core.c 278.8 KB
Newer Older
T
Thomas Gleixner 已提交
1
/*
I
Ingo Molnar 已提交
2
 * Performance events core code:
T
Thomas Gleixner 已提交
3
 *
4
 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5
 *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6
 *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
A
Al Viro 已提交
7
 *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8
 *
I
Ingo Molnar 已提交
9
 * For licensing details see kernel-base/COPYING
T
Thomas Gleixner 已提交
10 11 12
 */

#include <linux/fs.h>
13
#include <linux/mm.h>
T
Thomas Gleixner 已提交
14 15
#include <linux/cpu.h>
#include <linux/smp.h>
P
Peter Zijlstra 已提交
16
#include <linux/idr.h>
17
#include <linux/file.h>
T
Thomas Gleixner 已提交
18
#include <linux/poll.h>
19
#include <linux/slab.h>
20
#include <linux/hash.h>
21
#include <linux/tick.h>
T
Thomas Gleixner 已提交
22
#include <linux/sysfs.h>
23
#include <linux/dcache.h>
T
Thomas Gleixner 已提交
24
#include <linux/percpu.h>
25
#include <linux/ptrace.h>
P
Peter Zijlstra 已提交
26
#include <linux/reboot.h>
27
#include <linux/vmstat.h>
P
Peter Zijlstra 已提交
28
#include <linux/device.h>
29
#include <linux/export.h>
30
#include <linux/vmalloc.h>
31 32
#include <linux/hardirq.h>
#include <linux/rculist.h>
T
Thomas Gleixner 已提交
33 34 35
#include <linux/uaccess.h>
#include <linux/syscalls.h>
#include <linux/anon_inodes.h>
I
Ingo Molnar 已提交
36
#include <linux/kernel_stat.h>
37
#include <linux/cgroup.h>
38
#include <linux/perf_event.h>
39
#include <linux/trace_events.h>
40
#include <linux/hw_breakpoint.h>
41
#include <linux/mm_types.h>
42
#include <linux/module.h>
43
#include <linux/mman.h>
P
Pawel Moll 已提交
44
#include <linux/compat.h>
45 46
#include <linux/bpf.h>
#include <linux/filter.h>
47 48
#include <linux/namei.h>
#include <linux/parser.h>
49
#include <linux/sched/clock.h>
50
#include <linux/sched/mm.h>
51 52
#include <linux/proc_ns.h>
#include <linux/mount.h>
T
Thomas Gleixner 已提交
53

54 55
#include "internal.h"

56 57
#include <asm/irq_regs.h>

58 59
typedef int (*remote_function_f)(void *);

60
struct remote_function_call {
61
	struct task_struct	*p;
62
	remote_function_f	func;
63 64
	void			*info;
	int			ret;
65 66 67 68 69 70 71 72
};

static void remote_function(void *data)
{
	struct remote_function_call *tfc = data;
	struct task_struct *p = tfc->p;

	if (p) {
73 74 75 76 77 78 79 80 81 82 83
		/* -EAGAIN */
		if (task_cpu(p) != smp_processor_id())
			return;

		/*
		 * Now that we're on right CPU with IRQs disabled, we can test
		 * if we hit the right task without races.
		 */

		tfc->ret = -ESRCH; /* No such (running) process */
		if (p != current)
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
			return;
	}

	tfc->ret = tfc->func(tfc->info);
}

/**
 * task_function_call - call a function on the cpu on which a task runs
 * @p:		the task to evaluate
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func when the task is currently running. This might
 * be on the current CPU, which just calls the function directly
 *
 * returns: @func return value, or
 *	    -ESRCH  - when the process isn't running
 *	    -EAGAIN - when the process moved away
 */
static int
104
task_function_call(struct task_struct *p, remote_function_f func, void *info)
105 106
{
	struct remote_function_call data = {
107 108 109
		.p	= p,
		.func	= func,
		.info	= info,
110
		.ret	= -EAGAIN,
111
	};
112
	int ret;
113

114 115 116 117 118
	do {
		ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
		if (!ret)
			ret = data.ret;
	} while (ret == -EAGAIN);
119

120
	return ret;
121 122 123 124 125 126 127 128 129 130 131
}

/**
 * cpu_function_call - call a function on the cpu
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func on the remote cpu.
 *
 * returns: @func return value or -ENXIO when the cpu is offline
 */
132
static int cpu_function_call(int cpu, remote_function_f func, void *info)
133 134
{
	struct remote_function_call data = {
135 136 137 138
		.p	= NULL,
		.func	= func,
		.info	= info,
		.ret	= -ENXIO, /* No such CPU */
139 140 141 142 143 144 145
	};

	smp_call_function_single(cpu, remote_function, &data, 1);

	return data.ret;
}

146 147 148 149 150 151 152 153
static inline struct perf_cpu_context *
__get_cpu_context(struct perf_event_context *ctx)
{
	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
}

static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
			  struct perf_event_context *ctx)
154
{
155 156 157 158 159 160 161 162 163 164 165 166 167
	raw_spin_lock(&cpuctx->ctx.lock);
	if (ctx)
		raw_spin_lock(&ctx->lock);
}

static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
			    struct perf_event_context *ctx)
{
	if (ctx)
		raw_spin_unlock(&ctx->lock);
	raw_spin_unlock(&cpuctx->ctx.lock);
}

168 169 170 171
#define TASK_TOMBSTONE ((void *)-1L)

static bool is_kernel_event(struct perf_event *event)
{
172
	return READ_ONCE(event->owner) == TASK_TOMBSTONE;
173 174
}

175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
/*
 * On task ctx scheduling...
 *
 * When !ctx->nr_events a task context will not be scheduled. This means
 * we can disable the scheduler hooks (for performance) without leaving
 * pending task ctx state.
 *
 * This however results in two special cases:
 *
 *  - removing the last event from a task ctx; this is relatively straight
 *    forward and is done in __perf_remove_from_context.
 *
 *  - adding the first event to a task ctx; this is tricky because we cannot
 *    rely on ctx->is_active and therefore cannot use event_function_call().
 *    See perf_install_in_context().
 *
 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
 */

194 195 196 197 198 199 200 201 202 203 204 205 206
typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
			struct perf_event_context *, void *);

struct event_function_struct {
	struct perf_event *event;
	event_f func;
	void *data;
};

static int event_function(void *info)
{
	struct event_function_struct *efs = info;
	struct perf_event *event = efs->event;
207
	struct perf_event_context *ctx = event->ctx;
208 209
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
	struct perf_event_context *task_ctx = cpuctx->task_ctx;
210
	int ret = 0;
211

212
	lockdep_assert_irqs_disabled();
213

214
	perf_ctx_lock(cpuctx, task_ctx);
215 216 217 218 219
	/*
	 * Since we do the IPI call without holding ctx->lock things can have
	 * changed, double check we hit the task we set out to hit.
	 */
	if (ctx->task) {
220
		if (ctx->task != current) {
221
			ret = -ESRCH;
222 223
			goto unlock;
		}
224 225 226 227 228 229 230 231 232 233 234 235 236

		/*
		 * We only use event_function_call() on established contexts,
		 * and event_function() is only ever called when active (or
		 * rather, we'll have bailed in task_function_call() or the
		 * above ctx->task != current test), therefore we must have
		 * ctx->is_active here.
		 */
		WARN_ON_ONCE(!ctx->is_active);
		/*
		 * And since we have ctx->is_active, cpuctx->task_ctx must
		 * match.
		 */
237 238 239
		WARN_ON_ONCE(task_ctx != ctx);
	} else {
		WARN_ON_ONCE(&cpuctx->ctx != ctx);
240
	}
241

242
	efs->func(event, cpuctx, ctx, efs->data);
243
unlock:
244 245
	perf_ctx_unlock(cpuctx, task_ctx);

246
	return ret;
247 248 249
}

static void event_function_call(struct perf_event *event, event_f func, void *data)
250 251
{
	struct perf_event_context *ctx = event->ctx;
252
	struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
253 254 255 256 257
	struct event_function_struct efs = {
		.event = event,
		.func = func,
		.data = data,
	};
258

P
Peter Zijlstra 已提交
259 260 261 262 263 264 265 266
	if (!event->parent) {
		/*
		 * If this is a !child event, we must hold ctx::mutex to
		 * stabilize the the event->ctx relation. See
		 * perf_event_ctx_lock().
		 */
		lockdep_assert_held(&ctx->mutex);
	}
267 268

	if (!task) {
269
		cpu_function_call(event->cpu, event_function, &efs);
270 271 272
		return;
	}

273 274 275
	if (task == TASK_TOMBSTONE)
		return;

276
again:
277
	if (!task_function_call(task, event_function, &efs))
278 279 280
		return;

	raw_spin_lock_irq(&ctx->lock);
281 282 283 284 285
	/*
	 * Reload the task pointer, it might have been changed by
	 * a concurrent perf_event_context_sched_out().
	 */
	task = ctx->task;
286 287 288
	if (task == TASK_TOMBSTONE) {
		raw_spin_unlock_irq(&ctx->lock);
		return;
289
	}
290 291 292 293 294
	if (ctx->is_active) {
		raw_spin_unlock_irq(&ctx->lock);
		goto again;
	}
	func(event, NULL, ctx, data);
295 296 297
	raw_spin_unlock_irq(&ctx->lock);
}

298 299 300 301 302 303 304 305 306 307 308
/*
 * Similar to event_function_call() + event_function(), but hard assumes IRQs
 * are already disabled and we're on the right CPU.
 */
static void event_function_local(struct perf_event *event, event_f func, void *data)
{
	struct perf_event_context *ctx = event->ctx;
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
	struct task_struct *task = READ_ONCE(ctx->task);
	struct perf_event_context *task_ctx = NULL;

309
	lockdep_assert_irqs_disabled();
310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345

	if (task) {
		if (task == TASK_TOMBSTONE)
			return;

		task_ctx = ctx;
	}

	perf_ctx_lock(cpuctx, task_ctx);

	task = ctx->task;
	if (task == TASK_TOMBSTONE)
		goto unlock;

	if (task) {
		/*
		 * We must be either inactive or active and the right task,
		 * otherwise we're screwed, since we cannot IPI to somewhere
		 * else.
		 */
		if (ctx->is_active) {
			if (WARN_ON_ONCE(task != current))
				goto unlock;

			if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
				goto unlock;
		}
	} else {
		WARN_ON_ONCE(&cpuctx->ctx != ctx);
	}

	func(event, cpuctx, ctx, data);
unlock:
	perf_ctx_unlock(cpuctx, task_ctx);
}

S
Stephane Eranian 已提交
346 347
#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
		       PERF_FLAG_FD_OUTPUT  |\
348 349
		       PERF_FLAG_PID_CGROUP |\
		       PERF_FLAG_FD_CLOEXEC)
S
Stephane Eranian 已提交
350

351 352 353 354 355 356 357
/*
 * branch priv levels that need permission checks
 */
#define PERF_SAMPLE_BRANCH_PERM_PLM \
	(PERF_SAMPLE_BRANCH_KERNEL |\
	 PERF_SAMPLE_BRANCH_HV)

358 359 360
enum event_type_t {
	EVENT_FLEXIBLE = 0x1,
	EVENT_PINNED = 0x2,
361
	EVENT_TIME = 0x4,
362 363
	/* see ctx_resched() for details */
	EVENT_CPU = 0x8,
364 365 366
	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
};

S
Stephane Eranian 已提交
367 368 369 370
/*
 * perf_sched_events : >0 events exist
 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
 */
371 372 373 374 375 376 377

static void perf_sched_delayed(struct work_struct *work);
DEFINE_STATIC_KEY_FALSE(perf_sched_events);
static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
static DEFINE_MUTEX(perf_sched_mutex);
static atomic_t perf_sched_count;

S
Stephane Eranian 已提交
378
static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
379
static DEFINE_PER_CPU(int, perf_sched_cb_usages);
380
static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
S
Stephane Eranian 已提交
381

382 383
static atomic_t nr_mmap_events __read_mostly;
static atomic_t nr_comm_events __read_mostly;
384
static atomic_t nr_namespaces_events __read_mostly;
385
static atomic_t nr_task_events __read_mostly;
386
static atomic_t nr_freq_events __read_mostly;
387
static atomic_t nr_switch_events __read_mostly;
388

P
Peter Zijlstra 已提交
389 390 391
static LIST_HEAD(pmus);
static DEFINE_MUTEX(pmus_lock);
static struct srcu_struct pmus_srcu;
392
static cpumask_var_t perf_online_mask;
P
Peter Zijlstra 已提交
393

394
/*
395
 * perf event paranoia level:
396 397
 *  -1 - not paranoid at all
 *   0 - disallow raw tracepoint access for unpriv
398
 *   1 - disallow cpu events for unpriv
399
 *   2 - disallow kernel profiling for unpriv
400
 */
401
int sysctl_perf_event_paranoid __read_mostly = 2;
402

403 404
/* Minimum for 512 kiB + 1 user control page */
int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
405 406

/*
407
 * max perf event sample rate
408
 */
409 410 411 412 413 414 415 416 417
#define DEFAULT_MAX_SAMPLE_RATE		100000
#define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
#define DEFAULT_CPU_TIME_MAX_PERCENT	25

int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;

static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;

P
Peter Zijlstra 已提交
418 419
static int perf_sample_allowed_ns __read_mostly =
	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
420

421
static void update_perf_cpu_limits(void)
422 423 424 425
{
	u64 tmp = perf_sample_period_ns;

	tmp *= sysctl_perf_cpu_time_max_percent;
426 427 428 429 430
	tmp = div_u64(tmp, 100);
	if (!tmp)
		tmp = 1;

	WRITE_ONCE(perf_sample_allowed_ns, tmp);
431
}
P
Peter Zijlstra 已提交
432

433
static bool perf_rotate_context(struct perf_cpu_context *cpuctx);
434

P
Peter Zijlstra 已提交
435 436 437 438
int perf_proc_update_handler(struct ctl_table *table, int write,
		void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
439
	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
P
Peter Zijlstra 已提交
440 441 442 443

	if (ret || !write)
		return ret;

444 445 446 447 448 449 450
	/*
	 * If throttling is disabled don't allow the write:
	 */
	if (sysctl_perf_cpu_time_max_percent == 100 ||
	    sysctl_perf_cpu_time_max_percent == 0)
		return -EINVAL;

P
Peter Zijlstra 已提交
451
	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
452 453 454 455 456 457 458 459 460 461 462 463
	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
	update_perf_cpu_limits();

	return 0;
}

int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;

int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
				void __user *buffer, size_t *lenp,
				loff_t *ppos)
{
464
	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
465 466 467 468

	if (ret || !write)
		return ret;

469 470
	if (sysctl_perf_cpu_time_max_percent == 100 ||
	    sysctl_perf_cpu_time_max_percent == 0) {
471 472 473 474 475 476
		printk(KERN_WARNING
		       "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
		WRITE_ONCE(perf_sample_allowed_ns, 0);
	} else {
		update_perf_cpu_limits();
	}
P
Peter Zijlstra 已提交
477 478 479

	return 0;
}
480

481 482 483 484 485 486 487
/*
 * perf samples are done in some very critical code paths (NMIs).
 * If they take too much CPU time, the system can lock up and not
 * get any real work done.  This will drop the sample rate when
 * we detect that events are taking too long.
 */
#define NR_ACCUMULATED_SAMPLES 128
P
Peter Zijlstra 已提交
488
static DEFINE_PER_CPU(u64, running_sample_length);
489

490 491 492
static u64 __report_avg;
static u64 __report_allowed;

493
static void perf_duration_warn(struct irq_work *w)
494
{
495
	printk_ratelimited(KERN_INFO
496 497 498 499
		"perf: interrupt took too long (%lld > %lld), lowering "
		"kernel.perf_event_max_sample_rate to %d\n",
		__report_avg, __report_allowed,
		sysctl_perf_event_sample_rate);
500 501 502 503 504 505
}

static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);

void perf_sample_event_took(u64 sample_len_ns)
{
506 507 508 509
	u64 max_len = READ_ONCE(perf_sample_allowed_ns);
	u64 running_len;
	u64 avg_len;
	u32 max;
510

511
	if (max_len == 0)
512 513
		return;

514 515 516 517 518
	/* Decay the counter by 1 average sample. */
	running_len = __this_cpu_read(running_sample_length);
	running_len -= running_len/NR_ACCUMULATED_SAMPLES;
	running_len += sample_len_ns;
	__this_cpu_write(running_sample_length, running_len);
519 520

	/*
521 522
	 * Note: this will be biased artifically low until we have
	 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
523 524
	 * from having to maintain a count.
	 */
525 526
	avg_len = running_len/NR_ACCUMULATED_SAMPLES;
	if (avg_len <= max_len)
527 528
		return;

529 530
	__report_avg = avg_len;
	__report_allowed = max_len;
531

532 533 534 535 536 537 538 539 540
	/*
	 * Compute a throttle threshold 25% below the current duration.
	 */
	avg_len += avg_len / 4;
	max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
	if (avg_len < max)
		max /= (u32)avg_len;
	else
		max = 1;
541

542 543 544 545 546
	WRITE_ONCE(perf_sample_allowed_ns, avg_len);
	WRITE_ONCE(max_samples_per_tick, max);

	sysctl_perf_event_sample_rate = max * HZ;
	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
547

548
	if (!irq_work_queue(&perf_duration_work)) {
549
		early_printk("perf: interrupt took too long (%lld > %lld), lowering "
550
			     "kernel.perf_event_max_sample_rate to %d\n",
551
			     __report_avg, __report_allowed,
552 553
			     sysctl_perf_event_sample_rate);
	}
554 555
}

556
static atomic64_t perf_event_id;
557

558 559 560 561
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type);

static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
562 563 564 565 566
			     enum event_type_t event_type,
			     struct task_struct *task);

static void update_context_time(struct perf_event_context *ctx);
static u64 perf_event_time(struct perf_event *event);
567

568
void __weak perf_event_print_debug(void)	{ }
T
Thomas Gleixner 已提交
569

570
extern __weak const char *perf_pmu_name(void)
T
Thomas Gleixner 已提交
571
{
572
	return "pmu";
T
Thomas Gleixner 已提交
573 574
}

575 576 577 578 579
static inline u64 perf_clock(void)
{
	return local_clock();
}

580 581 582 583 584
static inline u64 perf_event_clock(struct perf_event *event)
{
	return event->clock();
}

585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645
/*
 * State based event timekeeping...
 *
 * The basic idea is to use event->state to determine which (if any) time
 * fields to increment with the current delta. This means we only need to
 * update timestamps when we change state or when they are explicitly requested
 * (read).
 *
 * Event groups make things a little more complicated, but not terribly so. The
 * rules for a group are that if the group leader is OFF the entire group is
 * OFF, irrespecive of what the group member states are. This results in
 * __perf_effective_state().
 *
 * A futher ramification is that when a group leader flips between OFF and
 * !OFF, we need to update all group member times.
 *
 *
 * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
 * need to make sure the relevant context time is updated before we try and
 * update our timestamps.
 */

static __always_inline enum perf_event_state
__perf_effective_state(struct perf_event *event)
{
	struct perf_event *leader = event->group_leader;

	if (leader->state <= PERF_EVENT_STATE_OFF)
		return leader->state;

	return event->state;
}

static __always_inline void
__perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
{
	enum perf_event_state state = __perf_effective_state(event);
	u64 delta = now - event->tstamp;

	*enabled = event->total_time_enabled;
	if (state >= PERF_EVENT_STATE_INACTIVE)
		*enabled += delta;

	*running = event->total_time_running;
	if (state >= PERF_EVENT_STATE_ACTIVE)
		*running += delta;
}

static void perf_event_update_time(struct perf_event *event)
{
	u64 now = perf_event_time(event);

	__perf_update_times(event, now, &event->total_time_enabled,
					&event->total_time_running);
	event->tstamp = now;
}

static void perf_event_update_sibling_time(struct perf_event *leader)
{
	struct perf_event *sibling;

P
Peter Zijlstra 已提交
646
	for_each_sibling_event(sibling, leader)
647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666
		perf_event_update_time(sibling);
}

static void
perf_event_set_state(struct perf_event *event, enum perf_event_state state)
{
	if (event->state == state)
		return;

	perf_event_update_time(event);
	/*
	 * If a group leader gets enabled/disabled all its siblings
	 * are affected too.
	 */
	if ((event->state < 0) ^ (state < 0))
		perf_event_update_sibling_time(event);

	WRITE_ONCE(event->state, state);
}

S
Stephane Eranian 已提交
667 668 669 670 671 672 673 674
#ifdef CONFIG_CGROUP_PERF

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);

675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690
	/* @event doesn't care about cgroup */
	if (!event->cgrp)
		return true;

	/* wants specific cgroup scope but @cpuctx isn't associated with any */
	if (!cpuctx->cgrp)
		return false;

	/*
	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
	 * also enabled for all its descendant cgroups.  If @cpuctx's
	 * cgroup is a descendant of @event's (the test covers identity
	 * case), it's a match.
	 */
	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
				    event->cgrp->css.cgroup);
S
Stephane Eranian 已提交
691 692 693 694
}

static inline void perf_detach_cgroup(struct perf_event *event)
{
Z
Zefan Li 已提交
695
	css_put(&event->cgrp->css);
S
Stephane Eranian 已提交
696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726
	event->cgrp = NULL;
}

static inline int is_cgroup_event(struct perf_event *event)
{
	return event->cgrp != NULL;
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	struct perf_cgroup_info *t;

	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	return t->time;
}

static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
{
	struct perf_cgroup_info *info;
	u64 now;

	now = perf_clock();

	info = this_cpu_ptr(cgrp->info);

	info->time += now - info->timestamp;
	info->timestamp = now;
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
727 728 729 730 731 732 733 734 735
	struct perf_cgroup *cgrp = cpuctx->cgrp;
	struct cgroup_subsys_state *css;

	if (cgrp) {
		for (css = &cgrp->css; css; css = css->parent) {
			cgrp = container_of(css, struct perf_cgroup, css);
			__update_cgrp_time(cgrp);
		}
	}
S
Stephane Eranian 已提交
736 737 738 739
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
740 741
	struct perf_cgroup *cgrp;

S
Stephane Eranian 已提交
742
	/*
743 744
	 * ensure we access cgroup data only when needed and
	 * when we know the cgroup is pinned (css_get)
S
Stephane Eranian 已提交
745
	 */
746
	if (!is_cgroup_event(event))
S
Stephane Eranian 已提交
747 748
		return;

749
	cgrp = perf_cgroup_from_task(current, event->ctx);
750 751 752
	/*
	 * Do not update time when cgroup is not active
	 */
753
       if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
754
		__update_cgrp_time(event->cgrp);
S
Stephane Eranian 已提交
755 756 757
}

static inline void
758 759
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
760 761 762
{
	struct perf_cgroup *cgrp;
	struct perf_cgroup_info *info;
763
	struct cgroup_subsys_state *css;
S
Stephane Eranian 已提交
764

765 766 767 768 769 770
	/*
	 * ctx->lock held by caller
	 * ensure we do not access cgroup data
	 * unless we have the cgroup pinned (css_get)
	 */
	if (!task || !ctx->nr_cgroups)
S
Stephane Eranian 已提交
771 772
		return;

773
	cgrp = perf_cgroup_from_task(task, ctx);
774 775 776 777 778 779

	for (css = &cgrp->css; css; css = css->parent) {
		cgrp = container_of(css, struct perf_cgroup, css);
		info = this_cpu_ptr(cgrp->info);
		info->timestamp = ctx->timestamp;
	}
S
Stephane Eranian 已提交
780 781
}

782 783
static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);

S
Stephane Eranian 已提交
784 785 786 787 788 789 790 791 792
#define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
#define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */

/*
 * reschedule events based on the cgroup constraint of task.
 *
 * mode SWOUT : schedule out everything
 * mode SWIN : schedule in based on cgroup for next
 */
793
static void perf_cgroup_switch(struct task_struct *task, int mode)
S
Stephane Eranian 已提交
794 795
{
	struct perf_cpu_context *cpuctx;
796
	struct list_head *list;
S
Stephane Eranian 已提交
797 798 799
	unsigned long flags;

	/*
800 801
	 * Disable interrupts and preemption to avoid this CPU's
	 * cgrp_cpuctx_entry to change under us.
S
Stephane Eranian 已提交
802 803 804
	 */
	local_irq_save(flags);

805 806 807
	list = this_cpu_ptr(&cgrp_cpuctx_list);
	list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) {
		WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
S
Stephane Eranian 已提交
808

809 810
		perf_ctx_lock(cpuctx, cpuctx->task_ctx);
		perf_pmu_disable(cpuctx->ctx.pmu);
S
Stephane Eranian 已提交
811

812 813 814 815 816 817 818 819
		if (mode & PERF_CGROUP_SWOUT) {
			cpu_ctx_sched_out(cpuctx, EVENT_ALL);
			/*
			 * must not be done before ctxswout due
			 * to event_filter_match() in event_sched_out()
			 */
			cpuctx->cgrp = NULL;
		}
S
Stephane Eranian 已提交
820

821 822 823 824 825 826 827 828 829 830 831 832
		if (mode & PERF_CGROUP_SWIN) {
			WARN_ON_ONCE(cpuctx->cgrp);
			/*
			 * set cgrp before ctxsw in to allow
			 * event_filter_match() to not have to pass
			 * task around
			 * we pass the cpuctx->ctx to perf_cgroup_from_task()
			 * because cgorup events are only per-cpu
			 */
			cpuctx->cgrp = perf_cgroup_from_task(task,
							     &cpuctx->ctx);
			cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
S
Stephane Eranian 已提交
833
		}
834 835
		perf_pmu_enable(cpuctx->ctx.pmu);
		perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
S
Stephane Eranian 已提交
836 837 838 839 840
	}

	local_irq_restore(flags);
}

841 842
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
843
{
844 845 846
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

847
	rcu_read_lock();
848 849
	/*
	 * we come here when we know perf_cgroup_events > 0
850 851
	 * we do not need to pass the ctx here because we know
	 * we are holding the rcu lock
852
	 */
853
	cgrp1 = perf_cgroup_from_task(task, NULL);
854
	cgrp2 = perf_cgroup_from_task(next, NULL);
855 856 857 858 859 860 861 862

	/*
	 * only schedule out current cgroup events if we know
	 * that we are switching to a different cgroup. Otherwise,
	 * do no touch the cgroup events.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
863 864

	rcu_read_unlock();
S
Stephane Eranian 已提交
865 866
}

867 868
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
869
{
870 871 872
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

873
	rcu_read_lock();
874 875
	/*
	 * we come here when we know perf_cgroup_events > 0
876 877
	 * we do not need to pass the ctx here because we know
	 * we are holding the rcu lock
878
	 */
879 880
	cgrp1 = perf_cgroup_from_task(task, NULL);
	cgrp2 = perf_cgroup_from_task(prev, NULL);
881 882 883 884 885 886 887 888

	/*
	 * only need to schedule in cgroup events if we are changing
	 * cgroup during ctxsw. Cgroup events were not scheduled
	 * out of ctxsw out if that was not the case.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
889 890

	rcu_read_unlock();
S
Stephane Eranian 已提交
891 892 893 894 895 896 897 898
}

static inline int perf_cgroup_connect(int fd, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	struct perf_cgroup *cgrp;
	struct cgroup_subsys_state *css;
899 900
	struct fd f = fdget(fd);
	int ret = 0;
S
Stephane Eranian 已提交
901

902
	if (!f.file)
S
Stephane Eranian 已提交
903 904
		return -EBADF;

A
Al Viro 已提交
905
	css = css_tryget_online_from_dir(f.file->f_path.dentry,
906
					 &perf_event_cgrp_subsys);
907 908 909 910
	if (IS_ERR(css)) {
		ret = PTR_ERR(css);
		goto out;
	}
S
Stephane Eranian 已提交
911 912 913 914 915 916 917 918 919 920 921 922 923

	cgrp = container_of(css, struct perf_cgroup, css);
	event->cgrp = cgrp;

	/*
	 * all events in a group must monitor
	 * the same cgroup because a task belongs
	 * to only one perf cgroup at a time
	 */
	if (group_leader && group_leader->cgrp != cgrp) {
		perf_detach_cgroup(event);
		ret = -EINVAL;
	}
924
out:
925
	fdput(f);
S
Stephane Eranian 已提交
926 927 928 929 930 931 932 933 934 935 936
	return ret;
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
	struct perf_cgroup_info *t;
	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	event->shadow_ctx_time = now - t->timestamp;
}

937 938 939 940 941 942 943 944 945
/*
 * Update cpuctx->cgrp so that it is set when first cgroup event is added and
 * cleared when last cgroup event is removed.
 */
static inline void
list_update_cgroup_event(struct perf_event *event,
			 struct perf_event_context *ctx, bool add)
{
	struct perf_cpu_context *cpuctx;
946
	struct list_head *cpuctx_entry;
947 948 949 950 951 952 953 954 955

	if (!is_cgroup_event(event))
		return;

	/*
	 * Because cgroup events are always per-cpu events,
	 * this will always be called from the right CPU.
	 */
	cpuctx = __get_cpu_context(ctx);
956 957 958 959 960 961 962 963

	/*
	 * Since setting cpuctx->cgrp is conditional on the current @cgrp
	 * matching the event's cgroup, we must do this for every new event,
	 * because if the first would mismatch, the second would not try again
	 * and we would leave cpuctx->cgrp unset.
	 */
	if (add && !cpuctx->cgrp) {
964 965 966 967
		struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);

		if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
			cpuctx->cgrp = cgrp;
968
	}
969 970 971 972 973 974 975 976 977 978 979 980 981 982 983

	if (add && ctx->nr_cgroups++)
		return;
	else if (!add && --ctx->nr_cgroups)
		return;

	/* no cgroup running */
	if (!add)
		cpuctx->cgrp = NULL;

	cpuctx_entry = &cpuctx->cgrp_cpuctx_entry;
	if (add)
		list_add(cpuctx_entry, this_cpu_ptr(&cgrp_cpuctx_list));
	else
		list_del(cpuctx_entry);
984 985
}

S
Stephane Eranian 已提交
986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009
#else /* !CONFIG_CGROUP_PERF */

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	return true;
}

static inline void perf_detach_cgroup(struct perf_event *event)
{}

static inline int is_cgroup_event(struct perf_event *event)
{
	return 0;
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
}

1010 1011
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
1012 1013 1014
{
}

1015 1016
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027
{
}

static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	return -EINVAL;
}

static inline void
1028 1029
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047
{
}

void
perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
{
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	return 0;
}

1048 1049 1050 1051 1052 1053
static inline void
list_update_cgroup_event(struct perf_event *event,
			 struct perf_event_context *ctx, bool add)
{
}

S
Stephane Eranian 已提交
1054 1055
#endif

1056 1057 1058 1059 1060 1061
/*
 * set default to be dependent on timer tick just
 * like original code
 */
#define PERF_CPU_HRTIMER (1000 / HZ)
/*
1062
 * function must be called with interrupts disabled
1063
 */
1064
static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1065 1066
{
	struct perf_cpu_context *cpuctx;
1067
	bool rotations;
1068

1069
	lockdep_assert_irqs_disabled();
1070 1071 1072 1073

	cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
	rotations = perf_rotate_context(cpuctx);

P
Peter Zijlstra 已提交
1074 1075
	raw_spin_lock(&cpuctx->hrtimer_lock);
	if (rotations)
1076
		hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
P
Peter Zijlstra 已提交
1077 1078 1079
	else
		cpuctx->hrtimer_active = 0;
	raw_spin_unlock(&cpuctx->hrtimer_lock);
1080

P
Peter Zijlstra 已提交
1081
	return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1082 1083
}

1084
static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
1085
{
1086
	struct hrtimer *timer = &cpuctx->hrtimer;
1087
	struct pmu *pmu = cpuctx->ctx.pmu;
1088
	u64 interval;
1089 1090 1091 1092 1093

	/* no multiplexing needed for SW PMU */
	if (pmu->task_ctx_nr == perf_sw_context)
		return;

1094 1095 1096 1097
	/*
	 * check default is sane, if not set then force to
	 * default interval (1/tick)
	 */
1098 1099 1100
	interval = pmu->hrtimer_interval_ms;
	if (interval < 1)
		interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1101

1102
	cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1103

P
Peter Zijlstra 已提交
1104 1105
	raw_spin_lock_init(&cpuctx->hrtimer_lock);
	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
1106
	timer->function = perf_mux_hrtimer_handler;
1107 1108
}

1109
static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1110
{
1111
	struct hrtimer *timer = &cpuctx->hrtimer;
1112
	struct pmu *pmu = cpuctx->ctx.pmu;
P
Peter Zijlstra 已提交
1113
	unsigned long flags;
1114 1115 1116

	/* not for SW PMU */
	if (pmu->task_ctx_nr == perf_sw_context)
1117
		return 0;
1118

P
Peter Zijlstra 已提交
1119 1120 1121 1122 1123 1124 1125
	raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
	if (!cpuctx->hrtimer_active) {
		cpuctx->hrtimer_active = 1;
		hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
		hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
	}
	raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1126

1127
	return 0;
1128 1129
}

P
Peter Zijlstra 已提交
1130
void perf_pmu_disable(struct pmu *pmu)
1131
{
P
Peter Zijlstra 已提交
1132 1133 1134
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!(*count)++)
		pmu->pmu_disable(pmu);
1135 1136
}

P
Peter Zijlstra 已提交
1137
void perf_pmu_enable(struct pmu *pmu)
1138
{
P
Peter Zijlstra 已提交
1139 1140 1141
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!--(*count))
		pmu->pmu_enable(pmu);
1142 1143
}

1144
static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1145 1146

/*
1147 1148 1149 1150
 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
 * perf_event_task_tick() are fully serialized because they're strictly cpu
 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
 * disabled, while perf_event_task_tick is called from IRQ context.
1151
 */
1152
static void perf_event_ctx_activate(struct perf_event_context *ctx)
1153
{
1154
	struct list_head *head = this_cpu_ptr(&active_ctx_list);
1155

1156
	lockdep_assert_irqs_disabled();
1157

1158 1159 1160 1161 1162 1163 1164
	WARN_ON(!list_empty(&ctx->active_ctx_list));

	list_add(&ctx->active_ctx_list, head);
}

static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
{
1165
	lockdep_assert_irqs_disabled();
1166 1167 1168 1169

	WARN_ON(list_empty(&ctx->active_ctx_list));

	list_del_init(&ctx->active_ctx_list);
1170 1171
}

1172
static void get_ctx(struct perf_event_context *ctx)
1173
{
1174
	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
1175 1176
}

1177 1178 1179 1180 1181 1182 1183 1184 1185
static void free_ctx(struct rcu_head *head)
{
	struct perf_event_context *ctx;

	ctx = container_of(head, struct perf_event_context, rcu_head);
	kfree(ctx->task_ctx_data);
	kfree(ctx);
}

1186
static void put_ctx(struct perf_event_context *ctx)
1187
{
1188 1189 1190
	if (atomic_dec_and_test(&ctx->refcount)) {
		if (ctx->parent_ctx)
			put_ctx(ctx->parent_ctx);
1191
		if (ctx->task && ctx->task != TASK_TOMBSTONE)
1192
			put_task_struct(ctx->task);
1193
		call_rcu(&ctx->rcu_head, free_ctx);
1194
	}
1195 1196
}

P
Peter Zijlstra 已提交
1197 1198 1199 1200 1201 1202 1203
/*
 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
 * perf_pmu_migrate_context() we need some magic.
 *
 * Those places that change perf_event::ctx will hold both
 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
 *
1204 1205 1206 1207
 * Lock ordering is by mutex address. There are two other sites where
 * perf_event_context::mutex nests and those are:
 *
 *  - perf_event_exit_task_context()	[ child , 0 ]
1208 1209
 *      perf_event_exit_event()
 *        put_event()			[ parent, 1 ]
1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226
 *
 *  - perf_event_init_context()		[ parent, 0 ]
 *      inherit_task_group()
 *        inherit_group()
 *          inherit_event()
 *            perf_event_alloc()
 *              perf_init_event()
 *                perf_try_init_event()	[ child , 1 ]
 *
 * While it appears there is an obvious deadlock here -- the parent and child
 * nesting levels are inverted between the two. This is in fact safe because
 * life-time rules separate them. That is an exiting task cannot fork, and a
 * spawning task cannot (yet) exit.
 *
 * But remember that that these are parent<->child context relations, and
 * migration does not affect children, therefore these two orderings should not
 * interact.
P
Peter Zijlstra 已提交
1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249
 *
 * The change in perf_event::ctx does not affect children (as claimed above)
 * because the sys_perf_event_open() case will install a new event and break
 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
 * concerned with cpuctx and that doesn't have children.
 *
 * The places that change perf_event::ctx will issue:
 *
 *   perf_remove_from_context();
 *   synchronize_rcu();
 *   perf_install_in_context();
 *
 * to affect the change. The remove_from_context() + synchronize_rcu() should
 * quiesce the event, after which we can install it in the new location. This
 * means that only external vectors (perf_fops, prctl) can perturb the event
 * while in transit. Therefore all such accessors should also acquire
 * perf_event_context::mutex to serialize against this.
 *
 * However; because event->ctx can change while we're waiting to acquire
 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
 * function.
 *
 * Lock order:
1250
 *    cred_guard_mutex
P
Peter Zijlstra 已提交
1251 1252 1253
 *	task_struct::perf_event_mutex
 *	  perf_event_context::mutex
 *	    perf_event::child_mutex;
P
Peter Zijlstra 已提交
1254
 *	      perf_event_context::lock
P
Peter Zijlstra 已提交
1255 1256
 *	    perf_event::mmap_mutex
 *	    mmap_sem
1257 1258 1259 1260
 *
 *    cpu_hotplug_lock
 *      pmus_lock
 *	  cpuctx->mutex / perf_event_context::mutex
P
Peter Zijlstra 已提交
1261
 */
P
Peter Zijlstra 已提交
1262 1263
static struct perf_event_context *
perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
P
Peter Zijlstra 已提交
1264 1265 1266 1267 1268
{
	struct perf_event_context *ctx;

again:
	rcu_read_lock();
1269
	ctx = READ_ONCE(event->ctx);
P
Peter Zijlstra 已提交
1270 1271 1272 1273 1274 1275
	if (!atomic_inc_not_zero(&ctx->refcount)) {
		rcu_read_unlock();
		goto again;
	}
	rcu_read_unlock();

P
Peter Zijlstra 已提交
1276
	mutex_lock_nested(&ctx->mutex, nesting);
P
Peter Zijlstra 已提交
1277 1278 1279 1280 1281 1282 1283 1284 1285
	if (event->ctx != ctx) {
		mutex_unlock(&ctx->mutex);
		put_ctx(ctx);
		goto again;
	}

	return ctx;
}

P
Peter Zijlstra 已提交
1286 1287 1288 1289 1290 1291
static inline struct perf_event_context *
perf_event_ctx_lock(struct perf_event *event)
{
	return perf_event_ctx_lock_nested(event, 0);
}

P
Peter Zijlstra 已提交
1292 1293 1294 1295 1296 1297 1298
static void perf_event_ctx_unlock(struct perf_event *event,
				  struct perf_event_context *ctx)
{
	mutex_unlock(&ctx->mutex);
	put_ctx(ctx);
}

1299 1300 1301 1302 1303 1304 1305
/*
 * This must be done under the ctx->lock, such as to serialize against
 * context_equiv(), therefore we cannot call put_ctx() since that might end up
 * calling scheduler related locks and ctx->lock nests inside those.
 */
static __must_check struct perf_event_context *
unclone_ctx(struct perf_event_context *ctx)
1306
{
1307 1308 1309 1310 1311
	struct perf_event_context *parent_ctx = ctx->parent_ctx;

	lockdep_assert_held(&ctx->lock);

	if (parent_ctx)
1312
		ctx->parent_ctx = NULL;
1313
	ctx->generation++;
1314 1315

	return parent_ctx;
1316 1317
}

1318 1319
static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
				enum pid_type type)
1320
{
1321
	u32 nr;
1322 1323 1324 1325 1326 1327
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

1328 1329 1330 1331 1332
	nr = __task_pid_nr_ns(p, type, event->ns);
	/* avoid -1 if it is idle thread or runs in another ns */
	if (!nr && !pid_alive(p))
		nr = -1;
	return nr;
1333 1334
}

1335
static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1336
{
1337 1338
	return perf_event_pid_type(event, p, __PIDTYPE_TGID);
}
1339

1340 1341 1342
static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
{
	return perf_event_pid_type(event, p, PIDTYPE_PID);
1343 1344
}

1345
/*
1346
 * If we inherit events we want to return the parent event id
1347 1348
 * to userspace.
 */
1349
static u64 primary_event_id(struct perf_event *event)
1350
{
1351
	u64 id = event->id;
1352

1353 1354
	if (event->parent)
		id = event->parent->id;
1355 1356 1357 1358

	return id;
}

1359
/*
1360
 * Get the perf_event_context for a task and lock it.
1361
 *
1362 1363 1364
 * This has to cope with with the fact that until it is locked,
 * the context could get moved to another task.
 */
1365
static struct perf_event_context *
P
Peter Zijlstra 已提交
1366
perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1367
{
1368
	struct perf_event_context *ctx;
1369

P
Peter Zijlstra 已提交
1370
retry:
1371 1372 1373
	/*
	 * One of the few rules of preemptible RCU is that one cannot do
	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1374
	 * part of the read side critical section was irqs-enabled -- see
1375 1376 1377
	 * rcu_read_unlock_special().
	 *
	 * Since ctx->lock nests under rq->lock we must ensure the entire read
1378
	 * side critical section has interrupts disabled.
1379
	 */
1380
	local_irq_save(*flags);
1381
	rcu_read_lock();
P
Peter Zijlstra 已提交
1382
	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1383 1384 1385 1386
	if (ctx) {
		/*
		 * If this context is a clone of another, it might
		 * get swapped for another underneath us by
1387
		 * perf_event_task_sched_out, though the
1388 1389 1390 1391 1392 1393
		 * rcu_read_lock() protects us from any context
		 * getting freed.  Lock the context and check if it
		 * got swapped before we could get the lock, and retry
		 * if so.  If we locked the right context, then it
		 * can't get swapped on us any more.
		 */
1394
		raw_spin_lock(&ctx->lock);
P
Peter Zijlstra 已提交
1395
		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1396
			raw_spin_unlock(&ctx->lock);
1397
			rcu_read_unlock();
1398
			local_irq_restore(*flags);
1399 1400
			goto retry;
		}
1401

1402 1403
		if (ctx->task == TASK_TOMBSTONE ||
		    !atomic_inc_not_zero(&ctx->refcount)) {
1404
			raw_spin_unlock(&ctx->lock);
1405
			ctx = NULL;
P
Peter Zijlstra 已提交
1406 1407
		} else {
			WARN_ON_ONCE(ctx->task != task);
1408
		}
1409 1410
	}
	rcu_read_unlock();
1411 1412
	if (!ctx)
		local_irq_restore(*flags);
1413 1414 1415 1416 1417 1418 1419 1420
	return ctx;
}

/*
 * Get the context for a task and increment its pin_count so it
 * can't get swapped to another task.  This also increments its
 * reference count so that the context can't get freed.
 */
P
Peter Zijlstra 已提交
1421 1422
static struct perf_event_context *
perf_pin_task_context(struct task_struct *task, int ctxn)
1423
{
1424
	struct perf_event_context *ctx;
1425 1426
	unsigned long flags;

P
Peter Zijlstra 已提交
1427
	ctx = perf_lock_task_context(task, ctxn, &flags);
1428 1429
	if (ctx) {
		++ctx->pin_count;
1430
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1431 1432 1433 1434
	}
	return ctx;
}

1435
static void perf_unpin_context(struct perf_event_context *ctx)
1436 1437 1438
{
	unsigned long flags;

1439
	raw_spin_lock_irqsave(&ctx->lock, flags);
1440
	--ctx->pin_count;
1441
	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1442 1443
}

1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454
/*
 * Update the record of the current time in a context.
 */
static void update_context_time(struct perf_event_context *ctx)
{
	u64 now = perf_clock();

	ctx->time += now - ctx->timestamp;
	ctx->timestamp = now;
}

1455 1456 1457
static u64 perf_event_time(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
S
Stephane Eranian 已提交
1458 1459 1460 1461

	if (is_cgroup_event(event))
		return perf_cgroup_event_time(event);

1462 1463 1464
	return ctx ? ctx->time : 0;
}

1465 1466 1467 1468 1469 1470 1471
static enum event_type_t get_event_type(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	enum event_type_t event_type;

	lockdep_assert_held(&ctx->lock);

1472 1473 1474 1475 1476 1477 1478
	/*
	 * It's 'group type', really, because if our group leader is
	 * pinned, so are we.
	 */
	if (event->group_leader != event)
		event = event->group_leader;

1479 1480 1481 1482 1483 1484 1485
	event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
	if (!ctx->task)
		event_type |= EVENT_CPU;

	return event_type;
}

1486
/*
1487
 * Helper function to initialize event group nodes.
1488
 */
1489
static void init_event_group(struct perf_event *event)
1490 1491 1492 1493 1494 1495 1496
{
	RB_CLEAR_NODE(&event->group_node);
	event->group_index = 0;
}

/*
 * Extract pinned or flexible groups from the context
1497
 * based on event attrs bits.
1498 1499 1500
 */
static struct perf_event_groups *
get_event_groups(struct perf_event *event, struct perf_event_context *ctx)
1501 1502 1503 1504 1505 1506 1507
{
	if (event->attr.pinned)
		return &ctx->pinned_groups;
	else
		return &ctx->flexible_groups;
}

1508
/*
1509
 * Helper function to initializes perf_event_group trees.
1510
 */
1511
static void perf_event_groups_init(struct perf_event_groups *groups)
1512 1513 1514 1515 1516 1517 1518
{
	groups->tree = RB_ROOT;
	groups->index = 0;
}

/*
 * Compare function for event groups;
1519 1520 1521
 *
 * Implements complex key that first sorts by CPU and then by virtual index
 * which provides ordering when rotating groups for the same CPU.
1522
 */
1523 1524
static bool
perf_event_groups_less(struct perf_event *left, struct perf_event *right)
1525
{
1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536
	if (left->cpu < right->cpu)
		return true;
	if (left->cpu > right->cpu)
		return false;

	if (left->group_index < right->group_index)
		return true;
	if (left->group_index > right->group_index)
		return false;

	return false;
1537 1538 1539
}

/*
1540 1541 1542
 * Insert @event into @groups' tree; using {@event->cpu, ++@groups->index} for
 * key (see perf_event_groups_less). This places it last inside the CPU
 * subtree.
1543 1544 1545
 */
static void
perf_event_groups_insert(struct perf_event_groups *groups,
1546
			 struct perf_event *event)
1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558
{
	struct perf_event *node_event;
	struct rb_node *parent;
	struct rb_node **node;

	event->group_index = ++groups->index;

	node = &groups->tree.rb_node;
	parent = *node;

	while (*node) {
		parent = *node;
1559
		node_event = container_of(*node, struct perf_event, group_node);
1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571

		if (perf_event_groups_less(event, node_event))
			node = &parent->rb_left;
		else
			node = &parent->rb_right;
	}

	rb_link_node(&event->group_node, parent, node);
	rb_insert_color(&event->group_node, &groups->tree);
}

