igb_main.c 181.7 KB
Newer Older
1 2 3
/*******************************************************************************

  Intel(R) Gigabit Ethernet Linux driver
4
  Copyright(c) 2007-2009 Intel Corporation.
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

  This program is free software; you can redistribute it and/or modify it
  under the terms and conditions of the GNU General Public License,
  version 2, as published by the Free Software Foundation.

  This program is distributed in the hope it will be useful, but WITHOUT
  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  more details.

  You should have received a copy of the GNU General Public License along with
  this program; if not, write to the Free Software Foundation, Inc.,
  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.

  The full GNU General Public License is included in this distribution in
  the file called "COPYING".

  Contact Information:
  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497

*******************************************************************************/

#include <linux/module.h>
#include <linux/types.h>
#include <linux/init.h>
#include <linux/vmalloc.h>
#include <linux/pagemap.h>
#include <linux/netdevice.h>
#include <linux/ipv6.h>
35
#include <linux/slab.h>
36 37
#include <net/checksum.h>
#include <net/ip6_checksum.h>
38
#include <linux/net_tstamp.h>
39 40 41 42
#include <linux/mii.h>
#include <linux/ethtool.h>
#include <linux/if_vlan.h>
#include <linux/pci.h>
43
#include <linux/pci-aspm.h>
44 45 46
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/if_ether.h>
47
#include <linux/aer.h>
48
#ifdef CONFIG_IGB_DCA
J
Jeb Cramer 已提交
49 50
#include <linux/dca.h>
#endif
51 52
#include "igb.h"

53
#define DRV_VERSION "2.1.0-k2"
54 55 56 57
char igb_driver_name[] = "igb";
char igb_driver_version[] = DRV_VERSION;
static const char igb_driver_string[] =
				"Intel(R) Gigabit Ethernet Network Driver";
58
static const char igb_copyright[] = "Copyright (c) 2007-2009 Intel Corporation.";
59 60 61 62 63

static const struct e1000_info *igb_info_tbl[] = {
	[board_82575] = &e1000_82575_info,
};

64
static DEFINE_PCI_DEVICE_TABLE(igb_pci_tbl) = {
65 66 67 68
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
69 70 71 72 73
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
74 75
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
A
Alexander Duyck 已提交
76
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
77
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
78
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
A
Alexander Duyck 已提交
79 80
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
81
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
82
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
83
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
84 85 86 87 88 89 90 91 92 93 94 95 96 97
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
	/* required last entry */
	{0, }
};

MODULE_DEVICE_TABLE(pci, igb_pci_tbl);

void igb_reset(struct igb_adapter *);
static int igb_setup_all_tx_resources(struct igb_adapter *);
static int igb_setup_all_rx_resources(struct igb_adapter *);
static void igb_free_all_tx_resources(struct igb_adapter *);
static void igb_free_all_rx_resources(struct igb_adapter *);
98
static void igb_setup_mrqc(struct igb_adapter *);
99 100 101 102 103 104 105 106 107
static int igb_probe(struct pci_dev *, const struct pci_device_id *);
static void __devexit igb_remove(struct pci_dev *pdev);
static int igb_sw_init(struct igb_adapter *);
static int igb_open(struct net_device *);
static int igb_close(struct net_device *);
static void igb_configure_tx(struct igb_adapter *);
static void igb_configure_rx(struct igb_adapter *);
static void igb_clean_all_tx_rings(struct igb_adapter *);
static void igb_clean_all_rx_rings(struct igb_adapter *);
108 109
static void igb_clean_tx_ring(struct igb_ring *);
static void igb_clean_rx_ring(struct igb_ring *);
110
static void igb_set_rx_mode(struct net_device *);
111 112 113
static void igb_update_phy_info(unsigned long);
static void igb_watchdog(unsigned long);
static void igb_watchdog_task(struct work_struct *);
114
static netdev_tx_t igb_xmit_frame_adv(struct sk_buff *skb, struct net_device *);
E
Eric Dumazet 已提交
115 116
static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *dev,
						 struct rtnl_link_stats64 *stats);
117 118
static int igb_change_mtu(struct net_device *, int);
static int igb_set_mac(struct net_device *, void *);
119
static void igb_set_uta(struct igb_adapter *adapter);
120 121 122
static irqreturn_t igb_intr(int irq, void *);
static irqreturn_t igb_intr_msi(int irq, void *);
static irqreturn_t igb_msix_other(int irq, void *);
123
static irqreturn_t igb_msix_ring(int irq, void *);
124
#ifdef CONFIG_IGB_DCA
125
static void igb_update_dca(struct igb_q_vector *);
J
Jeb Cramer 已提交
126
static void igb_setup_dca(struct igb_adapter *);
127
#endif /* CONFIG_IGB_DCA */
128
static bool igb_clean_tx_irq(struct igb_q_vector *);
129
static int igb_poll(struct napi_struct *, int);
130
static bool igb_clean_rx_irq_adv(struct igb_q_vector *, int *, int);
131 132 133 134 135 136 137
static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
static void igb_tx_timeout(struct net_device *);
static void igb_reset_task(struct work_struct *);
static void igb_vlan_rx_register(struct net_device *, struct vlan_group *);
static void igb_vlan_rx_add_vid(struct net_device *, u16);
static void igb_vlan_rx_kill_vid(struct net_device *, u16);
static void igb_restore_vlan(struct igb_adapter *);
138
static void igb_rar_set_qsel(struct igb_adapter *, u8 *, u32 , u8);
139 140 141
static void igb_ping_all_vfs(struct igb_adapter *);
static void igb_msg_task(struct igb_adapter *);
static void igb_vmm_control(struct igb_adapter *);
142
static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
143
static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
144 145 146 147 148 149
static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
static int igb_ndo_set_vf_vlan(struct net_device *netdev,
			       int vf, u16 vlan, u8 qos);
static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate);
static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
				 struct ifla_vf_info *ivi);
150 151

#ifdef CONFIG_PM
152
static int igb_suspend(struct pci_dev *, pm_message_t);
153 154 155
static int igb_resume(struct pci_dev *);
#endif
static void igb_shutdown(struct pci_dev *);
156
#ifdef CONFIG_IGB_DCA
J
Jeb Cramer 已提交
157 158 159 160 161 162 163
static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
static struct notifier_block dca_notifier = {
	.notifier_call	= igb_notify_dca,
	.next		= NULL,
	.priority	= 0
};
#endif
164 165 166 167
#ifdef CONFIG_NET_POLL_CONTROLLER
/* for netdump / net console */
static void igb_netpoll(struct net_device *);
#endif
168
#ifdef CONFIG_PCI_IOV
169 170 171 172 173 174
static unsigned int max_vfs = 0;
module_param(max_vfs, uint, 0);
MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate "
                 "per physical function");
#endif /* CONFIG_PCI_IOV */

175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
		     pci_channel_state_t);
static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
static void igb_io_resume(struct pci_dev *);

static struct pci_error_handlers igb_err_handler = {
	.error_detected = igb_io_error_detected,
	.slot_reset = igb_io_slot_reset,
	.resume = igb_io_resume,
};


static struct pci_driver igb_driver = {
	.name     = igb_driver_name,
	.id_table = igb_pci_tbl,
	.probe    = igb_probe,
	.remove   = __devexit_p(igb_remove),
#ifdef CONFIG_PM
	/* Power Managment Hooks */
	.suspend  = igb_suspend,
	.resume   = igb_resume,
#endif
	.shutdown = igb_shutdown,
	.err_handler = &igb_err_handler
};

MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
MODULE_LICENSE("GPL");
MODULE_VERSION(DRV_VERSION);

206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535
struct igb_reg_info {
	u32 ofs;
	char *name;
};

static const struct igb_reg_info igb_reg_info_tbl[] = {

	/* General Registers */
	{E1000_CTRL, "CTRL"},
	{E1000_STATUS, "STATUS"},
	{E1000_CTRL_EXT, "CTRL_EXT"},

	/* Interrupt Registers */
	{E1000_ICR, "ICR"},

	/* RX Registers */
	{E1000_RCTL, "RCTL"},
	{E1000_RDLEN(0), "RDLEN"},
	{E1000_RDH(0), "RDH"},
	{E1000_RDT(0), "RDT"},
	{E1000_RXDCTL(0), "RXDCTL"},
	{E1000_RDBAL(0), "RDBAL"},
	{E1000_RDBAH(0), "RDBAH"},

	/* TX Registers */
	{E1000_TCTL, "TCTL"},
	{E1000_TDBAL(0), "TDBAL"},
	{E1000_TDBAH(0), "TDBAH"},
	{E1000_TDLEN(0), "TDLEN"},
	{E1000_TDH(0), "TDH"},
	{E1000_TDT(0), "TDT"},
	{E1000_TXDCTL(0), "TXDCTL"},
	{E1000_TDFH, "TDFH"},
	{E1000_TDFT, "TDFT"},
	{E1000_TDFHS, "TDFHS"},
	{E1000_TDFPC, "TDFPC"},

	/* List Terminator */
	{}
};

/*
 * igb_regdump - register printout routine
 */
static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
{
	int n = 0;
	char rname[16];
	u32 regs[8];

	switch (reginfo->ofs) {
	case E1000_RDLEN(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_RDLEN(n));
		break;
	case E1000_RDH(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_RDH(n));
		break;
	case E1000_RDT(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_RDT(n));
		break;
	case E1000_RXDCTL(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_RXDCTL(n));
		break;
	case E1000_RDBAL(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_RDBAL(n));
		break;
	case E1000_RDBAH(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_RDBAH(n));
		break;
	case E1000_TDBAL(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_RDBAL(n));
		break;
	case E1000_TDBAH(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_TDBAH(n));
		break;
	case E1000_TDLEN(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_TDLEN(n));
		break;
	case E1000_TDH(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_TDH(n));
		break;
	case E1000_TDT(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_TDT(n));
		break;
	case E1000_TXDCTL(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_TXDCTL(n));
		break;
	default:
		printk(KERN_INFO "%-15s %08x\n",
			reginfo->name, rd32(reginfo->ofs));
		return;
	}

	snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
	printk(KERN_INFO "%-15s ", rname);
	for (n = 0; n < 4; n++)
		printk(KERN_CONT "%08x ", regs[n]);
	printk(KERN_CONT "\n");
}

/*
 * igb_dump - Print registers, tx-rings and rx-rings
 */
static void igb_dump(struct igb_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
	struct e1000_hw *hw = &adapter->hw;
	struct igb_reg_info *reginfo;
	int n = 0;
	struct igb_ring *tx_ring;
	union e1000_adv_tx_desc *tx_desc;
	struct my_u0 { u64 a; u64 b; } *u0;
	struct igb_buffer *buffer_info;
	struct igb_ring *rx_ring;
	union e1000_adv_rx_desc *rx_desc;
	u32 staterr;
	int i = 0;

	if (!netif_msg_hw(adapter))
		return;

	/* Print netdevice Info */
	if (netdev) {
		dev_info(&adapter->pdev->dev, "Net device Info\n");
		printk(KERN_INFO "Device Name     state            "
			"trans_start      last_rx\n");
		printk(KERN_INFO "%-15s %016lX %016lX %016lX\n",
		netdev->name,
		netdev->state,
		netdev->trans_start,
		netdev->last_rx);
	}

	/* Print Registers */
	dev_info(&adapter->pdev->dev, "Register Dump\n");
	printk(KERN_INFO " Register Name   Value\n");
	for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
	     reginfo->name; reginfo++) {
		igb_regdump(hw, reginfo);
	}

	/* Print TX Ring Summary */
	if (!netdev || !netif_running(netdev))
		goto exit;

	dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
	printk(KERN_INFO "Queue [NTU] [NTC] [bi(ntc)->dma  ]"
		" leng ntw timestamp\n");
	for (n = 0; n < adapter->num_tx_queues; n++) {
		tx_ring = adapter->tx_ring[n];
		buffer_info = &tx_ring->buffer_info[tx_ring->next_to_clean];
		printk(KERN_INFO " %5d %5X %5X %016llX %04X %3X %016llX\n",
			   n, tx_ring->next_to_use, tx_ring->next_to_clean,
			   (u64)buffer_info->dma,
			   buffer_info->length,
			   buffer_info->next_to_watch,
			   (u64)buffer_info->time_stamp);
	}

	/* Print TX Rings */
	if (!netif_msg_tx_done(adapter))
		goto rx_ring_summary;

	dev_info(&adapter->pdev->dev, "TX Rings Dump\n");

	/* Transmit Descriptor Formats
	 *
	 * Advanced Transmit Descriptor
	 *   +--------------------------------------------------------------+
	 * 0 |         Buffer Address [63:0]                                |
	 *   +--------------------------------------------------------------+
	 * 8 | PAYLEN  | PORTS  |CC|IDX | STA | DCMD  |DTYP|MAC|RSV| DTALEN |
	 *   +--------------------------------------------------------------+
	 *   63      46 45    40 39 38 36 35 32 31   24             15       0
	 */

	for (n = 0; n < adapter->num_tx_queues; n++) {
		tx_ring = adapter->tx_ring[n];
		printk(KERN_INFO "------------------------------------\n");
		printk(KERN_INFO "TX QUEUE INDEX = %d\n", tx_ring->queue_index);
		printk(KERN_INFO "------------------------------------\n");
		printk(KERN_INFO "T [desc]     [address 63:0  ] "
			"[PlPOCIStDDM Ln] [bi->dma       ] "
			"leng  ntw timestamp        bi->skb\n");

		for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
			tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
			buffer_info = &tx_ring->buffer_info[i];
			u0 = (struct my_u0 *)tx_desc;
			printk(KERN_INFO "T [0x%03X]    %016llX %016llX %016llX"
				" %04X  %3X %016llX %p", i,
				le64_to_cpu(u0->a),
				le64_to_cpu(u0->b),
				(u64)buffer_info->dma,
				buffer_info->length,
				buffer_info->next_to_watch,
				(u64)buffer_info->time_stamp,
				buffer_info->skb);
			if (i == tx_ring->next_to_use &&
				i == tx_ring->next_to_clean)
				printk(KERN_CONT " NTC/U\n");
			else if (i == tx_ring->next_to_use)
				printk(KERN_CONT " NTU\n");
			else if (i == tx_ring->next_to_clean)
				printk(KERN_CONT " NTC\n");
			else
				printk(KERN_CONT "\n");

			if (netif_msg_pktdata(adapter) && buffer_info->dma != 0)
				print_hex_dump(KERN_INFO, "",
					DUMP_PREFIX_ADDRESS,
					16, 1, phys_to_virt(buffer_info->dma),
					buffer_info->length, true);
		}
	}

	/* Print RX Rings Summary */
rx_ring_summary:
	dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
	printk(KERN_INFO "Queue [NTU] [NTC]\n");
	for (n = 0; n < adapter->num_rx_queues; n++) {
		rx_ring = adapter->rx_ring[n];
		printk(KERN_INFO " %5d %5X %5X\n", n,
			   rx_ring->next_to_use, rx_ring->next_to_clean);
	}

	/* Print RX Rings */
	if (!netif_msg_rx_status(adapter))
		goto exit;

	dev_info(&adapter->pdev->dev, "RX Rings Dump\n");

	/* Advanced Receive Descriptor (Read) Format
	 *    63                                           1        0
	 *    +-----------------------------------------------------+
	 *  0 |       Packet Buffer Address [63:1]           |A0/NSE|
	 *    +----------------------------------------------+------+
	 *  8 |       Header Buffer Address [63:1]           |  DD  |
	 *    +-----------------------------------------------------+
	 *
	 *
	 * Advanced Receive Descriptor (Write-Back) Format
	 *
	 *   63       48 47    32 31  30      21 20 17 16   4 3     0
	 *   +------------------------------------------------------+
	 * 0 | Packet     IP     |SPH| HDR_LEN   | RSV|Packet|  RSS |
	 *   | Checksum   Ident  |   |           |    | Type | Type |
	 *   +------------------------------------------------------+
	 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
	 *   +------------------------------------------------------+
	 *   63       48 47    32 31            20 19               0
	 */

	for (n = 0; n < adapter->num_rx_queues; n++) {
		rx_ring = adapter->rx_ring[n];
		printk(KERN_INFO "------------------------------------\n");
		printk(KERN_INFO "RX QUEUE INDEX = %d\n", rx_ring->queue_index);
		printk(KERN_INFO "------------------------------------\n");
		printk(KERN_INFO "R  [desc]      [ PktBuf     A0] "
			"[  HeadBuf   DD] [bi->dma       ] [bi->skb] "
			"<-- Adv Rx Read format\n");
		printk(KERN_INFO "RWB[desc]      [PcsmIpSHl PtRs] "
			"[vl er S cks ln] ---------------- [bi->skb] "
			"<-- Adv Rx Write-Back format\n");

		for (i = 0; i < rx_ring->count; i++) {
			buffer_info = &rx_ring->buffer_info[i];
			rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
			u0 = (struct my_u0 *)rx_desc;
			staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
			if (staterr & E1000_RXD_STAT_DD) {
				/* Descriptor Done */
				printk(KERN_INFO "RWB[0x%03X]     %016llX "
					"%016llX ---------------- %p", i,
					le64_to_cpu(u0->a),
					le64_to_cpu(u0->b),
					buffer_info->skb);
			} else {
				printk(KERN_INFO "R  [0x%03X]     %016llX "
					"%016llX %016llX %p", i,
					le64_to_cpu(u0->a),
					le64_to_cpu(u0->b),
					(u64)buffer_info->dma,
					buffer_info->skb);

				if (netif_msg_pktdata(adapter)) {
					print_hex_dump(KERN_INFO, "",
						DUMP_PREFIX_ADDRESS,
						16, 1,
						phys_to_virt(buffer_info->dma),
						rx_ring->rx_buffer_len, true);
					if (rx_ring->rx_buffer_len
						< IGB_RXBUFFER_1024)
						print_hex_dump(KERN_INFO, "",
						  DUMP_PREFIX_ADDRESS,
						  16, 1,
						  phys_to_virt(
						    buffer_info->page_dma +
						    buffer_info->page_offset),
						  PAGE_SIZE/2, true);
				}
			}

			if (i == rx_ring->next_to_use)
				printk(KERN_CONT " NTU\n");
			else if (i == rx_ring->next_to_clean)
				printk(KERN_CONT " NTC\n");
			else
				printk(KERN_CONT "\n");

		}
	}

exit:
	return;
}


P
Patrick Ohly 已提交
536 537 538 539 540 541 542 543
/**
 * igb_read_clock - read raw cycle counter (to be used by time counter)
 */
static cycle_t igb_read_clock(const struct cyclecounter *tc)
{
	struct igb_adapter *adapter =
		container_of(tc, struct igb_adapter, cycles);
	struct e1000_hw *hw = &adapter->hw;
544 545
	u64 stamp = 0;
	int shift = 0;
P
Patrick Ohly 已提交
546

547 548 549 550 551 552 553 554 555 556
	/*
	 * The timestamp latches on lowest register read. For the 82580
	 * the lowest register is SYSTIMR instead of SYSTIML.  However we never
	 * adjusted TIMINCA so SYSTIMR will just read as all 0s so ignore it.
	 */
	if (hw->mac.type == e1000_82580) {
		stamp = rd32(E1000_SYSTIMR) >> 8;
		shift = IGB_82580_TSYNC_SHIFT;
	}

557 558
	stamp |= (u64)rd32(E1000_SYSTIML) << shift;
	stamp |= (u64)rd32(E1000_SYSTIMH) << (shift + 32);
P
Patrick Ohly 已提交
559 560 561
	return stamp;
}

562
/**
563
 * igb_get_hw_dev - return device
564 565
 * used by hardware layer to print debugging information
 **/
566
struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
567 568
{
	struct igb_adapter *adapter = hw->back;
569
	return adapter->netdev;
570
}
P
Patrick Ohly 已提交
571

572 573 574 575 576 577 578 579 580 581 582 583 584 585
/**
 * igb_init_module - Driver Registration Routine
 *
 * igb_init_module is the first routine called when the driver is
 * loaded. All it does is register with the PCI subsystem.
 **/
static int __init igb_init_module(void)
{
	int ret;
	printk(KERN_INFO "%s - version %s\n",
	       igb_driver_string, igb_driver_version);

	printk(KERN_INFO "%s\n", igb_copyright);

586
#ifdef CONFIG_IGB_DCA
J
Jeb Cramer 已提交
587 588
	dca_register_notify(&dca_notifier);
#endif
589
	ret = pci_register_driver(&igb_driver);
590 591 592 593 594 595 596 597 598 599 600 601 602
	return ret;
}

module_init(igb_init_module);

/**
 * igb_exit_module - Driver Exit Cleanup Routine
 *
 * igb_exit_module is called just before the driver is removed
 * from memory.
 **/
static void __exit igb_exit_module(void)
{
603
#ifdef CONFIG_IGB_DCA
J
Jeb Cramer 已提交
604 605
	dca_unregister_notify(&dca_notifier);
#endif
606 607 608 609 610
	pci_unregister_driver(&igb_driver);
}

module_exit(igb_exit_module);

611 612 613 614 615 616 617 618 619 620
#define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
/**
 * igb_cache_ring_register - Descriptor ring to register mapping
 * @adapter: board private structure to initialize
 *
 * Once we know the feature-set enabled for the device, we'll cache
 * the register offset the descriptor ring is assigned to.
 **/
static void igb_cache_ring_register(struct igb_adapter *adapter)
{
621
	int i = 0, j = 0;
622
	u32 rbase_offset = adapter->vfs_allocated_count;
623 624 625 626 627 628 629 630

	switch (adapter->hw.mac.type) {
	case e1000_82576:
		/* The queues are allocated for virtualization such that VF 0
		 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
		 * In order to avoid collision we start at the first free queue
		 * and continue consuming queues in the same sequence
		 */
631
		if (adapter->vfs_allocated_count) {
632
			for (; i < adapter->rss_queues; i++)
633 634
				adapter->rx_ring[i]->reg_idx = rbase_offset +
				                               Q_IDX_82576(i);
635
		}
636
	case e1000_82575:
637
	case e1000_82580:
638
	case e1000_i350:
639
	default:
640
		for (; i < adapter->num_rx_queues; i++)
641
			adapter->rx_ring[i]->reg_idx = rbase_offset + i;
642
		for (; j < adapter->num_tx_queues; j++)
643
			adapter->tx_ring[j]->reg_idx = rbase_offset + j;
644 645 646 647
		break;
	}
}

648 649
static void igb_free_queues(struct igb_adapter *adapter)
{
650
	int i;
651

652 653 654 655 656 657 658 659
	for (i = 0; i < adapter->num_tx_queues; i++) {
		kfree(adapter->tx_ring[i]);
		adapter->tx_ring[i] = NULL;
	}
	for (i = 0; i < adapter->num_rx_queues; i++) {
		kfree(adapter->rx_ring[i]);
		adapter->rx_ring[i] = NULL;
	}
660 661 662 663
	adapter->num_rx_queues = 0;
	adapter->num_tx_queues = 0;
}

664 665 666 667 668 669 670 671 672
/**
 * igb_alloc_queues - Allocate memory for all rings
 * @adapter: board private structure to initialize
 *
 * We allocate one ring per queue at run-time since we don't know the
 * number of queues at compile-time.
 **/
static int igb_alloc_queues(struct igb_adapter *adapter)
{
673
	struct igb_ring *ring;
674 675
	int i;

676
	for (i = 0; i < adapter->num_tx_queues; i++) {
677 678 679
		ring = kzalloc(sizeof(struct igb_ring), GFP_KERNEL);
		if (!ring)
			goto err;
680
		ring->count = adapter->tx_ring_count;
681
		ring->queue_index = i;
682
		ring->dev = &adapter->pdev->dev;
683
		ring->netdev = adapter->netdev;
684 685 686
		/* For 82575, context index must be unique per ring. */
		if (adapter->hw.mac.type == e1000_82575)
			ring->flags = IGB_RING_FLAG_TX_CTX_IDX;
687
		adapter->tx_ring[i] = ring;
688
	}
689

690
	for (i = 0; i < adapter->num_rx_queues; i++) {
691 692 693
		ring = kzalloc(sizeof(struct igb_ring), GFP_KERNEL);
		if (!ring)
			goto err;
694
		ring->count = adapter->rx_ring_count;
P
PJ Waskiewicz 已提交
695
		ring->queue_index = i;
696
		ring->dev = &adapter->pdev->dev;
697
		ring->netdev = adapter->netdev;
698
		ring->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
699 700 701 702
		ring->flags = IGB_RING_FLAG_RX_CSUM; /* enable rx checksum */
		/* set flag indicating ring supports SCTP checksum offload */
		if (adapter->hw.mac.type >= e1000_82576)
			ring->flags |= IGB_RING_FLAG_RX_SCTP_CSUM;
703
		adapter->rx_ring[i] = ring;
704
	}
705 706

	igb_cache_ring_register(adapter);
707

708
	return 0;
A
Alexander Duyck 已提交
709

710 711
err:
	igb_free_queues(adapter);
712

713
	return -ENOMEM;
A
Alexander Duyck 已提交
714 715
}

716
#define IGB_N0_QUEUE -1
717
static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
718 719
{
	u32 msixbm = 0;
720
	struct igb_adapter *adapter = q_vector->adapter;
721
	struct e1000_hw *hw = &adapter->hw;
A
Alexander Duyck 已提交
722
	u32 ivar, index;
723 724 725 726 727 728 729
	int rx_queue = IGB_N0_QUEUE;
	int tx_queue = IGB_N0_QUEUE;

	if (q_vector->rx_ring)
		rx_queue = q_vector->rx_ring->reg_idx;
	if (q_vector->tx_ring)
		tx_queue = q_vector->tx_ring->reg_idx;
A
Alexander Duyck 已提交
730 731 732

	switch (hw->mac.type) {
	case e1000_82575:
733 734 735 736
		/* The 82575 assigns vectors using a bitmask, which matches the
		   bitmask for the EICR/EIMS/EIMC registers.  To assign one
		   or more queues to a vector, we write the appropriate bits
		   into the MSIXBM register for that vector. */
737
		if (rx_queue > IGB_N0_QUEUE)
738
			msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
739
		if (tx_queue > IGB_N0_QUEUE)
740
			msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
741 742
		if (!adapter->msix_entries && msix_vector == 0)
			msixbm |= E1000_EIMS_OTHER;
743
		array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
744
		q_vector->eims_value = msixbm;
A
Alexander Duyck 已提交
745 746
		break;
	case e1000_82576:
747
		/* 82576 uses a table-based method for assigning vectors.
A
Alexander Duyck 已提交
748 749 750 751
		   Each queue has a single entry in the table to which we write
		   a vector number along with a "valid" bit.  Sadly, the layout
		   of the table is somewhat counterintuitive. */
		if (rx_queue > IGB_N0_QUEUE) {
752
			index = (rx_queue & 0x7);
A
Alexander Duyck 已提交
753
			ivar = array_rd32(E1000_IVAR0, index);
754
			if (rx_queue < 8) {
755 756 757
				/* vector goes into low byte of register */
				ivar = ivar & 0xFFFFFF00;
				ivar |= msix_vector | E1000_IVAR_VALID;
758 759 760 761
			} else {
				/* vector goes into third byte of register */
				ivar = ivar & 0xFF00FFFF;
				ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
A
Alexander Duyck 已提交
762 763 764 765
			}
			array_wr32(E1000_IVAR0, index, ivar);
		}
		if (tx_queue > IGB_N0_QUEUE) {
766
			index = (tx_queue & 0x7);
A
Alexander Duyck 已提交
767
			ivar = array_rd32(E1000_IVAR0, index);
768
			if (tx_queue < 8) {
769 770 771
				/* vector goes into second byte of register */
				ivar = ivar & 0xFFFF00FF;
				ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
772 773 774 775
			} else {
				/* vector goes into high byte of register */
				ivar = ivar & 0x00FFFFFF;
				ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
A
Alexander Duyck 已提交
776 777 778
			}
			array_wr32(E1000_IVAR0, index, ivar);
		}
779
		q_vector->eims_value = 1 << msix_vector;
A
Alexander Duyck 已提交
780
		break;
781
	case e1000_82580:
782
	case e1000_i350:
783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814
		/* 82580 uses the same table-based approach as 82576 but has fewer
		   entries as a result we carry over for queues greater than 4. */
		if (rx_queue > IGB_N0_QUEUE) {
			index = (rx_queue >> 1);
			ivar = array_rd32(E1000_IVAR0, index);
			if (rx_queue & 0x1) {
				/* vector goes into third byte of register */
				ivar = ivar & 0xFF00FFFF;
				ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
			} else {
				/* vector goes into low byte of register */
				ivar = ivar & 0xFFFFFF00;
				ivar |= msix_vector | E1000_IVAR_VALID;
			}
			array_wr32(E1000_IVAR0, index, ivar);
		}
		if (tx_queue > IGB_N0_QUEUE) {
			index = (tx_queue >> 1);
			ivar = array_rd32(E1000_IVAR0, index);
			if (tx_queue & 0x1) {
				/* vector goes into high byte of register */
				ivar = ivar & 0x00FFFFFF;
				ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
			} else {
				/* vector goes into second byte of register */
				ivar = ivar & 0xFFFF00FF;
				ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
			}
			array_wr32(E1000_IVAR0, index, ivar);
		}
		q_vector->eims_value = 1 << msix_vector;
		break;
A
Alexander Duyck 已提交
815 816 817 818
	default:
		BUG();
		break;
	}
819 820 821 822 823 824

	/* add q_vector eims value to global eims_enable_mask */
	adapter->eims_enable_mask |= q_vector->eims_value;

	/* configure q_vector to set itr on first interrupt */
	q_vector->set_itr = 1;
825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841
}

/**
 * igb_configure_msix - Configure MSI-X hardware
 *
 * igb_configure_msix sets up the hardware to properly
 * generate MSI-X interrupts.
 **/
static void igb_configure_msix(struct igb_adapter *adapter)
{
	u32 tmp;
	int i, vector = 0;
	struct e1000_hw *hw = &adapter->hw;

	adapter->eims_enable_mask = 0;

