfo(skb)->gso_type == SKB_GSO_TCPV6) {
		ipv6_hdr(skb)->payload_len = 0;
		tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
						       &ipv6_hdr(skb)->daddr,
						       0, IPPROTO_TCP, 0);
	}

	i = tx_ring->next_to_use;

	buffer_info = &tx_ring->buffer_info[i];
	context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);
	/* VLAN MACLEN IPLEN */
	if (tx_flags & IGB_TX_FLAGS_VLAN)
		info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
	info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
	*hdr_len += skb_network_offset(skb);
	info |= skb_network_header_len(skb);
	*hdr_len += skb_network_header_len(skb);
	context_desc->vlan_macip_lens = cpu_to_le32(info);

	/* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
	tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);

	if (skb->protocol == htons(ETH_P_IP))
		tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
	tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;

	context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);

	/* MSS L4LEN IDX */
	mss_l4len_idx = (skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT);
	mss_l4len_idx |= (l4len << E1000_ADVTXD_L4LEN_SHIFT);

3334
	/* For 82575, context index must be unique per ring. */
3335 3336
	if (tx_ring->flags & IGB_RING_FLAG_TX_CTX_IDX)
		mss_l4len_idx |= tx_ring->reg_idx << 4;
3337 3338 3339 3340 3341

	context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
	context_desc->seqnum_seed = 0;

	buffer_info->time_stamp = jiffies;
A
Alexander Duyck 已提交
3342
	buffer_info->next_to_watch = i;
3343 3344 3345 3346 3347 3348 3349 3350 3351 3352
	buffer_info->dma = 0;
	i++;
	if (i == tx_ring->count)
		i = 0;

	tx_ring->next_to_use = i;

	return true;
}

3353 3354
static inline bool igb_tx_csum_adv(struct igb_ring *tx_ring,
				   struct sk_buff *skb, u32 tx_flags)
3355 3356
{
	struct e1000_adv_tx_context_desc *context_desc;
3357
	struct pci_dev *pdev = tx_ring->pdev;
3358 3359
	struct igb_buffer *buffer_info;
	u32 info = 0, tu_cmd = 0;
3360
	unsigned int i;
3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378

	if ((skb->ip_summed == CHECKSUM_PARTIAL) ||
	    (tx_flags & IGB_TX_FLAGS_VLAN)) {
		i = tx_ring->next_to_use;
		buffer_info = &tx_ring->buffer_info[i];
		context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);

		if (tx_flags & IGB_TX_FLAGS_VLAN)
			info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
		info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
		if (skb->ip_summed == CHECKSUM_PARTIAL)
			info |= skb_network_header_len(skb);

		context_desc->vlan_macip_lens = cpu_to_le32(info);

		tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);

		if (skb->ip_summed == CHECKSUM_PARTIAL) {
3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390
			__be16 protocol;

			if (skb->protocol == cpu_to_be16(ETH_P_8021Q)) {
				const struct vlan_ethhdr *vhdr =
				          (const struct vlan_ethhdr*)skb->data;

				protocol = vhdr->h_vlan_encapsulated_proto;
			} else {
				protocol = skb->protocol;
			}

			switch (protocol) {
3391
			case cpu_to_be16(ETH_P_IP):
3392
				tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
3393 3394
				if (ip_hdr(skb)->protocol == IPPROTO_TCP)
					tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
3395 3396
				else if (ip_hdr(skb)->protocol == IPPROTO_SCTP)
					tu_cmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
3397
				break;
3398
			case cpu_to_be16(ETH_P_IPV6):
3399 3400 3401
				/* XXX what about other V6 headers?? */
				if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
					tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
3402 3403
				else if (ipv6_hdr(skb)->nexthdr == IPPROTO_SCTP)
					tu_cmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
3404 3405 3406
				break;
			default:
				if (unlikely(net_ratelimit()))
3407
					dev_warn(&pdev->dev,
3408 3409 3410 3411
					    "partial checksum but proto=%x!\n",
					    skb->protocol);
				break;
			}
3412 3413 3414 3415
		}

		context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
		context_desc->seqnum_seed = 0;
3416
		if (tx_ring->flags & IGB_RING_FLAG_TX_CTX_IDX)
3417
			context_desc->mss_l4len_idx =
3418
				cpu_to_le32(tx_ring->reg_idx << 4);
3419 3420

		buffer_info->time_stamp = jiffies;
A
Alexander Duyck 已提交
3421
		buffer_info->next_to_watch = i;
3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436
		buffer_info->dma = 0;

		i++;
		if (i == tx_ring->count)
			i = 0;
		tx_ring->next_to_use = i;

		return true;
	}
	return false;
}

#define IGB_MAX_TXD_PWR	16
#define IGB_MAX_DATA_PER_TXD	(1<<IGB_MAX_TXD_PWR)

3437
static inline int igb_tx_map_adv(struct igb_ring *tx_ring, struct sk_buff *skb,
A
Alexander Duyck 已提交
3438
				 unsigned int first)
3439 3440
{
	struct igb_buffer *buffer_info;
3441
	struct pci_dev *pdev = tx_ring->pdev;
3442 3443 3444
	unsigned int len = skb_headlen(skb);
	unsigned int count = 0, i;
	unsigned int f;
3445
	dma_addr_t *map;
3446 3447 3448

	i = tx_ring->next_to_use;

3449 3450
	if (skb_dma_map(&pdev->dev, skb, DMA_TO_DEVICE)) {
		dev_err(&pdev->dev, "TX DMA map failed\n");
3451 3452 3453 3454 3455
		return 0;
	}

	map = skb_shinfo(skb)->dma_maps;

3456 3457 3458 3459 3460
	buffer_info = &tx_ring->buffer_info[i];
	BUG_ON(len >= IGB_MAX_DATA_PER_TXD);
	buffer_info->length = len;
	/* set time_stamp *before* dma to help avoid a possible race */
	buffer_info->time_stamp = jiffies;
A
Alexander Duyck 已提交
3461
	buffer_info->next_to_watch = i;
E
Eric Dumazet 已提交
3462
	buffer_info->dma = skb_shinfo(skb)->dma_head;
3463 3464 3465 3466

	for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
		struct skb_frag_struct *frag;

3467 3468 3469 3470
		i++;
		if (i == tx_ring->count)
			i = 0;

3471 3472 3473 3474 3475 3476 3477
		frag = &skb_shinfo(skb)->frags[f];
		len = frag->size;

		buffer_info = &tx_ring->buffer_info[i];
		BUG_ON(len >= IGB_MAX_DATA_PER_TXD);
		buffer_info->length = len;
		buffer_info->time_stamp = jiffies;
A
Alexander Duyck 已提交
3478
		buffer_info->next_to_watch = i;
3479
		buffer_info->dma = map[count];
3480 3481 3482 3483
		count++;
	}

	tx_ring->buffer_info[i].skb = skb;
A
Alexander Duyck 已提交
3484
	tx_ring->buffer_info[first].next_to_watch = i;
3485

E
Eric Dumazet 已提交
3486
	return count + 1;
3487 3488
}

3489
static inline void igb_tx_queue_adv(struct igb_ring *tx_ring,
3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503
				    int tx_flags, int count, u32 paylen,
				    u8 hdr_len)
{
	union e1000_adv_tx_desc *tx_desc = NULL;
	struct igb_buffer *buffer_info;
	u32 olinfo_status = 0, cmd_type_len;
	unsigned int i;

	cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS |
			E1000_ADVTXD_DCMD_DEXT);

	if (tx_flags & IGB_TX_FLAGS_VLAN)
		cmd_type_len |= E1000_ADVTXD_DCMD_VLE;

3504 3505 3506
	if (tx_flags & IGB_TX_FLAGS_TSTAMP)
		cmd_type_len |= E1000_ADVTXD_MAC_TSTAMP;

3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520
	if (tx_flags & IGB_TX_FLAGS_TSO) {
		cmd_type_len |= E1000_ADVTXD_DCMD_TSE;

		/* insert tcp checksum */
		olinfo_status |= E1000_TXD_POPTS_TXSM << 8;

		/* insert ip checksum */
		if (tx_flags & IGB_TX_FLAGS_IPV4)
			olinfo_status |= E1000_TXD_POPTS_IXSM << 8;

	} else if (tx_flags & IGB_TX_FLAGS_CSUM) {
		olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
	}

3521 3522 3523
	if ((tx_ring->flags & IGB_RING_FLAG_TX_CTX_IDX) &&
	    (tx_flags & (IGB_TX_FLAGS_CSUM |
	                 IGB_TX_FLAGS_TSO |
3524
			 IGB_TX_FLAGS_VLAN)))
3525
		olinfo_status |= tx_ring->reg_idx << 4;
3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541

	olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT);

	i = tx_ring->next_to_use;
	while (count--) {
		buffer_info = &tx_ring->buffer_info[i];
		tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
		tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
		tx_desc->read.cmd_type_len =
			cpu_to_le32(cmd_type_len | buffer_info->length);
		tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
		i++;
		if (i == tx_ring->count)
			i = 0;
	}

3542
	tx_desc->read.cmd_type_len |= cpu_to_le32(IGB_ADVTXD_DCMD);
3543 3544 3545 3546 3547 3548 3549
	/* Force memory writes to complete before letting h/w
	 * know there are new descriptors to fetch.  (Only
	 * applicable for weak-ordered memory model archs,
	 * such as IA-64). */
	wmb();

	tx_ring->next_to_use = i;
3550
	writel(i, tx_ring->tail);
3551 3552 3553 3554 3555
	/* we need this if more than one processor can write to our tail
	 * at a time, it syncronizes IO on IA64/Altix systems */
	mmiowb();
}

3556
static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, int size)
3557
{
3558 3559
	struct net_device *netdev = tx_ring->netdev;

3560 3561
	netif_stop_subqueue(netdev, tx_ring->queue_index);

3562 3563 3564 3565 3566 3567 3568
	/* Herbert's original patch had:
	 *  smp_mb__after_netif_stop_queue();
	 * but since that doesn't exist yet, just open code it. */
	smp_mb();

	/* We need to check again in a case another CPU has just
	 * made room available. */
3569
	if (igb_desc_unused(tx_ring) < size)
3570 3571 3572
		return -EBUSY;

	/* A reprieve! */
3573
	netif_wake_subqueue(netdev, tx_ring->queue_index);
3574
	tx_ring->tx_stats.restart_queue++;
3575 3576 3577
	return 0;
}

3578
static int igb_maybe_stop_tx(struct igb_ring *tx_ring, int size)
3579
{
3580
	if (igb_desc_unused(tx_ring) >= size)
3581
		return 0;
3582
	return __igb_maybe_stop_tx(tx_ring, size);
3583 3584
}

3585 3586
netdev_tx_t igb_xmit_frame_ring_adv(struct sk_buff *skb,
				    struct igb_ring *tx_ring)
3587
{
3588
	struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
A
Alexander Duyck 已提交
3589
	unsigned int first;
3590 3591
	unsigned int tx_flags = 0;
	u8 hdr_len = 0;
3592
	int count = 0;
3593
	int tso = 0;
3594
	union skb_shared_tx *shtx;
3595 3596 3597 3598 3599 3600