/*
1572
 * Helper function to insert event into the pinned or flexible groups.
1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583
 */
static void
add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx)
{
	struct perf_event_groups *groups;

	groups = get_event_groups(event, ctx);
	perf_event_groups_insert(groups, event);
}

/*
1584
 * Delete a group from a tree.
1585 1586 1587
 */
static void
perf_event_groups_delete(struct perf_event_groups *groups,
1588
			 struct perf_event *event)
1589
{
1590 1591
	WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) ||
		     RB_EMPTY_ROOT(&groups->tree));
1592

1593
	rb_erase(&event->group_node, &groups->tree);
1594 1595 1596 1597
	init_event_group(event);
}

/*
1598
 * Helper function to delete event from its groups.
1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609
 */
static void
del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx)
{
	struct perf_event_groups *groups;

	groups = get_event_groups(event, ctx);
	perf_event_groups_delete(groups, event);
}

/*
1610
 * Get the leftmost event in the @cpu subtree.
1611 1612 1613 1614 1615 1616 1617 1618
 */
static struct perf_event *
perf_event_groups_first(struct perf_event_groups *groups, int cpu)
{
	struct perf_event *node_event = NULL, *match = NULL;
	struct rb_node *node = groups->tree.rb_node;

	while (node) {
1619
		node_event = container_of(node, struct perf_event, group_node);
1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633

		if (cpu < node_event->cpu) {
			node = node->rb_left;
		} else if (cpu > node_event->cpu) {
			node = node->rb_right;
		} else {
			match = node_event;
			node = node->rb_left;
		}
	}

	return match;
}

1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648
/*
 * Like rb_entry_next_safe() for the @cpu subtree.
 */
static struct perf_event *
perf_event_groups_next(struct perf_event *event)
{
	struct perf_event *next;

	next = rb_entry_safe(rb_next(&event->group_node), typeof(*event), group_node);
	if (next && next->cpu == event->cpu)
		return next;

	return NULL;
}

1649
/*
1650
 * Iterate through the whole groups tree.
1651
 */
1652 1653 1654 1655 1656
#define perf_event_groups_for_each(event, groups)			\
	for (event = rb_entry_safe(rb_first(&((groups)->tree)),		\
				typeof(*event), group_node); event;	\
		event = rb_entry_safe(rb_next(&event->group_node),	\
				typeof(*event), group_node))
1657

1658
/*
1659
 * Add a event from the lists for its context.
1660 1661
 * Must be called with ctx->mutex and ctx->lock held.
 */
1662
static void
1663
list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1664
{
P
Peter Zijlstra 已提交
1665 1666
	lockdep_assert_held(&ctx->lock);

1667 1668
	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
	event->attach_state |= PERF_ATTACH_CONTEXT;
1669

1670 1671
	event->tstamp = perf_event_time(event);

1672
	/*
1673 1674 1675
	 * If we're a stand alone event or group leader, we go to the context
	 * list, group events are kept attached to the group so that
	 * perf_group_detach can, at all times, locate all siblings.
1676
	 */
1677
	if (event->group_leader == event) {
1678
		event->group_caps = event->event_caps;
1679
		add_event_to_groups(event, ctx);
P
Peter Zijlstra 已提交
1680
	}
P
Peter Zijlstra 已提交
1681

1682
	list_update_cgroup_event(event, ctx, true);
S
Stephane Eranian 已提交
1683

1684 1685 1686
	list_add_rcu(&event->event_entry, &ctx->event_list);
	ctx->nr_events++;
	if (event->attr.inherit_stat)
1687
		ctx->nr_stat++;
1688 1689

	ctx->generation++;
1690 1691
}

J
Jiri Olsa 已提交
1692 1693 1694 1695 1696 1697 1698 1699 1700
/*
 * Initialize event state based on the perf_event_attr::disabled.
 */
static inline void perf_event__state_init(struct perf_event *event)
{
	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
					      PERF_EVENT_STATE_INACTIVE;
}

P
Peter Zijlstra 已提交
1701
static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716
{
	int entry = sizeof(u64); /* value */
	int size = 0;
	int nr = 1;

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_ID)
		entry += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_GROUP) {
P
Peter Zijlstra 已提交
1717
		nr += nr_siblings;
1718 1719 1720 1721 1722 1723 1724
		size += sizeof(u64);
	}

	size += entry * nr;
	event->read_size = size;
}

P
Peter Zijlstra 已提交
1725
static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1726 1727 1728 1729 1730 1731 1732
{
	struct perf_sample_data *data;
	u16 size = 0;

	if (sample_type & PERF_SAMPLE_IP)
		size += sizeof(data->ip);

1733 1734 1735 1736 1737 1738
	if (sample_type & PERF_SAMPLE_ADDR)
		size += sizeof(data->addr);

	if (sample_type & PERF_SAMPLE_PERIOD)
		size += sizeof(data->period);

A
Andi Kleen 已提交
1739 1740 1741
	if (sample_type & PERF_SAMPLE_WEIGHT)
		size += sizeof(data->weight);

1742 1743 1744
	if (sample_type & PERF_SAMPLE_READ)
		size += event->read_size;

1745 1746 1747
	if (sample_type & PERF_SAMPLE_DATA_SRC)
		size += sizeof(data->data_src.val);

A
Andi Kleen 已提交
1748 1749 1750
	if (sample_type & PERF_SAMPLE_TRANSACTION)
		size += sizeof(data->txn);

1751 1752 1753
	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
		size += sizeof(data->phys_addr);

1754 1755 1756
	event->header_size = size;
}

P
Peter Zijlstra 已提交
1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767
/*
 * Called at perf_event creation and when events are attached/detached from a
 * group.
 */
static void perf_event__header_size(struct perf_event *event)
{
	__perf_event_read_size(event,
			       event->group_leader->nr_siblings);
	__perf_event_header_size(event, event->attr.sample_type);
}

1768 1769 1770 1771 1772 1773
static void perf_event__id_header_size(struct perf_event *event)
{
	struct perf_sample_data *data;
	u64 sample_type = event->attr.sample_type;
	u16 size = 0;

1774 1775 1776 1777 1778 1779
	if (sample_type & PERF_SAMPLE_TID)
		size += sizeof(data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		size += sizeof(data->time);

1780 1781 1782
	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		size += sizeof(data->id);

1783 1784 1785 1786 1787 1788 1789 1790 1791
	if (sample_type & PERF_SAMPLE_ID)
		size += sizeof(data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		size += sizeof(data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		size += sizeof(data->cpu_entry);

1792
	event->id_header_size = size;
1793 1794
}

P
Peter Zijlstra 已提交
1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815
static bool perf_event_validate_size(struct perf_event *event)
{
	/*
	 * The values computed here will be over-written when we actually
	 * attach the event.
	 */
	__perf_event_read_size(event, event->group_leader->nr_siblings + 1);
	__perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
	perf_event__id_header_size(event);

	/*
	 * Sum the lot; should not exceed the 64k limit we have on records.
	 * Conservative limit to allow for callchains and other variable fields.
	 */
	if (event->read_size + event->header_size +
	    event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
		return false;

	return true;
}

1816 1817
static void perf_group_attach(struct perf_event *event)
{
1818
	struct perf_event *group_leader = event->group_leader, *pos;
1819

1820 1821
	lockdep_assert_held(&event->ctx->lock);

P
Peter Zijlstra 已提交
1822 1823 1824 1825 1826 1827
	/*
	 * We can have double attach due to group movement in perf_event_open.
	 */
	if (event->attach_state & PERF_ATTACH_GROUP)
		return;

1828 1829 1830 1831 1832
	event->attach_state |= PERF_ATTACH_GROUP;

	if (group_leader == event)
		return;

P
Peter Zijlstra 已提交
1833 1834
	WARN_ON_ONCE(group_leader->ctx != event->ctx);

1835
	group_leader->group_caps &= event->event_caps;
1836

1837
	list_add_tail(&event->sibling_list, &group_leader->sibling_list);
1838
	group_leader->nr_siblings++;
1839 1840 1841

	perf_event__header_size(group_leader);

P
Peter Zijlstra 已提交
1842
	for_each_sibling_event(pos, group_leader)
1843
		perf_event__header_size(pos);
1844 1845
}

1846
/*
1847
 * Remove a event from the lists for its context.
1848
 * Must be called with ctx->mutex and ctx->lock held.
1849
 */
1850
static void
1851
list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1852
{
P
Peter Zijlstra 已提交
1853 1854 1855
	WARN_ON_ONCE(event->ctx != ctx);
	lockdep_assert_held(&ctx->lock);

1856 1857 1858 1859
	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1860
		return;
1861 1862 1863

	event->attach_state &= ~PERF_ATTACH_CONTEXT;

1864
	list_update_cgroup_event(event, ctx, false);
S
Stephane Eranian 已提交
1865

1866 1867
	ctx->nr_events--;
	if (event->attr.inherit_stat)
1868
		ctx->nr_stat--;
1869

1870
	list_del_rcu(&event->event_entry);
1871

1872
	if (event->group_leader == event)
1873
		del_event_from_groups(event, ctx);
P
Peter Zijlstra 已提交
1874

1875 1876 1877 1878 1879 1880 1881 1882
	/*
	 * If event was in error state, then keep it
	 * that way, otherwise bogus counts will be
	 * returned on read(). The only way to get out
	 * of error state is by explicit re-enabling
	 * of the event
	 */
	if (event->state > PERF_EVENT_STATE_OFF)
1883
		perf_event_set_state(event, PERF_EVENT_STATE_OFF);
1884 1885

	ctx->generation++;
1886 1887
}

1888
static void perf_group_detach(struct perf_event *event)
1889 1890
{
	struct perf_event *sibling, *tmp;
1891
	struct perf_event_context *ctx = event->ctx;
1892

1893
	lockdep_assert_held(&ctx->lock);
1894

1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906
	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_GROUP))
		return;

	event->attach_state &= ~PERF_ATTACH_GROUP;

	/*
	 * If this is a sibling, remove it from its group.
	 */
	if (event->group_leader != event) {
1907
		list_del_init(&event->sibling_list);
1908
		event->group_leader->nr_siblings--;
1909
		goto out;
1910 1911
	}

1912
	/*
1913 1914
	 * If this was a group event with sibling events then
	 * upgrade the siblings to singleton events by adding them
1915
	 * to whatever list we are on.
1916
	 */
1917
	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) {
1918

1919
		sibling->group_leader = sibling;
1920
		list_del_init(&sibling->sibling_list);
1921 1922

		/* Inherit group flags from the previous leader */
1923
		sibling->group_caps = event->group_caps;
P
Peter Zijlstra 已提交
1924

1925 1926
		if (!RB_EMPTY_NODE(&event->group_node)) {
			add_event_to_groups(sibling, event->ctx);
1927 1928 1929 1930 1931 1932 1933

			if (sibling->state == PERF_EVENT_STATE_ACTIVE) {
				struct list_head *list = sibling->attr.pinned ?
					&ctx->pinned_active : &ctx->flexible_active;

				list_add_tail(&sibling->active_list, list);
			}
1934 1935
		}

P
Peter Zijlstra 已提交
1936
		WARN_ON_ONCE(sibling->ctx != event->ctx);
1937
	}
1938 1939 1940 1941

out:
	perf_event__header_size(event->group_leader);

P
Peter Zijlstra 已提交
1942
	for_each_sibling_event(tmp, event->group_leader)
1943
		perf_event__header_size(tmp);
1944 1945
}

1946 1947
static bool is_orphaned_event(struct perf_event *event)
{
P
Peter Zijlstra 已提交
1948
	return event->state == PERF_EVENT_STATE_DEAD;
1949 1950
}

1951
static inline int __pmu_filter_match(struct perf_event *event)
1952 1953 1954 1955 1956
{
	struct pmu *pmu = event->pmu;
	return pmu->filter_match ? pmu->filter_match(event) : 1;
}

1957 1958 1959 1960 1961 1962 1963 1964
/*
 * Check whether we should attempt to schedule an event group based on
 * PMU-specific filtering. An event group can consist of HW and SW events,
 * potentially with a SW leader, so we must check all the filters, to
 * determine whether a group is schedulable:
 */
static inline int pmu_filter_match(struct perf_event *event)
{
P
Peter Zijlstra 已提交
1965
	struct perf_event *sibling;
1966 1967 1968 1969

	if (!__pmu_filter_match(event))
		return 0;

P
Peter Zijlstra 已提交
1970 1971
	for_each_sibling_event(sibling, event) {
		if (!__pmu_filter_match(sibling))
1972 1973 1974 1975 1976 1977
			return 0;
	}

	return 1;
}

1978 1979 1980
static inline int
event_filter_match(struct perf_event *event)
{
1981 1982
	return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
	       perf_cgroup_match(event) && pmu_filter_match(event);
1983 1984
}

1985 1986
static void
event_sched_out(struct perf_event *event,
1987
		  struct perf_cpu_context *cpuctx,
1988
		  struct perf_event_context *ctx)
1989
{
1990
	enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
P
Peter Zijlstra 已提交
1991 1992 1993 1994

	WARN_ON_ONCE(event->ctx != ctx);
	lockdep_assert_held(&ctx->lock);

1995
	if (event->state != PERF_EVENT_STATE_ACTIVE)
1996
		return;
1997

1998 1999 2000 2001 2002 2003 2004
	/*
	 * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but
	 * we can schedule events _OUT_ individually through things like
	 * __perf_remove_from_context().
	 */
	list_del_init(&event->active_list);

2005 2006
	perf_pmu_disable(event->pmu);

2007 2008
	event->pmu->del(event, 0);
	event->oncpu = -1;
2009

2010 2011
	if (event->pending_disable) {
		event->pending_disable = 0;
2012
		state = PERF_EVENT_STATE_OFF;
2013
	}
2014
	perf_event_set_state(event, state);
2015

2016
	if (!is_software_event(event))
2017
		cpuctx->active_oncpu--;
2018 2019
	if (!--ctx->nr_active)
		perf_event_ctx_deactivate(ctx);
2020 2021
	if (event->attr.freq && event->attr.sample_freq)
		ctx->nr_freq--;
2022
	if (event->attr.exclusive || !cpuctx->active_oncpu)
2023
		cpuctx->exclusive = 0;
2024 2025

	perf_pmu_enable(event->pmu);
2026 2027
}

2028
static void
2029
group_sched_out(struct perf_event *group_event,
2030
		struct perf_cpu_context *cpuctx,
2031
		struct perf_event_context *ctx)
2032
{
2033
	struct perf_event *event;
2034 2035 2036

	if (group_event->state != PERF_EVENT_STATE_ACTIVE)
		return;
2037

2038 2039
	perf_pmu_disable(ctx->pmu);

2040
	event_sched_out(group_event, cpuctx, ctx);
2041 2042 2043 2044

	/*
	 * Schedule out siblings (if any):
	 */
P
Peter Zijlstra 已提交
2045
	for_each_sibling_event(event, group_event)
2046
		event_sched_out(event, cpuctx, ctx);
2047

2048 2049
	perf_pmu_enable(ctx->pmu);

2050
	if (group_event->attr.exclusive)
2051 2052 2053
		cpuctx->exclusive = 0;
}

2054
#define DETACH_GROUP	0x01UL
2055

T
Thomas Gleixner 已提交
2056
/*
2057
 * Cross CPU call to remove a performance event
T
Thomas Gleixner 已提交
2058
 *
2059
 * We disable the event on the hardware level first. After that we
T
Thomas Gleixner 已提交
2060 2061
 * remove it from the context list.
 */
2062 2063 2064 2065 2066
static void
__perf_remove_from_context(struct perf_event *event,
			   struct perf_cpu_context *cpuctx,
			   struct perf_event_context *ctx,
			   void *info)
T
Thomas Gleixner 已提交
2067
{
2068
	unsigned long flags = (unsigned long)info;
T
Thomas Gleixner 已提交
2069

2070 2071 2072 2073 2074
	if (ctx->is_active & EVENT_TIME) {
		update_context_time(ctx);
		update_cgrp_time_from_cpuctx(cpuctx);
	}

2075
	event_sched_out(event, cpuctx, ctx);
2076
	if (flags & DETACH_GROUP)
2077
		perf_group_detach(event);
2078
	list_del_event(event, ctx);
2079 2080

	if (!ctx->nr_events && ctx->is_active) {
2081
		ctx->is_active = 0;
2082 2083 2084 2085
		if (ctx->task) {
			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
			cpuctx->task_ctx = NULL;
		}
2086
	}
T
Thomas Gleixner 已提交
2087 2088 2089
}

/*
2090
 * Remove the event from a task's (or a CPU's) list of events.
T
Thomas Gleixner 已提交
2091
 *
2092 2093
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
2094 2095
 * remains valid.  This is OK when called from perf_release since
 * that only calls us on the top-level context, which can't be a clone.
2096
 * When called from perf_event_exit_task, it's OK because the
2097
 * context has been detached from its task.
T
Thomas Gleixner 已提交
2098
 */
2099
static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
T
Thomas Gleixner 已提交
2100
{
2101 2102 2103
	struct perf_event_context *ctx = event->ctx;

	lockdep_assert_held(&ctx->mutex);
T
Thomas Gleixner 已提交
2104

2105
	event_function_call(event, __perf_remove_from_context, (void *)flags);
2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123

	/*
	 * The above event_function_call() can NO-OP when it hits
	 * TASK_TOMBSTONE. In that case we must already have been detached
	 * from the context (by perf_event_exit_event()) but the grouping
	 * might still be in-tact.
	 */
	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
	if ((flags & DETACH_GROUP) &&
	    (event->attach_state & PERF_ATTACH_GROUP)) {
		/*
		 * Since in that case we cannot possibly be scheduled, simply
		 * detach now.
		 */
		raw_spin_lock_irq(&ctx->lock);
		perf_group_detach(event);
		raw_spin_unlock_irq(&ctx->lock);
	}
T
Thomas Gleixner 已提交
2124 2125
}

2126
/*
2127
 * Cross CPU call to disable a performance event
2128
 */
2129 2130 2131 2132
static void __perf_event_disable(struct perf_event *event,
				 struct perf_cpu_context *cpuctx,
				 struct perf_event_context *ctx,
				 void *info)
2133
{
2134 2135
	if (event->state < PERF_EVENT_STATE_INACTIVE)
		return;
2136

2137 2138 2139 2140 2141
	if (ctx->is_active & EVENT_TIME) {
		update_context_time(ctx);
		update_cgrp_time_from_event(event);
	}

2142 2143 2144 2145
	if (event == event->group_leader)
		group_sched_out(event, cpuctx, ctx);
	else
		event_sched_out(event, cpuctx, ctx);
2146 2147

	perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2148 2149
}

2150
/*
2151
 * Disable a event.
2152
 *
2153 2154
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
2155
 * remains valid.  This condition is satisifed when called through
2156 2157
 * perf_event_for_each_child or perf_event_for_each because they
 * hold the top-level event's child_mutex, so any descendant that
2158 2159
 * goes to exit will block in perf_event_exit_event().
 *
2160
 * When called from perf_pending_event it's OK because event->ctx
2161
 * is the current context on this CPU and preemption is disabled,
2162
 * hence we can't get into perf_event_task_sched_out for this context.
2163
 */
P
Peter Zijlstra 已提交
2164
static void _perf_event_disable(struct perf_event *event)
2165
{
2166
	struct perf_event_context *ctx = event->ctx;
2167

2168
	raw_spin_lock_irq(&ctx->lock);
2169
	if (event->state <= PERF_EVENT_STATE_OFF) {
2170
		raw_spin_unlock_irq(&ctx->lock);
2171
		return;
2172
	}
2173
	raw_spin_unlock_irq(&ctx->lock);
2174

2175 2176 2177 2178 2179 2180
	event_function_call(event, __perf_event_disable, NULL);
}

void perf_event_disable_local(struct perf_event *event)
{
	event_function_local(event, __perf_event_disable, NULL);
2181
}
P
Peter Zijlstra 已提交
2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194

/*
 * Strictly speaking kernel users cannot create groups and therefore this
 * interface does not need the perf_event_ctx_lock() magic.
 */
void perf_event_disable(struct perf_event *event)
{
	struct perf_event_context *ctx;

	ctx = perf_event_ctx_lock(event);
	_perf_event_disable(event);
	perf_event_ctx_unlock(event, ctx);
}
2195
EXPORT_SYMBOL_GPL(perf_event_disable);
2196

2197 2198 2199 2200 2201 2202
void perf_event_disable_inatomic(struct perf_event *event)
{
	event->pending_disable = 1;
	irq_work_queue(&event->pending);
}

S
Stephane Eranian 已提交
2203
static void perf_set_shadow_time(struct perf_event *event,
2204
				 struct perf_event_context *ctx)
S
Stephane Eranian 已提交
2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231
{
	/*
	 * use the correct time source for the time snapshot
	 *
	 * We could get by without this by leveraging the
	 * fact that to get to this function, the caller
	 * has most likely already called update_context_time()
	 * and update_cgrp_time_xx() and thus both timestamp
	 * are identical (or very close). Given that tstamp is,
	 * already adjusted for cgroup, we could say that:
	 *    tstamp - ctx->timestamp
	 * is equivalent to
	 *    tstamp - cgrp->timestamp.
	 *
	 * Then, in perf_output_read(), the calculation would
	 * work with no changes because:
	 * - event is guaranteed scheduled in
	 * - no scheduled out in between
	 * - thus the timestamp would be the same
	 *
	 * But this is a bit hairy.
	 *
	 * So instead, we have an explicit cgroup call to remain
	 * within the time time source all along. We believe it
	 * is cleaner and simpler to understand.
	 */
	if (is_cgroup_event(event))
2232
		perf_cgroup_set_shadow_time(event, event->tstamp);
S
Stephane Eranian 已提交
2233
	else
2234
		event->shadow_ctx_time = event->tstamp - ctx->timestamp;
S
Stephane Eranian 已提交
2235 2236
}

P
Peter Zijlstra 已提交
2237 2238 2239
#define MAX_INTERRUPTS (~0ULL)

static void perf_log_throttle(struct perf_event *event, int enable);
2240
static void perf_log_itrace_start(struct perf_event *event);
P
Peter Zijlstra 已提交
2241

2242
static int
2243
event_sched_in(struct perf_event *event,
2244
		 struct perf_cpu_context *cpuctx,
2245
		 struct perf_event_context *ctx)
2246
{
2247
	int ret = 0;
2248

2249 2250
	lockdep_assert_held(&ctx->lock);

2251
	if (event->state <= PERF_EVENT_STATE_OFF)
2252 2253
		return 0;

2254 2255
	WRITE_ONCE(event->oncpu, smp_processor_id());
	/*
P
Peter Zijlstra 已提交
2256 2257 2258
	 * Order event::oncpu write to happen before the ACTIVE state is
	 * visible. This allows perf_event_{stop,read}() to observe the correct
	 * ->oncpu if it sees ACTIVE.
2259 2260
	 */
	smp_wmb();
2261
	perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
P
Peter Zijlstra 已提交
2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272

	/*
	 * Unthrottle events, since we scheduled we might have missed several
	 * ticks already, also for a heavily scheduling task there is little
	 * guarantee it'll get a tick in a timely manner.
	 */
	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
		perf_log_throttle(event, 1);
		event->hw.interrupts = 0;
	}

2273 2274
	perf_pmu_disable(event->pmu);

2275
	perf_set_shadow_time(event, ctx);
2276

2277 2278
	perf_log_itrace_start(event);

P
Peter Zijlstra 已提交
2279
	if (event->pmu->add(event, PERF_EF_START)) {
2280
		perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2281
		event->oncpu = -1;
2282 2283
		ret = -EAGAIN;
		goto out;
2284 2285
	}

2286
	if (!is_software_event(event))
2287
		cpuctx->active_oncpu++;
2288 2289
	if (!ctx->nr_active++)
		perf_event_ctx_activate(ctx);
2290 2291
	if (event->attr.freq && event->attr.sample_freq)
		ctx->nr_freq++;
2292

2293
	if (event->attr.exclusive)
2294 2295
		cpuctx->exclusive = 1;

2296 2297 2298 2299
out:
	perf_pmu_enable(event->pmu);

	return ret;
2300 2301
}

2302
static int
2303
group_sched_in(struct perf_event *group_event,
2304
	       struct perf_cpu_context *cpuctx,
2305
	       struct perf_event_context *ctx)
2306
{
2307
	struct perf_event *event, *partial_group = NULL;
P
Peter Zijlstra 已提交
2308
	struct pmu *pmu = ctx->pmu;
2309

2310
	if (group_event->state == PERF_EVENT_STATE_OFF)
2311 2312
		return 0;

2313
	pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2314

2315
	if (event_sched_in(group_event, cpuctx, ctx)) {
P
Peter Zijlstra 已提交
2316
		pmu->cancel_txn(pmu);
2317
		perf_mux_hrtimer_restart(cpuctx);
2318
		return -EAGAIN;
2319
	}
2320 2321 2322 2323

	/*
	 * Schedule in siblings as one group (if any):
	 */
P
Peter Zijlstra 已提交
2324
	for_each_sibling_event(event, group_event) {
2325
		if (event_sched_in(event, cpuctx, ctx)) {
2326
			partial_group = event;
2327 2328 2329 2330
			goto group_error;
		}
	}

2331
	if (!pmu->commit_txn(pmu))
2332
		return 0;
2333

2334 2335 2336 2337
group_error:
	/*
	 * Groups can be scheduled in as one unit only, so undo any
	 * partial group before returning:
2338
	 * The events up to the failed event are scheduled out normally.
2339
	 */
P
Peter Zijlstra 已提交
2340
	for_each_sibling_event(event, group_event) {
2341
		if (event == partial_group)
2342
			break;
2343

2344
		event_sched_out(event, cpuctx, ctx);
2345
	}
2346
	event_sched_out(group_event, cpuctx, ctx);
2347

P
Peter Zijlstra 已提交
2348
	pmu->cancel_txn(pmu);
2349

2350
	perf_mux_hrtimer_restart(cpuctx);
2351

2352 2353 2354
	return -EAGAIN;
}

2355
/*
2356
 * Work out whether we can put this event group on the CPU now.
2357
 */
2358
static int group_can_go_on(struct perf_event *event,
2359 2360 2361 2362
			   struct perf_cpu_context *cpuctx,
			   int can_add_hw)
{
	/*
2363
	 * Groups consisting entirely of software events can always go on.
2364
	 */
2365
	if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2366 2367 2368
		return 1;
	/*
	 * If an exclusive group is already on, no other hardware
2369
	 * events can go on.
2370 2371 2372 2373 2374
	 */
	if (cpuctx->exclusive)
		return 0;
	/*
	 * If this group is exclusive and there are already
2375
	 * events on the CPU, it can't go on.
2376
	 */
2377
	if (event->attr.exclusive && cpuctx->active_oncpu)
2378 2379 2380 2381 2382 2383 2384 2385
		return 0;
	/*
	 * Otherwise, try to add it if all previous groups were able
	 * to go on.
	 */
	return can_add_hw;
}

2386 2387
static void add_event_to_ctx(struct perf_event *event,
			       struct perf_event_context *ctx)
2388
{
2389
	list_add_event(event, ctx);
2390
	perf_group_attach(event);
2391 2392
}

2393 2394 2395
static void ctx_sched_out(struct perf_event_context *ctx,
			  struct perf_cpu_context *cpuctx,
			  enum event_type_t event_type);
2396 2397 2398 2399 2400
static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
	     enum event_type_t event_type,
	     struct task_struct *task);
2401

2402
static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2403 2404
			       struct perf_event_context *ctx,
			       enum event_type_t event_type)
2405 2406 2407 2408 2409 2410 2411
{
	if (!cpuctx->task_ctx)
		return;

	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
		return;

2412
	ctx_sched_out(ctx, cpuctx, event_type);
2413 2414
}

2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426
static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
				struct perf_event_context *ctx,
				struct task_struct *task)
{
	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
}

2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441
/*
 * We want to maintain the following priority of scheduling:
 *  - CPU pinned (EVENT_CPU | EVENT_PINNED)
 *  - task pinned (EVENT_PINNED)
 *  - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
 *  - task flexible (EVENT_FLEXIBLE).
 *
 * In order to avoid unscheduling and scheduling back in everything every
 * time an event is added, only do it for the groups of equal priority and
 * below.
 *
 * This can be called after a batch operation on task events, in which case
 * event_type is a bit mask of the types of events involved. For CPU events,
 * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
 */
2442
static void ctx_resched(struct perf_cpu_context *cpuctx,
2443 2444
			struct perf_event_context *task_ctx,
			enum event_type_t event_type)
2445
{
2446
	enum event_type_t ctx_event_type;
2447 2448 2449 2450 2451 2452 2453 2454 2455
	bool cpu_event = !!(event_type & EVENT_CPU);

	/*
	 * If pinned groups are involved, flexible groups also need to be
	 * scheduled out.
	 */
	if (event_type & EVENT_PINNED)
		event_type |= EVENT_FLEXIBLE;

2456 2457
	ctx_event_type = event_type & EVENT_ALL;

2458 2459
	perf_pmu_disable(cpuctx->ctx.pmu);
	if (task_ctx)
2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473
		task_ctx_sched_out(cpuctx, task_ctx, event_type);

	/*
	 * Decide which cpu ctx groups to schedule out based on the types
	 * of events that caused rescheduling:
	 *  - EVENT_CPU: schedule out corresponding groups;
	 *  - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
	 *  - otherwise, do nothing more.
	 */
	if (cpu_event)
		cpu_ctx_sched_out(cpuctx, ctx_event_type);
	else if (ctx_event_type & EVENT_PINNED)
		cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);

2474 2475
	perf_event_sched_in(cpuctx, task_ctx, current);
	perf_pmu_enable(cpuctx->ctx.pmu);
2476 2477
}

T
Thomas Gleixner 已提交
2478
/*
2479
 * Cross CPU call to install and enable a performance event
2480
 *
2481 2482
 * Very similar to remote_function() + event_function() but cannot assume that
 * things like ctx->is_active and cpuctx->task_ctx are set.
T
Thomas Gleixner 已提交
2483
 */
2484
static int  __perf_install_in_context(void *info)
T
Thomas Gleixner 已提交
2485
{
2486 2487
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
2488
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2489
	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2490
	bool reprogram = true;
2491
	int ret = 0;
T
Thomas Gleixner 已提交
2492

2493
	raw_spin_lock(&cpuctx->ctx.lock);
2494
	if (ctx->task) {
2495 2496
		raw_spin_lock(&ctx->lock);
		task_ctx = ctx;
2497

2498
		reprogram = (ctx->task == current);
2499

2500
		/*
2501 2502 2503 2504 2505
		 * If the task is running, it must be running on this CPU,
		 * otherwise we cannot reprogram things.
		 *
		 * If its not running, we don't care, ctx->lock will
		 * serialize against it becoming runnable.
2506
		 */
2507 2508 2509 2510
		if (task_curr(ctx->task) && !reprogram) {
			ret = -ESRCH;
			goto unlock;
		}
2511

2512
		WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2513 2514
	} else if (task_ctx) {
		raw_spin_lock(&task_ctx->lock);
2515
	}
2516

2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528
#ifdef CONFIG_CGROUP_PERF
	if (is_cgroup_event(event)) {
		/*
		 * If the current cgroup doesn't match the event's
		 * cgroup, we should not try to schedule it.
		 */
		struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
		reprogram = cgroup_is_descendant(cgrp->css.cgroup,
					event->cgrp->css.cgroup);
	}
#endif

2529
	if (reprogram) {
2530 2531
		ctx_sched_out(ctx, cpuctx, EVENT_TIME);
		add_event_to_ctx(event, ctx);
2532
		ctx_resched(cpuctx, task_ctx, get_event_type(event));
2533 2534 2535 2536
	} else {
		add_event_to_ctx(event, ctx);
	}

2537
unlock:
2538
	perf_ctx_unlock(cpuctx, task_ctx);
2539

2540
	return ret;
T
Thomas Gleixner 已提交
2541 2542 2543
}

/*
2544 2545 2546
 * Attach a performance event to a context.
 *
 * Very similar to event_function_call, see comment there.
T
Thomas Gleixner 已提交
2547 2548
 */
static void
2549 2550
perf_install_in_context(struct perf_event_context *ctx,
			struct perf_event *event,
T
Thomas Gleixner 已提交
2551 2552
			int cpu)
{
2553
	struct task_struct *task = READ_ONCE(ctx->task);
2554

2555 2556
	lockdep_assert_held(&ctx->mutex);

2557 2558
	if (event->cpu != -1)
		event->cpu = cpu;
2559

2560 2561 2562 2563 2564 2565
	/*
	 * Ensures that if we can observe event->ctx, both the event and ctx
	 * will be 'complete'. See perf_iterate_sb_cpu().
	 */
	smp_store_release(&event->ctx, ctx);

2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576
	if (!task) {
		cpu_function_call(cpu, __perf_install_in_context, event);
		return;
	}

	/*
	 * Should not happen, we validate the ctx is still alive before calling.
	 */
	if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
		return;

2577 2578 2579
	/*
	 * Installing events is tricky because we cannot rely on ctx->is_active
	 * to be set in case this is the nr_events 0 -> 1 transition.
2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598
	 *
	 * Instead we use task_curr(), which tells us if the task is running.
	 * However, since we use task_curr() outside of rq::lock, we can race
	 * against the actual state. This means the result can be wrong.
	 *
	 * If we get a false positive, we retry, this is harmless.
	 *
	 * If we get a false negative, things are complicated. If we are after
	 * perf_event_context_sched_in() ctx::lock will serialize us, and the
	 * value must be correct. If we're before, it doesn't matter since
	 * perf_event_context_sched_in() will program the counter.
	 *
	 * However, this hinges on the remote context switch having observed
	 * our task->perf_event_ctxp[] store, such that it will in fact take
	 * ctx::lock in perf_event_context_sched_in().
	 *
	 * We do this by task_function_call(), if the IPI fails to hit the task
	 * we know any future context switch of task must see the
	 * perf_event_ctpx[] store.
2599
	 */
2600

2601
	/*
2602 2603 2604 2605
	 * This smp_mb() orders the task->perf_event_ctxp[] store with the
	 * task_cpu() load, such that if the IPI then does not find the task
	 * running, a future context switch of that task must observe the
	 * store.
2606
	 */
2607 2608 2609
	smp_mb();
again:
	if (!task_function_call(task, __perf_install_in_context, event))
2610 2611 2612 2613
		return;

	raw_spin_lock_irq(&ctx->lock);
	task = ctx->task;
2614
	if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2615 2616 2617 2618 2619
		/*
		 * Cannot happen because we already checked above (which also
		 * cannot happen), and we hold ctx->mutex, which serializes us
		 * against perf_event_exit_task_context().
		 */
2620 2621 2622
		raw_spin_unlock_irq(&ctx->lock);
		return;
	}
2623
	/*
2624 2625
	 * If the task is not running, ctx->lock will avoid it becoming so,
	 * thus we can safely install the event.
2626
	 */
2627 2628 2629 2630 2631 2632
	if (task_curr(task)) {
		raw_spin_unlock_irq(&ctx->lock);
		goto again;
	}
	add_event_to_ctx(event, ctx);
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
2633 2634
}

2635
/*
2636
 * Cross CPU call to enable a performance event
2637
 */
2638 2639 2640 2641
static void __perf_event_enable(struct perf_event *event,
				struct perf_cpu_context *cpuctx,
				struct perf_event_context *ctx,
				void *info)
2642
{
2643
	struct perf_event *leader = event->group_leader;
2644
	struct perf_event_context *task_ctx;
2645

P
Peter Zijlstra 已提交
2646 2647
	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
	    event->state <= PERF_EVENT_STATE_ERROR)
2648
		return;
2649

2650 2651 2652
	if (ctx->is_active)
		ctx_sched_out(ctx, cpuctx, EVENT_TIME);

2653
	perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2654

2655 2656 2657
	if (!ctx->is_active)
		return;

S
Stephane Eranian 已提交
2658
	if (!event_filter_match(event)) {
2659
		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2660
		return;
S
Stephane Eranian 已提交
2661
	}
2662

2663
	/*
2664
	 * If the event is in a group and isn't the group leader,
2665
	 * then don't put it on unless the group is on.
2666
	 */
2667 2668
	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2669
		return;
2670
	}
2671

2672 2673 2674
	task_ctx = cpuctx->task_ctx;
	if (ctx->task)
		WARN_ON_ONCE(task_ctx != ctx);
2675

2676
	ctx_resched(cpuctx, task_ctx, get_event_type(event));
2677 2678
}

2679
/*
2680
 * Enable a event.
2681
 *
2682 2683
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
2684
 * remains valid.  This condition is satisfied when called through
2685 2686
 * perf_event_for_each_child or perf_event_for_each as described
 * for perf_event_disable.
2687
 */
P
Peter Zijlstra 已提交
2688
static void _perf_event_enable(struct perf_event *event)
2689
{
2690
	struct perf_event_context *ctx = event->ctx;
2691

2692
	raw_spin_lock_irq(&ctx->lock);
P
Peter Zijlstra 已提交
2693 2694
	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
	    event->state <  PERF_EVENT_STATE_ERROR) {
2695
		raw_spin_unlock_irq(&ctx->lock);
2696 2697 2698 2699
		return;
	}

	/*
2700
	 * If the event is in error state, clear that first.
2701 2702 2703 2704
	 *
	 * That way, if we see the event in error state below, we know that it
	 * has gone back into error state, as distinct from the task having
	 * been scheduled away before the cross-call arrived.
2705
	 */
2706 2707
	if (event->state == PERF_EVENT_STATE_ERROR)
		event->state = PERF_EVENT_STATE_OFF;
2708
	raw_spin_unlock_irq(&ctx->lock);
2709

2710
	event_function_call(event, __perf_event_enable, NULL);
2711
}
P
Peter Zijlstra 已提交
2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723

/*
 * See perf_event_disable();
 */
void perf_event_enable(struct perf_event *event)
{
	struct perf_event_context *ctx;

	ctx = perf_event_ctx_lock(event);
	_perf_event_enable(event);
	perf_event_ctx_unlock(event, ctx);
}
2724
EXPORT_SYMBOL_GPL(perf_event_enable);
2725

2726 2727 2728 2729 2730
struct stop_event_data {
	struct perf_event	*event;
	unsigned int		restart;
};

2731 2732
static int __perf_event_stop(void *info)
{
2733 2734
	struct stop_event_data *sd = info;
	struct perf_event *event = sd->event;
2735

2736
	/* if it's already INACTIVE, do nothing */
2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751
	if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
		return 0;

	/* matches smp_wmb() in event_sched_in() */
	smp_rmb();

	/*
	 * There is a window with interrupts enabled before we get here,
	 * so we need to check again lest we try to stop another CPU's event.
	 */
	if (READ_ONCE(event->oncpu) != smp_processor_id())
		return -EAGAIN;

	event->pmu->stop(event, PERF_EF_UPDATE);

2752 2753 2754 2755 2756 2757 2758 2759 2760 2761
	/*
	 * May race with the actual stop (through perf_pmu_output_stop()),
	 * but it is only used for events with AUX ring buffer, and such
	 * events will refuse to restart because of rb::aux_mmap_count==0,
	 * see comments in perf_aux_output_begin().
	 *
	 * Since this is happening on a event-local CPU, no trace is lost
	 * while restarting.
	 */
	if (sd->restart)
2762
		event->pmu->start(event, 0);
2763

2764 2765 2766
	return 0;
}

2767
static int perf_event_stop(struct perf_event *event, int restart)
2768 2769 2770
{
	struct stop_event_data sd = {
		.event		= event,
2771
		.restart	= restart,
2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831
	};
	int ret = 0;

	do {
		if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
			return 0;

		/* matches smp_wmb() in event_sched_in() */
		smp_rmb();

		/*
		 * We only want to restart ACTIVE events, so if the event goes
		 * inactive here (event->oncpu==-1), there's nothing more to do;
		 * fall through with ret==-ENXIO.
		 */
		ret = cpu_function_call(READ_ONCE(event->oncpu),
					__perf_event_stop, &sd);
	} while (ret == -EAGAIN);

	return ret;
}

/*
 * In order to contain the amount of racy and tricky in the address filter
 * configuration management, it is a two part process:
 *
 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
 *      we update the addresses of corresponding vmas in
 *	event::addr_filters_offs array and bump the event::addr_filters_gen;
 * (p2) when an event is scheduled in (pmu::add), it calls
 *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
 *      if the generation has changed since the previous call.
 *
 * If (p1) happens while the event is active, we restart it to force (p2).
 *
 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
 *     pre-existing mappings, called once when new filters arrive via SET_FILTER
 *     ioctl;
 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
 *     registered mapping, called for every new mmap(), with mm::mmap_sem down
 *     for reading;
 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
 *     of exec.
 */
void perf_event_addr_filters_sync(struct perf_event *event)
{
	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);

	if (!has_addr_filter(event))
		return;

	raw_spin_lock(&ifh->lock);
	if (event->addr_filters_gen != event->hw.addr_filters_gen) {
		event->pmu->addr_filters_sync(event);
		event->hw.addr_filters_gen = event->addr_filters_gen;
	}
	raw_spin_unlock(&ifh->lock);
}
EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);

P
Peter Zijlstra 已提交
2832
static int _perf_event_refresh(struct perf_event *event, int refresh)
2833
{
2834
	/*
2835
	 * not supported on inherited events
2836
	 */
2837
	if (event->attr.inherit || !is_sampling_event(event))
2838 2839
		return -EINVAL;

2840
	atomic_add(refresh, &event->event_limit);
P
Peter Zijlstra 已提交
2841
	_perf_event_enable(event);
2842 2843

	return 0;
2844
}
P
Peter Zijlstra 已提交
2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859

/*
 * See perf_event_disable()
 */
int perf_event_refresh(struct perf_event *event, int refresh)
{
	struct perf_event_context *ctx;
	int ret;

	ctx = perf_event_ctx_lock(event);
	ret = _perf_event_refresh(event, refresh);
	perf_event_ctx_unlock(event, ctx);

	return ret;
}
2860
EXPORT_SYMBOL_GPL(perf_event_refresh);
2861

2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896
static int perf_event_modify_breakpoint(struct perf_event *bp,
					 struct perf_event_attr *attr)
{
	int err;

	_perf_event_disable(bp);

	err = modify_user_hw_breakpoint_check(bp, attr, true);
	if (err) {
		if (!bp->attr.disabled)
			_perf_event_enable(bp);

		return err;
	}

	if (!attr->disabled)
		_perf_event_enable(bp);
	return 0;
}

static int perf_event_modify_attr(struct perf_event *event,
				  struct perf_event_attr *attr)
{
	if (event->attr.type != attr->type)
		return -EINVAL;

	switch (event->attr.type) {
	case PERF_TYPE_BREAKPOINT:
		return perf_event_modify_breakpoint(event, attr);
	default:
		/* Place holder for future additions. */
		return -EOPNOTSUPP;
	}
}

2897 2898 2899
static void ctx_sched_out(struct perf_event_context *ctx,
			  struct perf_cpu_context *cpuctx,
			  enum event_type_t event_type)
2900
{
2901
	struct perf_event *event, *tmp;
2902
	int is_active = ctx->is_active;
2903

P
Peter Zijlstra 已提交
2904
	lockdep_assert_held(&ctx->lock);
2905

2906 2907 2908 2909 2910 2911 2912
	if (likely(!ctx->nr_events)) {
		/*
		 * See __perf_remove_from_context().
		 */
		WARN_ON_ONCE(ctx->is_active);
		if (ctx->task)
			WARN_ON_ONCE(cpuctx->task_ctx);
2913
		return;
2914 2915
	}

2916
	ctx->is_active &= ~event_type;
2917 2918 2919
	if (!(ctx->is_active & EVENT_ALL))
		ctx->is_active = 0;

2920 2921 2922 2923 2924
	if (ctx->task) {
		WARN_ON_ONCE(cpuctx->task_ctx != ctx);
		if (!ctx->is_active)
			cpuctx->task_ctx = NULL;
	}
2925

2926 2927 2928 2929 2930 2931 2932 2933 2934 2935
	/*
	 * Always update time if it was set; not only when it changes.
	 * Otherwise we can 'forget' to update time for any but the last
	 * context we sched out. For example:
	 *
	 *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
	 *   ctx_sched_out(.event_type = EVENT_PINNED)
	 *
	 * would only update time for the pinned events.
	 */
2936 2937 2938 2939 2940 2941
	if (is_active & EVENT_TIME) {
		/* update (and stop) ctx time */
		update_context_time(ctx);
		update_cgrp_time_from_cpuctx(cpuctx);
	}

2942 2943
	is_active ^= ctx->is_active; /* changed bits */

2944
	if (!ctx->nr_active || !(is_active & EVENT_ALL))
2945
		return;
2946

P
Peter Zijlstra 已提交
2947
	perf_pmu_disable(ctx->pmu);
2948
	if (is_active & EVENT_PINNED) {
2949
		list_for_each_entry_safe(event, tmp, &ctx->pinned_active, active_list)
2950
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
2951
	}
2952

2953
	if (is_active & EVENT_FLEXIBLE) {
2954
		list_for_each_entry_safe(event, tmp, &ctx->flexible_active, active_list)
2955
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
2956
	}
P
Peter Zijlstra 已提交
2957
	perf_pmu_enable(ctx->pmu);
2958 2959
}

2960
/*
2961 2962 2963 2964 2965 2966
 * Test whether two contexts are equivalent, i.e. whether they have both been
 * cloned from the same version of the same context.
 *
 * Equivalence is measured using a generation number in the context that is
 * incremented on each modification to it; see unclone_ctx(), list_add_event()
 * and list_del_event().
2967
 */
2968 2969
static int context_equiv(struct perf_event_context *ctx1,
			 struct perf_event_context *ctx2)
2970
{
2971 2972 2973
	lockdep_assert_held(&ctx1->lock);
	lockdep_assert_held(&ctx2->lock);

2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995
	/* Pinning disables the swap optimization */
	if (ctx1->pin_count || ctx2->pin_count)
		return 0;

	/* If ctx1 is the parent of ctx2 */
	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
		return 1;

	/* If ctx2 is the parent of ctx1 */
	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
		return 1;

	/*
	 * If ctx1 and ctx2 have the same parent; we flatten the parent
	 * hierarchy, see perf_event_init_context().
	 */
	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
			ctx1->parent_gen == ctx2->parent_gen)
		return 1;

	/* Unmatched */
	return 0;
2996 2997
}

2998 2999
static void __perf_event_sync_stat(struct perf_event *event,
				     struct perf_event *next_event)
3000 3001 3002
{
	u64 value;

3003
	if (!event->attr.inherit_stat)
3004 3005 3006
		return;

	/*
3007
	 * Update the event value, we cannot use perf_event_read()
3008 3009
	 * because we're in the middle of a context switch and have IRQs
	 * disabled, which upsets smp_call_function_single(), however
3010
	 * we know the event must be on the current CPU, therefore we
3011 3012
	 * don't need to use it.
	 */
3013
	if (event->state == PERF_EVENT_STATE_ACTIVE)
3014
		event->pmu->read(event);
3015

