memcontrol.c 145.8 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
B
Balbir Singh 已提交
13 14 15 16 17 18 19 20 21 22 23 24 25 26
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/res_counter.h>
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
27
#include <linux/mm.h>
28
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
29
#include <linux/pagemap.h>
30
#include <linux/smp.h>
31
#include <linux/page-flags.h>
32
#include <linux/backing-dev.h>
33 34
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
35
#include <linux/limits.h>
36
#include <linux/export.h>
37
#include <linux/mutex.h>
38
#include <linux/rbtree.h>
39
#include <linux/slab.h>
40
#include <linux/swap.h>
41
#include <linux/swapops.h>
42
#include <linux/spinlock.h>
43 44
#include <linux/eventfd.h>
#include <linux/sort.h>
45
#include <linux/fs.h>
46
#include <linux/seq_file.h>
47
#include <linux/vmalloc.h>
48
#include <linux/mm_inline.h>
49
#include <linux/page_cgroup.h>
50
#include <linux/cpu.h>
51
#include <linux/oom.h>
K
KAMEZAWA Hiroyuki 已提交
52
#include "internal.h"
G
Glauber Costa 已提交
53 54
#include <net/sock.h>
#include <net/tcp_memcontrol.h>
B
Balbir Singh 已提交
55

56 57
#include <asm/uaccess.h>

58 59
#include <trace/events/vmscan.h>

60 61
struct cgroup_subsys mem_cgroup_subsys __read_mostly;
#define MEM_CGROUP_RECLAIM_RETRIES	5
62
struct mem_cgroup *root_mem_cgroup __read_mostly;
B
Balbir Singh 已提交
63

64
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
L
Li Zefan 已提交
65
/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
66
int do_swap_account __read_mostly;
67 68 69 70 71 72 73 74

/* for remember boot option*/
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
static int really_do_swap_account __initdata = 1;
#else
static int really_do_swap_account __initdata = 0;
#endif

75 76 77 78 79
#else
#define do_swap_account		(0)
#endif


80 81 82 83 84 85 86 87
/*
 * Statistics for memory cgroup.
 */
enum mem_cgroup_stat_index {
	/*
	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
	 */
	MEM_CGROUP_STAT_CACHE, 	   /* # of pages charged as cache */
88
	MEM_CGROUP_STAT_RSS,	   /* # of pages charged as anon rss */
89
	MEM_CGROUP_STAT_FILE_MAPPED,  /* # of pages charged as file rss */
90
	MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
91
	MEM_CGROUP_STAT_DATA, /* end of data requires synchronization */
92 93 94
	MEM_CGROUP_STAT_NSTATS,
};

95 96 97 98
enum mem_cgroup_events_index {
	MEM_CGROUP_EVENTS_PGPGIN,	/* # of pages paged in */
	MEM_CGROUP_EVENTS_PGPGOUT,	/* # of pages paged out */
	MEM_CGROUP_EVENTS_COUNT,	/* # of pages paged in/out */
99 100
	MEM_CGROUP_EVENTS_PGFAULT,	/* # of page-faults */
	MEM_CGROUP_EVENTS_PGMAJFAULT,	/* # of major page-faults */
101 102
	MEM_CGROUP_EVENTS_NSTATS,
};
103 104 105 106 107 108 109 110 111
/*
 * Per memcg event counter is incremented at every pagein/pageout. With THP,
 * it will be incremated by the number of pages. This counter is used for
 * for trigger some periodic events. This is straightforward and better
 * than using jiffies etc. to handle periodic memcg event.
 */
enum mem_cgroup_events_target {
	MEM_CGROUP_TARGET_THRESH,
	MEM_CGROUP_TARGET_SOFTLIMIT,
112
	MEM_CGROUP_TARGET_NUMAINFO,
113 114 115 116
	MEM_CGROUP_NTARGETS,
};
#define THRESHOLDS_EVENTS_TARGET (128)
#define SOFTLIMIT_EVENTS_TARGET (1024)
117
#define NUMAINFO_EVENTS_TARGET	(1024)
118

119
struct mem_cgroup_stat_cpu {
120
	long count[MEM_CGROUP_STAT_NSTATS];
121
	unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
122
	unsigned long targets[MEM_CGROUP_NTARGETS];
123 124
};

125 126 127 128 129 130 131
struct mem_cgroup_reclaim_iter {
	/* css_id of the last scanned hierarchy member */
	int position;
	/* scan generation, increased every round-trip */
	unsigned int generation;
};

132 133 134 135
/*
 * per-zone information in memory controller.
 */
struct mem_cgroup_per_zone {
136
	struct lruvec		lruvec;
137
	unsigned long		lru_size[NR_LRU_LISTS];
K
KOSAKI Motohiro 已提交
138

139 140
	struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];

141 142 143 144
	struct rb_node		tree_node;	/* RB tree node */
	unsigned long long	usage_in_excess;/* Set to the value by which */
						/* the soft limit is exceeded*/
	bool			on_tree;
145
	struct mem_cgroup	*memcg;		/* Back pointer, we cannot */
146
						/* use container_of	   */
147 148 149 150 151 152 153 154 155 156
};

struct mem_cgroup_per_node {
	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
};

struct mem_cgroup_lru_info {
	struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
};

157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

struct mem_cgroup_tree_per_zone {
	struct rb_root rb_root;
	spinlock_t lock;
};

struct mem_cgroup_tree_per_node {
	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

177 178 179 180 181
struct mem_cgroup_threshold {
	struct eventfd_ctx *eventfd;
	u64 threshold;
};

K
KAMEZAWA Hiroyuki 已提交
182
/* For threshold */
183 184
struct mem_cgroup_threshold_ary {
	/* An array index points to threshold just below usage. */
185
	int current_threshold;
186 187 188 189 190
	/* Size of entries[] */
	unsigned int size;
	/* Array of thresholds */
	struct mem_cgroup_threshold entries[0];
};
191 192 193 194 195 196 197 198 199 200 201 202

struct mem_cgroup_thresholds {
	/* Primary thresholds array */
	struct mem_cgroup_threshold_ary *primary;
	/*
	 * Spare threshold array.
	 * This is needed to make mem_cgroup_unregister_event() "never fail".
	 * It must be able to store at least primary->size - 1 entries.
	 */
	struct mem_cgroup_threshold_ary *spare;
};

K
KAMEZAWA Hiroyuki 已提交
203 204 205 206 207
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
208

209 210
static void mem_cgroup_threshold(struct mem_cgroup *memcg);
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
211

B
Balbir Singh 已提交
212 213 214 215 216 217 218
/*
 * The memory controller data structure. The memory controller controls both
 * page cache and RSS per cgroup. We would eventually like to provide
 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 * to help the administrator determine what knobs to tune.
 *
 * TODO: Add a water mark for the memory controller. Reclaim will begin when
219 220 221
 * we hit the water mark. May be even add a low water mark, such that
 * no reclaim occurs from a cgroup at it's low water mark, this is
 * a feature that will be implemented much later in the future.
B
Balbir Singh 已提交
222 223 224 225 226 227 228
 */
struct mem_cgroup {
	struct cgroup_subsys_state css;
	/*
	 * the counter to account for memory usage
	 */
	struct res_counter res;
229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252

	union {
		/*
		 * the counter to account for mem+swap usage.
		 */
		struct res_counter memsw;

		/*
		 * rcu_freeing is used only when freeing struct mem_cgroup,
		 * so put it into a union to avoid wasting more memory.
		 * It must be disjoint from the css field.  It could be
		 * in a union with the res field, but res plays a much
		 * larger part in mem_cgroup life than memsw, and might
		 * be of interest, even at time of free, when debugging.
		 * So share rcu_head with the less interesting memsw.
		 */
		struct rcu_head rcu_freeing;
		/*
		 * But when using vfree(), that cannot be done at
		 * interrupt time, so we must then queue the work.
		 */
		struct work_struct work_freeing;
	};

253 254 255 256
	/*
	 * Per cgroup active and inactive list, similar to the
	 * per zone LRU lists.
	 */
257
	struct mem_cgroup_lru_info info;
258 259 260
	int last_scanned_node;
#if MAX_NUMNODES > 1
	nodemask_t	scan_nodes;
261 262
	atomic_t	numainfo_events;
	atomic_t	numainfo_updating;
263
#endif
264 265 266 267
	/*
	 * Should the accounting and control be hierarchical, per subtree?
	 */
	bool use_hierarchy;
268 269 270 271

	bool		oom_lock;
	atomic_t	under_oom;

272
	atomic_t	refcnt;
273

274
	int	swappiness;
275 276
	/* OOM-Killer disable */
	int		oom_kill_disable;
K
KOSAKI Motohiro 已提交
277

278 279 280
	/* set when res.limit == memsw.limit */
	bool		memsw_is_minimum;

281 282 283 284
	/* protect arrays of thresholds */
	struct mutex thresholds_lock;

	/* thresholds for memory usage. RCU-protected */
285
	struct mem_cgroup_thresholds thresholds;
286

287
	/* thresholds for mem+swap usage. RCU-protected */
288
	struct mem_cgroup_thresholds memsw_thresholds;
289

K
KAMEZAWA Hiroyuki 已提交
290 291
	/* For oom notifier event fd */
	struct list_head oom_notify;
292

293 294 295 296 297
	/*
	 * Should we move charges of a task when a task is moved into this
	 * mem_cgroup ? And what type of charges should we move ?
	 */
	unsigned long 	move_charge_at_immigrate;
298 299 300 301
	/*
	 * set > 0 if pages under this cgroup are moving to other cgroup.
	 */
	atomic_t	moving_account;
302 303
	/* taken only while moving_account > 0 */
	spinlock_t	move_lock;
304
	/*
305
	 * percpu counter.
306
	 */
307
	struct mem_cgroup_stat_cpu *stat;
308 309 310 311 312 313
	/*
	 * used when a cpu is offlined or other synchronizations
	 * See mem_cgroup_read_stat().
	 */
	struct mem_cgroup_stat_cpu nocpu_base;
	spinlock_t pcp_counter_lock;
G
Glauber Costa 已提交
314 315 316 317

#ifdef CONFIG_INET
	struct tcp_memcontrol tcp_mem;
#endif
B
Balbir Singh 已提交
318 319
};

320 321 322 323 324 325
/* Stuffs for move charges at task migration. */
/*
 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
 * left-shifted bitmap of these types.
 */
enum move_type {
326
	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
327
	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
328 329 330
	NR_MOVE_TYPE,
};

331 332
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
333
	spinlock_t	  lock; /* for from, to */
334 335 336
	struct mem_cgroup *from;
	struct mem_cgroup *to;
	unsigned long precharge;
337
	unsigned long moved_charge;
338
	unsigned long moved_swap;
339 340 341
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
342
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
343 344
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
345

D
Daisuke Nishimura 已提交
346 347 348 349 350 351
static bool move_anon(void)
{
	return test_bit(MOVE_CHARGE_TYPE_ANON,
					&mc.to->move_charge_at_immigrate);
}

352 353 354 355 356 357
static bool move_file(void)
{
	return test_bit(MOVE_CHARGE_TYPE_FILE,
					&mc.to->move_charge_at_immigrate);
}

358 359 360 361 362 363 364
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		(100)
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	(2)

365 366 367
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
	MEM_CGROUP_CHARGE_TYPE_MAPPED,
368
	MEM_CGROUP_CHARGE_TYPE_SHMEM,	/* used by page migration of shmem */
369
	MEM_CGROUP_CHARGE_TYPE_FORCE,	/* used by force_empty */
K
KAMEZAWA Hiroyuki 已提交
370
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
371
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
372 373 374
	NR_CHARGE_TYPE,
};

375
/* for encoding cft->private value on file */
376 377 378
#define _MEM			(0)
#define _MEMSWAP		(1)
#define _OOM_TYPE		(2)
379 380 381
#define MEMFILE_PRIVATE(x, val)	(((x) << 16) | (val))
#define MEMFILE_TYPE(val)	(((val) >> 16) & 0xffff)
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
382 383
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
384

385 386 387 388 389 390 391 392
/*
 * Reclaim flags for mem_cgroup_hierarchical_reclaim
 */
#define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
#define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
#define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
#define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)

393 394
static void mem_cgroup_get(struct mem_cgroup *memcg);
static void mem_cgroup_put(struct mem_cgroup *memcg);
G
Glauber Costa 已提交
395 396 397 398

/* Writing them here to avoid exposing memcg's inner layout */
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
#include <net/sock.h>
G
Glauber Costa 已提交
399
#include <net/ip.h>
G
Glauber Costa 已提交
400 401 402 403

static bool mem_cgroup_is_root(struct mem_cgroup *memcg);
void sock_update_memcg(struct sock *sk)
{
404
	if (mem_cgroup_sockets_enabled) {
G
Glauber Costa 已提交
405 406 407 408
		struct mem_cgroup *memcg;

		BUG_ON(!sk->sk_prot->proto_cgroup);

409 410 411 412 413 414 415 416 417 418 419 420 421 422
		/* Socket cloning can throw us here with sk_cgrp already
		 * filled. It won't however, necessarily happen from
		 * process context. So the test for root memcg given
		 * the current task's memcg won't help us in this case.
		 *
		 * Respecting the original socket's memcg is a better
		 * decision in this case.
		 */
		if (sk->sk_cgrp) {
			BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
			mem_cgroup_get(sk->sk_cgrp->memcg);
			return;
		}

G
Glauber Costa 已提交
423 424 425 426 427 428 429 430 431 432 433 434 435
		rcu_read_lock();
		memcg = mem_cgroup_from_task(current);
		if (!mem_cgroup_is_root(memcg)) {
			mem_cgroup_get(memcg);
			sk->sk_cgrp = sk->sk_prot->proto_cgroup(memcg);
		}
		rcu_read_unlock();
	}
}
EXPORT_SYMBOL(sock_update_memcg);

void sock_release_memcg(struct sock *sk)
{
436
	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
G
Glauber Costa 已提交
437 438 439 440 441 442
		struct mem_cgroup *memcg;
		WARN_ON(!sk->sk_cgrp->memcg);
		memcg = sk->sk_cgrp->memcg;
		mem_cgroup_put(memcg);
	}
}
G
Glauber Costa 已提交
443

444
#ifdef CONFIG_INET
G
Glauber Costa 已提交
445 446 447 448 449 450 451 452
struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
{
	if (!memcg || mem_cgroup_is_root(memcg))
		return NULL;

	return &memcg->tcp_mem.cg_proto;
}
EXPORT_SYMBOL(tcp_proto_cgroup);
G
Glauber Costa 已提交
453 454 455
#endif /* CONFIG_INET */
#endif /* CONFIG_CGROUP_MEM_RES_CTLR_KMEM */

456
static void drain_all_stock_async(struct mem_cgroup *memcg);
457

458
static struct mem_cgroup_per_zone *
459
mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
460
{
461
	return &memcg->info.nodeinfo[nid]->zoneinfo[zid];
462 463
}

464
struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
465
{
466
	return &memcg->css;
467 468
}

469
static struct mem_cgroup_per_zone *
470
page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
471
{
472 473
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
474

475
	return mem_cgroup_zoneinfo(memcg, nid, zid);
476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_node_zone(int nid, int zid)
{
	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);

	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static void
494
__mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
495
				struct mem_cgroup_per_zone *mz,
496 497
				struct mem_cgroup_tree_per_zone *mctz,
				unsigned long long new_usage_in_excess)
498 499 500 501 502 503 504 505
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
	struct mem_cgroup_per_zone *mz_node;

	if (mz->on_tree)
		return;

506 507 508
	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524
	while (*p) {
		parent = *p;
		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
					tree_node);
		if (mz->usage_in_excess < mz_node->usage_in_excess)
			p = &(*p)->rb_left;
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
525 526 527
}

static void
528
__mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
529 530 531 532 533 534 535 536 537
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	if (!mz->on_tree)
		return;
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

538
static void
539
mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
540 541 542 543
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	spin_lock(&mctz->lock);
544
	__mem_cgroup_remove_exceeded(memcg, mz, mctz);
545 546 547 548
	spin_unlock(&mctz->lock);
}


549
static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
550
{
551
	unsigned long long excess;
552 553
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;
554 555
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
556 557 558
	mctz = soft_limit_tree_from_page(page);

	/*
559 560
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
561
	 */
562 563 564
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
		mz = mem_cgroup_zoneinfo(memcg, nid, zid);
		excess = res_counter_soft_limit_excess(&memcg->res);
565 566 567 568
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
569
		if (excess || mz->on_tree) {
570 571 572
			spin_lock(&mctz->lock);
			/* if on-tree, remove it */
			if (mz->on_tree)
573
				__mem_cgroup_remove_exceeded(memcg, mz, mctz);
574
			/*
575 576
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
577
			 */
578
			__mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
579 580
			spin_unlock(&mctz->lock);
		}
581 582 583
	}
}

584
static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
585 586 587 588 589
{
	int node, zone;
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;

B
Bob Liu 已提交
590
	for_each_node(node) {
591
		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
592
			mz = mem_cgroup_zoneinfo(memcg, node, zone);
593
			mctz = soft_limit_tree_node_zone(node, zone);
594
			mem_cgroup_remove_exceeded(memcg, mz, mctz);
595 596 597 598
		}
	}
}

599 600 601 602
static struct mem_cgroup_per_zone *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct rb_node *rightmost = NULL;
603
	struct mem_cgroup_per_zone *mz;
604 605

retry:
606
	mz = NULL;
607 608 609 610 611 612 613 614 615 616
	rightmost = rb_last(&mctz->rb_root);
	if (!rightmost)
		goto done;		/* Nothing to reclaim from */

	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
617 618 619
	__mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
	if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
		!css_tryget(&mz->memcg->css))
620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635
		goto retry;
done:
	return mz;
}

static struct mem_cgroup_per_zone *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct mem_cgroup_per_zone *mz;

	spin_lock(&mctz->lock);
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
	spin_unlock(&mctz->lock);
	return mz;
}

636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654
/*
 * Implementation Note: reading percpu statistics for memcg.
 *
 * Both of vmstat[] and percpu_counter has threshold and do periodic
 * synchronization to implement "quick" read. There are trade-off between
 * reading cost and precision of value. Then, we may have a chance to implement
 * a periodic synchronizion of counter in memcg's counter.
 *
 * But this _read() function is used for user interface now. The user accounts
 * memory usage by memory cgroup and he _always_ requires exact value because
 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
 * have to visit all online cpus and make sum. So, for now, unnecessary
 * synchronization is not implemented. (just implemented for cpu hotplug)
 *
 * If there are kernel internal actions which can make use of some not-exact
 * value, and reading all cpu value can be performance bottleneck in some
 * common workload, threashold and synchonization as vmstat[] should be
 * implemented.
 */
655
static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
656
				 enum mem_cgroup_stat_index idx)
657
{
658
	long val = 0;
659 660
	int cpu;

661 662
	get_online_cpus();
	for_each_online_cpu(cpu)
663
		val += per_cpu(memcg->stat->count[idx], cpu);
664
#ifdef CONFIG_HOTPLUG_CPU
665 666 667
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.count[idx];
	spin_unlock(&memcg->pcp_counter_lock);
668 669
#endif
	put_online_cpus();
670 671 672
	return val;
}

673
static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
674 675 676
					 bool charge)
{
	int val = (charge) ? 1 : -1;
677
	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
678 679
}

680
static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
681 682 683 684 685 686
					    enum mem_cgroup_events_index idx)
{
	unsigned long val = 0;
	int cpu;

	for_each_online_cpu(cpu)
687
		val += per_cpu(memcg->stat->events[idx], cpu);
688
#ifdef CONFIG_HOTPLUG_CPU
689 690 691
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.events[idx];
	spin_unlock(&memcg->pcp_counter_lock);
692 693 694 695
#endif
	return val;
}

696
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
697
					 bool anon, int nr_pages)
698
{
699 700
	preempt_disable();

701 702 703 704 705 706
	/*
	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
	 * counted as CACHE even if it's on ANON LRU.
	 */
	if (anon)
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
707
				nr_pages);
708
	else
709
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
710
				nr_pages);
711

712 713
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
714
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
715
	else {
716
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
717 718
		nr_pages = -nr_pages; /* for event */
	}
719

720
	__this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_COUNT], nr_pages);
721

722
	preempt_enable();
723 724
}

725
unsigned long
726
mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
727
			unsigned int lru_mask)
728 729
{
	struct mem_cgroup_per_zone *mz;
H
Hugh Dickins 已提交
730
	enum lru_list lru;
731 732
	unsigned long ret = 0;

733
	mz = mem_cgroup_zoneinfo(memcg, nid, zid);
734

H
Hugh Dickins 已提交
735 736 737
	for_each_lru(lru) {
		if (BIT(lru) & lru_mask)
			ret += mz->lru_size[lru];
738 739 740 741 742
	}
	return ret;
}

static unsigned long
743
mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
744 745
			int nid, unsigned int lru_mask)
{
746 747 748
	u64 total = 0;
	int zid;

749
	for (zid = 0; zid < MAX_NR_ZONES; zid++)
750 751
		total += mem_cgroup_zone_nr_lru_pages(memcg,
						nid, zid, lru_mask);
752