	/* need: 1 descriptor per page,
	 *       + 2 desc gap to keep tail from touching head,
	 *       + 1 desc for skb->data,
	 *       + 1 desc for context descriptor,
	 * otherwise try next time */
3601
	if (igb_maybe_stop_tx(tx_ring, skb_shinfo(skb)->nr_frags + 4)) {
3602 3603 3604
		/* this is a hard error */
		return NETDEV_TX_BUSY;
	}
3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619

	/*
	 * TODO: check that there currently is no other packet with
	 * time stamping in the queue
	 *
	 * When doing time stamping, keep the connection to the socket
	 * a while longer: it is still needed by skb_hwtstamp_tx(),
	 * called either in igb_tx_hwtstamp() or by our caller when
	 * doing software time stamping.
	 */
	shtx = skb_tx(skb);
	if (unlikely(shtx->hardware)) {
		shtx->in_progress = 1;
		tx_flags |= IGB_TX_FLAGS_TSTAMP;
	}
3620 3621 3622 3623 3624 3625

	if (adapter->vlgrp && vlan_tx_tag_present(skb)) {
		tx_flags |= IGB_TX_FLAGS_VLAN;
		tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
	}

3626 3627 3628
	if (skb->protocol == htons(ETH_P_IP))
		tx_flags |= IGB_TX_FLAGS_IPV4;

A
Alexander Duyck 已提交
3629
	first = tx_ring->next_to_use;
3630 3631 3632 3633 3634 3635
	if (skb_is_gso(skb)) {
		tso = igb_tso_adv(tx_ring, skb, tx_flags, &hdr_len);
		if (tso < 0) {
			dev_kfree_skb_any(skb);
			return NETDEV_TX_OK;
		}
3636 3637 3638 3639
	}

	if (tso)
		tx_flags |= IGB_TX_FLAGS_TSO;
3640
	else if (igb_tx_csum_adv(tx_ring, skb, tx_flags) &&
3641 3642
	         (skb->ip_summed == CHECKSUM_PARTIAL))
		tx_flags |= IGB_TX_FLAGS_CSUM;
3643

3644 3645 3646 3647
	/*
	 * count reflects descriptors mapped, if 0 then mapping error
	 * has occured and we need to rewind the descriptor queue
	 */
3648
	count = igb_tx_map_adv(tx_ring, skb, first);
3649

3650
	if (!count) {
3651 3652 3653
		dev_kfree_skb_any(skb);
		tx_ring->buffer_info[first].time_stamp = 0;
		tx_ring->next_to_use = first;
3654
		return NETDEV_TX_OK;
3655
	}
3656

3657 3658 3659
	igb_tx_queue_adv(tx_ring, tx_flags, count, skb->len, hdr_len);

	/* Make sure there is space in the ring for the next send. */
3660
	igb_maybe_stop_tx(tx_ring, MAX_SKB_FRAGS + 4);
3661

3662 3663 3664
	return NETDEV_TX_OK;
}

3665 3666
static netdev_tx_t igb_xmit_frame_adv(struct sk_buff *skb,
				      struct net_device *netdev)
3667 3668
{
	struct igb_adapter *adapter = netdev_priv(netdev);
3669 3670
	struct igb_ring *tx_ring;
	int r_idx = 0;
3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681

	if (test_bit(__IGB_DOWN, &adapter->state)) {
		dev_kfree_skb_any(skb);
		return NETDEV_TX_OK;
	}

	if (skb->len <= 0) {
		dev_kfree_skb_any(skb);
		return NETDEV_TX_OK;
	}

3682
	r_idx = skb->queue_mapping & (IGB_ABS_MAX_TX_QUEUES - 1);
3683
	tx_ring = adapter->multi_tx_table[r_idx];
3684 3685 3686 3687 3688

	/* This goes back to the question of how to logically map a tx queue
	 * to a flow.  Right now, performance is impacted slightly negatively
	 * if using multiple tx queues.  If the stack breaks away from a
	 * single qdisc implementation, we can look at this again. */
3689
	return igb_xmit_frame_ring_adv(skb, tx_ring);
3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703
}

/**
 * igb_tx_timeout - Respond to a Tx Hang
 * @netdev: network interface device structure
 **/
static void igb_tx_timeout(struct net_device *netdev)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;

	/* Do the reset outside of interrupt context */
	adapter->tx_timeout_count++;
	schedule_work(&adapter->reset_task);
3704 3705
	wr32(E1000_EICS,
	     (adapter->eims_enable_mask & ~adapter->eims_other));
3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722
}

static void igb_reset_task(struct work_struct *work)
{
	struct igb_adapter *adapter;
	adapter = container_of(work, struct igb_adapter, reset_task);

	igb_reinit_locked(adapter);
}

/**
 * igb_get_stats - Get System Network Statistics
 * @netdev: network interface device structure
 *
 * Returns the address of the device statistics structure.
 * The statistics are actually updated from the timer callback.
 **/
3723
static struct net_device_stats *igb_get_stats(struct net_device *netdev)
3724 3725
{
	/* only return the current stats */
3726
	return &netdev->stats;
3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739
}

/**
 * igb_change_mtu - Change the Maximum Transfer Unit
 * @netdev: network interface device structure
 * @new_mtu: new value for maximum frame size
 *
 * Returns 0 on success, negative on failure
 **/
static int igb_change_mtu(struct net_device *netdev, int new_mtu)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
3740
	u32 rx_buffer_len, i;
3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754

	if ((max_frame < ETH_ZLEN + ETH_FCS_LEN) ||
	    (max_frame > MAX_JUMBO_FRAME_SIZE)) {
		dev_err(&adapter->pdev->dev, "Invalid MTU setting\n");
		return -EINVAL;
	}

	if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
		dev_err(&adapter->pdev->dev, "MTU > 9216 not supported.\n");
		return -EINVAL;
	}

	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
		msleep(1);
3755

3756 3757 3758 3759 3760 3761 3762 3763
	/* igb_down has a dependency on max_frame_size */
	adapter->max_frame_size = max_frame;
	/* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
	 * means we reserve 2 more, this pushes us to allocate from the next
	 * larger slab size.
	 * i.e. RXBUFFER_2048 --> size-4096 slab
	 */

3764
	if (max_frame <= IGB_RXBUFFER_1024)
3765
		rx_buffer_len = IGB_RXBUFFER_1024;
A
Alexander Duyck 已提交
3766
	else if (max_frame <= MAXIMUM_ETHERNET_VLAN_SIZE)
3767
		rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
A
Alexander Duyck 已提交
3768
	else
3769 3770 3771 3772
		rx_buffer_len = IGB_RXBUFFER_128;

	if (netif_running(netdev))
		igb_down(adapter);
3773 3774 3775 3776 3777

	dev_info(&adapter->pdev->dev, "changing MTU from %d to %d\n",
		 netdev->mtu, new_mtu);
	netdev->mtu = new_mtu;

3778 3779 3780
	for (i = 0; i < adapter->num_rx_queues; i++)
		adapter->rx_ring[i].rx_buffer_len = rx_buffer_len;

3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797
	if (netif_running(netdev))
		igb_up(adapter);
	else
		igb_reset(adapter);

	clear_bit(__IGB_RESETTING, &adapter->state);

	return 0;
}

/**
 * igb_update_stats - Update the board statistics counters
 * @adapter: board private structure
 **/

void igb_update_stats(struct igb_adapter *adapter)
{
3798
	struct net_device *netdev = adapter->netdev;
3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887
	struct e1000_hw *hw = &adapter->hw;
	struct pci_dev *pdev = adapter->pdev;
	u16 phy_tmp;

#define PHY_IDLE_ERROR_COUNT_MASK 0x00FF

	/*
	 * Prevent stats update while adapter is being reset, or if the pci
	 * connection is down.
	 */
	if (adapter->link_speed == 0)
		return;
	if (pci_channel_offline(pdev))
		return;

	adapter->stats.crcerrs += rd32(E1000_CRCERRS);
	adapter->stats.gprc += rd32(E1000_GPRC);
	adapter->stats.gorc += rd32(E1000_GORCL);
	rd32(E1000_GORCH); /* clear GORCL */
	adapter->stats.bprc += rd32(E1000_BPRC);
	adapter->stats.mprc += rd32(E1000_MPRC);
	adapter->stats.roc += rd32(E1000_ROC);

	adapter->stats.prc64 += rd32(E1000_PRC64);
	adapter->stats.prc127 += rd32(E1000_PRC127);
	adapter->stats.prc255 += rd32(E1000_PRC255);
	adapter->stats.prc511 += rd32(E1000_PRC511);
	adapter->stats.prc1023 += rd32(E1000_PRC1023);
	adapter->stats.prc1522 += rd32(E1000_PRC1522);
	adapter->stats.symerrs += rd32(E1000_SYMERRS);
	adapter->stats.sec += rd32(E1000_SEC);

	adapter->stats.mpc += rd32(E1000_MPC);
	adapter->stats.scc += rd32(E1000_SCC);
	adapter->stats.ecol += rd32(E1000_ECOL);
	adapter->stats.mcc += rd32(E1000_MCC);
	adapter->stats.latecol += rd32(E1000_LATECOL);
	adapter->stats.dc += rd32(E1000_DC);
	adapter->stats.rlec += rd32(E1000_RLEC);
	adapter->stats.xonrxc += rd32(E1000_XONRXC);
	adapter->stats.xontxc += rd32(E1000_XONTXC);
	adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
	adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
	adapter->stats.fcruc += rd32(E1000_FCRUC);
	adapter->stats.gptc += rd32(E1000_GPTC);
	adapter->stats.gotc += rd32(E1000_GOTCL);
	rd32(E1000_GOTCH); /* clear GOTCL */
	adapter->stats.rnbc += rd32(E1000_RNBC);
	adapter->stats.ruc += rd32(E1000_RUC);
	adapter->stats.rfc += rd32(E1000_RFC);
	adapter->stats.rjc += rd32(E1000_RJC);
	adapter->stats.tor += rd32(E1000_TORH);
	adapter->stats.tot += rd32(E1000_TOTH);
	adapter->stats.tpr += rd32(E1000_TPR);

	adapter->stats.ptc64 += rd32(E1000_PTC64);
	adapter->stats.ptc127 += rd32(E1000_PTC127);
	adapter->stats.ptc255 += rd32(E1000_PTC255);
	adapter->stats.ptc511 += rd32(E1000_PTC511);
	adapter->stats.ptc1023 += rd32(E1000_PTC1023);
	adapter->stats.ptc1522 += rd32(E1000_PTC1522);

	adapter->stats.mptc += rd32(E1000_MPTC);
	adapter->stats.bptc += rd32(E1000_BPTC);

	/* used for adaptive IFS */

	hw->mac.tx_packet_delta = rd32(E1000_TPT);
	adapter->stats.tpt += hw->mac.tx_packet_delta;
	hw->mac.collision_delta = rd32(E1000_COLC);
	adapter->stats.colc += hw->mac.collision_delta;

	adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
	adapter->stats.rxerrc += rd32(E1000_RXERRC);
	adapter->stats.tncrs += rd32(E1000_TNCRS);
	adapter->stats.tsctc += rd32(E1000_TSCTC);
	adapter->stats.tsctfc += rd32(E1000_TSCTFC);

	adapter->stats.iac += rd32(E1000_IAC);
	adapter->stats.icrxoc += rd32(E1000_ICRXOC);
	adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
	adapter->stats.icrxatc += rd32(E1000_ICRXATC);
	adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
	adapter->stats.ictxatc += rd32(E1000_ICTXATC);
	adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
	adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
	adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);

