core.c 264.1 KB
Newer Older
T
Thomas Gleixner 已提交
1
/*
I
Ingo Molnar 已提交
2
 * Performance events core code:
T
Thomas Gleixner 已提交
3
 *
4
 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5
 *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6
 *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
A
Al Viro 已提交
7
 *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8
 *
I
Ingo Molnar 已提交
9
 * For licensing details see kernel-base/COPYING
T
Thomas Gleixner 已提交
10 11 12
 */

#include <linux/fs.h>
13
#include <linux/mm.h>
T
Thomas Gleixner 已提交
14 15
#include <linux/cpu.h>
#include <linux/smp.h>
P
Peter Zijlstra 已提交
16
#include <linux/idr.h>
17
#include <linux/file.h>
T
Thomas Gleixner 已提交
18
#include <linux/poll.h>
19
#include <linux/slab.h>
20
#include <linux/hash.h>
21
#include <linux/tick.h>
T
Thomas Gleixner 已提交
22
#include <linux/sysfs.h>
23
#include <linux/dcache.h>
T
Thomas Gleixner 已提交
24
#include <linux/percpu.h>
25
#include <linux/ptrace.h>
P
Peter Zijlstra 已提交
26
#include <linux/reboot.h>
27
#include <linux/vmstat.h>
P
Peter Zijlstra 已提交
28
#include <linux/device.h>
29
#include <linux/export.h>
30
#include <linux/vmalloc.h>
31 32
#include <linux/hardirq.h>
#include <linux/rculist.h>
T
Thomas Gleixner 已提交
33 34 35
#include <linux/uaccess.h>
#include <linux/syscalls.h>
#include <linux/anon_inodes.h>
I
Ingo Molnar 已提交
36
#include <linux/kernel_stat.h>
37
#include <linux/cgroup.h>
38
#include <linux/perf_event.h>
39
#include <linux/trace_events.h>
40
#include <linux/hw_breakpoint.h>
41
#include <linux/mm_types.h>
42
#include <linux/module.h>
43
#include <linux/mman.h>
P
Pawel Moll 已提交
44
#include <linux/compat.h>
45 46
#include <linux/bpf.h>
#include <linux/filter.h>
47 48
#include <linux/namei.h>
#include <linux/parser.h>
49
#include <linux/sched/clock.h>
50
#include <linux/sched/mm.h>
51 52
#include <linux/proc_ns.h>
#include <linux/mount.h>
T
Thomas Gleixner 已提交
53

54 55
#include "internal.h"

56 57
#include <asm/irq_regs.h>

58 59
typedef int (*remote_function_f)(void *);

60
struct remote_function_call {
61
	struct task_struct	*p;
62
	remote_function_f	func;
63 64
	void			*info;
	int			ret;
65 66 67 68 69 70 71 72
};

static void remote_function(void *data)
{
	struct remote_function_call *tfc = data;
	struct task_struct *p = tfc->p;

	if (p) {
73 74 75 76 77 78 79 80 81 82 83
		/* -EAGAIN */
		if (task_cpu(p) != smp_processor_id())
			return;

		/*
		 * Now that we're on right CPU with IRQs disabled, we can test
		 * if we hit the right task without races.
		 */

		tfc->ret = -ESRCH; /* No such (running) process */
		if (p != current)
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
			return;
	}

	tfc->ret = tfc->func(tfc->info);
}

/**
 * task_function_call - call a function on the cpu on which a task runs
 * @p:		the task to evaluate
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func when the task is currently running. This might
 * be on the current CPU, which just calls the function directly
 *
 * returns: @func return value, or
 *	    -ESRCH  - when the process isn't running
 *	    -EAGAIN - when the process moved away
 */
static int
104
task_function_call(struct task_struct *p, remote_function_f func, void *info)
105 106
{
	struct remote_function_call data = {
107 108 109
		.p	= p,
		.func	= func,
		.info	= info,
110
		.ret	= -EAGAIN,
111
	};
112
	int ret;
113

114 115 116 117 118
	do {
		ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
		if (!ret)
			ret = data.ret;
	} while (ret == -EAGAIN);
119

120
	return ret;
121 122 123 124 125 126 127 128 129 130 131
}

/**
 * cpu_function_call - call a function on the cpu
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func on the remote cpu.
 *
 * returns: @func return value or -ENXIO when the cpu is offline
 */
132
static int cpu_function_call(int cpu, remote_function_f func, void *info)
133 134
{
	struct remote_function_call data = {
135 136 137 138
		.p	= NULL,
		.func	= func,
		.info	= info,
		.ret	= -ENXIO, /* No such CPU */
139 140 141 142 143 144 145
	};

	smp_call_function_single(cpu, remote_function, &data, 1);

	return data.ret;
}

146 147 148 149 150 151 152 153
static inline struct perf_cpu_context *
__get_cpu_context(struct perf_event_context *ctx)
{
	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
}

static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
			  struct perf_event_context *ctx)
154
{
155 156 157 158 159 160 161 162 163 164 165 166 167
	raw_spin_lock(&cpuctx->ctx.lock);
	if (ctx)
		raw_spin_lock(&ctx->lock);
}

static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
			    struct perf_event_context *ctx)
{
	if (ctx)
		raw_spin_unlock(&ctx->lock);
	raw_spin_unlock(&cpuctx->ctx.lock);
}

168 169 170 171
#define TASK_TOMBSTONE ((void *)-1L)

static bool is_kernel_event(struct perf_event *event)
{
172
	return READ_ONCE(event->owner) == TASK_TOMBSTONE;
173 174
}

175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
/*
 * On task ctx scheduling...
 *
 * When !ctx->nr_events a task context will not be scheduled. This means
 * we can disable the scheduler hooks (for performance) without leaving
 * pending task ctx state.
 *
 * This however results in two special cases:
 *
 *  - removing the last event from a task ctx; this is relatively straight
 *    forward and is done in __perf_remove_from_context.
 *
 *  - adding the first event to a task ctx; this is tricky because we cannot
 *    rely on ctx->is_active and therefore cannot use event_function_call().
 *    See perf_install_in_context().
 *
 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
 */

194 195 196 197 198 199 200 201 202 203 204 205 206
typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
			struct perf_event_context *, void *);

struct event_function_struct {
	struct perf_event *event;
	event_f func;
	void *data;
};

static int event_function(void *info)
{
	struct event_function_struct *efs = info;
	struct perf_event *event = efs->event;
207
	struct perf_event_context *ctx = event->ctx;
208 209
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
	struct perf_event_context *task_ctx = cpuctx->task_ctx;
210
	int ret = 0;
211 212 213

	WARN_ON_ONCE(!irqs_disabled());

214
	perf_ctx_lock(cpuctx, task_ctx);
215 216 217 218 219
	/*
	 * Since we do the IPI call without holding ctx->lock things can have
	 * changed, double check we hit the task we set out to hit.
	 */
	if (ctx->task) {
220
		if (ctx->task != current) {
221
			ret = -ESRCH;
222 223
			goto unlock;
		}
224 225 226 227 228 229 230 231 232 233 234 235 236

		/*
		 * We only use event_function_call() on established contexts,
		 * and event_function() is only ever called when active (or
		 * rather, we'll have bailed in task_function_call() or the
		 * above ctx->task != current test), therefore we must have
		 * ctx->is_active here.
		 */
		WARN_ON_ONCE(!ctx->is_active);
		/*
		 * And since we have ctx->is_active, cpuctx->task_ctx must
		 * match.
		 */
237 238 239
		WARN_ON_ONCE(task_ctx != ctx);
	} else {
		WARN_ON_ONCE(&cpuctx->ctx != ctx);
240
	}
241

242
	efs->func(event, cpuctx, ctx, efs->data);
243
unlock:
244 245
	perf_ctx_unlock(cpuctx, task_ctx);

246
	return ret;
247 248 249
}

static void event_function_call(struct perf_event *event, event_f func, void *data)
250 251
{
	struct perf_event_context *ctx = event->ctx;
252
	struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
253 254 255 256 257
	struct event_function_struct efs = {
		.event = event,
		.func = func,
		.data = data,
	};
258

P
Peter Zijlstra 已提交
259 260 261 262 263 264 265 266
	if (!event->parent) {
		/*
		 * If this is a !child event, we must hold ctx::mutex to
		 * stabilize the the event->ctx relation. See
		 * perf_event_ctx_lock().
		 */
		lockdep_assert_held(&ctx->mutex);
	}
267 268

	if (!task) {
269
		cpu_function_call(event->cpu, event_function, &efs);
270 271 272
		return;
	}

273 274 275
	if (task == TASK_TOMBSTONE)
		return;

276
again:
277
	if (!task_function_call(task, event_function, &efs))
278 279 280
		return;

	raw_spin_lock_irq(&ctx->lock);
281 282 283 284 285
	/*
	 * Reload the task pointer, it might have been changed by
	 * a concurrent perf_event_context_sched_out().
	 */
	task = ctx->task;
286 287 288
	if (task == TASK_TOMBSTONE) {
		raw_spin_unlock_irq(&ctx->lock);
		return;
289
	}
290 291 292 293 294
	if (ctx->is_active) {
		raw_spin_unlock_irq(&ctx->lock);
		goto again;
	}
	func(event, NULL, ctx, data);
295 296 297
	raw_spin_unlock_irq(&ctx->lock);
}

298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345
/*
 * Similar to event_function_call() + event_function(), but hard assumes IRQs
 * are already disabled and we're on the right CPU.
 */
static void event_function_local(struct perf_event *event, event_f func, void *data)
{
	struct perf_event_context *ctx = event->ctx;
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
	struct task_struct *task = READ_ONCE(ctx->task);
	struct perf_event_context *task_ctx = NULL;

	WARN_ON_ONCE(!irqs_disabled());

	if (task) {
		if (task == TASK_TOMBSTONE)
			return;

		task_ctx = ctx;
	}

	perf_ctx_lock(cpuctx, task_ctx);

	task = ctx->task;
	if (task == TASK_TOMBSTONE)
		goto unlock;

	if (task) {
		/*
		 * We must be either inactive or active and the right task,
		 * otherwise we're screwed, since we cannot IPI to somewhere
		 * else.
		 */
		if (ctx->is_active) {
			if (WARN_ON_ONCE(task != current))
				goto unlock;

			if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
				goto unlock;
		}
	} else {
		WARN_ON_ONCE(&cpuctx->ctx != ctx);
	}

	func(event, cpuctx, ctx, data);
unlock:
	perf_ctx_unlock(cpuctx, task_ctx);
}

S
Stephane Eranian 已提交
346 347
#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
		       PERF_FLAG_FD_OUTPUT  |\
348 349
		       PERF_FLAG_PID_CGROUP |\
		       PERF_FLAG_FD_CLOEXEC)
S
Stephane Eranian 已提交
350

351 352 353 354 355 356 357
/*
 * branch priv levels that need permission checks
 */
#define PERF_SAMPLE_BRANCH_PERM_PLM \
	(PERF_SAMPLE_BRANCH_KERNEL |\
	 PERF_SAMPLE_BRANCH_HV)

358 359 360
enum event_type_t {
	EVENT_FLEXIBLE = 0x1,
	EVENT_PINNED = 0x2,
361
	EVENT_TIME = 0x4,
362 363
	/* see ctx_resched() for details */
	EVENT_CPU = 0x8,
364 365 366
	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
};

S
Stephane Eranian 已提交
367 368 369 370
/*
 * perf_sched_events : >0 events exist
 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
 */
371 372 373 374 375 376 377

static void perf_sched_delayed(struct work_struct *work);
DEFINE_STATIC_KEY_FALSE(perf_sched_events);
static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
static DEFINE_MUTEX(perf_sched_mutex);
static atomic_t perf_sched_count;

S
Stephane Eranian 已提交
378
static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
379
static DEFINE_PER_CPU(int, perf_sched_cb_usages);
380
static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
S
Stephane Eranian 已提交
381

382 383
static atomic_t nr_mmap_events __read_mostly;
static atomic_t nr_comm_events __read_mostly;
384
static atomic_t nr_namespaces_events __read_mostly;
385
static atomic_t nr_task_events __read_mostly;
386
static atomic_t nr_freq_events __read_mostly;
387
static atomic_t nr_switch_events __read_mostly;
388

P
Peter Zijlstra 已提交
389 390 391
static LIST_HEAD(pmus);
static DEFINE_MUTEX(pmus_lock);
static struct srcu_struct pmus_srcu;
392
static cpumask_var_t perf_online_mask;
P
Peter Zijlstra 已提交
393

394
/*
395
 * perf event paranoia level:
396 397
 *  -1 - not paranoid at all
 *   0 - disallow raw tracepoint access for unpriv
398
 *   1 - disallow cpu events for unpriv
399
 *   2 - disallow kernel profiling for unpriv
400
 */
401
int sysctl_perf_event_paranoid __read_mostly = 2;
402

403 404
/* Minimum for 512 kiB + 1 user control page */
int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
405 406

/*
407
 * max perf event sample rate
408
 */
409 410 411 412 413 414 415 416 417
#define DEFAULT_MAX_SAMPLE_RATE		100000
#define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
#define DEFAULT_CPU_TIME_MAX_PERCENT	25

int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;

static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;

P
Peter Zijlstra 已提交
418 419
static int perf_sample_allowed_ns __read_mostly =
	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
420

421
static void update_perf_cpu_limits(void)
422 423 424 425
{
	u64 tmp = perf_sample_period_ns;

	tmp *= sysctl_perf_cpu_time_max_percent;
426 427 428 429 430
	tmp = div_u64(tmp, 100);
	if (!tmp)
		tmp = 1;

	WRITE_ONCE(perf_sample_allowed_ns, tmp);
431
}
P
Peter Zijlstra 已提交
432

433 434
static int perf_rotate_context(struct perf_cpu_context *cpuctx);

P
Peter Zijlstra 已提交
435 436 437 438
int perf_proc_update_handler(struct ctl_table *table, int write,
		void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
439
	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
P
Peter Zijlstra 已提交
440 441 442 443

	if (ret || !write)
		return ret;

444 445 446 447 448 449 450
	/*
	 * If throttling is disabled don't allow the write:
	 */
	if (sysctl_perf_cpu_time_max_percent == 100 ||
	    sysctl_perf_cpu_time_max_percent == 0)
		return -EINVAL;

P
Peter Zijlstra 已提交
451
	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
452 453 454 455 456 457 458 459 460 461 462 463
	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
	update_perf_cpu_limits();

	return 0;
}

int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;

int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
				void __user *buffer, size_t *lenp,
				loff_t *ppos)
{
464
	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
465 466 467 468

	if (ret || !write)
		return ret;

469 470
	if (sysctl_perf_cpu_time_max_percent == 100 ||
	    sysctl_perf_cpu_time_max_percent == 0) {
471 472 473 474 475 476
		printk(KERN_WARNING
		       "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
		WRITE_ONCE(perf_sample_allowed_ns, 0);
	} else {
		update_perf_cpu_limits();
	}
P
Peter Zijlstra 已提交
477 478 479

	return 0;
}
480

481 482 483 484 485 486 487
/*
 * perf samples are done in some very critical code paths (NMIs).
 * If they take too much CPU time, the system can lock up and not
 * get any real work done.  This will drop the sample rate when
 * we detect that events are taking too long.
 */
#define NR_ACCUMULATED_SAMPLES 128
P
Peter Zijlstra 已提交
488
static DEFINE_PER_CPU(u64, running_sample_length);
489

490 491 492
static u64 __report_avg;
static u64 __report_allowed;

493
static void perf_duration_warn(struct irq_work *w)
494
{
495
	printk_ratelimited(KERN_INFO
496 497 498 499
		"perf: interrupt took too long (%lld > %lld), lowering "
		"kernel.perf_event_max_sample_rate to %d\n",
		__report_avg, __report_allowed,
		sysctl_perf_event_sample_rate);
500 501 502 503 504 505
}

static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);

void perf_sample_event_took(u64 sample_len_ns)
{
506 507 508 509
	u64 max_len = READ_ONCE(perf_sample_allowed_ns);
	u64 running_len;
	u64 avg_len;
	u32 max;
510

511
	if (max_len == 0)
512 513
		return;

514 515 516 517 518
	/* Decay the counter by 1 average sample. */
	running_len = __this_cpu_read(running_sample_length);
	running_len -= running_len/NR_ACCUMULATED_SAMPLES;
	running_len += sample_len_ns;
	__this_cpu_write(running_sample_length, running_len);
519 520