	/* set vector for other causes, i.e. link changes */
A
Alexander Duyck 已提交
842 843
	switch (hw->mac.type) {
	case e1000_82575:
844 845 846 847 848 849 850 851 852
		tmp = rd32(E1000_CTRL_EXT);
		/* enable MSI-X PBA support*/
		tmp |= E1000_CTRL_EXT_PBA_CLR;

		/* Auto-Mask interrupts upon ICR read. */
		tmp |= E1000_CTRL_EXT_EIAME;
		tmp |= E1000_CTRL_EXT_IRCA;

		wr32(E1000_CTRL_EXT, tmp);
853 854 855 856

		/* enable msix_other interrupt */
		array_wr32(E1000_MSIXBM(0), vector++,
		                      E1000_EIMS_OTHER);
P
PJ Waskiewicz 已提交
857
		adapter->eims_other = E1000_EIMS_OTHER;
858

A
Alexander Duyck 已提交
859 860 861
		break;

	case e1000_82576:
862
	case e1000_82580:
863
	case e1000_i350:
864 865 866 867 868 869 870 871
		/* Turn on MSI-X capability first, or our settings
		 * won't stick.  And it will take days to debug. */
		wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
		                E1000_GPIE_PBA | E1000_GPIE_EIAME |
		                E1000_GPIE_NSICR);

		/* enable msix_other interrupt */
		adapter->eims_other = 1 << vector;
A
Alexander Duyck 已提交
872 873
		tmp = (vector++ | E1000_IVAR_VALID) << 8;

874
		wr32(E1000_IVAR_MISC, tmp);
A
Alexander Duyck 已提交
875 876 877 878 879
		break;
	default:
		/* do nothing, since nothing else supports MSI-X */
		break;
	} /* switch (hw->mac.type) */
880 881 882

	adapter->eims_enable_mask |= adapter->eims_other;

883 884
	for (i = 0; i < adapter->num_q_vectors; i++)
		igb_assign_vector(adapter->q_vector[i], vector++);
885

886 887 888 889 890 891 892 893 894 895 896 897
	wrfl();
}

/**
 * igb_request_msix - Initialize MSI-X interrupts
 *
 * igb_request_msix allocates MSI-X vectors and requests interrupts from the
 * kernel.
 **/
static int igb_request_msix(struct igb_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
898
	struct e1000_hw *hw = &adapter->hw;
899 900
	int i, err = 0, vector = 0;

901
	err = request_irq(adapter->msix_entries[vector].vector,
902
	                  igb_msix_other, 0, netdev->name, adapter);
903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920
	if (err)
		goto out;
	vector++;

	for (i = 0; i < adapter->num_q_vectors; i++) {
		struct igb_q_vector *q_vector = adapter->q_vector[i];

		q_vector->itr_register = hw->hw_addr + E1000_EITR(vector);

		if (q_vector->rx_ring && q_vector->tx_ring)
			sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
			        q_vector->rx_ring->queue_index);
		else if (q_vector->tx_ring)
			sprintf(q_vector->name, "%s-tx-%u", netdev->name,
			        q_vector->tx_ring->queue_index);
		else if (q_vector->rx_ring)
			sprintf(q_vector->name, "%s-rx-%u", netdev->name,
			        q_vector->rx_ring->queue_index);
921
		else
922 923
			sprintf(q_vector->name, "%s-unused", netdev->name);

924
		err = request_irq(adapter->msix_entries[vector].vector,
925
		                  igb_msix_ring, 0, q_vector->name,
926
		                  q_vector);
927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943
		if (err)
			goto out;
		vector++;
	}

	igb_configure_msix(adapter);
	return 0;
out:
	return err;
}

static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
{
	if (adapter->msix_entries) {
		pci_disable_msix(adapter->pdev);
		kfree(adapter->msix_entries);
		adapter->msix_entries = NULL;
944
	} else if (adapter->flags & IGB_FLAG_HAS_MSI) {
945
		pci_disable_msi(adapter->pdev);
946
	}
947 948
}

949 950 951 952 953 954 955 956 957 958 959 960 961 962 963
/**
 * igb_free_q_vectors - Free memory allocated for interrupt vectors
 * @adapter: board private structure to initialize
 *
 * This function frees the memory allocated to the q_vectors.  In addition if
 * NAPI is enabled it will delete any references to the NAPI struct prior
 * to freeing the q_vector.
 **/
static void igb_free_q_vectors(struct igb_adapter *adapter)
{
	int v_idx;

	for (v_idx = 0; v_idx < adapter->num_q_vectors; v_idx++) {
		struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
		adapter->q_vector[v_idx] = NULL;
964 965
		if (!q_vector)
			continue;
966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983
		netif_napi_del(&q_vector->napi);
		kfree(q_vector);
	}
	adapter->num_q_vectors = 0;
}

/**
 * igb_clear_interrupt_scheme - reset the device to a state of no interrupts
 *
 * This function resets the device so that it has 0 rx queues, tx queues, and
 * MSI-X interrupts allocated.
 */
static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
{
	igb_free_queues(adapter);
	igb_free_q_vectors(adapter);
	igb_reset_interrupt_capability(adapter);
}
984 985 986 987 988 989 990

/**
 * igb_set_interrupt_capability - set MSI or MSI-X if supported
 *
 * Attempt to configure interrupts using the best available
 * capabilities of the hardware and kernel.
 **/
991
static int igb_set_interrupt_capability(struct igb_adapter *adapter)
992 993 994 995
{
	int err;
	int numvecs, i;

996
	/* Number of supported queues. */
997
	adapter->num_rx_queues = adapter->rss_queues;
998 999 1000 1001
	if (adapter->vfs_allocated_count)
		adapter->num_tx_queues = 1;
	else
		adapter->num_tx_queues = adapter->rss_queues;
1002

1003 1004 1005
	/* start with one vector for every rx queue */
	numvecs = adapter->num_rx_queues;

D
Daniel Mack 已提交
1006
	/* if tx handler is separate add 1 for every tx queue */
1007 1008
	if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
		numvecs += adapter->num_tx_queues;
1009 1010 1011 1012 1013 1014

	/* store the number of vectors reserved for queues */
	adapter->num_q_vectors = numvecs;

	/* add 1 vector for link status interrupts */
	numvecs++;
1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026
	adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
					GFP_KERNEL);
	if (!adapter->msix_entries)
		goto msi_only;

	for (i = 0; i < numvecs; i++)
		adapter->msix_entries[i].entry = i;

	err = pci_enable_msix(adapter->pdev,
			      adapter->msix_entries,
			      numvecs);
	if (err == 0)
1027
		goto out;
1028 1029 1030 1031 1032

	igb_reset_interrupt_capability(adapter);

	/* If we can't do MSI-X, try MSI */
msi_only:
1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047
#ifdef CONFIG_PCI_IOV
	/* disable SR-IOV for non MSI-X configurations */
	if (adapter->vf_data) {
		struct e1000_hw *hw = &adapter->hw;
		/* disable iov and allow time for transactions to clear */
		pci_disable_sriov(adapter->pdev);
		msleep(500);

		kfree(adapter->vf_data);
		adapter->vf_data = NULL;
		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
		msleep(100);
		dev_info(&adapter->pdev->dev, "IOV Disabled\n");
	}
#endif
1048
	adapter->vfs_allocated_count = 0;
1049
	adapter->rss_queues = 1;
1050
	adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1051
	adapter->num_rx_queues = 1;
1052
	adapter->num_tx_queues = 1;
1053
	adapter->num_q_vectors = 1;
1054
	if (!pci_enable_msi(adapter->pdev))
1055
		adapter->flags |= IGB_FLAG_HAS_MSI;
1056
out:
1057 1058 1059 1060
	/* Notify the stack of the (possibly) reduced queue counts. */
	netif_set_real_num_tx_queues(adapter->netdev, adapter->num_tx_queues);
	return netif_set_real_num_rx_queues(adapter->netdev,
					    adapter->num_rx_queues);
1061 1062
}

1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088
/**
 * igb_alloc_q_vectors - Allocate memory for interrupt vectors
 * @adapter: board private structure to initialize
 *
 * We allocate one q_vector per queue interrupt.  If allocation fails we
 * return -ENOMEM.
 **/
static int igb_alloc_q_vectors(struct igb_adapter *adapter)
{
	struct igb_q_vector *q_vector;
	struct e1000_hw *hw = &adapter->hw;
	int v_idx;

	for (v_idx = 0; v_idx < adapter->num_q_vectors; v_idx++) {
		q_vector = kzalloc(sizeof(struct igb_q_vector), GFP_KERNEL);
		if (!q_vector)
			goto err_out;
		q_vector->adapter = adapter;
		q_vector->itr_register = hw->hw_addr + E1000_EITR(0);
		q_vector->itr_val = IGB_START_ITR;
		netif_napi_add(adapter->netdev, &q_vector->napi, igb_poll, 64);
		adapter->q_vector[v_idx] = q_vector;
	}
	return 0;

err_out:
1089
	igb_free_q_vectors(adapter);
1090 1091 1092 1093 1094 1095
	return -ENOMEM;
}

static void igb_map_rx_ring_to_vector(struct igb_adapter *adapter,
                                      int ring_idx, int v_idx)
{
1096
	struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1097

1098
	q_vector->rx_ring = adapter->rx_ring[ring_idx];
1099
	q_vector->rx_ring->q_vector = q_vector;
1100 1101 1102
	q_vector->itr_val = adapter->rx_itr_setting;
	if (q_vector->itr_val && q_vector->itr_val <= 3)
		q_vector->itr_val = IGB_START_ITR;
1103 1104 1105 1106 1107
}

static void igb_map_tx_ring_to_vector(struct igb_adapter *adapter,
                                      int ring_idx, int v_idx)
{
1108
	struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1109

1110
	q_vector->tx_ring = adapter->tx_ring[ring_idx];
1111
	q_vector->tx_ring->q_vector = q_vector;
1112 1113 1114
	q_vector->itr_val = adapter->tx_itr_setting;
	if (q_vector->itr_val && q_vector->itr_val <= 3)
		q_vector->itr_val = IGB_START_ITR;
1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158
}

/**
 * igb_map_ring_to_vector - maps allocated queues to vectors
 *
 * This function maps the recently allocated queues to vectors.
 **/
static int igb_map_ring_to_vector(struct igb_adapter *adapter)
{
	int i;
	int v_idx = 0;

	if ((adapter->num_q_vectors < adapter->num_rx_queues) ||
	    (adapter->num_q_vectors < adapter->num_tx_queues))
		return -ENOMEM;

	if (adapter->num_q_vectors >=
	    (adapter->num_rx_queues + adapter->num_tx_queues)) {
		for (i = 0; i < adapter->num_rx_queues; i++)
			igb_map_rx_ring_to_vector(adapter, i, v_idx++);
		for (i = 0; i < adapter->num_tx_queues; i++)
			igb_map_tx_ring_to_vector(adapter, i, v_idx++);
	} else {
		for (i = 0; i < adapter->num_rx_queues; i++) {
			if (i < adapter->num_tx_queues)
				igb_map_tx_ring_to_vector(adapter, i, v_idx);
			igb_map_rx_ring_to_vector(adapter, i, v_idx++);
		}
		for (; i < adapter->num_tx_queues; i++)
			igb_map_tx_ring_to_vector(adapter, i, v_idx++);
	}
	return 0;
}

/**
 * igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
 *
 * This function initializes the interrupts and allocates all of the queues.
 **/
static int igb_init_interrupt_scheme(struct igb_adapter *adapter)
{
	struct pci_dev *pdev = adapter->pdev;
	int err;

1159 1160 1161
	err = igb_set_interrupt_capability(adapter);
	if (err)
		return err;
1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191

	err = igb_alloc_q_vectors(adapter);
	if (err) {
		dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
		goto err_alloc_q_vectors;
	}

	err = igb_alloc_queues(adapter);
	if (err) {
		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
		goto err_alloc_queues;
	}

	err = igb_map_ring_to_vector(adapter);
	if (err) {
		dev_err(&pdev->dev, "Invalid q_vector to ring mapping\n");
		goto err_map_queues;
	}


	return 0;
err_map_queues:
	igb_free_queues(adapter);
err_alloc_queues:
	igb_free_q_vectors(adapter);
err_alloc_q_vectors:
	igb_reset_interrupt_capability(adapter);
	return err;
}

1192 1193 1194 1195 1196 1197 1198 1199 1200
/**
 * igb_request_irq - initialize interrupts
 *
 * Attempts to configure interrupts using the best available
 * capabilities of the hardware and kernel.
 **/
static int igb_request_irq(struct igb_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
1201
	struct pci_dev *pdev = adapter->pdev;
1202 1203 1204 1205
	int err = 0;

	if (adapter->msix_entries) {
		err = igb_request_msix(adapter);
P
PJ Waskiewicz 已提交
1206
		if (!err)
1207 1208
			goto request_done;
		/* fall back to MSI */
1209
		igb_clear_interrupt_scheme(adapter);
1210
		if (!pci_enable_msi(adapter->pdev))
1211
			adapter->flags |= IGB_FLAG_HAS_MSI;
1212 1213
		igb_free_all_tx_resources(adapter);
		igb_free_all_rx_resources(adapter);
1214
		adapter->num_tx_queues = 1;
1215
		adapter->num_rx_queues = 1;
1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231
		adapter->num_q_vectors = 1;
		err = igb_alloc_q_vectors(adapter);
		if (err) {
			dev_err(&pdev->dev,
			        "Unable to allocate memory for vectors\n");
			goto request_done;
		}
		err = igb_alloc_queues(adapter);
		if (err) {
			dev_err(&pdev->dev,
			        "Unable to allocate memory for queues\n");
			igb_free_q_vectors(adapter);
			goto request_done;
		}
		igb_setup_all_tx_resources(adapter);
		igb_setup_all_rx_resources(adapter);
P
PJ Waskiewicz 已提交
1232
	} else {
1233
		igb_assign_vector(adapter->q_vector[0], 0);
1234
	}
P
PJ Waskiewicz 已提交
1235

1236
	if (adapter->flags & IGB_FLAG_HAS_MSI) {
1237
		err = request_irq(adapter->pdev->irq, igb_intr_msi, 0,
1238
				  netdev->name, adapter);
1239 1240
		if (!err)
			goto request_done;
1241

1242 1243
		/* fall back to legacy interrupts */
		igb_reset_interrupt_capability(adapter);
1244
		adapter->flags &= ~IGB_FLAG_HAS_MSI;
1245 1246
	}

1247
	err = request_irq(adapter->pdev->irq, igb_intr, IRQF_SHARED,
1248
			  netdev->name, adapter);
1249

A
Andy Gospodarek 已提交
1250
	if (err)
1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262
		dev_err(&adapter->pdev->dev, "Error %d getting interrupt\n",
			err);

request_done:
	return err;
}

static void igb_free_irq(struct igb_adapter *adapter)
{
	if (adapter->msix_entries) {
		int vector = 0, i;

1263
		free_irq(adapter->msix_entries[vector++].vector, adapter);
1264

1265 1266 1267 1268 1269 1270 1271
		for (i = 0; i < adapter->num_q_vectors; i++) {
			struct igb_q_vector *q_vector = adapter->q_vector[i];
			free_irq(adapter->msix_entries[vector++].vector,
			         q_vector);
		}
	} else {
		free_irq(adapter->pdev->irq, adapter);
1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282
	}
}

/**
 * igb_irq_disable - Mask off interrupt generation on the NIC
 * @adapter: board private structure
 **/
static void igb_irq_disable(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;

1283 1284 1285 1286 1287
	/*
	 * we need to be careful when disabling interrupts.  The VFs are also
	 * mapped into these registers and so clearing the bits can cause
	 * issues on the VF drivers so we only need to clear what we set
	 */
1288
	if (adapter->msix_entries) {
1289 1290 1291 1292 1293
		u32 regval = rd32(E1000_EIAM);
		wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
		wr32(E1000_EIMC, adapter->eims_enable_mask);
		regval = rd32(E1000_EIAC);
		wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
1294
	}
P
PJ Waskiewicz 已提交
1295 1296

	wr32(E1000_IAM, 0);
1297 1298
	wr32(E1000_IMC, ~0);
	wrfl();
1299 1300 1301 1302 1303 1304 1305
	if (adapter->msix_entries) {
		int i;
		for (i = 0; i < adapter->num_q_vectors; i++)
			synchronize_irq(adapter->msix_entries[i].vector);
	} else {
		synchronize_irq(adapter->pdev->irq);
	}
1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316
}

/**
 * igb_irq_enable - Enable default interrupt generation settings
 * @adapter: board private structure
 **/
static void igb_irq_enable(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;

	if (adapter->msix_entries) {
1317
		u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC;
1318 1319 1320 1321
		u32 regval = rd32(E1000_EIAC);
		wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
		regval = rd32(E1000_EIAM);
		wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
P
PJ Waskiewicz 已提交
1322
		wr32(E1000_EIMS, adapter->eims_enable_mask);
1323
		if (adapter->vfs_allocated_count) {
1324
			wr32(E1000_MBVFIMR, 0xFF);
1325 1326
			ims |= E1000_IMS_VMMB;
		}
1327 1328 1329
		if (adapter->hw.mac.type == e1000_82580)
			ims |= E1000_IMS_DRSTA;

1330
		wr32(E1000_IMS, ims);
P
PJ Waskiewicz 已提交
1331
	} else {
1332 1333 1334 1335
		wr32(E1000_IMS, IMS_ENABLE_MASK |
				E1000_IMS_DRSTA);
		wr32(E1000_IAM, IMS_ENABLE_MASK |
				E1000_IMS_DRSTA);
P
PJ Waskiewicz 已提交
1336
	}
1337 1338 1339 1340
}

static void igb_update_mng_vlan(struct igb_adapter *adapter)
{
1341
	struct e1000_hw *hw = &adapter->hw;
1342 1343
	u16 vid = adapter->hw.mng_cookie.vlan_id;
	u16 old_vid = adapter->mng_vlan_id;
1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357

	if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
		/* add VID to filter table */
		igb_vfta_set(hw, vid, true);
		adapter->mng_vlan_id = vid;
	} else {
		adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
	}

	if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
	    (vid != old_vid) &&
	    !vlan_group_get_device(adapter->vlgrp, old_vid)) {
		/* remove VID from filter table */
		igb_vfta_set(hw, old_vid, false);
1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410
	}
}

/**
 * igb_release_hw_control - release control of the h/w to f/w
 * @adapter: address of board private structure
 *
 * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
 * For ASF and Pass Through versions of f/w this means that the
 * driver is no longer loaded.
 *
 **/
static void igb_release_hw_control(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 ctrl_ext;

	/* Let firmware take over control of h/w */
	ctrl_ext = rd32(E1000_CTRL_EXT);
	wr32(E1000_CTRL_EXT,
			ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
}

/**
 * igb_get_hw_control - get control of the h/w from f/w
 * @adapter: address of board private structure
 *
 * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
 * For ASF and Pass Through versions of f/w this means that
 * the driver is loaded.
 *
 **/
static void igb_get_hw_control(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 ctrl_ext;

	/* Let firmware know the driver has taken over */
	ctrl_ext = rd32(E1000_CTRL_EXT);
	wr32(E1000_CTRL_EXT,
			ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
}

/**
 * igb_configure - configure the hardware for RX and TX
 * @adapter: private board structure
 **/
static void igb_configure(struct igb_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
	int i;

	igb_get_hw_control(adapter);
1411
	igb_set_rx_mode(netdev);
1412 1413 1414

	igb_restore_vlan(adapter);

1415
	igb_setup_tctl(adapter);
1416
	igb_setup_mrqc(adapter);
1417
	igb_setup_rctl(adapter);
1418 1419

	igb_configure_tx(adapter);
1420
	igb_configure_rx(adapter);
1421 1422 1423

	igb_rx_fifo_flush_82575(&adapter->hw);

1424
	/* call igb_desc_unused which always leaves
1425 1426 1427
	 * at least 1 descriptor unused to make sure
	 * next_to_use != next_to_clean */
	for (i = 0; i < adapter->num_rx_queues; i++) {
1428
		struct igb_ring *ring = adapter->rx_ring[i];
1429
		igb_alloc_rx_buffers_adv(ring, igb_desc_unused(ring));
1430 1431 1432
	}
}

1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455
/**
 * igb_power_up_link - Power up the phy/serdes link
 * @adapter: address of board private structure
 **/
void igb_power_up_link(struct igb_adapter *adapter)
{
	if (adapter->hw.phy.media_type == e1000_media_type_copper)
		igb_power_up_phy_copper(&adapter->hw);
	else
		igb_power_up_serdes_link_82575(&adapter->hw);
}

/**
 * igb_power_down_link - Power down the phy/serdes link
 * @adapter: address of board private structure
 */
static void igb_power_down_link(struct igb_adapter *adapter)
{
	if (adapter->hw.phy.media_type == e1000_media_type_copper)
		igb_power_down_phy_copper_82575(&adapter->hw);
	else
		igb_shutdown_serdes_link_82575(&adapter->hw);
}
1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470

/**
 * igb_up - Open the interface and prepare it to handle traffic
 * @adapter: board private structure
 **/
int igb_up(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	int i;

	/* hardware has been reset, we need to reload some things */
	igb_configure(adapter);

	clear_bit(__IGB_DOWN, &adapter->state);

1471 1472 1473 1474
	for (i = 0; i < adapter->num_q_vectors; i++) {
		struct igb_q_vector *q_vector = adapter->q_vector[i];
		napi_enable(&q_vector->napi);
	}
P
PJ Waskiewicz 已提交
1475
	if (adapter->msix_entries)
1476
		igb_configure_msix(adapter);
1477 1478
	else
		igb_assign_vector(adapter->q_vector[0], 0);
1479 1480 1481 1482 1483

	/* Clear any pending interrupts. */
	rd32(E1000_ICR);
	igb_irq_enable(adapter);

1484 1485 1486 1487 1488 1489 1490
	/* notify VFs that reset has been completed */
	if (adapter->vfs_allocated_count) {
		u32 reg_data = rd32(E1000_CTRL_EXT);
		reg_data |= E1000_CTRL_EXT_PFRSTD;
		wr32(E1000_CTRL_EXT, reg_data);
	}

1491 1492
	netif_tx_start_all_queues(adapter->netdev);

1493 1494 1495 1496
	/* start the watchdog. */
	hw->mac.get_link_status = 1;
	schedule_work(&adapter->watchdog_task);

1497 1498 1499 1500 1501 1502
	return 0;
}

void igb_down(struct igb_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
1503
	struct e1000_hw *hw = &adapter->hw;
1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515
	u32 tctl, rctl;
	int i;

	/* signal that we're down so the interrupt handler does not
	 * reschedule our watchdog timer */
	set_bit(__IGB_DOWN, &adapter->state);

	/* disable receives in the hardware */
	rctl = rd32(E1000_RCTL);
	wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
	/* flush and sleep below */

1516
	netif_tx_stop_all_queues(netdev);
1517 1518 1519 1520 1521 1522 1523 1524 1525

	/* disable transmits in the hardware */
	tctl = rd32(E1000_TCTL);
	tctl &= ~E1000_TCTL_EN;
	wr32(E1000_TCTL, tctl);
	/* flush both disables and wait for them to finish */
	wrfl();
	msleep(10);

1526 1527 1528 1529
	for (i = 0; i < adapter->num_q_vectors; i++) {
		struct igb_q_vector *q_vector = adapter->q_vector[i];
		napi_disable(&q_vector->napi);
	}
1530 1531 1532 1533 1534 1535 1536

	igb_irq_disable(adapter);

	del_timer_sync(&adapter->watchdog_timer);
	del_timer_sync(&adapter->phy_info_timer);

	netif_carrier_off(netdev);
1537 1538

	/* record the stats before reset*/
E
Eric Dumazet 已提交
1539 1540 1541
	spin_lock(&adapter->stats64_lock);
	igb_update_stats(adapter, &adapter->stats64);
	spin_unlock(&adapter->stats64_lock);
1542

1543 1544 1545
	adapter->link_speed = 0;
	adapter->link_duplex = 0;

1546 1547
	if (!pci_channel_offline(adapter->pdev))
		igb_reset(adapter);
1548 1549
	igb_clean_all_tx_rings(adapter);
	igb_clean_all_rx_rings(adapter);
1550 1551 1552 1553 1554
#ifdef CONFIG_IGB_DCA

	/* since we reset the hardware DCA settings were cleared */
	igb_setup_dca(adapter);
#endif
1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568
}

void igb_reinit_locked(struct igb_adapter *adapter)
{
	WARN_ON(in_interrupt());
	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
		msleep(1);
	igb_down(adapter);
	igb_up(adapter);
	clear_bit(__IGB_RESETTING, &adapter->state);
}

void igb_reset(struct igb_adapter *adapter)
{
1569
	struct pci_dev *pdev = adapter->pdev;
1570
	struct e1000_hw *hw = &adapter->hw;
A
Alexander Duyck 已提交
1571 1572
	struct e1000_mac_info *mac = &hw->mac;
	struct e1000_fc_info *fc = &hw->fc;
1573 1574 1575 1576 1577 1578
	u32 pba = 0, tx_space, min_tx_space, min_rx_space;
	u16 hwm;

	/* Repartition Pba for greater than 9k mtu
	 * To take effect CTRL.RST is required.
	 */
1579
	switch (mac->type) {
1580
	case e1000_i350:
1581 1582 1583 1584
	case e1000_82580:
		pba = rd32(E1000_RXPBS);
		pba = igb_rxpbs_adjust_82580(pba);
		break;
1585
	case e1000_82576:
1586 1587
		pba = rd32(E1000_RXPBS);
		pba &= E1000_RXPBS_SIZE_MASK_82576;
1588 1589 1590 1591 1592
		break;
	case e1000_82575:
	default:
		pba = E1000_PBA_34K;
		break;
A
Alexander Duyck 已提交
1593
	}
1594

A
Alexander Duyck 已提交
1595 1596
	if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
	    (mac->type < e1000_82576)) {
1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613
		/* adjust PBA for jumbo frames */
		wr32(E1000_PBA, pba);

		/* To maintain wire speed transmits, the Tx FIFO should be
		 * large enough to accommodate two full transmit packets,
		 * rounded up to the next 1KB and expressed in KB.  Likewise,
		 * the Rx FIFO should be large enough to accommodate at least
		 * one full receive packet and is similarly rounded up and
		 * expressed in KB. */
		pba = rd32(E1000_PBA);
		/* upper 16 bits has Tx packet buffer allocation size in KB */
		tx_space = pba >> 16;
		/* lower 16 bits has Rx packet buffer allocation size in KB */
		pba &= 0xffff;
		/* the tx fifo also stores 16 bytes of information about the tx
		 * but don't include ethernet FCS because hardware appends it */
		min_tx_space = (adapter->max_frame_size +
1614
				sizeof(union e1000_adv_tx_desc) -
1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634
				ETH_FCS_LEN) * 2;
		min_tx_space = ALIGN(min_tx_space, 1024);
		min_tx_space >>= 10;
		/* software strips receive CRC, so leave room for it */
		min_rx_space = adapter->max_frame_size;
		min_rx_space = ALIGN(min_rx_space, 1024);
		min_rx_space >>= 10;

		/* If current Tx allocation is less than the min Tx FIFO size,
		 * and the min Tx FIFO size is less than the current Rx FIFO
		 * allocation, take space away from current Rx allocation */
		if (tx_space < min_tx_space &&
		    ((min_tx_space - tx_space) < pba)) {
			pba = pba - (min_tx_space - tx_space);

			/* if short on rx space, rx wins and must trump tx
			 * adjustment */
			if (pba < min_rx_space)
				pba = min_rx_space;
		}
A
Alexander Duyck 已提交
1635
		wr32(E1000_PBA, pba);
1636 1637 1638 1639 1640 1641 1642 1643 1644
	}

	/* flow control settings */
	/* The high water mark must be low enough to fit one full frame
	 * (or the size used for early receive) above it in the Rx FIFO.
	 * Set it to the lower of:
	 * - 90% of the Rx FIFO size, or
	 * - the full Rx FIFO size minus one full frame */
	hwm = min(((pba << 10) * 9 / 10),
A
Alexander Duyck 已提交
1645
			((pba << 10) - 2 * adapter->max_frame_size));
1646

1647 1648
	fc->high_water = hwm & 0xFFF0;	/* 16-byte granularity */
	fc->low_water = fc->high_water - 16;
1649 1650
	fc->pause_time = 0xFFFF;
	fc->send_xon = 1;
1651
	fc->current_mode = fc->requested_mode;
1652

1653 1654 1655 1656
	/* disable receive for all VFs and wait one second */
	if (adapter->vfs_allocated_count) {
		int i;
		for (i = 0 ; i < adapter->vfs_allocated_count; i++)
1657
			adapter->vf_data[i].flags = 0;
1658 1659

		/* ping all the active vfs to let them know we are going down */
1660
		igb_ping_all_vfs(adapter);
1661 1662 1663 1664 1665 1666

		/* disable transmits and receives */
		wr32(E1000_VFRE, 0);
		wr32(E1000_VFTE, 0);
	}

1667
	/* Allow time for pending master requests to run */
1668
	hw->mac.ops.reset_hw(hw);
1669 1670
	wr32(E1000_WUC, 0);

1671
	if (hw->mac.ops.init_hw(hw))
1672
		dev_err(&pdev->dev, "Hardware Error\n");
1673

1674 1675 1676 1677 1678
	if (hw->mac.type == e1000_82580) {
		u32 reg = rd32(E1000_PCIEMISC);
		wr32(E1000_PCIEMISC,
		                reg & ~E1000_PCIEMISC_LX_DECISION);
	}
1679 1680 1681
	if (!netif_running(adapter->netdev))
		igb_power_down_link(adapter);

1682 1683 1684 1685 1686
	igb_update_mng_vlan(adapter);

	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
	wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);