	/* Fill out the OS statistics structure */
3888 3889
	netdev->stats.multicast = adapter->stats.mprc;
	netdev->stats.collisions = adapter->stats.colc;
3890 3891 3892

	/* Rx Errors */

3893 3894
	if (hw->mac.type != e1000_82575) {
		u32 rqdpc_tmp;
3895
		u64 rqdpc_total = 0;
3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907
		int i;
		/* Read out drops stats per RX queue.  Notice RQDPC (Receive
		 * Queue Drop Packet Count) stats only gets incremented, if
		 * the DROP_EN but it set (in the SRRCTL register for that
		 * queue).  If DROP_EN bit is NOT set, then the some what
		 * equivalent count is stored in RNBC (not per queue basis).
		 * Also note the drop count is due to lack of available
		 * descriptors.
		 */
		for (i = 0; i < adapter->num_rx_queues; i++) {
			rqdpc_tmp = rd32(E1000_RQDPC(i)) & 0xFFF;
			adapter->rx_ring[i].rx_stats.drops += rqdpc_tmp;
3908
			rqdpc_total += adapter->rx_ring[i].rx_stats.drops;
3909
		}
3910
		netdev->stats.rx_fifo_errors = rqdpc_total;
3911 3912
	}

3913 3914 3915 3916 3917
	/* Note RNBC (Receive No Buffers Count) is an not an exact
	 * drop count as the hardware FIFO might save the day.  Thats
	 * one of the reason for saving it in rx_fifo_errors, as its
	 * potentially not a true drop.
	 */
3918
	netdev->stats.rx_fifo_errors += adapter->stats.rnbc;
3919

3920
	/* RLEC on some newer hardware can be incorrect so build
3921
	 * our own version based on RUC and ROC */
3922
	netdev->stats.rx_errors = adapter->stats.rxerrc +
3923 3924 3925
		adapter->stats.crcerrs + adapter->stats.algnerrc +
		adapter->stats.ruc + adapter->stats.roc +
		adapter->stats.cexterr;
3926
	netdev->stats.rx_length_errors = adapter->stats.ruc +
3927
					      adapter->stats.roc;
3928 3929 3930
	netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
	netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
	netdev->stats.rx_missed_errors = adapter->stats.mpc;
3931 3932

	/* Tx Errors */
3933
	netdev->stats.tx_errors = adapter->stats.ecol +
3934
				       adapter->stats.latecol;
3935 3936 3937
	netdev->stats.tx_aborted_errors = adapter->stats.ecol;
	netdev->stats.tx_window_errors = adapter->stats.latecol;
	netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
3938 3939 3940 3941 3942 3943

	/* Tx Dropped needs to be maintained elsewhere */

	/* Phy Stats */
	if (hw->phy.media_type == e1000_media_type_copper) {
		if ((adapter->link_speed == SPEED_1000) &&
3944
		   (!igb_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957
			phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
			adapter->phy_stats.idle_errors += phy_tmp;
		}
	}

	/* Management Stats */
	adapter->stats.mgptc += rd32(E1000_MGTPTC);
	adapter->stats.mgprc += rd32(E1000_MGTPRC);
	adapter->stats.mgpdc += rd32(E1000_MGTPDC);
}

static irqreturn_t igb_msix_other(int irq, void *data)
{
3958
	struct igb_adapter *adapter = data;
3959
	struct e1000_hw *hw = &adapter->hw;
P
PJ Waskiewicz 已提交
3960 3961
	u32 icr = rd32(E1000_ICR);
	/* reading ICR causes bit 31 of EICR to be cleared */
3962

3963
	if (icr & E1000_ICR_DOUTSYNC) {
3964 3965 3966
		/* HW is reporting DMA is out of sync */
		adapter->stats.doosync++;
	}
3967

3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979
	/* Check for a mailbox event */
	if (icr & E1000_ICR_VMMB)
		igb_msg_task(adapter);

	if (icr & E1000_ICR_LSC) {
		hw->mac.get_link_status = 1;
		/* guard against interrupt when we're going down */
		if (!test_bit(__IGB_DOWN, &adapter->state))
			mod_timer(&adapter->watchdog_timer, jiffies + 1);
	}

	wr32(E1000_IMS, E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_VMMB);
P
PJ Waskiewicz 已提交
3980
	wr32(E1000_EIMS, adapter->eims_other);
3981 3982 3983 3984

	return IRQ_HANDLED;
}

3985
static void igb_write_itr(struct igb_q_vector *q_vector)
3986
{
3987
	u32 itr_val = q_vector->itr_val & 0x7FFC;
3988

3989 3990
	if (!q_vector->set_itr)
		return;
3991

3992 3993
	if (!itr_val)
		itr_val = 0x4;
3994

3995 3996
	if (q_vector->itr_shift)
		itr_val |= itr_val << q_vector->itr_shift;
3997
	else
3998
		itr_val |= 0x8000000;
3999

4000 4001
	writel(itr_val, q_vector->itr_register);
	q_vector->set_itr = 0;
4002 4003
}

4004
static irqreturn_t igb_msix_ring(int irq, void *data)
4005
{
4006
	struct igb_q_vector *q_vector = data;
4007

4008 4009
	/* Write the ITR value calculated from the previous interrupt. */
	igb_write_itr(q_vector);
4010

4011
	napi_schedule(&q_vector->napi);
P
PJ Waskiewicz 已提交
4012

4013
	return IRQ_HANDLED;
J
Jeb Cramer 已提交
4014 4015
}

4016
#ifdef CONFIG_IGB_DCA
4017
static void igb_update_dca(struct igb_q_vector *q_vector)
J
Jeb Cramer 已提交
4018
{
4019
	struct igb_adapter *adapter = q_vector->adapter;
J
Jeb Cramer 已提交
4020 4021 4022
	struct e1000_hw *hw = &adapter->hw;
	int cpu = get_cpu();

4023 4024 4025 4026 4027 4028 4029 4030 4031
	if (q_vector->cpu == cpu)
		goto out_no_update;

	if (q_vector->tx_ring) {
		int q = q_vector->tx_ring->reg_idx;
		u32 dca_txctrl = rd32(E1000_DCA_TXCTRL(q));
		if (hw->mac.type == e1000_82575) {
			dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK;
			dca_txctrl |= dca3_get_tag(&adapter->pdev->dev, cpu);
A
Alexander Duyck 已提交
4032
		} else {
4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043
			dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK_82576;
			dca_txctrl |= dca3_get_tag(&adapter->pdev->dev, cpu) <<
			              E1000_DCA_TXCTRL_CPUID_SHIFT;
		}
		dca_txctrl |= E1000_DCA_TXCTRL_DESC_DCA_EN;
		wr32(E1000_DCA_TXCTRL(q), dca_txctrl);
	}
	if (q_vector->rx_ring) {
		int q = q_vector->rx_ring->reg_idx;
		u32 dca_rxctrl = rd32(E1000_DCA_RXCTRL(q));
		if (hw->mac.type == e1000_82575) {
A
Alexander Duyck 已提交
4044
			dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK;
M
Maciej Sosnowski 已提交
4045
			dca_rxctrl |= dca3_get_tag(&adapter->pdev->dev, cpu);
4046 4047 4048 4049
		} else {
			dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK_82576;
			dca_rxctrl |= dca3_get_tag(&adapter->pdev->dev, cpu) <<
			              E1000_DCA_RXCTRL_CPUID_SHIFT;
A
Alexander Duyck 已提交
4050
		}
J
Jeb Cramer 已提交
4051 4052 4053 4054 4055
		dca_rxctrl |= E1000_DCA_RXCTRL_DESC_DCA_EN;
		dca_rxctrl |= E1000_DCA_RXCTRL_HEAD_DCA_EN;
		dca_rxctrl |= E1000_DCA_RXCTRL_DATA_DCA_EN;
		wr32(E1000_DCA_RXCTRL(q), dca_rxctrl);
	}
4056 4057
	q_vector->cpu = cpu;
out_no_update:
J
Jeb Cramer 已提交
4058 4059 4060 4061 4062
	put_cpu();
}

static void igb_setup_dca(struct igb_adapter *adapter)
{
4063
	struct e1000_hw *hw = &adapter->hw;
J
Jeb Cramer 已提交
4064 4065
	int i;

4066
	if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
J
Jeb Cramer 已提交
4067 4068
		return;

4069 4070 4071
	/* Always use CB2 mode, difference is masked in the CB driver. */
	wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);

4072 4073 4074 4075
	for (i = 0; i < adapter->num_q_vectors; i++) {
		struct igb_q_vector *q_vector = adapter->q_vector[i];
		q_vector->cpu = -1;
		igb_update_dca(q_vector);
J
Jeb Cramer 已提交
4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088
	}
}

static int __igb_notify_dca(struct device *dev, void *data)
{
	struct net_device *netdev = dev_get_drvdata(dev);
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	unsigned long event = *(unsigned long *)data;

	switch (event) {
	case DCA_PROVIDER_ADD:
		/* if already enabled, don't do it again */
4089
		if (adapter->flags & IGB_FLAG_DCA_ENABLED)
J
Jeb Cramer 已提交
4090 4091 4092
			break;
		/* Always use CB2 mode, difference is masked
		 * in the CB driver. */
A
Alexander Duyck 已提交
4093
		wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
J
Jeb Cramer 已提交
4094
		if (dca_add_requester(dev) == 0) {
4095
			adapter->flags |= IGB_FLAG_DCA_ENABLED;
J
Jeb Cramer 已提交
4096 4097 4098 4099 4100 4101
			dev_info(&adapter->pdev->dev, "DCA enabled\n");
			igb_setup_dca(adapter);
			break;
		}
		/* Fall Through since DCA is disabled. */
	case DCA_PROVIDER_REMOVE:
4102
		if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
J
Jeb Cramer 已提交
4103
			/* without this a class_device is left
4104
			 * hanging around in the sysfs model */
J
Jeb Cramer 已提交
4105 4106
			dca_remove_requester(dev);
			dev_info(&adapter->pdev->dev, "DCA disabled\n");
4107
			adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
A
Alexander Duyck 已提交
4108
			wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
J
Jeb Cramer 已提交
4109 4110 4111
		}
		break;
	}
4112

J
Jeb Cramer 已提交
4113
	return 0;
4114 4115
}

J
Jeb Cramer 已提交
4116 4117 4118 4119 4120 4121 4122 4123 4124 4125
static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
                          void *p)
{
	int ret_val;

	ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
	                                 __igb_notify_dca);

	return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
}
4126
#endif /* CONFIG_IGB_DCA */
4127

4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162
static void igb_ping_all_vfs(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 ping;
	int i;

	for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
		ping = E1000_PF_CONTROL_MSG;
		if (adapter->vf_data[i].clear_to_send)
			ping |= E1000_VT_MSGTYPE_CTS;
		igb_write_mbx(hw, &ping, 1, i);
	}
}

static int igb_set_vf_multicasts(struct igb_adapter *adapter,
				  u32 *msgbuf, u32 vf)
{
	int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
	u16 *hash_list = (u16 *)&msgbuf[1];
	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
	int i;

	/* only up to 30 hash values supported */
	if (n > 30)
		n = 30;

	/* salt away the number of multi cast addresses assigned
	 * to this VF for later use to restore when the PF multi cast
	 * list changes
	 */
	vf_data->num_vf_mc_hashes = n;

