core.c 169.3 KB
Newer Older
T
Thomas Gleixner 已提交
1
/*
I
Ingo Molnar 已提交
2
 * Performance events core code:
T
Thomas Gleixner 已提交
3
 *
4
 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 6
 *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
 *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7
 *  Copyright    2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8
 *
I
Ingo Molnar 已提交
9
 * For licensing details see kernel-base/COPYING
T
Thomas Gleixner 已提交
10 11 12
 */

#include <linux/fs.h>
13
#include <linux/mm.h>
T
Thomas Gleixner 已提交
14 15
#include <linux/cpu.h>
#include <linux/smp.h>
P
Peter Zijlstra 已提交
16
#include <linux/idr.h>
17
#include <linux/file.h>
T
Thomas Gleixner 已提交
18
#include <linux/poll.h>
19
#include <linux/slab.h>
20
#include <linux/hash.h>
T
Thomas Gleixner 已提交
21
#include <linux/sysfs.h>
22
#include <linux/dcache.h>
T
Thomas Gleixner 已提交
23
#include <linux/percpu.h>
24
#include <linux/ptrace.h>
P
Peter Zijlstra 已提交
25
#include <linux/reboot.h>
26
#include <linux/vmstat.h>
P
Peter Zijlstra 已提交
27
#include <linux/device.h>
28
#include <linux/vmalloc.h>
29 30
#include <linux/hardirq.h>
#include <linux/rculist.h>
T
Thomas Gleixner 已提交
31 32 33
#include <linux/uaccess.h>
#include <linux/syscalls.h>
#include <linux/anon_inodes.h>
I
Ingo Molnar 已提交
34
#include <linux/kernel_stat.h>
35
#include <linux/perf_event.h>
L
Li Zefan 已提交
36
#include <linux/ftrace_event.h>
37
#include <linux/hw_breakpoint.h>
T
Thomas Gleixner 已提交
38

39 40
#include <asm/irq_regs.h>

41
struct remote_function_call {
42 43 44 45
	struct task_struct	*p;
	int			(*func)(void *info);
	void			*info;
	int			ret;
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
};

static void remote_function(void *data)
{
	struct remote_function_call *tfc = data;
	struct task_struct *p = tfc->p;

	if (p) {
		tfc->ret = -EAGAIN;
		if (task_cpu(p) != smp_processor_id() || !task_curr(p))
			return;
	}

	tfc->ret = tfc->func(tfc->info);
}

/**
 * task_function_call - call a function on the cpu on which a task runs
 * @p:		the task to evaluate
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func when the task is currently running. This might
 * be on the current CPU, which just calls the function directly
 *
 * returns: @func return value, or
 *	    -ESRCH  - when the process isn't running
 *	    -EAGAIN - when the process moved away
 */
static int
task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
{
	struct remote_function_call data = {
79 80 81 82
		.p	= p,
		.func	= func,
		.info	= info,
		.ret	= -ESRCH, /* No such (running) process */
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
	};

	if (task_curr(p))
		smp_call_function_single(task_cpu(p), remote_function, &data, 1);

	return data.ret;
}

/**
 * cpu_function_call - call a function on the cpu
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func on the remote cpu.
 *
 * returns: @func return value or -ENXIO when the cpu is offline
 */
static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
{
	struct remote_function_call data = {
103 104 105 106
		.p	= NULL,
		.func	= func,
		.info	= info,
		.ret	= -ENXIO, /* No such CPU */
107 108 109 110 111 112 113
	};

	smp_call_function_single(cpu, remote_function, &data, 1);

	return data.ret;
}

S
Stephane Eranian 已提交
114 115 116 117
#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
		       PERF_FLAG_FD_OUTPUT  |\
		       PERF_FLAG_PID_CGROUP)

118 119 120 121 122 123
enum event_type_t {
	EVENT_FLEXIBLE = 0x1,
	EVENT_PINNED = 0x2,
	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
};

S
Stephane Eranian 已提交
124 125 126 127
/*
 * perf_sched_events : >0 events exist
 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
 */
128
struct jump_label_key perf_sched_events __read_mostly;
S
Stephane Eranian 已提交
129 130
static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);

131 132 133
static atomic_t nr_mmap_events __read_mostly;
static atomic_t nr_comm_events __read_mostly;
static atomic_t nr_task_events __read_mostly;
134

P
Peter Zijlstra 已提交
135 136 137 138
static LIST_HEAD(pmus);
static DEFINE_MUTEX(pmus_lock);
static struct srcu_struct pmus_srcu;

139
/*
140
 * perf event paranoia level:
141 142
 *  -1 - not paranoid at all
 *   0 - disallow raw tracepoint access for unpriv
143
 *   1 - disallow cpu events for unpriv
144
 *   2 - disallow kernel profiling for unpriv
145
 */
146
int sysctl_perf_event_paranoid __read_mostly = 1;
147

148 149
/* Minimum for 512 kiB + 1 user control page */
int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
150 151

/*
152
 * max perf event sample rate
153
 */
P
Peter Zijlstra 已提交
154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
#define DEFAULT_MAX_SAMPLE_RATE 100000
int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
static int max_samples_per_tick __read_mostly =
	DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);

int perf_proc_update_handler(struct ctl_table *table, int write,
		void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
	int ret = proc_dointvec(table, write, buffer, lenp, ppos);

	if (ret || !write)
		return ret;

	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);

	return 0;
}
172

173
static atomic64_t perf_event_id;
174

175 176 177 178
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type);

static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
179 180 181 182 183
			     enum event_type_t event_type,
			     struct task_struct *task);

static void update_context_time(struct perf_event_context *ctx);
static u64 perf_event_time(struct perf_event *event);
184

185
void __weak perf_event_print_debug(void)	{ }
T
Thomas Gleixner 已提交
186

187
extern __weak const char *perf_pmu_name(void)
T
Thomas Gleixner 已提交
188
{
189
	return "pmu";
T
Thomas Gleixner 已提交
190 191
}

192 193 194 195 196
static inline u64 perf_clock(void)
{
	return local_clock();
}

S
Stephane Eranian 已提交
197 198 199 200 201 202
static inline struct perf_cpu_context *
__get_cpu_context(struct perf_event_context *ctx)
{
	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
}

203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
			  struct perf_event_context *ctx)
{
	raw_spin_lock(&cpuctx->ctx.lock);
	if (ctx)
		raw_spin_lock(&ctx->lock);
}

static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
			    struct perf_event_context *ctx)
{
	if (ctx)
		raw_spin_unlock(&ctx->lock);
	raw_spin_unlock(&cpuctx->ctx.lock);
}

S
Stephane Eranian 已提交
219 220
#ifdef CONFIG_CGROUP_PERF

221 222 223 224 225
/*
 * Must ensure cgroup is pinned (css_get) before calling
 * this function. In other words, we cannot call this function
 * if there is no cgroup event for the current CPU context.
 */
S
Stephane Eranian 已提交
226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
static inline struct perf_cgroup *
perf_cgroup_from_task(struct task_struct *task)
{
	return container_of(task_subsys_state(task, perf_subsys_id),
			struct perf_cgroup, css);
}

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);

	return !event->cgrp || event->cgrp == cpuctx->cgrp;
}

static inline void perf_get_cgroup(struct perf_event *event)
{
	css_get(&event->cgrp->css);
}

static inline void perf_put_cgroup(struct perf_event *event)
{
	css_put(&event->cgrp->css);
}

static inline void perf_detach_cgroup(struct perf_event *event)
{
	perf_put_cgroup(event);
	event->cgrp = NULL;
}

static inline int is_cgroup_event(struct perf_event *event)
{
	return event->cgrp != NULL;
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	struct perf_cgroup_info *t;

	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	return t->time;
}

static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
{
	struct perf_cgroup_info *info;
	u64 now;

	now = perf_clock();

	info = this_cpu_ptr(cgrp->info);

	info->time += now - info->timestamp;
	info->timestamp = now;
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
	struct perf_cgroup *cgrp_out = cpuctx->cgrp;
	if (cgrp_out)
		__update_cgrp_time(cgrp_out);
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
293 294
	struct perf_cgroup *cgrp;

S
Stephane Eranian 已提交
295
	/*
296 297
	 * ensure we access cgroup data only when needed and
	 * when we know the cgroup is pinned (css_get)
S
Stephane Eranian 已提交
298
	 */
299
	if (!is_cgroup_event(event))
S
Stephane Eranian 已提交
300 301
		return;

302 303 304 305 306 307
	cgrp = perf_cgroup_from_task(current);
	/*
	 * Do not update time when cgroup is not active
	 */
	if (cgrp == event->cgrp)
		__update_cgrp_time(event->cgrp);
S
Stephane Eranian 已提交
308 309 310
}

static inline void
311 312
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
313 314 315 316
{
	struct perf_cgroup *cgrp;
	struct perf_cgroup_info *info;

317 318 319 320 321 322
	/*
	 * ctx->lock held by caller
	 * ensure we do not access cgroup data
	 * unless we have the cgroup pinned (css_get)
	 */
	if (!task || !ctx->nr_cgroups)
S
Stephane Eranian 已提交
323 324 325 326
		return;

	cgrp = perf_cgroup_from_task(task);
	info = this_cpu_ptr(cgrp->info);
327
	info->timestamp = ctx->timestamp;
S
Stephane Eranian 已提交
328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368
}

#define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
#define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */

/*
 * reschedule events based on the cgroup constraint of task.
 *
 * mode SWOUT : schedule out everything
 * mode SWIN : schedule in based on cgroup for next
 */
void perf_cgroup_switch(struct task_struct *task, int mode)
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	/*
	 * disable interrupts to avoid geting nr_cgroup
	 * changes via __perf_event_disable(). Also
	 * avoids preemption.
	 */
	local_irq_save(flags);

	/*
	 * we reschedule only in the presence of cgroup
	 * constrained events.
	 */
	rcu_read_lock();

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

		/*
		 * perf_cgroup_events says at least one
		 * context on this CPU has cgroup events.
		 *
		 * ctx->nr_cgroups reports the number of cgroup
		 * events for a context.
		 */
		if (cpuctx->ctx.nr_cgroups > 0) {
369 370
			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
			perf_pmu_disable(cpuctx->ctx.pmu);
S
Stephane Eranian 已提交
371 372 373 374 375 376 377 378 379 380 381

			if (mode & PERF_CGROUP_SWOUT) {
				cpu_ctx_sched_out(cpuctx, EVENT_ALL);
				/*
				 * must not be done before ctxswout due
				 * to event_filter_match() in event_sched_out()
				 */
				cpuctx->cgrp = NULL;
			}

			if (mode & PERF_CGROUP_SWIN) {
382
				WARN_ON_ONCE(cpuctx->cgrp);
S
Stephane Eranian 已提交
383 384 385 386 387 388 389
				/* set cgrp before ctxsw in to
				 * allow event_filter_match() to not
				 * have to pass task around
				 */
				cpuctx->cgrp = perf_cgroup_from_task(task);
				cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
			}
390 391
			perf_pmu_enable(cpuctx->ctx.pmu);
			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
S
Stephane Eranian 已提交
392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423
		}
	}

	rcu_read_unlock();

	local_irq_restore(flags);
}

static inline void perf_cgroup_sched_out(struct task_struct *task)
{
	perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
}

static inline void perf_cgroup_sched_in(struct task_struct *task)
{
	perf_cgroup_switch(task, PERF_CGROUP_SWIN);
}

static inline int perf_cgroup_connect(int fd, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	struct perf_cgroup *cgrp;
	struct cgroup_subsys_state *css;
	struct file *file;
	int ret = 0, fput_needed;

	file = fget_light(fd, &fput_needed);
	if (!file)
		return -EBADF;

	css = cgroup_css_from_dir(file, perf_subsys_id);
424 425 426 427
	if (IS_ERR(css)) {
		ret = PTR_ERR(css);
		goto out;
	}
S
Stephane Eranian 已提交
428 429 430 431

	cgrp = container_of(css, struct perf_cgroup, css);
	event->cgrp = cgrp;

432 433 434
	/* must be done before we fput() the file */
	perf_get_cgroup(event);

S
Stephane Eranian 已提交
435 436 437 438 439 440 441 442 443
	/*
	 * all events in a group must monitor
	 * the same cgroup because a task belongs
	 * to only one perf cgroup at a time
	 */
	if (group_leader && group_leader->cgrp != cgrp) {
		perf_detach_cgroup(event);
		ret = -EINVAL;
	}
444
out:
S
Stephane Eranian 已提交
445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534
	fput_light(file, fput_needed);
	return ret;
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
	struct perf_cgroup_info *t;
	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	event->shadow_ctx_time = now - t->timestamp;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
	/*
	 * when the current task's perf cgroup does not match
	 * the event's, we need to remember to call the
	 * perf_mark_enable() function the first time a task with
	 * a matching perf cgroup is scheduled in.
	 */
	if (is_cgroup_event(event) && !perf_cgroup_match(event))
		event->cgrp_defer_enabled = 1;
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
	struct perf_event *sub;
	u64 tstamp = perf_event_time(event);

	if (!event->cgrp_defer_enabled)
		return;

	event->cgrp_defer_enabled = 0;

	event->tstamp_enabled = tstamp - event->total_time_enabled;
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
			sub->cgrp_defer_enabled = 0;
		}
	}
}
#else /* !CONFIG_CGROUP_PERF */

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	return true;
}

static inline void perf_detach_cgroup(struct perf_event *event)
{}

static inline int is_cgroup_event(struct perf_event *event)
{
	return 0;
}

static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
{
	return 0;
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
}

static inline void perf_cgroup_sched_out(struct task_struct *task)
{
}

static inline void perf_cgroup_sched_in(struct task_struct *task)
{
}

static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	return -EINVAL;
}

static inline void
535 536
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566
{
}

void
perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
{
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	return 0;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
}
#endif

P
Peter Zijlstra 已提交
567
void perf_pmu_disable(struct pmu *pmu)
568
{
P
Peter Zijlstra 已提交
569 570 571
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!(*count)++)
		pmu->pmu_disable(pmu);
572 573
}

P
Peter Zijlstra 已提交
574
void perf_pmu_enable(struct pmu *pmu)
575
{
P
Peter Zijlstra 已提交
576 577 578
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!--(*count))
		pmu->pmu_enable(pmu);
579 580
}

581 582 583 584 585 586 587
static DEFINE_PER_CPU(struct list_head, rotation_list);

/*
 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
 * because they're strictly cpu affine and rotate_start is called with IRQs
 * disabled, while rotate_context is called from IRQ context.
 */
P
Peter Zijlstra 已提交
588
static void perf_pmu_rotate_start(struct pmu *pmu)
589
{
P
Peter Zijlstra 已提交
590
	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
591
	struct list_head *head = &__get_cpu_var(rotation_list);
592

593
	WARN_ON(!irqs_disabled());
594

595 596
	if (list_empty(&cpuctx->rotation_list))
		list_add(&cpuctx->rotation_list, head);
597 598
}

599
static void get_ctx(struct perf_event_context *ctx)
600
{
601
	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
602 603
}

604
static void put_ctx(struct perf_event_context *ctx)
605
{
606 607 608
	if (atomic_dec_and_test(&ctx->refcount)) {
		if (ctx->parent_ctx)
			put_ctx(ctx->parent_ctx);
609 610
		if (ctx->task)
			put_task_struct(ctx->task);
611
		kfree_rcu(ctx, rcu_head);
612
	}
613 614
}

615
static void unclone_ctx(struct perf_event_context *ctx)
616 617 618 619 620 621 622
{
	if (ctx->parent_ctx) {
		put_ctx(ctx->parent_ctx);
		ctx->parent_ctx = NULL;
	}
}

623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644
static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_tgid_nr_ns(p, event->ns);
}

static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_pid_nr_ns(p, event->ns);
}

645
/*
646
 * If we inherit events we want to return the parent event id
647 648
 * to userspace.
 */
649
static u64 primary_event_id(struct perf_event *event)
650
{
651
	u64 id = event->id;
652

653 654
	if (event->parent)
		id = event->parent->id;
655 656 657 658

	return id;
}

659
/*
660
 * Get the perf_event_context for a task and lock it.
661 662 663
 * This has to cope with with the fact that until it is locked,
 * the context could get moved to another task.
 */
664
static struct perf_event_context *
P
Peter Zijlstra 已提交
665
perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
666
{
667
	struct perf_event_context *ctx;
668 669

	rcu_read_lock();
P
Peter Zijlstra 已提交
670
retry:
P
Peter Zijlstra 已提交
671
	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
672 673 674 675
	if (ctx) {
		/*
		 * If this context is a clone of another, it might
		 * get swapped for another underneath us by
676
		 * perf_event_task_sched_out, though the
677 678 679 680 681 682
		 * rcu_read_lock() protects us from any context
		 * getting freed.  Lock the context and check if it
		 * got swapped before we could get the lock, and retry
		 * if so.  If we locked the right context, then it
		 * can't get swapped on us any more.
		 */
683
		raw_spin_lock_irqsave(&ctx->lock, *flags);
P
Peter Zijlstra 已提交
684
		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
685
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
686 687
			goto retry;
		}
688 689

		if (!atomic_inc_not_zero(&ctx->refcount)) {
690
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
691 692
			ctx = NULL;
		}
693 694 695 696 697 698 699 700 701 702
	}
	rcu_read_unlock();
	return ctx;
}

/*
 * Get the context for a task and increment its pin_count so it
 * can't get swapped to another task.  This also increments its
 * reference count so that the context can't get freed.
 */
P
Peter Zijlstra 已提交
703 704
static struct perf_event_context *
perf_pin_task_context(struct task_struct *task, int ctxn)
705
{
706
	struct perf_event_context *ctx;
707 708
	unsigned long flags;

P
Peter Zijlstra 已提交
709
	ctx = perf_lock_task_context(task, ctxn, &flags);
710 711
	if (ctx) {
		++ctx->pin_count;
712
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
713 714 715 716
	}
	return ctx;
}

717
static void perf_unpin_context(struct perf_event_context *ctx)
718 719 720
{
	unsigned long flags;

721
	raw_spin_lock_irqsave(&ctx->lock, flags);
722
	--ctx->pin_count;
723
	raw_spin_unlock_irqrestore(&ctx->lock, flags);
724 725
}

726 727 728 729 730 731 732 733 734 735 736
/*
 * Update the record of the current time in a context.
 */
static void update_context_time(struct perf_event_context *ctx)
{
	u64 now = perf_clock();

	ctx->time += now - ctx->timestamp;
	ctx->timestamp = now;
}

737 738 739
static u64 perf_event_time(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
S
Stephane Eranian 已提交
740 741 742 743

	if (is_cgroup_event(event))
		return perf_cgroup_event_time(event);

744 745 746
	return ctx ? ctx->time : 0;
}

747 748 749 750 751 752 753 754 755 756 757
/*
 * Update the total_time_enabled and total_time_running fields for a event.
 */
static void update_event_times(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	u64 run_end;

	if (event->state < PERF_EVENT_STATE_INACTIVE ||
	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
		return;
S
Stephane Eranian 已提交
758 759 760 761 762 763 764 765 766 767 768
	/*
	 * in cgroup mode, time_enabled represents
	 * the time the event was enabled AND active
	 * tasks were in the monitored cgroup. This is
	 * independent of the activity of the context as
	 * there may be a mix of cgroup and non-cgroup events.
	 *
	 * That is why we treat cgroup events differently
	 * here.
	 */
	if (is_cgroup_event(event))
769
		run_end = perf_event_time(event);
S
Stephane Eranian 已提交
770 771
	else if (ctx->is_active)
		run_end = ctx->time;
772 773 774 775
	else
		run_end = event->tstamp_stopped;

	event->total_time_enabled = run_end - event->tstamp_enabled;
776 777 778 779

	if (event->state == PERF_EVENT_STATE_INACTIVE)
		run_end = event->tstamp_stopped;
	else
780
		run_end = perf_event_time(event);
781 782

	event->total_time_running = run_end - event->tstamp_running;
S
Stephane Eranian 已提交
783

784 785
}

786 787 788 789 790 791 792 793 794 795 796 797
/*
 * Update total_time_enabled and total_time_running for all events in a group.
 */
static void update_group_times(struct perf_event *leader)
{
	struct perf_event *event;

	update_event_times(leader);
	list_for_each_entry(event, &leader->sibling_list, group_entry)
		update_event_times(event);
}

798 799 800 801 802 803 804 805 806
static struct list_head *
ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
{
	if (event->attr.pinned)
		return &ctx->pinned_groups;
	else
		return &ctx->flexible_groups;
}

807
/*
808
 * Add a event from the lists for its context.
809 810
 * Must be called with ctx->mutex and ctx->lock held.
 */
811
static void
812
list_add_event(struct perf_event *event, struct perf_event_context *ctx)
813
{
814 815
	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
	event->attach_state |= PERF_ATTACH_CONTEXT;
816 817

	/*
818 819 820
	 * If we're a stand alone event or group leader, we go to the context
	 * list, group events are kept attached to the group so that
	 * perf_group_detach can, at all times, locate all siblings.
821
	 */
822
	if (event->group_leader == event) {
823 824
		struct list_head *list;

825 826 827
		if (is_software_event(event))
			event->group_flags |= PERF_GROUP_SOFTWARE;

828 829
		list = ctx_group_list(event, ctx);
		list_add_tail(&event->group_entry, list);
P
Peter Zijlstra 已提交
830
	}
P
Peter Zijlstra 已提交
831

832
	if (is_cgroup_event(event))
S
Stephane Eranian 已提交
833 834
		ctx->nr_cgroups++;

835
	list_add_rcu(&event->event_entry, &ctx->event_list);
836
	if (!ctx->nr_events)
P
Peter Zijlstra 已提交
837
		perf_pmu_rotate_start(ctx->pmu);
838 839
	ctx->nr_events++;
	if (event->attr.inherit_stat)
840
		ctx->nr_stat++;
841 842
}

843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881
/*
 * Called at perf_event creation and when events are attached/detached from a
 * group.
 */
static void perf_event__read_size(struct perf_event *event)
{
	int entry = sizeof(u64); /* value */
	int size = 0;
	int nr = 1;

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_ID)
		entry += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_GROUP) {
		nr += event->group_leader->nr_siblings;
		size += sizeof(u64);
	}

	size += entry * nr;
	event->read_size = size;
}

static void perf_event__header_size(struct perf_event *event)
{
	struct perf_sample_data *data;
	u64 sample_type = event->attr.sample_type;
	u16 size = 0;

	perf_event__read_size(event);

	if (sample_type & PERF_SAMPLE_IP)
		size += sizeof(data->ip);

882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899
	if (sample_type & PERF_SAMPLE_ADDR)
		size += sizeof(data->addr);

	if (sample_type & PERF_SAMPLE_PERIOD)
		size += sizeof(data->period);

	if (sample_type & PERF_SAMPLE_READ)
		size += event->read_size;

	event->header_size = size;
}

static void perf_event__id_header_size(struct perf_event *event)
{
	struct perf_sample_data *data;
	u64 sample_type = event->attr.sample_type;
	u16 size = 0;

900 901 902 903 904 905 906 907 908 909 910 911 912 913 914
	if (sample_type & PERF_SAMPLE_TID)
		size += sizeof(data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		size += sizeof(data->time);

	if (sample_type & PERF_SAMPLE_ID)
		size += sizeof(data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		size += sizeof(data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		size += sizeof(data->cpu_entry);

915
	event->id_header_size = size;
916 917
}

918 919
static void perf_group_attach(struct perf_event *event)
{
920
	struct perf_event *group_leader = event->group_leader, *pos;
921

P
Peter Zijlstra 已提交
922 923 924 925 926 927
	/*
	 * We can have double attach due to group movement in perf_event_open.
	 */
	if (event->attach_state & PERF_ATTACH_GROUP)
		return;

928 929 930 931 932 933 934 935 936 937 938
	event->attach_state |= PERF_ATTACH_GROUP;

	if (group_leader == event)
		return;

	if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
			!is_software_event(event))
		group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;

	list_add_tail(&event->group_entry, &group_leader->sibling_list);
	group_leader->nr_siblings++;
939 940 941 942 943

	perf_event__header_size(group_leader);

	list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
		perf_event__header_size(pos);
944 945
}

946
/*
947
 * Remove a event from the lists for its context.
948
 * Must be called with ctx->mutex and ctx->lock held.
949
 */
950
static void
951
list_del_event(struct perf_event *event, struct perf_event_context *ctx)
952
{
953
	struct perf_cpu_context *cpuctx;
954 955 956 957
	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
958
		return;
959 960 961

	event->attach_state &= ~PERF_ATTACH_CONTEXT;

962
	if (is_cgroup_event(event)) {
S
Stephane Eranian 已提交
963
		ctx->nr_cgroups--;
964 965 966 967 968 969 970 971 972
		cpuctx = __get_cpu_context(ctx);
		/*
		 * if there are no more cgroup events
		 * then cler cgrp to avoid stale pointer
		 * in update_cgrp_time_from_cpuctx()
		 */
		if (!ctx->nr_cgroups)
			cpuctx->cgrp = NULL;
	}
S
Stephane Eranian 已提交
973

974 975
	ctx->nr_events--;
	if (event->attr.inherit_stat)
976
		ctx->nr_stat--;
977

978
	list_del_rcu(&event->event_entry);
979

980 981
	if (event->group_leader == event)
		list_del_init(&event->group_entry);
P
Peter Zijlstra 已提交
982

983
	update_group_times(event);
984 985 986 987 988 989 990 991 992 993

	/*
	 * If event was in error state, then keep it
	 * that way, otherwise bogus counts will be
	 * returned on read(). The only way to get out
	 * of error state is by explicit re-enabling
	 * of the event
	 */
	if (event->state > PERF_EVENT_STATE_OFF)
		event->state = PERF_EVENT_STATE_OFF;
994 995
}

996
static void perf_group_detach(struct perf_event *event)
997 998
{
	struct perf_event *sibling, *tmp;
999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014
	struct list_head *list = NULL;

	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_GROUP))
		return;

	event->attach_state &= ~PERF_ATTACH_GROUP;

	/*
	 * If this is a sibling, remove it from its group.
	 */
	if (event->group_leader != event) {
		list_del_init(&event->group_entry);
		event->group_leader->nr_siblings--;
1015
		goto out;
1016 1017 1018 1019
	}

	if (!list_empty(&event->group_entry))
		list = &event->group_entry;
1020

1021
	/*
1022 1023
	 * If this was a group event with sibling events then
	 * upgrade the siblings to singleton events by adding them
1024
	 * to whatever list we are on.
1025
	 */
1026
	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1027 1028
		if (list)
			list_move_tail(&sibling->group_entry, list);
1029
		sibling->group_leader = sibling;
1030 1031 1032

		/* Inherit group flags from the previous leader */
		sibling->group_flags = event->group_flags;
1033
	}
1034 1035 1036 1037 1038 1039

out:
	perf_event__header_size(event->group_leader);

	list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
		perf_event__header_size(tmp);
1040 1041
}

1042 1043 1044
static inline int
event_filter_match(struct perf_event *event)
{
S
Stephane Eranian 已提交
1045 1046
	return (event->cpu == -1 || event->cpu == smp_processor_id())
	    && perf_cgroup_match(event);
1047 1048
}

1049 1050
static void
event_sched_out(struct perf_event *event,
1051
		  struct perf_cpu_context *cpuctx,
1052
		  struct perf_event_context *ctx)
1053
{
1054
	u64 tstamp = perf_event_time(event);
1055 1056 1057 1058 1059 1060 1061 1062 1063
	u64 delta;
	/*
	 * An event which could not be activated because of
	 * filter mismatch still needs to have its timings
	 * maintained, otherwise bogus information is return
	 * via read() for time_enabled, time_running:
	 */
	if (event->state == PERF_EVENT_STATE_INACTIVE
	    && !event_filter_match(event)) {
S
Stephane Eranian 已提交
1064
		delta = tstamp - event->tstamp_stopped;
1065
		event->tstamp_running += delta;
1066
		event->tstamp_stopped = tstamp;
1067 1068
	}

1069
	if (event->state != PERF_EVENT_STATE_ACTIVE)
1070
		return;
1071

1072 1073 1074 1075
	event->state = PERF_EVENT_STATE_INACTIVE;
	if (event->pending_disable) {
		event->pending_disable = 0;
		event->state = PERF_EVENT_STATE_OFF;
1076
	}
1077
	event->tstamp_stopped = tstamp;
P
Peter Zijlstra 已提交
1078
	event->pmu->del(event, 0);
1079
	event->oncpu = -1;
1080

1081
	if (!is_software_event(event))
1082 1083
		cpuctx->active_oncpu--;
	ctx->nr_active--;
1084
	if (event->attr.exclusive || !cpuctx->active_oncpu)
1085 1086 1087
		cpuctx->exclusive = 0;
}

1088
static void
1089
group_sched_out(struct perf_event *group_event,
1090
		struct perf_cpu_context *cpuctx,
1091
		struct perf_event_context *ctx)
1092
{
1093
	struct perf_event *event;
1094
	int state = group_event->state;
1095

1096
	event_sched_out(group_event, cpuctx, ctx);
1097 1098 1099 1100

	/*
	 * Schedule out siblings (if any):
	 */
1101 1102
	list_for_each_entry(event, &group_event->sibling_list, group_entry)
		event_sched_out(event, cpuctx, ctx);
1103