3016
	perf_event_update_time(event);
3017 3018

	/*
3019
	 * In order to keep per-task stats reliable we need to flip the event
3020 3021
	 * values when we flip the contexts.
	 */
3022 3023 3024
	value = local64_read(&next_event->count);
	value = local64_xchg(&event->count, value);
	local64_set(&next_event->count, value);
3025

3026 3027
	swap(event->total_time_enabled, next_event->total_time_enabled);
	swap(event->total_time_running, next_event->total_time_running);
3028

3029
	/*
3030
	 * Since we swizzled the values, update the user visible data too.
3031
	 */
3032 3033
	perf_event_update_userpage(event);
	perf_event_update_userpage(next_event);
3034 3035
}

3036 3037
static void perf_event_sync_stat(struct perf_event_context *ctx,
				   struct perf_event_context *next_ctx)
3038
{
3039
	struct perf_event *event, *next_event;
3040 3041 3042 3043

	if (!ctx->nr_stat)
		return;

3044 3045
	update_context_time(ctx);

3046 3047
	event = list_first_entry(&ctx->event_list,
				   struct perf_event, event_entry);
3048

3049 3050
	next_event = list_first_entry(&next_ctx->event_list,
					struct perf_event, event_entry);
3051

3052 3053
	while (&event->event_entry != &ctx->event_list &&
	       &next_event->event_entry != &next_ctx->event_list) {
3054

3055
		__perf_event_sync_stat(event, next_event);
3056

3057 3058
		event = list_next_entry(event, event_entry);
		next_event = list_next_entry(next_event, event_entry);
3059 3060 3061
	}
}

3062 3063
static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
					 struct task_struct *next)
T
Thomas Gleixner 已提交
3064
{
P
Peter Zijlstra 已提交
3065
	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
3066
	struct perf_event_context *next_ctx;
3067
	struct perf_event_context *parent, *next_parent;
P
Peter Zijlstra 已提交
3068
	struct perf_cpu_context *cpuctx;
3069
	int do_switch = 1;
T
Thomas Gleixner 已提交
3070

P
Peter Zijlstra 已提交
3071 3072
	if (likely(!ctx))
		return;
3073

P
Peter Zijlstra 已提交
3074 3075
	cpuctx = __get_cpu_context(ctx);
	if (!cpuctx->task_ctx)
T
Thomas Gleixner 已提交
3076 3077
		return;

3078
	rcu_read_lock();
P
Peter Zijlstra 已提交
3079
	next_ctx = next->perf_event_ctxp[ctxn];
3080 3081 3082 3083 3084 3085 3086
	if (!next_ctx)
		goto unlock;

	parent = rcu_dereference(ctx->parent_ctx);
	next_parent = rcu_dereference(next_ctx->parent_ctx);

	/* If neither context have a parent context; they cannot be clones. */
3087
	if (!parent && !next_parent)
3088 3089 3090
		goto unlock;

	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
3091 3092 3093 3094 3095 3096 3097 3098 3099
		/*
		 * Looks like the two contexts are clones, so we might be
		 * able to optimize the context switch.  We lock both
		 * contexts and check that they are clones under the
		 * lock (including re-checking that neither has been
		 * uncloned in the meantime).  It doesn't matter which
		 * order we take the locks because no other cpu could
		 * be trying to lock both of these tasks.
		 */
3100 3101
		raw_spin_lock(&ctx->lock);
		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
3102
		if (context_equiv(ctx, next_ctx)) {
3103 3104
			WRITE_ONCE(ctx->task, next);
			WRITE_ONCE(next_ctx->task, task);
3105 3106 3107

			swap(ctx->task_ctx_data, next_ctx->task_ctx_data);

3108 3109 3110 3111 3112 3113 3114 3115 3116 3117
			/*
			 * RCU_INIT_POINTER here is safe because we've not
			 * modified the ctx and the above modification of
			 * ctx->task and ctx->task_ctx_data are immaterial
			 * since those values are always verified under
			 * ctx->lock which we're now holding.
			 */
			RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
			RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);

3118
			do_switch = 0;
3119

3120
			perf_event_sync_stat(ctx, next_ctx);
3121
		}
3122 3123
		raw_spin_unlock(&next_ctx->lock);
		raw_spin_unlock(&ctx->lock);
3124
	}
3125
unlock:
3126
	rcu_read_unlock();
3127

3128
	if (do_switch) {
3129
		raw_spin_lock(&ctx->lock);
3130
		task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
3131
		raw_spin_unlock(&ctx->lock);
3132
	}
T
Thomas Gleixner 已提交
3133 3134
}

3135 3136
static DEFINE_PER_CPU(struct list_head, sched_cb_list);

3137 3138
void perf_sched_cb_dec(struct pmu *pmu)
{
3139 3140
	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

3141
	this_cpu_dec(perf_sched_cb_usages);
3142 3143 3144

	if (!--cpuctx->sched_cb_usage)
		list_del(&cpuctx->sched_cb_entry);
3145 3146
}

3147

3148 3149
void perf_sched_cb_inc(struct pmu *pmu)
{
3150 3151 3152 3153 3154
	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

	if (!cpuctx->sched_cb_usage++)
		list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));

3155 3156 3157 3158 3159 3160
	this_cpu_inc(perf_sched_cb_usages);
}

/*
 * This function provides the context switch callback to the lower code
 * layer. It is invoked ONLY when the context switch callback is enabled.
3161 3162 3163 3164
 *
 * This callback is relevant even to per-cpu events; for example multi event
 * PEBS requires this to provide PID/TID information. This requires we flush
 * all queued PEBS records before we context switch to a new task.
3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175
 */
static void perf_pmu_sched_task(struct task_struct *prev,
				struct task_struct *next,
				bool sched_in)
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;

	if (prev == next)
		return;

3176
	list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
3177
		pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
3178

3179 3180
		if (WARN_ON_ONCE(!pmu->sched_task))
			continue;
3181

3182 3183
		perf_ctx_lock(cpuctx, cpuctx->task_ctx);
		perf_pmu_disable(pmu);
3184

3185
		pmu->sched_task(cpuctx->task_ctx, sched_in);
3186

3187 3188
		perf_pmu_enable(pmu);
		perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3189 3190 3191
	}
}

3192 3193 3194
static void perf_event_switch(struct task_struct *task,
			      struct task_struct *next_prev, bool sched_in);

P
Peter Zijlstra 已提交
3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208
#define for_each_task_context_nr(ctxn)					\
	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)

/*
 * Called from scheduler to remove the events of the current task,
 * with interrupts disabled.
 *
 * We stop each event and update the event value in event->count.
 *
 * This does not protect us against NMI, but disable()
 * sets the disabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * not restart the event.
 */
3209 3210
void __perf_event_task_sched_out(struct task_struct *task,
				 struct task_struct *next)
P
Peter Zijlstra 已提交
3211 3212 3213
{
	int ctxn;

3214 3215 3216
	if (__this_cpu_read(perf_sched_cb_usages))
		perf_pmu_sched_task(task, next, false);

3217 3218 3219
	if (atomic_read(&nr_switch_events))
		perf_event_switch(task, next, false);

P
Peter Zijlstra 已提交
3220 3221
	for_each_task_context_nr(ctxn)
		perf_event_context_sched_out(task, ctxn, next);
S
Stephane Eranian 已提交
3222 3223 3224 3225 3226 3227

	/*
	 * if cgroup events exist on this CPU, then we need
	 * to check if we have to switch out PMU state.
	 * cgroup event are system-wide mode only
	 */
3228
	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3229
		perf_cgroup_sched_out(task, next);
P
Peter Zijlstra 已提交
3230 3231
}

3232 3233 3234 3235 3236 3237 3238
/*
 * Called with IRQs disabled
 */
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type)
{
	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
3239 3240
}

3241 3242
static int visit_groups_merge(struct perf_event_groups *groups, int cpu,
			      int (*func)(struct perf_event *, void *), void *data)
T
Thomas Gleixner 已提交
3243
{
3244 3245
	struct perf_event **evt, *evt1, *evt2;
	int ret;
3246

3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259
	evt1 = perf_event_groups_first(groups, -1);
	evt2 = perf_event_groups_first(groups, cpu);

	while (evt1 || evt2) {
		if (evt1 && evt2) {
			if (evt1->group_index < evt2->group_index)
				evt = &evt1;
			else
				evt = &evt2;
		} else if (evt1) {
			evt = &evt1;
		} else {
			evt = &evt2;
3260
		}
3261 3262 3263 3264 3265 3266

		ret = func(*evt, data);
		if (ret)
			return ret;

		*evt = perf_event_groups_next(*evt);
3267
	}
T
Thomas Gleixner 已提交
3268

3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287
	return 0;
}

struct sched_in_data {
	struct perf_event_context *ctx;
	struct perf_cpu_context *cpuctx;
	int can_add_hw;
};

static int pinned_sched_in(struct perf_event *event, void *data)
{
	struct sched_in_data *sid = data;

	if (event->state <= PERF_EVENT_STATE_OFF)
		return 0;

	if (!event_filter_match(event))
		return 0;

3288 3289 3290 3291
	if (group_can_go_on(event, sid->cpuctx, sid->can_add_hw)) {
		if (!group_sched_in(event, sid->cpuctx, sid->ctx))
			list_add_tail(&event->active_list, &sid->ctx->pinned_active);
	}
3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313

	/*
	 * If this pinned group hasn't been scheduled,
	 * put it in error state.
	 */
	if (event->state == PERF_EVENT_STATE_INACTIVE)
		perf_event_set_state(event, PERF_EVENT_STATE_ERROR);

	return 0;
}

static int flexible_sched_in(struct perf_event *event, void *data)
{
	struct sched_in_data *sid = data;

	if (event->state <= PERF_EVENT_STATE_OFF)
		return 0;

	if (!event_filter_match(event))
		return 0;

	if (group_can_go_on(event, sid->cpuctx, sid->can_add_hw)) {
3314 3315 3316
		if (!group_sched_in(event, sid->cpuctx, sid->ctx))
			list_add_tail(&event->active_list, &sid->ctx->flexible_active);
		else
3317
			sid->can_add_hw = 0;
3318
	}
3319 3320

	return 0;
3321 3322 3323
}

static void
3324 3325
ctx_pinned_sched_in(struct perf_event_context *ctx,
		    struct perf_cpu_context *cpuctx)
3326
{
3327 3328 3329 3330 3331
	struct sched_in_data sid = {
		.ctx = ctx,
		.cpuctx = cpuctx,
		.can_add_hw = 1,
	};
3332

3333 3334 3335 3336
	visit_groups_merge(&ctx->pinned_groups,
			   smp_processor_id(),
			   pinned_sched_in, &sid);
}
3337

3338 3339 3340 3341 3342 3343 3344 3345 3346
static void
ctx_flexible_sched_in(struct perf_event_context *ctx,
		      struct perf_cpu_context *cpuctx)
{
	struct sched_in_data sid = {
		.ctx = ctx,
		.cpuctx = cpuctx,
		.can_add_hw = 1,
	};
T
Thomas Gleixner 已提交
3347

3348 3349 3350
	visit_groups_merge(&ctx->flexible_groups,
			   smp_processor_id(),
			   flexible_sched_in, &sid);
3351 3352 3353 3354 3355
}

static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
3356 3357
	     enum event_type_t event_type,
	     struct task_struct *task)
3358
{
3359
	int is_active = ctx->is_active;
P
Peter Zijlstra 已提交
3360 3361 3362
	u64 now;

	lockdep_assert_held(&ctx->lock);
S
Stephane Eranian 已提交
3363

3364
	if (likely(!ctx->nr_events))
3365
		return;
3366

3367
	ctx->is_active |= (event_type | EVENT_TIME);
3368 3369 3370 3371 3372 3373 3374
	if (ctx->task) {
		if (!is_active)
			cpuctx->task_ctx = ctx;
		else
			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
	}

3375 3376 3377 3378 3379 3380 3381 3382 3383
	is_active ^= ctx->is_active; /* changed bits */

	if (is_active & EVENT_TIME) {
		/* start ctx time */
		now = perf_clock();
		ctx->timestamp = now;
		perf_cgroup_set_timestamp(task, ctx);
	}

3384 3385 3386 3387
	/*
	 * First go through the list and put on any pinned groups
	 * in order to give them the best chance of going on.
	 */
3388
	if (is_active & EVENT_PINNED)
3389
		ctx_pinned_sched_in(ctx, cpuctx);
3390 3391

	/* Then walk through the lower prio flexible groups */
3392
	if (is_active & EVENT_FLEXIBLE)
3393
		ctx_flexible_sched_in(ctx, cpuctx);
3394 3395
}

3396
static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
3397 3398
			     enum event_type_t event_type,
			     struct task_struct *task)
3399 3400 3401
{
	struct perf_event_context *ctx = &cpuctx->ctx;

S
Stephane Eranian 已提交
3402
	ctx_sched_in(ctx, cpuctx, event_type, task);
3403 3404
}

S
Stephane Eranian 已提交
3405 3406
static void perf_event_context_sched_in(struct perf_event_context *ctx,
					struct task_struct *task)
3407
{
P
Peter Zijlstra 已提交
3408
	struct perf_cpu_context *cpuctx;
3409

P
Peter Zijlstra 已提交
3410
	cpuctx = __get_cpu_context(ctx);
3411 3412 3413
	if (cpuctx->task_ctx == ctx)
		return;

3414
	perf_ctx_lock(cpuctx, ctx);
3415 3416 3417 3418 3419 3420 3421
	/*
	 * We must check ctx->nr_events while holding ctx->lock, such
	 * that we serialize against perf_install_in_context().
	 */
	if (!ctx->nr_events)
		goto unlock;

P
Peter Zijlstra 已提交
3422
	perf_pmu_disable(ctx->pmu);
3423 3424 3425 3426
	/*
	 * We want to keep the following priority order:
	 * cpu pinned (that don't need to move), task pinned,
	 * cpu flexible, task flexible.
3427 3428 3429
	 *
	 * However, if task's ctx is not carrying any pinned
	 * events, no need to flip the cpuctx's events around.
3430
	 */
3431
	if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree))
3432
		cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3433
	perf_event_sched_in(cpuctx, ctx, task);
3434
	perf_pmu_enable(ctx->pmu);
3435 3436

unlock:
3437
	perf_ctx_unlock(cpuctx, ctx);
3438 3439
}

P
Peter Zijlstra 已提交
3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450
/*
 * Called from scheduler to add the events of the current task
 * with interrupts disabled.
 *
 * We restore the event value and then enable it.
 *
 * This does not protect us against NMI, but enable()
 * sets the enabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * keep the event running.
 */
3451 3452
void __perf_event_task_sched_in(struct task_struct *prev,
				struct task_struct *task)
P
Peter Zijlstra 已提交
3453 3454 3455 3456
{
	struct perf_event_context *ctx;
	int ctxn;

3457 3458 3459 3460 3461 3462 3463 3464 3465 3466
	/*
	 * If cgroup events exist on this CPU, then we need to check if we have
	 * to switch in PMU state; cgroup event are system-wide mode only.
	 *
	 * Since cgroup events are CPU events, we must schedule these in before
	 * we schedule in the task events.
	 */
	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
		perf_cgroup_sched_in(prev, task);

P
Peter Zijlstra 已提交
3467 3468 3469 3470 3471
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (likely(!ctx))
			continue;

S
Stephane Eranian 已提交
3472
		perf_event_context_sched_in(ctx, task);
P
Peter Zijlstra 已提交
3473
	}
3474

3475 3476 3477
	if (atomic_read(&nr_switch_events))
		perf_event_switch(task, prev, true);

3478 3479
	if (__this_cpu_read(perf_sched_cb_usages))
		perf_pmu_sched_task(prev, task, true);
3480 3481
}

3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508
static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
{
	u64 frequency = event->attr.sample_freq;
	u64 sec = NSEC_PER_SEC;
	u64 divisor, dividend;

	int count_fls, nsec_fls, frequency_fls, sec_fls;

	count_fls = fls64(count);
	nsec_fls = fls64(nsec);
	frequency_fls = fls64(frequency);
	sec_fls = 30;

	/*
	 * We got @count in @nsec, with a target of sample_freq HZ
	 * the target period becomes:
	 *
	 *             @count * 10^9
	 * period = -------------------
	 *          @nsec * sample_freq
	 *
	 */

	/*
	 * Reduce accuracy by one bit such that @a and @b converge
	 * to a similar magnitude.
	 */
3509
#define REDUCE_FLS(a, b)		\
3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548
do {					\
	if (a##_fls > b##_fls) {	\
		a >>= 1;		\
		a##_fls--;		\
	} else {			\
		b >>= 1;		\
		b##_fls--;		\
	}				\
} while (0)

	/*
	 * Reduce accuracy until either term fits in a u64, then proceed with
	 * the other, so that finally we can do a u64/u64 division.
	 */
	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
		REDUCE_FLS(nsec, frequency);
		REDUCE_FLS(sec, count);
	}

	if (count_fls + sec_fls > 64) {
		divisor = nsec * frequency;

		while (count_fls + sec_fls > 64) {
			REDUCE_FLS(count, sec);
			divisor >>= 1;
		}

		dividend = count * sec;
	} else {
		dividend = count * sec;

		while (nsec_fls + frequency_fls > 64) {
			REDUCE_FLS(nsec, frequency);
			dividend >>= 1;
		}

		divisor = nsec * frequency;
	}

3549 3550 3551
	if (!divisor)
		return dividend;

3552 3553 3554
	return div64_u64(dividend, divisor);
}

3555 3556 3557
static DEFINE_PER_CPU(int, perf_throttled_count);
static DEFINE_PER_CPU(u64, perf_throttled_seq);

3558
static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
3559
{
3560
	struct hw_perf_event *hwc = &event->hw;
3561
	s64 period, sample_period;
3562 3563
	s64 delta;

3564
	period = perf_calculate_period(event, nsec, count);
3565 3566 3567 3568 3569 3570 3571 3572 3573 3574

	delta = (s64)(period - hwc->sample_period);
	delta = (delta + 7) / 8; /* low pass filter */

	sample_period = hwc->sample_period + delta;

	if (!sample_period)
		sample_period = 1;

	hwc->sample_period = sample_period;
3575

3576
	if (local64_read(&hwc->period_left) > 8*sample_period) {
3577 3578 3579
		if (disable)
			event->pmu->stop(event, PERF_EF_UPDATE);

3580
		local64_set(&hwc->period_left, 0);
3581 3582 3583

		if (disable)
			event->pmu->start(event, PERF_EF_RELOAD);
3584
	}
3585 3586
}

3587 3588 3589 3590 3591 3592 3593
/*
 * combine freq adjustment with unthrottling to avoid two passes over the
 * events. At the same time, make sure, having freq events does not change
 * the rate of unthrottling as that would introduce bias.
 */
static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
					   int needs_unthr)
3594
{
3595 3596
	struct perf_event *event;
	struct hw_perf_event *hwc;
3597
	u64 now, period = TICK_NSEC;
3598
	s64 delta;
3599

3600 3601 3602 3603 3604 3605
	/*
	 * only need to iterate over all events iff:
	 * - context have events in frequency mode (needs freq adjust)
	 * - there are events to unthrottle on this cpu
	 */
	if (!(ctx->nr_freq || needs_unthr))
3606 3607
		return;

3608
	raw_spin_lock(&ctx->lock);
3609
	perf_pmu_disable(ctx->pmu);
3610

3611
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3612
		if (event->state != PERF_EVENT_STATE_ACTIVE)
3613 3614
			continue;

3615
		if (!event_filter_match(event))
3616 3617
			continue;

3618 3619
		perf_pmu_disable(event->pmu);

3620
		hwc = &event->hw;
3621

3622
		if (hwc->interrupts == MAX_INTERRUPTS) {
3623
			hwc->interrupts = 0;
3624
			perf_log_throttle(event, 1);
P
Peter Zijlstra 已提交
3625
			event->pmu->start(event, 0);
3626 3627
		}

3628
		if (!event->attr.freq || !event->attr.sample_freq)
3629
			goto next;
3630

3631 3632 3633 3634 3635
		/*
		 * stop the event and update event->count
		 */
		event->pmu->stop(event, PERF_EF_UPDATE);

3636
		now = local64_read(&event->count);
3637 3638
		delta = now - hwc->freq_count_stamp;
		hwc->freq_count_stamp = now;
3639

3640 3641 3642
		/*
		 * restart the event
		 * reload only if value has changed
3643 3644 3645
		 * we have stopped the event so tell that
		 * to perf_adjust_period() to avoid stopping it
		 * twice.
3646
		 */
3647
		if (delta > 0)
3648
			perf_adjust_period(event, period, delta, false);
3649 3650

		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3651 3652
	next:
		perf_pmu_enable(event->pmu);
3653
	}
3654

3655
	perf_pmu_enable(ctx->pmu);
3656
	raw_spin_unlock(&ctx->lock);
3657 3658
}

3659
/*
3660
 * Move @event to the tail of the @ctx's elegible events.
3661
 */
3662
static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event)
T
Thomas Gleixner 已提交
3663
{
3664 3665 3666 3667
	/*
	 * Rotate the first entry last of non-pinned groups. Rotation might be
	 * disabled by the inheritance code.
	 */
3668 3669
	if (ctx->rotate_disable)
		return;
3670

3671 3672
	perf_event_groups_delete(&ctx->flexible_groups, event);
	perf_event_groups_insert(&ctx->flexible_groups, event);
3673 3674
}

3675 3676
static inline struct perf_event *
ctx_first_active(struct perf_event_context *ctx)
3677
{
3678 3679 3680 3681 3682 3683 3684 3685
	return list_first_entry_or_null(&ctx->flexible_active,
					struct perf_event, active_list);
}

static bool perf_rotate_context(struct perf_cpu_context *cpuctx)
{
	struct perf_event *cpu_event = NULL, *task_event = NULL;
	bool cpu_rotate = false, task_rotate = false;
P
Peter Zijlstra 已提交
3686
	struct perf_event_context *ctx = NULL;
3687 3688 3689 3690 3691

	/*
	 * Since we run this from IRQ context, nobody can install new
	 * events, thus the event count values are stable.
	 */
3692

3693 3694
	if (cpuctx->ctx.nr_events) {
		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3695
			cpu_rotate = true;
3696
	}
3697

P
Peter Zijlstra 已提交
3698
	ctx = cpuctx->task_ctx;
3699 3700
	if (ctx && ctx->nr_events) {
		if (ctx->nr_events != ctx->nr_active)
3701
			task_rotate = true;
3702
	}
3703

3704 3705
	if (!(cpu_rotate || task_rotate))
		return false;
3706

3707
	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
P
Peter Zijlstra 已提交
3708
	perf_pmu_disable(cpuctx->ctx.pmu);
3709

3710 3711 3712 3713
	if (task_rotate)
		task_event = ctx_first_active(ctx);
	if (cpu_rotate)
		cpu_event = ctx_first_active(&cpuctx->ctx);
3714

3715 3716 3717 3718 3719
	/*
	 * As per the order given at ctx_resched() first 'pop' task flexible
	 * and then, if needed CPU flexible.
	 */
	if (task_event || (ctx && cpu_event))
3720
		ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
3721 3722
	if (cpu_event)
		cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
T
Thomas Gleixner 已提交
3723

3724 3725 3726 3727
	if (task_event)
		rotate_ctx(ctx, task_event);
	if (cpu_event)
		rotate_ctx(&cpuctx->ctx, cpu_event);
3728

3729
	perf_event_sched_in(cpuctx, ctx, current);
3730

3731 3732
	perf_pmu_enable(cpuctx->ctx.pmu);
	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3733

3734
	return true;
3735 3736 3737 3738
}

void perf_event_task_tick(void)
{
3739 3740
	struct list_head *head = this_cpu_ptr(&active_ctx_list);
	struct perf_event_context *ctx, *tmp;
3741
	int throttled;
3742

3743
	lockdep_assert_irqs_disabled();
3744

3745 3746
	__this_cpu_inc(perf_throttled_seq);
	throttled = __this_cpu_xchg(perf_throttled_count, 0);
3747
	tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
3748

3749
	list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3750
		perf_adjust_freq_unthr_context(ctx, throttled);
T
Thomas Gleixner 已提交
3751 3752
}

3753 3754 3755 3756 3757 3758 3759 3760 3761 3762
static int event_enable_on_exec(struct perf_event *event,
				struct perf_event_context *ctx)
{
	if (!event->attr.enable_on_exec)
		return 0;

	event->attr.enable_on_exec = 0;
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
		return 0;

3763
	perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
3764 3765 3766 3767

	return 1;
}

3768
/*
3769
 * Enable all of a task's events that have been marked enable-on-exec.
3770 3771
 * This expects task == current.
 */
3772
static void perf_event_enable_on_exec(int ctxn)
3773
{
3774
	struct perf_event_context *ctx, *clone_ctx = NULL;
3775
	enum event_type_t event_type = 0;
3776
	struct perf_cpu_context *cpuctx;
3777
	struct perf_event *event;
3778 3779 3780 3781
	unsigned long flags;
	int enabled = 0;

	local_irq_save(flags);
3782
	ctx = current->perf_event_ctxp[ctxn];
3783
	if (!ctx || !ctx->nr_events)
3784 3785
		goto out;

3786 3787
	cpuctx = __get_cpu_context(ctx);
	perf_ctx_lock(cpuctx, ctx);
3788
	ctx_sched_out(ctx, cpuctx, EVENT_TIME);
3789
	list_for_each_entry(event, &ctx->event_list, event_entry) {
3790
		enabled |= event_enable_on_exec(event, ctx);
3791 3792
		event_type |= get_event_type(event);
	}
3793 3794

	/*
3795
	 * Unclone and reschedule this context if we enabled any event.
3796
	 */
3797
	if (enabled) {
3798
		clone_ctx = unclone_ctx(ctx);
3799
		ctx_resched(cpuctx, ctx, event_type);
3800 3801
	} else {
		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
3802 3803
	}
	perf_ctx_unlock(cpuctx, ctx);
3804

P
Peter Zijlstra 已提交
3805
out:
3806
	local_irq_restore(flags);
3807 3808 3809

	if (clone_ctx)
		put_ctx(clone_ctx);
3810 3811
}

3812 3813 3814
struct perf_read_data {
	struct perf_event *event;
	bool group;
3815
	int ret;
3816 3817
};

3818
static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
3819 3820 3821 3822
{
	u16 local_pkg, event_pkg;

	if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
3823 3824 3825 3826
		int local_cpu = smp_processor_id();

		event_pkg = topology_physical_package_id(event_cpu);
		local_pkg = topology_physical_package_id(local_cpu);
3827 3828 3829 3830 3831 3832 3833 3834

		if (event_pkg == local_pkg)
			return local_cpu;
	}

	return event_cpu;
}

T
Thomas Gleixner 已提交
3835
/*
3836
 * Cross CPU call to read the hardware event
T
Thomas Gleixner 已提交
3837
 */
3838
static void __perf_event_read(void *info)
T
Thomas Gleixner 已提交
3839
{
3840 3841
	struct perf_read_data *data = info;
	struct perf_event *sub, *event = data->event;
3842
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
3843
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3844
	struct pmu *pmu = event->pmu;
I
Ingo Molnar 已提交
3845

3846 3847 3848 3849
	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu.  If not it has been
	 * scheduled out before the smp call arrived.  In that case
3850 3851
	 * event->count would have been updated to a recent sample
	 * when the event was scheduled out.
3852 3853 3854 3855
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

3856
	raw_spin_lock(&ctx->lock);
P
Peter Zijlstra 已提交
3857
	if (ctx->is_active & EVENT_TIME) {
3858
		update_context_time(ctx);
S
Stephane Eranian 已提交
3859 3860
		update_cgrp_time_from_event(event);
	}
3861

3862 3863 3864
	perf_event_update_time(event);
	if (data->group)
		perf_event_update_sibling_time(event);
P
Peter Zijlstra 已提交
3865

3866 3867
	if (event->state != PERF_EVENT_STATE_ACTIVE)
		goto unlock;
3868

3869 3870 3871
	if (!data->group) {
		pmu->read(event);
		data->ret = 0;
3872
		goto unlock;
3873 3874 3875 3876 3877
	}

	pmu->start_txn(pmu, PERF_PMU_TXN_READ);

	pmu->read(event);
3878

P
Peter Zijlstra 已提交
3879
	for_each_sibling_event(sub, event) {
3880 3881 3882 3883 3884
		if (sub->state == PERF_EVENT_STATE_ACTIVE) {
			/*
			 * Use sibling's PMU rather than @event's since
			 * sibling could be on different (eg: software) PMU.
			 */
3885
			sub->pmu->read(sub);
3886
		}
3887
	}
3888 3889

	data->ret = pmu->commit_txn(pmu);
3890 3891

unlock:
3892
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
3893 3894
}

P
Peter Zijlstra 已提交
3895 3896
static inline u64 perf_event_count(struct perf_event *event)
{
3897
	return local64_read(&event->count) + atomic64_read(&event->child_count);
P
Peter Zijlstra 已提交
3898 3899
}

3900 3901 3902 3903 3904 3905 3906 3907
/*
 * NMI-safe method to read a local event, that is an event that
 * is:
 *   - either for the current task, or for this CPU
 *   - does not have inherit set, for inherited task events
 *     will not be local and we cannot read them atomically
 *   - must not have a pmu::count method
 */
3908 3909
int perf_event_read_local(struct perf_event *event, u64 *value,
			  u64 *enabled, u64 *running)
3910 3911
{
	unsigned long flags;
3912
	int ret = 0;
3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923

	/*
	 * Disabling interrupts avoids all counter scheduling (context
	 * switches, timer based rotation and IPIs).
	 */
	local_irq_save(flags);

	/*
	 * It must not be an event with inherit set, we cannot read
	 * all child counters from atomic context.
	 */
3924 3925 3926 3927
	if (event->attr.inherit) {
		ret = -EOPNOTSUPP;
		goto out;
	}
3928

3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941
	/* If this is a per-task event, it must be for current */
	if ((event->attach_state & PERF_ATTACH_TASK) &&
	    event->hw.target != current) {
		ret = -EINVAL;
		goto out;
	}

	/* If this is a per-CPU event, it must be for this CPU */
	if (!(event->attach_state & PERF_ATTACH_TASK) &&
	    event->cpu != smp_processor_id()) {
		ret = -EINVAL;
		goto out;
	}
3942 3943 3944 3945 3946 3947 3948 3949 3950

	/*
	 * If the event is currently on this CPU, its either a per-task event,
	 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
	 * oncpu == -1).
	 */
	if (event->oncpu == smp_processor_id())
		event->pmu->read(event);

3951
	*value = local64_read(&event->count);
3952 3953 3954 3955 3956 3957 3958 3959 3960 3961
	if (enabled || running) {
		u64 now = event->shadow_ctx_time + perf_clock();
		u64 __enabled, __running;

		__perf_update_times(event, now, &__enabled, &__running);
		if (enabled)
			*enabled = __enabled;
		if (running)
			*running = __running;
	}
3962
out:
3963 3964
	local_irq_restore(flags);

3965
	return ret;
3966 3967
}

3968
static int perf_event_read(struct perf_event *event, bool group)
T
Thomas Gleixner 已提交
3969
{
P
Peter Zijlstra 已提交
3970
	enum perf_event_state state = READ_ONCE(event->state);
3971
	int event_cpu, ret = 0;
3972

T
Thomas Gleixner 已提交
3973
	/*
3974 3975
	 * If event is enabled and currently active on a CPU, update the
	 * value in the event structure:
T
Thomas Gleixner 已提交
3976
	 */
P
Peter Zijlstra 已提交
3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987
again:
	if (state == PERF_EVENT_STATE_ACTIVE) {
		struct perf_read_data data;

		/*
		 * Orders the ->state and ->oncpu loads such that if we see
		 * ACTIVE we must also see the right ->oncpu.
		 *
		 * Matches the smp_wmb() from event_sched_in().
		 */
		smp_rmb();
3988

3989 3990 3991 3992
		event_cpu = READ_ONCE(event->oncpu);
		if ((unsigned)event_cpu >= nr_cpu_ids)
			return 0;

P
Peter Zijlstra 已提交
3993 3994 3995 3996 3997 3998
		data = (struct perf_read_data){
			.event = event,
			.group = group,
			.ret = 0,
		};

3999 4000
		preempt_disable();
		event_cpu = __perf_event_read_cpu(event, event_cpu);
4001

4002 4003 4004 4005
		/*
		 * Purposely ignore the smp_call_function_single() return
		 * value.
		 *
4006
		 * If event_cpu isn't a valid CPU it means the event got
4007 4008 4009 4010 4011
		 * scheduled out and that will have updated the event count.
		 *
		 * Therefore, either way, we'll have an up-to-date event count
		 * after this.
		 */
4012 4013
		(void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
		preempt_enable();
4014
		ret = data.ret;
P
Peter Zijlstra 已提交
4015 4016

	} else if (state == PERF_EVENT_STATE_INACTIVE) {
P
Peter Zijlstra 已提交
4017 4018 4019
		struct perf_event_context *ctx = event->ctx;
		unsigned long flags;

4020
		raw_spin_lock_irqsave(&ctx->lock, flags);
P
Peter Zijlstra 已提交
4021 4022 4023 4024 4025 4026
		state = event->state;
		if (state != PERF_EVENT_STATE_INACTIVE) {
			raw_spin_unlock_irqrestore(&ctx->lock, flags);
			goto again;
		}

4027
		/*
P
Peter Zijlstra 已提交
4028 4029
		 * May read while context is not active (e.g., thread is
		 * blocked), in that case we cannot update context time
4030
		 */
P
Peter Zijlstra 已提交
4031
		if (ctx->is_active & EVENT_TIME) {
4032
			update_context_time(ctx);
S
Stephane Eranian 已提交
4033 4034
			update_cgrp_time_from_event(event);
		}
P
Peter Zijlstra 已提交
4035

4036
		perf_event_update_time(event);
4037
		if (group)
4038
			perf_event_update_sibling_time(event);
4039
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
4040
	}
4041 4042

	return ret;
T
Thomas Gleixner 已提交
4043 4044
}

4045
/*
4046
 * Initialize the perf_event context in a task_struct:
4047
 */
4048
static void __perf_event_init_context(struct perf_event_context *ctx)
4049
{
4050
	raw_spin_lock_init(&ctx->lock);
4051
	mutex_init(&ctx->mutex);
4052
	INIT_LIST_HEAD(&ctx->active_ctx_list);
4053 4054
	perf_event_groups_init(&ctx->pinned_groups);
	perf_event_groups_init(&ctx->flexible_groups);
4055
	INIT_LIST_HEAD(&ctx->event_list);
4056 4057
	INIT_LIST_HEAD(&ctx->pinned_active);
	INIT_LIST_HEAD(&ctx->flexible_active);
4058
	atomic_set(&ctx->refcount, 1);
4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073
}

static struct perf_event_context *
alloc_perf_context(struct pmu *pmu, struct task_struct *task)
{
	struct perf_event_context *ctx;

	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
	if (!ctx)
		return NULL;

	__perf_event_init_context(ctx);
	if (task) {
		ctx->task = task;
		get_task_struct(task);
T
Thomas Gleixner 已提交
4074
	}
4075 4076 4077
	ctx->pmu = pmu;

	return ctx;
4078 4079
}

4080 4081 4082 4083
static struct task_struct *
find_lively_task_by_vpid(pid_t vpid)
{
	struct task_struct *task;
T
Thomas Gleixner 已提交
4084 4085

	rcu_read_lock();
4086
	if (!vpid)
T
Thomas Gleixner 已提交
4087 4088
		task = current;
	else
4089
		task = find_task_by_vpid(vpid);
T
Thomas Gleixner 已提交
4090 4091 4092 4093 4094 4095 4096
	if (task)
		get_task_struct(task);
	rcu_read_unlock();

	if (!task)
		return ERR_PTR(-ESRCH);

4097 4098 4099
	return task;
}

4100 4101 4102
/*
 * Returns a matching context with refcount and pincount.
 */
P
Peter Zijlstra 已提交
4103
static struct perf_event_context *
4104 4105
find_get_context(struct pmu *pmu, struct task_struct *task,
		struct perf_event *event)
T
Thomas Gleixner 已提交
4106
{
4107
	struct perf_event_context *ctx, *clone_ctx = NULL;
4108
	struct perf_cpu_context *cpuctx;
4109
	void *task_ctx_data = NULL;
4110
	unsigned long flags;
P
Peter Zijlstra 已提交
4111
	int ctxn, err;
4112
	int cpu = event->cpu;
T
Thomas Gleixner 已提交
4113

4114
	if (!task) {
4115
		/* Must be root to operate on a CPU event: */
4116
		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
T
Thomas Gleixner 已提交
4117 4118
			return ERR_PTR(-EACCES);

P
Peter Zijlstra 已提交
4119
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
T
Thomas Gleixner 已提交
4120
		ctx = &cpuctx->ctx;
4121
		get_ctx(ctx);
4122
		++ctx->pin_count;
T
Thomas Gleixner 已提交
4123 4124 4125 4126

		return ctx;
	}

P
Peter Zijlstra 已提交
4127 4128 4129 4130 4131
	err = -EINVAL;
	ctxn = pmu->task_ctx_nr;
	if (ctxn < 0)
		goto errout;

4132 4133 4134 4135 4136 4137 4138 4139
	if (event->attach_state & PERF_ATTACH_TASK_DATA) {
		task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
		if (!task_ctx_data) {
			err = -ENOMEM;
			goto errout;
		}
	}

P
Peter Zijlstra 已提交
4140
retry:
P
Peter Zijlstra 已提交
4141
	ctx = perf_lock_task_context(task, ctxn, &flags);
4142
	if (ctx) {
4143
		clone_ctx = unclone_ctx(ctx);
4144
		++ctx->pin_count;
4145 4146 4147 4148 4149

		if (task_ctx_data && !ctx->task_ctx_data) {
			ctx->task_ctx_data = task_ctx_data;
			task_ctx_data = NULL;
		}
4150
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
4151 4152 4153

		if (clone_ctx)
			put_ctx(clone_ctx);
4154
	} else {
4155
		ctx = alloc_perf_context(pmu, task);
4156 4157 4158
		err = -ENOMEM;
		if (!ctx)
			goto errout;
4159

4160 4161 4162 4163 4164
		if (task_ctx_data) {
			ctx->task_ctx_data = task_ctx_data;
			task_ctx_data = NULL;
		}

4165 4166 4167 4168 4169 4170 4171 4172 4173 4174
		err = 0;
		mutex_lock(&task->perf_event_mutex);
		/*
		 * If it has already passed perf_event_exit_task().
		 * we must see PF_EXITING, it takes this mutex too.
		 */
		if (task->flags & PF_EXITING)
			err = -ESRCH;
		else if (task->perf_event_ctxp[ctxn])
			err = -EAGAIN;
4175
		else {
4176
			get_ctx(ctx);
4177
			++ctx->pin_count;
4178
			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
4179
		}
4180 4181 4182
		mutex_unlock(&task->perf_event_mutex);

		if (unlikely(err)) {
4183
			put_ctx(ctx);
4184 4185 4186 4187

			if (err == -EAGAIN)
				goto retry;
			goto errout;
4188 4189 4190
		}
	}

4191
	kfree(task_ctx_data);
T
Thomas Gleixner 已提交
4192
	return ctx;
4193

P
Peter Zijlstra 已提交
4194
errout:
4195
	kfree(task_ctx_data);
4196
	return ERR_PTR(err);
T
Thomas Gleixner 已提交
4197 4198
}

L
Li Zefan 已提交
4199
static void perf_event_free_filter(struct perf_event *event);
4200
static void perf_event_free_bpf_prog(struct perf_event *event);
L
Li Zefan 已提交
4201

4202
static void free_event_rcu(struct rcu_head *head)
P
Peter Zijlstra 已提交
4203
{
4204
	struct perf_event *event;
P
Peter Zijlstra 已提交
4205

4206 4207 4208
	event = container_of(head, struct perf_event, rcu_head);
	if (event->ns)
		put_pid_ns(event->ns);
L
Li Zefan 已提交
4209
	perf_event_free_filter(event);
4210
	kfree(event);
P
Peter Zijlstra 已提交
4211 4212
}

4213 4214
static void ring_buffer_attach(struct perf_event *event,
			       struct ring_buffer *rb);
4215

4216 4217 4218 4219 4220 4221 4222 4223 4224
static void detach_sb_event(struct perf_event *event)
{
	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);

	raw_spin_lock(&pel->lock);
	list_del_rcu(&event->sb_list);
	raw_spin_unlock(&pel->lock);
}

4225
static bool is_sb_event(struct perf_event *event)
4226
{
4227 4228
	struct perf_event_attr *attr = &event->attr;

4229
	if (event->parent)
4230
		return false;
4231 4232

	if (event->attach_state & PERF_ATTACH_TASK)
4233
		return false;
4234

4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246
	if (attr->mmap || attr->mmap_data || attr->mmap2 ||
	    attr->comm || attr->comm_exec ||
	    attr->task ||
	    attr->context_switch)
		return true;
	return false;
}

static void unaccount_pmu_sb_event(struct perf_event *event)
{
	if (is_sb_event(event))
		detach_sb_event(event);
4247 4248
}

4249
static void unaccount_event_cpu(struct perf_event *event, int cpu)
4250
{
4251 4252 4253 4254 4255 4256
	if (event->parent)
		return;

	if (is_cgroup_event(event))
		atomic_dec(&per_cpu(perf_cgroup_events, cpu));
}
4257

4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279
#ifdef CONFIG_NO_HZ_FULL
static DEFINE_SPINLOCK(nr_freq_lock);
#endif

static void unaccount_freq_event_nohz(void)
{
#ifdef CONFIG_NO_HZ_FULL
	spin_lock(&nr_freq_lock);
	if (atomic_dec_and_test(&nr_freq_events))
		tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
	spin_unlock(&nr_freq_lock);
#endif
}

static void unaccount_freq_event(void)
{
	if (tick_nohz_full_enabled())
		unaccount_freq_event_nohz();
	else
		atomic_dec(&nr_freq_events);
}

4280 4281
static void unaccount_event(struct perf_event *event)
{
4282 4283
	bool dec = false;

4284 4285 4286 4287
	if (event->parent)
		return;

	if (event->attach_state & PERF_ATTACH_TASK)
4288
		dec = true;
4289 4290 4291 4292
	if (event->attr.mmap || event->attr.mmap_data)
		atomic_dec(&nr_mmap_events);
	if (event->attr.comm)
		atomic_dec(&nr_comm_events);
4293 4294
	if (event->attr.namespaces)
		atomic_dec(&nr_namespaces_events);
4295 4296
	if (event->attr.task)
		atomic_dec(&nr_task_events);
4297
	if (event->attr.freq)
4298
		unaccount_freq_event();
4299
	if (event->attr.context_switch) {
4300
		dec = true;
4301 4302
		atomic_dec(&nr_switch_events);
	}
4303
	if (is_cgroup_event(event))
4304
		dec = true;
4305
	if (has_branch_stack(event))
4306 4307
		dec = true;

4308 4309 4310 4311
	if (dec) {
		if (!atomic_add_unless(&perf_sched_count, -1, 1))
			schedule_delayed_work(&perf_sched_work, HZ);
	}
4312 4313

	unaccount_event_cpu(event, event->cpu);
4314 4315

	unaccount_pmu_sb_event(event);
4316
}
4317

4318 4319 4320 4321 4322 4323 4324 4325
static void perf_sched_delayed(struct work_struct *work)
{
	mutex_lock(&perf_sched_mutex);
	if (atomic_dec_and_test(&perf_sched_count))
		static_branch_disable(&perf_sched_events);
	mutex_unlock(&perf_sched_mutex);
}

4326 4327 4328 4329 4330 4331 4332 4333 4334 4335
/*
 * The following implement mutual exclusion of events on "exclusive" pmus
 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
 * at a time, so we disallow creating events that might conflict, namely:
 *
 *  1) cpu-wide events in the presence of per-task events,
 *  2) per-task events in the presence of cpu-wide events,
 *  3) two matching events on the same context.
 *
 * The former two cases are handled in the allocation path (perf_event_alloc(),
P
Peter Zijlstra 已提交
4336
 * _free_event()), the latter -- before the first perf_install_in_context().
4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384
 */
static int exclusive_event_init(struct perf_event *event)
{
	struct pmu *pmu = event->pmu;

	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
		return 0;

	/*
	 * Prevent co-existence of per-task and cpu-wide events on the
	 * same exclusive pmu.
	 *
	 * Negative pmu::exclusive_cnt means there are cpu-wide
	 * events on this "exclusive" pmu, positive means there are
	 * per-task events.
	 *
	 * Since this is called in perf_event_alloc() path, event::ctx
	 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
	 * to mean "per-task event", because unlike other attach states it
	 * never gets cleared.
	 */
	if (event->attach_state & PERF_ATTACH_TASK) {
		if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
			return -EBUSY;
	} else {
		if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
			return -EBUSY;
	}

	return 0;
}

static void exclusive_event_destroy(struct perf_event *event)
{
	struct pmu *pmu = event->pmu;

	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
		return;

	/* see comment in exclusive_event_init() */
	if (event->attach_state & PERF_ATTACH_TASK)
		atomic_dec(&pmu->exclusive_cnt);
	else
		atomic_inc(&pmu->exclusive_cnt);
}

static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
{
4385
	if ((e1->pmu == e2->pmu) &&
4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410
	    (e1->cpu == e2->cpu ||
	     e1->cpu == -1 ||
	     e2->cpu == -1))
		return true;
	return false;
}

/* Called under the same ctx::mutex as perf_install_in_context() */
static bool exclusive_event_installable(struct perf_event *event,
					struct perf_event_context *ctx)
{
	struct perf_event *iter_event;
	struct pmu *pmu = event->pmu;

	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
		return true;

	list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
		if (exclusive_event_match(iter_event, event))
			return false;
	}

	return true;
}

4411 4412 4413
static void perf_addr_filters_splice(struct perf_event *event,
				       struct list_head *head);

P
Peter Zijlstra 已提交
4414
static void _free_event(struct perf_event *event)
4415
{
4416
	irq_work_sync(&event->pending);
4417

4418
	unaccount_event(event);
4419

4420
	if (event->rb) {
4421 4422 4423 4424 4425 4426 4427
		/*
		 * Can happen when we close an event with re-directed output.
		 *
		 * Since we have a 0 refcount, perf_mmap_close() will skip
		 * over us; possibly making our ring_buffer_put() the last.
		 */
		mutex_lock(&event->mmap_mutex);
4428
		ring_buffer_attach(event, NULL);
4429
		mutex_unlock(&event->mmap_mutex);
4430 4431
	}

S
Stephane Eranian 已提交
4432 4433 4434
	if (is_cgroup_event(event))
		perf_detach_cgroup(event);

P
Peter Zijlstra 已提交
4435 4436 4437 4438 4439 4440
	if (!event->parent) {
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
			put_callchain_buffers();
	}

	perf_event_free_bpf_prog(event);
4441 4442
	perf_addr_filters_splice(event, NULL);
	kfree(event->addr_filters_offs);
P
Peter Zijlstra 已提交
4443 4444 4445 4446 4447 4448 4449

	if (event->destroy)
		event->destroy(event);

	if (event->ctx)
		put_ctx(event->ctx);

