core.c 175.8 KB
Newer Older
T
Thomas Gleixner 已提交
1
/*
I
Ingo Molnar 已提交
2
 * Performance events core code:
T
Thomas Gleixner 已提交
3
 *
4
 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 6
 *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
 *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
A
Al Viro 已提交
7
 *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8
 *
I
Ingo Molnar 已提交
9
 * For licensing details see kernel-base/COPYING
T
Thomas Gleixner 已提交
10 11 12
 */

#include <linux/fs.h>
13
#include <linux/mm.h>
T
Thomas Gleixner 已提交
14 15
#include <linux/cpu.h>
#include <linux/smp.h>
P
Peter Zijlstra 已提交
16
#include <linux/idr.h>
17
#include <linux/file.h>
T
Thomas Gleixner 已提交
18
#include <linux/poll.h>
19
#include <linux/slab.h>
20
#include <linux/hash.h>
21
#include <linux/tick.h>
T
Thomas Gleixner 已提交
22
#include <linux/sysfs.h>
23
#include <linux/dcache.h>
T
Thomas Gleixner 已提交
24
#include <linux/percpu.h>
25
#include <linux/ptrace.h>
P
Peter Zijlstra 已提交
26
#include <linux/reboot.h>
27
#include <linux/vmstat.h>
P
Peter Zijlstra 已提交
28
#include <linux/device.h>
29
#include <linux/export.h>
30
#include <linux/vmalloc.h>
31 32
#include <linux/hardirq.h>
#include <linux/rculist.h>
T
Thomas Gleixner 已提交
33 34 35
#include <linux/uaccess.h>
#include <linux/syscalls.h>
#include <linux/anon_inodes.h>
I
Ingo Molnar 已提交
36
#include <linux/kernel_stat.h>
37
#include <linux/perf_event.h>
L
Li Zefan 已提交
38
#include <linux/ftrace_event.h>
39
#include <linux/hw_breakpoint.h>
40
#include <linux/mm_types.h>
41
#include <linux/cgroup.h>
T
Thomas Gleixner 已提交
42

43 44
#include "internal.h"

45 46
#include <asm/irq_regs.h>

47
struct remote_function_call {
48 49 50 51
	struct task_struct	*p;
	int			(*func)(void *info);
	void			*info;
	int			ret;
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
};

static void remote_function(void *data)
{
	struct remote_function_call *tfc = data;
	struct task_struct *p = tfc->p;

	if (p) {
		tfc->ret = -EAGAIN;
		if (task_cpu(p) != smp_processor_id() || !task_curr(p))
			return;
	}

	tfc->ret = tfc->func(tfc->info);
}

/**
 * task_function_call - call a function on the cpu on which a task runs
 * @p:		the task to evaluate
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func when the task is currently running. This might
 * be on the current CPU, which just calls the function directly
 *
 * returns: @func return value, or
 *	    -ESRCH  - when the process isn't running
 *	    -EAGAIN - when the process moved away
 */
static int
task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
{
	struct remote_function_call data = {
85 86 87 88
		.p	= p,
		.func	= func,
		.info	= info,
		.ret	= -ESRCH, /* No such (running) process */
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
	};

	if (task_curr(p))
		smp_call_function_single(task_cpu(p), remote_function, &data, 1);

	return data.ret;
}

/**
 * cpu_function_call - call a function on the cpu
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func on the remote cpu.
 *
 * returns: @func return value or -ENXIO when the cpu is offline
 */
static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
{
	struct remote_function_call data = {
109 110 111 112
		.p	= NULL,
		.func	= func,
		.info	= info,
		.ret	= -ENXIO, /* No such CPU */
113 114 115 116 117 118 119
	};

	smp_call_function_single(cpu, remote_function, &data, 1);

	return data.ret;
}

S
Stephane Eranian 已提交
120 121 122 123
#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
		       PERF_FLAG_FD_OUTPUT  |\
		       PERF_FLAG_PID_CGROUP)

124 125 126 127 128 129 130
/*
 * branch priv levels that need permission checks
 */
#define PERF_SAMPLE_BRANCH_PERM_PLM \
	(PERF_SAMPLE_BRANCH_KERNEL |\
	 PERF_SAMPLE_BRANCH_HV)

131 132 133 134 135 136
enum event_type_t {
	EVENT_FLEXIBLE = 0x1,
	EVENT_PINNED = 0x2,
	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
};

S
Stephane Eranian 已提交
137 138 139 140
/*
 * perf_sched_events : >0 events exist
 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
 */
141
struct static_key_deferred perf_sched_events __read_mostly;
S
Stephane Eranian 已提交
142
static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
143
static DEFINE_PER_CPU(atomic_t, perf_branch_stack_events);
S
Stephane Eranian 已提交
144

145 146 147
static atomic_t nr_mmap_events __read_mostly;
static atomic_t nr_comm_events __read_mostly;
static atomic_t nr_task_events __read_mostly;
148

P
Peter Zijlstra 已提交
149 150 151 152
static LIST_HEAD(pmus);
static DEFINE_MUTEX(pmus_lock);
static struct srcu_struct pmus_srcu;

153
/*
154
 * perf event paranoia level:
155 156
 *  -1 - not paranoid at all
 *   0 - disallow raw tracepoint access for unpriv
157
 *   1 - disallow cpu events for unpriv
158
 *   2 - disallow kernel profiling for unpriv
159
 */
160
int sysctl_perf_event_paranoid __read_mostly = 1;
161

162 163
/* Minimum for 512 kiB + 1 user control page */
int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
164 165

/*
166
 * max perf event sample rate
167
 */
P
Peter Zijlstra 已提交
168 169 170 171 172
#define DEFAULT_MAX_SAMPLE_RATE 100000
int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
static int max_samples_per_tick __read_mostly =
	DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);

173 174
static int perf_rotate_context(struct perf_cpu_context *cpuctx);

P
Peter Zijlstra 已提交
175 176 177 178 179 180 181 182 183 184 185 186 187
int perf_proc_update_handler(struct ctl_table *table, int write,
		void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
	int ret = proc_dointvec(table, write, buffer, lenp, ppos);

	if (ret || !write)
		return ret;

	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);

	return 0;
}
188

189
static atomic64_t perf_event_id;
190

191 192 193 194
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type);

static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
195 196 197 198 199
			     enum event_type_t event_type,
			     struct task_struct *task);

static void update_context_time(struct perf_event_context *ctx);
static u64 perf_event_time(struct perf_event *event);
200

201 202 203
static void ring_buffer_attach(struct perf_event *event,
			       struct ring_buffer *rb);

204
void __weak perf_event_print_debug(void)	{ }
T
Thomas Gleixner 已提交
205

206
extern __weak const char *perf_pmu_name(void)
T
Thomas Gleixner 已提交
207
{
208
	return "pmu";
T
Thomas Gleixner 已提交
209 210
}

211 212 213 214 215
static inline u64 perf_clock(void)
{
	return local_clock();
}

S
Stephane Eranian 已提交
216 217 218 219 220 221
static inline struct perf_cpu_context *
__get_cpu_context(struct perf_event_context *ctx)
{
	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
}

222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
			  struct perf_event_context *ctx)
{
	raw_spin_lock(&cpuctx->ctx.lock);
	if (ctx)
		raw_spin_lock(&ctx->lock);
}

static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
			    struct perf_event_context *ctx)
{
	if (ctx)
		raw_spin_unlock(&ctx->lock);
	raw_spin_unlock(&cpuctx->ctx.lock);
}

S
Stephane Eranian 已提交
238 239
#ifdef CONFIG_CGROUP_PERF

240 241 242 243 244 245 246 247 248 249 250
/*
 * perf_cgroup_info keeps track of time_enabled for a cgroup.
 * This is a per-cpu dynamically allocated data structure.
 */
struct perf_cgroup_info {
	u64				time;
	u64				timestamp;
};

struct perf_cgroup {
	struct cgroup_subsys_state	css;
251
	struct perf_cgroup_info	__percpu *info;
252 253
};

254 255 256 257 258
/*
 * Must ensure cgroup is pinned (css_get) before calling
 * this function. In other words, we cannot call this function
 * if there is no cgroup event for the current CPU context.
 */
S
Stephane Eranian 已提交
259 260 261 262 263 264 265 266 267 268 269 270 271
static inline struct perf_cgroup *
perf_cgroup_from_task(struct task_struct *task)
{
	return container_of(task_subsys_state(task, perf_subsys_id),
			struct perf_cgroup, css);
}

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);

272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
	/* @event doesn't care about cgroup */
	if (!event->cgrp)
		return true;

	/* wants specific cgroup scope but @cpuctx isn't associated with any */
	if (!cpuctx->cgrp)
		return false;

	/*
	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
	 * also enabled for all its descendant cgroups.  If @cpuctx's
	 * cgroup is a descendant of @event's (the test covers identity
	 * case), it's a match.
	 */
	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
				    event->cgrp->css.cgroup);
S
Stephane Eranian 已提交
288 289
}

290
static inline bool perf_tryget_cgroup(struct perf_event *event)
S
Stephane Eranian 已提交
291
{
292
	return css_tryget(&event->cgrp->css);
S
Stephane Eranian 已提交
293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340
}

static inline void perf_put_cgroup(struct perf_event *event)
{
	css_put(&event->cgrp->css);
}

static inline void perf_detach_cgroup(struct perf_event *event)
{
	perf_put_cgroup(event);
	event->cgrp = NULL;
}

static inline int is_cgroup_event(struct perf_event *event)
{
	return event->cgrp != NULL;
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	struct perf_cgroup_info *t;

	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	return t->time;
}

static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
{
	struct perf_cgroup_info *info;
	u64 now;

	now = perf_clock();

	info = this_cpu_ptr(cgrp->info);

	info->time += now - info->timestamp;
	info->timestamp = now;
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
	struct perf_cgroup *cgrp_out = cpuctx->cgrp;
	if (cgrp_out)
		__update_cgrp_time(cgrp_out);
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
341 342
	struct perf_cgroup *cgrp;

S
Stephane Eranian 已提交
343
	/*
344 345
	 * ensure we access cgroup data only when needed and
	 * when we know the cgroup is pinned (css_get)
S
Stephane Eranian 已提交
346
	 */
347
	if (!is_cgroup_event(event))
S
Stephane Eranian 已提交
348 349
		return;

350 351 352 353 354 355
	cgrp = perf_cgroup_from_task(current);
	/*
	 * Do not update time when cgroup is not active
	 */
	if (cgrp == event->cgrp)
		__update_cgrp_time(event->cgrp);
S
Stephane Eranian 已提交
356 357 358
}

static inline void
359 360
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
361 362 363 364
{
	struct perf_cgroup *cgrp;
	struct perf_cgroup_info *info;

365 366 367 368 369 370
	/*
	 * ctx->lock held by caller
	 * ensure we do not access cgroup data
	 * unless we have the cgroup pinned (css_get)
	 */
	if (!task || !ctx->nr_cgroups)
S
Stephane Eranian 已提交
371 372 373 374
		return;

	cgrp = perf_cgroup_from_task(task);
	info = this_cpu_ptr(cgrp->info);
375
	info->timestamp = ctx->timestamp;
S
Stephane Eranian 已提交
376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407
}

#define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
#define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */

/*
 * reschedule events based on the cgroup constraint of task.
 *
 * mode SWOUT : schedule out everything
 * mode SWIN : schedule in based on cgroup for next
 */
void perf_cgroup_switch(struct task_struct *task, int mode)
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	/*
	 * disable interrupts to avoid geting nr_cgroup
	 * changes via __perf_event_disable(). Also
	 * avoids preemption.
	 */
	local_irq_save(flags);

	/*
	 * we reschedule only in the presence of cgroup
	 * constrained events.
	 */
	rcu_read_lock();

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
408 409
		if (cpuctx->unique_pmu != pmu)
			continue; /* ensure we process each cpuctx once */
S
Stephane Eranian 已提交
410 411 412 413 414 415 416 417 418

		/*
		 * perf_cgroup_events says at least one
		 * context on this CPU has cgroup events.
		 *
		 * ctx->nr_cgroups reports the number of cgroup
		 * events for a context.
		 */
		if (cpuctx->ctx.nr_cgroups > 0) {
419 420
			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
			perf_pmu_disable(cpuctx->ctx.pmu);
S
Stephane Eranian 已提交
421 422 423 424 425 426 427 428 429 430 431

			if (mode & PERF_CGROUP_SWOUT) {
				cpu_ctx_sched_out(cpuctx, EVENT_ALL);
				/*
				 * must not be done before ctxswout due
				 * to event_filter_match() in event_sched_out()
				 */
				cpuctx->cgrp = NULL;
			}

			if (mode & PERF_CGROUP_SWIN) {
432
				WARN_ON_ONCE(cpuctx->cgrp);
433 434 435 436
				/*
				 * set cgrp before ctxsw in to allow
				 * event_filter_match() to not have to pass
				 * task around
S
Stephane Eranian 已提交
437 438 439 440
				 */
				cpuctx->cgrp = perf_cgroup_from_task(task);
				cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
			}
441 442
			perf_pmu_enable(cpuctx->ctx.pmu);
			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
S
Stephane Eranian 已提交
443 444 445 446 447 448 449 450
		}
	}

	rcu_read_unlock();

	local_irq_restore(flags);
}

451 452
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
453
{
454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

	/*
	 * we come here when we know perf_cgroup_events > 0
	 */
	cgrp1 = perf_cgroup_from_task(task);

	/*
	 * next is NULL when called from perf_event_enable_on_exec()
	 * that will systematically cause a cgroup_switch()
	 */
	if (next)
		cgrp2 = perf_cgroup_from_task(next);

	/*
	 * only schedule out current cgroup events if we know
	 * that we are switching to a different cgroup. Otherwise,
	 * do no touch the cgroup events.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
S
Stephane Eranian 已提交
476 477
}

478 479
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
480
{
481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

	/*
	 * we come here when we know perf_cgroup_events > 0
	 */
	cgrp1 = perf_cgroup_from_task(task);

	/* prev can never be NULL */
	cgrp2 = perf_cgroup_from_task(prev);

	/*
	 * only need to schedule in cgroup events if we are changing
	 * cgroup during ctxsw. Cgroup events were not scheduled
	 * out of ctxsw out if that was not the case.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
S
Stephane Eranian 已提交
499 500 501 502 503 504 505 506
}

static inline int perf_cgroup_connect(int fd, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	struct perf_cgroup *cgrp;
	struct cgroup_subsys_state *css;
507 508
	struct fd f = fdget(fd);
	int ret = 0;
S
Stephane Eranian 已提交
509

510
	if (!f.file)
S
Stephane Eranian 已提交
511 512
		return -EBADF;

513
	css = cgroup_css_from_dir(f.file, perf_subsys_id);
514 515 516 517
	if (IS_ERR(css)) {
		ret = PTR_ERR(css);
		goto out;
	}
S
Stephane Eranian 已提交
518 519 520 521

	cgrp = container_of(css, struct perf_cgroup, css);
	event->cgrp = cgrp;

522
	/* must be done before we fput() the file */
523 524 525 526 527
	if (!perf_tryget_cgroup(event)) {
		event->cgrp = NULL;
		ret = -ENOENT;
		goto out;
	}
528

S
Stephane Eranian 已提交
529 530 531 532 533 534 535 536 537
	/*
	 * all events in a group must monitor
	 * the same cgroup because a task belongs
	 * to only one perf cgroup at a time
	 */
	if (group_leader && group_leader->cgrp != cgrp) {
		perf_detach_cgroup(event);
		ret = -EINVAL;
	}
538
out:
539
	fdput(f);
S
Stephane Eranian 已提交
540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612
	return ret;
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
	struct perf_cgroup_info *t;
	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	event->shadow_ctx_time = now - t->timestamp;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
	/*
	 * when the current task's perf cgroup does not match
	 * the event's, we need to remember to call the
	 * perf_mark_enable() function the first time a task with
	 * a matching perf cgroup is scheduled in.
	 */
	if (is_cgroup_event(event) && !perf_cgroup_match(event))
		event->cgrp_defer_enabled = 1;
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
	struct perf_event *sub;
	u64 tstamp = perf_event_time(event);

	if (!event->cgrp_defer_enabled)
		return;

	event->cgrp_defer_enabled = 0;

	event->tstamp_enabled = tstamp - event->total_time_enabled;
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
			sub->cgrp_defer_enabled = 0;
		}
	}
}
#else /* !CONFIG_CGROUP_PERF */

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	return true;
}

static inline void perf_detach_cgroup(struct perf_event *event)
{}

static inline int is_cgroup_event(struct perf_event *event)
{
	return 0;
}

static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
{
	return 0;
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
}

613 614
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
615 616 617
{
}

618 619
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
620 621 622 623 624 625 626 627 628 629 630
{
}

static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	return -EINVAL;
}

static inline void
631 632
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662
{
}

void
perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
{
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	return 0;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
}
#endif

663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754
/*
 * set default to be dependent on timer tick just
 * like original code
 */
#define PERF_CPU_HRTIMER (1000 / HZ)
/*
 * function must be called with interrupts disbled
 */
static enum hrtimer_restart perf_cpu_hrtimer_handler(struct hrtimer *hr)
{
	struct perf_cpu_context *cpuctx;
	enum hrtimer_restart ret = HRTIMER_NORESTART;
	int rotations = 0;

	WARN_ON(!irqs_disabled());

	cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);

	rotations = perf_rotate_context(cpuctx);

	/*
	 * arm timer if needed
	 */
	if (rotations) {
		hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
		ret = HRTIMER_RESTART;
	}

	return ret;
}

/* CPU is going down */
void perf_cpu_hrtimer_cancel(int cpu)
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	if (WARN_ON(cpu != smp_processor_id()))
		return;

	local_irq_save(flags);

	rcu_read_lock();

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

		if (pmu->task_ctx_nr == perf_sw_context)
			continue;

		hrtimer_cancel(&cpuctx->hrtimer);
	}

	rcu_read_unlock();

	local_irq_restore(flags);
}

static void __perf_cpu_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
{
	struct hrtimer *hr = &cpuctx->hrtimer;
	struct pmu *pmu = cpuctx->ctx.pmu;

	/* no multiplexing needed for SW PMU */
	if (pmu->task_ctx_nr == perf_sw_context)
		return;

	cpuctx->hrtimer_interval =
		ns_to_ktime(NSEC_PER_MSEC * PERF_CPU_HRTIMER);

	hrtimer_init(hr, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
	hr->function = perf_cpu_hrtimer_handler;
}

static void perf_cpu_hrtimer_restart(struct perf_cpu_context *cpuctx)
{
	struct hrtimer *hr = &cpuctx->hrtimer;
	struct pmu *pmu = cpuctx->ctx.pmu;

	/* not for SW PMU */
	if (pmu->task_ctx_nr == perf_sw_context)
		return;

	if (hrtimer_active(hr))
		return;

	if (!hrtimer_callback_running(hr))
		__hrtimer_start_range_ns(hr, cpuctx->hrtimer_interval,
					 0, HRTIMER_MODE_REL_PINNED, 0);
}

P
Peter Zijlstra 已提交
755
void perf_pmu_disable(struct pmu *pmu)
756
{
P
Peter Zijlstra 已提交
757 758 759
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!(*count)++)
		pmu->pmu_disable(pmu);
760 761
}

P
Peter Zijlstra 已提交
762
void perf_pmu_enable(struct pmu *pmu)
763
{
P
Peter Zijlstra 已提交
764 765 766
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!--(*count))
		pmu->pmu_enable(pmu);
767 768
}

769 770 771 772 773 774 775
static DEFINE_PER_CPU(struct list_head, rotation_list);

/*
 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
 * because they're strictly cpu affine and rotate_start is called with IRQs
 * disabled, while rotate_context is called from IRQ context.
 */
P
Peter Zijlstra 已提交
776
static void perf_pmu_rotate_start(struct pmu *pmu)
777
{
P
Peter Zijlstra 已提交
778
	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
779
	struct list_head *head = &__get_cpu_var(rotation_list);
780

781
	WARN_ON(!irqs_disabled());
782

783 784
	if (list_empty(&cpuctx->rotation_list)) {
		int was_empty = list_empty(head);
785
		list_add(&cpuctx->rotation_list, head);
786 787 788
		if (was_empty)
			tick_nohz_full_kick();
	}
789 790
}

791
static void get_ctx(struct perf_event_context *ctx)
792
{
793
	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
794 795
}

796
static void put_ctx(struct perf_event_context *ctx)
797
{
798 799 800
	if (atomic_dec_and_test(&ctx->refcount)) {
		if (ctx->parent_ctx)
			put_ctx(ctx->parent_ctx);
801 802
		if (ctx->task)
			put_task_struct(ctx->task);
803
		kfree_rcu(ctx, rcu_head);
804
	}
805 806
}

807
static void unclone_ctx(struct perf_event_context *ctx)
808 809 810 811 812 813 814
{
	if (ctx->parent_ctx) {
		put_ctx(ctx->parent_ctx);
		ctx->parent_ctx = NULL;
	}
}

815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836
static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_tgid_nr_ns(p, event->ns);
}

static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_pid_nr_ns(p, event->ns);
}

837
/*
838
 * If we inherit events we want to return the parent event id
839 840
 * to userspace.
 */
841
static u64 primary_event_id(struct perf_event *event)
842
{
843
	u64 id = event->id;
844

845 846
	if (event->parent)
		id = event->parent->id;
847 848 849 850

	return id;
}

851
/*
852
 * Get the perf_event_context for a task and lock it.
853 854 855
 * This has to cope with with the fact that until it is locked,
 * the context could get moved to another task.
 */
856
static struct perf_event_context *
P
Peter Zijlstra 已提交
857
perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
858
{
859
	struct perf_event_context *ctx;
860 861

	rcu_read_lock();
P
Peter Zijlstra 已提交
862
retry:
P
Peter Zijlstra 已提交
863
	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
864 865 866 867
	if (ctx) {
		/*
		 * If this context is a clone of another, it might
		 * get swapped for another underneath us by
868
		 * perf_event_task_sched_out, though the
869 870 871 872 873 874
		 * rcu_read_lock() protects us from any context
		 * getting freed.  Lock the context and check if it
		 * got swapped before we could get the lock, and retry
		 * if so.  If we locked the right context, then it
		 * can't get swapped on us any more.
		 */
875
		raw_spin_lock_irqsave(&ctx->lock, *flags);
P
Peter Zijlstra 已提交
876
		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
877
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
878 879
			goto retry;
		}
880 881

		if (!atomic_inc_not_zero(&ctx->refcount)) {
882
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
883 884
			ctx = NULL;
		}
885 886 887 888 889 890 891 892 893 894
	}
	rcu_read_unlock();
	return ctx;
}

/*
 * Get the context for a task and increment its pin_count so it
 * can't get swapped to another task.  This also increments its
 * reference count so that the context can't get freed.
 */
P
Peter Zijlstra 已提交
895 896
static struct perf_event_context *
perf_pin_task_context(struct task_struct *task, int ctxn)
897
{
898
	struct perf_event_context *ctx;
899 900
	unsigned long flags;

P
Peter Zijlstra 已提交
901
	ctx = perf_lock_task_context(task, ctxn, &flags);
902 903
	if (ctx) {
		++ctx->pin_count;
904
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
905 906 907 908
	}
	return ctx;
}

909
static void perf_unpin_context(struct perf_event_context *ctx)
910 911 912
{
	unsigned long flags;

913
	raw_spin_lock_irqsave(&ctx->lock, flags);
914
	--ctx->pin_count;
915
	raw_spin_unlock_irqrestore(&ctx->lock, flags);
916 917
}

918 919 920 921 922 923 924 925 926 927 928
/*
 * Update the record of the current time in a context.
 */
static void update_context_time(struct perf_event_context *ctx)
{
	u64 now = perf_clock();

	ctx->time += now - ctx->timestamp;
	ctx->timestamp = now;
}

929 930 931
static u64 perf_event_time(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
S
Stephane Eranian 已提交
932 933 934 935

	if (is_cgroup_event(event))
		return perf_cgroup_event_time(event);

936 937 938
	return ctx ? ctx->time : 0;
}

939 940
/*
 * Update the total_time_enabled and total_time_running fields for a event.
941
 * The caller of this function needs to hold the ctx->lock.
942 943 944 945 946 947 948 949 950
 */
static void update_event_times(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	u64 run_end;

	if (event->state < PERF_EVENT_STATE_INACTIVE ||
	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
		return;
S
Stephane Eranian 已提交
951 952 953 954 955 956 957 958 959 960 961
	/*
	 * in cgroup mode, time_enabled represents
	 * the time the event was enabled AND active
	 * tasks were in the monitored cgroup. This is
	 * independent of the activity of the context as
	 * there may be a mix of cgroup and non-cgroup events.
	 *
	 * That is why we treat cgroup events differently
	 * here.
	 */
	if (is_cgroup_event(event))
962
		run_end = perf_cgroup_event_time(event);
S
Stephane Eranian 已提交
963 964
	else if (ctx->is_active)
		run_end = ctx->time;
965 966 967 968
	else
		run_end = event->tstamp_stopped;

	event->total_time_enabled = run_end - event->tstamp_enabled;
969 970 971 972

	if (event->state == PERF_EVENT_STATE_INACTIVE)
		run_end = event->tstamp_stopped;
	else
973
		run_end = perf_event_time(event);
974 975

	event->total_time_running = run_end - event->tstamp_running;
S
Stephane Eranian 已提交
976

977 978
}

979 980 981 982 983 984 985 986 987 988 989 990
/*
 * Update total_time_enabled and total_time_running for all events in a group.
 */
static void update_group_times(struct perf_event *leader)
{
	struct perf_event *event;

	update_event_times(leader);
	list_for_each_entry(event, &leader->sibling_list, group_entry)
		update_event_times(event);
}

991 992 993 994 995 996 997 998 999
static struct list_head *
ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
{
	if (event->attr.pinned)
		return &ctx->pinned_groups;
	else
		return &ctx->flexible_groups;
}

1000
/*
1001
 * Add a event from the lists for its context.
1002 1003
 * Must be called with ctx->mutex and ctx->lock held.
 */
1004
static void
1005
list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1006
{
1007 1008
	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
	event->attach_state |= PERF_ATTACH_CONTEXT;
1009 1010

	/*
1011 1012 1013
	 * If we're a stand alone event or group leader, we go to the context
	 * list, group events are kept attached to the group so that
	 * perf_group_detach can, at all times, locate all siblings.
1014
	 */
1015
	if (event->group_leader == event) {
1016 1017
		struct list_head *list;

1018 1019 1020
		if (is_software_event(event))
			event->group_flags |= PERF_GROUP_SOFTWARE;

1021 1022
		list = ctx_group_list(event, ctx);
		list_add_tail(&event->group_entry, list);
P
Peter Zijlstra 已提交
1023
	}
P
Peter Zijlstra 已提交
1024

1025
	if (is_cgroup_event(event))
S
Stephane Eranian 已提交
1026 1027
		ctx->nr_cgroups++;

1028 1029 1030
	if (has_branch_stack(event))
		ctx->nr_branch_stack++;

1031
	list_add_rcu(&event->event_entry, &ctx->event_list);
1032
	if (!ctx->nr_events)
P
Peter Zijlstra 已提交
1033
		perf_pmu_rotate_start(ctx->pmu);
1034 1035
	ctx->nr_events++;
	if (event->attr.inherit_stat)
1036
		ctx->nr_stat++;
1037 1038
}

J
Jiri Olsa 已提交
1039 1040 1041 1042 1043 1044 1045 1046 1047
/*
 * Initialize event state based on the perf_event_attr::disabled.
 */
static inline void perf_event__state_init(struct perf_event *event)
{
	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
					      PERF_EVENT_STATE_INACTIVE;
}

1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086
/*
 * Called at perf_event creation and when events are attached/detached from a
 * group.
 */
static void perf_event__read_size(struct perf_event *event)
{
	int entry = sizeof(u64); /* value */
	int size = 0;
	int nr = 1;

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_ID)
		entry += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_GROUP) {
		nr += event->group_leader->nr_siblings;
		size += sizeof(u64);
	}

	size += entry * nr;
	event->read_size = size;
}

static void perf_event__header_size(struct perf_event *event)
{
	struct perf_sample_data *data;
	u64 sample_type = event->attr.sample_type;
	u16 size = 0;

	perf_event__read_size(event);

	if (sample_type & PERF_SAMPLE_IP)
		size += sizeof(data->ip);

1087 1088 1089 1090 1091 1092
	if (sample_type & PERF_SAMPLE_ADDR)
		size += sizeof(data->addr);

	if (sample_type & PERF_SAMPLE_PERIOD)
		size += sizeof(data->period);

A
Andi Kleen 已提交
1093 1094 1095
	if (sample_type & PERF_SAMPLE_WEIGHT)
		size += sizeof(data->weight);

1096 1097 1098
	if (sample_type & PERF_SAMPLE_READ)
		size += event->read_size;

1099 1100 1101
	if (sample_type & PERF_SAMPLE_DATA_SRC)
		size += sizeof(data->data_src.val);

1102 1103 1104 1105 1106 1107 1108 1109 1110
	event->header_size = size;
}

static void perf_event__id_header_size(struct perf_event *event)
{
	struct perf_sample_data *data;
	u64 sample_type = event->attr.sample_type;
	u16 size = 0;

1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125
	if (sample_type & PERF_SAMPLE_TID)
		size += sizeof(data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		size += sizeof(data->time);

	if (sample_type & PERF_SAMPLE_ID)
		size += sizeof(data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		size += sizeof(data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		size += sizeof(data->cpu_entry);