753 754
	return total;
}
755

756
static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
757
			unsigned int lru_mask)
758
{
759
	int nid;
760 761
	u64 total = 0;

762
	for_each_node_state(nid, N_HIGH_MEMORY)
763
		total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
764
	return total;
765 766
}

767 768
static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
				       enum mem_cgroup_events_target target)
769 770 771
{
	unsigned long val, next;

772 773
	val = __this_cpu_read(memcg->stat->events[MEM_CGROUP_EVENTS_COUNT]);
	next = __this_cpu_read(memcg->stat->targets[target]);
774
	/* from time_after() in jiffies.h */
775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790
	if ((long)next - (long)val < 0) {
		switch (target) {
		case MEM_CGROUP_TARGET_THRESH:
			next = val + THRESHOLDS_EVENTS_TARGET;
			break;
		case MEM_CGROUP_TARGET_SOFTLIMIT:
			next = val + SOFTLIMIT_EVENTS_TARGET;
			break;
		case MEM_CGROUP_TARGET_NUMAINFO:
			next = val + NUMAINFO_EVENTS_TARGET;
			break;
		default:
			break;
		}
		__this_cpu_write(memcg->stat->targets[target], next);
		return true;
791
	}
792
	return false;
793 794 795 796 797 798
}

/*
 * Check events in order.
 *
 */
799
static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
800
{
801
	preempt_disable();
802
	/* threshold event is triggered in finer grain than soft limit */
803 804
	if (unlikely(mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_THRESH))) {
805 806
		bool do_softlimit;
		bool do_numainfo __maybe_unused;
807 808 809 810 811 812 813 814 815

		do_softlimit = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_SOFTLIMIT);
#if MAX_NUMNODES > 1
		do_numainfo = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_NUMAINFO);
#endif
		preempt_enable();

816
		mem_cgroup_threshold(memcg);
817
		if (unlikely(do_softlimit))
818
			mem_cgroup_update_tree(memcg, page);
819
#if MAX_NUMNODES > 1
820
		if (unlikely(do_numainfo))
821
			atomic_inc(&memcg->numainfo_events);
822
#endif
823 824
	} else
		preempt_enable();
825 826
}

G
Glauber Costa 已提交
827
struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
B
Balbir Singh 已提交
828 829 830 831 832 833
{
	return container_of(cgroup_subsys_state(cont,
				mem_cgroup_subsys_id), struct mem_cgroup,
				css);
}

834
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
835
{
836 837 838 839 840 841 842 843
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

844 845 846 847
	return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
				struct mem_cgroup, css);
}

848
struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
849
{
850
	struct mem_cgroup *memcg = NULL;
851 852 853

	if (!mm)
		return NULL;
854 855 856 857 858 859 860
	/*
	 * Because we have no locks, mm->owner's may be being moved to other
	 * cgroup. We use css_tryget() here even if this looks
	 * pessimistic (rather than adding locks here).
	 */
	rcu_read_lock();
	do {
861 862
		memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
		if (unlikely(!memcg))
863
			break;
864
	} while (!css_tryget(&memcg->css));
865
	rcu_read_unlock();
866
	return memcg;
867 868
}

869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888
/**
 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 * @root: hierarchy root
 * @prev: previously returned memcg, NULL on first invocation
 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 *
 * Returns references to children of the hierarchy below @root, or
 * @root itself, or %NULL after a full round-trip.
 *
 * Caller must pass the return value in @prev on subsequent
 * invocations for reference counting, or use mem_cgroup_iter_break()
 * to cancel a hierarchy walk before the round-trip is complete.
 *
 * Reclaimers can specify a zone and a priority level in @reclaim to
 * divide up the memcgs in the hierarchy among all concurrent
 * reclaimers operating on the same zone and priority.
 */
struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
				   struct mem_cgroup *prev,
				   struct mem_cgroup_reclaim_cookie *reclaim)
K
KAMEZAWA Hiroyuki 已提交
889
{
890 891
	struct mem_cgroup *memcg = NULL;
	int id = 0;
892

893 894 895
	if (mem_cgroup_disabled())
		return NULL;

896 897
	if (!root)
		root = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
898

899 900
	if (prev && !reclaim)
		id = css_id(&prev->css);
K
KAMEZAWA Hiroyuki 已提交
901

902 903
	if (prev && prev != root)
		css_put(&prev->css);
K
KAMEZAWA Hiroyuki 已提交
904

905 906 907 908 909
	if (!root->use_hierarchy && root != root_mem_cgroup) {
		if (prev)
			return NULL;
		return root;
	}
K
KAMEZAWA Hiroyuki 已提交
910

911
	while (!memcg) {
912
		struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
913
		struct cgroup_subsys_state *css;
914

915 916 917 918 919 920 921 922 923 924 925
		if (reclaim) {
			int nid = zone_to_nid(reclaim->zone);
			int zid = zone_idx(reclaim->zone);
			struct mem_cgroup_per_zone *mz;

			mz = mem_cgroup_zoneinfo(root, nid, zid);
			iter = &mz->reclaim_iter[reclaim->priority];
			if (prev && reclaim->generation != iter->generation)
				return NULL;
			id = iter->position;
		}
K
KAMEZAWA Hiroyuki 已提交
926

927 928 929 930 931 932 933 934
		rcu_read_lock();
		css = css_get_next(&mem_cgroup_subsys, id + 1, &root->css, &id);
		if (css) {
			if (css == &root->css || css_tryget(css))
				memcg = container_of(css,
						     struct mem_cgroup, css);
		} else
			id = 0;
K
KAMEZAWA Hiroyuki 已提交
935 936
		rcu_read_unlock();

937 938 939 940 941 942 943
		if (reclaim) {
			iter->position = id;
			if (!css)
				iter->generation++;
			else if (!prev && memcg)
				reclaim->generation = iter->generation;
		}
944 945 946 947 948

		if (prev && !css)
			return NULL;
	}
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
949
}
K
KAMEZAWA Hiroyuki 已提交
950

951 952 953 954 955 956 957
/**
 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 * @root: hierarchy root
 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 */
void mem_cgroup_iter_break(struct mem_cgroup *root,
			   struct mem_cgroup *prev)
958 959 960 961 962 963
{
	if (!root)
		root = root_mem_cgroup;
	if (prev && prev != root)
		css_put(&prev->css);
}
K
KAMEZAWA Hiroyuki 已提交
964

965 966 967 968 969 970
/*
 * Iteration constructs for visiting all cgroups (under a tree).  If
 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 * be used for reference counting.
 */
#define for_each_mem_cgroup_tree(iter, root)		\
971
	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
972
	     iter != NULL;				\
973
	     iter = mem_cgroup_iter(root, iter, NULL))
974

975
#define for_each_mem_cgroup(iter)			\
976
	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
977
	     iter != NULL;				\
978
	     iter = mem_cgroup_iter(NULL, iter, NULL))
K
KAMEZAWA Hiroyuki 已提交
979

980
static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
981
{
982
	return (memcg == root_mem_cgroup);
983 984
}

985 986
void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
{
987
	struct mem_cgroup *memcg;
988 989 990 991 992

	if (!mm)
		return;

	rcu_read_lock();
993 994
	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
	if (unlikely(!memcg))
995 996 997 998
		goto out;

	switch (idx) {
	case PGFAULT:
999 1000 1001 1002
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
		break;
	case PGMAJFAULT:
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1003 1004 1005 1006 1007 1008 1009 1010 1011
		break;
	default:
		BUG();
	}
out:
	rcu_read_unlock();
}
EXPORT_SYMBOL(mem_cgroup_count_vm_event);

1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032
/**
 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
 * @zone: zone of the wanted lruvec
 * @mem: memcg of the wanted lruvec
 *
 * Returns the lru list vector holding pages for the given @zone and
 * @mem.  This can be the global zone lruvec, if the memory controller
 * is disabled.
 */
struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
				      struct mem_cgroup *memcg)
{
	struct mem_cgroup_per_zone *mz;

	if (mem_cgroup_disabled())
		return &zone->lruvec;

	mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
	return &mz->lruvec;
}

K
KAMEZAWA Hiroyuki 已提交
1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045
/*
 * Following LRU functions are allowed to be used without PCG_LOCK.
 * Operations are called by routine of global LRU independently from memcg.
 * What we have to take care of here is validness of pc->mem_cgroup.
 *
 * Changes to pc->mem_cgroup happens when
 * 1. charge
 * 2. moving account
 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
 * It is added to LRU before charge.
 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
 * When moving account, the page is not on LRU. It's isolated.
 */
1046

1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060
/**
 * mem_cgroup_lru_add_list - account for adding an lru page and return lruvec
 * @zone: zone of the page
 * @page: the page
 * @lru: current lru
 *
 * This function accounts for @page being added to @lru, and returns
 * the lruvec for the given @zone and the memcg @page is charged to.
 *
 * The callsite is then responsible for physically linking the page to
 * the returned lruvec->lists[@lru].
 */
struct lruvec *mem_cgroup_lru_add_list(struct zone *zone, struct page *page,
				       enum lru_list lru)
K
KAMEZAWA Hiroyuki 已提交
1061 1062
{
	struct mem_cgroup_per_zone *mz;
1063 1064
	struct mem_cgroup *memcg;
	struct page_cgroup *pc;
1065

1066
	if (mem_cgroup_disabled())
1067 1068
		return &zone->lruvec;

K
KAMEZAWA Hiroyuki 已提交
1069
	pc = lookup_page_cgroup(page);
1070
	memcg = pc->mem_cgroup;
1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083

	/*
	 * Surreptitiously switch any uncharged page to root:
	 * an uncharged page off lru does nothing to secure
	 * its former mem_cgroup from sudden removal.
	 *
	 * Our caller holds lru_lock, and PageCgroupUsed is updated
	 * under page_cgroup lock: between them, they make all uses
	 * of pc->mem_cgroup safe.
	 */
	if (!PageCgroupUsed(pc) && memcg != root_mem_cgroup)
		pc->mem_cgroup = memcg = root_mem_cgroup;

1084 1085
	mz = page_cgroup_zoneinfo(memcg, page);
	/* compound_order() is stabilized through lru_lock */
1086
	mz->lru_size[lru] += 1 << compound_order(page);
1087
	return &mz->lruvec;
K
KAMEZAWA Hiroyuki 已提交
1088
}
1089

1090 1091 1092 1093 1094 1095 1096 1097 1098
/**
 * mem_cgroup_lru_del_list - account for removing an lru page
 * @page: the page
 * @lru: target lru
 *
 * This function accounts for @page being removed from @lru.
 *
 * The callsite is then responsible for physically unlinking
 * @page->lru.
1099
 */
1100
void mem_cgroup_lru_del_list(struct page *page, enum lru_list lru)
1101 1102
{
	struct mem_cgroup_per_zone *mz;
1103
	struct mem_cgroup *memcg;
1104 1105 1106 1107 1108 1109
	struct page_cgroup *pc;

	if (mem_cgroup_disabled())
		return;

	pc = lookup_page_cgroup(page);
1110 1111
	memcg = pc->mem_cgroup;
	VM_BUG_ON(!memcg);
1112 1113
	mz = page_cgroup_zoneinfo(memcg, page);
	/* huge page split is done under lru_lock. so, we have no races. */
1114 1115
	VM_BUG_ON(mz->lru_size[lru] < (1 << compound_order(page)));
	mz->lru_size[lru] -= 1 << compound_order(page);
1116 1117
}

1118
void mem_cgroup_lru_del(struct page *page)
K
KAMEZAWA Hiroyuki 已提交
1119
{
1120
	mem_cgroup_lru_del_list(page, page_lru(page));
1121 1122
}

1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140
/**
 * mem_cgroup_lru_move_lists - account for moving a page between lrus
 * @zone: zone of the page
 * @page: the page
 * @from: current lru
 * @to: target lru
 *
 * This function accounts for @page being moved between the lrus @from
 * and @to, and returns the lruvec for the given @zone and the memcg
 * @page is charged to.
 *
 * The callsite is then responsible for physically relinking
 * @page->lru to the returned lruvec->lists[@to].
 */
struct lruvec *mem_cgroup_lru_move_lists(struct zone *zone,
					 struct page *page,
					 enum lru_list from,
					 enum lru_list to)
1141
{
1142 1143 1144
	/* XXX: Optimize this, especially for @from == @to */
	mem_cgroup_lru_del_list(page, from);
	return mem_cgroup_lru_add_list(zone, page, to);
K
KAMEZAWA Hiroyuki 已提交
1145
}
1146

1147
/*
1148
 * Checks whether given mem is same or in the root_mem_cgroup's
1149 1150
 * hierarchy subtree
 */
1151 1152
bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
				  struct mem_cgroup *memcg)
1153
{
1154 1155 1156 1157
	if (root_memcg == memcg)
		return true;
	if (!root_memcg->use_hierarchy)
		return false;
1158 1159 1160 1161 1162 1163 1164 1165
	return css_is_ancestor(&memcg->css, &root_memcg->css);
}

static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
				       struct mem_cgroup *memcg)
{
	bool ret;

1166
	rcu_read_lock();
1167
	ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
1168 1169
	rcu_read_unlock();
	return ret;
1170 1171
}

1172
int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg)
1173 1174
{
	int ret;
1175
	struct mem_cgroup *curr = NULL;
1176
	struct task_struct *p;
1177

1178
	p = find_lock_task_mm(task);
1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193
	if (p) {
		curr = try_get_mem_cgroup_from_mm(p->mm);
		task_unlock(p);
	} else {
		/*
		 * All threads may have already detached their mm's, but the oom
		 * killer still needs to detect if they have already been oom
		 * killed to prevent needlessly killing additional tasks.
		 */
		task_lock(task);
		curr = mem_cgroup_from_task(task);
		if (curr)
			css_get(&curr->css);
		task_unlock(task);
	}
1194 1195
	if (!curr)
		return 0;
1196
	/*
1197
	 * We should check use_hierarchy of "memcg" not "curr". Because checking
1198
	 * use_hierarchy of "curr" here make this function true if hierarchy is
1199 1200
	 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
	 * hierarchy(even if use_hierarchy is disabled in "memcg").
1201
	 */
1202
	ret = mem_cgroup_same_or_subtree(memcg, curr);
1203
	css_put(&curr->css);
1204 1205 1206
	return ret;
}

1207
int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg, struct zone *zone)
1208
{
1209 1210 1211
	unsigned long inactive_ratio;
	int nid = zone_to_nid(zone);
	int zid = zone_idx(zone);
1212
	unsigned long inactive;
1213
	unsigned long active;
1214
	unsigned long gb;
1215

1216 1217 1218 1219
	inactive = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
						BIT(LRU_INACTIVE_ANON));
	active = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
					      BIT(LRU_ACTIVE_ANON));
1220

1221 1222 1223 1224 1225 1226
	gb = (inactive + active) >> (30 - PAGE_SHIFT);
	if (gb)
		inactive_ratio = int_sqrt(10 * gb);
	else
		inactive_ratio = 1;

1227
	return inactive * inactive_ratio < active;
1228 1229
}

1230
int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg, struct zone *zone)
1231 1232 1233
{
	unsigned long active;
	unsigned long inactive;
1234 1235
	int zid = zone_idx(zone);
	int nid = zone_to_nid(zone);
1236

1237 1238 1239 1240
	inactive = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
						BIT(LRU_INACTIVE_FILE));
	active = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
					      BIT(LRU_ACTIVE_FILE));
1241 1242 1243 1244

	return (active > inactive);
}

K
KOSAKI Motohiro 已提交
1245 1246 1247 1248 1249 1250 1251 1252 1253 1254
struct zone_reclaim_stat *
mem_cgroup_get_reclaim_stat_from_page(struct page *page)
{
	struct page_cgroup *pc;
	struct mem_cgroup_per_zone *mz;

	if (mem_cgroup_disabled())
		return NULL;

	pc = lookup_page_cgroup(page);
1255 1256
	if (!PageCgroupUsed(pc))
		return NULL;
1257 1258
	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
	smp_rmb();
1259
	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
1260
	return &mz->lruvec.reclaim_stat;
K
KOSAKI Motohiro 已提交
1261 1262
}

1263 1264 1265
#define mem_cgroup_from_res_counter(counter, member)	\
	container_of(counter, struct mem_cgroup, member)

1266
/**
1267 1268
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
 * @mem: the memory cgroup
1269
 *
1270
 * Returns the maximum amount of memory @mem can be charged with, in
1271
 * pages.
1272
 */
1273
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1274
{
1275 1276
	unsigned long long margin;

1277
	margin = res_counter_margin(&memcg->res);
1278
	if (do_swap_account)
1279
		margin = min(margin, res_counter_margin(&memcg->memsw));
1280
	return margin >> PAGE_SHIFT;
1281 1282
}

1283
int mem_cgroup_swappiness(struct mem_cgroup *memcg)
K
KOSAKI Motohiro 已提交
1284 1285 1286 1287 1288 1289 1290
{
	struct cgroup *cgrp = memcg->css.cgroup;

	/* root ? */
	if (cgrp->parent == NULL)
		return vm_swappiness;

1291
	return memcg->swappiness;
K
KOSAKI Motohiro 已提交
1292 1293
}

1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307
/*
 * memcg->moving_account is used for checking possibility that some thread is
 * calling move_account(). When a thread on CPU-A starts moving pages under
 * a memcg, other threads should check memcg->moving_account under
 * rcu_read_lock(), like this:
 *
 *         CPU-A                                    CPU-B
 *                                              rcu_read_lock()
 *         memcg->moving_account+1              if (memcg->mocing_account)
 *                                                   take heavy locks.
 *         synchronize_rcu()                    update something.
 *                                              rcu_read_unlock()
 *         start move here.
 */
1308 1309 1310 1311

/* for quick checking without looking up memcg */
atomic_t memcg_moving __read_mostly;

1312
static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1313
{
1314
	atomic_inc(&memcg_moving);
1315
	atomic_inc(&memcg->moving_account);
1316 1317 1318
	synchronize_rcu();
}

1319
static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1320
{
1321 1322 1323 1324
	/*
	 * Now, mem_cgroup_clear_mc() may call this function with NULL.
	 * We check NULL in callee rather than caller.
	 */
1325 1326
	if (memcg) {
		atomic_dec(&memcg_moving);
1327
		atomic_dec(&memcg->moving_account);
1328
	}
1329
}
1330

1331 1332 1333
/*
 * 2 routines for checking "mem" is under move_account() or not.
 *
1334 1335
 * mem_cgroup_stolen() -  checking whether a cgroup is mc.from or not. This
 *			  is used for avoiding races in accounting.  If true,
1336 1337 1338 1339 1340 1341 1342
 *			  pc->mem_cgroup may be overwritten.
 *
 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
 *			  under hierarchy of moving cgroups. This is for
 *			  waiting at hith-memory prressure caused by "move".
 */

1343
static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
1344 1345
{
	VM_BUG_ON(!rcu_read_lock_held());
1346
	return atomic_read(&memcg->moving_account) > 0;
1347
}
1348

1349
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1350
{
1351 1352
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1353
	bool ret = false;
1354 1355 1356 1357 1358 1359 1360 1361 1362
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
1363

1364 1365
	ret = mem_cgroup_same_or_subtree(memcg, from)
		|| mem_cgroup_same_or_subtree(memcg, to);
1366 1367
unlock:
	spin_unlock(&mc.lock);
1368 1369 1370
	return ret;
}

1371
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1372 1373
{
	if (mc.moving_task && current != mc.moving_task) {
1374
		if (mem_cgroup_under_move(memcg)) {
1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1387 1388 1389 1390
/*
 * Take this lock when
 * - a code tries to modify page's memcg while it's USED.
 * - a code tries to modify page state accounting in a memcg.
1391
 * see mem_cgroup_stolen(), too.
1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404
 */
static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
				  unsigned long *flags)
{
	spin_lock_irqsave(&memcg->move_lock, *flags);
}

static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
				unsigned long *flags)
{
	spin_unlock_irqrestore(&memcg->move_lock, *flags);
}

1405
/**
1406
 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
	struct cgroup *task_cgrp;
	struct cgroup *mem_cgrp;
	/*
	 * Need a buffer in BSS, can't rely on allocations. The code relies
	 * on the assumption that OOM is serialized for memory controller.
	 * If this assumption is broken, revisit this code.
	 */
	static char memcg_name[PATH_MAX];
	int ret;

1425
	if (!memcg || !p)
1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470
		return;

	rcu_read_lock();

	mem_cgrp = memcg->css.cgroup;
	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);

	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		/*
		 * Unfortunately, we are unable to convert to a useful name
		 * But we'll still print out the usage information
		 */
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	printk(KERN_INFO "Task in %s killed", memcg_name);

	rcu_read_lock();
	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	/*
	 * Continues from above, so we don't need an KERN_ level
	 */
	printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
done:

	printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->res, RES_FAILCNT));
	printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
		"failcnt %llu\n",
		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
}

1471 1472 1473 1474
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
1475
static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1476 1477
{
	int num = 0;
K
KAMEZAWA Hiroyuki 已提交
1478 1479
	struct mem_cgroup *iter;

1480
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
1481
		num++;
1482 1483 1484
	return num;
}

D
David Rientjes 已提交
1485 1486 1487 1488 1489 1490 1491 1492
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
{
	u64 limit;
	u64 memsw;