4450 4451 4452
	if (event->hw.target)
		put_task_struct(event->hw.target);

4453 4454
	exclusive_event_destroy(event);
	module_put(event->pmu->module);
P
Peter Zijlstra 已提交
4455 4456

	call_rcu(&event->rcu_head, free_event_rcu);
4457 4458
}

P
Peter Zijlstra 已提交
4459 4460 4461 4462 4463
/*
 * Used to free events which have a known refcount of 1, such as in error paths
 * where the event isn't exposed yet and inherited events.
 */
static void free_event(struct perf_event *event)
T
Thomas Gleixner 已提交
4464
{
P
Peter Zijlstra 已提交
4465 4466 4467 4468 4469 4470
	if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
				"unexpected event refcount: %ld; ptr=%p\n",
				atomic_long_read(&event->refcount), event)) {
		/* leak to avoid use-after-free */
		return;
	}
T
Thomas Gleixner 已提交
4471

P
Peter Zijlstra 已提交
4472
	_free_event(event);
T
Thomas Gleixner 已提交
4473 4474
}

4475
/*
4476
 * Remove user event from the owner task.
4477
 */
4478
static void perf_remove_from_owner(struct perf_event *event)
4479
{
P
Peter Zijlstra 已提交
4480
	struct task_struct *owner;
4481

P
Peter Zijlstra 已提交
4482 4483
	rcu_read_lock();
	/*
4484 4485 4486
	 * Matches the smp_store_release() in perf_event_exit_task(). If we
	 * observe !owner it means the list deletion is complete and we can
	 * indeed free this event, otherwise we need to serialize on
P
Peter Zijlstra 已提交
4487 4488
	 * owner->perf_event_mutex.
	 */
4489
	owner = READ_ONCE(event->owner);
P
Peter Zijlstra 已提交
4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500
	if (owner) {
		/*
		 * Since delayed_put_task_struct() also drops the last
		 * task reference we can safely take a new reference
		 * while holding the rcu_read_lock().
		 */
		get_task_struct(owner);
	}
	rcu_read_unlock();

	if (owner) {
P
Peter Zijlstra 已提交
4501 4502 4503 4504 4505 4506 4507 4508 4509 4510
		/*
		 * If we're here through perf_event_exit_task() we're already
		 * holding ctx->mutex which would be an inversion wrt. the
		 * normal lock order.
		 *
		 * However we can safely take this lock because its the child
		 * ctx->mutex.
		 */
		mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);

P
Peter Zijlstra 已提交
4511 4512 4513 4514 4515 4516
		/*
		 * We have to re-check the event->owner field, if it is cleared
		 * we raced with perf_event_exit_task(), acquiring the mutex
		 * ensured they're done, and we can proceed with freeing the
		 * event.
		 */
4517
		if (event->owner) {
P
Peter Zijlstra 已提交
4518
			list_del_init(&event->owner_entry);
4519 4520
			smp_store_release(&event->owner, NULL);
		}
P
Peter Zijlstra 已提交
4521 4522 4523
		mutex_unlock(&owner->perf_event_mutex);
		put_task_struct(owner);
	}
4524 4525 4526 4527 4528 4529 4530
}

static void put_event(struct perf_event *event)
{
	if (!atomic_long_dec_and_test(&event->refcount))
		return;

4531 4532 4533 4534 4535 4536 4537 4538 4539 4540
	_free_event(event);
}

/*
 * Kill an event dead; while event:refcount will preserve the event
 * object, it will not preserve its functionality. Once the last 'user'
 * gives up the object, we'll destroy the thing.
 */
int perf_event_release_kernel(struct perf_event *event)
{
4541
	struct perf_event_context *ctx = event->ctx;
4542
	struct perf_event *child, *tmp;
4543
	LIST_HEAD(free_list);
4544

4545 4546 4547 4548 4549 4550 4551 4552 4553 4554
	/*
	 * If we got here through err_file: fput(event_file); we will not have
	 * attached to a context yet.
	 */
	if (!ctx) {
		WARN_ON_ONCE(event->attach_state &
				(PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
		goto no_ctx;
	}

4555 4556
	if (!is_kernel_event(event))
		perf_remove_from_owner(event);
P
Peter Zijlstra 已提交
4557

4558
	ctx = perf_event_ctx_lock(event);
P
Peter Zijlstra 已提交
4559
	WARN_ON_ONCE(ctx->parent_ctx);
P
Peter Zijlstra 已提交
4560
	perf_remove_from_context(event, DETACH_GROUP);
P
Peter Zijlstra 已提交
4561

P
Peter Zijlstra 已提交
4562
	raw_spin_lock_irq(&ctx->lock);
P
Peter Zijlstra 已提交
4563
	/*
4564
	 * Mark this event as STATE_DEAD, there is no external reference to it
P
Peter Zijlstra 已提交
4565
	 * anymore.
P
Peter Zijlstra 已提交
4566
	 *
P
Peter Zijlstra 已提交
4567 4568 4569
	 * Anybody acquiring event->child_mutex after the below loop _must_
	 * also see this, most importantly inherit_event() which will avoid
	 * placing more children on the list.
P
Peter Zijlstra 已提交
4570
	 *
4571 4572
	 * Thus this guarantees that we will in fact observe and kill _ALL_
	 * child events.
P
Peter Zijlstra 已提交
4573
	 */
P
Peter Zijlstra 已提交
4574 4575 4576 4577
	event->state = PERF_EVENT_STATE_DEAD;
	raw_spin_unlock_irq(&ctx->lock);

	perf_event_ctx_unlock(event, ctx);
P
Peter Zijlstra 已提交
4578

4579 4580 4581
again:
	mutex_lock(&event->child_mutex);
	list_for_each_entry(child, &event->child_list, child_list) {
4582

4583 4584 4585 4586
		/*
		 * Cannot change, child events are not migrated, see the
		 * comment with perf_event_ctx_lock_nested().
		 */
4587
		ctx = READ_ONCE(child->ctx);
4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615
		/*
		 * Since child_mutex nests inside ctx::mutex, we must jump
		 * through hoops. We start by grabbing a reference on the ctx.
		 *
		 * Since the event cannot get freed while we hold the
		 * child_mutex, the context must also exist and have a !0
		 * reference count.
		 */
		get_ctx(ctx);

		/*
		 * Now that we have a ctx ref, we can drop child_mutex, and
		 * acquire ctx::mutex without fear of it going away. Then we
		 * can re-acquire child_mutex.
		 */
		mutex_unlock(&event->child_mutex);
		mutex_lock(&ctx->mutex);
		mutex_lock(&event->child_mutex);

		/*
		 * Now that we hold ctx::mutex and child_mutex, revalidate our
		 * state, if child is still the first entry, it didn't get freed
		 * and we can continue doing so.
		 */
		tmp = list_first_entry_or_null(&event->child_list,
					       struct perf_event, child_list);
		if (tmp == child) {
			perf_remove_from_context(child, DETACH_GROUP);
4616
			list_move(&child->child_list, &free_list);
4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630
			/*
			 * This matches the refcount bump in inherit_event();
			 * this can't be the last reference.
			 */
			put_event(event);
		}

		mutex_unlock(&event->child_mutex);
		mutex_unlock(&ctx->mutex);
		put_ctx(ctx);
		goto again;
	}
	mutex_unlock(&event->child_mutex);

4631 4632 4633 4634 4635
	list_for_each_entry_safe(child, tmp, &free_list, child_list) {
		list_del(&child->child_list);
		free_event(child);
	}

4636 4637
no_ctx:
	put_event(event); /* Must be the 'last' reference */
P
Peter Zijlstra 已提交
4638 4639 4640 4641
	return 0;
}
EXPORT_SYMBOL_GPL(perf_event_release_kernel);

4642 4643 4644
/*
 * Called when the last reference to the file is gone.
 */
4645 4646
static int perf_release(struct inode *inode, struct file *file)
{
4647
	perf_event_release_kernel(file->private_data);
4648
	return 0;
4649 4650
}

4651
static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4652
{
4653
	struct perf_event *child;
4654 4655
	u64 total = 0;

4656 4657 4658
	*enabled = 0;
	*running = 0;

4659
	mutex_lock(&event->child_mutex);
4660

4661
	(void)perf_event_read(event, false);
4662 4663
	total += perf_event_count(event);

4664 4665 4666 4667 4668 4669
	*enabled += event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
	*running += event->total_time_running +
			atomic64_read(&event->child_total_time_running);

	list_for_each_entry(child, &event->child_list, child_list) {
4670
		(void)perf_event_read(child, false);
4671
		total += perf_event_count(child);
4672 4673 4674
		*enabled += child->total_time_enabled;
		*running += child->total_time_running;
	}
4675
	mutex_unlock(&event->child_mutex);
4676 4677 4678

	return total;
}
4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690

u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
{
	struct perf_event_context *ctx;
	u64 count;

	ctx = perf_event_ctx_lock(event);
	count = __perf_event_read_value(event, enabled, running);
	perf_event_ctx_unlock(event, ctx);

	return count;
}
4691
EXPORT_SYMBOL_GPL(perf_event_read_value);
4692

4693
static int __perf_read_group_add(struct perf_event *leader,
4694
					u64 read_format, u64 *values)
4695
{
4696
	struct perf_event_context *ctx = leader->ctx;
4697
	struct perf_event *sub;
4698
	unsigned long flags;
4699
	int n = 1; /* skip @nr */
4700
	int ret;
P
Peter Zijlstra 已提交
4701

4702 4703 4704
	ret = perf_event_read(leader, true);
	if (ret)
		return ret;
4705

4706 4707
	raw_spin_lock_irqsave(&ctx->lock, flags);

4708 4709 4710 4711 4712 4713 4714 4715 4716
	/*
	 * Since we co-schedule groups, {enabled,running} times of siblings
	 * will be identical to those of the leader, so we only publish one
	 * set.
	 */
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
		values[n++] += leader->total_time_enabled +
			atomic64_read(&leader->child_total_time_enabled);
	}
4717

4718 4719 4720 4721 4722 4723 4724 4725 4726
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
		values[n++] += leader->total_time_running +
			atomic64_read(&leader->child_total_time_running);
	}

	/*
	 * Write {count,id} tuples for every sibling.
	 */
	values[n++] += perf_event_count(leader);
4727 4728
	if (read_format & PERF_FORMAT_ID)
		values[n++] = primary_event_id(leader);
4729

P
Peter Zijlstra 已提交
4730
	for_each_sibling_event(sub, leader) {
4731 4732 4733 4734
		values[n++] += perf_event_count(sub);
		if (read_format & PERF_FORMAT_ID)
			values[n++] = primary_event_id(sub);
	}
4735

4736
	raw_spin_unlock_irqrestore(&ctx->lock, flags);
4737
	return 0;
4738
}
4739

4740 4741 4742 4743 4744
static int perf_read_group(struct perf_event *event,
				   u64 read_format, char __user *buf)
{
	struct perf_event *leader = event->group_leader, *child;
	struct perf_event_context *ctx = leader->ctx;
4745
	int ret;
4746
	u64 *values;
4747

4748
	lockdep_assert_held(&ctx->mutex);
4749

4750 4751 4752
	values = kzalloc(event->read_size, GFP_KERNEL);
	if (!values)
		return -ENOMEM;
4753

4754 4755 4756 4757 4758 4759 4760
	values[0] = 1 + leader->nr_siblings;

	/*
	 * By locking the child_mutex of the leader we effectively
	 * lock the child list of all siblings.. XXX explain how.
	 */
	mutex_lock(&leader->child_mutex);
4761

4762 4763 4764 4765 4766 4767 4768 4769 4770
	ret = __perf_read_group_add(leader, read_format, values);
	if (ret)
		goto unlock;

	list_for_each_entry(child, &leader->child_list, child_list) {
		ret = __perf_read_group_add(child, read_format, values);
		if (ret)
			goto unlock;
	}
4771

4772
	mutex_unlock(&leader->child_mutex);
4773

4774
	ret = event->read_size;
4775 4776
	if (copy_to_user(buf, values, event->read_size))
		ret = -EFAULT;
4777
	goto out;
4778

4779 4780 4781
unlock:
	mutex_unlock(&leader->child_mutex);
out:
4782
	kfree(values);
4783
	return ret;
4784 4785
}

4786
static int perf_read_one(struct perf_event *event,
4787 4788
				 u64 read_format, char __user *buf)
{
4789
	u64 enabled, running;
4790 4791 4792
	u64 values[4];
	int n = 0;

4793
	values[n++] = __perf_event_read_value(event, &enabled, &running);
4794 4795 4796 4797
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
4798
	if (read_format & PERF_FORMAT_ID)
4799
		values[n++] = primary_event_id(event);
4800 4801 4802 4803 4804 4805 4806

	if (copy_to_user(buf, values, n * sizeof(u64)))
		return -EFAULT;

	return n * sizeof(u64);
}

4807 4808 4809 4810
static bool is_event_hup(struct perf_event *event)
{
	bool no_children;

P
Peter Zijlstra 已提交
4811
	if (event->state > PERF_EVENT_STATE_EXIT)
4812 4813 4814 4815 4816 4817 4818 4819
		return false;

	mutex_lock(&event->child_mutex);
	no_children = list_empty(&event->child_list);
	mutex_unlock(&event->child_mutex);
	return no_children;
}

T
Thomas Gleixner 已提交
4820
/*
4821
 * Read the performance event - simple non blocking version for now
T
Thomas Gleixner 已提交
4822 4823
 */
static ssize_t
4824
__perf_read(struct perf_event *event, char __user *buf, size_t count)
T
Thomas Gleixner 已提交
4825
{
4826
	u64 read_format = event->attr.read_format;
4827
	int ret;
T
Thomas Gleixner 已提交
4828

4829
	/*
4830
	 * Return end-of-file for a read on a event that is in
4831 4832 4833
	 * error state (i.e. because it was pinned but it couldn't be
	 * scheduled on to the CPU at some point).
	 */
4834
	if (event->state == PERF_EVENT_STATE_ERROR)
4835 4836
		return 0;

4837
	if (count < event->read_size)
4838 4839
		return -ENOSPC;

4840
	WARN_ON_ONCE(event->ctx->parent_ctx);
4841
	if (read_format & PERF_FORMAT_GROUP)
4842
		ret = perf_read_group(event, read_format, buf);
4843
	else
4844
		ret = perf_read_one(event, read_format, buf);
T
Thomas Gleixner 已提交
4845

4846
	return ret;
T
Thomas Gleixner 已提交
4847 4848 4849 4850 4851
}

static ssize_t
perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
4852
	struct perf_event *event = file->private_data;
P
Peter Zijlstra 已提交
4853 4854
	struct perf_event_context *ctx;
	int ret;
T
Thomas Gleixner 已提交
4855

P
Peter Zijlstra 已提交
4856
	ctx = perf_event_ctx_lock(event);
4857
	ret = __perf_read(event, buf, count);
P
Peter Zijlstra 已提交
4858 4859 4860
	perf_event_ctx_unlock(event, ctx);

	return ret;
T
Thomas Gleixner 已提交
4861 4862
}

4863
static __poll_t perf_poll(struct file *file, poll_table *wait)
T
Thomas Gleixner 已提交
4864
{
4865
	struct perf_event *event = file->private_data;
4866
	struct ring_buffer *rb;
4867
	__poll_t events = EPOLLHUP;
P
Peter Zijlstra 已提交
4868

4869
	poll_wait(file, &event->waitq, wait);
4870

4871
	if (is_event_hup(event))
4872
		return events;
P
Peter Zijlstra 已提交
4873

4874
	/*
4875 4876
	 * Pin the event->rb by taking event->mmap_mutex; otherwise
	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4877 4878
	 */
	mutex_lock(&event->mmap_mutex);
4879 4880
	rb = event->rb;
	if (rb)
4881
		events = atomic_xchg(&rb->poll, 0);
4882
	mutex_unlock(&event->mmap_mutex);
T
Thomas Gleixner 已提交
4883 4884 4885
	return events;
}

P
Peter Zijlstra 已提交
4886
static void _perf_event_reset(struct perf_event *event)
4887
{
4888
	(void)perf_event_read(event, false);
4889
	local64_set(&event->count, 0);
4890
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
4891 4892
}

4893
/*
4894 4895
 * Holding the top-level event's child_mutex means that any
 * descendant process that has inherited this event will block
4896
 * in perf_event_exit_event() if it goes to exit, thus satisfying the
4897
 * task existence requirements of perf_event_enable/disable.
4898
 */
4899 4900
static void perf_event_for_each_child(struct perf_event *event,
					void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
4901
{
4902
	struct perf_event *child;
P
Peter Zijlstra 已提交
4903

4904
	WARN_ON_ONCE(event->ctx->parent_ctx);
P
Peter Zijlstra 已提交
4905

4906 4907 4908
	mutex_lock(&event->child_mutex);
	func(event);
	list_for_each_entry(child, &event->child_list, child_list)
P
Peter Zijlstra 已提交
4909
		func(child);
4910
	mutex_unlock(&event->child_mutex);
P
Peter Zijlstra 已提交
4911 4912
}

4913 4914
static void perf_event_for_each(struct perf_event *event,
				  void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
4915
{
4916 4917
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *sibling;
P
Peter Zijlstra 已提交
4918

P
Peter Zijlstra 已提交
4919 4920
	lockdep_assert_held(&ctx->mutex);

4921
	event = event->group_leader;
4922

4923
	perf_event_for_each_child(event, func);
P
Peter Zijlstra 已提交
4924
	for_each_sibling_event(sibling, event)
4925
		perf_event_for_each_child(sibling, func);
4926 4927
}

4928 4929 4930 4931
static void __perf_event_period(struct perf_event *event,
				struct perf_cpu_context *cpuctx,
				struct perf_event_context *ctx,
				void *info)
4932
{
4933
	u64 value = *((u64 *)info);
4934
	bool active;
4935

4936 4937
	if (event->attr.freq) {
		event->attr.sample_freq = value;
4938
	} else {
4939 4940
		event->attr.sample_period = value;
		event->hw.sample_period = value;
4941
	}
4942 4943 4944 4945

	active = (event->state == PERF_EVENT_STATE_ACTIVE);
	if (active) {
		perf_pmu_disable(ctx->pmu);
4946 4947 4948 4949 4950 4951 4952 4953
		/*
		 * We could be throttled; unthrottle now to avoid the tick
		 * trying to unthrottle while we already re-started the event.
		 */
		if (event->hw.interrupts == MAX_INTERRUPTS) {
			event->hw.interrupts = 0;
			perf_log_throttle(event, 1);
		}
4954 4955 4956 4957 4958 4959 4960 4961 4962
		event->pmu->stop(event, PERF_EF_UPDATE);
	}

	local64_set(&event->hw.period_left, 0);

	if (active) {
		event->pmu->start(event, PERF_EF_RELOAD);
		perf_pmu_enable(ctx->pmu);
	}
4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980
}

static int perf_event_period(struct perf_event *event, u64 __user *arg)
{
	u64 value;

	if (!is_sampling_event(event))
		return -EINVAL;

	if (copy_from_user(&value, arg, sizeof(value)))
		return -EFAULT;

	if (!value)
		return -EINVAL;

	if (event->attr.freq && value > sysctl_perf_event_sample_rate)
		return -EINVAL;

4981
	event_function_call(event, __perf_event_period, &value);
4982

4983
	return 0;
4984 4985
}

4986 4987
static const struct file_operations perf_fops;

4988
static inline int perf_fget_light(int fd, struct fd *p)
4989
{
4990 4991 4992
	struct fd f = fdget(fd);
	if (!f.file)
		return -EBADF;
4993

4994 4995 4996
	if (f.file->f_op != &perf_fops) {
		fdput(f);
		return -EBADF;
4997
	}
4998 4999
	*p = f;
	return 0;
5000 5001 5002 5003
}

static int perf_event_set_output(struct perf_event *event,
				 struct perf_event *output_event);
L
Li Zefan 已提交
5004
static int perf_event_set_filter(struct perf_event *event, void __user *arg);
5005
static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
5006 5007
static int perf_copy_attr(struct perf_event_attr __user *uattr,
			  struct perf_event_attr *attr);
5008

P
Peter Zijlstra 已提交
5009
static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
5010
{
5011
	void (*func)(struct perf_event *);
P
Peter Zijlstra 已提交
5012
	u32 flags = arg;
5013 5014

	switch (cmd) {
5015
	case PERF_EVENT_IOC_ENABLE:
P
Peter Zijlstra 已提交
5016
		func = _perf_event_enable;
5017
		break;
5018
	case PERF_EVENT_IOC_DISABLE:
P
Peter Zijlstra 已提交
5019
		func = _perf_event_disable;
5020
		break;
5021
	case PERF_EVENT_IOC_RESET:
P
Peter Zijlstra 已提交
5022
		func = _perf_event_reset;
5023
		break;
P
Peter Zijlstra 已提交
5024

5025
	case PERF_EVENT_IOC_REFRESH:
P
Peter Zijlstra 已提交
5026
		return _perf_event_refresh(event, arg);
5027

5028 5029
	case PERF_EVENT_IOC_PERIOD:
		return perf_event_period(event, (u64 __user *)arg);
5030

5031 5032 5033 5034 5035 5036 5037 5038 5039
	case PERF_EVENT_IOC_ID:
	{
		u64 id = primary_event_id(event);

		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
			return -EFAULT;
		return 0;
	}

5040
	case PERF_EVENT_IOC_SET_OUTPUT:
5041 5042 5043
	{
		int ret;
		if (arg != -1) {
5044 5045 5046 5047 5048 5049 5050 5051 5052 5053
			struct perf_event *output_event;
			struct fd output;
			ret = perf_fget_light(arg, &output);
			if (ret)
				return ret;
			output_event = output.file->private_data;
			ret = perf_event_set_output(event, output_event);
			fdput(output);
		} else {
			ret = perf_event_set_output(event, NULL);
5054 5055 5056
		}
		return ret;
	}
5057

L
Li Zefan 已提交
5058 5059 5060
	case PERF_EVENT_IOC_SET_FILTER:
		return perf_event_set_filter(event, (void __user *)arg);

5061 5062 5063
	case PERF_EVENT_IOC_SET_BPF:
		return perf_event_set_bpf_prog(event, arg);

5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076
	case PERF_EVENT_IOC_PAUSE_OUTPUT: {
		struct ring_buffer *rb;

		rcu_read_lock();
		rb = rcu_dereference(event->rb);
		if (!rb || !rb->nr_pages) {
			rcu_read_unlock();
			return -EINVAL;
		}
		rb_toggle_paused(rb, !!arg);
		rcu_read_unlock();
		return 0;
	}
5077 5078

	case PERF_EVENT_IOC_QUERY_BPF:
5079
		return perf_event_query_prog_array(event, (void __user *)arg);
5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090

	case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: {
		struct perf_event_attr new_attr;
		int err = perf_copy_attr((struct perf_event_attr __user *)arg,
					 &new_attr);

		if (err)
			return err;

		return perf_event_modify_attr(event,  &new_attr);
	}
5091
	default:
P
Peter Zijlstra 已提交
5092
		return -ENOTTY;
5093
	}
P
Peter Zijlstra 已提交
5094 5095

	if (flags & PERF_IOC_FLAG_GROUP)
5096
		perf_event_for_each(event, func);
P
Peter Zijlstra 已提交
5097
	else
5098
		perf_event_for_each_child(event, func);
P
Peter Zijlstra 已提交
5099 5100

	return 0;
5101 5102
}

P
Peter Zijlstra 已提交
5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115
static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
	struct perf_event *event = file->private_data;
	struct perf_event_context *ctx;
	long ret;

	ctx = perf_event_ctx_lock(event);
	ret = _perf_ioctl(event, cmd, arg);
	perf_event_ctx_unlock(event, ctx);

	return ret;
}

P
Pawel Moll 已提交
5116 5117 5118 5119 5120 5121 5122
#ifdef CONFIG_COMPAT
static long perf_compat_ioctl(struct file *file, unsigned int cmd,
				unsigned long arg)
{
	switch (_IOC_NR(cmd)) {
	case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
	case _IOC_NR(PERF_EVENT_IOC_ID):
5123 5124
	case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF):
	case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES):
P
Pawel Moll 已提交
5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137
		/* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
		if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
			cmd &= ~IOCSIZE_MASK;
			cmd |= sizeof(void *) << IOCSIZE_SHIFT;
		}
		break;
	}
	return perf_ioctl(file, cmd, arg);
}
#else
# define perf_compat_ioctl NULL
#endif

5138
int perf_event_task_enable(void)
5139
{
P
Peter Zijlstra 已提交
5140
	struct perf_event_context *ctx;
5141
	struct perf_event *event;
5142

5143
	mutex_lock(&current->perf_event_mutex);
P
Peter Zijlstra 已提交
5144 5145 5146 5147 5148
	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
		ctx = perf_event_ctx_lock(event);
		perf_event_for_each_child(event, _perf_event_enable);
		perf_event_ctx_unlock(event, ctx);
	}
5149
	mutex_unlock(&current->perf_event_mutex);
5150 5151 5152 5153

	return 0;
}

5154
int perf_event_task_disable(void)
5155
{
P
Peter Zijlstra 已提交
5156
	struct perf_event_context *ctx;
5157
	struct perf_event *event;
5158

5159
	mutex_lock(&current->perf_event_mutex);
P
Peter Zijlstra 已提交
5160 5161 5162 5163 5164
	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
		ctx = perf_event_ctx_lock(event);
		perf_event_for_each_child(event, _perf_event_disable);
		perf_event_ctx_unlock(event, ctx);
	}
5165
	mutex_unlock(&current->perf_event_mutex);
5166 5167 5168 5169

	return 0;
}

5170
static int perf_event_index(struct perf_event *event)
5171
{
P
Peter Zijlstra 已提交
5172 5173 5174
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;

5175
	if (event->state != PERF_EVENT_STATE_ACTIVE)
5176 5177
		return 0;

5178
	return event->pmu->event_idx(event);
5179 5180
}

5181
static void calc_timer_values(struct perf_event *event,
5182
				u64 *now,
5183 5184
				u64 *enabled,
				u64 *running)
5185
{
5186
	u64 ctx_time;
5187

5188 5189
	*now = perf_clock();
	ctx_time = event->shadow_ctx_time + *now;
5190
	__perf_update_times(event, ctx_time, enabled, running);
5191 5192
}

5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207
static void perf_event_init_userpage(struct perf_event *event)
{
	struct perf_event_mmap_page *userpg;
	struct ring_buffer *rb;

	rcu_read_lock();
	rb = rcu_dereference(event->rb);
	if (!rb)
		goto unlock;

	userpg = rb->user_page;

	/* Allow new userspace to detect that bit 0 is deprecated */
	userpg->cap_bit0_is_deprecated = 1;
	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
5208 5209
	userpg->data_offset = PAGE_SIZE;
	userpg->data_size = perf_data_size(rb);
5210 5211 5212 5213 5214

unlock:
	rcu_read_unlock();
}

5215 5216
void __weak arch_perf_update_userpage(
	struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
5217 5218 5219
{
}

5220 5221 5222 5223 5224
/*
 * Callers need to ensure there can be no nesting of this function, otherwise
 * the seqlock logic goes bad. We can not serialize this because the arch
 * code calls this from NMI context.
 */
5225
void perf_event_update_userpage(struct perf_event *event)
5226
{
5227
	struct perf_event_mmap_page *userpg;
5228
	struct ring_buffer *rb;
5229
	u64 enabled, running, now;
5230 5231

	rcu_read_lock();
5232 5233 5234 5235
	rb = rcu_dereference(event->rb);
	if (!rb)
		goto unlock;

5236 5237 5238 5239 5240 5241 5242 5243 5244
	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we can be called in
	 * NMI context
	 */
5245
	calc_timer_values(event, &now, &enabled, &running);
5246

5247
	userpg = rb->user_page;
5248 5249 5250 5251 5252
	/*
	 * Disable preemption so as to not let the corresponding user-space
	 * spin too long if we get preempted.
	 */
	preempt_disable();
5253
	++userpg->lock;
5254
	barrier();
5255
	userpg->index = perf_event_index(event);
P
Peter Zijlstra 已提交
5256
	userpg->offset = perf_event_count(event);
5257
	if (userpg->index)
5258
		userpg->offset -= local64_read(&event->hw.prev_count);
5259

5260
	userpg->time_enabled = enabled +
5261
			atomic64_read(&event->child_total_time_enabled);
5262

5263
	userpg->time_running = running +
5264
			atomic64_read(&event->child_total_time_running);
5265

5266
	arch_perf_update_userpage(event, userpg, now);
5267

5268
	barrier();
5269
	++userpg->lock;
5270
	preempt_enable();
5271
unlock:
5272
	rcu_read_unlock();
5273
}
5274
EXPORT_SYMBOL_GPL(perf_event_update_userpage);
5275

5276
static int perf_mmap_fault(struct vm_fault *vmf)
5277
{
5278
	struct perf_event *event = vmf->vma->vm_file->private_data;
5279
	struct ring_buffer *rb;
5280 5281 5282 5283 5284 5285 5286 5287 5288
	int ret = VM_FAULT_SIGBUS;

	if (vmf->flags & FAULT_FLAG_MKWRITE) {
		if (vmf->pgoff == 0)
			ret = 0;
		return ret;
	}

	rcu_read_lock();
5289 5290
	rb = rcu_dereference(event->rb);
	if (!rb)
5291 5292 5293 5294 5295
		goto unlock;

	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
		goto unlock;

5296
	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
5297 5298 5299 5300
	if (!vmf->page)
		goto unlock;

	get_page(vmf->page);
5301
	vmf->page->mapping = vmf->vma->vm_file->f_mapping;
5302 5303 5304 5305 5306 5307 5308 5309 5310
	vmf->page->index   = vmf->pgoff;

	ret = 0;
unlock:
	rcu_read_unlock();

	return ret;
}

5311 5312 5313
static void ring_buffer_attach(struct perf_event *event,
			       struct ring_buffer *rb)
{
5314
	struct ring_buffer *old_rb = NULL;
5315 5316
	unsigned long flags;

5317 5318 5319 5320 5321 5322
	if (event->rb) {
		/*
		 * Should be impossible, we set this when removing
		 * event->rb_entry and wait/clear when adding event->rb_entry.
		 */
		WARN_ON_ONCE(event->rcu_pending);
5323

5324 5325 5326 5327
		old_rb = event->rb;
		spin_lock_irqsave(&old_rb->event_lock, flags);
		list_del_rcu(&event->rb_entry);
		spin_unlock_irqrestore(&old_rb->event_lock, flags);
5328

5329 5330
		event->rcu_batches = get_state_synchronize_rcu();
		event->rcu_pending = 1;
5331
	}
5332

5333
	if (rb) {
5334 5335 5336 5337 5338
		if (event->rcu_pending) {
			cond_synchronize_rcu(event->rcu_batches);
			event->rcu_pending = 0;
		}

5339 5340 5341 5342 5343
		spin_lock_irqsave(&rb->event_lock, flags);
		list_add_rcu(&event->rb_entry, &rb->event_list);
		spin_unlock_irqrestore(&rb->event_lock, flags);
	}

5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356
	/*
	 * Avoid racing with perf_mmap_close(AUX): stop the event
	 * before swizzling the event::rb pointer; if it's getting
	 * unmapped, its aux_mmap_count will be 0 and it won't
	 * restart. See the comment in __perf_pmu_output_stop().
	 *
	 * Data will inevitably be lost when set_output is done in
	 * mid-air, but then again, whoever does it like this is
	 * not in for the data anyway.
	 */
	if (has_aux(event))
		perf_event_stop(event, 0);

5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367
	rcu_assign_pointer(event->rb, rb);

	if (old_rb) {
		ring_buffer_put(old_rb);
		/*
		 * Since we detached before setting the new rb, so that we
		 * could attach the new rb, we could have missed a wakeup.
		 * Provide it now.
		 */
		wake_up_all(&event->waitq);
	}
5368 5369 5370 5371 5372 5373 5374 5375
}

static void ring_buffer_wakeup(struct perf_event *event)
{
	struct ring_buffer *rb;

	rcu_read_lock();
	rb = rcu_dereference(event->rb);
5376 5377 5378 5379
	if (rb) {
		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
			wake_up_all(&event->waitq);
	}
5380 5381 5382
	rcu_read_unlock();
}

5383
struct ring_buffer *ring_buffer_get(struct perf_event *event)
5384
{
5385
	struct ring_buffer *rb;
5386

5387
	rcu_read_lock();
5388 5389 5390 5391
	rb = rcu_dereference(event->rb);
	if (rb) {
		if (!atomic_inc_not_zero(&rb->refcount))
			rb = NULL;
5392 5393 5394
	}
	rcu_read_unlock();

5395
	return rb;
5396 5397
}

5398
void ring_buffer_put(struct ring_buffer *rb)
5399
{
5400
	if (!atomic_dec_and_test(&rb->refcount))
5401
		return;
5402

5403
	WARN_ON_ONCE(!list_empty(&rb->event_list));
5404

5405
	call_rcu(&rb->rcu_head, rb_free_rcu);
5406 5407 5408 5409
}

static void perf_mmap_open(struct vm_area_struct *vma)
{
5410
	struct perf_event *event = vma->vm_file->private_data;
5411

5412
	atomic_inc(&event->mmap_count);
5413
	atomic_inc(&event->rb->mmap_count);
5414

5415 5416 5417
	if (vma->vm_pgoff)
		atomic_inc(&event->rb->aux_mmap_count);

5418
	if (event->pmu->event_mapped)
5419
		event->pmu->event_mapped(event, vma->vm_mm);
5420 5421
}

5422 5423
static void perf_pmu_output_stop(struct perf_event *event);

5424 5425 5426 5427 5428 5429 5430 5431
/*
 * A buffer can be mmap()ed multiple times; either directly through the same
 * event, or through other events by use of perf_event_set_output().
 *
 * In order to undo the VM accounting done by perf_mmap() we need to destroy
 * the buffer here, where we still have a VM context. This means we need
 * to detach all events redirecting to us.
 */
5432 5433
static void perf_mmap_close(struct vm_area_struct *vma)
{
5434
	struct perf_event *event = vma->vm_file->private_data;
5435

5436
	struct ring_buffer *rb = ring_buffer_get(event);
5437 5438 5439
	struct user_struct *mmap_user = rb->mmap_user;
	int mmap_locked = rb->mmap_locked;
	unsigned long size = perf_data_size(rb);
5440

5441
	if (event->pmu->event_unmapped)
5442
		event->pmu->event_unmapped(event, vma->vm_mm);
5443

5444 5445 5446 5447 5448 5449 5450
	/*
	 * rb->aux_mmap_count will always drop before rb->mmap_count and
	 * event->mmap_count, so it is ok to use event->mmap_mutex to
	 * serialize with perf_mmap here.
	 */
	if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
	    atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
5451 5452 5453 5454 5455 5456 5457 5458 5459
		/*
		 * Stop all AUX events that are writing to this buffer,
		 * so that we can free its AUX pages and corresponding PMU
		 * data. Note that after rb::aux_mmap_count dropped to zero,
		 * they won't start any more (see perf_aux_output_begin()).
		 */
		perf_pmu_output_stop(event);

		/* now it's safe to free the pages */
5460 5461 5462
		atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
		vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;

5463
		/* this has to be the last one */
5464
		rb_free_aux(rb);
5465 5466
		WARN_ON_ONCE(atomic_read(&rb->aux_refcount));

5467 5468 5469
		mutex_unlock(&event->mmap_mutex);
	}

5470 5471 5472
	atomic_dec(&rb->mmap_count);

	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
5473
		goto out_put;
5474

5475
	ring_buffer_attach(event, NULL);
5476 5477 5478
	mutex_unlock(&event->mmap_mutex);

	/* If there's still other mmap()s of this buffer, we're done. */
5479 5480
	if (atomic_read(&rb->mmap_count))
		goto out_put;
5481

5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497
	/*
	 * No other mmap()s, detach from all other events that might redirect
	 * into the now unreachable buffer. Somewhat complicated by the
	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
	 */
again:
	rcu_read_lock();
	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
		if (!atomic_long_inc_not_zero(&event->refcount)) {
			/*
			 * This event is en-route to free_event() which will
			 * detach it and remove it from the list.
			 */
			continue;
		}
		rcu_read_unlock();
5498

5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509
		mutex_lock(&event->mmap_mutex);
		/*
		 * Check we didn't race with perf_event_set_output() which can
		 * swizzle the rb from under us while we were waiting to
		 * acquire mmap_mutex.
		 *
		 * If we find a different rb; ignore this event, a next
		 * iteration will no longer find it on the list. We have to
		 * still restart the iteration to make sure we're not now
		 * iterating the wrong list.
		 */
5510 5511 5512
		if (event->rb == rb)
			ring_buffer_attach(event, NULL);

5513
		mutex_unlock(&event->mmap_mutex);
5514
		put_event(event);
5515

5516 5517 5518 5519 5520
		/*
		 * Restart the iteration; either we're on the wrong list or
		 * destroyed its integrity by doing a deletion.
		 */
		goto again;
5521
	}
5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536
	rcu_read_unlock();

	/*
	 * It could be there's still a few 0-ref events on the list; they'll
	 * get cleaned up by free_event() -- they'll also still have their
	 * ref on the rb and will free it whenever they are done with it.
	 *
	 * Aside from that, this buffer is 'fully' detached and unmapped,
	 * undo the VM accounting.
	 */

	atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
	vma->vm_mm->pinned_vm -= mmap_locked;
	free_uid(mmap_user);

5537
out_put:
5538
	ring_buffer_put(rb); /* could be last */
5539 5540
}

5541
static const struct vm_operations_struct perf_mmap_vmops = {
5542
	.open		= perf_mmap_open,
5543
	.close		= perf_mmap_close, /* non mergable */
5544 5545
	.fault		= perf_mmap_fault,
	.page_mkwrite	= perf_mmap_fault,
5546 5547 5548 5549
};

static int perf_mmap(struct file *file, struct vm_area_struct *vma)
{
5550
	struct perf_event *event = file->private_data;
5551
	unsigned long user_locked, user_lock_limit;
5552
	struct user_struct *user = current_user();
5553
	unsigned long locked, lock_limit;
5554
	struct ring_buffer *rb = NULL;
5555 5556
	unsigned long vma_size;
	unsigned long nr_pages;
5557
	long user_extra = 0, extra = 0;
5558
	int ret = 0, flags = 0;
5559

5560 5561 5562
	/*
	 * Don't allow mmap() of inherited per-task counters. This would
	 * create a performance issue due to all children writing to the
5563
	 * same rb.
5564 5565 5566 5567
	 */
	if (event->cpu == -1 && event->attr.inherit)
		return -EINVAL;

5568
	if (!(vma->vm_flags & VM_SHARED))
5569
		return -EINVAL;
5570 5571

	vma_size = vma->vm_end - vma->vm_start;
5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594

	if (vma->vm_pgoff == 0) {
		nr_pages = (vma_size / PAGE_SIZE) - 1;
	} else {
		/*
		 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
		 * mapped, all subsequent mappings should have the same size
		 * and offset. Must be above the normal perf buffer.
		 */
		u64 aux_offset, aux_size;

		if (!event->rb)
			return -EINVAL;

		nr_pages = vma_size / PAGE_SIZE;

		mutex_lock(&event->mmap_mutex);
		ret = -EINVAL;

		rb = event->rb;
		if (!rb)
			goto aux_unlock;

5595 5596
		aux_offset = READ_ONCE(rb->user_page->aux_offset);
		aux_size = READ_ONCE(rb->user_page->aux_size);
5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631

		if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
			goto aux_unlock;

		if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
			goto aux_unlock;

		/* already mapped with a different offset */
		if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
			goto aux_unlock;

		if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
			goto aux_unlock;

		/* already mapped with a different size */
		if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
			goto aux_unlock;

		if (!is_power_of_2(nr_pages))
			goto aux_unlock;

		if (!atomic_inc_not_zero(&rb->mmap_count))
			goto aux_unlock;

		if (rb_has_aux(rb)) {
			atomic_inc(&rb->aux_mmap_count);
			ret = 0;
			goto unlock;
		}

		atomic_set(&rb->aux_mmap_count, 1);
		user_extra = nr_pages;

		goto accounting;
	}
5632

5633
	/*
5634
	 * If we have rb pages ensure they're a power-of-two number, so we
5635 5636
	 * can do bitmasks instead of modulo.
	 */
5637
	if (nr_pages != 0 && !is_power_of_2(nr_pages))
5638 5639
		return -EINVAL;

5640
	if (vma_size != PAGE_SIZE * (1 + nr_pages))
5641 5642
		return -EINVAL;

5643
	WARN_ON_ONCE(event->ctx->parent_ctx);
5644
again:
5645
	mutex_lock(&event->mmap_mutex);
5646
	if (event->rb) {
5647
		if (event->rb->nr_pages != nr_pages) {
5648
			ret = -EINVAL;
5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661
			goto unlock;
		}

		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
			/*
			 * Raced against perf_mmap_close() through
			 * perf_event_set_output(). Try again, hope for better
			 * luck.
			 */
			mutex_unlock(&event->mmap_mutex);
			goto again;
		}

5662 5663 5664
		goto unlock;
	}

5665
	user_extra = nr_pages + 1;
5666 5667

accounting:
5668
	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
I
Ingo Molnar 已提交
5669 5670 5671 5672 5673 5674

	/*
	 * Increase the limit linearly with more CPUs:
	 */
	user_lock_limit *= num_online_cpus();

5675
	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
5676

5677 5678
	if (user_locked > user_lock_limit)
		extra = user_locked - user_lock_limit;
5679

5680
	lock_limit = rlimit(RLIMIT_MEMLOCK);
5681
	lock_limit >>= PAGE_SHIFT;
5682
	locked = vma->vm_mm->pinned_vm + extra;
5683

5684 5685
	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
		!capable(CAP_IPC_LOCK)) {
5686 5687 5688
		ret = -EPERM;
		goto unlock;
	}
5689

5690
	WARN_ON(!rb && event->rb);
5691

5692
	if (vma->vm_flags & VM_WRITE)
5693
		flags |= RING_BUFFER_WRITABLE;
5694

5695
	if (!rb) {
5696 5697 5698
		rb = rb_alloc(nr_pages,
			      event->attr.watermark ? event->attr.wakeup_watermark : 0,
			      event->cpu, flags);
P
Peter Zijlstra 已提交
5699

5700 5701 5702 5703
		if (!rb) {
			ret = -ENOMEM;
			goto unlock;
		}
5704

5705 5706 5707
		atomic_set(&rb->mmap_count, 1);
		rb->mmap_user = get_current_user();
		rb->mmap_locked = extra;
P
Peter Zijlstra 已提交
5708

5709
		ring_buffer_attach(event, rb);
5710

5711 5712 5713
		perf_event_init_userpage(event);
		perf_event_update_userpage(event);
	} else {
5714 5715
		ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
				   event->attr.aux_watermark, flags);
5716 5717 5718
		if (!ret)
			rb->aux_mmap_locked = extra;
	}
5719

5720
unlock:
5721 5722 5723 5724
	if (!ret) {
		atomic_long_add(user_extra, &user->locked_vm);
		vma->vm_mm->pinned_vm += extra;

5725
		atomic_inc(&event->mmap_count);
5726 5727 5728 5729
	} else if (rb) {
		atomic_dec(&rb->mmap_count);
	}
aux_unlock:
5730
	mutex_unlock(&event->mmap_mutex);
5731

5732 5733 5734 5735
	/*
	 * Since pinned accounting is per vm we cannot allow fork() to copy our
	 * vma.
	 */
P
Peter Zijlstra 已提交
5736
	vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
5737
	vma->vm_ops = &perf_mmap_vmops;
5738

5739
	if (event->pmu->event_mapped)
5740
		event->pmu->event_mapped(event, vma->vm_mm);
5741

5742
	return ret;
5743 5744
}

P
Peter Zijlstra 已提交
5745 5746
static int perf_fasync(int fd, struct file *filp, int on)
{
A
Al Viro 已提交
5747
	struct inode *inode = file_inode(filp);
5748
	struct perf_event *event = filp->private_data;
P
Peter Zijlstra 已提交
5749 5750
	int retval;

A
Al Viro 已提交
5751
	inode_lock(inode);
5752
	retval = fasync_helper(fd, filp, on, &event->fasync);
A
Al Viro 已提交
5753
	inode_unlock(inode);
P
Peter Zijlstra 已提交
5754 5755 5756 5757 5758 5759 5760

	if (retval < 0)
		return retval;

	return 0;
}

T
Thomas Gleixner 已提交
5761
static const struct file_operations perf_fops = {
5762
	.llseek			= no_llseek,
T
Thomas Gleixner 已提交
5763 5764 5765
	.release		= perf_release,
	.read			= perf_read,
	.poll			= perf_poll,
5766
	.unlocked_ioctl		= perf_ioctl,
P
Pawel Moll 已提交
5767
	.compat_ioctl		= perf_compat_ioctl,
5768
	.mmap			= perf_mmap,
P
Peter Zijlstra 已提交
5769
	.fasync			= perf_fasync,
T
Thomas Gleixner 已提交
5770 5771
};

5772
/*
5773
 * Perf event wakeup
5774 5775 5776 5777 5778
 *
 * If there's data, ensure we set the poll() state and publish everything
 * to user-space before waking everybody up.
 */

5779 5780 5781 5782 5783 5784 5785 5786
static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
{
	/* only the parent has fasync state */
	if (event->parent)
		event = event->parent;
	return &event->fasync;
}

5787
void perf_event_wakeup(struct perf_event *event)
5788
{
5789
	ring_buffer_wakeup(event);
5790

5791
	if (event->pending_kill) {
5792
		kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
5793
		event->pending_kill = 0;
5794
	}
5795 5796
}

5797
static void perf_pending_event(struct irq_work *entry)
5798
{
5799 5800
	struct perf_event *event = container_of(entry,
			struct perf_event, pending);
5801 5802 5803 5804 5805 5806 5807
	int rctx;

	rctx = perf_swevent_get_recursion_context();
	/*
	 * If we 'fail' here, that's OK, it means recursion is already disabled
	 * and we won't recurse 'further'.
	 */
5808

5809 5810
	if (event->pending_disable) {
		event->pending_disable = 0;
5811
		perf_event_disable_local(event);
5812 5813
	}

5814 5815 5816
	if (event->pending_wakeup) {
		event->pending_wakeup = 0;
		perf_event_wakeup(event);
5817
	}
5818 5819 5820

	if (rctx >= 0)
		perf_swevent_put_recursion_context(rctx);
5821 5822
}

5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843
/*
 * We assume there is only KVM supporting the callbacks.
 * Later on, we might change it to a list if there is
 * another virtualization implementation supporting the callbacks.
 */
struct perf_guest_info_callbacks *perf_guest_cbs;

int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = cbs;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);

int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = NULL;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);

5844 5845 5846 5847 5848
static void
perf_output_sample_regs(struct perf_output_handle *handle,
			struct pt_regs *regs, u64 mask)
{
	int bit;
5849
	DECLARE_BITMAP(_mask, 64);
5850