1126
	event->id_header_size = size;
1127 1128
}

1129 1130
static void perf_group_attach(struct perf_event *event)
{
1131
	struct perf_event *group_leader = event->group_leader, *pos;
1132

P
Peter Zijlstra 已提交
1133 1134 1135 1136 1137 1138
	/*
	 * We can have double attach due to group movement in perf_event_open.
	 */
	if (event->attach_state & PERF_ATTACH_GROUP)
		return;

1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149
	event->attach_state |= PERF_ATTACH_GROUP;

	if (group_leader == event)
		return;

	if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
			!is_software_event(event))
		group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;

	list_add_tail(&event->group_entry, &group_leader->sibling_list);
	group_leader->nr_siblings++;
1150 1151 1152 1153 1154

	perf_event__header_size(group_leader);

	list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
		perf_event__header_size(pos);
1155 1156
}

1157
/*
1158
 * Remove a event from the lists for its context.
1159
 * Must be called with ctx->mutex and ctx->lock held.
1160
 */
1161
static void
1162
list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1163
{
1164
	struct perf_cpu_context *cpuctx;
1165 1166 1167 1168
	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1169
		return;
1170 1171 1172

	event->attach_state &= ~PERF_ATTACH_CONTEXT;

1173
	if (is_cgroup_event(event)) {
S
Stephane Eranian 已提交
1174
		ctx->nr_cgroups--;
1175 1176 1177 1178 1179 1180 1181 1182 1183
		cpuctx = __get_cpu_context(ctx);
		/*
		 * if there are no more cgroup events
		 * then cler cgrp to avoid stale pointer
		 * in update_cgrp_time_from_cpuctx()
		 */
		if (!ctx->nr_cgroups)
			cpuctx->cgrp = NULL;
	}
S
Stephane Eranian 已提交
1184

1185 1186 1187
	if (has_branch_stack(event))
		ctx->nr_branch_stack--;

1188 1189
	ctx->nr_events--;
	if (event->attr.inherit_stat)
1190
		ctx->nr_stat--;
1191

1192
	list_del_rcu(&event->event_entry);
1193

1194 1195
	if (event->group_leader == event)
		list_del_init(&event->group_entry);
P
Peter Zijlstra 已提交
1196

1197
	update_group_times(event);
1198 1199 1200 1201 1202 1203 1204 1205 1206 1207

	/*
	 * If event was in error state, then keep it
	 * that way, otherwise bogus counts will be
	 * returned on read(). The only way to get out
	 * of error state is by explicit re-enabling
	 * of the event
	 */
	if (event->state > PERF_EVENT_STATE_OFF)
		event->state = PERF_EVENT_STATE_OFF;
1208 1209
}

1210
static void perf_group_detach(struct perf_event *event)
1211 1212
{
	struct perf_event *sibling, *tmp;
1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228
	struct list_head *list = NULL;

	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_GROUP))
		return;

	event->attach_state &= ~PERF_ATTACH_GROUP;

	/*
	 * If this is a sibling, remove it from its group.
	 */
	if (event->group_leader != event) {
		list_del_init(&event->group_entry);
		event->group_leader->nr_siblings--;
1229
		goto out;
1230 1231 1232 1233
	}

	if (!list_empty(&event->group_entry))
		list = &event->group_entry;
1234

1235
	/*
1236 1237
	 * If this was a group event with sibling events then
	 * upgrade the siblings to singleton events by adding them
1238
	 * to whatever list we are on.
1239
	 */
1240
	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1241 1242
		if (list)
			list_move_tail(&sibling->group_entry, list);
1243
		sibling->group_leader = sibling;
1244 1245 1246

		/* Inherit group flags from the previous leader */
		sibling->group_flags = event->group_flags;
1247
	}
1248 1249 1250 1251 1252 1253

out:
	perf_event__header_size(event->group_leader);

	list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
		perf_event__header_size(tmp);
1254 1255
}

1256 1257 1258
static inline int
event_filter_match(struct perf_event *event)
{
S
Stephane Eranian 已提交
1259 1260
	return (event->cpu == -1 || event->cpu == smp_processor_id())
	    && perf_cgroup_match(event);
1261 1262
}

1263 1264
static void
event_sched_out(struct perf_event *event,
1265
		  struct perf_cpu_context *cpuctx,
1266
		  struct perf_event_context *ctx)
1267
{
1268
	u64 tstamp = perf_event_time(event);
1269 1270 1271 1272 1273 1274 1275 1276 1277
	u64 delta;
	/*
	 * An event which could not be activated because of
	 * filter mismatch still needs to have its timings
	 * maintained, otherwise bogus information is return
	 * via read() for time_enabled, time_running:
	 */
	if (event->state == PERF_EVENT_STATE_INACTIVE
	    && !event_filter_match(event)) {
S
Stephane Eranian 已提交
1278
		delta = tstamp - event->tstamp_stopped;
1279
		event->tstamp_running += delta;
1280
		event->tstamp_stopped = tstamp;
1281 1282
	}

1283
	if (event->state != PERF_EVENT_STATE_ACTIVE)
1284
		return;
1285

1286 1287 1288 1289
	event->state = PERF_EVENT_STATE_INACTIVE;
	if (event->pending_disable) {
		event->pending_disable = 0;
		event->state = PERF_EVENT_STATE_OFF;
1290
	}
1291
	event->tstamp_stopped = tstamp;
P
Peter Zijlstra 已提交
1292
	event->pmu->del(event, 0);
1293
	event->oncpu = -1;
1294

1295
	if (!is_software_event(event))
1296 1297
		cpuctx->active_oncpu--;
	ctx->nr_active--;
1298 1299
	if (event->attr.freq && event->attr.sample_freq)
		ctx->nr_freq--;
1300
	if (event->attr.exclusive || !cpuctx->active_oncpu)
1301 1302 1303
		cpuctx->exclusive = 0;
}

1304
static void
1305
group_sched_out(struct perf_event *group_event,
1306
		struct perf_cpu_context *cpuctx,
1307
		struct perf_event_context *ctx)
1308
{
1309
	struct perf_event *event;
1310
	int state = group_event->state;
1311

1312
	event_sched_out(group_event, cpuctx, ctx);
1313 1314 1315 1316

	/*
	 * Schedule out siblings (if any):
	 */
1317 1318
	list_for_each_entry(event, &group_event->sibling_list, group_entry)
		event_sched_out(event, cpuctx, ctx);
1319

1320
	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1321 1322 1323
		cpuctx->exclusive = 0;
}

T
Thomas Gleixner 已提交
1324
/*
1325
 * Cross CPU call to remove a performance event
T
Thomas Gleixner 已提交
1326
 *
1327
 * We disable the event on the hardware level first. After that we
T
Thomas Gleixner 已提交
1328 1329
 * remove it from the context list.
 */
1330
static int __perf_remove_from_context(void *info)
T
Thomas Gleixner 已提交
1331
{
1332 1333
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1334
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
T
Thomas Gleixner 已提交
1335

1336
	raw_spin_lock(&ctx->lock);
1337 1338
	event_sched_out(event, cpuctx, ctx);
	list_del_event(event, ctx);
1339 1340 1341 1342
	if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
		ctx->is_active = 0;
		cpuctx->task_ctx = NULL;
	}
1343
	raw_spin_unlock(&ctx->lock);
1344 1345

	return 0;
T
Thomas Gleixner 已提交
1346 1347 1348 1349
}


/*
1350
 * Remove the event from a task's (or a CPU's) list of events.
T
Thomas Gleixner 已提交
1351
 *
1352
 * CPU events are removed with a smp call. For task events we only
T
Thomas Gleixner 已提交
1353
 * call when the task is on a CPU.
1354
 *
1355 1356
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1357 1358
 * remains valid.  This is OK when called from perf_release since
 * that only calls us on the top-level context, which can't be a clone.
1359
 * When called from perf_event_exit_task, it's OK because the
1360
 * context has been detached from its task.
T
Thomas Gleixner 已提交
1361
 */
1362
static void perf_remove_from_context(struct perf_event *event)
T
Thomas Gleixner 已提交
1363
{
1364
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
1365 1366
	struct task_struct *task = ctx->task;

1367 1368
	lockdep_assert_held(&ctx->mutex);

T
Thomas Gleixner 已提交
1369 1370
	if (!task) {
		/*
1371
		 * Per cpu events are removed via an smp call and
1372
		 * the removal is always successful.
T
Thomas Gleixner 已提交
1373
		 */
1374
		cpu_function_call(event->cpu, __perf_remove_from_context, event);
T
Thomas Gleixner 已提交
1375 1376 1377 1378
		return;
	}

retry:
1379 1380
	if (!task_function_call(task, __perf_remove_from_context, event))
		return;
T
Thomas Gleixner 已提交
1381

1382
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1383
	/*
1384 1385
	 * If we failed to find a running task, but find the context active now
	 * that we've acquired the ctx->lock, retry.
T
Thomas Gleixner 已提交
1386
	 */
1387
	if (ctx->is_active) {
1388
		raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1389 1390 1391 1392
		goto retry;
	}

	/*
1393 1394
	 * Since the task isn't running, its safe to remove the event, us
	 * holding the ctx->lock ensures the task won't get scheduled in.
T
Thomas Gleixner 已提交
1395
	 */
1396
	list_del_event(event, ctx);
1397
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1398 1399
}

1400
/*
1401
 * Cross CPU call to disable a performance event
1402
 */
1403
int __perf_event_disable(void *info)
1404
{
1405 1406
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1407
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1408 1409

	/*
1410 1411
	 * If this is a per-task event, need to check whether this
	 * event's task is the current task on this cpu.
1412 1413 1414
	 *
	 * Can trigger due to concurrent perf_event_context_sched_out()
	 * flipping contexts around.
1415
	 */
1416
	if (ctx->task && cpuctx->task_ctx != ctx)
1417
		return -EINVAL;
1418

1419
	raw_spin_lock(&ctx->lock);
1420 1421

	/*
1422
	 * If the event is on, turn it off.
1423 1424
	 * If it is in error state, leave it in error state.
	 */
1425
	if (event->state >= PERF_EVENT_STATE_INACTIVE) {
1426
		update_context_time(ctx);
S
Stephane Eranian 已提交
1427
		update_cgrp_time_from_event(event);
1428 1429 1430
		update_group_times(event);
		if (event == event->group_leader)
			group_sched_out(event, cpuctx, ctx);
1431
		else
1432 1433
			event_sched_out(event, cpuctx, ctx);
		event->state = PERF_EVENT_STATE_OFF;
1434 1435
	}

1436
	raw_spin_unlock(&ctx->lock);
1437 1438

	return 0;
1439 1440 1441
}

/*
1442
 * Disable a event.
1443
 *
1444 1445
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1446
 * remains valid.  This condition is satisifed when called through
1447 1448 1449 1450
 * perf_event_for_each_child or perf_event_for_each because they
 * hold the top-level event's child_mutex, so any descendant that
 * goes to exit will block in sync_child_event.
 * When called from perf_pending_event it's OK because event->ctx
1451
 * is the current context on this CPU and preemption is disabled,
1452
 * hence we can't get into perf_event_task_sched_out for this context.
1453
 */
1454
void perf_event_disable(struct perf_event *event)
1455
{
1456
	struct perf_event_context *ctx = event->ctx;
1457 1458 1459 1460
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
1461
		 * Disable the event on the cpu that it's on
1462
		 */
1463
		cpu_function_call(event->cpu, __perf_event_disable, event);
1464 1465 1466
		return;
	}

P
Peter Zijlstra 已提交
1467
retry:
1468 1469
	if (!task_function_call(task, __perf_event_disable, event))
		return;
1470

1471
	raw_spin_lock_irq(&ctx->lock);
1472
	/*
1473
	 * If the event is still active, we need to retry the cross-call.
1474
	 */
1475
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
1476
		raw_spin_unlock_irq(&ctx->lock);
1477 1478 1479 1480 1481
		/*
		 * Reload the task pointer, it might have been changed by
		 * a concurrent perf_event_context_sched_out().
		 */
		task = ctx->task;
1482 1483 1484 1485 1486 1487 1488
		goto retry;
	}

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
1489 1490 1491
	if (event->state == PERF_EVENT_STATE_INACTIVE) {
		update_group_times(event);
		event->state = PERF_EVENT_STATE_OFF;
1492
	}
1493
	raw_spin_unlock_irq(&ctx->lock);
1494
}
1495
EXPORT_SYMBOL_GPL(perf_event_disable);
1496

S
Stephane Eranian 已提交
1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531
static void perf_set_shadow_time(struct perf_event *event,
				 struct perf_event_context *ctx,
				 u64 tstamp)
{
	/*
	 * use the correct time source for the time snapshot
	 *
	 * We could get by without this by leveraging the
	 * fact that to get to this function, the caller
	 * has most likely already called update_context_time()
	 * and update_cgrp_time_xx() and thus both timestamp
	 * are identical (or very close). Given that tstamp is,
	 * already adjusted for cgroup, we could say that:
	 *    tstamp - ctx->timestamp
	 * is equivalent to
	 *    tstamp - cgrp->timestamp.
	 *
	 * Then, in perf_output_read(), the calculation would
	 * work with no changes because:
	 * - event is guaranteed scheduled in
	 * - no scheduled out in between
	 * - thus the timestamp would be the same
	 *
	 * But this is a bit hairy.
	 *
	 * So instead, we have an explicit cgroup call to remain
	 * within the time time source all along. We believe it
	 * is cleaner and simpler to understand.
	 */
	if (is_cgroup_event(event))
		perf_cgroup_set_shadow_time(event, tstamp);
	else
		event->shadow_ctx_time = tstamp - ctx->timestamp;
}

P
Peter Zijlstra 已提交
1532 1533 1534 1535
#define MAX_INTERRUPTS (~0ULL)

static void perf_log_throttle(struct perf_event *event, int enable);

1536
static int
1537
event_sched_in(struct perf_event *event,
1538
		 struct perf_cpu_context *cpuctx,
1539
		 struct perf_event_context *ctx)
1540
{
1541 1542
	u64 tstamp = perf_event_time(event);

1543
	if (event->state <= PERF_EVENT_STATE_OFF)
1544 1545
		return 0;

1546
	event->state = PERF_EVENT_STATE_ACTIVE;
1547
	event->oncpu = smp_processor_id();
P
Peter Zijlstra 已提交
1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558

	/*
	 * Unthrottle events, since we scheduled we might have missed several
	 * ticks already, also for a heavily scheduling task there is little
	 * guarantee it'll get a tick in a timely manner.
	 */
	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
		perf_log_throttle(event, 1);
		event->hw.interrupts = 0;
	}

1559 1560 1561 1562 1563
	/*
	 * The new state must be visible before we turn it on in the hardware:
	 */
	smp_wmb();

P
Peter Zijlstra 已提交
1564
	if (event->pmu->add(event, PERF_EF_START)) {
1565 1566
		event->state = PERF_EVENT_STATE_INACTIVE;
		event->oncpu = -1;
1567 1568 1569
		return -EAGAIN;
	}

1570
	event->tstamp_running += tstamp - event->tstamp_stopped;
1571

S
Stephane Eranian 已提交
1572
	perf_set_shadow_time(event, ctx, tstamp);
1573

1574
	if (!is_software_event(event))
1575
		cpuctx->active_oncpu++;
1576
	ctx->nr_active++;
1577 1578
	if (event->attr.freq && event->attr.sample_freq)
		ctx->nr_freq++;
1579

1580
	if (event->attr.exclusive)
1581 1582
		cpuctx->exclusive = 1;

1583 1584 1585
	return 0;
}

1586
static int
1587
group_sched_in(struct perf_event *group_event,
1588
	       struct perf_cpu_context *cpuctx,
1589
	       struct perf_event_context *ctx)
1590
{
1591
	struct perf_event *event, *partial_group = NULL;
P
Peter Zijlstra 已提交
1592
	struct pmu *pmu = group_event->pmu;
1593 1594
	u64 now = ctx->time;
	bool simulate = false;
1595

1596
	if (group_event->state == PERF_EVENT_STATE_OFF)
1597 1598
		return 0;

P
Peter Zijlstra 已提交
1599
	pmu->start_txn(pmu);
1600

1601
	if (event_sched_in(group_event, cpuctx, ctx)) {
P
Peter Zijlstra 已提交
1602
		pmu->cancel_txn(pmu);
1603
		perf_cpu_hrtimer_restart(cpuctx);
1604
		return -EAGAIN;
1605
	}
1606 1607 1608 1609

	/*
	 * Schedule in siblings as one group (if any):
	 */
1610
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1611
		if (event_sched_in(event, cpuctx, ctx)) {
1612
			partial_group = event;
1613 1614 1615 1616
			goto group_error;
		}
	}

1617
	if (!pmu->commit_txn(pmu))
1618
		return 0;
1619

1620 1621 1622 1623
group_error:
	/*
	 * Groups can be scheduled in as one unit only, so undo any
	 * partial group before returning:
1624 1625 1626 1627 1628 1629 1630 1631 1632 1633
	 * The events up to the failed event are scheduled out normally,
	 * tstamp_stopped will be updated.
	 *
	 * The failed events and the remaining siblings need to have
	 * their timings updated as if they had gone thru event_sched_in()
	 * and event_sched_out(). This is required to get consistent timings
	 * across the group. This also takes care of the case where the group
	 * could never be scheduled by ensuring tstamp_stopped is set to mark
	 * the time the event was actually stopped, such that time delta
	 * calculation in update_event_times() is correct.
1634
	 */
1635 1636
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
		if (event == partial_group)
1637 1638 1639 1640 1641 1642 1643 1644
			simulate = true;

		if (simulate) {
			event->tstamp_running += now - event->tstamp_stopped;
			event->tstamp_stopped = now;
		} else {
			event_sched_out(event, cpuctx, ctx);
		}
1645
	}
1646
	event_sched_out(group_event, cpuctx, ctx);
1647

P
Peter Zijlstra 已提交
1648
	pmu->cancel_txn(pmu);
1649

1650 1651
	perf_cpu_hrtimer_restart(cpuctx);

1652 1653 1654
	return -EAGAIN;
}

1655
/*
1656
 * Work out whether we can put this event group on the CPU now.
1657
 */
1658
static int group_can_go_on(struct perf_event *event,
1659 1660 1661 1662
			   struct perf_cpu_context *cpuctx,
			   int can_add_hw)
{
	/*
1663
	 * Groups consisting entirely of software events can always go on.
1664
	 */
1665
	if (event->group_flags & PERF_GROUP_SOFTWARE)
1666 1667 1668
		return 1;
	/*
	 * If an exclusive group is already on, no other hardware
1669
	 * events can go on.
1670 1671 1672 1673 1674
	 */
	if (cpuctx->exclusive)
		return 0;
	/*
	 * If this group is exclusive and there are already
1675
	 * events on the CPU, it can't go on.
1676
	 */
1677
	if (event->attr.exclusive && cpuctx->active_oncpu)
1678 1679 1680 1681 1682 1683 1684 1685
		return 0;
	/*
	 * Otherwise, try to add it if all previous groups were able
	 * to go on.
	 */
	return can_add_hw;
}

1686 1687
static void add_event_to_ctx(struct perf_event *event,
			       struct perf_event_context *ctx)
1688
{
1689 1690
	u64 tstamp = perf_event_time(event);

1691
	list_add_event(event, ctx);
1692
	perf_group_attach(event);
1693 1694 1695
	event->tstamp_enabled = tstamp;
	event->tstamp_running = tstamp;
	event->tstamp_stopped = tstamp;
1696 1697
}

1698 1699 1700 1701 1702 1703
static void task_ctx_sched_out(struct perf_event_context *ctx);
static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
	     enum event_type_t event_type,
	     struct task_struct *task);
1704

1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716
static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
				struct perf_event_context *ctx,
				struct task_struct *task)
{
	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
}

T
Thomas Gleixner 已提交
1717
/*
1718
 * Cross CPU call to install and enable a performance event
1719 1720
 *
 * Must be called with ctx->mutex held
T
Thomas Gleixner 已提交
1721
 */
1722
static int  __perf_install_in_context(void *info)
T
Thomas Gleixner 已提交
1723
{
1724 1725
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1726
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1727 1728 1729
	struct perf_event_context *task_ctx = cpuctx->task_ctx;
	struct task_struct *task = current;

1730
	perf_ctx_lock(cpuctx, task_ctx);
1731
	perf_pmu_disable(cpuctx->ctx.pmu);
T
Thomas Gleixner 已提交
1732 1733

	/*
1734
	 * If there was an active task_ctx schedule it out.
T
Thomas Gleixner 已提交
1735
	 */
1736
	if (task_ctx)
1737
		task_ctx_sched_out(task_ctx);
1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751

	/*
	 * If the context we're installing events in is not the
	 * active task_ctx, flip them.
	 */
	if (ctx->task && task_ctx != ctx) {
		if (task_ctx)
			raw_spin_unlock(&task_ctx->lock);
		raw_spin_lock(&ctx->lock);
		task_ctx = ctx;
	}

	if (task_ctx) {
		cpuctx->task_ctx = task_ctx;
1752 1753
		task = task_ctx->task;
	}
1754

1755
	cpu_ctx_sched_out(cpuctx, EVENT_ALL);
T
Thomas Gleixner 已提交
1756

1757
	update_context_time(ctx);
S
Stephane Eranian 已提交
1758 1759 1760 1761 1762 1763
	/*
	 * update cgrp time only if current cgrp
	 * matches event->cgrp. Must be done before
	 * calling add_event_to_ctx()
	 */
	update_cgrp_time_from_event(event);
T
Thomas Gleixner 已提交
1764

1765
	add_event_to_ctx(event, ctx);
T
Thomas Gleixner 已提交
1766

1767
	/*
1768
	 * Schedule everything back in
1769
	 */
1770
	perf_event_sched_in(cpuctx, task_ctx, task);
1771 1772 1773

	perf_pmu_enable(cpuctx->ctx.pmu);
	perf_ctx_unlock(cpuctx, task_ctx);
1774 1775

	return 0;
T
Thomas Gleixner 已提交
1776 1777 1778
}

/*
1779
 * Attach a performance event to a context
T
Thomas Gleixner 已提交
1780
 *
1781 1782
 * First we add the event to the list with the hardware enable bit
 * in event->hw_config cleared.
T
Thomas Gleixner 已提交
1783
 *
1784
 * If the event is attached to a task which is on a CPU we use a smp
T
Thomas Gleixner 已提交
1785 1786 1787 1788
 * call to enable it in the task context. The task might have been
 * scheduled away, but we check this in the smp call again.
 */
static void
1789 1790
perf_install_in_context(struct perf_event_context *ctx,
			struct perf_event *event,
T
Thomas Gleixner 已提交
1791 1792 1793 1794
			int cpu)
{
	struct task_struct *task = ctx->task;

1795 1796
	lockdep_assert_held(&ctx->mutex);

1797
	event->ctx = ctx;
1798 1799
	if (event->cpu != -1)
		event->cpu = cpu;
1800

T
Thomas Gleixner 已提交
1801 1802
	if (!task) {
		/*
1803
		 * Per cpu events are installed via an smp call and
1804
		 * the install is always successful.
T
Thomas Gleixner 已提交
1805
		 */
1806
		cpu_function_call(cpu, __perf_install_in_context, event);
T
Thomas Gleixner 已提交
1807 1808 1809 1810
		return;
	}

retry:
1811 1812
	if (!task_function_call(task, __perf_install_in_context, event))
		return;
T
Thomas Gleixner 已提交
1813

1814
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1815
	/*
1816 1817
	 * If we failed to find a running task, but find the context active now
	 * that we've acquired the ctx->lock, retry.
T
Thomas Gleixner 已提交
1818
	 */
1819
	if (ctx->is_active) {
1820
		raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1821 1822 1823 1824
		goto retry;
	}

	/*
1825 1826
	 * Since the task isn't running, its safe to add the event, us holding
	 * the ctx->lock ensures the task won't get scheduled in.
T
Thomas Gleixner 已提交
1827
	 */
1828
	add_event_to_ctx(event, ctx);
1829
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1830 1831
}

1832
/*
1833
 * Put a event into inactive state and update time fields.
1834 1835 1836 1837 1838 1839
 * Enabling the leader of a group effectively enables all
 * the group members that aren't explicitly disabled, so we
 * have to update their ->tstamp_enabled also.
 * Note: this works for group members as well as group leaders
 * since the non-leader members' sibling_lists will be empty.
 */
1840
static void __perf_event_mark_enabled(struct perf_event *event)
1841
{
1842
	struct perf_event *sub;
1843
	u64 tstamp = perf_event_time(event);
1844

1845
	event->state = PERF_EVENT_STATE_INACTIVE;
1846
	event->tstamp_enabled = tstamp - event->total_time_enabled;
P
Peter Zijlstra 已提交
1847
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
1848 1849
		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
P
Peter Zijlstra 已提交
1850
	}
1851 1852
}

1853
/*
1854
 * Cross CPU call to enable a performance event
1855
 */
1856
static int __perf_event_enable(void *info)
1857
{
1858 1859 1860
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *leader = event->group_leader;
P
Peter Zijlstra 已提交
1861
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1862
	int err;
1863

1864 1865
	if (WARN_ON_ONCE(!ctx->is_active))
		return -EINVAL;
1866

1867
	raw_spin_lock(&ctx->lock);
1868
	update_context_time(ctx);
1869

1870
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
1871
		goto unlock;
S
Stephane Eranian 已提交
1872 1873 1874 1875

	/*
	 * set current task's cgroup time reference point
	 */
1876
	perf_cgroup_set_timestamp(current, ctx);
S
Stephane Eranian 已提交
1877

1878
	__perf_event_mark_enabled(event);
1879

S
Stephane Eranian 已提交
1880 1881 1882
	if (!event_filter_match(event)) {
		if (is_cgroup_event(event))
			perf_cgroup_defer_enabled(event);
1883
		goto unlock;
S
Stephane Eranian 已提交
1884
	}
1885

1886
	/*
1887
	 * If the event is in a group and isn't the group leader,
1888
	 * then don't put it on unless the group is on.
1889
	 */
1890
	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
1891
		goto unlock;
1892

1893
	if (!group_can_go_on(event, cpuctx, 1)) {
1894
		err = -EEXIST;
1895
	} else {
1896
		if (event == leader)
1897
			err = group_sched_in(event, cpuctx, ctx);
1898
		else
1899
			err = event_sched_in(event, cpuctx, ctx);
1900
	}
1901 1902 1903

	if (err) {
		/*
1904
		 * If this event can't go on and it's part of a
1905 1906
		 * group, then the whole group has to come off.
		 */
1907
		if (leader != event) {
1908
			group_sched_out(leader, cpuctx, ctx);
1909 1910
			perf_cpu_hrtimer_restart(cpuctx);
		}
1911
		if (leader->attr.pinned) {
1912
			update_group_times(leader);
1913
			leader->state = PERF_EVENT_STATE_ERROR;
1914
		}
1915 1916
	}

P
Peter Zijlstra 已提交
1917
unlock:
1918
	raw_spin_unlock(&ctx->lock);
1919 1920

	return 0;
1921 1922 1923
}

/*
1924
 * Enable a event.
1925
 *
1926 1927
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1928
 * remains valid.  This condition is satisfied when called through
1929 1930
 * perf_event_for_each_child or perf_event_for_each as described
 * for perf_event_disable.
1931
 */
1932
void perf_event_enable(struct perf_event *event)
1933
{
1934
	struct perf_event_context *ctx = event->ctx;
1935 1936 1937 1938
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
1939
		 * Enable the event on the cpu that it's on
1940
		 */
1941
		cpu_function_call(event->cpu, __perf_event_enable, event);
1942 1943 1944
		return;
	}

1945
	raw_spin_lock_irq(&ctx->lock);
1946
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
1947 1948 1949
		goto out;

	/*
1950 1951
	 * If the event is in error state, clear that first.
	 * That way, if we see the event in error state below, we
1952 1953 1954 1955
	 * know that it has gone back into error state, as distinct
	 * from the task having been scheduled away before the
	 * cross-call arrived.
	 */
1956 1957
	if (event->state == PERF_EVENT_STATE_ERROR)
		event->state = PERF_EVENT_STATE_OFF;
1958

P
Peter Zijlstra 已提交
1959
retry:
1960
	if (!ctx->is_active) {
1961
		__perf_event_mark_enabled(event);
1962 1963 1964
		goto out;
	}

1965
	raw_spin_unlock_irq(&ctx->lock);
1966 1967 1968

	if (!task_function_call(task, __perf_event_enable, event))
		return;
1969

1970
	raw_spin_lock_irq(&ctx->lock);
1971 1972

	/*
1973
	 * If the context is active and the event is still off,
1974 1975
	 * we need to retry the cross-call.
	 */
1976 1977 1978 1979 1980 1981
	if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
		/*
		 * task could have been flipped by a concurrent
		 * perf_event_context_sched_out()
		 */
		task = ctx->task;
1982
		goto retry;
1983
	}
1984

P
Peter Zijlstra 已提交
1985
out:
1986
	raw_spin_unlock_irq(&ctx->lock);
1987
}
1988
EXPORT_SYMBOL_GPL(perf_event_enable);
1989

1990
int perf_event_refresh(struct perf_event *event, int refresh)
1991
{
1992
	/*
1993
	 * not supported on inherited events
1994
	 */
1995
	if (event->attr.inherit || !is_sampling_event(event))
1996 1997
		return -EINVAL;

1998 1999
	atomic_add(refresh, &event->event_limit);
	perf_event_enable(event);
2000 2001

	return 0;
2002
}
2003
EXPORT_SYMBOL_GPL(perf_event_refresh);
2004

2005 2006 2007
static void ctx_sched_out(struct perf_event_context *ctx,
			  struct perf_cpu_context *cpuctx,
			  enum event_type_t event_type)
2008
{
2009
	struct perf_event *event;
2010
	int is_active = ctx->is_active;
2011