	/*
521 522
	 * Note: this will be biased artifically low until we have
	 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
523 524
	 * from having to maintain a count.
	 */
525 526
	avg_len = running_len/NR_ACCUMULATED_SAMPLES;
	if (avg_len <= max_len)
527 528
		return;

529 530
	__report_avg = avg_len;
	__report_allowed = max_len;
531

532 533 534 535 536 537 538 539 540
	/*
	 * Compute a throttle threshold 25% below the current duration.
	 */
	avg_len += avg_len / 4;
	max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
	if (avg_len < max)
		max /= (u32)avg_len;
	else
		max = 1;
541

542 543 544 545 546
	WRITE_ONCE(perf_sample_allowed_ns, avg_len);
	WRITE_ONCE(max_samples_per_tick, max);

	sysctl_perf_event_sample_rate = max * HZ;
	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
547

548
	if (!irq_work_queue(&perf_duration_work)) {
549
		early_printk("perf: interrupt took too long (%lld > %lld), lowering "
550
			     "kernel.perf_event_max_sample_rate to %d\n",
551
			     __report_avg, __report_allowed,
552 553
			     sysctl_perf_event_sample_rate);
	}
554 555
}

556
static atomic64_t perf_event_id;
557

558 559 560 561
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type);

static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
562 563 564 565 566
			     enum event_type_t event_type,
			     struct task_struct *task);

static void update_context_time(struct perf_event_context *ctx);
static u64 perf_event_time(struct perf_event *event);
567

568
void __weak perf_event_print_debug(void)	{ }
T
Thomas Gleixner 已提交
569

570
extern __weak const char *perf_pmu_name(void)
T
Thomas Gleixner 已提交
571
{
572
	return "pmu";
T
Thomas Gleixner 已提交
573 574
}

575 576 577 578 579
static inline u64 perf_clock(void)
{
	return local_clock();
}

580 581 582 583 584
static inline u64 perf_event_clock(struct perf_event *event)
{
	return event->clock();
}

S
Stephane Eranian 已提交
585 586 587 588 589 590 591 592
#ifdef CONFIG_CGROUP_PERF

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);

593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608
	/* @event doesn't care about cgroup */
	if (!event->cgrp)
		return true;

	/* wants specific cgroup scope but @cpuctx isn't associated with any */
	if (!cpuctx->cgrp)
		return false;

	/*
	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
	 * also enabled for all its descendant cgroups.  If @cpuctx's
	 * cgroup is a descendant of @event's (the test covers identity
	 * case), it's a match.
	 */
	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
				    event->cgrp->css.cgroup);
S
Stephane Eranian 已提交
609 610 611 612
}

static inline void perf_detach_cgroup(struct perf_event *event)
{
Z
Zefan Li 已提交
613
	css_put(&event->cgrp->css);
S
Stephane Eranian 已提交
614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651
	event->cgrp = NULL;
}

static inline int is_cgroup_event(struct perf_event *event)
{
	return event->cgrp != NULL;
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	struct perf_cgroup_info *t;

	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	return t->time;
}

static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
{
	struct perf_cgroup_info *info;
	u64 now;

	now = perf_clock();

	info = this_cpu_ptr(cgrp->info);

	info->time += now - info->timestamp;
	info->timestamp = now;
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
	struct perf_cgroup *cgrp_out = cpuctx->cgrp;
	if (cgrp_out)
		__update_cgrp_time(cgrp_out);
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
652 653
	struct perf_cgroup *cgrp;

S
Stephane Eranian 已提交
654
	/*
655 656
	 * ensure we access cgroup data only when needed and
	 * when we know the cgroup is pinned (css_get)
S
Stephane Eranian 已提交
657
	 */
658
	if (!is_cgroup_event(event))
S
Stephane Eranian 已提交
659 660
		return;

661
	cgrp = perf_cgroup_from_task(current, event->ctx);
662 663 664 665 666
	/*
	 * Do not update time when cgroup is not active
	 */
	if (cgrp == event->cgrp)
		__update_cgrp_time(event->cgrp);
S
Stephane Eranian 已提交
667 668 669
}

static inline void
670 671
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
672 673 674 675
{
	struct perf_cgroup *cgrp;
	struct perf_cgroup_info *info;

676 677 678 679 680 681
	/*
	 * ctx->lock held by caller
	 * ensure we do not access cgroup data
	 * unless we have the cgroup pinned (css_get)
	 */
	if (!task || !ctx->nr_cgroups)
S
Stephane Eranian 已提交
682 683
		return;

684
	cgrp = perf_cgroup_from_task(task, ctx);
S
Stephane Eranian 已提交
685
	info = this_cpu_ptr(cgrp->info);
686
	info->timestamp = ctx->timestamp;
S
Stephane Eranian 已提交
687 688
}

689 690
static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);

S
Stephane Eranian 已提交
691 692 693 694 695 696 697 698 699
#define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
#define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */

/*
 * reschedule events based on the cgroup constraint of task.
 *
 * mode SWOUT : schedule out everything
 * mode SWIN : schedule in based on cgroup for next
 */
700
static void perf_cgroup_switch(struct task_struct *task, int mode)
S
Stephane Eranian 已提交
701 702
{
	struct perf_cpu_context *cpuctx;
703
	struct list_head *list;
S
Stephane Eranian 已提交
704 705 706
	unsigned long flags;

	/*
707 708
	 * Disable interrupts and preemption to avoid this CPU's
	 * cgrp_cpuctx_entry to change under us.
S
Stephane Eranian 已提交
709 710 711
	 */
	local_irq_save(flags);

712 713 714
	list = this_cpu_ptr(&cgrp_cpuctx_list);
	list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) {
		WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
S
Stephane Eranian 已提交
715

716 717
		perf_ctx_lock(cpuctx, cpuctx->task_ctx);
		perf_pmu_disable(cpuctx->ctx.pmu);
S
Stephane Eranian 已提交
718

719 720 721 722 723 724 725 726
		if (mode & PERF_CGROUP_SWOUT) {
			cpu_ctx_sched_out(cpuctx, EVENT_ALL);
			/*
			 * must not be done before ctxswout due
			 * to event_filter_match() in event_sched_out()
			 */
			cpuctx->cgrp = NULL;
		}
S
Stephane Eranian 已提交
727

728 729 730 731 732 733 734 735 736 737 738 739
		if (mode & PERF_CGROUP_SWIN) {
			WARN_ON_ONCE(cpuctx->cgrp);
			/*
			 * set cgrp before ctxsw in to allow
			 * event_filter_match() to not have to pass
			 * task around
			 * we pass the cpuctx->ctx to perf_cgroup_from_task()
			 * because cgorup events are only per-cpu
			 */
			cpuctx->cgrp = perf_cgroup_from_task(task,
							     &cpuctx->ctx);
			cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
S
Stephane Eranian 已提交
740
		}
741 742
		perf_pmu_enable(cpuctx->ctx.pmu);
		perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
S
Stephane Eranian 已提交
743 744 745 746 747
	}

	local_irq_restore(flags);
}

748 749
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
750
{
751 752 753
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

754
	rcu_read_lock();
755 756
	/*
	 * we come here when we know perf_cgroup_events > 0
757 758
	 * we do not need to pass the ctx here because we know
	 * we are holding the rcu lock
759
	 */
760
	cgrp1 = perf_cgroup_from_task(task, NULL);
761
	cgrp2 = perf_cgroup_from_task(next, NULL);
762 763 764 765 766 767 768 769

	/*
	 * only schedule out current cgroup events if we know
	 * that we are switching to a different cgroup. Otherwise,
	 * do no touch the cgroup events.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
770 771

	rcu_read_unlock();
S
Stephane Eranian 已提交
772 773
}

774 775
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
776
{
777 778 779
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

780
	rcu_read_lock();
781 782
	/*
	 * we come here when we know perf_cgroup_events > 0
783 784
	 * we do not need to pass the ctx here because we know
	 * we are holding the rcu lock
785
	 */
786 787
	cgrp1 = perf_cgroup_from_task(task, NULL);
	cgrp2 = perf_cgroup_from_task(prev, NULL);
788 789 790 791 792 793 794 795

	/*
	 * only need to schedule in cgroup events if we are changing
	 * cgroup during ctxsw. Cgroup events were not scheduled
	 * out of ctxsw out if that was not the case.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
796 797

	rcu_read_unlock();
S
Stephane Eranian 已提交
798 799 800 801 802 803 804 805
}

static inline int perf_cgroup_connect(int fd, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	struct perf_cgroup *cgrp;
	struct cgroup_subsys_state *css;
806 807
	struct fd f = fdget(fd);
	int ret = 0;
S
Stephane Eranian 已提交
808

809
	if (!f.file)
S
Stephane Eranian 已提交
810 811
		return -EBADF;

A
Al Viro 已提交
812
	css = css_tryget_online_from_dir(f.file->f_path.dentry,
813
					 &perf_event_cgrp_subsys);
814 815 816 817
	if (IS_ERR(css)) {
		ret = PTR_ERR(css);
		goto out;
	}
S
Stephane Eranian 已提交
818 819 820 821 822 823 824 825 826 827 828 829 830

	cgrp = container_of(css, struct perf_cgroup, css);
	event->cgrp = cgrp;

	/*
	 * all events in a group must monitor
	 * the same cgroup because a task belongs
	 * to only one perf cgroup at a time
	 */
	if (group_leader && group_leader->cgrp != cgrp) {
		perf_detach_cgroup(event);
		ret = -EINVAL;
	}
831
out:
832
	fdput(f);
S
Stephane Eranian 已提交
833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876
	return ret;
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
	struct perf_cgroup_info *t;
	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	event->shadow_ctx_time = now - t->timestamp;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
	/*
	 * when the current task's perf cgroup does not match
	 * the event's, we need to remember to call the
	 * perf_mark_enable() function the first time a task with
	 * a matching perf cgroup is scheduled in.
	 */
	if (is_cgroup_event(event) && !perf_cgroup_match(event))
		event->cgrp_defer_enabled = 1;
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
	struct perf_event *sub;
	u64 tstamp = perf_event_time(event);

	if (!event->cgrp_defer_enabled)
		return;

	event->cgrp_defer_enabled = 0;

	event->tstamp_enabled = tstamp - event->total_time_enabled;
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
			sub->cgrp_defer_enabled = 0;
		}
	}
}
877 878 879 880 881 882 883 884 885 886

/*
 * Update cpuctx->cgrp so that it is set when first cgroup event is added and
 * cleared when last cgroup event is removed.
 */
static inline void
list_update_cgroup_event(struct perf_event *event,
			 struct perf_event_context *ctx, bool add)
{
	struct perf_cpu_context *cpuctx;
887
	struct list_head *cpuctx_entry;
888 889 890 891 892 893 894 895 896 897 898 899 900

	if (!is_cgroup_event(event))
		return;

	if (add && ctx->nr_cgroups++)
		return;
	else if (!add && --ctx->nr_cgroups)
		return;
	/*
	 * Because cgroup events are always per-cpu events,
	 * this will always be called from the right CPU.
	 */
	cpuctx = __get_cpu_context(ctx);
901 902 903 904 905 906 907 908
	cpuctx_entry = &cpuctx->cgrp_cpuctx_entry;
	/* cpuctx->cgrp is NULL unless a cgroup event is active in this CPU .*/
	if (add) {
		list_add(cpuctx_entry, this_cpu_ptr(&cgrp_cpuctx_list));
		if (perf_cgroup_from_task(current, ctx) == event->cgrp)
			cpuctx->cgrp = event->cgrp;
	} else {
		list_del(cpuctx_entry);
909
		cpuctx->cgrp = NULL;
910
	}
911 912
}

S
Stephane Eranian 已提交
913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936
#else /* !CONFIG_CGROUP_PERF */

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	return true;
}

static inline void perf_detach_cgroup(struct perf_event *event)
{}

static inline int is_cgroup_event(struct perf_event *event)
{
	return 0;
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
}

937 938
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
939 940 941
{
}

942 943
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
944 945 946 947 948 949 950 951 952 953 954
{
}

static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	return -EINVAL;
}

static inline void
955 956
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984
{
}

void
perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
{
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	return 0;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
}
985 986 987 988 989 990 991

static inline void
list_update_cgroup_event(struct perf_event *event,
			 struct perf_event_context *ctx, bool add)
{
}

S
Stephane Eranian 已提交
992 993
#endif

994 995 996 997 998 999
/*
 * set default to be dependent on timer tick just
 * like original code
 */
#define PERF_CPU_HRTIMER (1000 / HZ)
/*
1000
 * function must be called with interrupts disabled
1001
 */
1002
static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1003 1004 1005 1006 1007 1008 1009 1010 1011
{
	struct perf_cpu_context *cpuctx;
	int rotations = 0;

	WARN_ON(!irqs_disabled());

	cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
	rotations = perf_rotate_context(cpuctx);

P
Peter Zijlstra 已提交
1012 1013
	raw_spin_lock(&cpuctx->hrtimer_lock);
	if (rotations)
1014
		hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
P
Peter Zijlstra 已提交
1015 1016 1017
	else
		cpuctx->hrtimer_active = 0;
	raw_spin_unlock(&cpuctx->hrtimer_lock);
1018

P
Peter Zijlstra 已提交
1019
	return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1020 1021
}

1022
static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
1023
{
1024
	struct hrtimer *timer = &cpuctx->hrtimer;
1025
	struct pmu *pmu = cpuctx->ctx.pmu;
1026
	u64 interval;
1027 1028 1029 1030 1031

	/* no multiplexing needed for SW PMU */
	if (pmu->task_ctx_nr == perf_sw_context)
		return;

1032 1033 1034 1035
	/*
	 * check default is sane, if not set then force to
	 * default interval (1/tick)
	 */
1036 1037 1038
	interval = pmu->hrtimer_interval_ms;
	if (interval < 1)
		interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1039

1040
	cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1041

P
Peter Zijlstra 已提交
1042 1043
	raw_spin_lock_init(&cpuctx->hrtimer_lock);
	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
1044
	timer->function = perf_mux_hrtimer_handler;
1045 1046
}

1047
static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1048
{
1049
	struct hrtimer *timer = &cpuctx->hrtimer;
1050
	struct pmu *pmu = cpuctx->ctx.pmu;
P
Peter Zijlstra 已提交
1051
	unsigned long flags;
1052 1053 1054

	/* not for SW PMU */
	if (pmu->task_ctx_nr == perf_sw_context)
1055
		return 0;
1056

P
Peter Zijlstra 已提交
1057 1058 1059 1060 1061 1062 1063
	raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
	if (!cpuctx->hrtimer_active) {
		cpuctx->hrtimer_active = 1;
		hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
		hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
	}
	raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1064

1065
	return 0;
1066 1067
}

P
Peter Zijlstra 已提交
1068
void perf_pmu_disable(struct pmu *pmu)
1069
{
P
Peter Zijlstra 已提交
1070 1071 1072
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!(*count)++)
		pmu->pmu_disable(pmu);
1073 1074
}

P
Peter Zijlstra 已提交
1075
void perf_pmu_enable(struct pmu *pmu)
1076
{
P
Peter Zijlstra 已提交
1077 1078 1079
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!--(*count))
		pmu->pmu_enable(pmu);
1080 1081
}

1082
static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1083 1084

/*
1085 1086 1087 1088
 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
 * perf_event_task_tick() are fully serialized because they're strictly cpu
 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
 * disabled, while perf_event_task_tick is called from IRQ context.
1089
 */
1090
static void perf_event_ctx_activate(struct perf_event_context *ctx)
1091
{
1092
	struct list_head *head = this_cpu_ptr(&active_ctx_list);
1093

1094
	WARN_ON(!irqs_disabled());
1095

1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107
	WARN_ON(!list_empty(&ctx->active_ctx_list));

	list_add(&ctx->active_ctx_list, head);
}

static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
{
	WARN_ON(!irqs_disabled());

	WARN_ON(list_empty(&ctx->active_ctx_list));

	list_del_init(&ctx->active_ctx_list);
1108 1109
}

1110
static void get_ctx(struct perf_event_context *ctx)
1111
{
1112
	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
1113 1114
}

1115 1116 1117 1118 1119 1120 1121 1122 1123
static void free_ctx(struct rcu_head *head)
{
	struct perf_event_context *ctx;

	ctx = container_of(head, struct perf_event_context, rcu_head);
	kfree(ctx->task_ctx_data);
	kfree(ctx);
}