1687
	igb_get_phy_info(hw);
1688 1689
}

S
Stephen Hemminger 已提交
1690
static const struct net_device_ops igb_netdev_ops = {
1691
	.ndo_open		= igb_open,
S
Stephen Hemminger 已提交
1692
	.ndo_stop		= igb_close,
1693
	.ndo_start_xmit		= igb_xmit_frame_adv,
E
Eric Dumazet 已提交
1694
	.ndo_get_stats64	= igb_get_stats64,
1695 1696
	.ndo_set_rx_mode	= igb_set_rx_mode,
	.ndo_set_multicast_list	= igb_set_rx_mode,
S
Stephen Hemminger 已提交
1697 1698 1699 1700 1701 1702 1703 1704
	.ndo_set_mac_address	= igb_set_mac,
	.ndo_change_mtu		= igb_change_mtu,
	.ndo_do_ioctl		= igb_ioctl,
	.ndo_tx_timeout		= igb_tx_timeout,
	.ndo_validate_addr	= eth_validate_addr,
	.ndo_vlan_rx_register	= igb_vlan_rx_register,
	.ndo_vlan_rx_add_vid	= igb_vlan_rx_add_vid,
	.ndo_vlan_rx_kill_vid	= igb_vlan_rx_kill_vid,
1705 1706 1707 1708
	.ndo_set_vf_mac		= igb_ndo_set_vf_mac,
	.ndo_set_vf_vlan	= igb_ndo_set_vf_vlan,
	.ndo_set_vf_tx_rate	= igb_ndo_set_vf_bw,
	.ndo_get_vf_config	= igb_ndo_get_vf_config,
S
Stephen Hemminger 已提交
1709 1710 1711 1712 1713
#ifdef CONFIG_NET_POLL_CONTROLLER
	.ndo_poll_controller	= igb_netpoll,
#endif
};

1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730
/**
 * igb_probe - Device Initialization Routine
 * @pdev: PCI device information struct
 * @ent: entry in igb_pci_tbl
 *
 * Returns 0 on success, negative on failure
 *
 * igb_probe initializes an adapter identified by a pci_dev structure.
 * The OS initialization, configuring of the adapter private structure,
 * and a hardware reset occur.
 **/
static int __devinit igb_probe(struct pci_dev *pdev,
			       const struct pci_device_id *ent)
{
	struct net_device *netdev;
	struct igb_adapter *adapter;
	struct e1000_hw *hw;
1731 1732
	u16 eeprom_data = 0;
	static int global_quad_port_a; /* global quad port a indication */
1733 1734
	const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
	unsigned long mmio_start, mmio_len;
1735
	int err, pci_using_dac;
1736 1737 1738
	u16 eeprom_apme_mask = IGB_EEPROM_APME;
	u32 part_num;

1739 1740 1741 1742 1743 1744 1745 1746 1747
	/* Catch broken hardware that put the wrong VF device ID in
	 * the PCIe SR-IOV capability.
	 */
	if (pdev->is_virtfn) {
		WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n",
		     pci_name(pdev), pdev->vendor, pdev->device);
		return -EINVAL;
	}

1748
	err = pci_enable_device_mem(pdev);
1749 1750 1751 1752
	if (err)
		return err;

	pci_using_dac = 0;
1753
	err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
1754
	if (!err) {
1755
		err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
1756 1757 1758
		if (!err)
			pci_using_dac = 1;
	} else {
1759
		err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
1760
		if (err) {
1761
			err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
1762 1763 1764 1765 1766 1767 1768 1769
			if (err) {
				dev_err(&pdev->dev, "No usable DMA "
					"configuration, aborting\n");
				goto err_dma;
			}
		}
	}

1770 1771 1772
	err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
	                                   IORESOURCE_MEM),
	                                   igb_driver_name);
1773 1774 1775
	if (err)
		goto err_pci_reg;

1776
	pci_enable_pcie_error_reporting(pdev);
1777

1778
	pci_set_master(pdev);
1779
	pci_save_state(pdev);
1780 1781

	err = -ENOMEM;
1782 1783
	netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
	                           IGB_ABS_MAX_TX_QUEUES);
1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800
	if (!netdev)
		goto err_alloc_etherdev;

	SET_NETDEV_DEV(netdev, &pdev->dev);

	pci_set_drvdata(pdev, netdev);
	adapter = netdev_priv(netdev);
	adapter->netdev = netdev;
	adapter->pdev = pdev;
	hw = &adapter->hw;
	hw->back = adapter;
	adapter->msg_enable = NETIF_MSG_DRV | NETIF_MSG_PROBE;

	mmio_start = pci_resource_start(pdev, 0);
	mmio_len = pci_resource_len(pdev, 0);

	err = -EIO;
1801 1802
	hw->hw_addr = ioremap(mmio_start, mmio_len);
	if (!hw->hw_addr)
1803 1804
		goto err_ioremap;

S
Stephen Hemminger 已提交
1805
	netdev->netdev_ops = &igb_netdev_ops;
1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827
	igb_set_ethtool_ops(netdev);
	netdev->watchdog_timeo = 5 * HZ;

	strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);

	netdev->mem_start = mmio_start;
	netdev->mem_end = mmio_start + mmio_len;

	/* PCI config space info */
	hw->vendor_id = pdev->vendor;
	hw->device_id = pdev->device;
	hw->revision_id = pdev->revision;
	hw->subsystem_vendor_id = pdev->subsystem_vendor;
	hw->subsystem_device_id = pdev->subsystem_device;

	/* Copy the default MAC, PHY and NVM function pointers */
	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
	memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
	/* Initialize skew-specific constants */
	err = ei->get_invariants(hw);
	if (err)
1828
		goto err_sw_init;
1829

1830
	/* setup the private structure */
1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850
	err = igb_sw_init(adapter);
	if (err)
		goto err_sw_init;

	igb_get_bus_info_pcie(hw);

	hw->phy.autoneg_wait_to_complete = false;

	/* Copper options */
	if (hw->phy.media_type == e1000_media_type_copper) {
		hw->phy.mdix = AUTO_ALL_MODES;
		hw->phy.disable_polarity_correction = false;
		hw->phy.ms_type = e1000_ms_hw_default;
	}

	if (igb_check_reset_block(hw))
		dev_info(&pdev->dev,
			"PHY reset is blocked due to SOL/IDER session.\n");

	netdev->features = NETIF_F_SG |
1851
			   NETIF_F_IP_CSUM |
1852 1853 1854 1855
			   NETIF_F_HW_VLAN_TX |
			   NETIF_F_HW_VLAN_RX |
			   NETIF_F_HW_VLAN_FILTER;

1856
	netdev->features |= NETIF_F_IPV6_CSUM;
1857 1858
	netdev->features |= NETIF_F_TSO;
	netdev->features |= NETIF_F_TSO6;
H
Herbert Xu 已提交
1859
	netdev->features |= NETIF_F_GRO;
1860

1861 1862
	netdev->vlan_features |= NETIF_F_TSO;
	netdev->vlan_features |= NETIF_F_TSO6;
1863
	netdev->vlan_features |= NETIF_F_IP_CSUM;
1864
	netdev->vlan_features |= NETIF_F_IPV6_CSUM;
1865 1866
	netdev->vlan_features |= NETIF_F_SG;

1867
	if (pci_using_dac) {
1868
		netdev->features |= NETIF_F_HIGHDMA;
1869 1870
		netdev->vlan_features |= NETIF_F_HIGHDMA;
	}
1871

1872
	if (hw->mac.type >= e1000_82576)
1873 1874
		netdev->features |= NETIF_F_SCTP_CSUM;

1875
	adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900

	/* before reading the NVM, reset the controller to put the device in a
	 * known good starting state */
	hw->mac.ops.reset_hw(hw);

	/* make sure the NVM is good */
	if (igb_validate_nvm_checksum(hw) < 0) {
		dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
		err = -EIO;
		goto err_eeprom;
	}

	/* copy the MAC address out of the NVM */
	if (hw->mac.ops.read_mac_addr(hw))
		dev_err(&pdev->dev, "NVM Read Error\n");

	memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
	memcpy(netdev->perm_addr, hw->mac.addr, netdev->addr_len);

	if (!is_valid_ether_addr(netdev->perm_addr)) {
		dev_err(&pdev->dev, "Invalid MAC Address\n");
		err = -EIO;
		goto err_eeprom;
	}

1901
	setup_timer(&adapter->watchdog_timer, igb_watchdog,
1902
	            (unsigned long) adapter);
1903
	setup_timer(&adapter->phy_info_timer, igb_update_phy_info,
1904
	            (unsigned long) adapter);
1905 1906 1907 1908

	INIT_WORK(&adapter->reset_task, igb_reset_task);
	INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);

1909
	/* Initialize link properties that are user-changeable */
1910 1911 1912 1913
	adapter->fc_autoneg = true;
	hw->mac.autoneg = true;
	hw->phy.autoneg_advertised = 0x2f;

1914 1915
	hw->fc.requested_mode = e1000_fc_default;
	hw->fc.current_mode = e1000_fc_default;
1916 1917 1918 1919 1920 1921 1922

	igb_validate_mdi_setting(hw);

	/* Initial Wake on LAN setting If APM wake is enabled in the EEPROM,
	 * enable the ACPI Magic Packet filter
	 */

1923
	if (hw->bus.func == 0)
A
Alexander Duyck 已提交
1924
		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
1925 1926 1927 1928
	else if (hw->mac.type == e1000_82580)
		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
		                 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
		                 &eeprom_data);
1929 1930
	else if (hw->bus.func == 1)
		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942

	if (eeprom_data & eeprom_apme_mask)
		adapter->eeprom_wol |= E1000_WUFC_MAG;

	/* now that we have the eeprom settings, apply the special cases where
	 * the eeprom may be wrong or the board simply won't support wake on
	 * lan on a particular port */
	switch (pdev->device) {
	case E1000_DEV_ID_82575GB_QUAD_COPPER:
		adapter->eeprom_wol = 0;
		break;
	case E1000_DEV_ID_82575EB_FIBER_SERDES:
A
Alexander Duyck 已提交
1943 1944
	case E1000_DEV_ID_82576_FIBER:
	case E1000_DEV_ID_82576_SERDES:
1945 1946 1947 1948 1949
		/* Wake events only supported on port A for dual fiber
		 * regardless of eeprom setting */
		if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
			adapter->eeprom_wol = 0;
		break;
1950
	case E1000_DEV_ID_82576_QUAD_COPPER:
1951
	case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
1952 1953 1954 1955 1956 1957 1958 1959 1960
		/* if quad port adapter, disable WoL on all but port A */
		if (global_quad_port_a != 0)
			adapter->eeprom_wol = 0;
		else
			adapter->flags |= IGB_FLAG_QUAD_PORT_A;
		/* Reset for multiple quad port adapters */
		if (++global_quad_port_a == 4)
			global_quad_port_a = 0;
		break;
1961 1962 1963 1964
	}

	/* initialize the wol settings based on the eeprom settings */
	adapter->wol = adapter->eeprom_wol;
1965
	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978

	/* reset the hardware with the new settings */
	igb_reset(adapter);

	/* let the f/w know that the h/w is now under the control of the
	 * driver. */
	igb_get_hw_control(adapter);

	strcpy(netdev->name, "eth%d");
	err = register_netdev(netdev);
	if (err)
		goto err_register;

1979 1980 1981
	/* carrier off reporting is important to ethtool even BEFORE open */
	netif_carrier_off(netdev);

1982
#ifdef CONFIG_IGB_DCA
1983
	if (dca_add_requester(&pdev->dev) == 0) {
1984
		adapter->flags |= IGB_FLAG_DCA_ENABLED;
J
Jeb Cramer 已提交
1985 1986 1987 1988
		dev_info(&pdev->dev, "DCA enabled\n");
		igb_setup_dca(adapter);
	}

P
Patrick Ohly 已提交
1989
#endif
1990 1991
	dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
	/* print bus type/speed/width info */
J
Johannes Berg 已提交
1992
	dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
1993
		 netdev->name,
1994
		 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
1995
		  (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
1996
		                                            "unknown"),
1997 1998 1999 2000
		 ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
		  (hw->bus.width == e1000_bus_width_pcie_x2) ? "Width x2" :
		  (hw->bus.width == e1000_bus_width_pcie_x1) ? "Width x1" :
		   "unknown"),
J
Johannes Berg 已提交
2001
		 netdev->dev_addr);
2002 2003 2004 2005 2006 2007 2008 2009

	igb_read_part_num(hw, &part_num);
	dev_info(&pdev->dev, "%s: PBA No: %06x-%03x\n", netdev->name,
		(part_num >> 8), (part_num & 0xff));

	dev_info(&pdev->dev,
		"Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
		adapter->msix_entries ? "MSI-X" :
2010
		(adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
2011 2012 2013 2014 2015 2016 2017 2018
		adapter->num_rx_queues, adapter->num_tx_queues);

	return 0;

err_register:
	igb_release_hw_control(adapter);
err_eeprom:
	if (!igb_check_reset_block(hw))
2019
		igb_reset_phy(hw);
2020 2021 2022 2023

	if (hw->flash_address)
		iounmap(hw->flash_address);
err_sw_init:
2024
	igb_clear_interrupt_scheme(adapter);
2025 2026 2027 2028
	iounmap(hw->hw_addr);
err_ioremap:
	free_netdev(netdev);
err_alloc_etherdev:
2029 2030
	pci_release_selected_regions(pdev,
	                             pci_select_bars(pdev, IORESOURCE_MEM));
2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049
err_pci_reg:
err_dma:
	pci_disable_device(pdev);
	return err;
}

/**
 * igb_remove - Device Removal Routine
 * @pdev: PCI device information struct
 *
 * igb_remove is called by the PCI subsystem to alert the driver
 * that it should release a PCI device.  The could be caused by a
 * Hot-Plug event, or because the driver is going to be removed from
 * memory.
 **/
static void __devexit igb_remove(struct pci_dev *pdev)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);
J
Jeb Cramer 已提交
2050
	struct e1000_hw *hw = &adapter->hw;
2051 2052 2053 2054 2055 2056 2057 2058 2059

	/* flush_scheduled work may reschedule our watchdog task, so
	 * explicitly disable watchdog tasks from being rescheduled  */
	set_bit(__IGB_DOWN, &adapter->state);
	del_timer_sync(&adapter->watchdog_timer);
	del_timer_sync(&adapter->phy_info_timer);

	flush_scheduled_work();

2060
#ifdef CONFIG_IGB_DCA
2061
	if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
J
Jeb Cramer 已提交
2062 2063
		dev_info(&pdev->dev, "DCA disabled\n");
		dca_remove_requester(&pdev->dev);
2064
		adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
A
Alexander Duyck 已提交
2065
		wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
J
Jeb Cramer 已提交
2066 2067 2068
	}
#endif

2069 2070 2071 2072 2073 2074
	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
	 * would have already happened in close and is redundant. */
	igb_release_hw_control(adapter);

	unregister_netdev(netdev);

2075
	igb_clear_interrupt_scheme(adapter);
2076

2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090
#ifdef CONFIG_PCI_IOV
	/* reclaim resources allocated to VFs */
	if (adapter->vf_data) {
		/* disable iov and allow time for transactions to clear */
		pci_disable_sriov(pdev);
		msleep(500);

		kfree(adapter->vf_data);
		adapter->vf_data = NULL;
		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
		msleep(100);
		dev_info(&pdev->dev, "IOV Disabled\n");
	}
#endif
2091

2092 2093 2094
	iounmap(hw->hw_addr);
	if (hw->flash_address)
		iounmap(hw->flash_address);
2095 2096
	pci_release_selected_regions(pdev,
	                             pci_select_bars(pdev, IORESOURCE_MEM));
2097 2098 2099

	free_netdev(netdev);

2100
	pci_disable_pcie_error_reporting(pdev);
2101

2102 2103 2104
	pci_disable_device(pdev);
}

2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149
/**
 * igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
 * @adapter: board private structure to initialize
 *
 * This function initializes the vf specific data storage and then attempts to
 * allocate the VFs.  The reason for ordering it this way is because it is much
 * mor expensive time wise to disable SR-IOV than it is to allocate and free
 * the memory for the VFs.
 **/
static void __devinit igb_probe_vfs(struct igb_adapter * adapter)
{
#ifdef CONFIG_PCI_IOV
	struct pci_dev *pdev = adapter->pdev;

	if (adapter->vfs_allocated_count) {
		adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
		                           sizeof(struct vf_data_storage),
		                           GFP_KERNEL);
		/* if allocation failed then we do not support SR-IOV */
		if (!adapter->vf_data) {
			adapter->vfs_allocated_count = 0;
			dev_err(&pdev->dev, "Unable to allocate memory for VF "
			        "Data Storage\n");
		}
	}

	if (pci_enable_sriov(pdev, adapter->vfs_allocated_count)) {
		kfree(adapter->vf_data);
		adapter->vf_data = NULL;
#endif /* CONFIG_PCI_IOV */
		adapter->vfs_allocated_count = 0;
#ifdef CONFIG_PCI_IOV
	} else {
		unsigned char mac_addr[ETH_ALEN];
		int i;
		dev_info(&pdev->dev, "%d vfs allocated\n",
		         adapter->vfs_allocated_count);
		for (i = 0; i < adapter->vfs_allocated_count; i++) {
			random_ether_addr(mac_addr);
			igb_set_vf_mac(adapter, i, mac_addr);
		}
	}
#endif /* CONFIG_PCI_IOV */
}

2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162

/**
 * igb_init_hw_timer - Initialize hardware timer used with IEEE 1588 timestamp
 * @adapter: board private structure to initialize
 *
 * igb_init_hw_timer initializes the function pointer and values for the hw
 * timer found in hardware.
 **/
static void igb_init_hw_timer(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;

	switch (hw->mac.type) {
2163
	case e1000_i350:
2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205
	case e1000_82580:
		memset(&adapter->cycles, 0, sizeof(adapter->cycles));
		adapter->cycles.read = igb_read_clock;
		adapter->cycles.mask = CLOCKSOURCE_MASK(64);
		adapter->cycles.mult = 1;
		/*
		 * The 82580 timesync updates the system timer every 8ns by 8ns
		 * and the value cannot be shifted.  Instead we need to shift
		 * the registers to generate a 64bit timer value.  As a result
		 * SYSTIMR/L/H, TXSTMPL/H, RXSTMPL/H all have to be shifted by
		 * 24 in order to generate a larger value for synchronization.
		 */
		adapter->cycles.shift = IGB_82580_TSYNC_SHIFT;
		/* disable system timer temporarily by setting bit 31 */
		wr32(E1000_TSAUXC, 0x80000000);
		wrfl();

		/* Set registers so that rollover occurs soon to test this. */
		wr32(E1000_SYSTIMR, 0x00000000);
		wr32(E1000_SYSTIML, 0x80000000);
		wr32(E1000_SYSTIMH, 0x000000FF);
		wrfl();

		/* enable system timer by clearing bit 31 */
		wr32(E1000_TSAUXC, 0x0);
		wrfl();

		timecounter_init(&adapter->clock,
				 &adapter->cycles,
				 ktime_to_ns(ktime_get_real()));
		/*
		 * Synchronize our NIC clock against system wall clock. NIC
		 * time stamp reading requires ~3us per sample, each sample
		 * was pretty stable even under load => only require 10
		 * samples for each offset comparison.
		 */
		memset(&adapter->compare, 0, sizeof(adapter->compare));
		adapter->compare.source = &adapter->clock;
		adapter->compare.target = ktime_get_real;
		adapter->compare.num_samples = 10;
		timecompare_update(&adapter->compare, 0);
		break;
2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256
	case e1000_82576:
		/*
		 * Initialize hardware timer: we keep it running just in case
		 * that some program needs it later on.
		 */
		memset(&adapter->cycles, 0, sizeof(adapter->cycles));
		adapter->cycles.read = igb_read_clock;
		adapter->cycles.mask = CLOCKSOURCE_MASK(64);
		adapter->cycles.mult = 1;
		/**
		 * Scale the NIC clock cycle by a large factor so that
		 * relatively small clock corrections can be added or
		 * substracted at each clock tick. The drawbacks of a large
		 * factor are a) that the clock register overflows more quickly
		 * (not such a big deal) and b) that the increment per tick has
		 * to fit into 24 bits.  As a result we need to use a shift of
		 * 19 so we can fit a value of 16 into the TIMINCA register.
		 */
		adapter->cycles.shift = IGB_82576_TSYNC_SHIFT;
		wr32(E1000_TIMINCA,
		                (1 << E1000_TIMINCA_16NS_SHIFT) |
		                (16 << IGB_82576_TSYNC_SHIFT));

		/* Set registers so that rollover occurs soon to test this. */
		wr32(E1000_SYSTIML, 0x00000000);
		wr32(E1000_SYSTIMH, 0xFF800000);
		wrfl();

		timecounter_init(&adapter->clock,
				 &adapter->cycles,
				 ktime_to_ns(ktime_get_real()));
		/*
		 * Synchronize our NIC clock against system wall clock. NIC
		 * time stamp reading requires ~3us per sample, each sample
		 * was pretty stable even under load => only require 10
		 * samples for each offset comparison.
		 */
		memset(&adapter->compare, 0, sizeof(adapter->compare));
		adapter->compare.source = &adapter->clock;
		adapter->compare.target = ktime_get_real;
		adapter->compare.num_samples = 10;
		timecompare_update(&adapter->compare, 0);
		break;
	case e1000_82575:
		/* 82575 does not support timesync */
	default:
		break;
	}

}

2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272
/**
 * igb_sw_init - Initialize general software structures (struct igb_adapter)
 * @adapter: board private structure to initialize
 *
 * igb_sw_init initializes the Adapter private data structure.
 * Fields are initialized based on PCI device information and
 * OS network device settings (MTU size).
 **/
static int __devinit igb_sw_init(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	struct net_device *netdev = adapter->netdev;
	struct pci_dev *pdev = adapter->pdev;

	pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);

2273 2274
	adapter->tx_ring_count = IGB_DEFAULT_TXD;
	adapter->rx_ring_count = IGB_DEFAULT_RXD;
2275 2276 2277
	adapter->rx_itr_setting = IGB_DEFAULT_ITR;
	adapter->tx_itr_setting = IGB_DEFAULT_ITR;

2278 2279 2280
	adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;

E
Eric Dumazet 已提交
2281
	spin_lock_init(&adapter->stats64_lock);
2282 2283
#ifdef CONFIG_PCI_IOV
	if (hw->mac.type == e1000_82576)
2284
		adapter->vfs_allocated_count = (max_vfs > 7) ? 7 : max_vfs;
2285 2286

#endif /* CONFIG_PCI_IOV */
2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297
	adapter->rss_queues = min_t(u32, IGB_MAX_RX_QUEUES, num_online_cpus());

	/*
	 * if rss_queues > 4 or vfs are going to be allocated with rss_queues
	 * then we should combine the queues into a queue pair in order to
	 * conserve interrupts due to limited supply
	 */
	if ((adapter->rss_queues > 4) ||
	    ((adapter->rss_queues > 1) && (adapter->vfs_allocated_count > 6)))
		adapter->flags |= IGB_FLAG_QUEUE_PAIRS;

2298
	/* This call may decrease the number of queues */
2299
	if (igb_init_interrupt_scheme(adapter)) {
2300 2301 2302 2303
		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
		return -ENOMEM;
	}

2304
	igb_init_hw_timer(adapter);
2305 2306
	igb_probe_vfs(adapter);

2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336
	/* Explicitly disable IRQ since the NIC can be in any state. */
	igb_irq_disable(adapter);

	set_bit(__IGB_DOWN, &adapter->state);
	return 0;
}

/**
 * igb_open - Called when a network interface is made active
 * @netdev: network interface device structure
 *
 * Returns 0 on success, negative value on failure
 *
 * The open entry point is called when a network interface is made
 * active by the system (IFF_UP).  At this point all resources needed
 * for transmit and receive operations are allocated, the interrupt
 * handler is registered with the OS, the watchdog timer is started,
 * and the stack is notified that the interface is ready.
 **/
static int igb_open(struct net_device *netdev)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	int err;
	int i;

	/* disallow open during test */
	if (test_bit(__IGB_TESTING, &adapter->state))
		return -EBUSY;

2337 2338
	netif_carrier_off(netdev);

2339 2340 2341 2342 2343 2344 2345 2346 2347 2348
	/* allocate transmit descriptors */
	err = igb_setup_all_tx_resources(adapter);
	if (err)
		goto err_setup_tx;

	/* allocate receive descriptors */
	err = igb_setup_all_rx_resources(adapter);
	if (err)
		goto err_setup_rx;

2349
	igb_power_up_link(adapter);
2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363

	/* before we allocate an interrupt, we must be ready to handle it.
	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
	 * as soon as we call pci_request_irq, so we have to setup our
	 * clean_rx handler before we do so.  */
	igb_configure(adapter);

	err = igb_request_irq(adapter);
	if (err)
		goto err_req_irq;

	/* From here on the code is the same as igb_up() */
	clear_bit(__IGB_DOWN, &adapter->state);

2364 2365 2366 2367
	for (i = 0; i < adapter->num_q_vectors; i++) {
		struct igb_q_vector *q_vector = adapter->q_vector[i];
		napi_enable(&q_vector->napi);
	}
2368 2369 2370

	/* Clear any pending interrupts. */
	rd32(E1000_ICR);
P
PJ Waskiewicz 已提交
2371 2372 2373

	igb_irq_enable(adapter);

2374 2375 2376 2377 2378 2379 2380
	/* notify VFs that reset has been completed */
	if (adapter->vfs_allocated_count) {
		u32 reg_data = rd32(E1000_CTRL_EXT);
		reg_data |= E1000_CTRL_EXT_PFRSTD;
		wr32(E1000_CTRL_EXT, reg_data);
	}

2381 2382
	netif_tx_start_all_queues(netdev);

2383 2384 2385
	/* start the watchdog. */
	hw->mac.get_link_status = 1;
	schedule_work(&adapter->watchdog_task);
2386 2387 2388 2389 2390

	return 0;

err_req_irq:
	igb_release_hw_control(adapter);
2391
	igb_power_down_link(adapter);
2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432
	igb_free_all_rx_resources(adapter);
err_setup_rx:
	igb_free_all_tx_resources(adapter);
err_setup_tx:
	igb_reset(adapter);

	return err;
}

/**
 * igb_close - Disables a network interface
 * @netdev: network interface device structure
 *
 * Returns 0, this is not allowed to fail
 *
 * The close entry point is called when an interface is de-activated
 * by the OS.  The hardware is still under the driver's control, but
 * needs to be disabled.  A global MAC reset is issued to stop the
 * hardware, and all transmit and receive resources are freed.
 **/
static int igb_close(struct net_device *netdev)
{
	struct igb_adapter *adapter = netdev_priv(netdev);

	WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
	igb_down(adapter);

	igb_free_irq(adapter);

	igb_free_all_tx_resources(adapter);
	igb_free_all_rx_resources(adapter);

	return 0;
}

/**
 * igb_setup_tx_resources - allocate Tx resources (Descriptors)
 * @tx_ring: tx descriptor ring (for a specific queue) to setup
 *
 * Return 0 on success, negative on failure
 **/
2433
int igb_setup_tx_resources(struct igb_ring *tx_ring)
2434
{
2435
	struct device *dev = tx_ring->dev;
2436 2437 2438 2439 2440 2441 2442 2443 2444
	int size;

	size = sizeof(struct igb_buffer) * tx_ring->count;
	tx_ring->buffer_info = vmalloc(size);
	if (!tx_ring->buffer_info)
		goto err;
	memset(tx_ring->buffer_info, 0, size);

	/* round up to nearest 4K */
2445
	tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
2446 2447
	tx_ring->size = ALIGN(tx_ring->size, 4096);

2448 2449 2450 2451
	tx_ring->desc = dma_alloc_coherent(dev,
					   tx_ring->size,
					   &tx_ring->dma,
					   GFP_KERNEL);
2452 2453 2454 2455 2456 2457 2458 2459 2460 2461

	if (!tx_ring->desc)
		goto err;

	tx_ring->next_to_use = 0;
	tx_ring->next_to_clean = 0;
	return 0;

err:
	vfree(tx_ring->buffer_info);
2462
	dev_err(dev,
2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475
		"Unable to allocate memory for the transmit descriptor ring\n");
	return -ENOMEM;
}

/**
 * igb_setup_all_tx_resources - wrapper to allocate Tx resources
 *				  (Descriptors) for all queues
 * @adapter: board private structure
 *
 * Return 0 on success, negative on failure
 **/
static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
{
2476
	struct pci_dev *pdev = adapter->pdev;
2477 2478 2479
	int i, err = 0;

	for (i = 0; i < adapter->num_tx_queues; i++) {
2480
		err = igb_setup_tx_resources(adapter->tx_ring[i]);
2481
		if (err) {
2482
			dev_err(&pdev->dev,
2483 2484
				"Allocation for Tx Queue %u failed\n", i);
			for (i--; i >= 0; i--)
2485
				igb_free_tx_resources(adapter->tx_ring[i]);
2486 2487 2488 2489
			break;
		}
	}

2490
	for (i = 0; i < IGB_ABS_MAX_TX_QUEUES; i++) {
2491
		int r_idx = i % adapter->num_tx_queues;
2492
		adapter->multi_tx_table[i] = adapter->tx_ring[r_idx];
2493
	}
2494 2495 2496 2497
	return err;
}

/**
2498 2499
 * igb_setup_tctl - configure the transmit control registers
 * @adapter: Board private structure
2500
 **/
2501
void igb_setup_tctl(struct igb_adapter *adapter)
2502 2503 2504 2505
{
	struct e1000_hw *hw = &adapter->hw;
	u32 tctl;

2506 2507
	/* disable queue 0 which is enabled by default on 82575 and 82576 */
	wr32(E1000_TXDCTL(0), 0);
2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522

	/* Program the Transmit Control Register */
	tctl = rd32(E1000_TCTL);
	tctl &= ~E1000_TCTL_CT;
	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);

	igb_config_collision_dist(hw);

	/* Enable transmits */
	tctl |= E1000_TCTL_EN;

	wr32(E1000_TCTL, tctl);
}

2523 2524 2525 2526 2527 2528 2529
/**
 * igb_configure_tx_ring - Configure transmit ring after Reset
 * @adapter: board private structure
 * @ring: tx ring to configure
 *
 * Configure a transmit ring after a reset.
 **/
2530 2531
void igb_configure_tx_ring(struct igb_adapter *adapter,
                           struct igb_ring *ring)
2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550
{
	struct e1000_hw *hw = &adapter->hw;
	u32 txdctl;
	u64 tdba = ring->dma;
	int reg_idx = ring->reg_idx;