2012
	ctx->is_active &= ~event_type;
2013
	if (likely(!ctx->nr_events))
2014 2015
		return;

2016
	update_context_time(ctx);
S
Stephane Eranian 已提交
2017
	update_cgrp_time_from_cpuctx(cpuctx);
2018
	if (!ctx->nr_active)
2019
		return;
2020

P
Peter Zijlstra 已提交
2021
	perf_pmu_disable(ctx->pmu);
2022
	if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
2023 2024
		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
2025
	}
2026

2027
	if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
2028
		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2029
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
2030
	}
P
Peter Zijlstra 已提交
2031
	perf_pmu_enable(ctx->pmu);
2032 2033
}

2034 2035 2036
/*
 * Test whether two contexts are equivalent, i.e. whether they
 * have both been cloned from the same version of the same context
2037 2038 2039 2040
 * and they both have the same number of enabled events.
 * If the number of enabled events is the same, then the set
 * of enabled events should be the same, because these are both
 * inherited contexts, therefore we can't access individual events
2041
 * in them directly with an fd; we can only enable/disable all
2042
 * events via prctl, or enable/disable all events in a family
2043 2044
 * via ioctl, which will have the same effect on both contexts.
 */
2045 2046
static int context_equiv(struct perf_event_context *ctx1,
			 struct perf_event_context *ctx2)
2047 2048
{
	return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
2049
		&& ctx1->parent_gen == ctx2->parent_gen
2050
		&& !ctx1->pin_count && !ctx2->pin_count;
2051 2052
}

2053 2054
static void __perf_event_sync_stat(struct perf_event *event,
				     struct perf_event *next_event)
2055 2056 2057
{
	u64 value;

2058
	if (!event->attr.inherit_stat)
2059 2060 2061
		return;

	/*
2062
	 * Update the event value, we cannot use perf_event_read()
2063 2064
	 * because we're in the middle of a context switch and have IRQs
	 * disabled, which upsets smp_call_function_single(), however
2065
	 * we know the event must be on the current CPU, therefore we
2066 2067
	 * don't need to use it.
	 */
2068 2069
	switch (event->state) {
	case PERF_EVENT_STATE_ACTIVE:
2070 2071
		event->pmu->read(event);
		/* fall-through */
2072

2073 2074
	case PERF_EVENT_STATE_INACTIVE:
		update_event_times(event);
2075 2076 2077 2078 2079 2080 2081
		break;

	default:
		break;
	}

	/*
2082
	 * In order to keep per-task stats reliable we need to flip the event
2083 2084
	 * values when we flip the contexts.
	 */
2085 2086 2087
	value = local64_read(&next_event->count);
	value = local64_xchg(&event->count, value);
	local64_set(&next_event->count, value);
2088

2089 2090
	swap(event->total_time_enabled, next_event->total_time_enabled);
	swap(event->total_time_running, next_event->total_time_running);
2091

2092
	/*
2093
	 * Since we swizzled the values, update the user visible data too.
2094
	 */
2095 2096
	perf_event_update_userpage(event);
	perf_event_update_userpage(next_event);
2097 2098 2099 2100 2101
}

#define list_next_entry(pos, member) \
	list_entry(pos->member.next, typeof(*pos), member)

2102 2103
static void perf_event_sync_stat(struct perf_event_context *ctx,
				   struct perf_event_context *next_ctx)
2104
{
2105
	struct perf_event *event, *next_event;
2106 2107 2108 2109

	if (!ctx->nr_stat)
		return;

2110 2111
	update_context_time(ctx);

2112 2113
	event = list_first_entry(&ctx->event_list,
				   struct perf_event, event_entry);
2114

2115 2116
	next_event = list_first_entry(&next_ctx->event_list,
					struct perf_event, event_entry);
2117

2118 2119
	while (&event->event_entry != &ctx->event_list &&
	       &next_event->event_entry != &next_ctx->event_list) {
2120

2121
		__perf_event_sync_stat(event, next_event);
2122

2123 2124
		event = list_next_entry(event, event_entry);
		next_event = list_next_entry(next_event, event_entry);
2125 2126 2127
	}
}

2128 2129
static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
					 struct task_struct *next)
T
Thomas Gleixner 已提交
2130
{
P
Peter Zijlstra 已提交
2131
	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2132 2133
	struct perf_event_context *next_ctx;
	struct perf_event_context *parent;
P
Peter Zijlstra 已提交
2134
	struct perf_cpu_context *cpuctx;
2135
	int do_switch = 1;
T
Thomas Gleixner 已提交
2136

P
Peter Zijlstra 已提交
2137 2138
	if (likely(!ctx))
		return;
2139

P
Peter Zijlstra 已提交
2140 2141
	cpuctx = __get_cpu_context(ctx);
	if (!cpuctx->task_ctx)
T
Thomas Gleixner 已提交
2142 2143
		return;

2144 2145
	rcu_read_lock();
	parent = rcu_dereference(ctx->parent_ctx);
P
Peter Zijlstra 已提交
2146
	next_ctx = next->perf_event_ctxp[ctxn];
2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157
	if (parent && next_ctx &&
	    rcu_dereference(next_ctx->parent_ctx) == parent) {
		/*
		 * Looks like the two contexts are clones, so we might be
		 * able to optimize the context switch.  We lock both
		 * contexts and check that they are clones under the
		 * lock (including re-checking that neither has been
		 * uncloned in the meantime).  It doesn't matter which
		 * order we take the locks because no other cpu could
		 * be trying to lock both of these tasks.
		 */
2158 2159
		raw_spin_lock(&ctx->lock);
		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2160
		if (context_equiv(ctx, next_ctx)) {
2161 2162
			/*
			 * XXX do we need a memory barrier of sorts
2163
			 * wrt to rcu_dereference() of perf_event_ctxp
2164
			 */
P
Peter Zijlstra 已提交
2165 2166
			task->perf_event_ctxp[ctxn] = next_ctx;
			next->perf_event_ctxp[ctxn] = ctx;
2167 2168 2169
			ctx->task = next;
			next_ctx->task = task;
			do_switch = 0;
2170

2171
			perf_event_sync_stat(ctx, next_ctx);
2172
		}
2173 2174
		raw_spin_unlock(&next_ctx->lock);
		raw_spin_unlock(&ctx->lock);
2175
	}
2176
	rcu_read_unlock();
2177

2178
	if (do_switch) {
2179
		raw_spin_lock(&ctx->lock);
2180
		ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2181
		cpuctx->task_ctx = NULL;
2182
		raw_spin_unlock(&ctx->lock);
2183
	}
T
Thomas Gleixner 已提交
2184 2185
}

P
Peter Zijlstra 已提交
2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199
#define for_each_task_context_nr(ctxn)					\
	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)

/*
 * Called from scheduler to remove the events of the current task,
 * with interrupts disabled.
 *
 * We stop each event and update the event value in event->count.
 *
 * This does not protect us against NMI, but disable()
 * sets the disabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * not restart the event.
 */
2200 2201
void __perf_event_task_sched_out(struct task_struct *task,
				 struct task_struct *next)
P
Peter Zijlstra 已提交
2202 2203 2204 2205 2206
{
	int ctxn;

	for_each_task_context_nr(ctxn)
		perf_event_context_sched_out(task, ctxn, next);
S
Stephane Eranian 已提交
2207 2208 2209 2210 2211 2212 2213

	/*
	 * if cgroup events exist on this CPU, then we need
	 * to check if we have to switch out PMU state.
	 * cgroup event are system-wide mode only
	 */
	if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2214
		perf_cgroup_sched_out(task, next);
P
Peter Zijlstra 已提交
2215 2216
}

2217
static void task_ctx_sched_out(struct perf_event_context *ctx)
2218
{
P
Peter Zijlstra 已提交
2219
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2220

2221 2222
	if (!cpuctx->task_ctx)
		return;
2223 2224 2225 2226

	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
		return;

2227
	ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2228 2229 2230
	cpuctx->task_ctx = NULL;
}

2231 2232 2233 2234 2235 2236 2237
/*
 * Called with IRQs disabled
 */
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type)
{
	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2238 2239
}

2240
static void
2241
ctx_pinned_sched_in(struct perf_event_context *ctx,
2242
		    struct perf_cpu_context *cpuctx)
T
Thomas Gleixner 已提交
2243
{
2244
	struct perf_event *event;
T
Thomas Gleixner 已提交
2245

2246 2247
	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
		if (event->state <= PERF_EVENT_STATE_OFF)
2248
			continue;
2249
		if (!event_filter_match(event))
2250 2251
			continue;

S
Stephane Eranian 已提交
2252 2253 2254 2255
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

2256
		if (group_can_go_on(event, cpuctx, 1))
2257
			group_sched_in(event, cpuctx, ctx);
2258 2259 2260 2261 2262

		/*
		 * If this pinned group hasn't been scheduled,
		 * put it in error state.
		 */
2263 2264 2265
		if (event->state == PERF_EVENT_STATE_INACTIVE) {
			update_group_times(event);
			event->state = PERF_EVENT_STATE_ERROR;
2266
		}
2267
	}
2268 2269 2270 2271
}

static void
ctx_flexible_sched_in(struct perf_event_context *ctx,
2272
		      struct perf_cpu_context *cpuctx)
2273 2274 2275
{
	struct perf_event *event;
	int can_add_hw = 1;
2276

2277 2278 2279
	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
		/* Ignore events in OFF or ERROR state */
		if (event->state <= PERF_EVENT_STATE_OFF)
2280
			continue;
2281 2282
		/*
		 * Listen to the 'cpu' scheduling filter constraint
2283
		 * of events:
2284
		 */
2285
		if (!event_filter_match(event))
T
Thomas Gleixner 已提交
2286 2287
			continue;

S
Stephane Eranian 已提交
2288 2289 2290 2291
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

P
Peter Zijlstra 已提交
2292
		if (group_can_go_on(event, cpuctx, can_add_hw)) {
2293
			if (group_sched_in(event, cpuctx, ctx))
2294
				can_add_hw = 0;
P
Peter Zijlstra 已提交
2295
		}
T
Thomas Gleixner 已提交
2296
	}
2297 2298 2299 2300 2301
}

static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
2302 2303
	     enum event_type_t event_type,
	     struct task_struct *task)
2304
{
S
Stephane Eranian 已提交
2305
	u64 now;
2306
	int is_active = ctx->is_active;
S
Stephane Eranian 已提交
2307

2308
	ctx->is_active |= event_type;
2309
	if (likely(!ctx->nr_events))
2310
		return;
2311

S
Stephane Eranian 已提交
2312 2313
	now = perf_clock();
	ctx->timestamp = now;
2314
	perf_cgroup_set_timestamp(task, ctx);
2315 2316 2317 2318
	/*
	 * First go through the list and put on any pinned groups
	 * in order to give them the best chance of going on.
	 */
2319
	if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
2320
		ctx_pinned_sched_in(ctx, cpuctx);
2321 2322

	/* Then walk through the lower prio flexible groups */
2323
	if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
2324
		ctx_flexible_sched_in(ctx, cpuctx);
2325 2326
}

2327
static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
2328 2329
			     enum event_type_t event_type,
			     struct task_struct *task)
2330 2331 2332
{
	struct perf_event_context *ctx = &cpuctx->ctx;

S
Stephane Eranian 已提交
2333
	ctx_sched_in(ctx, cpuctx, event_type, task);
2334 2335
}

S
Stephane Eranian 已提交
2336 2337
static void perf_event_context_sched_in(struct perf_event_context *ctx,
					struct task_struct *task)
2338
{
P
Peter Zijlstra 已提交
2339
	struct perf_cpu_context *cpuctx;
2340

P
Peter Zijlstra 已提交
2341
	cpuctx = __get_cpu_context(ctx);
2342 2343 2344
	if (cpuctx->task_ctx == ctx)
		return;

2345
	perf_ctx_lock(cpuctx, ctx);
P
Peter Zijlstra 已提交
2346
	perf_pmu_disable(ctx->pmu);
2347 2348 2349 2350 2351 2352 2353
	/*
	 * We want to keep the following priority order:
	 * cpu pinned (that don't need to move), task pinned,
	 * cpu flexible, task flexible.
	 */
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);

2354 2355
	if (ctx->nr_events)
		cpuctx->task_ctx = ctx;
2356

2357 2358
	perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);

2359 2360 2361
	perf_pmu_enable(ctx->pmu);
	perf_ctx_unlock(cpuctx, ctx);

2362 2363 2364 2365
	/*
	 * Since these rotations are per-cpu, we need to ensure the
	 * cpu-context we got scheduled on is actually rotating.
	 */
P
Peter Zijlstra 已提交
2366
	perf_pmu_rotate_start(ctx->pmu);
2367 2368
}

2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428
/*
 * When sampling the branck stack in system-wide, it may be necessary
 * to flush the stack on context switch. This happens when the branch
 * stack does not tag its entries with the pid of the current task.
 * Otherwise it becomes impossible to associate a branch entry with a
 * task. This ambiguity is more likely to appear when the branch stack
 * supports priv level filtering and the user sets it to monitor only
 * at the user level (which could be a useful measurement in system-wide
 * mode). In that case, the risk is high of having a branch stack with
 * branch from multiple tasks. Flushing may mean dropping the existing
 * entries or stashing them somewhere in the PMU specific code layer.
 *
 * This function provides the context switch callback to the lower code
 * layer. It is invoked ONLY when there is at least one system-wide context
 * with at least one active event using taken branch sampling.
 */
static void perf_branch_stack_sched_in(struct task_struct *prev,
				       struct task_struct *task)
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	/* no need to flush branch stack if not changing task */
	if (prev == task)
		return;

	local_irq_save(flags);

	rcu_read_lock();

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

		/*
		 * check if the context has at least one
		 * event using PERF_SAMPLE_BRANCH_STACK
		 */
		if (cpuctx->ctx.nr_branch_stack > 0
		    && pmu->flush_branch_stack) {

			pmu = cpuctx->ctx.pmu;

			perf_ctx_lock(cpuctx, cpuctx->task_ctx);

			perf_pmu_disable(pmu);

			pmu->flush_branch_stack();

			perf_pmu_enable(pmu);

			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
		}
	}

	rcu_read_unlock();

	local_irq_restore(flags);
}

P
Peter Zijlstra 已提交
2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439
/*
 * Called from scheduler to add the events of the current task
 * with interrupts disabled.
 *
 * We restore the event value and then enable it.
 *
 * This does not protect us against NMI, but enable()
 * sets the enabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * keep the event running.
 */
2440 2441
void __perf_event_task_sched_in(struct task_struct *prev,
				struct task_struct *task)
P
Peter Zijlstra 已提交
2442 2443 2444 2445 2446 2447 2448 2449 2450
{
	struct perf_event_context *ctx;
	int ctxn;

	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (likely(!ctx))
			continue;

S
Stephane Eranian 已提交
2451
		perf_event_context_sched_in(ctx, task);
P
Peter Zijlstra 已提交
2452
	}
S
Stephane Eranian 已提交
2453 2454 2455 2456 2457 2458
	/*
	 * if cgroup events exist on this CPU, then we need
	 * to check if we have to switch in PMU state.
	 * cgroup event are system-wide mode only
	 */
	if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2459
		perf_cgroup_sched_in(prev, task);
2460 2461 2462 2463

	/* check for system-wide branch_stack events */
	if (atomic_read(&__get_cpu_var(perf_branch_stack_events)))
		perf_branch_stack_sched_in(prev, task);
2464 2465
}

2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492
static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
{
	u64 frequency = event->attr.sample_freq;
	u64 sec = NSEC_PER_SEC;
	u64 divisor, dividend;

	int count_fls, nsec_fls, frequency_fls, sec_fls;

	count_fls = fls64(count);
	nsec_fls = fls64(nsec);
	frequency_fls = fls64(frequency);
	sec_fls = 30;

	/*
	 * We got @count in @nsec, with a target of sample_freq HZ
	 * the target period becomes:
	 *
	 *             @count * 10^9
	 * period = -------------------
	 *          @nsec * sample_freq
	 *
	 */

	/*
	 * Reduce accuracy by one bit such that @a and @b converge
	 * to a similar magnitude.
	 */
2493
#define REDUCE_FLS(a, b)		\
2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532
do {					\
	if (a##_fls > b##_fls) {	\
		a >>= 1;		\
		a##_fls--;		\
	} else {			\
		b >>= 1;		\
		b##_fls--;		\
	}				\
} while (0)

	/*
	 * Reduce accuracy until either term fits in a u64, then proceed with
	 * the other, so that finally we can do a u64/u64 division.
	 */
	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
		REDUCE_FLS(nsec, frequency);
		REDUCE_FLS(sec, count);
	}

	if (count_fls + sec_fls > 64) {
		divisor = nsec * frequency;

		while (count_fls + sec_fls > 64) {
			REDUCE_FLS(count, sec);
			divisor >>= 1;
		}

		dividend = count * sec;
	} else {
		dividend = count * sec;

		while (nsec_fls + frequency_fls > 64) {
			REDUCE_FLS(nsec, frequency);
			dividend >>= 1;
		}

		divisor = nsec * frequency;
	}

2533 2534 2535
	if (!divisor)
		return dividend;

2536 2537 2538
	return div64_u64(dividend, divisor);
}

2539 2540 2541
static DEFINE_PER_CPU(int, perf_throttled_count);
static DEFINE_PER_CPU(u64, perf_throttled_seq);

2542
static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
2543
{
2544
	struct hw_perf_event *hwc = &event->hw;
2545
	s64 period, sample_period;
2546 2547
	s64 delta;

2548
	period = perf_calculate_period(event, nsec, count);
2549 2550 2551 2552 2553 2554 2555 2556 2557 2558

	delta = (s64)(period - hwc->sample_period);
	delta = (delta + 7) / 8; /* low pass filter */

	sample_period = hwc->sample_period + delta;

	if (!sample_period)
		sample_period = 1;

	hwc->sample_period = sample_period;
2559

2560
	if (local64_read(&hwc->period_left) > 8*sample_period) {
2561 2562 2563
		if (disable)
			event->pmu->stop(event, PERF_EF_UPDATE);

2564
		local64_set(&hwc->period_left, 0);
2565 2566 2567

		if (disable)
			event->pmu->start(event, PERF_EF_RELOAD);
2568
	}
2569 2570
}

2571 2572 2573 2574 2575 2576 2577
/*
 * combine freq adjustment with unthrottling to avoid two passes over the
 * events. At the same time, make sure, having freq events does not change
 * the rate of unthrottling as that would introduce bias.
 */
static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
					   int needs_unthr)
2578
{
2579 2580
	struct perf_event *event;
	struct hw_perf_event *hwc;
2581
	u64 now, period = TICK_NSEC;
2582
	s64 delta;
2583

2584 2585 2586 2587 2588 2589
	/*
	 * only need to iterate over all events iff:
	 * - context have events in frequency mode (needs freq adjust)
	 * - there are events to unthrottle on this cpu
	 */
	if (!(ctx->nr_freq || needs_unthr))
2590 2591
		return;

2592
	raw_spin_lock(&ctx->lock);
2593
	perf_pmu_disable(ctx->pmu);
2594

2595
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
2596
		if (event->state != PERF_EVENT_STATE_ACTIVE)
2597 2598
			continue;

2599
		if (!event_filter_match(event))
2600 2601
			continue;

2602
		hwc = &event->hw;
2603

2604 2605
		if (needs_unthr && hwc->interrupts == MAX_INTERRUPTS) {
			hwc->interrupts = 0;
2606
			perf_log_throttle(event, 1);
P
Peter Zijlstra 已提交
2607
			event->pmu->start(event, 0);
2608 2609
		}

2610
		if (!event->attr.freq || !event->attr.sample_freq)
2611 2612
			continue;

2613 2614 2615 2616 2617
		/*
		 * stop the event and update event->count
		 */
		event->pmu->stop(event, PERF_EF_UPDATE);

2618
		now = local64_read(&event->count);
2619 2620
		delta = now - hwc->freq_count_stamp;
		hwc->freq_count_stamp = now;
2621

2622 2623 2624
		/*
		 * restart the event
		 * reload only if value has changed
2625 2626 2627
		 * we have stopped the event so tell that
		 * to perf_adjust_period() to avoid stopping it
		 * twice.
2628
		 */
2629
		if (delta > 0)
2630
			perf_adjust_period(event, period, delta, false);
2631 2632

		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
2633
	}
2634

2635
	perf_pmu_enable(ctx->pmu);
2636
	raw_spin_unlock(&ctx->lock);
2637 2638
}

2639
/*
2640
 * Round-robin a context's events:
2641
 */
2642
static void rotate_ctx(struct perf_event_context *ctx)
T
Thomas Gleixner 已提交
2643
{
2644 2645 2646 2647 2648 2649
	/*
	 * Rotate the first entry last of non-pinned groups. Rotation might be
	 * disabled by the inheritance code.
	 */
	if (!ctx->rotate_disable)
		list_rotate_left(&ctx->flexible_groups);
2650 2651
}

2652
/*
2653 2654 2655
 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
 * because they're strictly cpu affine and rotate_start is called with IRQs
 * disabled, while rotate_context is called from IRQ context.
2656
 */
2657
static int perf_rotate_context(struct perf_cpu_context *cpuctx)
2658
{
P
Peter Zijlstra 已提交
2659
	struct perf_event_context *ctx = NULL;
2660
	int rotate = 0, remove = 1;
2661

2662
	if (cpuctx->ctx.nr_events) {
2663
		remove = 0;
2664 2665 2666
		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
			rotate = 1;
	}
2667

P
Peter Zijlstra 已提交
2668
	ctx = cpuctx->task_ctx;
2669
	if (ctx && ctx->nr_events) {
2670
		remove = 0;
2671 2672 2673
		if (ctx->nr_events != ctx->nr_active)
			rotate = 1;
	}
2674

2675
	if (!rotate)
2676 2677
		goto done;

2678
	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
P
Peter Zijlstra 已提交
2679
	perf_pmu_disable(cpuctx->ctx.pmu);
2680

2681 2682 2683
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
	if (ctx)
		ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
T
Thomas Gleixner 已提交
2684

2685 2686 2687
	rotate_ctx(&cpuctx->ctx);
	if (ctx)
		rotate_ctx(ctx);
2688

2689
	perf_event_sched_in(cpuctx, ctx, current);
2690

2691 2692
	perf_pmu_enable(cpuctx->ctx.pmu);
	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2693
done:
2694 2695
	if (remove)
		list_del_init(&cpuctx->rotation_list);
2696 2697

	return rotate;
2698 2699
}

2700 2701 2702 2703 2704 2705 2706 2707 2708 2709
#ifdef CONFIG_NO_HZ_FULL
bool perf_event_can_stop_tick(void)
{
	if (list_empty(&__get_cpu_var(rotation_list)))
		return true;
	else
		return false;
}
#endif

2710 2711 2712 2713
void perf_event_task_tick(void)
{
	struct list_head *head = &__get_cpu_var(rotation_list);
	struct perf_cpu_context *cpuctx, *tmp;
2714 2715
	struct perf_event_context *ctx;
	int throttled;
2716

2717 2718
	WARN_ON(!irqs_disabled());

2719 2720 2721
	__this_cpu_inc(perf_throttled_seq);
	throttled = __this_cpu_xchg(perf_throttled_count, 0);

2722
	list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
2723 2724 2725 2726 2727 2728
		ctx = &cpuctx->ctx;
		perf_adjust_freq_unthr_context(ctx, throttled);

		ctx = cpuctx->task_ctx;
		if (ctx)
			perf_adjust_freq_unthr_context(ctx, throttled);
2729
	}
T
Thomas Gleixner 已提交
2730 2731
}

2732 2733 2734 2735 2736 2737 2738 2739 2740 2741
static int event_enable_on_exec(struct perf_event *event,
				struct perf_event_context *ctx)
{
	if (!event->attr.enable_on_exec)
		return 0;

	event->attr.enable_on_exec = 0;
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
		return 0;

2742
	__perf_event_mark_enabled(event);
2743 2744 2745 2746

	return 1;
}

2747
/*
2748
 * Enable all of a task's events that have been marked enable-on-exec.
2749 2750
 * This expects task == current.
 */
P
Peter Zijlstra 已提交
2751
static void perf_event_enable_on_exec(struct perf_event_context *ctx)
2752
{
2753
	struct perf_event *event;
2754 2755
	unsigned long flags;
	int enabled = 0;
2756
	int ret;
2757 2758

	local_irq_save(flags);
2759
	if (!ctx || !ctx->nr_events)
2760 2761
		goto out;

2762 2763 2764 2765 2766 2767 2768
	/*
	 * We must ctxsw out cgroup events to avoid conflict
	 * when invoking perf_task_event_sched_in() later on
	 * in this function. Otherwise we end up trying to
	 * ctxswin cgroup events which are already scheduled
	 * in.
	 */
2769
	perf_cgroup_sched_out(current, NULL);
2770

2771
	raw_spin_lock(&ctx->lock);
2772
	task_ctx_sched_out(ctx);
2773

2774
	list_for_each_entry(event, &ctx->event_list, event_entry) {
2775 2776 2777
		ret = event_enable_on_exec(event, ctx);
		if (ret)
			enabled = 1;
2778 2779 2780
	}

	/*
2781
	 * Unclone this context if we enabled any event.
2782
	 */
2783 2784
	if (enabled)
		unclone_ctx(ctx);
2785

2786
	raw_spin_unlock(&ctx->lock);
2787

2788 2789 2790
	/*
	 * Also calls ctxswin for cgroup events, if any:
	 */
S
Stephane Eranian 已提交
2791
	perf_event_context_sched_in(ctx, ctx->task);
P
Peter Zijlstra 已提交
2792
out:
2793 2794 2795
	local_irq_restore(flags);
}

T
Thomas Gleixner 已提交
2796
/*
2797
 * Cross CPU call to read the hardware event
T
Thomas Gleixner 已提交
2798
 */
2799
static void __perf_event_read(void *info)
T
Thomas Gleixner 已提交
2800
{
2801 2802
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
2803
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
I
Ingo Molnar 已提交
2804

2805 2806 2807 2808
	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu.  If not it has been
	 * scheduled out before the smp call arrived.  In that case
2809 2810
	 * event->count would have been updated to a recent sample
	 * when the event was scheduled out.
2811 2812 2813 2814
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

2815
	raw_spin_lock(&ctx->lock);
S
Stephane Eranian 已提交
2816
	if (ctx->is_active) {
2817
		update_context_time(ctx);
S
Stephane Eranian 已提交
2818 2819
		update_cgrp_time_from_event(event);
	}
2820
	update_event_times(event);
2821 2822
	if (event->state == PERF_EVENT_STATE_ACTIVE)
		event->pmu->read(event);
2823
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
2824 2825
}

P
Peter Zijlstra 已提交
2826 2827
static inline u64 perf_event_count(struct perf_event *event)
{
2828
	return local64_read(&event->count) + atomic64_read(&event->child_count);
P
Peter Zijlstra 已提交
2829 2830
}

2831
static u64 perf_event_read(struct perf_event *event)
T
Thomas Gleixner 已提交
2832 2833
{
	/*
2834 2835
	 * If event is enabled and currently active on a CPU, update the
	 * value in the event structure:
T
Thomas Gleixner 已提交
2836
	 */
2837 2838 2839 2840
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
		smp_call_function_single(event->oncpu,
					 __perf_event_read, event, 1);
	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
P
Peter Zijlstra 已提交
2841 2842 2843
		struct perf_event_context *ctx = event->ctx;
		unsigned long flags;

2844
		raw_spin_lock_irqsave(&ctx->lock, flags);
2845 2846 2847 2848 2849
		/*
		 * may read while context is not active
		 * (e.g., thread is blocked), in that case
		 * we cannot update context time
		 */
S
Stephane Eranian 已提交
2850
		if (ctx->is_active) {
2851
			update_context_time(ctx);
S
Stephane Eranian 已提交
2852 2853
			update_cgrp_time_from_event(event);
		}
2854
		update_event_times(event);
2855
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
2856 2857
	}

P
Peter Zijlstra 已提交
2858
	return perf_event_count(event);
T
Thomas Gleixner 已提交
2859 2860
}

2861
/*
2862
 * Initialize the perf_event context in a task_struct:
2863
 */
2864
static void __perf_event_init_context(struct perf_event_context *ctx)
2865
{
2866
	raw_spin_lock_init(&ctx->lock);
2867
	mutex_init(&ctx->mutex);
2868 2869
	INIT_LIST_HEAD(&ctx->pinned_groups);
	INIT_LIST_HEAD(&ctx->flexible_groups);
2870 2871
	INIT_LIST_HEAD(&ctx->event_list);
	atomic_set(&ctx->refcount, 1);
2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886
}

static struct perf_event_context *
alloc_perf_context(struct pmu *pmu, struct task_struct *task)
{
	struct perf_event_context *ctx;

	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
	if (!ctx)
		return NULL;

	__perf_event_init_context(ctx);
	if (task) {
		ctx->task = task;
		get_task_struct(task);
T
Thomas Gleixner 已提交
2887
	}
2888 2889 2890
	ctx->pmu = pmu;

	return ctx;
2891 2892
}

2893 2894 2895 2896 2897
static struct task_struct *
find_lively_task_by_vpid(pid_t vpid)
{
	struct task_struct *task;
	int err;
T
Thomas Gleixner 已提交
2898 2899

	rcu_read_lock();
2900
	if (!vpid)
T
Thomas Gleixner 已提交
2901 2902
		task = current;
	else
2903
		task = find_task_by_vpid(vpid);
T
Thomas Gleixner 已提交
2904 2905 2906 2907 2908 2909 2910 2911
	if (task)
		get_task_struct(task);
	rcu_read_unlock();

	if (!task)
		return ERR_PTR(-ESRCH);