5851 5852
	bitmap_from_u64(_mask, mask);
	for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
5853 5854 5855 5856 5857 5858 5859
		u64 val;

		val = perf_reg_value(regs, bit);
		perf_output_put(handle, val);
	}
}

5860
static void perf_sample_regs_user(struct perf_regs *regs_user,
5861 5862
				  struct pt_regs *regs,
				  struct pt_regs *regs_user_copy)
5863
{
5864 5865
	if (user_mode(regs)) {
		regs_user->abi = perf_reg_abi(current);
5866
		regs_user->regs = regs;
5867 5868
	} else if (current->mm) {
		perf_get_regs_user(regs_user, regs, regs_user_copy);
5869 5870 5871
	} else {
		regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
		regs_user->regs = NULL;
5872 5873 5874
	}
}

5875 5876 5877 5878 5879 5880 5881 5882
static void perf_sample_regs_intr(struct perf_regs *regs_intr,
				  struct pt_regs *regs)
{
	regs_intr->regs = regs;
	regs_intr->abi  = perf_reg_abi(current);
}


5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977
/*
 * Get remaining task size from user stack pointer.
 *
 * It'd be better to take stack vma map and limit this more
 * precisly, but there's no way to get it safely under interrupt,
 * so using TASK_SIZE as limit.
 */
static u64 perf_ustack_task_size(struct pt_regs *regs)
{
	unsigned long addr = perf_user_stack_pointer(regs);

	if (!addr || addr >= TASK_SIZE)
		return 0;

	return TASK_SIZE - addr;
}

static u16
perf_sample_ustack_size(u16 stack_size, u16 header_size,
			struct pt_regs *regs)
{
	u64 task_size;

	/* No regs, no stack pointer, no dump. */
	if (!regs)
		return 0;

	/*
	 * Check if we fit in with the requested stack size into the:
	 * - TASK_SIZE
	 *   If we don't, we limit the size to the TASK_SIZE.
	 *
	 * - remaining sample size
	 *   If we don't, we customize the stack size to
	 *   fit in to the remaining sample size.
	 */

	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
	stack_size = min(stack_size, (u16) task_size);

	/* Current header size plus static size and dynamic size. */
	header_size += 2 * sizeof(u64);

	/* Do we fit in with the current stack dump size? */
	if ((u16) (header_size + stack_size) < header_size) {
		/*
		 * If we overflow the maximum size for the sample,
		 * we customize the stack dump size to fit in.
		 */
		stack_size = USHRT_MAX - header_size - sizeof(u64);
		stack_size = round_up(stack_size, sizeof(u64));
	}

	return stack_size;
}

static void
perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
			  struct pt_regs *regs)
{
	/* Case of a kernel thread, nothing to dump */
	if (!regs) {
		u64 size = 0;
		perf_output_put(handle, size);
	} else {
		unsigned long sp;
		unsigned int rem;
		u64 dyn_size;

		/*
		 * We dump:
		 * static size
		 *   - the size requested by user or the best one we can fit
		 *     in to the sample max size
		 * data
		 *   - user stack dump data
		 * dynamic size
		 *   - the actual dumped size
		 */

		/* Static size. */
		perf_output_put(handle, dump_size);

		/* Data. */
		sp = perf_user_stack_pointer(regs);
		rem = __output_copy_user(handle, (void *) sp, dump_size);
		dyn_size = dump_size - rem;

		perf_output_skip(handle, rem);

		/* Dynamic size. */
		perf_output_put(handle, dyn_size);
	}
}

5978 5979 5980
static void __perf_event_header__init_id(struct perf_event_header *header,
					 struct perf_sample_data *data,
					 struct perf_event *event)
5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993
{
	u64 sample_type = event->attr.sample_type;

	data->type = sample_type;
	header->size += event->id_header_size;

	if (sample_type & PERF_SAMPLE_TID) {
		/* namespace issues */
		data->tid_entry.pid = perf_event_pid(event, current);
		data->tid_entry.tid = perf_event_tid(event, current);
	}

	if (sample_type & PERF_SAMPLE_TIME)
5994
		data->time = perf_event_clock(event);
5995

5996
	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007
		data->id = primary_event_id(event);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		data->stream_id = event->id;

	if (sample_type & PERF_SAMPLE_CPU) {
		data->cpu_entry.cpu	 = raw_smp_processor_id();
		data->cpu_entry.reserved = 0;
	}
}

6008 6009 6010
void perf_event_header__init_id(struct perf_event_header *header,
				struct perf_sample_data *data,
				struct perf_event *event)
6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034
{
	if (event->attr.sample_id_all)
		__perf_event_header__init_id(header, data, event);
}

static void __perf_event__output_id_sample(struct perf_output_handle *handle,
					   struct perf_sample_data *data)
{
	u64 sample_type = data->type;

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);
6035 6036 6037

	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		perf_output_put(handle, data->id);
6038 6039
}

6040 6041 6042
void perf_event__output_id_sample(struct perf_event *event,
				  struct perf_output_handle *handle,
				  struct perf_sample_data *sample)
6043 6044 6045 6046 6047
{
	if (event->attr.sample_id_all)
		__perf_event__output_id_sample(handle, sample);
}

6048
static void perf_output_read_one(struct perf_output_handle *handle,
6049 6050
				 struct perf_event *event,
				 u64 enabled, u64 running)
6051
{
6052
	u64 read_format = event->attr.read_format;
6053 6054 6055
	u64 values[4];
	int n = 0;

P
Peter Zijlstra 已提交
6056
	values[n++] = perf_event_count(event);
6057
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
6058
		values[n++] = enabled +
6059
			atomic64_read(&event->child_total_time_enabled);
6060 6061
	}
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
6062
		values[n++] = running +
6063
			atomic64_read(&event->child_total_time_running);
6064 6065
	}
	if (read_format & PERF_FORMAT_ID)
6066
		values[n++] = primary_event_id(event);
6067

6068
	__output_copy(handle, values, n * sizeof(u64));
6069 6070 6071
}

static void perf_output_read_group(struct perf_output_handle *handle,
6072 6073
			    struct perf_event *event,
			    u64 enabled, u64 running)
6074
{
6075 6076
	struct perf_event *leader = event->group_leader, *sub;
	u64 read_format = event->attr.read_format;
6077 6078 6079 6080 6081 6082
	u64 values[5];
	int n = 0;

	values[n++] = 1 + leader->nr_siblings;

	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
6083
		values[n++] = enabled;
6084 6085

	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
6086
		values[n++] = running;
6087

6088 6089
	if ((leader != event) &&
	    (leader->state == PERF_EVENT_STATE_ACTIVE))
6090 6091
		leader->pmu->read(leader);

P
Peter Zijlstra 已提交
6092
	values[n++] = perf_event_count(leader);
6093
	if (read_format & PERF_FORMAT_ID)
6094
		values[n++] = primary_event_id(leader);
6095

6096
	__output_copy(handle, values, n * sizeof(u64));
6097

P
Peter Zijlstra 已提交
6098
	for_each_sibling_event(sub, leader) {
6099 6100
		n = 0;

6101 6102
		if ((sub != event) &&
		    (sub->state == PERF_EVENT_STATE_ACTIVE))
6103 6104
			sub->pmu->read(sub);

P
Peter Zijlstra 已提交
6105
		values[n++] = perf_event_count(sub);
6106
		if (read_format & PERF_FORMAT_ID)
6107
			values[n++] = primary_event_id(sub);
6108

6109
		__output_copy(handle, values, n * sizeof(u64));
6110 6111 6112
	}
}

6113 6114 6115
#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
				 PERF_FORMAT_TOTAL_TIME_RUNNING)

6116 6117 6118 6119 6120 6121 6122
/*
 * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
 *
 * The problem is that its both hard and excessively expensive to iterate the
 * child list, not to mention that its impossible to IPI the children running
 * on another CPU, from interrupt/NMI context.
 */
6123
static void perf_output_read(struct perf_output_handle *handle,
6124
			     struct perf_event *event)
6125
{
6126
	u64 enabled = 0, running = 0, now;
6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137
	u64 read_format = event->attr.read_format;

	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we are called in
	 * NMI context
	 */
6138
	if (read_format & PERF_FORMAT_TOTAL_TIMES)
6139
		calc_timer_values(event, &now, &enabled, &running);
6140

6141
	if (event->attr.read_format & PERF_FORMAT_GROUP)
6142
		perf_output_read_group(handle, event, enabled, running);
6143
	else
6144
		perf_output_read_one(handle, event, enabled, running);
6145 6146
}

6147 6148 6149
void perf_output_sample(struct perf_output_handle *handle,
			struct perf_event_header *header,
			struct perf_sample_data *data,
6150
			struct perf_event *event)
6151 6152 6153 6154 6155
{
	u64 sample_type = data->type;

	perf_output_put(handle, *header);

6156 6157 6158
	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		perf_output_put(handle, data->id);

6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183
	if (sample_type & PERF_SAMPLE_IP)
		perf_output_put(handle, data->ip);

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ADDR)
		perf_output_put(handle, data->addr);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);

	if (sample_type & PERF_SAMPLE_PERIOD)
		perf_output_put(handle, data->period);

	if (sample_type & PERF_SAMPLE_READ)
6184
		perf_output_read(handle, event);
6185 6186

	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
6187
		int size = 1;
6188

6189 6190 6191
		size += data->callchain->nr;
		size *= sizeof(u64);
		__output_copy(handle, data->callchain, size);
6192 6193 6194
	}

	if (sample_type & PERF_SAMPLE_RAW) {
6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214
		struct perf_raw_record *raw = data->raw;

		if (raw) {
			struct perf_raw_frag *frag = &raw->frag;

			perf_output_put(handle, raw->size);
			do {
				if (frag->copy) {
					__output_custom(handle, frag->copy,
							frag->data, frag->size);
				} else {
					__output_copy(handle, frag->data,
						      frag->size);
				}
				if (perf_raw_frag_last(frag))
					break;
				frag = frag->next;
			} while (1);
			if (frag->pad)
				__output_skip(handle, NULL, frag->pad);
6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225
		} else {
			struct {
				u32	size;
				u32	data;
			} raw = {
				.size = sizeof(u32),
				.data = 0,
			};
			perf_output_put(handle, raw);
		}
	}
6226

6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243
	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
		if (data->br_stack) {
			size_t size;

			size = data->br_stack->nr
			     * sizeof(struct perf_branch_entry);

			perf_output_put(handle, data->br_stack->nr);
			perf_output_copy(handle, data->br_stack->entries, size);
		} else {
			/*
			 * we always store at least the value of nr
			 */
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}
6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260

	if (sample_type & PERF_SAMPLE_REGS_USER) {
		u64 abi = data->regs_user.abi;

		/*
		 * If there are no regs to dump, notice it through
		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
		 */
		perf_output_put(handle, abi);

		if (abi) {
			u64 mask = event->attr.sample_regs_user;
			perf_output_sample_regs(handle,
						data->regs_user.regs,
						mask);
		}
	}
6261

6262
	if (sample_type & PERF_SAMPLE_STACK_USER) {
6263 6264 6265
		perf_output_sample_ustack(handle,
					  data->stack_user_size,
					  data->regs_user.regs);
6266
	}
A
Andi Kleen 已提交
6267 6268 6269

	if (sample_type & PERF_SAMPLE_WEIGHT)
		perf_output_put(handle, data->weight);
6270 6271 6272

	if (sample_type & PERF_SAMPLE_DATA_SRC)
		perf_output_put(handle, data->data_src.val);
6273

A
Andi Kleen 已提交
6274 6275 6276
	if (sample_type & PERF_SAMPLE_TRANSACTION)
		perf_output_put(handle, data->txn);

6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293
	if (sample_type & PERF_SAMPLE_REGS_INTR) {
		u64 abi = data->regs_intr.abi;
		/*
		 * If there are no regs to dump, notice it through
		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
		 */
		perf_output_put(handle, abi);

		if (abi) {
			u64 mask = event->attr.sample_regs_intr;

			perf_output_sample_regs(handle,
						data->regs_intr.regs,
						mask);
		}
	}

6294 6295 6296
	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
		perf_output_put(handle, data->phys_addr);

6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309
	if (!event->attr.watermark) {
		int wakeup_events = event->attr.wakeup_events;

		if (wakeup_events) {
			struct ring_buffer *rb = handle->rb;
			int events = local_inc_return(&rb->events);

			if (events >= wakeup_events) {
				local_sub(wakeup_events, &rb->events);
				local_inc(&rb->wakeup);
			}
		}
	}
6310 6311
}

6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343
static u64 perf_virt_to_phys(u64 virt)
{
	u64 phys_addr = 0;
	struct page *p = NULL;

	if (!virt)
		return 0;

	if (virt >= TASK_SIZE) {
		/* If it's vmalloc()d memory, leave phys_addr as 0 */
		if (virt_addr_valid((void *)(uintptr_t)virt) &&
		    !(virt >= VMALLOC_START && virt < VMALLOC_END))
			phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
	} else {
		/*
		 * Walking the pages tables for user address.
		 * Interrupts are disabled, so it prevents any tear down
		 * of the page tables.
		 * Try IRQ-safe __get_user_pages_fast first.
		 * If failed, leave phys_addr as 0.
		 */
		if ((current->mm != NULL) &&
		    (__get_user_pages_fast(virt, 1, 0, &p) == 1))
			phys_addr = page_to_phys(p) + virt % PAGE_SIZE;

		if (p)
			put_page(p);
	}

	return phys_addr;
}

6344 6345
static struct perf_callchain_entry __empty_callchain = { .nr = 0, };

6346
struct perf_callchain_entry *
6347 6348 6349 6350 6351 6352 6353
perf_callchain(struct perf_event *event, struct pt_regs *regs)
{
	bool kernel = !event->attr.exclude_callchain_kernel;
	bool user   = !event->attr.exclude_callchain_user;
	/* Disallow cross-task user callchains. */
	bool crosstask = event->ctx->task && event->ctx->task != current;
	const u32 max_stack = event->attr.sample_max_stack;
6354
	struct perf_callchain_entry *callchain;
6355 6356

	if (!kernel && !user)
6357
		return &__empty_callchain;
6358

6359 6360 6361
	callchain = get_perf_callchain(regs, 0, kernel, user,
				       max_stack, crosstask, true);
	return callchain ?: &__empty_callchain;
6362 6363
}

6364 6365
void perf_prepare_sample(struct perf_event_header *header,
			 struct perf_sample_data *data,
6366
			 struct perf_event *event,
6367
			 struct pt_regs *regs)
6368
{
6369
	u64 sample_type = event->attr.sample_type;
6370

6371
	header->type = PERF_RECORD_SAMPLE;
6372
	header->size = sizeof(*header) + event->header_size;
6373 6374 6375

	header->misc = 0;
	header->misc |= perf_misc_flags(regs);
6376

6377
	__perf_event_header__init_id(header, data, event);
6378

6379
	if (sample_type & PERF_SAMPLE_IP)
6380 6381
		data->ip = perf_instruction_pointer(regs);

6382
	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
6383
		int size = 1;
6384

6385 6386 6387
		if (!(sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY))
			data->callchain = perf_callchain(event, regs);

6388
		size += data->callchain->nr;
6389 6390

		header->size += size * sizeof(u64);
6391 6392
	}

6393
	if (sample_type & PERF_SAMPLE_RAW) {
6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413
		struct perf_raw_record *raw = data->raw;
		int size;

		if (raw) {
			struct perf_raw_frag *frag = &raw->frag;
			u32 sum = 0;

			do {
				sum += frag->size;
				if (perf_raw_frag_last(frag))
					break;
				frag = frag->next;
			} while (1);

			size = round_up(sum + sizeof(u32), sizeof(u64));
			raw->size = size - sizeof(u32);
			frag->pad = raw->size - sum;
		} else {
			size = sizeof(u64);
		}
6414

6415
		header->size += size;
6416
	}
6417 6418 6419 6420 6421 6422 6423 6424 6425

	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
		int size = sizeof(u64); /* nr */
		if (data->br_stack) {
			size += data->br_stack->nr
			      * sizeof(struct perf_branch_entry);
		}
		header->size += size;
	}
6426

6427
	if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
6428 6429
		perf_sample_regs_user(&data->regs_user, regs,
				      &data->regs_user_copy);
6430

6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441
	if (sample_type & PERF_SAMPLE_REGS_USER) {
		/* regs dump ABI info */
		int size = sizeof(u64);

		if (data->regs_user.regs) {
			u64 mask = event->attr.sample_regs_user;
			size += hweight64(mask) * sizeof(u64);
		}

		header->size += size;
	}
6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453

	if (sample_type & PERF_SAMPLE_STACK_USER) {
		/*
		 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
		 * processed as the last one or have additional check added
		 * in case new sample type is added, because we could eat
		 * up the rest of the sample size.
		 */
		u16 stack_size = event->attr.sample_stack_user;
		u16 size = sizeof(u64);

		stack_size = perf_sample_ustack_size(stack_size, header->size,
6454
						     data->regs_user.regs);
6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466

		/*
		 * If there is something to dump, add space for the dump
		 * itself and for the field that tells the dynamic size,
		 * which is how many have been actually dumped.
		 */
		if (stack_size)
			size += sizeof(u64) + stack_size;

		data->stack_user_size = stack_size;
		header->size += size;
	}
6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481

	if (sample_type & PERF_SAMPLE_REGS_INTR) {
		/* regs dump ABI info */
		int size = sizeof(u64);

		perf_sample_regs_intr(&data->regs_intr, regs);

		if (data->regs_intr.regs) {
			u64 mask = event->attr.sample_regs_intr;

			size += hweight64(mask) * sizeof(u64);
		}

		header->size += size;
	}
6482 6483 6484

	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
		data->phys_addr = perf_virt_to_phys(data->addr);
6485
}
6486

6487
static __always_inline void
6488 6489 6490 6491 6492 6493
__perf_event_output(struct perf_event *event,
		    struct perf_sample_data *data,
		    struct pt_regs *regs,
		    int (*output_begin)(struct perf_output_handle *,
					struct perf_event *,
					unsigned int))
6494 6495 6496
{
	struct perf_output_handle handle;
	struct perf_event_header header;
6497

6498 6499 6500
	/* protect the callchain buffers */
	rcu_read_lock();

6501
	perf_prepare_sample(&header, data, event, regs);
P
Peter Zijlstra 已提交
6502

6503
	if (output_begin(&handle, event, header.size))
6504
		goto exit;
6505

6506
	perf_output_sample(&handle, &header, data, event);
6507

6508
	perf_output_end(&handle);
6509 6510 6511

exit:
	rcu_read_unlock();
6512 6513
}

6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537
void
perf_event_output_forward(struct perf_event *event,
			 struct perf_sample_data *data,
			 struct pt_regs *regs)
{
	__perf_event_output(event, data, regs, perf_output_begin_forward);
}

void
perf_event_output_backward(struct perf_event *event,
			   struct perf_sample_data *data,
			   struct pt_regs *regs)
{
	__perf_event_output(event, data, regs, perf_output_begin_backward);
}

void
perf_event_output(struct perf_event *event,
		  struct perf_sample_data *data,
		  struct pt_regs *regs)
{
	__perf_event_output(event, data, regs, perf_output_begin);
}

6538
/*
6539
 * read event_id
6540 6541 6542 6543 6544 6545 6546 6547 6548 6549
 */

struct perf_read_event {
	struct perf_event_header	header;

	u32				pid;
	u32				tid;
};

static void
6550
perf_event_read_event(struct perf_event *event,
6551 6552 6553
			struct task_struct *task)
{
	struct perf_output_handle handle;
6554
	struct perf_sample_data sample;
6555
	struct perf_read_event read_event = {
6556
		.header = {
6557
			.type = PERF_RECORD_READ,
6558
			.misc = 0,
6559
			.size = sizeof(read_event) + event->read_size,
6560
		},
6561 6562
		.pid = perf_event_pid(event, task),
		.tid = perf_event_tid(event, task),
6563
	};
6564
	int ret;
6565

6566
	perf_event_header__init_id(&read_event.header, &sample, event);
6567
	ret = perf_output_begin(&handle, event, read_event.header.size);
6568 6569 6570
	if (ret)
		return;

6571
	perf_output_put(&handle, read_event);
6572
	perf_output_read(&handle, event);
6573
	perf_event__output_id_sample(event, &handle, &sample);
6574

6575 6576 6577
	perf_output_end(&handle);
}

6578
typedef void (perf_iterate_f)(struct perf_event *event, void *data);
6579 6580

static void
6581 6582
perf_iterate_ctx(struct perf_event_context *ctx,
		   perf_iterate_f output,
6583
		   void *data, bool all)
6584 6585 6586 6587
{
	struct perf_event *event;

	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6588 6589 6590 6591 6592 6593 6594
		if (!all) {
			if (event->state < PERF_EVENT_STATE_INACTIVE)
				continue;
			if (!event_filter_match(event))
				continue;
		}

6595
		output(event, data);
6596 6597 6598
	}
}

6599
static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
6600 6601 6602 6603 6604
{
	struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
	struct perf_event *event;

	list_for_each_entry_rcu(event, &pel->list, sb_list) {
6605 6606 6607 6608 6609 6610 6611 6612
		/*
		 * Skip events that are not fully formed yet; ensure that
		 * if we observe event->ctx, both event and ctx will be
		 * complete enough. See perf_install_in_context().
		 */
		if (!smp_load_acquire(&event->ctx))
			continue;

6613 6614 6615 6616 6617 6618 6619 6620
		if (event->state < PERF_EVENT_STATE_INACTIVE)
			continue;
		if (!event_filter_match(event))
			continue;
		output(event, data);
	}
}

6621 6622 6623 6624 6625 6626
/*
 * Iterate all events that need to receive side-band events.
 *
 * For new callers; ensure that account_pmu_sb_event() includes
 * your event, otherwise it might not get delivered.
 */
6627
static void
6628
perf_iterate_sb(perf_iterate_f output, void *data,
6629 6630 6631 6632 6633
	       struct perf_event_context *task_ctx)
{
	struct perf_event_context *ctx;
	int ctxn;

6634 6635 6636
	rcu_read_lock();
	preempt_disable();

J
Jiri Olsa 已提交
6637
	/*
6638 6639
	 * If we have task_ctx != NULL we only notify the task context itself.
	 * The task_ctx is set only for EXIT events before releasing task
J
Jiri Olsa 已提交
6640 6641 6642
	 * context.
	 */
	if (task_ctx) {
6643 6644
		perf_iterate_ctx(task_ctx, output, data, false);
		goto done;
J
Jiri Olsa 已提交
6645 6646
	}

6647
	perf_iterate_sb_cpu(output, data);
6648 6649

	for_each_task_context_nr(ctxn) {
6650 6651
		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		if (ctx)
6652
			perf_iterate_ctx(ctx, output, data, false);
6653
	}
6654
done:
6655
	preempt_enable();
6656
	rcu_read_unlock();
6657 6658
}

6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674
/*
 * Clear all file-based filters at exec, they'll have to be
 * re-instated when/if these objects are mmapped again.
 */
static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
{
	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
	struct perf_addr_filter *filter;
	unsigned int restart = 0, count = 0;
	unsigned long flags;

	if (!has_addr_filter(event))
		return;

	raw_spin_lock_irqsave(&ifh->lock, flags);
	list_for_each_entry(filter, &ifh->list, entry) {
S
Song Liu 已提交
6675
		if (filter->path.dentry) {
6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687
			event->addr_filters_offs[count] = 0;
			restart++;
		}

		count++;
	}

	if (restart)
		event->addr_filters_gen++;
	raw_spin_unlock_irqrestore(&ifh->lock, flags);

	if (restart)
6688
		perf_event_stop(event, 1);
6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703
}

void perf_event_exec(void)
{
	struct perf_event_context *ctx;
	int ctxn;

	rcu_read_lock();
	for_each_task_context_nr(ctxn) {
		ctx = current->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;

		perf_event_enable_on_exec(ctxn);

6704
		perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
6705 6706 6707 6708 6709
				   true);
	}
	rcu_read_unlock();
}

6710 6711 6712 6713 6714 6715 6716 6717 6718 6719
struct remote_output {
	struct ring_buffer	*rb;
	int			err;
};

static void __perf_event_output_stop(struct perf_event *event, void *data)
{
	struct perf_event *parent = event->parent;
	struct remote_output *ro = data;
	struct ring_buffer *rb = ro->rb;
6720 6721 6722
	struct stop_event_data sd = {
		.event	= event,
	};
6723 6724 6725 6726 6727 6728 6729 6730 6731

	if (!has_aux(event))
		return;

	if (!parent)
		parent = event;

	/*
	 * In case of inheritance, it will be the parent that links to the
6732 6733 6734 6735 6736 6737 6738
	 * ring-buffer, but it will be the child that's actually using it.
	 *
	 * We are using event::rb to determine if the event should be stopped,
	 * however this may race with ring_buffer_attach() (through set_output),
	 * which will make us skip the event that actually needs to be stopped.
	 * So ring_buffer_attach() has to stop an aux event before re-assigning
	 * its rb pointer.
6739 6740
	 */
	if (rcu_dereference(parent->rb) == rb)
6741
		ro->err = __perf_event_stop(&sd);
6742 6743 6744 6745 6746 6747
}

static int __perf_pmu_output_stop(void *info)
{
	struct perf_event *event = info;
	struct pmu *pmu = event->pmu;
6748
	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
6749 6750 6751 6752 6753
	struct remote_output ro = {
		.rb	= event->rb,
	};

	rcu_read_lock();
6754
	perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
6755
	if (cpuctx->task_ctx)
6756
		perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
6757
				   &ro, false);
6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790
	rcu_read_unlock();

	return ro.err;
}

static void perf_pmu_output_stop(struct perf_event *event)
{
	struct perf_event *iter;
	int err, cpu;

restart:
	rcu_read_lock();
	list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
		/*
		 * For per-CPU events, we need to make sure that neither they
		 * nor their children are running; for cpu==-1 events it's
		 * sufficient to stop the event itself if it's active, since
		 * it can't have children.
		 */
		cpu = iter->cpu;
		if (cpu == -1)
			cpu = READ_ONCE(iter->oncpu);

		if (cpu == -1)
			continue;

		err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
		if (err == -EAGAIN) {
			rcu_read_unlock();
			goto restart;
		}
	}
	rcu_read_unlock();
6791 6792
}

P
Peter Zijlstra 已提交
6793
/*
P
Peter Zijlstra 已提交
6794 6795
 * task tracking -- fork/exit
 *
6796
 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
P
Peter Zijlstra 已提交
6797 6798
 */

P
Peter Zijlstra 已提交
6799
struct perf_task_event {
6800
	struct task_struct		*task;
6801
	struct perf_event_context	*task_ctx;
P
Peter Zijlstra 已提交
6802 6803 6804 6805 6806 6807

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				ppid;
P
Peter Zijlstra 已提交
6808 6809
		u32				tid;
		u32				ptid;
6810
		u64				time;
6811
	} event_id;
P
Peter Zijlstra 已提交
6812 6813
};

6814 6815
static int perf_event_task_match(struct perf_event *event)
{
6816 6817 6818
	return event->attr.comm  || event->attr.mmap ||
	       event->attr.mmap2 || event->attr.mmap_data ||
	       event->attr.task;
6819 6820
}

6821
static void perf_event_task_output(struct perf_event *event,
6822
				   void *data)
P
Peter Zijlstra 已提交
6823
{
6824
	struct perf_task_event *task_event = data;
P
Peter Zijlstra 已提交
6825
	struct perf_output_handle handle;
6826
	struct perf_sample_data	sample;
P
Peter Zijlstra 已提交
6827
	struct task_struct *task = task_event->task;
6828
	int ret, size = task_event->event_id.header.size;
6829

6830 6831 6832
	if (!perf_event_task_match(event))
		return;

6833
	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
P
Peter Zijlstra 已提交
6834

6835
	ret = perf_output_begin(&handle, event,
6836
				task_event->event_id.header.size);
6837
	if (ret)
6838
		goto out;
P
Peter Zijlstra 已提交
6839

6840 6841
	task_event->event_id.pid = perf_event_pid(event, task);
	task_event->event_id.ppid = perf_event_pid(event, current);
P
Peter Zijlstra 已提交
6842

6843 6844
	task_event->event_id.tid = perf_event_tid(event, task);
	task_event->event_id.ptid = perf_event_tid(event, current);
P
Peter Zijlstra 已提交
6845

6846 6847
	task_event->event_id.time = perf_event_clock(event);

6848
	perf_output_put(&handle, task_event->event_id);
6849

6850 6851
	perf_event__output_id_sample(event, &handle, &sample);

P
Peter Zijlstra 已提交
6852
	perf_output_end(&handle);
6853 6854
out:
	task_event->event_id.header.size = size;
P
Peter Zijlstra 已提交
6855 6856
}

6857 6858
static void perf_event_task(struct task_struct *task,
			      struct perf_event_context *task_ctx,
6859
			      int new)
P
Peter Zijlstra 已提交
6860
{
P
Peter Zijlstra 已提交
6861
	struct perf_task_event task_event;
P
Peter Zijlstra 已提交
6862

6863 6864 6865
	if (!atomic_read(&nr_comm_events) &&
	    !atomic_read(&nr_mmap_events) &&
	    !atomic_read(&nr_task_events))
P
Peter Zijlstra 已提交
6866 6867
		return;

P
Peter Zijlstra 已提交
6868
	task_event = (struct perf_task_event){
6869 6870
		.task	  = task,
		.task_ctx = task_ctx,
6871
		.event_id    = {
P
Peter Zijlstra 已提交
6872
			.header = {
6873
				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
6874
				.misc = 0,
6875
				.size = sizeof(task_event.event_id),
P
Peter Zijlstra 已提交
6876
			},
6877 6878
			/* .pid  */
			/* .ppid */
P
Peter Zijlstra 已提交
6879 6880
			/* .tid  */
			/* .ptid */
6881
			/* .time */
P
Peter Zijlstra 已提交
6882 6883 6884
		},
	};

6885
	perf_iterate_sb(perf_event_task_output,
6886 6887
		       &task_event,
		       task_ctx);
P
Peter Zijlstra 已提交
6888 6889
}

6890
void perf_event_fork(struct task_struct *task)
P
Peter Zijlstra 已提交
6891
{
6892
	perf_event_task(task, NULL, 1);
6893
	perf_event_namespaces(task);
P
Peter Zijlstra 已提交
6894 6895
}

6896 6897 6898 6899 6900
/*
 * comm tracking
 */

struct perf_comm_event {
6901 6902
	struct task_struct	*task;
	char			*comm;
6903 6904 6905 6906 6907 6908 6909
	int			comm_size;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
6910
	} event_id;
6911 6912
};

6913 6914 6915 6916 6917
static int perf_event_comm_match(struct perf_event *event)
{
	return event->attr.comm;
}

6918
static void perf_event_comm_output(struct perf_event *event,
6919
				   void *data)
6920
{
6921
	struct perf_comm_event *comm_event = data;
6922
	struct perf_output_handle handle;
6923
	struct perf_sample_data sample;
6924
	int size = comm_event->event_id.header.size;
6925 6926
	int ret;

6927 6928 6929
	if (!perf_event_comm_match(event))
		return;

6930 6931
	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
6932
				comm_event->event_id.header.size);
6933 6934

	if (ret)
6935
		goto out;
6936

6937 6938
	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
6939

6940
	perf_output_put(&handle, comm_event->event_id);
6941
	__output_copy(&handle, comm_event->comm,
6942
				   comm_event->comm_size);
6943 6944 6945

	perf_event__output_id_sample(event, &handle, &sample);

6946
	perf_output_end(&handle);
6947 6948
out:
	comm_event->event_id.header.size = size;
6949 6950
}

6951
static void perf_event_comm_event(struct perf_comm_event *comm_event)
6952
{
6953
	char comm[TASK_COMM_LEN];
6954 6955
	unsigned int size;

6956
	memset(comm, 0, sizeof(comm));
6957
	strlcpy(comm, comm_event->task->comm, sizeof(comm));
6958
	size = ALIGN(strlen(comm)+1, sizeof(u64));
6959 6960 6961 6962

	comm_event->comm = comm;
	comm_event->comm_size = size;

6963
	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
P
Peter Zijlstra 已提交
6964

6965
	perf_iterate_sb(perf_event_comm_output,
6966 6967
		       comm_event,
		       NULL);
6968 6969
}

6970
void perf_event_comm(struct task_struct *task, bool exec)
6971
{
6972 6973
	struct perf_comm_event comm_event;

6974
	if (!atomic_read(&nr_comm_events))
6975
		return;
6976

6977
	comm_event = (struct perf_comm_event){
6978
		.task	= task,
6979 6980
		/* .comm      */
		/* .comm_size */
6981
		.event_id  = {
6982
			.header = {
6983
				.type = PERF_RECORD_COMM,
6984
				.misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
6985 6986 6987 6988
				/* .size */
			},
			/* .pid */
			/* .tid */
6989 6990 6991
		},
	};

6992
	perf_event_comm_event(&comm_event);
6993 6994
}

6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022
/*
 * namespaces tracking
 */

struct perf_namespaces_event {
	struct task_struct		*task;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
		u64				nr_namespaces;
		struct perf_ns_link_info	link_info[NR_NAMESPACES];
	} event_id;
};

static int perf_event_namespaces_match(struct perf_event *event)
{
	return event->attr.namespaces;
}

static void perf_event_namespaces_output(struct perf_event *event,
					 void *data)
{
	struct perf_namespaces_event *namespaces_event = data;
	struct perf_output_handle handle;
	struct perf_sample_data sample;
7023
	u16 header_size = namespaces_event->event_id.header.size;
7024 7025 7026 7027 7028 7029 7030 7031 7032 7033
	int ret;

	if (!perf_event_namespaces_match(event))
		return;

	perf_event_header__init_id(&namespaces_event->event_id.header,
				   &sample, event);
	ret = perf_output_begin(&handle, event,
				namespaces_event->event_id.header.size);
	if (ret)
7034
		goto out;
7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045

	namespaces_event->event_id.pid = perf_event_pid(event,
							namespaces_event->task);
	namespaces_event->event_id.tid = perf_event_tid(event,
							namespaces_event->task);

	perf_output_put(&handle, namespaces_event->event_id);

	perf_event__output_id_sample(event, &handle, &sample);

	perf_output_end(&handle);
7046 7047
out:
	namespaces_event->event_id.header.size = header_size;
7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062
}

static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
				   struct task_struct *task,
				   const struct proc_ns_operations *ns_ops)
{
	struct path ns_path;
	struct inode *ns_inode;
	void *error;

	error = ns_get_path(&ns_path, task, ns_ops);
	if (!error) {
		ns_inode = ns_path.dentry->d_inode;
		ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
		ns_link_info->ino = ns_inode->i_ino;
7063
		path_put(&ns_path);
7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124
	}
}

void perf_event_namespaces(struct task_struct *task)
{
	struct perf_namespaces_event namespaces_event;
	struct perf_ns_link_info *ns_link_info;

	if (!atomic_read(&nr_namespaces_events))
		return;

	namespaces_event = (struct perf_namespaces_event){
		.task	= task,
		.event_id  = {
			.header = {
				.type = PERF_RECORD_NAMESPACES,
				.misc = 0,
				.size = sizeof(namespaces_event.event_id),
			},
			/* .pid */
			/* .tid */
			.nr_namespaces = NR_NAMESPACES,
			/* .link_info[NR_NAMESPACES] */
		},
	};

	ns_link_info = namespaces_event.event_id.link_info;

	perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
			       task, &mntns_operations);

#ifdef CONFIG_USER_NS
	perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
			       task, &userns_operations);
#endif
#ifdef CONFIG_NET_NS
	perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
			       task, &netns_operations);
#endif
#ifdef CONFIG_UTS_NS
	perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
			       task, &utsns_operations);
#endif
#ifdef CONFIG_IPC_NS
	perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
			       task, &ipcns_operations);
#endif
#ifdef CONFIG_PID_NS
	perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
			       task, &pidns_operations);
#endif
#ifdef CONFIG_CGROUPS
	perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
			       task, &cgroupns_operations);
#endif

	perf_iterate_sb(perf_event_namespaces_output,
			&namespaces_event,
			NULL);
}

7125 7126 7127 7128 7129
/*
 * mmap tracking
 */

struct perf_mmap_event {
7130 7131 7132 7133
	struct vm_area_struct	*vma;

	const char		*file_name;
	int			file_size;
7134 7135 7136
	int			maj, min;
	u64			ino;
	u64			ino_generation;
7137
	u32			prot, flags;
7138 7139 7140 7141 7142 7143 7144 7145 7146

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
		u64				start;
		u64				len;
		u64				pgoff;
7147
	} event_id;
7148 7149
};

7150 7151 7152 7153 7154 7155 7156 7157
static int perf_event_mmap_match(struct perf_event *event,
				 void *data)
{
	struct perf_mmap_event *mmap_event = data;
	struct vm_area_struct *vma = mmap_event->vma;
	int executable = vma->vm_flags & VM_EXEC;

	return (!executable && event->attr.mmap_data) ||
7158
	       (executable && (event->attr.mmap || event->attr.mmap2));
7159 7160
}

7161
static void perf_event_mmap_output(struct perf_event *event,
7162
				   void *data)
7163
{
7164
	struct perf_mmap_event *mmap_event = data;
7165
	struct perf_output_handle handle;
7166
	struct perf_sample_data sample;
7167
	int size = mmap_event->event_id.header.size;
7168
	int ret;
7169

7170 7171 7172
	if (!perf_event_mmap_match(event, data))
		return;

7173 7174 7175 7176 7177
	if (event->attr.mmap2) {
		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
		mmap_event->event_id.header.size += sizeof(mmap_event->min);
		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
7178
		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
7179 7180
		mmap_event->event_id.header.size += sizeof(mmap_event->prot);
		mmap_event->event_id.header.size += sizeof(mmap_event->flags);
7181 7182
	}

7183 7184
	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
7185
				mmap_event->event_id.header.size);
7186
	if (ret)
7187
		goto out;
7188

7189 7190
	mmap_event->event_id.pid = perf_event_pid(event, current);
	mmap_event->event_id.tid = perf_event_tid(event, current);
7191

7192
	perf_output_put(&handle, mmap_event->event_id);
7193 7194 7195 7196 7197 7198

	if (event->attr.mmap2) {
		perf_output_put(&handle, mmap_event->maj);
		perf_output_put(&handle, mmap_event->min);
		perf_output_put(&handle, mmap_event->ino);
		perf_output_put(&handle, mmap_event->ino_generation);
7199 7200
		perf_output_put(&handle, mmap_event->prot);
		perf_output_put(&handle, mmap_event->flags);
7201 7202
	}

7203
	__output_copy(&handle, mmap_event->file_name,
7204
				   mmap_event->file_size);
7205 7206 7207

	perf_event__output_id_sample(event, &handle, &sample);

7208
	perf_output_end(&handle);
7209 7210
out:
	mmap_event->event_id.header.size = size;
7211 7212
}

7213
static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
7214
{
7215 7216
	struct vm_area_struct *vma = mmap_event->vma;
	struct file *file = vma->vm_file;
7217 7218
	int maj = 0, min = 0;
	u64 ino = 0, gen = 0;
7219
	u32 prot = 0, flags = 0;
7220 7221 7222
	unsigned int size;
	char tmp[16];
	char *buf = NULL;
7223
	char *name;
7224

7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245
	if (vma->vm_flags & VM_READ)
		prot |= PROT_READ;
	if (vma->vm_flags & VM_WRITE)
		prot |= PROT_WRITE;
	if (vma->vm_flags & VM_EXEC)
		prot |= PROT_EXEC;

	if (vma->vm_flags & VM_MAYSHARE)
		flags = MAP_SHARED;
	else
		flags = MAP_PRIVATE;

	if (vma->vm_flags & VM_DENYWRITE)
		flags |= MAP_DENYWRITE;
	if (vma->vm_flags & VM_MAYEXEC)
		flags |= MAP_EXECUTABLE;
	if (vma->vm_flags & VM_LOCKED)
		flags |= MAP_LOCKED;
	if (vma->vm_flags & VM_HUGETLB)
		flags |= MAP_HUGETLB;

7246
	if (file) {
7247 7248
		struct inode *inode;
		dev_t dev;
7249

7250
		buf = kmalloc(PATH_MAX, GFP_KERNEL);
7251
		if (!buf) {
7252 7253
			name = "//enomem";
			goto cpy_name;
7254
		}
7255
		/*
7256
		 * d_path() works from the end of the rb backwards, so we
7257 7258 7259
		 * need to add enough zero bytes after the string to handle
		 * the 64bit alignment we do later.
		 */
M
Miklos Szeredi 已提交
7260
		name = file_path(file, buf, PATH_MAX - sizeof(u64));
7261
		if (IS_ERR(name)) {
7262 7263
			name = "//toolong";
			goto cpy_name;
7264
		}
7265 7266 7267 7268 7269 7270
		inode = file_inode(vma->vm_file);
		dev = inode->i_sb->s_dev;
		ino = inode->i_ino;
		gen = inode->i_generation;
		maj = MAJOR(dev);
		min = MINOR(dev);
7271

7272
		goto got_name;
7273
	} else {
7274 7275 7276 7277 7278 7279
		if (vma->vm_ops && vma->vm_ops->name) {
			name = (char *) vma->vm_ops->name(vma);
			if (name)
				goto cpy_name;
		}

7280
		name = (char *)arch_vma_name(vma);
7281 7282
		if (name)
			goto cpy_name;
7283

7284
		if (vma->vm_start <= vma->vm_mm->start_brk &&
7285
				vma->vm_end >= vma->vm_mm->brk) {
7286 7287
			name = "[heap]";
			goto cpy_name;
7288 7289
		}
		if (vma->vm_start <= vma->vm_mm->start_stack &&
7290
				vma->vm_end >= vma->vm_mm->start_stack) {
7291 7292
			name = "[stack]";
			goto cpy_name;
7293 7294
		}

7295 7296
		name = "//anon";
		goto cpy_name;
7297 7298
	}

7299 7300 7301
cpy_name:
	strlcpy(tmp, name, sizeof(tmp));
	name = tmp;
7302
got_name:
7303 7304 7305 7306 7307 7308 7309 7310
	/*
	 * Since our buffer works in 8 byte units we need to align our string
	 * size to a multiple of 8. However, we must guarantee the tail end is
	 * zero'd out to avoid leaking random bits to userspace.
	 */
	size = strlen(name)+1;
	while (!IS_ALIGNED(size, sizeof(u64)))
		name[size++] = '\0';
7311 7312 7313

	mmap_event->file_name = name;
	mmap_event->file_size = size;
7314 7315 7316 7317
	mmap_event->maj = maj;
	mmap_event->min = min;
	mmap_event->ino = ino;
	mmap_event->ino_generation = gen;
7318 7319
	mmap_event->prot = prot;
	mmap_event->flags = flags;
7320

7321 7322 7323
	if (!(vma->vm_flags & VM_EXEC))
		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;

7324
	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
7325

7326
	perf_iterate_sb(perf_event_mmap_output,
7327 7328
		       mmap_event,
		       NULL);
7329

7330 7331 7332
	kfree(buf);
}

7333 7334 7335 7336 7337 7338 7339
/*
 * Check whether inode and address range match filter criteria.
 */
static bool perf_addr_filter_match(struct perf_addr_filter *filter,
				     struct file *file, unsigned long offset,
				     unsigned long size)
{
7340 7341 7342 7343
	/* d_inode(NULL) won't be equal to any mapped user-space file */
	if (!filter->path.dentry)
		return false;

S
Song Liu 已提交
7344
	if (d_inode(filter->path.dentry) != file_inode(file))
7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386
		return false;

	if (filter->offset > offset + size)
		return false;

	if (filter->offset + filter->size < offset)
		return false;

	return true;
}

static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
{
	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
	struct vm_area_struct *vma = data;
	unsigned long off = vma->vm_pgoff << PAGE_SHIFT, flags;
	struct file *file = vma->vm_file;
	struct perf_addr_filter *filter;
	unsigned int restart = 0, count = 0;

	if (!has_addr_filter(event))
		return;

	if (!file)
		return;

	raw_spin_lock_irqsave(&ifh->lock, flags);
	list_for_each_entry(filter, &ifh->list, entry) {
		if (perf_addr_filter_match(filter, file, off,
					     vma->vm_end - vma->vm_start)) {
			event->addr_filters_offs[count] = vma->vm_start;
			restart++;
		}

		count++;
	}

	if (restart)
		event->addr_filters_gen++;
	raw_spin_unlock_irqrestore(&ifh->lock, flags);

	if (restart)
7387
		perf_event_stop(event, 1);
7388 7389 7390 7391 7392 7393 7394 7395 7396 7397
}

/*
 * Adjust all task's events' filters to the new vma
 */
static void perf_addr_filters_adjust(struct vm_area_struct *vma)
{
	struct perf_event_context *ctx;
	int ctxn;

7398 7399 7400 7401 7402 7403 7404
	/*
	 * Data tracing isn't supported yet and as such there is no need
	 * to keep track of anything that isn't related to executable code:
	 */
	if (!(vma->vm_flags & VM_EXEC))
		return;

7405 7406 7407 7408 7409 7410
	rcu_read_lock();
	for_each_task_context_nr(ctxn) {
		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		if (!ctx)
			continue;

7411
		perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
7412 7413 7414 7415
	}
	rcu_read_unlock();
}

7416
void perf_event_mmap(struct vm_area_struct *vma)
7417
{
7418 7419
	struct perf_mmap_event mmap_event;

7420
	if (!atomic_read(&nr_mmap_events))
7421 7422 7423
		return;

	mmap_event = (struct perf_mmap_event){
7424
		.vma	= vma,
7425 7426
		/* .file_name */
		/* .file_size */
7427
		.event_id  = {
7428
			.header = {
7429
				.type = PERF_RECORD_MMAP,
7430
				.misc = PERF_RECORD_MISC_USER,
7431 7432 7433 7434
				/* .size */
			},
			/* .pid */
			/* .tid */
7435 7436
			.start  = vma->vm_start,
			.len    = vma->vm_end - vma->vm_start,
7437
			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
7438
		},
7439 7440 7441 7442
		/* .maj (attr_mmap2 only) */
		/* .min (attr_mmap2 only) */
		/* .ino (attr_mmap2 only) */
		/* .ino_generation (attr_mmap2 only) */
7443 7444
		/* .prot (attr_mmap2 only) */
		/* .flags (attr_mmap2 only) */
7445 7446
	};

7447
	perf_addr_filters_adjust(vma);
7448
	perf_event_mmap_event(&mmap_event);
7449 7450
}