1104
	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1105 1106 1107
		cpuctx->exclusive = 0;
}

T
Thomas Gleixner 已提交
1108
/*
1109
 * Cross CPU call to remove a performance event
T
Thomas Gleixner 已提交
1110
 *
1111
 * We disable the event on the hardware level first. After that we
T
Thomas Gleixner 已提交
1112 1113
 * remove it from the context list.
 */
1114
static int __perf_remove_from_context(void *info)
T
Thomas Gleixner 已提交
1115
{
1116 1117
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1118
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
T
Thomas Gleixner 已提交
1119

1120
	raw_spin_lock(&ctx->lock);
1121 1122
	event_sched_out(event, cpuctx, ctx);
	list_del_event(event, ctx);
1123
	raw_spin_unlock(&ctx->lock);
1124 1125

	return 0;
T
Thomas Gleixner 已提交
1126 1127 1128 1129
}


/*
1130
 * Remove the event from a task's (or a CPU's) list of events.
T
Thomas Gleixner 已提交
1131
 *
1132
 * CPU events are removed with a smp call. For task events we only
T
Thomas Gleixner 已提交
1133
 * call when the task is on a CPU.
1134
 *
1135 1136
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1137 1138
 * remains valid.  This is OK when called from perf_release since
 * that only calls us on the top-level context, which can't be a clone.
1139
 * When called from perf_event_exit_task, it's OK because the
1140
 * context has been detached from its task.
T
Thomas Gleixner 已提交
1141
 */
1142
static void perf_remove_from_context(struct perf_event *event)
T
Thomas Gleixner 已提交
1143
{
1144
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
1145 1146
	struct task_struct *task = ctx->task;

1147 1148
	lockdep_assert_held(&ctx->mutex);

T
Thomas Gleixner 已提交
1149 1150
	if (!task) {
		/*
1151
		 * Per cpu events are removed via an smp call and
1152
		 * the removal is always successful.
T
Thomas Gleixner 已提交
1153
		 */
1154
		cpu_function_call(event->cpu, __perf_remove_from_context, event);
T
Thomas Gleixner 已提交
1155 1156 1157 1158
		return;
	}

retry:
1159 1160
	if (!task_function_call(task, __perf_remove_from_context, event))
		return;
T
Thomas Gleixner 已提交
1161

1162
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1163
	/*
1164 1165
	 * If we failed to find a running task, but find the context active now
	 * that we've acquired the ctx->lock, retry.
T
Thomas Gleixner 已提交
1166
	 */
1167
	if (ctx->is_active) {
1168
		raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1169 1170 1171 1172
		goto retry;
	}

	/*
1173 1174
	 * Since the task isn't running, its safe to remove the event, us
	 * holding the ctx->lock ensures the task won't get scheduled in.
T
Thomas Gleixner 已提交
1175
	 */
1176
	list_del_event(event, ctx);
1177
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1178 1179
}

1180
/*
1181
 * Cross CPU call to disable a performance event
1182
 */
1183
static int __perf_event_disable(void *info)
1184
{
1185 1186
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1187
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1188 1189

	/*
1190 1191
	 * If this is a per-task event, need to check whether this
	 * event's task is the current task on this cpu.
1192 1193 1194
	 *
	 * Can trigger due to concurrent perf_event_context_sched_out()
	 * flipping contexts around.
1195
	 */
1196
	if (ctx->task && cpuctx->task_ctx != ctx)
1197
		return -EINVAL;
1198

1199
	raw_spin_lock(&ctx->lock);
1200 1201

	/*
1202
	 * If the event is on, turn it off.
1203 1204
	 * If it is in error state, leave it in error state.
	 */
1205
	if (event->state >= PERF_EVENT_STATE_INACTIVE) {
1206
		update_context_time(ctx);
S
Stephane Eranian 已提交
1207
		update_cgrp_time_from_event(event);
1208 1209 1210
		update_group_times(event);
		if (event == event->group_leader)
			group_sched_out(event, cpuctx, ctx);
1211
		else
1212 1213
			event_sched_out(event, cpuctx, ctx);
		event->state = PERF_EVENT_STATE_OFF;
1214 1215
	}

1216
	raw_spin_unlock(&ctx->lock);
1217 1218

	return 0;
1219 1220 1221
}

/*
1222
 * Disable a event.
1223
 *
1224 1225
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1226
 * remains valid.  This condition is satisifed when called through
1227 1228 1229 1230
 * perf_event_for_each_child or perf_event_for_each because they
 * hold the top-level event's child_mutex, so any descendant that
 * goes to exit will block in sync_child_event.
 * When called from perf_pending_event it's OK because event->ctx
1231
 * is the current context on this CPU and preemption is disabled,
1232
 * hence we can't get into perf_event_task_sched_out for this context.
1233
 */
1234
void perf_event_disable(struct perf_event *event)
1235
{
1236
	struct perf_event_context *ctx = event->ctx;
1237 1238 1239 1240
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
1241
		 * Disable the event on the cpu that it's on
1242
		 */
1243
		cpu_function_call(event->cpu, __perf_event_disable, event);
1244 1245 1246
		return;
	}

P
Peter Zijlstra 已提交
1247
retry:
1248 1249
	if (!task_function_call(task, __perf_event_disable, event))
		return;
1250

1251
	raw_spin_lock_irq(&ctx->lock);
1252
	/*
1253
	 * If the event is still active, we need to retry the cross-call.
1254
	 */
1255
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
1256
		raw_spin_unlock_irq(&ctx->lock);
1257 1258 1259 1260 1261
		/*
		 * Reload the task pointer, it might have been changed by
		 * a concurrent perf_event_context_sched_out().
		 */
		task = ctx->task;
1262 1263 1264 1265 1266 1267 1268
		goto retry;
	}

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
1269 1270 1271
	if (event->state == PERF_EVENT_STATE_INACTIVE) {
		update_group_times(event);
		event->state = PERF_EVENT_STATE_OFF;
1272
	}
1273
	raw_spin_unlock_irq(&ctx->lock);
1274 1275
}

S
Stephane Eranian 已提交
1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310
static void perf_set_shadow_time(struct perf_event *event,
				 struct perf_event_context *ctx,
				 u64 tstamp)
{
	/*
	 * use the correct time source for the time snapshot
	 *
	 * We could get by without this by leveraging the
	 * fact that to get to this function, the caller
	 * has most likely already called update_context_time()
	 * and update_cgrp_time_xx() and thus both timestamp
	 * are identical (or very close). Given that tstamp is,
	 * already adjusted for cgroup, we could say that:
	 *    tstamp - ctx->timestamp
	 * is equivalent to
	 *    tstamp - cgrp->timestamp.
	 *
	 * Then, in perf_output_read(), the calculation would
	 * work with no changes because:
	 * - event is guaranteed scheduled in
	 * - no scheduled out in between
	 * - thus the timestamp would be the same
	 *
	 * But this is a bit hairy.
	 *
	 * So instead, we have an explicit cgroup call to remain
	 * within the time time source all along. We believe it
	 * is cleaner and simpler to understand.
	 */
	if (is_cgroup_event(event))
		perf_cgroup_set_shadow_time(event, tstamp);
	else
		event->shadow_ctx_time = tstamp - ctx->timestamp;
}

P
Peter Zijlstra 已提交
1311 1312 1313 1314
#define MAX_INTERRUPTS (~0ULL)

static void perf_log_throttle(struct perf_event *event, int enable);

1315
static int
1316
event_sched_in(struct perf_event *event,
1317
		 struct perf_cpu_context *cpuctx,
1318
		 struct perf_event_context *ctx)
1319
{
1320 1321
	u64 tstamp = perf_event_time(event);

1322
	if (event->state <= PERF_EVENT_STATE_OFF)
1323 1324
		return 0;

1325
	event->state = PERF_EVENT_STATE_ACTIVE;
1326
	event->oncpu = smp_processor_id();
P
Peter Zijlstra 已提交
1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337

	/*
	 * Unthrottle events, since we scheduled we might have missed several
	 * ticks already, also for a heavily scheduling task there is little
	 * guarantee it'll get a tick in a timely manner.
	 */
	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
		perf_log_throttle(event, 1);
		event->hw.interrupts = 0;
	}

1338 1339 1340 1341 1342
	/*
	 * The new state must be visible before we turn it on in the hardware:
	 */
	smp_wmb();

P
Peter Zijlstra 已提交
1343
	if (event->pmu->add(event, PERF_EF_START)) {
1344 1345
		event->state = PERF_EVENT_STATE_INACTIVE;
		event->oncpu = -1;
1346 1347 1348
		return -EAGAIN;
	}

1349
	event->tstamp_running += tstamp - event->tstamp_stopped;
1350

S
Stephane Eranian 已提交
1351
	perf_set_shadow_time(event, ctx, tstamp);
1352

1353
	if (!is_software_event(event))
1354
		cpuctx->active_oncpu++;
1355 1356
	ctx->nr_active++;

1357
	if (event->attr.exclusive)
1358 1359
		cpuctx->exclusive = 1;

1360 1361 1362
	return 0;
}

1363
static int
1364
group_sched_in(struct perf_event *group_event,
1365
	       struct perf_cpu_context *cpuctx,
1366
	       struct perf_event_context *ctx)
1367
{
1368
	struct perf_event *event, *partial_group = NULL;
P
Peter Zijlstra 已提交
1369
	struct pmu *pmu = group_event->pmu;
1370 1371
	u64 now = ctx->time;
	bool simulate = false;
1372

1373
	if (group_event->state == PERF_EVENT_STATE_OFF)
1374 1375
		return 0;

P
Peter Zijlstra 已提交
1376
	pmu->start_txn(pmu);
1377

1378
	if (event_sched_in(group_event, cpuctx, ctx)) {
P
Peter Zijlstra 已提交
1379
		pmu->cancel_txn(pmu);
1380
		return -EAGAIN;
1381
	}
1382 1383 1384 1385

	/*
	 * Schedule in siblings as one group (if any):
	 */
1386
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1387
		if (event_sched_in(event, cpuctx, ctx)) {
1388
			partial_group = event;
1389 1390 1391 1392
			goto group_error;
		}
	}

1393
	if (!pmu->commit_txn(pmu))
1394
		return 0;
1395

1396 1397 1398 1399
group_error:
	/*
	 * Groups can be scheduled in as one unit only, so undo any
	 * partial group before returning:
1400 1401 1402 1403 1404 1405 1406 1407 1408 1409
	 * The events up to the failed event are scheduled out normally,
	 * tstamp_stopped will be updated.
	 *
	 * The failed events and the remaining siblings need to have
	 * their timings updated as if they had gone thru event_sched_in()
	 * and event_sched_out(). This is required to get consistent timings
	 * across the group. This also takes care of the case where the group
	 * could never be scheduled by ensuring tstamp_stopped is set to mark
	 * the time the event was actually stopped, such that time delta
	 * calculation in update_event_times() is correct.
1410
	 */
1411 1412
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
		if (event == partial_group)
1413 1414 1415 1416 1417 1418 1419 1420
			simulate = true;

		if (simulate) {
			event->tstamp_running += now - event->tstamp_stopped;
			event->tstamp_stopped = now;
		} else {
			event_sched_out(event, cpuctx, ctx);
		}
1421
	}
1422
	event_sched_out(group_event, cpuctx, ctx);
1423

P
Peter Zijlstra 已提交
1424
	pmu->cancel_txn(pmu);
1425

1426 1427 1428
	return -EAGAIN;
}

1429
/*
1430
 * Work out whether we can put this event group on the CPU now.
1431
 */
1432
static int group_can_go_on(struct perf_event *event,
1433 1434 1435 1436
			   struct perf_cpu_context *cpuctx,
			   int can_add_hw)
{
	/*
1437
	 * Groups consisting entirely of software events can always go on.
1438
	 */
1439
	if (event->group_flags & PERF_GROUP_SOFTWARE)
1440 1441 1442
		return 1;
	/*
	 * If an exclusive group is already on, no other hardware
1443
	 * events can go on.
1444 1445 1446 1447 1448
	 */
	if (cpuctx->exclusive)
		return 0;
	/*
	 * If this group is exclusive and there are already
1449
	 * events on the CPU, it can't go on.
1450
	 */
1451
	if (event->attr.exclusive && cpuctx->active_oncpu)
1452 1453 1454 1455 1456 1457 1458 1459
		return 0;
	/*
	 * Otherwise, try to add it if all previous groups were able
	 * to go on.
	 */
	return can_add_hw;
}

1460 1461
static void add_event_to_ctx(struct perf_event *event,
			       struct perf_event_context *ctx)
1462
{
1463 1464
	u64 tstamp = perf_event_time(event);

1465
	list_add_event(event, ctx);
1466
	perf_group_attach(event);
1467 1468 1469
	event->tstamp_enabled = tstamp;
	event->tstamp_running = tstamp;
	event->tstamp_stopped = tstamp;
1470 1471
}

1472 1473 1474 1475 1476 1477
static void task_ctx_sched_out(struct perf_event_context *ctx);
static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
	     enum event_type_t event_type,
	     struct task_struct *task);
1478

T
Thomas Gleixner 已提交
1479
/*
1480
 * Cross CPU call to install and enable a performance event
1481 1482
 *
 * Must be called with ctx->mutex held
T
Thomas Gleixner 已提交
1483
 */
1484
static int  __perf_install_in_context(void *info)
T
Thomas Gleixner 已提交
1485
{
1486 1487
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1488
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1489 1490 1491 1492 1493
	struct perf_event_context *task_ctx = cpuctx->task_ctx;
	struct task_struct *task = current;

	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
	perf_pmu_disable(cpuctx->ctx.pmu);
T
Thomas Gleixner 已提交
1494 1495

	/*
1496
	 * If there was an active task_ctx schedule it out.
T
Thomas Gleixner 已提交
1497
	 */
1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511
	if (task_ctx) {
		task_ctx_sched_out(task_ctx);
		/*
		 * If the context we're installing events in is not the
		 * active task_ctx, flip them.
		 */
		if (ctx->task && task_ctx != ctx) {
			raw_spin_unlock(&cpuctx->ctx.lock);
			raw_spin_lock(&ctx->lock);
			cpuctx->task_ctx = task_ctx = ctx;
		}
		task = task_ctx->task;
	}
	cpu_ctx_sched_out(cpuctx, EVENT_ALL);
T
Thomas Gleixner 已提交
1512

1513
	update_context_time(ctx);
S
Stephane Eranian 已提交
1514 1515 1516 1517 1518 1519
	/*
	 * update cgrp time only if current cgrp
	 * matches event->cgrp. Must be done before
	 * calling add_event_to_ctx()
	 */
	update_cgrp_time_from_event(event);
T
Thomas Gleixner 已提交
1520

1521
	add_event_to_ctx(event, ctx);
T
Thomas Gleixner 已提交
1522

1523
	/*
1524
	 * Schedule everything back in
1525
	 */
1526 1527 1528 1529 1530 1531 1532 1533 1534
	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
	if (task_ctx)
		ctx_sched_in(task_ctx, cpuctx, EVENT_PINNED, task);
	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
	if (task_ctx)
		ctx_sched_in(task_ctx, cpuctx, EVENT_FLEXIBLE, task);

	perf_pmu_enable(cpuctx->ctx.pmu);
	perf_ctx_unlock(cpuctx, task_ctx);
1535 1536

	return 0;
T
Thomas Gleixner 已提交
1537 1538 1539
}

/*
1540
 * Attach a performance event to a context
T
Thomas Gleixner 已提交
1541
 *
1542 1543
 * First we add the event to the list with the hardware enable bit
 * in event->hw_config cleared.
T
Thomas Gleixner 已提交
1544
 *
1545
 * If the event is attached to a task which is on a CPU we use a smp
T
Thomas Gleixner 已提交
1546 1547 1548 1549
 * call to enable it in the task context. The task might have been
 * scheduled away, but we check this in the smp call again.
 */
static void
1550 1551
perf_install_in_context(struct perf_event_context *ctx,
			struct perf_event *event,
T
Thomas Gleixner 已提交
1552 1553 1554 1555
			int cpu)
{
	struct task_struct *task = ctx->task;

1556 1557
	lockdep_assert_held(&ctx->mutex);

1558 1559
	event->ctx = ctx;

T
Thomas Gleixner 已提交
1560 1561
	if (!task) {
		/*
1562
		 * Per cpu events are installed via an smp call and
1563
		 * the install is always successful.
T
Thomas Gleixner 已提交
1564
		 */
1565
		cpu_function_call(cpu, __perf_install_in_context, event);
T
Thomas Gleixner 已提交
1566 1567 1568 1569
		return;
	}

retry:
1570 1571
	if (!task_function_call(task, __perf_install_in_context, event))
		return;
T
Thomas Gleixner 已提交
1572

1573
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1574
	/*
1575 1576
	 * If we failed to find a running task, but find the context active now
	 * that we've acquired the ctx->lock, retry.
T
Thomas Gleixner 已提交
1577
	 */
1578
	if (ctx->is_active) {
1579
		raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1580 1581 1582 1583
		goto retry;
	}

	/*
1584 1585
	 * Since the task isn't running, its safe to add the event, us holding
	 * the ctx->lock ensures the task won't get scheduled in.
T
Thomas Gleixner 已提交
1586
	 */
1587
	add_event_to_ctx(event, ctx);
1588
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1589 1590
}

1591
/*
1592
 * Put a event into inactive state and update time fields.
1593 1594 1595 1596 1597 1598
 * Enabling the leader of a group effectively enables all
 * the group members that aren't explicitly disabled, so we
 * have to update their ->tstamp_enabled also.
 * Note: this works for group members as well as group leaders
 * since the non-leader members' sibling_lists will be empty.
 */
1599 1600
static void __perf_event_mark_enabled(struct perf_event *event,
					struct perf_event_context *ctx)
1601
{
1602
	struct perf_event *sub;
1603
	u64 tstamp = perf_event_time(event);
1604

1605
	event->state = PERF_EVENT_STATE_INACTIVE;
1606
	event->tstamp_enabled = tstamp - event->total_time_enabled;
P
Peter Zijlstra 已提交
1607
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
1608 1609
		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
P
Peter Zijlstra 已提交
1610
	}
1611 1612
}

1613
/*
1614
 * Cross CPU call to enable a performance event
1615
 */
1616
static int __perf_event_enable(void *info)
1617
{
1618 1619 1620
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *leader = event->group_leader;
P
Peter Zijlstra 已提交
1621
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1622
	int err;
1623

1624 1625
	if (WARN_ON_ONCE(!ctx->is_active))
		return -EINVAL;
1626

1627
	raw_spin_lock(&ctx->lock);
1628
	update_context_time(ctx);
1629

1630
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
1631
		goto unlock;
S
Stephane Eranian 已提交
1632 1633 1634 1635

	/*
	 * set current task's cgroup time reference point
	 */
1636
	perf_cgroup_set_timestamp(current, ctx);
S
Stephane Eranian 已提交
1637

1638
	__perf_event_mark_enabled(event, ctx);
1639

S
Stephane Eranian 已提交
1640 1641 1642
	if (!event_filter_match(event)) {
		if (is_cgroup_event(event))
			perf_cgroup_defer_enabled(event);
1643
		goto unlock;
S
Stephane Eranian 已提交
1644
	}
1645

1646
	/*
1647
	 * If the event is in a group and isn't the group leader,
1648
	 * then don't put it on unless the group is on.
1649
	 */
1650
	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
1651
		goto unlock;
1652

1653
	if (!group_can_go_on(event, cpuctx, 1)) {
1654
		err = -EEXIST;
1655
	} else {
1656
		if (event == leader)
1657
			err = group_sched_in(event, cpuctx, ctx);
1658
		else
1659
			err = event_sched_in(event, cpuctx, ctx);
1660
	}
1661 1662 1663

	if (err) {
		/*
1664
		 * If this event can't go on and it's part of a
1665 1666
		 * group, then the whole group has to come off.
		 */
1667
		if (leader != event)
1668
			group_sched_out(leader, cpuctx, ctx);
1669
		if (leader->attr.pinned) {
1670
			update_group_times(leader);
1671
			leader->state = PERF_EVENT_STATE_ERROR;
1672
		}
1673 1674
	}

P
Peter Zijlstra 已提交
1675
unlock:
1676
	raw_spin_unlock(&ctx->lock);
1677 1678

	return 0;
1679 1680 1681
}

/*
1682
 * Enable a event.
1683
 *
1684 1685
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1686
 * remains valid.  This condition is satisfied when called through
1687 1688
 * perf_event_for_each_child or perf_event_for_each as described
 * for perf_event_disable.
1689
 */
1690
void perf_event_enable(struct perf_event *event)
1691
{
1692
	struct perf_event_context *ctx = event->ctx;
1693 1694 1695 1696
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
1697
		 * Enable the event on the cpu that it's on
1698
		 */
1699
		cpu_function_call(event->cpu, __perf_event_enable, event);
1700 1701 1702
		return;
	}

1703
	raw_spin_lock_irq(&ctx->lock);
1704
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
1705 1706 1707
		goto out;

	/*
1708 1709
	 * If the event is in error state, clear that first.
	 * That way, if we see the event in error state below, we
1710 1711 1712 1713
	 * know that it has gone back into error state, as distinct
	 * from the task having been scheduled away before the
	 * cross-call arrived.
	 */
1714 1715
	if (event->state == PERF_EVENT_STATE_ERROR)
		event->state = PERF_EVENT_STATE_OFF;
1716

P
Peter Zijlstra 已提交
1717
retry:
1718 1719 1720 1721 1722
	if (!ctx->is_active) {
		__perf_event_mark_enabled(event, ctx);
		goto out;
	}

1723
	raw_spin_unlock_irq(&ctx->lock);
1724 1725 1726

	if (!task_function_call(task, __perf_event_enable, event))
		return;
1727

1728
	raw_spin_lock_irq(&ctx->lock);
1729 1730

	/*
1731
	 * If the context is active and the event is still off,
1732 1733
	 * we need to retry the cross-call.
	 */
1734 1735 1736 1737 1738 1739
	if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
		/*
		 * task could have been flipped by a concurrent
		 * perf_event_context_sched_out()
		 */
		task = ctx->task;
1740
		goto retry;
1741
	}
1742

P
Peter Zijlstra 已提交
1743
out:
1744
	raw_spin_unlock_irq(&ctx->lock);
1745 1746
}

1747
static int perf_event_refresh(struct perf_event *event, int refresh)
1748
{
1749
	/*
1750
	 * not supported on inherited events
1751
	 */
1752
	if (event->attr.inherit || !is_sampling_event(event))
1753 1754
		return -EINVAL;

1755 1756
	atomic_add(refresh, &event->event_limit);
	perf_event_enable(event);
1757 1758

	return 0;
1759 1760
}

1761 1762 1763
static void ctx_sched_out(struct perf_event_context *ctx,
			  struct perf_cpu_context *cpuctx,
			  enum event_type_t event_type)
1764
{
1765
	struct perf_event *event;
1766
	int is_active = ctx->is_active;
1767

1768
	ctx->is_active &= ~event_type;
1769
	if (likely(!ctx->nr_events))
1770 1771
		return;

1772
	update_context_time(ctx);
S
Stephane Eranian 已提交
1773
	update_cgrp_time_from_cpuctx(cpuctx);
1774
	if (!ctx->nr_active)
1775
		return;
1776

P
Peter Zijlstra 已提交
1777
	perf_pmu_disable(ctx->pmu);
1778
	if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
1779 1780
		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
1781
	}
1782

1783
	if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
1784
		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
1785
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
1786
	}
P
Peter Zijlstra 已提交
1787
	perf_pmu_enable(ctx->pmu);
1788 1789
}

1790 1791 1792
/*
 * Test whether two contexts are equivalent, i.e. whether they
 * have both been cloned from the same version of the same context
1793 1794 1795 1796
 * and they both have the same number of enabled events.
 * If the number of enabled events is the same, then the set
 * of enabled events should be the same, because these are both
 * inherited contexts, therefore we can't access individual events
1797
 * in them directly with an fd; we can only enable/disable all
1798
 * events via prctl, or enable/disable all events in a family
1799 1800
 * via ioctl, which will have the same effect on both contexts.
 */
1801 1802
static int context_equiv(struct perf_event_context *ctx1,
			 struct perf_event_context *ctx2)
1803 1804
{
	return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1805
		&& ctx1->parent_gen == ctx2->parent_gen
1806
		&& !ctx1->pin_count && !ctx2->pin_count;
1807 1808
}

1809 1810
static void __perf_event_sync_stat(struct perf_event *event,
				     struct perf_event *next_event)
1811 1812 1813
{
	u64 value;

1814
	if (!event->attr.inherit_stat)
1815 1816 1817
		return;

	/*
1818
	 * Update the event value, we cannot use perf_event_read()
1819 1820
	 * because we're in the middle of a context switch and have IRQs
	 * disabled, which upsets smp_call_function_single(), however
1821
	 * we know the event must be on the current CPU, therefore we
1822 1823
	 * don't need to use it.
	 */
1824 1825
	switch (event->state) {
	case PERF_EVENT_STATE_ACTIVE:
1826 1827
		event->pmu->read(event);
		/* fall-through */
1828

1829 1830
	case PERF_EVENT_STATE_INACTIVE:
		update_event_times(event);
1831 1832 1833 1834 1835 1836 1837
		break;

	default:
		break;
	}

	/*
1838
	 * In order to keep per-task stats reliable we need to flip the event
1839 1840
	 * values when we flip the contexts.
	 */
1841 1842 1843
	value = local64_read(&next_event->count);
	value = local64_xchg(&event->count, value);
	local64_set(&next_event->count, value);
1844

1845 1846
	swap(event->total_time_enabled, next_event->total_time_enabled);
	swap(event->total_time_running, next_event->total_time_running);
1847

1848
	/*
1849
	 * Since we swizzled the values, update the user visible data too.
1850
	 */
1851 1852
	perf_event_update_userpage(event);
	perf_event_update_userpage(next_event);
1853 1854 1855 1856 1857
}

#define list_next_entry(pos, member) \
	list_entry(pos->member.next, typeof(*pos), member)

1858 1859
static void perf_event_sync_stat(struct perf_event_context *ctx,
				   struct perf_event_context *next_ctx)
1860
{
1861
	struct perf_event *event, *next_event;
1862 1863 1864 1865

	if (!ctx->nr_stat)
		return;

1866 1867
	update_context_time(ctx);

1868 1869
	event = list_first_entry(&ctx->event_list,
				   struct perf_event, event_entry);
1870

1871 1872
	next_event = list_first_entry(&next_ctx->event_list,
					struct perf_event, event_entry);
1873

1874 1875
	while (&event->event_entry != &ctx->event_list &&
	       &next_event->event_entry != &next_ctx->event_list) {
1876

1877
		__perf_event_sync_stat(event, next_event);
1878

1879 1880
		event = list_next_entry(event, event_entry);
		next_event = list_next_entry(next_event, event_entry);
1881 1882 1883
	}
}

1884 1885
static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
					 struct task_struct *next)
T
Thomas Gleixner 已提交
1886
{
P
Peter Zijlstra 已提交
1887
	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
1888 1889
	struct perf_event_context *next_ctx;
	struct perf_event_context *parent;
P
Peter Zijlstra 已提交
1890
	struct perf_cpu_context *cpuctx;
1891
	int do_switch = 1;
T
Thomas Gleixner 已提交
1892

P
Peter Zijlstra 已提交
1893 1894
	if (likely(!ctx))
		return;
1895

P
Peter Zijlstra 已提交
1896 1897
	cpuctx = __get_cpu_context(ctx);
	if (!cpuctx->task_ctx)
T
Thomas Gleixner 已提交
1898 1899
		return;

1900 1901
	rcu_read_lock();
	parent = rcu_dereference(ctx->parent_ctx);
P
Peter Zijlstra 已提交
1902
	next_ctx = next->perf_event_ctxp[ctxn];
1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913
	if (parent && next_ctx &&
	    rcu_dereference(next_ctx->parent_ctx) == parent) {
		/*
		 * Looks like the two contexts are clones, so we might be
		 * able to optimize the context switch.  We lock both
		 * contexts and check that they are clones under the
		 * lock (including re-checking that neither has been
		 * uncloned in the meantime).  It doesn't matter which
		 * order we take the locks because no other cpu could
		 * be trying to lock both of these tasks.
		 */
1914 1915
		raw_spin_lock(&ctx->lock);
		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1916
		if (context_equiv(ctx, next_ctx)) {
1917 1918
			/*
			 * XXX do we need a memory barrier of sorts
1919
			 * wrt to rcu_dereference() of perf_event_ctxp
1920
			 */
P
Peter Zijlstra 已提交
1921 1922
			task->perf_event_ctxp[ctxn] = next_ctx;
			next->perf_event_ctxp[ctxn] = ctx;
1923 1924 1925
			ctx->task = next;
			next_ctx->task = task;
			do_switch = 0;
1926

1927
			perf_event_sync_stat(ctx, next_ctx);
1928
		}
1929 1930
		raw_spin_unlock(&next_ctx->lock);
		raw_spin_unlock(&ctx->lock);
1931
	}
1932
	rcu_read_unlock();
1933