	/* Reuse ptrace permission checks for now. */
2912 2913 2914 2915
	err = -EACCES;
	if (!ptrace_may_access(task, PTRACE_MODE_READ))
		goto errout;

2916 2917 2918 2919 2920 2921 2922
	return task;
errout:
	put_task_struct(task);
	return ERR_PTR(err);

}

2923 2924 2925
/*
 * Returns a matching context with refcount and pincount.
 */
P
Peter Zijlstra 已提交
2926
static struct perf_event_context *
M
Matt Helsley 已提交
2927
find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
T
Thomas Gleixner 已提交
2928
{
2929
	struct perf_event_context *ctx;
2930
	struct perf_cpu_context *cpuctx;
2931
	unsigned long flags;
P
Peter Zijlstra 已提交
2932
	int ctxn, err;
T
Thomas Gleixner 已提交
2933

2934
	if (!task) {
2935
		/* Must be root to operate on a CPU event: */
2936
		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
T
Thomas Gleixner 已提交
2937 2938 2939
			return ERR_PTR(-EACCES);

		/*
2940
		 * We could be clever and allow to attach a event to an
T
Thomas Gleixner 已提交
2941 2942 2943
		 * offline CPU and activate it when the CPU comes up, but
		 * that's for later.
		 */
2944
		if (!cpu_online(cpu))
T
Thomas Gleixner 已提交
2945 2946
			return ERR_PTR(-ENODEV);

P
Peter Zijlstra 已提交
2947
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
T
Thomas Gleixner 已提交
2948
		ctx = &cpuctx->ctx;
2949
		get_ctx(ctx);
2950
		++ctx->pin_count;
T
Thomas Gleixner 已提交
2951 2952 2953 2954

		return ctx;
	}

P
Peter Zijlstra 已提交
2955 2956 2957 2958 2959
	err = -EINVAL;
	ctxn = pmu->task_ctx_nr;
	if (ctxn < 0)
		goto errout;

P
Peter Zijlstra 已提交
2960
retry:
P
Peter Zijlstra 已提交
2961
	ctx = perf_lock_task_context(task, ctxn, &flags);
2962
	if (ctx) {
2963
		unclone_ctx(ctx);
2964
		++ctx->pin_count;
2965
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
2966
	} else {
2967
		ctx = alloc_perf_context(pmu, task);
2968 2969 2970
		err = -ENOMEM;
		if (!ctx)
			goto errout;
2971

2972 2973 2974 2975 2976 2977 2978 2979 2980 2981
		err = 0;
		mutex_lock(&task->perf_event_mutex);
		/*
		 * If it has already passed perf_event_exit_task().
		 * we must see PF_EXITING, it takes this mutex too.
		 */
		if (task->flags & PF_EXITING)
			err = -ESRCH;
		else if (task->perf_event_ctxp[ctxn])
			err = -EAGAIN;
2982
		else {
2983
			get_ctx(ctx);
2984
			++ctx->pin_count;
2985
			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
2986
		}
2987 2988 2989
		mutex_unlock(&task->perf_event_mutex);

		if (unlikely(err)) {
2990
			put_ctx(ctx);
2991 2992 2993 2994

			if (err == -EAGAIN)
				goto retry;
			goto errout;
2995 2996 2997
		}
	}

T
Thomas Gleixner 已提交
2998
	return ctx;
2999

P
Peter Zijlstra 已提交
3000
errout:
3001
	return ERR_PTR(err);
T
Thomas Gleixner 已提交
3002 3003
}

L
Li Zefan 已提交
3004 3005
static void perf_event_free_filter(struct perf_event *event);

3006
static void free_event_rcu(struct rcu_head *head)
P
Peter Zijlstra 已提交
3007
{
3008
	struct perf_event *event;
P
Peter Zijlstra 已提交
3009

3010 3011 3012
	event = container_of(head, struct perf_event, rcu_head);
	if (event->ns)
		put_pid_ns(event->ns);
L
Li Zefan 已提交
3013
	perf_event_free_filter(event);
3014
	kfree(event);
P
Peter Zijlstra 已提交
3015 3016
}

3017
static void ring_buffer_put(struct ring_buffer *rb);
3018

3019
static void free_event(struct perf_event *event)
3020
{
3021
	irq_work_sync(&event->pending);
3022

3023
	if (!event->parent) {
3024
		if (event->attach_state & PERF_ATTACH_TASK)
3025
			static_key_slow_dec_deferred(&perf_sched_events);
3026
		if (event->attr.mmap || event->attr.mmap_data)
3027 3028 3029 3030 3031
			atomic_dec(&nr_mmap_events);
		if (event->attr.comm)
			atomic_dec(&nr_comm_events);
		if (event->attr.task)
			atomic_dec(&nr_task_events);
3032 3033
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
			put_callchain_buffers();
3034 3035
		if (is_cgroup_event(event)) {
			atomic_dec(&per_cpu(perf_cgroup_events, event->cpu));
3036
			static_key_slow_dec_deferred(&perf_sched_events);
3037
		}
3038 3039 3040 3041 3042 3043 3044 3045

		if (has_branch_stack(event)) {
			static_key_slow_dec_deferred(&perf_sched_events);
			/* is system-wide event */
			if (!(event->attach_state & PERF_ATTACH_TASK))
				atomic_dec(&per_cpu(perf_branch_stack_events,
						    event->cpu));
		}
3046
	}
3047

3048 3049 3050
	if (event->rb) {
		ring_buffer_put(event->rb);
		event->rb = NULL;
3051 3052
	}

S
Stephane Eranian 已提交
3053 3054 3055
	if (is_cgroup_event(event))
		perf_detach_cgroup(event);

3056 3057
	if (event->destroy)
		event->destroy(event);
3058

P
Peter Zijlstra 已提交
3059 3060 3061
	if (event->ctx)
		put_ctx(event->ctx);

3062
	call_rcu(&event->rcu_head, free_event_rcu);
3063 3064
}

3065
int perf_event_release_kernel(struct perf_event *event)
T
Thomas Gleixner 已提交
3066
{
3067
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
3068

3069
	WARN_ON_ONCE(ctx->parent_ctx);
3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082
	/*
	 * There are two ways this annotation is useful:
	 *
	 *  1) there is a lock recursion from perf_event_exit_task
	 *     see the comment there.
	 *
	 *  2) there is a lock-inversion with mmap_sem through
	 *     perf_event_read_group(), which takes faults while
	 *     holding ctx->mutex, however this is called after
	 *     the last filedesc died, so there is no possibility
	 *     to trigger the AB-BA case.
	 */
	mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
3083
	raw_spin_lock_irq(&ctx->lock);
3084
	perf_group_detach(event);
3085
	raw_spin_unlock_irq(&ctx->lock);
3086
	perf_remove_from_context(event);
3087
	mutex_unlock(&ctx->mutex);
T
Thomas Gleixner 已提交
3088

3089
	free_event(event);
T
Thomas Gleixner 已提交
3090 3091 3092

	return 0;
}
3093
EXPORT_SYMBOL_GPL(perf_event_release_kernel);
T
Thomas Gleixner 已提交
3094

3095 3096 3097
/*
 * Called when the last reference to the file is gone.
 */
3098
static void put_event(struct perf_event *event)
3099
{
P
Peter Zijlstra 已提交
3100
	struct task_struct *owner;
3101

3102 3103
	if (!atomic_long_dec_and_test(&event->refcount))
		return;
3104

P
Peter Zijlstra 已提交
3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137
	rcu_read_lock();
	owner = ACCESS_ONCE(event->owner);
	/*
	 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
	 * !owner it means the list deletion is complete and we can indeed
	 * free this event, otherwise we need to serialize on
	 * owner->perf_event_mutex.
	 */
	smp_read_barrier_depends();
	if (owner) {
		/*
		 * Since delayed_put_task_struct() also drops the last
		 * task reference we can safely take a new reference
		 * while holding the rcu_read_lock().
		 */
		get_task_struct(owner);
	}
	rcu_read_unlock();

	if (owner) {
		mutex_lock(&owner->perf_event_mutex);
		/*
		 * We have to re-check the event->owner field, if it is cleared
		 * we raced with perf_event_exit_task(), acquiring the mutex
		 * ensured they're done, and we can proceed with freeing the
		 * event.
		 */
		if (event->owner)
			list_del_init(&event->owner_entry);
		mutex_unlock(&owner->perf_event_mutex);
		put_task_struct(owner);
	}

3138 3139 3140 3141 3142 3143 3144
	perf_event_release_kernel(event);
}

static int perf_release(struct inode *inode, struct file *file)
{
	put_event(file->private_data);
	return 0;
3145 3146
}

3147
u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
3148
{
3149
	struct perf_event *child;
3150 3151
	u64 total = 0;

3152 3153 3154
	*enabled = 0;
	*running = 0;

3155
	mutex_lock(&event->child_mutex);
3156
	total += perf_event_read(event);
3157 3158 3159 3160 3161 3162
	*enabled += event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
	*running += event->total_time_running +
			atomic64_read(&event->child_total_time_running);

	list_for_each_entry(child, &event->child_list, child_list) {
3163
		total += perf_event_read(child);
3164 3165 3166
		*enabled += child->total_time_enabled;
		*running += child->total_time_running;
	}
3167
	mutex_unlock(&event->child_mutex);
3168 3169 3170

	return total;
}
3171
EXPORT_SYMBOL_GPL(perf_event_read_value);
3172

3173
static int perf_event_read_group(struct perf_event *event,
3174 3175
				   u64 read_format, char __user *buf)
{
3176
	struct perf_event *leader = event->group_leader, *sub;
3177 3178
	int n = 0, size = 0, ret = -EFAULT;
	struct perf_event_context *ctx = leader->ctx;
3179
	u64 values[5];
3180
	u64 count, enabled, running;
3181

3182
	mutex_lock(&ctx->mutex);
3183
	count = perf_event_read_value(leader, &enabled, &running);
3184 3185

	values[n++] = 1 + leader->nr_siblings;
3186 3187 3188 3189
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
3190 3191 3192
	values[n++] = count;
	if (read_format & PERF_FORMAT_ID)
		values[n++] = primary_event_id(leader);
3193 3194 3195 3196

	size = n * sizeof(u64);

	if (copy_to_user(buf, values, size))
3197
		goto unlock;
3198

3199
	ret = size;
3200

3201
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3202
		n = 0;
3203

3204
		values[n++] = perf_event_read_value(sub, &enabled, &running);
3205 3206 3207 3208 3209
		if (read_format & PERF_FORMAT_ID)
			values[n++] = primary_event_id(sub);

		size = n * sizeof(u64);

3210
		if (copy_to_user(buf + ret, values, size)) {
3211 3212 3213
			ret = -EFAULT;
			goto unlock;
		}
3214 3215

		ret += size;
3216
	}
3217 3218
unlock:
	mutex_unlock(&ctx->mutex);
3219

3220
	return ret;
3221 3222
}

3223
static int perf_event_read_one(struct perf_event *event,
3224 3225
				 u64 read_format, char __user *buf)
{
3226
	u64 enabled, running;
3227 3228 3229
	u64 values[4];
	int n = 0;

3230 3231 3232 3233 3234
	values[n++] = perf_event_read_value(event, &enabled, &running);
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
3235
	if (read_format & PERF_FORMAT_ID)
3236
		values[n++] = primary_event_id(event);
3237 3238 3239 3240 3241 3242 3243

	if (copy_to_user(buf, values, n * sizeof(u64)))
		return -EFAULT;

	return n * sizeof(u64);
}

T
Thomas Gleixner 已提交
3244
/*
3245
 * Read the performance event - simple non blocking version for now
T
Thomas Gleixner 已提交
3246 3247
 */
static ssize_t
3248
perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
T
Thomas Gleixner 已提交
3249
{
3250
	u64 read_format = event->attr.read_format;
3251
	int ret;
T
Thomas Gleixner 已提交
3252

3253
	/*
3254
	 * Return end-of-file for a read on a event that is in
3255 3256 3257
	 * error state (i.e. because it was pinned but it couldn't be
	 * scheduled on to the CPU at some point).
	 */
3258
	if (event->state == PERF_EVENT_STATE_ERROR)
3259 3260
		return 0;

3261
	if (count < event->read_size)
3262 3263
		return -ENOSPC;

3264
	WARN_ON_ONCE(event->ctx->parent_ctx);
3265
	if (read_format & PERF_FORMAT_GROUP)
3266
		ret = perf_event_read_group(event, read_format, buf);
3267
	else
3268
		ret = perf_event_read_one(event, read_format, buf);
T
Thomas Gleixner 已提交
3269

3270
	return ret;
T
Thomas Gleixner 已提交
3271 3272 3273 3274 3275
}

static ssize_t
perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
3276
	struct perf_event *event = file->private_data;
T
Thomas Gleixner 已提交
3277

3278
	return perf_read_hw(event, buf, count);
T
Thomas Gleixner 已提交
3279 3280 3281 3282
}

static unsigned int perf_poll(struct file *file, poll_table *wait)
{
3283
	struct perf_event *event = file->private_data;
3284
	struct ring_buffer *rb;
3285
	unsigned int events = POLL_HUP;
P
Peter Zijlstra 已提交
3286

3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303
	/*
	 * Race between perf_event_set_output() and perf_poll(): perf_poll()
	 * grabs the rb reference but perf_event_set_output() overrides it.
	 * Here is the timeline for two threads T1, T2:
	 * t0: T1, rb = rcu_dereference(event->rb)
	 * t1: T2, old_rb = event->rb
	 * t2: T2, event->rb = new rb
	 * t3: T2, ring_buffer_detach(old_rb)
	 * t4: T1, ring_buffer_attach(rb1)
	 * t5: T1, poll_wait(event->waitq)
	 *
	 * To avoid this problem, we grab mmap_mutex in perf_poll()
	 * thereby ensuring that the assignment of the new ring buffer
	 * and the detachment of the old buffer appear atomic to perf_poll()
	 */
	mutex_lock(&event->mmap_mutex);

P
Peter Zijlstra 已提交
3304
	rcu_read_lock();
3305
	rb = rcu_dereference(event->rb);
3306 3307
	if (rb) {
		ring_buffer_attach(event, rb);
3308
		events = atomic_xchg(&rb->poll, 0);
3309
	}
P
Peter Zijlstra 已提交
3310
	rcu_read_unlock();
T
Thomas Gleixner 已提交
3311

3312 3313
	mutex_unlock(&event->mmap_mutex);

3314
	poll_wait(file, &event->waitq, wait);
T
Thomas Gleixner 已提交
3315 3316 3317 3318

	return events;
}

3319
static void perf_event_reset(struct perf_event *event)
3320
{
3321
	(void)perf_event_read(event);
3322
	local64_set(&event->count, 0);
3323
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
3324 3325
}

3326
/*
3327 3328 3329 3330
 * Holding the top-level event's child_mutex means that any
 * descendant process that has inherited this event will block
 * in sync_child_event if it goes to exit, thus satisfying the
 * task existence requirements of perf_event_enable/disable.
3331
 */
3332 3333
static void perf_event_for_each_child(struct perf_event *event,
					void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
3334
{
3335
	struct perf_event *child;
P
Peter Zijlstra 已提交
3336

3337 3338 3339 3340
	WARN_ON_ONCE(event->ctx->parent_ctx);
	mutex_lock(&event->child_mutex);
	func(event);
	list_for_each_entry(child, &event->child_list, child_list)
P
Peter Zijlstra 已提交
3341
		func(child);
3342
	mutex_unlock(&event->child_mutex);
P
Peter Zijlstra 已提交
3343 3344
}

3345 3346
static void perf_event_for_each(struct perf_event *event,
				  void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
3347
{
3348 3349
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *sibling;
P
Peter Zijlstra 已提交
3350

3351 3352
	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
3353
	event = event->group_leader;
3354

3355 3356
	perf_event_for_each_child(event, func);
	list_for_each_entry(sibling, &event->sibling_list, group_entry)
3357
		perf_event_for_each_child(sibling, func);
3358
	mutex_unlock(&ctx->mutex);
3359 3360
}

3361
static int perf_event_period(struct perf_event *event, u64 __user *arg)
3362
{
3363
	struct perf_event_context *ctx = event->ctx;
3364 3365 3366
	int ret = 0;
	u64 value;

3367
	if (!is_sampling_event(event))
3368 3369
		return -EINVAL;

3370
	if (copy_from_user(&value, arg, sizeof(value)))
3371 3372 3373 3374 3375
		return -EFAULT;

	if (!value)
		return -EINVAL;

3376
	raw_spin_lock_irq(&ctx->lock);
3377 3378
	if (event->attr.freq) {
		if (value > sysctl_perf_event_sample_rate) {
3379 3380 3381 3382
			ret = -EINVAL;
			goto unlock;
		}

3383
		event->attr.sample_freq = value;
3384
	} else {
3385 3386
		event->attr.sample_period = value;
		event->hw.sample_period = value;
3387 3388
	}
unlock:
3389
	raw_spin_unlock_irq(&ctx->lock);
3390 3391 3392 3393

	return ret;
}

3394 3395
static const struct file_operations perf_fops;

3396
static inline int perf_fget_light(int fd, struct fd *p)
3397
{
3398 3399 3400
	struct fd f = fdget(fd);
	if (!f.file)
		return -EBADF;
3401

3402 3403 3404
	if (f.file->f_op != &perf_fops) {
		fdput(f);
		return -EBADF;
3405
	}
3406 3407
	*p = f;
	return 0;
3408 3409 3410 3411
}

static int perf_event_set_output(struct perf_event *event,
				 struct perf_event *output_event);
L
Li Zefan 已提交
3412
static int perf_event_set_filter(struct perf_event *event, void __user *arg);
3413

3414 3415
static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
3416 3417
	struct perf_event *event = file->private_data;
	void (*func)(struct perf_event *);
P
Peter Zijlstra 已提交
3418
	u32 flags = arg;
3419 3420

	switch (cmd) {
3421 3422
	case PERF_EVENT_IOC_ENABLE:
		func = perf_event_enable;
3423
		break;
3424 3425
	case PERF_EVENT_IOC_DISABLE:
		func = perf_event_disable;
3426
		break;
3427 3428
	case PERF_EVENT_IOC_RESET:
		func = perf_event_reset;
3429
		break;
P
Peter Zijlstra 已提交
3430

3431 3432
	case PERF_EVENT_IOC_REFRESH:
		return perf_event_refresh(event, arg);
3433

3434 3435
	case PERF_EVENT_IOC_PERIOD:
		return perf_event_period(event, (u64 __user *)arg);
3436

3437
	case PERF_EVENT_IOC_SET_OUTPUT:
3438 3439 3440
	{
		int ret;
		if (arg != -1) {
3441 3442 3443 3444 3445 3446 3447 3448 3449 3450
			struct perf_event *output_event;
			struct fd output;
			ret = perf_fget_light(arg, &output);
			if (ret)
				return ret;
			output_event = output.file->private_data;
			ret = perf_event_set_output(event, output_event);
			fdput(output);
		} else {
			ret = perf_event_set_output(event, NULL);
3451 3452 3453
		}
		return ret;
	}
3454

L
Li Zefan 已提交
3455 3456 3457
	case PERF_EVENT_IOC_SET_FILTER:
		return perf_event_set_filter(event, (void __user *)arg);

3458
	default:
P
Peter Zijlstra 已提交
3459
		return -ENOTTY;
3460
	}
P
Peter Zijlstra 已提交
3461 3462

	if (flags & PERF_IOC_FLAG_GROUP)
3463
		perf_event_for_each(event, func);
P
Peter Zijlstra 已提交
3464
	else
3465
		perf_event_for_each_child(event, func);
P
Peter Zijlstra 已提交
3466 3467

	return 0;
3468 3469
}

3470
int perf_event_task_enable(void)
3471
{
3472
	struct perf_event *event;
3473

3474 3475 3476 3477
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_enable);
	mutex_unlock(&current->perf_event_mutex);
3478 3479 3480 3481

	return 0;
}

3482
int perf_event_task_disable(void)
3483
{
3484
	struct perf_event *event;
3485

3486 3487 3488 3489
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_disable);
	mutex_unlock(&current->perf_event_mutex);
3490 3491 3492 3493

	return 0;
}

3494
static int perf_event_index(struct perf_event *event)
3495
{
P
Peter Zijlstra 已提交
3496 3497 3498
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;

3499
	if (event->state != PERF_EVENT_STATE_ACTIVE)
3500 3501
		return 0;

3502
	return event->pmu->event_idx(event);
3503 3504
}

3505
static void calc_timer_values(struct perf_event *event,
3506
				u64 *now,
3507 3508
				u64 *enabled,
				u64 *running)
3509
{
3510
	u64 ctx_time;
3511

3512 3513
	*now = perf_clock();
	ctx_time = event->shadow_ctx_time + *now;
3514 3515 3516 3517
	*enabled = ctx_time - event->tstamp_enabled;
	*running = ctx_time - event->tstamp_running;
}

3518
void __weak arch_perf_update_userpage(struct perf_event_mmap_page *userpg, u64 now)
3519 3520 3521
{
}

3522 3523 3524 3525 3526
/*
 * Callers need to ensure there can be no nesting of this function, otherwise
 * the seqlock logic goes bad. We can not serialize this because the arch
 * code calls this from NMI context.
 */
3527
void perf_event_update_userpage(struct perf_event *event)
3528
{
3529
	struct perf_event_mmap_page *userpg;
3530
	struct ring_buffer *rb;
3531
	u64 enabled, running, now;
3532 3533

	rcu_read_lock();
3534 3535 3536 3537 3538 3539 3540 3541 3542
	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we can be called in
	 * NMI context
	 */
3543
	calc_timer_values(event, &now, &enabled, &running);
3544 3545
	rb = rcu_dereference(event->rb);
	if (!rb)
3546 3547
		goto unlock;

3548
	userpg = rb->user_page;
3549

3550 3551 3552 3553 3554
	/*
	 * Disable preemption so as to not let the corresponding user-space
	 * spin too long if we get preempted.
	 */
	preempt_disable();
3555
	++userpg->lock;
3556
	barrier();
3557
	userpg->index = perf_event_index(event);
P
Peter Zijlstra 已提交
3558
	userpg->offset = perf_event_count(event);
3559
	if (userpg->index)
3560
		userpg->offset -= local64_read(&event->hw.prev_count);
3561

3562
	userpg->time_enabled = enabled +
3563
			atomic64_read(&event->child_total_time_enabled);
3564

3565
	userpg->time_running = running +
3566
			atomic64_read(&event->child_total_time_running);
3567

3568
	arch_perf_update_userpage(userpg, now);
3569

3570
	barrier();
3571
	++userpg->lock;
3572
	preempt_enable();
3573
unlock:
3574
	rcu_read_unlock();
3575 3576
}

3577 3578 3579
static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct perf_event *event = vma->vm_file->private_data;
3580
	struct ring_buffer *rb;
3581 3582 3583 3584 3585 3586 3587 3588 3589
	int ret = VM_FAULT_SIGBUS;

	if (vmf->flags & FAULT_FLAG_MKWRITE) {
		if (vmf->pgoff == 0)
			ret = 0;
		return ret;
	}

	rcu_read_lock();
3590 3591
	rb = rcu_dereference(event->rb);
	if (!rb)
3592 3593 3594 3595 3596
		goto unlock;

	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
		goto unlock;

3597
	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611
	if (!vmf->page)
		goto unlock;

	get_page(vmf->page);
	vmf->page->mapping = vma->vm_file->f_mapping;
	vmf->page->index   = vmf->pgoff;

	ret = 0;
unlock:
	rcu_read_unlock();

	return ret;
}

3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648
static void ring_buffer_attach(struct perf_event *event,
			       struct ring_buffer *rb)
{
	unsigned long flags;

	if (!list_empty(&event->rb_entry))
		return;

	spin_lock_irqsave(&rb->event_lock, flags);
	if (!list_empty(&event->rb_entry))
		goto unlock;

	list_add(&event->rb_entry, &rb->event_list);
unlock:
	spin_unlock_irqrestore(&rb->event_lock, flags);
}

static void ring_buffer_detach(struct perf_event *event,
			       struct ring_buffer *rb)
{
	unsigned long flags;

	if (list_empty(&event->rb_entry))
		return;

	spin_lock_irqsave(&rb->event_lock, flags);
	list_del_init(&event->rb_entry);
	wake_up_all(&event->waitq);
	spin_unlock_irqrestore(&rb->event_lock, flags);
}

static void ring_buffer_wakeup(struct perf_event *event)
{
	struct ring_buffer *rb;

	rcu_read_lock();
	rb = rcu_dereference(event->rb);
3649 3650 3651 3652
	if (!rb)
		goto unlock;

	list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
3653
		wake_up_all(&event->waitq);
3654 3655

unlock:
3656 3657 3658
	rcu_read_unlock();
}

3659
static void rb_free_rcu(struct rcu_head *rcu_head)
3660
{
3661
	struct ring_buffer *rb;
3662

3663 3664
	rb = container_of(rcu_head, struct ring_buffer, rcu_head);
	rb_free(rb);
3665 3666
}

3667
static struct ring_buffer *ring_buffer_get(struct perf_event *event)
3668
{
3669
	struct ring_buffer *rb;
3670

3671
	rcu_read_lock();
3672 3673 3674 3675
	rb = rcu_dereference(event->rb);
	if (rb) {
		if (!atomic_inc_not_zero(&rb->refcount))
			rb = NULL;
3676 3677 3678
	}
	rcu_read_unlock();

3679
	return rb;
3680 3681
}

3682
static void ring_buffer_put(struct ring_buffer *rb)
3683
{
3684 3685 3686
	struct perf_event *event, *n;
	unsigned long flags;

3687
	if (!atomic_dec_and_test(&rb->refcount))
3688
		return;
3689

3690 3691 3692 3693 3694 3695 3696
	spin_lock_irqsave(&rb->event_lock, flags);
	list_for_each_entry_safe(event, n, &rb->event_list, rb_entry) {
		list_del_init(&event->rb_entry);
		wake_up_all(&event->waitq);
	}
	spin_unlock_irqrestore(&rb->event_lock, flags);

3697
	call_rcu(&rb->rcu_head, rb_free_rcu);
3698 3699 3700 3701
}

static void perf_mmap_open(struct vm_area_struct *vma)
{
3702
	struct perf_event *event = vma->vm_file->private_data;
3703

3704
	atomic_inc(&event->mmap_count);
3705 3706 3707 3708
}

static void perf_mmap_close(struct vm_area_struct *vma)
{
3709
	struct perf_event *event = vma->vm_file->private_data;
3710

3711
	if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
3712
		unsigned long size = perf_data_size(event->rb);
3713
		struct user_struct *user = event->mmap_user;
3714
		struct ring_buffer *rb = event->rb;
3715

3716
		atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
3717
		vma->vm_mm->pinned_vm -= event->mmap_locked;
3718
		rcu_assign_pointer(event->rb, NULL);
3719
		ring_buffer_detach(event, rb);
3720
		mutex_unlock(&event->mmap_mutex);
3721

3722
		ring_buffer_put(rb);
3723
		free_uid(user);
3724
	}
3725 3726
}

3727
static const struct vm_operations_struct perf_mmap_vmops = {
3728 3729 3730 3731
	.open		= perf_mmap_open,
	.close		= perf_mmap_close,
	.fault		= perf_mmap_fault,
	.page_mkwrite	= perf_mmap_fault,
3732 3733 3734 3735
};

static int perf_mmap(struct file *file, struct vm_area_struct *vma)
{
3736
	struct perf_event *event = file->private_data;
3737
	unsigned long user_locked, user_lock_limit;
3738
	struct user_struct *user = current_user();
3739
	unsigned long locked, lock_limit;
3740
	struct ring_buffer *rb;
3741 3742
	unsigned long vma_size;
	unsigned long nr_pages;
3743
	long user_extra, extra;
3744
	int ret = 0, flags = 0;
3745

3746 3747 3748
	/*
	 * Don't allow mmap() of inherited per-task counters. This would
	 * create a performance issue due to all children writing to the
3749
	 * same rb.
3750 3751 3752 3753
	 */
	if (event->cpu == -1 && event->attr.inherit)
		return -EINVAL;

3754
	if (!(vma->vm_flags & VM_SHARED))
3755
		return -EINVAL;
3756 3757 3758 3759

	vma_size = vma->vm_end - vma->vm_start;
	nr_pages = (vma_size / PAGE_SIZE) - 1;

3760
	/*
3761
	 * If we have rb pages ensure they're a power-of-two number, so we
3762 3763 3764
	 * can do bitmasks instead of modulo.
	 */
	if (nr_pages != 0 && !is_power_of_2(nr_pages))
3765 3766
		return -EINVAL;

3767
	if (vma_size != PAGE_SIZE * (1 + nr_pages))
3768 3769
		return -EINVAL;

3770 3771
	if (vma->vm_pgoff != 0)
		return -EINVAL;
3772

3773 3774
	WARN_ON_ONCE(event->ctx->parent_ctx);
	mutex_lock(&event->mmap_mutex);
3775 3776 3777
	if (event->rb) {
		if (event->rb->nr_pages == nr_pages)
			atomic_inc(&event->rb->refcount);
3778
		else
3779 3780 3781 3782
			ret = -EINVAL;
		goto unlock;
	}

3783
	user_extra = nr_pages + 1;
3784
	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
I
Ingo Molnar 已提交
3785 3786 3787 3788 3789 3790

	/*
	 * Increase the limit linearly with more CPUs:
	 */
	user_lock_limit *= num_online_cpus();