1493 1494 1495
	limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	limit += total_swap_pages << PAGE_SHIFT;

D
David Rientjes 已提交
1496 1497 1498 1499 1500 1501 1502 1503
	memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	/*
	 * If memsw is finite and limits the amount of swap space available
	 * to this memcg, return that limit.
	 */
	return min(limit, memsw);
}

1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539
static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
					gfp_t gfp_mask,
					unsigned long flags)
{
	unsigned long total = 0;
	bool noswap = false;
	int loop;

	if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
		noswap = true;
	if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
		noswap = true;

	for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
		if (loop)
			drain_all_stock_async(memcg);
		total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
		/*
		 * Allow limit shrinkers, which are triggered directly
		 * by userspace, to catch signals and stop reclaim
		 * after minimal progress, regardless of the margin.
		 */
		if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
			break;
		if (mem_cgroup_margin(memcg))
			break;
		/*
		 * If nothing was reclaimed after two attempts, there
		 * may be no reclaimable pages in this hierarchy.
		 */
		if (loop && !total)
			break;
	}
	return total;
}

1540 1541 1542 1543 1544 1545 1546 1547 1548 1549
/**
 * test_mem_cgroup_node_reclaimable
 * @mem: the target memcg
 * @nid: the node ID to be checked.
 * @noswap : specify true here if the user wants flle only information.
 *
 * This function returns whether the specified memcg contains any
 * reclaimable pages on a node. Returns true if there are any reclaimable
 * pages in the node.
 */
1550
static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1551 1552
		int nid, bool noswap)
{
1553
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1554 1555 1556
		return true;
	if (noswap || !total_swap_pages)
		return false;
1557
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1558 1559 1560 1561
		return true;
	return false;

}
1562 1563 1564 1565 1566 1567 1568 1569
#if MAX_NUMNODES > 1

/*
 * Always updating the nodemask is not very good - even if we have an empty
 * list or the wrong list here, we can start from some node and traverse all
 * nodes based on the zonelist. So update the list loosely once per 10 secs.
 *
 */
1570
static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1571 1572
{
	int nid;
1573 1574 1575 1576
	/*
	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
	 * pagein/pageout changes since the last update.
	 */
1577
	if (!atomic_read(&memcg->numainfo_events))
1578
		return;
1579
	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1580 1581 1582
		return;

	/* make a nodemask where this memcg uses memory from */
1583
	memcg->scan_nodes = node_states[N_HIGH_MEMORY];
1584 1585 1586

	for_each_node_mask(nid, node_states[N_HIGH_MEMORY]) {

1587 1588
		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
			node_clear(nid, memcg->scan_nodes);
1589
	}
1590

1591 1592
	atomic_set(&memcg->numainfo_events, 0);
	atomic_set(&memcg->numainfo_updating, 0);
1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606
}

/*
 * Selecting a node where we start reclaim from. Because what we need is just
 * reducing usage counter, start from anywhere is O,K. Considering
 * memory reclaim from current node, there are pros. and cons.
 *
 * Freeing memory from current node means freeing memory from a node which
 * we'll use or we've used. So, it may make LRU bad. And if several threads
 * hit limits, it will see a contention on a node. But freeing from remote
 * node means more costs for memory reclaim because of memory latency.
 *
 * Now, we use round-robin. Better algorithm is welcomed.
 */
1607
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1608 1609 1610
{
	int node;

1611 1612
	mem_cgroup_may_update_nodemask(memcg);
	node = memcg->last_scanned_node;
1613

1614
	node = next_node(node, memcg->scan_nodes);
1615
	if (node == MAX_NUMNODES)
1616
		node = first_node(memcg->scan_nodes);
1617 1618 1619 1620 1621 1622 1623 1624 1625
	/*
	 * We call this when we hit limit, not when pages are added to LRU.
	 * No LRU may hold pages because all pages are UNEVICTABLE or
	 * memcg is too small and all pages are not on LRU. In that case,
	 * we use curret node.
	 */
	if (unlikely(node == MAX_NUMNODES))
		node = numa_node_id();

1626
	memcg->last_scanned_node = node;
1627 1628 1629
	return node;
}

1630 1631 1632 1633 1634 1635
/*
 * Check all nodes whether it contains reclaimable pages or not.
 * For quick scan, we make use of scan_nodes. This will allow us to skip
 * unused nodes. But scan_nodes is lazily updated and may not cotain
 * enough new information. We need to do double check.
 */
1636
bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1637 1638 1639 1640 1641 1642 1643
{
	int nid;

	/*
	 * quick check...making use of scan_node.
	 * We can skip unused nodes.
	 */
1644 1645
	if (!nodes_empty(memcg->scan_nodes)) {
		for (nid = first_node(memcg->scan_nodes);
1646
		     nid < MAX_NUMNODES;
1647
		     nid = next_node(nid, memcg->scan_nodes)) {
1648

1649
			if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1650 1651 1652 1653 1654 1655 1656
				return true;
		}
	}
	/*
	 * Check rest of nodes.
	 */
	for_each_node_state(nid, N_HIGH_MEMORY) {
1657
		if (node_isset(nid, memcg->scan_nodes))
1658
			continue;
1659
		if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1660 1661 1662 1663 1664
			return true;
	}
	return false;
}

1665
#else
1666
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1667 1668 1669
{
	return 0;
}
1670

1671
bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1672
{
1673
	return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
1674
}
1675 1676
#endif

1677 1678 1679 1680
static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
				   struct zone *zone,
				   gfp_t gfp_mask,
				   unsigned long *total_scanned)
1681
{
1682
	struct mem_cgroup *victim = NULL;
1683
	int total = 0;
K
KAMEZAWA Hiroyuki 已提交
1684
	int loop = 0;
1685
	unsigned long excess;
1686
	unsigned long nr_scanned;
1687 1688 1689 1690
	struct mem_cgroup_reclaim_cookie reclaim = {
		.zone = zone,
		.priority = 0,
	};
1691

1692
	excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
K
KAMEZAWA Hiroyuki 已提交
1693

1694
	while (1) {
1695
		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1696
		if (!victim) {
K
KAMEZAWA Hiroyuki 已提交
1697
			loop++;
1698 1699 1700 1701 1702 1703
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
1704
				if (!total)
1705 1706
					break;
				/*
L
Lucas De Marchi 已提交
1707
				 * We want to do more targeted reclaim.
1708 1709 1710 1711 1712
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
1713
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1714 1715
					break;
			}
1716
			continue;
1717
		}
1718
		if (!mem_cgroup_reclaimable(victim, false))
1719
			continue;
1720 1721 1722 1723
		total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
						     zone, &nr_scanned);
		*total_scanned += nr_scanned;
		if (!res_counter_soft_limit_excess(&root_memcg->res))
1724
			break;
1725
	}
1726
	mem_cgroup_iter_break(root_memcg, victim);
K
KAMEZAWA Hiroyuki 已提交
1727
	return total;
1728 1729
}

K
KAMEZAWA Hiroyuki 已提交
1730 1731 1732
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
1733
 * Has to be called with memcg_oom_lock
K
KAMEZAWA Hiroyuki 已提交
1734
 */
1735
static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1736
{
1737
	struct mem_cgroup *iter, *failed = NULL;
1738

1739
	for_each_mem_cgroup_tree(iter, memcg) {
1740
		if (iter->oom_lock) {
1741 1742 1743 1744 1745
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			failed = iter;
1746 1747
			mem_cgroup_iter_break(memcg, iter);
			break;
1748 1749
		} else
			iter->oom_lock = true;
K
KAMEZAWA Hiroyuki 已提交
1750
	}
K
KAMEZAWA Hiroyuki 已提交
1751

1752
	if (!failed)
1753
		return true;
1754 1755 1756 1757 1758

	/*
	 * OK, we failed to lock the whole subtree so we have to clean up
	 * what we set up to the failing subtree
	 */
1759
	for_each_mem_cgroup_tree(iter, memcg) {
1760
		if (iter == failed) {
1761 1762
			mem_cgroup_iter_break(memcg, iter);
			break;
1763 1764 1765
		}
		iter->oom_lock = false;
	}
1766
	return false;
1767
}
1768

1769
/*
1770
 * Has to be called with memcg_oom_lock
1771
 */
1772
static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1773
{
K
KAMEZAWA Hiroyuki 已提交
1774 1775
	struct mem_cgroup *iter;

1776
	for_each_mem_cgroup_tree(iter, memcg)
1777 1778 1779 1780
		iter->oom_lock = false;
	return 0;
}

1781
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1782 1783 1784
{
	struct mem_cgroup *iter;

1785
	for_each_mem_cgroup_tree(iter, memcg)
1786 1787 1788
		atomic_inc(&iter->under_oom);
}

1789
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1790 1791 1792
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
1793 1794 1795 1796 1797
	/*
	 * When a new child is created while the hierarchy is under oom,
	 * mem_cgroup_oom_lock() may not be called. We have to use
	 * atomic_add_unless() here.
	 */
1798
	for_each_mem_cgroup_tree(iter, memcg)
1799
		atomic_add_unless(&iter->under_oom, -1, 0);
1800 1801
}

1802
static DEFINE_SPINLOCK(memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
1803 1804
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
1805
struct oom_wait_info {
1806
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
1807 1808 1809 1810 1811 1812
	wait_queue_t	wait;
};

static int memcg_oom_wake_function(wait_queue_t *wait,
	unsigned mode, int sync, void *arg)
{
1813 1814
	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
	struct mem_cgroup *oom_wait_memcg;
K
KAMEZAWA Hiroyuki 已提交
1815 1816 1817
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1818
	oom_wait_memcg = oom_wait_info->memcg;
K
KAMEZAWA Hiroyuki 已提交
1819 1820

	/*
1821
	 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
K
KAMEZAWA Hiroyuki 已提交
1822 1823
	 * Then we can use css_is_ancestor without taking care of RCU.
	 */
1824 1825
	if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
		&& !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
K
KAMEZAWA Hiroyuki 已提交
1826 1827 1828 1829
		return 0;
	return autoremove_wake_function(wait, mode, sync, arg);
}

1830
static void memcg_wakeup_oom(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1831
{
1832 1833
	/* for filtering, pass "memcg" as argument. */
	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
K
KAMEZAWA Hiroyuki 已提交
1834 1835
}

1836
static void memcg_oom_recover(struct mem_cgroup *memcg)
1837
{
1838 1839
	if (memcg && atomic_read(&memcg->under_oom))
		memcg_wakeup_oom(memcg);
1840 1841
}

K
KAMEZAWA Hiroyuki 已提交
1842 1843 1844
/*
 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
 */
1845
bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1846
{
K
KAMEZAWA Hiroyuki 已提交
1847
	struct oom_wait_info owait;
1848
	bool locked, need_to_kill;
K
KAMEZAWA Hiroyuki 已提交
1849

1850
	owait.memcg = memcg;
K
KAMEZAWA Hiroyuki 已提交
1851 1852 1853 1854
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
	INIT_LIST_HEAD(&owait.wait.task_list);
1855
	need_to_kill = true;
1856
	mem_cgroup_mark_under_oom(memcg);
1857

1858
	/* At first, try to OOM lock hierarchy under memcg.*/
1859
	spin_lock(&memcg_oom_lock);
1860
	locked = mem_cgroup_oom_lock(memcg);
K
KAMEZAWA Hiroyuki 已提交
1861 1862 1863 1864 1865
	/*
	 * Even if signal_pending(), we can't quit charge() loop without
	 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
	 * under OOM is always welcomed, use TASK_KILLABLE here.
	 */
1866
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1867
	if (!locked || memcg->oom_kill_disable)
1868 1869
		need_to_kill = false;
	if (locked)
1870
		mem_cgroup_oom_notify(memcg);
1871
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
1872

1873 1874
	if (need_to_kill) {
		finish_wait(&memcg_oom_waitq, &owait.wait);
1875
		mem_cgroup_out_of_memory(memcg, mask, order);
1876
	} else {
K
KAMEZAWA Hiroyuki 已提交
1877
		schedule();
K
KAMEZAWA Hiroyuki 已提交
1878
		finish_wait(&memcg_oom_waitq, &owait.wait);
K
KAMEZAWA Hiroyuki 已提交
1879
	}
1880
	spin_lock(&memcg_oom_lock);
1881
	if (locked)
1882 1883
		mem_cgroup_oom_unlock(memcg);
	memcg_wakeup_oom(memcg);
1884
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
1885

1886
	mem_cgroup_unmark_under_oom(memcg);
1887

K
KAMEZAWA Hiroyuki 已提交
1888 1889 1890
	if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
		return false;
	/* Give chance to dying process */
1891
	schedule_timeout_uninterruptible(1);
K
KAMEZAWA Hiroyuki 已提交
1892
	return true;
1893 1894
}

1895 1896 1897
/*
 * Currently used to update mapped file statistics, but the routine can be
 * generalized to update other statistics as well.
1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914
 *
 * Notes: Race condition
 *
 * We usually use page_cgroup_lock() for accessing page_cgroup member but
 * it tends to be costly. But considering some conditions, we doesn't need
 * to do so _always_.
 *
 * Considering "charge", lock_page_cgroup() is not required because all
 * file-stat operations happen after a page is attached to radix-tree. There
 * are no race with "charge".
 *
 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
 * if there are race with "uncharge". Statistics itself is properly handled
 * by flags.
 *
 * Considering "move", this is an only case we see a race. To make the race
1915 1916
 * small, we check mm->moving_account and detect there are possibility of race
 * If there is, we take a lock.
1917
 */
1918

1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933
void __mem_cgroup_begin_update_page_stat(struct page *page,
				bool *locked, unsigned long *flags)
{
	struct mem_cgroup *memcg;
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
again:
	memcg = pc->mem_cgroup;
	if (unlikely(!memcg || !PageCgroupUsed(pc)))
		return;
	/*
	 * If this memory cgroup is not under account moving, we don't
	 * need to take move_lock_page_cgroup(). Because we already hold
	 * rcu_read_lock(), any calls to move_account will be delayed until
1934
	 * rcu_read_unlock() if mem_cgroup_stolen() == true.
1935
	 */
1936
	if (!mem_cgroup_stolen(memcg))
1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958
		return;

	move_lock_mem_cgroup(memcg, flags);
	if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
		move_unlock_mem_cgroup(memcg, flags);
		goto again;
	}
	*locked = true;
}

void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
{
	struct page_cgroup *pc = lookup_page_cgroup(page);

	/*
	 * It's guaranteed that pc->mem_cgroup never changes while
	 * lock is held because a routine modifies pc->mem_cgroup
	 * should take move_lock_page_cgroup().
	 */
	move_unlock_mem_cgroup(pc->mem_cgroup, flags);
}

1959 1960
void mem_cgroup_update_page_stat(struct page *page,
				 enum mem_cgroup_page_stat_item idx, int val)
1961
{
1962
	struct mem_cgroup *memcg;
1963
	struct page_cgroup *pc = lookup_page_cgroup(page);
1964
	unsigned long uninitialized_var(flags);
1965

1966
	if (mem_cgroup_disabled())
1967
		return;
1968

1969 1970
	memcg = pc->mem_cgroup;
	if (unlikely(!memcg || !PageCgroupUsed(pc)))
1971
		return;
1972 1973

	switch (idx) {
1974 1975
	case MEMCG_NR_FILE_MAPPED:
		idx = MEM_CGROUP_STAT_FILE_MAPPED;
1976 1977 1978
		break;
	default:
		BUG();
1979
	}
1980

1981
	this_cpu_add(memcg->stat->count[idx], val);
1982
}
1983

1984 1985 1986 1987
/*
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 * TODO: maybe necessary to use big numbers in big irons.
 */
1988
#define CHARGE_BATCH	32U
1989 1990
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
1991
	unsigned int nr_pages;
1992
	struct work_struct work;
1993 1994
	unsigned long flags;
#define FLUSHING_CACHED_CHARGE	(0)
1995 1996
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1997
static DEFINE_MUTEX(percpu_charge_mutex);
1998 1999

/*
2000
 * Try to consume stocked charge on this cpu. If success, one page is consumed
2001 2002 2003 2004
 * from local stock and true is returned. If the stock is 0 or charges from a
 * cgroup which is not current target, returns false. This stock will be
 * refilled.
 */
2005
static bool consume_stock(struct mem_cgroup *memcg)
2006 2007 2008 2009 2010
{
	struct memcg_stock_pcp *stock;
	bool ret = true;

	stock = &get_cpu_var(memcg_stock);
2011
	if (memcg == stock->cached && stock->nr_pages)
2012
		stock->nr_pages--;
2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025
	else /* need to call res_counter_charge */
		ret = false;
	put_cpu_var(memcg_stock);
	return ret;
}

/*
 * Returns stocks cached in percpu to res_counter and reset cached information.
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

2026 2027 2028 2029
	if (stock->nr_pages) {
		unsigned long bytes = stock->nr_pages * PAGE_SIZE;

		res_counter_uncharge(&old->res, bytes);
2030
		if (do_swap_account)
2031 2032
			res_counter_uncharge(&old->memsw, bytes);
		stock->nr_pages = 0;
2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044
	}
	stock->cached = NULL;
}

/*
 * This must be called under preempt disabled or must be called by
 * a thread which is pinned to local cpu.
 */
static void drain_local_stock(struct work_struct *dummy)
{
	struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
	drain_stock(stock);
2045
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2046 2047 2048 2049
}

/*
 * Cache charges(val) which is from res_counter, to local per_cpu area.
2050
 * This will be consumed by consume_stock() function, later.
2051
 */
2052
static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2053 2054 2055
{
	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);

2056
	if (stock->cached != memcg) { /* reset if necessary */
2057
		drain_stock(stock);
2058
		stock->cached = memcg;
2059
	}
2060
	stock->nr_pages += nr_pages;
2061 2062 2063 2064
	put_cpu_var(memcg_stock);
}

/*
2065
 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2066 2067
 * of the hierarchy under it. sync flag says whether we should block
 * until the work is done.
2068
 */
2069
static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2070
{
2071
	int cpu, curcpu;
2072

2073 2074
	/* Notify other cpus that system-wide "drain" is running */
	get_online_cpus();
2075
	curcpu = get_cpu();
2076 2077
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2078
		struct mem_cgroup *memcg;
2079

2080 2081
		memcg = stock->cached;
		if (!memcg || !stock->nr_pages)
2082
			continue;
2083
		if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2084
			continue;
2085 2086 2087 2088 2089 2090
		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
2091
	}
2092
	put_cpu();
2093 2094 2095 2096 2097 2098

	if (!sync)
		goto out;

	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2099
		if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2100 2101 2102
			flush_work(&stock->work);
	}
out:
2103
 	put_online_cpus();
2104 2105 2106 2107 2108 2109 2110 2111
}

/*
 * Tries to drain stocked charges in other cpus. This function is asynchronous
 * and just put a work per cpu for draining localy on each cpu. Caller can
 * expects some charges will be back to res_counter later but cannot wait for
 * it.
 */
2112
static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2113
{
2114 2115 2116 2117 2118
	/*
	 * If someone calls draining, avoid adding more kworker runs.
	 */
	if (!mutex_trylock(&percpu_charge_mutex))
		return;
2119
	drain_all_stock(root_memcg, false);
2120
	mutex_unlock(&percpu_charge_mutex);
2121 2122 2123
}

/* This is a synchronous drain interface. */
2124
static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2125 2126
{
	/* called when force_empty is called */
2127
	mutex_lock(&percpu_charge_mutex);
2128
	drain_all_stock(root_memcg, true);
2129
	mutex_unlock(&percpu_charge_mutex);
2130 2131
}

2132 2133 2134 2135
/*
 * This function drains percpu counter value from DEAD cpu and
 * move it to local cpu. Note that this function can be preempted.
 */
2136
static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2137 2138 2139
{
	int i;

2140
	spin_lock(&memcg->pcp_counter_lock);
2141
	for (i = 0; i < MEM_CGROUP_STAT_DATA; i++) {
2142
		long x = per_cpu(memcg->stat->count[i], cpu);
2143

2144 2145
		per_cpu(memcg->stat->count[i], cpu) = 0;
		memcg->nocpu_base.count[i] += x;
2146
	}
2147
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2148
		unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2149

2150 2151
		per_cpu(memcg->stat->events[i], cpu) = 0;
		memcg->nocpu_base.events[i] += x;
2152
	}
2153
	spin_unlock(&memcg->pcp_counter_lock);
2154 2155 2156
}

static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
2157 2158 2159 2160 2161
					unsigned long action,
					void *hcpu)
{
	int cpu = (unsigned long)hcpu;
	struct memcg_stock_pcp *stock;
2162
	struct mem_cgroup *iter;
2163

2164
	if (action == CPU_ONLINE)
2165 2166
		return NOTIFY_OK;

2167
	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2168
		return NOTIFY_OK;
2169

2170
	for_each_mem_cgroup(iter)
2171 2172
		mem_cgroup_drain_pcp_counter(iter, cpu);

2173 2174 2175 2176 2177
	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
	return NOTIFY_OK;
}