1934
	if (do_switch) {
1935
		raw_spin_lock(&ctx->lock);
1936
		ctx_sched_out(ctx, cpuctx, EVENT_ALL);
1937
		cpuctx->task_ctx = NULL;
1938
		raw_spin_unlock(&ctx->lock);
1939
	}
T
Thomas Gleixner 已提交
1940 1941
}

P
Peter Zijlstra 已提交
1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955
#define for_each_task_context_nr(ctxn)					\
	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)

/*
 * Called from scheduler to remove the events of the current task,
 * with interrupts disabled.
 *
 * We stop each event and update the event value in event->count.
 *
 * This does not protect us against NMI, but disable()
 * sets the disabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * not restart the event.
 */
1956 1957
void __perf_event_task_sched_out(struct task_struct *task,
				 struct task_struct *next)
P
Peter Zijlstra 已提交
1958 1959 1960 1961 1962
{
	int ctxn;

	for_each_task_context_nr(ctxn)
		perf_event_context_sched_out(task, ctxn, next);
S
Stephane Eranian 已提交
1963 1964 1965 1966 1967 1968 1969 1970

	/*
	 * if cgroup events exist on this CPU, then we need
	 * to check if we have to switch out PMU state.
	 * cgroup event are system-wide mode only
	 */
	if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
		perf_cgroup_sched_out(task);
P
Peter Zijlstra 已提交
1971 1972
}

1973
static void task_ctx_sched_out(struct perf_event_context *ctx)
1974
{
P
Peter Zijlstra 已提交
1975
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1976

1977 1978
	if (!cpuctx->task_ctx)
		return;
1979 1980 1981 1982

	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
		return;

1983
	ctx_sched_out(ctx, cpuctx, EVENT_ALL);
1984 1985 1986
	cpuctx->task_ctx = NULL;
}

1987 1988 1989 1990 1991 1992 1993
/*
 * Called with IRQs disabled
 */
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type)
{
	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
1994 1995
}

1996
static void
1997
ctx_pinned_sched_in(struct perf_event_context *ctx,
1998
		    struct perf_cpu_context *cpuctx)
T
Thomas Gleixner 已提交
1999
{
2000
	struct perf_event *event;
T
Thomas Gleixner 已提交
2001

2002 2003
	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
		if (event->state <= PERF_EVENT_STATE_OFF)
2004
			continue;
2005
		if (!event_filter_match(event))
2006 2007
			continue;

S
Stephane Eranian 已提交
2008 2009 2010 2011
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

2012
		if (group_can_go_on(event, cpuctx, 1))
2013
			group_sched_in(event, cpuctx, ctx);
2014 2015 2016 2017 2018

		/*
		 * If this pinned group hasn't been scheduled,
		 * put it in error state.
		 */
2019 2020 2021
		if (event->state == PERF_EVENT_STATE_INACTIVE) {
			update_group_times(event);
			event->state = PERF_EVENT_STATE_ERROR;
2022
		}
2023
	}
2024 2025 2026 2027
}

static void
ctx_flexible_sched_in(struct perf_event_context *ctx,
2028
		      struct perf_cpu_context *cpuctx)
2029 2030 2031
{
	struct perf_event *event;
	int can_add_hw = 1;
2032

2033 2034 2035
	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
		/* Ignore events in OFF or ERROR state */
		if (event->state <= PERF_EVENT_STATE_OFF)
2036
			continue;
2037 2038
		/*
		 * Listen to the 'cpu' scheduling filter constraint
2039
		 * of events:
2040
		 */
2041
		if (!event_filter_match(event))
T
Thomas Gleixner 已提交
2042 2043
			continue;

S
Stephane Eranian 已提交
2044 2045 2046 2047
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

P
Peter Zijlstra 已提交
2048
		if (group_can_go_on(event, cpuctx, can_add_hw)) {
2049
			if (group_sched_in(event, cpuctx, ctx))
2050
				can_add_hw = 0;
P
Peter Zijlstra 已提交
2051
		}
T
Thomas Gleixner 已提交
2052
	}
2053 2054 2055 2056 2057
}

static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
2058 2059
	     enum event_type_t event_type,
	     struct task_struct *task)
2060
{
S
Stephane Eranian 已提交
2061
	u64 now;
2062
	int is_active = ctx->is_active;
S
Stephane Eranian 已提交
2063

2064
	ctx->is_active |= event_type;
2065
	if (likely(!ctx->nr_events))
2066
		return;
2067

S
Stephane Eranian 已提交
2068 2069
	now = perf_clock();
	ctx->timestamp = now;
2070
	perf_cgroup_set_timestamp(task, ctx);
2071 2072 2073 2074
	/*
	 * First go through the list and put on any pinned groups
	 * in order to give them the best chance of going on.
	 */
2075
	if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
2076
		ctx_pinned_sched_in(ctx, cpuctx);
2077 2078

	/* Then walk through the lower prio flexible groups */
2079
	if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
2080
		ctx_flexible_sched_in(ctx, cpuctx);
2081 2082
}

2083
static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
2084 2085
			     enum event_type_t event_type,
			     struct task_struct *task)
2086 2087 2088
{
	struct perf_event_context *ctx = &cpuctx->ctx;

S
Stephane Eranian 已提交
2089
	ctx_sched_in(ctx, cpuctx, event_type, task);
2090 2091
}

S
Stephane Eranian 已提交
2092 2093
static void perf_event_context_sched_in(struct perf_event_context *ctx,
					struct task_struct *task)
2094
{
P
Peter Zijlstra 已提交
2095
	struct perf_cpu_context *cpuctx;
2096

P
Peter Zijlstra 已提交
2097
	cpuctx = __get_cpu_context(ctx);
2098 2099 2100
	if (cpuctx->task_ctx == ctx)
		return;

2101
	perf_ctx_lock(cpuctx, ctx);
P
Peter Zijlstra 已提交
2102
	perf_pmu_disable(ctx->pmu);
2103 2104 2105 2106 2107 2108 2109
	/*
	 * We want to keep the following priority order:
	 * cpu pinned (that don't need to move), task pinned,
	 * cpu flexible, task flexible.
	 */
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);

S
Stephane Eranian 已提交
2110 2111 2112
	ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
	ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2113 2114

	cpuctx->task_ctx = ctx;
2115

2116 2117 2118
	perf_pmu_enable(ctx->pmu);
	perf_ctx_unlock(cpuctx, ctx);

2119 2120 2121 2122
	/*
	 * Since these rotations are per-cpu, we need to ensure the
	 * cpu-context we got scheduled on is actually rotating.
	 */
P
Peter Zijlstra 已提交
2123
	perf_pmu_rotate_start(ctx->pmu);
2124 2125
}

P
Peter Zijlstra 已提交
2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136
/*
 * Called from scheduler to add the events of the current task
 * with interrupts disabled.
 *
 * We restore the event value and then enable it.
 *
 * This does not protect us against NMI, but enable()
 * sets the enabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * keep the event running.
 */
2137
void __perf_event_task_sched_in(struct task_struct *task)
P
Peter Zijlstra 已提交
2138 2139 2140 2141 2142 2143 2144 2145 2146
{
	struct perf_event_context *ctx;
	int ctxn;

	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (likely(!ctx))
			continue;

S
Stephane Eranian 已提交
2147
		perf_event_context_sched_in(ctx, task);
P
Peter Zijlstra 已提交
2148
	}
S
Stephane Eranian 已提交
2149 2150 2151 2152 2153 2154 2155
	/*
	 * if cgroup events exist on this CPU, then we need
	 * to check if we have to switch in PMU state.
	 * cgroup event are system-wide mode only
	 */
	if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
		perf_cgroup_sched_in(task);
2156 2157
}

2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184
static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
{
	u64 frequency = event->attr.sample_freq;
	u64 sec = NSEC_PER_SEC;
	u64 divisor, dividend;

	int count_fls, nsec_fls, frequency_fls, sec_fls;

	count_fls = fls64(count);
	nsec_fls = fls64(nsec);
	frequency_fls = fls64(frequency);
	sec_fls = 30;

	/*
	 * We got @count in @nsec, with a target of sample_freq HZ
	 * the target period becomes:
	 *
	 *             @count * 10^9
	 * period = -------------------
	 *          @nsec * sample_freq
	 *
	 */

	/*
	 * Reduce accuracy by one bit such that @a and @b converge
	 * to a similar magnitude.
	 */
2185
#define REDUCE_FLS(a, b)		\
2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224
do {					\
	if (a##_fls > b##_fls) {	\
		a >>= 1;		\
		a##_fls--;		\
	} else {			\
		b >>= 1;		\
		b##_fls--;		\
	}				\
} while (0)

	/*
	 * Reduce accuracy until either term fits in a u64, then proceed with
	 * the other, so that finally we can do a u64/u64 division.
	 */
	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
		REDUCE_FLS(nsec, frequency);
		REDUCE_FLS(sec, count);
	}

	if (count_fls + sec_fls > 64) {
		divisor = nsec * frequency;

		while (count_fls + sec_fls > 64) {
			REDUCE_FLS(count, sec);
			divisor >>= 1;
		}

		dividend = count * sec;
	} else {
		dividend = count * sec;

		while (nsec_fls + frequency_fls > 64) {
			REDUCE_FLS(nsec, frequency);
			dividend >>= 1;
		}

		divisor = nsec * frequency;
	}

2225 2226 2227
	if (!divisor)
		return dividend;

2228 2229 2230 2231
	return div64_u64(dividend, divisor);
}

static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count)
2232
{
2233
	struct hw_perf_event *hwc = &event->hw;
2234
	s64 period, sample_period;
2235 2236
	s64 delta;

2237
	period = perf_calculate_period(event, nsec, count);
2238 2239 2240 2241 2242 2243 2244 2245 2246 2247

	delta = (s64)(period - hwc->sample_period);
	delta = (delta + 7) / 8; /* low pass filter */

	sample_period = hwc->sample_period + delta;

	if (!sample_period)
		sample_period = 1;

	hwc->sample_period = sample_period;
2248

2249
	if (local64_read(&hwc->period_left) > 8*sample_period) {
P
Peter Zijlstra 已提交
2250
		event->pmu->stop(event, PERF_EF_UPDATE);
2251
		local64_set(&hwc->period_left, 0);
P
Peter Zijlstra 已提交
2252
		event->pmu->start(event, PERF_EF_RELOAD);
2253
	}
2254 2255
}

2256
static void perf_ctx_adjust_freq(struct perf_event_context *ctx, u64 period)
2257
{
2258 2259
	struct perf_event *event;
	struct hw_perf_event *hwc;
2260 2261
	u64 interrupts, now;
	s64 delta;
2262

2263
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
2264
		if (event->state != PERF_EVENT_STATE_ACTIVE)
2265 2266
			continue;

2267
		if (!event_filter_match(event))
2268 2269
			continue;

2270
		hwc = &event->hw;
2271 2272 2273

		interrupts = hwc->interrupts;
		hwc->interrupts = 0;
2274

2275
		/*
2276
		 * unthrottle events on the tick
2277
		 */
2278
		if (interrupts == MAX_INTERRUPTS) {
2279
			perf_log_throttle(event, 1);
P
Peter Zijlstra 已提交
2280
			event->pmu->start(event, 0);
2281 2282
		}

2283
		if (!event->attr.freq || !event->attr.sample_freq)
2284 2285
			continue;

2286
		event->pmu->read(event);
2287
		now = local64_read(&event->count);
2288 2289
		delta = now - hwc->freq_count_stamp;
		hwc->freq_count_stamp = now;
2290

2291
		if (delta > 0)
2292
			perf_adjust_period(event, period, delta);
2293 2294 2295
	}
}

2296
/*
2297
 * Round-robin a context's events:
2298
 */
2299
static void rotate_ctx(struct perf_event_context *ctx)
T
Thomas Gleixner 已提交
2300
{
2301 2302 2303 2304 2305 2306
	/*
	 * Rotate the first entry last of non-pinned groups. Rotation might be
	 * disabled by the inheritance code.
	 */
	if (!ctx->rotate_disable)
		list_rotate_left(&ctx->flexible_groups);
2307 2308
}

2309
/*
2310 2311 2312
 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
 * because they're strictly cpu affine and rotate_start is called with IRQs
 * disabled, while rotate_context is called from IRQ context.
2313
 */
2314
static void perf_rotate_context(struct perf_cpu_context *cpuctx)
2315
{
2316
	u64 interval = (u64)cpuctx->jiffies_interval * TICK_NSEC;
P
Peter Zijlstra 已提交
2317
	struct perf_event_context *ctx = NULL;
2318
	int rotate = 0, remove = 1;
2319

2320
	if (cpuctx->ctx.nr_events) {
2321
		remove = 0;
2322 2323 2324
		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
			rotate = 1;
	}
2325

P
Peter Zijlstra 已提交
2326
	ctx = cpuctx->task_ctx;
2327
	if (ctx && ctx->nr_events) {
2328
		remove = 0;
2329 2330 2331
		if (ctx->nr_events != ctx->nr_active)
			rotate = 1;
	}
2332

2333
	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
P
Peter Zijlstra 已提交
2334
	perf_pmu_disable(cpuctx->ctx.pmu);
2335
	perf_ctx_adjust_freq(&cpuctx->ctx, interval);
2336
	if (ctx)
2337
		perf_ctx_adjust_freq(ctx, interval);
2338

2339
	if (!rotate)
2340
		goto done;
2341

2342
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2343
	if (ctx)
2344
		ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
T
Thomas Gleixner 已提交
2345

2346
	rotate_ctx(&cpuctx->ctx);
2347 2348
	if (ctx)
		rotate_ctx(ctx);
2349

S
Stephane Eranian 已提交
2350
	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, current);
2351
	if (ctx)
2352
		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, current);
2353 2354

done:
2355 2356 2357
	if (remove)
		list_del_init(&cpuctx->rotation_list);

P
Peter Zijlstra 已提交
2358
	perf_pmu_enable(cpuctx->ctx.pmu);
2359
	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2360 2361 2362 2363 2364 2365
}

void perf_event_task_tick(void)
{
	struct list_head *head = &__get_cpu_var(rotation_list);
	struct perf_cpu_context *cpuctx, *tmp;
2366

2367 2368 2369 2370 2371 2372 2373
	WARN_ON(!irqs_disabled());

	list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
		if (cpuctx->jiffies_interval == 1 ||
				!(jiffies % cpuctx->jiffies_interval))
			perf_rotate_context(cpuctx);
	}
T
Thomas Gleixner 已提交
2374 2375
}

2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390
static int event_enable_on_exec(struct perf_event *event,
				struct perf_event_context *ctx)
{
	if (!event->attr.enable_on_exec)
		return 0;

	event->attr.enable_on_exec = 0;
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
		return 0;

	__perf_event_mark_enabled(event, ctx);

	return 1;
}

2391
/*
2392
 * Enable all of a task's events that have been marked enable-on-exec.
2393 2394
 * This expects task == current.
 */
P
Peter Zijlstra 已提交
2395
static void perf_event_enable_on_exec(struct perf_event_context *ctx)
2396
{
2397
	struct perf_event *event;
2398 2399
	unsigned long flags;
	int enabled = 0;
2400
	int ret;
2401 2402

	local_irq_save(flags);
2403
	if (!ctx || !ctx->nr_events)
2404 2405
		goto out;

2406 2407 2408 2409 2410 2411 2412 2413
	/*
	 * We must ctxsw out cgroup events to avoid conflict
	 * when invoking perf_task_event_sched_in() later on
	 * in this function. Otherwise we end up trying to
	 * ctxswin cgroup events which are already scheduled
	 * in.
	 */
	perf_cgroup_sched_out(current);
2414

2415
	raw_spin_lock(&ctx->lock);
2416
	task_ctx_sched_out(ctx);
2417

2418 2419 2420 2421 2422 2423 2424 2425 2426 2427
	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
		ret = event_enable_on_exec(event, ctx);
		if (ret)
			enabled = 1;
	}

	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
		ret = event_enable_on_exec(event, ctx);
		if (ret)
			enabled = 1;
2428 2429 2430
	}

	/*
2431
	 * Unclone this context if we enabled any event.
2432
	 */
2433 2434
	if (enabled)
		unclone_ctx(ctx);
2435

2436
	raw_spin_unlock(&ctx->lock);
2437

2438 2439 2440
	/*
	 * Also calls ctxswin for cgroup events, if any:
	 */
S
Stephane Eranian 已提交
2441
	perf_event_context_sched_in(ctx, ctx->task);
P
Peter Zijlstra 已提交
2442
out:
2443 2444 2445
	local_irq_restore(flags);
}

T
Thomas Gleixner 已提交
2446
/*
2447
 * Cross CPU call to read the hardware event
T
Thomas Gleixner 已提交
2448
 */
2449
static void __perf_event_read(void *info)
T
Thomas Gleixner 已提交
2450
{
2451 2452
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
2453
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
I
Ingo Molnar 已提交
2454

2455 2456 2457 2458
	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu.  If not it has been
	 * scheduled out before the smp call arrived.  In that case
2459 2460
	 * event->count would have been updated to a recent sample
	 * when the event was scheduled out.
2461 2462 2463 2464
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

2465
	raw_spin_lock(&ctx->lock);
S
Stephane Eranian 已提交
2466
	if (ctx->is_active) {
2467
		update_context_time(ctx);
S
Stephane Eranian 已提交
2468 2469
		update_cgrp_time_from_event(event);
	}
2470
	update_event_times(event);
2471 2472
	if (event->state == PERF_EVENT_STATE_ACTIVE)
		event->pmu->read(event);
2473
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
2474 2475
}

P
Peter Zijlstra 已提交
2476 2477
static inline u64 perf_event_count(struct perf_event *event)
{
2478
	return local64_read(&event->count) + atomic64_read(&event->child_count);
P
Peter Zijlstra 已提交
2479 2480
}

2481
static u64 perf_event_read(struct perf_event *event)
T
Thomas Gleixner 已提交
2482 2483
{
	/*
2484 2485
	 * If event is enabled and currently active on a CPU, update the
	 * value in the event structure:
T
Thomas Gleixner 已提交
2486
	 */
2487 2488 2489 2490
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
		smp_call_function_single(event->oncpu,
					 __perf_event_read, event, 1);
	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
P
Peter Zijlstra 已提交
2491 2492 2493
		struct perf_event_context *ctx = event->ctx;
		unsigned long flags;

2494
		raw_spin_lock_irqsave(&ctx->lock, flags);
2495 2496 2497 2498 2499
		/*
		 * may read while context is not active
		 * (e.g., thread is blocked), in that case
		 * we cannot update context time
		 */
S
Stephane Eranian 已提交
2500
		if (ctx->is_active) {
2501
			update_context_time(ctx);
S
Stephane Eranian 已提交
2502 2503
			update_cgrp_time_from_event(event);
		}
2504
		update_event_times(event);
2505
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
2506 2507
	}

P
Peter Zijlstra 已提交
2508
	return perf_event_count(event);
T
Thomas Gleixner 已提交
2509 2510
}

2511
/*
2512
 * Callchain support
2513
 */
2514 2515 2516 2517 2518 2519

struct callchain_cpus_entries {
	struct rcu_head			rcu_head;
	struct perf_callchain_entry	*cpu_entries[0];
};

2520
static DEFINE_PER_CPU(int, callchain_recursion[PERF_NR_CONTEXTS]);
2521 2522 2523 2524 2525 2526 2527
static atomic_t nr_callchain_events;
static DEFINE_MUTEX(callchain_mutex);
struct callchain_cpus_entries *callchain_cpus_entries;


__weak void perf_callchain_kernel(struct perf_callchain_entry *entry,
				  struct pt_regs *regs)
2528 2529 2530
{
}

2531 2532
__weak void perf_callchain_user(struct perf_callchain_entry *entry,
				struct pt_regs *regs)
T
Thomas Gleixner 已提交
2533
{
2534
}
T
Thomas Gleixner 已提交
2535

2536 2537 2538 2539
static void release_callchain_buffers_rcu(struct rcu_head *head)
{
	struct callchain_cpus_entries *entries;
	int cpu;
T
Thomas Gleixner 已提交
2540

2541
	entries = container_of(head, struct callchain_cpus_entries, rcu_head);
T
Thomas Gleixner 已提交
2542

2543 2544
	for_each_possible_cpu(cpu)
		kfree(entries->cpu_entries[cpu]);
T
Thomas Gleixner 已提交
2545

2546 2547
	kfree(entries);
}
T
Thomas Gleixner 已提交
2548

2549 2550 2551
static void release_callchain_buffers(void)
{
	struct callchain_cpus_entries *entries;
T
Thomas Gleixner 已提交
2552

2553 2554 2555 2556
	entries = callchain_cpus_entries;
	rcu_assign_pointer(callchain_cpus_entries, NULL);
	call_rcu(&entries->rcu_head, release_callchain_buffers_rcu);
}
T
Thomas Gleixner 已提交
2557

2558 2559 2560 2561 2562
static int alloc_callchain_buffers(void)
{
	int cpu;
	int size;
	struct callchain_cpus_entries *entries;
T
Thomas Gleixner 已提交
2563

2564
	/*
2565 2566 2567
	 * We can't use the percpu allocation API for data that can be
	 * accessed from NMI. Use a temporary manual per cpu allocation
	 * until that gets sorted out.
2568
	 */
2569
	size = offsetof(struct callchain_cpus_entries, cpu_entries[nr_cpu_ids]);
2570

2571 2572 2573
	entries = kzalloc(size, GFP_KERNEL);
	if (!entries)
		return -ENOMEM;
2574

2575
	size = sizeof(struct perf_callchain_entry) * PERF_NR_CONTEXTS;
T
Thomas Gleixner 已提交
2576

2577 2578 2579 2580 2581
	for_each_possible_cpu(cpu) {
		entries->cpu_entries[cpu] = kmalloc_node(size, GFP_KERNEL,
							 cpu_to_node(cpu));
		if (!entries->cpu_entries[cpu])
			goto fail;
2582 2583
	}

2584
	rcu_assign_pointer(callchain_cpus_entries, entries);
T
Thomas Gleixner 已提交
2585

2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719
	return 0;

fail:
	for_each_possible_cpu(cpu)
		kfree(entries->cpu_entries[cpu]);
	kfree(entries);

	return -ENOMEM;
}

static int get_callchain_buffers(void)
{
	int err = 0;
	int count;

	mutex_lock(&callchain_mutex);

	count = atomic_inc_return(&nr_callchain_events);
	if (WARN_ON_ONCE(count < 1)) {
		err = -EINVAL;
		goto exit;
	}

	if (count > 1) {
		/* If the allocation failed, give up */
		if (!callchain_cpus_entries)
			err = -ENOMEM;
		goto exit;
	}

	err = alloc_callchain_buffers();
	if (err)
		release_callchain_buffers();
exit:
	mutex_unlock(&callchain_mutex);

	return err;
}

static void put_callchain_buffers(void)
{
	if (atomic_dec_and_mutex_lock(&nr_callchain_events, &callchain_mutex)) {
		release_callchain_buffers();
		mutex_unlock(&callchain_mutex);
	}
}

static int get_recursion_context(int *recursion)
{
	int rctx;

	if (in_nmi())
		rctx = 3;
	else if (in_irq())
		rctx = 2;
	else if (in_softirq())
		rctx = 1;
	else
		rctx = 0;

	if (recursion[rctx])
		return -1;

	recursion[rctx]++;
	barrier();

	return rctx;
}

static inline void put_recursion_context(int *recursion, int rctx)
{
	barrier();
	recursion[rctx]--;
}

static struct perf_callchain_entry *get_callchain_entry(int *rctx)
{
	int cpu;
	struct callchain_cpus_entries *entries;

	*rctx = get_recursion_context(__get_cpu_var(callchain_recursion));
	if (*rctx == -1)
		return NULL;

	entries = rcu_dereference(callchain_cpus_entries);
	if (!entries)
		return NULL;

	cpu = smp_processor_id();

	return &entries->cpu_entries[cpu][*rctx];
}

static void
put_callchain_entry(int rctx)
{
	put_recursion_context(__get_cpu_var(callchain_recursion), rctx);
}

static struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
{
	int rctx;
	struct perf_callchain_entry *entry;


	entry = get_callchain_entry(&rctx);
	if (rctx == -1)
		return NULL;

	if (!entry)
		goto exit_put;

	entry->nr = 0;

	if (!user_mode(regs)) {
		perf_callchain_store(entry, PERF_CONTEXT_KERNEL);
		perf_callchain_kernel(entry, regs);
		if (current->mm)
			regs = task_pt_regs(current);
		else
			regs = NULL;
	}

	if (regs) {
		perf_callchain_store(entry, PERF_CONTEXT_USER);
		perf_callchain_user(entry, regs);
	}

exit_put:
	put_callchain_entry(rctx);

	return entry;
}

2720
/*
2721
 * Initialize the perf_event context in a task_struct:
2722
 */
2723
static void __perf_event_init_context(struct perf_event_context *ctx)
2724
{
2725
	raw_spin_lock_init(&ctx->lock);
2726
	mutex_init(&ctx->mutex);
2727 2728
	INIT_LIST_HEAD(&ctx->pinned_groups);
	INIT_LIST_HEAD(&ctx->flexible_groups);
2729 2730
	INIT_LIST_HEAD(&ctx->event_list);
	atomic_set(&ctx->refcount, 1);
2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745
}

static struct perf_event_context *
alloc_perf_context(struct pmu *pmu, struct task_struct *task)
{
	struct perf_event_context *ctx;

	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
	if (!ctx)
		return NULL;

	__perf_event_init_context(ctx);
	if (task) {
		ctx->task = task;
		get_task_struct(task);
T
Thomas Gleixner 已提交
2746
	}
2747 2748 2749
	ctx->pmu = pmu;

	return ctx;
2750 2751
}

2752 2753 2754 2755 2756
static struct task_struct *
find_lively_task_by_vpid(pid_t vpid)
{
	struct task_struct *task;
	int err;
T
Thomas Gleixner 已提交
2757 2758

	rcu_read_lock();
2759
	if (!vpid)
T
Thomas Gleixner 已提交
2760 2761
		task = current;
	else
2762
		task = find_task_by_vpid(vpid);
T
Thomas Gleixner 已提交
2763 2764 2765 2766 2767 2768 2769 2770
	if (task)
		get_task_struct(task);
	rcu_read_unlock();

	if (!task)
		return ERR_PTR(-ESRCH);

	/* Reuse ptrace permission checks for now. */
2771 2772 2773 2774
	err = -EACCES;
	if (!ptrace_may_access(task, PTRACE_MODE_READ))
		goto errout;

2775 2776 2777 2778 2779 2780 2781
	return task;
errout:
	put_task_struct(task);
	return ERR_PTR(err);

}

2782 2783 2784
/*
 * Returns a matching context with refcount and pincount.
 */
P
Peter Zijlstra 已提交
2785
static struct perf_event_context *
M
Matt Helsley 已提交
2786
find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
T
Thomas Gleixner 已提交
2787
{
2788
	struct perf_event_context *ctx;
2789
	struct perf_cpu_context *cpuctx;
2790
	unsigned long flags;
P
Peter Zijlstra 已提交
2791
	int ctxn, err;
T
Thomas Gleixner 已提交
2792

2793
	if (!task) {
2794
		/* Must be root to operate on a CPU event: */
2795
		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
T
Thomas Gleixner 已提交
2796 2797 2798
			return ERR_PTR(-EACCES);

		/*
2799
		 * We could be clever and allow to attach a event to an
T
Thomas Gleixner 已提交
2800 2801 2802
		 * offline CPU and activate it when the CPU comes up, but
		 * that's for later.
		 */
2803
		if (!cpu_online(cpu))
T
Thomas Gleixner 已提交
2804 2805
			return ERR_PTR(-ENODEV);

P
Peter Zijlstra 已提交
2806
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
T
Thomas Gleixner 已提交
2807
		ctx = &cpuctx->ctx;
2808
		get_ctx(ctx);
2809
		++ctx->pin_count;
T
Thomas Gleixner 已提交
2810 2811 2812 2813

		return ctx;
	}

P
Peter Zijlstra 已提交
2814 2815 2816 2817 2818
	err = -EINVAL;
	ctxn = pmu->task_ctx_nr;
	if (ctxn < 0)
		goto errout;

P
Peter Zijlstra 已提交
2819
retry:
P
Peter Zijlstra 已提交
2820
	ctx = perf_lock_task_context(task, ctxn, &flags);
2821
	if (ctx) {
2822
		unclone_ctx(ctx);
2823
		++ctx->pin_count;
2824
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
2825
	} else {
2826
		ctx = alloc_perf_context(pmu, task);
2827 2828 2829
		err = -ENOMEM;
		if (!ctx)
			goto errout;
2830

2831 2832 2833 2834 2835 2836 2837 2838 2839 2840
		err = 0;
		mutex_lock(&task->perf_event_mutex);
		/*
		 * If it has already passed perf_event_exit_task().
		 * we must see PF_EXITING, it takes this mutex too.
		 */
		if (task->flags & PF_EXITING)
			err = -ESRCH;
		else if (task->perf_event_ctxp[ctxn])
			err = -EAGAIN;
2841
		else {
2842
			get_ctx(ctx);
2843
			++ctx->pin_count;
2844
			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
2845
		}
2846 2847 2848
		mutex_unlock(&task->perf_event_mutex);

		if (unlikely(err)) {
2849
			put_ctx(ctx);
2850 2851 2852 2853

			if (err == -EAGAIN)
				goto retry;
			goto errout;
2854 2855 2856
		}
	}

T
Thomas Gleixner 已提交
2857
	return ctx;
2858

P
Peter Zijlstra 已提交
2859
errout:
2860
	return ERR_PTR(err);
T
Thomas Gleixner 已提交
2861 2862
}