3791
	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
3792

3793 3794 3795
	extra = 0;
	if (user_locked > user_lock_limit)
		extra = user_locked - user_lock_limit;
3796

3797
	lock_limit = rlimit(RLIMIT_MEMLOCK);
3798
	lock_limit >>= PAGE_SHIFT;
3799
	locked = vma->vm_mm->pinned_vm + extra;
3800

3801 3802
	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
		!capable(CAP_IPC_LOCK)) {
3803 3804 3805
		ret = -EPERM;
		goto unlock;
	}
3806

3807
	WARN_ON(event->rb);
3808

3809
	if (vma->vm_flags & VM_WRITE)
3810
		flags |= RING_BUFFER_WRITABLE;
3811

3812 3813 3814 3815
	rb = rb_alloc(nr_pages, 
		event->attr.watermark ? event->attr.wakeup_watermark : 0,
		event->cpu, flags);

3816
	if (!rb) {
3817
		ret = -ENOMEM;
3818
		goto unlock;
3819
	}
3820
	rcu_assign_pointer(event->rb, rb);
3821

3822 3823 3824
	atomic_long_add(user_extra, &user->locked_vm);
	event->mmap_locked = extra;
	event->mmap_user = get_current_user();
3825
	vma->vm_mm->pinned_vm += event->mmap_locked;
3826

3827 3828
	perf_event_update_userpage(event);

3829
unlock:
3830 3831
	if (!ret)
		atomic_inc(&event->mmap_count);
3832
	mutex_unlock(&event->mmap_mutex);
3833

3834
	vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
3835
	vma->vm_ops = &perf_mmap_vmops;
3836 3837

	return ret;
3838 3839
}

P
Peter Zijlstra 已提交
3840 3841
static int perf_fasync(int fd, struct file *filp, int on)
{
A
Al Viro 已提交
3842
	struct inode *inode = file_inode(filp);
3843
	struct perf_event *event = filp->private_data;
P
Peter Zijlstra 已提交
3844 3845 3846
	int retval;

	mutex_lock(&inode->i_mutex);
3847
	retval = fasync_helper(fd, filp, on, &event->fasync);
P
Peter Zijlstra 已提交
3848 3849 3850 3851 3852 3853 3854 3855
	mutex_unlock(&inode->i_mutex);

	if (retval < 0)
		return retval;

	return 0;
}

T
Thomas Gleixner 已提交
3856
static const struct file_operations perf_fops = {
3857
	.llseek			= no_llseek,
T
Thomas Gleixner 已提交
3858 3859 3860
	.release		= perf_release,
	.read			= perf_read,
	.poll			= perf_poll,
3861 3862
	.unlocked_ioctl		= perf_ioctl,
	.compat_ioctl		= perf_ioctl,
3863
	.mmap			= perf_mmap,
P
Peter Zijlstra 已提交
3864
	.fasync			= perf_fasync,
T
Thomas Gleixner 已提交
3865 3866
};

3867
/*
3868
 * Perf event wakeup
3869 3870 3871 3872 3873
 *
 * If there's data, ensure we set the poll() state and publish everything
 * to user-space before waking everybody up.
 */

3874
void perf_event_wakeup(struct perf_event *event)
3875
{
3876
	ring_buffer_wakeup(event);
3877

3878 3879 3880
	if (event->pending_kill) {
		kill_fasync(&event->fasync, SIGIO, event->pending_kill);
		event->pending_kill = 0;
3881
	}
3882 3883
}

3884
static void perf_pending_event(struct irq_work *entry)
3885
{
3886 3887
	struct perf_event *event = container_of(entry,
			struct perf_event, pending);
3888

3889 3890 3891
	if (event->pending_disable) {
		event->pending_disable = 0;
		__perf_event_disable(event);
3892 3893
	}

3894 3895 3896
	if (event->pending_wakeup) {
		event->pending_wakeup = 0;
		perf_event_wakeup(event);
3897 3898 3899
	}
}

3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920
/*
 * We assume there is only KVM supporting the callbacks.
 * Later on, we might change it to a list if there is
 * another virtualization implementation supporting the callbacks.
 */
struct perf_guest_info_callbacks *perf_guest_cbs;

int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = cbs;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);

int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = NULL;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);

3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951
static void
perf_output_sample_regs(struct perf_output_handle *handle,
			struct pt_regs *regs, u64 mask)
{
	int bit;

	for_each_set_bit(bit, (const unsigned long *) &mask,
			 sizeof(mask) * BITS_PER_BYTE) {
		u64 val;

		val = perf_reg_value(regs, bit);
		perf_output_put(handle, val);
	}
}

static void perf_sample_regs_user(struct perf_regs_user *regs_user,
				  struct pt_regs *regs)
{
	if (!user_mode(regs)) {
		if (current->mm)
			regs = task_pt_regs(current);
		else
			regs = NULL;
	}

	if (regs) {
		regs_user->regs = regs;
		regs_user->abi  = perf_reg_abi(current);
	}
}

3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046
/*
 * Get remaining task size from user stack pointer.
 *
 * It'd be better to take stack vma map and limit this more
 * precisly, but there's no way to get it safely under interrupt,
 * so using TASK_SIZE as limit.
 */
static u64 perf_ustack_task_size(struct pt_regs *regs)
{
	unsigned long addr = perf_user_stack_pointer(regs);

	if (!addr || addr >= TASK_SIZE)
		return 0;

	return TASK_SIZE - addr;
}

static u16
perf_sample_ustack_size(u16 stack_size, u16 header_size,
			struct pt_regs *regs)
{
	u64 task_size;

	/* No regs, no stack pointer, no dump. */
	if (!regs)
		return 0;

	/*
	 * Check if we fit in with the requested stack size into the:
	 * - TASK_SIZE
	 *   If we don't, we limit the size to the TASK_SIZE.
	 *
	 * - remaining sample size
	 *   If we don't, we customize the stack size to
	 *   fit in to the remaining sample size.
	 */

	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
	stack_size = min(stack_size, (u16) task_size);

	/* Current header size plus static size and dynamic size. */
	header_size += 2 * sizeof(u64);

	/* Do we fit in with the current stack dump size? */
	if ((u16) (header_size + stack_size) < header_size) {
		/*
		 * If we overflow the maximum size for the sample,
		 * we customize the stack dump size to fit in.
		 */
		stack_size = USHRT_MAX - header_size - sizeof(u64);
		stack_size = round_up(stack_size, sizeof(u64));
	}

	return stack_size;
}

static void
perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
			  struct pt_regs *regs)
{
	/* Case of a kernel thread, nothing to dump */
	if (!regs) {
		u64 size = 0;
		perf_output_put(handle, size);
	} else {
		unsigned long sp;
		unsigned int rem;
		u64 dyn_size;

		/*
		 * We dump:
		 * static size
		 *   - the size requested by user or the best one we can fit
		 *     in to the sample max size
		 * data
		 *   - user stack dump data
		 * dynamic size
		 *   - the actual dumped size
		 */

		/* Static size. */
		perf_output_put(handle, dump_size);

		/* Data. */
		sp = perf_user_stack_pointer(regs);
		rem = __output_copy_user(handle, (void *) sp, dump_size);
		dyn_size = dump_size - rem;

		perf_output_skip(handle, rem);

		/* Dynamic size. */
		perf_output_put(handle, dyn_size);
	}
}

4047 4048 4049
static void __perf_event_header__init_id(struct perf_event_header *header,
					 struct perf_sample_data *data,
					 struct perf_event *event)
4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076
{
	u64 sample_type = event->attr.sample_type;

	data->type = sample_type;
	header->size += event->id_header_size;

	if (sample_type & PERF_SAMPLE_TID) {
		/* namespace issues */
		data->tid_entry.pid = perf_event_pid(event, current);
		data->tid_entry.tid = perf_event_tid(event, current);
	}

	if (sample_type & PERF_SAMPLE_TIME)
		data->time = perf_clock();

	if (sample_type & PERF_SAMPLE_ID)
		data->id = primary_event_id(event);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		data->stream_id = event->id;

	if (sample_type & PERF_SAMPLE_CPU) {
		data->cpu_entry.cpu	 = raw_smp_processor_id();
		data->cpu_entry.reserved = 0;
	}
}

4077 4078 4079
void perf_event_header__init_id(struct perf_event_header *header,
				struct perf_sample_data *data,
				struct perf_event *event)
4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105
{
	if (event->attr.sample_id_all)
		__perf_event_header__init_id(header, data, event);
}

static void __perf_event__output_id_sample(struct perf_output_handle *handle,
					   struct perf_sample_data *data)
{
	u64 sample_type = data->type;

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);
}

4106 4107 4108
void perf_event__output_id_sample(struct perf_event *event,
				  struct perf_output_handle *handle,
				  struct perf_sample_data *sample)
4109 4110 4111 4112 4113
{
	if (event->attr.sample_id_all)
		__perf_event__output_id_sample(handle, sample);
}

4114
static void perf_output_read_one(struct perf_output_handle *handle,
4115 4116
				 struct perf_event *event,
				 u64 enabled, u64 running)
4117
{
4118
	u64 read_format = event->attr.read_format;
4119 4120 4121
	u64 values[4];
	int n = 0;

P
Peter Zijlstra 已提交
4122
	values[n++] = perf_event_count(event);
4123
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4124
		values[n++] = enabled +
4125
			atomic64_read(&event->child_total_time_enabled);
4126 4127
	}
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4128
		values[n++] = running +
4129
			atomic64_read(&event->child_total_time_running);
4130 4131
	}
	if (read_format & PERF_FORMAT_ID)
4132
		values[n++] = primary_event_id(event);
4133

4134
	__output_copy(handle, values, n * sizeof(u64));
4135 4136 4137
}

/*
4138
 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
4139 4140
 */
static void perf_output_read_group(struct perf_output_handle *handle,
4141 4142
			    struct perf_event *event,
			    u64 enabled, u64 running)
4143
{
4144 4145
	struct perf_event *leader = event->group_leader, *sub;
	u64 read_format = event->attr.read_format;
4146 4147 4148 4149 4150 4151
	u64 values[5];
	int n = 0;

	values[n++] = 1 + leader->nr_siblings;

	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4152
		values[n++] = enabled;
4153 4154

	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4155
		values[n++] = running;
4156

4157
	if (leader != event)
4158 4159
		leader->pmu->read(leader);

P
Peter Zijlstra 已提交
4160
	values[n++] = perf_event_count(leader);
4161
	if (read_format & PERF_FORMAT_ID)
4162
		values[n++] = primary_event_id(leader);
4163

4164
	__output_copy(handle, values, n * sizeof(u64));
4165

4166
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4167 4168
		n = 0;

4169
		if (sub != event)
4170 4171
			sub->pmu->read(sub);

P
Peter Zijlstra 已提交
4172
		values[n++] = perf_event_count(sub);
4173
		if (read_format & PERF_FORMAT_ID)
4174
			values[n++] = primary_event_id(sub);
4175

4176
		__output_copy(handle, values, n * sizeof(u64));
4177 4178 4179
	}
}

4180 4181 4182
#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
				 PERF_FORMAT_TOTAL_TIME_RUNNING)

4183
static void perf_output_read(struct perf_output_handle *handle,
4184
			     struct perf_event *event)
4185
{
4186
	u64 enabled = 0, running = 0, now;
4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197
	u64 read_format = event->attr.read_format;

	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we are called in
	 * NMI context
	 */
4198
	if (read_format & PERF_FORMAT_TOTAL_TIMES)
4199
		calc_timer_values(event, &now, &enabled, &running);
4200

4201
	if (event->attr.read_format & PERF_FORMAT_GROUP)
4202
		perf_output_read_group(handle, event, enabled, running);
4203
	else
4204
		perf_output_read_one(handle, event, enabled, running);
4205 4206
}

4207 4208 4209
void perf_output_sample(struct perf_output_handle *handle,
			struct perf_event_header *header,
			struct perf_sample_data *data,
4210
			struct perf_event *event)
4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240
{
	u64 sample_type = data->type;

	perf_output_put(handle, *header);

	if (sample_type & PERF_SAMPLE_IP)
		perf_output_put(handle, data->ip);

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ADDR)
		perf_output_put(handle, data->addr);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);

	if (sample_type & PERF_SAMPLE_PERIOD)
		perf_output_put(handle, data->period);

	if (sample_type & PERF_SAMPLE_READ)
4241
		perf_output_read(handle, event);
4242 4243 4244 4245 4246 4247 4248 4249 4250 4251

	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
		if (data->callchain) {
			int size = 1;

			if (data->callchain)
				size += data->callchain->nr;

			size *= sizeof(u64);

4252
			__output_copy(handle, data->callchain, size);
4253 4254 4255 4256 4257 4258 4259 4260 4261
		} else {
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}

	if (sample_type & PERF_SAMPLE_RAW) {
		if (data->raw) {
			perf_output_put(handle, data->raw->size);
4262 4263
			__output_copy(handle, data->raw->data,
					   data->raw->size);
4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274
		} else {
			struct {
				u32	size;
				u32	data;
			} raw = {
				.size = sizeof(u32),
				.data = 0,
			};
			perf_output_put(handle, raw);
		}
	}
4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288

	if (!event->attr.watermark) {
		int wakeup_events = event->attr.wakeup_events;

		if (wakeup_events) {
			struct ring_buffer *rb = handle->rb;
			int events = local_inc_return(&rb->events);

			if (events >= wakeup_events) {
				local_sub(wakeup_events, &rb->events);
				local_inc(&rb->wakeup);
			}
		}
	}
4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306

	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
		if (data->br_stack) {
			size_t size;

			size = data->br_stack->nr
			     * sizeof(struct perf_branch_entry);

			perf_output_put(handle, data->br_stack->nr);
			perf_output_copy(handle, data->br_stack->entries, size);
		} else {
			/*
			 * we always store at least the value of nr
			 */
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}
4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323

	if (sample_type & PERF_SAMPLE_REGS_USER) {
		u64 abi = data->regs_user.abi;

		/*
		 * If there are no regs to dump, notice it through
		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
		 */
		perf_output_put(handle, abi);

		if (abi) {
			u64 mask = event->attr.sample_regs_user;
			perf_output_sample_regs(handle,
						data->regs_user.regs,
						mask);
		}
	}
4324 4325 4326 4327 4328

	if (sample_type & PERF_SAMPLE_STACK_USER)
		perf_output_sample_ustack(handle,
					  data->stack_user_size,
					  data->regs_user.regs);
A
Andi Kleen 已提交
4329 4330 4331

	if (sample_type & PERF_SAMPLE_WEIGHT)
		perf_output_put(handle, data->weight);
4332 4333 4334

	if (sample_type & PERF_SAMPLE_DATA_SRC)
		perf_output_put(handle, data->data_src.val);
4335 4336 4337 4338
}

void perf_prepare_sample(struct perf_event_header *header,
			 struct perf_sample_data *data,
4339
			 struct perf_event *event,
4340
			 struct pt_regs *regs)
4341
{
4342
	u64 sample_type = event->attr.sample_type;
4343

4344
	header->type = PERF_RECORD_SAMPLE;
4345
	header->size = sizeof(*header) + event->header_size;
4346 4347 4348

	header->misc = 0;
	header->misc |= perf_misc_flags(regs);
4349

4350
	__perf_event_header__init_id(header, data, event);
4351

4352
	if (sample_type & PERF_SAMPLE_IP)
4353 4354
		data->ip = perf_instruction_pointer(regs);

4355
	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
4356
		int size = 1;
4357

4358
		data->callchain = perf_callchain(event, regs);
4359 4360 4361 4362 4363

		if (data->callchain)
			size += data->callchain->nr;

		header->size += size * sizeof(u64);
4364 4365
	}

4366
	if (sample_type & PERF_SAMPLE_RAW) {
4367 4368 4369 4370 4371 4372 4373 4374
		int size = sizeof(u32);

		if (data->raw)
			size += data->raw->size;
		else
			size += sizeof(u32);

		WARN_ON_ONCE(size & (sizeof(u64)-1));
4375
		header->size += size;
4376
	}
4377 4378 4379 4380 4381 4382 4383 4384 4385

	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
		int size = sizeof(u64); /* nr */
		if (data->br_stack) {
			size += data->br_stack->nr
			      * sizeof(struct perf_branch_entry);
		}
		header->size += size;
	}
4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399

	if (sample_type & PERF_SAMPLE_REGS_USER) {
		/* regs dump ABI info */
		int size = sizeof(u64);

		perf_sample_regs_user(&data->regs_user, regs);

		if (data->regs_user.regs) {
			u64 mask = event->attr.sample_regs_user;
			size += hweight64(mask) * sizeof(u64);
		}

		header->size += size;
	}
4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428

	if (sample_type & PERF_SAMPLE_STACK_USER) {
		/*
		 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
		 * processed as the last one or have additional check added
		 * in case new sample type is added, because we could eat
		 * up the rest of the sample size.
		 */
		struct perf_regs_user *uregs = &data->regs_user;
		u16 stack_size = event->attr.sample_stack_user;
		u16 size = sizeof(u64);

		if (!uregs->abi)
			perf_sample_regs_user(uregs, regs);

		stack_size = perf_sample_ustack_size(stack_size, header->size,
						     uregs->regs);

		/*
		 * If there is something to dump, add space for the dump
		 * itself and for the field that tells the dynamic size,
		 * which is how many have been actually dumped.
		 */
		if (stack_size)
			size += sizeof(u64) + stack_size;

		data->stack_user_size = stack_size;
		header->size += size;
	}
4429
}
4430

4431
static void perf_event_output(struct perf_event *event,
4432 4433 4434 4435 4436
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
	struct perf_output_handle handle;
	struct perf_event_header header;
4437

4438 4439 4440
	/* protect the callchain buffers */
	rcu_read_lock();

4441
	perf_prepare_sample(&header, data, event, regs);
P
Peter Zijlstra 已提交
4442

4443
	if (perf_output_begin(&handle, event, header.size))
4444
		goto exit;
4445

4446
	perf_output_sample(&handle, &header, data, event);
4447

4448
	perf_output_end(&handle);
4449 4450 4451

exit:
	rcu_read_unlock();
4452 4453
}

4454
/*
4455
 * read event_id
4456 4457 4458 4459 4460 4461 4462 4463 4464 4465
 */

struct perf_read_event {
	struct perf_event_header	header;

	u32				pid;
	u32				tid;
};

static void
4466
perf_event_read_event(struct perf_event *event,
4467 4468 4469
			struct task_struct *task)
{
	struct perf_output_handle handle;
4470
	struct perf_sample_data sample;
4471
	struct perf_read_event read_event = {
4472
		.header = {
4473
			.type = PERF_RECORD_READ,
4474
			.misc = 0,
4475
			.size = sizeof(read_event) + event->read_size,
4476
		},
4477 4478
		.pid = perf_event_pid(event, task),
		.tid = perf_event_tid(event, task),
4479
	};
4480
	int ret;
4481

4482
	perf_event_header__init_id(&read_event.header, &sample, event);
4483
	ret = perf_output_begin(&handle, event, read_event.header.size);
4484 4485 4486
	if (ret)
		return;

4487
	perf_output_put(&handle, read_event);
4488
	perf_output_read(&handle, event);
4489
	perf_event__output_id_sample(event, &handle, &sample);
4490

4491 4492 4493
	perf_output_end(&handle);
}

4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551
typedef int  (perf_event_aux_match_cb)(struct perf_event *event, void *data);
typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);

static void
perf_event_aux_ctx(struct perf_event_context *ctx,
		   perf_event_aux_match_cb match,
		   perf_event_aux_output_cb output,
		   void *data)
{
	struct perf_event *event;

	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (event->state < PERF_EVENT_STATE_INACTIVE)
			continue;
		if (!event_filter_match(event))
			continue;
		if (match(event, data))
			output(event, data);
	}
}

static void
perf_event_aux(perf_event_aux_match_cb match,
	       perf_event_aux_output_cb output,
	       void *data,
	       struct perf_event_context *task_ctx)
{
	struct perf_cpu_context *cpuctx;
	struct perf_event_context *ctx;
	struct pmu *pmu;
	int ctxn;

	rcu_read_lock();
	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
		if (cpuctx->unique_pmu != pmu)
			goto next;
		perf_event_aux_ctx(&cpuctx->ctx, match, output, data);
		if (task_ctx)
			goto next;
		ctxn = pmu->task_ctx_nr;
		if (ctxn < 0)
			goto next;
		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		if (ctx)
			perf_event_aux_ctx(ctx, match, output, data);
next:
		put_cpu_ptr(pmu->pmu_cpu_context);
	}

	if (task_ctx) {
		preempt_disable();
		perf_event_aux_ctx(task_ctx, match, output, data);
		preempt_enable();
	}
	rcu_read_unlock();
}

P
Peter Zijlstra 已提交
4552
/*
P
Peter Zijlstra 已提交
4553 4554
 * task tracking -- fork/exit
 *
4555
 * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
P
Peter Zijlstra 已提交
4556 4557
 */

P
Peter Zijlstra 已提交
4558
struct perf_task_event {
4559
	struct task_struct		*task;
4560
	struct perf_event_context	*task_ctx;
P
Peter Zijlstra 已提交
4561 4562 4563 4564 4565 4566

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				ppid;
P
Peter Zijlstra 已提交
4567 4568
		u32				tid;
		u32				ptid;
4569
		u64				time;
4570
	} event_id;
P
Peter Zijlstra 已提交
4571 4572
};

4573
static void perf_event_task_output(struct perf_event *event,
4574
				   void *data)
P
Peter Zijlstra 已提交
4575
{
4576
	struct perf_task_event *task_event = data;
P
Peter Zijlstra 已提交
4577
	struct perf_output_handle handle;
4578
	struct perf_sample_data	sample;
P
Peter Zijlstra 已提交
4579
	struct task_struct *task = task_event->task;
4580
	int ret, size = task_event->event_id.header.size;
4581

4582
	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
P
Peter Zijlstra 已提交
4583

4584
	ret = perf_output_begin(&handle, event,
4585
				task_event->event_id.header.size);
4586
	if (ret)
4587
		goto out;
P
Peter Zijlstra 已提交
4588

4589 4590
	task_event->event_id.pid = perf_event_pid(event, task);
	task_event->event_id.ppid = perf_event_pid(event, current);
P
Peter Zijlstra 已提交
4591

4592 4593
	task_event->event_id.tid = perf_event_tid(event, task);
	task_event->event_id.ptid = perf_event_tid(event, current);
P
Peter Zijlstra 已提交
4594

4595
	perf_output_put(&handle, task_event->event_id);
4596

4597 4598
	perf_event__output_id_sample(event, &handle, &sample);

P
Peter Zijlstra 已提交
4599
	perf_output_end(&handle);
4600 4601
out:
	task_event->event_id.header.size = size;
P
Peter Zijlstra 已提交
4602 4603
}

4604 4605
static int perf_event_task_match(struct perf_event *event,
				 void *data __maybe_unused)
P
Peter Zijlstra 已提交
4606
{
4607 4608
	return event->attr.comm || event->attr.mmap ||
	       event->attr.mmap_data || event->attr.task;
P
Peter Zijlstra 已提交
4609 4610
}

4611 4612
static void perf_event_task(struct task_struct *task,
			      struct perf_event_context *task_ctx,
4613
			      int new)
P
Peter Zijlstra 已提交
4614
{
P
Peter Zijlstra 已提交
4615
	struct perf_task_event task_event;
P
Peter Zijlstra 已提交
4616

4617 4618 4619
	if (!atomic_read(&nr_comm_events) &&
	    !atomic_read(&nr_mmap_events) &&
	    !atomic_read(&nr_task_events))
P
Peter Zijlstra 已提交
4620 4621
		return;

P
Peter Zijlstra 已提交
4622
	task_event = (struct perf_task_event){
4623 4624
		.task	  = task,
		.task_ctx = task_ctx,
4625
		.event_id    = {
P
Peter Zijlstra 已提交
4626
			.header = {
4627
				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
4628
				.misc = 0,
4629
				.size = sizeof(task_event.event_id),
P
Peter Zijlstra 已提交
4630
			},
4631 4632
			/* .pid  */
			/* .ppid */
P
Peter Zijlstra 已提交
4633 4634
			/* .tid  */
			/* .ptid */
P
Peter Zijlstra 已提交
4635
			.time = perf_clock(),
P
Peter Zijlstra 已提交
4636 4637 4638
		},
	};

4639 4640 4641 4642
	perf_event_aux(perf_event_task_match,
		       perf_event_task_output,
		       &task_event,
		       task_ctx);
P
Peter Zijlstra 已提交
4643 4644
}

4645
void perf_event_fork(struct task_struct *task)
P
Peter Zijlstra 已提交
4646
{
4647
	perf_event_task(task, NULL, 1);
P
Peter Zijlstra 已提交
4648 4649
}

4650 4651 4652 4653 4654
/*
 * comm tracking
 */

struct perf_comm_event {
4655 4656
	struct task_struct	*task;
	char			*comm;
4657 4658 4659 4660 4661 4662 4663
	int			comm_size;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
4664
	} event_id;
4665 4666
};

4667
static void perf_event_comm_output(struct perf_event *event,
4668
				   void *data)
4669
{
4670
	struct perf_comm_event *comm_event = data;
4671
	struct perf_output_handle handle;
4672
	struct perf_sample_data sample;
4673
	int size = comm_event->event_id.header.size;
4674 4675 4676 4677
	int ret;

	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
4678
				comm_event->event_id.header.size);
4679 4680

	if (ret)
4681
		goto out;
4682

4683 4684
	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
4685

4686
	perf_output_put(&handle, comm_event->event_id);
4687
	__output_copy(&handle, comm_event->comm,
4688
				   comm_event->comm_size);
4689 4690 4691

	perf_event__output_id_sample(event, &handle, &sample);

4692
	perf_output_end(&handle);
4693 4694
out:
	comm_event->event_id.header.size = size;
4695 4696
}

4697 4698
static int perf_event_comm_match(struct perf_event *event,
				 void *data __maybe_unused)
4699
{
4700
	return event->attr.comm;
4701 4702
}

4703
static void perf_event_comm_event(struct perf_comm_event *comm_event)
4704
{
4705
	char comm[TASK_COMM_LEN];
4706 4707
	unsigned int size;

4708
	memset(comm, 0, sizeof(comm));
4709
	strlcpy(comm, comm_event->task->comm, sizeof(comm));
4710
	size = ALIGN(strlen(comm)+1, sizeof(u64));
4711 4712 4713 4714

	comm_event->comm = comm;
	comm_event->comm_size = size;

4715
	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
P
Peter Zijlstra 已提交
4716

4717 4718 4719 4720
	perf_event_aux(perf_event_comm_match,
		       perf_event_comm_output,
		       comm_event,
		       NULL);
4721 4722
}

4723
void perf_event_comm(struct task_struct *task)
4724
{
4725
	struct perf_comm_event comm_event;
P
Peter Zijlstra 已提交
4726 4727
	struct perf_event_context *ctx;
	int ctxn;
4728

4729
	rcu_read_lock();
P
Peter Zijlstra 已提交
4730 4731 4732 4733
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;
4734

P
Peter Zijlstra 已提交
4735 4736
		perf_event_enable_on_exec(ctx);
	}
4737
	rcu_read_unlock();
4738

4739
	if (!atomic_read(&nr_comm_events))
4740
		return;
4741

4742
	comm_event = (struct perf_comm_event){
4743
		.task	= task,
4744 4745
		/* .comm      */
		/* .comm_size */
4746
		.event_id  = {
4747
			.header = {
4748
				.type = PERF_RECORD_COMM,
4749 4750 4751 4752 4753
				.misc = 0,
				/* .size */
			},
			/* .pid */
			/* .tid */
4754 4755 4756
		},
	};

4757
	perf_event_comm_event(&comm_event);
4758 4759
}

4760 4761 4762 4763 4764
/*
 * mmap tracking
 */

struct perf_mmap_event {
4765 4766 4767 4768
	struct vm_area_struct	*vma;

	const char		*file_name;
	int			file_size;
4769 4770 4771 4772 4773 4774 4775 4776 4777

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
		u64				start;
		u64				len;
		u64				pgoff;
4778
	} event_id;
4779 4780
};

4781
static void perf_event_mmap_output(struct perf_event *event,
4782
				   void *data)
4783
{
4784
	struct perf_mmap_event *mmap_event = data;
4785
	struct perf_output_handle handle;
4786
	struct perf_sample_data sample;
4787
	int size = mmap_event->event_id.header.size;
4788
	int ret;
4789

4790 4791
	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
4792
				mmap_event->event_id.header.size);
4793
	if (ret)
4794
		goto out;
4795

4796 4797
	mmap_event->event_id.pid = perf_event_pid(event, current);
	mmap_event->event_id.tid = perf_event_tid(event, current);
4798

4799
	perf_output_put(&handle, mmap_event->event_id);
4800
	__output_copy(&handle, mmap_event->file_name,
4801
				   mmap_event->file_size);
4802 4803 4804

	perf_event__output_id_sample(event, &handle, &sample);

4805
	perf_output_end(&handle);
4806 4807
out:
	mmap_event->event_id.header.size = size;
4808 4809
}

4810
static int perf_event_mmap_match(struct perf_event *event,
4811
				 void *data)
4812
{
4813 4814 4815
	struct perf_mmap_event *mmap_event = data;
	struct vm_area_struct *vma = mmap_event->vma;
	int executable = vma->vm_flags & VM_EXEC;
4816

4817 4818
	return (!executable && event->attr.mmap_data) ||
	       (executable && event->attr.mmap);
4819 4820
}