	/* disable the queue */
	txdctl = rd32(E1000_TXDCTL(reg_idx));
	wr32(E1000_TXDCTL(reg_idx),
	                txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
	wrfl();
	mdelay(10);

	wr32(E1000_TDLEN(reg_idx),
	                ring->count * sizeof(union e1000_adv_tx_desc));
	wr32(E1000_TDBAL(reg_idx),
	                tdba & 0x00000000ffffffffULL);
	wr32(E1000_TDBAH(reg_idx), tdba >> 32);

2551 2552 2553 2554
	ring->head = hw->hw_addr + E1000_TDH(reg_idx);
	ring->tail = hw->hw_addr + E1000_TDT(reg_idx);
	writel(0, ring->head);
	writel(0, ring->tail);
2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574

	txdctl |= IGB_TX_PTHRESH;
	txdctl |= IGB_TX_HTHRESH << 8;
	txdctl |= IGB_TX_WTHRESH << 16;

	txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
	wr32(E1000_TXDCTL(reg_idx), txdctl);
}

/**
 * igb_configure_tx - Configure transmit Unit after Reset
 * @adapter: board private structure
 *
 * Configure the Tx unit of the MAC after a reset.
 **/
static void igb_configure_tx(struct igb_adapter *adapter)
{
	int i;

	for (i = 0; i < adapter->num_tx_queues; i++)
2575
		igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
2576 2577
}

2578 2579 2580 2581 2582 2583
/**
 * igb_setup_rx_resources - allocate Rx resources (Descriptors)
 * @rx_ring:    rx descriptor ring (for a specific queue) to setup
 *
 * Returns 0 on success, negative on failure
 **/
2584
int igb_setup_rx_resources(struct igb_ring *rx_ring)
2585
{
2586
	struct device *dev = rx_ring->dev;
2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600
	int size, desc_len;

	size = sizeof(struct igb_buffer) * rx_ring->count;
	rx_ring->buffer_info = vmalloc(size);
	if (!rx_ring->buffer_info)
		goto err;
	memset(rx_ring->buffer_info, 0, size);

	desc_len = sizeof(union e1000_adv_rx_desc);

	/* Round up to nearest 4K */
	rx_ring->size = rx_ring->count * desc_len;
	rx_ring->size = ALIGN(rx_ring->size, 4096);

2601 2602 2603 2604
	rx_ring->desc = dma_alloc_coherent(dev,
					   rx_ring->size,
					   &rx_ring->dma,
					   GFP_KERNEL);
2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615

	if (!rx_ring->desc)
		goto err;

	rx_ring->next_to_clean = 0;
	rx_ring->next_to_use = 0;

	return 0;

err:
	vfree(rx_ring->buffer_info);
2616
	rx_ring->buffer_info = NULL;
2617 2618
	dev_err(dev, "Unable to allocate memory for the receive descriptor"
		" ring\n");
2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630
	return -ENOMEM;
}

/**
 * igb_setup_all_rx_resources - wrapper to allocate Rx resources
 *				  (Descriptors) for all queues
 * @adapter: board private structure
 *
 * Return 0 on success, negative on failure
 **/
static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
{
2631
	struct pci_dev *pdev = adapter->pdev;
2632 2633 2634
	int i, err = 0;

	for (i = 0; i < adapter->num_rx_queues; i++) {
2635
		err = igb_setup_rx_resources(adapter->rx_ring[i]);
2636
		if (err) {
2637
			dev_err(&pdev->dev,
2638 2639
				"Allocation for Rx Queue %u failed\n", i);
			for (i--; i >= 0; i--)
2640
				igb_free_rx_resources(adapter->rx_ring[i]);
2641 2642 2643 2644 2645 2646 2647
			break;
		}
	}

	return err;
}

2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675
/**
 * igb_setup_mrqc - configure the multiple receive queue control registers
 * @adapter: Board private structure
 **/
static void igb_setup_mrqc(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 mrqc, rxcsum;
	u32 j, num_rx_queues, shift = 0, shift2 = 0;
	union e1000_reta {
		u32 dword;
		u8  bytes[4];
	} reta;
	static const u8 rsshash[40] = {
		0x6d, 0x5a, 0x56, 0xda, 0x25, 0x5b, 0x0e, 0xc2, 0x41, 0x67,
		0x25, 0x3d, 0x43, 0xa3, 0x8f, 0xb0, 0xd0, 0xca, 0x2b, 0xcb,
		0xae, 0x7b, 0x30, 0xb4,	0x77, 0xcb, 0x2d, 0xa3, 0x80, 0x30,
		0xf2, 0x0c, 0x6a, 0x42, 0xb7, 0x3b, 0xbe, 0xac, 0x01, 0xfa };

	/* Fill out hash function seeds */
	for (j = 0; j < 10; j++) {
		u32 rsskey = rsshash[(j * 4)];
		rsskey |= rsshash[(j * 4) + 1] << 8;
		rsskey |= rsshash[(j * 4) + 2] << 16;
		rsskey |= rsshash[(j * 4) + 3] << 24;
		array_wr32(E1000_RSSRK(0), j, rsskey);
	}

2676
	num_rx_queues = adapter->rss_queues;
2677 2678 2679 2680

	if (adapter->vfs_allocated_count) {
		/* 82575 and 82576 supports 2 RSS queues for VMDq */
		switch (hw->mac.type) {
2681
		case e1000_i350:
2682 2683 2684 2685
		case e1000_82580:
			num_rx_queues = 1;
			shift = 0;
			break;
2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736
		case e1000_82576:
			shift = 3;
			num_rx_queues = 2;
			break;
		case e1000_82575:
			shift = 2;
			shift2 = 6;
		default:
			break;
		}
	} else {
		if (hw->mac.type == e1000_82575)
			shift = 6;
	}

	for (j = 0; j < (32 * 4); j++) {
		reta.bytes[j & 3] = (j % num_rx_queues) << shift;
		if (shift2)
			reta.bytes[j & 3] |= num_rx_queues << shift2;
		if ((j & 3) == 3)
			wr32(E1000_RETA(j >> 2), reta.dword);
	}

	/*
	 * Disable raw packet checksumming so that RSS hash is placed in
	 * descriptor on writeback.  No need to enable TCP/UDP/IP checksum
	 * offloads as they are enabled by default
	 */
	rxcsum = rd32(E1000_RXCSUM);
	rxcsum |= E1000_RXCSUM_PCSD;

	if (adapter->hw.mac.type >= e1000_82576)
		/* Enable Receive Checksum Offload for SCTP */
		rxcsum |= E1000_RXCSUM_CRCOFL;

	/* Don't need to set TUOFL or IPOFL, they default to 1 */
	wr32(E1000_RXCSUM, rxcsum);

	/* If VMDq is enabled then we set the appropriate mode for that, else
	 * we default to RSS so that an RSS hash is calculated per packet even
	 * if we are only using one queue */
	if (adapter->vfs_allocated_count) {
		if (hw->mac.type > e1000_82575) {
			/* Set the default pool for the PF's first queue */
			u32 vtctl = rd32(E1000_VT_CTL);
			vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
				   E1000_VT_CTL_DISABLE_DEF_POOL);
			vtctl |= adapter->vfs_allocated_count <<
				E1000_VT_CTL_DEFAULT_POOL_SHIFT;
			wr32(E1000_VT_CTL, vtctl);
		}
2737
		if (adapter->rss_queues > 1)
2738 2739 2740 2741 2742 2743 2744 2745
			mrqc = E1000_MRQC_ENABLE_VMDQ_RSS_2Q;
		else
			mrqc = E1000_MRQC_ENABLE_VMDQ;
	} else {
		mrqc = E1000_MRQC_ENABLE_RSS_4Q;
	}
	igb_vmm_control(adapter);

2746 2747 2748 2749 2750 2751 2752 2753 2754 2755
	/*
	 * Generate RSS hash based on TCP port numbers and/or
	 * IPv4/v6 src and dst addresses since UDP cannot be
	 * hashed reliably due to IP fragmentation
	 */
	mrqc |= E1000_MRQC_RSS_FIELD_IPV4 |
		E1000_MRQC_RSS_FIELD_IPV4_TCP |
		E1000_MRQC_RSS_FIELD_IPV6 |
		E1000_MRQC_RSS_FIELD_IPV6_TCP |
		E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
2756 2757 2758 2759

	wr32(E1000_MRQC, mrqc);
}

2760 2761 2762 2763
/**
 * igb_setup_rctl - configure the receive control registers
 * @adapter: Board private structure
 **/
2764
void igb_setup_rctl(struct igb_adapter *adapter)
2765 2766 2767 2768 2769 2770 2771
{
	struct e1000_hw *hw = &adapter->hw;
	u32 rctl;

	rctl = rd32(E1000_RCTL);

	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
2772
	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
2773

2774
	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
2775
		(hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
2776

2777 2778 2779 2780
	/*
	 * enable stripping of CRC. It's unlikely this will break BMC
	 * redirection as it did with e1000. Newer features require
	 * that the HW strips the CRC.
2781
	 */
2782
	rctl |= E1000_RCTL_SECRC;
2783

2784
	/* disable store bad packets and clear size bits. */
2785
	rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
2786

A
Alexander Duyck 已提交
2787 2788
	/* enable LPE to prevent packets larger than max_frame_size */
	rctl |= E1000_RCTL_LPE;
2789

2790 2791
	/* disable queue 0 to prevent tail write w/o re-config */
	wr32(E1000_RXDCTL(0), 0);
2792

2793 2794 2795 2796 2797 2798 2799 2800 2801
	/* Attention!!!  For SR-IOV PF driver operations you must enable
	 * queue drop for all VF and PF queues to prevent head of line blocking
	 * if an un-trusted VF does not provide descriptors to hardware.
	 */
	if (adapter->vfs_allocated_count) {
		/* set all queue drop enable bits */
		wr32(E1000_QDE, ALL_QUEUES);
	}

2802 2803 2804
	wr32(E1000_RCTL, rctl);
}

2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824
static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
                                   int vfn)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 vmolr;

	/* if it isn't the PF check to see if VFs are enabled and
	 * increase the size to support vlan tags */
	if (vfn < adapter->vfs_allocated_count &&
	    adapter->vf_data[vfn].vlans_enabled)
		size += VLAN_TAG_SIZE;

	vmolr = rd32(E1000_VMOLR(vfn));
	vmolr &= ~E1000_VMOLR_RLPML_MASK;
	vmolr |= size | E1000_VMOLR_LPE;
	wr32(E1000_VMOLR(vfn), vmolr);

	return 0;
}

2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843
/**
 * igb_rlpml_set - set maximum receive packet size
 * @adapter: board private structure
 *
 * Configure maximum receivable packet size.
 **/
static void igb_rlpml_set(struct igb_adapter *adapter)
{
	u32 max_frame_size = adapter->max_frame_size;
	struct e1000_hw *hw = &adapter->hw;
	u16 pf_id = adapter->vfs_allocated_count;

	if (adapter->vlgrp)
		max_frame_size += VLAN_TAG_SIZE;

	/* if vfs are enabled we set RLPML to the largest possible request
	 * size and set the VMOLR RLPML to the size we need */
	if (pf_id) {
		igb_set_vf_rlpml(adapter, max_frame_size, pf_id);
2844
		max_frame_size = MAX_JUMBO_FRAME_SIZE;
2845 2846 2847 2848 2849
	}

	wr32(E1000_RLPML, max_frame_size);
}

2850 2851
static inline void igb_set_vmolr(struct igb_adapter *adapter,
				 int vfn, bool aupe)
2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863
{
	struct e1000_hw *hw = &adapter->hw;
	u32 vmolr;

	/*
	 * This register exists only on 82576 and newer so if we are older then
	 * we should exit and do nothing
	 */
	if (hw->mac.type < e1000_82576)
		return;

	vmolr = rd32(E1000_VMOLR(vfn));
2864 2865 2866 2867 2868
	vmolr |= E1000_VMOLR_STRVLAN;      /* Strip vlan tags */
	if (aupe)
		vmolr |= E1000_VMOLR_AUPE;        /* Accept untagged packets */
	else
		vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
2869 2870 2871 2872

	/* clear all bits that might not be set */
	vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);

2873
	if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884
		vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
	/*
	 * for VMDq only allow the VFs and pool 0 to accept broadcast and
	 * multicast packets
	 */
	if (vfn <= adapter->vfs_allocated_count)
		vmolr |= E1000_VMOLR_BAM;	   /* Accept broadcast */

	wr32(E1000_VMOLR(vfn), vmolr);
}

2885 2886 2887 2888 2889 2890 2891
/**
 * igb_configure_rx_ring - Configure a receive ring after Reset
 * @adapter: board private structure
 * @ring: receive ring to be configured
 *
 * Configure the Rx unit of the MAC after a reset.
 **/
2892 2893
void igb_configure_rx_ring(struct igb_adapter *adapter,
                           struct igb_ring *ring)
2894 2895 2896 2897
{
	struct e1000_hw *hw = &adapter->hw;
	u64 rdba = ring->dma;
	int reg_idx = ring->reg_idx;
2898
	u32 srrctl, rxdctl;
2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912

	/* disable the queue */
	rxdctl = rd32(E1000_RXDCTL(reg_idx));
	wr32(E1000_RXDCTL(reg_idx),
	                rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);

	/* Set DMA base address registers */
	wr32(E1000_RDBAL(reg_idx),
	     rdba & 0x00000000ffffffffULL);
	wr32(E1000_RDBAH(reg_idx), rdba >> 32);
	wr32(E1000_RDLEN(reg_idx),
	               ring->count * sizeof(union e1000_adv_rx_desc));

	/* initialize head and tail */
2913 2914 2915 2916
	ring->head = hw->hw_addr + E1000_RDH(reg_idx);
	ring->tail = hw->hw_addr + E1000_RDT(reg_idx);
	writel(0, ring->head);
	writel(0, ring->tail);
2917

2918
	/* set descriptor configuration */
2919 2920
	if (ring->rx_buffer_len < IGB_RXBUFFER_1024) {
		srrctl = ALIGN(ring->rx_buffer_len, 64) <<
2921 2922 2923 2924 2925 2926 2927 2928 2929 2930
		         E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
#if (PAGE_SIZE / 2) > IGB_RXBUFFER_16384
		srrctl |= IGB_RXBUFFER_16384 >>
		          E1000_SRRCTL_BSIZEPKT_SHIFT;
#else
		srrctl |= (PAGE_SIZE / 2) >>
		          E1000_SRRCTL_BSIZEPKT_SHIFT;
#endif
		srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
	} else {
2931
		srrctl = ALIGN(ring->rx_buffer_len, 1024) >>
2932 2933 2934
		         E1000_SRRCTL_BSIZEPKT_SHIFT;
		srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
	}
N
Nick Nunley 已提交
2935 2936
	if (hw->mac.type == e1000_82580)
		srrctl |= E1000_SRRCTL_TIMESTAMP;
2937 2938 2939
	/* Only set Drop Enable if we are supporting multiple queues */
	if (adapter->vfs_allocated_count || adapter->num_rx_queues > 1)
		srrctl |= E1000_SRRCTL_DROP_EN;
2940 2941 2942

	wr32(E1000_SRRCTL(reg_idx), srrctl);

2943
	/* set filtering for VMDQ pools */
2944
	igb_set_vmolr(adapter, reg_idx & 0x7, true);
2945

2946 2947 2948 2949 2950 2951 2952 2953 2954 2955
	/* enable receive descriptor fetching */
	rxdctl = rd32(E1000_RXDCTL(reg_idx));
	rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
	rxdctl &= 0xFFF00000;
	rxdctl |= IGB_RX_PTHRESH;
	rxdctl |= IGB_RX_HTHRESH << 8;
	rxdctl |= IGB_RX_WTHRESH << 16;
	wr32(E1000_RXDCTL(reg_idx), rxdctl);
}

2956 2957 2958 2959 2960 2961 2962 2963
/**
 * igb_configure_rx - Configure receive Unit after Reset
 * @adapter: board private structure
 *
 * Configure the Rx unit of the MAC after a reset.
 **/
static void igb_configure_rx(struct igb_adapter *adapter)
{
2964
	int i;
2965

2966 2967 2968
	/* set UTA to appropriate mode */
	igb_set_uta(adapter);

2969 2970 2971 2972
	/* set the correct pool for the PF default MAC address in entry 0 */
	igb_rar_set_qsel(adapter, adapter->hw.mac.addr, 0,
	                 adapter->vfs_allocated_count);

2973 2974 2975
	/* Setup the HW Rx Head and Tail Descriptor Pointers and
	 * the Base and Length of the Rx Descriptor Ring */
	for (i = 0; i < adapter->num_rx_queues; i++)
2976
		igb_configure_rx_ring(adapter, adapter->rx_ring[i]);
2977 2978 2979 2980 2981 2982 2983 2984
}

/**
 * igb_free_tx_resources - Free Tx Resources per Queue
 * @tx_ring: Tx descriptor ring for a specific queue
 *
 * Free all transmit software resources
 **/
2985
void igb_free_tx_resources(struct igb_ring *tx_ring)
2986
{
2987
	igb_clean_tx_ring(tx_ring);
2988 2989 2990 2991

	vfree(tx_ring->buffer_info);
	tx_ring->buffer_info = NULL;

2992 2993 2994 2995
	/* if not set, then don't free */
	if (!tx_ring->desc)
		return;

2996 2997
	dma_free_coherent(tx_ring->dev, tx_ring->size,
			  tx_ring->desc, tx_ring->dma);
2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012

	tx_ring->desc = NULL;
}

/**
 * igb_free_all_tx_resources - Free Tx Resources for All Queues
 * @adapter: board private structure
 *
 * Free all transmit software resources
 **/
static void igb_free_all_tx_resources(struct igb_adapter *adapter)
{
	int i;

	for (i = 0; i < adapter->num_tx_queues; i++)
3013
		igb_free_tx_resources(adapter->tx_ring[i]);
3014 3015
}

3016 3017
void igb_unmap_and_free_tx_resource(struct igb_ring *tx_ring,
				    struct igb_buffer *buffer_info)
3018
{
3019 3020
	if (buffer_info->dma) {
		if (buffer_info->mapped_as_page)
3021
			dma_unmap_page(tx_ring->dev,
3022 3023
					buffer_info->dma,
					buffer_info->length,
3024
					DMA_TO_DEVICE);
3025
		else
3026
			dma_unmap_single(tx_ring->dev,
3027 3028
					buffer_info->dma,
					buffer_info->length,
3029
					DMA_TO_DEVICE);
3030 3031
		buffer_info->dma = 0;
	}
3032 3033 3034 3035 3036
	if (buffer_info->skb) {
		dev_kfree_skb_any(buffer_info->skb);
		buffer_info->skb = NULL;
	}
	buffer_info->time_stamp = 0;
3037 3038 3039
	buffer_info->length = 0;
	buffer_info->next_to_watch = 0;
	buffer_info->mapped_as_page = false;
3040 3041 3042 3043 3044 3045
}

/**
 * igb_clean_tx_ring - Free Tx Buffers
 * @tx_ring: ring to be cleaned
 **/
3046
static void igb_clean_tx_ring(struct igb_ring *tx_ring)
3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057
{
	struct igb_buffer *buffer_info;
	unsigned long size;
	unsigned int i;

	if (!tx_ring->buffer_info)
		return;
	/* Free all the Tx ring sk_buffs */

	for (i = 0; i < tx_ring->count; i++) {
		buffer_info = &tx_ring->buffer_info[i];
3058
		igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079
	}

	size = sizeof(struct igb_buffer) * tx_ring->count;
	memset(tx_ring->buffer_info, 0, size);

	/* Zero out the descriptor ring */
	memset(tx_ring->desc, 0, tx_ring->size);

	tx_ring->next_to_use = 0;
	tx_ring->next_to_clean = 0;
}

/**
 * igb_clean_all_tx_rings - Free Tx Buffers for all queues
 * @adapter: board private structure
 **/
static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
{
	int i;

	for (i = 0; i < adapter->num_tx_queues; i++)
3080
		igb_clean_tx_ring(adapter->tx_ring[i]);
3081 3082 3083 3084 3085 3086 3087 3088
}

/**
 * igb_free_rx_resources - Free Rx Resources
 * @rx_ring: ring to clean the resources from
 *
 * Free all receive software resources
 **/
3089
void igb_free_rx_resources(struct igb_ring *rx_ring)
3090
{
3091
	igb_clean_rx_ring(rx_ring);
3092 3093 3094 3095

	vfree(rx_ring->buffer_info);
	rx_ring->buffer_info = NULL;

3096 3097 3098 3099
	/* if not set, then don't free */
	if (!rx_ring->desc)
		return;

3100 3101
	dma_free_coherent(rx_ring->dev, rx_ring->size,
			  rx_ring->desc, rx_ring->dma);
3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116

	rx_ring->desc = NULL;
}

/**
 * igb_free_all_rx_resources - Free Rx Resources for All Queues
 * @adapter: board private structure
 *
 * Free all receive software resources
 **/
static void igb_free_all_rx_resources(struct igb_adapter *adapter)
{
	int i;

	for (i = 0; i < adapter->num_rx_queues; i++)
3117
		igb_free_rx_resources(adapter->rx_ring[i]);
3118 3119 3120 3121 3122 3123
}

/**
 * igb_clean_rx_ring - Free Rx Buffers per Queue
 * @rx_ring: ring to free buffers from
 **/
3124
static void igb_clean_rx_ring(struct igb_ring *rx_ring)
3125 3126 3127 3128 3129 3130 3131
{
	struct igb_buffer *buffer_info;
	unsigned long size;
	unsigned int i;

	if (!rx_ring->buffer_info)
		return;
3132

3133 3134 3135 3136
	/* Free all the Rx ring sk_buffs */
	for (i = 0; i < rx_ring->count; i++) {
		buffer_info = &rx_ring->buffer_info[i];
		if (buffer_info->dma) {
3137
			dma_unmap_single(rx_ring->dev,
3138
			                 buffer_info->dma,
3139
					 rx_ring->rx_buffer_len,
3140
					 DMA_FROM_DEVICE);
3141 3142 3143 3144 3145 3146 3147
			buffer_info->dma = 0;
		}

		if (buffer_info->skb) {
			dev_kfree_skb(buffer_info->skb);
			buffer_info->skb = NULL;
		}
A
Alexander Duyck 已提交
3148
		if (buffer_info->page_dma) {
3149
			dma_unmap_page(rx_ring->dev,
3150
			               buffer_info->page_dma,
A
Alexander Duyck 已提交
3151
				       PAGE_SIZE / 2,
3152
				       DMA_FROM_DEVICE);
A
Alexander Duyck 已提交
3153 3154
			buffer_info->page_dma = 0;
		}
3155 3156 3157
		if (buffer_info->page) {
			put_page(buffer_info->page);
			buffer_info->page = NULL;
3158
			buffer_info->page_offset = 0;
3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180
		}
	}

	size = sizeof(struct igb_buffer) * rx_ring->count;
	memset(rx_ring->buffer_info, 0, size);

	/* Zero out the descriptor ring */
	memset(rx_ring->desc, 0, rx_ring->size);

	rx_ring->next_to_clean = 0;
	rx_ring->next_to_use = 0;
}

/**
 * igb_clean_all_rx_rings - Free Rx Buffers for all queues
 * @adapter: board private structure
 **/
static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
{
	int i;

	for (i = 0; i < adapter->num_rx_queues; i++)
3181
		igb_clean_rx_ring(adapter->rx_ring[i]);
3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193
}

/**
 * igb_set_mac - Change the Ethernet Address of the NIC
 * @netdev: network interface device structure
 * @p: pointer to an address structure
 *
 * Returns 0 on success, negative on failure
 **/
static int igb_set_mac(struct net_device *netdev, void *p)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
3194
	struct e1000_hw *hw = &adapter->hw;
3195 3196 3197 3198 3199 3200
	struct sockaddr *addr = p;

	if (!is_valid_ether_addr(addr->sa_data))
		return -EADDRNOTAVAIL;

	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
3201
	memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
3202

3203 3204 3205
	/* set the correct pool for the new PF MAC address in entry 0 */
	igb_rar_set_qsel(adapter, hw->mac.addr, 0,
	                 adapter->vfs_allocated_count);
3206

3207 3208 3209 3210
	return 0;
}

/**
3211
 * igb_write_mc_addr_list - write multicast addresses to MTA
3212 3213
 * @netdev: network interface device structure
 *
3214 3215 3216 3217
 * Writes multicast address list to the MTA hash table.
 * Returns: -ENOMEM on failure
 *                0 on no addresses written
 *                X on writing X addresses to MTA
3218
 **/
3219
static int igb_write_mc_addr_list(struct net_device *netdev)
3220 3221 3222
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
3223
	struct netdev_hw_addr *ha;
3224
	u8  *mta_list;
3225 3226
	int i;

3227
	if (netdev_mc_empty(netdev)) {
3228 3229 3230 3231 3232
		/* nothing to program, so clear mc list */
		igb_update_mc_addr_list(hw, NULL, 0);
		igb_restore_vf_multicasts(adapter);
		return 0;
	}
3233

3234
	mta_list = kzalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
3235 3236
	if (!mta_list)
		return -ENOMEM;
3237

3238
	/* The shared function expects a packed array of only addresses. */
3239
	i = 0;
3240 3241
	netdev_for_each_mc_addr(ha, netdev)
		memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3242 3243 3244 3245

	igb_update_mc_addr_list(hw, mta_list, i);
	kfree(mta_list);

3246
	return netdev_mc_count(netdev);
3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266
}

/**
 * igb_write_uc_addr_list - write unicast addresses to RAR table
 * @netdev: network interface device structure
 *
 * Writes unicast address list to the RAR table.
 * Returns: -ENOMEM on failure/insufficient address space
 *                0 on no addresses written
 *                X on writing X addresses to the RAR table
 **/
static int igb_write_uc_addr_list(struct net_device *netdev)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	unsigned int vfn = adapter->vfs_allocated_count;
	unsigned int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
	int count = 0;

	/* return ENOMEM indicating insufficient memory for addresses */
3267
	if (netdev_uc_count(netdev) > rar_entries)
3268
		return -ENOMEM;
3269

3270
	if (!netdev_uc_empty(netdev) && rar_entries) {
3271
		struct netdev_hw_addr *ha;
3272 3273

		netdev_for_each_uc_addr(ha, netdev) {
3274 3275
			if (!rar_entries)
				break;
3276 3277
			igb_rar_set_qsel(adapter, ha->addr,
			                 rar_entries--,
3278 3279
			                 vfn);
			count++;
3280 3281 3282 3283 3284 3285 3286 3287 3288
		}
	}
	/* write the addresses in reverse order to avoid write combining */
	for (; rar_entries > 0 ; rar_entries--) {
		wr32(E1000_RAH(rar_entries), 0);
		wr32(E1000_RAL(rar_entries), 0);
	}
	wrfl();

3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346
	return count;
}

/**
 * igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
 * @netdev: network interface device structure
 *
 * The set_rx_mode entry point is called whenever the unicast or multicast
 * address lists or the network interface flags are updated.  This routine is
 * responsible for configuring the hardware for proper unicast, multicast,
 * promiscuous mode, and all-multi behavior.
 **/
static void igb_set_rx_mode(struct net_device *netdev)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	unsigned int vfn = adapter->vfs_allocated_count;
	u32 rctl, vmolr = 0;
	int count;

	/* Check for Promiscuous and All Multicast modes */
	rctl = rd32(E1000_RCTL);

	/* clear the effected bits */
	rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_VFE);

	if (netdev->flags & IFF_PROMISC) {
		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
		vmolr |= (E1000_VMOLR_ROPE | E1000_VMOLR_MPME);
	} else {
		if (netdev->flags & IFF_ALLMULTI) {
			rctl |= E1000_RCTL_MPE;
			vmolr |= E1000_VMOLR_MPME;
		} else {
			/*
			 * Write addresses to the MTA, if the attempt fails
			 * then we should just turn on promiscous mode so
			 * that we can at least receive multicast traffic
			 */
			count = igb_write_mc_addr_list(netdev);
			if (count < 0) {
				rctl |= E1000_RCTL_MPE;
				vmolr |= E1000_VMOLR_MPME;
			} else if (count) {
				vmolr |= E1000_VMOLR_ROMPE;
			}
		}
		/*
		 * Write addresses to available RAR registers, if there is not
		 * sufficient space to store all the addresses then enable
		 * unicast promiscous mode
		 */
		count = igb_write_uc_addr_list(netdev);
		if (count < 0) {
			rctl |= E1000_RCTL_UPE;
			vmolr |= E1000_VMOLR_ROPE;
		}
		rctl |= E1000_RCTL_VFE;
3347
	}
3348
	wr32(E1000_RCTL, rctl);
3349

3350 3351 3352 3353 3354 3355 3356
	/*
	 * In order to support SR-IOV and eventually VMDq it is necessary to set
	 * the VMOLR to enable the appropriate modes.  Without this workaround
	 * we will have issues with VLAN tag stripping not being done for frames
	 * that are only arriving because we are the default pool
	 */
	if (hw->mac.type < e1000_82576)
3357
		return;
3358

3359 3360 3361
	vmolr |= rd32(E1000_VMOLR(vfn)) &
	         ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
	wr32(E1000_VMOLR(vfn), vmolr);
3362
	igb_restore_vf_multicasts(adapter);
3363 3364 3365 3366 3367 3368 3369
}

/* Need to wait a few seconds after link up to get diagnostic information from
 * the phy */
static void igb_update_phy_info(unsigned long data)
{
	struct igb_adapter *adapter = (struct igb_adapter *) data;
3370
	igb_get_phy_info(&adapter->hw);
3371 3372
}

A
Alexander Duyck 已提交
3373 3374 3375 3376
/**
 * igb_has_link - check shared code for link and determine up/down
 * @adapter: pointer to driver private info
 **/
3377
bool igb_has_link(struct igb_adapter *adapter)
A
Alexander Duyck 已提交
3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408
{
	struct e1000_hw *hw = &adapter->hw;
	bool link_active = false;
	s32 ret_val = 0;