L
Li Zefan 已提交
2863 2864
static void perf_event_free_filter(struct perf_event *event);

2865
static void free_event_rcu(struct rcu_head *head)
P
Peter Zijlstra 已提交
2866
{
2867
	struct perf_event *event;
P
Peter Zijlstra 已提交
2868

2869 2870 2871
	event = container_of(head, struct perf_event, rcu_head);
	if (event->ns)
		put_pid_ns(event->ns);
L
Li Zefan 已提交
2872
	perf_event_free_filter(event);
2873
	kfree(event);
P
Peter Zijlstra 已提交
2874 2875
}

2876
static void perf_buffer_put(struct perf_buffer *buffer);
2877

2878
static void free_event(struct perf_event *event)
2879
{
2880
	irq_work_sync(&event->pending);
2881

2882
	if (!event->parent) {
2883
		if (event->attach_state & PERF_ATTACH_TASK)
S
Stephane Eranian 已提交
2884
			jump_label_dec(&perf_sched_events);
2885
		if (event->attr.mmap || event->attr.mmap_data)
2886 2887 2888 2889 2890
			atomic_dec(&nr_mmap_events);
		if (event->attr.comm)
			atomic_dec(&nr_comm_events);
		if (event->attr.task)
			atomic_dec(&nr_task_events);
2891 2892
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
			put_callchain_buffers();
2893 2894 2895 2896
		if (is_cgroup_event(event)) {
			atomic_dec(&per_cpu(perf_cgroup_events, event->cpu));
			jump_label_dec(&perf_sched_events);
		}
2897
	}
2898

2899 2900 2901
	if (event->buffer) {
		perf_buffer_put(event->buffer);
		event->buffer = NULL;
2902 2903
	}

S
Stephane Eranian 已提交
2904 2905 2906
	if (is_cgroup_event(event))
		perf_detach_cgroup(event);

2907 2908
	if (event->destroy)
		event->destroy(event);
2909

P
Peter Zijlstra 已提交
2910 2911 2912
	if (event->ctx)
		put_ctx(event->ctx);

2913
	call_rcu(&event->rcu_head, free_event_rcu);
2914 2915
}

2916
int perf_event_release_kernel(struct perf_event *event)
T
Thomas Gleixner 已提交
2917
{
2918
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
2919

2920 2921 2922 2923 2924 2925
	/*
	 * Remove from the PMU, can't get re-enabled since we got
	 * here because the last ref went.
	 */
	perf_event_disable(event);

2926
	WARN_ON_ONCE(ctx->parent_ctx);
2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939
	/*
	 * There are two ways this annotation is useful:
	 *
	 *  1) there is a lock recursion from perf_event_exit_task
	 *     see the comment there.
	 *
	 *  2) there is a lock-inversion with mmap_sem through
	 *     perf_event_read_group(), which takes faults while
	 *     holding ctx->mutex, however this is called after
	 *     the last filedesc died, so there is no possibility
	 *     to trigger the AB-BA case.
	 */
	mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
2940
	raw_spin_lock_irq(&ctx->lock);
2941
	perf_group_detach(event);
2942 2943
	list_del_event(event, ctx);
	raw_spin_unlock_irq(&ctx->lock);
2944
	mutex_unlock(&ctx->mutex);
T
Thomas Gleixner 已提交
2945

2946
	free_event(event);
T
Thomas Gleixner 已提交
2947 2948 2949

	return 0;
}
2950
EXPORT_SYMBOL_GPL(perf_event_release_kernel);
T
Thomas Gleixner 已提交
2951

2952 2953 2954 2955
/*
 * Called when the last reference to the file is gone.
 */
static int perf_release(struct inode *inode, struct file *file)
2956
{
2957
	struct perf_event *event = file->private_data;
P
Peter Zijlstra 已提交
2958
	struct task_struct *owner;
2959

2960
	file->private_data = NULL;
2961

P
Peter Zijlstra 已提交
2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994
	rcu_read_lock();
	owner = ACCESS_ONCE(event->owner);
	/*
	 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
	 * !owner it means the list deletion is complete and we can indeed
	 * free this event, otherwise we need to serialize on
	 * owner->perf_event_mutex.
	 */
	smp_read_barrier_depends();
	if (owner) {
		/*
		 * Since delayed_put_task_struct() also drops the last
		 * task reference we can safely take a new reference
		 * while holding the rcu_read_lock().
		 */
		get_task_struct(owner);
	}
	rcu_read_unlock();

	if (owner) {
		mutex_lock(&owner->perf_event_mutex);
		/*
		 * We have to re-check the event->owner field, if it is cleared
		 * we raced with perf_event_exit_task(), acquiring the mutex
		 * ensured they're done, and we can proceed with freeing the
		 * event.
		 */
		if (event->owner)
			list_del_init(&event->owner_entry);
		mutex_unlock(&owner->perf_event_mutex);
		put_task_struct(owner);
	}

2995
	return perf_event_release_kernel(event);
2996 2997
}

2998
u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
2999
{
3000
	struct perf_event *child;
3001 3002
	u64 total = 0;

3003 3004 3005
	*enabled = 0;
	*running = 0;

3006
	mutex_lock(&event->child_mutex);
3007
	total += perf_event_read(event);
3008 3009 3010 3011 3012 3013
	*enabled += event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
	*running += event->total_time_running +
			atomic64_read(&event->child_total_time_running);

	list_for_each_entry(child, &event->child_list, child_list) {
3014
		total += perf_event_read(child);
3015 3016 3017
		*enabled += child->total_time_enabled;
		*running += child->total_time_running;
	}
3018
	mutex_unlock(&event->child_mutex);
3019 3020 3021

	return total;
}
3022
EXPORT_SYMBOL_GPL(perf_event_read_value);
3023

3024
static int perf_event_read_group(struct perf_event *event,
3025 3026
				   u64 read_format, char __user *buf)
{
3027
	struct perf_event *leader = event->group_leader, *sub;
3028 3029
	int n = 0, size = 0, ret = -EFAULT;
	struct perf_event_context *ctx = leader->ctx;
3030
	u64 values[5];
3031
	u64 count, enabled, running;
3032

3033
	mutex_lock(&ctx->mutex);
3034
	count = perf_event_read_value(leader, &enabled, &running);
3035 3036

	values[n++] = 1 + leader->nr_siblings;
3037 3038 3039 3040
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
3041 3042 3043
	values[n++] = count;
	if (read_format & PERF_FORMAT_ID)
		values[n++] = primary_event_id(leader);
3044 3045 3046 3047

	size = n * sizeof(u64);

	if (copy_to_user(buf, values, size))
3048
		goto unlock;
3049

3050
	ret = size;
3051

3052
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3053
		n = 0;
3054

3055
		values[n++] = perf_event_read_value(sub, &enabled, &running);
3056 3057 3058 3059 3060
		if (read_format & PERF_FORMAT_ID)
			values[n++] = primary_event_id(sub);

		size = n * sizeof(u64);

3061
		if (copy_to_user(buf + ret, values, size)) {
3062 3063 3064
			ret = -EFAULT;
			goto unlock;
		}
3065 3066

		ret += size;
3067
	}
3068 3069
unlock:
	mutex_unlock(&ctx->mutex);
3070

3071
	return ret;
3072 3073
}

3074
static int perf_event_read_one(struct perf_event *event,
3075 3076
				 u64 read_format, char __user *buf)
{
3077
	u64 enabled, running;
3078 3079 3080
	u64 values[4];
	int n = 0;

3081 3082 3083 3084 3085
	values[n++] = perf_event_read_value(event, &enabled, &running);
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
3086
	if (read_format & PERF_FORMAT_ID)
3087
		values[n++] = primary_event_id(event);
3088 3089 3090 3091 3092 3093 3094

	if (copy_to_user(buf, values, n * sizeof(u64)))
		return -EFAULT;

	return n * sizeof(u64);
}

T
Thomas Gleixner 已提交
3095
/*
3096
 * Read the performance event - simple non blocking version for now
T
Thomas Gleixner 已提交
3097 3098
 */
static ssize_t
3099
perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
T
Thomas Gleixner 已提交
3100
{
3101
	u64 read_format = event->attr.read_format;
3102
	int ret;
T
Thomas Gleixner 已提交
3103

3104
	/*
3105
	 * Return end-of-file for a read on a event that is in
3106 3107 3108
	 * error state (i.e. because it was pinned but it couldn't be
	 * scheduled on to the CPU at some point).
	 */
3109
	if (event->state == PERF_EVENT_STATE_ERROR)
3110 3111
		return 0;

3112
	if (count < event->read_size)
3113 3114
		return -ENOSPC;

3115
	WARN_ON_ONCE(event->ctx->parent_ctx);
3116
	if (read_format & PERF_FORMAT_GROUP)
3117
		ret = perf_event_read_group(event, read_format, buf);
3118
	else
3119
		ret = perf_event_read_one(event, read_format, buf);
T
Thomas Gleixner 已提交
3120

3121
	return ret;
T
Thomas Gleixner 已提交
3122 3123 3124 3125 3126
}

static ssize_t
perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
3127
	struct perf_event *event = file->private_data;
T
Thomas Gleixner 已提交
3128

3129
	return perf_read_hw(event, buf, count);
T
Thomas Gleixner 已提交
3130 3131 3132 3133
}

static unsigned int perf_poll(struct file *file, poll_table *wait)
{
3134
	struct perf_event *event = file->private_data;
3135
	struct perf_buffer *buffer;
3136
	unsigned int events = POLL_HUP;
P
Peter Zijlstra 已提交
3137 3138

	rcu_read_lock();
3139 3140 3141
	buffer = rcu_dereference(event->buffer);
	if (buffer)
		events = atomic_xchg(&buffer->poll, 0);
P
Peter Zijlstra 已提交
3142
	rcu_read_unlock();
T
Thomas Gleixner 已提交
3143

3144
	poll_wait(file, &event->waitq, wait);
T
Thomas Gleixner 已提交
3145 3146 3147 3148

	return events;
}

3149
static void perf_event_reset(struct perf_event *event)
3150
{
3151
	(void)perf_event_read(event);
3152
	local64_set(&event->count, 0);
3153
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
3154 3155
}

3156
/*
3157 3158 3159 3160
 * Holding the top-level event's child_mutex means that any
 * descendant process that has inherited this event will block
 * in sync_child_event if it goes to exit, thus satisfying the
 * task existence requirements of perf_event_enable/disable.
3161
 */
3162 3163
static void perf_event_for_each_child(struct perf_event *event,
					void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
3164
{
3165
	struct perf_event *child;
P
Peter Zijlstra 已提交
3166

3167 3168 3169 3170
	WARN_ON_ONCE(event->ctx->parent_ctx);
	mutex_lock(&event->child_mutex);
	func(event);
	list_for_each_entry(child, &event->child_list, child_list)
P
Peter Zijlstra 已提交
3171
		func(child);
3172
	mutex_unlock(&event->child_mutex);
P
Peter Zijlstra 已提交
3173 3174
}

3175 3176
static void perf_event_for_each(struct perf_event *event,
				  void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
3177
{
3178 3179
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *sibling;
P
Peter Zijlstra 已提交
3180

3181 3182
	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
3183
	event = event->group_leader;
3184

3185 3186 3187 3188
	perf_event_for_each_child(event, func);
	func(event);
	list_for_each_entry(sibling, &event->sibling_list, group_entry)
		perf_event_for_each_child(event, func);
3189
	mutex_unlock(&ctx->mutex);
3190 3191
}

3192
static int perf_event_period(struct perf_event *event, u64 __user *arg)
3193
{
3194
	struct perf_event_context *ctx = event->ctx;
3195 3196 3197
	int ret = 0;
	u64 value;

3198
	if (!is_sampling_event(event))
3199 3200
		return -EINVAL;

3201
	if (copy_from_user(&value, arg, sizeof(value)))
3202 3203 3204 3205 3206
		return -EFAULT;

	if (!value)
		return -EINVAL;

3207
	raw_spin_lock_irq(&ctx->lock);
3208 3209
	if (event->attr.freq) {
		if (value > sysctl_perf_event_sample_rate) {
3210 3211 3212 3213
			ret = -EINVAL;
			goto unlock;
		}

3214
		event->attr.sample_freq = value;
3215
	} else {
3216 3217
		event->attr.sample_period = value;
		event->hw.sample_period = value;
3218 3219
	}
unlock:
3220
	raw_spin_unlock_irq(&ctx->lock);
3221 3222 3223 3224

	return ret;
}

3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245
static const struct file_operations perf_fops;

static struct perf_event *perf_fget_light(int fd, int *fput_needed)
{
	struct file *file;

	file = fget_light(fd, fput_needed);
	if (!file)
		return ERR_PTR(-EBADF);

	if (file->f_op != &perf_fops) {
		fput_light(file, *fput_needed);
		*fput_needed = 0;
		return ERR_PTR(-EBADF);
	}

	return file->private_data;
}

static int perf_event_set_output(struct perf_event *event,
				 struct perf_event *output_event);
L
Li Zefan 已提交
3246
static int perf_event_set_filter(struct perf_event *event, void __user *arg);
3247

3248 3249
static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
3250 3251
	struct perf_event *event = file->private_data;
	void (*func)(struct perf_event *);
P
Peter Zijlstra 已提交
3252
	u32 flags = arg;
3253 3254

	switch (cmd) {
3255 3256
	case PERF_EVENT_IOC_ENABLE:
		func = perf_event_enable;
3257
		break;
3258 3259
	case PERF_EVENT_IOC_DISABLE:
		func = perf_event_disable;
3260
		break;
3261 3262
	case PERF_EVENT_IOC_RESET:
		func = perf_event_reset;
3263
		break;
P
Peter Zijlstra 已提交
3264

3265 3266
	case PERF_EVENT_IOC_REFRESH:
		return perf_event_refresh(event, arg);
3267

3268 3269
	case PERF_EVENT_IOC_PERIOD:
		return perf_event_period(event, (u64 __user *)arg);
3270

3271
	case PERF_EVENT_IOC_SET_OUTPUT:
3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288
	{
		struct perf_event *output_event = NULL;
		int fput_needed = 0;
		int ret;

		if (arg != -1) {
			output_event = perf_fget_light(arg, &fput_needed);
			if (IS_ERR(output_event))
				return PTR_ERR(output_event);
		}

		ret = perf_event_set_output(event, output_event);
		if (output_event)
			fput_light(output_event->filp, fput_needed);

		return ret;
	}
3289

L
Li Zefan 已提交
3290 3291 3292
	case PERF_EVENT_IOC_SET_FILTER:
		return perf_event_set_filter(event, (void __user *)arg);

3293
	default:
P
Peter Zijlstra 已提交
3294
		return -ENOTTY;
3295
	}
P
Peter Zijlstra 已提交
3296 3297

	if (flags & PERF_IOC_FLAG_GROUP)
3298
		perf_event_for_each(event, func);
P
Peter Zijlstra 已提交
3299
	else
3300
		perf_event_for_each_child(event, func);
P
Peter Zijlstra 已提交
3301 3302

	return 0;
3303 3304
}

3305
int perf_event_task_enable(void)
3306
{
3307
	struct perf_event *event;
3308

3309 3310 3311 3312
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_enable);
	mutex_unlock(&current->perf_event_mutex);
3313 3314 3315 3316

	return 0;
}

3317
int perf_event_task_disable(void)
3318
{
3319
	struct perf_event *event;
3320

3321 3322 3323 3324
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_disable);
	mutex_unlock(&current->perf_event_mutex);
3325 3326 3327 3328

	return 0;
}

3329 3330
#ifndef PERF_EVENT_INDEX_OFFSET
# define PERF_EVENT_INDEX_OFFSET 0
I
Ingo Molnar 已提交
3331 3332
#endif

3333
static int perf_event_index(struct perf_event *event)
3334
{
P
Peter Zijlstra 已提交
3335 3336 3337
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;

3338
	if (event->state != PERF_EVENT_STATE_ACTIVE)
3339 3340
		return 0;

3341
	return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
3342 3343
}

3344 3345 3346 3347 3348
/*
 * Callers need to ensure there can be no nesting of this function, otherwise
 * the seqlock logic goes bad. We can not serialize this because the arch
 * code calls this from NMI context.
 */
3349
void perf_event_update_userpage(struct perf_event *event)
3350
{
3351
	struct perf_event_mmap_page *userpg;
3352
	struct perf_buffer *buffer;
3353 3354

	rcu_read_lock();
3355 3356
	buffer = rcu_dereference(event->buffer);
	if (!buffer)
3357 3358
		goto unlock;

3359
	userpg = buffer->user_page;
3360

3361 3362 3363 3364 3365
	/*
	 * Disable preemption so as to not let the corresponding user-space
	 * spin too long if we get preempted.
	 */
	preempt_disable();
3366
	++userpg->lock;
3367
	barrier();
3368
	userpg->index = perf_event_index(event);
P
Peter Zijlstra 已提交
3369
	userpg->offset = perf_event_count(event);
3370
	if (event->state == PERF_EVENT_STATE_ACTIVE)
3371
		userpg->offset -= local64_read(&event->hw.prev_count);
3372

3373 3374
	userpg->time_enabled = event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
3375

3376 3377
	userpg->time_running = event->total_time_running +
			atomic64_read(&event->child_total_time_running);
3378

3379
	barrier();
3380
	++userpg->lock;
3381
	preempt_enable();
3382
unlock:
3383
	rcu_read_unlock();
3384 3385
}

3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404
static unsigned long perf_data_size(struct perf_buffer *buffer);

static void
perf_buffer_init(struct perf_buffer *buffer, long watermark, int flags)
{
	long max_size = perf_data_size(buffer);

	if (watermark)
		buffer->watermark = min(max_size, watermark);

	if (!buffer->watermark)
		buffer->watermark = max_size / 2;

	if (flags & PERF_BUFFER_WRITABLE)
		buffer->writable = 1;

	atomic_set(&buffer->refcount, 1);
}

3405
#ifndef CONFIG_PERF_USE_VMALLOC
3406

3407 3408 3409
/*
 * Back perf_mmap() with regular GFP_KERNEL-0 pages.
 */
3410

3411
static struct page *
3412
perf_mmap_to_page(struct perf_buffer *buffer, unsigned long pgoff)
3413
{
3414
	if (pgoff > buffer->nr_pages)
3415
		return NULL;
3416

3417
	if (pgoff == 0)
3418
		return virt_to_page(buffer->user_page);
3419

3420
	return virt_to_page(buffer->data_pages[pgoff - 1]);
3421 3422
}

3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435
static void *perf_mmap_alloc_page(int cpu)
{
	struct page *page;
	int node;

	node = (cpu == -1) ? cpu : cpu_to_node(cpu);
	page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0);
	if (!page)
		return NULL;

	return page_address(page);
}

3436
static struct perf_buffer *
3437
perf_buffer_alloc(int nr_pages, long watermark, int cpu, int flags)
3438
{
3439
	struct perf_buffer *buffer;
3440 3441 3442
	unsigned long size;
	int i;

3443
	size = sizeof(struct perf_buffer);
3444 3445
	size += nr_pages * sizeof(void *);

3446 3447
	buffer = kzalloc(size, GFP_KERNEL);
	if (!buffer)
3448 3449
		goto fail;

3450
	buffer->user_page = perf_mmap_alloc_page(cpu);
3451
	if (!buffer->user_page)
3452 3453 3454
		goto fail_user_page;

	for (i = 0; i < nr_pages; i++) {
3455
		buffer->data_pages[i] = perf_mmap_alloc_page(cpu);
3456
		if (!buffer->data_pages[i])
3457 3458 3459
			goto fail_data_pages;
	}

3460
	buffer->nr_pages = nr_pages;
3461

3462 3463
	perf_buffer_init(buffer, watermark, flags);

3464
	return buffer;
3465 3466 3467

fail_data_pages:
	for (i--; i >= 0; i--)
3468
		free_page((unsigned long)buffer->data_pages[i]);
3469

3470
	free_page((unsigned long)buffer->user_page);
3471 3472

fail_user_page:
3473
	kfree(buffer);
3474 3475

fail:
3476
	return NULL;
3477 3478
}

3479 3480
static void perf_mmap_free_page(unsigned long addr)
{
K
Kevin Cernekee 已提交
3481
	struct page *page = virt_to_page((void *)addr);
3482 3483 3484 3485 3486

	page->mapping = NULL;
	__free_page(page);
}

3487
static void perf_buffer_free(struct perf_buffer *buffer)
3488 3489 3490
{
	int i;

3491 3492 3493 3494
	perf_mmap_free_page((unsigned long)buffer->user_page);
	for (i = 0; i < buffer->nr_pages; i++)
		perf_mmap_free_page((unsigned long)buffer->data_pages[i]);
	kfree(buffer);
3495 3496
}

3497
static inline int page_order(struct perf_buffer *buffer)
3498 3499 3500 3501
{
	return 0;
}

3502 3503 3504 3505 3506 3507 3508 3509
#else

/*
 * Back perf_mmap() with vmalloc memory.
 *
 * Required for architectures that have d-cache aliasing issues.
 */

3510
static inline int page_order(struct perf_buffer *buffer)
3511
{
3512
	return buffer->page_order;
3513 3514
}

3515
static struct page *
3516
perf_mmap_to_page(struct perf_buffer *buffer, unsigned long pgoff)
3517
{
3518
	if (pgoff > (1UL << page_order(buffer)))
3519 3520
		return NULL;

3521
	return vmalloc_to_page((void *)buffer->user_page + pgoff * PAGE_SIZE);
3522 3523 3524 3525 3526 3527 3528 3529 3530
}

static void perf_mmap_unmark_page(void *addr)
{
	struct page *page = vmalloc_to_page(addr);

	page->mapping = NULL;
}

3531
static void perf_buffer_free_work(struct work_struct *work)
3532
{
3533
	struct perf_buffer *buffer;
3534 3535 3536
	void *base;
	int i, nr;

3537 3538
	buffer = container_of(work, struct perf_buffer, work);
	nr = 1 << page_order(buffer);
3539

3540
	base = buffer->user_page;
3541 3542 3543 3544
	for (i = 0; i < nr + 1; i++)
		perf_mmap_unmark_page(base + (i * PAGE_SIZE));

	vfree(base);
3545
	kfree(buffer);
3546 3547
}

3548
static void perf_buffer_free(struct perf_buffer *buffer)
3549
{
3550
	schedule_work(&buffer->work);
3551 3552
}

3553
static struct perf_buffer *
3554
perf_buffer_alloc(int nr_pages, long watermark, int cpu, int flags)
3555
{
3556
	struct perf_buffer *buffer;
3557 3558 3559
	unsigned long size;
	void *all_buf;

3560
	size = sizeof(struct perf_buffer);
3561 3562
	size += sizeof(void *);

3563 3564
	buffer = kzalloc(size, GFP_KERNEL);
	if (!buffer)
3565 3566
		goto fail;

3567
	INIT_WORK(&buffer->work, perf_buffer_free_work);
3568 3569 3570 3571 3572

	all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
	if (!all_buf)
		goto fail_all_buf;

3573 3574 3575 3576
	buffer->user_page = all_buf;
	buffer->data_pages[0] = all_buf + PAGE_SIZE;
	buffer->page_order = ilog2(nr_pages);
	buffer->nr_pages = 1;
3577

3578 3579
	perf_buffer_init(buffer, watermark, flags);

3580
	return buffer;
3581 3582

fail_all_buf:
3583
	kfree(buffer);
3584 3585 3586 3587 3588 3589 3590

fail:
	return NULL;
}

#endif

3591
static unsigned long perf_data_size(struct perf_buffer *buffer)
3592
{
3593
	return buffer->nr_pages << (PAGE_SHIFT + page_order(buffer));
3594 3595
}

3596 3597 3598
static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct perf_event *event = vma->vm_file->private_data;
3599
	struct perf_buffer *buffer;
3600 3601 3602 3603 3604 3605 3606 3607 3608
	int ret = VM_FAULT_SIGBUS;

	if (vmf->flags & FAULT_FLAG_MKWRITE) {
		if (vmf->pgoff == 0)
			ret = 0;
		return ret;
	}

	rcu_read_lock();
3609 3610
	buffer = rcu_dereference(event->buffer);
	if (!buffer)
3611 3612 3613 3614 3615
		goto unlock;

	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
		goto unlock;

3616
	vmf->page = perf_mmap_to_page(buffer, vmf->pgoff);
3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630
	if (!vmf->page)
		goto unlock;

	get_page(vmf->page);
	vmf->page->mapping = vma->vm_file->f_mapping;
	vmf->page->index   = vmf->pgoff;

	ret = 0;
unlock:
	rcu_read_unlock();

	return ret;
}

3631
static void perf_buffer_free_rcu(struct rcu_head *rcu_head)
3632
{
3633
	struct perf_buffer *buffer;
3634

3635 3636
	buffer = container_of(rcu_head, struct perf_buffer, rcu_head);
	perf_buffer_free(buffer);
3637 3638
}

3639
static struct perf_buffer *perf_buffer_get(struct perf_event *event)
3640
{
3641
	struct perf_buffer *buffer;
3642

3643
	rcu_read_lock();
3644 3645 3646 3647
	buffer = rcu_dereference(event->buffer);
	if (buffer) {
		if (!atomic_inc_not_zero(&buffer->refcount))
			buffer = NULL;
3648 3649 3650
	}
	rcu_read_unlock();

3651
	return buffer;
3652 3653
}

3654
static void perf_buffer_put(struct perf_buffer *buffer)
3655
{
3656
	if (!atomic_dec_and_test(&buffer->refcount))
3657
		return;
3658

3659
	call_rcu(&buffer->rcu_head, perf_buffer_free_rcu);
3660 3661 3662 3663
}

static void perf_mmap_open(struct vm_area_struct *vma)
{
3664
	struct perf_event *event = vma->vm_file->private_data;
3665

3666
	atomic_inc(&event->mmap_count);
3667 3668 3669 3670
}

static void perf_mmap_close(struct vm_area_struct *vma)
{
3671
	struct perf_event *event = vma->vm_file->private_data;
3672

3673
	if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
3674
		unsigned long size = perf_data_size(event->buffer);
3675
		struct user_struct *user = event->mmap_user;
3676
		struct perf_buffer *buffer = event->buffer;
3677

3678
		atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
3679
		vma->vm_mm->locked_vm -= event->mmap_locked;
3680
		rcu_assign_pointer(event->buffer, NULL);
3681
		mutex_unlock(&event->mmap_mutex);
3682

3683
		perf_buffer_put(buffer);
3684
		free_uid(user);
3685
	}
3686 3687
}

3688
static const struct vm_operations_struct perf_mmap_vmops = {
3689 3690 3691 3692
	.open		= perf_mmap_open,
	.close		= perf_mmap_close,
	.fault		= perf_mmap_fault,
	.page_mkwrite	= perf_mmap_fault,
3693 3694 3695 3696
};

static int perf_mmap(struct file *file, struct vm_area_struct *vma)
{
3697
	struct perf_event *event = file->private_data;
3698
	unsigned long user_locked, user_lock_limit;
3699
	struct user_struct *user = current_user();
3700
	unsigned long locked, lock_limit;
3701
	struct perf_buffer *buffer;
3702 3703
	unsigned long vma_size;
	unsigned long nr_pages;
3704
	long user_extra, extra;
3705
	int ret = 0, flags = 0;
3706

3707 3708 3709 3710 3711 3712 3713 3714
	/*
	 * Don't allow mmap() of inherited per-task counters. This would
	 * create a performance issue due to all children writing to the
	 * same buffer.
	 */
	if (event->cpu == -1 && event->attr.inherit)
		return -EINVAL;

3715
	if (!(vma->vm_flags & VM_SHARED))
3716
		return -EINVAL;
3717 3718 3719 3720

	vma_size = vma->vm_end - vma->vm_start;
	nr_pages = (vma_size / PAGE_SIZE) - 1;

3721
	/*
3722
	 * If we have buffer pages ensure they're a power-of-two number, so we
3723 3724 3725
	 * can do bitmasks instead of modulo.
	 */
	if (nr_pages != 0 && !is_power_of_2(nr_pages))
3726 3727
		return -EINVAL;

3728
	if (vma_size != PAGE_SIZE * (1 + nr_pages))
3729 3730
		return -EINVAL;

3731 3732
	if (vma->vm_pgoff != 0)
		return -EINVAL;
3733

3734 3735
	WARN_ON_ONCE(event->ctx->parent_ctx);
	mutex_lock(&event->mmap_mutex);
3736 3737 3738
	if (event->buffer) {
		if (event->buffer->nr_pages == nr_pages)
			atomic_inc(&event->buffer->refcount);
3739
		else
3740 3741 3742 3743
			ret = -EINVAL;
		goto unlock;
	}

3744
	user_extra = nr_pages + 1;
3745
	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
I
Ingo Molnar 已提交
3746 3747 3748 3749 3750 3751

	/*
	 * Increase the limit linearly with more CPUs:
	 */
	user_lock_limit *= num_online_cpus();