4821
static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
4822
{
4823 4824
	struct vm_area_struct *vma = mmap_event->vma;
	struct file *file = vma->vm_file;
4825 4826 4827
	unsigned int size;
	char tmp[16];
	char *buf = NULL;
4828
	const char *name;
4829

4830 4831
	memset(tmp, 0, sizeof(tmp));

4832
	if (file) {
4833
		/*
4834
		 * d_path works from the end of the rb backwards, so we
4835 4836 4837 4838
		 * need to add enough zero bytes after the string to handle
		 * the 64bit alignment we do later.
		 */
		buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
4839 4840 4841 4842
		if (!buf) {
			name = strncpy(tmp, "//enomem", sizeof(tmp));
			goto got_name;
		}
4843
		name = d_path(&file->f_path, buf, PATH_MAX);
4844 4845 4846 4847 4848
		if (IS_ERR(name)) {
			name = strncpy(tmp, "//toolong", sizeof(tmp));
			goto got_name;
		}
	} else {
4849 4850
		if (arch_vma_name(mmap_event->vma)) {
			name = strncpy(tmp, arch_vma_name(mmap_event->vma),
4851 4852
				       sizeof(tmp) - 1);
			tmp[sizeof(tmp) - 1] = '\0';
4853
			goto got_name;
4854
		}
4855 4856 4857 4858

		if (!vma->vm_mm) {
			name = strncpy(tmp, "[vdso]", sizeof(tmp));
			goto got_name;
4859 4860 4861 4862 4863 4864 4865 4866
		} else if (vma->vm_start <= vma->vm_mm->start_brk &&
				vma->vm_end >= vma->vm_mm->brk) {
			name = strncpy(tmp, "[heap]", sizeof(tmp));
			goto got_name;
		} else if (vma->vm_start <= vma->vm_mm->start_stack &&
				vma->vm_end >= vma->vm_mm->start_stack) {
			name = strncpy(tmp, "[stack]", sizeof(tmp));
			goto got_name;
4867 4868
		}

4869 4870 4871 4872 4873
		name = strncpy(tmp, "//anon", sizeof(tmp));
		goto got_name;
	}

got_name:
4874
	size = ALIGN(strlen(name)+1, sizeof(u64));
4875 4876 4877 4878

	mmap_event->file_name = name;
	mmap_event->file_size = size;

4879 4880 4881
	if (!(vma->vm_flags & VM_EXEC))
		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;

4882
	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
4883

4884 4885 4886 4887
	perf_event_aux(perf_event_mmap_match,
		       perf_event_mmap_output,
		       mmap_event,
		       NULL);
4888

4889 4890 4891
	kfree(buf);
}

4892
void perf_event_mmap(struct vm_area_struct *vma)
4893
{
4894 4895
	struct perf_mmap_event mmap_event;

4896
	if (!atomic_read(&nr_mmap_events))
4897 4898 4899
		return;

	mmap_event = (struct perf_mmap_event){
4900
		.vma	= vma,
4901 4902
		/* .file_name */
		/* .file_size */
4903
		.event_id  = {
4904
			.header = {
4905
				.type = PERF_RECORD_MMAP,
4906
				.misc = PERF_RECORD_MISC_USER,
4907 4908 4909 4910
				/* .size */
			},
			/* .pid */
			/* .tid */
4911 4912
			.start  = vma->vm_start,
			.len    = vma->vm_end - vma->vm_start,
4913
			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
4914 4915 4916
		},
	};

4917
	perf_event_mmap_event(&mmap_event);
4918 4919
}

4920 4921 4922 4923
/*
 * IRQ throttle logging
 */

4924
static void perf_log_throttle(struct perf_event *event, int enable)
4925 4926
{
	struct perf_output_handle handle;
4927
	struct perf_sample_data sample;
4928 4929 4930 4931 4932
	int ret;

	struct {
		struct perf_event_header	header;
		u64				time;
4933
		u64				id;
4934
		u64				stream_id;
4935 4936
	} throttle_event = {
		.header = {
4937
			.type = PERF_RECORD_THROTTLE,
4938 4939 4940
			.misc = 0,
			.size = sizeof(throttle_event),
		},
P
Peter Zijlstra 已提交
4941
		.time		= perf_clock(),
4942 4943
		.id		= primary_event_id(event),
		.stream_id	= event->id,
4944 4945
	};

4946
	if (enable)
4947
		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
4948

4949 4950 4951
	perf_event_header__init_id(&throttle_event.header, &sample, event);

	ret = perf_output_begin(&handle, event,
4952
				throttle_event.header.size);
4953 4954 4955 4956
	if (ret)
		return;

	perf_output_put(&handle, throttle_event);
4957
	perf_event__output_id_sample(event, &handle, &sample);
4958 4959 4960
	perf_output_end(&handle);
}

4961
/*
4962
 * Generic event overflow handling, sampling.
4963 4964
 */

4965
static int __perf_event_overflow(struct perf_event *event,
4966 4967
				   int throttle, struct perf_sample_data *data,
				   struct pt_regs *regs)
4968
{
4969 4970
	int events = atomic_read(&event->event_limit);
	struct hw_perf_event *hwc = &event->hw;
4971
	u64 seq;
4972 4973
	int ret = 0;

4974 4975 4976 4977 4978 4979 4980
	/*
	 * Non-sampling counters might still use the PMI to fold short
	 * hardware counters, ignore those.
	 */
	if (unlikely(!is_sampling_event(event)))
		return 0;

4981 4982 4983 4984 4985 4986 4987 4988 4989
	seq = __this_cpu_read(perf_throttled_seq);
	if (seq != hwc->interrupts_seq) {
		hwc->interrupts_seq = seq;
		hwc->interrupts = 1;
	} else {
		hwc->interrupts++;
		if (unlikely(throttle
			     && hwc->interrupts >= max_samples_per_tick)) {
			__this_cpu_inc(perf_throttled_count);
P
Peter Zijlstra 已提交
4990 4991
			hwc->interrupts = MAX_INTERRUPTS;
			perf_log_throttle(event, 0);
4992 4993
			ret = 1;
		}
4994
	}
4995

4996
	if (event->attr.freq) {
P
Peter Zijlstra 已提交
4997
		u64 now = perf_clock();
4998
		s64 delta = now - hwc->freq_time_stamp;
4999

5000
		hwc->freq_time_stamp = now;
5001

5002
		if (delta > 0 && delta < 2*TICK_NSEC)
5003
			perf_adjust_period(event, delta, hwc->last_period, true);
5004 5005
	}

5006 5007
	/*
	 * XXX event_limit might not quite work as expected on inherited
5008
	 * events
5009 5010
	 */

5011 5012
	event->pending_kill = POLL_IN;
	if (events && atomic_dec_and_test(&event->event_limit)) {
5013
		ret = 1;
5014
		event->pending_kill = POLL_HUP;
5015 5016
		event->pending_disable = 1;
		irq_work_queue(&event->pending);
5017 5018
	}

5019
	if (event->overflow_handler)
5020
		event->overflow_handler(event, data, regs);
5021
	else
5022
		perf_event_output(event, data, regs);
5023

P
Peter Zijlstra 已提交
5024
	if (event->fasync && event->pending_kill) {
5025 5026
		event->pending_wakeup = 1;
		irq_work_queue(&event->pending);
P
Peter Zijlstra 已提交
5027 5028
	}

5029
	return ret;
5030 5031
}

5032
int perf_event_overflow(struct perf_event *event,
5033 5034
			  struct perf_sample_data *data,
			  struct pt_regs *regs)
5035
{
5036
	return __perf_event_overflow(event, 1, data, regs);
5037 5038
}

5039
/*
5040
 * Generic software event infrastructure
5041 5042
 */

5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053
struct swevent_htable {
	struct swevent_hlist		*swevent_hlist;
	struct mutex			hlist_mutex;
	int				hlist_refcount;

	/* Recursion avoidance in each contexts */
	int				recursion[PERF_NR_CONTEXTS];
};

static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);

5054
/*
5055 5056
 * We directly increment event->count and keep a second value in
 * event->hw.period_left to count intervals. This period event
5057 5058 5059 5060
 * is kept in the range [-sample_period, 0] so that we can use the
 * sign as trigger.
 */

5061
u64 perf_swevent_set_period(struct perf_event *event)
5062
{
5063
	struct hw_perf_event *hwc = &event->hw;
5064 5065 5066 5067 5068
	u64 period = hwc->last_period;
	u64 nr, offset;
	s64 old, val;

	hwc->last_period = hwc->sample_period;
5069 5070

again:
5071
	old = val = local64_read(&hwc->period_left);
5072 5073
	if (val < 0)
		return 0;
5074

5075 5076 5077
	nr = div64_u64(period + val, period);
	offset = nr * period;
	val -= offset;
5078
	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
5079
		goto again;
5080

5081
	return nr;
5082 5083
}

5084
static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
5085
				    struct perf_sample_data *data,
5086
				    struct pt_regs *regs)
5087
{
5088
	struct hw_perf_event *hwc = &event->hw;
5089
	int throttle = 0;
5090

5091 5092
	if (!overflow)
		overflow = perf_swevent_set_period(event);
5093

5094 5095
	if (hwc->interrupts == MAX_INTERRUPTS)
		return;
5096

5097
	for (; overflow; overflow--) {
5098
		if (__perf_event_overflow(event, throttle,
5099
					    data, regs)) {
5100 5101 5102 5103 5104 5105
			/*
			 * We inhibit the overflow from happening when
			 * hwc->interrupts == MAX_INTERRUPTS.
			 */
			break;
		}
5106
		throttle = 1;
5107
	}
5108 5109
}

P
Peter Zijlstra 已提交
5110
static void perf_swevent_event(struct perf_event *event, u64 nr,
5111
			       struct perf_sample_data *data,
5112
			       struct pt_regs *regs)
5113
{
5114
	struct hw_perf_event *hwc = &event->hw;
5115

5116
	local64_add(nr, &event->count);
5117

5118 5119 5120
	if (!regs)
		return;

5121
	if (!is_sampling_event(event))
5122
		return;
5123

5124 5125 5126 5127 5128 5129
	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
		data->period = nr;
		return perf_swevent_overflow(event, 1, data, regs);
	} else
		data->period = event->hw.last_period;

5130
	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
5131
		return perf_swevent_overflow(event, 1, data, regs);
5132

5133
	if (local64_add_negative(nr, &hwc->period_left))
5134
		return;
5135

5136
	perf_swevent_overflow(event, 0, data, regs);
5137 5138
}

5139 5140 5141
static int perf_exclude_event(struct perf_event *event,
			      struct pt_regs *regs)
{
P
Peter Zijlstra 已提交
5142
	if (event->hw.state & PERF_HES_STOPPED)
5143
		return 1;
P
Peter Zijlstra 已提交
5144

5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155
	if (regs) {
		if (event->attr.exclude_user && user_mode(regs))
			return 1;

		if (event->attr.exclude_kernel && !user_mode(regs))
			return 1;
	}

	return 0;
}

5156
static int perf_swevent_match(struct perf_event *event,
P
Peter Zijlstra 已提交
5157
				enum perf_type_id type,
L
Li Zefan 已提交
5158 5159 5160
				u32 event_id,
				struct perf_sample_data *data,
				struct pt_regs *regs)
5161
{
5162
	if (event->attr.type != type)
5163
		return 0;
5164

5165
	if (event->attr.config != event_id)
5166 5167
		return 0;

5168 5169
	if (perf_exclude_event(event, regs))
		return 0;
5170 5171 5172 5173

	return 1;
}

5174 5175 5176 5177 5178 5179 5180
static inline u64 swevent_hash(u64 type, u32 event_id)
{
	u64 val = event_id | (type << 32);

	return hash_64(val, SWEVENT_HLIST_BITS);
}

5181 5182
static inline struct hlist_head *
__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
5183
{
5184 5185 5186 5187
	u64 hash = swevent_hash(type, event_id);

	return &hlist->heads[hash];
}
5188

5189 5190
/* For the read side: events when they trigger */
static inline struct hlist_head *
5191
find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
5192 5193
{
	struct swevent_hlist *hlist;
5194

5195
	hlist = rcu_dereference(swhash->swevent_hlist);
5196 5197 5198
	if (!hlist)
		return NULL;

5199 5200 5201 5202 5203
	return __find_swevent_head(hlist, type, event_id);
}

/* For the event head insertion and removal in the hlist */
static inline struct hlist_head *
5204
find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
5205 5206 5207 5208 5209 5210 5211 5212 5213 5214
{
	struct swevent_hlist *hlist;
	u32 event_id = event->attr.config;
	u64 type = event->attr.type;

	/*
	 * Event scheduling is always serialized against hlist allocation
	 * and release. Which makes the protected version suitable here.
	 * The context lock guarantees that.
	 */
5215
	hlist = rcu_dereference_protected(swhash->swevent_hlist,
5216 5217 5218 5219 5220
					  lockdep_is_held(&event->ctx->lock));
	if (!hlist)
		return NULL;

	return __find_swevent_head(hlist, type, event_id);
5221 5222 5223
}

static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
5224
				    u64 nr,
5225 5226
				    struct perf_sample_data *data,
				    struct pt_regs *regs)
5227
{
5228
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5229
	struct perf_event *event;
5230
	struct hlist_head *head;
5231

5232
	rcu_read_lock();
5233
	head = find_swevent_head_rcu(swhash, type, event_id);
5234 5235 5236
	if (!head)
		goto end;

5237
	hlist_for_each_entry_rcu(event, head, hlist_entry) {
L
Li Zefan 已提交
5238
		if (perf_swevent_match(event, type, event_id, data, regs))
5239
			perf_swevent_event(event, nr, data, regs);
5240
	}
5241 5242
end:
	rcu_read_unlock();
5243 5244
}

5245
int perf_swevent_get_recursion_context(void)
P
Peter Zijlstra 已提交
5246
{
5247
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
P
Peter Zijlstra 已提交
5248

5249
	return get_recursion_context(swhash->recursion);
P
Peter Zijlstra 已提交
5250
}
I
Ingo Molnar 已提交
5251
EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
P
Peter Zijlstra 已提交
5252

5253
inline void perf_swevent_put_recursion_context(int rctx)
5254
{
5255
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5256

5257
	put_recursion_context(swhash->recursion, rctx);
5258
}
5259

5260
void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
5261
{
5262
	struct perf_sample_data data;
5263 5264
	int rctx;

5265
	preempt_disable_notrace();
5266 5267 5268
	rctx = perf_swevent_get_recursion_context();
	if (rctx < 0)
		return;
5269

5270
	perf_sample_data_init(&data, addr, 0);
5271

5272
	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
5273 5274

	perf_swevent_put_recursion_context(rctx);
5275
	preempt_enable_notrace();
5276 5277
}

5278
static void perf_swevent_read(struct perf_event *event)
5279 5280 5281
{
}

P
Peter Zijlstra 已提交
5282
static int perf_swevent_add(struct perf_event *event, int flags)
5283
{
5284
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5285
	struct hw_perf_event *hwc = &event->hw;
5286 5287
	struct hlist_head *head;

5288
	if (is_sampling_event(event)) {
5289
		hwc->last_period = hwc->sample_period;
5290
		perf_swevent_set_period(event);
5291
	}
5292

P
Peter Zijlstra 已提交
5293 5294
	hwc->state = !(flags & PERF_EF_START);

5295
	head = find_swevent_head(swhash, event);
5296 5297 5298 5299 5300
	if (WARN_ON_ONCE(!head))
		return -EINVAL;

	hlist_add_head_rcu(&event->hlist_entry, head);

5301 5302 5303
	return 0;
}

P
Peter Zijlstra 已提交
5304
static void perf_swevent_del(struct perf_event *event, int flags)
5305
{
5306
	hlist_del_rcu(&event->hlist_entry);
5307 5308
}

P
Peter Zijlstra 已提交
5309
static void perf_swevent_start(struct perf_event *event, int flags)
5310
{
P
Peter Zijlstra 已提交
5311
	event->hw.state = 0;
5312
}
I
Ingo Molnar 已提交
5313

P
Peter Zijlstra 已提交
5314
static void perf_swevent_stop(struct perf_event *event, int flags)
5315
{
P
Peter Zijlstra 已提交
5316
	event->hw.state = PERF_HES_STOPPED;
5317 5318
}

5319 5320
/* Deref the hlist from the update side */
static inline struct swevent_hlist *
5321
swevent_hlist_deref(struct swevent_htable *swhash)
5322
{
5323 5324
	return rcu_dereference_protected(swhash->swevent_hlist,
					 lockdep_is_held(&swhash->hlist_mutex));
5325 5326
}

5327
static void swevent_hlist_release(struct swevent_htable *swhash)
5328
{
5329
	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
5330

5331
	if (!hlist)
5332 5333
		return;

5334
	rcu_assign_pointer(swhash->swevent_hlist, NULL);
5335
	kfree_rcu(hlist, rcu_head);
5336 5337 5338 5339
}

static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
{
5340
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5341

5342
	mutex_lock(&swhash->hlist_mutex);
5343

5344 5345
	if (!--swhash->hlist_refcount)
		swevent_hlist_release(swhash);
5346

5347
	mutex_unlock(&swhash->hlist_mutex);
5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364
}

static void swevent_hlist_put(struct perf_event *event)
{
	int cpu;

	if (event->cpu != -1) {
		swevent_hlist_put_cpu(event, event->cpu);
		return;
	}

	for_each_possible_cpu(cpu)
		swevent_hlist_put_cpu(event, cpu);
}

static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
{
5365
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5366 5367
	int err = 0;

5368
	mutex_lock(&swhash->hlist_mutex);
5369

5370
	if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
5371 5372 5373 5374 5375 5376 5377
		struct swevent_hlist *hlist;

		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
		if (!hlist) {
			err = -ENOMEM;
			goto exit;
		}
5378
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
5379
	}
5380
	swhash->hlist_refcount++;
P
Peter Zijlstra 已提交
5381
exit:
5382
	mutex_unlock(&swhash->hlist_mutex);
5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405

	return err;
}

static int swevent_hlist_get(struct perf_event *event)
{
	int err;
	int cpu, failed_cpu;

	if (event->cpu != -1)
		return swevent_hlist_get_cpu(event, event->cpu);

	get_online_cpus();
	for_each_possible_cpu(cpu) {
		err = swevent_hlist_get_cpu(event, cpu);
		if (err) {
			failed_cpu = cpu;
			goto fail;
		}
	}
	put_online_cpus();

	return 0;
P
Peter Zijlstra 已提交
5406
fail:
5407 5408 5409 5410 5411 5412 5413 5414 5415 5416
	for_each_possible_cpu(cpu) {
		if (cpu == failed_cpu)
			break;
		swevent_hlist_put_cpu(event, cpu);
	}

	put_online_cpus();
	return err;
}

5417
struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
5418

5419 5420 5421
static void sw_perf_event_destroy(struct perf_event *event)
{
	u64 event_id = event->attr.config;
5422

5423 5424
	WARN_ON(event->parent);

5425
	static_key_slow_dec(&perf_swevent_enabled[event_id]);
5426 5427 5428 5429 5430
	swevent_hlist_put(event);
}

static int perf_swevent_init(struct perf_event *event)
{
5431
	u64 event_id = event->attr.config;
5432 5433 5434 5435

	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

5436 5437 5438 5439 5440 5441
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

5442 5443 5444 5445 5446 5447 5448 5449 5450
	switch (event_id) {
	case PERF_COUNT_SW_CPU_CLOCK:
	case PERF_COUNT_SW_TASK_CLOCK:
		return -ENOENT;

	default:
		break;
	}

5451
	if (event_id >= PERF_COUNT_SW_MAX)
5452 5453 5454 5455 5456 5457 5458 5459 5460
		return -ENOENT;

	if (!event->parent) {
		int err;

		err = swevent_hlist_get(event);
		if (err)
			return err;

5461
		static_key_slow_inc(&perf_swevent_enabled[event_id]);
5462 5463 5464 5465 5466 5467
		event->destroy = sw_perf_event_destroy;
	}

	return 0;
}

5468 5469 5470 5471 5472
static int perf_swevent_event_idx(struct perf_event *event)
{
	return 0;
}

5473
static struct pmu perf_swevent = {
5474
	.task_ctx_nr	= perf_sw_context,
5475

5476
	.event_init	= perf_swevent_init,
P
Peter Zijlstra 已提交
5477 5478 5479 5480
	.add		= perf_swevent_add,
	.del		= perf_swevent_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
5481
	.read		= perf_swevent_read,
5482 5483

	.event_idx	= perf_swevent_event_idx,
5484 5485
};

5486 5487
#ifdef CONFIG_EVENT_TRACING

5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501
static int perf_tp_filter_match(struct perf_event *event,
				struct perf_sample_data *data)
{
	void *record = data->raw->data;

	if (likely(!event->filter) || filter_match_preds(event->filter, record))
		return 1;
	return 0;
}

static int perf_tp_event_match(struct perf_event *event,
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
5502 5503
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;
5504 5505 5506 5507
	/*
	 * All tracepoints are from kernel-space.
	 */
	if (event->attr.exclude_kernel)
5508 5509 5510 5511 5512 5513 5514 5515 5516
		return 0;

	if (!perf_tp_filter_match(event, data))
		return 0;

	return 1;
}

void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
5517 5518
		   struct pt_regs *regs, struct hlist_head *head, int rctx,
		   struct task_struct *task)
5519 5520
{
	struct perf_sample_data data;
5521 5522
	struct perf_event *event;

5523 5524 5525 5526 5527
	struct perf_raw_record raw = {
		.size = entry_size,
		.data = record,
	};

5528
	perf_sample_data_init(&data, addr, 0);
5529 5530
	data.raw = &raw;

5531
	hlist_for_each_entry_rcu(event, head, hlist_entry) {
5532
		if (perf_tp_event_match(event, &data, regs))
5533
			perf_swevent_event(event, count, &data, regs);
5534
	}
5535

5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560
	/*
	 * If we got specified a target task, also iterate its context and
	 * deliver this event there too.
	 */
	if (task && task != current) {
		struct perf_event_context *ctx;
		struct trace_entry *entry = record;

		rcu_read_lock();
		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
		if (!ctx)
			goto unlock;

		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
			if (event->attr.type != PERF_TYPE_TRACEPOINT)
				continue;
			if (event->attr.config != entry->type)
				continue;
			if (perf_tp_event_match(event, &data, regs))
				perf_swevent_event(event, count, &data, regs);
		}
unlock:
		rcu_read_unlock();
	}

5561
	perf_swevent_put_recursion_context(rctx);
5562 5563 5564
}
EXPORT_SYMBOL_GPL(perf_tp_event);

5565
static void tp_perf_event_destroy(struct perf_event *event)
5566
{
5567
	perf_trace_destroy(event);
5568 5569
}

5570
static int perf_tp_event_init(struct perf_event *event)
5571
{
5572 5573
	int err;

5574 5575 5576
	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -ENOENT;

5577 5578 5579 5580 5581 5582
	/*
	 * no branch sampling for tracepoint events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

5583 5584
	err = perf_trace_init(event);
	if (err)
5585
		return err;
5586

5587
	event->destroy = tp_perf_event_destroy;
5588

5589 5590 5591 5592
	return 0;
}

static struct pmu perf_tracepoint = {
5593 5594
	.task_ctx_nr	= perf_sw_context,

5595
	.event_init	= perf_tp_event_init,
P
Peter Zijlstra 已提交
5596 5597 5598 5599
	.add		= perf_trace_add,
	.del		= perf_trace_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
5600
	.read		= perf_swevent_read,
5601 5602

	.event_idx	= perf_swevent_event_idx,
5603 5604 5605 5606
};

static inline void perf_tp_register(void)
{
P
Peter Zijlstra 已提交
5607
	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
5608
}
L
Li Zefan 已提交
5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	char *filter_str;
	int ret;

	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -EINVAL;

	filter_str = strndup_user(arg, PAGE_SIZE);
	if (IS_ERR(filter_str))
		return PTR_ERR(filter_str);

	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);

	kfree(filter_str);
	return ret;
}

static void perf_event_free_filter(struct perf_event *event)
{
	ftrace_profile_free_filter(event);
}

5633
#else
L
Li Zefan 已提交
5634

5635
static inline void perf_tp_register(void)
5636 5637
{
}
L
Li Zefan 已提交
5638 5639 5640 5641 5642 5643 5644 5645 5646 5647

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	return -ENOENT;
}

static void perf_event_free_filter(struct perf_event *event)
{
}

5648
#endif /* CONFIG_EVENT_TRACING */
5649

5650
#ifdef CONFIG_HAVE_HW_BREAKPOINT
5651
void perf_bp_event(struct perf_event *bp, void *data)
5652
{
5653 5654 5655
	struct perf_sample_data sample;
	struct pt_regs *regs = data;

5656
	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
5657

P
Peter Zijlstra 已提交
5658
	if (!bp->hw.state && !perf_exclude_event(bp, regs))
5659
		perf_swevent_event(bp, 1, &sample, regs);
5660 5661 5662
}
#endif

5663 5664 5665
/*
 * hrtimer based swevent callback
 */
5666

5667
static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
5668
{
5669 5670 5671 5672 5673
	enum hrtimer_restart ret = HRTIMER_RESTART;
	struct perf_sample_data data;
	struct pt_regs *regs;
	struct perf_event *event;
	u64 period;
5674

5675
	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
P
Peter Zijlstra 已提交
5676 5677 5678 5679

	if (event->state != PERF_EVENT_STATE_ACTIVE)
		return HRTIMER_NORESTART;

5680
	event->pmu->read(event);
5681

5682
	perf_sample_data_init(&data, 0, event->hw.last_period);
5683 5684 5685
	regs = get_irq_regs();

	if (regs && !perf_exclude_event(event, regs)) {
5686
		if (!(event->attr.exclude_idle && is_idle_task(current)))
5687
			if (__perf_event_overflow(event, 1, &data, regs))
5688 5689
				ret = HRTIMER_NORESTART;
	}
5690

5691 5692
	period = max_t(u64, 10000, event->hw.sample_period);
	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
5693

5694
	return ret;
5695 5696
}

5697
static void perf_swevent_start_hrtimer(struct perf_event *event)
5698
{
5699
	struct hw_perf_event *hwc = &event->hw;
5700 5701 5702 5703
	s64 period;

	if (!is_sampling_event(event))
		return;
5704

5705 5706 5707 5708
	period = local64_read(&hwc->period_left);
	if (period) {
		if (period < 0)
			period = 10000;
P
Peter Zijlstra 已提交
5709

5710 5711 5712 5713 5714
		local64_set(&hwc->period_left, 0);
	} else {
		period = max_t(u64, 10000, hwc->sample_period);
	}
	__hrtimer_start_range_ns(&hwc->hrtimer,
5715
				ns_to_ktime(period), 0,
5716
				HRTIMER_MODE_REL_PINNED, 0);
5717
}
5718 5719

static void perf_swevent_cancel_hrtimer(struct perf_event *event)
5720
{
5721 5722
	struct hw_perf_event *hwc = &event->hw;

5723
	if (is_sampling_event(event)) {
5724
		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
P
Peter Zijlstra 已提交
5725
		local64_set(&hwc->period_left, ktime_to_ns(remaining));
5726 5727 5728

		hrtimer_cancel(&hwc->hrtimer);
	}
5729 5730
}

P
Peter Zijlstra 已提交
5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750
static void perf_swevent_init_hrtimer(struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;

	if (!is_sampling_event(event))
		return;

	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swevent_hrtimer;

	/*
	 * Since hrtimers have a fixed rate, we can do a static freq->period
	 * mapping and avoid the whole period adjust feedback stuff.
	 */
	if (event->attr.freq) {
		long freq = event->attr.sample_freq;

		event->attr.sample_period = NSEC_PER_SEC / freq;
		hwc->sample_period = event->attr.sample_period;
		local64_set(&hwc->period_left, hwc->sample_period);
5751
		hwc->last_period = hwc->sample_period;
P
Peter Zijlstra 已提交
5752 5753 5754 5755
		event->attr.freq = 0;
	}
}

5756 5757 5758 5759 5760
/*
 * Software event: cpu wall time clock
 */

static void cpu_clock_event_update(struct perf_event *event)
5761
{
5762 5763 5764
	s64 prev;
	u64 now;

P
Peter Zijlstra 已提交
5765
	now = local_clock();
5766 5767
	prev = local64_xchg(&event->hw.prev_count, now);
	local64_add(now - prev, &event->count);
5768 5769
}

P
Peter Zijlstra 已提交
5770
static void cpu_clock_event_start(struct perf_event *event, int flags)
5771
{
P
Peter Zijlstra 已提交
5772
	local64_set(&event->hw.prev_count, local_clock());
5773 5774 5775
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
5776
static void cpu_clock_event_stop(struct perf_event *event, int flags)
5777
{
5778 5779 5780
	perf_swevent_cancel_hrtimer(event);
	cpu_clock_event_update(event);
}
5781

P
Peter Zijlstra 已提交
5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794
static int cpu_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		cpu_clock_event_start(event, flags);

	return 0;
}

static void cpu_clock_event_del(struct perf_event *event, int flags)
{
	cpu_clock_event_stop(event, flags);
}

5795 5796 5797 5798
static void cpu_clock_event_read(struct perf_event *event)
{
	cpu_clock_event_update(event);
}
5799

5800 5801 5802 5803 5804 5805 5806 5807
static int cpu_clock_event_init(struct perf_event *event)
{
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
		return -ENOENT;

5808 5809 5810 5811 5812 5813
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

P
Peter Zijlstra 已提交
5814 5815
	perf_swevent_init_hrtimer(event);

5816
	return 0;
5817 5818
}

5819
static struct pmu perf_cpu_clock = {
5820 5821
	.task_ctx_nr	= perf_sw_context,