	/* get_link_status is set on LSC (link status) interrupt or
	 * rx sequence error interrupt.  get_link_status will stay
	 * false until the e1000_check_for_link establishes link
	 * for copper adapters ONLY
	 */
	switch (hw->phy.media_type) {
	case e1000_media_type_copper:
		if (hw->mac.get_link_status) {
			ret_val = hw->mac.ops.check_for_link(hw);
			link_active = !hw->mac.get_link_status;
		} else {
			link_active = true;
		}
		break;
	case e1000_media_type_internal_serdes:
		ret_val = hw->mac.ops.check_for_link(hw);
		link_active = hw->mac.serdes_has_link;
		break;
	default:
	case e1000_media_type_unknown:
		break;
	}

	return link_active;
}

3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422
/**
 * igb_watchdog - Timer Call-back
 * @data: pointer to adapter cast into an unsigned long
 **/
static void igb_watchdog(unsigned long data)
{
	struct igb_adapter *adapter = (struct igb_adapter *)data;
	/* Do the rest outside of interrupt context */
	schedule_work(&adapter->watchdog_task);
}

static void igb_watchdog_task(struct work_struct *work)
{
	struct igb_adapter *adapter = container_of(work,
3423 3424
	                                           struct igb_adapter,
                                                   watchdog_task);
3425 3426 3427
	struct e1000_hw *hw = &adapter->hw;
	struct net_device *netdev = adapter->netdev;
	u32 link;
3428
	int i;
3429

A
Alexander Duyck 已提交
3430
	link = igb_has_link(adapter);
3431 3432 3433
	if (link) {
		if (!netif_carrier_ok(netdev)) {
			u32 ctrl;
3434 3435 3436
			hw->mac.ops.get_speed_and_duplex(hw,
			                                 &adapter->link_speed,
			                                 &adapter->link_duplex);
3437 3438

			ctrl = rd32(E1000_CTRL);
3439 3440
			/* Links status message must follow this format */
			printk(KERN_INFO "igb: %s NIC Link is Up %d Mbps %s, "
3441
				 "Flow Control: %s\n",
3442 3443 3444
			       netdev->name,
			       adapter->link_speed,
			       adapter->link_duplex == FULL_DUPLEX ?
3445
				 "Full Duplex" : "Half Duplex",
3446 3447 3448 3449
			       ((ctrl & E1000_CTRL_TFCE) &&
			        (ctrl & E1000_CTRL_RFCE)) ? "RX/TX" :
			       ((ctrl & E1000_CTRL_RFCE) ?  "RX" :
			       ((ctrl & E1000_CTRL_TFCE) ?  "TX" : "None")));
3450

3451
			/* adjust timeout factor according to speed/duplex */
3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463
			adapter->tx_timeout_factor = 1;
			switch (adapter->link_speed) {
			case SPEED_10:
				adapter->tx_timeout_factor = 14;
				break;
			case SPEED_100:
				/* maybe add some timeout factor ? */
				break;
			}

			netif_carrier_on(netdev);

3464 3465
			igb_ping_all_vfs(adapter);

3466
			/* link state has changed, schedule phy info update */
3467 3468 3469 3470 3471 3472 3473 3474
			if (!test_bit(__IGB_DOWN, &adapter->state))
				mod_timer(&adapter->phy_info_timer,
					  round_jiffies(jiffies + 2 * HZ));
		}
	} else {
		if (netif_carrier_ok(netdev)) {
			adapter->link_speed = 0;
			adapter->link_duplex = 0;
3475 3476 3477
			/* Links status message must follow this format */
			printk(KERN_INFO "igb: %s NIC Link is Down\n",
			       netdev->name);
3478
			netif_carrier_off(netdev);
3479

3480 3481
			igb_ping_all_vfs(adapter);

3482
			/* link state has changed, schedule phy info update */
3483 3484 3485 3486 3487 3488
			if (!test_bit(__IGB_DOWN, &adapter->state))
				mod_timer(&adapter->phy_info_timer,
					  round_jiffies(jiffies + 2 * HZ));
		}
	}

E
Eric Dumazet 已提交
3489 3490 3491
	spin_lock(&adapter->stats64_lock);
	igb_update_stats(adapter, &adapter->stats64);
	spin_unlock(&adapter->stats64_lock);
3492

3493
	for (i = 0; i < adapter->num_tx_queues; i++) {
3494
		struct igb_ring *tx_ring = adapter->tx_ring[i];
3495
		if (!netif_carrier_ok(netdev)) {
3496 3497 3498 3499
			/* We've lost link, so the controller stops DMA,
			 * but we've got queued Tx work that's never going
			 * to get done, so reset controller to flush Tx.
			 * (Do the reset outside of interrupt context). */
3500 3501 3502 3503 3504 3505
			if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
				adapter->tx_timeout_count++;
				schedule_work(&adapter->reset_task);
				/* return immediately since reset is imminent */
				return;
			}
3506 3507
		}

3508 3509 3510
		/* Force detection of hung controller every watchdog period */
		tx_ring->detect_tx_hung = true;
	}
3511

3512
	/* Cause software interrupt to ensure rx ring is cleaned */
3513
	if (adapter->msix_entries) {
3514 3515 3516 3517 3518
		u32 eics = 0;
		for (i = 0; i < adapter->num_q_vectors; i++) {
			struct igb_q_vector *q_vector = adapter->q_vector[i];
			eics |= q_vector->eims_value;
		}
3519 3520 3521 3522
		wr32(E1000_EICS, eics);
	} else {
		wr32(E1000_ICS, E1000_ICS_RXDMT0);
	}
3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536

	/* Reset the timer */
	if (!test_bit(__IGB_DOWN, &adapter->state))
		mod_timer(&adapter->watchdog_timer,
			  round_jiffies(jiffies + 2 * HZ));
}

enum latency_range {
	lowest_latency = 0,
	low_latency = 1,
	bulk_latency = 2,
	latency_invalid = 255
};

3537 3538 3539 3540 3541 3542
/**
 * igb_update_ring_itr - update the dynamic ITR value based on packet size
 *
 *      Stores a new ITR value based on strictly on packet size.  This
 *      algorithm is less sophisticated than that used in igb_update_itr,
 *      due to the difficulty of synchronizing statistics across multiple
3543
 *      receive rings.  The divisors and thresholds used by this function
3544 3545 3546 3547 3548 3549 3550
 *      were determined based on theoretical maximum wire speed and testing
 *      data, in order to minimize response time while increasing bulk
 *      throughput.
 *      This functionality is controlled by the InterruptThrottleRate module
 *      parameter (see igb_param.c)
 *      NOTE:  This function is called only when operating in a multiqueue
 *             receive environment.
3551
 * @q_vector: pointer to q_vector
3552
 **/
3553
static void igb_update_ring_itr(struct igb_q_vector *q_vector)
3554
{
3555
	int new_val = q_vector->itr_val;
3556
	int avg_wire_size = 0;
3557
	struct igb_adapter *adapter = q_vector->adapter;
E
Eric Dumazet 已提交
3558 3559
	struct igb_ring *ring;
	unsigned int packets;
3560

3561 3562 3563 3564
	/* For non-gigabit speeds, just fix the interrupt rate at 4000
	 * ints/sec - ITR timer value of 120 ticks.
	 */
	if (adapter->link_speed != SPEED_1000) {
3565
		new_val = 976;
3566
		goto set_itr_val;
3567
	}
3568

E
Eric Dumazet 已提交
3569 3570 3571 3572 3573 3574
	ring = q_vector->rx_ring;
	if (ring) {
		packets = ACCESS_ONCE(ring->total_packets);

		if (packets)
			avg_wire_size = ring->total_bytes / packets;
3575 3576
	}

E
Eric Dumazet 已提交
3577 3578 3579 3580 3581 3582 3583
	ring = q_vector->tx_ring;
	if (ring) {
		packets = ACCESS_ONCE(ring->total_packets);

		if (packets)
			avg_wire_size = max_t(u32, avg_wire_size,
			                      ring->total_bytes / packets);
3584 3585 3586 3587 3588
	}

	/* if avg_wire_size isn't set no work was done */
	if (!avg_wire_size)
		goto clear_counts;
3589

3590 3591 3592 3593 3594
	/* Add 24 bytes to size to account for CRC, preamble, and gap */
	avg_wire_size += 24;

	/* Don't starve jumbo frames */
	avg_wire_size = min(avg_wire_size, 3000);
3595

3596 3597 3598 3599 3600
	/* Give a little boost to mid-size frames */
	if ((avg_wire_size > 300) && (avg_wire_size < 1200))
		new_val = avg_wire_size / 3;
	else
		new_val = avg_wire_size / 2;
3601

3602 3603 3604 3605
	/* when in itr mode 3 do not exceed 20K ints/sec */
	if (adapter->rx_itr_setting == 3 && new_val < 196)
		new_val = 196;

3606
set_itr_val:
3607 3608 3609
	if (new_val != q_vector->itr_val) {
		q_vector->itr_val = new_val;
		q_vector->set_itr = 1;
3610
	}
3611
clear_counts:
3612 3613 3614 3615 3616 3617 3618 3619
	if (q_vector->rx_ring) {
		q_vector->rx_ring->total_bytes = 0;
		q_vector->rx_ring->total_packets = 0;
	}
	if (q_vector->tx_ring) {
		q_vector->tx_ring->total_bytes = 0;
		q_vector->tx_ring->total_packets = 0;
	}
3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635
}

/**
 * igb_update_itr - update the dynamic ITR value based on statistics
 *      Stores a new ITR value based on packets and byte
 *      counts during the last interrupt.  The advantage of per interrupt
 *      computation is faster updates and more accurate ITR for the current
 *      traffic pattern.  Constants in this function were computed
 *      based on theoretical maximum wire speed and thresholds were set based
 *      on testing data as well as attempting to minimize response time
 *      while increasing bulk throughput.
 *      this functionality is controlled by the InterruptThrottleRate module
 *      parameter (see igb_param.c)
 *      NOTE:  These calculations are only valid when operating in a single-
 *             queue environment.
 * @adapter: pointer to adapter
3636
 * @itr_setting: current q_vector->itr_val
3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675
 * @packets: the number of packets during this measurement interval
 * @bytes: the number of bytes during this measurement interval
 **/
static unsigned int igb_update_itr(struct igb_adapter *adapter, u16 itr_setting,
				   int packets, int bytes)
{
	unsigned int retval = itr_setting;

	if (packets == 0)
		goto update_itr_done;

	switch (itr_setting) {
	case lowest_latency:
		/* handle TSO and jumbo frames */
		if (bytes/packets > 8000)
			retval = bulk_latency;
		else if ((packets < 5) && (bytes > 512))
			retval = low_latency;
		break;
	case low_latency:  /* 50 usec aka 20000 ints/s */
		if (bytes > 10000) {
			/* this if handles the TSO accounting */
			if (bytes/packets > 8000) {
				retval = bulk_latency;
			} else if ((packets < 10) || ((bytes/packets) > 1200)) {
				retval = bulk_latency;
			} else if ((packets > 35)) {
				retval = lowest_latency;
			}
		} else if (bytes/packets > 2000) {
			retval = bulk_latency;
		} else if (packets <= 2 && bytes < 512) {
			retval = lowest_latency;
		}
		break;
	case bulk_latency: /* 250 usec aka 4000 ints/s */
		if (bytes > 25000) {
			if (packets > 35)
				retval = low_latency;
3676
		} else if (bytes < 1500) {
3677 3678 3679 3680 3681 3682 3683 3684 3685
			retval = low_latency;
		}
		break;
	}

update_itr_done:
	return retval;
}

3686
static void igb_set_itr(struct igb_adapter *adapter)
3687
{
3688
	struct igb_q_vector *q_vector = adapter->q_vector[0];
3689
	u16 current_itr;
3690
	u32 new_itr = q_vector->itr_val;
3691 3692 3693 3694 3695 3696 3697 3698 3699 3700

	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
	if (adapter->link_speed != SPEED_1000) {
		current_itr = 0;
		new_itr = 4000;
		goto set_itr_now;
	}

	adapter->rx_itr = igb_update_itr(adapter,
				    adapter->rx_itr,
3701 3702
				    q_vector->rx_ring->total_packets,
				    q_vector->rx_ring->total_bytes);
3703

3704 3705
	adapter->tx_itr = igb_update_itr(adapter,
				    adapter->tx_itr,
3706 3707
				    q_vector->tx_ring->total_packets,
				    q_vector->tx_ring->total_bytes);
3708
	current_itr = max(adapter->rx_itr, adapter->tx_itr);
3709

3710
	/* conservative mode (itr 3) eliminates the lowest_latency setting */
3711
	if (adapter->rx_itr_setting == 3 && current_itr == lowest_latency)
3712 3713
		current_itr = low_latency;

3714 3715 3716
	switch (current_itr) {
	/* counts and packets in update_itr are dependent on these numbers */
	case lowest_latency:
3717
		new_itr = 56;  /* aka 70,000 ints/sec */
3718 3719
		break;
	case low_latency:
3720
		new_itr = 196; /* aka 20,000 ints/sec */
3721 3722
		break;
	case bulk_latency:
3723
		new_itr = 980; /* aka 4,000 ints/sec */
3724 3725 3726 3727 3728 3729
		break;
	default:
		break;
	}

set_itr_now:
3730 3731 3732 3733
	q_vector->rx_ring->total_bytes = 0;
	q_vector->rx_ring->total_packets = 0;
	q_vector->tx_ring->total_bytes = 0;
	q_vector->tx_ring->total_packets = 0;
3734

3735
	if (new_itr != q_vector->itr_val) {
3736 3737 3738
		/* this attempts to bias the interrupt rate towards Bulk
		 * by adding intermediate steps when interrupt rate is
		 * increasing */
3739 3740 3741 3742
		new_itr = new_itr > q_vector->itr_val ?
		             max((new_itr * q_vector->itr_val) /
		                 (new_itr + (q_vector->itr_val >> 2)),
		                 new_itr) :
3743 3744 3745 3746 3747 3748 3749
			     new_itr;
		/* Don't write the value here; it resets the adapter's
		 * internal timer, and causes us to delay far longer than
		 * we should between interrupts.  Instead, we write the ITR
		 * value at the beginning of the next interrupt so the timing
		 * ends up being correct.
		 */
3750 3751
		q_vector->itr_val = new_itr;
		q_vector->set_itr = 1;
3752 3753 3754 3755 3756 3757 3758
	}
}

#define IGB_TX_FLAGS_CSUM		0x00000001
#define IGB_TX_FLAGS_VLAN		0x00000002
#define IGB_TX_FLAGS_TSO		0x00000004
#define IGB_TX_FLAGS_IPV4		0x00000008
A
Alexander Duyck 已提交
3759 3760 3761
#define IGB_TX_FLAGS_TSTAMP		0x00000010
#define IGB_TX_FLAGS_VLAN_MASK		0xffff0000
#define IGB_TX_FLAGS_VLAN_SHIFT		        16
3762

3763
static inline int igb_tso_adv(struct igb_ring *tx_ring,
3764 3765 3766 3767 3768 3769 3770
			      struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
{
	struct e1000_adv_tx_context_desc *context_desc;
	unsigned int i;
	int err;
	struct igb_buffer *buffer_info;
	u32 info = 0, tu_cmd = 0;
N
Nick Nunley 已提交
3771 3772
	u32 mss_l4len_idx;
	u8 l4len;
3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790

	if (skb_header_cloned(skb)) {
		err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
		if (err)
			return err;
	}

	l4len = tcp_hdrlen(skb);
	*hdr_len += l4len;

	if (skb->protocol == htons(ETH_P_IP)) {
		struct iphdr *iph = ip_hdr(skb);
		iph->tot_len = 0;
		iph->check = 0;
		tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
							 iph->daddr, 0,
							 IPPROTO_TCP,
							 0);
3791
	} else if (skb_is_gso_v6(skb)) {
3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823
		ipv6_hdr(skb)->payload_len = 0;
		tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
						       &ipv6_hdr(skb)->daddr,
						       0, IPPROTO_TCP, 0);
	}

	i = tx_ring->next_to_use;

	buffer_info = &tx_ring->buffer_info[i];
	context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);
	/* VLAN MACLEN IPLEN */
	if (tx_flags & IGB_TX_FLAGS_VLAN)
		info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
	info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
	*hdr_len += skb_network_offset(skb);
	info |= skb_network_header_len(skb);
	*hdr_len += skb_network_header_len(skb);
	context_desc->vlan_macip_lens = cpu_to_le32(info);

	/* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
	tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);

	if (skb->protocol == htons(ETH_P_IP))
		tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
	tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;

	context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);

	/* MSS L4LEN IDX */
	mss_l4len_idx = (skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT);
	mss_l4len_idx |= (l4len << E1000_ADVTXD_L4LEN_SHIFT);

3824
	/* For 82575, context index must be unique per ring. */
3825 3826
	if (tx_ring->flags & IGB_RING_FLAG_TX_CTX_IDX)
		mss_l4len_idx |= tx_ring->reg_idx << 4;
3827 3828 3829 3830 3831

	context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
	context_desc->seqnum_seed = 0;

	buffer_info->time_stamp = jiffies;
A
Alexander Duyck 已提交
3832
	buffer_info->next_to_watch = i;
3833 3834 3835 3836 3837 3838 3839 3840 3841 3842
	buffer_info->dma = 0;
	i++;
	if (i == tx_ring->count)
		i = 0;

	tx_ring->next_to_use = i;

	return true;
}

3843 3844
static inline bool igb_tx_csum_adv(struct igb_ring *tx_ring,
				   struct sk_buff *skb, u32 tx_flags)
3845 3846
{
	struct e1000_adv_tx_context_desc *context_desc;
3847
	struct device *dev = tx_ring->dev;
3848 3849
	struct igb_buffer *buffer_info;
	u32 info = 0, tu_cmd = 0;
3850
	unsigned int i;
3851 3852 3853 3854 3855 3856 3857 3858 3859

	if ((skb->ip_summed == CHECKSUM_PARTIAL) ||
	    (tx_flags & IGB_TX_FLAGS_VLAN)) {
		i = tx_ring->next_to_use;
		buffer_info = &tx_ring->buffer_info[i];
		context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);

		if (tx_flags & IGB_TX_FLAGS_VLAN)
			info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
A
Alexander Duyck 已提交
3860

3861 3862 3863 3864 3865 3866 3867 3868 3869
		info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
		if (skb->ip_summed == CHECKSUM_PARTIAL)
			info |= skb_network_header_len(skb);

		context_desc->vlan_macip_lens = cpu_to_le32(info);

		tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);

		if (skb->ip_summed == CHECKSUM_PARTIAL) {
3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881
			__be16 protocol;

			if (skb->protocol == cpu_to_be16(ETH_P_8021Q)) {
				const struct vlan_ethhdr *vhdr =
				          (const struct vlan_ethhdr*)skb->data;

				protocol = vhdr->h_vlan_encapsulated_proto;
			} else {
				protocol = skb->protocol;
			}

			switch (protocol) {
3882
			case cpu_to_be16(ETH_P_IP):
3883
				tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
3884 3885
				if (ip_hdr(skb)->protocol == IPPROTO_TCP)
					tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
3886 3887
				else if (ip_hdr(skb)->protocol == IPPROTO_SCTP)
					tu_cmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
3888
				break;
3889
			case cpu_to_be16(ETH_P_IPV6):
3890 3891 3892
				/* XXX what about other V6 headers?? */
				if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
					tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
3893 3894
				else if (ipv6_hdr(skb)->nexthdr == IPPROTO_SCTP)
					tu_cmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
3895 3896 3897
				break;
			default:
				if (unlikely(net_ratelimit()))
3898
					dev_warn(dev,
3899 3900 3901 3902
					    "partial checksum but proto=%x!\n",
					    skb->protocol);
				break;
			}
3903 3904 3905 3906
		}

		context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
		context_desc->seqnum_seed = 0;
3907
		if (tx_ring->flags & IGB_RING_FLAG_TX_CTX_IDX)
3908
			context_desc->mss_l4len_idx =
3909
				cpu_to_le32(tx_ring->reg_idx << 4);
3910 3911

		buffer_info->time_stamp = jiffies;
A
Alexander Duyck 已提交
3912
		buffer_info->next_to_watch = i;
3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927
		buffer_info->dma = 0;

		i++;
		if (i == tx_ring->count)
			i = 0;
		tx_ring->next_to_use = i;

		return true;
	}
	return false;
}

#define IGB_MAX_TXD_PWR	16
#define IGB_MAX_DATA_PER_TXD	(1<<IGB_MAX_TXD_PWR)

3928
static inline int igb_tx_map_adv(struct igb_ring *tx_ring, struct sk_buff *skb,
A
Alexander Duyck 已提交
3929
				 unsigned int first)
3930 3931
{
	struct igb_buffer *buffer_info;
3932
	struct device *dev = tx_ring->dev;
3933
	unsigned int hlen = skb_headlen(skb);
3934 3935
	unsigned int count = 0, i;
	unsigned int f;
3936
	u16 gso_segs = skb_shinfo(skb)->gso_segs ?: 1;
3937 3938 3939 3940

	i = tx_ring->next_to_use;

	buffer_info = &tx_ring->buffer_info[i];
3941 3942
	BUG_ON(hlen >= IGB_MAX_DATA_PER_TXD);
	buffer_info->length = hlen;
3943 3944
	/* set time_stamp *before* dma to help avoid a possible race */
	buffer_info->time_stamp = jiffies;
A
Alexander Duyck 已提交
3945
	buffer_info->next_to_watch = i;
3946
	buffer_info->dma = dma_map_single(dev, skb->data, hlen,
3947 3948
					  DMA_TO_DEVICE);
	if (dma_mapping_error(dev, buffer_info->dma))
3949
		goto dma_error;
3950 3951

	for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
3952 3953
		struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[f];
		unsigned int len = frag->size;
3954

3955
		count++;
3956 3957 3958 3959
		i++;
		if (i == tx_ring->count)
			i = 0;

3960 3961 3962 3963
		buffer_info = &tx_ring->buffer_info[i];
		BUG_ON(len >= IGB_MAX_DATA_PER_TXD);
		buffer_info->length = len;
		buffer_info->time_stamp = jiffies;
A
Alexander Duyck 已提交
3964
		buffer_info->next_to_watch = i;
3965
		buffer_info->mapped_as_page = true;
3966
		buffer_info->dma = dma_map_page(dev,
3967 3968 3969
						frag->page,
						frag->page_offset,
						len,
3970 3971
						DMA_TO_DEVICE);
		if (dma_mapping_error(dev, buffer_info->dma))
3972 3973
			goto dma_error;

3974 3975 3976
	}

	tx_ring->buffer_info[i].skb = skb;
3977
	tx_ring->buffer_info[i].tx_flags = skb_shinfo(skb)->tx_flags;
3978 3979 3980
	/* multiply data chunks by size of headers */
	tx_ring->buffer_info[i].bytecount = ((gso_segs - 1) * hlen) + skb->len;
	tx_ring->buffer_info[i].gso_segs = gso_segs;
A
Alexander Duyck 已提交
3981
	tx_ring->buffer_info[first].next_to_watch = i;
3982

A
Alexander Duyck 已提交
3983
	return ++count;
3984 3985

dma_error:
3986
	dev_err(dev, "TX DMA map failed\n");
3987 3988 3989 3990 3991 3992 3993 3994 3995

	/* clear timestamp and dma mappings for failed buffer_info mapping */
	buffer_info->dma = 0;
	buffer_info->time_stamp = 0;
	buffer_info->length = 0;
	buffer_info->next_to_watch = 0;
	buffer_info->mapped_as_page = false;

	/* clear timestamp and dma mappings for remaining portion of packet */
3996 3997 3998
	while (count--) {
		if (i == 0)
			i = tx_ring->count;
3999 4000 4001 4002 4003 4004
		i--;
		buffer_info = &tx_ring->buffer_info[i];
		igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
	}

	return 0;
4005 4006
}

4007
static inline void igb_tx_queue_adv(struct igb_ring *tx_ring,
N
Nick Nunley 已提交
4008
				    u32 tx_flags, int count, u32 paylen,
4009 4010
				    u8 hdr_len)
{
A
Alexander Duyck 已提交
4011
	union e1000_adv_tx_desc *tx_desc;
4012 4013
	struct igb_buffer *buffer_info;
	u32 olinfo_status = 0, cmd_type_len;
A
Alexander Duyck 已提交
4014
	unsigned int i = tx_ring->next_to_use;
4015 4016 4017 4018 4019 4020 4021

	cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS |
			E1000_ADVTXD_DCMD_DEXT);

	if (tx_flags & IGB_TX_FLAGS_VLAN)
		cmd_type_len |= E1000_ADVTXD_DCMD_VLE;

4022 4023 4024
	if (tx_flags & IGB_TX_FLAGS_TSTAMP)
		cmd_type_len |= E1000_ADVTXD_MAC_TSTAMP;

4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038
	if (tx_flags & IGB_TX_FLAGS_TSO) {
		cmd_type_len |= E1000_ADVTXD_DCMD_TSE;

		/* insert tcp checksum */
		olinfo_status |= E1000_TXD_POPTS_TXSM << 8;

		/* insert ip checksum */
		if (tx_flags & IGB_TX_FLAGS_IPV4)
			olinfo_status |= E1000_TXD_POPTS_IXSM << 8;

	} else if (tx_flags & IGB_TX_FLAGS_CSUM) {
		olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
	}

4039 4040 4041
	if ((tx_ring->flags & IGB_RING_FLAG_TX_CTX_IDX) &&
	    (tx_flags & (IGB_TX_FLAGS_CSUM |
	                 IGB_TX_FLAGS_TSO |
4042
			 IGB_TX_FLAGS_VLAN)))
4043
		olinfo_status |= tx_ring->reg_idx << 4;
4044 4045 4046

	olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT);

A
Alexander Duyck 已提交
4047
	do {
4048 4049 4050 4051 4052 4053
		buffer_info = &tx_ring->buffer_info[i];
		tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
		tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
		tx_desc->read.cmd_type_len =
			cpu_to_le32(cmd_type_len | buffer_info->length);
		tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
A
Alexander Duyck 已提交
4054
		count--;
4055 4056 4057
		i++;
		if (i == tx_ring->count)
			i = 0;
A
Alexander Duyck 已提交
4058
	} while (count > 0);
4059

4060
	tx_desc->read.cmd_type_len |= cpu_to_le32(IGB_ADVTXD_DCMD);
4061 4062 4063 4064 4065 4066 4067
	/* Force memory writes to complete before letting h/w
	 * know there are new descriptors to fetch.  (Only
	 * applicable for weak-ordered memory model archs,
	 * such as IA-64). */
	wmb();

	tx_ring->next_to_use = i;
4068
	writel(i, tx_ring->tail);
4069 4070 4071 4072 4073
	/* we need this if more than one processor can write to our tail
	 * at a time, it syncronizes IO on IA64/Altix systems */
	mmiowb();
}

4074
static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, int size)
4075
{
4076 4077
	struct net_device *netdev = tx_ring->netdev;

4078 4079
	netif_stop_subqueue(netdev, tx_ring->queue_index);

4080 4081 4082 4083 4084 4085 4086
	/* Herbert's original patch had:
	 *  smp_mb__after_netif_stop_queue();
	 * but since that doesn't exist yet, just open code it. */
	smp_mb();

	/* We need to check again in a case another CPU has just
	 * made room available. */
4087
	if (igb_desc_unused(tx_ring) < size)
4088 4089 4090
		return -EBUSY;

	/* A reprieve! */
4091
	netif_wake_subqueue(netdev, tx_ring->queue_index);
E
Eric Dumazet 已提交
4092 4093 4094 4095 4096

	u64_stats_update_begin(&tx_ring->tx_syncp2);
	tx_ring->tx_stats.restart_queue2++;
	u64_stats_update_end(&tx_ring->tx_syncp2);

4097 4098 4099
	return 0;
}

N
Nick Nunley 已提交
4100
static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, int size)
4101
{
4102
	if (igb_desc_unused(tx_ring) >= size)
4103
		return 0;
4104
	return __igb_maybe_stop_tx(tx_ring, size);
4105 4106
}

4107 4108
netdev_tx_t igb_xmit_frame_ring_adv(struct sk_buff *skb,
				    struct igb_ring *tx_ring)
4109
{
A
Alexander Duyck 已提交
4110
	int tso = 0, count;
N
Nick Nunley 已提交
4111 4112 4113
	u32 tx_flags = 0;
	u16 first;
	u8 hdr_len = 0;
4114 4115 4116 4117 4118 4119

	/* need: 1 descriptor per page,
	 *       + 2 desc gap to keep tail from touching head,
	 *       + 1 desc for skb->data,
	 *       + 1 desc for context descriptor,
	 * otherwise try next time */
4120
	if (igb_maybe_stop_tx(tx_ring, skb_shinfo(skb)->nr_frags + 4)) {
4121 4122 4123
		/* this is a hard error */
		return NETDEV_TX_BUSY;
	}
4124

4125 4126
	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
4127 4128
		tx_flags |= IGB_TX_FLAGS_TSTAMP;
	}
4129

4130
	if (vlan_tx_tag_present(skb)) {
4131 4132 4133 4134
		tx_flags |= IGB_TX_FLAGS_VLAN;
		tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
	}

4135 4136 4137
	if (skb->protocol == htons(ETH_P_IP))
		tx_flags |= IGB_TX_FLAGS_IPV4;

A
Alexander Duyck 已提交
4138
	first = tx_ring->next_to_use;
4139 4140
	if (skb_is_gso(skb)) {
		tso = igb_tso_adv(tx_ring, skb, tx_flags, &hdr_len);
A
Alexander Duyck 已提交
4141

4142 4143 4144 4145
		if (tso < 0) {
			dev_kfree_skb_any(skb);
			return NETDEV_TX_OK;
		}
4146 4147 4148 4149
	}

	if (tso)
		tx_flags |= IGB_TX_FLAGS_TSO;
4150
	else if (igb_tx_csum_adv(tx_ring, skb, tx_flags) &&
4151 4152
	         (skb->ip_summed == CHECKSUM_PARTIAL))
		tx_flags |= IGB_TX_FLAGS_CSUM;
4153