1124
static void put_ctx(struct perf_event_context *ctx)
1125
{
1126 1127 1128
	if (atomic_dec_and_test(&ctx->refcount)) {
		if (ctx->parent_ctx)
			put_ctx(ctx->parent_ctx);
1129
		if (ctx->task && ctx->task != TASK_TOMBSTONE)
1130
			put_task_struct(ctx->task);
1131
		call_rcu(&ctx->rcu_head, free_ctx);
1132
	}
1133 1134
}

P
Peter Zijlstra 已提交
1135 1136 1137 1138 1139 1140 1141
/*
 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
 * perf_pmu_migrate_context() we need some magic.
 *
 * Those places that change perf_event::ctx will hold both
 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
 *
1142 1143 1144 1145
 * Lock ordering is by mutex address. There are two other sites where
 * perf_event_context::mutex nests and those are:
 *
 *  - perf_event_exit_task_context()	[ child , 0 ]
1146 1147
 *      perf_event_exit_event()
 *        put_event()			[ parent, 1 ]
1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164
 *
 *  - perf_event_init_context()		[ parent, 0 ]
 *      inherit_task_group()
 *        inherit_group()
 *          inherit_event()
 *            perf_event_alloc()
 *              perf_init_event()
 *                perf_try_init_event()	[ child , 1 ]
 *
 * While it appears there is an obvious deadlock here -- the parent and child
 * nesting levels are inverted between the two. This is in fact safe because
 * life-time rules separate them. That is an exiting task cannot fork, and a
 * spawning task cannot (yet) exit.
 *
 * But remember that that these are parent<->child context relations, and
 * migration does not affect children, therefore these two orderings should not
 * interact.
P
Peter Zijlstra 已提交
1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187
 *
 * The change in perf_event::ctx does not affect children (as claimed above)
 * because the sys_perf_event_open() case will install a new event and break
 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
 * concerned with cpuctx and that doesn't have children.
 *
 * The places that change perf_event::ctx will issue:
 *
 *   perf_remove_from_context();
 *   synchronize_rcu();
 *   perf_install_in_context();
 *
 * to affect the change. The remove_from_context() + synchronize_rcu() should
 * quiesce the event, after which we can install it in the new location. This
 * means that only external vectors (perf_fops, prctl) can perturb the event
 * while in transit. Therefore all such accessors should also acquire
 * perf_event_context::mutex to serialize against this.
 *
 * However; because event->ctx can change while we're waiting to acquire
 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
 * function.
 *
 * Lock order:
1188
 *    cred_guard_mutex
P
Peter Zijlstra 已提交
1189 1190 1191
 *	task_struct::perf_event_mutex
 *	  perf_event_context::mutex
 *	    perf_event::child_mutex;
P
Peter Zijlstra 已提交
1192
 *	      perf_event_context::lock
P
Peter Zijlstra 已提交
1193 1194 1195
 *	    perf_event::mmap_mutex
 *	    mmap_sem
 */
P
Peter Zijlstra 已提交
1196 1197
static struct perf_event_context *
perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
P
Peter Zijlstra 已提交
1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209
{
	struct perf_event_context *ctx;

again:
	rcu_read_lock();
	ctx = ACCESS_ONCE(event->ctx);
	if (!atomic_inc_not_zero(&ctx->refcount)) {
		rcu_read_unlock();
		goto again;
	}
	rcu_read_unlock();

P
Peter Zijlstra 已提交
1210
	mutex_lock_nested(&ctx->mutex, nesting);
P
Peter Zijlstra 已提交
1211 1212 1213 1214 1215 1216 1217 1218 1219
	if (event->ctx != ctx) {
		mutex_unlock(&ctx->mutex);
		put_ctx(ctx);
		goto again;
	}

	return ctx;
}

P
Peter Zijlstra 已提交
1220 1221 1222 1223 1224 1225
static inline struct perf_event_context *
perf_event_ctx_lock(struct perf_event *event)
{
	return perf_event_ctx_lock_nested(event, 0);
}

P
Peter Zijlstra 已提交
1226 1227 1228 1229 1230 1231 1232
static void perf_event_ctx_unlock(struct perf_event *event,
				  struct perf_event_context *ctx)
{
	mutex_unlock(&ctx->mutex);
	put_ctx(ctx);
}

1233 1234 1235 1236 1237 1238 1239
/*
 * This must be done under the ctx->lock, such as to serialize against
 * context_equiv(), therefore we cannot call put_ctx() since that might end up
 * calling scheduler related locks and ctx->lock nests inside those.
 */
static __must_check struct perf_event_context *
unclone_ctx(struct perf_event_context *ctx)
1240
{
1241 1242 1243 1244 1245
	struct perf_event_context *parent_ctx = ctx->parent_ctx;

	lockdep_assert_held(&ctx->lock);

	if (parent_ctx)
1246
		ctx->parent_ctx = NULL;
1247
	ctx->generation++;
1248 1249

	return parent_ctx;
1250 1251
}

1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273
static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_tgid_nr_ns(p, event->ns);
}

static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_pid_nr_ns(p, event->ns);
}

1274
/*
1275
 * If we inherit events we want to return the parent event id
1276 1277
 * to userspace.
 */
1278
static u64 primary_event_id(struct perf_event *event)
1279
{
1280
	u64 id = event->id;
1281

1282 1283
	if (event->parent)
		id = event->parent->id;
1284 1285 1286 1287

	return id;
}

1288
/*
1289
 * Get the perf_event_context for a task and lock it.
1290
 *
1291 1292 1293
 * This has to cope with with the fact that until it is locked,
 * the context could get moved to another task.
 */
1294
static struct perf_event_context *
P
Peter Zijlstra 已提交
1295
perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1296
{
1297
	struct perf_event_context *ctx;
1298

P
Peter Zijlstra 已提交
1299
retry:
1300 1301 1302
	/*
	 * One of the few rules of preemptible RCU is that one cannot do
	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1303
	 * part of the read side critical section was irqs-enabled -- see
1304 1305 1306
	 * rcu_read_unlock_special().
	 *
	 * Since ctx->lock nests under rq->lock we must ensure the entire read
1307
	 * side critical section has interrupts disabled.
1308
	 */
1309
	local_irq_save(*flags);
1310
	rcu_read_lock();
P
Peter Zijlstra 已提交
1311
	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1312 1313 1314 1315
	if (ctx) {
		/*
		 * If this context is a clone of another, it might
		 * get swapped for another underneath us by
1316
		 * perf_event_task_sched_out, though the
1317 1318 1319 1320 1321 1322
		 * rcu_read_lock() protects us from any context
		 * getting freed.  Lock the context and check if it
		 * got swapped before we could get the lock, and retry
		 * if so.  If we locked the right context, then it
		 * can't get swapped on us any more.
		 */
1323
		raw_spin_lock(&ctx->lock);
P
Peter Zijlstra 已提交
1324
		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1325
			raw_spin_unlock(&ctx->lock);
1326
			rcu_read_unlock();
1327
			local_irq_restore(*flags);
1328 1329
			goto retry;
		}
1330

1331 1332
		if (ctx->task == TASK_TOMBSTONE ||
		    !atomic_inc_not_zero(&ctx->refcount)) {
1333
			raw_spin_unlock(&ctx->lock);
1334
			ctx = NULL;
P
Peter Zijlstra 已提交
1335 1336
		} else {
			WARN_ON_ONCE(ctx->task != task);
1337
		}
1338 1339
	}
	rcu_read_unlock();
1340 1341
	if (!ctx)
		local_irq_restore(*flags);
1342 1343 1344 1345 1346 1347 1348 1349
	return ctx;
}

/*
 * Get the context for a task and increment its pin_count so it
 * can't get swapped to another task.  This also increments its
 * reference count so that the context can't get freed.
 */
P
Peter Zijlstra 已提交
1350 1351
static struct perf_event_context *
perf_pin_task_context(struct task_struct *task, int ctxn)
1352
{
1353
	struct perf_event_context *ctx;
1354 1355
	unsigned long flags;

P
Peter Zijlstra 已提交
1356
	ctx = perf_lock_task_context(task, ctxn, &flags);
1357 1358
	if (ctx) {
		++ctx->pin_count;
1359
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1360 1361 1362 1363
	}
	return ctx;
}

1364
static void perf_unpin_context(struct perf_event_context *ctx)
1365 1366 1367
{
	unsigned long flags;

1368
	raw_spin_lock_irqsave(&ctx->lock, flags);
1369
	--ctx->pin_count;
1370
	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1371 1372
}

1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383
/*
 * Update the record of the current time in a context.
 */
static void update_context_time(struct perf_event_context *ctx)
{
	u64 now = perf_clock();

	ctx->time += now - ctx->timestamp;
	ctx->timestamp = now;
}

1384 1385 1386
static u64 perf_event_time(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
S
Stephane Eranian 已提交
1387 1388 1389 1390

	if (is_cgroup_event(event))
		return perf_cgroup_event_time(event);

1391 1392 1393
	return ctx ? ctx->time : 0;
}

1394 1395 1396 1397 1398 1399 1400 1401
/*
 * Update the total_time_enabled and total_time_running fields for a event.
 */
static void update_event_times(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	u64 run_end;

1402 1403
	lockdep_assert_held(&ctx->lock);

1404 1405 1406
	if (event->state < PERF_EVENT_STATE_INACTIVE ||
	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
		return;
1407

S
Stephane Eranian 已提交
1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418
	/*
	 * in cgroup mode, time_enabled represents
	 * the time the event was enabled AND active
	 * tasks were in the monitored cgroup. This is
	 * independent of the activity of the context as
	 * there may be a mix of cgroup and non-cgroup events.
	 *
	 * That is why we treat cgroup events differently
	 * here.
	 */
	if (is_cgroup_event(event))
1419
		run_end = perf_cgroup_event_time(event);
S
Stephane Eranian 已提交
1420 1421
	else if (ctx->is_active)
		run_end = ctx->time;
1422 1423 1424 1425
	else
		run_end = event->tstamp_stopped;

	event->total_time_enabled = run_end - event->tstamp_enabled;
1426 1427 1428 1429

	if (event->state == PERF_EVENT_STATE_INACTIVE)
		run_end = event->tstamp_stopped;
	else
1430
		run_end = perf_event_time(event);
1431 1432

	event->total_time_running = run_end - event->tstamp_running;
S
Stephane Eranian 已提交
1433

1434 1435
}

1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447
/*
 * Update total_time_enabled and total_time_running for all events in a group.
 */
static void update_group_times(struct perf_event *leader)
{
	struct perf_event *event;

	update_event_times(leader);
	list_for_each_entry(event, &leader->sibling_list, group_entry)
		update_event_times(event);
}

1448 1449 1450 1451 1452 1453 1454
static enum event_type_t get_event_type(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	enum event_type_t event_type;

	lockdep_assert_held(&ctx->lock);

1455 1456 1457 1458 1459 1460 1461
	/*
	 * It's 'group type', really, because if our group leader is
	 * pinned, so are we.
	 */
	if (event->group_leader != event)
		event = event->group_leader;

1462 1463 1464 1465 1466 1467 1468
	event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
	if (!ctx->task)
		event_type |= EVENT_CPU;

	return event_type;
}

1469 1470 1471 1472 1473 1474 1475 1476 1477
static struct list_head *
ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
{
	if (event->attr.pinned)
		return &ctx->pinned_groups;
	else
		return &ctx->flexible_groups;
}

1478
/*
1479
 * Add a event from the lists for its context.
1480 1481
 * Must be called with ctx->mutex and ctx->lock held.
 */
1482
static void
1483
list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1484
{
P
Peter Zijlstra 已提交
1485 1486
	lockdep_assert_held(&ctx->lock);

1487 1488
	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
	event->attach_state |= PERF_ATTACH_CONTEXT;
1489 1490

	/*
1491 1492 1493
	 * If we're a stand alone event or group leader, we go to the context
	 * list, group events are kept attached to the group so that
	 * perf_group_detach can, at all times, locate all siblings.
1494
	 */
1495
	if (event->group_leader == event) {
1496 1497
		struct list_head *list;

1498
		event->group_caps = event->event_caps;
1499

1500 1501
		list = ctx_group_list(event, ctx);
		list_add_tail(&event->group_entry, list);
P
Peter Zijlstra 已提交
1502
	}
P
Peter Zijlstra 已提交
1503

1504
	list_update_cgroup_event(event, ctx, true);
S
Stephane Eranian 已提交
1505

1506 1507 1508
	list_add_rcu(&event->event_entry, &ctx->event_list);
	ctx->nr_events++;
	if (event->attr.inherit_stat)
1509
		ctx->nr_stat++;
1510 1511

	ctx->generation++;
1512 1513
}

J
Jiri Olsa 已提交
1514 1515 1516 1517 1518 1519 1520 1521 1522
/*
 * Initialize event state based on the perf_event_attr::disabled.
 */
static inline void perf_event__state_init(struct perf_event *event)
{
	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
					      PERF_EVENT_STATE_INACTIVE;
}

P
Peter Zijlstra 已提交
1523
static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538
{
	int entry = sizeof(u64); /* value */
	int size = 0;
	int nr = 1;

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_ID)
		entry += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_GROUP) {
P
Peter Zijlstra 已提交
1539
		nr += nr_siblings;
1540 1541 1542 1543 1544 1545 1546
		size += sizeof(u64);
	}

	size += entry * nr;
	event->read_size = size;
}

P
Peter Zijlstra 已提交
1547
static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1548 1549 1550 1551 1552 1553 1554
{
	struct perf_sample_data *data;
	u16 size = 0;

	if (sample_type & PERF_SAMPLE_IP)
		size += sizeof(data->ip);

1555 1556 1557 1558 1559 1560
	if (sample_type & PERF_SAMPLE_ADDR)
		size += sizeof(data->addr);

	if (sample_type & PERF_SAMPLE_PERIOD)
		size += sizeof(data->period);

A
Andi Kleen 已提交
1561 1562 1563
	if (sample_type & PERF_SAMPLE_WEIGHT)
		size += sizeof(data->weight);

1564 1565 1566
	if (sample_type & PERF_SAMPLE_READ)
		size += event->read_size;

1567 1568 1569
	if (sample_type & PERF_SAMPLE_DATA_SRC)
		size += sizeof(data->data_src.val);

A
Andi Kleen 已提交
1570 1571 1572
	if (sample_type & PERF_SAMPLE_TRANSACTION)
		size += sizeof(data->txn);

1573 1574 1575
	event->header_size = size;
}

P
Peter Zijlstra 已提交
1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586
/*
 * Called at perf_event creation and when events are attached/detached from a
 * group.
 */
static void perf_event__header_size(struct perf_event *event)
{
	__perf_event_read_size(event,
			       event->group_leader->nr_siblings);
	__perf_event_header_size(event, event->attr.sample_type);
}

1587 1588 1589 1590 1591 1592
static void perf_event__id_header_size(struct perf_event *event)
{
	struct perf_sample_data *data;
	u64 sample_type = event->attr.sample_type;
	u16 size = 0;

1593 1594 1595 1596 1597 1598
	if (sample_type & PERF_SAMPLE_TID)
		size += sizeof(data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		size += sizeof(data->time);

1599 1600 1601
	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		size += sizeof(data->id);

1602 1603 1604 1605 1606 1607 1608 1609 1610
	if (sample_type & PERF_SAMPLE_ID)
		size += sizeof(data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		size += sizeof(data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		size += sizeof(data->cpu_entry);

1611
	event->id_header_size = size;
1612 1613
}

P
Peter Zijlstra 已提交
1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634
static bool perf_event_validate_size(struct perf_event *event)
{
	/*
	 * The values computed here will be over-written when we actually
	 * attach the event.
	 */
	__perf_event_read_size(event, event->group_leader->nr_siblings + 1);
	__perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
	perf_event__id_header_size(event);

	/*
	 * Sum the lot; should not exceed the 64k limit we have on records.
	 * Conservative limit to allow for callchains and other variable fields.
	 */
	if (event->read_size + event->header_size +
	    event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
		return false;

	return true;
}

1635 1636
static void perf_group_attach(struct perf_event *event)
{
1637
	struct perf_event *group_leader = event->group_leader, *pos;
1638

1639 1640
	lockdep_assert_held(&event->ctx->lock);

P
Peter Zijlstra 已提交
1641 1642 1643 1644 1645 1646
	/*
	 * We can have double attach due to group movement in perf_event_open.
	 */
	if (event->attach_state & PERF_ATTACH_GROUP)
		return;

1647 1648 1649 1650 1651
	event->attach_state |= PERF_ATTACH_GROUP;

	if (group_leader == event)
		return;