	/* VFs are limited to using the MTA hash table for their multicast
	 * addresses */
	for (i = 0; i < n; i++)
4163
		vf_data->vf_mc_hashes[i] = hash_list[i];
4164 4165

	/* Flush and reset the mta with the new values */
4166
	igb_set_rx_mode(adapter->netdev);
4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178

	return 0;
}

static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	struct vf_data_storage *vf_data;
	int i, j;

	for (i = 0; i < adapter->vfs_allocated_count; i++) {
		vf_data = &adapter->vf_data[i];
4179
		for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208
			igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
	}
}

static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 pool_mask, reg, vid;
	int i;

	pool_mask = 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);

	/* Find the vlan filter for this id */
	for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
		reg = rd32(E1000_VLVF(i));

		/* remove the vf from the pool */
		reg &= ~pool_mask;

		/* if pool is empty then remove entry from vfta */
		if (!(reg & E1000_VLVF_POOLSEL_MASK) &&
		    (reg & E1000_VLVF_VLANID_ENABLE)) {
			reg = 0;
			vid = reg & E1000_VLVF_VLANID_MASK;
			igb_vfta_set(hw, vid, false);
		}

		wr32(E1000_VLVF(i), reg);
	}
4209 4210

	adapter->vf_data[vf].vlans_enabled = 0;
4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247
}

static s32 igb_vlvf_set(struct igb_adapter *adapter, u32 vid, bool add, u32 vf)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 reg, i;

	/* It is an error to call this function when VFs are not enabled */
	if (!adapter->vfs_allocated_count)
		return -1;

	/* Find the vlan filter for this id */
	for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
		reg = rd32(E1000_VLVF(i));
		if ((reg & E1000_VLVF_VLANID_ENABLE) &&
		    vid == (reg & E1000_VLVF_VLANID_MASK))
			break;
	}

	if (add) {
		if (i == E1000_VLVF_ARRAY_SIZE) {
			/* Did not find a matching VLAN ID entry that was
			 * enabled.  Search for a free filter entry, i.e.
			 * one without the enable bit set
			 */
			for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
				reg = rd32(E1000_VLVF(i));
				if (!(reg & E1000_VLVF_VLANID_ENABLE))
					break;
			}
		}
		if (i < E1000_VLVF_ARRAY_SIZE) {
			/* Found an enabled/available entry */
			reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);

			/* if !enabled we need to set this up in vfta */
			if (!(reg & E1000_VLVF_VLANID_ENABLE)) {
A
Alexander Duyck 已提交
4248 4249 4250 4251 4252
				/* add VID to filter table, if bit already set
				 * PF must have added it outside of table */
				if (igb_vfta_set(hw, vid, true))
					reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT +
						adapter->vfs_allocated_count);
4253 4254
				reg |= E1000_VLVF_VLANID_ENABLE;
			}
A
Alexander Duyck 已提交
4255 4256
			reg &= ~E1000_VLVF_VLANID_MASK;
			reg |= vid;
4257 4258

			wr32(E1000_VLVF(i), reg);
4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274

			/* do not modify RLPML for PF devices */
			if (vf >= adapter->vfs_allocated_count)
				return 0;

			if (!adapter->vf_data[vf].vlans_enabled) {
				u32 size;
				reg = rd32(E1000_VMOLR(vf));
				size = reg & E1000_VMOLR_RLPML_MASK;
				size += 4;
				reg &= ~E1000_VMOLR_RLPML_MASK;
				reg |= size;
				wr32(E1000_VMOLR(vf), reg);
			}
			adapter->vf_data[vf].vlans_enabled++;

4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286
			return 0;
		}
	} else {
		if (i < E1000_VLVF_ARRAY_SIZE) {
			/* remove vf from the pool */
			reg &= ~(1 << (E1000_VLVF_POOLSEL_SHIFT + vf));
			/* if pool is empty then remove entry from vfta */
			if (!(reg & E1000_VLVF_POOLSEL_MASK)) {
				reg = 0;
				igb_vfta_set(hw, vid, false);
			}
			wr32(E1000_VLVF(i), reg);
4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301

			/* do not modify RLPML for PF devices */
			if (vf >= adapter->vfs_allocated_count)
				return 0;

			adapter->vf_data[vf].vlans_enabled--;
			if (!adapter->vf_data[vf].vlans_enabled) {
				u32 size;
				reg = rd32(E1000_VMOLR(vf));
				size = reg & E1000_VMOLR_RLPML_MASK;
				size -= 4;
				reg &= ~E1000_VMOLR_RLPML_MASK;
				reg |= size;
				wr32(E1000_VMOLR(vf), reg);
			}
4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332
			return 0;
		}
	}
	return -1;
}

static int igb_set_vf_vlan(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
{
	int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
	int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);

	return igb_vlvf_set(adapter, vid, add, vf);
}

static inline void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
{
	struct e1000_hw *hw = &adapter->hw;

	/* disable mailbox functionality for vf */
	adapter->vf_data[vf].clear_to_send = false;

	/* reset offloads to defaults */
	igb_set_vmolr(hw, vf);

	/* reset vlans for device */
	igb_clear_vf_vfta(adapter, vf);

	/* reset multicast table array for vf */
	adapter->vf_data[vf].num_vf_mc_hashes = 0;

	/* Flush and reset the mta with the new values */
4333
	igb_set_rx_mode(adapter->netdev);
4334 4335 4336 4337 4338 4339
}

static inline void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
{
	struct e1000_hw *hw = &adapter->hw;
	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
4340
	int rar_entry = hw->mac.rar_entry_count - (vf + 1);
4341 4342 4343 4344 4345 4346 4347
	u32 reg, msgbuf[3];
	u8 *addr = (u8 *)(&msgbuf[1]);

	/* process all the same items cleared in a function level reset */
	igb_vf_reset_event(adapter, vf);

	/* set vf mac address */
4348
	igb_rar_set_qsel(adapter, vf_mac, rar_entry, vf);
4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476

	/* enable transmit and receive for vf */
	reg = rd32(E1000_VFTE);
	wr32(E1000_VFTE, reg | (1 << vf));
	reg = rd32(E1000_VFRE);
	wr32(E1000_VFRE, reg | (1 << vf));

	/* enable mailbox functionality for vf */
	adapter->vf_data[vf].clear_to_send = true;

	/* reply to reset with ack and vf mac address */
	msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
	memcpy(addr, vf_mac, 6);
	igb_write_mbx(hw, msgbuf, 3, vf);
}

static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
{
		unsigned char *addr = (char *)&msg[1];
		int err = -1;

		if (is_valid_ether_addr(addr))
			err = igb_set_vf_mac(adapter, vf, addr);

		return err;

}

static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 msg = E1000_VT_MSGTYPE_NACK;

	/* if device isn't clear to send it shouldn't be reading either */
	if (!adapter->vf_data[vf].clear_to_send)
		igb_write_mbx(hw, &msg, 1, vf);
}


static void igb_msg_task(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 vf;

	for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
		/* process any reset requests */
		if (!igb_check_for_rst(hw, vf)) {
			adapter->vf_data[vf].clear_to_send = false;
			igb_vf_reset_event(adapter, vf);
		}

		/* process any messages pending */
		if (!igb_check_for_msg(hw, vf))
			igb_rcv_msg_from_vf(adapter, vf);

		/* process any acks */
		if (!igb_check_for_ack(hw, vf))
			igb_rcv_ack_from_vf(adapter, vf);

	}
}

static int igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
{
	u32 mbx_size = E1000_VFMAILBOX_SIZE;
	u32 msgbuf[mbx_size];
	struct e1000_hw *hw = &adapter->hw;
	s32 retval;

	retval = igb_read_mbx(hw, msgbuf, mbx_size, vf);

	if (retval)
		dev_err(&adapter->pdev->dev,
		        "Error receiving message from VF\n");

	/* this is a message we already processed, do nothing */
	if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
		return retval;

	/*
	 * until the vf completes a reset it should not be
	 * allowed to start any configuration.
	 */

	if (msgbuf[0] == E1000_VF_RESET) {
		igb_vf_reset_msg(adapter, vf);

		return retval;
	}

	if (!adapter->vf_data[vf].clear_to_send) {
		msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
		igb_write_mbx(hw, msgbuf, 1, vf);
		return retval;
	}

	switch ((msgbuf[0] & 0xFFFF)) {
	case E1000_VF_SET_MAC_ADDR:
		retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
		break;
	case E1000_VF_SET_MULTICAST:
		retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
		break;
	case E1000_VF_SET_LPE:
		retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
		break;
	case E1000_VF_SET_VLAN:
		retval = igb_set_vf_vlan(adapter, msgbuf, vf);
		break;
	default:
		dev_err(&adapter->pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
		retval = -1;
		break;
	}

	/* notify the VF of the results of what it sent us */
	if (retval)
		msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
	else
		msgbuf[0] |= E1000_VT_MSGTYPE_ACK;

	msgbuf[0] |= E1000_VT_MSGTYPE_CTS;

	igb_write_mbx(hw, msgbuf, 1, vf);

	return retval;
}

4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503
/**
 *  igb_set_uta - Set unicast filter table address
 *  @adapter: board private structure
 *
 *  The unicast table address is a register array of 32-bit registers.
 *  The table is meant to be used in a way similar to how the MTA is used
 *  however due to certain limitations in the hardware it is necessary to
 *  set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscous
 *  enable bit to allow vlan tag stripping when promiscous mode is enabled
 **/
static void igb_set_uta(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	int i;

	/* The UTA table only exists on 82576 hardware and newer */
	if (hw->mac.type < e1000_82576)
		return;

	/* we only need to do this if VMDq is enabled */
	if (!adapter->vfs_allocated_count)
		return;

	for (i = 0; i < hw->mac.uta_reg_count; i++)
		array_wr32(E1000_UTA, i, ~0);
}

4504 4505 4506 4507 4508 4509 4510
/**
 * igb_intr_msi - Interrupt Handler
 * @irq: interrupt number
 * @data: pointer to a network interface device structure
 **/
static irqreturn_t igb_intr_msi(int irq, void *data)
{
4511 4512
	struct igb_adapter *adapter = data;
	struct igb_q_vector *q_vector = adapter->q_vector[0];
4513 4514 4515 4516
	struct e1000_hw *hw = &adapter->hw;
	/* read ICR disables interrupts using IAM */
	u32 icr = rd32(E1000_ICR);

4517
	igb_write_itr(q_vector);
4518

4519
	if (icr & E1000_ICR_DOUTSYNC) {
4520 4521 4522 4523
		/* HW is reporting DMA is out of sync */
		adapter->stats.doosync++;
	}

4524 4525 4526 4527 4528 4529
	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
		hw->mac.get_link_status = 1;
		if (!test_bit(__IGB_DOWN, &adapter->state))
			mod_timer(&adapter->watchdog_timer, jiffies + 1);
	}

4530
	napi_schedule(&q_vector->napi);
4531 4532 4533 4534 4535

	return IRQ_HANDLED;
}

/**
4536
 * igb_intr - Legacy Interrupt Handler
4537 4538 4539 4540 4541
 * @irq: interrupt number
 * @data: pointer to a network interface device structure
 **/
static irqreturn_t igb_intr(int irq, void *data)
{
4542 4543
	struct igb_adapter *adapter = data;
	struct igb_q_vector *q_vector = adapter->q_vector[0];
4544 4545 4546 4547 4548 4549 4550
	struct e1000_hw *hw = &adapter->hw;
	/* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
	 * need for the IMC write */
	u32 icr = rd32(E1000_ICR);
	if (!icr)
		return IRQ_NONE;  /* Not our interrupt */