4154
	/*
A
Alexander Duyck 已提交
4155
	 * count reflects descriptors mapped, if 0 or less then mapping error
4156 4157
	 * has occured and we need to rewind the descriptor queue
	 */
4158
	count = igb_tx_map_adv(tx_ring, skb, first);
4159
	if (!count) {
4160 4161 4162
		dev_kfree_skb_any(skb);
		tx_ring->buffer_info[first].time_stamp = 0;
		tx_ring->next_to_use = first;
4163
		return NETDEV_TX_OK;
4164
	}
4165

4166 4167 4168
	igb_tx_queue_adv(tx_ring, tx_flags, count, skb->len, hdr_len);

	/* Make sure there is space in the ring for the next send. */
4169
	igb_maybe_stop_tx(tx_ring, MAX_SKB_FRAGS + 4);
4170

4171 4172 4173
	return NETDEV_TX_OK;
}

4174 4175
static netdev_tx_t igb_xmit_frame_adv(struct sk_buff *skb,
				      struct net_device *netdev)
4176 4177
{
	struct igb_adapter *adapter = netdev_priv(netdev);
4178 4179
	struct igb_ring *tx_ring;
	int r_idx = 0;
4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190

	if (test_bit(__IGB_DOWN, &adapter->state)) {
		dev_kfree_skb_any(skb);
		return NETDEV_TX_OK;
	}

	if (skb->len <= 0) {
		dev_kfree_skb_any(skb);
		return NETDEV_TX_OK;
	}

4191
	r_idx = skb->queue_mapping & (IGB_ABS_MAX_TX_QUEUES - 1);
4192
	tx_ring = adapter->multi_tx_table[r_idx];
4193 4194 4195 4196 4197

	/* This goes back to the question of how to logically map a tx queue
	 * to a flow.  Right now, performance is impacted slightly negatively
	 * if using multiple tx queues.  If the stack breaks away from a
	 * single qdisc implementation, we can look at this again. */
4198
	return igb_xmit_frame_ring_adv(skb, tx_ring);
4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211
}

/**
 * igb_tx_timeout - Respond to a Tx Hang
 * @netdev: network interface device structure
 **/
static void igb_tx_timeout(struct net_device *netdev)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;

	/* Do the reset outside of interrupt context */
	adapter->tx_timeout_count++;
4212

4213 4214 4215
	if (hw->mac.type == e1000_82580)
		hw->dev_spec._82575.global_device_reset = true;

4216
	schedule_work(&adapter->reset_task);
4217 4218
	wr32(E1000_EICS,
	     (adapter->eims_enable_mask & ~adapter->eims_other));
4219 4220 4221 4222 4223 4224 4225
}

static void igb_reset_task(struct work_struct *work)
{
	struct igb_adapter *adapter;
	adapter = container_of(work, struct igb_adapter, reset_task);

4226 4227
	igb_dump(adapter);
	netdev_err(adapter->netdev, "Reset adapter\n");
4228 4229 4230 4231
	igb_reinit_locked(adapter);
}

/**
E
Eric Dumazet 已提交
4232
 * igb_get_stats64 - Get System Network Statistics
4233
 * @netdev: network interface device structure
E
Eric Dumazet 已提交
4234
 * @stats: rtnl_link_stats64 pointer
4235 4236
 *
 **/
E
Eric Dumazet 已提交
4237 4238
static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *netdev,
						 struct rtnl_link_stats64 *stats)
4239
{
E
Eric Dumazet 已提交
4240 4241 4242 4243 4244 4245 4246 4247
	struct igb_adapter *adapter = netdev_priv(netdev);

	spin_lock(&adapter->stats64_lock);
	igb_update_stats(adapter, &adapter->stats64);
	memcpy(stats, &adapter->stats64, sizeof(*stats));
	spin_unlock(&adapter->stats64_lock);

	return stats;
4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259
}

/**
 * igb_change_mtu - Change the Maximum Transfer Unit
 * @netdev: network interface device structure
 * @new_mtu: new value for maximum frame size
 *
 * Returns 0 on success, negative on failure
 **/
static int igb_change_mtu(struct net_device *netdev, int new_mtu)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
4260
	struct pci_dev *pdev = adapter->pdev;
4261
	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
4262
	u32 rx_buffer_len, i;
4263

4264
	if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
4265
		dev_err(&pdev->dev, "Invalid MTU setting\n");
4266 4267 4268 4269
		return -EINVAL;
	}

	if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
4270
		dev_err(&pdev->dev, "MTU > 9216 not supported.\n");
4271 4272 4273 4274 4275
		return -EINVAL;
	}

	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
		msleep(1);
4276

4277 4278
	/* igb_down has a dependency on max_frame_size */
	adapter->max_frame_size = max_frame;
4279

4280 4281 4282 4283 4284 4285
	/* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
	 * means we reserve 2 more, this pushes us to allocate from the next
	 * larger slab size.
	 * i.e. RXBUFFER_2048 --> size-4096 slab
	 */

N
Nick Nunley 已提交
4286 4287 4288
	if (adapter->hw.mac.type == e1000_82580)
		max_frame += IGB_TS_HDR_LEN;

4289
	if (max_frame <= IGB_RXBUFFER_1024)
4290
		rx_buffer_len = IGB_RXBUFFER_1024;
A
Alexander Duyck 已提交
4291
	else if (max_frame <= MAXIMUM_ETHERNET_VLAN_SIZE)
4292
		rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
A
Alexander Duyck 已提交
4293
	else
4294 4295
		rx_buffer_len = IGB_RXBUFFER_128;

N
Nick Nunley 已提交
4296 4297 4298 4299 4300 4301 4302 4303
	if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN + IGB_TS_HDR_LEN) ||
	     (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE + IGB_TS_HDR_LEN))
		rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE + IGB_TS_HDR_LEN;

	if ((adapter->hw.mac.type == e1000_82580) &&
	    (rx_buffer_len == IGB_RXBUFFER_128))
		rx_buffer_len += IGB_RXBUFFER_64;

4304 4305
	if (netif_running(netdev))
		igb_down(adapter);
4306

4307
	dev_info(&pdev->dev, "changing MTU from %d to %d\n",
4308 4309 4310
		 netdev->mtu, new_mtu);
	netdev->mtu = new_mtu;

4311
	for (i = 0; i < adapter->num_rx_queues; i++)
4312
		adapter->rx_ring[i]->rx_buffer_len = rx_buffer_len;
4313

4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328
	if (netif_running(netdev))
		igb_up(adapter);
	else
		igb_reset(adapter);

	clear_bit(__IGB_RESETTING, &adapter->state);

	return 0;
}

/**
 * igb_update_stats - Update the board statistics counters
 * @adapter: board private structure
 **/

E
Eric Dumazet 已提交
4329 4330
void igb_update_stats(struct igb_adapter *adapter,
		      struct rtnl_link_stats64 *net_stats)
4331 4332 4333
{
	struct e1000_hw *hw = &adapter->hw;
	struct pci_dev *pdev = adapter->pdev;
4334
	u32 reg, mpc;
4335
	u16 phy_tmp;
4336 4337
	int i;
	u64 bytes, packets;
E
Eric Dumazet 已提交
4338 4339
	unsigned int start;
	u64 _bytes, _packets;
4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351

#define PHY_IDLE_ERROR_COUNT_MASK 0x00FF

	/*
	 * Prevent stats update while adapter is being reset, or if the pci
	 * connection is down.
	 */
	if (adapter->link_speed == 0)
		return;
	if (pci_channel_offline(pdev))
		return;

4352 4353 4354 4355
	bytes = 0;
	packets = 0;
	for (i = 0; i < adapter->num_rx_queues; i++) {
		u32 rqdpc_tmp = rd32(E1000_RQDPC(i)) & 0x0FFF;
4356
		struct igb_ring *ring = adapter->rx_ring[i];
E
Eric Dumazet 已提交
4357

4358
		ring->rx_stats.drops += rqdpc_tmp;
4359
		net_stats->rx_fifo_errors += rqdpc_tmp;
E
Eric Dumazet 已提交
4360 4361 4362 4363 4364 4365 4366 4367

		do {
			start = u64_stats_fetch_begin_bh(&ring->rx_syncp);
			_bytes = ring->rx_stats.bytes;
			_packets = ring->rx_stats.packets;
		} while (u64_stats_fetch_retry_bh(&ring->rx_syncp, start));
		bytes += _bytes;
		packets += _packets;
4368 4369
	}

4370 4371
	net_stats->rx_bytes = bytes;
	net_stats->rx_packets = packets;
4372 4373 4374 4375

	bytes = 0;
	packets = 0;
	for (i = 0; i < adapter->num_tx_queues; i++) {
4376
		struct igb_ring *ring = adapter->tx_ring[i];
E
Eric Dumazet 已提交
4377 4378 4379 4380 4381 4382 4383
		do {
			start = u64_stats_fetch_begin_bh(&ring->tx_syncp);
			_bytes = ring->tx_stats.bytes;
			_packets = ring->tx_stats.packets;
		} while (u64_stats_fetch_retry_bh(&ring->tx_syncp, start));
		bytes += _bytes;
		packets += _packets;
4384
	}
4385 4386
	net_stats->tx_bytes = bytes;
	net_stats->tx_packets = packets;
4387 4388

	/* read stats registers */
4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405
	adapter->stats.crcerrs += rd32(E1000_CRCERRS);
	adapter->stats.gprc += rd32(E1000_GPRC);
	adapter->stats.gorc += rd32(E1000_GORCL);
	rd32(E1000_GORCH); /* clear GORCL */
	adapter->stats.bprc += rd32(E1000_BPRC);
	adapter->stats.mprc += rd32(E1000_MPRC);
	adapter->stats.roc += rd32(E1000_ROC);

	adapter->stats.prc64 += rd32(E1000_PRC64);
	adapter->stats.prc127 += rd32(E1000_PRC127);
	adapter->stats.prc255 += rd32(E1000_PRC255);
	adapter->stats.prc511 += rd32(E1000_PRC511);
	adapter->stats.prc1023 += rd32(E1000_PRC1023);
	adapter->stats.prc1522 += rd32(E1000_PRC1522);
	adapter->stats.symerrs += rd32(E1000_SYMERRS);
	adapter->stats.sec += rd32(E1000_SEC);

4406 4407 4408
	mpc = rd32(E1000_MPC);
	adapter->stats.mpc += mpc;
	net_stats->rx_fifo_errors += mpc;
4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422
	adapter->stats.scc += rd32(E1000_SCC);
	adapter->stats.ecol += rd32(E1000_ECOL);
	adapter->stats.mcc += rd32(E1000_MCC);
	adapter->stats.latecol += rd32(E1000_LATECOL);
	adapter->stats.dc += rd32(E1000_DC);
	adapter->stats.rlec += rd32(E1000_RLEC);
	adapter->stats.xonrxc += rd32(E1000_XONRXC);
	adapter->stats.xontxc += rd32(E1000_XONTXC);
	adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
	adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
	adapter->stats.fcruc += rd32(E1000_FCRUC);
	adapter->stats.gptc += rd32(E1000_GPTC);
	adapter->stats.gotc += rd32(E1000_GOTCL);
	rd32(E1000_GOTCH); /* clear GOTCL */
4423
	adapter->stats.rnbc += rd32(E1000_RNBC);
4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440
	adapter->stats.ruc += rd32(E1000_RUC);
	adapter->stats.rfc += rd32(E1000_RFC);
	adapter->stats.rjc += rd32(E1000_RJC);
	adapter->stats.tor += rd32(E1000_TORH);
	adapter->stats.tot += rd32(E1000_TOTH);
	adapter->stats.tpr += rd32(E1000_TPR);

	adapter->stats.ptc64 += rd32(E1000_PTC64);
	adapter->stats.ptc127 += rd32(E1000_PTC127);
	adapter->stats.ptc255 += rd32(E1000_PTC255);
	adapter->stats.ptc511 += rd32(E1000_PTC511);
	adapter->stats.ptc1023 += rd32(E1000_PTC1023);
	adapter->stats.ptc1522 += rd32(E1000_PTC1522);

	adapter->stats.mptc += rd32(E1000_MPTC);
	adapter->stats.bptc += rd32(E1000_BPTC);

4441 4442
	adapter->stats.tpt += rd32(E1000_TPT);
	adapter->stats.colc += rd32(E1000_COLC);
4443 4444

	adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
4445 4446 4447 4448 4449 4450 4451
	/* read internal phy specific stats */
	reg = rd32(E1000_CTRL_EXT);
	if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
		adapter->stats.rxerrc += rd32(E1000_RXERRC);
		adapter->stats.tncrs += rd32(E1000_TNCRS);
	}

4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465
	adapter->stats.tsctc += rd32(E1000_TSCTC);
	adapter->stats.tsctfc += rd32(E1000_TSCTFC);

	adapter->stats.iac += rd32(E1000_IAC);
	adapter->stats.icrxoc += rd32(E1000_ICRXOC);
	adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
	adapter->stats.icrxatc += rd32(E1000_ICRXATC);
	adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
	adapter->stats.ictxatc += rd32(E1000_ICTXATC);
	adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
	adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
	adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);

	/* Fill out the OS statistics structure */
4466 4467
	net_stats->multicast = adapter->stats.mprc;
	net_stats->collisions = adapter->stats.colc;
4468 4469 4470 4471

	/* Rx Errors */

	/* RLEC on some newer hardware can be incorrect so build
4472
	 * our own version based on RUC and ROC */
4473
	net_stats->rx_errors = adapter->stats.rxerrc +
4474 4475 4476
		adapter->stats.crcerrs + adapter->stats.algnerrc +
		adapter->stats.ruc + adapter->stats.roc +
		adapter->stats.cexterr;
4477 4478 4479 4480 4481
	net_stats->rx_length_errors = adapter->stats.ruc +
				      adapter->stats.roc;
	net_stats->rx_crc_errors = adapter->stats.crcerrs;
	net_stats->rx_frame_errors = adapter->stats.algnerrc;
	net_stats->rx_missed_errors = adapter->stats.mpc;
4482 4483

	/* Tx Errors */
4484 4485 4486 4487 4488
	net_stats->tx_errors = adapter->stats.ecol +
			       adapter->stats.latecol;
	net_stats->tx_aborted_errors = adapter->stats.ecol;
	net_stats->tx_window_errors = adapter->stats.latecol;
	net_stats->tx_carrier_errors = adapter->stats.tncrs;
4489 4490 4491 4492 4493 4494

	/* Tx Dropped needs to be maintained elsewhere */

	/* Phy Stats */
	if (hw->phy.media_type == e1000_media_type_copper) {
		if ((adapter->link_speed == SPEED_1000) &&
4495
		   (!igb_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508
			phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
			adapter->phy_stats.idle_errors += phy_tmp;
		}
	}

	/* Management Stats */
	adapter->stats.mgptc += rd32(E1000_MGTPTC);
	adapter->stats.mgprc += rd32(E1000_MGTPRC);
	adapter->stats.mgpdc += rd32(E1000_MGTPDC);
}

static irqreturn_t igb_msix_other(int irq, void *data)
{
4509
	struct igb_adapter *adapter = data;
4510
	struct e1000_hw *hw = &adapter->hw;
P
PJ Waskiewicz 已提交
4511 4512
	u32 icr = rd32(E1000_ICR);
	/* reading ICR causes bit 31 of EICR to be cleared */
4513

4514 4515 4516
	if (icr & E1000_ICR_DRSTA)
		schedule_work(&adapter->reset_task);

4517
	if (icr & E1000_ICR_DOUTSYNC) {
4518 4519 4520
		/* HW is reporting DMA is out of sync */
		adapter->stats.doosync++;
	}
4521

4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532
	/* Check for a mailbox event */
	if (icr & E1000_ICR_VMMB)
		igb_msg_task(adapter);

	if (icr & E1000_ICR_LSC) {
		hw->mac.get_link_status = 1;
		/* guard against interrupt when we're going down */
		if (!test_bit(__IGB_DOWN, &adapter->state))
			mod_timer(&adapter->watchdog_timer, jiffies + 1);
	}

4533 4534 4535 4536 4537 4538
	if (adapter->vfs_allocated_count)
		wr32(E1000_IMS, E1000_IMS_LSC |
				E1000_IMS_VMMB |
				E1000_IMS_DOUTSYNC);
	else
		wr32(E1000_IMS, E1000_IMS_LSC | E1000_IMS_DOUTSYNC);
P
PJ Waskiewicz 已提交
4539
	wr32(E1000_EIMS, adapter->eims_other);
4540 4541 4542 4543

	return IRQ_HANDLED;
}

4544
static void igb_write_itr(struct igb_q_vector *q_vector)
4545
{
4546
	struct igb_adapter *adapter = q_vector->adapter;
4547
	u32 itr_val = q_vector->itr_val & 0x7FFC;
4548

4549 4550
	if (!q_vector->set_itr)
		return;
4551

4552 4553
	if (!itr_val)
		itr_val = 0x4;
4554

4555 4556
	if (adapter->hw.mac.type == e1000_82575)
		itr_val |= itr_val << 16;
4557
	else
4558
		itr_val |= 0x8000000;
4559

4560 4561
	writel(itr_val, q_vector->itr_register);
	q_vector->set_itr = 0;
4562 4563
}

4564
static irqreturn_t igb_msix_ring(int irq, void *data)
4565
{
4566
	struct igb_q_vector *q_vector = data;
4567

4568 4569
	/* Write the ITR value calculated from the previous interrupt. */
	igb_write_itr(q_vector);
4570

4571
	napi_schedule(&q_vector->napi);
P
PJ Waskiewicz 已提交
4572

4573
	return IRQ_HANDLED;
J
Jeb Cramer 已提交
4574 4575
}

4576
#ifdef CONFIG_IGB_DCA
4577
static void igb_update_dca(struct igb_q_vector *q_vector)
J
Jeb Cramer 已提交
4578
{
4579
	struct igb_adapter *adapter = q_vector->adapter;
J
Jeb Cramer 已提交
4580 4581 4582
	struct e1000_hw *hw = &adapter->hw;
	int cpu = get_cpu();

4583 4584 4585 4586 4587 4588 4589 4590 4591
	if (q_vector->cpu == cpu)
		goto out_no_update;

	if (q_vector->tx_ring) {
		int q = q_vector->tx_ring->reg_idx;
		u32 dca_txctrl = rd32(E1000_DCA_TXCTRL(q));
		if (hw->mac.type == e1000_82575) {
			dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK;
			dca_txctrl |= dca3_get_tag(&adapter->pdev->dev, cpu);
A
Alexander Duyck 已提交
4592
		} else {
4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603
			dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK_82576;
			dca_txctrl |= dca3_get_tag(&adapter->pdev->dev, cpu) <<
			              E1000_DCA_TXCTRL_CPUID_SHIFT;
		}
		dca_txctrl |= E1000_DCA_TXCTRL_DESC_DCA_EN;
		wr32(E1000_DCA_TXCTRL(q), dca_txctrl);
	}
	if (q_vector->rx_ring) {
		int q = q_vector->rx_ring->reg_idx;
		u32 dca_rxctrl = rd32(E1000_DCA_RXCTRL(q));
		if (hw->mac.type == e1000_82575) {
A
Alexander Duyck 已提交
4604
			dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK;
M
Maciej Sosnowski 已提交
4605
			dca_rxctrl |= dca3_get_tag(&adapter->pdev->dev, cpu);
4606 4607 4608 4609
		} else {
			dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK_82576;
			dca_rxctrl |= dca3_get_tag(&adapter->pdev->dev, cpu) <<
			              E1000_DCA_RXCTRL_CPUID_SHIFT;
A
Alexander Duyck 已提交
4610
		}
J
Jeb Cramer 已提交
4611 4612 4613 4614 4615
		dca_rxctrl |= E1000_DCA_RXCTRL_DESC_DCA_EN;
		dca_rxctrl |= E1000_DCA_RXCTRL_HEAD_DCA_EN;
		dca_rxctrl |= E1000_DCA_RXCTRL_DATA_DCA_EN;
		wr32(E1000_DCA_RXCTRL(q), dca_rxctrl);
	}
4616 4617
	q_vector->cpu = cpu;
out_no_update:
J
Jeb Cramer 已提交
4618 4619 4620 4621 4622
	put_cpu();
}

static void igb_setup_dca(struct igb_adapter *adapter)
{
4623
	struct e1000_hw *hw = &adapter->hw;
J
Jeb Cramer 已提交
4624 4625
	int i;

4626
	if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
J
Jeb Cramer 已提交
4627 4628
		return;

4629 4630 4631
	/* Always use CB2 mode, difference is masked in the CB driver. */
	wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);

4632
	for (i = 0; i < adapter->num_q_vectors; i++) {
4633 4634
		adapter->q_vector[i]->cpu = -1;
		igb_update_dca(adapter->q_vector[i]);
J
Jeb Cramer 已提交
4635 4636 4637 4638 4639 4640 4641
	}
}

static int __igb_notify_dca(struct device *dev, void *data)
{
	struct net_device *netdev = dev_get_drvdata(dev);
	struct igb_adapter *adapter = netdev_priv(netdev);
4642
	struct pci_dev *pdev = adapter->pdev;
J
Jeb Cramer 已提交
4643 4644 4645 4646 4647 4648
	struct e1000_hw *hw = &adapter->hw;
	unsigned long event = *(unsigned long *)data;

	switch (event) {
	case DCA_PROVIDER_ADD:
		/* if already enabled, don't do it again */
4649
		if (adapter->flags & IGB_FLAG_DCA_ENABLED)
J
Jeb Cramer 已提交
4650 4651
			break;
		if (dca_add_requester(dev) == 0) {
4652
			adapter->flags |= IGB_FLAG_DCA_ENABLED;
4653
			dev_info(&pdev->dev, "DCA enabled\n");
J
Jeb Cramer 已提交
4654 4655 4656 4657 4658
			igb_setup_dca(adapter);
			break;
		}
		/* Fall Through since DCA is disabled. */
	case DCA_PROVIDER_REMOVE:
4659
		if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
J
Jeb Cramer 已提交
4660
			/* without this a class_device is left
4661
			 * hanging around in the sysfs model */
J
Jeb Cramer 已提交
4662
			dca_remove_requester(dev);
4663
			dev_info(&pdev->dev, "DCA disabled\n");
4664
			adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
A
Alexander Duyck 已提交
4665
			wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
J
Jeb Cramer 已提交
4666 4667 4668
		}
		break;
	}
4669

J
Jeb Cramer 已提交
4670
	return 0;
4671 4672
}

J
Jeb Cramer 已提交
4673 4674 4675 4676 4677 4678 4679 4680 4681 4682
static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
                          void *p)
{
	int ret_val;

	ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
	                                 __igb_notify_dca);

	return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
}
4683
#endif /* CONFIG_IGB_DCA */
4684

4685 4686 4687 4688 4689 4690 4691 4692
static void igb_ping_all_vfs(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 ping;
	int i;

	for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
		ping = E1000_PF_CONTROL_MSG;
4693
		if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
4694 4695 4696 4697 4698
			ping |= E1000_VT_MSGTYPE_CTS;
		igb_write_mbx(hw, &ping, 1, i);
	}
}

4699 4700 4701 4702 4703 4704
static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 vmolr = rd32(E1000_VMOLR(vf));
	struct vf_data_storage *vf_data = &adapter->vf_data[vf];

4705
	vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
4706 4707 4708 4709 4710
	                    IGB_VF_FLAG_MULTI_PROMISC);
	vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);

	if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
		vmolr |= E1000_VMOLR_MPME;
4711
		vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738
		*msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
	} else {
		/*
		 * if we have hashes and we are clearing a multicast promisc
		 * flag we need to write the hashes to the MTA as this step
		 * was previously skipped
		 */
		if (vf_data->num_vf_mc_hashes > 30) {
			vmolr |= E1000_VMOLR_MPME;
		} else if (vf_data->num_vf_mc_hashes) {
			int j;
			vmolr |= E1000_VMOLR_ROMPE;
			for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
				igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
		}
	}

	wr32(E1000_VMOLR(vf), vmolr);

	/* there are flags left unprocessed, likely not supported */
	if (*msgbuf & E1000_VT_MSGINFO_MASK)
		return -EINVAL;

	return 0;

}

4739 4740 4741 4742 4743 4744 4745 4746
static int igb_set_vf_multicasts(struct igb_adapter *adapter,
				  u32 *msgbuf, u32 vf)
{
	int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
	u16 *hash_list = (u16 *)&msgbuf[1];
	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
	int i;

4747
	/* salt away the number of multicast addresses assigned
4748 4749 4750 4751 4752
	 * to this VF for later use to restore when the PF multi cast
	 * list changes
	 */
	vf_data->num_vf_mc_hashes = n;

4753 4754 4755 4756 4757
	/* only up to 30 hash values supported */
	if (n > 30)
		n = 30;

	/* store the hashes for later use */
4758
	for (i = 0; i < n; i++)
4759
		vf_data->vf_mc_hashes[i] = hash_list[i];
4760 4761

	/* Flush and reset the mta with the new values */
4762
	igb_set_rx_mode(adapter->netdev);
4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773

	return 0;
}

static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	struct vf_data_storage *vf_data;
	int i, j;

	for (i = 0; i < adapter->vfs_allocated_count; i++) {
4774 4775 4776
		u32 vmolr = rd32(E1000_VMOLR(i));
		vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);

4777
		vf_data = &adapter->vf_data[i];
4778 4779 4780 4781 4782 4783 4784 4785 4786 4787

		if ((vf_data->num_vf_mc_hashes > 30) ||
		    (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
			vmolr |= E1000_VMOLR_MPME;
		} else if (vf_data->num_vf_mc_hashes) {
			vmolr |= E1000_VMOLR_ROMPE;
			for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
				igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
		}
		wr32(E1000_VMOLR(i), vmolr);
4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815
	}
}

static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 pool_mask, reg, vid;
	int i;

	pool_mask = 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);

	/* Find the vlan filter for this id */
	for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
		reg = rd32(E1000_VLVF(i));

		/* remove the vf from the pool */
		reg &= ~pool_mask;

		/* if pool is empty then remove entry from vfta */
		if (!(reg & E1000_VLVF_POOLSEL_MASK) &&
		    (reg & E1000_VLVF_VLANID_ENABLE)) {
			reg = 0;
			vid = reg & E1000_VLVF_VLANID_MASK;
			igb_vfta_set(hw, vid, false);
		}

		wr32(E1000_VLVF(i), reg);
	}
4816 4817

	adapter->vf_data[vf].vlans_enabled = 0;
4818 4819 4820 4821 4822 4823 4824
}

static s32 igb_vlvf_set(struct igb_adapter *adapter, u32 vid, bool add, u32 vf)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 reg, i;

4825 4826 4827 4828 4829
	/* The vlvf table only exists on 82576 hardware and newer */
	if (hw->mac.type < e1000_82576)
		return -1;

	/* we only need to do this if VMDq is enabled */
4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858
	if (!adapter->vfs_allocated_count)
		return -1;

	/* Find the vlan filter for this id */
	for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
		reg = rd32(E1000_VLVF(i));
		if ((reg & E1000_VLVF_VLANID_ENABLE) &&
		    vid == (reg & E1000_VLVF_VLANID_MASK))
			break;
	}

	if (add) {
		if (i == E1000_VLVF_ARRAY_SIZE) {
			/* Did not find a matching VLAN ID entry that was
			 * enabled.  Search for a free filter entry, i.e.
			 * one without the enable bit set
			 */
			for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
				reg = rd32(E1000_VLVF(i));
				if (!(reg & E1000_VLVF_VLANID_ENABLE))
					break;
			}
		}
		if (i < E1000_VLVF_ARRAY_SIZE) {
			/* Found an enabled/available entry */
			reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);

			/* if !enabled we need to set this up in vfta */
			if (!(reg & E1000_VLVF_VLANID_ENABLE)) {
4859 4860
				/* add VID to filter table */
				igb_vfta_set(hw, vid, true);
4861 4862
				reg |= E1000_VLVF_VLANID_ENABLE;
			}
A
Alexander Duyck 已提交
4863 4864
			reg &= ~E1000_VLVF_VLANID_MASK;
			reg |= vid;
4865
			wr32(E1000_VLVF(i), reg);
4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880

			/* do not modify RLPML for PF devices */
			if (vf >= adapter->vfs_allocated_count)
				return 0;

			if (!adapter->vf_data[vf].vlans_enabled) {
				u32 size;
				reg = rd32(E1000_VMOLR(vf));
				size = reg & E1000_VMOLR_RLPML_MASK;
				size += 4;
				reg &= ~E1000_VMOLR_RLPML_MASK;
				reg |= size;
				wr32(E1000_VMOLR(vf), reg);
			}

4881
			adapter->vf_data[vf].vlans_enabled++;
4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893
			return 0;
		}
	} else {
		if (i < E1000_VLVF_ARRAY_SIZE) {
			/* remove vf from the pool */
			reg &= ~(1 << (E1000_VLVF_POOLSEL_SHIFT + vf));
			/* if pool is empty then remove entry from vfta */
			if (!(reg & E1000_VLVF_POOLSEL_MASK)) {
				reg = 0;
				igb_vfta_set(hw, vid, false);
			}
			wr32(E1000_VLVF(i), reg);
4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908