P
Peter Zijlstra 已提交
1652 1653
	WARN_ON_ONCE(group_leader->ctx != event->ctx);

1654
	group_leader->group_caps &= event->event_caps;
1655 1656 1657

	list_add_tail(&event->group_entry, &group_leader->sibling_list);
	group_leader->nr_siblings++;
1658 1659 1660 1661 1662

	perf_event__header_size(group_leader);

	list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
		perf_event__header_size(pos);
1663 1664
}

1665
/*
1666
 * Remove a event from the lists for its context.
1667
 * Must be called with ctx->mutex and ctx->lock held.
1668
 */
1669
static void
1670
list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1671
{
P
Peter Zijlstra 已提交
1672 1673 1674
	WARN_ON_ONCE(event->ctx != ctx);
	lockdep_assert_held(&ctx->lock);

1675 1676 1677 1678
	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1679
		return;
1680 1681 1682

	event->attach_state &= ~PERF_ATTACH_CONTEXT;

1683
	list_update_cgroup_event(event, ctx, false);
S
Stephane Eranian 已提交
1684

1685 1686
	ctx->nr_events--;
	if (event->attr.inherit_stat)
1687
		ctx->nr_stat--;
1688

1689
	list_del_rcu(&event->event_entry);
1690

1691 1692
	if (event->group_leader == event)
		list_del_init(&event->group_entry);
P
Peter Zijlstra 已提交
1693

1694
	update_group_times(event);
1695 1696 1697 1698 1699 1700 1701 1702 1703 1704

	/*
	 * If event was in error state, then keep it
	 * that way, otherwise bogus counts will be
	 * returned on read(). The only way to get out
	 * of error state is by explicit re-enabling
	 * of the event
	 */
	if (event->state > PERF_EVENT_STATE_OFF)
		event->state = PERF_EVENT_STATE_OFF;
1705 1706

	ctx->generation++;
1707 1708
}

1709
static void perf_group_detach(struct perf_event *event)
1710 1711
{
	struct perf_event *sibling, *tmp;
1712 1713
	struct list_head *list = NULL;

1714 1715
	lockdep_assert_held(&event->ctx->lock);

1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729
	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_GROUP))
		return;

	event->attach_state &= ~PERF_ATTACH_GROUP;

	/*
	 * If this is a sibling, remove it from its group.
	 */
	if (event->group_leader != event) {
		list_del_init(&event->group_entry);
		event->group_leader->nr_siblings--;
1730
		goto out;
1731 1732 1733 1734
	}

	if (!list_empty(&event->group_entry))
		list = &event->group_entry;
1735

1736
	/*
1737 1738
	 * If this was a group event with sibling events then
	 * upgrade the siblings to singleton events by adding them
1739
	 * to whatever list we are on.
1740
	 */
1741
	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1742 1743
		if (list)
			list_move_tail(&sibling->group_entry, list);
1744
		sibling->group_leader = sibling;
1745 1746

		/* Inherit group flags from the previous leader */
1747
		sibling->group_caps = event->group_caps;
P
Peter Zijlstra 已提交
1748 1749

		WARN_ON_ONCE(sibling->ctx != event->ctx);
1750
	}
1751 1752 1753 1754 1755 1756

out:
	perf_event__header_size(event->group_leader);

	list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
		perf_event__header_size(tmp);
1757 1758
}

1759 1760
static bool is_orphaned_event(struct perf_event *event)
{
P
Peter Zijlstra 已提交
1761
	return event->state == PERF_EVENT_STATE_DEAD;
1762 1763
}

1764
static inline int __pmu_filter_match(struct perf_event *event)
1765 1766 1767 1768 1769
{
	struct pmu *pmu = event->pmu;
	return pmu->filter_match ? pmu->filter_match(event) : 1;
}

1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790
/*
 * Check whether we should attempt to schedule an event group based on
 * PMU-specific filtering. An event group can consist of HW and SW events,
 * potentially with a SW leader, so we must check all the filters, to
 * determine whether a group is schedulable:
 */
static inline int pmu_filter_match(struct perf_event *event)
{
	struct perf_event *child;

	if (!__pmu_filter_match(event))
		return 0;

	list_for_each_entry(child, &event->sibling_list, group_entry) {
		if (!__pmu_filter_match(child))
			return 0;
	}

	return 1;
}

1791 1792 1793
static inline int
event_filter_match(struct perf_event *event)
{
1794 1795
	return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
	       perf_cgroup_match(event) && pmu_filter_match(event);
1796 1797
}

1798 1799
static void
event_sched_out(struct perf_event *event,
1800
		  struct perf_cpu_context *cpuctx,
1801
		  struct perf_event_context *ctx)
1802
{
1803
	u64 tstamp = perf_event_time(event);
1804
	u64 delta;
P
Peter Zijlstra 已提交
1805 1806 1807 1808

	WARN_ON_ONCE(event->ctx != ctx);
	lockdep_assert_held(&ctx->lock);

1809 1810 1811 1812 1813 1814
	/*
	 * An event which could not be activated because of
	 * filter mismatch still needs to have its timings
	 * maintained, otherwise bogus information is return
	 * via read() for time_enabled, time_running:
	 */
1815 1816
	if (event->state == PERF_EVENT_STATE_INACTIVE &&
	    !event_filter_match(event)) {
S
Stephane Eranian 已提交
1817
		delta = tstamp - event->tstamp_stopped;
1818
		event->tstamp_running += delta;
1819
		event->tstamp_stopped = tstamp;
1820 1821
	}

1822
	if (event->state != PERF_EVENT_STATE_ACTIVE)
1823
		return;
1824

1825 1826
	perf_pmu_disable(event->pmu);

1827 1828 1829
	event->tstamp_stopped = tstamp;
	event->pmu->del(event, 0);
	event->oncpu = -1;
1830 1831 1832 1833
	event->state = PERF_EVENT_STATE_INACTIVE;
	if (event->pending_disable) {
		event->pending_disable = 0;
		event->state = PERF_EVENT_STATE_OFF;
1834
	}
1835

1836
	if (!is_software_event(event))
1837
		cpuctx->active_oncpu--;
1838 1839
	if (!--ctx->nr_active)
		perf_event_ctx_deactivate(ctx);
1840 1841
	if (event->attr.freq && event->attr.sample_freq)
		ctx->nr_freq--;
1842
	if (event->attr.exclusive || !cpuctx->active_oncpu)
1843
		cpuctx->exclusive = 0;
1844 1845

	perf_pmu_enable(event->pmu);
1846 1847
}

1848
static void
1849
group_sched_out(struct perf_event *group_event,
1850
		struct perf_cpu_context *cpuctx,
1851
		struct perf_event_context *ctx)
1852
{
1853
	struct perf_event *event;
1854
	int state = group_event->state;
1855

1856 1857
	perf_pmu_disable(ctx->pmu);

1858
	event_sched_out(group_event, cpuctx, ctx);
1859 1860 1861 1862

	/*
	 * Schedule out siblings (if any):
	 */
1863 1864
	list_for_each_entry(event, &group_event->sibling_list, group_entry)
		event_sched_out(event, cpuctx, ctx);
1865

1866 1867
	perf_pmu_enable(ctx->pmu);

1868
	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1869 1870 1871
		cpuctx->exclusive = 0;
}

1872
#define DETACH_GROUP	0x01UL
1873

T
Thomas Gleixner 已提交
1874
/*
1875
 * Cross CPU call to remove a performance event
T
Thomas Gleixner 已提交
1876
 *
1877
 * We disable the event on the hardware level first. After that we
T
Thomas Gleixner 已提交
1878 1879
 * remove it from the context list.
 */
1880 1881 1882 1883 1884
static void
__perf_remove_from_context(struct perf_event *event,
			   struct perf_cpu_context *cpuctx,
			   struct perf_event_context *ctx,
			   void *info)
T
Thomas Gleixner 已提交
1885
{
1886
	unsigned long flags = (unsigned long)info;
T
Thomas Gleixner 已提交
1887

1888
	event_sched_out(event, cpuctx, ctx);
1889
	if (flags & DETACH_GROUP)
1890
		perf_group_detach(event);
1891
	list_del_event(event, ctx);
1892 1893

	if (!ctx->nr_events && ctx->is_active) {
1894
		ctx->is_active = 0;
1895 1896 1897 1898
		if (ctx->task) {
			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
			cpuctx->task_ctx = NULL;
		}
1899
	}
T
Thomas Gleixner 已提交
1900 1901 1902
}

/*
1903
 * Remove the event from a task's (or a CPU's) list of events.
T
Thomas Gleixner 已提交
1904
 *
1905 1906
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1907 1908
 * remains valid.  This is OK when called from perf_release since
 * that only calls us on the top-level context, which can't be a clone.
1909
 * When called from perf_event_exit_task, it's OK because the
1910
 * context has been detached from its task.
T
Thomas Gleixner 已提交
1911
 */
1912
static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
T
Thomas Gleixner 已提交
1913
{
1914 1915 1916
	struct perf_event_context *ctx = event->ctx;

	lockdep_assert_held(&ctx->mutex);
T
Thomas Gleixner 已提交
1917

1918
	event_function_call(event, __perf_remove_from_context, (void *)flags);
1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936

	/*
	 * The above event_function_call() can NO-OP when it hits
	 * TASK_TOMBSTONE. In that case we must already have been detached
	 * from the context (by perf_event_exit_event()) but the grouping
	 * might still be in-tact.
	 */
	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
	if ((flags & DETACH_GROUP) &&
	    (event->attach_state & PERF_ATTACH_GROUP)) {
		/*
		 * Since in that case we cannot possibly be scheduled, simply
		 * detach now.
		 */
		raw_spin_lock_irq(&ctx->lock);
		perf_group_detach(event);
		raw_spin_unlock_irq(&ctx->lock);
	}
T
Thomas Gleixner 已提交
1937 1938
}

1939
/*
1940
 * Cross CPU call to disable a performance event
1941
 */
1942 1943 1944 1945
static void __perf_event_disable(struct perf_event *event,
				 struct perf_cpu_context *cpuctx,
				 struct perf_event_context *ctx,
				 void *info)
1946
{
1947 1948
	if (event->state < PERF_EVENT_STATE_INACTIVE)
		return;
1949

1950 1951 1952 1953 1954 1955 1956 1957
	update_context_time(ctx);
	update_cgrp_time_from_event(event);
	update_group_times(event);
	if (event == event->group_leader)
		group_sched_out(event, cpuctx, ctx);
	else
		event_sched_out(event, cpuctx, ctx);
	event->state = PERF_EVENT_STATE_OFF;
1958 1959
}

1960
/*
1961
 * Disable a event.
1962
 *
1963 1964
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1965
 * remains valid.  This condition is satisifed when called through
1966 1967
 * perf_event_for_each_child or perf_event_for_each because they
 * hold the top-level event's child_mutex, so any descendant that
1968 1969
 * goes to exit will block in perf_event_exit_event().
 *
1970
 * When called from perf_pending_event it's OK because event->ctx
1971
 * is the current context on this CPU and preemption is disabled,
1972
 * hence we can't get into perf_event_task_sched_out for this context.
1973
 */
P
Peter Zijlstra 已提交
1974
static void _perf_event_disable(struct perf_event *event)
1975
{
1976
	struct perf_event_context *ctx = event->ctx;
1977

1978
	raw_spin_lock_irq(&ctx->lock);
1979
	if (event->state <= PERF_EVENT_STATE_OFF) {
1980
		raw_spin_unlock_irq(&ctx->lock);
1981
		return;
1982
	}
1983
	raw_spin_unlock_irq(&ctx->lock);
1984

1985 1986 1987 1988 1989 1990
	event_function_call(event, __perf_event_disable, NULL);
}

void perf_event_disable_local(struct perf_event *event)
{
	event_function_local(event, __perf_event_disable, NULL);
1991
}
P
Peter Zijlstra 已提交
1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004

/*
 * Strictly speaking kernel users cannot create groups and therefore this
 * interface does not need the perf_event_ctx_lock() magic.
 */
void perf_event_disable(struct perf_event *event)
{
	struct perf_event_context *ctx;

	ctx = perf_event_ctx_lock(event);
	_perf_event_disable(event);
	perf_event_ctx_unlock(event, ctx);
}
2005
EXPORT_SYMBOL_GPL(perf_event_disable);
2006

2007 2008 2009 2010 2011 2012
void perf_event_disable_inatomic(struct perf_event *event)
{
	event->pending_disable = 1;
	irq_work_queue(&event->pending);
}

S
Stephane Eranian 已提交
2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047
static void perf_set_shadow_time(struct perf_event *event,
				 struct perf_event_context *ctx,
				 u64 tstamp)
{
	/*
	 * use the correct time source for the time snapshot
	 *
	 * We could get by without this by leveraging the
	 * fact that to get to this function, the caller
	 * has most likely already called update_context_time()
	 * and update_cgrp_time_xx() and thus both timestamp
	 * are identical (or very close). Given that tstamp is,
	 * already adjusted for cgroup, we could say that:
	 *    tstamp - ctx->timestamp
	 * is equivalent to
	 *    tstamp - cgrp->timestamp.
	 *
	 * Then, in perf_output_read(), the calculation would
	 * work with no changes because:
	 * - event is guaranteed scheduled in
	 * - no scheduled out in between
	 * - thus the timestamp would be the same
	 *
	 * But this is a bit hairy.
	 *
	 * So instead, we have an explicit cgroup call to remain
	 * within the time time source all along. We believe it
	 * is cleaner and simpler to understand.
	 */
	if (is_cgroup_event(event))
		perf_cgroup_set_shadow_time(event, tstamp);
	else
		event->shadow_ctx_time = tstamp - ctx->timestamp;
}

P
Peter Zijlstra 已提交
2048 2049 2050
#define MAX_INTERRUPTS (~0ULL)

static void perf_log_throttle(struct perf_event *event, int enable);
2051
static void perf_log_itrace_start(struct perf_event *event);
P
Peter Zijlstra 已提交
2052

2053
static int
2054
event_sched_in(struct perf_event *event,
2055
		 struct perf_cpu_context *cpuctx,
2056
		 struct perf_event_context *ctx)
2057
{
2058
	u64 tstamp = perf_event_time(event);
2059
	int ret = 0;
2060

2061 2062
	lockdep_assert_held(&ctx->lock);

2063
	if (event->state <= PERF_EVENT_STATE_OFF)
2064 2065
		return 0;

2066 2067 2068 2069 2070 2071 2072
	WRITE_ONCE(event->oncpu, smp_processor_id());
	/*
	 * Order event::oncpu write to happen before the ACTIVE state
	 * is visible.
	 */
	smp_wmb();
	WRITE_ONCE(event->state, PERF_EVENT_STATE_ACTIVE);
P
Peter Zijlstra 已提交
2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083

	/*
	 * Unthrottle events, since we scheduled we might have missed several
	 * ticks already, also for a heavily scheduling task there is little
	 * guarantee it'll get a tick in a timely manner.
	 */
	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
		perf_log_throttle(event, 1);
		event->hw.interrupts = 0;
	}

2084 2085 2086 2087 2088
	/*
	 * The new state must be visible before we turn it on in the hardware:
	 */
	smp_wmb();

2089 2090
	perf_pmu_disable(event->pmu);

2091 2092
	perf_set_shadow_time(event, ctx, tstamp);

2093 2094
	perf_log_itrace_start(event);

P
Peter Zijlstra 已提交
2095
	if (event->pmu->add(event, PERF_EF_START)) {
2096 2097
		event->state = PERF_EVENT_STATE_INACTIVE;
		event->oncpu = -1;
2098 2099
		ret = -EAGAIN;
		goto out;
2100 2101
	}

2102 2103
	event->tstamp_running += tstamp - event->tstamp_stopped;

2104
	if (!is_software_event(event))
2105
		cpuctx->active_oncpu++;
2106 2107
	if (!ctx->nr_active++)
		perf_event_ctx_activate(ctx);
2108 2109
	if (event->attr.freq && event->attr.sample_freq)
		ctx->nr_freq++;
2110

2111
	if (event->attr.exclusive)
2112 2113
		cpuctx->exclusive = 1;

2114 2115 2116 2117
out:
	perf_pmu_enable(event->pmu);

	return ret;
2118 2119
}

2120
static int
2121
group_sched_in(struct perf_event *group_event,
2122
	       struct perf_cpu_context *cpuctx,
2123
	       struct perf_event_context *ctx)
2124
{
2125
	struct perf_event *event, *partial_group = NULL;
P
Peter Zijlstra 已提交
2126
	struct pmu *pmu = ctx->pmu;
2127 2128
	u64 now = ctx->time;
	bool simulate = false;
2129