4551
	igb_write_itr(q_vector);
4552 4553 4554 4555 4556 4557

	/* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
	 * not set, then the adapter didn't send an interrupt */
	if (!(icr & E1000_ICR_INT_ASSERTED))
		return IRQ_NONE;

4558
	if (icr & E1000_ICR_DOUTSYNC) {
4559 4560 4561 4562
		/* HW is reporting DMA is out of sync */
		adapter->stats.doosync++;
	}

4563 4564 4565 4566 4567 4568 4569
	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
		hw->mac.get_link_status = 1;
		/* guard against interrupt when we're going down */
		if (!test_bit(__IGB_DOWN, &adapter->state))
			mod_timer(&adapter->watchdog_timer, jiffies + 1);
	}

4570
	napi_schedule(&q_vector->napi);
4571 4572 4573 4574

	return IRQ_HANDLED;
}

4575
static inline void igb_ring_irq_enable(struct igb_q_vector *q_vector)
4576
{
4577
	struct igb_adapter *adapter = q_vector->adapter;
4578
	struct e1000_hw *hw = &adapter->hw;
4579

4580
	if (adapter->itr_setting & 3) {
4581
		if (!adapter->msix_entries)
4582
			igb_set_itr(adapter);
4583
		else
4584
			igb_update_ring_itr(q_vector);
4585 4586
	}

4587 4588
	if (!test_bit(__IGB_DOWN, &adapter->state)) {
		if (adapter->msix_entries)
4589
			wr32(E1000_EIMS, q_vector->eims_value);
4590 4591 4592
		else
			igb_irq_enable(adapter);
	}
4593 4594
}

4595 4596 4597 4598 4599 4600
/**
 * igb_poll - NAPI Rx polling callback
 * @napi: napi polling structure
 * @budget: count of how many packets we should handle
 **/
static int igb_poll(struct napi_struct *napi, int budget)
4601
{
4602 4603 4604 4605
	struct igb_q_vector *q_vector = container_of(napi,
	                                             struct igb_q_vector,
	                                             napi);
	int tx_clean_complete = 1, work_done = 0;
4606

4607
#ifdef CONFIG_IGB_DCA
4608 4609
	if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
		igb_update_dca(q_vector);
J
Jeb Cramer 已提交
4610
#endif
4611 4612
	if (q_vector->tx_ring)
		tx_clean_complete = igb_clean_tx_irq(q_vector);
4613

4614 4615 4616 4617 4618
	if (q_vector->rx_ring)
		igb_clean_rx_irq_adv(q_vector, &work_done, budget);

	if (!tx_clean_complete)
		work_done = budget;
4619

4620
	/* If not enough Rx work done, exit the polling mode */
4621
	if (work_done < budget) {
4622
		napi_complete(napi);
4623
		igb_ring_irq_enable(q_vector);
4624 4625
	}

4626
	return work_done;
4627
}
A
Al Viro 已提交
4628

4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662
/**
 * igb_hwtstamp - utility function which checks for TX time stamp
 * @adapter: board private structure
 * @skb: packet that was just sent
 *
 * If we were asked to do hardware stamping and such a time stamp is
 * available, then it must have been for this skb here because we only
 * allow only one such packet into the queue.
 */
static void igb_tx_hwtstamp(struct igb_adapter *adapter, struct sk_buff *skb)
{
	union skb_shared_tx *shtx = skb_tx(skb);
	struct e1000_hw *hw = &adapter->hw;

	if (unlikely(shtx->hardware)) {
		u32 valid = rd32(E1000_TSYNCTXCTL) & E1000_TSYNCTXCTL_VALID;
		if (valid) {
			u64 regval = rd32(E1000_TXSTMPL);
			u64 ns;
			struct skb_shared_hwtstamps shhwtstamps;

			memset(&shhwtstamps, 0, sizeof(shhwtstamps));
			regval |= (u64)rd32(E1000_TXSTMPH) << 32;
			ns = timecounter_cyc2time(&adapter->clock,
						  regval);
			timecompare_update(&adapter->compare, ns);
			shhwtstamps.hwtstamp = ns_to_ktime(ns);
			shhwtstamps.syststamp =
				timecompare_transform(&adapter->compare, ns);
			skb_tstamp_tx(skb, &shhwtstamps);
		}
	}
}

4663 4664
/**
 * igb_clean_tx_irq - Reclaim resources after transmit completes
4665
 * @q_vector: pointer to q_vector containing needed info
4666 4667
 * returns true if ring is completely cleaned
 **/
4668
static bool igb_clean_tx_irq(struct igb_q_vector *q_vector)
4669
{
4670 4671
	struct igb_adapter *adapter = q_vector->adapter;
	struct igb_ring *tx_ring = q_vector->tx_ring;
4672
	struct net_device *netdev = tx_ring->netdev;
A
Alexander Duyck 已提交
4673
	struct e1000_hw *hw = &adapter->hw;
4674 4675
	struct igb_buffer *buffer_info;
	struct sk_buff *skb;
A
Alexander Duyck 已提交
4676
	union e1000_adv_tx_desc *tx_desc, *eop_desc;
4677
	unsigned int total_bytes = 0, total_packets = 0;
A
Alexander Duyck 已提交
4678 4679
	unsigned int i, eop, count = 0;
	bool cleaned = false;
4680 4681

	i = tx_ring->next_to_clean;
A
Alexander Duyck 已提交
4682 4683 4684 4685 4686 4687 4688
	eop = tx_ring->buffer_info[i].next_to_watch;
	eop_desc = E1000_TX_DESC_ADV(*tx_ring, eop);

	while ((eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)) &&
	       (count < tx_ring->count)) {
		for (cleaned = false; !cleaned; count++) {
			tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
4689
			buffer_info = &tx_ring->buffer_info[i];
A
Alexander Duyck 已提交
4690
			cleaned = (i == eop);
4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701
			skb = buffer_info->skb;

			if (skb) {
				unsigned int segs, bytecount;
				/* gso_segs is currently only valid for tcp */
				segs = skb_shinfo(skb)->gso_segs ?: 1;
				/* multiply data chunks by size of headers */
				bytecount = ((segs - 1) * skb_headlen(skb)) +
					    skb->len;
				total_packets += segs;
				total_bytes += bytecount;
4702 4703

				igb_tx_hwtstamp(adapter, skb);
4704 4705
			}

4706
			igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
A
Alexander Duyck 已提交
4707
			tx_desc->wb.status = 0;
4708 4709 4710 4711 4712

			i++;
			if (i == tx_ring->count)
				i = 0;
		}
A
Alexander Duyck 已提交
4713 4714 4715 4716
		eop = tx_ring->buffer_info[i].next_to_watch;
		eop_desc = E1000_TX_DESC_ADV(*tx_ring, eop);
	}

4717 4718
	tx_ring->next_to_clean = i;

4719
	if (unlikely(count &&
4720
		     netif_carrier_ok(netdev) &&
4721
		     igb_desc_unused(tx_ring) >= IGB_TX_QUEUE_WAKE)) {
4722 4723 4724 4725
		/* Make sure that anybody stopping the queue after this
		 * sees the new next_to_clean.
		 */
		smp_mb();
4726 4727 4728
		if (__netif_subqueue_stopped(netdev, tx_ring->queue_index) &&
		    !(test_bit(__IGB_DOWN, &adapter->state))) {
			netif_wake_subqueue(netdev, tx_ring->queue_index);
4729
			tx_ring->tx_stats.restart_queue++;
4730
		}
4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743
	}

	if (tx_ring->detect_tx_hung) {
		/* Detect a transmit hang in hardware, this serializes the
		 * check with the clearing of time_stamp and movement of i */
		tx_ring->detect_tx_hung = false;
		if (tx_ring->buffer_info[i].time_stamp &&
		    time_after(jiffies, tx_ring->buffer_info[i].time_stamp +
			       (adapter->tx_timeout_factor * HZ))
		    && !(rd32(E1000_STATUS) &
			 E1000_STATUS_TXOFF)) {

			/* detected Tx unit hang */
4744
			dev_err(&tx_ring->pdev->dev,
4745
				"Detected Tx Unit Hang\n"
A
Alexander Duyck 已提交
4746
				"  Tx Queue             <%d>\n"
4747 4748 4749 4750 4751 4752
				"  TDH                  <%x>\n"
				"  TDT                  <%x>\n"
				"  next_to_use          <%x>\n"
				"  next_to_clean        <%x>\n"
				"buffer_info[next_to_clean]\n"
				"  time_stamp           <%lx>\n"
A
Alexander Duyck 已提交
4753
				"  next_to_watch        <%x>\n"
4754 4755
				"  jiffies              <%lx>\n"
				"  desc.status          <%x>\n",
A
Alexander Duyck 已提交
4756
				tx_ring->queue_index,
4757 4758
				readl(tx_ring->head),
				readl(tx_ring->tail),
4759 4760 4761
				tx_ring->next_to_use,
				tx_ring->next_to_clean,
				tx_ring->buffer_info[i].time_stamp,
A
Alexander Duyck 已提交
4762
				eop,
4763
				jiffies,
A
Alexander Duyck 已提交
4764
				eop_desc->wb.status);
4765
			netif_stop_subqueue(netdev, tx_ring->queue_index);
4766 4767 4768 4769
		}
	}
	tx_ring->total_bytes += total_bytes;
	tx_ring->total_packets += total_packets;
4770 4771
	tx_ring->tx_stats.bytes += total_bytes;
	tx_ring->tx_stats.packets += total_packets;
4772 4773
	netdev->stats.tx_bytes += total_bytes;
	netdev->stats.tx_packets += total_packets;
A
Alexander Duyck 已提交
4774
	return (count < tx_ring->count);
4775 4776 4777 4778
}

/**
 * igb_receive_skb - helper function to handle rx indications
4779 4780 4781
 * @q_vector: structure containing interrupt and ring information
 * @skb: packet to send up
 * @vlan_tag: vlan tag for packet
4782
 **/
4783 4784 4785 4786 4787 4788 4789 4790 4791
static void igb_receive_skb(struct igb_q_vector *q_vector,
                            struct sk_buff *skb,
                            u16 vlan_tag)
{
	struct igb_adapter *adapter = q_vector->adapter;

	if (vlan_tag)
		vlan_gro_receive(&q_vector->napi, adapter->vlgrp,
		                 vlan_tag, skb);
4792
	else
4793
		napi_gro_receive(&q_vector->napi, skb);
4794 4795
}

4796
static inline void igb_rx_checksum_adv(struct igb_ring *ring,
4797 4798 4799 4800 4801
				       u32 status_err, struct sk_buff *skb)
{
	skb->ip_summed = CHECKSUM_NONE;

	/* Ignore Checksum bit is set or checksum is disabled through ethtool */
4802 4803
	if (!(ring->flags & IGB_RING_FLAG_RX_CSUM) ||
	     (status_err & E1000_RXD_STAT_IXSM))
4804
		return;
4805