2178 2179 2180 2181 2182 2183 2184 2185 2186 2187

/* See __mem_cgroup_try_charge() for details */
enum {
	CHARGE_OK,		/* success */
	CHARGE_RETRY,		/* need to retry but retry is not bad */
	CHARGE_NOMEM,		/* we can't do more. return -ENOMEM */
	CHARGE_WOULDBLOCK,	/* GFP_WAIT wasn't set and no enough res. */
	CHARGE_OOM_DIE,		/* the current is killed because of OOM */
};

2188
static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2189
				unsigned int nr_pages, bool oom_check)
2190
{
2191
	unsigned long csize = nr_pages * PAGE_SIZE;
2192 2193 2194 2195 2196
	struct mem_cgroup *mem_over_limit;
	struct res_counter *fail_res;
	unsigned long flags = 0;
	int ret;

2197
	ret = res_counter_charge(&memcg->res, csize, &fail_res);
2198 2199 2200 2201

	if (likely(!ret)) {
		if (!do_swap_account)
			return CHARGE_OK;
2202
		ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2203 2204 2205
		if (likely(!ret))
			return CHARGE_OK;

2206
		res_counter_uncharge(&memcg->res, csize);
2207 2208 2209 2210
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
		flags |= MEM_CGROUP_RECLAIM_NOSWAP;
	} else
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2211
	/*
2212 2213
	 * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch
	 * of regular pages (CHARGE_BATCH), or a single regular page (1).
2214 2215 2216 2217
	 *
	 * Never reclaim on behalf of optional batching, retry with a
	 * single page instead.
	 */
2218
	if (nr_pages == CHARGE_BATCH)
2219 2220 2221 2222 2223
		return CHARGE_RETRY;

	if (!(gfp_mask & __GFP_WAIT))
		return CHARGE_WOULDBLOCK;

2224
	ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2225
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2226
		return CHARGE_RETRY;
2227
	/*
2228 2229 2230 2231 2232 2233 2234
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
2235
	 */
2236
	if (nr_pages == 1 && ret)
2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249
		return CHARGE_RETRY;

	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		return CHARGE_RETRY;

	/* If we don't need to call oom-killer at el, return immediately */
	if (!oom_check)
		return CHARGE_NOMEM;
	/* check OOM */
2250
	if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask, get_order(csize)))
2251 2252 2253 2254 2255
		return CHARGE_OOM_DIE;

	return CHARGE_RETRY;
}

2256
/*
2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275
 * __mem_cgroup_try_charge() does
 * 1. detect memcg to be charged against from passed *mm and *ptr,
 * 2. update res_counter
 * 3. call memory reclaim if necessary.
 *
 * In some special case, if the task is fatal, fatal_signal_pending() or
 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
 * as possible without any hazards. 2: all pages should have a valid
 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
 * pointer, that is treated as a charge to root_mem_cgroup.
 *
 * So __mem_cgroup_try_charge() will return
 *  0       ...  on success, filling *ptr with a valid memcg pointer.
 *  -ENOMEM ...  charge failure because of resource limits.
 *  -EINTR  ...  if thread is fatal. *ptr is filled with root_mem_cgroup.
 *
 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
 * the oom-killer can be invoked.
2276
 */
2277
static int __mem_cgroup_try_charge(struct mm_struct *mm,
A
Andrea Arcangeli 已提交
2278
				   gfp_t gfp_mask,
2279
				   unsigned int nr_pages,
2280
				   struct mem_cgroup **ptr,
2281
				   bool oom)
2282
{
2283
	unsigned int batch = max(CHARGE_BATCH, nr_pages);
2284
	int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2285
	struct mem_cgroup *memcg = NULL;
2286
	int ret;
2287

K
KAMEZAWA Hiroyuki 已提交
2288 2289 2290 2291 2292 2293 2294 2295
	/*
	 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
	 * in system level. So, allow to go ahead dying process in addition to
	 * MEMDIE process.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE)
		     || fatal_signal_pending(current)))
		goto bypass;
2296

2297
	/*
2298 2299
	 * We always charge the cgroup the mm_struct belongs to.
	 * The mm_struct's mem_cgroup changes on task migration if the
2300 2301 2302
	 * thread group leader migrates. It's possible that mm is not
	 * set, if so charge the init_mm (happens for pagecache usage).
	 */
2303
	if (!*ptr && !mm)
2304
		*ptr = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
2305
again:
2306 2307 2308 2309
	if (*ptr) { /* css should be a valid one */
		memcg = *ptr;
		VM_BUG_ON(css_is_removed(&memcg->css));
		if (mem_cgroup_is_root(memcg))
K
KAMEZAWA Hiroyuki 已提交
2310
			goto done;
2311
		if (nr_pages == 1 && consume_stock(memcg))
K
KAMEZAWA Hiroyuki 已提交
2312
			goto done;
2313
		css_get(&memcg->css);
2314
	} else {
K
KAMEZAWA Hiroyuki 已提交
2315
		struct task_struct *p;
2316

K
KAMEZAWA Hiroyuki 已提交
2317 2318 2319
		rcu_read_lock();
		p = rcu_dereference(mm->owner);
		/*
2320
		 * Because we don't have task_lock(), "p" can exit.
2321
		 * In that case, "memcg" can point to root or p can be NULL with
2322 2323 2324 2325 2326 2327
		 * race with swapoff. Then, we have small risk of mis-accouning.
		 * But such kind of mis-account by race always happens because
		 * we don't have cgroup_mutex(). It's overkill and we allo that
		 * small race, here.
		 * (*) swapoff at el will charge against mm-struct not against
		 * task-struct. So, mm->owner can be NULL.
K
KAMEZAWA Hiroyuki 已提交
2328
		 */
2329
		memcg = mem_cgroup_from_task(p);
2330 2331 2332
		if (!memcg)
			memcg = root_mem_cgroup;
		if (mem_cgroup_is_root(memcg)) {
K
KAMEZAWA Hiroyuki 已提交
2333 2334 2335
			rcu_read_unlock();
			goto done;
		}
2336
		if (nr_pages == 1 && consume_stock(memcg)) {
K
KAMEZAWA Hiroyuki 已提交
2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348
			/*
			 * It seems dagerous to access memcg without css_get().
			 * But considering how consume_stok works, it's not
			 * necessary. If consume_stock success, some charges
			 * from this memcg are cached on this cpu. So, we
			 * don't need to call css_get()/css_tryget() before
			 * calling consume_stock().
			 */
			rcu_read_unlock();
			goto done;
		}
		/* after here, we may be blocked. we need to get refcnt */
2349
		if (!css_tryget(&memcg->css)) {
K
KAMEZAWA Hiroyuki 已提交
2350 2351 2352 2353 2354
			rcu_read_unlock();
			goto again;
		}
		rcu_read_unlock();
	}
2355

2356 2357
	do {
		bool oom_check;
2358

2359
		/* If killed, bypass charge */
K
KAMEZAWA Hiroyuki 已提交
2360
		if (fatal_signal_pending(current)) {
2361
			css_put(&memcg->css);
2362
			goto bypass;
K
KAMEZAWA Hiroyuki 已提交
2363
		}
2364

2365 2366 2367 2368
		oom_check = false;
		if (oom && !nr_oom_retries) {
			oom_check = true;
			nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2369
		}
2370

2371
		ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, oom_check);
2372 2373 2374 2375
		switch (ret) {
		case CHARGE_OK:
			break;
		case CHARGE_RETRY: /* not in OOM situation but retry */
2376
			batch = nr_pages;
2377 2378
			css_put(&memcg->css);
			memcg = NULL;
K
KAMEZAWA Hiroyuki 已提交
2379
			goto again;
2380
		case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2381
			css_put(&memcg->css);
2382 2383
			goto nomem;
		case CHARGE_NOMEM: /* OOM routine works */
K
KAMEZAWA Hiroyuki 已提交
2384
			if (!oom) {
2385
				css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
2386
				goto nomem;
K
KAMEZAWA Hiroyuki 已提交
2387
			}
2388 2389 2390 2391
			/* If oom, we never return -ENOMEM */
			nr_oom_retries--;
			break;
		case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2392
			css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
2393
			goto bypass;
2394
		}
2395 2396
	} while (ret != CHARGE_OK);

2397
	if (batch > nr_pages)
2398 2399
		refill_stock(memcg, batch - nr_pages);
	css_put(&memcg->css);
2400
done:
2401
	*ptr = memcg;
2402 2403
	return 0;
nomem:
2404
	*ptr = NULL;
2405
	return -ENOMEM;
K
KAMEZAWA Hiroyuki 已提交
2406
bypass:
2407 2408
	*ptr = root_mem_cgroup;
	return -EINTR;
2409
}
2410

2411 2412 2413 2414 2415
/*
 * Somemtimes we have to undo a charge we got by try_charge().
 * This function is for that and do uncharge, put css's refcnt.
 * gotten by try_charge().
 */
2416
static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2417
				       unsigned int nr_pages)
2418
{
2419
	if (!mem_cgroup_is_root(memcg)) {
2420 2421
		unsigned long bytes = nr_pages * PAGE_SIZE;

2422
		res_counter_uncharge(&memcg->res, bytes);
2423
		if (do_swap_account)
2424
			res_counter_uncharge(&memcg->memsw, bytes);
2425
	}
2426 2427
}

2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446
/*
 * A helper function to get mem_cgroup from ID. must be called under
 * rcu_read_lock(). The caller must check css_is_removed() or some if
 * it's concern. (dropping refcnt from swap can be called against removed
 * memcg.)
 */
static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
{
	struct cgroup_subsys_state *css;

	/* ID 0 is unused ID */
	if (!id)
		return NULL;
	css = css_lookup(&mem_cgroup_subsys, id);
	if (!css)
		return NULL;
	return container_of(css, struct mem_cgroup, css);
}

2447
struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2448
{
2449
	struct mem_cgroup *memcg = NULL;
2450
	struct page_cgroup *pc;
2451
	unsigned short id;
2452 2453
	swp_entry_t ent;

2454 2455 2456
	VM_BUG_ON(!PageLocked(page));

	pc = lookup_page_cgroup(page);
2457
	lock_page_cgroup(pc);
2458
	if (PageCgroupUsed(pc)) {
2459 2460 2461
		memcg = pc->mem_cgroup;
		if (memcg && !css_tryget(&memcg->css))
			memcg = NULL;
2462
	} else if (PageSwapCache(page)) {
2463
		ent.val = page_private(page);
2464
		id = lookup_swap_cgroup_id(ent);
2465
		rcu_read_lock();
2466 2467 2468
		memcg = mem_cgroup_lookup(id);
		if (memcg && !css_tryget(&memcg->css))
			memcg = NULL;
2469
		rcu_read_unlock();
2470
	}
2471
	unlock_page_cgroup(pc);
2472
	return memcg;
2473 2474
}

2475
static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2476
				       struct page *page,
2477
				       unsigned int nr_pages,
2478 2479
				       enum charge_type ctype,
				       bool lrucare)
2480
{
2481
	struct page_cgroup *pc = lookup_page_cgroup(page);
2482 2483
	struct zone *uninitialized_var(zone);
	bool was_on_lru = false;
2484
	bool anon;
2485

2486 2487 2488
	lock_page_cgroup(pc);
	if (unlikely(PageCgroupUsed(pc))) {
		unlock_page_cgroup(pc);
2489
		__mem_cgroup_cancel_charge(memcg, nr_pages);
2490 2491 2492 2493 2494 2495
		return;
	}
	/*
	 * we don't need page_cgroup_lock about tail pages, becase they are not
	 * accessed by any other context at this point.
	 */
2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510

	/*
	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
	 * may already be on some other mem_cgroup's LRU.  Take care of it.
	 */
	if (lrucare) {
		zone = page_zone(page);
		spin_lock_irq(&zone->lru_lock);
		if (PageLRU(page)) {
			ClearPageLRU(page);
			del_page_from_lru_list(zone, page, page_lru(page));
			was_on_lru = true;
		}
	}

2511
	pc->mem_cgroup = memcg;
2512 2513 2514 2515 2516 2517 2518
	/*
	 * We access a page_cgroup asynchronously without lock_page_cgroup().
	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
	 * before USED bit, we need memory barrier here.
	 * See mem_cgroup_add_lru_list(), etc.
 	 */
K
KAMEZAWA Hiroyuki 已提交
2519
	smp_wmb();
2520
	SetPageCgroupUsed(pc);
2521

2522 2523 2524 2525 2526 2527 2528 2529 2530
	if (lrucare) {
		if (was_on_lru) {
			VM_BUG_ON(PageLRU(page));
			SetPageLRU(page);
			add_page_to_lru_list(zone, page, page_lru(page));
		}
		spin_unlock_irq(&zone->lru_lock);
	}

2531 2532 2533 2534 2535 2536
	if (ctype == MEM_CGROUP_CHARGE_TYPE_MAPPED)
		anon = true;
	else
		anon = false;

	mem_cgroup_charge_statistics(memcg, anon, nr_pages);
2537
	unlock_page_cgroup(pc);
2538

2539 2540 2541 2542 2543
	/*
	 * "charge_statistics" updated event counter. Then, check it.
	 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
	 * if they exceeds softlimit.
	 */
2544
	memcg_check_events(memcg, page);
2545
}
2546

2547 2548
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

2549
#define PCGF_NOCOPY_AT_SPLIT ((1 << PCG_LOCK) | (1 << PCG_MIGRATION))
2550 2551
/*
 * Because tail pages are not marked as "used", set it. We're under
2552 2553 2554
 * zone->lru_lock, 'splitting on pmd' and compound_lock.
 * charge/uncharge will be never happen and move_account() is done under
 * compound_lock(), so we don't have to take care of races.
2555
 */
2556
void mem_cgroup_split_huge_fixup(struct page *head)
2557 2558
{
	struct page_cgroup *head_pc = lookup_page_cgroup(head);
2559 2560
	struct page_cgroup *pc;
	int i;
2561

2562 2563
	if (mem_cgroup_disabled())
		return;
2564 2565 2566 2567 2568 2569
	for (i = 1; i < HPAGE_PMD_NR; i++) {
		pc = head_pc + i;
		pc->mem_cgroup = head_pc->mem_cgroup;
		smp_wmb();/* see __commit_charge() */
		pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
	}
2570
}
2571
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2572

2573
/**
2574
 * mem_cgroup_move_account - move account of the page
2575
 * @page: the page
2576
 * @nr_pages: number of regular pages (>1 for huge pages)
2577 2578 2579
 * @pc:	page_cgroup of the page.
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
2580
 * @uncharge: whether we should call uncharge and css_put against @from.
2581 2582
 *
 * The caller must confirm following.
K
KAMEZAWA Hiroyuki 已提交
2583
 * - page is not on LRU (isolate_page() is useful.)
2584
 * - compound_lock is held when nr_pages > 1
2585
 *
2586
 * This function doesn't do "charge" nor css_get to new cgroup. It should be
L
Lucas De Marchi 已提交
2587
 * done by a caller(__mem_cgroup_try_charge would be useful). If @uncharge is
2588 2589
 * true, this function does "uncharge" from old cgroup, but it doesn't if
 * @uncharge is false, so a caller should do "uncharge".
2590
 */
2591 2592 2593 2594 2595 2596
static int mem_cgroup_move_account(struct page *page,
				   unsigned int nr_pages,
				   struct page_cgroup *pc,
				   struct mem_cgroup *from,
				   struct mem_cgroup *to,
				   bool uncharge)
2597
{
2598 2599
	unsigned long flags;
	int ret;
2600
	bool anon = PageAnon(page);
2601

2602
	VM_BUG_ON(from == to);
2603
	VM_BUG_ON(PageLRU(page));
2604 2605 2606 2607 2608 2609 2610
	/*
	 * The page is isolated from LRU. So, collapse function
	 * will not handle this page. But page splitting can happen.
	 * Do this check under compound_page_lock(). The caller should
	 * hold it.
	 */
	ret = -EBUSY;
2611
	if (nr_pages > 1 && !PageTransHuge(page))
2612 2613 2614 2615 2616 2617 2618 2619
		goto out;

	lock_page_cgroup(pc);

	ret = -EINVAL;
	if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
		goto unlock;

2620
	move_lock_mem_cgroup(from, &flags);
2621

2622
	if (!anon && page_mapped(page)) {
2623 2624 2625 2626 2627
		/* Update mapped_file data for mem_cgroup */
		preempt_disable();
		__this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		__this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		preempt_enable();
2628
	}
2629
	mem_cgroup_charge_statistics(from, anon, -nr_pages);
2630 2631
	if (uncharge)
		/* This is not "cancel", but cancel_charge does all we need. */
2632
		__mem_cgroup_cancel_charge(from, nr_pages);
2633

2634
	/* caller should have done css_get */
K
KAMEZAWA Hiroyuki 已提交
2635
	pc->mem_cgroup = to;
2636
	mem_cgroup_charge_statistics(to, anon, nr_pages);
2637 2638 2639
	/*
	 * We charges against "to" which may not have any tasks. Then, "to"
	 * can be under rmdir(). But in current implementation, caller of
2640
	 * this function is just force_empty() and move charge, so it's
L
Lucas De Marchi 已提交
2641
	 * guaranteed that "to" is never removed. So, we don't check rmdir
2642
	 * status here.
2643
	 */
2644
	move_unlock_mem_cgroup(from, &flags);
2645 2646
	ret = 0;
unlock:
2647
	unlock_page_cgroup(pc);
2648 2649 2650
	/*
	 * check events
	 */
2651 2652
	memcg_check_events(to, page);
	memcg_check_events(from, page);
2653
out:
2654 2655 2656 2657 2658 2659 2660
	return ret;
}

/*
 * move charges to its parent.
 */

2661 2662
static int mem_cgroup_move_parent(struct page *page,
				  struct page_cgroup *pc,
2663 2664 2665 2666 2667 2668
				  struct mem_cgroup *child,
				  gfp_t gfp_mask)
{
	struct cgroup *cg = child->css.cgroup;
	struct cgroup *pcg = cg->parent;
	struct mem_cgroup *parent;
2669
	unsigned int nr_pages;
2670
	unsigned long uninitialized_var(flags);
2671 2672 2673 2674 2675 2676
	int ret;

	/* Is ROOT ? */
	if (!pcg)
		return -EINVAL;

2677 2678 2679 2680 2681
	ret = -EBUSY;
	if (!get_page_unless_zero(page))
		goto out;
	if (isolate_lru_page(page))
		goto put;
2682

2683
	nr_pages = hpage_nr_pages(page);
K
KAMEZAWA Hiroyuki 已提交
2684

2685
	parent = mem_cgroup_from_cont(pcg);
2686
	ret = __mem_cgroup_try_charge(NULL, gfp_mask, nr_pages, &parent, false);
2687
	if (ret)
2688
		goto put_back;
2689

2690
	if (nr_pages > 1)
2691 2692
		flags = compound_lock_irqsave(page);

2693
	ret = mem_cgroup_move_account(page, nr_pages, pc, child, parent, true);
2694
	if (ret)
2695
		__mem_cgroup_cancel_charge(parent, nr_pages);
2696

2697
	if (nr_pages > 1)
2698
		compound_unlock_irqrestore(page, flags);
2699
put_back:
K
KAMEZAWA Hiroyuki 已提交
2700
	putback_lru_page(page);
2701
put:
2702
	put_page(page);
2703
out:
2704 2705 2706
	return ret;
}

2707 2708 2709 2710 2711 2712 2713
/*
 * Charge the memory controller for page usage.
 * Return
 * 0 if the charge was successful
 * < 0 if the cgroup is over its limit
 */
static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
2714
				gfp_t gfp_mask, enum charge_type ctype)
2715
{
2716
	struct mem_cgroup *memcg = NULL;
2717
	unsigned int nr_pages = 1;
2718
	bool oom = true;
2719
	int ret;
A
Andrea Arcangeli 已提交
2720

A
Andrea Arcangeli 已提交
2721
	if (PageTransHuge(page)) {
2722
		nr_pages <<= compound_order(page);
A
Andrea Arcangeli 已提交
2723
		VM_BUG_ON(!PageTransHuge(page));
2724 2725 2726 2727 2728
		/*
		 * Never OOM-kill a process for a huge page.  The
		 * fault handler will fall back to regular pages.
		 */
		oom = false;
A
Andrea Arcangeli 已提交
2729
	}
2730

2731
	ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
2732
	if (ret == -ENOMEM)
2733
		return ret;
2734
	__mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
2735 2736 2737
	return 0;
}

2738 2739
int mem_cgroup_newpage_charge(struct page *page,
			      struct mm_struct *mm, gfp_t gfp_mask)
2740
{
2741
	if (mem_cgroup_disabled())
2742
		return 0;
2743 2744 2745
	VM_BUG_ON(page_mapped(page));
	VM_BUG_ON(page->mapping && !PageAnon(page));
	VM_BUG_ON(!mm);
2746
	return mem_cgroup_charge_common(page, mm, gfp_mask,
2747
					MEM_CGROUP_CHARGE_TYPE_MAPPED);
2748 2749
}

D
Daisuke Nishimura 已提交
2750 2751 2752 2753
static void
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
					enum charge_type ctype);

2754 2755
int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
				gfp_t gfp_mask)
2756
{
2757
	struct mem_cgroup *memcg = NULL;
2758
	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
2759 2760
	int ret;

2761
	if (mem_cgroup_disabled())
2762
		return 0;
2763 2764
	if (PageCompound(page))
		return 0;
2765