2130
	if (group_event->state == PERF_EVENT_STATE_OFF)
2131 2132
		return 0;

2133
	pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2134

2135
	if (event_sched_in(group_event, cpuctx, ctx)) {
P
Peter Zijlstra 已提交
2136
		pmu->cancel_txn(pmu);
2137
		perf_mux_hrtimer_restart(cpuctx);
2138
		return -EAGAIN;
2139
	}
2140 2141 2142 2143

	/*
	 * Schedule in siblings as one group (if any):
	 */
2144
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2145
		if (event_sched_in(event, cpuctx, ctx)) {
2146
			partial_group = event;
2147 2148 2149 2150
			goto group_error;
		}
	}

2151
	if (!pmu->commit_txn(pmu))
2152
		return 0;
2153

2154 2155 2156 2157
group_error:
	/*
	 * Groups can be scheduled in as one unit only, so undo any
	 * partial group before returning:
2158 2159 2160 2161 2162 2163 2164 2165 2166 2167
	 * The events up to the failed event are scheduled out normally,
	 * tstamp_stopped will be updated.
	 *
	 * The failed events and the remaining siblings need to have
	 * their timings updated as if they had gone thru event_sched_in()
	 * and event_sched_out(). This is required to get consistent timings
	 * across the group. This also takes care of the case where the group
	 * could never be scheduled by ensuring tstamp_stopped is set to mark
	 * the time the event was actually stopped, such that time delta
	 * calculation in update_event_times() is correct.
2168
	 */
2169 2170
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
		if (event == partial_group)
2171 2172 2173 2174 2175 2176 2177 2178
			simulate = true;

		if (simulate) {
			event->tstamp_running += now - event->tstamp_stopped;
			event->tstamp_stopped = now;
		} else {
			event_sched_out(event, cpuctx, ctx);
		}
2179
	}
2180
	event_sched_out(group_event, cpuctx, ctx);
2181

P
Peter Zijlstra 已提交
2182
	pmu->cancel_txn(pmu);
2183

2184
	perf_mux_hrtimer_restart(cpuctx);
2185

2186 2187 2188
	return -EAGAIN;
}

2189
/*
2190
 * Work out whether we can put this event group on the CPU now.
2191
 */
2192
static int group_can_go_on(struct perf_event *event,
2193 2194 2195 2196
			   struct perf_cpu_context *cpuctx,
			   int can_add_hw)
{
	/*
2197
	 * Groups consisting entirely of software events can always go on.
2198
	 */
2199
	if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2200 2201 2202
		return 1;
	/*
	 * If an exclusive group is already on, no other hardware
2203
	 * events can go on.
2204 2205 2206 2207 2208
	 */
	if (cpuctx->exclusive)
		return 0;
	/*
	 * If this group is exclusive and there are already
2209
	 * events on the CPU, it can't go on.
2210
	 */
2211
	if (event->attr.exclusive && cpuctx->active_oncpu)
2212 2213 2214 2215 2216 2217 2218 2219
		return 0;
	/*
	 * Otherwise, try to add it if all previous groups were able
	 * to go on.
	 */
	return can_add_hw;
}

2220 2221
static void add_event_to_ctx(struct perf_event *event,
			       struct perf_event_context *ctx)
2222
{
2223 2224
	u64 tstamp = perf_event_time(event);

2225
	list_add_event(event, ctx);
2226
	perf_group_attach(event);
2227 2228 2229
	event->tstamp_enabled = tstamp;
	event->tstamp_running = tstamp;
	event->tstamp_stopped = tstamp;
2230 2231
}

2232 2233 2234
static void ctx_sched_out(struct perf_event_context *ctx,
			  struct perf_cpu_context *cpuctx,
			  enum event_type_t event_type);
2235 2236 2237 2238 2239
static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
	     enum event_type_t event_type,
	     struct task_struct *task);
2240

2241
static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2242 2243
			       struct perf_event_context *ctx,
			       enum event_type_t event_type)
2244 2245 2246 2247 2248 2249 2250
{
	if (!cpuctx->task_ctx)
		return;

	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
		return;

2251
	ctx_sched_out(ctx, cpuctx, event_type);
2252 2253
}

2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265
static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
				struct perf_event_context *ctx,
				struct task_struct *task)
{
	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
}

2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280
/*
 * We want to maintain the following priority of scheduling:
 *  - CPU pinned (EVENT_CPU | EVENT_PINNED)
 *  - task pinned (EVENT_PINNED)
 *  - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
 *  - task flexible (EVENT_FLEXIBLE).
 *
 * In order to avoid unscheduling and scheduling back in everything every
 * time an event is added, only do it for the groups of equal priority and
 * below.
 *
 * This can be called after a batch operation on task events, in which case
 * event_type is a bit mask of the types of events involved. For CPU events,
 * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
 */
2281
static void ctx_resched(struct perf_cpu_context *cpuctx,
2282 2283
			struct perf_event_context *task_ctx,
			enum event_type_t event_type)
2284
{
2285 2286 2287 2288 2289 2290 2291 2292 2293 2294
	enum event_type_t ctx_event_type = event_type & EVENT_ALL;
	bool cpu_event = !!(event_type & EVENT_CPU);

	/*
	 * If pinned groups are involved, flexible groups also need to be
	 * scheduled out.
	 */
	if (event_type & EVENT_PINNED)
		event_type |= EVENT_FLEXIBLE;

2295 2296
	perf_pmu_disable(cpuctx->ctx.pmu);
	if (task_ctx)
2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310
		task_ctx_sched_out(cpuctx, task_ctx, event_type);

	/*
	 * Decide which cpu ctx groups to schedule out based on the types
	 * of events that caused rescheduling:
	 *  - EVENT_CPU: schedule out corresponding groups;
	 *  - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
	 *  - otherwise, do nothing more.
	 */
	if (cpu_event)
		cpu_ctx_sched_out(cpuctx, ctx_event_type);
	else if (ctx_event_type & EVENT_PINNED)
		cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);

2311 2312
	perf_event_sched_in(cpuctx, task_ctx, current);
	perf_pmu_enable(cpuctx->ctx.pmu);
2313 2314
}

T
Thomas Gleixner 已提交
2315
/*
2316
 * Cross CPU call to install and enable a performance event
2317
 *
2318 2319
 * Very similar to remote_function() + event_function() but cannot assume that
 * things like ctx->is_active and cpuctx->task_ctx are set.
T
Thomas Gleixner 已提交
2320
 */
2321
static int  __perf_install_in_context(void *info)
T
Thomas Gleixner 已提交
2322
{
2323 2324
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
2325
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2326
	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2327
	bool reprogram = true;
2328
	int ret = 0;
T
Thomas Gleixner 已提交
2329

2330
	raw_spin_lock(&cpuctx->ctx.lock);
2331
	if (ctx->task) {
2332 2333
		raw_spin_lock(&ctx->lock);
		task_ctx = ctx;
2334

2335
		reprogram = (ctx->task == current);
2336

2337
		/*
2338 2339 2340 2341 2342
		 * If the task is running, it must be running on this CPU,
		 * otherwise we cannot reprogram things.
		 *
		 * If its not running, we don't care, ctx->lock will
		 * serialize against it becoming runnable.
2343
		 */
2344 2345 2346 2347
		if (task_curr(ctx->task) && !reprogram) {
			ret = -ESRCH;
			goto unlock;
		}
2348

2349
		WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2350 2351
	} else if (task_ctx) {
		raw_spin_lock(&task_ctx->lock);
2352
	}
2353

2354
	if (reprogram) {
2355 2356
		ctx_sched_out(ctx, cpuctx, EVENT_TIME);
		add_event_to_ctx(event, ctx);
2357
		ctx_resched(cpuctx, task_ctx, get_event_type(event));
2358 2359 2360 2361
	} else {
		add_event_to_ctx(event, ctx);
	}

2362
unlock:
2363
	perf_ctx_unlock(cpuctx, task_ctx);
2364

2365
	return ret;
T
Thomas Gleixner 已提交
2366 2367 2368
}

/*
2369 2370 2371
 * Attach a performance event to a context.
 *
 * Very similar to event_function_call, see comment there.
T
Thomas Gleixner 已提交
2372 2373
 */
static void
2374 2375
perf_install_in_context(struct perf_event_context *ctx,
			struct perf_event *event,
T
Thomas Gleixner 已提交
2376 2377
			int cpu)
{
2378
	struct task_struct *task = READ_ONCE(ctx->task);
2379

2380 2381
	lockdep_assert_held(&ctx->mutex);

2382 2383
	if (event->cpu != -1)
		event->cpu = cpu;
2384

2385 2386 2387 2388 2389 2390
	/*
	 * Ensures that if we can observe event->ctx, both the event and ctx
	 * will be 'complete'. See perf_iterate_sb_cpu().
	 */
	smp_store_release(&event->ctx, ctx);

2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401
	if (!task) {
		cpu_function_call(cpu, __perf_install_in_context, event);
		return;
	}

	/*
	 * Should not happen, we validate the ctx is still alive before calling.
	 */
	if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
		return;

2402 2403 2404
	/*
	 * Installing events is tricky because we cannot rely on ctx->is_active
	 * to be set in case this is the nr_events 0 -> 1 transition.
2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423
	 *
	 * Instead we use task_curr(), which tells us if the task is running.
	 * However, since we use task_curr() outside of rq::lock, we can race
	 * against the actual state. This means the result can be wrong.
	 *
	 * If we get a false positive, we retry, this is harmless.
	 *
	 * If we get a false negative, things are complicated. If we are after
	 * perf_event_context_sched_in() ctx::lock will serialize us, and the
	 * value must be correct. If we're before, it doesn't matter since
	 * perf_event_context_sched_in() will program the counter.
	 *
	 * However, this hinges on the remote context switch having observed
	 * our task->perf_event_ctxp[] store, such that it will in fact take
	 * ctx::lock in perf_event_context_sched_in().
	 *
	 * We do this by task_function_call(), if the IPI fails to hit the task
	 * we know any future context switch of task must see the
	 * perf_event_ctpx[] store.
2424
	 */
2425

2426
	/*
2427 2428 2429 2430
	 * This smp_mb() orders the task->perf_event_ctxp[] store with the
	 * task_cpu() load, such that if the IPI then does not find the task
	 * running, a future context switch of that task must observe the
	 * store.
2431
	 */
2432 2433 2434
	smp_mb();
again:
	if (!task_function_call(task, __perf_install_in_context, event))
2435 2436 2437 2438
		return;

	raw_spin_lock_irq(&ctx->lock);
	task = ctx->task;
2439
	if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2440 2441 2442 2443 2444
		/*
		 * Cannot happen because we already checked above (which also
		 * cannot happen), and we hold ctx->mutex, which serializes us
		 * against perf_event_exit_task_context().
		 */
2445 2446 2447
		raw_spin_unlock_irq(&ctx->lock);
		return;
	}
2448
	/*
2449 2450
	 * If the task is not running, ctx->lock will avoid it becoming so,
	 * thus we can safely install the event.
2451
	 */
2452 2453 2454 2455 2456 2457
	if (task_curr(task)) {
		raw_spin_unlock_irq(&ctx->lock);
		goto again;
	}
	add_event_to_ctx(event, ctx);
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
2458 2459
}

2460
/*
2461
 * Put a event into inactive state and update time fields.
2462 2463 2464 2465 2466 2467
 * Enabling the leader of a group effectively enables all
 * the group members that aren't explicitly disabled, so we
 * have to update their ->tstamp_enabled also.
 * Note: this works for group members as well as group leaders
 * since the non-leader members' sibling_lists will be empty.
 */
2468
static void __perf_event_mark_enabled(struct perf_event *event)
2469
{
2470
	struct perf_event *sub;
2471
	u64 tstamp = perf_event_time(event);
2472

2473
	event->state = PERF_EVENT_STATE_INACTIVE;
2474
	event->tstamp_enabled = tstamp - event->total_time_enabled;
P
Peter Zijlstra 已提交
2475
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
2476 2477
		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
P
Peter Zijlstra 已提交
2478
	}
2479 2480
}

2481
/*
2482
 * Cross CPU call to enable a performance event
2483
 */
2484 2485 2486 2487
static void __perf_event_enable(struct perf_event *event,
				struct perf_cpu_context *cpuctx,
				struct perf_event_context *ctx,
				void *info)
2488
{
2489
	struct perf_event *leader = event->group_leader;
2490
	struct perf_event_context *task_ctx;
2491

P
Peter Zijlstra 已提交
2492 2493
	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
	    event->state <= PERF_EVENT_STATE_ERROR)
2494
		return;
2495

2496 2497 2498
	if (ctx->is_active)
		ctx_sched_out(ctx, cpuctx, EVENT_TIME);

2499
	__perf_event_mark_enabled(event);
2500

2501 2502 2503
	if (!ctx->is_active)
		return;

S
Stephane Eranian 已提交
2504
	if (!event_filter_match(event)) {
2505
		if (is_cgroup_event(event))
S
Stephane Eranian 已提交
2506
			perf_cgroup_defer_enabled(event);
2507
		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2508
		return;
S
Stephane Eranian 已提交
2509
	}
2510

2511
	/*
2512
	 * If the event is in a group and isn't the group leader,
2513
	 * then don't put it on unless the group is on.
2514
	 */
2515 2516
	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2517
		return;
2518
	}
2519

2520 2521 2522
	task_ctx = cpuctx->task_ctx;
	if (ctx->task)
		WARN_ON_ONCE(task_ctx != ctx);
2523

2524
	ctx_resched(cpuctx, task_ctx, get_event_type(event));
2525 2526
}

2527
/*
2528
 * Enable a event.
2529
 *
2530 2531
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
2532
 * remains valid.  This condition is satisfied when called through
2533 2534
 * perf_event_for_each_child or perf_event_for_each as described
 * for perf_event_disable.
2535
 */
P
Peter Zijlstra 已提交
2536
static void _perf_event_enable(struct perf_event *event)
2537
{
2538
	struct perf_event_context *ctx = event->ctx;
2539

2540
	raw_spin_lock_irq(&ctx->lock);
P
Peter Zijlstra 已提交
2541 2542
	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
	    event->state <  PERF_EVENT_STATE_ERROR) {
2543
		raw_spin_unlock_irq(&ctx->lock);
2544 2545 2546 2547
		return;
	}

	/*
2548
	 * If the event is in error state, clear that first.
2549 2550 2551 2552
	 *
	 * That way, if we see the event in error state below, we know that it
	 * has gone back into error state, as distinct from the task having
	 * been scheduled away before the cross-call arrived.
2553
	 */
2554 2555
	if (event->state == PERF_EVENT_STATE_ERROR)
		event->state = PERF_EVENT_STATE_OFF;
2556
	raw_spin_unlock_irq(&ctx->lock);
2557

2558
	event_function_call(event, __perf_event_enable, NULL);
2559
}
P
Peter Zijlstra 已提交
2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571

/*
 * See perf_event_disable();
 */
void perf_event_enable(struct perf_event *event)
{
	struct perf_event_context *ctx;

	ctx = perf_event_ctx_lock(event);
	_perf_event_enable(event);
	perf_event_ctx_unlock(event, ctx);
}
2572
EXPORT_SYMBOL_GPL(perf_event_enable);
2573

2574 2575 2576 2577 2578
struct stop_event_data {
	struct perf_event	*event;
	unsigned int		restart;
};

2579 2580
static int __perf_event_stop(void *info)
{
2581 2582
	struct stop_event_data *sd = info;
	struct perf_event *event = sd->event;
2583

2584
	/* if it's already INACTIVE, do nothing */
2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599
	if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
		return 0;

	/* matches smp_wmb() in event_sched_in() */
	smp_rmb();

	/*
	 * There is a window with interrupts enabled before we get here,
	 * so we need to check again lest we try to stop another CPU's event.
	 */
	if (READ_ONCE(event->oncpu) != smp_processor_id())
		return -EAGAIN;

	event->pmu->stop(event, PERF_EF_UPDATE);

2600 2601 2602 2603 2604 2605 2606 2607 2608 2609
	/*
	 * May race with the actual stop (through perf_pmu_output_stop()),
	 * but it is only used for events with AUX ring buffer, and such
	 * events will refuse to restart because of rb::aux_mmap_count==0,
	 * see comments in perf_aux_output_begin().
	 *
	 * Since this is happening on a event-local CPU, no trace is lost
	 * while restarting.
	 */
	if (sd->restart)
2610
		event->pmu->start(event, 0);
2611