A
Alexander Shishkin 已提交
7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484
void perf_event_aux_event(struct perf_event *event, unsigned long head,
			  unsigned long size, u64 flags)
{
	struct perf_output_handle handle;
	struct perf_sample_data sample;
	struct perf_aux_event {
		struct perf_event_header	header;
		u64				offset;
		u64				size;
		u64				flags;
	} rec = {
		.header = {
			.type = PERF_RECORD_AUX,
			.misc = 0,
			.size = sizeof(rec),
		},
		.offset		= head,
		.size		= size,
		.flags		= flags,
	};
	int ret;

	perf_event_header__init_id(&rec.header, &sample, event);
	ret = perf_output_begin(&handle, event, rec.header.size);

	if (ret)
		return;

	perf_output_put(&handle, rec);
	perf_event__output_id_sample(event, &handle, &sample);

	perf_output_end(&handle);
}

7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517
/*
 * Lost/dropped samples logging
 */
void perf_log_lost_samples(struct perf_event *event, u64 lost)
{
	struct perf_output_handle handle;
	struct perf_sample_data sample;
	int ret;

	struct {
		struct perf_event_header	header;
		u64				lost;
	} lost_samples_event = {
		.header = {
			.type = PERF_RECORD_LOST_SAMPLES,
			.misc = 0,
			.size = sizeof(lost_samples_event),
		},
		.lost		= lost,
	};

	perf_event_header__init_id(&lost_samples_event.header, &sample, event);

	ret = perf_output_begin(&handle, event,
				lost_samples_event.header.size);
	if (ret)
		return;

	perf_output_put(&handle, lost_samples_event);
	perf_event__output_id_sample(event, &handle, &sample);
	perf_output_end(&handle);
}

7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597
/*
 * context_switch tracking
 */

struct perf_switch_event {
	struct task_struct	*task;
	struct task_struct	*next_prev;

	struct {
		struct perf_event_header	header;
		u32				next_prev_pid;
		u32				next_prev_tid;
	} event_id;
};

static int perf_event_switch_match(struct perf_event *event)
{
	return event->attr.context_switch;
}

static void perf_event_switch_output(struct perf_event *event, void *data)
{
	struct perf_switch_event *se = data;
	struct perf_output_handle handle;
	struct perf_sample_data sample;
	int ret;

	if (!perf_event_switch_match(event))
		return;

	/* Only CPU-wide events are allowed to see next/prev pid/tid */
	if (event->ctx->task) {
		se->event_id.header.type = PERF_RECORD_SWITCH;
		se->event_id.header.size = sizeof(se->event_id.header);
	} else {
		se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
		se->event_id.header.size = sizeof(se->event_id);
		se->event_id.next_prev_pid =
					perf_event_pid(event, se->next_prev);
		se->event_id.next_prev_tid =
					perf_event_tid(event, se->next_prev);
	}

	perf_event_header__init_id(&se->event_id.header, &sample, event);

	ret = perf_output_begin(&handle, event, se->event_id.header.size);
	if (ret)
		return;

	if (event->ctx->task)
		perf_output_put(&handle, se->event_id.header);
	else
		perf_output_put(&handle, se->event_id);

	perf_event__output_id_sample(event, &handle, &sample);

	perf_output_end(&handle);
}

static void perf_event_switch(struct task_struct *task,
			      struct task_struct *next_prev, bool sched_in)
{
	struct perf_switch_event switch_event;

	/* N.B. caller checks nr_switch_events != 0 */

	switch_event = (struct perf_switch_event){
		.task		= task,
		.next_prev	= next_prev,
		.event_id	= {
			.header = {
				/* .type */
				.misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
				/* .size */
			},
			/* .next_prev_pid */
			/* .next_prev_tid */
		},
	};

7598 7599 7600 7601
	if (!sched_in && task->state == TASK_RUNNING)
		switch_event.event_id.header.misc |=
				PERF_RECORD_MISC_SWITCH_OUT_PREEMPT;

7602
	perf_iterate_sb(perf_event_switch_output,
7603 7604 7605 7606
		       &switch_event,
		       NULL);
}

7607 7608 7609 7610
/*
 * IRQ throttle logging
 */

7611
static void perf_log_throttle(struct perf_event *event, int enable)
7612 7613
{
	struct perf_output_handle handle;
7614
	struct perf_sample_data sample;
7615 7616 7617 7618 7619
	int ret;

	struct {
		struct perf_event_header	header;
		u64				time;
7620
		u64				id;
7621
		u64				stream_id;
7622 7623
	} throttle_event = {
		.header = {
7624
			.type = PERF_RECORD_THROTTLE,
7625 7626 7627
			.misc = 0,
			.size = sizeof(throttle_event),
		},
7628
		.time		= perf_event_clock(event),
7629 7630
		.id		= primary_event_id(event),
		.stream_id	= event->id,
7631 7632
	};

7633
	if (enable)
7634
		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
7635

7636 7637 7638
	perf_event_header__init_id(&throttle_event.header, &sample, event);

	ret = perf_output_begin(&handle, event,
7639
				throttle_event.header.size);
7640 7641 7642 7643
	if (ret)
		return;

	perf_output_put(&handle, throttle_event);
7644
	perf_event__output_id_sample(event, &handle, &sample);
7645 7646 7647
	perf_output_end(&handle);
}

7648 7649 7650 7651 7652
void perf_event_itrace_started(struct perf_event *event)
{
	event->attach_state |= PERF_ATTACH_ITRACE;
}

7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667
static void perf_log_itrace_start(struct perf_event *event)
{
	struct perf_output_handle handle;
	struct perf_sample_data sample;
	struct perf_aux_event {
		struct perf_event_header        header;
		u32				pid;
		u32				tid;
	} rec;
	int ret;

	if (event->parent)
		event = event->parent;

	if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
7668
	    event->attach_state & PERF_ATTACH_ITRACE)
7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688
		return;

	rec.header.type	= PERF_RECORD_ITRACE_START;
	rec.header.misc	= 0;
	rec.header.size	= sizeof(rec);
	rec.pid	= perf_event_pid(event, current);
	rec.tid	= perf_event_tid(event, current);

	perf_event_header__init_id(&rec.header, &sample, event);
	ret = perf_output_begin(&handle, event, rec.header.size);

	if (ret)
		return;

	perf_output_put(&handle, rec);
	perf_event__output_id_sample(event, &handle, &sample);

	perf_output_end(&handle);
}

7689 7690
static int
__perf_event_account_interrupt(struct perf_event *event, int throttle)
7691
{
7692
	struct hw_perf_event *hwc = &event->hw;
7693
	int ret = 0;
7694
	u64 seq;
7695

7696 7697 7698 7699 7700 7701 7702 7703 7704
	seq = __this_cpu_read(perf_throttled_seq);
	if (seq != hwc->interrupts_seq) {
		hwc->interrupts_seq = seq;
		hwc->interrupts = 1;
	} else {
		hwc->interrupts++;
		if (unlikely(throttle
			     && hwc->interrupts >= max_samples_per_tick)) {
			__this_cpu_inc(perf_throttled_count);
7705
			tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
P
Peter Zijlstra 已提交
7706 7707
			hwc->interrupts = MAX_INTERRUPTS;
			perf_log_throttle(event, 0);
7708 7709
			ret = 1;
		}
7710
	}
7711

7712
	if (event->attr.freq) {
P
Peter Zijlstra 已提交
7713
		u64 now = perf_clock();
7714
		s64 delta = now - hwc->freq_time_stamp;
7715

7716
		hwc->freq_time_stamp = now;
7717

7718
		if (delta > 0 && delta < 2*TICK_NSEC)
7719
			perf_adjust_period(event, delta, hwc->last_period, true);
7720 7721
	}

7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748
	return ret;
}

int perf_event_account_interrupt(struct perf_event *event)
{
	return __perf_event_account_interrupt(event, 1);
}

/*
 * Generic event overflow handling, sampling.
 */

static int __perf_event_overflow(struct perf_event *event,
				   int throttle, struct perf_sample_data *data,
				   struct pt_regs *regs)
{
	int events = atomic_read(&event->event_limit);
	int ret = 0;

	/*
	 * Non-sampling counters might still use the PMI to fold short
	 * hardware counters, ignore those.
	 */
	if (unlikely(!is_sampling_event(event)))
		return 0;

	ret = __perf_event_account_interrupt(event, throttle);
7749

7750 7751
	/*
	 * XXX event_limit might not quite work as expected on inherited
7752
	 * events
7753 7754
	 */

7755 7756
	event->pending_kill = POLL_IN;
	if (events && atomic_dec_and_test(&event->event_limit)) {
7757
		ret = 1;
7758
		event->pending_kill = POLL_HUP;
7759 7760

		perf_event_disable_inatomic(event);
7761 7762
	}

7763
	READ_ONCE(event->overflow_handler)(event, data, regs);
7764

7765
	if (*perf_event_fasync(event) && event->pending_kill) {
7766 7767
		event->pending_wakeup = 1;
		irq_work_queue(&event->pending);
P
Peter Zijlstra 已提交
7768 7769
	}

7770
	return ret;
7771 7772
}

7773
int perf_event_overflow(struct perf_event *event,
7774 7775
			  struct perf_sample_data *data,
			  struct pt_regs *regs)
7776
{
7777
	return __perf_event_overflow(event, 1, data, regs);
7778 7779
}

7780
/*
7781
 * Generic software event infrastructure
7782 7783
 */

7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794
struct swevent_htable {
	struct swevent_hlist		*swevent_hlist;
	struct mutex			hlist_mutex;
	int				hlist_refcount;

	/* Recursion avoidance in each contexts */
	int				recursion[PERF_NR_CONTEXTS];
};

static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);

7795
/*
7796 7797
 * We directly increment event->count and keep a second value in
 * event->hw.period_left to count intervals. This period event
7798 7799 7800 7801
 * is kept in the range [-sample_period, 0] so that we can use the
 * sign as trigger.
 */

7802
u64 perf_swevent_set_period(struct perf_event *event)
7803
{
7804
	struct hw_perf_event *hwc = &event->hw;
7805 7806 7807 7808 7809
	u64 period = hwc->last_period;
	u64 nr, offset;
	s64 old, val;

	hwc->last_period = hwc->sample_period;
7810 7811

again:
7812
	old = val = local64_read(&hwc->period_left);
7813 7814
	if (val < 0)
		return 0;
7815

7816 7817 7818
	nr = div64_u64(period + val, period);
	offset = nr * period;
	val -= offset;
7819
	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7820
		goto again;
7821

7822
	return nr;
7823 7824
}

7825
static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
7826
				    struct perf_sample_data *data,
7827
				    struct pt_regs *regs)
7828
{
7829
	struct hw_perf_event *hwc = &event->hw;
7830
	int throttle = 0;
7831

7832 7833
	if (!overflow)
		overflow = perf_swevent_set_period(event);
7834

7835 7836
	if (hwc->interrupts == MAX_INTERRUPTS)
		return;
7837

7838
	for (; overflow; overflow--) {
7839
		if (__perf_event_overflow(event, throttle,
7840
					    data, regs)) {
7841 7842 7843 7844 7845 7846
			/*
			 * We inhibit the overflow from happening when
			 * hwc->interrupts == MAX_INTERRUPTS.
			 */
			break;
		}
7847
		throttle = 1;
7848
	}
7849 7850
}

P
Peter Zijlstra 已提交
7851
static void perf_swevent_event(struct perf_event *event, u64 nr,
7852
			       struct perf_sample_data *data,
7853
			       struct pt_regs *regs)
7854
{
7855
	struct hw_perf_event *hwc = &event->hw;
7856

7857
	local64_add(nr, &event->count);
7858

7859 7860 7861
	if (!regs)
		return;

7862
	if (!is_sampling_event(event))
7863
		return;
7864

7865 7866 7867 7868 7869 7870
	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
		data->period = nr;
		return perf_swevent_overflow(event, 1, data, regs);
	} else
		data->period = event->hw.last_period;

7871
	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
7872
		return perf_swevent_overflow(event, 1, data, regs);
7873

7874
	if (local64_add_negative(nr, &hwc->period_left))
7875
		return;
7876

7877
	perf_swevent_overflow(event, 0, data, regs);
7878 7879
}

7880 7881 7882
static int perf_exclude_event(struct perf_event *event,
			      struct pt_regs *regs)
{
P
Peter Zijlstra 已提交
7883
	if (event->hw.state & PERF_HES_STOPPED)
7884
		return 1;
P
Peter Zijlstra 已提交
7885

7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896
	if (regs) {
		if (event->attr.exclude_user && user_mode(regs))
			return 1;

		if (event->attr.exclude_kernel && !user_mode(regs))
			return 1;
	}

	return 0;
}

7897
static int perf_swevent_match(struct perf_event *event,
P
Peter Zijlstra 已提交
7898
				enum perf_type_id type,
L
Li Zefan 已提交
7899 7900 7901
				u32 event_id,
				struct perf_sample_data *data,
				struct pt_regs *regs)
7902
{
7903
	if (event->attr.type != type)
7904
		return 0;
7905

7906
	if (event->attr.config != event_id)
7907 7908
		return 0;

7909 7910
	if (perf_exclude_event(event, regs))
		return 0;
7911 7912 7913 7914

	return 1;
}

7915 7916 7917 7918 7919 7920 7921
static inline u64 swevent_hash(u64 type, u32 event_id)
{
	u64 val = event_id | (type << 32);

	return hash_64(val, SWEVENT_HLIST_BITS);
}

7922 7923
static inline struct hlist_head *
__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
7924
{
7925 7926 7927 7928
	u64 hash = swevent_hash(type, event_id);

	return &hlist->heads[hash];
}
7929

7930 7931
/* For the read side: events when they trigger */
static inline struct hlist_head *
7932
find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
7933 7934
{
	struct swevent_hlist *hlist;
7935

7936
	hlist = rcu_dereference(swhash->swevent_hlist);
7937 7938 7939
	if (!hlist)
		return NULL;

7940 7941 7942 7943 7944
	return __find_swevent_head(hlist, type, event_id);
}

/* For the event head insertion and removal in the hlist */
static inline struct hlist_head *
7945
find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
7946 7947 7948 7949 7950 7951 7952 7953 7954 7955
{
	struct swevent_hlist *hlist;
	u32 event_id = event->attr.config;
	u64 type = event->attr.type;

	/*
	 * Event scheduling is always serialized against hlist allocation
	 * and release. Which makes the protected version suitable here.
	 * The context lock guarantees that.
	 */
7956
	hlist = rcu_dereference_protected(swhash->swevent_hlist,
7957 7958 7959 7960 7961
					  lockdep_is_held(&event->ctx->lock));
	if (!hlist)
		return NULL;

	return __find_swevent_head(hlist, type, event_id);
7962 7963 7964
}

static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
7965
				    u64 nr,
7966 7967
				    struct perf_sample_data *data,
				    struct pt_regs *regs)
7968
{
7969
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7970
	struct perf_event *event;
7971
	struct hlist_head *head;
7972

7973
	rcu_read_lock();
7974
	head = find_swevent_head_rcu(swhash, type, event_id);
7975 7976 7977
	if (!head)
		goto end;

7978
	hlist_for_each_entry_rcu(event, head, hlist_entry) {
L
Li Zefan 已提交
7979
		if (perf_swevent_match(event, type, event_id, data, regs))
7980
			perf_swevent_event(event, nr, data, regs);
7981
	}
7982 7983
end:
	rcu_read_unlock();
7984 7985
}

7986 7987
DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);

7988
int perf_swevent_get_recursion_context(void)
P
Peter Zijlstra 已提交
7989
{
7990
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
P
Peter Zijlstra 已提交
7991

7992
	return get_recursion_context(swhash->recursion);
P
Peter Zijlstra 已提交
7993
}
I
Ingo Molnar 已提交
7994
EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
P
Peter Zijlstra 已提交
7995

7996
void perf_swevent_put_recursion_context(int rctx)
7997
{
7998
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7999

8000
	put_recursion_context(swhash->recursion, rctx);
8001
}
8002

8003
void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
8004
{
8005
	struct perf_sample_data data;
8006

8007
	if (WARN_ON_ONCE(!regs))
8008
		return;
8009

8010
	perf_sample_data_init(&data, addr, 0);
8011
	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023
}

void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
{
	int rctx;

	preempt_disable_notrace();
	rctx = perf_swevent_get_recursion_context();
	if (unlikely(rctx < 0))
		goto fail;

	___perf_sw_event(event_id, nr, regs, addr);
8024 8025

	perf_swevent_put_recursion_context(rctx);
8026
fail:
8027
	preempt_enable_notrace();
8028 8029
}

8030
static void perf_swevent_read(struct perf_event *event)
8031 8032 8033
{
}

P
Peter Zijlstra 已提交
8034
static int perf_swevent_add(struct perf_event *event, int flags)
8035
{
8036
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
8037
	struct hw_perf_event *hwc = &event->hw;
8038 8039
	struct hlist_head *head;

8040
	if (is_sampling_event(event)) {
8041
		hwc->last_period = hwc->sample_period;
8042
		perf_swevent_set_period(event);
8043
	}
8044

P
Peter Zijlstra 已提交
8045 8046
	hwc->state = !(flags & PERF_EF_START);

8047
	head = find_swevent_head(swhash, event);
P
Peter Zijlstra 已提交
8048
	if (WARN_ON_ONCE(!head))
8049 8050 8051
		return -EINVAL;

	hlist_add_head_rcu(&event->hlist_entry, head);
8052
	perf_event_update_userpage(event);
8053

8054 8055 8056
	return 0;
}

P
Peter Zijlstra 已提交
8057
static void perf_swevent_del(struct perf_event *event, int flags)
8058
{
8059
	hlist_del_rcu(&event->hlist_entry);
8060 8061
}

P
Peter Zijlstra 已提交
8062
static void perf_swevent_start(struct perf_event *event, int flags)
8063
{
P
Peter Zijlstra 已提交
8064
	event->hw.state = 0;
8065
}
I
Ingo Molnar 已提交
8066

P
Peter Zijlstra 已提交
8067
static void perf_swevent_stop(struct perf_event *event, int flags)
8068
{
P
Peter Zijlstra 已提交
8069
	event->hw.state = PERF_HES_STOPPED;
8070 8071
}

8072 8073
/* Deref the hlist from the update side */
static inline struct swevent_hlist *
8074
swevent_hlist_deref(struct swevent_htable *swhash)
8075
{
8076 8077
	return rcu_dereference_protected(swhash->swevent_hlist,
					 lockdep_is_held(&swhash->hlist_mutex));
8078 8079
}

8080
static void swevent_hlist_release(struct swevent_htable *swhash)
8081
{
8082
	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
8083

8084
	if (!hlist)
8085 8086
		return;

8087
	RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
8088
	kfree_rcu(hlist, rcu_head);
8089 8090
}

8091
static void swevent_hlist_put_cpu(int cpu)
8092
{
8093
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
8094

8095
	mutex_lock(&swhash->hlist_mutex);
8096

8097 8098
	if (!--swhash->hlist_refcount)
		swevent_hlist_release(swhash);
8099

8100
	mutex_unlock(&swhash->hlist_mutex);
8101 8102
}

8103
static void swevent_hlist_put(void)
8104 8105 8106 8107
{
	int cpu;

	for_each_possible_cpu(cpu)
8108
		swevent_hlist_put_cpu(cpu);
8109 8110
}

8111
static int swevent_hlist_get_cpu(int cpu)
8112
{
8113
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
8114 8115
	int err = 0;

8116
	mutex_lock(&swhash->hlist_mutex);
8117 8118
	if (!swevent_hlist_deref(swhash) &&
	    cpumask_test_cpu(cpu, perf_online_mask)) {
8119 8120 8121 8122 8123 8124 8125
		struct swevent_hlist *hlist;

		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
		if (!hlist) {
			err = -ENOMEM;
			goto exit;
		}
8126
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
8127
	}
8128
	swhash->hlist_refcount++;
P
Peter Zijlstra 已提交
8129
exit:
8130
	mutex_unlock(&swhash->hlist_mutex);
8131 8132 8133 8134

	return err;
}

8135
static int swevent_hlist_get(void)
8136
{
8137
	int err, cpu, failed_cpu;
8138

8139
	mutex_lock(&pmus_lock);
8140
	for_each_possible_cpu(cpu) {
8141
		err = swevent_hlist_get_cpu(cpu);
8142 8143 8144 8145 8146
		if (err) {
			failed_cpu = cpu;
			goto fail;
		}
	}
8147
	mutex_unlock(&pmus_lock);
8148
	return 0;
P
Peter Zijlstra 已提交
8149
fail:
8150 8151 8152
	for_each_possible_cpu(cpu) {
		if (cpu == failed_cpu)
			break;
8153
		swevent_hlist_put_cpu(cpu);
8154
	}
8155
	mutex_unlock(&pmus_lock);
8156 8157 8158
	return err;
}

8159
struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
8160

8161 8162 8163
static void sw_perf_event_destroy(struct perf_event *event)
{
	u64 event_id = event->attr.config;
8164

8165 8166
	WARN_ON(event->parent);

8167
	static_key_slow_dec(&perf_swevent_enabled[event_id]);
8168
	swevent_hlist_put();
8169 8170 8171 8172
}

static int perf_swevent_init(struct perf_event *event)
{
8173
	u64 event_id = event->attr.config;
8174 8175 8176 8177

	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

8178 8179 8180 8181 8182 8183
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

8184 8185 8186 8187 8188 8189 8190 8191 8192
	switch (event_id) {
	case PERF_COUNT_SW_CPU_CLOCK:
	case PERF_COUNT_SW_TASK_CLOCK:
		return -ENOENT;

	default:
		break;
	}

8193
	if (event_id >= PERF_COUNT_SW_MAX)
8194 8195 8196 8197 8198
		return -ENOENT;

	if (!event->parent) {
		int err;

8199
		err = swevent_hlist_get();
8200 8201 8202
		if (err)
			return err;

8203
		static_key_slow_inc(&perf_swevent_enabled[event_id]);
8204 8205 8206 8207 8208 8209 8210
		event->destroy = sw_perf_event_destroy;
	}

	return 0;
}

static struct pmu perf_swevent = {
8211
	.task_ctx_nr	= perf_sw_context,
8212

8213 8214
	.capabilities	= PERF_PMU_CAP_NO_NMI,

8215
	.event_init	= perf_swevent_init,
P
Peter Zijlstra 已提交
8216 8217 8218 8219
	.add		= perf_swevent_add,
	.del		= perf_swevent_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
8220 8221 8222
	.read		= perf_swevent_read,
};

8223 8224
#ifdef CONFIG_EVENT_TRACING

8225 8226 8227
static int perf_tp_filter_match(struct perf_event *event,
				struct perf_sample_data *data)
{
8228
	void *record = data->raw->frag.data;
8229

8230 8231 8232 8233
	/* only top level events have filters set */
	if (event->parent)
		event = event->parent;

8234 8235 8236 8237 8238 8239 8240 8241 8242
	if (likely(!event->filter) || filter_match_preds(event->filter, record))
		return 1;
	return 0;
}

static int perf_tp_event_match(struct perf_event *event,
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
8243 8244
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;
8245 8246 8247 8248
	/*
	 * All tracepoints are from kernel-space.
	 */
	if (event->attr.exclude_kernel)
8249 8250 8251 8252 8253 8254 8255 8256
		return 0;

	if (!perf_tp_filter_match(event, data))
		return 0;

	return 1;
}

8257 8258 8259 8260 8261
void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
			       struct trace_event_call *call, u64 count,
			       struct pt_regs *regs, struct hlist_head *head,
			       struct task_struct *task)
{
8262
	if (bpf_prog_array_valid(call)) {
8263
		*(struct pt_regs **)raw_data = regs;
8264
		if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
8265 8266 8267 8268 8269
			perf_swevent_put_recursion_context(rctx);
			return;
		}
	}
	perf_tp_event(call->event.type, count, raw_data, size, regs, head,
8270
		      rctx, task);
8271 8272 8273
}
EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);

8274
void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
8275
		   struct pt_regs *regs, struct hlist_head *head, int rctx,
8276
		   struct task_struct *task)
8277 8278
{
	struct perf_sample_data data;
8279
	struct perf_event *event;
8280

8281
	struct perf_raw_record raw = {
8282 8283 8284 8285
		.frag = {
			.size = entry_size,
			.data = record,
		},
8286 8287
	};

8288
	perf_sample_data_init(&data, 0, 0);
8289 8290
	data.raw = &raw;

8291 8292
	perf_trace_buf_update(record, event_type);

8293
	hlist_for_each_entry_rcu(event, head, hlist_entry) {
8294
		if (perf_tp_event_match(event, &data, regs))
8295
			perf_swevent_event(event, count, &data, regs);
8296
	}
8297

8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315 8316 8317 8318 8319 8320 8321 8322
	/*
	 * If we got specified a target task, also iterate its context and
	 * deliver this event there too.
	 */
	if (task && task != current) {
		struct perf_event_context *ctx;
		struct trace_entry *entry = record;

		rcu_read_lock();
		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
		if (!ctx)
			goto unlock;

		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
			if (event->attr.type != PERF_TYPE_TRACEPOINT)
				continue;
			if (event->attr.config != entry->type)
				continue;
			if (perf_tp_event_match(event, &data, regs))
				perf_swevent_event(event, count, &data, regs);
		}
unlock:
		rcu_read_unlock();
	}

8323
	perf_swevent_put_recursion_context(rctx);
8324 8325 8326
}
EXPORT_SYMBOL_GPL(perf_tp_event);

8327
static void tp_perf_event_destroy(struct perf_event *event)
8328
{
8329
	perf_trace_destroy(event);
8330 8331
}

8332
static int perf_tp_event_init(struct perf_event *event)
8333
{
8334 8335
	int err;

8336 8337 8338
	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -ENOENT;

8339 8340 8341 8342 8343 8344
	/*
	 * no branch sampling for tracepoint events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

8345 8346
	err = perf_trace_init(event);
	if (err)
8347
		return err;
8348

8349
	event->destroy = tp_perf_event_destroy;
8350

8351 8352 8353 8354
	return 0;
}

static struct pmu perf_tracepoint = {
8355 8356
	.task_ctx_nr	= perf_sw_context,

8357
	.event_init	= perf_tp_event_init,
P
Peter Zijlstra 已提交
8358 8359 8360 8361
	.add		= perf_trace_add,
	.del		= perf_trace_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
8362 8363 8364
	.read		= perf_swevent_read,
};

8365
#if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS)
8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386 8387 8388 8389 8390 8391 8392
/*
 * Flags in config, used by dynamic PMU kprobe and uprobe
 * The flags should match following PMU_FORMAT_ATTR().
 *
 * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe
 *                               if not set, create kprobe/uprobe
 */
enum perf_probe_config {
	PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0,  /* [k,u]retprobe */
};

PMU_FORMAT_ATTR(retprobe, "config:0");

static struct attribute *probe_attrs[] = {
	&format_attr_retprobe.attr,
	NULL,
};

static struct attribute_group probe_format_group = {
	.name = "format",
	.attrs = probe_attrs,
};

static const struct attribute_group *probe_attr_groups[] = {
	&probe_format_group,
	NULL,
};
8393
#endif
8394

8395
#ifdef CONFIG_KPROBE_EVENTS
8396 8397 8398 8399 8400 8401 8402 8403 8404 8405 8406 8407 8408 8409 8410 8411 8412 8413 8414
static int perf_kprobe_event_init(struct perf_event *event);
static struct pmu perf_kprobe = {
	.task_ctx_nr	= perf_sw_context,
	.event_init	= perf_kprobe_event_init,
	.add		= perf_trace_add,
	.del		= perf_trace_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
	.read		= perf_swevent_read,
	.attr_groups	= probe_attr_groups,
};

static int perf_kprobe_event_init(struct perf_event *event)
{
	int err;
	bool is_retprobe;

	if (event->attr.type != perf_kprobe.type)
		return -ENOENT;
8415 8416 8417 8418

	if (!capable(CAP_SYS_ADMIN))
		return -EACCES;

8419 8420 8421 8422 8423 8424 8425 8426 8427 8428 8429 8430 8431 8432 8433 8434 8435
	/*
	 * no branch sampling for probe events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

	is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
	err = perf_kprobe_init(event, is_retprobe);
	if (err)
		return err;

	event->destroy = perf_kprobe_destroy;

	return 0;
}
#endif /* CONFIG_KPROBE_EVENTS */

8436 8437 8438 8439 8440 8441 8442 8443 8444 8445 8446 8447 8448 8449 8450 8451 8452 8453 8454 8455
#ifdef CONFIG_UPROBE_EVENTS
static int perf_uprobe_event_init(struct perf_event *event);
static struct pmu perf_uprobe = {
	.task_ctx_nr	= perf_sw_context,
	.event_init	= perf_uprobe_event_init,
	.add		= perf_trace_add,
	.del		= perf_trace_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
	.read		= perf_swevent_read,
	.attr_groups	= probe_attr_groups,
};

static int perf_uprobe_event_init(struct perf_event *event)
{
	int err;
	bool is_retprobe;

	if (event->attr.type != perf_uprobe.type)
		return -ENOENT;
8456 8457 8458 8459

	if (!capable(CAP_SYS_ADMIN))
		return -EACCES;

8460 8461 8462 8463 8464 8465 8466 8467 8468 8469 8470 8471 8472 8473 8474 8475 8476
	/*
	 * no branch sampling for probe events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

	is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
	err = perf_uprobe_init(event, is_retprobe);
	if (err)
		return err;

	event->destroy = perf_uprobe_destroy;

	return 0;
}
#endif /* CONFIG_UPROBE_EVENTS */

8477 8478
static inline void perf_tp_register(void)
{
P
Peter Zijlstra 已提交
8479
	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
8480 8481 8482
#ifdef CONFIG_KPROBE_EVENTS
	perf_pmu_register(&perf_kprobe, "kprobe", -1);
#endif
8483 8484 8485
#ifdef CONFIG_UPROBE_EVENTS
	perf_pmu_register(&perf_uprobe, "uprobe", -1);
#endif
8486
}
L
Li Zefan 已提交
8487 8488 8489 8490 8491 8492

static void perf_event_free_filter(struct perf_event *event)
{
	ftrace_profile_free_filter(event);
}

8493 8494 8495 8496 8497 8498 8499
#ifdef CONFIG_BPF_SYSCALL
static void bpf_overflow_handler(struct perf_event *event,
				 struct perf_sample_data *data,
				 struct pt_regs *regs)
{
	struct bpf_perf_event_data_kern ctx = {
		.data = data,
8500
		.event = event,
8501 8502 8503
	};
	int ret = 0;

8504
	ctx.regs = perf_arch_bpf_user_pt_regs(regs);
8505 8506 8507 8508
	preempt_disable();
	if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
		goto out;
	rcu_read_lock();
8509
	ret = BPF_PROG_RUN(event->prog, &ctx);
8510 8511 8512 8513 8514 8515 8516 8517 8518 8519 8520 8521 8522 8523 8524 8525 8526 8527 8528 8529 8530 8531 8532 8533 8534 8535 8536 8537 8538 8539 8540 8541 8542 8543 8544 8545 8546 8547 8548 8549 8550 8551 8552 8553 8554 8555 8556 8557 8558 8559 8560 8561
	rcu_read_unlock();
out:
	__this_cpu_dec(bpf_prog_active);
	preempt_enable();
	if (!ret)
		return;

	event->orig_overflow_handler(event, data, regs);
}

static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
{
	struct bpf_prog *prog;

	if (event->overflow_handler_context)
		/* hw breakpoint or kernel counter */
		return -EINVAL;

	if (event->prog)
		return -EEXIST;

	prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
	if (IS_ERR(prog))
		return PTR_ERR(prog);

	event->prog = prog;
	event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
	WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
	return 0;
}

static void perf_event_free_bpf_handler(struct perf_event *event)
{
	struct bpf_prog *prog = event->prog;

	if (!prog)
		return;

	WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
	event->prog = NULL;
	bpf_prog_put(prog);
}
#else
static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
{
	return -EOPNOTSUPP;
}
static void perf_event_free_bpf_handler(struct perf_event *event)
{
}
#endif

8562 8563 8564 8565 8566 8567 8568 8569 8570 8571 8572
/*
 * returns true if the event is a tracepoint, or a kprobe/upprobe created
 * with perf_event_open()
 */
static inline bool perf_event_is_tracing(struct perf_event *event)
{
	if (event->pmu == &perf_tracepoint)
		return true;
#ifdef CONFIG_KPROBE_EVENTS
	if (event->pmu == &perf_kprobe)
		return true;
8573 8574 8575 8576
#endif
#ifdef CONFIG_UPROBE_EVENTS
	if (event->pmu == &perf_uprobe)
		return true;
8577 8578 8579 8580
#endif
	return false;
}

8581 8582
static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
{
8583
	bool is_kprobe, is_tracepoint, is_syscall_tp;
8584
	struct bpf_prog *prog;
8585
	int ret;
8586

8587
	if (!perf_event_is_tracing(event))
8588
		return perf_event_set_bpf_handler(event, prog_fd);
8589

8590 8591
	is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
	is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
8592 8593
	is_syscall_tp = is_syscall_trace_event(event->tp_event);
	if (!is_kprobe && !is_tracepoint && !is_syscall_tp)
8594
		/* bpf programs can only be attached to u/kprobe or tracepoint */
8595 8596 8597 8598 8599 8600
		return -EINVAL;

	prog = bpf_prog_get(prog_fd);
	if (IS_ERR(prog))
		return PTR_ERR(prog);

8601
	if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
8602 8603
	    (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
	    (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
8604 8605 8606 8607 8608
		/* valid fd, but invalid bpf program type */
		bpf_prog_put(prog);
		return -EINVAL;
	}

8609 8610 8611 8612 8613 8614 8615
	/* Kprobe override only works for kprobes, not uprobes. */
	if (prog->kprobe_override &&
	    !(event->tp_event->flags & TRACE_EVENT_FL_KPROBE)) {
		bpf_prog_put(prog);
		return -EINVAL;
	}

8616
	if (is_tracepoint || is_syscall_tp) {
8617 8618 8619 8620 8621 8622 8623
		int off = trace_event_get_offsets(event->tp_event);

		if (prog->aux->max_ctx_offset > off) {
			bpf_prog_put(prog);
			return -EACCES;
		}
	}
8624

8625 8626 8627 8628
	ret = perf_event_attach_bpf_prog(event, prog);
	if (ret)
		bpf_prog_put(prog);
	return ret;
8629 8630 8631 8632
}

static void perf_event_free_bpf_prog(struct perf_event *event)
{
8633
	if (!perf_event_is_tracing(event)) {
8634
		perf_event_free_bpf_handler(event);
8635 8636
		return;
	}
8637
	perf_event_detach_bpf_prog(event);
8638 8639
}

8640
#else
L
Li Zefan 已提交
8641

8642
static inline void perf_tp_register(void)
8643 8644
{
}
L
Li Zefan 已提交
8645 8646 8647 8648 8649

static void perf_event_free_filter(struct perf_event *event)
{
}

8650 8651 8652 8653 8654 8655 8656 8657
static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
{
	return -ENOENT;
}

static void perf_event_free_bpf_prog(struct perf_event *event)
{
}
8658
#endif /* CONFIG_EVENT_TRACING */
8659

8660
#ifdef CONFIG_HAVE_HW_BREAKPOINT
8661
void perf_bp_event(struct perf_event *bp, void *data)
8662
{
8663 8664 8665
	struct perf_sample_data sample;
	struct pt_regs *regs = data;

8666
	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
8667

P
Peter Zijlstra 已提交
8668
	if (!bp->hw.state && !perf_exclude_event(bp, regs))
8669
		perf_swevent_event(bp, 1, &sample, regs);
8670 8671 8672
}
#endif

8673 8674 8675 8676 8677 8678 8679 8680 8681 8682 8683 8684 8685 8686 8687 8688 8689 8690 8691 8692 8693 8694 8695 8696
/*
 * Allocate a new address filter
 */
static struct perf_addr_filter *
perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
{
	int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
	struct perf_addr_filter *filter;

	filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
	if (!filter)
		return NULL;

	INIT_LIST_HEAD(&filter->entry);
	list_add_tail(&filter->entry, filters);

	return filter;
}

static void free_filters_list(struct list_head *filters)
{
	struct perf_addr_filter *filter, *iter;

	list_for_each_entry_safe(filter, iter, filters, entry) {
S
Song Liu 已提交
8697
		path_put(&filter->path);
8698 8699 8700 8701 8702 8703 8704 8705 8706 8707 8708 8709 8710 8711 8712 8713 8714 8715 8716 8717 8718 8719 8720 8721 8722 8723 8724 8725 8726 8727 8728 8729 8730 8731 8732 8733 8734 8735 8736 8737 8738 8739 8740 8741 8742 8743 8744 8745 8746 8747 8748 8749 8750 8751 8752 8753 8754 8755 8756 8757 8758 8759 8760 8761 8762 8763 8764 8765 8766 8767 8768 8769 8770 8771 8772 8773 8774 8775 8776
		list_del(&filter->entry);
		kfree(filter);
	}
}

/*
 * Free existing address filters and optionally install new ones
 */
static void perf_addr_filters_splice(struct perf_event *event,
				     struct list_head *head)
{
	unsigned long flags;
	LIST_HEAD(list);

	if (!has_addr_filter(event))
		return;

	/* don't bother with children, they don't have their own filters */
	if (event->parent)
		return;

	raw_spin_lock_irqsave(&event->addr_filters.lock, flags);

	list_splice_init(&event->addr_filters.list, &list);
	if (head)
		list_splice(head, &event->addr_filters.list);

	raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);

	free_filters_list(&list);
}

/*
 * Scan through mm's vmas and see if one of them matches the
 * @filter; if so, adjust filter's address range.
 * Called with mm::mmap_sem down for reading.
 */
static unsigned long perf_addr_filter_apply(struct perf_addr_filter *filter,
					    struct mm_struct *mm)
{
	struct vm_area_struct *vma;

	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		struct file *file = vma->vm_file;
		unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
		unsigned long vma_size = vma->vm_end - vma->vm_start;

		if (!file)
			continue;

		if (!perf_addr_filter_match(filter, file, off, vma_size))
			continue;

		return vma->vm_start;
	}

	return 0;
}

/*
 * Update event's address range filters based on the
 * task's existing mappings, if any.
 */
static void perf_event_addr_filters_apply(struct perf_event *event)
{
	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
	struct task_struct *task = READ_ONCE(event->ctx->task);
	struct perf_addr_filter *filter;
	struct mm_struct *mm = NULL;
	unsigned int count = 0;
	unsigned long flags;

	/*
	 * We may observe TASK_TOMBSTONE, which means that the event tear-down
	 * will stop on the parent's child_mutex that our caller is also holding
	 */
	if (task == TASK_TOMBSTONE)
		return;

8777 8778 8779
	if (!ifh->nr_file_filters)
		return;

8780 8781 8782 8783 8784 8785 8786 8787 8788 8789
	mm = get_task_mm(event->ctx->task);
	if (!mm)
		goto restart;

	down_read(&mm->mmap_sem);

	raw_spin_lock_irqsave(&ifh->lock, flags);
	list_for_each_entry(filter, &ifh->list, entry) {
		event->addr_filters_offs[count] = 0;

8790 8791 8792 8793
		/*
		 * Adjust base offset if the filter is associated to a binary
		 * that needs to be mapped:
		 */
S
Song Liu 已提交
8794
		if (filter->path.dentry)
8795 8796 8797 8798 8799 8800 8801 8802 8803 8804 8805 8806 8807 8808
			event->addr_filters_offs[count] =
				perf_addr_filter_apply(filter, mm);

		count++;
	}

	event->addr_filters_gen++;
	raw_spin_unlock_irqrestore(&ifh->lock, flags);

	up_read(&mm->mmap_sem);

	mmput(mm);

restart:
8809
	perf_event_stop(event, 1);
8810 8811 8812 8813 8814 8815 8816 8817 8818 8819 8820 8821 8822 8823 8824 8825 8826 8827
}

/*
 * Address range filtering: limiting the data to certain
 * instruction address ranges. Filters are ioctl()ed to us from
 * userspace as ascii strings.
 *
 * Filter string format:
 *
 * ACTION RANGE_SPEC
 * where ACTION is one of the
 *  * "filter": limit the trace to this region
 *  * "start": start tracing from this address
 *  * "stop": stop tracing at this address/region;
 * RANGE_SPEC is
 *  * for kernel addresses: <start address>[/<size>]
 *  * for object files:     <start address>[/<size>]@</path/to/object/file>
 *
8828 8829
 * if <size> is not specified or is zero, the range is treated as a single
 * address; not valid for ACTION=="filter".
8830 8831
 */
enum {
8832
	IF_ACT_NONE = -1,
8833 8834 8835 8836 8837 8838 8839 8840 8841 8842 8843 8844 8845 8846 8847 8848 8849 8850 8851 8852 8853 8854 8855
	IF_ACT_FILTER,
	IF_ACT_START,
	IF_ACT_STOP,
	IF_SRC_FILE,
	IF_SRC_KERNEL,
	IF_SRC_FILEADDR,
	IF_SRC_KERNELADDR,
};

enum {
	IF_STATE_ACTION = 0,
	IF_STATE_SOURCE,
	IF_STATE_END,
};

static const match_table_t if_tokens = {
	{ IF_ACT_FILTER,	"filter" },
	{ IF_ACT_START,		"start" },
	{ IF_ACT_STOP,		"stop" },
	{ IF_SRC_FILE,		"%u/%u@%s" },
	{ IF_SRC_KERNEL,	"%u/%u" },
	{ IF_SRC_FILEADDR,	"%u@%s" },
	{ IF_SRC_KERNELADDR,	"%u" },
8856
	{ IF_ACT_NONE,		NULL },
8857 8858 8859 8860 8861 8862 8863 8864 8865 8866 8867 8868 8869 8870 8871 8872 8873 8874 8875 8876 8877
};

/*
 * Address filter string parser
 */
static int
perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
			     struct list_head *filters)
{
	struct perf_addr_filter *filter = NULL;
	char *start, *orig, *filename = NULL;
	substring_t args[MAX_OPT_ARGS];
	int state = IF_STATE_ACTION, token;
	unsigned int kernel = 0;
	int ret = -EINVAL;

	orig = fstr = kstrdup(fstr, GFP_KERNEL);
	if (!fstr)
		return -ENOMEM;

	while ((start = strsep(&fstr, " ,\n")) != NULL) {
8878 8879 8880 8881 8882
		static const enum perf_addr_filter_action_t actions[] = {
			[IF_ACT_FILTER]	= PERF_ADDR_FILTER_ACTION_FILTER,
			[IF_ACT_START]	= PERF_ADDR_FILTER_ACTION_START,
			[IF_ACT_STOP]	= PERF_ADDR_FILTER_ACTION_STOP,
		};
8883 8884 8885 8886 8887 8888 8889 8890 8891 8892 8893 8894 8895 8896 8897 8898 8899 8900 8901 8902
		ret = -EINVAL;

		if (!*start)
			continue;

		/* filter definition begins */
		if (state == IF_STATE_ACTION) {
			filter = perf_addr_filter_new(event, filters);
			if (!filter)
				goto fail;
		}

		token = match_token(start, if_tokens, args);
		switch (token) {
		case IF_ACT_FILTER:
		case IF_ACT_START:
		case IF_ACT_STOP:
			if (state != IF_STATE_ACTION)
				goto fail;

8903
			filter->action = actions[token];
8904 8905 8906 8907 8908 8909 8910 8911 8912 8913 8914 8915 8916 8917 8918 8919 8920
			state = IF_STATE_SOURCE;
			break;

		case IF_SRC_KERNELADDR:
		case IF_SRC_KERNEL:
			kernel = 1;

		case IF_SRC_FILEADDR:
		case IF_SRC_FILE:
			if (state != IF_STATE_SOURCE)
				goto fail;

			*args[0].to = 0;
			ret = kstrtoul(args[0].from, 0, &filter->offset);
			if (ret)
				goto fail;

8921
			if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) {
8922 8923 8924 8925 8926 8927
				*args[1].to = 0;
				ret = kstrtoul(args[1].from, 0, &filter->size);
				if (ret)
					goto fail;
			}

8928
			if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
8929
				int fpos = token == IF_SRC_FILE ? 2 : 1;
8930 8931

				filename = match_strdup(&args[fpos]);
8932 8933 8934 8935 8936 8937 8938 8939 8940 8941 8942 8943 8944 8945 8946 8947 8948 8949 8950
				if (!filename) {
					ret = -ENOMEM;
					goto fail;
				}
			}

			state = IF_STATE_END;
			break;

		default:
			goto fail;
		}

		/*
		 * Filter definition is fully parsed, validate and install it.
		 * Make sure that it doesn't contradict itself or the event's
		 * attribute.
		 */
		if (state == IF_STATE_END) {
8951
			ret = -EINVAL;
8952 8953 8954
			if (kernel && event->attr.exclude_kernel)
				goto fail;

8955 8956 8957 8958 8959 8960 8961 8962
			/*
			 * ACTION "filter" must have a non-zero length region
			 * specified.
			 */
			if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER &&
			    !filter->size)
				goto fail;

8963 8964 8965 8966
			if (!kernel) {
				if (!filename)
					goto fail;

8967 8968 8969 8970 8971 8972 8973 8974 8975 8976 8977 8978
				/*
				 * For now, we only support file-based filters
				 * in per-task events; doing so for CPU-wide
				 * events requires additional context switching
				 * trickery, since same object code will be
				 * mapped at different virtual addresses in
				 * different processes.
				 */
				ret = -EOPNOTSUPP;
				if (!event->ctx->task)
					goto fail_free_name;

8979
				/* look up the path and grab its inode */
S
Song Liu 已提交
8980 8981
				ret = kern_path(filename, LOOKUP_FOLLOW,
						&filter->path);
8982 8983 8984 8985 8986 8987 8988
				if (ret)
					goto fail_free_name;

				kfree(filename);
				filename = NULL;

				ret = -EINVAL;
S
Song Liu 已提交
8989 8990 8991
				if (!filter->path.dentry ||
				    !S_ISREG(d_inode(filter->path.dentry)
					     ->i_mode))
8992
					goto fail;
8993 8994

				event->addr_filters.nr_file_filters++;
8995 8996 8997 8998 8999 9000 9001 9002 9003 9004 9005 9006 9007 9008 9009 9010 9011 9012 9013 9014 9015 9016 9017 9018 9019 9020 9021 9022 9023 9024 9025 9026 9027 9028 9029 9030 9031 9032 9033 9034 9035
			}

			/* ready to consume more filters */
			state = IF_STATE_ACTION;
			filter = NULL;
		}
	}

	if (state != IF_STATE_ACTION)
		goto fail;

	kfree(orig);

	return 0;

fail_free_name:
	kfree(filename);
fail:
	free_filters_list(filters);
	kfree(orig);

	return ret;
}

static int
perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
{
	LIST_HEAD(filters);
	int ret;

	/*
	 * Since this is called in perf_ioctl() path, we're already holding
	 * ctx::mutex.
	 */
	lockdep_assert_held(&event->ctx->mutex);

	if (WARN_ON_ONCE(event->parent))
		return -EINVAL;

	ret = perf_event_parse_addr_filter(event, filter_str, &filters);
	if (ret)
9036
		goto fail_clear_files;
9037 9038

	ret = event->pmu->addr_filters_validate(&filters);
9039 9040
	if (ret)
		goto fail_free_filters;
9041 9042 9043 9044 9045 9046 9047

	/* remove existing filters, if any */
	perf_addr_filters_splice(event, &filters);

	/* install new filters */
	perf_event_for_each_child(event, perf_event_addr_filters_apply);