			/* do not modify RLPML for PF devices */
			if (vf >= adapter->vfs_allocated_count)
				return 0;

			adapter->vf_data[vf].vlans_enabled--;
			if (!adapter->vf_data[vf].vlans_enabled) {
				u32 size;
				reg = rd32(E1000_VMOLR(vf));
				size = reg & E1000_VMOLR_RLPML_MASK;
				size -= 4;
				reg &= ~E1000_VMOLR_RLPML_MASK;
				reg |= size;
				wr32(E1000_VMOLR(vf), reg);
			}
4909 4910
		}
	}
4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959
	return 0;
}

static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
{
	struct e1000_hw *hw = &adapter->hw;

	if (vid)
		wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
	else
		wr32(E1000_VMVIR(vf), 0);
}

static int igb_ndo_set_vf_vlan(struct net_device *netdev,
			       int vf, u16 vlan, u8 qos)
{
	int err = 0;
	struct igb_adapter *adapter = netdev_priv(netdev);

	if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
		return -EINVAL;
	if (vlan || qos) {
		err = igb_vlvf_set(adapter, vlan, !!vlan, vf);
		if (err)
			goto out;
		igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
		igb_set_vmolr(adapter, vf, !vlan);
		adapter->vf_data[vf].pf_vlan = vlan;
		adapter->vf_data[vf].pf_qos = qos;
		dev_info(&adapter->pdev->dev,
			 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
		if (test_bit(__IGB_DOWN, &adapter->state)) {
			dev_warn(&adapter->pdev->dev,
				 "The VF VLAN has been set,"
				 " but the PF device is not up.\n");
			dev_warn(&adapter->pdev->dev,
				 "Bring the PF device up before"
				 " attempting to use the VF device.\n");
		}
	} else {
		igb_vlvf_set(adapter, adapter->vf_data[vf].pf_vlan,
				   false, vf);
		igb_set_vmvir(adapter, vlan, vf);
		igb_set_vmolr(adapter, vf, true);
		adapter->vf_data[vf].pf_vlan = 0;
		adapter->vf_data[vf].pf_qos = 0;
       }
out:
       return err;
4960 4961 4962 4963 4964 4965 4966 4967 4968 4969
}

static int igb_set_vf_vlan(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
{
	int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
	int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);

	return igb_vlvf_set(adapter, vid, add, vf);
}

4970
static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
4971
{
4972 4973
	/* clear flags */
	adapter->vf_data[vf].flags &= ~(IGB_VF_FLAG_PF_SET_MAC);
4974
	adapter->vf_data[vf].last_nack = jiffies;
4975 4976

	/* reset offloads to defaults */
4977
	igb_set_vmolr(adapter, vf, true);
4978 4979 4980

	/* reset vlans for device */
	igb_clear_vf_vfta(adapter, vf);
4981 4982 4983 4984 4985 4986
	if (adapter->vf_data[vf].pf_vlan)
		igb_ndo_set_vf_vlan(adapter->netdev, vf,
				    adapter->vf_data[vf].pf_vlan,
				    adapter->vf_data[vf].pf_qos);
	else
		igb_clear_vf_vfta(adapter, vf);
4987 4988 4989 4990 4991

	/* reset multicast table array for vf */
	adapter->vf_data[vf].num_vf_mc_hashes = 0;

	/* Flush and reset the mta with the new values */
4992
	igb_set_rx_mode(adapter->netdev);
4993 4994
}

4995 4996 4997 4998 4999
static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
{
	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;

	/* generate a new mac address as we were hotplug removed/added */
5000 5001
	if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
		random_ether_addr(vf_mac);
5002 5003 5004 5005 5006 5007

	/* process remaining reset events */
	igb_vf_reset(adapter, vf);
}

static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
5008 5009 5010
{
	struct e1000_hw *hw = &adapter->hw;
	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
5011
	int rar_entry = hw->mac.rar_entry_count - (vf + 1);
5012 5013 5014 5015
	u32 reg, msgbuf[3];
	u8 *addr = (u8 *)(&msgbuf[1]);

	/* process all the same items cleared in a function level reset */
5016
	igb_vf_reset(adapter, vf);
5017 5018

	/* set vf mac address */
5019
	igb_rar_set_qsel(adapter, vf_mac, rar_entry, vf);
5020 5021 5022 5023 5024 5025 5026

	/* enable transmit and receive for vf */
	reg = rd32(E1000_VFTE);
	wr32(E1000_VFTE, reg | (1 << vf));
	reg = rd32(E1000_VFRE);
	wr32(E1000_VFRE, reg | (1 << vf));

5027
	adapter->vf_data[vf].flags = IGB_VF_FLAG_CTS;
5028 5029 5030 5031 5032 5033 5034 5035 5036

	/* reply to reset with ack and vf mac address */
	msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
	memcpy(addr, vf_mac, 6);
	igb_write_mbx(hw, msgbuf, 3, vf);
}

static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
{
G
Greg Rose 已提交
5037 5038 5039 5040
	/*
	 * The VF MAC Address is stored in a packed array of bytes
	 * starting at the second 32 bit word of the msg array
	 */
5041 5042
	unsigned char *addr = (char *)&msg[1];
	int err = -1;
5043

5044 5045
	if (is_valid_ether_addr(addr))
		err = igb_set_vf_mac(adapter, vf, addr);
5046

5047
	return err;
5048 5049 5050 5051 5052
}

static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
{
	struct e1000_hw *hw = &adapter->hw;
5053
	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5054 5055 5056
	u32 msg = E1000_VT_MSGTYPE_NACK;

	/* if device isn't clear to send it shouldn't be reading either */
5057 5058
	if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
	    time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
5059
		igb_write_mbx(hw, &msg, 1, vf);
5060
		vf_data->last_nack = jiffies;
5061 5062 5063
	}
}

5064
static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
5065
{
5066 5067
	struct pci_dev *pdev = adapter->pdev;
	u32 msgbuf[E1000_VFMAILBOX_SIZE];
5068
	struct e1000_hw *hw = &adapter->hw;
5069
	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5070 5071
	s32 retval;

5072
	retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf);
5073

5074 5075
	if (retval) {
		/* if receive failed revoke VF CTS stats and restart init */
5076
		dev_err(&pdev->dev, "Error receiving message from VF\n");
5077 5078 5079 5080 5081
		vf_data->flags &= ~IGB_VF_FLAG_CTS;
		if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
			return;
		goto out;
	}
5082 5083 5084

	/* this is a message we already processed, do nothing */
	if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
5085
		return;
5086 5087 5088 5089 5090 5091 5092 5093

	/*
	 * until the vf completes a reset it should not be
	 * allowed to start any configuration.
	 */

	if (msgbuf[0] == E1000_VF_RESET) {
		igb_vf_reset_msg(adapter, vf);
5094
		return;
5095 5096
	}

5097
	if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
5098 5099 5100 5101
		if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
			return;
		retval = -1;
		goto out;
5102 5103 5104 5105 5106 5107
	}

	switch ((msgbuf[0] & 0xFFFF)) {
	case E1000_VF_SET_MAC_ADDR:
		retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
		break;
5108 5109 5110
	case E1000_VF_SET_PROMISC:
		retval = igb_set_vf_promisc(adapter, msgbuf, vf);
		break;
5111 5112 5113 5114 5115 5116 5117
	case E1000_VF_SET_MULTICAST:
		retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
		break;
	case E1000_VF_SET_LPE:
		retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
		break;
	case E1000_VF_SET_VLAN:
5118 5119 5120 5121
		if (adapter->vf_data[vf].pf_vlan)
			retval = -1;
		else
			retval = igb_set_vf_vlan(adapter, msgbuf, vf);
5122 5123
		break;
	default:
5124
		dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
5125 5126 5127 5128
		retval = -1;
		break;
	}

5129 5130
	msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
out:
5131 5132 5133 5134 5135 5136 5137
	/* notify the VF of the results of what it sent us */
	if (retval)
		msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
	else
		msgbuf[0] |= E1000_VT_MSGTYPE_ACK;

	igb_write_mbx(hw, msgbuf, 1, vf);
5138
}
5139

5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157
static void igb_msg_task(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 vf;

	for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
		/* process any reset requests */
		if (!igb_check_for_rst(hw, vf))
			igb_vf_reset_event(adapter, vf);

		/* process any messages pending */
		if (!igb_check_for_msg(hw, vf))
			igb_rcv_msg_from_vf(adapter, vf);

		/* process any acks */
		if (!igb_check_for_ack(hw, vf))
			igb_rcv_ack_from_vf(adapter, vf);
	}
5158 5159
}

5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186
/**
 *  igb_set_uta - Set unicast filter table address
 *  @adapter: board private structure
 *
 *  The unicast table address is a register array of 32-bit registers.
 *  The table is meant to be used in a way similar to how the MTA is used
 *  however due to certain limitations in the hardware it is necessary to
 *  set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscous
 *  enable bit to allow vlan tag stripping when promiscous mode is enabled
 **/
static void igb_set_uta(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	int i;

	/* The UTA table only exists on 82576 hardware and newer */
	if (hw->mac.type < e1000_82576)
		return;

	/* we only need to do this if VMDq is enabled */
	if (!adapter->vfs_allocated_count)
		return;

	for (i = 0; i < hw->mac.uta_reg_count; i++)
		array_wr32(E1000_UTA, i, ~0);
}

5187 5188 5189 5190 5191 5192 5193
/**
 * igb_intr_msi - Interrupt Handler
 * @irq: interrupt number
 * @data: pointer to a network interface device structure
 **/
static irqreturn_t igb_intr_msi(int irq, void *data)
{
5194 5195
	struct igb_adapter *adapter = data;
	struct igb_q_vector *q_vector = adapter->q_vector[0];
5196 5197 5198 5199
	struct e1000_hw *hw = &adapter->hw;
	/* read ICR disables interrupts using IAM */
	u32 icr = rd32(E1000_ICR);

5200
	igb_write_itr(q_vector);
5201

5202 5203 5204
	if (icr & E1000_ICR_DRSTA)
		schedule_work(&adapter->reset_task);

5205
	if (icr & E1000_ICR_DOUTSYNC) {
5206 5207 5208 5209
		/* HW is reporting DMA is out of sync */
		adapter->stats.doosync++;
	}

5210 5211 5212 5213 5214 5215
	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
		hw->mac.get_link_status = 1;
		if (!test_bit(__IGB_DOWN, &adapter->state))
			mod_timer(&adapter->watchdog_timer, jiffies + 1);
	}

5216
	napi_schedule(&q_vector->napi);
5217 5218 5219 5220 5221

	return IRQ_HANDLED;
}

/**
5222
 * igb_intr - Legacy Interrupt Handler
5223 5224 5225 5226 5227
 * @irq: interrupt number
 * @data: pointer to a network interface device structure
 **/
static irqreturn_t igb_intr(int irq, void *data)
{
5228 5229
	struct igb_adapter *adapter = data;
	struct igb_q_vector *q_vector = adapter->q_vector[0];
5230 5231 5232 5233 5234 5235 5236
	struct e1000_hw *hw = &adapter->hw;
	/* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
	 * need for the IMC write */
	u32 icr = rd32(E1000_ICR);
	if (!icr)
		return IRQ_NONE;  /* Not our interrupt */

5237
	igb_write_itr(q_vector);
5238 5239 5240 5241 5242 5243

	/* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
	 * not set, then the adapter didn't send an interrupt */
	if (!(icr & E1000_ICR_INT_ASSERTED))
		return IRQ_NONE;

5244 5245 5246
	if (icr & E1000_ICR_DRSTA)
		schedule_work(&adapter->reset_task);

5247
	if (icr & E1000_ICR_DOUTSYNC) {
5248 5249 5250 5251
		/* HW is reporting DMA is out of sync */
		adapter->stats.doosync++;
	}

5252 5253 5254 5255 5256 5257 5258
	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
		hw->mac.get_link_status = 1;
		/* guard against interrupt when we're going down */
		if (!test_bit(__IGB_DOWN, &adapter->state))
			mod_timer(&adapter->watchdog_timer, jiffies + 1);
	}

5259
	napi_schedule(&q_vector->napi);
5260 5261 5262 5263

	return IRQ_HANDLED;
}

5264
static inline void igb_ring_irq_enable(struct igb_q_vector *q_vector)
5265
{
5266
	struct igb_adapter *adapter = q_vector->adapter;
5267
	struct e1000_hw *hw = &adapter->hw;
5268

5269 5270
	if ((q_vector->rx_ring && (adapter->rx_itr_setting & 3)) ||
	    (!q_vector->rx_ring && (adapter->tx_itr_setting & 3))) {
5271
		if (!adapter->msix_entries)
5272
			igb_set_itr(adapter);
5273
		else
5274
			igb_update_ring_itr(q_vector);
5275 5276
	}

5277 5278
	if (!test_bit(__IGB_DOWN, &adapter->state)) {
		if (adapter->msix_entries)
5279
			wr32(E1000_EIMS, q_vector->eims_value);
5280 5281 5282
		else
			igb_irq_enable(adapter);
	}
5283 5284
}

5285 5286 5287 5288 5289 5290
/**
 * igb_poll - NAPI Rx polling callback
 * @napi: napi polling structure
 * @budget: count of how many packets we should handle
 **/
static int igb_poll(struct napi_struct *napi, int budget)
5291
{
5292 5293 5294 5295
	struct igb_q_vector *q_vector = container_of(napi,
	                                             struct igb_q_vector,
	                                             napi);
	int tx_clean_complete = 1, work_done = 0;
5296

5297
#ifdef CONFIG_IGB_DCA
5298 5299
	if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
		igb_update_dca(q_vector);
J
Jeb Cramer 已提交
5300
#endif
5301 5302
	if (q_vector->tx_ring)
		tx_clean_complete = igb_clean_tx_irq(q_vector);
5303

5304 5305 5306 5307 5308
	if (q_vector->rx_ring)
		igb_clean_rx_irq_adv(q_vector, &work_done, budget);

	if (!tx_clean_complete)
		work_done = budget;
5309

5310
	/* If not enough Rx work done, exit the polling mode */
5311
	if (work_done < budget) {
5312
		napi_complete(napi);
5313
		igb_ring_irq_enable(q_vector);
5314 5315
	}

5316
	return work_done;
5317
}
A
Al Viro 已提交
5318

5319
/**
5320
 * igb_systim_to_hwtstamp - convert system time value to hw timestamp
5321
 * @adapter: board private structure
5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333
 * @shhwtstamps: timestamp structure to update
 * @regval: unsigned 64bit system time value.
 *
 * We need to convert the system time value stored in the RX/TXSTMP registers
 * into a hwtstamp which can be used by the upper level timestamping functions
 */
static void igb_systim_to_hwtstamp(struct igb_adapter *adapter,
                                   struct skb_shared_hwtstamps *shhwtstamps,
                                   u64 regval)
{
	u64 ns;

5334 5335 5336 5337 5338 5339 5340
	/*
	 * The 82580 starts with 1ns at bit 0 in RX/TXSTMPL, shift this up to
	 * 24 to match clock shift we setup earlier.
	 */
	if (adapter->hw.mac.type == e1000_82580)
		regval <<= IGB_82580_TSYNC_SHIFT;

5341 5342 5343 5344 5345 5346 5347 5348 5349 5350
	ns = timecounter_cyc2time(&adapter->clock, regval);
	timecompare_update(&adapter->compare, ns);
	memset(shhwtstamps, 0, sizeof(struct skb_shared_hwtstamps));
	shhwtstamps->hwtstamp = ns_to_ktime(ns);
	shhwtstamps->syststamp = timecompare_transform(&adapter->compare, ns);
}

/**
 * igb_tx_hwtstamp - utility function which checks for TX time stamp
 * @q_vector: pointer to q_vector containing needed info
5351
 * @buffer: pointer to igb_buffer structure
5352 5353 5354 5355 5356
 *
 * If we were asked to do hardware stamping and such a time stamp is
 * available, then it must have been for this skb here because we only
 * allow only one such packet into the queue.
 */
5357
static void igb_tx_hwtstamp(struct igb_q_vector *q_vector, struct igb_buffer *buffer_info)
5358
{
5359
	struct igb_adapter *adapter = q_vector->adapter;
5360
	struct e1000_hw *hw = &adapter->hw;
5361 5362
	struct skb_shared_hwtstamps shhwtstamps;
	u64 regval;
5363

5364
	/* if skb does not support hw timestamp or TX stamp not valid exit */
5365
	if (likely(!(buffer_info->tx_flags & SKBTX_HW_TSTAMP)) ||
5366 5367 5368 5369 5370 5371 5372
	    !(rd32(E1000_TSYNCTXCTL) & E1000_TSYNCTXCTL_VALID))
		return;

	regval = rd32(E1000_TXSTMPL);
	regval |= (u64)rd32(E1000_TXSTMPH) << 32;

	igb_systim_to_hwtstamp(adapter, &shhwtstamps, regval);
5373
	skb_tstamp_tx(buffer_info->skb, &shhwtstamps);
5374 5375
}

5376 5377
/**
 * igb_clean_tx_irq - Reclaim resources after transmit completes
5378
 * @q_vector: pointer to q_vector containing needed info
5379 5380
 * returns true if ring is completely cleaned
 **/
5381
static bool igb_clean_tx_irq(struct igb_q_vector *q_vector)
5382
{
5383 5384
	struct igb_adapter *adapter = q_vector->adapter;
	struct igb_ring *tx_ring = q_vector->tx_ring;
5385
	struct net_device *netdev = tx_ring->netdev;
A
Alexander Duyck 已提交
5386
	struct e1000_hw *hw = &adapter->hw;
5387
	struct igb_buffer *buffer_info;
A
Alexander Duyck 已提交
5388
	union e1000_adv_tx_desc *tx_desc, *eop_desc;
5389
	unsigned int total_bytes = 0, total_packets = 0;
A
Alexander Duyck 已提交
5390 5391
	unsigned int i, eop, count = 0;
	bool cleaned = false;
5392 5393

	i = tx_ring->next_to_clean;
A
Alexander Duyck 已提交
5394 5395 5396 5397 5398
	eop = tx_ring->buffer_info[i].next_to_watch;
	eop_desc = E1000_TX_DESC_ADV(*tx_ring, eop);

	while ((eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)) &&
	       (count < tx_ring->count)) {
5399
		rmb();	/* read buffer_info after eop_desc status */
A
Alexander Duyck 已提交
5400 5401
		for (cleaned = false; !cleaned; count++) {
			tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
5402
			buffer_info = &tx_ring->buffer_info[i];
A
Alexander Duyck 已提交
5403
			cleaned = (i == eop);
5404

5405 5406
			if (buffer_info->skb) {
				total_bytes += buffer_info->bytecount;
5407
				/* gso_segs is currently only valid for tcp */
5408 5409
				total_packets += buffer_info->gso_segs;
				igb_tx_hwtstamp(q_vector, buffer_info);
5410 5411
			}

5412
			igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
A
Alexander Duyck 已提交
5413
			tx_desc->wb.status = 0;
5414 5415 5416 5417 5418

			i++;
			if (i == tx_ring->count)
				i = 0;
		}
A
Alexander Duyck 已提交
5419 5420 5421 5422
		eop = tx_ring->buffer_info[i].next_to_watch;
		eop_desc = E1000_TX_DESC_ADV(*tx_ring, eop);
	}

5423 5424
	tx_ring->next_to_clean = i;

5425
	if (unlikely(count &&
5426
		     netif_carrier_ok(netdev) &&
5427
		     igb_desc_unused(tx_ring) >= IGB_TX_QUEUE_WAKE)) {
5428 5429 5430 5431
		/* Make sure that anybody stopping the queue after this
		 * sees the new next_to_clean.
		 */
		smp_mb();
5432 5433 5434
		if (__netif_subqueue_stopped(netdev, tx_ring->queue_index) &&
		    !(test_bit(__IGB_DOWN, &adapter->state))) {
			netif_wake_subqueue(netdev, tx_ring->queue_index);
E
Eric Dumazet 已提交
5435 5436

			u64_stats_update_begin(&tx_ring->tx_syncp);
5437
			tx_ring->tx_stats.restart_queue++;
E
Eric Dumazet 已提交
5438
			u64_stats_update_end(&tx_ring->tx_syncp);
5439
		}
5440 5441 5442 5443 5444 5445 5446 5447
	}

	if (tx_ring->detect_tx_hung) {
		/* Detect a transmit hang in hardware, this serializes the
		 * check with the clearing of time_stamp and movement of i */
		tx_ring->detect_tx_hung = false;
		if (tx_ring->buffer_info[i].time_stamp &&
		    time_after(jiffies, tx_ring->buffer_info[i].time_stamp +
5448 5449
			       (adapter->tx_timeout_factor * HZ)) &&
		    !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
5450 5451

			/* detected Tx unit hang */
5452
			dev_err(tx_ring->dev,
5453
				"Detected Tx Unit Hang\n"
A
Alexander Duyck 已提交
5454
				"  Tx Queue             <%d>\n"
5455 5456 5457 5458 5459 5460
				"  TDH                  <%x>\n"
				"  TDT                  <%x>\n"
				"  next_to_use          <%x>\n"
				"  next_to_clean        <%x>\n"
				"buffer_info[next_to_clean]\n"
				"  time_stamp           <%lx>\n"
A
Alexander Duyck 已提交
5461
				"  next_to_watch        <%x>\n"
5462 5463
				"  jiffies              <%lx>\n"
				"  desc.status          <%x>\n",
A
Alexander Duyck 已提交
5464
				tx_ring->queue_index,
5465 5466
				readl(tx_ring->head),
				readl(tx_ring->tail),
5467 5468
				tx_ring->next_to_use,
				tx_ring->next_to_clean,
5469
				tx_ring->buffer_info[eop].time_stamp,
A
Alexander Duyck 已提交
5470
				eop,
5471
				jiffies,
A
Alexander Duyck 已提交
5472
				eop_desc->wb.status);
5473
			netif_stop_subqueue(netdev, tx_ring->queue_index);
5474 5475 5476 5477
		}
	}
	tx_ring->total_bytes += total_bytes;
	tx_ring->total_packets += total_packets;
E
Eric Dumazet 已提交
5478
	u64_stats_update_begin(&tx_ring->tx_syncp);
5479 5480
	tx_ring->tx_stats.bytes += total_bytes;
	tx_ring->tx_stats.packets += total_packets;
E
Eric Dumazet 已提交
5481
	u64_stats_update_end(&tx_ring->tx_syncp);
5482
	return count < tx_ring->count;
5483 5484 5485 5486
}

/**
 * igb_receive_skb - helper function to handle rx indications
5487 5488 5489
 * @q_vector: structure containing interrupt and ring information
 * @skb: packet to send up
 * @vlan_tag: vlan tag for packet
5490
 **/
5491 5492 5493 5494 5495 5496
static void igb_receive_skb(struct igb_q_vector *q_vector,
                            struct sk_buff *skb,
                            u16 vlan_tag)
{
	struct igb_adapter *adapter = q_vector->adapter;

5497
	if (vlan_tag && adapter->vlgrp)
5498 5499
		vlan_gro_receive(&q_vector->napi, adapter->vlgrp,
		                 vlan_tag, skb);
5500
	else
5501
		napi_gro_receive(&q_vector->napi, skb);
5502 5503
}

5504
static inline void igb_rx_checksum_adv(struct igb_ring *ring,
5505 5506
				       u32 status_err, struct sk_buff *skb)
{
5507
	skb_checksum_none_assert(skb);
5508 5509

	/* Ignore Checksum bit is set or checksum is disabled through ethtool */
5510 5511
	if (!(ring->flags & IGB_RING_FLAG_RX_CSUM) ||
	     (status_err & E1000_RXD_STAT_IXSM))
5512
		return;
5513

5514 5515 5516
	/* TCP/UDP checksum error bit is set */
	if (status_err &
	    (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) {
5517 5518 5519 5520 5521
		/*
		 * work around errata with sctp packets where the TCPE aka
		 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
		 * packets, (aka let the stack check the crc32c)
		 */
5522
		if ((skb->len == 60) &&
E
Eric Dumazet 已提交
5523 5524
		    (ring->flags & IGB_RING_FLAG_RX_SCTP_CSUM)) {
			u64_stats_update_begin(&ring->rx_syncp);
5525
			ring->rx_stats.csum_err++;
E
Eric Dumazet 已提交
5526 5527
			u64_stats_update_end(&ring->rx_syncp);
		}
5528 5529 5530 5531 5532 5533 5534
		/* let the stack verify checksum errors */
		return;
	}
	/* It must be a TCP or UDP packet with a valid checksum */
	if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))
		skb->ip_summed = CHECKSUM_UNNECESSARY;

5535
	dev_dbg(ring->dev, "cksum success: bits %08X\n", status_err);
5536 5537
}

N
Nick Nunley 已提交
5538
static void igb_rx_hwtstamp(struct igb_q_vector *q_vector, u32 staterr,
5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552
                                   struct sk_buff *skb)
{
	struct igb_adapter *adapter = q_vector->adapter;
	struct e1000_hw *hw = &adapter->hw;
	u64 regval;

	/*
	 * If this bit is set, then the RX registers contain the time stamp. No
	 * other packet will be time stamped until we read these registers, so
	 * read the registers to make them available again. Because only one
	 * packet can be time stamped at a time, we know that the register
	 * values must belong to this one here and therefore we don't need to
	 * compare any of the additional attributes stored for it.
	 *
5553
	 * If nothing went wrong, then it should have a shared tx_flags that we
5554 5555
	 * can turn into a skb_shared_hwtstamps.
	 */
N
Nick Nunley 已提交
5556 5557 5558 5559 5560 5561 5562 5563
	if (staterr & E1000_RXDADV_STAT_TSIP) {
		u32 *stamp = (u32 *)skb->data;
		regval = le32_to_cpu(*(stamp + 2));
		regval |= (u64)le32_to_cpu(*(stamp + 3)) << 32;
		skb_pull(skb, IGB_TS_HDR_LEN);
	} else {
		if(!(rd32(E1000_TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
			return;
5564

N
Nick Nunley 已提交
5565 5566 5567
		regval = rd32(E1000_RXSTMPL);
		regval |= (u64)rd32(E1000_RXSTMPH) << 32;
	}
5568 5569 5570

	igb_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), regval);
}
5571
static inline u16 igb_get_hlen(struct igb_ring *rx_ring,
5572 5573 5574 5575 5576 5577 5578 5579
                               union e1000_adv_rx_desc *rx_desc)
{
	/* HW will not DMA in data larger than the given buffer, even if it
	 * parses the (NFS, of course) header to be larger.  In that case, it
	 * fills the header buffer and spills the rest into the page.
	 */
	u16 hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hdr_info) &
	           E1000_RXDADV_HDRBUFLEN_MASK) >> E1000_RXDADV_HDRBUFLEN_SHIFT;
5580 5581
	if (hlen > rx_ring->rx_buffer_len)
		hlen = rx_ring->rx_buffer_len;
5582 5583 5584
	return hlen;
}

5585 5586
static bool igb_clean_rx_irq_adv(struct igb_q_vector *q_vector,
                                 int *work_done, int budget)
5587
{
5588
	struct igb_ring *rx_ring = q_vector->rx_ring;
5589
	struct net_device *netdev = rx_ring->netdev;
5590
	struct device *dev = rx_ring->dev;
5591 5592 5593 5594 5595
	union e1000_adv_rx_desc *rx_desc , *next_rxd;
	struct igb_buffer *buffer_info , *next_buffer;
	struct sk_buff *skb;
	bool cleaned = false;
	int cleaned_count = 0;
5596
	int current_node = numa_node_id();
5597
	unsigned int total_bytes = 0, total_packets = 0;
5598
	unsigned int i;
5599 5600
	u32 staterr;
	u16 length;
5601
	u16 vlan_tag;
5602 5603

	i = rx_ring->next_to_clean;
5604
	buffer_info = &rx_ring->buffer_info[i];
5605 5606 5607 5608 5609 5610 5611
	rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
	staterr = le32_to_cpu(rx_desc->wb.upper.status_error);

	while (staterr & E1000_RXD_STAT_DD) {
		if (*work_done >= budget)
			break;
		(*work_done)++;
5612
		rmb(); /* read descriptor and rx_buffer_info after status DD */
5613

5614 5615 5616 5617 5618 5619 5620
		skb = buffer_info->skb;
		prefetch(skb->data - NET_IP_ALIGN);
		buffer_info->skb = NULL;

		i++;
		if (i == rx_ring->count)
			i = 0;
5621

5622 5623 5624
		next_rxd = E1000_RX_DESC_ADV(*rx_ring, i);
		prefetch(next_rxd);
		next_buffer = &rx_ring->buffer_info[i];
5625 5626 5627 5628 5629

		length = le16_to_cpu(rx_desc->wb.upper.length);
		cleaned = true;
		cleaned_count++;

5630
		if (buffer_info->dma) {
5631
			dma_unmap_single(dev, buffer_info->dma,
5632
					 rx_ring->rx_buffer_len,
5633
					 DMA_FROM_DEVICE);
J
Jesse Brandeburg 已提交
5634
			buffer_info->dma = 0;
5635
			if (rx_ring->rx_buffer_len >= IGB_RXBUFFER_1024) {
A
Alexander Duyck 已提交
5636 5637 5638
				skb_put(skb, length);
				goto send_up;
			}
5639
			skb_put(skb, igb_get_hlen(rx_ring, rx_desc));
5640 5641 5642
		}

		if (length) {
5643 5644
			dma_unmap_page(dev, buffer_info->page_dma,
				       PAGE_SIZE / 2, DMA_FROM_DEVICE);
5645
			buffer_info->page_dma = 0;
5646

K
Koki Sanagi 已提交
5647
			skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
5648 5649 5650 5651
						buffer_info->page,
						buffer_info->page_offset,
						length);

5652 5653
			if ((page_count(buffer_info->page) != 1) ||
			    (page_to_nid(buffer_info->page) != current_node))
5654 5655 5656
				buffer_info->page = NULL;
			else
				get_page(buffer_info->page);
5657 5658 5659

			skb->len += length;
			skb->data_len += length;
5660
			skb->truesize += length;
5661 5662
		}

5663
		if (!(staterr & E1000_RXD_STAT_EOP)) {
5664 5665 5666 5667
			buffer_info->skb = next_buffer->skb;
			buffer_info->dma = next_buffer->dma;
			next_buffer->skb = skb;
			next_buffer->dma = 0;
5668 5669
			goto next_desc;
		}
5670
send_up:
5671 5672 5673 5674 5675
		if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
			dev_kfree_skb_irq(skb);
			goto next_desc;
		}

N
Nick Nunley 已提交
5676 5677
		if (staterr & (E1000_RXDADV_STAT_TSIP | E1000_RXDADV_STAT_TS))
			igb_rx_hwtstamp(q_vector, staterr, skb);
5678 5679 5680
		total_bytes += skb->len;
		total_packets++;

5681
		igb_rx_checksum_adv(rx_ring, staterr, skb);
5682 5683

		skb->protocol = eth_type_trans(skb, netdev);
5684 5685 5686 5687
		skb_record_rx_queue(skb, rx_ring->queue_index);

		vlan_tag = ((staterr & E1000_RXD_STAT_VP) ?
		            le16_to_cpu(rx_desc->wb.upper.vlan) : 0);
5688