2612 2613 2614
	return 0;
}

2615
static int perf_event_stop(struct perf_event *event, int restart)
2616 2617 2618
{
	struct stop_event_data sd = {
		.event		= event,
2619
		.restart	= restart,
2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679
	};
	int ret = 0;

	do {
		if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
			return 0;

		/* matches smp_wmb() in event_sched_in() */
		smp_rmb();

		/*
		 * We only want to restart ACTIVE events, so if the event goes
		 * inactive here (event->oncpu==-1), there's nothing more to do;
		 * fall through with ret==-ENXIO.
		 */
		ret = cpu_function_call(READ_ONCE(event->oncpu),
					__perf_event_stop, &sd);
	} while (ret == -EAGAIN);

	return ret;
}

/*
 * In order to contain the amount of racy and tricky in the address filter
 * configuration management, it is a two part process:
 *
 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
 *      we update the addresses of corresponding vmas in
 *	event::addr_filters_offs array and bump the event::addr_filters_gen;
 * (p2) when an event is scheduled in (pmu::add), it calls
 *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
 *      if the generation has changed since the previous call.
 *
 * If (p1) happens while the event is active, we restart it to force (p2).
 *
 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
 *     pre-existing mappings, called once when new filters arrive via SET_FILTER
 *     ioctl;
 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
 *     registered mapping, called for every new mmap(), with mm::mmap_sem down
 *     for reading;
 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
 *     of exec.
 */
void perf_event_addr_filters_sync(struct perf_event *event)
{
	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);

	if (!has_addr_filter(event))
		return;

	raw_spin_lock(&ifh->lock);
	if (event->addr_filters_gen != event->hw.addr_filters_gen) {
		event->pmu->addr_filters_sync(event);
		event->hw.addr_filters_gen = event->addr_filters_gen;
	}
	raw_spin_unlock(&ifh->lock);
}
EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);

P
Peter Zijlstra 已提交
2680
static int _perf_event_refresh(struct perf_event *event, int refresh)
2681
{
2682
	/*
2683
	 * not supported on inherited events
2684
	 */
2685
	if (event->attr.inherit || !is_sampling_event(event))
2686 2687
		return -EINVAL;

2688
	atomic_add(refresh, &event->event_limit);
P
Peter Zijlstra 已提交
2689
	_perf_event_enable(event);
2690 2691

	return 0;
2692
}
P
Peter Zijlstra 已提交
2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707

/*
 * See perf_event_disable()
 */
int perf_event_refresh(struct perf_event *event, int refresh)
{
	struct perf_event_context *ctx;
	int ret;

	ctx = perf_event_ctx_lock(event);
	ret = _perf_event_refresh(event, refresh);
	perf_event_ctx_unlock(event, ctx);

	return ret;
}
2708
EXPORT_SYMBOL_GPL(perf_event_refresh);
2709

2710 2711 2712
static void ctx_sched_out(struct perf_event_context *ctx,
			  struct perf_cpu_context *cpuctx,
			  enum event_type_t event_type)
2713
{
2714
	int is_active = ctx->is_active;
P
Peter Zijlstra 已提交
2715
	struct perf_event *event;
2716

P
Peter Zijlstra 已提交
2717
	lockdep_assert_held(&ctx->lock);
2718

2719 2720 2721 2722 2723 2724 2725
	if (likely(!ctx->nr_events)) {
		/*
		 * See __perf_remove_from_context().
		 */
		WARN_ON_ONCE(ctx->is_active);
		if (ctx->task)
			WARN_ON_ONCE(cpuctx->task_ctx);
2726
		return;
2727 2728
	}

2729
	ctx->is_active &= ~event_type;
2730 2731 2732
	if (!(ctx->is_active & EVENT_ALL))
		ctx->is_active = 0;

2733 2734 2735 2736 2737
	if (ctx->task) {
		WARN_ON_ONCE(cpuctx->task_ctx != ctx);
		if (!ctx->is_active)
			cpuctx->task_ctx = NULL;
	}
2738

2739 2740 2741 2742 2743 2744 2745 2746 2747 2748
	/*
	 * Always update time if it was set; not only when it changes.
	 * Otherwise we can 'forget' to update time for any but the last
	 * context we sched out. For example:
	 *
	 *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
	 *   ctx_sched_out(.event_type = EVENT_PINNED)
	 *
	 * would only update time for the pinned events.
	 */
2749 2750 2751 2752 2753 2754
	if (is_active & EVENT_TIME) {
		/* update (and stop) ctx time */
		update_context_time(ctx);
		update_cgrp_time_from_cpuctx(cpuctx);
	}

2755 2756
	is_active ^= ctx->is_active; /* changed bits */

2757
	if (!ctx->nr_active || !(is_active & EVENT_ALL))
2758
		return;
2759

P
Peter Zijlstra 已提交
2760
	perf_pmu_disable(ctx->pmu);
2761
	if (is_active & EVENT_PINNED) {
2762 2763
		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
2764
	}
2765

2766
	if (is_active & EVENT_FLEXIBLE) {
2767
		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2768
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
2769
	}
P
Peter Zijlstra 已提交
2770
	perf_pmu_enable(ctx->pmu);
2771 2772
}

2773
/*
2774 2775 2776 2777 2778 2779
 * Test whether two contexts are equivalent, i.e. whether they have both been
 * cloned from the same version of the same context.
 *
 * Equivalence is measured using a generation number in the context that is
 * incremented on each modification to it; see unclone_ctx(), list_add_event()
 * and list_del_event().
2780
 */
2781 2782
static int context_equiv(struct perf_event_context *ctx1,
			 struct perf_event_context *ctx2)
2783
{
2784 2785 2786
	lockdep_assert_held(&ctx1->lock);
	lockdep_assert_held(&ctx2->lock);

2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808
	/* Pinning disables the swap optimization */
	if (ctx1->pin_count || ctx2->pin_count)
		return 0;

	/* If ctx1 is the parent of ctx2 */
	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
		return 1;

	/* If ctx2 is the parent of ctx1 */
	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
		return 1;

	/*
	 * If ctx1 and ctx2 have the same parent; we flatten the parent
	 * hierarchy, see perf_event_init_context().
	 */
	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
			ctx1->parent_gen == ctx2->parent_gen)
		return 1;

	/* Unmatched */
	return 0;
2809 2810
}

2811 2812
static void __perf_event_sync_stat(struct perf_event *event,
				     struct perf_event *next_event)
2813 2814 2815
{
	u64 value;

2816
	if (!event->attr.inherit_stat)
2817 2818 2819
		return;

	/*
2820
	 * Update the event value, we cannot use perf_event_read()
2821 2822
	 * because we're in the middle of a context switch and have IRQs
	 * disabled, which upsets smp_call_function_single(), however
2823
	 * we know the event must be on the current CPU, therefore we
2824 2825
	 * don't need to use it.
	 */
2826 2827
	switch (event->state) {
	case PERF_EVENT_STATE_ACTIVE:
2828 2829
		event->pmu->read(event);
		/* fall-through */
2830

2831 2832
	case PERF_EVENT_STATE_INACTIVE:
		update_event_times(event);
2833 2834 2835 2836 2837 2838 2839
		break;

	default:
		break;
	}

	/*
2840
	 * In order to keep per-task stats reliable we need to flip the event
2841 2842
	 * values when we flip the contexts.
	 */
2843 2844 2845
	value = local64_read(&next_event->count);
	value = local64_xchg(&event->count, value);
	local64_set(&next_event->count, value);
2846

2847 2848
	swap(event->total_time_enabled, next_event->total_time_enabled);
	swap(event->total_time_running, next_event->total_time_running);
2849

2850
	/*
2851
	 * Since we swizzled the values, update the user visible data too.
2852
	 */
2853 2854
	perf_event_update_userpage(event);
	perf_event_update_userpage(next_event);
2855 2856
}

2857 2858
static void perf_event_sync_stat(struct perf_event_context *ctx,
				   struct perf_event_context *next_ctx)
2859
{
2860
	struct perf_event *event, *next_event;
2861 2862 2863 2864

	if (!ctx->nr_stat)
		return;

2865 2866
	update_context_time(ctx);

2867 2868
	event = list_first_entry(&ctx->event_list,
				   struct perf_event, event_entry);
2869

2870 2871
	next_event = list_first_entry(&next_ctx->event_list,
					struct perf_event, event_entry);
2872

2873 2874
	while (&event->event_entry != &ctx->event_list &&
	       &next_event->event_entry != &next_ctx->event_list) {
2875

2876
		__perf_event_sync_stat(event, next_event);
2877

2878 2879
		event = list_next_entry(event, event_entry);
		next_event = list_next_entry(next_event, event_entry);
2880 2881 2882
	}
}

2883 2884
static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
					 struct task_struct *next)
T
Thomas Gleixner 已提交
2885
{
P
Peter Zijlstra 已提交
2886
	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2887
	struct perf_event_context *next_ctx;
2888
	struct perf_event_context *parent, *next_parent;
P
Peter Zijlstra 已提交
2889
	struct perf_cpu_context *cpuctx;
2890
	int do_switch = 1;
T
Thomas Gleixner 已提交
2891

P
Peter Zijlstra 已提交
2892 2893
	if (likely(!ctx))
		return;
2894

P
Peter Zijlstra 已提交
2895 2896
	cpuctx = __get_cpu_context(ctx);
	if (!cpuctx->task_ctx)
T
Thomas Gleixner 已提交
2897 2898
		return;

2899
	rcu_read_lock();
P
Peter Zijlstra 已提交
2900
	next_ctx = next->perf_event_ctxp[ctxn];
2901 2902 2903 2904 2905 2906 2907
	if (!next_ctx)
		goto unlock;

	parent = rcu_dereference(ctx->parent_ctx);
	next_parent = rcu_dereference(next_ctx->parent_ctx);

	/* If neither context have a parent context; they cannot be clones. */
2908
	if (!parent && !next_parent)
2909 2910 2911
		goto unlock;

	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2912 2913 2914 2915 2916 2917 2918 2919 2920
		/*
		 * Looks like the two contexts are clones, so we might be
		 * able to optimize the context switch.  We lock both
		 * contexts and check that they are clones under the
		 * lock (including re-checking that neither has been
		 * uncloned in the meantime).  It doesn't matter which
		 * order we take the locks because no other cpu could
		 * be trying to lock both of these tasks.
		 */
2921 2922
		raw_spin_lock(&ctx->lock);
		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2923
		if (context_equiv(ctx, next_ctx)) {
2924 2925
			WRITE_ONCE(ctx->task, next);
			WRITE_ONCE(next_ctx->task, task);
2926 2927 2928

			swap(ctx->task_ctx_data, next_ctx->task_ctx_data);

2929 2930 2931 2932 2933 2934 2935 2936 2937 2938
			/*
			 * RCU_INIT_POINTER here is safe because we've not
			 * modified the ctx and the above modification of
			 * ctx->task and ctx->task_ctx_data are immaterial
			 * since those values are always verified under
			 * ctx->lock which we're now holding.
			 */
			RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
			RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);

2939
			do_switch = 0;
2940

2941
			perf_event_sync_stat(ctx, next_ctx);
2942
		}
2943 2944
		raw_spin_unlock(&next_ctx->lock);
		raw_spin_unlock(&ctx->lock);
2945
	}
2946
unlock:
2947
	rcu_read_unlock();
2948

2949
	if (do_switch) {
2950
		raw_spin_lock(&ctx->lock);
2951
		task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
2952
		raw_spin_unlock(&ctx->lock);
2953
	}
T
Thomas Gleixner 已提交
2954 2955
}

2956 2957
static DEFINE_PER_CPU(struct list_head, sched_cb_list);

2958 2959
void perf_sched_cb_dec(struct pmu *pmu)
{
2960 2961
	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

2962
	this_cpu_dec(perf_sched_cb_usages);
2963 2964 2965

	if (!--cpuctx->sched_cb_usage)
		list_del(&cpuctx->sched_cb_entry);
2966 2967
}

2968

2969 2970
void perf_sched_cb_inc(struct pmu *pmu)
{
2971 2972 2973 2974 2975
	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

	if (!cpuctx->sched_cb_usage++)
		list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));

2976 2977 2978 2979 2980 2981
	this_cpu_inc(perf_sched_cb_usages);
}

/*
 * This function provides the context switch callback to the lower code
 * layer. It is invoked ONLY when the context switch callback is enabled.
2982 2983 2984 2985
 *
 * This callback is relevant even to per-cpu events; for example multi event
 * PEBS requires this to provide PID/TID information. This requires we flush
 * all queued PEBS records before we context switch to a new task.
2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996
 */
static void perf_pmu_sched_task(struct task_struct *prev,
				struct task_struct *next,
				bool sched_in)
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;

	if (prev == next)
		return;

2997
	list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
2998
		pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
2999

3000 3001
		if (WARN_ON_ONCE(!pmu->sched_task))
			continue;
3002

3003 3004
		perf_ctx_lock(cpuctx, cpuctx->task_ctx);
		perf_pmu_disable(pmu);
3005

3006
		pmu->sched_task(cpuctx->task_ctx, sched_in);
3007

3008 3009
		perf_pmu_enable(pmu);
		perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3010 3011 3012
	}
}

3013 3014 3015
static void perf_event_switch(struct task_struct *task,
			      struct task_struct *next_prev, bool sched_in);

P
Peter Zijlstra 已提交
3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029
#define for_each_task_context_nr(ctxn)					\
	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)

/*
 * Called from scheduler to remove the events of the current task,
 * with interrupts disabled.
 *
 * We stop each event and update the event value in event->count.
 *
 * This does not protect us against NMI, but disable()
 * sets the disabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * not restart the event.
 */
3030 3031
void __perf_event_task_sched_out(struct task_struct *task,
				 struct task_struct *next)
P
Peter Zijlstra 已提交
3032 3033 3034
{
	int ctxn;

3035 3036 3037
	if (__this_cpu_read(perf_sched_cb_usages))
		perf_pmu_sched_task(task, next, false);

3038 3039 3040
	if (atomic_read(&nr_switch_events))
		perf_event_switch(task, next, false);

P
Peter Zijlstra 已提交
3041 3042
	for_each_task_context_nr(ctxn)
		perf_event_context_sched_out(task, ctxn, next);
S
Stephane Eranian 已提交
3043 3044 3045 3046 3047 3048

	/*
	 * if cgroup events exist on this CPU, then we need
	 * to check if we have to switch out PMU state.
	 * cgroup event are system-wide mode only
	 */
3049
	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3050
		perf_cgroup_sched_out(task, next);
P
Peter Zijlstra 已提交
3051 3052
}

3053 3054 3055 3056 3057 3058 3059
/*
 * Called with IRQs disabled
 */
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type)
{
	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
3060 3061
}

3062
static void
3063
ctx_pinned_sched_in(struct perf_event_context *ctx,
3064
		    struct perf_cpu_context *cpuctx)
T
Thomas Gleixner 已提交
3065
{
3066
	struct perf_event *event;
T
Thomas Gleixner 已提交
3067

3068 3069
	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
		if (event->state <= PERF_EVENT_STATE_OFF)
3070
			continue;
3071
		if (!event_filter_match(event))
3072 3073
			continue;

S
Stephane Eranian 已提交
3074 3075 3076 3077
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

3078
		if (group_can_go_on(event, cpuctx, 1))
3079
			group_sched_in(event, cpuctx, ctx);
3080 3081 3082 3083 3084

		/*
		 * If this pinned group hasn't been scheduled,
		 * put it in error state.
		 */
3085 3086 3087
		if (event->state == PERF_EVENT_STATE_INACTIVE) {
			update_group_times(event);
			event->state = PERF_EVENT_STATE_ERROR;
3088
		}
3089
	}
3090 3091 3092 3093
}

static void
ctx_flexible_sched_in(struct perf_event_context *ctx,
3094
		      struct perf_cpu_context *cpuctx)
3095 3096 3097
{
	struct perf_event *event;
	int can_add_hw = 1;
3098

3099 3100 3101
	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
		/* Ignore events in OFF or ERROR state */
		if (event->state <= PERF_EVENT_STATE_OFF)
3102
			continue;
3103 3104
		/*
		 * Listen to the 'cpu' scheduling filter constraint
3105
		 * of events:
3106
		 */
3107
		if (!event_filter_match(event))
T
Thomas Gleixner 已提交
3108 3109
			continue;

S
Stephane Eranian 已提交
3110 3111 3112 3113
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