9048 9049 9050 9051 9052 9053 9054 9055
	return ret;

fail_free_filters:
	free_filters_list(&filters);

fail_clear_files:
	event->addr_filters.nr_file_filters = 0;

9056 9057 9058
	return ret;
}

9059 9060 9061
static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	int ret = -EINVAL;
9062
	char *filter_str;
9063 9064 9065 9066 9067

	filter_str = strndup_user(arg, PAGE_SIZE);
	if (IS_ERR(filter_str))
		return PTR_ERR(filter_str);

9068 9069 9070 9071 9072 9073 9074 9075 9076 9077 9078 9079 9080 9081 9082 9083 9084 9085 9086 9087 9088
#ifdef CONFIG_EVENT_TRACING
	if (perf_event_is_tracing(event)) {
		struct perf_event_context *ctx = event->ctx;

		/*
		 * Beware, here be dragons!!
		 *
		 * the tracepoint muck will deadlock against ctx->mutex, but
		 * the tracepoint stuff does not actually need it. So
		 * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we
		 * already have a reference on ctx.
		 *
		 * This can result in event getting moved to a different ctx,
		 * but that does not affect the tracepoint state.
		 */
		mutex_unlock(&ctx->mutex);
		ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
		mutex_lock(&ctx->mutex);
	} else
#endif
	if (has_addr_filter(event))
9089
		ret = perf_event_set_addr_filter(event, filter_str);
9090 9091 9092 9093 9094

	kfree(filter_str);
	return ret;
}

9095 9096 9097
/*
 * hrtimer based swevent callback
 */
9098

9099
static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
9100
{
9101 9102 9103 9104 9105
	enum hrtimer_restart ret = HRTIMER_RESTART;
	struct perf_sample_data data;
	struct pt_regs *regs;
	struct perf_event *event;
	u64 period;
9106

9107
	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
P
Peter Zijlstra 已提交
9108 9109 9110 9111

	if (event->state != PERF_EVENT_STATE_ACTIVE)
		return HRTIMER_NORESTART;

9112
	event->pmu->read(event);
9113

9114
	perf_sample_data_init(&data, 0, event->hw.last_period);
9115 9116 9117
	regs = get_irq_regs();

	if (regs && !perf_exclude_event(event, regs)) {
9118
		if (!(event->attr.exclude_idle && is_idle_task(current)))
9119
			if (__perf_event_overflow(event, 1, &data, regs))
9120 9121
				ret = HRTIMER_NORESTART;
	}
9122

9123 9124
	period = max_t(u64, 10000, event->hw.sample_period);
	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
9125

9126
	return ret;
9127 9128
}

9129
static void perf_swevent_start_hrtimer(struct perf_event *event)
9130
{
9131
	struct hw_perf_event *hwc = &event->hw;
9132 9133 9134 9135
	s64 period;

	if (!is_sampling_event(event))
		return;
9136

9137 9138 9139 9140
	period = local64_read(&hwc->period_left);
	if (period) {
		if (period < 0)
			period = 10000;
P
Peter Zijlstra 已提交
9141

9142 9143 9144 9145
		local64_set(&hwc->period_left, 0);
	} else {
		period = max_t(u64, 10000, hwc->sample_period);
	}
9146 9147
	hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
		      HRTIMER_MODE_REL_PINNED);
9148
}
9149 9150

static void perf_swevent_cancel_hrtimer(struct perf_event *event)
9151
{
9152 9153
	struct hw_perf_event *hwc = &event->hw;

9154
	if (is_sampling_event(event)) {
9155
		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
P
Peter Zijlstra 已提交
9156
		local64_set(&hwc->period_left, ktime_to_ns(remaining));
9157 9158 9159

		hrtimer_cancel(&hwc->hrtimer);
	}
9160 9161
}

P
Peter Zijlstra 已提交
9162 9163 9164 9165 9166 9167 9168 9169 9170 9171 9172 9173 9174 9175 9176 9177 9178 9179 9180 9181
static void perf_swevent_init_hrtimer(struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;

	if (!is_sampling_event(event))
		return;

	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swevent_hrtimer;

	/*
	 * Since hrtimers have a fixed rate, we can do a static freq->period
	 * mapping and avoid the whole period adjust feedback stuff.
	 */
	if (event->attr.freq) {
		long freq = event->attr.sample_freq;

		event->attr.sample_period = NSEC_PER_SEC / freq;
		hwc->sample_period = event->attr.sample_period;
		local64_set(&hwc->period_left, hwc->sample_period);
9182
		hwc->last_period = hwc->sample_period;
P
Peter Zijlstra 已提交
9183 9184 9185 9186
		event->attr.freq = 0;
	}
}

9187 9188 9189 9190 9191
/*
 * Software event: cpu wall time clock
 */

static void cpu_clock_event_update(struct perf_event *event)
9192
{
9193 9194 9195
	s64 prev;
	u64 now;

P
Peter Zijlstra 已提交
9196
	now = local_clock();
9197 9198
	prev = local64_xchg(&event->hw.prev_count, now);
	local64_add(now - prev, &event->count);
9199 9200
}

P
Peter Zijlstra 已提交
9201
static void cpu_clock_event_start(struct perf_event *event, int flags)
9202
{
P
Peter Zijlstra 已提交
9203
	local64_set(&event->hw.prev_count, local_clock());
9204 9205 9206
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
9207
static void cpu_clock_event_stop(struct perf_event *event, int flags)
9208
{
9209 9210 9211
	perf_swevent_cancel_hrtimer(event);
	cpu_clock_event_update(event);
}
9212

P
Peter Zijlstra 已提交
9213 9214 9215 9216
static int cpu_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		cpu_clock_event_start(event, flags);
9217
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
9218 9219 9220 9221 9222 9223 9224 9225 9226

	return 0;
}

static void cpu_clock_event_del(struct perf_event *event, int flags)
{
	cpu_clock_event_stop(event, flags);
}

9227 9228 9229 9230
static void cpu_clock_event_read(struct perf_event *event)
{
	cpu_clock_event_update(event);
}
9231

9232 9233 9234 9235 9236 9237 9238 9239
static int cpu_clock_event_init(struct perf_event *event)
{
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
		return -ENOENT;

9240 9241 9242 9243 9244 9245
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

P
Peter Zijlstra 已提交
9246 9247
	perf_swevent_init_hrtimer(event);

9248
	return 0;
9249 9250
}

9251
static struct pmu perf_cpu_clock = {
9252 9253
	.task_ctx_nr	= perf_sw_context,

9254 9255
	.capabilities	= PERF_PMU_CAP_NO_NMI,

9256
	.event_init	= cpu_clock_event_init,
P
Peter Zijlstra 已提交
9257 9258 9259 9260
	.add		= cpu_clock_event_add,
	.del		= cpu_clock_event_del,
	.start		= cpu_clock_event_start,
	.stop		= cpu_clock_event_stop,
9261 9262 9263 9264 9265 9266 9267 9268
	.read		= cpu_clock_event_read,
};

/*
 * Software event: task time clock
 */

static void task_clock_event_update(struct perf_event *event, u64 now)
9269
{
9270 9271
	u64 prev;
	s64 delta;
9272

9273 9274 9275 9276
	prev = local64_xchg(&event->hw.prev_count, now);
	delta = now - prev;
	local64_add(delta, &event->count);
}
9277

P
Peter Zijlstra 已提交
9278
static void task_clock_event_start(struct perf_event *event, int flags)
9279
{
P
Peter Zijlstra 已提交
9280
	local64_set(&event->hw.prev_count, event->ctx->time);
9281 9282 9283
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
9284
static void task_clock_event_stop(struct perf_event *event, int flags)
9285 9286 9287
{
	perf_swevent_cancel_hrtimer(event);
	task_clock_event_update(event, event->ctx->time);
P
Peter Zijlstra 已提交
9288 9289 9290 9291 9292 9293
}

static int task_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		task_clock_event_start(event, flags);
9294
	perf_event_update_userpage(event);
9295

P
Peter Zijlstra 已提交
9296 9297 9298 9299 9300 9301
	return 0;
}

static void task_clock_event_del(struct perf_event *event, int flags)
{
	task_clock_event_stop(event, PERF_EF_UPDATE);
9302 9303 9304 9305
}

static void task_clock_event_read(struct perf_event *event)
{
9306 9307 9308
	u64 now = perf_clock();
	u64 delta = now - event->ctx->timestamp;
	u64 time = event->ctx->time + delta;
9309 9310 9311 9312 9313

	task_clock_event_update(event, time);
}

static int task_clock_event_init(struct perf_event *event)
L
Li Zefan 已提交
9314
{
9315 9316 9317 9318 9319 9320
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
		return -ENOENT;

9321 9322 9323 9324 9325 9326
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

P
Peter Zijlstra 已提交
9327 9328
	perf_swevent_init_hrtimer(event);

9329
	return 0;
L
Li Zefan 已提交
9330 9331
}

9332
static struct pmu perf_task_clock = {
9333 9334
	.task_ctx_nr	= perf_sw_context,

9335 9336
	.capabilities	= PERF_PMU_CAP_NO_NMI,

9337
	.event_init	= task_clock_event_init,
P
Peter Zijlstra 已提交
9338 9339 9340 9341
	.add		= task_clock_event_add,
	.del		= task_clock_event_del,
	.start		= task_clock_event_start,
	.stop		= task_clock_event_stop,
9342 9343
	.read		= task_clock_event_read,
};
L
Li Zefan 已提交
9344

P
Peter Zijlstra 已提交
9345
static void perf_pmu_nop_void(struct pmu *pmu)
9346 9347
{
}
L
Li Zefan 已提交
9348

9349 9350 9351 9352
static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
{
}

P
Peter Zijlstra 已提交
9353
static int perf_pmu_nop_int(struct pmu *pmu)
L
Li Zefan 已提交
9354
{
P
Peter Zijlstra 已提交
9355
	return 0;
L
Li Zefan 已提交
9356 9357
}

9358
static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
9359 9360

static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
L
Li Zefan 已提交
9361
{
9362 9363 9364 9365 9366
	__this_cpu_write(nop_txn_flags, flags);

	if (flags & ~PERF_PMU_TXN_ADD)
		return;

P
Peter Zijlstra 已提交
9367
	perf_pmu_disable(pmu);
L
Li Zefan 已提交
9368 9369
}

P
Peter Zijlstra 已提交
9370 9371
static int perf_pmu_commit_txn(struct pmu *pmu)
{
9372 9373 9374 9375 9376 9377 9378
	unsigned int flags = __this_cpu_read(nop_txn_flags);

	__this_cpu_write(nop_txn_flags, 0);

	if (flags & ~PERF_PMU_TXN_ADD)
		return 0;

P
Peter Zijlstra 已提交
9379 9380 9381
	perf_pmu_enable(pmu);
	return 0;
}
9382

P
Peter Zijlstra 已提交
9383
static void perf_pmu_cancel_txn(struct pmu *pmu)
9384
{
9385 9386 9387 9388 9389 9390 9391
	unsigned int flags =  __this_cpu_read(nop_txn_flags);

	__this_cpu_write(nop_txn_flags, 0);

	if (flags & ~PERF_PMU_TXN_ADD)
		return;

P
Peter Zijlstra 已提交
9392
	perf_pmu_enable(pmu);
9393 9394
}

9395 9396
static int perf_event_idx_default(struct perf_event *event)
{
9397
	return 0;
9398 9399
}

P
Peter Zijlstra 已提交
9400 9401 9402 9403
/*
 * Ensures all contexts with the same task_ctx_nr have the same
 * pmu_cpu_context too.
 */
9404
static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
9405
{
P
Peter Zijlstra 已提交
9406
	struct pmu *pmu;
9407

P
Peter Zijlstra 已提交
9408 9409
	if (ctxn < 0)
		return NULL;
9410

P
Peter Zijlstra 已提交
9411 9412 9413 9414
	list_for_each_entry(pmu, &pmus, entry) {
		if (pmu->task_ctx_nr == ctxn)
			return pmu->pmu_cpu_context;
	}
9415

P
Peter Zijlstra 已提交
9416
	return NULL;
9417 9418
}

9419 9420
static void free_pmu_context(struct pmu *pmu)
{
9421 9422 9423 9424 9425 9426 9427 9428
	/*
	 * Static contexts such as perf_sw_context have a global lifetime
	 * and may be shared between different PMUs. Avoid freeing them
	 * when a single PMU is going away.
	 */
	if (pmu->task_ctx_nr > perf_invalid_context)
		return;

P
Peter Zijlstra 已提交
9429
	mutex_lock(&pmus_lock);
9430
	free_percpu(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
9431
	mutex_unlock(&pmus_lock);
9432
}
9433 9434 9435 9436 9437 9438 9439 9440 9441 9442 9443 9444 9445 9446

/*
 * Let userspace know that this PMU supports address range filtering:
 */
static ssize_t nr_addr_filters_show(struct device *dev,
				    struct device_attribute *attr,
				    char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
}
DEVICE_ATTR_RO(nr_addr_filters);

P
Peter Zijlstra 已提交
9447
static struct idr pmu_idr;
9448

P
Peter Zijlstra 已提交
9449 9450 9451 9452 9453 9454 9455
static ssize_t
type_show(struct device *dev, struct device_attribute *attr, char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
}
9456
static DEVICE_ATTR_RO(type);
P
Peter Zijlstra 已提交
9457

9458 9459 9460 9461 9462 9463 9464 9465 9466 9467
static ssize_t
perf_event_mux_interval_ms_show(struct device *dev,
				struct device_attribute *attr,
				char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
}

9468 9469
static DEFINE_MUTEX(mux_interval_mutex);

9470 9471 9472 9473 9474 9475 9476 9477 9478 9479 9480 9481 9482 9483 9484 9485 9486 9487 9488
static ssize_t
perf_event_mux_interval_ms_store(struct device *dev,
				 struct device_attribute *attr,
				 const char *buf, size_t count)
{
	struct pmu *pmu = dev_get_drvdata(dev);
	int timer, cpu, ret;

	ret = kstrtoint(buf, 0, &timer);
	if (ret)
		return ret;

	if (timer < 1)
		return -EINVAL;

	/* same value, noting to do */
	if (timer == pmu->hrtimer_interval_ms)
		return count;

9489
	mutex_lock(&mux_interval_mutex);
9490 9491 9492
	pmu->hrtimer_interval_ms = timer;

	/* update all cpuctx for this PMU */
9493
	cpus_read_lock();
9494
	for_each_online_cpu(cpu) {
9495 9496 9497 9498
		struct perf_cpu_context *cpuctx;
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
		cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);

9499 9500
		cpu_function_call(cpu,
			(remote_function_f)perf_mux_hrtimer_restart, cpuctx);
9501
	}
9502
	cpus_read_unlock();
9503
	mutex_unlock(&mux_interval_mutex);
9504 9505 9506

	return count;
}
9507
static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
9508

9509 9510 9511 9512
static struct attribute *pmu_dev_attrs[] = {
	&dev_attr_type.attr,
	&dev_attr_perf_event_mux_interval_ms.attr,
	NULL,
P
Peter Zijlstra 已提交
9513
};
9514
ATTRIBUTE_GROUPS(pmu_dev);
P
Peter Zijlstra 已提交
9515 9516 9517 9518

static int pmu_bus_running;
static struct bus_type pmu_bus = {
	.name		= "event_source",
9519
	.dev_groups	= pmu_dev_groups,
P
Peter Zijlstra 已提交
9520 9521 9522 9523 9524 9525 9526 9527 9528 9529 9530 9531 9532 9533 9534
};

static void pmu_dev_release(struct device *dev)
{
	kfree(dev);
}

static int pmu_dev_alloc(struct pmu *pmu)
{
	int ret = -ENOMEM;

	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
	if (!pmu->dev)
		goto out;

9535
	pmu->dev->groups = pmu->attr_groups;
P
Peter Zijlstra 已提交
9536 9537 9538 9539 9540 9541 9542 9543 9544 9545 9546 9547
	device_initialize(pmu->dev);
	ret = dev_set_name(pmu->dev, "%s", pmu->name);
	if (ret)
		goto free_dev;

	dev_set_drvdata(pmu->dev, pmu);
	pmu->dev->bus = &pmu_bus;
	pmu->dev->release = pmu_dev_release;
	ret = device_add(pmu->dev);
	if (ret)
		goto free_dev;

9548 9549 9550 9551 9552 9553 9554
	/* For PMUs with address filters, throw in an extra attribute: */
	if (pmu->nr_addr_filters)
		ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);

	if (ret)
		goto del_dev;

P
Peter Zijlstra 已提交
9555 9556 9557
out:
	return ret;

9558 9559 9560
del_dev:
	device_del(pmu->dev);

P
Peter Zijlstra 已提交
9561 9562 9563 9564 9565
free_dev:
	put_device(pmu->dev);
	goto out;
}

9566
static struct lock_class_key cpuctx_mutex;
9567
static struct lock_class_key cpuctx_lock;
9568

9569
int perf_pmu_register(struct pmu *pmu, const char *name, int type)
9570
{
P
Peter Zijlstra 已提交
9571
	int cpu, ret;
9572

9573
	mutex_lock(&pmus_lock);
P
Peter Zijlstra 已提交
9574 9575 9576 9577
	ret = -ENOMEM;
	pmu->pmu_disable_count = alloc_percpu(int);
	if (!pmu->pmu_disable_count)
		goto unlock;
9578

P
Peter Zijlstra 已提交
9579 9580 9581 9582 9583 9584
	pmu->type = -1;
	if (!name)
		goto skip_type;
	pmu->name = name;

	if (type < 0) {
T
Tejun Heo 已提交
9585 9586 9587
		type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
		if (type < 0) {
			ret = type;
P
Peter Zijlstra 已提交
9588 9589 9590 9591 9592
			goto free_pdc;
		}
	}
	pmu->type = type;

P
Peter Zijlstra 已提交
9593 9594 9595 9596 9597 9598
	if (pmu_bus_running) {
		ret = pmu_dev_alloc(pmu);
		if (ret)
			goto free_idr;
	}

P
Peter Zijlstra 已提交
9599
skip_type:
9600 9601 9602
	if (pmu->task_ctx_nr == perf_hw_context) {
		static int hw_context_taken = 0;

9603 9604 9605 9606 9607 9608 9609
		/*
		 * Other than systems with heterogeneous CPUs, it never makes
		 * sense for two PMUs to share perf_hw_context. PMUs which are
		 * uncore must use perf_invalid_context.
		 */
		if (WARN_ON_ONCE(hw_context_taken &&
		    !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
9610 9611 9612 9613 9614
			pmu->task_ctx_nr = perf_invalid_context;

		hw_context_taken = 1;
	}

P
Peter Zijlstra 已提交
9615 9616 9617
	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
	if (pmu->pmu_cpu_context)
		goto got_cpu_context;
9618

W
Wei Yongjun 已提交
9619
	ret = -ENOMEM;
P
Peter Zijlstra 已提交
9620 9621
	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
	if (!pmu->pmu_cpu_context)
P
Peter Zijlstra 已提交
9622
		goto free_dev;
9623

P
Peter Zijlstra 已提交
9624 9625 9626 9627
	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
9628
		__perf_event_init_context(&cpuctx->ctx);
9629
		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
9630
		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
P
Peter Zijlstra 已提交
9631
		cpuctx->ctx.pmu = pmu;
9632
		cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
9633

9634
		__perf_mux_hrtimer_init(cpuctx, cpu);
P
Peter Zijlstra 已提交
9635
	}
9636

P
Peter Zijlstra 已提交
9637
got_cpu_context:
P
Peter Zijlstra 已提交
9638 9639 9640 9641 9642 9643 9644 9645 9646 9647 9648
	if (!pmu->start_txn) {
		if (pmu->pmu_enable) {
			/*
			 * If we have pmu_enable/pmu_disable calls, install
			 * transaction stubs that use that to try and batch
			 * hardware accesses.
			 */
			pmu->start_txn  = perf_pmu_start_txn;
			pmu->commit_txn = perf_pmu_commit_txn;
			pmu->cancel_txn = perf_pmu_cancel_txn;
		} else {
9649
			pmu->start_txn  = perf_pmu_nop_txn;
P
Peter Zijlstra 已提交
9650 9651
			pmu->commit_txn = perf_pmu_nop_int;
			pmu->cancel_txn = perf_pmu_nop_void;
9652
		}
9653
	}
9654

P
Peter Zijlstra 已提交
9655 9656 9657 9658 9659
	if (!pmu->pmu_enable) {
		pmu->pmu_enable  = perf_pmu_nop_void;
		pmu->pmu_disable = perf_pmu_nop_void;
	}

9660 9661 9662
	if (!pmu->event_idx)
		pmu->event_idx = perf_event_idx_default;

9663
	list_add_rcu(&pmu->entry, &pmus);
9664
	atomic_set(&pmu->exclusive_cnt, 0);
P
Peter Zijlstra 已提交
9665 9666
	ret = 0;
unlock:
9667 9668
	mutex_unlock(&pmus_lock);

P
Peter Zijlstra 已提交
9669
	return ret;
P
Peter Zijlstra 已提交
9670

P
Peter Zijlstra 已提交
9671 9672 9673 9674
free_dev:
	device_del(pmu->dev);
	put_device(pmu->dev);

P
Peter Zijlstra 已提交
9675 9676 9677 9678
free_idr:
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);

P
Peter Zijlstra 已提交
9679 9680 9681
free_pdc:
	free_percpu(pmu->pmu_disable_count);
	goto unlock;
9682
}
9683
EXPORT_SYMBOL_GPL(perf_pmu_register);
9684

9685
void perf_pmu_unregister(struct pmu *pmu)
9686
{
9687 9688
	int remove_device;

9689
	mutex_lock(&pmus_lock);
9690
	remove_device = pmu_bus_running;
9691 9692
	list_del_rcu(&pmu->entry);
	mutex_unlock(&pmus_lock);
9693

9694
	/*
P
Peter Zijlstra 已提交
9695 9696
	 * We dereference the pmu list under both SRCU and regular RCU, so
	 * synchronize against both of those.
9697
	 */
9698
	synchronize_srcu(&pmus_srcu);
P
Peter Zijlstra 已提交
9699
	synchronize_rcu();
9700

P
Peter Zijlstra 已提交
9701
	free_percpu(pmu->pmu_disable_count);
P
Peter Zijlstra 已提交
9702 9703
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);
9704 9705 9706 9707 9708 9709
	if (remove_device) {
		if (pmu->nr_addr_filters)
			device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
		device_del(pmu->dev);
		put_device(pmu->dev);
	}
9710
	free_pmu_context(pmu);
9711
}
9712
EXPORT_SYMBOL_GPL(perf_pmu_unregister);
9713

9714 9715
static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
{
P
Peter Zijlstra 已提交
9716
	struct perf_event_context *ctx = NULL;
9717 9718 9719 9720
	int ret;

	if (!try_module_get(pmu->module))
		return -ENODEV;
P
Peter Zijlstra 已提交
9721

9722 9723 9724 9725 9726 9727 9728
	/*
	 * A number of pmu->event_init() methods iterate the sibling_list to,
	 * for example, validate if the group fits on the PMU. Therefore,
	 * if this is a sibling event, acquire the ctx->mutex to protect
	 * the sibling_list.
	 */
	if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) {
9729 9730 9731 9732 9733 9734
		/*
		 * This ctx->mutex can nest when we're called through
		 * inheritance. See the perf_event_ctx_lock_nested() comment.
		 */
		ctx = perf_event_ctx_lock_nested(event->group_leader,
						 SINGLE_DEPTH_NESTING);
P
Peter Zijlstra 已提交
9735 9736 9737
		BUG_ON(!ctx);
	}

9738 9739
	event->pmu = pmu;
	ret = pmu->event_init(event);
P
Peter Zijlstra 已提交
9740 9741 9742 9743

	if (ctx)
		perf_event_ctx_unlock(event->group_leader, ctx);

9744 9745 9746 9747 9748 9749
	if (ret)
		module_put(pmu->module);

	return ret;
}

9750
static struct pmu *perf_init_event(struct perf_event *event)
9751
{
D
Dan Carpenter 已提交
9752
	struct pmu *pmu;
9753
	int idx;
9754
	int ret;
9755 9756

	idx = srcu_read_lock(&pmus_srcu);
P
Peter Zijlstra 已提交
9757

9758 9759 9760 9761 9762 9763 9764 9765
	/* Try parent's PMU first: */
	if (event->parent && event->parent->pmu) {
		pmu = event->parent->pmu;
		ret = perf_try_init_event(pmu, event);
		if (!ret)
			goto unlock;
	}

P
Peter Zijlstra 已提交
9766 9767 9768
	rcu_read_lock();
	pmu = idr_find(&pmu_idr, event->attr.type);
	rcu_read_unlock();
9769
	if (pmu) {
9770
		ret = perf_try_init_event(pmu, event);
9771 9772
		if (ret)
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
9773
		goto unlock;
9774
	}
P
Peter Zijlstra 已提交
9775

9776
	list_for_each_entry_rcu(pmu, &pmus, entry) {
9777
		ret = perf_try_init_event(pmu, event);
9778
		if (!ret)
P
Peter Zijlstra 已提交
9779
			goto unlock;
9780

9781 9782
		if (ret != -ENOENT) {
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
9783
			goto unlock;
9784
		}
9785
	}
P
Peter Zijlstra 已提交
9786 9787
	pmu = ERR_PTR(-ENOENT);
unlock:
9788
	srcu_read_unlock(&pmus_srcu, idx);
9789

9790
	return pmu;
9791 9792
}

9793 9794 9795 9796 9797 9798 9799 9800 9801
static void attach_sb_event(struct perf_event *event)
{
	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);

	raw_spin_lock(&pel->lock);
	list_add_rcu(&event->sb_list, &pel->list);
	raw_spin_unlock(&pel->lock);
}

9802 9803 9804 9805 9806 9807 9808
/*
 * We keep a list of all !task (and therefore per-cpu) events
 * that need to receive side-band records.
 *
 * This avoids having to scan all the various PMU per-cpu contexts
 * looking for them.
 */
9809 9810
static void account_pmu_sb_event(struct perf_event *event)
{
9811
	if (is_sb_event(event))
9812 9813 9814
		attach_sb_event(event);
}

9815 9816 9817 9818 9819 9820 9821 9822 9823
static void account_event_cpu(struct perf_event *event, int cpu)
{
	if (event->parent)
		return;

	if (is_cgroup_event(event))
		atomic_inc(&per_cpu(perf_cgroup_events, cpu));
}

9824 9825 9826 9827 9828 9829 9830 9831 9832 9833 9834 9835 9836 9837 9838 9839 9840 9841 9842 9843 9844
/* Freq events need the tick to stay alive (see perf_event_task_tick). */
static void account_freq_event_nohz(void)
{
#ifdef CONFIG_NO_HZ_FULL
	/* Lock so we don't race with concurrent unaccount */
	spin_lock(&nr_freq_lock);
	if (atomic_inc_return(&nr_freq_events) == 1)
		tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
	spin_unlock(&nr_freq_lock);
#endif
}

static void account_freq_event(void)
{
	if (tick_nohz_full_enabled())
		account_freq_event_nohz();
	else
		atomic_inc(&nr_freq_events);
}


9845 9846
static void account_event(struct perf_event *event)
{
9847 9848
	bool inc = false;

9849 9850 9851
	if (event->parent)
		return;

9852
	if (event->attach_state & PERF_ATTACH_TASK)
9853
		inc = true;
9854 9855 9856 9857
	if (event->attr.mmap || event->attr.mmap_data)
		atomic_inc(&nr_mmap_events);
	if (event->attr.comm)
		atomic_inc(&nr_comm_events);
9858 9859
	if (event->attr.namespaces)
		atomic_inc(&nr_namespaces_events);
9860 9861
	if (event->attr.task)
		atomic_inc(&nr_task_events);
9862 9863
	if (event->attr.freq)
		account_freq_event();
9864 9865
	if (event->attr.context_switch) {
		atomic_inc(&nr_switch_events);
9866
		inc = true;
9867
	}
9868
	if (has_branch_stack(event))
9869
		inc = true;
9870
	if (is_cgroup_event(event))
9871 9872
		inc = true;

9873
	if (inc) {
9874 9875 9876 9877 9878
		/*
		 * We need the mutex here because static_branch_enable()
		 * must complete *before* the perf_sched_count increment
		 * becomes visible.
		 */
9879 9880 9881 9882 9883 9884 9885 9886 9887 9888 9889 9890 9891 9892 9893 9894 9895 9896 9897 9898 9899
		if (atomic_inc_not_zero(&perf_sched_count))
			goto enabled;

		mutex_lock(&perf_sched_mutex);
		if (!atomic_read(&perf_sched_count)) {
			static_branch_enable(&perf_sched_events);
			/*
			 * Guarantee that all CPUs observe they key change and
			 * call the perf scheduling hooks before proceeding to
			 * install events that need them.
			 */
			synchronize_sched();
		}
		/*
		 * Now that we have waited for the sync_sched(), allow further
		 * increments to by-pass the mutex.
		 */
		atomic_inc(&perf_sched_count);
		mutex_unlock(&perf_sched_mutex);
	}
enabled:
9900 9901

	account_event_cpu(event, event->cpu);
9902 9903

	account_pmu_sb_event(event);
9904 9905
}

T
Thomas Gleixner 已提交
9906
/*
9907
 * Allocate and initialize a event structure
T
Thomas Gleixner 已提交
9908
 */
9909
static struct perf_event *
9910
perf_event_alloc(struct perf_event_attr *attr, int cpu,
9911 9912 9913
		 struct task_struct *task,
		 struct perf_event *group_leader,
		 struct perf_event *parent_event,
9914
		 perf_overflow_handler_t overflow_handler,
9915
		 void *context, int cgroup_fd)
T
Thomas Gleixner 已提交
9916
{
P
Peter Zijlstra 已提交
9917
	struct pmu *pmu;
9918 9919
	struct perf_event *event;
	struct hw_perf_event *hwc;
9920
	long err = -EINVAL;
T
Thomas Gleixner 已提交
9921

9922 9923 9924 9925 9926
	if ((unsigned)cpu >= nr_cpu_ids) {
		if (!task || cpu != -1)
			return ERR_PTR(-EINVAL);
	}

9927
	event = kzalloc(sizeof(*event), GFP_KERNEL);
9928
	if (!event)
9929
		return ERR_PTR(-ENOMEM);
T
Thomas Gleixner 已提交
9930

9931
	/*
9932
	 * Single events are their own group leaders, with an
9933 9934 9935
	 * empty sibling list:
	 */
	if (!group_leader)
9936
		group_leader = event;
9937

9938 9939
	mutex_init(&event->child_mutex);
	INIT_LIST_HEAD(&event->child_list);
9940

9941 9942
	INIT_LIST_HEAD(&event->event_entry);
	INIT_LIST_HEAD(&event->sibling_list);
9943
	INIT_LIST_HEAD(&event->active_list);
9944
	init_event_group(event);
9945
	INIT_LIST_HEAD(&event->rb_entry);
9946
	INIT_LIST_HEAD(&event->active_entry);
9947
	INIT_LIST_HEAD(&event->addr_filters.list);
9948 9949
	INIT_HLIST_NODE(&event->hlist_entry);

9950

9951
	init_waitqueue_head(&event->waitq);
9952
	init_irq_work(&event->pending, perf_pending_event);
T
Thomas Gleixner 已提交
9953

9954
	mutex_init(&event->mmap_mutex);
9955
	raw_spin_lock_init(&event->addr_filters.lock);
9956

9957
	atomic_long_set(&event->refcount, 1);
9958 9959 9960 9961 9962
	event->cpu		= cpu;
	event->attr		= *attr;
	event->group_leader	= group_leader;
	event->pmu		= NULL;
	event->oncpu		= -1;
9963

9964
	event->parent		= parent_event;
9965

9966
	event->ns		= get_pid_ns(task_active_pid_ns(current));
9967
	event->id		= atomic64_inc_return(&perf_event_id);
9968

9969
	event->state		= PERF_EVENT_STATE_INACTIVE;
9970

9971 9972 9973
	if (task) {
		event->attach_state = PERF_ATTACH_TASK;
		/*
9974 9975 9976
		 * XXX pmu::event_init needs to know what task to account to
		 * and we cannot use the ctx information because we need the
		 * pmu before we get a ctx.
9977
		 */
9978
		get_task_struct(task);
9979
		event->hw.target = task;
9980 9981
	}

9982 9983 9984 9985
	event->clock = &local_clock;
	if (parent_event)
		event->clock = parent_event->clock;

9986
	if (!overflow_handler && parent_event) {
9987
		overflow_handler = parent_event->overflow_handler;
9988
		context = parent_event->overflow_handler_context;
9989
#if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
9990 9991 9992 9993 9994 9995 9996 9997 9998 9999 10000 10001
		if (overflow_handler == bpf_overflow_handler) {
			struct bpf_prog *prog = bpf_prog_inc(parent_event->prog);

			if (IS_ERR(prog)) {
				err = PTR_ERR(prog);
				goto err_ns;
			}
			event->prog = prog;
			event->orig_overflow_handler =
				parent_event->orig_overflow_handler;
		}
#endif
10002
	}
10003

10004 10005 10006
	if (overflow_handler) {
		event->overflow_handler	= overflow_handler;
		event->overflow_handler_context = context;
10007 10008 10009
	} else if (is_write_backward(event)){
		event->overflow_handler = perf_event_output_backward;
		event->overflow_handler_context = NULL;
10010
	} else {
10011
		event->overflow_handler = perf_event_output_forward;
10012 10013
		event->overflow_handler_context = NULL;
	}
10014

J
Jiri Olsa 已提交
10015
	perf_event__state_init(event);
10016

10017
	pmu = NULL;
10018

10019
	hwc = &event->hw;
10020
	hwc->sample_period = attr->sample_period;
10021
	if (attr->freq && attr->sample_freq)
10022
		hwc->sample_period = 1;
10023
	hwc->last_period = hwc->sample_period;
10024

10025
	local64_set(&hwc->period_left, hwc->sample_period);
10026

10027
	/*
10028 10029
	 * We currently do not support PERF_SAMPLE_READ on inherited events.
	 * See perf_output_read().
10030
	 */
10031
	if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
10032
		goto err_ns;
10033 10034 10035

	if (!has_branch_stack(event))
		event->attr.branch_sample_type = 0;
10036

10037 10038 10039 10040 10041 10042
	if (cgroup_fd != -1) {
		err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
		if (err)
			goto err_ns;
	}

10043
	pmu = perf_init_event(event);
D
Dan Carpenter 已提交
10044
	if (IS_ERR(pmu)) {
10045
		err = PTR_ERR(pmu);
10046
		goto err_ns;
I
Ingo Molnar 已提交
10047
	}
10048

10049 10050 10051 10052
	err = exclusive_event_init(event);
	if (err)
		goto err_pmu;

10053 10054 10055 10056
	if (has_addr_filter(event)) {
		event->addr_filters_offs = kcalloc(pmu->nr_addr_filters,
						   sizeof(unsigned long),
						   GFP_KERNEL);
10057 10058
		if (!event->addr_filters_offs) {
			err = -ENOMEM;
10059
			goto err_per_task;
10060
		}
10061 10062 10063 10064 10065

		/* force hw sync on the address filters */
		event->addr_filters_gen = 1;
	}

10066
	if (!event->parent) {
10067
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
10068
			err = get_callchain_buffers(attr->sample_max_stack);
10069
			if (err)
10070
				goto err_addr_filters;
10071
		}
10072
	}
10073

10074 10075 10076
	/* symmetric to unaccount_event() in _free_event() */
	account_event(event);

10077
	return event;
10078

10079 10080 10081
err_addr_filters:
	kfree(event->addr_filters_offs);

10082 10083 10084
err_per_task:
	exclusive_event_destroy(event);

10085 10086 10087
err_pmu:
	if (event->destroy)
		event->destroy(event);
10088
	module_put(pmu->module);
10089
err_ns:
10090 10091
	if (is_cgroup_event(event))
		perf_detach_cgroup(event);
10092 10093
	if (event->ns)
		put_pid_ns(event->ns);
10094 10095
	if (event->hw.target)
		put_task_struct(event->hw.target);
10096 10097 10098
	kfree(event);

	return ERR_PTR(err);
T
Thomas Gleixner 已提交
10099 10100
}

10101 10102
static int perf_copy_attr(struct perf_event_attr __user *uattr,
			  struct perf_event_attr *attr)
10103 10104
{
	u32 size;
10105
	int ret;
10106 10107 10108 10109 10110 10111 10112 10113 10114 10115 10116 10117 10118 10119 10120 10121 10122 10123 10124 10125 10126 10127 10128 10129

	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
		return -EFAULT;

	/*
	 * zero the full structure, so that a short copy will be nice.
	 */
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

	if (size > PAGE_SIZE)	/* silly large */
		goto err_size;

	if (!size)		/* abi compat */
		size = PERF_ATTR_SIZE_VER0;

	if (size < PERF_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
10130 10131 10132
	 * ensure all the unknown bits are 0 - i.e. new
	 * user-space does not rely on any kernel feature
	 * extensions we dont know about yet.
10133 10134
	 */
	if (size > sizeof(*attr)) {
10135 10136 10137
		unsigned char __user *addr;
		unsigned char __user *end;
		unsigned char val;
10138

10139 10140
		addr = (void __user *)uattr + sizeof(*attr);
		end  = (void __user *)uattr + size;
10141

10142
		for (; addr < end; addr++) {
10143 10144 10145 10146 10147 10148
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
10149
		size = sizeof(*attr);
10150 10151 10152 10153 10154 10155
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

10156 10157
	attr->size = size;

10158
	if (attr->__reserved_1)
10159 10160 10161 10162 10163 10164 10165 10166
		return -EINVAL;

	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
		return -EINVAL;

	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
		return -EINVAL;

10167 10168 10169 10170 10171 10172 10173 10174 10175 10176 10177 10178 10179 10180 10181 10182 10183 10184 10185 10186 10187 10188 10189 10190 10191 10192 10193 10194
	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
		u64 mask = attr->branch_sample_type;

		/* only using defined bits */
		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
			return -EINVAL;

		/* at least one branch bit must be set */
		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
			return -EINVAL;

		/* propagate priv level, when not set for branch */
		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {

			/* exclude_kernel checked on syscall entry */
			if (!attr->exclude_kernel)
				mask |= PERF_SAMPLE_BRANCH_KERNEL;

			if (!attr->exclude_user)
				mask |= PERF_SAMPLE_BRANCH_USER;

			if (!attr->exclude_hv)
				mask |= PERF_SAMPLE_BRANCH_HV;
			/*
			 * adjust user setting (for HW filter setup)
			 */
			attr->branch_sample_type = mask;
		}
10195 10196
		/* privileged levels capture (kernel, hv): check permissions */
		if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
10197 10198
		    && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
10199
	}
10200

10201
	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
10202
		ret = perf_reg_validate(attr->sample_regs_user);
10203 10204 10205 10206 10207 10208 10209 10210 10211 10212 10213 10214 10215 10216
		if (ret)
			return ret;
	}

	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
		if (!arch_perf_have_user_stack_dump())
			return -ENOSYS;

		/*
		 * We have __u32 type for the size, but so far
		 * we can only use __u16 as maximum due to the
		 * __u16 sample size limit.
		 */
		if (attr->sample_stack_user >= USHRT_MAX)
10217
			return -EINVAL;
10218
		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
10219
			return -EINVAL;
10220
	}
10221

10222 10223 10224
	if (!attr->sample_max_stack)
		attr->sample_max_stack = sysctl_perf_event_max_stack;

10225 10226
	if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
		ret = perf_reg_validate(attr->sample_regs_intr);
10227 10228 10229 10230 10231 10232 10233 10234 10235
out:
	return ret;

err_size:
	put_user(sizeof(*attr), &uattr->size);
	ret = -E2BIG;
	goto out;
}

10236 10237
static int
perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
10238
{
10239
	struct ring_buffer *rb = NULL;
10240 10241
	int ret = -EINVAL;

10242
	if (!output_event)
10243 10244
		goto set;

10245 10246
	/* don't allow circular references */
	if (event == output_event)
10247 10248
		goto out;

10249 10250 10251 10252 10253 10254 10255
	/*
	 * Don't allow cross-cpu buffers
	 */
	if (output_event->cpu != event->cpu)
		goto out;

	/*
10256
	 * If its not a per-cpu rb, it must be the same task.
10257 10258 10259 10260
	 */
	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
		goto out;

10261 10262 10263 10264 10265 10266
	/*
	 * Mixing clocks in the same buffer is trouble you don't need.
	 */
	if (output_event->clock != event->clock)
		goto out;

10267 10268 10269 10270 10271 10272 10273
	/*
	 * Either writing ring buffer from beginning or from end.
	 * Mixing is not allowed.
	 */
	if (is_write_backward(output_event) != is_write_backward(event))
		goto out;

10274 10275 10276 10277 10278 10279 10280
	/*
	 * If both events generate aux data, they must be on the same PMU
	 */
	if (has_aux(event) && has_aux(output_event) &&
	    event->pmu != output_event->pmu)
		goto out;

10281
set:
10282
	mutex_lock(&event->mmap_mutex);
10283 10284 10285
	/* Can't redirect output if we've got an active mmap() */
	if (atomic_read(&event->mmap_count))
		goto unlock;
10286

10287
	if (output_event) {
10288 10289 10290
		/* get the rb we want to redirect to */
		rb = ring_buffer_get(output_event);
		if (!rb)
10291
			goto unlock;
10292 10293
	}

10294
	ring_buffer_attach(event, rb);
10295

10296
	ret = 0;
10297 10298 10299
unlock:
	mutex_unlock(&event->mmap_mutex);

10300 10301 10302 10303
out:
	return ret;
}

P
Peter Zijlstra 已提交
10304 10305 10306 10307 10308 10309 10310 10311 10312
static void mutex_lock_double(struct mutex *a, struct mutex *b)
{
	if (b < a)
		swap(a, b);

	mutex_lock(a);
	mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
}

10313 10314 10315 10316 10317 10318 10319 10320 10321 10322 10323 10324 10325 10326 10327 10328 10329 10330 10331 10332 10333 10334 10335 10336 10337 10338 10339 10340 10341 10342 10343 10344 10345 10346 10347 10348 10349
static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
{
	bool nmi_safe = false;

	switch (clk_id) {
	case CLOCK_MONOTONIC:
		event->clock = &ktime_get_mono_fast_ns;
		nmi_safe = true;
		break;

	case CLOCK_MONOTONIC_RAW:
		event->clock = &ktime_get_raw_fast_ns;
		nmi_safe = true;
		break;

	case CLOCK_REALTIME:
		event->clock = &ktime_get_real_ns;
		break;

	case CLOCK_BOOTTIME:
		event->clock = &ktime_get_boot_ns;
		break;

	case CLOCK_TAI:
		event->clock = &ktime_get_tai_ns;
		break;

	default:
		return -EINVAL;
	}

	if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
		return -EINVAL;

	return 0;
}

10350 10351 10352 10353 10354 10355 10356 10357 10358 10359 10360 10361 10362 10363 10364 10365 10366 10367 10368 10369 10370 10371 10372 10373 10374 10375 10376 10377 10378 10379 10380
/*
 * Variation on perf_event_ctx_lock_nested(), except we take two context
 * mutexes.
 */
static struct perf_event_context *
__perf_event_ctx_lock_double(struct perf_event *group_leader,
			     struct perf_event_context *ctx)
{
	struct perf_event_context *gctx;

again:
	rcu_read_lock();
	gctx = READ_ONCE(group_leader->ctx);
	if (!atomic_inc_not_zero(&gctx->refcount)) {
		rcu_read_unlock();
		goto again;
	}
	rcu_read_unlock();

	mutex_lock_double(&gctx->mutex, &ctx->mutex);

	if (group_leader->ctx != gctx) {
		mutex_unlock(&ctx->mutex);
		mutex_unlock(&gctx->mutex);
		put_ctx(gctx);
		goto again;
	}

	return gctx;
}

T
Thomas Gleixner 已提交
10381
/**
10382
 * sys_perf_event_open - open a performance event, associate it to a task/cpu
I
Ingo Molnar 已提交
10383
 *
10384
 * @attr_uptr:	event_id type attributes for monitoring/sampling
T
Thomas Gleixner 已提交
10385
 * @pid:		target pid
I
Ingo Molnar 已提交
10386
 * @cpu:		target cpu
10387
 * @group_fd:		group leader event fd
T
Thomas Gleixner 已提交
10388
 */
10389 10390
SYSCALL_DEFINE5(perf_event_open,
		struct perf_event_attr __user *, attr_uptr,
10391
		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
T
Thomas Gleixner 已提交
10392
{
10393 10394
	struct perf_event *group_leader = NULL, *output_event = NULL;
	struct perf_event *event, *sibling;
10395
	struct perf_event_attr attr;
P
Peter Zijlstra 已提交
10396
	struct perf_event_context *ctx, *uninitialized_var(gctx);
10397
	struct file *event_file = NULL;
10398
	struct fd group = {NULL, 0};
M
Matt Helsley 已提交
10399
	struct task_struct *task = NULL;
10400
	struct pmu *pmu;
10401
	int event_fd;
10402
	int move_group = 0;
10403
	int err;
10404
	int f_flags = O_RDWR;
10405
	int cgroup_fd = -1;
T
Thomas Gleixner 已提交
10406

10407
	/* for future expandability... */
S
Stephane Eranian 已提交
10408
	if (flags & ~PERF_FLAG_ALL)
10409 10410
		return -EINVAL;

10411 10412 10413
	err = perf_copy_attr(attr_uptr, &attr);
	if (err)
		return err;
10414

10415 10416 10417 10418 10419
	if (!attr.exclude_kernel) {
		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
	}

10420 10421 10422 10423 10424
	if (attr.namespaces) {
		if (!capable(CAP_SYS_ADMIN))
			return -EACCES;
	}

10425
	if (attr.freq) {
10426
		if (attr.sample_freq > sysctl_perf_event_sample_rate)
10427
			return -EINVAL;
10428 10429 10430
	} else {
		if (attr.sample_period & (1ULL << 63))
			return -EINVAL;
10431 10432
	}

10433 10434 10435 10436 10437
	/* Only privileged users can get physical addresses */
	if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR) &&
	    perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
		return -EACCES;

S
Stephane Eranian 已提交
10438 10439 10440 10441 10442 10443 10444 10445 10446
	/*
	 * In cgroup mode, the pid argument is used to pass the fd
	 * opened to the cgroup directory in cgroupfs. The cpu argument
	 * designates the cpu on which to monitor threads from that
	 * cgroup.
	 */
	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
		return -EINVAL;

10447 10448 10449 10450
	if (flags & PERF_FLAG_FD_CLOEXEC)
		f_flags |= O_CLOEXEC;

	event_fd = get_unused_fd_flags(f_flags);
10451 10452 10453
	if (event_fd < 0)
		return event_fd;

10454
	if (group_fd != -1) {
10455 10456
		err = perf_fget_light(group_fd, &group);
		if (err)
10457
			goto err_fd;
10458
		group_leader = group.file->private_data;
10459 10460 10461 10462 10463 10464
		if (flags & PERF_FLAG_FD_OUTPUT)
			output_event = group_leader;
		if (flags & PERF_FLAG_FD_NO_GROUP)
			group_leader = NULL;
	}