3752
	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
3753

3754 3755 3756
	extra = 0;
	if (user_locked > user_lock_limit)
		extra = user_locked - user_lock_limit;
3757

3758
	lock_limit = rlimit(RLIMIT_MEMLOCK);
3759
	lock_limit >>= PAGE_SHIFT;
3760
	locked = vma->vm_mm->locked_vm + extra;
3761

3762 3763
	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
		!capable(CAP_IPC_LOCK)) {
3764 3765 3766
		ret = -EPERM;
		goto unlock;
	}
3767

3768
	WARN_ON(event->buffer);
3769

3770 3771 3772 3773 3774
	if (vma->vm_flags & VM_WRITE)
		flags |= PERF_BUFFER_WRITABLE;

	buffer = perf_buffer_alloc(nr_pages, event->attr.wakeup_watermark,
				   event->cpu, flags);
3775
	if (!buffer) {
3776
		ret = -ENOMEM;
3777
		goto unlock;
3778
	}
3779
	rcu_assign_pointer(event->buffer, buffer);
3780

3781 3782 3783 3784 3785
	atomic_long_add(user_extra, &user->locked_vm);
	event->mmap_locked = extra;
	event->mmap_user = get_current_user();
	vma->vm_mm->locked_vm += event->mmap_locked;

3786
unlock:
3787 3788
	if (!ret)
		atomic_inc(&event->mmap_count);
3789
	mutex_unlock(&event->mmap_mutex);
3790 3791 3792

	vma->vm_flags |= VM_RESERVED;
	vma->vm_ops = &perf_mmap_vmops;
3793 3794

	return ret;
3795 3796
}

P
Peter Zijlstra 已提交
3797 3798 3799
static int perf_fasync(int fd, struct file *filp, int on)
{
	struct inode *inode = filp->f_path.dentry->d_inode;
3800
	struct perf_event *event = filp->private_data;
P
Peter Zijlstra 已提交
3801 3802 3803
	int retval;

	mutex_lock(&inode->i_mutex);
3804
	retval = fasync_helper(fd, filp, on, &event->fasync);
P
Peter Zijlstra 已提交
3805 3806 3807 3808 3809 3810 3811 3812
	mutex_unlock(&inode->i_mutex);

	if (retval < 0)
		return retval;

	return 0;
}

T
Thomas Gleixner 已提交
3813
static const struct file_operations perf_fops = {
3814
	.llseek			= no_llseek,
T
Thomas Gleixner 已提交
3815 3816 3817
	.release		= perf_release,
	.read			= perf_read,
	.poll			= perf_poll,
3818 3819
	.unlocked_ioctl		= perf_ioctl,
	.compat_ioctl		= perf_ioctl,
3820
	.mmap			= perf_mmap,
P
Peter Zijlstra 已提交
3821
	.fasync			= perf_fasync,
T
Thomas Gleixner 已提交
3822 3823
};

3824
/*
3825
 * Perf event wakeup
3826 3827 3828 3829 3830
 *
 * If there's data, ensure we set the poll() state and publish everything
 * to user-space before waking everybody up.
 */

3831
void perf_event_wakeup(struct perf_event *event)
3832
{
3833
	wake_up_all(&event->waitq);
3834

3835 3836 3837
	if (event->pending_kill) {
		kill_fasync(&event->fasync, SIGIO, event->pending_kill);
		event->pending_kill = 0;
3838
	}
3839 3840
}

3841
static void perf_pending_event(struct irq_work *entry)
3842
{
3843 3844
	struct perf_event *event = container_of(entry,
			struct perf_event, pending);
3845

3846 3847 3848
	if (event->pending_disable) {
		event->pending_disable = 0;
		__perf_event_disable(event);
3849 3850
	}

3851 3852 3853
	if (event->pending_wakeup) {
		event->pending_wakeup = 0;
		perf_event_wakeup(event);
3854 3855 3856
	}
}

3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877
/*
 * We assume there is only KVM supporting the callbacks.
 * Later on, we might change it to a list if there is
 * another virtualization implementation supporting the callbacks.
 */
struct perf_guest_info_callbacks *perf_guest_cbs;

int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = cbs;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);

int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = NULL;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);

3878 3879 3880
/*
 * Output
 */
3881
static bool perf_output_space(struct perf_buffer *buffer, unsigned long tail,
3882
			      unsigned long offset, unsigned long head)
3883 3884 3885
{
	unsigned long mask;

3886
	if (!buffer->writable)
3887 3888
		return true;

3889
	mask = perf_data_size(buffer) - 1;
3890 3891 3892 3893 3894 3895 3896 3897 3898 3899

	offset = (offset - tail) & mask;
	head   = (head   - tail) & mask;

	if ((int)(head - offset) < 0)
		return false;

	return true;
}

3900
static void perf_output_wakeup(struct perf_output_handle *handle)
3901
{
3902
	atomic_set(&handle->buffer->poll, POLL_IN);
3903

3904
	if (handle->nmi) {
3905
		handle->event->pending_wakeup = 1;
3906
		irq_work_queue(&handle->event->pending);
3907
	} else
3908
		perf_event_wakeup(handle->event);
3909 3910
}

3911
/*
3912
 * We need to ensure a later event_id doesn't publish a head when a former
3913
 * event isn't done writing. However since we need to deal with NMIs we
3914 3915 3916
 * cannot fully serialize things.
 *
 * We only publish the head (and generate a wakeup) when the outer-most
3917
 * event completes.
3918
 */
3919
static void perf_output_get_handle(struct perf_output_handle *handle)
3920
{
3921
	struct perf_buffer *buffer = handle->buffer;
3922

3923
	preempt_disable();
3924 3925
	local_inc(&buffer->nest);
	handle->wakeup = local_read(&buffer->wakeup);
3926 3927
}

3928
static void perf_output_put_handle(struct perf_output_handle *handle)
3929
{
3930
	struct perf_buffer *buffer = handle->buffer;
3931
	unsigned long head;
3932 3933

again:
3934
	head = local_read(&buffer->head);
3935 3936

	/*
3937
	 * IRQ/NMI can happen here, which means we can miss a head update.
3938 3939
	 */

3940
	if (!local_dec_and_test(&buffer->nest))
3941
		goto out;
3942 3943

	/*
3944
	 * Publish the known good head. Rely on the full barrier implied
3945
	 * by atomic_dec_and_test() order the buffer->head read and this
3946
	 * write.
3947
	 */
3948
	buffer->user_page->data_head = head;
3949

3950 3951
	/*
	 * Now check if we missed an update, rely on the (compiler)
3952
	 * barrier in atomic_dec_and_test() to re-read buffer->head.
3953
	 */
3954 3955
	if (unlikely(head != local_read(&buffer->head))) {
		local_inc(&buffer->nest);
3956 3957 3958
		goto again;
	}

3959
	if (handle->wakeup != local_read(&buffer->wakeup))
3960
		perf_output_wakeup(handle);
3961

P
Peter Zijlstra 已提交
3962
out:
3963
	preempt_enable();
3964 3965
}

3966
__always_inline void perf_output_copy(struct perf_output_handle *handle,
3967
		      const void *buf, unsigned int len)
3968
{
3969
	do {
3970
		unsigned long size = min_t(unsigned long, handle->size, len);
3971 3972 3973 3974 3975

		memcpy(handle->addr, buf, size);

		len -= size;
		handle->addr += size;
3976
		buf += size;
3977 3978
		handle->size -= size;
		if (!handle->size) {
3979
			struct perf_buffer *buffer = handle->buffer;
3980

3981
			handle->page++;
3982 3983 3984
			handle->page &= buffer->nr_pages - 1;
			handle->addr = buffer->data_pages[handle->page];
			handle->size = PAGE_SIZE << page_order(buffer);
3985 3986
		}
	} while (len);
3987 3988
}

3989 3990 3991
static void __perf_event_header__init_id(struct perf_event_header *header,
					 struct perf_sample_data *data,
					 struct perf_event *event)
3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018
{
	u64 sample_type = event->attr.sample_type;

	data->type = sample_type;
	header->size += event->id_header_size;

	if (sample_type & PERF_SAMPLE_TID) {
		/* namespace issues */
		data->tid_entry.pid = perf_event_pid(event, current);
		data->tid_entry.tid = perf_event_tid(event, current);
	}

	if (sample_type & PERF_SAMPLE_TIME)
		data->time = perf_clock();

	if (sample_type & PERF_SAMPLE_ID)
		data->id = primary_event_id(event);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		data->stream_id = event->id;

	if (sample_type & PERF_SAMPLE_CPU) {
		data->cpu_entry.cpu	 = raw_smp_processor_id();
		data->cpu_entry.reserved = 0;
	}
}

4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055
static void perf_event_header__init_id(struct perf_event_header *header,
				       struct perf_sample_data *data,
				       struct perf_event *event)
{
	if (event->attr.sample_id_all)
		__perf_event_header__init_id(header, data, event);
}

static void __perf_event__output_id_sample(struct perf_output_handle *handle,
					   struct perf_sample_data *data)
{
	u64 sample_type = data->type;

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);
}

static void perf_event__output_id_sample(struct perf_event *event,
					 struct perf_output_handle *handle,
					 struct perf_sample_data *sample)
{
	if (event->attr.sample_id_all)
		__perf_event__output_id_sample(handle, sample);
}

4056
int perf_output_begin(struct perf_output_handle *handle,
4057
		      struct perf_event *event, unsigned int size,
4058
		      int nmi, int sample)
4059
{
4060
	struct perf_buffer *buffer;
4061
	unsigned long tail, offset, head;
4062
	int have_lost;
4063
	struct perf_sample_data sample_data;
4064 4065 4066 4067 4068
	struct {
		struct perf_event_header header;
		u64			 id;
		u64			 lost;
	} lost_event;
4069

4070
	rcu_read_lock();
4071
	/*
4072
	 * For inherited events we send all the output towards the parent.
4073
	 */
4074 4075
	if (event->parent)
		event = event->parent;
4076

4077 4078
	buffer = rcu_dereference(event->buffer);
	if (!buffer)
4079 4080
		goto out;

4081
	handle->buffer	= buffer;
4082
	handle->event	= event;
4083 4084
	handle->nmi	= nmi;
	handle->sample	= sample;
4085

4086
	if (!buffer->nr_pages)
4087
		goto out;
4088

4089
	have_lost = local_read(&buffer->lost);
4090 4091 4092 4093 4094 4095
	if (have_lost) {
		lost_event.header.size = sizeof(lost_event);
		perf_event_header__init_id(&lost_event.header, &sample_data,
					   event);
		size += lost_event.header.size;
	}
4096

4097
	perf_output_get_handle(handle);
4098

4099
	do {
4100 4101 4102 4103 4104
		/*
		 * Userspace could choose to issue a mb() before updating the
		 * tail pointer. So that all reads will be completed before the
		 * write is issued.
		 */
4105
		tail = ACCESS_ONCE(buffer->user_page->data_tail);
4106
		smp_rmb();
4107
		offset = head = local_read(&buffer->head);
P
Peter Zijlstra 已提交
4108
		head += size;
4109
		if (unlikely(!perf_output_space(buffer, tail, offset, head)))
4110
			goto fail;
4111
	} while (local_cmpxchg(&buffer->head, offset, head) != offset);
4112

4113 4114
	if (head - local_read(&buffer->wakeup) > buffer->watermark)
		local_add(buffer->watermark, &buffer->wakeup);
4115

4116 4117 4118 4119
	handle->page = offset >> (PAGE_SHIFT + page_order(buffer));
	handle->page &= buffer->nr_pages - 1;
	handle->size = offset & ((PAGE_SIZE << page_order(buffer)) - 1);
	handle->addr = buffer->data_pages[handle->page];
4120
	handle->addr += handle->size;
4121
	handle->size = (PAGE_SIZE << page_order(buffer)) - handle->size;
4122

4123
	if (have_lost) {
4124
		lost_event.header.type = PERF_RECORD_LOST;
4125
		lost_event.header.misc = 0;
4126
		lost_event.id          = event->id;
4127
		lost_event.lost        = local_xchg(&buffer->lost, 0);
4128 4129

		perf_output_put(handle, lost_event);
4130
		perf_event__output_id_sample(event, handle, &sample_data);
4131 4132
	}

4133
	return 0;
4134

4135
fail:
4136
	local_inc(&buffer->lost);
4137
	perf_output_put_handle(handle);
4138 4139
out:
	rcu_read_unlock();
4140

4141 4142
	return -ENOSPC;
}
4143

4144
void perf_output_end(struct perf_output_handle *handle)
4145
{
4146
	struct perf_event *event = handle->event;
4147
	struct perf_buffer *buffer = handle->buffer;
4148

4149
	int wakeup_events = event->attr.wakeup_events;
P
Peter Zijlstra 已提交
4150

4151
	if (handle->sample && wakeup_events) {
4152
		int events = local_inc_return(&buffer->events);
P
Peter Zijlstra 已提交
4153
		if (events >= wakeup_events) {
4154 4155
			local_sub(wakeup_events, &buffer->events);
			local_inc(&buffer->wakeup);
P
Peter Zijlstra 已提交
4156
		}
4157 4158
	}

4159
	perf_output_put_handle(handle);
4160
	rcu_read_unlock();
4161 4162
}

4163
static void perf_output_read_one(struct perf_output_handle *handle,
4164 4165
				 struct perf_event *event,
				 u64 enabled, u64 running)
4166
{
4167
	u64 read_format = event->attr.read_format;
4168 4169 4170
	u64 values[4];
	int n = 0;

P
Peter Zijlstra 已提交
4171
	values[n++] = perf_event_count(event);
4172
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4173
		values[n++] = enabled +
4174
			atomic64_read(&event->child_total_time_enabled);
4175 4176
	}
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4177
		values[n++] = running +
4178
			atomic64_read(&event->child_total_time_running);
4179 4180
	}
	if (read_format & PERF_FORMAT_ID)
4181
		values[n++] = primary_event_id(event);
4182 4183 4184 4185 4186

	perf_output_copy(handle, values, n * sizeof(u64));
}

/*
4187
 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
4188 4189
 */
static void perf_output_read_group(struct perf_output_handle *handle,
4190 4191
			    struct perf_event *event,
			    u64 enabled, u64 running)
4192
{
4193 4194
	struct perf_event *leader = event->group_leader, *sub;
	u64 read_format = event->attr.read_format;
4195 4196 4197 4198 4199 4200
	u64 values[5];
	int n = 0;

	values[n++] = 1 + leader->nr_siblings;

	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4201
		values[n++] = enabled;
4202 4203

	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4204
		values[n++] = running;
4205

4206
	if (leader != event)
4207 4208
		leader->pmu->read(leader);

P
Peter Zijlstra 已提交
4209
	values[n++] = perf_event_count(leader);
4210
	if (read_format & PERF_FORMAT_ID)
4211
		values[n++] = primary_event_id(leader);
4212 4213 4214

	perf_output_copy(handle, values, n * sizeof(u64));

4215
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4216 4217
		n = 0;

4218
		if (sub != event)
4219 4220
			sub->pmu->read(sub);

P
Peter Zijlstra 已提交
4221
		values[n++] = perf_event_count(sub);
4222
		if (read_format & PERF_FORMAT_ID)
4223
			values[n++] = primary_event_id(sub);
4224 4225 4226 4227 4228

		perf_output_copy(handle, values, n * sizeof(u64));
	}
}

4229 4230 4231
#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
				 PERF_FORMAT_TOTAL_TIME_RUNNING)

4232
static void perf_output_read(struct perf_output_handle *handle,
4233
			     struct perf_event *event)
4234
{
4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253
	u64 enabled = 0, running = 0, now, ctx_time;
	u64 read_format = event->attr.read_format;

	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we are called in
	 * NMI context
	 */
	if (read_format & PERF_FORMAT_TOTAL_TIMES) {
		now = perf_clock();
		ctx_time = event->shadow_ctx_time + now;
		enabled = ctx_time - event->tstamp_enabled;
		running = ctx_time - event->tstamp_running;
	}

4254
	if (event->attr.read_format & PERF_FORMAT_GROUP)
4255
		perf_output_read_group(handle, event, enabled, running);
4256
	else
4257
		perf_output_read_one(handle, event, enabled, running);
4258 4259
}

4260 4261 4262
void perf_output_sample(struct perf_output_handle *handle,
			struct perf_event_header *header,
			struct perf_sample_data *data,
4263
			struct perf_event *event)
4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293
{
	u64 sample_type = data->type;

	perf_output_put(handle, *header);

	if (sample_type & PERF_SAMPLE_IP)
		perf_output_put(handle, data->ip);

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ADDR)
		perf_output_put(handle, data->addr);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);

	if (sample_type & PERF_SAMPLE_PERIOD)
		perf_output_put(handle, data->period);

	if (sample_type & PERF_SAMPLE_READ)
4294
		perf_output_read(handle, event);
4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331

	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
		if (data->callchain) {
			int size = 1;

			if (data->callchain)
				size += data->callchain->nr;

			size *= sizeof(u64);

			perf_output_copy(handle, data->callchain, size);
		} else {
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}

	if (sample_type & PERF_SAMPLE_RAW) {
		if (data->raw) {
			perf_output_put(handle, data->raw->size);
			perf_output_copy(handle, data->raw->data,
					 data->raw->size);
		} else {
			struct {
				u32	size;
				u32	data;
			} raw = {
				.size = sizeof(u32),
				.data = 0,
			};
			perf_output_put(handle, raw);
		}
	}
}

void perf_prepare_sample(struct perf_event_header *header,
			 struct perf_sample_data *data,
4332
			 struct perf_event *event,
4333
			 struct pt_regs *regs)
4334
{
4335
	u64 sample_type = event->attr.sample_type;
4336

4337
	header->type = PERF_RECORD_SAMPLE;
4338
	header->size = sizeof(*header) + event->header_size;
4339 4340 4341

	header->misc = 0;
	header->misc |= perf_misc_flags(regs);
4342

4343
	__perf_event_header__init_id(header, data, event);
4344

4345
	if (sample_type & PERF_SAMPLE_IP)
4346 4347
		data->ip = perf_instruction_pointer(regs);

4348
	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
4349
		int size = 1;
4350

4351 4352 4353 4354 4355 4356
		data->callchain = perf_callchain(regs);

		if (data->callchain)
			size += data->callchain->nr;

		header->size += size * sizeof(u64);
4357 4358
	}

4359
	if (sample_type & PERF_SAMPLE_RAW) {
4360 4361 4362 4363 4364 4365 4366 4367
		int size = sizeof(u32);

		if (data->raw)
			size += data->raw->size;
		else
			size += sizeof(u32);

		WARN_ON_ONCE(size & (sizeof(u64)-1));
4368
		header->size += size;
4369
	}
4370
}
4371

4372
static void perf_event_output(struct perf_event *event, int nmi,
4373 4374 4375 4376 4377
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
	struct perf_output_handle handle;
	struct perf_event_header header;
4378

4379 4380 4381
	/* protect the callchain buffers */
	rcu_read_lock();

4382
	perf_prepare_sample(&header, data, event, regs);
P
Peter Zijlstra 已提交
4383

4384
	if (perf_output_begin(&handle, event, header.size, nmi, 1))
4385
		goto exit;
4386

4387
	perf_output_sample(&handle, &header, data, event);
4388

4389
	perf_output_end(&handle);
4390 4391 4392

exit:
	rcu_read_unlock();
4393 4394
}

4395
/*
4396
 * read event_id
4397 4398 4399 4400 4401 4402 4403 4404 4405 4406
 */

struct perf_read_event {
	struct perf_event_header	header;

	u32				pid;
	u32				tid;
};

static void
4407
perf_event_read_event(struct perf_event *event,
4408 4409 4410
			struct task_struct *task)
{
	struct perf_output_handle handle;
4411
	struct perf_sample_data sample;
4412
	struct perf_read_event read_event = {
4413
		.header = {
4414
			.type = PERF_RECORD_READ,
4415
			.misc = 0,
4416
			.size = sizeof(read_event) + event->read_size,
4417
		},
4418 4419
		.pid = perf_event_pid(event, task),
		.tid = perf_event_tid(event, task),
4420
	};
4421
	int ret;
4422

4423
	perf_event_header__init_id(&read_event.header, &sample, event);
4424
	ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0);
4425 4426 4427
	if (ret)
		return;

4428
	perf_output_put(&handle, read_event);
4429
	perf_output_read(&handle, event);
4430
	perf_event__output_id_sample(event, &handle, &sample);
4431

4432 4433 4434
	perf_output_end(&handle);
}

P
Peter Zijlstra 已提交
4435
/*
P
Peter Zijlstra 已提交
4436 4437
 * task tracking -- fork/exit
 *
4438
 * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
P
Peter Zijlstra 已提交
4439 4440
 */

P
Peter Zijlstra 已提交
4441
struct perf_task_event {
4442
	struct task_struct		*task;
4443
	struct perf_event_context	*task_ctx;
P
Peter Zijlstra 已提交
4444 4445 4446 4447 4448 4449

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				ppid;
P
Peter Zijlstra 已提交
4450 4451
		u32				tid;
		u32				ptid;
4452
		u64				time;
4453
	} event_id;
P
Peter Zijlstra 已提交
4454 4455
};

4456
static void perf_event_task_output(struct perf_event *event,
P
Peter Zijlstra 已提交
4457
				     struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
4458 4459
{
	struct perf_output_handle handle;
4460
	struct perf_sample_data	sample;
P
Peter Zijlstra 已提交
4461
	struct task_struct *task = task_event->task;
4462
	int ret, size = task_event->event_id.header.size;
4463

4464
	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
P
Peter Zijlstra 已提交
4465

4466 4467
	ret = perf_output_begin(&handle, event,
				task_event->event_id.header.size, 0, 0);
4468
	if (ret)
4469
		goto out;
P
Peter Zijlstra 已提交
4470

4471 4472
	task_event->event_id.pid = perf_event_pid(event, task);
	task_event->event_id.ppid = perf_event_pid(event, current);
P
Peter Zijlstra 已提交
4473

4474 4475
	task_event->event_id.tid = perf_event_tid(event, task);
	task_event->event_id.ptid = perf_event_tid(event, current);
P
Peter Zijlstra 已提交
4476

4477
	perf_output_put(&handle, task_event->event_id);
4478

4479 4480
	perf_event__output_id_sample(event, &handle, &sample);

P
Peter Zijlstra 已提交
4481
	perf_output_end(&handle);
4482 4483
out:
	task_event->event_id.header.size = size;
P
Peter Zijlstra 已提交
4484 4485
}

4486
static int perf_event_task_match(struct perf_event *event)
P
Peter Zijlstra 已提交
4487
{
P
Peter Zijlstra 已提交
4488
	if (event->state < PERF_EVENT_STATE_INACTIVE)
4489 4490
		return 0;

4491
	if (!event_filter_match(event))
4492 4493
		return 0;

4494 4495
	if (event->attr.comm || event->attr.mmap ||
	    event->attr.mmap_data || event->attr.task)
P
Peter Zijlstra 已提交
4496 4497 4498 4499 4500
		return 1;

	return 0;
}

4501
static void perf_event_task_ctx(struct perf_event_context *ctx,
P
Peter Zijlstra 已提交
4502
				  struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
4503
{
4504
	struct perf_event *event;
P
Peter Zijlstra 已提交
4505

4506 4507 4508
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (perf_event_task_match(event))
			perf_event_task_output(event, task_event);
P
Peter Zijlstra 已提交
4509 4510 4511
	}
}

4512
static void perf_event_task_event(struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
4513 4514
{
	struct perf_cpu_context *cpuctx;
P
Peter Zijlstra 已提交
4515
	struct perf_event_context *ctx;
P
Peter Zijlstra 已提交
4516
	struct pmu *pmu;
P
Peter Zijlstra 已提交
4517
	int ctxn;
P
Peter Zijlstra 已提交
4518

4519
	rcu_read_lock();
P
Peter Zijlstra 已提交
4520
	list_for_each_entry_rcu(pmu, &pmus, entry) {
4521
		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4522 4523
		if (cpuctx->active_pmu != pmu)
			goto next;
P
Peter Zijlstra 已提交
4524
		perf_event_task_ctx(&cpuctx->ctx, task_event);
P
Peter Zijlstra 已提交
4525 4526 4527 4528 4529

		ctx = task_event->task_ctx;
		if (!ctx) {
			ctxn = pmu->task_ctx_nr;
			if (ctxn < 0)
4530
				goto next;
P
Peter Zijlstra 已提交
4531 4532 4533 4534
			ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		}
		if (ctx)
			perf_event_task_ctx(ctx, task_event);
4535 4536
next:
		put_cpu_ptr(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
4537
	}
P
Peter Zijlstra 已提交
4538 4539 4540
	rcu_read_unlock();
}

4541 4542
static void perf_event_task(struct task_struct *task,
			      struct perf_event_context *task_ctx,
4543
			      int new)
P
Peter Zijlstra 已提交
4544
{
P
Peter Zijlstra 已提交
4545
	struct perf_task_event task_event;
P
Peter Zijlstra 已提交
4546

4547 4548 4549
	if (!atomic_read(&nr_comm_events) &&
	    !atomic_read(&nr_mmap_events) &&
	    !atomic_read(&nr_task_events))
P
Peter Zijlstra 已提交
4550 4551
		return;

P
Peter Zijlstra 已提交
4552
	task_event = (struct perf_task_event){
4553 4554
		.task	  = task,
		.task_ctx = task_ctx,
4555
		.event_id    = {
P
Peter Zijlstra 已提交
4556
			.header = {
4557
				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
4558
				.misc = 0,
4559
				.size = sizeof(task_event.event_id),
P
Peter Zijlstra 已提交
4560
			},
4561 4562
			/* .pid  */
			/* .ppid */
P
Peter Zijlstra 已提交
4563 4564
			/* .tid  */
			/* .ptid */
P
Peter Zijlstra 已提交
4565
			.time = perf_clock(),
P
Peter Zijlstra 已提交
4566 4567 4568
		},
	};

4569
	perf_event_task_event(&task_event);
P
Peter Zijlstra 已提交
4570 4571
}

4572
void perf_event_fork(struct task_struct *task)
P
Peter Zijlstra 已提交
4573
{
4574
	perf_event_task(task, NULL, 1);
P
Peter Zijlstra 已提交
4575 4576
}

4577 4578 4579 4580 4581
/*
 * comm tracking
 */

struct perf_comm_event {
4582 4583
	struct task_struct	*task;
	char			*comm;
4584 4585 4586 4587 4588 4589 4590
	int			comm_size;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
4591
	} event_id;
4592 4593
};

4594
static void perf_event_comm_output(struct perf_event *event,
4595 4596 4597
				     struct perf_comm_event *comm_event)
{
	struct perf_output_handle handle;
4598
	struct perf_sample_data sample;
4599
	int size = comm_event->event_id.header.size;
4600 4601 4602 4603 4604
	int ret;

	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
				comm_event->event_id.header.size, 0, 0);
4605 4606

	if (ret)
4607
		goto out;
4608

4609 4610
	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
4611

4612
	perf_output_put(&handle, comm_event->event_id);
4613 4614
	perf_output_copy(&handle, comm_event->comm,
				   comm_event->comm_size);
4615 4616 4617

	perf_event__output_id_sample(event, &handle, &sample);

4618
	perf_output_end(&handle);
4619 4620
out:
	comm_event->event_id.header.size = size;
4621 4622
}

4623
static int perf_event_comm_match(struct perf_event *event)
4624
{
P
Peter Zijlstra 已提交
4625
	if (event->state < PERF_EVENT_STATE_INACTIVE)
4626 4627
		return 0;

4628
	if (!event_filter_match(event))
4629 4630
		return 0;

4631
	if (event->attr.comm)
4632 4633 4634 4635 4636
		return 1;

	return 0;
}

4637
static void perf_event_comm_ctx(struct perf_event_context *ctx,
4638 4639
				  struct perf_comm_event *comm_event)
{
4640
	struct perf_event *event;
4641

4642 4643 4644
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (perf_event_comm_match(event))
			perf_event_comm_output(event, comm_event);
4645 4646 4647
	}
}

4648
static void perf_event_comm_event(struct perf_comm_event *comm_event)
4649 4650
{
	struct perf_cpu_context *cpuctx;
4651
	struct perf_event_context *ctx;
4652
	char comm[TASK_COMM_LEN];
4653
	unsigned int size;
P
Peter Zijlstra 已提交
4654
	struct pmu *pmu;
P
Peter Zijlstra 已提交
4655
	int ctxn;
4656

4657
	memset(comm, 0, sizeof(comm));
4658
	strlcpy(comm, comm_event->task->comm, sizeof(comm));
4659
	size = ALIGN(strlen(comm)+1, sizeof(u64));
4660 4661 4662 4663

	comm_event->comm = comm;
	comm_event->comm_size = size;

4664
	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
4665
	rcu_read_lock();
P
Peter Zijlstra 已提交
4666
	list_for_each_entry_rcu(pmu, &pmus, entry) {
4667
		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4668 4669
		if (cpuctx->active_pmu != pmu)
			goto next;
P
Peter Zijlstra 已提交
4670
		perf_event_comm_ctx(&cpuctx->ctx, comm_event);
P
Peter Zijlstra 已提交
4671 4672 4673

		ctxn = pmu->task_ctx_nr;
		if (ctxn < 0)
4674
			goto next;
P
Peter Zijlstra 已提交
4675 4676 4677 4678