5822
	.event_init	= cpu_clock_event_init,
P
Peter Zijlstra 已提交
5823 5824 5825 5826
	.add		= cpu_clock_event_add,
	.del		= cpu_clock_event_del,
	.start		= cpu_clock_event_start,
	.stop		= cpu_clock_event_stop,
5827
	.read		= cpu_clock_event_read,
5828 5829

	.event_idx	= perf_swevent_event_idx,
5830 5831 5832 5833 5834 5835 5836
};

/*
 * Software event: task time clock
 */

static void task_clock_event_update(struct perf_event *event, u64 now)
5837
{
5838 5839
	u64 prev;
	s64 delta;
5840

5841 5842 5843 5844
	prev = local64_xchg(&event->hw.prev_count, now);
	delta = now - prev;
	local64_add(delta, &event->count);
}
5845

P
Peter Zijlstra 已提交
5846
static void task_clock_event_start(struct perf_event *event, int flags)
5847
{
P
Peter Zijlstra 已提交
5848
	local64_set(&event->hw.prev_count, event->ctx->time);
5849 5850 5851
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
5852
static void task_clock_event_stop(struct perf_event *event, int flags)
5853 5854 5855
{
	perf_swevent_cancel_hrtimer(event);
	task_clock_event_update(event, event->ctx->time);
P
Peter Zijlstra 已提交
5856 5857 5858 5859 5860 5861
}

static int task_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		task_clock_event_start(event, flags);
5862

P
Peter Zijlstra 已提交
5863 5864 5865 5866 5867 5868
	return 0;
}

static void task_clock_event_del(struct perf_event *event, int flags)
{
	task_clock_event_stop(event, PERF_EF_UPDATE);
5869 5870 5871 5872
}

static void task_clock_event_read(struct perf_event *event)
{
5873 5874 5875
	u64 now = perf_clock();
	u64 delta = now - event->ctx->timestamp;
	u64 time = event->ctx->time + delta;
5876 5877 5878 5879 5880

	task_clock_event_update(event, time);
}

static int task_clock_event_init(struct perf_event *event)
L
Li Zefan 已提交
5881
{
5882 5883 5884 5885 5886 5887
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
		return -ENOENT;

5888 5889 5890 5891 5892 5893
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

P
Peter Zijlstra 已提交
5894 5895
	perf_swevent_init_hrtimer(event);

5896
	return 0;
L
Li Zefan 已提交
5897 5898
}

5899
static struct pmu perf_task_clock = {
5900 5901
	.task_ctx_nr	= perf_sw_context,

5902
	.event_init	= task_clock_event_init,
P
Peter Zijlstra 已提交
5903 5904 5905 5906
	.add		= task_clock_event_add,
	.del		= task_clock_event_del,
	.start		= task_clock_event_start,
	.stop		= task_clock_event_stop,
5907
	.read		= task_clock_event_read,
5908 5909

	.event_idx	= perf_swevent_event_idx,
5910
};
L
Li Zefan 已提交
5911

P
Peter Zijlstra 已提交
5912
static void perf_pmu_nop_void(struct pmu *pmu)
5913 5914
{
}
L
Li Zefan 已提交
5915

P
Peter Zijlstra 已提交
5916
static int perf_pmu_nop_int(struct pmu *pmu)
L
Li Zefan 已提交
5917
{
P
Peter Zijlstra 已提交
5918
	return 0;
L
Li Zefan 已提交
5919 5920
}

P
Peter Zijlstra 已提交
5921
static void perf_pmu_start_txn(struct pmu *pmu)
L
Li Zefan 已提交
5922
{
P
Peter Zijlstra 已提交
5923
	perf_pmu_disable(pmu);
L
Li Zefan 已提交
5924 5925
}

P
Peter Zijlstra 已提交
5926 5927 5928 5929 5930
static int perf_pmu_commit_txn(struct pmu *pmu)
{
	perf_pmu_enable(pmu);
	return 0;
}
5931

P
Peter Zijlstra 已提交
5932
static void perf_pmu_cancel_txn(struct pmu *pmu)
5933
{
P
Peter Zijlstra 已提交
5934
	perf_pmu_enable(pmu);
5935 5936
}

5937 5938 5939 5940 5941
static int perf_event_idx_default(struct perf_event *event)
{
	return event->hw.idx + 1;
}

P
Peter Zijlstra 已提交
5942 5943 5944 5945 5946
/*
 * Ensures all contexts with the same task_ctx_nr have the same
 * pmu_cpu_context too.
 */
static void *find_pmu_context(int ctxn)
5947
{
P
Peter Zijlstra 已提交
5948
	struct pmu *pmu;
5949

P
Peter Zijlstra 已提交
5950 5951
	if (ctxn < 0)
		return NULL;
5952

P
Peter Zijlstra 已提交
5953 5954 5955 5956
	list_for_each_entry(pmu, &pmus, entry) {
		if (pmu->task_ctx_nr == ctxn)
			return pmu->pmu_cpu_context;
	}
5957

P
Peter Zijlstra 已提交
5958
	return NULL;
5959 5960
}

5961
static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
5962
{
5963 5964 5965 5966 5967 5968 5969
	int cpu;

	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);

5970 5971
		if (cpuctx->unique_pmu == old_pmu)
			cpuctx->unique_pmu = pmu;
5972 5973 5974 5975 5976 5977
	}
}

static void free_pmu_context(struct pmu *pmu)
{
	struct pmu *i;
5978

P
Peter Zijlstra 已提交
5979
	mutex_lock(&pmus_lock);
5980
	/*
P
Peter Zijlstra 已提交
5981
	 * Like a real lame refcount.
5982
	 */
5983 5984 5985
	list_for_each_entry(i, &pmus, entry) {
		if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
			update_pmu_context(i, pmu);
P
Peter Zijlstra 已提交
5986
			goto out;
5987
		}
P
Peter Zijlstra 已提交
5988
	}
5989

5990
	free_percpu(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
5991 5992
out:
	mutex_unlock(&pmus_lock);
5993
}
P
Peter Zijlstra 已提交
5994
static struct idr pmu_idr;
5995

P
Peter Zijlstra 已提交
5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027
static ssize_t
type_show(struct device *dev, struct device_attribute *attr, char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
}

static struct device_attribute pmu_dev_attrs[] = {
       __ATTR_RO(type),
       __ATTR_NULL,
};

static int pmu_bus_running;
static struct bus_type pmu_bus = {
	.name		= "event_source",
	.dev_attrs	= pmu_dev_attrs,
};

static void pmu_dev_release(struct device *dev)
{
	kfree(dev);
}

static int pmu_dev_alloc(struct pmu *pmu)
{
	int ret = -ENOMEM;

	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
	if (!pmu->dev)
		goto out;

6028
	pmu->dev->groups = pmu->attr_groups;
P
Peter Zijlstra 已提交
6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048
	device_initialize(pmu->dev);
	ret = dev_set_name(pmu->dev, "%s", pmu->name);
	if (ret)
		goto free_dev;

	dev_set_drvdata(pmu->dev, pmu);
	pmu->dev->bus = &pmu_bus;
	pmu->dev->release = pmu_dev_release;
	ret = device_add(pmu->dev);
	if (ret)
		goto free_dev;

out:
	return ret;

free_dev:
	put_device(pmu->dev);
	goto out;
}

6049
static struct lock_class_key cpuctx_mutex;
6050
static struct lock_class_key cpuctx_lock;
6051

P
Peter Zijlstra 已提交
6052
int perf_pmu_register(struct pmu *pmu, char *name, int type)
6053
{
P
Peter Zijlstra 已提交
6054
	int cpu, ret;
6055

6056
	mutex_lock(&pmus_lock);
P
Peter Zijlstra 已提交
6057 6058 6059 6060
	ret = -ENOMEM;
	pmu->pmu_disable_count = alloc_percpu(int);
	if (!pmu->pmu_disable_count)
		goto unlock;
6061

P
Peter Zijlstra 已提交
6062 6063 6064 6065 6066 6067
	pmu->type = -1;
	if (!name)
		goto skip_type;
	pmu->name = name;

	if (type < 0) {
T
Tejun Heo 已提交
6068 6069 6070
		type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
		if (type < 0) {
			ret = type;
P
Peter Zijlstra 已提交
6071 6072 6073 6074 6075
			goto free_pdc;
		}
	}
	pmu->type = type;

P
Peter Zijlstra 已提交
6076 6077 6078 6079 6080 6081
	if (pmu_bus_running) {
		ret = pmu_dev_alloc(pmu);
		if (ret)
			goto free_idr;
	}

P
Peter Zijlstra 已提交
6082
skip_type:
P
Peter Zijlstra 已提交
6083 6084 6085
	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
	if (pmu->pmu_cpu_context)
		goto got_cpu_context;
6086

W
Wei Yongjun 已提交
6087
	ret = -ENOMEM;
P
Peter Zijlstra 已提交
6088 6089
	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
	if (!pmu->pmu_cpu_context)
P
Peter Zijlstra 已提交
6090
		goto free_dev;
6091

P
Peter Zijlstra 已提交
6092 6093 6094 6095
	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6096
		__perf_event_init_context(&cpuctx->ctx);
6097
		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
6098
		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
6099
		cpuctx->ctx.type = cpu_context;
P
Peter Zijlstra 已提交
6100
		cpuctx->ctx.pmu = pmu;
6101 6102 6103

		__perf_cpu_hrtimer_init(cpuctx, cpu);

6104
		INIT_LIST_HEAD(&cpuctx->rotation_list);
6105
		cpuctx->unique_pmu = pmu;
P
Peter Zijlstra 已提交
6106
	}
6107

P
Peter Zijlstra 已提交
6108
got_cpu_context:
P
Peter Zijlstra 已提交
6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122
	if (!pmu->start_txn) {
		if (pmu->pmu_enable) {
			/*
			 * If we have pmu_enable/pmu_disable calls, install
			 * transaction stubs that use that to try and batch
			 * hardware accesses.
			 */
			pmu->start_txn  = perf_pmu_start_txn;
			pmu->commit_txn = perf_pmu_commit_txn;
			pmu->cancel_txn = perf_pmu_cancel_txn;
		} else {
			pmu->start_txn  = perf_pmu_nop_void;
			pmu->commit_txn = perf_pmu_nop_int;
			pmu->cancel_txn = perf_pmu_nop_void;
6123
		}
6124
	}
6125

P
Peter Zijlstra 已提交
6126 6127 6128 6129 6130
	if (!pmu->pmu_enable) {
		pmu->pmu_enable  = perf_pmu_nop_void;
		pmu->pmu_disable = perf_pmu_nop_void;
	}

6131 6132 6133
	if (!pmu->event_idx)
		pmu->event_idx = perf_event_idx_default;

6134
	list_add_rcu(&pmu->entry, &pmus);
P
Peter Zijlstra 已提交
6135 6136
	ret = 0;
unlock:
6137 6138
	mutex_unlock(&pmus_lock);

P
Peter Zijlstra 已提交
6139
	return ret;
P
Peter Zijlstra 已提交
6140

P
Peter Zijlstra 已提交
6141 6142 6143 6144
free_dev:
	device_del(pmu->dev);
	put_device(pmu->dev);

P
Peter Zijlstra 已提交
6145 6146 6147 6148
free_idr:
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);

P
Peter Zijlstra 已提交
6149 6150 6151
free_pdc:
	free_percpu(pmu->pmu_disable_count);
	goto unlock;
6152 6153
}

6154
void perf_pmu_unregister(struct pmu *pmu)
6155
{
6156 6157 6158
	mutex_lock(&pmus_lock);
	list_del_rcu(&pmu->entry);
	mutex_unlock(&pmus_lock);
6159

6160
	/*
P
Peter Zijlstra 已提交
6161 6162
	 * We dereference the pmu list under both SRCU and regular RCU, so
	 * synchronize against both of those.
6163
	 */
6164
	synchronize_srcu(&pmus_srcu);
P
Peter Zijlstra 已提交
6165
	synchronize_rcu();
6166

P
Peter Zijlstra 已提交
6167
	free_percpu(pmu->pmu_disable_count);
P
Peter Zijlstra 已提交
6168 6169
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);
P
Peter Zijlstra 已提交
6170 6171
	device_del(pmu->dev);
	put_device(pmu->dev);
6172
	free_pmu_context(pmu);
6173
}
6174

6175 6176 6177 6178
struct pmu *perf_init_event(struct perf_event *event)
{
	struct pmu *pmu = NULL;
	int idx;
6179
	int ret;
6180 6181

	idx = srcu_read_lock(&pmus_srcu);
P
Peter Zijlstra 已提交
6182 6183 6184 6185

	rcu_read_lock();
	pmu = idr_find(&pmu_idr, event->attr.type);
	rcu_read_unlock();
6186
	if (pmu) {
6187
		event->pmu = pmu;
6188 6189 6190
		ret = pmu->event_init(event);
		if (ret)
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
6191
		goto unlock;
6192
	}
P
Peter Zijlstra 已提交
6193

6194
	list_for_each_entry_rcu(pmu, &pmus, entry) {
6195
		event->pmu = pmu;
6196
		ret = pmu->event_init(event);
6197
		if (!ret)
P
Peter Zijlstra 已提交
6198
			goto unlock;
6199

6200 6201
		if (ret != -ENOENT) {
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
6202
			goto unlock;
6203
		}
6204
	}
P
Peter Zijlstra 已提交
6205 6206
	pmu = ERR_PTR(-ENOENT);
unlock:
6207
	srcu_read_unlock(&pmus_srcu, idx);
6208

6209
	return pmu;
6210 6211
}

T
Thomas Gleixner 已提交
6212
/*
6213
 * Allocate and initialize a event structure
T
Thomas Gleixner 已提交
6214
 */
6215
static struct perf_event *
6216
perf_event_alloc(struct perf_event_attr *attr, int cpu,
6217 6218 6219
		 struct task_struct *task,
		 struct perf_event *group_leader,
		 struct perf_event *parent_event,
6220 6221
		 perf_overflow_handler_t overflow_handler,
		 void *context)
T
Thomas Gleixner 已提交
6222
{
P
Peter Zijlstra 已提交
6223
	struct pmu *pmu;
6224 6225
	struct perf_event *event;
	struct hw_perf_event *hwc;
6226
	long err;
T
Thomas Gleixner 已提交
6227

6228 6229 6230 6231 6232
	if ((unsigned)cpu >= nr_cpu_ids) {
		if (!task || cpu != -1)
			return ERR_PTR(-EINVAL);
	}

6233
	event = kzalloc(sizeof(*event), GFP_KERNEL);
6234
	if (!event)
6235
		return ERR_PTR(-ENOMEM);
T
Thomas Gleixner 已提交
6236

6237
	/*
6238
	 * Single events are their own group leaders, with an
6239 6240 6241
	 * empty sibling list:
	 */
	if (!group_leader)
6242
		group_leader = event;
6243

6244 6245
	mutex_init(&event->child_mutex);
	INIT_LIST_HEAD(&event->child_list);
6246

6247 6248 6249
	INIT_LIST_HEAD(&event->group_entry);
	INIT_LIST_HEAD(&event->event_entry);
	INIT_LIST_HEAD(&event->sibling_list);
6250 6251
	INIT_LIST_HEAD(&event->rb_entry);

6252
	init_waitqueue_head(&event->waitq);
6253
	init_irq_work(&event->pending, perf_pending_event);
T
Thomas Gleixner 已提交
6254

6255
	mutex_init(&event->mmap_mutex);
6256

6257
	atomic_long_set(&event->refcount, 1);
6258 6259 6260 6261 6262
	event->cpu		= cpu;
	event->attr		= *attr;
	event->group_leader	= group_leader;
	event->pmu		= NULL;
	event->oncpu		= -1;
6263

6264
	event->parent		= parent_event;
6265

6266
	event->ns		= get_pid_ns(task_active_pid_ns(current));
6267
	event->id		= atomic64_inc_return(&perf_event_id);
6268

6269
	event->state		= PERF_EVENT_STATE_INACTIVE;
6270

6271 6272
	if (task) {
		event->attach_state = PERF_ATTACH_TASK;
6273 6274 6275

		if (attr->type == PERF_TYPE_TRACEPOINT)
			event->hw.tp_target = task;
6276 6277 6278 6279
#ifdef CONFIG_HAVE_HW_BREAKPOINT
		/*
		 * hw_breakpoint is a bit difficult here..
		 */
6280
		else if (attr->type == PERF_TYPE_BREAKPOINT)
6281 6282 6283 6284
			event->hw.bp_target = task;
#endif
	}

6285
	if (!overflow_handler && parent_event) {
6286
		overflow_handler = parent_event->overflow_handler;
6287 6288
		context = parent_event->overflow_handler_context;
	}
6289

6290
	event->overflow_handler	= overflow_handler;
6291
	event->overflow_handler_context = context;
6292

J
Jiri Olsa 已提交
6293
	perf_event__state_init(event);
6294

6295
	pmu = NULL;
6296

6297
	hwc = &event->hw;
6298
	hwc->sample_period = attr->sample_period;
6299
	if (attr->freq && attr->sample_freq)
6300
		hwc->sample_period = 1;
6301
	hwc->last_period = hwc->sample_period;
6302

6303
	local64_set(&hwc->period_left, hwc->sample_period);
6304

6305
	/*
6306
	 * we currently do not support PERF_FORMAT_GROUP on inherited events
6307
	 */
6308
	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
6309 6310
		goto done;

6311
	pmu = perf_init_event(event);
6312

6313 6314
done:
	err = 0;
6315
	if (!pmu)
6316
		err = -EINVAL;
6317 6318
	else if (IS_ERR(pmu))
		err = PTR_ERR(pmu);
6319

6320
	if (err) {
6321 6322 6323
		if (event->ns)
			put_pid_ns(event->ns);
		kfree(event);
6324
		return ERR_PTR(err);
I
Ingo Molnar 已提交
6325
	}
6326

6327
	if (!event->parent) {
6328
		if (event->attach_state & PERF_ATTACH_TASK)
6329
			static_key_slow_inc(&perf_sched_events.key);
6330
		if (event->attr.mmap || event->attr.mmap_data)
6331 6332 6333 6334 6335
			atomic_inc(&nr_mmap_events);
		if (event->attr.comm)
			atomic_inc(&nr_comm_events);
		if (event->attr.task)
			atomic_inc(&nr_task_events);
6336 6337 6338 6339 6340 6341 6342
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
			err = get_callchain_buffers();
			if (err) {
				free_event(event);
				return ERR_PTR(err);
			}
		}
6343 6344 6345 6346 6347 6348
		if (has_branch_stack(event)) {
			static_key_slow_inc(&perf_sched_events.key);
			if (!(event->attach_state & PERF_ATTACH_TASK))
				atomic_inc(&per_cpu(perf_branch_stack_events,
						    event->cpu));
		}
6349
	}
6350

6351
	return event;
T
Thomas Gleixner 已提交
6352 6353
}

6354 6355
static int perf_copy_attr(struct perf_event_attr __user *uattr,
			  struct perf_event_attr *attr)
6356 6357
{
	u32 size;
6358
	int ret;
6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382

	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
		return -EFAULT;

	/*
	 * zero the full structure, so that a short copy will be nice.
	 */
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

	if (size > PAGE_SIZE)	/* silly large */
		goto err_size;

	if (!size)		/* abi compat */
		size = PERF_ATTR_SIZE_VER0;

	if (size < PERF_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
6383 6384 6385
	 * ensure all the unknown bits are 0 - i.e. new
	 * user-space does not rely on any kernel feature
	 * extensions we dont know about yet.
6386 6387
	 */
	if (size > sizeof(*attr)) {
6388 6389 6390
		unsigned char __user *addr;
		unsigned char __user *end;
		unsigned char val;
6391

6392 6393
		addr = (void __user *)uattr + sizeof(*attr);
		end  = (void __user *)uattr + size;
6394

6395
		for (; addr < end; addr++) {
6396 6397 6398 6399 6400 6401
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
6402
		size = sizeof(*attr);
6403 6404 6405 6406 6407 6408
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

6409
	if (attr->__reserved_1)
6410 6411 6412 6413 6414 6415 6416 6417
		return -EINVAL;

	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
		return -EINVAL;

	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
		return -EINVAL;

6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451
	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
		u64 mask = attr->branch_sample_type;

		/* only using defined bits */
		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
			return -EINVAL;

		/* at least one branch bit must be set */
		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
			return -EINVAL;

		/* kernel level capture: check permissions */
		if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
		    && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;

		/* propagate priv level, when not set for branch */
		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {

			/* exclude_kernel checked on syscall entry */
			if (!attr->exclude_kernel)
				mask |= PERF_SAMPLE_BRANCH_KERNEL;

			if (!attr->exclude_user)
				mask |= PERF_SAMPLE_BRANCH_USER;

			if (!attr->exclude_hv)
				mask |= PERF_SAMPLE_BRANCH_HV;
			/*
			 * adjust user setting (for HW filter setup)
			 */
			attr->branch_sample_type = mask;
		}
	}
6452

6453
	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
6454
		ret = perf_reg_validate(attr->sample_regs_user);
6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472
		if (ret)
			return ret;
	}

	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
		if (!arch_perf_have_user_stack_dump())
			return -ENOSYS;

		/*
		 * We have __u32 type for the size, but so far
		 * we can only use __u16 as maximum due to the
		 * __u16 sample size limit.
		 */
		if (attr->sample_stack_user >= USHRT_MAX)
			ret = -EINVAL;
		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
			ret = -EINVAL;
	}
6473

6474 6475 6476 6477 6478 6479 6480 6481 6482
out:
	return ret;

err_size:
	put_user(sizeof(*attr), &uattr->size);
	ret = -E2BIG;
	goto out;
}

6483 6484
static int
perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
6485
{
6486
	struct ring_buffer *rb = NULL, *old_rb = NULL;
6487 6488
	int ret = -EINVAL;

6489
	if (!output_event)
6490 6491
		goto set;

6492 6493
	/* don't allow circular references */
	if (event == output_event)
6494 6495
		goto out;

6496 6497 6498 6499 6500 6501 6502
	/*
	 * Don't allow cross-cpu buffers
	 */
	if (output_event->cpu != event->cpu)
		goto out;

	/*
6503
	 * If its not a per-cpu rb, it must be the same task.
6504 6505 6506 6507
	 */
	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
		goto out;

6508
set:
6509
	mutex_lock(&event->mmap_mutex);
6510 6511 6512
	/* Can't redirect output if we've got an active mmap() */
	if (atomic_read(&event->mmap_count))
		goto unlock;
6513

6514
	if (output_event) {
6515 6516 6517
		/* get the rb we want to redirect to */
		rb = ring_buffer_get(output_event);
		if (!rb)
6518
			goto unlock;
6519 6520
	}

6521 6522
	old_rb = event->rb;
	rcu_assign_pointer(event->rb, rb);
6523 6524
	if (old_rb)
		ring_buffer_detach(event, old_rb);
6525
	ret = 0;
6526 6527 6528
unlock:
	mutex_unlock(&event->mmap_mutex);

6529 6530
	if (old_rb)
		ring_buffer_put(old_rb);
6531 6532 6533 6534
out:
	return ret;
}

T
Thomas Gleixner 已提交
6535
/**
6536
 * sys_perf_event_open - open a performance event, associate it to a task/cpu
I
Ingo Molnar 已提交
6537
 *
6538
 * @attr_uptr:	event_id type attributes for monitoring/sampling
T
Thomas Gleixner 已提交
6539
 * @pid:		target pid
I
Ingo Molnar 已提交
6540
 * @cpu:		target cpu
6541
 * @group_fd:		group leader event fd
T
Thomas Gleixner 已提交
6542
 */
6543 6544
SYSCALL_DEFINE5(perf_event_open,
		struct perf_event_attr __user *, attr_uptr,
6545
		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
T
Thomas Gleixner 已提交
6546
{
6547 6548
	struct perf_event *group_leader = NULL, *output_event = NULL;
	struct perf_event *event, *sibling;
6549 6550 6551
	struct perf_event_attr attr;
	struct perf_event_context *ctx;
	struct file *event_file = NULL;
6552
	struct fd group = {NULL, 0};
M
Matt Helsley 已提交
6553
	struct task_struct *task = NULL;
6554
	struct pmu *pmu;
6555
	int event_fd;
6556
	int move_group = 0;
6557
	int err;
T
Thomas Gleixner 已提交
6558

6559
	/* for future expandability... */
S
Stephane Eranian 已提交
6560
	if (flags & ~PERF_FLAG_ALL)
6561 6562
		return -EINVAL;

6563 6564 6565
	err = perf_copy_attr(attr_uptr, &attr);
	if (err)
		return err;
6566

6567 6568 6569 6570 6571
	if (!attr.exclude_kernel) {
		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
	}

6572
	if (attr.freq) {
6573
		if (attr.sample_freq > sysctl_perf_event_sample_rate)
6574 6575 6576
			return -EINVAL;
	}

S
Stephane Eranian 已提交
6577 6578 6579 6580 6581 6582 6583 6584 6585
	/*
	 * In cgroup mode, the pid argument is used to pass the fd
	 * opened to the cgroup directory in cgroupfs. The cpu argument
	 * designates the cpu on which to monitor threads from that
	 * cgroup.
	 */
	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
		return -EINVAL;

6586
	event_fd = get_unused_fd();
6587 6588 6589
	if (event_fd < 0)
		return event_fd;

6590
	if (group_fd != -1) {
6591 6592
		err = perf_fget_light(group_fd, &group);
		if (err)
6593
			goto err_fd;
6594
		group_leader = group.file->private_data;
6595 6596 6597 6598 6599 6600
		if (flags & PERF_FLAG_FD_OUTPUT)
			output_event = group_leader;
		if (flags & PERF_FLAG_FD_NO_GROUP)
			group_leader = NULL;
	}

S
Stephane Eranian 已提交
6601
	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
6602 6603 6604 6605 6606 6607 6608
		task = find_lively_task_by_vpid(pid);
		if (IS_ERR(task)) {
			err = PTR_ERR(task);
			goto err_group_fd;
		}
	}

6609 6610
	get_online_cpus();

6611 6612
	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
				 NULL, NULL);
6613 6614
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
6615
		goto err_task;
6616 6617
	}

S
Stephane Eranian 已提交
6618 6619 6620 6621
	if (flags & PERF_FLAG_PID_CGROUP) {
		err = perf_cgroup_connect(pid, event, &attr, group_leader);
		if (err)
			goto err_alloc;
6622 6623 6624 6625 6626 6627
		/*
		 * one more event:
		 * - that has cgroup constraint on event->cpu
		 * - that may need work on context switch
		 */
		atomic_inc(&per_cpu(perf_cgroup_events, event->cpu));
6628
		static_key_slow_inc(&perf_sched_events.key);
S
Stephane Eranian 已提交
6629 6630
	}

6631 6632 6633 6634 6635
	/*
	 * Special case software events and allow them to be part of
	 * any hardware group.
	 */
	pmu = event->pmu;
6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658

	if (group_leader &&
	    (is_software_event(event) != is_software_event(group_leader))) {
		if (is_software_event(event)) {
			/*
			 * If event and group_leader are not both a software
			 * event, and event is, then group leader is not.
			 *
			 * Allow the addition of software events to !software
			 * groups, this is safe because software events never
			 * fail to schedule.
			 */
			pmu = group_leader->pmu;
		} else if (is_software_event(group_leader) &&
			   (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
			/*
			 * In case the group is a pure software group, and we
			 * try to add a hardware event, move the whole group to
			 * the hardware context.
			 */
			move_group = 1;
		}
	}
6659 6660 6661 6662

	/*
	 * Get the target context (task or percpu):
	 */
6663
	ctx = find_get_context(pmu, task, event->cpu);
6664 6665
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
6666
		goto err_alloc;
6667 6668
	}

6669 6670 6671 6672 6673
	if (task) {
		put_task_struct(task);
		task = NULL;
	}

I
Ingo Molnar 已提交
6674
	/*
6675
	 * Look up the group leader (we will attach this event to it):
6676
	 */
6677
	if (group_leader) {
6678
		err = -EINVAL;
6679 6680

		/*
I
Ingo Molnar 已提交
6681 6682 6683 6684
		 * Do not allow a recursive hierarchy (this new sibling
		 * becoming part of another group-sibling):
		 */
		if (group_leader->group_leader != group_leader)
6685
			goto err_context;
I
Ingo Molnar 已提交
6686 6687 6688
		/*
		 * Do not allow to attach to a group in a different
		 * task or CPU context:
6689
		 */
6690 6691 6692 6693 6694 6695 6696 6697
		if (move_group) {
			if (group_leader->ctx->type != ctx->type)
				goto err_context;
		} else {
			if (group_leader->ctx != ctx)
				goto err_context;
		}

6698 6699 6700
		/*
		 * Only a group leader can be exclusive or pinned
		 */
6701
		if (attr.exclusive || attr.pinned)
6702
			goto err_context;
6703 6704 6705 6706 6707
	}

	if (output_event) {
		err = perf_event_set_output(event, output_event);
		if (err)
6708
			goto err_context;
6709
	}
T
Thomas Gleixner 已提交
6710

6711 6712 6713
	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
	if (IS_ERR(event_file)) {
		err = PTR_ERR(event_file);
6714
		goto err_context;
6715
	}
6716

6717 6718 6719 6720
	if (move_group) {
		struct perf_event_context *gctx = group_leader->ctx;

		mutex_lock(&gctx->mutex);
6721
		perf_remove_from_context(group_leader);
J
Jiri Olsa 已提交
6722 6723 6724 6725 6726 6727 6728