2766
	if (unlikely(!mm))
2767
		mm = &init_mm;
2768 2769
	if (!page_is_file_cache(page))
		type = MEM_CGROUP_CHARGE_TYPE_SHMEM;
2770

2771
	if (!PageSwapCache(page))
2772
		ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
2773
	else { /* page is swapcache/shmem */
2774
		ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &memcg);
D
Daisuke Nishimura 已提交
2775
		if (!ret)
2776 2777
			__mem_cgroup_commit_charge_swapin(page, memcg, type);
	}
2778
	return ret;
2779 2780
}

2781 2782 2783
/*
 * While swap-in, try_charge -> commit or cancel, the page is locked.
 * And when try_charge() successfully returns, one refcnt to memcg without
2784
 * struct page_cgroup is acquired. This refcnt will be consumed by
2785 2786
 * "commit()" or removed by "cancel()"
 */
2787 2788
int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
				 struct page *page,
2789
				 gfp_t mask, struct mem_cgroup **memcgp)
2790
{
2791
	struct mem_cgroup *memcg;
2792
	int ret;
2793

2794
	*memcgp = NULL;
2795

2796
	if (mem_cgroup_disabled())
2797 2798 2799 2800 2801 2802
		return 0;

	if (!do_swap_account)
		goto charge_cur_mm;
	/*
	 * A racing thread's fault, or swapoff, may have already updated
H
Hugh Dickins 已提交
2803 2804 2805
	 * the pte, and even removed page from swap cache: in those cases
	 * do_swap_page()'s pte_same() test will fail; but there's also a
	 * KSM case which does need to charge the page.
2806 2807
	 */
	if (!PageSwapCache(page))
H
Hugh Dickins 已提交
2808
		goto charge_cur_mm;
2809 2810
	memcg = try_get_mem_cgroup_from_page(page);
	if (!memcg)
2811
		goto charge_cur_mm;
2812 2813
	*memcgp = memcg;
	ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
2814
	css_put(&memcg->css);
2815 2816
	if (ret == -EINTR)
		ret = 0;
2817
	return ret;
2818 2819 2820
charge_cur_mm:
	if (unlikely(!mm))
		mm = &init_mm;
2821 2822 2823 2824
	ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
	if (ret == -EINTR)
		ret = 0;
	return ret;
2825 2826
}

D
Daisuke Nishimura 已提交
2827
static void
2828
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
D
Daisuke Nishimura 已提交
2829
					enum charge_type ctype)
2830
{
2831
	if (mem_cgroup_disabled())
2832
		return;
2833
	if (!memcg)
2834
		return;
2835
	cgroup_exclude_rmdir(&memcg->css);
2836

2837
	__mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
2838 2839 2840
	/*
	 * Now swap is on-memory. This means this page may be
	 * counted both as mem and swap....double count.
2841 2842 2843
	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
	 * may call delete_from_swap_cache() before reach here.
2844
	 */
2845
	if (do_swap_account && PageSwapCache(page)) {
2846
		swp_entry_t ent = {.val = page_private(page)};
2847
		mem_cgroup_uncharge_swap(ent);
2848
	}
2849 2850 2851 2852 2853
	/*
	 * At swapin, we may charge account against cgroup which has no tasks.
	 * So, rmdir()->pre_destroy() can be called while we do this charge.
	 * In that case, we need to call pre_destroy() again. check it here.
	 */
2854
	cgroup_release_and_wakeup_rmdir(&memcg->css);
2855 2856
}

2857 2858
void mem_cgroup_commit_charge_swapin(struct page *page,
				     struct mem_cgroup *memcg)
D
Daisuke Nishimura 已提交
2859
{
2860 2861
	__mem_cgroup_commit_charge_swapin(page, memcg,
					  MEM_CGROUP_CHARGE_TYPE_MAPPED);
D
Daisuke Nishimura 已提交
2862 2863
}

2864
void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
2865
{
2866
	if (mem_cgroup_disabled())
2867
		return;
2868
	if (!memcg)
2869
		return;
2870
	__mem_cgroup_cancel_charge(memcg, 1);
2871 2872
}

2873
static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
2874 2875
				   unsigned int nr_pages,
				   const enum charge_type ctype)
2876 2877 2878
{
	struct memcg_batch_info *batch = NULL;
	bool uncharge_memsw = true;
2879

2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890
	/* If swapout, usage of swap doesn't decrease */
	if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
		uncharge_memsw = false;

	batch = &current->memcg_batch;
	/*
	 * In usual, we do css_get() when we remember memcg pointer.
	 * But in this case, we keep res->usage until end of a series of
	 * uncharges. Then, it's ok to ignore memcg's refcnt.
	 */
	if (!batch->memcg)
2891
		batch->memcg = memcg;
2892 2893
	/*
	 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
L
Lucas De Marchi 已提交
2894
	 * In those cases, all pages freed continuously can be expected to be in
2895 2896 2897 2898 2899 2900 2901 2902
	 * the same cgroup and we have chance to coalesce uncharges.
	 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
	 * because we want to do uncharge as soon as possible.
	 */

	if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
		goto direct_uncharge;

2903
	if (nr_pages > 1)
A
Andrea Arcangeli 已提交
2904 2905
		goto direct_uncharge;

2906 2907 2908 2909 2910
	/*
	 * In typical case, batch->memcg == mem. This means we can
	 * merge a series of uncharges to an uncharge of res_counter.
	 * If not, we uncharge res_counter ony by one.
	 */
2911
	if (batch->memcg != memcg)
2912 2913
		goto direct_uncharge;
	/* remember freed charge and uncharge it later */
2914
	batch->nr_pages++;
2915
	if (uncharge_memsw)
2916
		batch->memsw_nr_pages++;
2917 2918
	return;
direct_uncharge:
2919
	res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
2920
	if (uncharge_memsw)
2921 2922 2923
		res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
	if (unlikely(batch->memcg != memcg))
		memcg_oom_recover(memcg);
2924
}
2925

2926
/*
2927
 * uncharge if !page_mapped(page)
2928
 */
2929
static struct mem_cgroup *
2930
__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
2931
{
2932
	struct mem_cgroup *memcg = NULL;
2933 2934
	unsigned int nr_pages = 1;
	struct page_cgroup *pc;
2935
	bool anon;
2936

2937
	if (mem_cgroup_disabled())
2938
		return NULL;
2939

K
KAMEZAWA Hiroyuki 已提交
2940
	if (PageSwapCache(page))
2941
		return NULL;
K
KAMEZAWA Hiroyuki 已提交
2942

A
Andrea Arcangeli 已提交
2943
	if (PageTransHuge(page)) {
2944
		nr_pages <<= compound_order(page);
A
Andrea Arcangeli 已提交
2945 2946
		VM_BUG_ON(!PageTransHuge(page));
	}
2947
	/*
2948
	 * Check if our page_cgroup is valid
2949
	 */
2950
	pc = lookup_page_cgroup(page);
2951
	if (unlikely(!PageCgroupUsed(pc)))
2952
		return NULL;
2953

2954
	lock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
2955

2956
	memcg = pc->mem_cgroup;
2957

K
KAMEZAWA Hiroyuki 已提交
2958 2959 2960
	if (!PageCgroupUsed(pc))
		goto unlock_out;

2961 2962
	anon = PageAnon(page);

K
KAMEZAWA Hiroyuki 已提交
2963 2964
	switch (ctype) {
	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2965 2966 2967 2968 2969
		/*
		 * Generally PageAnon tells if it's the anon statistics to be
		 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
		 * used before page reached the stage of being marked PageAnon.
		 */
2970 2971
		anon = true;
		/* fallthrough */
K
KAMEZAWA Hiroyuki 已提交
2972
	case MEM_CGROUP_CHARGE_TYPE_DROP:
2973 2974
		/* See mem_cgroup_prepare_migration() */
		if (page_mapped(page) || PageCgroupMigration(pc))
K
KAMEZAWA Hiroyuki 已提交
2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985
			goto unlock_out;
		break;
	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
		if (!PageAnon(page)) {	/* Shared memory */
			if (page->mapping && !page_is_file_cache(page))
				goto unlock_out;
		} else if (page_mapped(page)) /* Anon */
				goto unlock_out;
		break;
	default:
		break;
2986
	}
K
KAMEZAWA Hiroyuki 已提交
2987

2988
	mem_cgroup_charge_statistics(memcg, anon, -nr_pages);
K
KAMEZAWA Hiroyuki 已提交
2989

2990
	ClearPageCgroupUsed(pc);
2991 2992 2993 2994 2995 2996
	/*
	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
	 * freed from LRU. This is safe because uncharged page is expected not
	 * to be reused (freed soon). Exception is SwapCache, it's handled by
	 * special functions.
	 */
2997

2998
	unlock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
2999
	/*
3000
	 * even after unlock, we have memcg->res.usage here and this memcg
K
KAMEZAWA Hiroyuki 已提交
3001 3002
	 * will never be freed.
	 */
3003
	memcg_check_events(memcg, page);
K
KAMEZAWA Hiroyuki 已提交
3004
	if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
3005 3006
		mem_cgroup_swap_statistics(memcg, true);
		mem_cgroup_get(memcg);
K
KAMEZAWA Hiroyuki 已提交
3007
	}
3008 3009
	if (!mem_cgroup_is_root(memcg))
		mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
3010

3011
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
3012 3013 3014

unlock_out:
	unlock_page_cgroup(pc);
3015
	return NULL;
3016 3017
}

3018 3019
void mem_cgroup_uncharge_page(struct page *page)
{
3020 3021 3022
	/* early check. */
	if (page_mapped(page))
		return;
3023
	VM_BUG_ON(page->mapping && !PageAnon(page));
3024 3025 3026 3027 3028 3029
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
}

void mem_cgroup_uncharge_cache_page(struct page *page)
{
	VM_BUG_ON(page_mapped(page));
3030
	VM_BUG_ON(page->mapping);
3031 3032 3033
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
}

3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047
/*
 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
 * In that cases, pages are freed continuously and we can expect pages
 * are in the same memcg. All these calls itself limits the number of
 * pages freed at once, then uncharge_start/end() is called properly.
 * This may be called prural(2) times in a context,
 */

void mem_cgroup_uncharge_start(void)
{
	current->memcg_batch.do_batch++;
	/* We can do nest. */
	if (current->memcg_batch.do_batch == 1) {
		current->memcg_batch.memcg = NULL;
3048 3049
		current->memcg_batch.nr_pages = 0;
		current->memcg_batch.memsw_nr_pages = 0;
3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069
	}
}

void mem_cgroup_uncharge_end(void)
{
	struct memcg_batch_info *batch = &current->memcg_batch;

	if (!batch->do_batch)
		return;

	batch->do_batch--;
	if (batch->do_batch) /* If stacked, do nothing. */
		return;

	if (!batch->memcg)
		return;
	/*
	 * This "batch->memcg" is valid without any css_get/put etc...
	 * bacause we hide charges behind us.
	 */
3070 3071 3072 3073 3074 3075
	if (batch->nr_pages)
		res_counter_uncharge(&batch->memcg->res,
				     batch->nr_pages * PAGE_SIZE);
	if (batch->memsw_nr_pages)
		res_counter_uncharge(&batch->memcg->memsw,
				     batch->memsw_nr_pages * PAGE_SIZE);
3076
	memcg_oom_recover(batch->memcg);
3077 3078 3079 3080
	/* forget this pointer (for sanity check) */
	batch->memcg = NULL;
}

3081
#ifdef CONFIG_SWAP
3082
/*
3083
 * called after __delete_from_swap_cache() and drop "page" account.
3084 3085
 * memcg information is recorded to swap_cgroup of "ent"
 */
K
KAMEZAWA Hiroyuki 已提交
3086 3087
void
mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
3088 3089
{
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
3090 3091 3092 3093 3094 3095
	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;

	if (!swapout) /* this was a swap cache but the swap is unused ! */
		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;

	memcg = __mem_cgroup_uncharge_common(page, ctype);
3096

K
KAMEZAWA Hiroyuki 已提交
3097 3098 3099 3100 3101
	/*
	 * record memcg information,  if swapout && memcg != NULL,
	 * mem_cgroup_get() was called in uncharge().
	 */
	if (do_swap_account && swapout && memcg)
3102
		swap_cgroup_record(ent, css_id(&memcg->css));
3103
}
3104
#endif
3105 3106 3107 3108 3109 3110 3111

#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
/*
 * called from swap_entry_free(). remove record in swap_cgroup and
 * uncharge "memsw" account.
 */
void mem_cgroup_uncharge_swap(swp_entry_t ent)
K
KAMEZAWA Hiroyuki 已提交
3112
{
3113
	struct mem_cgroup *memcg;
3114
	unsigned short id;
3115 3116 3117 3118

	if (!do_swap_account)
		return;

3119 3120 3121
	id = swap_cgroup_record(ent, 0);
	rcu_read_lock();
	memcg = mem_cgroup_lookup(id);
3122
	if (memcg) {
3123 3124 3125 3126
		/*
		 * We uncharge this because swap is freed.
		 * This memcg can be obsolete one. We avoid calling css_tryget
		 */
3127
		if (!mem_cgroup_is_root(memcg))
3128
			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
3129
		mem_cgroup_swap_statistics(memcg, false);
3130 3131
		mem_cgroup_put(memcg);
	}
3132
	rcu_read_unlock();
K
KAMEZAWA Hiroyuki 已提交
3133
}
3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149

/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
 * The caller must have charged to @to, IOW, called res_counter_charge() about
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
3150
				struct mem_cgroup *from, struct mem_cgroup *to)
3151 3152 3153 3154 3155 3156 3157 3158
{
	unsigned short old_id, new_id;

	old_id = css_id(&from->css);
	new_id = css_id(&to->css);

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
		mem_cgroup_swap_statistics(from, false);
3159
		mem_cgroup_swap_statistics(to, true);
3160
		/*
3161 3162 3163 3164 3165 3166
		 * This function is only called from task migration context now.
		 * It postpones res_counter and refcount handling till the end
		 * of task migration(mem_cgroup_clear_mc()) for performance
		 * improvement. But we cannot postpone mem_cgroup_get(to)
		 * because if the process that has been moved to @to does
		 * swap-in, the refcount of @to might be decreased to 0.
3167 3168 3169 3170 3171 3172 3173 3174
		 */
		mem_cgroup_get(to);
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3175
				struct mem_cgroup *from, struct mem_cgroup *to)
3176 3177 3178
{
	return -EINVAL;
}
3179
#endif
K
KAMEZAWA Hiroyuki 已提交
3180

3181
/*
3182 3183
 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
 * page belongs to.
3184
 */
3185
int mem_cgroup_prepare_migration(struct page *page,
3186
	struct page *newpage, struct mem_cgroup **memcgp, gfp_t gfp_mask)
3187
{
3188
	struct mem_cgroup *memcg = NULL;
3189
	struct page_cgroup *pc;
3190
	enum charge_type ctype;
3191
	int ret = 0;
3192

3193
	*memcgp = NULL;
3194

A
Andrea Arcangeli 已提交
3195
	VM_BUG_ON(PageTransHuge(page));
3196
	if (mem_cgroup_disabled())
3197 3198
		return 0;

3199 3200 3201
	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
3202 3203
		memcg = pc->mem_cgroup;
		css_get(&memcg->css);
3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234
		/*
		 * At migrating an anonymous page, its mapcount goes down
		 * to 0 and uncharge() will be called. But, even if it's fully
		 * unmapped, migration may fail and this page has to be
		 * charged again. We set MIGRATION flag here and delay uncharge
		 * until end_migration() is called
		 *
		 * Corner Case Thinking
		 * A)
		 * When the old page was mapped as Anon and it's unmap-and-freed
		 * while migration was ongoing.
		 * If unmap finds the old page, uncharge() of it will be delayed
		 * until end_migration(). If unmap finds a new page, it's
		 * uncharged when it make mapcount to be 1->0. If unmap code
		 * finds swap_migration_entry, the new page will not be mapped
		 * and end_migration() will find it(mapcount==0).
		 *
		 * B)
		 * When the old page was mapped but migraion fails, the kernel
		 * remaps it. A charge for it is kept by MIGRATION flag even
		 * if mapcount goes down to 0. We can do remap successfully
		 * without charging it again.
		 *
		 * C)
		 * The "old" page is under lock_page() until the end of
		 * migration, so, the old page itself will not be swapped-out.
		 * If the new page is swapped out before end_migraton, our
		 * hook to usual swap-out path will catch the event.
		 */
		if (PageAnon(page))
			SetPageCgroupMigration(pc);
3235
	}
3236
	unlock_page_cgroup(pc);
3237 3238 3239 3240
	/*
	 * If the page is not charged at this point,
	 * we return here.
	 */
3241
	if (!memcg)
3242
		return 0;
3243

3244 3245
	*memcgp = memcg;
	ret = __mem_cgroup_try_charge(NULL, gfp_mask, 1, memcgp, false);
3246
	css_put(&memcg->css);/* drop extra refcnt */
3247
	if (ret) {
3248 3249 3250 3251 3252 3253 3254 3255 3256
		if (PageAnon(page)) {
			lock_page_cgroup(pc);
			ClearPageCgroupMigration(pc);
			unlock_page_cgroup(pc);
			/*
			 * The old page may be fully unmapped while we kept it.
			 */
			mem_cgroup_uncharge_page(page);
		}
3257
		/* we'll need to revisit this error code (we have -EINTR) */
3258
		return -ENOMEM;
3259
	}
3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271
	/*
	 * We charge new page before it's used/mapped. So, even if unlock_page()
	 * is called before end_migration, we can catch all events on this new
	 * page. In the case new page is migrated but not remapped, new page's
	 * mapcount will be finally 0 and we call uncharge in end_migration().
	 */
	if (PageAnon(page))
		ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
	else if (page_is_file_cache(page))
		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
	else
		ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
3272
	__mem_cgroup_commit_charge(memcg, newpage, 1, ctype, false);
3273
	return ret;
3274
}
3275

3276
/* remove redundant charge if migration failed*/
3277
void mem_cgroup_end_migration(struct mem_cgroup *memcg,
3278
	struct page *oldpage, struct page *newpage, bool migration_ok)
3279
{
3280
	struct page *used, *unused;
3281
	struct page_cgroup *pc;
3282
	bool anon;
3283

3284
	if (!memcg)
3285
		return;
3286
	/* blocks rmdir() */
3287
	cgroup_exclude_rmdir(&memcg->css);
3288
	if (!migration_ok) {
3289 3290
		used = oldpage;
		unused = newpage;
3291
	} else {
3292
		used = newpage;
3293 3294
		unused = oldpage;
	}
3295
	/*
3296 3297 3298
	 * We disallowed uncharge of pages under migration because mapcount
	 * of the page goes down to zero, temporarly.
	 * Clear the flag and check the page should be charged.
3299
	 */
3300 3301 3302 3303
	pc = lookup_page_cgroup(oldpage);
	lock_page_cgroup(pc);
	ClearPageCgroupMigration(pc);
	unlock_page_cgroup(pc);
3304 3305 3306 3307
	anon = PageAnon(used);
	__mem_cgroup_uncharge_common(unused,
		anon ? MEM_CGROUP_CHARGE_TYPE_MAPPED
		     : MEM_CGROUP_CHARGE_TYPE_CACHE);
3308

3309
	/*
3310 3311 3312 3313 3314 3315
	 * If a page is a file cache, radix-tree replacement is very atomic
	 * and we can skip this check. When it was an Anon page, its mapcount
	 * goes down to 0. But because we added MIGRATION flage, it's not
	 * uncharged yet. There are several case but page->mapcount check
	 * and USED bit check in mem_cgroup_uncharge_page() will do enough
	 * check. (see prepare_charge() also)
3316
	 */
3317
	if (anon)
3318
		mem_cgroup_uncharge_page(used);
3319
	/*
3320 3321
	 * At migration, we may charge account against cgroup which has no
	 * tasks.
3322 3323 3324
	 * So, rmdir()->pre_destroy() can be called while we do this charge.
	 * In that case, we need to call pre_destroy() again. check it here.
	 */
3325
	cgroup_release_and_wakeup_rmdir(&memcg->css);
3326
}
3327

3328 3329 3330 3331 3332 3333 3334 3335
/*
 * At replace page cache, newpage is not under any memcg but it's on
 * LRU. So, this function doesn't touch res_counter but handles LRU
 * in correct way. Both pages are locked so we cannot race with uncharge.
 */
void mem_cgroup_replace_page_cache(struct page *oldpage,
				  struct page *newpage)
{
3336
	struct mem_cgroup *memcg = NULL;
3337 3338 3339 3340 3341 3342 3343 3344 3345
	struct page_cgroup *pc;
	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;

	if (mem_cgroup_disabled())
		return;

	pc = lookup_page_cgroup(oldpage);
	/* fix accounting on old pages */
	lock_page_cgroup(pc);
3346 3347 3348 3349 3350
	if (PageCgroupUsed(pc)) {
		memcg = pc->mem_cgroup;
		mem_cgroup_charge_statistics(memcg, false, -1);
		ClearPageCgroupUsed(pc);
	}
3351 3352
	unlock_page_cgroup(pc);