		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		if (ctx)
			perf_event_comm_ctx(ctx, comm_event);
4679 4680
next:
		put_cpu_ptr(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
4681
	}
4682
	rcu_read_unlock();
4683 4684
}

4685
void perf_event_comm(struct task_struct *task)
4686
{
4687
	struct perf_comm_event comm_event;
P
Peter Zijlstra 已提交
4688 4689
	struct perf_event_context *ctx;
	int ctxn;
4690

P
Peter Zijlstra 已提交
4691 4692 4693 4694
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;
4695

P
Peter Zijlstra 已提交
4696 4697
		perf_event_enable_on_exec(ctx);
	}
4698

4699
	if (!atomic_read(&nr_comm_events))
4700
		return;
4701

4702
	comm_event = (struct perf_comm_event){
4703
		.task	= task,
4704 4705
		/* .comm      */
		/* .comm_size */
4706
		.event_id  = {
4707
			.header = {
4708
				.type = PERF_RECORD_COMM,
4709 4710 4711 4712 4713
				.misc = 0,
				/* .size */
			},
			/* .pid */
			/* .tid */
4714 4715 4716
		},
	};

4717
	perf_event_comm_event(&comm_event);
4718 4719
}

4720 4721 4722 4723 4724
/*
 * mmap tracking
 */

struct perf_mmap_event {
4725 4726 4727 4728
	struct vm_area_struct	*vma;

	const char		*file_name;
	int			file_size;
4729 4730 4731 4732 4733 4734 4735 4736 4737

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
		u64				start;
		u64				len;
		u64				pgoff;
4738
	} event_id;
4739 4740
};

4741
static void perf_event_mmap_output(struct perf_event *event,
4742 4743 4744
				     struct perf_mmap_event *mmap_event)
{
	struct perf_output_handle handle;
4745
	struct perf_sample_data sample;
4746
	int size = mmap_event->event_id.header.size;
4747
	int ret;
4748

4749 4750 4751
	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
				mmap_event->event_id.header.size, 0, 0);
4752
	if (ret)
4753
		goto out;
4754

4755 4756
	mmap_event->event_id.pid = perf_event_pid(event, current);
	mmap_event->event_id.tid = perf_event_tid(event, current);
4757

4758
	perf_output_put(&handle, mmap_event->event_id);
4759 4760
	perf_output_copy(&handle, mmap_event->file_name,
				   mmap_event->file_size);
4761 4762 4763

	perf_event__output_id_sample(event, &handle, &sample);

4764
	perf_output_end(&handle);
4765 4766
out:
	mmap_event->event_id.header.size = size;
4767 4768
}

4769
static int perf_event_mmap_match(struct perf_event *event,
4770 4771
				   struct perf_mmap_event *mmap_event,
				   int executable)
4772
{
P
Peter Zijlstra 已提交
4773
	if (event->state < PERF_EVENT_STATE_INACTIVE)
4774 4775
		return 0;

4776
	if (!event_filter_match(event))
4777 4778
		return 0;

4779 4780
	if ((!executable && event->attr.mmap_data) ||
	    (executable && event->attr.mmap))
4781 4782 4783 4784 4785
		return 1;

	return 0;
}

4786
static void perf_event_mmap_ctx(struct perf_event_context *ctx,
4787 4788
				  struct perf_mmap_event *mmap_event,
				  int executable)
4789
{
4790
	struct perf_event *event;
4791

4792
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4793
		if (perf_event_mmap_match(event, mmap_event, executable))
4794
			perf_event_mmap_output(event, mmap_event);
4795 4796 4797
	}
}

4798
static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
4799 4800
{
	struct perf_cpu_context *cpuctx;
4801
	struct perf_event_context *ctx;
4802 4803
	struct vm_area_struct *vma = mmap_event->vma;
	struct file *file = vma->vm_file;
4804 4805 4806
	unsigned int size;
	char tmp[16];
	char *buf = NULL;
4807
	const char *name;
P
Peter Zijlstra 已提交
4808
	struct pmu *pmu;
P
Peter Zijlstra 已提交
4809
	int ctxn;
4810

4811 4812
	memset(tmp, 0, sizeof(tmp));

4813
	if (file) {
4814 4815 4816 4817 4818 4819
		/*
		 * d_path works from the end of the buffer backwards, so we
		 * need to add enough zero bytes after the string to handle
		 * the 64bit alignment we do later.
		 */
		buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
4820 4821 4822 4823
		if (!buf) {
			name = strncpy(tmp, "//enomem", sizeof(tmp));
			goto got_name;
		}
4824
		name = d_path(&file->f_path, buf, PATH_MAX);
4825 4826 4827 4828 4829
		if (IS_ERR(name)) {
			name = strncpy(tmp, "//toolong", sizeof(tmp));
			goto got_name;
		}
	} else {
4830 4831 4832
		if (arch_vma_name(mmap_event->vma)) {
			name = strncpy(tmp, arch_vma_name(mmap_event->vma),
				       sizeof(tmp));
4833
			goto got_name;
4834
		}
4835 4836 4837 4838

		if (!vma->vm_mm) {
			name = strncpy(tmp, "[vdso]", sizeof(tmp));
			goto got_name;
4839 4840 4841 4842 4843 4844 4845 4846
		} else if (vma->vm_start <= vma->vm_mm->start_brk &&
				vma->vm_end >= vma->vm_mm->brk) {
			name = strncpy(tmp, "[heap]", sizeof(tmp));
			goto got_name;
		} else if (vma->vm_start <= vma->vm_mm->start_stack &&
				vma->vm_end >= vma->vm_mm->start_stack) {
			name = strncpy(tmp, "[stack]", sizeof(tmp));
			goto got_name;
4847 4848
		}

4849 4850 4851 4852 4853
		name = strncpy(tmp, "//anon", sizeof(tmp));
		goto got_name;
	}

got_name:
4854
	size = ALIGN(strlen(name)+1, sizeof(u64));
4855 4856 4857 4858

	mmap_event->file_name = name;
	mmap_event->file_size = size;

4859
	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
4860

4861
	rcu_read_lock();
P
Peter Zijlstra 已提交
4862
	list_for_each_entry_rcu(pmu, &pmus, entry) {
4863
		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4864 4865
		if (cpuctx->active_pmu != pmu)
			goto next;
P
Peter Zijlstra 已提交
4866 4867
		perf_event_mmap_ctx(&cpuctx->ctx, mmap_event,
					vma->vm_flags & VM_EXEC);
P
Peter Zijlstra 已提交
4868 4869 4870

		ctxn = pmu->task_ctx_nr;
		if (ctxn < 0)
4871
			goto next;
P
Peter Zijlstra 已提交
4872 4873 4874 4875 4876 4877

		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		if (ctx) {
			perf_event_mmap_ctx(ctx, mmap_event,
					vma->vm_flags & VM_EXEC);
		}
4878 4879
next:
		put_cpu_ptr(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
4880
	}
4881 4882
	rcu_read_unlock();

4883 4884 4885
	kfree(buf);
}

4886
void perf_event_mmap(struct vm_area_struct *vma)
4887
{
4888 4889
	struct perf_mmap_event mmap_event;

4890
	if (!atomic_read(&nr_mmap_events))
4891 4892 4893
		return;

	mmap_event = (struct perf_mmap_event){
4894
		.vma	= vma,
4895 4896
		/* .file_name */
		/* .file_size */
4897
		.event_id  = {
4898
			.header = {
4899
				.type = PERF_RECORD_MMAP,
4900
				.misc = PERF_RECORD_MISC_USER,
4901 4902 4903 4904
				/* .size */
			},
			/* .pid */
			/* .tid */
4905 4906
			.start  = vma->vm_start,
			.len    = vma->vm_end - vma->vm_start,
4907
			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
4908 4909 4910
		},
	};

4911
	perf_event_mmap_event(&mmap_event);
4912 4913
}

4914 4915 4916 4917
/*
 * IRQ throttle logging
 */

4918
static void perf_log_throttle(struct perf_event *event, int enable)
4919 4920
{
	struct perf_output_handle handle;
4921
	struct perf_sample_data sample;
4922 4923 4924 4925 4926
	int ret;

	struct {
		struct perf_event_header	header;
		u64				time;
4927
		u64				id;
4928
		u64				stream_id;
4929 4930
	} throttle_event = {
		.header = {
4931
			.type = PERF_RECORD_THROTTLE,
4932 4933 4934
			.misc = 0,
			.size = sizeof(throttle_event),
		},
P
Peter Zijlstra 已提交
4935
		.time		= perf_clock(),
4936 4937
		.id		= primary_event_id(event),
		.stream_id	= event->id,
4938 4939
	};

4940
	if (enable)
4941
		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
4942

4943 4944 4945 4946
	perf_event_header__init_id(&throttle_event.header, &sample, event);

	ret = perf_output_begin(&handle, event,
				throttle_event.header.size, 1, 0);
4947 4948 4949 4950
	if (ret)
		return;

	perf_output_put(&handle, throttle_event);
4951
	perf_event__output_id_sample(event, &handle, &sample);
4952 4953 4954
	perf_output_end(&handle);
}

4955
/*
4956
 * Generic event overflow handling, sampling.
4957 4958
 */

4959
static int __perf_event_overflow(struct perf_event *event, int nmi,
4960 4961
				   int throttle, struct perf_sample_data *data,
				   struct pt_regs *regs)
4962
{
4963 4964
	int events = atomic_read(&event->event_limit);
	struct hw_perf_event *hwc = &event->hw;
4965 4966
	int ret = 0;

4967 4968 4969 4970 4971 4972 4973
	/*
	 * Non-sampling counters might still use the PMI to fold short
	 * hardware counters, ignore those.
	 */
	if (unlikely(!is_sampling_event(event)))
		return 0;

P
Peter Zijlstra 已提交
4974 4975 4976 4977
	if (unlikely(hwc->interrupts >= max_samples_per_tick)) {
		if (throttle) {
			hwc->interrupts = MAX_INTERRUPTS;
			perf_log_throttle(event, 0);
4978 4979
			ret = 1;
		}
P
Peter Zijlstra 已提交
4980 4981
	} else
		hwc->interrupts++;
4982

4983
	if (event->attr.freq) {
P
Peter Zijlstra 已提交
4984
		u64 now = perf_clock();
4985
		s64 delta = now - hwc->freq_time_stamp;
4986

4987
		hwc->freq_time_stamp = now;
4988

4989 4990
		if (delta > 0 && delta < 2*TICK_NSEC)
			perf_adjust_period(event, delta, hwc->last_period);
4991 4992
	}

4993 4994
	/*
	 * XXX event_limit might not quite work as expected on inherited
4995
	 * events
4996 4997
	 */

4998 4999
	event->pending_kill = POLL_IN;
	if (events && atomic_dec_and_test(&event->event_limit)) {
5000
		ret = 1;
5001
		event->pending_kill = POLL_HUP;
5002
		if (nmi) {
5003
			event->pending_disable = 1;
5004
			irq_work_queue(&event->pending);
5005
		} else
5006
			perf_event_disable(event);
5007 5008
	}

5009 5010 5011 5012 5013
	if (event->overflow_handler)
		event->overflow_handler(event, nmi, data, regs);
	else
		perf_event_output(event, nmi, data, regs);

P
Peter Zijlstra 已提交
5014 5015 5016 5017 5018 5019 5020 5021
	if (event->fasync && event->pending_kill) {
		if (nmi) {
			event->pending_wakeup = 1;
			irq_work_queue(&event->pending);
		} else
			perf_event_wakeup(event);
	}

5022
	return ret;
5023 5024
}

5025
int perf_event_overflow(struct perf_event *event, int nmi,
5026 5027
			  struct perf_sample_data *data,
			  struct pt_regs *regs)
5028
{
5029
	return __perf_event_overflow(event, nmi, 1, data, regs);
5030 5031
}

5032
/*
5033
 * Generic software event infrastructure
5034 5035
 */

5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046
struct swevent_htable {
	struct swevent_hlist		*swevent_hlist;
	struct mutex			hlist_mutex;
	int				hlist_refcount;

	/* Recursion avoidance in each contexts */
	int				recursion[PERF_NR_CONTEXTS];
};

static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);

5047
/*
5048 5049
 * We directly increment event->count and keep a second value in
 * event->hw.period_left to count intervals. This period event
5050 5051 5052 5053
 * is kept in the range [-sample_period, 0] so that we can use the
 * sign as trigger.
 */

5054
static u64 perf_swevent_set_period(struct perf_event *event)
5055
{
5056
	struct hw_perf_event *hwc = &event->hw;
5057 5058 5059 5060 5061
	u64 period = hwc->last_period;
	u64 nr, offset;
	s64 old, val;

	hwc->last_period = hwc->sample_period;
5062 5063

again:
5064
	old = val = local64_read(&hwc->period_left);
5065 5066
	if (val < 0)
		return 0;
5067

5068 5069 5070
	nr = div64_u64(period + val, period);
	offset = nr * period;
	val -= offset;
5071
	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
5072
		goto again;
5073

5074
	return nr;
5075 5076
}

5077
static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
5078 5079
				    int nmi, struct perf_sample_data *data,
				    struct pt_regs *regs)
5080
{
5081
	struct hw_perf_event *hwc = &event->hw;
5082
	int throttle = 0;
5083

5084
	data->period = event->hw.last_period;
5085 5086
	if (!overflow)
		overflow = perf_swevent_set_period(event);
5087

5088 5089
	if (hwc->interrupts == MAX_INTERRUPTS)
		return;
5090

5091
	for (; overflow; overflow--) {
5092
		if (__perf_event_overflow(event, nmi, throttle,
5093
					    data, regs)) {
5094 5095 5096 5097 5098 5099
			/*
			 * We inhibit the overflow from happening when
			 * hwc->interrupts == MAX_INTERRUPTS.
			 */
			break;
		}
5100
		throttle = 1;
5101
	}
5102 5103
}

P
Peter Zijlstra 已提交
5104
static void perf_swevent_event(struct perf_event *event, u64 nr,
5105 5106
			       int nmi, struct perf_sample_data *data,
			       struct pt_regs *regs)
5107
{
5108
	struct hw_perf_event *hwc = &event->hw;
5109

5110
	local64_add(nr, &event->count);
5111

5112 5113 5114
	if (!regs)
		return;

5115
	if (!is_sampling_event(event))
5116
		return;
5117

5118 5119 5120
	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
		return perf_swevent_overflow(event, 1, nmi, data, regs);

5121
	if (local64_add_negative(nr, &hwc->period_left))
5122
		return;
5123

5124
	perf_swevent_overflow(event, 0, nmi, data, regs);
5125 5126
}

5127 5128 5129
static int perf_exclude_event(struct perf_event *event,
			      struct pt_regs *regs)
{
P
Peter Zijlstra 已提交
5130
	if (event->hw.state & PERF_HES_STOPPED)
5131
		return 1;
P
Peter Zijlstra 已提交
5132

5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143
	if (regs) {
		if (event->attr.exclude_user && user_mode(regs))
			return 1;

		if (event->attr.exclude_kernel && !user_mode(regs))
			return 1;
	}

	return 0;
}

5144
static int perf_swevent_match(struct perf_event *event,
P
Peter Zijlstra 已提交
5145
				enum perf_type_id type,
L
Li Zefan 已提交
5146 5147 5148
				u32 event_id,
				struct perf_sample_data *data,
				struct pt_regs *regs)
5149
{
5150
	if (event->attr.type != type)
5151
		return 0;
5152

5153
	if (event->attr.config != event_id)
5154 5155
		return 0;

5156 5157
	if (perf_exclude_event(event, regs))
		return 0;
5158 5159 5160 5161

	return 1;
}

5162 5163 5164 5165 5166 5167 5168
static inline u64 swevent_hash(u64 type, u32 event_id)
{
	u64 val = event_id | (type << 32);

	return hash_64(val, SWEVENT_HLIST_BITS);
}

5169 5170
static inline struct hlist_head *
__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
5171
{
5172 5173 5174 5175
	u64 hash = swevent_hash(type, event_id);

	return &hlist->heads[hash];
}
5176

5177 5178
/* For the read side: events when they trigger */
static inline struct hlist_head *
5179
find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
5180 5181
{
	struct swevent_hlist *hlist;
5182

5183
	hlist = rcu_dereference(swhash->swevent_hlist);
5184 5185 5186
	if (!hlist)
		return NULL;

5187 5188 5189 5190 5191
	return __find_swevent_head(hlist, type, event_id);
}

/* For the event head insertion and removal in the hlist */
static inline struct hlist_head *
5192
find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
5193 5194 5195 5196 5197 5198 5199 5200 5201 5202
{
	struct swevent_hlist *hlist;
	u32 event_id = event->attr.config;
	u64 type = event->attr.type;

	/*
	 * Event scheduling is always serialized against hlist allocation
	 * and release. Which makes the protected version suitable here.
	 * The context lock guarantees that.
	 */
5203
	hlist = rcu_dereference_protected(swhash->swevent_hlist,
5204 5205 5206 5207 5208
					  lockdep_is_held(&event->ctx->lock));
	if (!hlist)
		return NULL;

	return __find_swevent_head(hlist, type, event_id);
5209 5210 5211 5212 5213 5214
}

static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
				    u64 nr, int nmi,
				    struct perf_sample_data *data,
				    struct pt_regs *regs)
5215
{
5216
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5217
	struct perf_event *event;
5218 5219
	struct hlist_node *node;
	struct hlist_head *head;
5220

5221
	rcu_read_lock();
5222
	head = find_swevent_head_rcu(swhash, type, event_id);
5223 5224 5225 5226
	if (!head)
		goto end;

	hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
L
Li Zefan 已提交
5227
		if (perf_swevent_match(event, type, event_id, data, regs))
P
Peter Zijlstra 已提交
5228
			perf_swevent_event(event, nr, nmi, data, regs);
5229
	}
5230 5231
end:
	rcu_read_unlock();
5232 5233
}

5234
int perf_swevent_get_recursion_context(void)
P
Peter Zijlstra 已提交
5235
{
5236
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
P
Peter Zijlstra 已提交
5237

5238
	return get_recursion_context(swhash->recursion);
P
Peter Zijlstra 已提交
5239
}
I
Ingo Molnar 已提交
5240
EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
P
Peter Zijlstra 已提交
5241

5242
inline void perf_swevent_put_recursion_context(int rctx)
5243
{
5244
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5245

5246
	put_recursion_context(swhash->recursion, rctx);
5247
}
5248

5249
void __perf_sw_event(u32 event_id, u64 nr, int nmi,
5250
			    struct pt_regs *regs, u64 addr)
5251
{
5252
	struct perf_sample_data data;
5253 5254
	int rctx;

5255
	preempt_disable_notrace();
5256 5257 5258
	rctx = perf_swevent_get_recursion_context();
	if (rctx < 0)
		return;
5259

5260
	perf_sample_data_init(&data, addr);
5261

5262
	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi, &data, regs);
5263 5264

	perf_swevent_put_recursion_context(rctx);
5265
	preempt_enable_notrace();
5266 5267
}

5268
static void perf_swevent_read(struct perf_event *event)
5269 5270 5271
{
}

P
Peter Zijlstra 已提交
5272
static int perf_swevent_add(struct perf_event *event, int flags)
5273
{
5274
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5275
	struct hw_perf_event *hwc = &event->hw;
5276 5277
	struct hlist_head *head;

5278
	if (is_sampling_event(event)) {
5279
		hwc->last_period = hwc->sample_period;
5280
		perf_swevent_set_period(event);
5281
	}
5282

P
Peter Zijlstra 已提交
5283 5284
	hwc->state = !(flags & PERF_EF_START);

5285
	head = find_swevent_head(swhash, event);
5286 5287 5288 5289 5290
	if (WARN_ON_ONCE(!head))
		return -EINVAL;

	hlist_add_head_rcu(&event->hlist_entry, head);

5291 5292 5293
	return 0;
}

P
Peter Zijlstra 已提交
5294
static void perf_swevent_del(struct perf_event *event, int flags)
5295
{
5296
	hlist_del_rcu(&event->hlist_entry);
5297 5298
}

P
Peter Zijlstra 已提交
5299
static void perf_swevent_start(struct perf_event *event, int flags)
5300
{
P
Peter Zijlstra 已提交
5301
	event->hw.state = 0;
5302
}
I
Ingo Molnar 已提交
5303

P
Peter Zijlstra 已提交
5304
static void perf_swevent_stop(struct perf_event *event, int flags)
5305
{
P
Peter Zijlstra 已提交
5306
	event->hw.state = PERF_HES_STOPPED;
5307 5308
}

5309 5310
/* Deref the hlist from the update side */
static inline struct swevent_hlist *
5311
swevent_hlist_deref(struct swevent_htable *swhash)
5312
{
5313 5314
	return rcu_dereference_protected(swhash->swevent_hlist,
					 lockdep_is_held(&swhash->hlist_mutex));
5315 5316
}

5317
static void swevent_hlist_release(struct swevent_htable *swhash)
5318
{
5319
	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
5320

5321
	if (!hlist)
5322 5323
		return;

5324
	rcu_assign_pointer(swhash->swevent_hlist, NULL);
5325
	kfree_rcu(hlist, rcu_head);
5326 5327 5328 5329
}

static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
{
5330
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5331

5332
	mutex_lock(&swhash->hlist_mutex);
5333

5334 5335
	if (!--swhash->hlist_refcount)
		swevent_hlist_release(swhash);
5336

5337
	mutex_unlock(&swhash->hlist_mutex);
5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354
}

static void swevent_hlist_put(struct perf_event *event)
{
	int cpu;

	if (event->cpu != -1) {
		swevent_hlist_put_cpu(event, event->cpu);
		return;
	}

	for_each_possible_cpu(cpu)
		swevent_hlist_put_cpu(event, cpu);
}

static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
{
5355
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5356 5357
	int err = 0;

5358
	mutex_lock(&swhash->hlist_mutex);
5359

5360
	if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
5361 5362 5363 5364 5365 5366 5367
		struct swevent_hlist *hlist;

		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
		if (!hlist) {
			err = -ENOMEM;
			goto exit;
		}
5368
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
5369
	}
5370
	swhash->hlist_refcount++;
P
Peter Zijlstra 已提交
5371
exit:
5372
	mutex_unlock(&swhash->hlist_mutex);
5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395

	return err;
}

static int swevent_hlist_get(struct perf_event *event)
{
	int err;
	int cpu, failed_cpu;

	if (event->cpu != -1)
		return swevent_hlist_get_cpu(event, event->cpu);

	get_online_cpus();
	for_each_possible_cpu(cpu) {
		err = swevent_hlist_get_cpu(event, cpu);
		if (err) {
			failed_cpu = cpu;
			goto fail;
		}
	}
	put_online_cpus();

	return 0;
P
Peter Zijlstra 已提交
5396
fail:
5397 5398 5399 5400 5401 5402 5403 5404 5405 5406
	for_each_possible_cpu(cpu) {
		if (cpu == failed_cpu)
			break;
		swevent_hlist_put_cpu(event, cpu);
	}

	put_online_cpus();
	return err;
}

5407
struct jump_label_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
5408

5409 5410 5411
static void sw_perf_event_destroy(struct perf_event *event)
{
	u64 event_id = event->attr.config;
5412

5413 5414
	WARN_ON(event->parent);

P
Peter Zijlstra 已提交
5415
	jump_label_dec(&perf_swevent_enabled[event_id]);
5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434
	swevent_hlist_put(event);
}

static int perf_swevent_init(struct perf_event *event)
{
	int event_id = event->attr.config;

	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	switch (event_id) {
	case PERF_COUNT_SW_CPU_CLOCK:
	case PERF_COUNT_SW_TASK_CLOCK:
		return -ENOENT;

	default:
		break;
	}

5435
	if (event_id >= PERF_COUNT_SW_MAX)
5436 5437 5438 5439 5440 5441 5442 5443 5444
		return -ENOENT;

	if (!event->parent) {
		int err;

		err = swevent_hlist_get(event);
		if (err)
			return err;

P
Peter Zijlstra 已提交
5445
		jump_label_inc(&perf_swevent_enabled[event_id]);
5446 5447 5448 5449 5450 5451 5452
		event->destroy = sw_perf_event_destroy;
	}

	return 0;
}

static struct pmu perf_swevent = {
5453
	.task_ctx_nr	= perf_sw_context,
5454

5455
	.event_init	= perf_swevent_init,
P
Peter Zijlstra 已提交
5456 5457 5458 5459
	.add		= perf_swevent_add,
	.del		= perf_swevent_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
5460 5461 5462
	.read		= perf_swevent_read,
};

5463 5464
#ifdef CONFIG_EVENT_TRACING

5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478
static int perf_tp_filter_match(struct perf_event *event,
				struct perf_sample_data *data)
{
	void *record = data->raw->data;

	if (likely(!event->filter) || filter_match_preds(event->filter, record))
		return 1;
	return 0;
}

static int perf_tp_event_match(struct perf_event *event,
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
5479 5480
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;
5481 5482 5483 5484
	/*
	 * All tracepoints are from kernel-space.
	 */
	if (event->attr.exclude_kernel)
5485 5486 5487 5488 5489 5490 5491 5492 5493
		return 0;

	if (!perf_tp_filter_match(event, data))
		return 0;

	return 1;
}

void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
5494
		   struct pt_regs *regs, struct hlist_head *head, int rctx)
5495 5496
{
	struct perf_sample_data data;
5497 5498 5499
	struct perf_event *event;
	struct hlist_node *node;

5500 5501 5502 5503 5504 5505 5506 5507
	struct perf_raw_record raw = {
		.size = entry_size,
		.data = record,
	};

	perf_sample_data_init(&data, addr);
	data.raw = &raw;

5508 5509
	hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
		if (perf_tp_event_match(event, &data, regs))
P
Peter Zijlstra 已提交
5510
			perf_swevent_event(event, count, 1, &data, regs);
5511
	}
5512 5513

	perf_swevent_put_recursion_context(rctx);
5514 5515 5516
}
EXPORT_SYMBOL_GPL(perf_tp_event);

5517
static void tp_perf_event_destroy(struct perf_event *event)
5518
{
5519
	perf_trace_destroy(event);
5520 5521
}

5522
static int perf_tp_event_init(struct perf_event *event)
5523
{
5524 5525
	int err;

5526 5527 5528
	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -ENOENT;

5529 5530
	err = perf_trace_init(event);
	if (err)
5531
		return err;
5532

5533
	event->destroy = tp_perf_event_destroy;
5534

5535 5536 5537 5538
	return 0;
}

static struct pmu perf_tracepoint = {
5539 5540
	.task_ctx_nr	= perf_sw_context,

5541
	.event_init	= perf_tp_event_init,
P
Peter Zijlstra 已提交
5542 5543 5544 5545
	.add		= perf_trace_add,
	.del		= perf_trace_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
5546 5547 5548 5549 5550
	.read		= perf_swevent_read,
};

static inline void perf_tp_register(void)
{
P
Peter Zijlstra 已提交
5551
	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
5552
}
L
Li Zefan 已提交
5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	char *filter_str;
	int ret;

	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -EINVAL;

	filter_str = strndup_user(arg, PAGE_SIZE);
	if (IS_ERR(filter_str))
		return PTR_ERR(filter_str);

	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);

	kfree(filter_str);
	return ret;
}

static void perf_event_free_filter(struct perf_event *event)
{
	ftrace_profile_free_filter(event);
}

5577
#else
L
Li Zefan 已提交
5578

5579
static inline void perf_tp_register(void)
5580 5581
{
}
L
Li Zefan 已提交
5582 5583 5584 5585 5586 5587 5588 5589 5590 5591

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	return -ENOENT;
}

static void perf_event_free_filter(struct perf_event *event)
{
}

5592
#endif /* CONFIG_EVENT_TRACING */
5593

5594
#ifdef CONFIG_HAVE_HW_BREAKPOINT
5595
void perf_bp_event(struct perf_event *bp, void *data)
5596
{
5597 5598 5599
	struct perf_sample_data sample;
	struct pt_regs *regs = data;

5600
	perf_sample_data_init(&sample, bp->attr.bp_addr);
5601

P
Peter Zijlstra 已提交
5602 5603
	if (!bp->hw.state && !perf_exclude_event(bp, regs))
		perf_swevent_event(bp, 1, 1, &sample, regs);
5604 5605 5606
}
#endif

5607 5608 5609
/*
 * hrtimer based swevent callback
 */
5610

5611
static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
5612
{
5613 5614 5615 5616 5617
	enum hrtimer_restart ret = HRTIMER_RESTART;
	struct perf_sample_data data;
	struct pt_regs *regs;
	struct perf_event *event;
	u64 period;
5618

5619
	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
P
Peter Zijlstra 已提交
5620 5621 5622 5623

	if (event->state != PERF_EVENT_STATE_ACTIVE)
		return HRTIMER_NORESTART;

5624
	event->pmu->read(event);
5625

5626 5627 5628 5629 5630 5631 5632 5633 5634
	perf_sample_data_init(&data, 0);
	data.period = event->hw.last_period;
	regs = get_irq_regs();

	if (regs && !perf_exclude_event(event, regs)) {
		if (!(event->attr.exclude_idle && current->pid == 0))
			if (perf_event_overflow(event, 0, &data, regs))
				ret = HRTIMER_NORESTART;
	}
5635