5689
		igb_receive_skb(q_vector, skb, vlan_tag);
5690 5691 5692 5693 5694 5695

next_desc:
		rx_desc->wb.upper.status_error = 0;

		/* return some buffers to hardware, one at a time is too slow */
		if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
5696
			igb_alloc_rx_buffers_adv(rx_ring, cleaned_count);
5697 5698 5699 5700 5701 5702 5703 5704
			cleaned_count = 0;
		}

		/* use prefetched values */
		rx_desc = next_rxd;
		buffer_info = next_buffer;
		staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
	}
5705

5706
	rx_ring->next_to_clean = i;
5707
	cleaned_count = igb_desc_unused(rx_ring);
5708 5709

	if (cleaned_count)
5710
		igb_alloc_rx_buffers_adv(rx_ring, cleaned_count);
5711 5712 5713

	rx_ring->total_packets += total_packets;
	rx_ring->total_bytes += total_bytes;
E
Eric Dumazet 已提交
5714
	u64_stats_update_begin(&rx_ring->rx_syncp);
5715 5716
	rx_ring->rx_stats.packets += total_packets;
	rx_ring->rx_stats.bytes += total_bytes;
E
Eric Dumazet 已提交
5717
	u64_stats_update_end(&rx_ring->rx_syncp);
5718 5719 5720 5721 5722 5723 5724
	return cleaned;
}

/**
 * igb_alloc_rx_buffers_adv - Replace used receive buffers; packet split
 * @adapter: address of board private structure
 **/
5725
void igb_alloc_rx_buffers_adv(struct igb_ring *rx_ring, int cleaned_count)
5726
{
5727
	struct net_device *netdev = rx_ring->netdev;
5728 5729 5730 5731
	union e1000_adv_rx_desc *rx_desc;
	struct igb_buffer *buffer_info;
	struct sk_buff *skb;
	unsigned int i;
5732
	int bufsz;
5733 5734 5735 5736

	i = rx_ring->next_to_use;
	buffer_info = &rx_ring->buffer_info[i];

5737
	bufsz = rx_ring->rx_buffer_len;
5738

5739 5740 5741
	while (cleaned_count--) {
		rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);

A
Alexander Duyck 已提交
5742
		if ((bufsz < IGB_RXBUFFER_1024) && !buffer_info->page_dma) {
5743
			if (!buffer_info->page) {
5744
				buffer_info->page = netdev_alloc_page(netdev);
E
Eric Dumazet 已提交
5745 5746
				if (unlikely(!buffer_info->page)) {
					u64_stats_update_begin(&rx_ring->rx_syncp);
5747
					rx_ring->rx_stats.alloc_failed++;
E
Eric Dumazet 已提交
5748
					u64_stats_update_end(&rx_ring->rx_syncp);
5749 5750 5751 5752 5753
					goto no_buffers;
				}
				buffer_info->page_offset = 0;
			} else {
				buffer_info->page_offset ^= PAGE_SIZE / 2;
5754 5755
			}
			buffer_info->page_dma =
5756
				dma_map_page(rx_ring->dev, buffer_info->page,
5757 5758
					     buffer_info->page_offset,
					     PAGE_SIZE / 2,
5759 5760 5761
					     DMA_FROM_DEVICE);
			if (dma_mapping_error(rx_ring->dev,
					      buffer_info->page_dma)) {
5762
				buffer_info->page_dma = 0;
E
Eric Dumazet 已提交
5763
				u64_stats_update_begin(&rx_ring->rx_syncp);
5764
				rx_ring->rx_stats.alloc_failed++;
E
Eric Dumazet 已提交
5765
				u64_stats_update_end(&rx_ring->rx_syncp);
5766 5767
				goto no_buffers;
			}
5768 5769
		}

5770 5771
		skb = buffer_info->skb;
		if (!skb) {
5772
			skb = netdev_alloc_skb_ip_align(netdev, bufsz);
E
Eric Dumazet 已提交
5773 5774
			if (unlikely(!skb)) {
				u64_stats_update_begin(&rx_ring->rx_syncp);
5775
				rx_ring->rx_stats.alloc_failed++;
E
Eric Dumazet 已提交
5776
				u64_stats_update_end(&rx_ring->rx_syncp);
5777 5778 5779 5780
				goto no_buffers;
			}

			buffer_info->skb = skb;
5781 5782
		}
		if (!buffer_info->dma) {
5783
			buffer_info->dma = dma_map_single(rx_ring->dev,
5784
			                                  skb->data,
5785
							  bufsz,
5786 5787 5788
							  DMA_FROM_DEVICE);
			if (dma_mapping_error(rx_ring->dev,
					      buffer_info->dma)) {
5789
				buffer_info->dma = 0;
E
Eric Dumazet 已提交
5790
				u64_stats_update_begin(&rx_ring->rx_syncp);
5791
				rx_ring->rx_stats.alloc_failed++;
E
Eric Dumazet 已提交
5792
				u64_stats_update_end(&rx_ring->rx_syncp);
5793 5794
				goto no_buffers;
			}
5795 5796 5797
		}
		/* Refresh the desc even if buffer_addrs didn't change because
		 * each write-back erases this info. */
A
Alexander Duyck 已提交
5798
		if (bufsz < IGB_RXBUFFER_1024) {
5799 5800 5801 5802
			rx_desc->read.pkt_addr =
			     cpu_to_le64(buffer_info->page_dma);
			rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma);
		} else {
5803
			rx_desc->read.pkt_addr = cpu_to_le64(buffer_info->dma);
5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825
			rx_desc->read.hdr_addr = 0;
		}

		i++;
		if (i == rx_ring->count)
			i = 0;
		buffer_info = &rx_ring->buffer_info[i];
	}

no_buffers:
	if (rx_ring->next_to_use != i) {
		rx_ring->next_to_use = i;
		if (i == 0)
			i = (rx_ring->count - 1);
		else
			i--;

		/* Force memory writes to complete before letting h/w
		 * know there are new descriptors to fetch.  (Only
		 * applicable for weak-ordered memory model archs,
		 * such as IA-64). */
		wmb();
5826
		writel(i, rx_ring->tail);
5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848
	}
}

/**
 * igb_mii_ioctl -
 * @netdev:
 * @ifreq:
 * @cmd:
 **/
static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct mii_ioctl_data *data = if_mii(ifr);

	if (adapter->hw.phy.media_type != e1000_media_type_copper)
		return -EOPNOTSUPP;

	switch (cmd) {
	case SIOCGMIIPHY:
		data->phy_id = adapter->hw.phy.addr;
		break;
	case SIOCGMIIREG:
5849 5850
		if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
		                     &data->val_out))
5851 5852 5853 5854 5855 5856 5857 5858 5859
			return -EIO;
		break;
	case SIOCSMIIREG:
	default:
		return -EOPNOTSUPP;
	}
	return 0;
}

5860 5861 5862 5863 5864 5865
/**
 * igb_hwtstamp_ioctl - control hardware time stamping
 * @netdev:
 * @ifreq:
 * @cmd:
 *
5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877
 * Outgoing time stamping can be enabled and disabled. Play nice and
 * disable it when requested, although it shouldn't case any overhead
 * when no packet needs it. At most one packet in the queue may be
 * marked for time stamping, otherwise it would be impossible to tell
 * for sure to which packet the hardware time stamp belongs.
 *
 * Incoming time stamping has to be configured via the hardware
 * filters. Not all combinations are supported, in particular event
 * type has to be specified. Matching the kind of event packet is
 * not supported, with the exception of "all V2 events regardless of
 * level 2 or 4".
 *
5878 5879 5880 5881
 **/
static int igb_hwtstamp_ioctl(struct net_device *netdev,
			      struct ifreq *ifr, int cmd)
{
5882 5883
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
5884
	struct hwtstamp_config config;
5885 5886
	u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
	u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
5887
	u32 tsync_rx_cfg = 0;
5888 5889
	bool is_l4 = false;
	bool is_l2 = false;
5890
	u32 regval;
5891 5892 5893 5894 5895 5896 5897 5898

	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
		return -EFAULT;

	/* reserved for future extensions */
	if (config.flags)
		return -EINVAL;

5899 5900
	switch (config.tx_type) {
	case HWTSTAMP_TX_OFF:
5901
		tsync_tx_ctl = 0;
5902 5903 5904 5905 5906 5907 5908 5909
	case HWTSTAMP_TX_ON:
		break;
	default:
		return -ERANGE;
	}

	switch (config.rx_filter) {
	case HWTSTAMP_FILTER_NONE:
5910
		tsync_rx_ctl = 0;
5911 5912 5913 5914 5915 5916 5917 5918 5919 5920
		break;
	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
	case HWTSTAMP_FILTER_ALL:
		/*
		 * register TSYNCRXCFG must be set, therefore it is not
		 * possible to time stamp both Sync and Delay_Req messages
		 * => fall back to time stamping all packets
		 */
5921
		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
5922 5923 5924
		config.rx_filter = HWTSTAMP_FILTER_ALL;
		break;
	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
5925
		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
5926
		tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE;
5927
		is_l4 = true;
5928 5929
		break;
	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
5930
		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
5931
		tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE;
5932
		is_l4 = true;
5933 5934 5935
		break;
	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
5936
		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
5937
		tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V2_SYNC_MESSAGE;
5938 5939
		is_l2 = true;
		is_l4 = true;
5940 5941 5942 5943
		config.rx_filter = HWTSTAMP_FILTER_SOME;
		break;
	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
5944
		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
5945
		tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V2_DELAY_REQ_MESSAGE;
5946 5947
		is_l2 = true;
		is_l4 = true;
5948 5949 5950 5951 5952
		config.rx_filter = HWTSTAMP_FILTER_SOME;
		break;
	case HWTSTAMP_FILTER_PTP_V2_EVENT:
	case HWTSTAMP_FILTER_PTP_V2_SYNC:
	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
5953
		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
5954
		config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
5955
		is_l2 = true;
5956 5957 5958 5959 5960
		break;
	default:
		return -ERANGE;
	}

5961 5962 5963 5964 5965 5966
	if (hw->mac.type == e1000_82575) {
		if (tsync_rx_ctl | tsync_tx_ctl)
			return -EINVAL;
		return 0;
	}

N
Nick Nunley 已提交
5967 5968 5969 5970 5971 5972 5973 5974 5975 5976
	/*
	 * Per-packet timestamping only works if all packets are
	 * timestamped, so enable timestamping in all packets as
	 * long as one rx filter was configured.
	 */
	if ((hw->mac.type == e1000_82580) && tsync_rx_ctl) {
		tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
	}

5977 5978
	/* enable/disable TX */
	regval = rd32(E1000_TSYNCTXCTL);
5979 5980
	regval &= ~E1000_TSYNCTXCTL_ENABLED;
	regval |= tsync_tx_ctl;
5981 5982
	wr32(E1000_TSYNCTXCTL, regval);

5983
	/* enable/disable RX */
5984
	regval = rd32(E1000_TSYNCRXCTL);
5985 5986
	regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
	regval |= tsync_rx_ctl;
5987 5988
	wr32(E1000_TSYNCRXCTL, regval);

5989 5990
	/* define which PTP packets are time stamped */
	wr32(E1000_TSYNCRXCFG, tsync_rx_cfg);
5991

5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021
	/* define ethertype filter for timestamped packets */
	if (is_l2)
		wr32(E1000_ETQF(3),
		                (E1000_ETQF_FILTER_ENABLE | /* enable filter */
		                 E1000_ETQF_1588 | /* enable timestamping */
		                 ETH_P_1588));     /* 1588 eth protocol type */
	else
		wr32(E1000_ETQF(3), 0);

#define PTP_PORT 319
	/* L4 Queue Filter[3]: filter by destination port and protocol */
	if (is_l4) {
		u32 ftqf = (IPPROTO_UDP /* UDP */
			| E1000_FTQF_VF_BP /* VF not compared */
			| E1000_FTQF_1588_TIME_STAMP /* Enable Timestamping */
			| E1000_FTQF_MASK); /* mask all inputs */
		ftqf &= ~E1000_FTQF_MASK_PROTO_BP; /* enable protocol check */

		wr32(E1000_IMIR(3), htons(PTP_PORT));
		wr32(E1000_IMIREXT(3),
		     (E1000_IMIREXT_SIZE_BP | E1000_IMIREXT_CTRL_BP));
		if (hw->mac.type == e1000_82576) {
			/* enable source port check */
			wr32(E1000_SPQF(3), htons(PTP_PORT));
			ftqf &= ~E1000_FTQF_MASK_SOURCE_PORT_BP;
		}
		wr32(E1000_FTQF(3), ftqf);
	} else {
		wr32(E1000_FTQF(3), E1000_FTQF_MASK);
	}
6022 6023 6024 6025 6026 6027 6028
	wrfl();

	adapter->hwtstamp_config = config;

	/* clear TX/RX time stamp registers, just to be sure */
	regval = rd32(E1000_TXSTMPH);
	regval = rd32(E1000_RXSTMPH);
6029

6030 6031
	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
		-EFAULT : 0;
6032 6033
}

6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046
/**
 * igb_ioctl -
 * @netdev:
 * @ifreq:
 * @cmd:
 **/
static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
{
	switch (cmd) {
	case SIOCGMIIPHY:
	case SIOCGMIIREG:
	case SIOCSMIIREG:
		return igb_mii_ioctl(netdev, ifr, cmd);
6047 6048
	case SIOCSHWTSTAMP:
		return igb_hwtstamp_ioctl(netdev, ifr, cmd);
6049 6050 6051 6052 6053
	default:
		return -EOPNOTSUPP;
	}
}

6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081
s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
{
	struct igb_adapter *adapter = hw->back;
	u16 cap_offset;

	cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
	if (!cap_offset)
		return -E1000_ERR_CONFIG;

	pci_read_config_word(adapter->pdev, cap_offset + reg, value);

	return 0;
}

s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
{
	struct igb_adapter *adapter = hw->back;
	u16 cap_offset;

	cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
	if (!cap_offset)
		return -E1000_ERR_CONFIG;

	pci_write_config_word(adapter->pdev, cap_offset + reg, *value);

	return 0;
}

6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097
static void igb_vlan_rx_register(struct net_device *netdev,
				 struct vlan_group *grp)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 ctrl, rctl;

	igb_irq_disable(adapter);
	adapter->vlgrp = grp;

	if (grp) {
		/* enable VLAN tag insert/strip */
		ctrl = rd32(E1000_CTRL);
		ctrl |= E1000_CTRL_VME;
		wr32(E1000_CTRL, ctrl);

6098
		/* Disable CFI check */
6099 6100 6101 6102 6103 6104 6105 6106 6107 6108
		rctl = rd32(E1000_RCTL);
		rctl &= ~E1000_RCTL_CFIEN;
		wr32(E1000_RCTL, rctl);
	} else {
		/* disable VLAN tag insert/strip */
		ctrl = rd32(E1000_CTRL);
		ctrl &= ~E1000_CTRL_VME;
		wr32(E1000_CTRL, ctrl);
	}

6109 6110
	igb_rlpml_set(adapter);

6111 6112 6113 6114 6115 6116 6117 6118
	if (!test_bit(__IGB_DOWN, &adapter->state))
		igb_irq_enable(adapter);
}

static void igb_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
6119
	int pf_id = adapter->vfs_allocated_count;
6120

6121 6122
	/* attempt to add filter to vlvf array */
	igb_vlvf_set(adapter, vid, true, pf_id);
6123

6124 6125
	/* add the filter since PF can receive vlans w/o entry in vlvf */
	igb_vfta_set(hw, vid, true);
6126 6127 6128 6129 6130 6131
}

static void igb_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
6132
	int pf_id = adapter->vfs_allocated_count;
6133
	s32 err;
6134 6135 6136 6137 6138 6139 6140

	igb_irq_disable(adapter);
	vlan_group_set_device(adapter->vlgrp, vid, NULL);

	if (!test_bit(__IGB_DOWN, &adapter->state))
		igb_irq_enable(adapter);

6141 6142
	/* remove vlan from VLVF table array */
	err = igb_vlvf_set(adapter, vid, false, pf_id);
6143

6144 6145
	/* if vid was not present in VLVF just remove it from table */
	if (err)
6146
		igb_vfta_set(hw, vid, false);
6147 6148 6149 6150 6151 6152 6153 6154
}

static void igb_restore_vlan(struct igb_adapter *adapter)
{
	igb_vlan_rx_register(adapter->netdev, adapter->vlgrp);

	if (adapter->vlgrp) {
		u16 vid;
6155
		for (vid = 0; vid < VLAN_N_VID; vid++) {
6156 6157 6158 6159 6160 6161 6162 6163 6164
			if (!vlan_group_get_device(adapter->vlgrp, vid))
				continue;
			igb_vlan_rx_add_vid(adapter->netdev, vid);
		}
	}
}

int igb_set_spd_dplx(struct igb_adapter *adapter, u16 spddplx)
{
6165
	struct pci_dev *pdev = adapter->pdev;
6166 6167 6168 6169
	struct e1000_mac_info *mac = &adapter->hw.mac;

	mac->autoneg = 0;

6170 6171 6172 6173 6174 6175 6176
	/* Fiber NIC's only allow 1000 Gbps Full duplex */
	if ((adapter->hw.phy.media_type == e1000_media_type_internal_serdes) &&
		spddplx != (SPEED_1000 + DUPLEX_FULL)) {
		dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
		return -EINVAL;
	}

6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195
	switch (spddplx) {
	case SPEED_10 + DUPLEX_HALF:
		mac->forced_speed_duplex = ADVERTISE_10_HALF;
		break;
	case SPEED_10 + DUPLEX_FULL:
		mac->forced_speed_duplex = ADVERTISE_10_FULL;
		break;
	case SPEED_100 + DUPLEX_HALF:
		mac->forced_speed_duplex = ADVERTISE_100_HALF;
		break;
	case SPEED_100 + DUPLEX_FULL:
		mac->forced_speed_duplex = ADVERTISE_100_FULL;
		break;
	case SPEED_1000 + DUPLEX_FULL:
		mac->autoneg = 1;
		adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
		break;
	case SPEED_1000 + DUPLEX_HALF: /* not supported */
	default:
6196
		dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
6197 6198 6199 6200 6201
		return -EINVAL;
	}
	return 0;
}

6202
static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake)
6203 6204 6205 6206
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
A
Alexander Duyck 已提交
6207
	u32 ctrl, rctl, status;
6208 6209 6210 6211 6212 6213 6214
	u32 wufc = adapter->wol;
#ifdef CONFIG_PM
	int retval = 0;
#endif

	netif_device_detach(netdev);

A
Alexander Duyck 已提交
6215 6216 6217
	if (netif_running(netdev))
		igb_close(netdev);

6218
	igb_clear_interrupt_scheme(adapter);
6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231

#ifdef CONFIG_PM
	retval = pci_save_state(pdev);
	if (retval)
		return retval;
#endif

	status = rd32(E1000_STATUS);
	if (status & E1000_STATUS_LU)
		wufc &= ~E1000_WUFC_LNKC;

	if (wufc) {
		igb_setup_rctl(adapter);
6232
		igb_set_rx_mode(netdev);
6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249

		/* turn on all-multi mode if wake on multicast is enabled */
		if (wufc & E1000_WUFC_MC) {
			rctl = rd32(E1000_RCTL);
			rctl |= E1000_RCTL_MPE;
			wr32(E1000_RCTL, rctl);
		}

		ctrl = rd32(E1000_CTRL);
		/* advertise wake from D3Cold */
		#define E1000_CTRL_ADVD3WUC 0x00100000
		/* phy power management enable */
		#define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
		ctrl |= E1000_CTRL_ADVD3WUC;
		wr32(E1000_CTRL, ctrl);

		/* Allow time for pending master requests to run */
6250
		igb_disable_pcie_master(hw);
6251 6252 6253 6254 6255 6256 6257 6258

		wr32(E1000_WUC, E1000_WUC_PME_EN);
		wr32(E1000_WUFC, wufc);
	} else {
		wr32(E1000_WUC, 0);
		wr32(E1000_WUFC, 0);
	}

6259 6260
	*enable_wake = wufc || adapter->en_mng_pt;
	if (!*enable_wake)
6261 6262 6263
		igb_power_down_link(adapter);
	else
		igb_power_up_link(adapter);
6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274

	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
	 * would have already happened in close and is redundant. */
	igb_release_hw_control(adapter);

	pci_disable_device(pdev);

	return 0;
}

#ifdef CONFIG_PM
6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293
static int igb_suspend(struct pci_dev *pdev, pm_message_t state)
{
	int retval;
	bool wake;

	retval = __igb_shutdown(pdev, &wake);
	if (retval)
		return retval;

	if (wake) {
		pci_prepare_to_sleep(pdev);
	} else {
		pci_wake_from_d3(pdev, false);
		pci_set_power_state(pdev, PCI_D3hot);
	}

	return 0;
}

6294 6295 6296 6297 6298 6299 6300 6301 6302
static int igb_resume(struct pci_dev *pdev)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 err;

	pci_set_power_state(pdev, PCI_D0);
	pci_restore_state(pdev);
6303
	pci_save_state(pdev);
T
Taku Izumi 已提交
6304

6305
	err = pci_enable_device_mem(pdev);
6306 6307 6308 6309 6310 6311 6312 6313 6314 6315
	if (err) {
		dev_err(&pdev->dev,
			"igb: Cannot enable PCI device from suspend\n");
		return err;
	}
	pci_set_master(pdev);

	pci_enable_wake(pdev, PCI_D3hot, 0);
	pci_enable_wake(pdev, PCI_D3cold, 0);

6316
	if (igb_init_interrupt_scheme(adapter)) {
A
Alexander Duyck 已提交
6317 6318
		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
		return -ENOMEM;
6319 6320 6321
	}

	igb_reset(adapter);
6322 6323 6324 6325 6326

	/* let the f/w know that the h/w is now under the control of the
	 * driver. */
	igb_get_hw_control(adapter);

6327 6328
	wr32(E1000_WUS, ~0);

A
Alexander Duyck 已提交
6329 6330 6331 6332 6333
	if (netif_running(netdev)) {
		err = igb_open(netdev);
		if (err)
			return err;
	}
6334 6335 6336 6337 6338 6339 6340 6341 6342

	netif_device_attach(netdev);

	return 0;
}
#endif

static void igb_shutdown(struct pci_dev *pdev)
{
6343 6344 6345 6346 6347 6348 6349 6350
	bool wake;

	__igb_shutdown(pdev, &wake);

	if (system_state == SYSTEM_POWER_OFF) {
		pci_wake_from_d3(pdev, wake);
		pci_set_power_state(pdev, PCI_D3hot);
	}
6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361
}

#ifdef CONFIG_NET_POLL_CONTROLLER
/*
 * Polling 'interrupt' - used by things like netconsole to send skbs
 * without having to re-enable interrupts. It's not called while
 * the interrupt routine is executing.
 */
static void igb_netpoll(struct net_device *netdev)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
6362
	struct e1000_hw *hw = &adapter->hw;
6363 6364
	int i;

6365
	if (!adapter->msix_entries) {
6366
		struct igb_q_vector *q_vector = adapter->q_vector[0];
6367
		igb_irq_disable(adapter);
6368
		napi_schedule(&q_vector->napi);
6369 6370
		return;
	}
6371

6372 6373 6374 6375
	for (i = 0; i < adapter->num_q_vectors; i++) {
		struct igb_q_vector *q_vector = adapter->q_vector[i];
		wr32(E1000_EIMC, q_vector->eims_value);
		napi_schedule(&q_vector->napi);
6376
	}
6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395
}
#endif /* CONFIG_NET_POLL_CONTROLLER */

/**
 * igb_io_error_detected - called when PCI error is detected
 * @pdev: Pointer to PCI device
 * @state: The current pci connection state
 *
 * This function is called after a PCI bus error affecting
 * this device has been detected.
 */
static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
					      pci_channel_state_t state)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);

	netif_device_detach(netdev);

6396 6397 6398
	if (state == pci_channel_io_perm_failure)
		return PCI_ERS_RESULT_DISCONNECT;

6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418
	if (netif_running(netdev))
		igb_down(adapter);
	pci_disable_device(pdev);

	/* Request a slot slot reset. */
	return PCI_ERS_RESULT_NEED_RESET;
}

/**
 * igb_io_slot_reset - called after the pci bus has been reset.
 * @pdev: Pointer to PCI device
 *
 * Restart the card from scratch, as if from a cold-boot. Implementation
 * resembles the first-half of the igb_resume routine.
 */
static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
6419
	pci_ers_result_t result;
T
Taku Izumi 已提交
6420
	int err;
6421

6422
	if (pci_enable_device_mem(pdev)) {
6423 6424
		dev_err(&pdev->dev,
			"Cannot re-enable PCI device after reset.\n");
6425 6426 6427 6428
		result = PCI_ERS_RESULT_DISCONNECT;
	} else {
		pci_set_master(pdev);
		pci_restore_state(pdev);
6429
		pci_save_state(pdev);
6430

6431 6432
		pci_enable_wake(pdev, PCI_D3hot, 0);
		pci_enable_wake(pdev, PCI_D3cold, 0);
6433

6434 6435 6436 6437
		igb_reset(adapter);
		wr32(E1000_WUS, ~0);
		result = PCI_ERS_RESULT_RECOVERED;
	}
6438

6439 6440 6441 6442 6443 6444
	err = pci_cleanup_aer_uncorrect_error_status(pdev);
	if (err) {
		dev_err(&pdev->dev, "pci_cleanup_aer_uncorrect_error_status "
		        "failed 0x%0x\n", err);
		/* non-fatal, continue */
	}
6445 6446

	return result;
6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475
}

/**
 * igb_io_resume - called when traffic can start flowing again.
 * @pdev: Pointer to PCI device
 *
 * This callback is called when the error recovery driver tells us that
 * its OK to resume normal operation. Implementation resembles the
 * second-half of the igb_resume routine.
 */
static void igb_io_resume(struct pci_dev *pdev)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);

	if (netif_running(netdev)) {
		if (igb_up(adapter)) {
			dev_err(&pdev->dev, "igb_up failed after reset\n");
			return;
		}
	}

	netif_device_attach(netdev);

	/* let the f/w know that the h/w is now under the control of the
	 * driver. */
	igb_get_hw_control(adapter);
}

6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502
static void igb_rar_set_qsel(struct igb_adapter *adapter, u8 *addr, u32 index,
                             u8 qsel)
{
	u32 rar_low, rar_high;
	struct e1000_hw *hw = &adapter->hw;

	/* HW expects these in little endian so we reverse the byte order
	 * from network order (big endian) to little endian
	 */
	rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
	          ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
	rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));

	/* Indicate to hardware the Address is Valid. */
	rar_high |= E1000_RAH_AV;

	if (hw->mac.type == e1000_82575)
		rar_high |= E1000_RAH_POOL_1 * qsel;
	else
		rar_high |= E1000_RAH_POOL_1 << qsel;

	wr32(E1000_RAL(index), rar_low);
	wrfl();
	wr32(E1000_RAH(index), rar_high);
	wrfl();
}

6503 6504 6505 6506
static int igb_set_vf_mac(struct igb_adapter *adapter,
                          int vf, unsigned char *mac_addr)
{
	struct e1000_hw *hw = &adapter->hw;
6507 6508 6509
	/* VF MAC addresses start at end of receive addresses and moves
	 * torwards the first, as a result a collision should not be possible */
	int rar_entry = hw->mac.rar_entry_count - (vf + 1);
6510

6511
	memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN);
6512

6513
	igb_rar_set_qsel(adapter, mac_addr, rar_entry, vf);
6514 6515 6516 6517

	return 0;
}

6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554
static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	if (!is_valid_ether_addr(mac) || (vf >= adapter->vfs_allocated_count))
		return -EINVAL;
	adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
	dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n", mac, vf);
	dev_info(&adapter->pdev->dev, "Reload the VF driver to make this"
				      " change effective.");
	if (test_bit(__IGB_DOWN, &adapter->state)) {
		dev_warn(&adapter->pdev->dev, "The VF MAC address has been set,"
			 " but the PF device is not up.\n");
		dev_warn(&adapter->pdev->dev, "Bring the PF device up before"
			 " attempting to use the VF device.\n");
	}
	return igb_set_vf_mac(adapter, vf, mac);
}

static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate)
{
	return -EOPNOTSUPP;
}

static int igb_ndo_get_vf_config(struct net_device *netdev,
				 int vf, struct ifla_vf_info *ivi)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	if (vf >= adapter->vfs_allocated_count)
		return -EINVAL;
	ivi->vf = vf;
	memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
	ivi->tx_rate = 0;
	ivi->vlan = adapter->vf_data[vf].pf_vlan;
	ivi->qos = adapter->vf_data[vf].pf_qos;
	return 0;
}

6555 6556 6557
static void igb_vmm_control(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
6558
	u32 reg;
6559

6560 6561 6562 6563
	switch (hw->mac.type) {
	case e1000_82575:
	default:
		/* replication is not supported for 82575 */
6564
		return;
6565 6566 6567 6568 6569 6570 6571 6572 6573 6574
	case e1000_82576:
		/* notify HW that the MAC is adding vlan tags */
		reg = rd32(E1000_DTXCTL);
		reg |= E1000_DTXCTL_VLAN_ADDED;
		wr32(E1000_DTXCTL, reg);
	case e1000_82580:
		/* enable replication vlan tag stripping */
		reg = rd32(E1000_RPLOLR);
		reg |= E1000_RPLOLR_STRVLAN;
		wr32(E1000_RPLOLR, reg);
6575 6576
	case e1000_i350:
		/* none of the above registers are supported by i350 */
6577 6578
		break;
	}
6579

6580 6581 6582 6583 6584 6585 6586
	if (adapter->vfs_allocated_count) {
		igb_vmdq_set_loopback_pf(hw, true);
		igb_vmdq_set_replication_pf(hw, true);
	} else {
		igb_vmdq_set_loopback_pf(hw, false);
		igb_vmdq_set_replication_pf(hw, false);
	}
6587 6588
}

6589
/* igb_main.c */