3353 3354 3355 3356 3357 3358 3359
	/*
	 * When called from shmem_replace_page(), in some cases the
	 * oldpage has already been charged, and in some cases not.
	 */
	if (!memcg)
		return;

3360 3361 3362 3363 3364 3365 3366 3367
	if (PageSwapBacked(oldpage))
		type = MEM_CGROUP_CHARGE_TYPE_SHMEM;

	/*
	 * Even if newpage->mapping was NULL before starting replacement,
	 * the newpage may be on LRU(or pagevec for LRU) already. We lock
	 * LRU while we overwrite pc->mem_cgroup.
	 */
3368
	__mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
3369 3370
}

3371 3372 3373 3374 3375 3376
#ifdef CONFIG_DEBUG_VM
static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
3377 3378 3379 3380 3381
	/*
	 * Can be NULL while feeding pages into the page allocator for
	 * the first time, i.e. during boot or memory hotplug;
	 * or when mem_cgroup_disabled().
	 */
3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400
	if (likely(pc) && PageCgroupUsed(pc))
		return pc;
	return NULL;
}

bool mem_cgroup_bad_page_check(struct page *page)
{
	if (mem_cgroup_disabled())
		return false;

	return lookup_page_cgroup_used(page) != NULL;
}

void mem_cgroup_print_bad_page(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup_used(page);
	if (pc) {
3401
		printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
3402 3403 3404 3405 3406
		       pc, pc->flags, pc->mem_cgroup);
	}
}
#endif

3407 3408
static DEFINE_MUTEX(set_limit_mutex);

3409
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3410
				unsigned long long val)
3411
{
3412
	int retry_count;
3413
	u64 memswlimit, memlimit;
3414
	int ret = 0;
3415 3416
	int children = mem_cgroup_count_children(memcg);
	u64 curusage, oldusage;
3417
	int enlarge;
3418 3419 3420 3421 3422 3423 3424 3425 3426

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;

	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3427

3428
	enlarge = 0;
3429
	while (retry_count) {
3430 3431 3432 3433
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
3434 3435 3436
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
3437
		 * We have to guarantee memcg->res.limit < memcg->memsw.limit.
3438 3439 3440 3441 3442 3443
		 */
		mutex_lock(&set_limit_mutex);
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
3444 3445
			break;
		}
3446 3447 3448 3449 3450

		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit < val)
			enlarge = 1;

3451
		ret = res_counter_set_limit(&memcg->res, val);
3452 3453 3454 3455 3456 3457
		if (!ret) {
			if (memswlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
3458 3459 3460 3461 3462
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

3463 3464
		mem_cgroup_reclaim(memcg, GFP_KERNEL,
				   MEM_CGROUP_RECLAIM_SHRINK);
3465 3466 3467 3468 3469 3470
		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
		/* Usage is reduced ? */
  		if (curusage >= oldusage)
			retry_count--;
		else
			oldusage = curusage;
3471
	}
3472 3473
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
3474

3475 3476 3477
	return ret;
}

L
Li Zefan 已提交
3478 3479
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
					unsigned long long val)
3480
{
3481
	int retry_count;
3482
	u64 memlimit, memswlimit, oldusage, curusage;
3483 3484
	int children = mem_cgroup_count_children(memcg);
	int ret = -EBUSY;
3485
	int enlarge = 0;
3486

3487 3488 3489
	/* see mem_cgroup_resize_res_limit */
 	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3490 3491 3492 3493 3494 3495 3496 3497
	while (retry_count) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
3498
		 * We have to guarantee memcg->res.limit < memcg->memsw.limit.
3499 3500 3501 3502 3503 3504 3505 3506
		 */
		mutex_lock(&set_limit_mutex);
		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit > val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
			break;
		}
3507 3508 3509
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val)
			enlarge = 1;
3510
		ret = res_counter_set_limit(&memcg->memsw, val);
3511 3512 3513 3514 3515 3516
		if (!ret) {
			if (memlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
3517 3518 3519 3520 3521
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

3522 3523 3524
		mem_cgroup_reclaim(memcg, GFP_KERNEL,
				   MEM_CGROUP_RECLAIM_NOSWAP |
				   MEM_CGROUP_RECLAIM_SHRINK);
3525
		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3526
		/* Usage is reduced ? */
3527
		if (curusage >= oldusage)
3528
			retry_count--;
3529 3530
		else
			oldusage = curusage;
3531
	}
3532 3533
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
3534 3535 3536
	return ret;
}

3537
unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3538 3539
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
3540 3541 3542 3543 3544 3545
{
	unsigned long nr_reclaimed = 0;
	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
	unsigned long reclaimed;
	int loop = 0;
	struct mem_cgroup_tree_per_zone *mctz;
3546
	unsigned long long excess;
3547
	unsigned long nr_scanned;
3548 3549 3550 3551

	if (order > 0)
		return 0;

3552
	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

3566
		nr_scanned = 0;
3567
		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
3568
						    gfp_mask, &nr_scanned);
3569
		nr_reclaimed += reclaimed;
3570
		*total_scanned += nr_scanned;
3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592
		spin_lock(&mctz->lock);

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
		if (!reclaimed) {
			do {
				/*
				 * Loop until we find yet another one.
				 *
				 * By the time we get the soft_limit lock
				 * again, someone might have aded the
				 * group back on the RB tree. Iterate to
				 * make sure we get a different mem.
				 * mem_cgroup_largest_soft_limit_node returns
				 * NULL if no other cgroup is present on
				 * the tree
				 */
				next_mz =
				__mem_cgroup_largest_soft_limit_node(mctz);
3593
				if (next_mz == mz)
3594
					css_put(&next_mz->memcg->css);
3595
				else /* next_mz == NULL or other memcg */
3596 3597 3598
					break;
			} while (1);
		}
3599 3600
		__mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
		excess = res_counter_soft_limit_excess(&mz->memcg->res);
3601 3602 3603 3604 3605 3606 3607 3608
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
3609
		/* If excess == 0, no tree ops */
3610
		__mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
3611
		spin_unlock(&mctz->lock);
3612
		css_put(&mz->memcg->css);
3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
3625
		css_put(&next_mz->memcg->css);
3626 3627 3628
	return nr_reclaimed;
}

3629 3630 3631 3632
/*
 * This routine traverse page_cgroup in given list and drop them all.
 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
 */
3633
static int mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
K
KAMEZAWA Hiroyuki 已提交
3634
				int node, int zid, enum lru_list lru)
3635
{
K
KAMEZAWA Hiroyuki 已提交
3636 3637
	struct mem_cgroup_per_zone *mz;
	unsigned long flags, loop;
3638
	struct list_head *list;
3639 3640
	struct page *busy;
	struct zone *zone;
3641
	int ret = 0;
3642

K
KAMEZAWA Hiroyuki 已提交
3643
	zone = &NODE_DATA(node)->node_zones[zid];
3644
	mz = mem_cgroup_zoneinfo(memcg, node, zid);
3645
	list = &mz->lruvec.lists[lru];
3646

3647
	loop = mz->lru_size[lru];
3648 3649 3650 3651
	/* give some margin against EBUSY etc...*/
	loop += 256;
	busy = NULL;
	while (loop--) {
3652
		struct page_cgroup *pc;
3653 3654
		struct page *page;

3655
		ret = 0;
K
KAMEZAWA Hiroyuki 已提交
3656
		spin_lock_irqsave(&zone->lru_lock, flags);
3657
		if (list_empty(list)) {
K
KAMEZAWA Hiroyuki 已提交
3658
			spin_unlock_irqrestore(&zone->lru_lock, flags);
3659
			break;
3660
		}
3661 3662 3663
		page = list_entry(list->prev, struct page, lru);
		if (busy == page) {
			list_move(&page->lru, list);
3664
			busy = NULL;
K
KAMEZAWA Hiroyuki 已提交
3665
			spin_unlock_irqrestore(&zone->lru_lock, flags);
3666 3667
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
3668
		spin_unlock_irqrestore(&zone->lru_lock, flags);
3669

3670
		pc = lookup_page_cgroup(page);
3671

3672
		ret = mem_cgroup_move_parent(page, pc, memcg, GFP_KERNEL);
3673
		if (ret == -ENOMEM || ret == -EINTR)
3674
			break;
3675 3676 3677

		if (ret == -EBUSY || ret == -EINVAL) {
			/* found lock contention or "pc" is obsolete. */
3678
			busy = page;
3679 3680 3681
			cond_resched();
		} else
			busy = NULL;
3682
	}
K
KAMEZAWA Hiroyuki 已提交
3683

3684 3685 3686
	if (!ret && !list_empty(list))
		return -EBUSY;
	return ret;
3687 3688 3689 3690 3691 3692
}

/*
 * make mem_cgroup's charge to be 0 if there is no task.
 * This enables deleting this mem_cgroup.
 */
3693
static int mem_cgroup_force_empty(struct mem_cgroup *memcg, bool free_all)
3694
{
3695 3696 3697
	int ret;
	int node, zid, shrink;
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3698
	struct cgroup *cgrp = memcg->css.cgroup;
3699

3700
	css_get(&memcg->css);
3701 3702

	shrink = 0;
3703 3704 3705
	/* should free all ? */
	if (free_all)
		goto try_to_free;
3706
move_account:
3707
	do {
3708
		ret = -EBUSY;
3709 3710 3711 3712
		if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
			goto out;
		ret = -EINTR;
		if (signal_pending(current))
3713
			goto out;
3714 3715
		/* This is for making all *used* pages to be on LRU. */
		lru_add_drain_all();
3716
		drain_all_stock_sync(memcg);
3717
		ret = 0;
3718
		mem_cgroup_start_move(memcg);
3719
		for_each_node_state(node, N_HIGH_MEMORY) {
3720
			for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
H
Hugh Dickins 已提交
3721 3722
				enum lru_list lru;
				for_each_lru(lru) {
3723
					ret = mem_cgroup_force_empty_list(memcg,
H
Hugh Dickins 已提交
3724
							node, zid, lru);
3725 3726 3727
					if (ret)
						break;
				}
3728
			}
3729 3730 3731
			if (ret)
				break;
		}
3732 3733
		mem_cgroup_end_move(memcg);
		memcg_oom_recover(memcg);
3734 3735 3736
		/* it seems parent cgroup doesn't have enough mem */
		if (ret == -ENOMEM)
			goto try_to_free;
3737
		cond_resched();
3738
	/* "ret" should also be checked to ensure all lists are empty. */
3739
	} while (res_counter_read_u64(&memcg->res, RES_USAGE) > 0 || ret);
3740
out:
3741
	css_put(&memcg->css);
3742
	return ret;
3743 3744

try_to_free:
3745 3746
	/* returns EBUSY if there is a task or if we come here twice. */
	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
3747 3748 3749
		ret = -EBUSY;
		goto out;
	}
3750 3751
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
3752 3753
	/* try to free all pages in this cgroup */
	shrink = 1;
3754
	while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
3755
		int progress;
3756 3757 3758 3759 3760

		if (signal_pending(current)) {
			ret = -EINTR;
			goto out;
		}
3761
		progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
3762
						false);
3763
		if (!progress) {
3764
			nr_retries--;
3765
			/* maybe some writeback is necessary */
3766
			congestion_wait(BLK_RW_ASYNC, HZ/10);
3767
		}
3768 3769

	}
K
KAMEZAWA Hiroyuki 已提交
3770
	lru_add_drain();
3771
	/* try move_account...there may be some *locked* pages. */
3772
	goto move_account;
3773 3774
}

3775 3776 3777 3778 3779 3780
int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
{
	return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
}


3781 3782 3783 3784 3785 3786 3787 3788 3789
static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
{
	return mem_cgroup_from_cont(cont)->use_hierarchy;
}

static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
					u64 val)
{
	int retval = 0;
3790
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3791
	struct cgroup *parent = cont->parent;
3792
	struct mem_cgroup *parent_memcg = NULL;
3793 3794

	if (parent)
3795
		parent_memcg = mem_cgroup_from_cont(parent);
3796 3797 3798

	cgroup_lock();
	/*
3799
	 * If parent's use_hierarchy is set, we can't make any modifications
3800 3801 3802 3803 3804 3805
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
3806
	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3807 3808
				(val == 1 || val == 0)) {
		if (list_empty(&cont->children))
3809
			memcg->use_hierarchy = val;
3810 3811 3812 3813 3814 3815 3816 3817 3818
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
	cgroup_unlock();

	return retval;
}

3819

3820
static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
3821
					       enum mem_cgroup_stat_index idx)
3822
{
K
KAMEZAWA Hiroyuki 已提交
3823
	struct mem_cgroup *iter;
3824
	long val = 0;
3825

3826
	/* Per-cpu values can be negative, use a signed accumulator */
3827
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
3828 3829 3830 3831 3832
		val += mem_cgroup_read_stat(iter, idx);

	if (val < 0) /* race ? */
		val = 0;
	return val;
3833 3834
}

3835
static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3836
{
K
KAMEZAWA Hiroyuki 已提交
3837
	u64 val;
3838

3839
	if (!mem_cgroup_is_root(memcg)) {
3840
		if (!swap)
3841
			return res_counter_read_u64(&memcg->res, RES_USAGE);
3842
		else
3843
			return res_counter_read_u64(&memcg->memsw, RES_USAGE);
3844 3845
	}

3846 3847
	val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
	val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
3848

K
KAMEZAWA Hiroyuki 已提交
3849
	if (swap)
3850
		val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAPOUT);
3851 3852 3853 3854

	return val << PAGE_SHIFT;
}

3855 3856 3857
static ssize_t mem_cgroup_read(struct cgroup *cont, struct cftype *cft,
			       struct file *file, char __user *buf,
			       size_t nbytes, loff_t *ppos)
B
Balbir Singh 已提交
3858
{
3859
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3860
	char str[64];
3861
	u64 val;
3862
	int type, name, len;
3863 3864 3865

	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
3866 3867 3868 3869

	if (!do_swap_account && type == _MEMSWAP)
		return -EOPNOTSUPP;

3870 3871
	switch (type) {
	case _MEM:
3872
		if (name == RES_USAGE)
3873
			val = mem_cgroup_usage(memcg, false);
3874
		else
3875
			val = res_counter_read_u64(&memcg->res, name);
3876 3877
		break;
	case _MEMSWAP:
3878
		if (name == RES_USAGE)
3879
			val = mem_cgroup_usage(memcg, true);
3880
		else
3881
			val = res_counter_read_u64(&memcg->memsw, name);
3882 3883 3884 3885
		break;
	default:
		BUG();
	}
3886 3887 3888

	len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val);
	return simple_read_from_buffer(buf, nbytes, ppos, str, len);
B
Balbir Singh 已提交
3889
}
3890 3891 3892 3893
/*
 * The user of this function is...
 * RES_LIMIT.
 */
3894 3895
static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
			    const char *buffer)
B
Balbir Singh 已提交
3896
{
3897
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3898
	int type, name;
3899 3900 3901
	unsigned long long val;
	int ret;

3902 3903
	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
3904 3905 3906 3907

	if (!do_swap_account && type == _MEMSWAP)
		return -EOPNOTSUPP;

3908
	switch (name) {
3909
	case RES_LIMIT:
3910 3911 3912 3913
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
3914 3915
		/* This function does all necessary parse...reuse it */
		ret = res_counter_memparse_write_strategy(buffer, &val);
3916 3917 3918
		if (ret)
			break;
		if (type == _MEM)
3919
			ret = mem_cgroup_resize_limit(memcg, val);
3920 3921
		else
			ret = mem_cgroup_resize_memsw_limit(memcg, val);
3922
		break;
3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936
	case RES_SOFT_LIMIT:
		ret = res_counter_memparse_write_strategy(buffer, &val);
		if (ret)
			break;
		/*
		 * For memsw, soft limits are hard to implement in terms
		 * of semantics, for now, we support soft limits for
		 * control without swap
		 */
		if (type == _MEM)
			ret = res_counter_set_soft_limit(&memcg->res, val);
		else
			ret = -EINVAL;
		break;
3937 3938 3939 3940 3941
	default:
		ret = -EINVAL; /* should be BUG() ? */
		break;
	}
	return ret;
B
Balbir Singh 已提交
3942 3943
}

3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970
static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
		unsigned long long *mem_limit, unsigned long long *memsw_limit)
{
	struct cgroup *cgroup;
	unsigned long long min_limit, min_memsw_limit, tmp;

	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	cgroup = memcg->css.cgroup;
	if (!memcg->use_hierarchy)
		goto out;

	while (cgroup->parent) {
		cgroup = cgroup->parent;
		memcg = mem_cgroup_from_cont(cgroup);
		if (!memcg->use_hierarchy)
			break;
		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
		min_limit = min(min_limit, tmp);
		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		min_memsw_limit = min(min_memsw_limit, tmp);
	}
out:
	*mem_limit = min_limit;
	*memsw_limit = min_memsw_limit;
}

3971
static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
3972
{
3973
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3974
	int type, name;
3975

3976 3977
	type = MEMFILE_TYPE(event);
	name = MEMFILE_ATTR(event);
3978 3979 3980 3981

	if (!do_swap_account && type == _MEMSWAP)
		return -EOPNOTSUPP;

3982
	switch (name) {
3983
	case RES_MAX_USAGE:
3984
		if (type == _MEM)
3985
			res_counter_reset_max(&memcg->res);
3986
		else
3987
			res_counter_reset_max(&memcg->memsw);
3988 3989
		break;
	case RES_FAILCNT:
3990
		if (type == _MEM)
3991
			res_counter_reset_failcnt(&memcg->res);
3992
		else
3993
			res_counter_reset_failcnt(&memcg->memsw);
3994 3995
		break;
	}
3996

3997
	return 0;
3998 3999
}

4000 4001 4002 4003 4004 4005
static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
					struct cftype *cft)
{
	return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
}

4006
#ifdef CONFIG_MMU
4007 4008 4009
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
4010
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4011 4012 4013 4014 4015 4016 4017 4018 4019

	if (val >= (1 << NR_MOVE_TYPE))
		return -EINVAL;
	/*
	 * We check this value several times in both in can_attach() and
	 * attach(), so we need cgroup lock to prevent this value from being
	 * inconsistent.
	 */
	cgroup_lock();
4020
	memcg->move_charge_at_immigrate = val;
4021 4022 4023 4024
	cgroup_unlock();

	return 0;
}
4025 4026 4027 4028 4029 4030 4031
#else
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
4032

K
KAMEZAWA Hiroyuki 已提交
4033 4034 4035 4036 4037

/* For read statistics */
enum {
	MCS_CACHE,
	MCS_RSS,
4038
	MCS_FILE_MAPPED,
K
KAMEZAWA Hiroyuki 已提交
4039 4040
	MCS_PGPGIN,
	MCS_PGPGOUT,
4041
	MCS_SWAP,
4042 4043
	MCS_PGFAULT,
	MCS_PGMAJFAULT,
K
KAMEZAWA Hiroyuki 已提交
4044 4045 4046 4047 4048 4049 4050 4051 4052 4053
	MCS_INACTIVE_ANON,
	MCS_ACTIVE_ANON,
	MCS_INACTIVE_FILE,
	MCS_ACTIVE_FILE,
	MCS_UNEVICTABLE,
	NR_MCS_STAT,
};

struct mcs_total_stat {
	s64 stat[NR_MCS_STAT];
4054 4055
};

K
KAMEZAWA Hiroyuki 已提交
4056 4057 4058 4059 4060 4061
struct {
	char *local_name;
	char *total_name;
} memcg_stat_strings[NR_MCS_STAT] = {
	{"cache", "total_cache"},
	{"rss", "total_rss"},
4062
	{"mapped_file", "total_mapped_file"},
K
KAMEZAWA Hiroyuki 已提交
4063 4064
	{"pgpgin", "total_pgpgin"},
	{"pgpgout", "total_pgpgout"},
4065
	{"swap", "total_swap"},
4066 4067
	{"pgfault", "total_pgfault"},
	{"pgmajfault", "total_pgmajfault"},
K
KAMEZAWA Hiroyuki 已提交
4068 4069 4070 4071 4072 4073 4074 4075
	{"inactive_anon", "total_inactive_anon"},
	{"active_anon", "total_active_anon"},
	{"inactive_file", "total_inactive_file"},
	{"active_file", "total_active_file"},
	{"unevictable", "total_unevictable"}
};


K
KAMEZAWA Hiroyuki 已提交
4076
static void
4077
mem_cgroup_get_local_stat(struct mem_cgroup *memcg, struct mcs_total_stat *s)
K
KAMEZAWA Hiroyuki 已提交
4078 4079 4080 4081
{
	s64 val;

	/* per cpu stat */
4082
	val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_CACHE);
K
KAMEZAWA Hiroyuki 已提交
4083
	s->stat[MCS_CACHE] += val * PAGE_SIZE;
4084
	val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_RSS);
K
KAMEZAWA Hiroyuki 已提交
4085
	s->stat[MCS_RSS] += val * PAGE_SIZE;
4086
	val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_FILE_MAPPED);
4087
	s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
4088
	val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGPGIN);
K
KAMEZAWA Hiroyuki 已提交
4089
	s->stat[MCS_PGPGIN] += val;
4090
	val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGPGOUT);
K
KAMEZAWA Hiroyuki 已提交
4091
	s->stat[MCS_PGPGOUT] += val;
4092
	if (do_swap_account) {
4093
		val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_SWAPOUT);
4094 4095
		s->stat[MCS_SWAP] += val * PAGE_SIZE;
	}
4096
	val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGFAULT);
4097
	s->stat[MCS_PGFAULT] += val;
4098
	val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGMAJFAULT);
4099
	s->stat[MCS_PGMAJFAULT] += val;
K
KAMEZAWA Hiroyuki 已提交
4100 4101