4806 4807 4808
	/* TCP/UDP checksum error bit is set */
	if (status_err &
	    (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) {
4809 4810 4811 4812 4813
		/*
		 * work around errata with sctp packets where the TCPE aka
		 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
		 * packets, (aka let the stack check the crc32c)
		 */
4814 4815
		if ((skb->len == 60) &&
		    (ring->flags & IGB_RING_FLAG_RX_SCTP_CSUM))
4816
			ring->rx_stats.csum_err++;
4817

4818 4819 4820 4821 4822 4823 4824
		/* let the stack verify checksum errors */
		return;
	}
	/* It must be a TCP or UDP packet with a valid checksum */
	if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))
		skb->ip_summed = CHECKSUM_UNNECESSARY;

4825
	dev_dbg(&ring->pdev->dev, "cksum success: bits %08X\n", status_err);
4826 4827
}

4828
static inline u16 igb_get_hlen(struct igb_ring *rx_ring,
4829 4830 4831 4832 4833 4834 4835 4836
                               union e1000_adv_rx_desc *rx_desc)
{
	/* HW will not DMA in data larger than the given buffer, even if it
	 * parses the (NFS, of course) header to be larger.  In that case, it
	 * fills the header buffer and spills the rest into the page.
	 */
	u16 hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hdr_info) &
	           E1000_RXDADV_HDRBUFLEN_MASK) >> E1000_RXDADV_HDRBUFLEN_SHIFT;
4837 4838
	if (hlen > rx_ring->rx_buffer_len)
		hlen = rx_ring->rx_buffer_len;
4839 4840 4841
	return hlen;
}

4842 4843
static bool igb_clean_rx_irq_adv(struct igb_q_vector *q_vector,
                                 int *work_done, int budget)
4844
{
4845 4846
	struct igb_adapter *adapter = q_vector->adapter;
	struct igb_ring *rx_ring = q_vector->rx_ring;
4847
	struct net_device *netdev = rx_ring->netdev;
4848
	struct e1000_hw *hw = &adapter->hw;
4849
	struct pci_dev *pdev = rx_ring->pdev;
4850 4851 4852 4853 4854 4855
	union e1000_adv_rx_desc *rx_desc , *next_rxd;
	struct igb_buffer *buffer_info , *next_buffer;
	struct sk_buff *skb;
	bool cleaned = false;
	int cleaned_count = 0;
	unsigned int total_bytes = 0, total_packets = 0;
4856
	unsigned int i;
4857 4858
	u32 staterr;
	u16 length;
4859
	u16 vlan_tag;
4860 4861

	i = rx_ring->next_to_clean;
4862
	buffer_info = &rx_ring->buffer_info[i];
4863 4864 4865 4866 4867 4868 4869 4870
	rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
	staterr = le32_to_cpu(rx_desc->wb.upper.status_error);

	while (staterr & E1000_RXD_STAT_DD) {
		if (*work_done >= budget)
			break;
		(*work_done)++;

4871 4872 4873 4874 4875 4876 4877 4878 4879 4880
		skb = buffer_info->skb;
		prefetch(skb->data - NET_IP_ALIGN);
		buffer_info->skb = NULL;

		i++;
		if (i == rx_ring->count)
			i = 0;
		next_rxd = E1000_RX_DESC_ADV(*rx_ring, i);
		prefetch(next_rxd);
		next_buffer = &rx_ring->buffer_info[i];
4881 4882 4883 4884 4885

		length = le16_to_cpu(rx_desc->wb.upper.length);
		cleaned = true;
		cleaned_count++;

4886
		if (buffer_info->dma) {
4887
			pci_unmap_single(pdev, buffer_info->dma,
4888
					 rx_ring->rx_buffer_len,
4889
					 PCI_DMA_FROMDEVICE);
J
Jesse Brandeburg 已提交
4890
			buffer_info->dma = 0;
4891
			if (rx_ring->rx_buffer_len >= IGB_RXBUFFER_1024) {
A
Alexander Duyck 已提交
4892 4893 4894
				skb_put(skb, length);
				goto send_up;
			}
4895
			skb_put(skb, igb_get_hlen(rx_ring, rx_desc));
4896 4897 4898
		}

		if (length) {
4899
			pci_unmap_page(pdev, buffer_info->page_dma,
4900
				       PAGE_SIZE / 2, PCI_DMA_FROMDEVICE);
4901
			buffer_info->page_dma = 0;
4902 4903 4904 4905 4906 4907

			skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags++,
						buffer_info->page,
						buffer_info->page_offset,
						length);

A
Alexander Duyck 已提交
4908
			if (page_count(buffer_info->page) != 1)
4909 4910 4911
				buffer_info->page = NULL;
			else
				get_page(buffer_info->page);
4912 4913 4914 4915

			skb->len += length;
			skb->data_len += length;

4916
			skb->truesize += length;
4917 4918
		}

4919
		if (!(staterr & E1000_RXD_STAT_EOP)) {
4920 4921 4922 4923
			buffer_info->skb = next_buffer->skb;
			buffer_info->dma = next_buffer->dma;
			next_buffer->skb = skb;
			next_buffer->dma = 0;
4924 4925
			goto next_desc;
		}
4926
send_up:
4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967
		/*
		 * If this bit is set, then the RX registers contain
		 * the time stamp. No other packet will be time
		 * stamped until we read these registers, so read the
		 * registers to make them available again. Because
		 * only one packet can be time stamped at a time, we
		 * know that the register values must belong to this
		 * one here and therefore we don't need to compare
		 * any of the additional attributes stored for it.
		 *
		 * If nothing went wrong, then it should have a
		 * skb_shared_tx that we can turn into a
		 * skb_shared_hwtstamps.
		 *
		 * TODO: can time stamping be triggered (thus locking
		 * the registers) without the packet reaching this point
		 * here? In that case RX time stamping would get stuck.
		 *
		 * TODO: in "time stamp all packets" mode this bit is
		 * not set. Need a global flag for this mode and then
		 * always read the registers. Cannot be done without
		 * a race condition.
		 */
		if (unlikely(staterr & E1000_RXD_STAT_TS)) {
			u64 regval;
			u64 ns;
			struct skb_shared_hwtstamps *shhwtstamps =
				skb_hwtstamps(skb);

			WARN(!(rd32(E1000_TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID),
			     "igb: no RX time stamp available for time stamped packet");
			regval = rd32(E1000_RXSTMPL);
			regval |= (u64)rd32(E1000_RXSTMPH) << 32;
			ns = timecounter_cyc2time(&adapter->clock, regval);
			timecompare_update(&adapter->compare, ns);
			memset(shhwtstamps, 0, sizeof(*shhwtstamps));
			shhwtstamps->hwtstamp = ns_to_ktime(ns);
			shhwtstamps->syststamp =
				timecompare_transform(&adapter->compare, ns);
		}

4968 4969 4970 4971 4972 4973 4974 4975
		if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
			dev_kfree_skb_irq(skb);
			goto next_desc;
		}

		total_bytes += skb->len;
		total_packets++;

4976
		igb_rx_checksum_adv(rx_ring, staterr, skb);
4977 4978

		skb->protocol = eth_type_trans(skb, netdev);
4979 4980 4981 4982
		skb_record_rx_queue(skb, rx_ring->queue_index);

		vlan_tag = ((staterr & E1000_RXD_STAT_VP) ?
		            le16_to_cpu(rx_desc->wb.upper.vlan) : 0);
4983

4984
		igb_receive_skb(q_vector, skb, vlan_tag);
4985 4986 4987 4988 4989 4990

next_desc:
		rx_desc->wb.upper.status_error = 0;

		/* return some buffers to hardware, one at a time is too slow */
		if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
4991
			igb_alloc_rx_buffers_adv(rx_ring, cleaned_count);
4992 4993 4994 4995 4996 4997 4998 4999
			cleaned_count = 0;
		}

		/* use prefetched values */
		rx_desc = next_rxd;
		buffer_info = next_buffer;
		staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
	}
5000

5001
	rx_ring->next_to_clean = i;
5002
	cleaned_count = igb_desc_unused(rx_ring);
5003 5004

	if (cleaned_count)
5005
		igb_alloc_rx_buffers_adv(rx_ring, cleaned_count);
5006 5007 5008 5009 5010

	rx_ring->total_packets += total_packets;
	rx_ring->total_bytes += total_bytes;
	rx_ring->rx_stats.packets += total_packets;
	rx_ring->rx_stats.bytes += total_bytes;
5011 5012
	netdev->stats.rx_bytes += total_bytes;
	netdev->stats.rx_packets += total_packets;
5013 5014 5015 5016 5017 5018 5019
	return cleaned;
}

/**
 * igb_alloc_rx_buffers_adv - Replace used receive buffers; packet split
 * @adapter: address of board private structure
 **/
5020
void igb_alloc_rx_buffers_adv(struct igb_ring *rx_ring, int cleaned_count)
5021
{
5022
	struct net_device *netdev = rx_ring->netdev;
5023 5024 5025 5026
	union e1000_adv_rx_desc *rx_desc;
	struct igb_buffer *buffer_info;
	struct sk_buff *skb;
	unsigned int i;
5027
	int bufsz;
5028 5029 5030 5031

	i = rx_ring->next_to_use;
	buffer_info = &rx_ring->buffer_info[i];

5032
	bufsz = rx_ring->rx_buffer_len;
5033

5034 5035 5036
	while (cleaned_count--) {
		rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);

A
Alexander Duyck 已提交
5037
		if ((bufsz < IGB_RXBUFFER_1024) && !buffer_info->page_dma) {
5038
			if (!buffer_info->page) {
5039 5040
				buffer_info->page = alloc_page(GFP_ATOMIC);
				if (!buffer_info->page) {
5041
					rx_ring->rx_stats.alloc_failed++;
5042 5043 5044 5045 5046
					goto no_buffers;
				}
				buffer_info->page_offset = 0;
			} else {
				buffer_info->page_offset ^= PAGE_SIZE / 2;
5047 5048
			}
			buffer_info->page_dma =
5049
				pci_map_page(rx_ring->pdev, buffer_info->page,
5050 5051
					     buffer_info->page_offset,
					     PAGE_SIZE / 2,
5052 5053 5054 5055
					     PCI_DMA_FROMDEVICE);
		}

		if (!buffer_info->skb) {
5056
			skb = netdev_alloc_skb_ip_align(netdev, bufsz);
5057
			if (!skb) {
5058
				rx_ring->rx_stats.alloc_failed++;
5059 5060 5061 5062
				goto no_buffers;
			}

			buffer_info->skb = skb;
5063 5064
			buffer_info->dma = pci_map_single(rx_ring->pdev,
			                                  skb->data,
5065 5066 5067 5068 5069
							  bufsz,
							  PCI_DMA_FROMDEVICE);
		}
		/* Refresh the desc even if buffer_addrs didn't change because
		 * each write-back erases this info. */
A
Alexander Duyck 已提交
5070
		if (bufsz < IGB_RXBUFFER_1024) {
5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098
			rx_desc->read.pkt_addr =
			     cpu_to_le64(buffer_info->page_dma);
			rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma);
		} else {
			rx_desc->read.pkt_addr =
			     cpu_to_le64(buffer_info->dma);
			rx_desc->read.hdr_addr = 0;
		}

		i++;
		if (i == rx_ring->count)
			i = 0;
		buffer_info = &rx_ring->buffer_info[i];
	}

no_buffers:
	if (rx_ring->next_to_use != i) {
		rx_ring->next_to_use = i;
		if (i == 0)
			i = (rx_ring->count - 1);
		else
			i--;