5636 5637
	period = max_t(u64, 10000, event->hw.sample_period);
	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
5638

5639
	return ret;
5640 5641
}

5642
static void perf_swevent_start_hrtimer(struct perf_event *event)
5643
{
5644
	struct hw_perf_event *hwc = &event->hw;
5645 5646 5647 5648
	s64 period;

	if (!is_sampling_event(event))
		return;
5649

5650 5651 5652 5653
	period = local64_read(&hwc->period_left);
	if (period) {
		if (period < 0)
			period = 10000;
P
Peter Zijlstra 已提交
5654

5655 5656 5657 5658 5659
		local64_set(&hwc->period_left, 0);
	} else {
		period = max_t(u64, 10000, hwc->sample_period);
	}
	__hrtimer_start_range_ns(&hwc->hrtimer,
5660
				ns_to_ktime(period), 0,
5661
				HRTIMER_MODE_REL_PINNED, 0);
5662
}
5663 5664

static void perf_swevent_cancel_hrtimer(struct perf_event *event)
5665
{
5666 5667
	struct hw_perf_event *hwc = &event->hw;

5668
	if (is_sampling_event(event)) {
5669
		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
P
Peter Zijlstra 已提交
5670
		local64_set(&hwc->period_left, ktime_to_ns(remaining));
5671 5672 5673

		hrtimer_cancel(&hwc->hrtimer);
	}
5674 5675
}

P
Peter Zijlstra 已提交
5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699
static void perf_swevent_init_hrtimer(struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;

	if (!is_sampling_event(event))
		return;

	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swevent_hrtimer;

	/*
	 * Since hrtimers have a fixed rate, we can do a static freq->period
	 * mapping and avoid the whole period adjust feedback stuff.
	 */
	if (event->attr.freq) {
		long freq = event->attr.sample_freq;

		event->attr.sample_period = NSEC_PER_SEC / freq;
		hwc->sample_period = event->attr.sample_period;
		local64_set(&hwc->period_left, hwc->sample_period);
		event->attr.freq = 0;
	}
}

5700 5701 5702 5703 5704
/*
 * Software event: cpu wall time clock
 */

static void cpu_clock_event_update(struct perf_event *event)
5705
{
5706 5707 5708
	s64 prev;
	u64 now;

P
Peter Zijlstra 已提交
5709
	now = local_clock();
5710 5711
	prev = local64_xchg(&event->hw.prev_count, now);
	local64_add(now - prev, &event->count);
5712 5713
}

P
Peter Zijlstra 已提交
5714
static void cpu_clock_event_start(struct perf_event *event, int flags)
5715
{
P
Peter Zijlstra 已提交
5716
	local64_set(&event->hw.prev_count, local_clock());
5717 5718 5719
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
5720
static void cpu_clock_event_stop(struct perf_event *event, int flags)
5721
{
5722 5723 5724
	perf_swevent_cancel_hrtimer(event);
	cpu_clock_event_update(event);
}
5725

P
Peter Zijlstra 已提交
5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738
static int cpu_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		cpu_clock_event_start(event, flags);

	return 0;
}

static void cpu_clock_event_del(struct perf_event *event, int flags)
{
	cpu_clock_event_stop(event, flags);
}

5739 5740 5741 5742
static void cpu_clock_event_read(struct perf_event *event)
{
	cpu_clock_event_update(event);
}
5743

5744 5745 5746 5747 5748 5749 5750 5751
static int cpu_clock_event_init(struct perf_event *event)
{
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
		return -ENOENT;

P
Peter Zijlstra 已提交
5752 5753
	perf_swevent_init_hrtimer(event);

5754
	return 0;
5755 5756
}

5757
static struct pmu perf_cpu_clock = {
5758 5759
	.task_ctx_nr	= perf_sw_context,

5760
	.event_init	= cpu_clock_event_init,
P
Peter Zijlstra 已提交
5761 5762 5763 5764
	.add		= cpu_clock_event_add,
	.del		= cpu_clock_event_del,
	.start		= cpu_clock_event_start,
	.stop		= cpu_clock_event_stop,
5765 5766 5767 5768 5769 5770 5771 5772
	.read		= cpu_clock_event_read,
};

/*
 * Software event: task time clock
 */

static void task_clock_event_update(struct perf_event *event, u64 now)
5773
{
5774 5775
	u64 prev;
	s64 delta;
5776

5777 5778 5779 5780
	prev = local64_xchg(&event->hw.prev_count, now);
	delta = now - prev;
	local64_add(delta, &event->count);
}
5781

P
Peter Zijlstra 已提交
5782
static void task_clock_event_start(struct perf_event *event, int flags)
5783
{
P
Peter Zijlstra 已提交
5784
	local64_set(&event->hw.prev_count, event->ctx->time);
5785 5786 5787
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
5788
static void task_clock_event_stop(struct perf_event *event, int flags)
5789 5790 5791
{
	perf_swevent_cancel_hrtimer(event);
	task_clock_event_update(event, event->ctx->time);
P
Peter Zijlstra 已提交
5792 5793 5794 5795 5796 5797
}

static int task_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		task_clock_event_start(event, flags);
5798

P
Peter Zijlstra 已提交
5799 5800 5801 5802 5803 5804
	return 0;
}

static void task_clock_event_del(struct perf_event *event, int flags)
{
	task_clock_event_stop(event, PERF_EF_UPDATE);
5805 5806 5807 5808
}

static void task_clock_event_read(struct perf_event *event)
{
5809 5810 5811
	u64 now = perf_clock();
	u64 delta = now - event->ctx->timestamp;
	u64 time = event->ctx->time + delta;
5812 5813 5814 5815 5816

	task_clock_event_update(event, time);
}

static int task_clock_event_init(struct perf_event *event)
L
Li Zefan 已提交
5817
{
5818 5819 5820 5821 5822 5823
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
		return -ENOENT;

P
Peter Zijlstra 已提交
5824 5825
	perf_swevent_init_hrtimer(event);

5826
	return 0;
L
Li Zefan 已提交
5827 5828
}

5829
static struct pmu perf_task_clock = {
5830 5831
	.task_ctx_nr	= perf_sw_context,

5832
	.event_init	= task_clock_event_init,
P
Peter Zijlstra 已提交
5833 5834 5835 5836
	.add		= task_clock_event_add,
	.del		= task_clock_event_del,
	.start		= task_clock_event_start,
	.stop		= task_clock_event_stop,
5837 5838
	.read		= task_clock_event_read,
};
L
Li Zefan 已提交
5839

P
Peter Zijlstra 已提交
5840
static void perf_pmu_nop_void(struct pmu *pmu)
5841 5842
{
}
L
Li Zefan 已提交
5843

P
Peter Zijlstra 已提交
5844
static int perf_pmu_nop_int(struct pmu *pmu)
L
Li Zefan 已提交
5845
{
P
Peter Zijlstra 已提交
5846
	return 0;
L
Li Zefan 已提交
5847 5848
}

P
Peter Zijlstra 已提交
5849
static void perf_pmu_start_txn(struct pmu *pmu)
L
Li Zefan 已提交
5850
{
P
Peter Zijlstra 已提交
5851
	perf_pmu_disable(pmu);
L
Li Zefan 已提交
5852 5853
}

P
Peter Zijlstra 已提交
5854 5855 5856 5857 5858
static int perf_pmu_commit_txn(struct pmu *pmu)
{
	perf_pmu_enable(pmu);
	return 0;
}
5859

P
Peter Zijlstra 已提交
5860
static void perf_pmu_cancel_txn(struct pmu *pmu)
5861
{
P
Peter Zijlstra 已提交
5862
	perf_pmu_enable(pmu);
5863 5864
}

P
Peter Zijlstra 已提交
5865 5866 5867 5868 5869
/*
 * Ensures all contexts with the same task_ctx_nr have the same
 * pmu_cpu_context too.
 */
static void *find_pmu_context(int ctxn)
5870
{
P
Peter Zijlstra 已提交
5871
	struct pmu *pmu;
5872

P
Peter Zijlstra 已提交
5873 5874
	if (ctxn < 0)
		return NULL;
5875

P
Peter Zijlstra 已提交
5876 5877 5878 5879
	list_for_each_entry(pmu, &pmus, entry) {
		if (pmu->task_ctx_nr == ctxn)
			return pmu->pmu_cpu_context;
	}
5880

P
Peter Zijlstra 已提交
5881
	return NULL;
5882 5883
}

5884
static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
5885
{
5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900
	int cpu;

	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);

		if (cpuctx->active_pmu == old_pmu)
			cpuctx->active_pmu = pmu;
	}
}

static void free_pmu_context(struct pmu *pmu)
{
	struct pmu *i;
5901

P
Peter Zijlstra 已提交
5902
	mutex_lock(&pmus_lock);
5903
	/*
P
Peter Zijlstra 已提交
5904
	 * Like a real lame refcount.
5905
	 */
5906 5907 5908
	list_for_each_entry(i, &pmus, entry) {
		if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
			update_pmu_context(i, pmu);
P
Peter Zijlstra 已提交
5909
			goto out;
5910
		}
P
Peter Zijlstra 已提交
5911
	}
5912

5913
	free_percpu(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
5914 5915
out:
	mutex_unlock(&pmus_lock);
5916
}
P
Peter Zijlstra 已提交
5917
static struct idr pmu_idr;
5918

P
Peter Zijlstra 已提交
5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970
static ssize_t
type_show(struct device *dev, struct device_attribute *attr, char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
}

static struct device_attribute pmu_dev_attrs[] = {
       __ATTR_RO(type),
       __ATTR_NULL,
};

static int pmu_bus_running;
static struct bus_type pmu_bus = {
	.name		= "event_source",
	.dev_attrs	= pmu_dev_attrs,
};

static void pmu_dev_release(struct device *dev)
{
	kfree(dev);
}

static int pmu_dev_alloc(struct pmu *pmu)
{
	int ret = -ENOMEM;

	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
	if (!pmu->dev)
		goto out;

	device_initialize(pmu->dev);
	ret = dev_set_name(pmu->dev, "%s", pmu->name);
	if (ret)
		goto free_dev;

	dev_set_drvdata(pmu->dev, pmu);
	pmu->dev->bus = &pmu_bus;
	pmu->dev->release = pmu_dev_release;
	ret = device_add(pmu->dev);
	if (ret)
		goto free_dev;

out:
	return ret;

free_dev:
	put_device(pmu->dev);
	goto out;
}

5971
static struct lock_class_key cpuctx_mutex;
5972
static struct lock_class_key cpuctx_lock;
5973

P
Peter Zijlstra 已提交
5974
int perf_pmu_register(struct pmu *pmu, char *name, int type)
5975
{
P
Peter Zijlstra 已提交
5976
	int cpu, ret;
5977

5978
	mutex_lock(&pmus_lock);
P
Peter Zijlstra 已提交
5979 5980 5981 5982
	ret = -ENOMEM;
	pmu->pmu_disable_count = alloc_percpu(int);
	if (!pmu->pmu_disable_count)
		goto unlock;
5983

P
Peter Zijlstra 已提交
5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001
	pmu->type = -1;
	if (!name)
		goto skip_type;
	pmu->name = name;

	if (type < 0) {
		int err = idr_pre_get(&pmu_idr, GFP_KERNEL);
		if (!err)
			goto free_pdc;

		err = idr_get_new_above(&pmu_idr, pmu, PERF_TYPE_MAX, &type);
		if (err) {
			ret = err;
			goto free_pdc;
		}
	}
	pmu->type = type;

P
Peter Zijlstra 已提交
6002 6003 6004 6005 6006 6007
	if (pmu_bus_running) {
		ret = pmu_dev_alloc(pmu);
		if (ret)
			goto free_idr;
	}

P
Peter Zijlstra 已提交
6008
skip_type:
P
Peter Zijlstra 已提交
6009 6010 6011
	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
	if (pmu->pmu_cpu_context)
		goto got_cpu_context;
6012

P
Peter Zijlstra 已提交
6013 6014
	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
	if (!pmu->pmu_cpu_context)
P
Peter Zijlstra 已提交
6015
		goto free_dev;
6016

P
Peter Zijlstra 已提交
6017 6018 6019 6020
	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6021
		__perf_event_init_context(&cpuctx->ctx);
6022
		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
6023
		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
6024
		cpuctx->ctx.type = cpu_context;
P
Peter Zijlstra 已提交
6025
		cpuctx->ctx.pmu = pmu;
6026 6027
		cpuctx->jiffies_interval = 1;
		INIT_LIST_HEAD(&cpuctx->rotation_list);
6028
		cpuctx->active_pmu = pmu;
P
Peter Zijlstra 已提交
6029
	}
6030

P
Peter Zijlstra 已提交
6031
got_cpu_context:
P
Peter Zijlstra 已提交
6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045
	if (!pmu->start_txn) {
		if (pmu->pmu_enable) {
			/*
			 * If we have pmu_enable/pmu_disable calls, install
			 * transaction stubs that use that to try and batch
			 * hardware accesses.
			 */
			pmu->start_txn  = perf_pmu_start_txn;
			pmu->commit_txn = perf_pmu_commit_txn;
			pmu->cancel_txn = perf_pmu_cancel_txn;
		} else {
			pmu->start_txn  = perf_pmu_nop_void;
			pmu->commit_txn = perf_pmu_nop_int;
			pmu->cancel_txn = perf_pmu_nop_void;
6046
		}
6047
	}
6048

P
Peter Zijlstra 已提交
6049 6050 6051 6052 6053
	if (!pmu->pmu_enable) {
		pmu->pmu_enable  = perf_pmu_nop_void;
		pmu->pmu_disable = perf_pmu_nop_void;
	}

6054
	list_add_rcu(&pmu->entry, &pmus);
P
Peter Zijlstra 已提交
6055 6056
	ret = 0;
unlock:
6057 6058
	mutex_unlock(&pmus_lock);

P
Peter Zijlstra 已提交
6059
	return ret;
P
Peter Zijlstra 已提交
6060

P
Peter Zijlstra 已提交
6061 6062 6063 6064
free_dev:
	device_del(pmu->dev);
	put_device(pmu->dev);

P
Peter Zijlstra 已提交
6065 6066 6067 6068
free_idr:
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);

P
Peter Zijlstra 已提交
6069 6070 6071
free_pdc:
	free_percpu(pmu->pmu_disable_count);
	goto unlock;
6072 6073
}

6074
void perf_pmu_unregister(struct pmu *pmu)
6075
{
6076 6077 6078
	mutex_lock(&pmus_lock);
	list_del_rcu(&pmu->entry);
	mutex_unlock(&pmus_lock);
6079

6080
	/*
P
Peter Zijlstra 已提交
6081 6082
	 * We dereference the pmu list under both SRCU and regular RCU, so
	 * synchronize against both of those.
6083
	 */
6084
	synchronize_srcu(&pmus_srcu);
P
Peter Zijlstra 已提交
6085
	synchronize_rcu();
6086

P
Peter Zijlstra 已提交
6087
	free_percpu(pmu->pmu_disable_count);
P
Peter Zijlstra 已提交
6088 6089
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);
P
Peter Zijlstra 已提交
6090 6091
	device_del(pmu->dev);
	put_device(pmu->dev);
6092
	free_pmu_context(pmu);
6093
}
6094

6095 6096 6097 6098
struct pmu *perf_init_event(struct perf_event *event)
{
	struct pmu *pmu = NULL;
	int idx;
6099
	int ret;
6100 6101

	idx = srcu_read_lock(&pmus_srcu);
P
Peter Zijlstra 已提交
6102 6103 6104 6105

	rcu_read_lock();
	pmu = idr_find(&pmu_idr, event->attr.type);
	rcu_read_unlock();
6106 6107 6108 6109
	if (pmu) {
		ret = pmu->event_init(event);
		if (ret)
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
6110
		goto unlock;
6111
	}
P
Peter Zijlstra 已提交
6112

6113
	list_for_each_entry_rcu(pmu, &pmus, entry) {
6114
		ret = pmu->event_init(event);
6115
		if (!ret)
P
Peter Zijlstra 已提交
6116
			goto unlock;
6117

6118 6119
		if (ret != -ENOENT) {
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
6120
			goto unlock;
6121
		}
6122
	}
P
Peter Zijlstra 已提交
6123 6124
	pmu = ERR_PTR(-ENOENT);
unlock:
6125
	srcu_read_unlock(&pmus_srcu, idx);
6126

6127
	return pmu;
6128 6129
}

T
Thomas Gleixner 已提交
6130
/*
6131
 * Allocate and initialize a event structure
T
Thomas Gleixner 已提交
6132
 */
6133
static struct perf_event *
6134
perf_event_alloc(struct perf_event_attr *attr, int cpu,
6135 6136 6137 6138
		 struct task_struct *task,
		 struct perf_event *group_leader,
		 struct perf_event *parent_event,
		 perf_overflow_handler_t overflow_handler)
T
Thomas Gleixner 已提交
6139
{
P
Peter Zijlstra 已提交
6140
	struct pmu *pmu;
6141 6142
	struct perf_event *event;
	struct hw_perf_event *hwc;
6143
	long err;
T
Thomas Gleixner 已提交
6144

6145 6146 6147 6148 6149
	if ((unsigned)cpu >= nr_cpu_ids) {
		if (!task || cpu != -1)
			return ERR_PTR(-EINVAL);
	}

6150
	event = kzalloc(sizeof(*event), GFP_KERNEL);
6151
	if (!event)
6152
		return ERR_PTR(-ENOMEM);
T
Thomas Gleixner 已提交
6153

6154
	/*
6155
	 * Single events are their own group leaders, with an
6156 6157 6158
	 * empty sibling list:
	 */
	if (!group_leader)
6159
		group_leader = event;
6160

6161 6162
	mutex_init(&event->child_mutex);
	INIT_LIST_HEAD(&event->child_list);
6163

6164 6165 6166 6167
	INIT_LIST_HEAD(&event->group_entry);
	INIT_LIST_HEAD(&event->event_entry);
	INIT_LIST_HEAD(&event->sibling_list);
	init_waitqueue_head(&event->waitq);
6168
	init_irq_work(&event->pending, perf_pending_event);
T
Thomas Gleixner 已提交
6169

6170
	mutex_init(&event->mmap_mutex);
6171

6172 6173 6174 6175 6176
	event->cpu		= cpu;
	event->attr		= *attr;
	event->group_leader	= group_leader;
	event->pmu		= NULL;
	event->oncpu		= -1;
6177

6178
	event->parent		= parent_event;
6179

6180 6181
	event->ns		= get_pid_ns(current->nsproxy->pid_ns);
	event->id		= atomic64_inc_return(&perf_event_id);
6182

6183
	event->state		= PERF_EVENT_STATE_INACTIVE;
6184

6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195
	if (task) {
		event->attach_state = PERF_ATTACH_TASK;
#ifdef CONFIG_HAVE_HW_BREAKPOINT
		/*
		 * hw_breakpoint is a bit difficult here..
		 */
		if (attr->type == PERF_TYPE_BREAKPOINT)
			event->hw.bp_target = task;
#endif
	}

6196 6197
	if (!overflow_handler && parent_event)
		overflow_handler = parent_event->overflow_handler;
6198

6199
	event->overflow_handler	= overflow_handler;
6200

6201
	if (attr->disabled)
6202
		event->state = PERF_EVENT_STATE_OFF;
6203

6204
	pmu = NULL;
6205

6206
	hwc = &event->hw;
6207
	hwc->sample_period = attr->sample_period;
6208
	if (attr->freq && attr->sample_freq)
6209
		hwc->sample_period = 1;
6210
	hwc->last_period = hwc->sample_period;
6211

6212
	local64_set(&hwc->period_left, hwc->sample_period);
6213

6214
	/*
6215
	 * we currently do not support PERF_FORMAT_GROUP on inherited events
6216
	 */
6217
	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
6218 6219
		goto done;

6220
	pmu = perf_init_event(event);
6221

6222 6223
done:
	err = 0;
6224
	if (!pmu)
6225
		err = -EINVAL;
6226 6227
	else if (IS_ERR(pmu))
		err = PTR_ERR(pmu);
6228

6229
	if (err) {
6230 6231 6232
		if (event->ns)
			put_pid_ns(event->ns);
		kfree(event);
6233
		return ERR_PTR(err);
I
Ingo Molnar 已提交
6234
	}
6235

6236
	event->pmu = pmu;
T
Thomas Gleixner 已提交
6237

6238
	if (!event->parent) {
6239
		if (event->attach_state & PERF_ATTACH_TASK)
S
Stephane Eranian 已提交
6240
			jump_label_inc(&perf_sched_events);
6241
		if (event->attr.mmap || event->attr.mmap_data)
6242 6243 6244 6245 6246
			atomic_inc(&nr_mmap_events);
		if (event->attr.comm)
			atomic_inc(&nr_comm_events);
		if (event->attr.task)
			atomic_inc(&nr_task_events);
6247 6248 6249 6250 6251 6252 6253
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
			err = get_callchain_buffers();
			if (err) {
				free_event(event);
				return ERR_PTR(err);
			}
		}
6254
	}
6255

6256
	return event;
T
Thomas Gleixner 已提交
6257 6258
}

6259 6260
static int perf_copy_attr(struct perf_event_attr __user *uattr,
			  struct perf_event_attr *attr)
6261 6262
{
	u32 size;
6263
	int ret;
6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287

	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
		return -EFAULT;

	/*
	 * zero the full structure, so that a short copy will be nice.
	 */
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

	if (size > PAGE_SIZE)	/* silly large */
		goto err_size;

	if (!size)		/* abi compat */
		size = PERF_ATTR_SIZE_VER0;

	if (size < PERF_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
6288 6289 6290
	 * ensure all the unknown bits are 0 - i.e. new
	 * user-space does not rely on any kernel feature
	 * extensions we dont know about yet.
6291 6292
	 */
	if (size > sizeof(*attr)) {
6293 6294 6295
		unsigned char __user *addr;
		unsigned char __user *end;
		unsigned char val;
6296

6297 6298
		addr = (void __user *)uattr + sizeof(*attr);
		end  = (void __user *)uattr + size;
6299

6300
		for (; addr < end; addr++) {
6301 6302 6303 6304 6305 6306
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
6307
		size = sizeof(*attr);
6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

	/*
	 * If the type exists, the corresponding creation will verify
	 * the attr->config.
	 */
	if (attr->type >= PERF_TYPE_MAX)
		return -EINVAL;

6321
	if (attr->__reserved_1)
6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338
		return -EINVAL;

	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
		return -EINVAL;

	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
		return -EINVAL;

out:
	return ret;

err_size:
	put_user(sizeof(*attr), &uattr->size);
	ret = -E2BIG;
	goto out;
}

6339 6340
static int
perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
6341
{
6342
	struct perf_buffer *buffer = NULL, *old_buffer = NULL;
6343 6344
	int ret = -EINVAL;

6345
	if (!output_event)
6346 6347
		goto set;

6348 6349
	/* don't allow circular references */
	if (event == output_event)
6350 6351
		goto out;

6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363
	/*
	 * Don't allow cross-cpu buffers
	 */
	if (output_event->cpu != event->cpu)
		goto out;

	/*
	 * If its not a per-cpu buffer, it must be the same task.
	 */
	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
		goto out;

6364
set:
6365
	mutex_lock(&event->mmap_mutex);
6366 6367 6368
	/* Can't redirect output if we've got an active mmap() */
	if (atomic_read(&event->mmap_count))
		goto unlock;
6369

6370 6371
	if (output_event) {
		/* get the buffer we want to redirect to */
6372 6373
		buffer = perf_buffer_get(output_event);
		if (!buffer)
6374
			goto unlock;
6375 6376
	}

6377 6378
	old_buffer = event->buffer;
	rcu_assign_pointer(event->buffer, buffer);
6379
	ret = 0;
6380 6381 6382
unlock:
	mutex_unlock(&event->mmap_mutex);

6383 6384
	if (old_buffer)
		perf_buffer_put(old_buffer);
6385 6386 6387 6388
out:
	return ret;
}

T
Thomas Gleixner 已提交
6389
/**
6390
 * sys_perf_event_open - open a performance event, associate it to a task/cpu
I
Ingo Molnar 已提交
6391
 *
6392
 * @attr_uptr:	event_id type attributes for monitoring/sampling
T
Thomas Gleixner 已提交
6393
 * @pid:		target pid
I
Ingo Molnar 已提交
6394
 * @cpu:		target cpu
6395
 * @group_fd:		group leader event fd
T
Thomas Gleixner 已提交
6396
 */
6397 6398
SYSCALL_DEFINE5(perf_event_open,
		struct perf_event_attr __user *, attr_uptr,
6399
		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
T
Thomas Gleixner 已提交
6400
{
6401 6402
	struct perf_event *group_leader = NULL, *output_event = NULL;
	struct perf_event *event, *sibling;
6403 6404 6405
	struct perf_event_attr attr;
	struct perf_event_context *ctx;
	struct file *event_file = NULL;
6406
	struct file *group_file = NULL;
M
Matt Helsley 已提交
6407
	struct task_struct *task = NULL;
6408
	struct pmu *pmu;
6409
	int event_fd;
6410
	int move_group = 0;
6411
	int fput_needed = 0;
6412
	int err;
T
Thomas Gleixner 已提交
6413

6414
	/* for future expandability... */
S
Stephane Eranian 已提交
6415
	if (flags & ~PERF_FLAG_ALL)
6416 6417
		return -EINVAL;

6418 6419 6420
	err = perf_copy_attr(attr_uptr, &attr);
	if (err)
		return err;
6421

6422 6423 6424 6425 6426
	if (!attr.exclude_kernel) {
		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
	}

6427
	if (attr.freq) {
6428
		if (attr.sample_freq > sysctl_perf_event_sample_rate)
6429 6430 6431
			return -EINVAL;
	}

S
Stephane Eranian 已提交
6432 6433 6434 6435 6436 6437 6438 6439 6440
	/*
	 * In cgroup mode, the pid argument is used to pass the fd
	 * opened to the cgroup directory in cgroupfs. The cpu argument
	 * designates the cpu on which to monitor threads from that
	 * cgroup.
	 */
	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
		return -EINVAL;

6441 6442 6443 6444
	event_fd = get_unused_fd_flags(O_RDWR);
	if (event_fd < 0)
		return event_fd;

6445 6446 6447 6448
	if (group_fd != -1) {
		group_leader = perf_fget_light(group_fd, &fput_needed);
		if (IS_ERR(group_leader)) {
			err = PTR_ERR(group_leader);
6449
			goto err_fd;
6450 6451 6452 6453 6454 6455 6456 6457
		}
		group_file = group_leader->filp;
		if (flags & PERF_FLAG_FD_OUTPUT)
			output_event = group_leader;
		if (flags & PERF_FLAG_FD_NO_GROUP)
			group_leader = NULL;
	}

S
Stephane Eranian 已提交
6458
	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
6459 6460 6461 6462 6463 6464 6465
		task = find_lively_task_by_vpid(pid);
		if (IS_ERR(task)) {
			err = PTR_ERR(task);
			goto err_group_fd;
		}
	}

6466
	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL, NULL);
6467 6468
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
6469
		goto err_task;
6470 6471
	}

S
Stephane Eranian 已提交
6472 6473 6474 6475
	if (flags & PERF_FLAG_PID_CGROUP) {
		err = perf_cgroup_connect(pid, event, &attr, group_leader);
		if (err)
			goto err_alloc;
6476 6477 6478 6479 6480 6481 6482
		/*
		 * one more event:
		 * - that has cgroup constraint on event->cpu
		 * - that may need work on context switch
		 */
		atomic_inc(&per_cpu(perf_cgroup_events, event->cpu));
		jump_label_inc(&perf_sched_events);
S
Stephane Eranian 已提交
6483 6484
	}

6485 6486 6487 6488 6489
	/*
	 * Special case software events and allow them to be part of
	 * any hardware group.
	 */
	pmu = event->pmu;
6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512

	if (group_leader &&
	    (is_software_event(event) != is_software_event(group_leader))) {
		if (is_software_event(event)) {
			/*
			 * If event and group_leader are not both a software
			 * event, and event is, then group leader is not.
			 *
			 * Allow the addition of software events to !software
			 * groups, this is safe because software events never
			 * fail to schedule.
			 */
			pmu = group_leader->pmu;
		} else if (is_software_event(group_leader) &&
			   (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
			/*
			 * In case the group is a pure software group, and we
			 * try to add a hardware event, move the whole group to
			 * the hardware context.
			 */
			move_group = 1;
		}
	}
6513 6514 6515 6516

	/*
	 * Get the target context (task or percpu):
	 */
M
Matt Helsley 已提交
6517
	ctx = find_get_context(pmu, task, cpu);
6518 6519
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
6520
		goto err_alloc;
6521 6522
	}

6523 6524 6525 6526 6527
	if (task) {
		put_task_struct(task);
		task = NULL;
	}

I
Ingo Molnar 已提交
6528
	/*
6529
	 * Look up the group leader (we will attach this event to it):
6530
	 */
6531
	if (group_leader) {
6532
		err = -EINVAL;
6533 6534