	/* per zone stat */
4102
	val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_ANON));
K
KAMEZAWA Hiroyuki 已提交
4103
	s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
4104
	val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_ANON));
K
KAMEZAWA Hiroyuki 已提交
4105
	s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
4106
	val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_FILE));
K
KAMEZAWA Hiroyuki 已提交
4107
	s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
4108
	val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_FILE));
K
KAMEZAWA Hiroyuki 已提交
4109
	s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
4110
	val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
K
KAMEZAWA Hiroyuki 已提交
4111 4112 4113 4114
	s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
}

static void
4115
mem_cgroup_get_total_stat(struct mem_cgroup *memcg, struct mcs_total_stat *s)
K
KAMEZAWA Hiroyuki 已提交
4116
{
K
KAMEZAWA Hiroyuki 已提交
4117 4118
	struct mem_cgroup *iter;

4119
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
4120
		mem_cgroup_get_local_stat(iter, s);
K
KAMEZAWA Hiroyuki 已提交
4121 4122
}

4123 4124 4125 4126 4127 4128 4129
#ifdef CONFIG_NUMA
static int mem_control_numa_stat_show(struct seq_file *m, void *arg)
{
	int nid;
	unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
	unsigned long node_nr;
	struct cgroup *cont = m->private;
4130
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4131

4132
	total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL);
4133 4134
	seq_printf(m, "total=%lu", total_nr);
	for_each_node_state(nid, N_HIGH_MEMORY) {
4135
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL);
4136 4137 4138 4139
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

4140
	file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE);
4141 4142
	seq_printf(m, "file=%lu", file_nr);
	for_each_node_state(nid, N_HIGH_MEMORY) {
4143
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
4144
				LRU_ALL_FILE);
4145 4146 4147 4148
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

4149
	anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON);
4150 4151
	seq_printf(m, "anon=%lu", anon_nr);
	for_each_node_state(nid, N_HIGH_MEMORY) {
4152
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
4153
				LRU_ALL_ANON);
4154 4155 4156 4157
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

4158
	unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
4159 4160
	seq_printf(m, "unevictable=%lu", unevictable_nr);
	for_each_node_state(nid, N_HIGH_MEMORY) {
4161
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
4162
				BIT(LRU_UNEVICTABLE));
4163 4164 4165 4166 4167 4168 4169
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');
	return 0;
}
#endif /* CONFIG_NUMA */

4170 4171
static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
				 struct cgroup_map_cb *cb)
4172
{
4173
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
K
KAMEZAWA Hiroyuki 已提交
4174
	struct mcs_total_stat mystat;
4175 4176
	int i;

K
KAMEZAWA Hiroyuki 已提交
4177
	memset(&mystat, 0, sizeof(mystat));
4178
	mem_cgroup_get_local_stat(memcg, &mystat);
4179

4180

4181 4182 4183
	for (i = 0; i < NR_MCS_STAT; i++) {
		if (i == MCS_SWAP && !do_swap_account)
			continue;
K
KAMEZAWA Hiroyuki 已提交
4184
		cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
4185
	}
L
Lee Schermerhorn 已提交
4186

K
KAMEZAWA Hiroyuki 已提交
4187
	/* Hierarchical information */
4188 4189
	{
		unsigned long long limit, memsw_limit;
4190
		memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
4191 4192 4193 4194
		cb->fill(cb, "hierarchical_memory_limit", limit);
		if (do_swap_account)
			cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
	}
K
KOSAKI Motohiro 已提交
4195

K
KAMEZAWA Hiroyuki 已提交
4196
	memset(&mystat, 0, sizeof(mystat));
4197
	mem_cgroup_get_total_stat(memcg, &mystat);
4198 4199 4200
	for (i = 0; i < NR_MCS_STAT; i++) {
		if (i == MCS_SWAP && !do_swap_account)
			continue;
K
KAMEZAWA Hiroyuki 已提交
4201
		cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
4202
	}
K
KAMEZAWA Hiroyuki 已提交
4203

K
KOSAKI Motohiro 已提交
4204 4205 4206 4207
#ifdef CONFIG_DEBUG_VM
	{
		int nid, zid;
		struct mem_cgroup_per_zone *mz;
4208
		struct zone_reclaim_stat *rstat;
K
KOSAKI Motohiro 已提交
4209 4210 4211 4212 4213
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

		for_each_online_node(nid)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4214
				mz = mem_cgroup_zoneinfo(memcg, nid, zid);
4215
				rstat = &mz->lruvec.reclaim_stat;
K
KOSAKI Motohiro 已提交
4216

4217 4218 4219 4220
				recent_rotated[0] += rstat->recent_rotated[0];
				recent_rotated[1] += rstat->recent_rotated[1];
				recent_scanned[0] += rstat->recent_scanned[0];
				recent_scanned[1] += rstat->recent_scanned[1];
K
KOSAKI Motohiro 已提交
4221 4222 4223 4224 4225 4226 4227 4228
			}
		cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
		cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
		cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
		cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
	}
#endif

4229 4230 4231
	return 0;
}

K
KOSAKI Motohiro 已提交
4232 4233 4234 4235
static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);

4236
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
4237 4238 4239 4240 4241 4242 4243
}

static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
				       u64 val)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup *parent;
4244

K
KOSAKI Motohiro 已提交
4245 4246 4247 4248 4249 4250 4251
	if (val > 100)
		return -EINVAL;

	if (cgrp->parent == NULL)
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);
4252 4253 4254

	cgroup_lock();

K
KOSAKI Motohiro 已提交
4255 4256
	/* If under hierarchy, only empty-root can set this value */
	if ((parent->use_hierarchy) ||
4257 4258
	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
		cgroup_unlock();
K
KOSAKI Motohiro 已提交
4259
		return -EINVAL;
4260
	}
K
KOSAKI Motohiro 已提交
4261 4262 4263

	memcg->swappiness = val;

4264 4265
	cgroup_unlock();

K
KOSAKI Motohiro 已提交
4266 4267 4268
	return 0;
}

4269 4270 4271 4272 4273 4274 4275 4276
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
	u64 usage;
	int i;

	rcu_read_lock();
	if (!swap)
4277
		t = rcu_dereference(memcg->thresholds.primary);
4278
	else
4279
		t = rcu_dereference(memcg->memsw_thresholds.primary);
4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290

	if (!t)
		goto unlock;

	usage = mem_cgroup_usage(memcg, swap);

	/*
	 * current_threshold points to threshold just below usage.
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
4291
	i = t->current_threshold;
4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
4315
	t->current_threshold = i - 1;
4316 4317 4318 4319 4320 4321
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
4322 4323 4324 4325 4326 4327 4328
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
		if (do_swap_account)
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
4329 4330 4331 4332 4333 4334 4335 4336 4337 4338
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

	return _a->threshold - _b->threshold;
}

4339
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
4340 4341 4342
{
	struct mem_cgroup_eventfd_list *ev;

4343
	list_for_each_entry(ev, &memcg->oom_notify, list)
K
KAMEZAWA Hiroyuki 已提交
4344 4345 4346 4347
		eventfd_signal(ev->eventfd, 1);
	return 0;
}

4348
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
4349
{
K
KAMEZAWA Hiroyuki 已提交
4350 4351
	struct mem_cgroup *iter;

4352
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
4353
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
4354 4355 4356 4357
}

static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4358 4359
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4360 4361
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
4362 4363
	int type = MEMFILE_TYPE(cft->private);
	u64 threshold, usage;
4364
	int i, size, ret;
4365 4366 4367 4368 4369 4370

	ret = res_counter_memparse_write_strategy(args, &threshold);
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
4371

4372
	if (type == _MEM)
4373
		thresholds = &memcg->thresholds;
4374
	else if (type == _MEMSWAP)
4375
		thresholds = &memcg->memsw_thresholds;
4376 4377 4378 4379 4380 4381
	else
		BUG();

	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before adding a new one */
4382
	if (thresholds->primary)
4383 4384
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

4385
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4386 4387

	/* Allocate memory for new array of thresholds */
4388
	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
4389
			GFP_KERNEL);
4390
	if (!new) {
4391 4392 4393
		ret = -ENOMEM;
		goto unlock;
	}
4394
	new->size = size;
4395 4396

	/* Copy thresholds (if any) to new array */
4397 4398
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4399
				sizeof(struct mem_cgroup_threshold));
4400 4401
	}

4402
	/* Add new threshold */
4403 4404
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
4405 4406

	/* Sort thresholds. Registering of new threshold isn't time-critical */
4407
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4408 4409 4410
			compare_thresholds, NULL);

	/* Find current threshold */
4411
	new->current_threshold = -1;
4412
	for (i = 0; i < size; i++) {
4413
		if (new->entries[i].threshold < usage) {
4414
			/*
4415 4416
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
4417 4418
			 * it here.
			 */
4419
			++new->current_threshold;
4420 4421 4422
		}
	}

4423 4424 4425 4426 4427
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
4428

4429
	/* To be sure that nobody uses thresholds */
4430 4431 4432 4433 4434 4435 4436 4437
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

4438
static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
K
KAMEZAWA Hiroyuki 已提交
4439
	struct cftype *cft, struct eventfd_ctx *eventfd)
4440 4441
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4442 4443
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
4444 4445
	int type = MEMFILE_TYPE(cft->private);
	u64 usage;
4446
	int i, j, size;
4447 4448 4449

	mutex_lock(&memcg->thresholds_lock);
	if (type == _MEM)
4450
		thresholds = &memcg->thresholds;
4451
	else if (type == _MEMSWAP)
4452
		thresholds = &memcg->memsw_thresholds;
4453 4454 4455
	else
		BUG();

4456 4457 4458
	if (!thresholds->primary)
		goto unlock;

4459 4460 4461 4462 4463 4464
	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
4465 4466 4467
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
4468 4469 4470
			size++;
	}

4471
	new = thresholds->spare;
4472

4473 4474
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
4475 4476
		kfree(new);
		new = NULL;
4477
		goto swap_buffers;
4478 4479
	}

4480
	new->size = size;
4481 4482

	/* Copy thresholds and find current threshold */
4483 4484 4485
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
4486 4487
			continue;

4488 4489
		new->entries[j] = thresholds->primary->entries[i];
		if (new->entries[j].threshold < usage) {
4490
			/*
4491
			 * new->current_threshold will not be used
4492 4493 4494
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
4495
			++new->current_threshold;
4496 4497 4498 4499
		}
		j++;
	}

4500
swap_buffers:
4501 4502
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
4503 4504 4505 4506 4507 4508
	/* If all events are unregistered, free the spare array */
	if (!new) {
		kfree(thresholds->spare);
		thresholds->spare = NULL;
	}

4509
	rcu_assign_pointer(thresholds->primary, new);
4510

4511
	/* To be sure that nobody uses thresholds */
4512
	synchronize_rcu();
4513
unlock:
4514 4515
	mutex_unlock(&memcg->thresholds_lock);
}
4516

K
KAMEZAWA Hiroyuki 已提交
4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528
static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup_eventfd_list *event;
	int type = MEMFILE_TYPE(cft->private);

	BUG_ON(type != _OOM_TYPE);
	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

4529
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4530 4531 4532 4533 4534

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
4535
	if (atomic_read(&memcg->under_oom))
K
KAMEZAWA Hiroyuki 已提交
4536
		eventfd_signal(eventfd, 1);
4537
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4538 4539 4540 4541

	return 0;
}

4542
static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
K
KAMEZAWA Hiroyuki 已提交
4543 4544
	struct cftype *cft, struct eventfd_ctx *eventfd)
{
4545
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
K
KAMEZAWA Hiroyuki 已提交
4546 4547 4548 4549 4550
	struct mem_cgroup_eventfd_list *ev, *tmp;
	int type = MEMFILE_TYPE(cft->private);

	BUG_ON(type != _OOM_TYPE);

4551
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4552

4553
	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
K
KAMEZAWA Hiroyuki 已提交
4554 4555 4556 4557 4558 4559
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

4560
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4561 4562
}

4563 4564 4565
static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
	struct cftype *cft,  struct cgroup_map_cb *cb)
{
4566
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4567

4568
	cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
4569

4570
	if (atomic_read(&memcg->under_oom))
4571 4572 4573 4574 4575 4576 4577 4578 4579
		cb->fill(cb, "under_oom", 1);
	else
		cb->fill(cb, "under_oom", 0);
	return 0;
}

static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
	struct cftype *cft, u64 val)
{
4580
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591
	struct mem_cgroup *parent;

	/* cannot set to root cgroup and only 0 and 1 are allowed */
	if (!cgrp->parent || !((val == 0) || (val == 1)))
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);

	cgroup_lock();
	/* oom-kill-disable is a flag for subhierarchy. */
	if ((parent->use_hierarchy) ||
4592
	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4593 4594 4595
		cgroup_unlock();
		return -EINVAL;
	}
4596
	memcg->oom_kill_disable = val;
4597
	if (!val)
4598
		memcg_oom_recover(memcg);
4599 4600 4601 4602
	cgroup_unlock();
	return 0;
}

4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618
#ifdef CONFIG_NUMA
static const struct file_operations mem_control_numa_stat_file_operations = {
	.read = seq_read,
	.llseek = seq_lseek,
	.release = single_release,
};

static int mem_control_numa_stat_open(struct inode *unused, struct file *file)
{
	struct cgroup *cont = file->f_dentry->d_parent->d_fsdata;

	file->f_op = &mem_control_numa_stat_file_operations;
	return single_open(file, mem_control_numa_stat_show, cont);
}
#endif /* CONFIG_NUMA */

4619
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
4620
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
4621
{
4622
	return mem_cgroup_sockets_init(memcg, ss);
4623 4624
};

4625
static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
4626
{
4627
	mem_cgroup_sockets_destroy(memcg);
G
Glauber Costa 已提交
4628
}
4629
#else
4630
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
4631 4632 4633
{
	return 0;
}
G
Glauber Costa 已提交
4634

4635
static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
4636 4637
{
}
4638 4639
#endif

B
Balbir Singh 已提交
4640 4641
static struct cftype mem_cgroup_files[] = {
	{
4642
		.name = "usage_in_bytes",
4643
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4644
		.read = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
4645 4646
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
B
Balbir Singh 已提交
4647
	},
4648 4649
	{
		.name = "max_usage_in_bytes",
4650
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4651
		.trigger = mem_cgroup_reset,
4652
		.read = mem_cgroup_read,
4653
	},
B
Balbir Singh 已提交
4654
	{
4655
		.name = "limit_in_bytes",
4656
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4657
		.write_string = mem_cgroup_write,
4658
		.read = mem_cgroup_read,
B
Balbir Singh 已提交
4659
	},
4660 4661 4662 4663
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
		.write_string = mem_cgroup_write,
4664
		.read = mem_cgroup_read,
4665
	},
B
Balbir Singh 已提交
4666 4667
	{
		.name = "failcnt",
4668
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4669
		.trigger = mem_cgroup_reset,
4670
		.read = mem_cgroup_read,
B
Balbir Singh 已提交
4671
	},
4672 4673
	{
		.name = "stat",
4674
		.read_map = mem_control_stat_show,
4675
	},
4676 4677 4678 4679
	{
		.name = "force_empty",
		.trigger = mem_cgroup_force_empty_write,
	},
4680 4681 4682 4683 4684
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
K
KOSAKI Motohiro 已提交
4685 4686 4687 4688 4689
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
4690 4691 4692 4693 4694
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
4695 4696
	{
		.name = "oom_control",
4697 4698
		.read_map = mem_cgroup_oom_control_read,
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
4699 4700 4701 4702
		.register_event = mem_cgroup_oom_register_event,
		.unregister_event = mem_cgroup_oom_unregister_event,
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
4703 4704 4705 4706
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
		.open = mem_control_numa_stat_open,
4707
		.mode = S_IRUGO,
4708 4709
	},
#endif
4710 4711 4712 4713
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
4714
		.read = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
4715 4716
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
4717 4718 4719 4720 4721
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
4722
		.read = mem_cgroup_read,
4723 4724 4725 4726 4727
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write_string = mem_cgroup_write,
4728
		.read = mem_cgroup_read,
4729 4730 4731 4732 4733
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
4734
		.read = mem_cgroup_read,
4735 4736
	},
#endif
4737
	{ },	/* terminate */
4738
};
4739

4740
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4741 4742
{
	struct mem_cgroup_per_node *pn;
4743
	struct mem_cgroup_per_zone *mz;
H
Hugh Dickins 已提交
4744
	enum lru_list lru;
4745
	int zone, tmp = node;
4746 4747 4748 4749 4750 4751 4752 4753
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
4754 4755
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
4756
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4757 4758
	if (!pn)
		return 1;
4759 4760 4761

	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
H
Hugh Dickins 已提交
4762 4763
		for_each_lru(lru)
			INIT_LIST_HEAD(&mz->lruvec.lists[lru]);
4764
		mz->usage_in_excess = 0;
4765
		mz->on_tree = false;
4766
		mz->memcg = memcg;
4767
	}
4768
	memcg->info.nodeinfo[node] = pn;
4769 4770 4771
	return 0;
}

4772
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4773
{
4774
	kfree(memcg->info.nodeinfo[node]);
4775 4776
}

4777 4778
static struct mem_cgroup *mem_cgroup_alloc(void)
{
4779
	struct mem_cgroup *memcg;
4780
	int size = sizeof(struct mem_cgroup);
4781

4782
	/* Can be very big if MAX_NUMNODES is very big */
4783
	if (size < PAGE_SIZE)
4784
		memcg = kzalloc(size, GFP_KERNEL);
4785
	else
4786
		memcg = vzalloc(size);
4787

4788
	if (!memcg)
4789 4790
		return NULL;

4791 4792
	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
	if (!memcg->stat)
4793
		goto out_free;
4794 4795
	spin_lock_init(&memcg->pcp_counter_lock);
	return memcg;
4796 4797 4798

out_free:
	if (size < PAGE_SIZE)
4799
		kfree(memcg);
4800
	else
4801
		vfree(memcg);
4802
	return NULL;
4803 4804
}

4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825
/*
 * Helpers for freeing a vzalloc()ed mem_cgroup by RCU,
 * but in process context.  The work_freeing structure is overlaid
 * on the rcu_freeing structure, which itself is overlaid on memsw.
 */
static void vfree_work(struct work_struct *work)
{
	struct mem_cgroup *memcg;

	memcg = container_of(work, struct mem_cgroup, work_freeing);
	vfree(memcg);
}
static void vfree_rcu(struct rcu_head *rcu_head)
{
	struct mem_cgroup *memcg;

	memcg = container_of(rcu_head, struct mem_cgroup, rcu_freeing);
	INIT_WORK(&memcg->work_freeing, vfree_work);
	schedule_work(&memcg->work_freeing);
}

4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836
/*
 * At destroying mem_cgroup, references from swap_cgroup can remain.
 * (scanning all at force_empty is too costly...)
 *
 * Instead of clearing all references at force_empty, we remember
 * the number of reference from swap_cgroup and free mem_cgroup when
 * it goes down to 0.
 *
 * Removal of cgroup itself succeeds regardless of refs from swap.
 */

4837
static void __mem_cgroup_free(struct mem_cgroup *memcg)
4838
{
K
KAMEZAWA Hiroyuki 已提交
4839 4840
	int node;

4841 4842
	mem_cgroup_remove_from_trees(memcg);
	free_css_id(&mem_cgroup_subsys, &memcg->css);
K
KAMEZAWA Hiroyuki 已提交
4843

B
Bob Liu 已提交
4844
	for_each_node(node)
4845
		free_mem_cgroup_per_zone_info(memcg, node);
K
KAMEZAWA Hiroyuki 已提交
4846

4847
	free_percpu(memcg->stat);
4848
	if (sizeof(struct mem_cgroup) < PAGE_SIZE)
4849
		kfree_rcu(memcg, rcu_freeing);
4850
	else
4851
		call_rcu(&memcg->rcu_freeing, vfree_rcu);
4852 4853
}

4854
static void mem_cgroup_get(struct mem_cgroup *memcg)
4855
{
4856
	atomic_inc(&memcg->refcnt);
4857 4858
}

4859
static void __mem_cgroup_put(struct mem_cgroup *memcg, int count)
4860
{
4861 4862 4863
	if (atomic_sub_and_test(count, &memcg->refcnt)) {
		struct mem_cgroup *parent = parent_mem_cgroup(memcg);
		__mem_cgroup_free(memcg);
4864 4865 4866
		if (parent)
			mem_cgroup_put(parent);
	}
4867 4868
}

4869
static void mem_cgroup_put(struct mem_cgroup *memcg)
4870
{
4871
	__mem_cgroup_put(memcg, 1);
4872 4873
}