P
Peter Zijlstra 已提交
3114
		if (group_can_go_on(event, cpuctx, can_add_hw)) {
3115
			if (group_sched_in(event, cpuctx, ctx))
3116
				can_add_hw = 0;
P
Peter Zijlstra 已提交
3117
		}
T
Thomas Gleixner 已提交
3118
	}
3119 3120 3121 3122 3123
}

static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
3124 3125
	     enum event_type_t event_type,
	     struct task_struct *task)
3126
{
3127
	int is_active = ctx->is_active;
P
Peter Zijlstra 已提交
3128 3129 3130
	u64 now;

	lockdep_assert_held(&ctx->lock);
S
Stephane Eranian 已提交
3131

3132
	if (likely(!ctx->nr_events))
3133
		return;
3134

3135
	ctx->is_active |= (event_type | EVENT_TIME);
3136 3137 3138 3139 3140 3141 3142
	if (ctx->task) {
		if (!is_active)
			cpuctx->task_ctx = ctx;
		else
			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
	}

3143 3144 3145 3146 3147 3148 3149 3150 3151
	is_active ^= ctx->is_active; /* changed bits */

	if (is_active & EVENT_TIME) {
		/* start ctx time */
		now = perf_clock();
		ctx->timestamp = now;
		perf_cgroup_set_timestamp(task, ctx);
	}

3152 3153 3154 3155
	/*
	 * First go through the list and put on any pinned groups
	 * in order to give them the best chance of going on.
	 */
3156
	if (is_active & EVENT_PINNED)
3157
		ctx_pinned_sched_in(ctx, cpuctx);
3158 3159

	/* Then walk through the lower prio flexible groups */
3160
	if (is_active & EVENT_FLEXIBLE)
3161
		ctx_flexible_sched_in(ctx, cpuctx);
3162 3163
}

3164
static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
3165 3166
			     enum event_type_t event_type,
			     struct task_struct *task)
3167 3168 3169
{
	struct perf_event_context *ctx = &cpuctx->ctx;

S
Stephane Eranian 已提交
3170
	ctx_sched_in(ctx, cpuctx, event_type, task);
3171 3172
}

S
Stephane Eranian 已提交
3173 3174
static void perf_event_context_sched_in(struct perf_event_context *ctx,
					struct task_struct *task)
3175
{
P
Peter Zijlstra 已提交
3176
	struct perf_cpu_context *cpuctx;
3177

P
Peter Zijlstra 已提交
3178
	cpuctx = __get_cpu_context(ctx);
3179 3180 3181
	if (cpuctx->task_ctx == ctx)
		return;

3182
	perf_ctx_lock(cpuctx, ctx);
P
Peter Zijlstra 已提交
3183
	perf_pmu_disable(ctx->pmu);
3184 3185 3186 3187
	/*
	 * We want to keep the following priority order:
	 * cpu pinned (that don't need to move), task pinned,
	 * cpu flexible, task flexible.
3188 3189 3190
	 *
	 * However, if task's ctx is not carrying any pinned
	 * events, no need to flip the cpuctx's events around.
3191
	 */
3192 3193
	if (!list_empty(&ctx->pinned_groups))
		cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3194
	perf_event_sched_in(cpuctx, ctx, task);
3195 3196
	perf_pmu_enable(ctx->pmu);
	perf_ctx_unlock(cpuctx, ctx);
3197 3198
}

P
Peter Zijlstra 已提交
3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209
/*
 * Called from scheduler to add the events of the current task
 * with interrupts disabled.
 *
 * We restore the event value and then enable it.
 *
 * This does not protect us against NMI, but enable()
 * sets the enabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * keep the event running.
 */
3210 3211
void __perf_event_task_sched_in(struct task_struct *prev,
				struct task_struct *task)
P
Peter Zijlstra 已提交
3212 3213 3214 3215
{
	struct perf_event_context *ctx;
	int ctxn;

3216 3217 3218 3219 3220 3221 3222 3223 3224 3225
	/*
	 * If cgroup events exist on this CPU, then we need to check if we have
	 * to switch in PMU state; cgroup event are system-wide mode only.
	 *
	 * Since cgroup events are CPU events, we must schedule these in before
	 * we schedule in the task events.
	 */
	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
		perf_cgroup_sched_in(prev, task);

P
Peter Zijlstra 已提交
3226 3227 3228 3229 3230
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (likely(!ctx))
			continue;

S
Stephane Eranian 已提交
3231
		perf_event_context_sched_in(ctx, task);
P
Peter Zijlstra 已提交
3232
	}
3233

3234 3235 3236
	if (atomic_read(&nr_switch_events))
		perf_event_switch(task, prev, true);

3237 3238
	if (__this_cpu_read(perf_sched_cb_usages))
		perf_pmu_sched_task(prev, task, true);
3239 3240
}

3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267
static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
{
	u64 frequency = event->attr.sample_freq;
	u64 sec = NSEC_PER_SEC;
	u64 divisor, dividend;

	int count_fls, nsec_fls, frequency_fls, sec_fls;

	count_fls = fls64(count);
	nsec_fls = fls64(nsec);
	frequency_fls = fls64(frequency);
	sec_fls = 30;

	/*
	 * We got @count in @nsec, with a target of sample_freq HZ
	 * the target period becomes:
	 *
	 *             @count * 10^9
	 * period = -------------------
	 *          @nsec * sample_freq
	 *
	 */

	/*
	 * Reduce accuracy by one bit such that @a and @b converge
	 * to a similar magnitude.
	 */
3268
#define REDUCE_FLS(a, b)		\
3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307
do {					\
	if (a##_fls > b##_fls) {	\
		a >>= 1;		\
		a##_fls--;		\
	} else {			\
		b >>= 1;		\
		b##_fls--;		\
	}				\
} while (0)

	/*
	 * Reduce accuracy until either term fits in a u64, then proceed with
	 * the other, so that finally we can do a u64/u64 division.
	 */
	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
		REDUCE_FLS(nsec, frequency);
		REDUCE_FLS(sec, count);
	}

	if (count_fls + sec_fls > 64) {
		divisor = nsec * frequency;

		while (count_fls + sec_fls > 64) {
			REDUCE_FLS(count, sec);
			divisor >>= 1;
		}

		dividend = count * sec;
	} else {
		dividend = count * sec;

		while (nsec_fls + frequency_fls > 64) {
			REDUCE_FLS(nsec, frequency);
			dividend >>= 1;
		}

		divisor = nsec * frequency;
	}

3308 3309 3310
	if (!divisor)
		return dividend;

3311 3312 3313
	return div64_u64(dividend, divisor);
}

3314 3315 3316
static DEFINE_PER_CPU(int, perf_throttled_count);
static DEFINE_PER_CPU(u64, perf_throttled_seq);

3317
static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
3318
{
3319
	struct hw_perf_event *hwc = &event->hw;
3320
	s64 period, sample_period;
3321 3322
	s64 delta;

3323
	period = perf_calculate_period(event, nsec, count);
3324 3325 3326 3327 3328 3329 3330 3331 3332 3333

	delta = (s64)(period - hwc->sample_period);
	delta = (delta + 7) / 8; /* low pass filter */

	sample_period = hwc->sample_period + delta;

	if (!sample_period)
		sample_period = 1;

	hwc->sample_period = sample_period;
3334

3335
	if (local64_read(&hwc->period_left) > 8*sample_period) {
3336 3337 3338
		if (disable)
			event->pmu->stop(event, PERF_EF_UPDATE);

3339
		local64_set(&hwc->period_left, 0);
3340 3341 3342

		if (disable)
			event->pmu->start(event, PERF_EF_RELOAD);
3343
	}
3344 3345
}

3346 3347 3348 3349 3350 3351 3352
/*
 * combine freq adjustment with unthrottling to avoid two passes over the
 * events. At the same time, make sure, having freq events does not change
 * the rate of unthrottling as that would introduce bias.
 */
static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
					   int needs_unthr)
3353
{
3354 3355
	struct perf_event *event;
	struct hw_perf_event *hwc;
3356
	u64 now, period = TICK_NSEC;
3357
	s64 delta;
3358

3359 3360 3361 3362 3363 3364
	/*
	 * only need to iterate over all events iff:
	 * - context have events in frequency mode (needs freq adjust)
	 * - there are events to unthrottle on this cpu
	 */
	if (!(ctx->nr_freq || needs_unthr))
3365 3366
		return;

3367
	raw_spin_lock(&ctx->lock);
3368
	perf_pmu_disable(ctx->pmu);
3369

3370
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3371
		if (event->state != PERF_EVENT_STATE_ACTIVE)
3372 3373
			continue;

3374
		if (!event_filter_match(event))
3375 3376
			continue;

3377 3378
		perf_pmu_disable(event->pmu);

3379
		hwc = &event->hw;
3380

3381
		if (hwc->interrupts == MAX_INTERRUPTS) {
3382
			hwc->interrupts = 0;
3383
			perf_log_throttle(event, 1);
P
Peter Zijlstra 已提交
3384
			event->pmu->start(event, 0);
3385 3386
		}

3387
		if (!event->attr.freq || !event->attr.sample_freq)
3388
			goto next;
3389

3390 3391 3392 3393 3394
		/*
		 * stop the event and update event->count
		 */
		event->pmu->stop(event, PERF_EF_UPDATE);

3395
		now = local64_read(&event->count);
3396 3397
		delta = now - hwc->freq_count_stamp;
		hwc->freq_count_stamp = now;
3398

3399 3400 3401
		/*
		 * restart the event
		 * reload only if value has changed
3402 3403 3404
		 * we have stopped the event so tell that
		 * to perf_adjust_period() to avoid stopping it
		 * twice.
3405
		 */
3406
		if (delta > 0)
3407
			perf_adjust_period(event, period, delta, false);
3408 3409

		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3410 3411
	next:
		perf_pmu_enable(event->pmu);
3412
	}
3413

3414
	perf_pmu_enable(ctx->pmu);
3415
	raw_spin_unlock(&ctx->lock);
3416 3417
}

3418
/*
3419
 * Round-robin a context's events:
3420
 */
3421
static void rotate_ctx(struct perf_event_context *ctx)
T
Thomas Gleixner 已提交
3422
{
3423 3424 3425 3426 3427 3428
	/*
	 * Rotate the first entry last of non-pinned groups. Rotation might be
	 * disabled by the inheritance code.
	 */
	if (!ctx->rotate_disable)
		list_rotate_left(&ctx->flexible_groups);
3429 3430
}

3431
static int perf_rotate_context(struct perf_cpu_context *cpuctx)
3432
{
P
Peter Zijlstra 已提交
3433
	struct perf_event_context *ctx = NULL;
3434
	int rotate = 0;
3435

3436 3437 3438 3439
	if (cpuctx->ctx.nr_events) {
		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
			rotate = 1;
	}
3440

P
Peter Zijlstra 已提交
3441
	ctx = cpuctx->task_ctx;
3442 3443 3444 3445
	if (ctx && ctx->nr_events) {
		if (ctx->nr_events != ctx->nr_active)
			rotate = 1;
	}
3446

3447
	if (!rotate)
3448 3449
		goto done;

3450
	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
P
Peter Zijlstra 已提交
3451
	perf_pmu_disable(cpuctx->ctx.pmu);
3452

3453 3454 3455
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
	if (ctx)
		ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
T
Thomas Gleixner 已提交
3456

3457 3458 3459
	rotate_ctx(&cpuctx->ctx);
	if (ctx)
		rotate_ctx(ctx);
3460

3461
	perf_event_sched_in(cpuctx, ctx, current);
3462

3463 3464
	perf_pmu_enable(cpuctx->ctx.pmu);
	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3465
done:
3466 3467

	return rotate;
3468 3469 3470 3471
}

void perf_event_task_tick(void)
{
3472 3473
	struct list_head *head = this_cpu_ptr(&active_ctx_list);
	struct perf_event_context *ctx, *tmp;
3474
	int throttled;
3475

3476 3477
	WARN_ON(!irqs_disabled());

3478 3479
	__this_cpu_inc(perf_throttled_seq);
	throttled = __this_cpu_xchg(perf_throttled_count, 0);
3480
	tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
3481

3482
	list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3483
		perf_adjust_freq_unthr_context(ctx, throttled);
T
Thomas Gleixner 已提交
3484 3485
}

3486 3487 3488 3489 3490 3491 3492 3493 3494 3495
static int event_enable_on_exec(struct perf_event *event,
				struct perf_event_context *ctx)
{
	if (!event->attr.enable_on_exec)
		return 0;

	event->attr.enable_on_exec = 0;
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
		return 0;

3496
	__perf_event_mark_enabled(event);
3497 3498 3499 3500

	return 1;
}

3501
/*
3502
 * Enable all of a task's events that have been marked enable-on-exec.
3503 3504
 * This expects task == current.
 */
3505
static void perf_event_enable_on_exec(int ctxn)
3506
{
3507
	struct perf_event_context *ctx, *clone_ctx = NULL;
3508
	enum event_type_t event_type = 0;
3509
	struct perf_cpu_context *cpuctx;
3510
	struct perf_event *event;
3511 3512 3513 3514
	unsigned long flags;
	int enabled = 0;

	local_irq_save(flags);
3515
	ctx = current->perf_event_ctxp[ctxn];
3516
	if (!ctx || !ctx->nr_events)
3517 3518
		goto out;

3519 3520
	cpuctx = __get_cpu_context(ctx);
	perf_ctx_lock(cpuctx, ctx);
3521
	ctx_sched_out(ctx, cpuctx, EVENT_TIME);
3522
	list_for_each_entry(event, &ctx->event_list, event_entry) {
3523
		enabled |= event_enable_on_exec(event, ctx);
3524 3525
		event_type |= get_event_type(event);
	}
3526 3527

	/*
3528
	 * Unclone and reschedule this context if we enabled any event.
3529
	 */
3530
	if (enabled) {
3531
		clone_ctx = unclone_ctx(ctx);
3532
		ctx_resched(cpuctx, ctx, event_type);
3533 3534
	} else {
		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
3535 3536
	}
	perf_ctx_unlock(cpuctx, ctx);
3537

P
Peter Zijlstra 已提交
3538
out:
3539
	local_irq_restore(flags);
3540 3541 3542

	if (clone_ctx)
		put_ctx(clone_ctx);
3543 3544
}

3545 3546 3547
struct perf_read_data {
	struct perf_event *event;
	bool group;
3548
	int ret;
3549 3550
};

3551
static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
3552 3553 3554 3555
{
	u16 local_pkg, event_pkg;

	if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
3556 3557 3558 3559
		int local_cpu = smp_processor_id();

		event_pkg = topology_physical_package_id(event_cpu);
		local_pkg = topology_physical_package_id(local_cpu);
3560 3561 3562 3563 3564 3565 3566 3567

		if (event_pkg == local_pkg)
			return local_cpu;
	}

	return event_cpu;
}

T
Thomas Gleixner 已提交
3568
/*
3569
 * Cross CPU call to read the hardware event
T
Thomas Gleixner 已提交
3570
 */
3571
static void __perf_event_read(void *info)
T
Thomas Gleixner 已提交
3572
{
3573 3574
	struct perf_read_data *data = info;
	struct perf_event *sub, *event = data->event;
3575
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
3576
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3577
	struct pmu *pmu = event->pmu;
I
Ingo Molnar 已提交
3578

3579 3580 3581 3582
	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu.  If not it has been
	 * scheduled out before the smp call arrived.  In that case
3583 3584
	 * event->count would have been updated to a recent sample
	 * when the event was scheduled out.
3585 3586 3587 3588
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

3589
	raw_spin_lock(&ctx->lock);
S
Stephane Eranian 已提交
3590
	if (ctx->is_active) {
3591
		update_context_time(ctx);
S
Stephane Eranian 已提交
3592 3593
		update_cgrp_time_from_event(event);
	}
3594

3595
	update_event_times(event);
3596 3597
	if (event->state != PERF_EVENT_STATE_ACTIVE)
		goto unlock;
3598