		/* Force memory writes to complete before letting h/w
		 * know there are new descriptors to fetch.  (Only
		 * applicable for weak-ordered memory model archs,
		 * such as IA-64). */
		wmb();
5099
		writel(i, rx_ring->tail);
5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121
	}
}

/**
 * igb_mii_ioctl -
 * @netdev:
 * @ifreq:
 * @cmd:
 **/
static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct mii_ioctl_data *data = if_mii(ifr);

	if (adapter->hw.phy.media_type != e1000_media_type_copper)
		return -EOPNOTSUPP;

	switch (cmd) {
	case SIOCGMIIPHY:
		data->phy_id = adapter->hw.phy.addr;
		break;
	case SIOCGMIIREG:
5122 5123
		if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
		                     &data->val_out))
5124 5125 5126 5127 5128 5129 5130 5131 5132
			return -EIO;
		break;
	case SIOCSMIIREG:
	default:
		return -EOPNOTSUPP;
	}
	return 0;
}

5133 5134 5135 5136 5137 5138
/**
 * igb_hwtstamp_ioctl - control hardware time stamping
 * @netdev:
 * @ifreq:
 * @cmd:
 *
5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150
 * Outgoing time stamping can be enabled and disabled. Play nice and
 * disable it when requested, although it shouldn't case any overhead
 * when no packet needs it. At most one packet in the queue may be
 * marked for time stamping, otherwise it would be impossible to tell
 * for sure to which packet the hardware time stamp belongs.
 *
 * Incoming time stamping has to be configured via the hardware
 * filters. Not all combinations are supported, in particular event
 * type has to be specified. Matching the kind of event packet is
 * not supported, with the exception of "all V2 events regardless of
 * level 2 or 4".
 *
5151 5152 5153 5154
 **/
static int igb_hwtstamp_ioctl(struct net_device *netdev,
			      struct ifreq *ifr, int cmd)
{
5155 5156
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
5157
	struct hwtstamp_config config;
5158 5159 5160 5161 5162 5163 5164 5165
	u32 tsync_tx_ctl_bit = E1000_TSYNCTXCTL_ENABLED;
	u32 tsync_rx_ctl_bit = E1000_TSYNCRXCTL_ENABLED;
	u32 tsync_rx_ctl_type = 0;
	u32 tsync_rx_cfg = 0;
	int is_l4 = 0;
	int is_l2 = 0;
	short port = 319; /* PTP */
	u32 regval;
5166 5167 5168 5169 5170 5171 5172 5173

	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
		return -EFAULT;

	/* reserved for future extensions */
	if (config.flags)
		return -EINVAL;

5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284
	switch (config.tx_type) {
	case HWTSTAMP_TX_OFF:
		tsync_tx_ctl_bit = 0;
		break;
	case HWTSTAMP_TX_ON:
		tsync_tx_ctl_bit = E1000_TSYNCTXCTL_ENABLED;
		break;
	default:
		return -ERANGE;
	}

	switch (config.rx_filter) {
	case HWTSTAMP_FILTER_NONE:
		tsync_rx_ctl_bit = 0;
		break;
	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
	case HWTSTAMP_FILTER_ALL:
		/*
		 * register TSYNCRXCFG must be set, therefore it is not
		 * possible to time stamp both Sync and Delay_Req messages
		 * => fall back to time stamping all packets
		 */
		tsync_rx_ctl_type = E1000_TSYNCRXCTL_TYPE_ALL;
		config.rx_filter = HWTSTAMP_FILTER_ALL;
		break;
	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
		tsync_rx_ctl_type = E1000_TSYNCRXCTL_TYPE_L4_V1;
		tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE;
		is_l4 = 1;
		break;
	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
		tsync_rx_ctl_type = E1000_TSYNCRXCTL_TYPE_L4_V1;
		tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE;
		is_l4 = 1;
		break;
	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
		tsync_rx_ctl_type = E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
		tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V2_SYNC_MESSAGE;
		is_l2 = 1;
		is_l4 = 1;
		config.rx_filter = HWTSTAMP_FILTER_SOME;
		break;
	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
		tsync_rx_ctl_type = E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
		tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V2_DELAY_REQ_MESSAGE;
		is_l2 = 1;
		is_l4 = 1;
		config.rx_filter = HWTSTAMP_FILTER_SOME;
		break;
	case HWTSTAMP_FILTER_PTP_V2_EVENT:
	case HWTSTAMP_FILTER_PTP_V2_SYNC:
	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
		tsync_rx_ctl_type = E1000_TSYNCRXCTL_TYPE_EVENT_V2;
		config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
		is_l2 = 1;
		break;
	default:
		return -ERANGE;
	}

	/* enable/disable TX */
	regval = rd32(E1000_TSYNCTXCTL);
	regval = (regval & ~E1000_TSYNCTXCTL_ENABLED) | tsync_tx_ctl_bit;
	wr32(E1000_TSYNCTXCTL, regval);

	/* enable/disable RX, define which PTP packets are time stamped */
	regval = rd32(E1000_TSYNCRXCTL);
	regval = (regval & ~E1000_TSYNCRXCTL_ENABLED) | tsync_rx_ctl_bit;
	regval = (regval & ~0xE) | tsync_rx_ctl_type;
	wr32(E1000_TSYNCRXCTL, regval);
	wr32(E1000_TSYNCRXCFG, tsync_rx_cfg);

	/*
	 * Ethertype Filter Queue Filter[0][15:0] = 0x88F7
	 *                                          (Ethertype to filter on)
	 * Ethertype Filter Queue Filter[0][26] = 0x1 (Enable filter)
	 * Ethertype Filter Queue Filter[0][30] = 0x1 (Enable Timestamping)
	 */
	wr32(E1000_ETQF0, is_l2 ? 0x440088f7 : 0);

	/* L4 Queue Filter[0]: only filter by source and destination port */
	wr32(E1000_SPQF0, htons(port));
	wr32(E1000_IMIREXT(0), is_l4 ?
	     ((1<<12) | (1<<19) /* bypass size and control flags */) : 0);
	wr32(E1000_IMIR(0), is_l4 ?
	     (htons(port)
	      | (0<<16) /* immediate interrupt disabled */
	      | 0 /* (1<<17) bit cleared: do not bypass
		     destination port check */)
		: 0);
	wr32(E1000_FTQF0, is_l4 ?
	     (0x11 /* UDP */
	      | (1<<15) /* VF not compared */
	      | (1<<27) /* Enable Timestamping */
	      | (7<<28) /* only source port filter enabled,
			   source/target address and protocol
			   masked */)
	     : ((1<<15) | (15<<28) /* all mask bits set = filter not
				      enabled */));

	wrfl();

	adapter->hwtstamp_config = config;

	/* clear TX/RX time stamp registers, just to be sure */
	regval = rd32(E1000_TXSTMPH);
	regval = rd32(E1000_RXSTMPH);
5285

5286 5287
	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
		-EFAULT : 0;
5288 5289
}

5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302
/**
 * igb_ioctl -
 * @netdev:
 * @ifreq:
 * @cmd:
 **/
static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
{
	switch (cmd) {
	case SIOCGMIIPHY:
	case SIOCGMIIREG:
	case SIOCSMIIREG:
		return igb_mii_ioctl(netdev, ifr, cmd);
5303 5304
	case SIOCSHWTSTAMP:
		return igb_hwtstamp_ioctl(netdev, ifr, cmd);
5305 5306 5307 5308 5309
	default:
		return -EOPNOTSUPP;
	}
}

5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337
s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
{
	struct igb_adapter *adapter = hw->back;
	u16 cap_offset;

	cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
	if (!cap_offset)
		return -E1000_ERR_CONFIG;

	pci_read_config_word(adapter->pdev, cap_offset + reg, value);

	return 0;
}

s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
{
	struct igb_adapter *adapter = hw->back;
	u16 cap_offset;

	cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
	if (!cap_offset)
		return -E1000_ERR_CONFIG;

	pci_write_config_word(adapter->pdev, cap_offset + reg, *value);

	return 0;
}

5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370
static void igb_vlan_rx_register(struct net_device *netdev,
				 struct vlan_group *grp)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 ctrl, rctl;

	igb_irq_disable(adapter);
	adapter->vlgrp = grp;

	if (grp) {
		/* enable VLAN tag insert/strip */
		ctrl = rd32(E1000_CTRL);
		ctrl |= E1000_CTRL_VME;
		wr32(E1000_CTRL, ctrl);

		/* enable VLAN receive filtering */
		rctl = rd32(E1000_RCTL);
		rctl &= ~E1000_RCTL_CFIEN;
		wr32(E1000_RCTL, rctl);
		igb_update_mng_vlan(adapter);
	} else {
		/* disable VLAN tag insert/strip */
		ctrl = rd32(E1000_CTRL);
		ctrl &= ~E1000_CTRL_VME;
		wr32(E1000_CTRL, ctrl);

		if (adapter->mng_vlan_id != (u16)IGB_MNG_VLAN_NONE) {
			igb_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
			adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
		}
	}

5371 5372
	igb_rlpml_set(adapter);

5373 5374 5375 5376 5377 5378 5379 5380
	if (!test_bit(__IGB_DOWN, &adapter->state))
		igb_irq_enable(adapter);
}

static void igb_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
5381
	int pf_id = adapter->vfs_allocated_count;
5382

5383
	if ((hw->mng_cookie.status &
5384 5385 5386
	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
	    (vid == adapter->mng_vlan_id))
		return;
5387 5388 5389 5390 5391 5392

	/* add vid to vlvf if sr-iov is enabled,
	 * if that fails add directly to filter table */
	if (igb_vlvf_set(adapter, vid, true, pf_id))
		igb_vfta_set(hw, vid, true);

5393 5394 5395 5396 5397 5398
}

static void igb_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
5399
	int pf_id = adapter->vfs_allocated_count;
5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414

	igb_irq_disable(adapter);
	vlan_group_set_device(adapter->vlgrp, vid, NULL);

	if (!test_bit(__IGB_DOWN, &adapter->state))
		igb_irq_enable(adapter);

	if ((adapter->hw.mng_cookie.status &
	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
	    (vid == adapter->mng_vlan_id)) {
		/* release control to f/w */
		igb_release_hw_control(adapter);
		return;
	}

5415 5416 5417 5418
	/* remove vid from vlvf if sr-iov is enabled,
	 * if not in vlvf remove from vfta */
	if (igb_vlvf_set(adapter, vid, false, pf_id))
		igb_vfta_set(hw, vid, false);
5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466
}

static void igb_restore_vlan(struct igb_adapter *adapter)
{
	igb_vlan_rx_register(adapter->netdev, adapter->vlgrp);

	if (adapter->vlgrp) {
		u16 vid;
		for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
			if (!vlan_group_get_device(adapter->vlgrp, vid))
				continue;
			igb_vlan_rx_add_vid(adapter->netdev, vid);
		}
	}
}

int igb_set_spd_dplx(struct igb_adapter *adapter, u16 spddplx)
{
	struct e1000_mac_info *mac = &adapter->hw.mac;

	mac->autoneg = 0;

	switch (spddplx) {
	case SPEED_10 + DUPLEX_HALF:
		mac->forced_speed_duplex = ADVERTISE_10_HALF;
		break;
	case SPEED_10 + DUPLEX_FULL:
		mac->forced_speed_duplex = ADVERTISE_10_FULL;
		break;
	case SPEED_100 + DUPLEX_HALF:
		mac->forced_speed_duplex = ADVERTISE_100_HALF;
		break;
	case SPEED_100 + DUPLEX_FULL:
		mac->forced_speed_duplex = ADVERTISE_100_FULL;
		break;
	case SPEED_1000 + DUPLEX_FULL:
		mac->autoneg = 1;
		adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
		break;
	case SPEED_1000 + DUPLEX_HALF: /* not supported */
	default:
		dev_err(&adapter->pdev->dev,
			"Unsupported Speed/Duplex configuration\n");
		return -EINVAL;
	}
	return 0;
}