		/*
		 * Removing from the context ends up with disabled
		 * event. What we want here is event in the initial
		 * startup state, ready to be add into new context.
		 */
		perf_event__state_init(group_leader);
6729 6730
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
6731
			perf_remove_from_context(sibling);
J
Jiri Olsa 已提交
6732
			perf_event__state_init(sibling);
6733 6734 6735 6736
			put_ctx(gctx);
		}
		mutex_unlock(&gctx->mutex);
		put_ctx(gctx);
6737
	}
6738

6739
	WARN_ON_ONCE(ctx->parent_ctx);
6740
	mutex_lock(&ctx->mutex);
6741 6742

	if (move_group) {
6743
		synchronize_rcu();
6744
		perf_install_in_context(ctx, group_leader, event->cpu);
6745 6746 6747
		get_ctx(ctx);
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
6748
			perf_install_in_context(ctx, sibling, event->cpu);
6749 6750 6751 6752
			get_ctx(ctx);
		}
	}

6753
	perf_install_in_context(ctx, event, event->cpu);
6754
	++ctx->generation;
6755
	perf_unpin_context(ctx);
6756
	mutex_unlock(&ctx->mutex);
6757

6758 6759
	put_online_cpus();

6760
	event->owner = current;
P
Peter Zijlstra 已提交
6761

6762 6763 6764
	mutex_lock(&current->perf_event_mutex);
	list_add_tail(&event->owner_entry, &current->perf_event_list);
	mutex_unlock(&current->perf_event_mutex);
6765

6766 6767 6768 6769
	/*
	 * Precalculate sample_data sizes
	 */
	perf_event__header_size(event);
6770
	perf_event__id_header_size(event);
6771

6772 6773 6774 6775 6776 6777
	/*
	 * Drop the reference on the group_event after placing the
	 * new event on the sibling_list. This ensures destruction
	 * of the group leader will find the pointer to itself in
	 * perf_group_detach().
	 */
6778
	fdput(group);
6779 6780
	fd_install(event_fd, event_file);
	return event_fd;
T
Thomas Gleixner 已提交
6781

6782
err_context:
6783
	perf_unpin_context(ctx);
6784
	put_ctx(ctx);
6785
err_alloc:
6786
	free_event(event);
P
Peter Zijlstra 已提交
6787
err_task:
6788
	put_online_cpus();
P
Peter Zijlstra 已提交
6789 6790
	if (task)
		put_task_struct(task);
6791
err_group_fd:
6792
	fdput(group);
6793 6794
err_fd:
	put_unused_fd(event_fd);
6795
	return err;
T
Thomas Gleixner 已提交
6796 6797
}

6798 6799 6800 6801 6802
/**
 * perf_event_create_kernel_counter
 *
 * @attr: attributes of the counter to create
 * @cpu: cpu in which the counter is bound
M
Matt Helsley 已提交
6803
 * @task: task to profile (NULL for percpu)
6804 6805 6806
 */
struct perf_event *
perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
M
Matt Helsley 已提交
6807
				 struct task_struct *task,
6808 6809
				 perf_overflow_handler_t overflow_handler,
				 void *context)
6810 6811
{
	struct perf_event_context *ctx;
6812
	struct perf_event *event;
6813
	int err;
6814

6815 6816 6817
	/*
	 * Get the target context (task or percpu):
	 */
6818

6819 6820
	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
				 overflow_handler, context);
6821 6822 6823 6824
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
		goto err;
	}
6825

M
Matt Helsley 已提交
6826
	ctx = find_get_context(event->pmu, task, cpu);
6827 6828
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
6829
		goto err_free;
6830
	}
6831 6832 6833 6834 6835

	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
	perf_install_in_context(ctx, event, cpu);
	++ctx->generation;
6836
	perf_unpin_context(ctx);
6837 6838 6839 6840
	mutex_unlock(&ctx->mutex);

	return event;

6841 6842 6843
err_free:
	free_event(event);
err:
6844
	return ERR_PTR(err);
6845
}
6846
EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
6847

6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880
void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
{
	struct perf_event_context *src_ctx;
	struct perf_event_context *dst_ctx;
	struct perf_event *event, *tmp;
	LIST_HEAD(events);

	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;

	mutex_lock(&src_ctx->mutex);
	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
				 event_entry) {
		perf_remove_from_context(event);
		put_ctx(src_ctx);
		list_add(&event->event_entry, &events);
	}
	mutex_unlock(&src_ctx->mutex);

	synchronize_rcu();

	mutex_lock(&dst_ctx->mutex);
	list_for_each_entry_safe(event, tmp, &events, event_entry) {
		list_del(&event->event_entry);
		if (event->state >= PERF_EVENT_STATE_OFF)
			event->state = PERF_EVENT_STATE_INACTIVE;
		perf_install_in_context(dst_ctx, event, dst_cpu);
		get_ctx(dst_ctx);
	}
	mutex_unlock(&dst_ctx->mutex);
}
EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);

6881
static void sync_child_event(struct perf_event *child_event,
6882
			       struct task_struct *child)
6883
{
6884
	struct perf_event *parent_event = child_event->parent;
6885
	u64 child_val;
6886

6887 6888
	if (child_event->attr.inherit_stat)
		perf_event_read_event(child_event, child);
6889

P
Peter Zijlstra 已提交
6890
	child_val = perf_event_count(child_event);
6891 6892 6893 6894

	/*
	 * Add back the child's count to the parent's count:
	 */
6895
	atomic64_add(child_val, &parent_event->child_count);
6896 6897 6898 6899
	atomic64_add(child_event->total_time_enabled,
		     &parent_event->child_total_time_enabled);
	atomic64_add(child_event->total_time_running,
		     &parent_event->child_total_time_running);
6900 6901

	/*
6902
	 * Remove this event from the parent's list
6903
	 */
6904 6905 6906 6907
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_del_init(&child_event->child_list);
	mutex_unlock(&parent_event->child_mutex);
6908 6909

	/*
6910
	 * Release the parent event, if this was the last
6911 6912
	 * reference to it.
	 */
6913
	put_event(parent_event);
6914 6915
}

6916
static void
6917 6918
__perf_event_exit_task(struct perf_event *child_event,
			 struct perf_event_context *child_ctx,
6919
			 struct task_struct *child)
6920
{
6921 6922 6923 6924 6925
	if (child_event->parent) {
		raw_spin_lock_irq(&child_ctx->lock);
		perf_group_detach(child_event);
		raw_spin_unlock_irq(&child_ctx->lock);
	}
6926

6927
	perf_remove_from_context(child_event);
6928

6929
	/*
6930
	 * It can happen that the parent exits first, and has events
6931
	 * that are still around due to the child reference. These
6932
	 * events need to be zapped.
6933
	 */
6934
	if (child_event->parent) {
6935 6936
		sync_child_event(child_event, child);
		free_event(child_event);
6937
	}
6938 6939
}

P
Peter Zijlstra 已提交
6940
static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
6941
{
6942 6943
	struct perf_event *child_event, *tmp;
	struct perf_event_context *child_ctx;
6944
	unsigned long flags;
6945

P
Peter Zijlstra 已提交
6946
	if (likely(!child->perf_event_ctxp[ctxn])) {
6947
		perf_event_task(child, NULL, 0);
6948
		return;
P
Peter Zijlstra 已提交
6949
	}
6950

6951
	local_irq_save(flags);
6952 6953 6954 6955 6956 6957
	/*
	 * We can't reschedule here because interrupts are disabled,
	 * and either child is current or it is a task that can't be
	 * scheduled, so we are now safe from rescheduling changing
	 * our context.
	 */
6958
	child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
6959 6960 6961

	/*
	 * Take the context lock here so that if find_get_context is
6962
	 * reading child->perf_event_ctxp, we wait until it has
6963 6964
	 * incremented the context's refcount before we do put_ctx below.
	 */
6965
	raw_spin_lock(&child_ctx->lock);
6966
	task_ctx_sched_out(child_ctx);
P
Peter Zijlstra 已提交
6967
	child->perf_event_ctxp[ctxn] = NULL;
6968 6969 6970
	/*
	 * If this context is a clone; unclone it so it can't get
	 * swapped to another process while we're removing all
6971
	 * the events from it.
6972 6973
	 */
	unclone_ctx(child_ctx);
6974
	update_context_time(child_ctx);
6975
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
6976 6977

	/*
6978 6979 6980
	 * Report the task dead after unscheduling the events so that we
	 * won't get any samples after PERF_RECORD_EXIT. We can however still
	 * get a few PERF_RECORD_READ events.
P
Peter Zijlstra 已提交
6981
	 */
6982
	perf_event_task(child, child_ctx, 0);
6983

6984 6985 6986
	/*
	 * We can recurse on the same lock type through:
	 *
6987 6988
	 *   __perf_event_exit_task()
	 *     sync_child_event()
6989 6990
	 *       put_event()
	 *         mutex_lock(&ctx->mutex)
6991 6992 6993
	 *
	 * But since its the parent context it won't be the same instance.
	 */
6994
	mutex_lock(&child_ctx->mutex);
6995

6996
again:
6997 6998 6999 7000 7001
	list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
				 group_entry)
		__perf_event_exit_task(child_event, child_ctx, child);

	list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
7002
				 group_entry)
7003
		__perf_event_exit_task(child_event, child_ctx, child);
7004 7005

	/*
7006
	 * If the last event was a group event, it will have appended all
7007 7008 7009
	 * its siblings to the list, but we obtained 'tmp' before that which
	 * will still point to the list head terminating the iteration.
	 */
7010 7011
	if (!list_empty(&child_ctx->pinned_groups) ||
	    !list_empty(&child_ctx->flexible_groups))
7012
		goto again;
7013 7014 7015 7016

	mutex_unlock(&child_ctx->mutex);

	put_ctx(child_ctx);
7017 7018
}

P
Peter Zijlstra 已提交
7019 7020 7021 7022 7023
/*
 * When a child task exits, feed back event values to parent events.
 */
void perf_event_exit_task(struct task_struct *child)
{
P
Peter Zijlstra 已提交
7024
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
7025 7026
	int ctxn;

P
Peter Zijlstra 已提交
7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041
	mutex_lock(&child->perf_event_mutex);
	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
				 owner_entry) {
		list_del_init(&event->owner_entry);

		/*
		 * Ensure the list deletion is visible before we clear
		 * the owner, closes a race against perf_release() where
		 * we need to serialize on the owner->perf_event_mutex.
		 */
		smp_wmb();
		event->owner = NULL;
	}
	mutex_unlock(&child->perf_event_mutex);

P
Peter Zijlstra 已提交
7042 7043 7044 7045
	for_each_task_context_nr(ctxn)
		perf_event_exit_task_context(child, ctxn);
}

7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057
static void perf_free_event(struct perf_event *event,
			    struct perf_event_context *ctx)
{
	struct perf_event *parent = event->parent;

	if (WARN_ON_ONCE(!parent))
		return;

	mutex_lock(&parent->child_mutex);
	list_del_init(&event->child_list);
	mutex_unlock(&parent->child_mutex);

7058
	put_event(parent);
7059

7060
	perf_group_detach(event);
7061 7062 7063 7064
	list_del_event(event, ctx);
	free_event(event);
}

7065 7066
/*
 * free an unexposed, unused context as created by inheritance by
P
Peter Zijlstra 已提交
7067
 * perf_event_init_task below, used by fork() in case of fail.
7068
 */
7069
void perf_event_free_task(struct task_struct *task)
7070
{
P
Peter Zijlstra 已提交
7071
	struct perf_event_context *ctx;
7072
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
7073
	int ctxn;
7074

P
Peter Zijlstra 已提交
7075 7076 7077 7078
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;
7079

P
Peter Zijlstra 已提交
7080
		mutex_lock(&ctx->mutex);
7081
again:
P
Peter Zijlstra 已提交
7082 7083 7084
		list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
				group_entry)
			perf_free_event(event, ctx);
7085

P
Peter Zijlstra 已提交
7086 7087 7088
		list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
				group_entry)
			perf_free_event(event, ctx);
7089

P
Peter Zijlstra 已提交
7090 7091 7092
		if (!list_empty(&ctx->pinned_groups) ||
				!list_empty(&ctx->flexible_groups))
			goto again;
7093

P
Peter Zijlstra 已提交
7094
		mutex_unlock(&ctx->mutex);
7095

P
Peter Zijlstra 已提交
7096 7097
		put_ctx(ctx);
	}
7098 7099
}

7100 7101 7102 7103 7104 7105 7106 7107
void perf_event_delayed_put(struct task_struct *task)
{
	int ctxn;

	for_each_task_context_nr(ctxn)
		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
}

P
Peter Zijlstra 已提交
7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119
/*
 * inherit a event from parent task to child task:
 */
static struct perf_event *
inherit_event(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event *group_leader,
	      struct perf_event_context *child_ctx)
{
	struct perf_event *child_event;
7120
	unsigned long flags;
P
Peter Zijlstra 已提交
7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132

	/*
	 * Instead of creating recursive hierarchies of events,
	 * we link inherited events back to the original parent,
	 * which has a filp for sure, which we use as the reference
	 * count:
	 */
	if (parent_event->parent)
		parent_event = parent_event->parent;

	child_event = perf_event_alloc(&parent_event->attr,
					   parent_event->cpu,
7133
					   child,
P
Peter Zijlstra 已提交
7134
					   group_leader, parent_event,
7135
				           NULL, NULL);
P
Peter Zijlstra 已提交
7136 7137
	if (IS_ERR(child_event))
		return child_event;
7138 7139 7140 7141 7142 7143

	if (!atomic_long_inc_not_zero(&parent_event->refcount)) {
		free_event(child_event);
		return NULL;
	}

P
Peter Zijlstra 已提交
7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167
	get_ctx(child_ctx);

	/*
	 * Make the child state follow the state of the parent event,
	 * not its attr.disabled bit.  We hold the parent's mutex,
	 * so we won't race with perf_event_{en, dis}able_family.
	 */
	if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
		child_event->state = PERF_EVENT_STATE_INACTIVE;
	else
		child_event->state = PERF_EVENT_STATE_OFF;

	if (parent_event->attr.freq) {
		u64 sample_period = parent_event->hw.sample_period;
		struct hw_perf_event *hwc = &child_event->hw;

		hwc->sample_period = sample_period;
		hwc->last_period   = sample_period;

		local64_set(&hwc->period_left, sample_period);
	}

	child_event->ctx = child_ctx;
	child_event->overflow_handler = parent_event->overflow_handler;
7168 7169
	child_event->overflow_handler_context
		= parent_event->overflow_handler_context;
P
Peter Zijlstra 已提交
7170

7171 7172 7173 7174
	/*
	 * Precalculate sample_data sizes
	 */
	perf_event__header_size(child_event);
7175
	perf_event__id_header_size(child_event);
7176

P
Peter Zijlstra 已提交
7177 7178 7179
	/*
	 * Link it up in the child's context:
	 */
7180
	raw_spin_lock_irqsave(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
7181
	add_event_to_ctx(child_event, child_ctx);
7182
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215

	/*
	 * Link this into the parent event's child list
	 */
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_add_tail(&child_event->child_list, &parent_event->child_list);
	mutex_unlock(&parent_event->child_mutex);

	return child_event;
}

static int inherit_group(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event_context *child_ctx)
{
	struct perf_event *leader;
	struct perf_event *sub;
	struct perf_event *child_ctr;

	leader = inherit_event(parent_event, parent, parent_ctx,
				 child, NULL, child_ctx);
	if (IS_ERR(leader))
		return PTR_ERR(leader);
	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
		child_ctr = inherit_event(sub, parent, parent_ctx,
					    child, leader, child_ctx);
		if (IS_ERR(child_ctr))
			return PTR_ERR(child_ctr);
	}
	return 0;
7216 7217 7218 7219 7220
}

static int
inherit_task_group(struct perf_event *event, struct task_struct *parent,
		   struct perf_event_context *parent_ctx,
P
Peter Zijlstra 已提交
7221
		   struct task_struct *child, int ctxn,
7222 7223 7224
		   int *inherited_all)
{
	int ret;
P
Peter Zijlstra 已提交
7225
	struct perf_event_context *child_ctx;
7226 7227 7228 7229

	if (!event->attr.inherit) {
		*inherited_all = 0;
		return 0;
7230 7231
	}

7232
	child_ctx = child->perf_event_ctxp[ctxn];
7233 7234 7235 7236 7237 7238 7239
	if (!child_ctx) {
		/*
		 * This is executed from the parent task context, so
		 * inherit events that have been marked for cloning.
		 * First allocate and initialize a context for the
		 * child.
		 */
7240

7241
		child_ctx = alloc_perf_context(event->pmu, child);
7242 7243
		if (!child_ctx)
			return -ENOMEM;
7244

P
Peter Zijlstra 已提交
7245
		child->perf_event_ctxp[ctxn] = child_ctx;
7246 7247 7248 7249 7250 7251 7252 7253 7254
	}

	ret = inherit_group(event, parent, parent_ctx,
			    child, child_ctx);

	if (ret)
		*inherited_all = 0;

	return ret;
7255 7256
}

7257
/*
7258
 * Initialize the perf_event context in task_struct
7259
 */
P
Peter Zijlstra 已提交
7260
int perf_event_init_context(struct task_struct *child, int ctxn)
7261
{
7262
	struct perf_event_context *child_ctx, *parent_ctx;
7263 7264
	struct perf_event_context *cloned_ctx;
	struct perf_event *event;
7265
	struct task_struct *parent = current;
7266
	int inherited_all = 1;
7267
	unsigned long flags;
7268
	int ret = 0;
7269

P
Peter Zijlstra 已提交
7270
	if (likely(!parent->perf_event_ctxp[ctxn]))
7271 7272
		return 0;

7273
	/*
7274 7275
	 * If the parent's context is a clone, pin it so it won't get
	 * swapped under us.
7276
	 */
P
Peter Zijlstra 已提交
7277
	parent_ctx = perf_pin_task_context(parent, ctxn);
7278

7279 7280 7281 7282 7283 7284 7285
	/*
	 * No need to check if parent_ctx != NULL here; since we saw
	 * it non-NULL earlier, the only reason for it to become NULL
	 * is if we exit, and since we're currently in the middle of
	 * a fork we can't be exiting at the same time.
	 */

7286 7287 7288 7289
	/*
	 * Lock the parent list. No need to lock the child - not PID
	 * hashed yet and not running, so nobody can access it.
	 */
7290
	mutex_lock(&parent_ctx->mutex);
7291 7292 7293 7294 7295

	/*
	 * We dont have to disable NMIs - we are only looking at
	 * the list, not manipulating it:
	 */
7296
	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
P
Peter Zijlstra 已提交
7297 7298
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
7299 7300 7301
		if (ret)
			break;
	}
7302

7303 7304 7305 7306 7307 7308 7309 7310 7311
	/*
	 * We can't hold ctx->lock when iterating the ->flexible_group list due
	 * to allocations, but we need to prevent rotation because
	 * rotate_ctx() will change the list from interrupt context.
	 */
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 1;
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);

7312
	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
P
Peter Zijlstra 已提交
7313 7314
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
7315
		if (ret)
7316
			break;
7317 7318
	}

7319 7320 7321
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 0;

P
Peter Zijlstra 已提交
7322
	child_ctx = child->perf_event_ctxp[ctxn];
7323

7324
	if (child_ctx && inherited_all) {
7325 7326 7327
		/*
		 * Mark the child context as a clone of the parent
		 * context, or of whatever the parent is a clone of.
P
Peter Zijlstra 已提交
7328 7329 7330
		 *
		 * Note that if the parent is a clone, the holding of
		 * parent_ctx->lock avoids it from being uncloned.
7331
		 */
P
Peter Zijlstra 已提交
7332
		cloned_ctx = parent_ctx->parent_ctx;
7333 7334
		if (cloned_ctx) {
			child_ctx->parent_ctx = cloned_ctx;
7335
			child_ctx->parent_gen = parent_ctx->parent_gen;
7336 7337 7338 7339 7340
		} else {
			child_ctx->parent_ctx = parent_ctx;
			child_ctx->parent_gen = parent_ctx->generation;
		}
		get_ctx(child_ctx->parent_ctx);
7341 7342
	}

P
Peter Zijlstra 已提交
7343
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
7344
	mutex_unlock(&parent_ctx->mutex);
7345

7346
	perf_unpin_context(parent_ctx);
7347
	put_ctx(parent_ctx);
7348

7349
	return ret;
7350 7351
}

P
Peter Zijlstra 已提交
7352 7353 7354 7355 7356 7357 7358
/*
 * Initialize the perf_event context in task_struct
 */
int perf_event_init_task(struct task_struct *child)
{
	int ctxn, ret;

7359 7360 7361 7362
	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
	mutex_init(&child->perf_event_mutex);
	INIT_LIST_HEAD(&child->perf_event_list);

P
Peter Zijlstra 已提交
7363 7364 7365 7366 7367 7368 7369 7370 7371
	for_each_task_context_nr(ctxn) {
		ret = perf_event_init_context(child, ctxn);
		if (ret)
			return ret;
	}

	return 0;
}

7372 7373
static void __init perf_event_init_all_cpus(void)
{
7374
	struct swevent_htable *swhash;
7375 7376 7377
	int cpu;

	for_each_possible_cpu(cpu) {
7378 7379
		swhash = &per_cpu(swevent_htable, cpu);
		mutex_init(&swhash->hlist_mutex);
7380
		INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
7381 7382 7383
	}
}

7384
static void __cpuinit perf_event_init_cpu(int cpu)
T
Thomas Gleixner 已提交
7385
{
P
Peter Zijlstra 已提交
7386
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
T
Thomas Gleixner 已提交
7387

7388
	mutex_lock(&swhash->hlist_mutex);
7389
	if (swhash->hlist_refcount > 0) {
7390 7391
		struct swevent_hlist *hlist;

7392 7393 7394
		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
		WARN_ON(!hlist);
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
7395
	}
7396
	mutex_unlock(&swhash->hlist_mutex);
T
Thomas Gleixner 已提交
7397 7398
}

P
Peter Zijlstra 已提交
7399
#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
7400
static void perf_pmu_rotate_stop(struct pmu *pmu)
T
Thomas Gleixner 已提交
7401
{
7402 7403 7404 7405 7406 7407 7408
	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

	WARN_ON(!irqs_disabled());

	list_del_init(&cpuctx->rotation_list);
}

P
Peter Zijlstra 已提交
7409
static void __perf_event_exit_context(void *__info)
T
Thomas Gleixner 已提交
7410
{
P
Peter Zijlstra 已提交
7411
	struct perf_event_context *ctx = __info;
7412
	struct perf_event *event, *tmp;
T
Thomas Gleixner 已提交
7413

P
Peter Zijlstra 已提交
7414
	perf_pmu_rotate_stop(ctx->pmu);
7415

7416
	list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
7417
		__perf_remove_from_context(event);
7418
	list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
7419
		__perf_remove_from_context(event);
T
Thomas Gleixner 已提交
7420
}
P
Peter Zijlstra 已提交
7421 7422 7423 7424 7425 7426 7427 7428 7429

static void perf_event_exit_cpu_context(int cpu)
{
	struct perf_event_context *ctx;
	struct pmu *pmu;
	int idx;

	idx = srcu_read_lock(&pmus_srcu);
	list_for_each_entry_rcu(pmu, &pmus, entry) {
7430
		ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
P
Peter Zijlstra 已提交
7431 7432 7433 7434 7435 7436 7437 7438

		mutex_lock(&ctx->mutex);
		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
		mutex_unlock(&ctx->mutex);
	}
	srcu_read_unlock(&pmus_srcu, idx);
}

7439
static void perf_event_exit_cpu(int cpu)
T
Thomas Gleixner 已提交
7440
{
7441
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7442

7443 7444 7445
	mutex_lock(&swhash->hlist_mutex);
	swevent_hlist_release(swhash);
	mutex_unlock(&swhash->hlist_mutex);
7446

P
Peter Zijlstra 已提交
7447
	perf_event_exit_cpu_context(cpu);
T
Thomas Gleixner 已提交
7448 7449
}
#else
7450
static inline void perf_event_exit_cpu(int cpu) { }
T
Thomas Gleixner 已提交
7451 7452
#endif

P
Peter Zijlstra 已提交
7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472
static int
perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
{
	int cpu;

	for_each_online_cpu(cpu)
		perf_event_exit_cpu(cpu);

	return NOTIFY_OK;
}

/*
 * Run the perf reboot notifier at the very last possible moment so that
 * the generic watchdog code runs as long as possible.
 */
static struct notifier_block perf_reboot_notifier = {
	.notifier_call = perf_reboot,
	.priority = INT_MIN,
};

T
Thomas Gleixner 已提交
7473 7474 7475 7476 7477
static int __cpuinit
perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
{
	unsigned int cpu = (long)hcpu;

7478
	switch (action & ~CPU_TASKS_FROZEN) {
T
Thomas Gleixner 已提交
7479 7480

	case CPU_UP_PREPARE:
P
Peter Zijlstra 已提交
7481
	case CPU_DOWN_FAILED:
7482
		perf_event_init_cpu(cpu);
T
Thomas Gleixner 已提交
7483 7484
		break;

P
Peter Zijlstra 已提交
7485
	case CPU_UP_CANCELED:
T
Thomas Gleixner 已提交
7486
	case CPU_DOWN_PREPARE:
7487
		perf_event_exit_cpu(cpu);
T
Thomas Gleixner 已提交
7488 7489 7490 7491 7492 7493 7494 7495
		break;
	default:
		break;
	}

	return NOTIFY_OK;
}

7496
void __init perf_event_init(void)
T
Thomas Gleixner 已提交
7497
{
7498 7499
	int ret;

P
Peter Zijlstra 已提交
7500 7501
	idr_init(&pmu_idr);

7502
	perf_event_init_all_cpus();
7503
	init_srcu_struct(&pmus_srcu);
P
Peter Zijlstra 已提交
7504 7505 7506
	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
	perf_pmu_register(&perf_cpu_clock, NULL, -1);
	perf_pmu_register(&perf_task_clock, NULL, -1);
7507 7508
	perf_tp_register();
	perf_cpu_notifier(perf_cpu_notify);
P
Peter Zijlstra 已提交
7509
	register_reboot_notifier(&perf_reboot_notifier);
7510 7511 7512

	ret = init_hw_breakpoint();
	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
7513 7514 7515

	/* do not patch jump label more than once per second */
	jump_label_rate_limit(&perf_sched_events, HZ);
7516 7517 7518 7519 7520 7521 7522

	/*
	 * Build time assertion that we keep the data_head at the intended
	 * location.  IOW, validation we got the __reserved[] size right.
	 */
	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
		     != 1024);
T
Thomas Gleixner 已提交
7523
}
P
Peter Zijlstra 已提交
7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551

static int __init perf_event_sysfs_init(void)
{
	struct pmu *pmu;
	int ret;

	mutex_lock(&pmus_lock);

	ret = bus_register(&pmu_bus);
	if (ret)
		goto unlock;

	list_for_each_entry(pmu, &pmus, entry) {
		if (!pmu->name || pmu->type < 0)
			continue;

		ret = pmu_dev_alloc(pmu);
		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
	}
	pmu_bus_running = 1;
	ret = 0;

unlock:
	mutex_unlock(&pmus_lock);

	return ret;
}
device_initcall(perf_event_sysfs_init);
S
Stephane Eranian 已提交
7552 7553

#ifdef CONFIG_CGROUP_PERF
7554
static struct cgroup_subsys_state *perf_cgroup_css_alloc(struct cgroup *cont)
S
Stephane Eranian 已提交
7555 7556 7557
{
	struct perf_cgroup *jc;

7558
	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
S
Stephane Eranian 已提交
7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570
	if (!jc)
		return ERR_PTR(-ENOMEM);

	jc->info = alloc_percpu(struct perf_cgroup_info);
	if (!jc->info) {
		kfree(jc);
		return ERR_PTR(-ENOMEM);
	}

	return &jc->css;
}

7571
static void perf_cgroup_css_free(struct cgroup *cont)
S
Stephane Eranian 已提交
7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586
{
	struct perf_cgroup *jc;
	jc = container_of(cgroup_subsys_state(cont, perf_subsys_id),
			  struct perf_cgroup, css);
	free_percpu(jc->info);
	kfree(jc);
}

static int __perf_cgroup_move(void *info)
{
	struct task_struct *task = info;
	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
	return 0;
}

7587
static void perf_cgroup_attach(struct cgroup *cgrp, struct cgroup_taskset *tset)
S
Stephane Eranian 已提交
7588
{
7589 7590 7591 7592
	struct task_struct *task;

	cgroup_taskset_for_each(task, cgrp, tset)
		task_function_call(task, __perf_cgroup_move, task);
S
Stephane Eranian 已提交
7593 7594
}

7595 7596
static void perf_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp,
			     struct task_struct *task)
S
Stephane Eranian 已提交
7597 7598 7599 7600 7601 7602 7603 7604 7605
{
	/*
	 * cgroup_exit() is called in the copy_process() failure path.
	 * Ignore this case since the task hasn't ran yet, this avoids
	 * trying to poke a half freed task state from generic code.
	 */
	if (!(task->flags & PF_EXITING))
		return;

7606
	task_function_call(task, __perf_cgroup_move, task);
S
Stephane Eranian 已提交
7607 7608 7609
}

struct cgroup_subsys perf_subsys = {
7610 7611
	.name		= "perf_event",
	.subsys_id	= perf_subsys_id,
7612 7613
	.css_alloc	= perf_cgroup_css_alloc,
	.css_free	= perf_cgroup_css_free,
7614
	.exit		= perf_cgroup_exit,
7615
	.attach		= perf_cgroup_attach,
S
Stephane Eranian 已提交
7616 7617
};
#endif /* CONFIG_CGROUP_PERF */