S
Stephane Eranian 已提交
10465
	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
10466 10467 10468 10469 10470 10471 10472
		task = find_lively_task_by_vpid(pid);
		if (IS_ERR(task)) {
			err = PTR_ERR(task);
			goto err_group_fd;
		}
	}

10473 10474 10475 10476 10477 10478
	if (task && group_leader &&
	    group_leader->attr.inherit != attr.inherit) {
		err = -EINVAL;
		goto err_task;
	}

10479 10480 10481
	if (task) {
		err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
		if (err)
10482
			goto err_task;
10483 10484 10485 10486 10487 10488 10489 10490 10491 10492 10493 10494 10495 10496

		/*
		 * Reuse ptrace permission checks for now.
		 *
		 * We must hold cred_guard_mutex across this and any potential
		 * perf_install_in_context() call for this new event to
		 * serialize against exec() altering our credentials (and the
		 * perf_event_exit_task() that could imply).
		 */
		err = -EACCES;
		if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
			goto err_cred;
	}

10497 10498 10499
	if (flags & PERF_FLAG_PID_CGROUP)
		cgroup_fd = pid;

10500
	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
10501
				 NULL, NULL, cgroup_fd);
10502 10503
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
10504
		goto err_cred;
10505 10506
	}

10507 10508
	if (is_sampling_event(event)) {
		if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
10509
			err = -EOPNOTSUPP;
10510 10511 10512 10513
			goto err_alloc;
		}
	}

10514 10515 10516 10517 10518
	/*
	 * Special case software events and allow them to be part of
	 * any hardware group.
	 */
	pmu = event->pmu;
10519

10520 10521 10522 10523 10524 10525
	if (attr.use_clockid) {
		err = perf_event_set_clock(event, attr.clockid);
		if (err)
			goto err_alloc;
	}

10526 10527 10528
	if (pmu->task_ctx_nr == perf_sw_context)
		event->event_caps |= PERF_EV_CAP_SOFTWARE;

10529 10530 10531
	if (group_leader) {
		if (is_software_event(event) &&
		    !in_software_context(group_leader)) {
10532
			/*
10533 10534
			 * If the event is a sw event, but the group_leader
			 * is on hw context.
10535
			 *
10536 10537 10538
			 * Allow the addition of software events to hw
			 * groups, this is safe because software events
			 * never fail to schedule.
10539
			 */
10540 10541 10542
			pmu = group_leader->ctx->pmu;
		} else if (!is_software_event(event) &&
			   is_software_event(group_leader) &&
10543
			   (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
10544 10545 10546 10547 10548 10549 10550 10551
			/*
			 * In case the group is a pure software group, and we
			 * try to add a hardware event, move the whole group to
			 * the hardware context.
			 */
			move_group = 1;
		}
	}
10552 10553 10554 10555

	/*
	 * Get the target context (task or percpu):
	 */
10556
	ctx = find_get_context(pmu, task, event);
10557 10558
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
10559
		goto err_alloc;
10560 10561
	}

10562 10563 10564 10565 10566
	if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
		err = -EBUSY;
		goto err_context;
	}

I
Ingo Molnar 已提交
10567
	/*
10568
	 * Look up the group leader (we will attach this event to it):
10569
	 */
10570
	if (group_leader) {
10571
		err = -EINVAL;
10572 10573

		/*
I
Ingo Molnar 已提交
10574 10575 10576 10577
		 * Do not allow a recursive hierarchy (this new sibling
		 * becoming part of another group-sibling):
		 */
		if (group_leader->group_leader != group_leader)
10578
			goto err_context;
10579 10580 10581 10582 10583

		/* All events in a group should have the same clock */
		if (group_leader->clock != event->clock)
			goto err_context;

I
Ingo Molnar 已提交
10584
		/*
10585 10586 10587
		 * Make sure we're both events for the same CPU;
		 * grouping events for different CPUs is broken; since
		 * you can never concurrently schedule them anyhow.
10588
		 */
10589 10590
		if (group_leader->cpu != event->cpu)
			goto err_context;
10591

10592 10593 10594 10595 10596 10597 10598 10599 10600 10601 10602 10603 10604 10605
		/*
		 * Make sure we're both on the same task, or both
		 * per-CPU events.
		 */
		if (group_leader->ctx->task != ctx->task)
			goto err_context;

		/*
		 * Do not allow to attach to a group in a different task
		 * or CPU context. If we're moving SW events, we'll fix
		 * this up later, so allow that.
		 */
		if (!move_group && group_leader->ctx != ctx)
			goto err_context;
10606

10607 10608 10609
		/*
		 * Only a group leader can be exclusive or pinned
		 */
10610
		if (attr.exclusive || attr.pinned)
10611
			goto err_context;
10612 10613 10614 10615 10616
	}

	if (output_event) {
		err = perf_event_set_output(event, output_event);
		if (err)
10617
			goto err_context;
10618
	}
T
Thomas Gleixner 已提交
10619

10620 10621
	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
					f_flags);
10622 10623
	if (IS_ERR(event_file)) {
		err = PTR_ERR(event_file);
10624
		event_file = NULL;
10625
		goto err_context;
10626
	}
10627

10628
	if (move_group) {
10629 10630
		gctx = __perf_event_ctx_lock_double(group_leader, ctx);

10631 10632 10633 10634
		if (gctx->task == TASK_TOMBSTONE) {
			err = -ESRCH;
			goto err_locked;
		}
10635 10636 10637 10638 10639 10640 10641 10642 10643 10644 10645 10646 10647 10648 10649 10650 10651 10652 10653

		/*
		 * Check if we raced against another sys_perf_event_open() call
		 * moving the software group underneath us.
		 */
		if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
			/*
			 * If someone moved the group out from under us, check
			 * if this new event wound up on the same ctx, if so
			 * its the regular !move_group case, otherwise fail.
			 */
			if (gctx != ctx) {
				err = -EINVAL;
				goto err_locked;
			} else {
				perf_event_ctx_unlock(group_leader, gctx);
				move_group = 0;
			}
		}
10654 10655 10656 10657
	} else {
		mutex_lock(&ctx->mutex);
	}

10658 10659 10660 10661 10662
	if (ctx->task == TASK_TOMBSTONE) {
		err = -ESRCH;
		goto err_locked;
	}

P
Peter Zijlstra 已提交
10663 10664 10665 10666 10667
	if (!perf_event_validate_size(event)) {
		err = -E2BIG;
		goto err_locked;
	}

10668 10669 10670 10671 10672 10673 10674 10675 10676 10677 10678 10679 10680 10681 10682 10683 10684
	if (!task) {
		/*
		 * Check if the @cpu we're creating an event for is online.
		 *
		 * We use the perf_cpu_context::ctx::mutex to serialize against
		 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
		 */
		struct perf_cpu_context *cpuctx =
			container_of(ctx, struct perf_cpu_context, ctx);

		if (!cpuctx->online) {
			err = -ENODEV;
			goto err_locked;
		}
	}


10685 10686 10687 10688 10689 10690 10691
	/*
	 * Must be under the same ctx::mutex as perf_install_in_context(),
	 * because we need to serialize with concurrent event creation.
	 */
	if (!exclusive_event_installable(event, ctx)) {
		/* exclusive and group stuff are assumed mutually exclusive */
		WARN_ON_ONCE(move_group);
P
Peter Zijlstra 已提交
10692

10693 10694 10695
		err = -EBUSY;
		goto err_locked;
	}
P
Peter Zijlstra 已提交
10696

10697 10698
	WARN_ON_ONCE(ctx->parent_ctx);

10699 10700 10701 10702 10703
	/*
	 * This is the point on no return; we cannot fail hereafter. This is
	 * where we start modifying current state.
	 */

10704
	if (move_group) {
P
Peter Zijlstra 已提交
10705 10706 10707 10708
		/*
		 * See perf_event_ctx_lock() for comments on the details
		 * of swizzling perf_event::ctx.
		 */
10709
		perf_remove_from_context(group_leader, 0);
10710
		put_ctx(gctx);
J
Jiri Olsa 已提交
10711

P
Peter Zijlstra 已提交
10712
		for_each_sibling_event(sibling, group_leader) {
10713
			perf_remove_from_context(sibling, 0);
10714 10715 10716
			put_ctx(gctx);
		}

P
Peter Zijlstra 已提交
10717 10718 10719 10720
		/*
		 * Wait for everybody to stop referencing the events through
		 * the old lists, before installing it on new lists.
		 */
10721
		synchronize_rcu();
P
Peter Zijlstra 已提交
10722

10723 10724 10725 10726 10727 10728 10729 10730 10731 10732
		/*
		 * Install the group siblings before the group leader.
		 *
		 * Because a group leader will try and install the entire group
		 * (through the sibling list, which is still in-tact), we can
		 * end up with siblings installed in the wrong context.
		 *
		 * By installing siblings first we NO-OP because they're not
		 * reachable through the group lists.
		 */
P
Peter Zijlstra 已提交
10733
		for_each_sibling_event(sibling, group_leader) {
10734
			perf_event__state_init(sibling);
10735
			perf_install_in_context(ctx, sibling, sibling->cpu);
10736 10737
			get_ctx(ctx);
		}
10738 10739 10740 10741 10742 10743 10744 10745 10746

		/*
		 * Removing from the context ends up with disabled
		 * event. What we want here is event in the initial
		 * startup state, ready to be add into new context.
		 */
		perf_event__state_init(group_leader);
		perf_install_in_context(ctx, group_leader, group_leader->cpu);
		get_ctx(ctx);
10747 10748
	}

10749 10750 10751 10752 10753 10754 10755 10756 10757
	/*
	 * Precalculate sample_data sizes; do while holding ctx::mutex such
	 * that we're serialized against further additions and before
	 * perf_install_in_context() which is the point the event is active and
	 * can use these values.
	 */
	perf_event__header_size(event);
	perf_event__id_header_size(event);

P
Peter Zijlstra 已提交
10758 10759
	event->owner = current;

10760
	perf_install_in_context(ctx, event, event->cpu);
10761
	perf_unpin_context(ctx);
P
Peter Zijlstra 已提交
10762

10763
	if (move_group)
10764
		perf_event_ctx_unlock(group_leader, gctx);
10765
	mutex_unlock(&ctx->mutex);
10766

10767 10768 10769 10770 10771
	if (task) {
		mutex_unlock(&task->signal->cred_guard_mutex);
		put_task_struct(task);
	}

10772 10773 10774
	mutex_lock(&current->perf_event_mutex);
	list_add_tail(&event->owner_entry, &current->perf_event_list);
	mutex_unlock(&current->perf_event_mutex);
10775

10776 10777 10778 10779 10780 10781
	/*
	 * Drop the reference on the group_event after placing the
	 * new event on the sibling_list. This ensures destruction
	 * of the group leader will find the pointer to itself in
	 * perf_group_detach().
	 */
10782
	fdput(group);
10783 10784
	fd_install(event_fd, event_file);
	return event_fd;
T
Thomas Gleixner 已提交
10785

10786 10787
err_locked:
	if (move_group)
10788
		perf_event_ctx_unlock(group_leader, gctx);
10789 10790 10791
	mutex_unlock(&ctx->mutex);
/* err_file: */
	fput(event_file);
10792
err_context:
10793
	perf_unpin_context(ctx);
10794
	put_ctx(ctx);
10795
err_alloc:
P
Peter Zijlstra 已提交
10796 10797 10798 10799 10800 10801
	/*
	 * If event_file is set, the fput() above will have called ->release()
	 * and that will take care of freeing the event.
	 */
	if (!event_file)
		free_event(event);
10802 10803 10804
err_cred:
	if (task)
		mutex_unlock(&task->signal->cred_guard_mutex);
10805
err_task:
P
Peter Zijlstra 已提交
10806 10807
	if (task)
		put_task_struct(task);
10808
err_group_fd:
10809
	fdput(group);
10810 10811
err_fd:
	put_unused_fd(event_fd);
10812
	return err;
T
Thomas Gleixner 已提交
10813 10814
}

10815 10816 10817 10818 10819
/**
 * perf_event_create_kernel_counter
 *
 * @attr: attributes of the counter to create
 * @cpu: cpu in which the counter is bound
M
Matt Helsley 已提交
10820
 * @task: task to profile (NULL for percpu)
10821 10822 10823
 */
struct perf_event *
perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
M
Matt Helsley 已提交
10824
				 struct task_struct *task,
10825 10826
				 perf_overflow_handler_t overflow_handler,
				 void *context)
10827 10828
{
	struct perf_event_context *ctx;
10829
	struct perf_event *event;
10830
	int err;
10831

10832 10833 10834
	/*
	 * Get the target context (task or percpu):
	 */
10835

10836
	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
10837
				 overflow_handler, context, -1);
10838 10839 10840 10841
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
		goto err;
	}
10842

10843
	/* Mark owner so we could distinguish it from user events. */
10844
	event->owner = TASK_TOMBSTONE;
10845

10846
	ctx = find_get_context(event->pmu, task, event);
10847 10848
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
10849
		goto err_free;
10850
	}
10851 10852 10853

	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
10854 10855 10856 10857 10858
	if (ctx->task == TASK_TOMBSTONE) {
		err = -ESRCH;
		goto err_unlock;
	}

10859 10860 10861 10862 10863 10864 10865 10866 10867 10868 10869 10870 10871 10872 10873
	if (!task) {
		/*
		 * Check if the @cpu we're creating an event for is online.
		 *
		 * We use the perf_cpu_context::ctx::mutex to serialize against
		 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
		 */
		struct perf_cpu_context *cpuctx =
			container_of(ctx, struct perf_cpu_context, ctx);
		if (!cpuctx->online) {
			err = -ENODEV;
			goto err_unlock;
		}
	}

10874 10875
	if (!exclusive_event_installable(event, ctx)) {
		err = -EBUSY;
10876
		goto err_unlock;
10877 10878
	}

10879
	perf_install_in_context(ctx, event, cpu);
10880
	perf_unpin_context(ctx);
10881 10882 10883 10884
	mutex_unlock(&ctx->mutex);

	return event;

10885 10886 10887 10888
err_unlock:
	mutex_unlock(&ctx->mutex);
	perf_unpin_context(ctx);
	put_ctx(ctx);
10889 10890 10891
err_free:
	free_event(event);
err:
10892
	return ERR_PTR(err);
10893
}
10894
EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
10895

10896 10897 10898 10899 10900 10901 10902 10903 10904 10905
void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
{
	struct perf_event_context *src_ctx;
	struct perf_event_context *dst_ctx;
	struct perf_event *event, *tmp;
	LIST_HEAD(events);

	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;

P
Peter Zijlstra 已提交
10906 10907 10908 10909 10910
	/*
	 * See perf_event_ctx_lock() for comments on the details
	 * of swizzling perf_event::ctx.
	 */
	mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
10911 10912
	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
				 event_entry) {
10913
		perf_remove_from_context(event, 0);
10914
		unaccount_event_cpu(event, src_cpu);
10915
		put_ctx(src_ctx);
10916
		list_add(&event->migrate_entry, &events);
10917 10918
	}

10919 10920 10921
	/*
	 * Wait for the events to quiesce before re-instating them.
	 */
10922 10923
	synchronize_rcu();

10924 10925 10926 10927 10928 10929 10930 10931 10932 10933 10934 10935 10936 10937 10938 10939 10940 10941 10942 10943 10944 10945 10946 10947
	/*
	 * Re-instate events in 2 passes.
	 *
	 * Skip over group leaders and only install siblings on this first
	 * pass, siblings will not get enabled without a leader, however a
	 * leader will enable its siblings, even if those are still on the old
	 * context.
	 */
	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
		if (event->group_leader == event)
			continue;

		list_del(&event->migrate_entry);
		if (event->state >= PERF_EVENT_STATE_OFF)
			event->state = PERF_EVENT_STATE_INACTIVE;
		account_event_cpu(event, dst_cpu);
		perf_install_in_context(dst_ctx, event, dst_cpu);
		get_ctx(dst_ctx);
	}

	/*
	 * Once all the siblings are setup properly, install the group leaders
	 * to make it go.
	 */
10948 10949
	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
		list_del(&event->migrate_entry);
10950 10951
		if (event->state >= PERF_EVENT_STATE_OFF)
			event->state = PERF_EVENT_STATE_INACTIVE;
10952
		account_event_cpu(event, dst_cpu);
10953 10954 10955 10956
		perf_install_in_context(dst_ctx, event, dst_cpu);
		get_ctx(dst_ctx);
	}
	mutex_unlock(&dst_ctx->mutex);
P
Peter Zijlstra 已提交
10957
	mutex_unlock(&src_ctx->mutex);
10958 10959 10960
}
EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);

10961
static void sync_child_event(struct perf_event *child_event,
10962
			       struct task_struct *child)
10963
{
10964
	struct perf_event *parent_event = child_event->parent;
10965
	u64 child_val;
10966

10967 10968
	if (child_event->attr.inherit_stat)
		perf_event_read_event(child_event, child);
10969

P
Peter Zijlstra 已提交
10970
	child_val = perf_event_count(child_event);
10971 10972 10973 10974

	/*
	 * Add back the child's count to the parent's count:
	 */
10975
	atomic64_add(child_val, &parent_event->child_count);
10976 10977 10978 10979
	atomic64_add(child_event->total_time_enabled,
		     &parent_event->child_total_time_enabled);
	atomic64_add(child_event->total_time_running,
		     &parent_event->child_total_time_running);
10980 10981
}

10982
static void
10983 10984 10985
perf_event_exit_event(struct perf_event *child_event,
		      struct perf_event_context *child_ctx,
		      struct task_struct *child)
10986
{
10987 10988
	struct perf_event *parent_event = child_event->parent;

10989 10990 10991 10992 10993 10994 10995 10996 10997 10998 10999 11000
	/*
	 * Do not destroy the 'original' grouping; because of the context
	 * switch optimization the original events could've ended up in a
	 * random child task.
	 *
	 * If we were to destroy the original group, all group related
	 * operations would cease to function properly after this random
	 * child dies.
	 *
	 * Do destroy all inherited groups, we don't care about those
	 * and being thorough is better.
	 */
11001 11002 11003
	raw_spin_lock_irq(&child_ctx->lock);
	WARN_ON_ONCE(child_ctx->is_active);

11004
	if (parent_event)
11005 11006
		perf_group_detach(child_event);
	list_del_event(child_event, child_ctx);
11007
	perf_event_set_state(child_event, PERF_EVENT_STATE_EXIT); /* is_event_hup() */
11008
	raw_spin_unlock_irq(&child_ctx->lock);
11009

11010
	/*
11011
	 * Parent events are governed by their filedesc, retain them.
11012
	 */
11013
	if (!parent_event) {
11014
		perf_event_wakeup(child_event);
11015
		return;
11016
	}
11017 11018 11019 11020 11021 11022 11023 11024 11025 11026 11027 11028 11029 11030 11031 11032 11033 11034 11035 11036
	/*
	 * Child events can be cleaned up.
	 */

	sync_child_event(child_event, child);

	/*
	 * Remove this event from the parent's list
	 */
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_del_init(&child_event->child_list);
	mutex_unlock(&parent_event->child_mutex);

	/*
	 * Kick perf_poll() for is_event_hup().
	 */
	perf_event_wakeup(parent_event);
	free_event(child_event);
	put_event(parent_event);
11037 11038
}

P
Peter Zijlstra 已提交
11039
static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
11040
{
11041
	struct perf_event_context *child_ctx, *clone_ctx = NULL;
11042 11043 11044
	struct perf_event *child_event, *next;

	WARN_ON_ONCE(child != current);
11045

11046
	child_ctx = perf_pin_task_context(child, ctxn);
11047
	if (!child_ctx)
11048 11049
		return;

11050
	/*
11051 11052 11053 11054 11055 11056 11057 11058
	 * In order to reduce the amount of tricky in ctx tear-down, we hold
	 * ctx::mutex over the entire thing. This serializes against almost
	 * everything that wants to access the ctx.
	 *
	 * The exception is sys_perf_event_open() /
	 * perf_event_create_kernel_count() which does find_get_context()
	 * without ctx::mutex (it cannot because of the move_group double mutex
	 * lock thing). See the comments in perf_install_in_context().
11059
	 */
11060
	mutex_lock(&child_ctx->mutex);
11061 11062

	/*
11063 11064 11065
	 * In a single ctx::lock section, de-schedule the events and detach the
	 * context from the task such that we cannot ever get it scheduled back
	 * in.
11066
	 */
11067
	raw_spin_lock_irq(&child_ctx->lock);
11068
	task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
11069

11070
	/*
11071 11072
	 * Now that the context is inactive, destroy the task <-> ctx relation
	 * and mark the context dead.
11073
	 */
11074 11075 11076 11077
	RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
	put_ctx(child_ctx); /* cannot be last */
	WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
	put_task_struct(current); /* cannot be last */
11078

11079
	clone_ctx = unclone_ctx(child_ctx);
11080
	raw_spin_unlock_irq(&child_ctx->lock);
P
Peter Zijlstra 已提交
11081

11082 11083
	if (clone_ctx)
		put_ctx(clone_ctx);
11084

P
Peter Zijlstra 已提交
11085
	/*
11086 11087 11088
	 * Report the task dead after unscheduling the events so that we
	 * won't get any samples after PERF_RECORD_EXIT. We can however still
	 * get a few PERF_RECORD_READ events.
P
Peter Zijlstra 已提交
11089
	 */
11090
	perf_event_task(child, child_ctx, 0);
11091

11092
	list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
11093
		perf_event_exit_event(child_event, child_ctx, child);
11094

11095 11096 11097
	mutex_unlock(&child_ctx->mutex);

	put_ctx(child_ctx);
11098 11099
}

P
Peter Zijlstra 已提交
11100 11101
/*
 * When a child task exits, feed back event values to parent events.
11102 11103 11104
 *
 * Can be called with cred_guard_mutex held when called from
 * install_exec_creds().
P
Peter Zijlstra 已提交
11105 11106 11107
 */
void perf_event_exit_task(struct task_struct *child)
{
P
Peter Zijlstra 已提交
11108
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
11109 11110
	int ctxn;

P
Peter Zijlstra 已提交
11111 11112 11113 11114 11115 11116 11117 11118 11119 11120
	mutex_lock(&child->perf_event_mutex);
	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
				 owner_entry) {
		list_del_init(&event->owner_entry);

		/*
		 * Ensure the list deletion is visible before we clear
		 * the owner, closes a race against perf_release() where
		 * we need to serialize on the owner->perf_event_mutex.
		 */
11121
		smp_store_release(&event->owner, NULL);
P
Peter Zijlstra 已提交
11122 11123 11124
	}
	mutex_unlock(&child->perf_event_mutex);

P
Peter Zijlstra 已提交
11125 11126
	for_each_task_context_nr(ctxn)
		perf_event_exit_task_context(child, ctxn);
J
Jiri Olsa 已提交
11127 11128 11129 11130 11131 11132 11133 11134

	/*
	 * The perf_event_exit_task_context calls perf_event_task
	 * with child's task_ctx, which generates EXIT events for
	 * child contexts and sets child->perf_event_ctxp[] to NULL.
	 * At this point we need to send EXIT events to cpu contexts.
	 */
	perf_event_task(child, NULL, 0);
P
Peter Zijlstra 已提交
11135 11136
}

11137 11138 11139 11140 11141 11142 11143 11144 11145 11146 11147 11148
static void perf_free_event(struct perf_event *event,
			    struct perf_event_context *ctx)
{
	struct perf_event *parent = event->parent;

	if (WARN_ON_ONCE(!parent))
		return;

	mutex_lock(&parent->child_mutex);
	list_del_init(&event->child_list);
	mutex_unlock(&parent->child_mutex);

11149
	put_event(parent);
11150

P
Peter Zijlstra 已提交
11151
	raw_spin_lock_irq(&ctx->lock);
11152
	perf_group_detach(event);
11153
	list_del_event(event, ctx);
P
Peter Zijlstra 已提交
11154
	raw_spin_unlock_irq(&ctx->lock);
11155 11156 11157
	free_event(event);
}

11158
/*
P
Peter Zijlstra 已提交
11159
 * Free an unexposed, unused context as created by inheritance by
P
Peter Zijlstra 已提交
11160
 * perf_event_init_task below, used by fork() in case of fail.
P
Peter Zijlstra 已提交
11161 11162 11163
 *
 * Not all locks are strictly required, but take them anyway to be nice and
 * help out with the lockdep assertions.
11164
 */
11165
void perf_event_free_task(struct task_struct *task)
11166
{
P
Peter Zijlstra 已提交
11167
	struct perf_event_context *ctx;
11168
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
11169
	int ctxn;
11170

P
Peter Zijlstra 已提交
11171 11172 11173 11174
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;
11175

P
Peter Zijlstra 已提交
11176
		mutex_lock(&ctx->mutex);
11177 11178 11179 11180 11181 11182 11183 11184 11185 11186 11187
		raw_spin_lock_irq(&ctx->lock);
		/*
		 * Destroy the task <-> ctx relation and mark the context dead.
		 *
		 * This is important because even though the task hasn't been
		 * exposed yet the context has been (through child_list).
		 */
		RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
		WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
		put_task_struct(task); /* cannot be last */
		raw_spin_unlock_irq(&ctx->lock);
11188

11189
		list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
P
Peter Zijlstra 已提交
11190
			perf_free_event(event, ctx);
11191

P
Peter Zijlstra 已提交
11192 11193 11194
		mutex_unlock(&ctx->mutex);
		put_ctx(ctx);
	}
11195 11196
}

11197 11198 11199 11200 11201 11202 11203 11204
void perf_event_delayed_put(struct task_struct *task)
{
	int ctxn;

	for_each_task_context_nr(ctxn)
		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
}

11205
struct file *perf_event_get(unsigned int fd)
11206
{
11207
	struct file *file;
11208

11209 11210 11211
	file = fget_raw(fd);
	if (!file)
		return ERR_PTR(-EBADF);
11212

11213 11214 11215 11216
	if (file->f_op != &perf_fops) {
		fput(file);
		return ERR_PTR(-EBADF);
	}
11217

11218
	return file;
11219 11220
}

11221 11222 11223 11224 11225 11226 11227 11228
const struct perf_event *perf_get_event(struct file *file)
{
	if (file->f_op != &perf_fops)
		return ERR_PTR(-EINVAL);

	return file->private_data;
}

11229 11230 11231 11232 11233 11234 11235 11236
const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
{
	if (!event)
		return ERR_PTR(-EINVAL);

	return &event->attr;
}

P
Peter Zijlstra 已提交
11237
/*
11238 11239 11240 11241 11242 11243
 * Inherit a event from parent task to child task.
 *
 * Returns:
 *  - valid pointer on success
 *  - NULL for orphaned events
 *  - IS_ERR() on error
P
Peter Zijlstra 已提交
11244 11245 11246 11247 11248 11249 11250 11251 11252
 */
static struct perf_event *
inherit_event(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event *group_leader,
	      struct perf_event_context *child_ctx)
{
11253
	enum perf_event_state parent_state = parent_event->state;
P
Peter Zijlstra 已提交
11254
	struct perf_event *child_event;
11255
	unsigned long flags;
P
Peter Zijlstra 已提交
11256 11257 11258 11259 11260 11261 11262 11263 11264 11265 11266 11267

	/*
	 * Instead of creating recursive hierarchies of events,
	 * we link inherited events back to the original parent,
	 * which has a filp for sure, which we use as the reference
	 * count:
	 */
	if (parent_event->parent)
		parent_event = parent_event->parent;

	child_event = perf_event_alloc(&parent_event->attr,
					   parent_event->cpu,
11268
					   child,
P
Peter Zijlstra 已提交
11269
					   group_leader, parent_event,
11270
					   NULL, NULL, -1);
P
Peter Zijlstra 已提交
11271 11272
	if (IS_ERR(child_event))
		return child_event;
11273

11274 11275 11276 11277 11278 11279 11280 11281 11282 11283 11284 11285 11286

	if ((child_event->attach_state & PERF_ATTACH_TASK_DATA) &&
	    !child_ctx->task_ctx_data) {
		struct pmu *pmu = child_event->pmu;

		child_ctx->task_ctx_data = kzalloc(pmu->task_ctx_size,
						   GFP_KERNEL);
		if (!child_ctx->task_ctx_data) {
			free_event(child_event);
			return NULL;
		}
	}

11287 11288 11289 11290 11291 11292 11293
	/*
	 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
	 * must be under the same lock in order to serialize against
	 * perf_event_release_kernel(), such that either we must observe
	 * is_orphaned_event() or they will observe us on the child_list.
	 */
	mutex_lock(&parent_event->child_mutex);
11294 11295
	if (is_orphaned_event(parent_event) ||
	    !atomic_long_inc_not_zero(&parent_event->refcount)) {
11296
		mutex_unlock(&parent_event->child_mutex);
11297
		/* task_ctx_data is freed with child_ctx */
11298 11299 11300 11301
		free_event(child_event);
		return NULL;
	}

P
Peter Zijlstra 已提交
11302 11303 11304 11305 11306 11307 11308
	get_ctx(child_ctx);

	/*
	 * Make the child state follow the state of the parent event,
	 * not its attr.disabled bit.  We hold the parent's mutex,
	 * so we won't race with perf_event_{en, dis}able_family.
	 */
11309
	if (parent_state >= PERF_EVENT_STATE_INACTIVE)
P
Peter Zijlstra 已提交
11310 11311 11312 11313 11314 11315 11316 11317 11318 11319 11320 11321 11322 11323 11324 11325
		child_event->state = PERF_EVENT_STATE_INACTIVE;
	else
		child_event->state = PERF_EVENT_STATE_OFF;

	if (parent_event->attr.freq) {
		u64 sample_period = parent_event->hw.sample_period;
		struct hw_perf_event *hwc = &child_event->hw;

		hwc->sample_period = sample_period;
		hwc->last_period   = sample_period;

		local64_set(&hwc->period_left, sample_period);
	}

	child_event->ctx = child_ctx;
	child_event->overflow_handler = parent_event->overflow_handler;
11326 11327
	child_event->overflow_handler_context
		= parent_event->overflow_handler_context;
P
Peter Zijlstra 已提交
11328

11329 11330 11331 11332
	/*
	 * Precalculate sample_data sizes
	 */
	perf_event__header_size(child_event);
11333
	perf_event__id_header_size(child_event);
11334

P
Peter Zijlstra 已提交
11335 11336 11337
	/*
	 * Link it up in the child's context:
	 */
11338
	raw_spin_lock_irqsave(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
11339
	add_event_to_ctx(child_event, child_ctx);
11340
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
11341 11342 11343 11344 11345 11346 11347 11348 11349 11350

	/*
	 * Link this into the parent event's child list
	 */
	list_add_tail(&child_event->child_list, &parent_event->child_list);
	mutex_unlock(&parent_event->child_mutex);

	return child_event;
}

11351 11352 11353 11354 11355 11356 11357 11358 11359 11360
/*
 * Inherits an event group.
 *
 * This will quietly suppress orphaned events; !inherit_event() is not an error.
 * This matches with perf_event_release_kernel() removing all child events.
 *
 * Returns:
 *  - 0 on success
 *  - <0 on error
 */
P
Peter Zijlstra 已提交
11361 11362 11363 11364 11365 11366 11367 11368 11369 11370 11371 11372 11373 11374
static int inherit_group(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event_context *child_ctx)
{
	struct perf_event *leader;
	struct perf_event *sub;
	struct perf_event *child_ctr;

	leader = inherit_event(parent_event, parent, parent_ctx,
				 child, NULL, child_ctx);
	if (IS_ERR(leader))
		return PTR_ERR(leader);
11375 11376 11377 11378 11379
	/*
	 * @leader can be NULL here because of is_orphaned_event(). In this
	 * case inherit_event() will create individual events, similar to what
	 * perf_group_detach() would do anyway.
	 */
P
Peter Zijlstra 已提交
11380
	for_each_sibling_event(sub, parent_event) {
P
Peter Zijlstra 已提交
11381 11382 11383 11384 11385 11386
		child_ctr = inherit_event(sub, parent, parent_ctx,
					    child, leader, child_ctx);
		if (IS_ERR(child_ctr))
			return PTR_ERR(child_ctr);
	}
	return 0;
11387 11388
}

11389 11390 11391 11392 11393 11394 11395 11396 11397 11398 11399
/*
 * Creates the child task context and tries to inherit the event-group.
 *
 * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
 * inherited_all set when we 'fail' to inherit an orphaned event; this is
 * consistent with perf_event_release_kernel() removing all child events.
 *
 * Returns:
 *  - 0 on success
 *  - <0 on error
 */
11400 11401 11402
static int
inherit_task_group(struct perf_event *event, struct task_struct *parent,
		   struct perf_event_context *parent_ctx,
P
Peter Zijlstra 已提交
11403
		   struct task_struct *child, int ctxn,
11404 11405 11406
		   int *inherited_all)
{
	int ret;
P
Peter Zijlstra 已提交
11407
	struct perf_event_context *child_ctx;
11408 11409 11410 11411

	if (!event->attr.inherit) {
		*inherited_all = 0;
		return 0;
11412 11413
	}

11414
	child_ctx = child->perf_event_ctxp[ctxn];
11415 11416 11417 11418 11419 11420 11421
	if (!child_ctx) {
		/*
		 * This is executed from the parent task context, so
		 * inherit events that have been marked for cloning.
		 * First allocate and initialize a context for the
		 * child.
		 */
11422
		child_ctx = alloc_perf_context(parent_ctx->pmu, child);
11423 11424
		if (!child_ctx)
			return -ENOMEM;
11425

P
Peter Zijlstra 已提交
11426
		child->perf_event_ctxp[ctxn] = child_ctx;
11427 11428 11429 11430 11431 11432 11433 11434 11435
	}

	ret = inherit_group(event, parent, parent_ctx,
			    child, child_ctx);

	if (ret)
		*inherited_all = 0;

	return ret;
11436 11437
}

11438
/*
11439
 * Initialize the perf_event context in task_struct
11440
 */
11441
static int perf_event_init_context(struct task_struct *child, int ctxn)
11442
{
11443
	struct perf_event_context *child_ctx, *parent_ctx;
11444 11445
	struct perf_event_context *cloned_ctx;
	struct perf_event *event;
11446
	struct task_struct *parent = current;
11447
	int inherited_all = 1;
11448
	unsigned long flags;
11449
	int ret = 0;
11450

P
Peter Zijlstra 已提交
11451
	if (likely(!parent->perf_event_ctxp[ctxn]))
11452 11453
		return 0;

11454
	/*
11455 11456
	 * If the parent's context is a clone, pin it so it won't get
	 * swapped under us.
11457
	 */
P
Peter Zijlstra 已提交
11458
	parent_ctx = perf_pin_task_context(parent, ctxn);
11459 11460
	if (!parent_ctx)
		return 0;
11461

11462 11463 11464 11465 11466 11467 11468
	/*
	 * No need to check if parent_ctx != NULL here; since we saw
	 * it non-NULL earlier, the only reason for it to become NULL
	 * is if we exit, and since we're currently in the middle of
	 * a fork we can't be exiting at the same time.
	 */

11469 11470 11471 11472
	/*
	 * Lock the parent list. No need to lock the child - not PID
	 * hashed yet and not running, so nobody can access it.
	 */
11473
	mutex_lock(&parent_ctx->mutex);
11474 11475 11476 11477 11478

	/*
	 * We dont have to disable NMIs - we are only looking at
	 * the list, not manipulating it:
	 */
11479
	perf_event_groups_for_each(event, &parent_ctx->pinned_groups) {
P
Peter Zijlstra 已提交
11480 11481
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
11482
		if (ret)
11483
			goto out_unlock;
11484
	}
11485

11486 11487 11488 11489 11490 11491 11492 11493 11494
	/*
	 * We can't hold ctx->lock when iterating the ->flexible_group list due
	 * to allocations, but we need to prevent rotation because
	 * rotate_ctx() will change the list from interrupt context.
	 */
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 1;
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);

11495
	perf_event_groups_for_each(event, &parent_ctx->flexible_groups) {
P
Peter Zijlstra 已提交
11496 11497
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
11498
		if (ret)
11499
			goto out_unlock;
11500 11501
	}

11502 11503 11504
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 0;

P
Peter Zijlstra 已提交
11505
	child_ctx = child->perf_event_ctxp[ctxn];
11506

11507
	if (child_ctx && inherited_all) {
11508 11509 11510
		/*
		 * Mark the child context as a clone of the parent
		 * context, or of whatever the parent is a clone of.
P
Peter Zijlstra 已提交
11511 11512 11513
		 *
		 * Note that if the parent is a clone, the holding of
		 * parent_ctx->lock avoids it from being uncloned.
11514
		 */
P
Peter Zijlstra 已提交
11515
		cloned_ctx = parent_ctx->parent_ctx;
11516 11517
		if (cloned_ctx) {
			child_ctx->parent_ctx = cloned_ctx;
11518
			child_ctx->parent_gen = parent_ctx->parent_gen;
11519 11520 11521 11522 11523
		} else {
			child_ctx->parent_ctx = parent_ctx;
			child_ctx->parent_gen = parent_ctx->generation;
		}
		get_ctx(child_ctx->parent_ctx);
11524 11525
	}

P
Peter Zijlstra 已提交
11526
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
11527
out_unlock:
11528
	mutex_unlock(&parent_ctx->mutex);
11529

11530
	perf_unpin_context(parent_ctx);
11531
	put_ctx(parent_ctx);
11532

11533
	return ret;
11534 11535
}

P
Peter Zijlstra 已提交
11536 11537 11538 11539 11540 11541 11542
/*
 * Initialize the perf_event context in task_struct
 */
int perf_event_init_task(struct task_struct *child)
{
	int ctxn, ret;

11543 11544 11545 11546
	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
	mutex_init(&child->perf_event_mutex);
	INIT_LIST_HEAD(&child->perf_event_list);

P
Peter Zijlstra 已提交
11547 11548
	for_each_task_context_nr(ctxn) {
		ret = perf_event_init_context(child, ctxn);
P
Peter Zijlstra 已提交
11549 11550
		if (ret) {
			perf_event_free_task(child);
P
Peter Zijlstra 已提交
11551
			return ret;
P
Peter Zijlstra 已提交
11552
		}
P
Peter Zijlstra 已提交
11553 11554 11555 11556 11557
	}

	return 0;
}

11558 11559
static void __init perf_event_init_all_cpus(void)
{
11560
	struct swevent_htable *swhash;
11561 11562
	int cpu;

11563 11564
	zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);

11565
	for_each_possible_cpu(cpu) {
11566 11567
		swhash = &per_cpu(swevent_htable, cpu);
		mutex_init(&swhash->hlist_mutex);
11568
		INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
11569 11570 11571

		INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
		raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
11572

11573 11574 11575
#ifdef CONFIG_CGROUP_PERF
		INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
#endif
11576
		INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
11577 11578 11579
	}
}

11580
void perf_swevent_init_cpu(unsigned int cpu)
T
Thomas Gleixner 已提交
11581
{
P
Peter Zijlstra 已提交
11582
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
T
Thomas Gleixner 已提交
11583

11584
	mutex_lock(&swhash->hlist_mutex);
11585
	if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
11586 11587
		struct swevent_hlist *hlist;

11588 11589 11590
		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
		WARN_ON(!hlist);
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
11591
	}
11592
	mutex_unlock(&swhash->hlist_mutex);
T
Thomas Gleixner 已提交
11593 11594
}

11595
#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
P
Peter Zijlstra 已提交
11596
static void __perf_event_exit_context(void *__info)
T
Thomas Gleixner 已提交
11597
{
P
Peter Zijlstra 已提交
11598
	struct perf_event_context *ctx = __info;
11599 11600
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
	struct perf_event *event;
T
Thomas Gleixner 已提交
11601

11602
	raw_spin_lock(&ctx->lock);
11603
	ctx_sched_out(ctx, cpuctx, EVENT_TIME);
11604
	list_for_each_entry(event, &ctx->event_list, event_entry)
11605
		__perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
11606
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
11607
}
P
Peter Zijlstra 已提交
11608 11609 11610

static void perf_event_exit_cpu_context(int cpu)
{
11611
	struct perf_cpu_context *cpuctx;
P
Peter Zijlstra 已提交
11612 11613 11614
	struct perf_event_context *ctx;
	struct pmu *pmu;

11615 11616 11617 11618
	mutex_lock(&pmus_lock);
	list_for_each_entry(pmu, &pmus, entry) {
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
		ctx = &cpuctx->ctx;
P
Peter Zijlstra 已提交
11619 11620 11621

		mutex_lock(&ctx->mutex);
		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
11622
		cpuctx->online = 0;
P
Peter Zijlstra 已提交
11623 11624
		mutex_unlock(&ctx->mutex);
	}
11625 11626
	cpumask_clear_cpu(cpu, perf_online_mask);
	mutex_unlock(&pmus_lock);
P
Peter Zijlstra 已提交
11627
}
11628 11629 11630 11631 11632
#else

static void perf_event_exit_cpu_context(int cpu) { }

#endif
P
Peter Zijlstra 已提交
11633

11634 11635 11636 11637 11638 11639 11640 11641 11642 11643 11644 11645 11646 11647 11648 11649 11650 11651 11652 11653 11654 11655 11656
int perf_event_init_cpu(unsigned int cpu)
{
	struct perf_cpu_context *cpuctx;
	struct perf_event_context *ctx;
	struct pmu *pmu;

	perf_swevent_init_cpu(cpu);

	mutex_lock(&pmus_lock);
	cpumask_set_cpu(cpu, perf_online_mask);
	list_for_each_entry(pmu, &pmus, entry) {
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
		ctx = &cpuctx->ctx;

		mutex_lock(&ctx->mutex);
		cpuctx->online = 1;
		mutex_unlock(&ctx->mutex);
	}
	mutex_unlock(&pmus_lock);

	return 0;
}

11657
int perf_event_exit_cpu(unsigned int cpu)
T
Thomas Gleixner 已提交
11658
{
P
Peter Zijlstra 已提交
11659
	perf_event_exit_cpu_context(cpu);
11660
	return 0;
T
Thomas Gleixner 已提交
11661 11662
}

P
Peter Zijlstra 已提交
11663 11664 11665 11666 11667 11668 11669 11670 11671 11672 11673 11674 11675 11676 11677 11678 11679 11680 11681 11682
static int
perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
{
	int cpu;

	for_each_online_cpu(cpu)
		perf_event_exit_cpu(cpu);

	return NOTIFY_OK;
}

/*
 * Run the perf reboot notifier at the very last possible moment so that
 * the generic watchdog code runs as long as possible.
 */
static struct notifier_block perf_reboot_notifier = {
	.notifier_call = perf_reboot,
	.priority = INT_MIN,
};

11683
void __init perf_event_init(void)
T
Thomas Gleixner 已提交
11684
{
11685 11686
	int ret;

P
Peter Zijlstra 已提交
11687 11688
	idr_init(&pmu_idr);

11689
	perf_event_init_all_cpus();
11690
	init_srcu_struct(&pmus_srcu);
P
Peter Zijlstra 已提交
11691 11692 11693
	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
	perf_pmu_register(&perf_cpu_clock, NULL, -1);
	perf_pmu_register(&perf_task_clock, NULL, -1);
11694
	perf_tp_register();
11695
	perf_event_init_cpu(smp_processor_id());
P
Peter Zijlstra 已提交
11696
	register_reboot_notifier(&perf_reboot_notifier);
11697 11698 11699

	ret = init_hw_breakpoint();
	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
11700

11701 11702 11703 11704 11705 11706
	/*
	 * Build time assertion that we keep the data_head at the intended
	 * location.  IOW, validation we got the __reserved[] size right.
	 */
	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
		     != 1024);
T
Thomas Gleixner 已提交
11707
}
P
Peter Zijlstra 已提交
11708

11709 11710 11711 11712 11713 11714 11715 11716 11717 11718 11719
ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
			      char *page)
{
	struct perf_pmu_events_attr *pmu_attr =
		container_of(attr, struct perf_pmu_events_attr, attr);

	if (pmu_attr->event_str)
		return sprintf(page, "%s\n", pmu_attr->event_str);

	return 0;
}
11720
EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
11721

P
Peter Zijlstra 已提交
11722 11723 11724 11725 11726 11727 11728 11729 11730 11731 11732 11733 11734 11735 11736 11737 11738 11739 11740 11741 11742 11743 11744 11745 11746 11747 11748
static int __init perf_event_sysfs_init(void)
{
	struct pmu *pmu;
	int ret;

	mutex_lock(&pmus_lock);

	ret = bus_register(&pmu_bus);
	if (ret)
		goto unlock;

	list_for_each_entry(pmu, &pmus, entry) {
		if (!pmu->name || pmu->type < 0)
			continue;

		ret = pmu_dev_alloc(pmu);
		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
	}
	pmu_bus_running = 1;
	ret = 0;

unlock:
	mutex_unlock(&pmus_lock);

	return ret;
}
device_initcall(perf_event_sysfs_init);
S
Stephane Eranian 已提交
11749 11750

#ifdef CONFIG_CGROUP_PERF
11751 11752
static struct cgroup_subsys_state *
perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
S
Stephane Eranian 已提交
11753 11754 11755
{
	struct perf_cgroup *jc;

11756
	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
S
Stephane Eranian 已提交
11757 11758 11759 11760 11761 11762 11763 11764 11765 11766 11767 11768
	if (!jc)
		return ERR_PTR(-ENOMEM);

	jc->info = alloc_percpu(struct perf_cgroup_info);
	if (!jc->info) {
		kfree(jc);
		return ERR_PTR(-ENOMEM);
	}

	return &jc->css;
}

11769
static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
S
Stephane Eranian 已提交
11770
{
11771 11772
	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);

S
Stephane Eranian 已提交
11773 11774 11775 11776 11777 11778 11779
	free_percpu(jc->info);
	kfree(jc);
}

static int __perf_cgroup_move(void *info)
{
	struct task_struct *task = info;
11780
	rcu_read_lock();
S
Stephane Eranian 已提交
11781
	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
11782
	rcu_read_unlock();
S
Stephane Eranian 已提交
11783 11784 11785
	return 0;
}

11786
static void perf_cgroup_attach(struct cgroup_taskset *tset)
S
Stephane Eranian 已提交
11787
{
11788
	struct task_struct *task;
11789
	struct cgroup_subsys_state *css;
11790

11791
	cgroup_taskset_for_each(task, css, tset)
11792
		task_function_call(task, __perf_cgroup_move, task);
S
Stephane Eranian 已提交
11793 11794
}

11795
struct cgroup_subsys perf_event_cgrp_subsys = {
11796 11797
	.css_alloc	= perf_cgroup_css_alloc,
	.css_free	= perf_cgroup_css_free,
11798
	.attach		= perf_cgroup_attach,
11799 11800 11801 11802 11803 11804
	/*
	 * Implicitly enable on dfl hierarchy so that perf events can
	 * always be filtered by cgroup2 path as long as perf_event
	 * controller is not mounted on a legacy hierarchy.
	 */
	.implicit_on_dfl = true,
11805
	.threaded	= true,
S
Stephane Eranian 已提交
11806 11807
};
#endif /* CONFIG_CGROUP_PERF */