5467
static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake)
5468 5469 5470 5471
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
A
Alexander Duyck 已提交
5472
	u32 ctrl, rctl, status;
5473 5474 5475 5476 5477 5478 5479
	u32 wufc = adapter->wol;
#ifdef CONFIG_PM
	int retval = 0;
#endif

	netif_device_detach(netdev);

A
Alexander Duyck 已提交
5480 5481 5482
	if (netif_running(netdev))
		igb_close(netdev);

5483
	igb_clear_interrupt_scheme(adapter);
5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496

#ifdef CONFIG_PM
	retval = pci_save_state(pdev);
	if (retval)
		return retval;
#endif

	status = rd32(E1000_STATUS);
	if (status & E1000_STATUS_LU)
		wufc &= ~E1000_WUFC_LNKC;

	if (wufc) {
		igb_setup_rctl(adapter);
5497
		igb_set_rx_mode(netdev);
5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523

		/* turn on all-multi mode if wake on multicast is enabled */
		if (wufc & E1000_WUFC_MC) {
			rctl = rd32(E1000_RCTL);
			rctl |= E1000_RCTL_MPE;
			wr32(E1000_RCTL, rctl);
		}

		ctrl = rd32(E1000_CTRL);
		/* advertise wake from D3Cold */
		#define E1000_CTRL_ADVD3WUC 0x00100000
		/* phy power management enable */
		#define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
		ctrl |= E1000_CTRL_ADVD3WUC;
		wr32(E1000_CTRL, ctrl);

		/* Allow time for pending master requests to run */
		igb_disable_pcie_master(&adapter->hw);

		wr32(E1000_WUC, E1000_WUC_PME_EN);
		wr32(E1000_WUFC, wufc);
	} else {
		wr32(E1000_WUC, 0);
		wr32(E1000_WUFC, 0);
	}

5524 5525
	*enable_wake = wufc || adapter->en_mng_pt;
	if (!*enable_wake)
5526
		igb_shutdown_serdes_link_82575(hw);
5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537

	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
	 * would have already happened in close and is redundant. */
	igb_release_hw_control(adapter);

	pci_disable_device(pdev);

	return 0;
}

#ifdef CONFIG_PM
5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556
static int igb_suspend(struct pci_dev *pdev, pm_message_t state)
{
	int retval;
	bool wake;

	retval = __igb_shutdown(pdev, &wake);
	if (retval)
		return retval;

	if (wake) {
		pci_prepare_to_sleep(pdev);
	} else {
		pci_wake_from_d3(pdev, false);
		pci_set_power_state(pdev, PCI_D3hot);
	}

	return 0;
}

5557 5558 5559 5560 5561 5562 5563 5564 5565
static int igb_resume(struct pci_dev *pdev)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 err;

	pci_set_power_state(pdev, PCI_D0);
	pci_restore_state(pdev);
T
Taku Izumi 已提交
5566

5567
	err = pci_enable_device_mem(pdev);
5568 5569 5570 5571 5572 5573 5574 5575 5576 5577
	if (err) {
		dev_err(&pdev->dev,
			"igb: Cannot enable PCI device from suspend\n");
		return err;
	}
	pci_set_master(pdev);

	pci_enable_wake(pdev, PCI_D3hot, 0);
	pci_enable_wake(pdev, PCI_D3cold, 0);

5578
	if (igb_init_interrupt_scheme(adapter)) {
A
Alexander Duyck 已提交
5579 5580
		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
		return -ENOMEM;
5581 5582 5583 5584 5585
	}

	/* e1000_power_up_phy(adapter); */

	igb_reset(adapter);
5586 5587 5588 5589 5590

	/* let the f/w know that the h/w is now under the control of the
	 * driver. */
	igb_get_hw_control(adapter);

5591 5592
	wr32(E1000_WUS, ~0);

A
Alexander Duyck 已提交
5593 5594 5595 5596 5597
	if (netif_running(netdev)) {
		err = igb_open(netdev);
		if (err)
			return err;
	}
5598 5599 5600 5601 5602 5603 5604 5605 5606

	netif_device_attach(netdev);

	return 0;
}
#endif

static void igb_shutdown(struct pci_dev *pdev)
{
5607 5608 5609 5610 5611 5612 5613 5614
	bool wake;

	__igb_shutdown(pdev, &wake);

	if (system_state == SYSTEM_POWER_OFF) {
		pci_wake_from_d3(pdev, wake);
		pci_set_power_state(pdev, PCI_D3hot);
	}
5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625
}

#ifdef CONFIG_NET_POLL_CONTROLLER
/*
 * Polling 'interrupt' - used by things like netconsole to send skbs
 * without having to re-enable interrupts. It's not called while
 * the interrupt routine is executing.
 */
static void igb_netpoll(struct net_device *netdev)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
5626
	struct e1000_hw *hw = &adapter->hw;
5627 5628
	int i;

5629
	if (!adapter->msix_entries) {
5630
		struct igb_q_vector *q_vector = adapter->q_vector[0];
5631
		igb_irq_disable(adapter);
5632
		napi_schedule(&q_vector->napi);
5633 5634
		return;
	}
5635

5636 5637 5638 5639
	for (i = 0; i < adapter->num_q_vectors; i++) {
		struct igb_q_vector *q_vector = adapter->q_vector[i];
		wr32(E1000_EIMC, q_vector->eims_value);
		napi_schedule(&q_vector->napi);
5640
	}
5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659
}
#endif /* CONFIG_NET_POLL_CONTROLLER */

/**
 * igb_io_error_detected - called when PCI error is detected
 * @pdev: Pointer to PCI device
 * @state: The current pci connection state
 *
 * This function is called after a PCI bus error affecting
 * this device has been detected.
 */
static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
					      pci_channel_state_t state)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);

	netif_device_detach(netdev);

5660 5661 5662
	if (state == pci_channel_io_perm_failure)
		return PCI_ERS_RESULT_DISCONNECT;

5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682
	if (netif_running(netdev))
		igb_down(adapter);
	pci_disable_device(pdev);

	/* Request a slot slot reset. */
	return PCI_ERS_RESULT_NEED_RESET;
}

/**
 * igb_io_slot_reset - called after the pci bus has been reset.
 * @pdev: Pointer to PCI device
 *
 * Restart the card from scratch, as if from a cold-boot. Implementation
 * resembles the first-half of the igb_resume routine.
 */
static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
5683
	pci_ers_result_t result;
T
Taku Izumi 已提交
5684
	int err;
5685

5686
	if (pci_enable_device_mem(pdev)) {
5687 5688
		dev_err(&pdev->dev,
			"Cannot re-enable PCI device after reset.\n");
5689 5690 5691 5692
		result = PCI_ERS_RESULT_DISCONNECT;
	} else {
		pci_set_master(pdev);
		pci_restore_state(pdev);
5693

5694 5695
		pci_enable_wake(pdev, PCI_D3hot, 0);
		pci_enable_wake(pdev, PCI_D3cold, 0);
5696

5697 5698 5699 5700
		igb_reset(adapter);
		wr32(E1000_WUS, ~0);
		result = PCI_ERS_RESULT_RECOVERED;
	}
5701

5702 5703 5704 5705 5706 5707
	err = pci_cleanup_aer_uncorrect_error_status(pdev);
	if (err) {
		dev_err(&pdev->dev, "pci_cleanup_aer_uncorrect_error_status "
		        "failed 0x%0x\n", err);
		/* non-fatal, continue */
	}
5708 5709

	return result;
5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738
}

/**
 * igb_io_resume - called when traffic can start flowing again.
 * @pdev: Pointer to PCI device
 *
 * This callback is called when the error recovery driver tells us that
 * its OK to resume normal operation. Implementation resembles the
 * second-half of the igb_resume routine.
 */
static void igb_io_resume(struct pci_dev *pdev)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);

	if (netif_running(netdev)) {
		if (igb_up(adapter)) {
			dev_err(&pdev->dev, "igb_up failed after reset\n");
			return;
		}
	}

	netif_device_attach(netdev);

	/* let the f/w know that the h/w is now under the control of the
	 * driver. */
	igb_get_hw_control(adapter);
}

5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765
static void igb_rar_set_qsel(struct igb_adapter *adapter, u8 *addr, u32 index,
                             u8 qsel)
{
	u32 rar_low, rar_high;
	struct e1000_hw *hw = &adapter->hw;

	/* HW expects these in little endian so we reverse the byte order
	 * from network order (big endian) to little endian
	 */
	rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
	          ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
	rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));

	/* Indicate to hardware the Address is Valid. */
	rar_high |= E1000_RAH_AV;

	if (hw->mac.type == e1000_82575)
		rar_high |= E1000_RAH_POOL_1 * qsel;
	else
		rar_high |= E1000_RAH_POOL_1 << qsel;

	wr32(E1000_RAL(index), rar_low);
	wrfl();
	wr32(E1000_RAH(index), rar_high);
	wrfl();
}

5766 5767 5768 5769
static int igb_set_vf_mac(struct igb_adapter *adapter,
                          int vf, unsigned char *mac_addr)
{
	struct e1000_hw *hw = &adapter->hw;
5770 5771 5772
	/* VF MAC addresses start at end of receive addresses and moves
	 * torwards the first, as a result a collision should not be possible */
	int rar_entry = hw->mac.rar_entry_count - (vf + 1);
5773

5774
	memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN);
5775

5776
	igb_rar_set_qsel(adapter, mac_addr, rar_entry, vf);
5777 5778 5779 5780 5781 5782 5783

	return 0;
}

static void igb_vmm_control(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
5784
	u32 reg;
5785

5786 5787
	/* replication is not supported for 82575 */
	if (hw->mac.type == e1000_82575)
5788 5789
		return;

5790 5791 5792 5793 5794 5795 5796 5797 5798 5799
	/* enable replication vlan tag stripping */
	reg = rd32(E1000_RPLOLR);
	reg |= E1000_RPLOLR_STRVLAN;
	wr32(E1000_RPLOLR, reg);

	/* notify HW that the MAC is adding vlan tags */
	reg = rd32(E1000_DTXCTL);
	reg |= E1000_DTXCTL_VLAN_ADDED;
	wr32(E1000_DTXCTL, reg);

5800 5801 5802 5803 5804 5805 5806
	if (adapter->vfs_allocated_count) {
		igb_vmdq_set_loopback_pf(hw, true);
		igb_vmdq_set_replication_pf(hw, true);
	} else {
		igb_vmdq_set_loopback_pf(hw, false);
		igb_vmdq_set_replication_pf(hw, false);
	}
5807 5808
}

5809
/* igb_main.c */