		/*
I
Ingo Molnar 已提交
6535 6536 6537 6538
		 * Do not allow a recursive hierarchy (this new sibling
		 * becoming part of another group-sibling):
		 */
		if (group_leader->group_leader != group_leader)
6539
			goto err_context;
I
Ingo Molnar 已提交
6540 6541 6542
		/*
		 * Do not allow to attach to a group in a different
		 * task or CPU context:
6543
		 */
6544 6545 6546 6547 6548 6549 6550 6551
		if (move_group) {
			if (group_leader->ctx->type != ctx->type)
				goto err_context;
		} else {
			if (group_leader->ctx != ctx)
				goto err_context;
		}

6552 6553 6554
		/*
		 * Only a group leader can be exclusive or pinned
		 */
6555
		if (attr.exclusive || attr.pinned)
6556
			goto err_context;
6557 6558 6559 6560 6561
	}

	if (output_event) {
		err = perf_event_set_output(event, output_event);
		if (err)
6562
			goto err_context;
6563
	}
T
Thomas Gleixner 已提交
6564

6565 6566 6567
	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
	if (IS_ERR(event_file)) {
		err = PTR_ERR(event_file);
6568
		goto err_context;
6569
	}
6570

6571 6572 6573 6574
	if (move_group) {
		struct perf_event_context *gctx = group_leader->ctx;

		mutex_lock(&gctx->mutex);
6575
		perf_remove_from_context(group_leader);
6576 6577
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
6578
			perf_remove_from_context(sibling);
6579 6580 6581 6582
			put_ctx(gctx);
		}
		mutex_unlock(&gctx->mutex);
		put_ctx(gctx);
6583
	}
6584

6585
	event->filp = event_file;
6586
	WARN_ON_ONCE(ctx->parent_ctx);
6587
	mutex_lock(&ctx->mutex);
6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598

	if (move_group) {
		perf_install_in_context(ctx, group_leader, cpu);
		get_ctx(ctx);
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
			perf_install_in_context(ctx, sibling, cpu);
			get_ctx(ctx);
		}
	}

6599
	perf_install_in_context(ctx, event, cpu);
6600
	++ctx->generation;
6601
	perf_unpin_context(ctx);
6602
	mutex_unlock(&ctx->mutex);
6603

6604
	event->owner = current;
P
Peter Zijlstra 已提交
6605

6606 6607 6608
	mutex_lock(&current->perf_event_mutex);
	list_add_tail(&event->owner_entry, &current->perf_event_list);
	mutex_unlock(&current->perf_event_mutex);
6609

6610 6611 6612 6613
	/*
	 * Precalculate sample_data sizes
	 */
	perf_event__header_size(event);
6614
	perf_event__id_header_size(event);
6615

6616 6617 6618 6619 6620 6621
	/*
	 * Drop the reference on the group_event after placing the
	 * new event on the sibling_list. This ensures destruction
	 * of the group leader will find the pointer to itself in
	 * perf_group_detach().
	 */
6622 6623 6624
	fput_light(group_file, fput_needed);
	fd_install(event_fd, event_file);
	return event_fd;
T
Thomas Gleixner 已提交
6625

6626
err_context:
6627
	perf_unpin_context(ctx);
6628
	put_ctx(ctx);
6629
err_alloc:
6630
	free_event(event);
P
Peter Zijlstra 已提交
6631 6632 6633
err_task:
	if (task)
		put_task_struct(task);
6634
err_group_fd:
6635
	fput_light(group_file, fput_needed);
6636 6637
err_fd:
	put_unused_fd(event_fd);
6638
	return err;
T
Thomas Gleixner 已提交
6639 6640
}

6641 6642 6643 6644 6645
/**
 * perf_event_create_kernel_counter
 *
 * @attr: attributes of the counter to create
 * @cpu: cpu in which the counter is bound
M
Matt Helsley 已提交
6646
 * @task: task to profile (NULL for percpu)
6647 6648 6649
 */
struct perf_event *
perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
M
Matt Helsley 已提交
6650
				 struct task_struct *task,
6651
				 perf_overflow_handler_t overflow_handler)
6652 6653
{
	struct perf_event_context *ctx;
6654
	struct perf_event *event;
6655
	int err;
6656

6657 6658 6659
	/*
	 * Get the target context (task or percpu):
	 */
6660

6661
	event = perf_event_alloc(attr, cpu, task, NULL, NULL, overflow_handler);
6662 6663 6664 6665
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
		goto err;
	}
6666

M
Matt Helsley 已提交
6667
	ctx = find_get_context(event->pmu, task, cpu);
6668 6669
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
6670
		goto err_free;
6671
	}
6672 6673 6674 6675 6676 6677

	event->filp = NULL;
	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
	perf_install_in_context(ctx, event, cpu);
	++ctx->generation;
6678
	perf_unpin_context(ctx);
6679 6680 6681 6682
	mutex_unlock(&ctx->mutex);

	return event;

6683 6684 6685
err_free:
	free_event(event);
err:
6686
	return ERR_PTR(err);
6687
}
6688
EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
6689

6690
static void sync_child_event(struct perf_event *child_event,
6691
			       struct task_struct *child)
6692
{
6693
	struct perf_event *parent_event = child_event->parent;
6694
	u64 child_val;
6695

6696 6697
	if (child_event->attr.inherit_stat)
		perf_event_read_event(child_event, child);
6698

P
Peter Zijlstra 已提交
6699
	child_val = perf_event_count(child_event);
6700 6701 6702 6703

	/*
	 * Add back the child's count to the parent's count:
	 */
6704
	atomic64_add(child_val, &parent_event->child_count);
6705 6706 6707 6708
	atomic64_add(child_event->total_time_enabled,
		     &parent_event->child_total_time_enabled);
	atomic64_add(child_event->total_time_running,
		     &parent_event->child_total_time_running);
6709 6710

	/*
6711
	 * Remove this event from the parent's list
6712
	 */
6713 6714 6715 6716
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_del_init(&child_event->child_list);
	mutex_unlock(&parent_event->child_mutex);
6717 6718

	/*
6719
	 * Release the parent event, if this was the last
6720 6721
	 * reference to it.
	 */
6722
	fput(parent_event->filp);
6723 6724
}

6725
static void
6726 6727
__perf_event_exit_task(struct perf_event *child_event,
			 struct perf_event_context *child_ctx,
6728
			 struct task_struct *child)
6729
{
6730 6731 6732 6733 6734
	if (child_event->parent) {
		raw_spin_lock_irq(&child_ctx->lock);
		perf_group_detach(child_event);
		raw_spin_unlock_irq(&child_ctx->lock);
	}
6735

6736
	perf_remove_from_context(child_event);
6737

6738
	/*
6739
	 * It can happen that the parent exits first, and has events
6740
	 * that are still around due to the child reference. These
6741
	 * events need to be zapped.
6742
	 */
6743
	if (child_event->parent) {
6744 6745
		sync_child_event(child_event, child);
		free_event(child_event);
6746
	}
6747 6748
}

P
Peter Zijlstra 已提交
6749
static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
6750
{
6751 6752
	struct perf_event *child_event, *tmp;
	struct perf_event_context *child_ctx;
6753
	unsigned long flags;
6754

P
Peter Zijlstra 已提交
6755
	if (likely(!child->perf_event_ctxp[ctxn])) {
6756
		perf_event_task(child, NULL, 0);
6757
		return;
P
Peter Zijlstra 已提交
6758
	}
6759

6760
	local_irq_save(flags);
6761 6762 6763 6764 6765 6766
	/*
	 * We can't reschedule here because interrupts are disabled,
	 * and either child is current or it is a task that can't be
	 * scheduled, so we are now safe from rescheduling changing
	 * our context.
	 */
6767
	child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
6768 6769 6770

	/*
	 * Take the context lock here so that if find_get_context is
6771
	 * reading child->perf_event_ctxp, we wait until it has
6772 6773
	 * incremented the context's refcount before we do put_ctx below.
	 */
6774
	raw_spin_lock(&child_ctx->lock);
6775
	task_ctx_sched_out(child_ctx);
P
Peter Zijlstra 已提交
6776
	child->perf_event_ctxp[ctxn] = NULL;
6777 6778 6779
	/*
	 * If this context is a clone; unclone it so it can't get
	 * swapped to another process while we're removing all
6780
	 * the events from it.
6781 6782
	 */
	unclone_ctx(child_ctx);
6783
	update_context_time(child_ctx);
6784
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
6785 6786

	/*
6787 6788 6789
	 * Report the task dead after unscheduling the events so that we
	 * won't get any samples after PERF_RECORD_EXIT. We can however still
	 * get a few PERF_RECORD_READ events.
P
Peter Zijlstra 已提交
6790
	 */
6791
	perf_event_task(child, child_ctx, 0);
6792

6793 6794 6795
	/*
	 * We can recurse on the same lock type through:
	 *
6796 6797 6798
	 *   __perf_event_exit_task()
	 *     sync_child_event()
	 *       fput(parent_event->filp)
6799 6800 6801 6802 6803
	 *         perf_release()
	 *           mutex_lock(&ctx->mutex)
	 *
	 * But since its the parent context it won't be the same instance.
	 */
6804
	mutex_lock(&child_ctx->mutex);
6805

6806
again:
6807 6808 6809 6810 6811
	list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
				 group_entry)
		__perf_event_exit_task(child_event, child_ctx, child);

	list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
6812
				 group_entry)
6813
		__perf_event_exit_task(child_event, child_ctx, child);
6814 6815

	/*
6816
	 * If the last event was a group event, it will have appended all
6817 6818 6819
	 * its siblings to the list, but we obtained 'tmp' before that which
	 * will still point to the list head terminating the iteration.
	 */
6820 6821
	if (!list_empty(&child_ctx->pinned_groups) ||
	    !list_empty(&child_ctx->flexible_groups))
6822
		goto again;
6823 6824 6825 6826

	mutex_unlock(&child_ctx->mutex);

	put_ctx(child_ctx);
6827 6828
}

P
Peter Zijlstra 已提交
6829 6830 6831 6832 6833
/*
 * When a child task exits, feed back event values to parent events.
 */
void perf_event_exit_task(struct task_struct *child)
{
P
Peter Zijlstra 已提交
6834
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
6835 6836
	int ctxn;

P
Peter Zijlstra 已提交
6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851
	mutex_lock(&child->perf_event_mutex);
	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
				 owner_entry) {
		list_del_init(&event->owner_entry);

		/*
		 * Ensure the list deletion is visible before we clear
		 * the owner, closes a race against perf_release() where
		 * we need to serialize on the owner->perf_event_mutex.
		 */
		smp_wmb();
		event->owner = NULL;
	}
	mutex_unlock(&child->perf_event_mutex);

P
Peter Zijlstra 已提交
6852 6853 6854 6855
	for_each_task_context_nr(ctxn)
		perf_event_exit_task_context(child, ctxn);
}

6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869
static void perf_free_event(struct perf_event *event,
			    struct perf_event_context *ctx)
{
	struct perf_event *parent = event->parent;

	if (WARN_ON_ONCE(!parent))
		return;

	mutex_lock(&parent->child_mutex);
	list_del_init(&event->child_list);
	mutex_unlock(&parent->child_mutex);

	fput(parent->filp);

6870
	perf_group_detach(event);
6871 6872 6873 6874
	list_del_event(event, ctx);
	free_event(event);
}

6875 6876
/*
 * free an unexposed, unused context as created by inheritance by
P
Peter Zijlstra 已提交
6877
 * perf_event_init_task below, used by fork() in case of fail.
6878
 */
6879
void perf_event_free_task(struct task_struct *task)
6880
{
P
Peter Zijlstra 已提交
6881
	struct perf_event_context *ctx;
6882
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
6883
	int ctxn;
6884

P
Peter Zijlstra 已提交
6885 6886 6887 6888
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;
6889

P
Peter Zijlstra 已提交
6890
		mutex_lock(&ctx->mutex);
6891
again:
P
Peter Zijlstra 已提交
6892 6893 6894
		list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
				group_entry)
			perf_free_event(event, ctx);
6895

P
Peter Zijlstra 已提交
6896 6897 6898
		list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
				group_entry)
			perf_free_event(event, ctx);
6899

P
Peter Zijlstra 已提交
6900 6901 6902
		if (!list_empty(&ctx->pinned_groups) ||
				!list_empty(&ctx->flexible_groups))
			goto again;
6903

P
Peter Zijlstra 已提交
6904
		mutex_unlock(&ctx->mutex);
6905

P
Peter Zijlstra 已提交
6906 6907
		put_ctx(ctx);
	}
6908 6909
}

6910 6911 6912 6913 6914 6915 6916 6917
void perf_event_delayed_put(struct task_struct *task)
{
	int ctxn;

	for_each_task_context_nr(ctxn)
		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
}

P
Peter Zijlstra 已提交
6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929
/*
 * inherit a event from parent task to child task:
 */
static struct perf_event *
inherit_event(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event *group_leader,
	      struct perf_event_context *child_ctx)
{
	struct perf_event *child_event;
6930
	unsigned long flags;
P
Peter Zijlstra 已提交
6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942

	/*
	 * Instead of creating recursive hierarchies of events,
	 * we link inherited events back to the original parent,
	 * which has a filp for sure, which we use as the reference
	 * count:
	 */
	if (parent_event->parent)
		parent_event = parent_event->parent;

	child_event = perf_event_alloc(&parent_event->attr,
					   parent_event->cpu,
6943
					   child,
P
Peter Zijlstra 已提交
6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972
					   group_leader, parent_event,
					   NULL);
	if (IS_ERR(child_event))
		return child_event;
	get_ctx(child_ctx);

	/*
	 * Make the child state follow the state of the parent event,
	 * not its attr.disabled bit.  We hold the parent's mutex,
	 * so we won't race with perf_event_{en, dis}able_family.
	 */
	if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
		child_event->state = PERF_EVENT_STATE_INACTIVE;
	else
		child_event->state = PERF_EVENT_STATE_OFF;

	if (parent_event->attr.freq) {
		u64 sample_period = parent_event->hw.sample_period;
		struct hw_perf_event *hwc = &child_event->hw;

		hwc->sample_period = sample_period;
		hwc->last_period   = sample_period;

		local64_set(&hwc->period_left, sample_period);
	}

	child_event->ctx = child_ctx;
	child_event->overflow_handler = parent_event->overflow_handler;

6973 6974 6975 6976
	/*
	 * Precalculate sample_data sizes
	 */
	perf_event__header_size(child_event);
6977
	perf_event__id_header_size(child_event);
6978

P
Peter Zijlstra 已提交
6979 6980 6981
	/*
	 * Link it up in the child's context:
	 */
6982
	raw_spin_lock_irqsave(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
6983
	add_event_to_ctx(child_event, child_ctx);
6984
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025

	/*
	 * Get a reference to the parent filp - we will fput it
	 * when the child event exits. This is safe to do because
	 * we are in the parent and we know that the filp still
	 * exists and has a nonzero count:
	 */
	atomic_long_inc(&parent_event->filp->f_count);

	/*
	 * Link this into the parent event's child list
	 */
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_add_tail(&child_event->child_list, &parent_event->child_list);
	mutex_unlock(&parent_event->child_mutex);

	return child_event;
}

static int inherit_group(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event_context *child_ctx)
{
	struct perf_event *leader;
	struct perf_event *sub;
	struct perf_event *child_ctr;

	leader = inherit_event(parent_event, parent, parent_ctx,
				 child, NULL, child_ctx);
	if (IS_ERR(leader))
		return PTR_ERR(leader);
	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
		child_ctr = inherit_event(sub, parent, parent_ctx,
					    child, leader, child_ctx);
		if (IS_ERR(child_ctr))
			return PTR_ERR(child_ctr);
	}
	return 0;
7026 7027 7028 7029 7030
}

static int
inherit_task_group(struct perf_event *event, struct task_struct *parent,
		   struct perf_event_context *parent_ctx,
P
Peter Zijlstra 已提交
7031
		   struct task_struct *child, int ctxn,
7032 7033 7034
		   int *inherited_all)
{
	int ret;
P
Peter Zijlstra 已提交
7035
	struct perf_event_context *child_ctx;
7036 7037 7038 7039

	if (!event->attr.inherit) {
		*inherited_all = 0;
		return 0;
7040 7041
	}

7042
	child_ctx = child->perf_event_ctxp[ctxn];
7043 7044 7045 7046 7047 7048 7049
	if (!child_ctx) {
		/*
		 * This is executed from the parent task context, so
		 * inherit events that have been marked for cloning.
		 * First allocate and initialize a context for the
		 * child.
		 */
7050

7051
		child_ctx = alloc_perf_context(event->pmu, child);
7052 7053
		if (!child_ctx)
			return -ENOMEM;
7054

P
Peter Zijlstra 已提交
7055
		child->perf_event_ctxp[ctxn] = child_ctx;
7056 7057 7058 7059 7060 7061 7062 7063 7064
	}

	ret = inherit_group(event, parent, parent_ctx,
			    child, child_ctx);

	if (ret)
		*inherited_all = 0;

	return ret;
7065 7066
}

7067
/*
7068
 * Initialize the perf_event context in task_struct
7069
 */
P
Peter Zijlstra 已提交
7070
int perf_event_init_context(struct task_struct *child, int ctxn)
7071
{
7072
	struct perf_event_context *child_ctx, *parent_ctx;
7073 7074
	struct perf_event_context *cloned_ctx;
	struct perf_event *event;
7075
	struct task_struct *parent = current;
7076
	int inherited_all = 1;
7077
	unsigned long flags;
7078
	int ret = 0;
7079

P
Peter Zijlstra 已提交
7080
	if (likely(!parent->perf_event_ctxp[ctxn]))
7081 7082
		return 0;

7083
	/*
7084 7085
	 * If the parent's context is a clone, pin it so it won't get
	 * swapped under us.
7086
	 */
P
Peter Zijlstra 已提交
7087
	parent_ctx = perf_pin_task_context(parent, ctxn);
7088

7089 7090 7091 7092 7093 7094 7095
	/*
	 * No need to check if parent_ctx != NULL here; since we saw
	 * it non-NULL earlier, the only reason for it to become NULL
	 * is if we exit, and since we're currently in the middle of
	 * a fork we can't be exiting at the same time.
	 */

7096 7097 7098 7099
	/*
	 * Lock the parent list. No need to lock the child - not PID
	 * hashed yet and not running, so nobody can access it.
	 */
7100
	mutex_lock(&parent_ctx->mutex);
7101 7102 7103 7104 7105

	/*
	 * We dont have to disable NMIs - we are only looking at
	 * the list, not manipulating it:
	 */
7106
	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
P
Peter Zijlstra 已提交
7107 7108
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
7109 7110 7111
		if (ret)
			break;
	}
7112

7113 7114 7115 7116 7117 7118 7119 7120 7121
	/*
	 * We can't hold ctx->lock when iterating the ->flexible_group list due
	 * to allocations, but we need to prevent rotation because
	 * rotate_ctx() will change the list from interrupt context.
	 */
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 1;
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);

7122
	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
P
Peter Zijlstra 已提交
7123 7124
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
7125
		if (ret)
7126
			break;
7127 7128
	}

7129 7130 7131
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 0;

P
Peter Zijlstra 已提交
7132
	child_ctx = child->perf_event_ctxp[ctxn];
7133

7134
	if (child_ctx && inherited_all) {
7135 7136 7137
		/*
		 * Mark the child context as a clone of the parent
		 * context, or of whatever the parent is a clone of.
P
Peter Zijlstra 已提交
7138 7139 7140
		 *
		 * Note that if the parent is a clone, the holding of
		 * parent_ctx->lock avoids it from being uncloned.
7141
		 */
P
Peter Zijlstra 已提交
7142
		cloned_ctx = parent_ctx->parent_ctx;
7143 7144
		if (cloned_ctx) {
			child_ctx->parent_ctx = cloned_ctx;
7145
			child_ctx->parent_gen = parent_ctx->parent_gen;
7146 7147 7148 7149 7150
		} else {
			child_ctx->parent_ctx = parent_ctx;
			child_ctx->parent_gen = parent_ctx->generation;
		}
		get_ctx(child_ctx->parent_ctx);
7151 7152
	}

P
Peter Zijlstra 已提交
7153
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
7154
	mutex_unlock(&parent_ctx->mutex);
7155

7156
	perf_unpin_context(parent_ctx);
7157
	put_ctx(parent_ctx);
7158

7159
	return ret;
7160 7161
}

P
Peter Zijlstra 已提交
7162 7163 7164 7165 7166 7167 7168
/*
 * Initialize the perf_event context in task_struct
 */
int perf_event_init_task(struct task_struct *child)
{
	int ctxn, ret;

7169 7170 7171 7172
	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
	mutex_init(&child->perf_event_mutex);
	INIT_LIST_HEAD(&child->perf_event_list);

P
Peter Zijlstra 已提交
7173 7174 7175 7176 7177 7178 7179 7180 7181
	for_each_task_context_nr(ctxn) {
		ret = perf_event_init_context(child, ctxn);
		if (ret)
			return ret;
	}

	return 0;
}

7182 7183
static void __init perf_event_init_all_cpus(void)
{
7184
	struct swevent_htable *swhash;
7185 7186 7187
	int cpu;

	for_each_possible_cpu(cpu) {
7188 7189
		swhash = &per_cpu(swevent_htable, cpu);
		mutex_init(&swhash->hlist_mutex);
7190
		INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
7191 7192 7193
	}
}

7194
static void __cpuinit perf_event_init_cpu(int cpu)
T
Thomas Gleixner 已提交
7195
{
P
Peter Zijlstra 已提交
7196
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
T
Thomas Gleixner 已提交
7197

7198 7199
	mutex_lock(&swhash->hlist_mutex);
	if (swhash->hlist_refcount > 0) {
7200 7201
		struct swevent_hlist *hlist;

7202 7203 7204
		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
		WARN_ON(!hlist);
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
7205
	}
7206
	mutex_unlock(&swhash->hlist_mutex);
T
Thomas Gleixner 已提交
7207 7208
}

P
Peter Zijlstra 已提交
7209
#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
7210
static void perf_pmu_rotate_stop(struct pmu *pmu)
T
Thomas Gleixner 已提交
7211
{
7212 7213 7214 7215 7216 7217 7218
	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

	WARN_ON(!irqs_disabled());

	list_del_init(&cpuctx->rotation_list);
}

P
Peter Zijlstra 已提交
7219
static void __perf_event_exit_context(void *__info)
T
Thomas Gleixner 已提交
7220
{
P
Peter Zijlstra 已提交
7221
	struct perf_event_context *ctx = __info;
7222
	struct perf_event *event, *tmp;
T
Thomas Gleixner 已提交
7223

P
Peter Zijlstra 已提交
7224
	perf_pmu_rotate_stop(ctx->pmu);
7225

7226
	list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
7227
		__perf_remove_from_context(event);
7228
	list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
7229
		__perf_remove_from_context(event);
T
Thomas Gleixner 已提交
7230
}
P
Peter Zijlstra 已提交
7231 7232 7233 7234 7235 7236 7237 7238 7239

static void perf_event_exit_cpu_context(int cpu)
{
	struct perf_event_context *ctx;
	struct pmu *pmu;
	int idx;

	idx = srcu_read_lock(&pmus_srcu);
	list_for_each_entry_rcu(pmu, &pmus, entry) {
7240
		ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
P
Peter Zijlstra 已提交
7241 7242 7243 7244 7245 7246 7247 7248

		mutex_lock(&ctx->mutex);
		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
		mutex_unlock(&ctx->mutex);
	}
	srcu_read_unlock(&pmus_srcu, idx);
}

7249
static void perf_event_exit_cpu(int cpu)
T
Thomas Gleixner 已提交
7250
{
7251
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7252

7253 7254 7255
	mutex_lock(&swhash->hlist_mutex);
	swevent_hlist_release(swhash);
	mutex_unlock(&swhash->hlist_mutex);
7256

P
Peter Zijlstra 已提交
7257
	perf_event_exit_cpu_context(cpu);
T
Thomas Gleixner 已提交
7258 7259
}
#else
7260
static inline void perf_event_exit_cpu(int cpu) { }
T
Thomas Gleixner 已提交
7261 7262
#endif

P
Peter Zijlstra 已提交
7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282
static int
perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
{
	int cpu;

	for_each_online_cpu(cpu)
		perf_event_exit_cpu(cpu);

	return NOTIFY_OK;
}

/*
 * Run the perf reboot notifier at the very last possible moment so that
 * the generic watchdog code runs as long as possible.
 */
static struct notifier_block perf_reboot_notifier = {
	.notifier_call = perf_reboot,
	.priority = INT_MIN,
};

T
Thomas Gleixner 已提交
7283 7284 7285 7286 7287
static int __cpuinit
perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
{
	unsigned int cpu = (long)hcpu;

P
Peter Zijlstra 已提交
7288
	switch (action & ~CPU_TASKS_FROZEN) {
T
Thomas Gleixner 已提交
7289 7290

	case CPU_UP_PREPARE:
P
Peter Zijlstra 已提交
7291
	case CPU_DOWN_FAILED:
7292
		perf_event_init_cpu(cpu);
T
Thomas Gleixner 已提交
7293 7294
		break;

P
Peter Zijlstra 已提交
7295
	case CPU_UP_CANCELED:
T
Thomas Gleixner 已提交
7296
	case CPU_DOWN_PREPARE:
7297
		perf_event_exit_cpu(cpu);
T
Thomas Gleixner 已提交
7298 7299 7300 7301 7302 7303 7304 7305 7306
		break;

	default:
		break;
	}

	return NOTIFY_OK;
}

7307
void __init perf_event_init(void)
T
Thomas Gleixner 已提交
7308
{
7309 7310
	int ret;

P
Peter Zijlstra 已提交
7311 7312
	idr_init(&pmu_idr);

7313
	perf_event_init_all_cpus();
7314
	init_srcu_struct(&pmus_srcu);
P
Peter Zijlstra 已提交
7315 7316 7317
	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
	perf_pmu_register(&perf_cpu_clock, NULL, -1);
	perf_pmu_register(&perf_task_clock, NULL, -1);
7318 7319
	perf_tp_register();
	perf_cpu_notifier(perf_cpu_notify);
P
Peter Zijlstra 已提交
7320
	register_reboot_notifier(&perf_reboot_notifier);
7321 7322 7323

	ret = init_hw_breakpoint();
	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
T
Thomas Gleixner 已提交
7324
}
P
Peter Zijlstra 已提交
7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352

static int __init perf_event_sysfs_init(void)
{
	struct pmu *pmu;
	int ret;

	mutex_lock(&pmus_lock);

	ret = bus_register(&pmu_bus);
	if (ret)
		goto unlock;

	list_for_each_entry(pmu, &pmus, entry) {
		if (!pmu->name || pmu->type < 0)
			continue;

		ret = pmu_dev_alloc(pmu);
		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
	}
	pmu_bus_running = 1;
	ret = 0;

unlock:
	mutex_unlock(&pmus_lock);

	return ret;
}
device_initcall(perf_event_sysfs_init);
S
Stephane Eranian 已提交
7353 7354 7355 7356 7357 7358 7359

#ifdef CONFIG_CGROUP_PERF
static struct cgroup_subsys_state *perf_cgroup_create(
	struct cgroup_subsys *ss, struct cgroup *cont)
{
	struct perf_cgroup *jc;

7360
	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
S
Stephane Eranian 已提交
7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424
	if (!jc)
		return ERR_PTR(-ENOMEM);

	jc->info = alloc_percpu(struct perf_cgroup_info);
	if (!jc->info) {
		kfree(jc);
		return ERR_PTR(-ENOMEM);
	}

	return &jc->css;
}

static void perf_cgroup_destroy(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
	struct perf_cgroup *jc;
	jc = container_of(cgroup_subsys_state(cont, perf_subsys_id),
			  struct perf_cgroup, css);
	free_percpu(jc->info);
	kfree(jc);
}

static int __perf_cgroup_move(void *info)
{
	struct task_struct *task = info;
	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
	return 0;
}

static void perf_cgroup_move(struct task_struct *task)
{
	task_function_call(task, __perf_cgroup_move, task);
}

static void perf_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
		struct cgroup *old_cgrp, struct task_struct *task,
		bool threadgroup)
{
	perf_cgroup_move(task);
	if (threadgroup) {
		struct task_struct *c;
		rcu_read_lock();
		list_for_each_entry_rcu(c, &task->thread_group, thread_group) {
			perf_cgroup_move(c);
		}
		rcu_read_unlock();
	}
}

static void perf_cgroup_exit(struct cgroup_subsys *ss, struct cgroup *cgrp,
		struct cgroup *old_cgrp, struct task_struct *task)
{
	/*
	 * cgroup_exit() is called in the copy_process() failure path.
	 * Ignore this case since the task hasn't ran yet, this avoids
	 * trying to poke a half freed task state from generic code.
	 */
	if (!(task->flags & PF_EXITING))
		return;

	perf_cgroup_move(task);
}

struct cgroup_subsys perf_subsys = {
7425 7426 7427 7428 7429 7430
	.name		= "perf_event",
	.subsys_id	= perf_subsys_id,
	.create		= perf_cgroup_create,
	.destroy	= perf_cgroup_destroy,
	.exit		= perf_cgroup_exit,
	.attach		= perf_cgroup_attach,
S
Stephane Eranian 已提交
7431 7432
};
#endif /* CONFIG_CGROUP_PERF */