4874 4875 4876
/*
 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
 */
G
Glauber Costa 已提交
4877
struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
4878
{
4879
	if (!memcg->res.parent)
4880
		return NULL;
4881
	return mem_cgroup_from_res_counter(memcg->res.parent, res);
4882
}
G
Glauber Costa 已提交
4883
EXPORT_SYMBOL(parent_mem_cgroup);
4884

4885 4886 4887
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
static void __init enable_swap_cgroup(void)
{
4888
	if (!mem_cgroup_disabled() && really_do_swap_account)
4889 4890 4891 4892 4893 4894 4895 4896
		do_swap_account = 1;
}
#else
static void __init enable_swap_cgroup(void)
{
}
#endif

4897 4898 4899 4900 4901 4902
static int mem_cgroup_soft_limit_tree_init(void)
{
	struct mem_cgroup_tree_per_node *rtpn;
	struct mem_cgroup_tree_per_zone *rtpz;
	int tmp, node, zone;

B
Bob Liu 已提交
4903
	for_each_node(node) {
4904 4905 4906 4907 4908
		tmp = node;
		if (!node_state(node, N_NORMAL_MEMORY))
			tmp = -1;
		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
		if (!rtpn)
4909
			goto err_cleanup;
4910 4911 4912 4913 4914 4915 4916 4917 4918 4919

		soft_limit_tree.rb_tree_per_node[node] = rtpn;

		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			rtpz = &rtpn->rb_tree_per_zone[zone];
			rtpz->rb_root = RB_ROOT;
			spin_lock_init(&rtpz->lock);
		}
	}
	return 0;
4920 4921

err_cleanup:
B
Bob Liu 已提交
4922
	for_each_node(node) {
4923 4924 4925 4926 4927 4928 4929
		if (!soft_limit_tree.rb_tree_per_node[node])
			break;
		kfree(soft_limit_tree.rb_tree_per_node[node]);
		soft_limit_tree.rb_tree_per_node[node] = NULL;
	}
	return 1;

4930 4931
}

L
Li Zefan 已提交
4932
static struct cgroup_subsys_state * __ref
4933
mem_cgroup_create(struct cgroup *cont)
B
Balbir Singh 已提交
4934
{
4935
	struct mem_cgroup *memcg, *parent;
K
KAMEZAWA Hiroyuki 已提交
4936
	long error = -ENOMEM;
4937
	int node;
B
Balbir Singh 已提交
4938

4939 4940
	memcg = mem_cgroup_alloc();
	if (!memcg)
K
KAMEZAWA Hiroyuki 已提交
4941
		return ERR_PTR(error);
4942

B
Bob Liu 已提交
4943
	for_each_node(node)
4944
		if (alloc_mem_cgroup_per_zone_info(memcg, node))
4945
			goto free_out;
4946

4947
	/* root ? */
4948
	if (cont->parent == NULL) {
4949
		int cpu;
4950
		enable_swap_cgroup();
4951
		parent = NULL;
4952 4953
		if (mem_cgroup_soft_limit_tree_init())
			goto free_out;
4954
		root_mem_cgroup = memcg;
4955 4956 4957 4958 4959
		for_each_possible_cpu(cpu) {
			struct memcg_stock_pcp *stock =
						&per_cpu(memcg_stock, cpu);
			INIT_WORK(&stock->work, drain_local_stock);
		}
4960
		hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
4961
	} else {
4962
		parent = mem_cgroup_from_cont(cont->parent);
4963 4964
		memcg->use_hierarchy = parent->use_hierarchy;
		memcg->oom_kill_disable = parent->oom_kill_disable;
4965
	}
4966

4967
	if (parent && parent->use_hierarchy) {
4968 4969
		res_counter_init(&memcg->res, &parent->res);
		res_counter_init(&memcg->memsw, &parent->memsw);
4970 4971 4972 4973 4974 4975 4976
		/*
		 * We increment refcnt of the parent to ensure that we can
		 * safely access it on res_counter_charge/uncharge.
		 * This refcnt will be decremented when freeing this
		 * mem_cgroup(see mem_cgroup_put).
		 */
		mem_cgroup_get(parent);
4977
	} else {
4978 4979
		res_counter_init(&memcg->res, NULL);
		res_counter_init(&memcg->memsw, NULL);
4980
	}
4981 4982
	memcg->last_scanned_node = MAX_NUMNODES;
	INIT_LIST_HEAD(&memcg->oom_notify);
4983

K
KOSAKI Motohiro 已提交
4984
	if (parent)
4985 4986 4987 4988
		memcg->swappiness = mem_cgroup_swappiness(parent);
	atomic_set(&memcg->refcnt, 1);
	memcg->move_charge_at_immigrate = 0;
	mutex_init(&memcg->thresholds_lock);
4989
	spin_lock_init(&memcg->move_lock);
4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000

	error = memcg_init_kmem(memcg, &mem_cgroup_subsys);
	if (error) {
		/*
		 * We call put now because our (and parent's) refcnts
		 * are already in place. mem_cgroup_put() will internally
		 * call __mem_cgroup_free, so return directly
		 */
		mem_cgroup_put(memcg);
		return ERR_PTR(error);
	}
5001
	return &memcg->css;
5002
free_out:
5003
	__mem_cgroup_free(memcg);
K
KAMEZAWA Hiroyuki 已提交
5004
	return ERR_PTR(error);
B
Balbir Singh 已提交
5005 5006
}

5007
static int mem_cgroup_pre_destroy(struct cgroup *cont)
5008
{
5009
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5010

5011
	return mem_cgroup_force_empty(memcg, false);
5012 5013
}

5014
static void mem_cgroup_destroy(struct cgroup *cont)
B
Balbir Singh 已提交
5015
{
5016
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5017

5018
	kmem_cgroup_destroy(memcg);
G
Glauber Costa 已提交
5019

5020
	mem_cgroup_put(memcg);
B
Balbir Singh 已提交
5021 5022
}

5023
#ifdef CONFIG_MMU
5024
/* Handlers for move charge at task migration. */
5025 5026
#define PRECHARGE_COUNT_AT_ONCE	256
static int mem_cgroup_do_precharge(unsigned long count)
5027
{
5028 5029
	int ret = 0;
	int batch_count = PRECHARGE_COUNT_AT_ONCE;
5030
	struct mem_cgroup *memcg = mc.to;
5031

5032
	if (mem_cgroup_is_root(memcg)) {
5033 5034 5035 5036 5037 5038 5039 5040
		mc.precharge += count;
		/* we don't need css_get for root */
		return ret;
	}
	/* try to charge at once */
	if (count > 1) {
		struct res_counter *dummy;
		/*
5041
		 * "memcg" cannot be under rmdir() because we've already checked
5042 5043 5044 5045
		 * by cgroup_lock_live_cgroup() that it is not removed and we
		 * are still under the same cgroup_mutex. So we can postpone
		 * css_get().
		 */
5046
		if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
5047
			goto one_by_one;
5048
		if (do_swap_account && res_counter_charge(&memcg->memsw,
5049
						PAGE_SIZE * count, &dummy)) {
5050
			res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066
			goto one_by_one;
		}
		mc.precharge += count;
		return ret;
	}
one_by_one:
	/* fall back to one by one charge */
	while (count--) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		if (!batch_count--) {
			batch_count = PRECHARGE_COUNT_AT_ONCE;
			cond_resched();
		}
5067 5068
		ret = __mem_cgroup_try_charge(NULL,
					GFP_KERNEL, 1, &memcg, false);
5069
		if (ret)
5070
			/* mem_cgroup_clear_mc() will do uncharge later */
5071
			return ret;
5072 5073
		mc.precharge++;
	}
5074 5075 5076 5077
	return ret;
}

/**
5078
 * get_mctgt_type - get target type of moving charge
5079 5080 5081
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
5082
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5083 5084 5085 5086 5087 5088
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
5089 5090 5091
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
5092 5093 5094 5095 5096
 *
 * Called with pte lock held.
 */
union mc_target {
	struct page	*page;
5097
	swp_entry_t	ent;
5098 5099 5100
};

enum mc_target_type {
5101
	MC_TARGET_NONE = 0,
5102
	MC_TARGET_PAGE,
5103
	MC_TARGET_SWAP,
5104 5105
};

D
Daisuke Nishimura 已提交
5106 5107
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
5108
{
D
Daisuke Nishimura 已提交
5109
	struct page *page = vm_normal_page(vma, addr, ptent);
5110

D
Daisuke Nishimura 已提交
5111 5112 5113 5114
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
		/* we don't move shared anon */
5115
		if (!move_anon())
D
Daisuke Nishimura 已提交
5116
			return NULL;
5117 5118
	} else if (!move_file())
		/* we ignore mapcount for file pages */
D
Daisuke Nishimura 已提交
5119 5120 5121 5122 5123 5124 5125
		return NULL;
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

5126
#ifdef CONFIG_SWAP
D
Daisuke Nishimura 已提交
5127 5128 5129 5130 5131 5132 5133 5134
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

	if (!move_anon() || non_swap_entry(ent))
		return NULL;
5135 5136 5137 5138 5139
	/*
	 * Because lookup_swap_cache() updates some statistics counter,
	 * we call find_get_page() with swapper_space directly.
	 */
	page = find_get_page(&swapper_space, ent.val);
D
Daisuke Nishimura 已提交
5140 5141 5142 5143 5144
	if (do_swap_account)
		entry->val = ent.val;

	return page;
}
5145 5146 5147 5148 5149 5150 5151
#else
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	return NULL;
}
#endif
D
Daisuke Nishimura 已提交
5152

5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct inode *inode;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
	if (!move_file())
		return NULL;

	inode = vma->vm_file->f_path.dentry->d_inode;
	mapping = vma->vm_file->f_mapping;
	if (pte_none(ptent))
		pgoff = linear_page_index(vma, addr);
	else /* pte_file(ptent) is true */
		pgoff = pte_to_pgoff(ptent);

	/* page is moved even if it's not RSS of this task(page-faulted). */
5174 5175 5176 5177 5178 5179
	page = find_get_page(mapping, pgoff);

#ifdef CONFIG_SWAP
	/* shmem/tmpfs may report page out on swap: account for that too. */
	if (radix_tree_exceptional_entry(page)) {
		swp_entry_t swap = radix_to_swp_entry(page);
5180
		if (do_swap_account)
5181 5182
			*entry = swap;
		page = find_get_page(&swapper_space, swap.val);
5183
	}
5184
#endif
5185 5186 5187
	return page;
}

5188
static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
D
Daisuke Nishimura 已提交
5189 5190 5191 5192
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
5193
	enum mc_target_type ret = MC_TARGET_NONE;
D
Daisuke Nishimura 已提交
5194 5195 5196 5197 5198 5199
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
5200 5201
	else if (pte_none(ptent) || pte_file(ptent))
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
5202 5203

	if (!page && !ent.val)
5204
		return ret;
5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219
	if (page) {
		pc = lookup_page_cgroup(page);
		/*
		 * Do only loose check w/o page_cgroup lock.
		 * mem_cgroup_move_account() checks the pc is valid or not under
		 * the lock.
		 */
		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
			ret = MC_TARGET_PAGE;
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
D
Daisuke Nishimura 已提交
5220 5221
	/* There is a swap entry and a page doesn't exist or isn't charged */
	if (ent.val && !ret &&
5222
			css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
5223 5224 5225
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
5226 5227 5228 5229
	}
	return ret;
}

5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
 * We don't consider swapping or file mapped pages because THP does not
 * support them for now.
 * Caller should make sure that pmd_trans_huge(pmd) is true.
 */
static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
	enum mc_target_type ret = MC_TARGET_NONE;

	page = pmd_page(pmd);
	VM_BUG_ON(!page || !PageHead(page));
	if (!move_anon())
		return ret;
	pc = lookup_page_cgroup(page);
	if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
		ret = MC_TARGET_PAGE;
		if (target) {
			get_page(page);
			target->page = page;
		}
	}
	return ret;
}
#else
static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	return MC_TARGET_NONE;
}
#endif

5265 5266 5267 5268 5269 5270 5271 5272
static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

5273 5274 5275 5276
	if (pmd_trans_huge_lock(pmd, vma) == 1) {
		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
			mc.precharge += HPAGE_PMD_NR;
		spin_unlock(&vma->vm_mm->page_table_lock);
5277
		return 0;
5278
	}
5279

5280 5281
	if (pmd_trans_unstable(pmd))
		return 0;
5282 5283
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
5284
		if (get_mctgt_type(vma, addr, *pte, NULL))
5285 5286 5287 5288
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

5289 5290 5291
	return 0;
}

5292 5293 5294 5295 5296
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;
	struct vm_area_struct *vma;

5297
	down_read(&mm->mmap_sem);
5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		struct mm_walk mem_cgroup_count_precharge_walk = {
			.pmd_entry = mem_cgroup_count_precharge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		walk_page_range(vma->vm_start, vma->vm_end,
					&mem_cgroup_count_precharge_walk);
	}
5309
	up_read(&mm->mmap_sem);
5310 5311 5312 5313 5314 5315 5316 5317 5318

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
5319 5320 5321 5322 5323
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
5324 5325
}

5326 5327
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
5328
{
5329 5330 5331
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;

5332
	/* we must uncharge all the leftover precharges from mc.to */
5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343
	if (mc.precharge) {
		__mem_cgroup_cancel_charge(mc.to, mc.precharge);
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
		__mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
		mc.moved_charge = 0;
5344
	}
5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
		if (!mem_cgroup_is_root(mc.from))
			res_counter_uncharge(&mc.from->memsw,
						PAGE_SIZE * mc.moved_swap);
		__mem_cgroup_put(mc.from, mc.moved_swap);

		if (!mem_cgroup_is_root(mc.to)) {
			/*
			 * we charged both to->res and to->memsw, so we should
			 * uncharge to->res.
			 */
			res_counter_uncharge(&mc.to->res,
						PAGE_SIZE * mc.moved_swap);
		}
		/* we've already done mem_cgroup_get(mc.to) */
		mc.moved_swap = 0;
	}
5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
	struct mem_cgroup *from = mc.from;

	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
5379
	spin_lock(&mc.lock);
5380 5381
	mc.from = NULL;
	mc.to = NULL;
5382
	spin_unlock(&mc.lock);
5383
	mem_cgroup_end_move(from);
5384 5385
}

5386 5387
static int mem_cgroup_can_attach(struct cgroup *cgroup,
				 struct cgroup_taskset *tset)
5388
{
5389
	struct task_struct *p = cgroup_taskset_first(tset);
5390
	int ret = 0;
5391
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup);
5392

5393
	if (memcg->move_charge_at_immigrate) {
5394 5395 5396
		struct mm_struct *mm;
		struct mem_cgroup *from = mem_cgroup_from_task(p);

5397
		VM_BUG_ON(from == memcg);
5398 5399 5400 5401 5402

		mm = get_task_mm(p);
		if (!mm)
			return 0;
		/* We move charges only when we move a owner of the mm */
5403 5404 5405 5406
		if (mm->owner == p) {
			VM_BUG_ON(mc.from);
			VM_BUG_ON(mc.to);
			VM_BUG_ON(mc.precharge);
5407
			VM_BUG_ON(mc.moved_charge);
5408
			VM_BUG_ON(mc.moved_swap);
5409
			mem_cgroup_start_move(from);
5410
			spin_lock(&mc.lock);
5411
			mc.from = from;
5412
			mc.to = memcg;
5413
			spin_unlock(&mc.lock);
5414
			/* We set mc.moving_task later */
5415 5416 5417 5418

			ret = mem_cgroup_precharge_mc(mm);
			if (ret)
				mem_cgroup_clear_mc();
5419 5420
		}
		mmput(mm);
5421 5422 5423 5424
	}
	return ret;
}

5425 5426
static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
				     struct cgroup_taskset *tset)
5427
{
5428
	mem_cgroup_clear_mc();
5429 5430
}

5431 5432 5433
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
5434
{
5435 5436 5437 5438
	int ret = 0;
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;
5439 5440 5441 5442
	enum mc_target_type target_type;
	union mc_target target;
	struct page *page;
	struct page_cgroup *pc;
5443

5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454
	/*
	 * We don't take compound_lock() here but no race with splitting thp
	 * happens because:
	 *  - if pmd_trans_huge_lock() returns 1, the relevant thp is not
	 *    under splitting, which means there's no concurrent thp split,
	 *  - if another thread runs into split_huge_page() just after we
	 *    entered this if-block, the thread must wait for page table lock
	 *    to be unlocked in __split_huge_page_splitting(), where the main
	 *    part of thp split is not executed yet.
	 */
	if (pmd_trans_huge_lock(pmd, vma) == 1) {
5455
		if (mc.precharge < HPAGE_PMD_NR) {
5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474
			spin_unlock(&vma->vm_mm->page_table_lock);
			return 0;
		}
		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
		if (target_type == MC_TARGET_PAGE) {
			page = target.page;
			if (!isolate_lru_page(page)) {
				pc = lookup_page_cgroup(page);
				if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
							     pc, mc.from, mc.to,
							     false)) {
					mc.precharge -= HPAGE_PMD_NR;
					mc.moved_charge += HPAGE_PMD_NR;
				}
				putback_lru_page(page);
			}
			put_page(page);
		}
		spin_unlock(&vma->vm_mm->page_table_lock);
5475
		return 0;
5476 5477
	}

5478 5479
	if (pmd_trans_unstable(pmd))
		return 0;
5480 5481 5482 5483
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
5484
		swp_entry_t ent;
5485 5486 5487 5488

		if (!mc.precharge)
			break;

5489
		switch (get_mctgt_type(vma, addr, ptent, &target)) {
5490 5491 5492 5493 5494
		case MC_TARGET_PAGE:
			page = target.page;
			if (isolate_lru_page(page))
				goto put;
			pc = lookup_page_cgroup(page);
5495 5496
			if (!mem_cgroup_move_account(page, 1, pc,
						     mc.from, mc.to, false)) {
5497
				mc.precharge--;
5498 5499
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
5500 5501
			}
			putback_lru_page(page);
5502
put:			/* get_mctgt_type() gets the page */
5503 5504
			put_page(page);
			break;
5505 5506
		case MC_TARGET_SWAP:
			ent = target.ent;
5507
			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
5508
				mc.precharge--;
5509 5510 5511
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
5512
			break;
5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
5527
		ret = mem_cgroup_do_precharge(1);
5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539
		if (!ret)
			goto retry;
	}

	return ret;
}

static void mem_cgroup_move_charge(struct mm_struct *mm)
{
	struct vm_area_struct *vma;

	lru_add_drain_all();
5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552
retry:
	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
		/*
		 * Someone who are holding the mmap_sem might be waiting in
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		int ret;
		struct mm_walk mem_cgroup_move_charge_walk = {
			.pmd_entry = mem_cgroup_move_charge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		ret = walk_page_range(vma->vm_start, vma->vm_end,
						&mem_cgroup_move_charge_walk);
		if (ret)
			/*
			 * means we have consumed all precharges and failed in
			 * doing additional charge. Just abandon here.
			 */
			break;
	}
5571
	up_read(&mm->mmap_sem);
5572 5573
}

5574 5575
static void mem_cgroup_move_task(struct cgroup *cont,
				 struct cgroup_taskset *tset)
B
Balbir Singh 已提交
5576
{
5577
	struct task_struct *p = cgroup_taskset_first(tset);
5578
	struct mm_struct *mm = get_task_mm(p);
5579 5580

	if (mm) {
5581 5582
		if (mc.to)
			mem_cgroup_move_charge(mm);
5583 5584
		mmput(mm);
	}
5585 5586
	if (mc.to)
		mem_cgroup_clear_mc();
B
Balbir Singh 已提交
5587
}
5588
#else	/* !CONFIG_MMU */
5589 5590
static int mem_cgroup_can_attach(struct cgroup *cgroup,
				 struct cgroup_taskset *tset)
5591 5592 5593
{
	return 0;
}
5594 5595
static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
				     struct cgroup_taskset *tset)
5596 5597
{
}
5598 5599
static void mem_cgroup_move_task(struct cgroup *cont,
				 struct cgroup_taskset *tset)
5600 5601 5602
{
}
#endif
B
Balbir Singh 已提交
5603

B
Balbir Singh 已提交
5604 5605 5606 5607
struct cgroup_subsys mem_cgroup_subsys = {
	.name = "memory",
	.subsys_id = mem_cgroup_subsys_id,
	.create = mem_cgroup_create,
5608
	.pre_destroy = mem_cgroup_pre_destroy,
B
Balbir Singh 已提交
5609
	.destroy = mem_cgroup_destroy,
5610 5611
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
B
Balbir Singh 已提交
5612
	.attach = mem_cgroup_move_task,
5613
	.base_cftypes = mem_cgroup_files,
5614
	.early_init = 0,
K
KAMEZAWA Hiroyuki 已提交
5615
	.use_id = 1,
5616
	.__DEPRECATED_clear_css_refs = true,
B
Balbir Singh 已提交
5617
};
5618 5619

#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
5620 5621 5622
static int __init enable_swap_account(char *s)
{
	/* consider enabled if no parameter or 1 is given */
5623
	if (!strcmp(s, "1"))
5624
		really_do_swap_account = 1;
5625
	else if (!strcmp(s, "0"))
5626 5627 5628
		really_do_swap_account = 0;
	return 1;
}
5629
__setup("swapaccount=", enable_swap_account);
5630 5631

#endif