3599 3600 3601
	if (!data->group) {
		pmu->read(event);
		data->ret = 0;
3602
		goto unlock;
3603 3604 3605 3606 3607
	}

	pmu->start_txn(pmu, PERF_PMU_TXN_READ);

	pmu->read(event);
3608 3609 3610

	list_for_each_entry(sub, &event->sibling_list, group_entry) {
		update_event_times(sub);
3611 3612 3613 3614 3615
		if (sub->state == PERF_EVENT_STATE_ACTIVE) {
			/*
			 * Use sibling's PMU rather than @event's since
			 * sibling could be on different (eg: software) PMU.
			 */
3616
			sub->pmu->read(sub);
3617
		}
3618
	}
3619 3620

	data->ret = pmu->commit_txn(pmu);
3621 3622

unlock:
3623
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
3624 3625
}

P
Peter Zijlstra 已提交
3626 3627
static inline u64 perf_event_count(struct perf_event *event)
{
3628 3629 3630 3631
	if (event->pmu->count)
		return event->pmu->count(event);

	return __perf_event_count(event);
P
Peter Zijlstra 已提交
3632 3633
}

3634 3635 3636 3637 3638 3639 3640 3641
/*
 * NMI-safe method to read a local event, that is an event that
 * is:
 *   - either for the current task, or for this CPU
 *   - does not have inherit set, for inherited task events
 *     will not be local and we cannot read them atomically
 *   - must not have a pmu::count method
 */
3642
int perf_event_read_local(struct perf_event *event, u64 *value)
3643 3644
{
	unsigned long flags;
3645
	int ret = 0;
3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656

	/*
	 * Disabling interrupts avoids all counter scheduling (context
	 * switches, timer based rotation and IPIs).
	 */
	local_irq_save(flags);

	/*
	 * It must not be an event with inherit set, we cannot read
	 * all child counters from atomic context.
	 */
3657 3658 3659 3660
	if (event->attr.inherit) {
		ret = -EOPNOTSUPP;
		goto out;
	}
3661 3662 3663 3664 3665

	/*
	 * It must not have a pmu::count method, those are not
	 * NMI safe.
	 */
3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683
	if (event->pmu->count) {
		ret = -EOPNOTSUPP;
		goto out;
	}

	/* If this is a per-task event, it must be for current */
	if ((event->attach_state & PERF_ATTACH_TASK) &&
	    event->hw.target != current) {
		ret = -EINVAL;
		goto out;
	}

	/* If this is a per-CPU event, it must be for this CPU */
	if (!(event->attach_state & PERF_ATTACH_TASK) &&
	    event->cpu != smp_processor_id()) {
		ret = -EINVAL;
		goto out;
	}
3684 3685 3686 3687 3688 3689 3690 3691 3692

	/*
	 * If the event is currently on this CPU, its either a per-task event,
	 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
	 * oncpu == -1).
	 */
	if (event->oncpu == smp_processor_id())
		event->pmu->read(event);

3693 3694
	*value = local64_read(&event->count);
out:
3695 3696
	local_irq_restore(flags);

3697
	return ret;
3698 3699
}

3700
static int perf_event_read(struct perf_event *event, bool group)
T
Thomas Gleixner 已提交
3701
{
3702
	int event_cpu, ret = 0;
3703

T
Thomas Gleixner 已提交
3704
	/*
3705 3706
	 * If event is enabled and currently active on a CPU, update the
	 * value in the event structure:
T
Thomas Gleixner 已提交
3707
	 */
3708
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
3709 3710 3711
		struct perf_read_data data = {
			.event = event,
			.group = group,
3712
			.ret = 0,
3713
		};
3714

3715 3716 3717 3718 3719 3720
		event_cpu = READ_ONCE(event->oncpu);
		if ((unsigned)event_cpu >= nr_cpu_ids)
			return 0;

		preempt_disable();
		event_cpu = __perf_event_read_cpu(event, event_cpu);
3721

3722 3723 3724 3725
		/*
		 * Purposely ignore the smp_call_function_single() return
		 * value.
		 *
3726
		 * If event_cpu isn't a valid CPU it means the event got
3727 3728 3729 3730 3731
		 * scheduled out and that will have updated the event count.
		 *
		 * Therefore, either way, we'll have an up-to-date event count
		 * after this.
		 */
3732 3733
		(void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
		preempt_enable();
3734
		ret = data.ret;
3735
	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
P
Peter Zijlstra 已提交
3736 3737 3738
		struct perf_event_context *ctx = event->ctx;
		unsigned long flags;

3739
		raw_spin_lock_irqsave(&ctx->lock, flags);
3740 3741 3742 3743 3744
		/*
		 * may read while context is not active
		 * (e.g., thread is blocked), in that case
		 * we cannot update context time
		 */
S
Stephane Eranian 已提交
3745
		if (ctx->is_active) {
3746
			update_context_time(ctx);
S
Stephane Eranian 已提交
3747 3748
			update_cgrp_time_from_event(event);
		}
3749 3750 3751 3752
		if (group)
			update_group_times(event);
		else
			update_event_times(event);
3753
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
3754
	}
3755 3756

	return ret;
T
Thomas Gleixner 已提交
3757 3758
}

3759
/*
3760
 * Initialize the perf_event context in a task_struct:
3761
 */
3762
static void __perf_event_init_context(struct perf_event_context *ctx)
3763
{
3764
	raw_spin_lock_init(&ctx->lock);
3765
	mutex_init(&ctx->mutex);
3766
	INIT_LIST_HEAD(&ctx->active_ctx_list);
3767 3768
	INIT_LIST_HEAD(&ctx->pinned_groups);
	INIT_LIST_HEAD(&ctx->flexible_groups);
3769 3770
	INIT_LIST_HEAD(&ctx->event_list);
	atomic_set(&ctx->refcount, 1);
3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785
}

static struct perf_event_context *
alloc_perf_context(struct pmu *pmu, struct task_struct *task)
{
	struct perf_event_context *ctx;

	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
	if (!ctx)
		return NULL;

	__perf_event_init_context(ctx);
	if (task) {
		ctx->task = task;
		get_task_struct(task);
T
Thomas Gleixner 已提交
3786
	}
3787 3788 3789
	ctx->pmu = pmu;

	return ctx;
3790 3791
}

3792 3793 3794 3795
static struct task_struct *
find_lively_task_by_vpid(pid_t vpid)
{
	struct task_struct *task;
T
Thomas Gleixner 已提交
3796 3797

	rcu_read_lock();
3798
	if (!vpid)
T
Thomas Gleixner 已提交
3799 3800
		task = current;
	else
3801
		task = find_task_by_vpid(vpid);
T
Thomas Gleixner 已提交
3802 3803 3804 3805 3806 3807 3808
	if (task)
		get_task_struct(task);
	rcu_read_unlock();

	if (!task)
		return ERR_PTR(-ESRCH);

3809 3810 3811
	return task;
}

3812 3813 3814
/*
 * Returns a matching context with refcount and pincount.
 */
P
Peter Zijlstra 已提交
3815
static struct perf_event_context *
3816 3817
find_get_context(struct pmu *pmu, struct task_struct *task,
		struct perf_event *event)
T
Thomas Gleixner 已提交
3818
{
3819
	struct perf_event_context *ctx, *clone_ctx = NULL;
3820
	struct perf_cpu_context *cpuctx;
3821
	void *task_ctx_data = NULL;
3822
	unsigned long flags;
P
Peter Zijlstra 已提交
3823
	int ctxn, err;
3824
	int cpu = event->cpu;
T
Thomas Gleixner 已提交
3825

3826
	if (!task) {
3827
		/* Must be root to operate on a CPU event: */
3828
		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
T
Thomas Gleixner 已提交
3829 3830
			return ERR_PTR(-EACCES);

P
Peter Zijlstra 已提交
3831
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
T
Thomas Gleixner 已提交
3832
		ctx = &cpuctx->ctx;
3833
		get_ctx(ctx);
3834
		++ctx->pin_count;
T
Thomas Gleixner 已提交
3835 3836 3837 3838

		return ctx;
	}

P
Peter Zijlstra 已提交
3839 3840 3841 3842 3843
	err = -EINVAL;
	ctxn = pmu->task_ctx_nr;
	if (ctxn < 0)
		goto errout;

3844 3845 3846 3847 3848 3849 3850 3851
	if (event->attach_state & PERF_ATTACH_TASK_DATA) {
		task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
		if (!task_ctx_data) {
			err = -ENOMEM;
			goto errout;
		}
	}

P
Peter Zijlstra 已提交
3852
retry:
P
Peter Zijlstra 已提交
3853
	ctx = perf_lock_task_context(task, ctxn, &flags);
3854
	if (ctx) {
3855
		clone_ctx = unclone_ctx(ctx);
3856
		++ctx->pin_count;
3857 3858 3859 3860 3861

		if (task_ctx_data && !ctx->task_ctx_data) {
			ctx->task_ctx_data = task_ctx_data;
			task_ctx_data = NULL;
		}
3862
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3863 3864 3865

		if (clone_ctx)
			put_ctx(clone_ctx);
3866
	} else {
3867
		ctx = alloc_perf_context(pmu, task);
3868 3869 3870
		err = -ENOMEM;
		if (!ctx)
			goto errout;
3871

3872 3873 3874 3875 3876
		if (task_ctx_data) {
			ctx->task_ctx_data = task_ctx_data;
			task_ctx_data = NULL;
		}

3877 3878 3879 3880 3881 3882 3883 3884 3885 3886
		err = 0;
		mutex_lock(&task->perf_event_mutex);
		/*
		 * If it has already passed perf_event_exit_task().
		 * we must see PF_EXITING, it takes this mutex too.
		 */
		if (task->flags & PF_EXITING)
			err = -ESRCH;
		else if (task->perf_event_ctxp[ctxn])
			err = -EAGAIN;
3887
		else {
3888
			get_ctx(ctx);
3889
			++ctx->pin_count;
3890
			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3891
		}
3892 3893 3894
		mutex_unlock(&task->perf_event_mutex);

		if (unlikely(err)) {
3895
			put_ctx(ctx);
3896 3897 3898 3899

			if (err == -EAGAIN)
				goto retry;
			goto errout;
3900 3901 3902
		}
	}

3903
	kfree(task_ctx_data);
T
Thomas Gleixner 已提交
3904
	return ctx;
3905

P
Peter Zijlstra 已提交
3906
errout:
3907
	kfree(task_ctx_data);
3908
	return ERR_PTR(err);
T
Thomas Gleixner 已提交
3909 3910
}

L
Li Zefan 已提交
3911
static void perf_event_free_filter(struct perf_event *event);
3912
static void perf_event_free_bpf_prog(struct perf_event *event);
L
Li Zefan 已提交
3913

3914
static void free_event_rcu(struct rcu_head *head)
P
Peter Zijlstra 已提交
3915
{
3916
	struct perf_event *event;
P
Peter Zijlstra 已提交
3917

3918 3919 3920
	event = container_of(head, struct perf_event, rcu_head);
	if (event->ns)
		put_pid_ns(event->ns);
L
Li Zefan 已提交
3921
	perf_event_free_filter(event);
3922
	kfree(event);
P
Peter Zijlstra 已提交
3923 3924
}

3925 3926
static void ring_buffer_attach(struct perf_event *event,
			       struct ring_buffer *rb);
3927

3928 3929 3930 3931 3932 3933 3934 3935 3936
static void detach_sb_event(struct perf_event *event)
{
	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);

	raw_spin_lock(&pel->lock);
	list_del_rcu(&event->sb_list);
	raw_spin_unlock(&pel->lock);
}

3937
static bool is_sb_event(struct perf_event *event)
3938
{
3939 3940
	struct perf_event_attr *attr = &event->attr;

3941
	if (event->parent)
3942
		return false;
3943 3944

	if (event->attach_state & PERF_ATTACH_TASK)
3945
		return false;
3946

3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958
	if (attr->mmap || attr->mmap_data || attr->mmap2 ||
	    attr->comm || attr->comm_exec ||
	    attr->task ||
	    attr->context_switch)
		return true;
	return false;
}

static void unaccount_pmu_sb_event(struct perf_event *event)
{
	if (is_sb_event(event))
		detach_sb_event(event);
3959 3960
}

3961
static void unaccount_event_cpu(struct perf_event *event, int cpu)
3962
{
3963 3964 3965 3966 3967 3968
	if (event->parent)
		return;

	if (is_cgroup_event(event))
		atomic_dec(&per_cpu(perf_cgroup_events, cpu));
}
3969

3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991
#ifdef CONFIG_NO_HZ_FULL
static DEFINE_SPINLOCK(nr_freq_lock);
#endif

static void unaccount_freq_event_nohz(void)
{
#ifdef CONFIG_NO_HZ_FULL
	spin_lock(&nr_freq_lock);
	if (atomic_dec_and_test(&nr_freq_events))
		tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
	spin_unlock(&nr_freq_lock);
#endif
}

static void unaccount_freq_event(void)
{
	if (tick_nohz_full_enabled())
		unaccount_freq_event_nohz();
	else
		atomic_dec(&nr_freq_events);
}

3992 3993
static void unaccount_event(struct perf_event *event)
{
3994 3995
	bool dec = false;

3996 3997 3998 3999
	if (event->parent)
		return;

	if (event->attach_state & PERF_ATTACH_TASK)
4000
		dec = true;
4001 4002 4003 4004
	if (event->attr.mmap || event->attr.mmap_data)
		atomic_dec(&nr_mmap_events);
	if (event->attr.comm)
		atomic_dec(&nr_comm_events);
4005 4006
	if (event->attr.namespaces)
		atomic_dec(&nr_namespaces_events);
4007 4008
	if (event->attr.task)
		atomic_dec(&nr_task_events);
4009
	if (event->attr.freq)
4010
		unaccount_freq_event();
4011
	if (event->attr.context_switch) {
4012
		dec = true;
4013 4014
		atomic_dec(&nr_switch_events);
	}
4015
	if (is_cgroup_event(event))
4016
		dec = true;
4017
	if (has_branch_stack(event))
4018 4019
		dec = true;

4020 4021 4022 4023
	if (dec) {
		if (!atomic_add_unless(&perf_sched_count, -1, 1))
			schedule_delayed_work(&perf_sched_work, HZ);
	}
4024 4025

	unaccount_event_cpu(event, event->cpu);
4026 4027

	unaccount_pmu_sb_event(event);
4028
}
4029

4030 4031 4032 4033 4034 4035 4036 4037
static void perf_sched_delayed(struct work_struct *work)
{
	mutex_lock(&perf_sched_mutex);
	if (atomic_dec_and_test(&perf_sched_count))
		static_branch_disable(&perf_sched_events);
	mutex_unlock(&perf_sched_mutex);
}

4038 4039 4040 4041 4042 4043 4044 4045 4046 4047
/*
 * The following implement mutual exclusion of events on "exclusive" pmus
 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
 * at a time, so we disallow creating events that might conflict, namely:
 *
 *  1) cpu-wide events in the presence of per-task events,
 *  2) per-task events in the presence of cpu-wide events,
 *  3) two matching events on the same context.
 *
 * The former two cases are handled in the allocation path (perf_event_alloc(),
P
Peter Zijlstra 已提交
4048
 * _free_event()), the latter -- before the first perf_install_in_context().
4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096
 */
static int exclusive_event_init(struct perf_event *event)
{
	struct pmu *pmu = event->pmu;

	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
		return 0;

	/*
	 * Prevent co-existence of per-task and cpu-wide events on the
	 * same exclusive pmu.
	 *
	 * Negative pmu::exclusive_cnt means there are cpu-wide
	 * events on this "exclusive" pmu, positive means there are
	 * per-task events.
	 *
	 * Since this is called in perf_event_alloc() path, event::ctx
	 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
	 * to mean "per-task event", because unlike other attach states it
	 * never gets cleared.
	 */
	if (event->attach_state & PERF_ATTACH_TASK) {
		if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
			return -EBUSY;
	} else {
		if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
			return -EBUSY;
	}

	return 0;
}

static void exclusive_event_destroy(struct perf_event *event)
{
	struct pmu *pmu = event->pmu;

	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
		return;

	/* see comment in exclusive_event_init() */
	if (event->attach_state & PERF_ATTACH_TASK)
		atomic_dec(&pmu->exclusive_cnt);
	else
		atomic_inc(&pmu->exclusive_cnt);
}

static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
{
4097
	if ((e1->pmu == e2->pmu) &&
4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122
	    (e1->cpu == e2->cpu ||
	     e1->cpu == -1 ||
	     e2->cpu == -1))
		return true;
	return false;
}

/* Called under the same ctx::mutex as perf_install_in_context() */
static bool exclusive_event_installable(struct perf_event *event,
					struct perf_event_context *ctx)
{
	struct perf_event *iter_event;
	struct pmu *pmu = event->pmu;

	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
		return true;

	list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
		if (exclusive_event_match(iter_event, event))
			return false;
	}

	return true;
}

4123 4124 4125
static void perf_addr_filters_splice(struct perf_event *event,
				       struct list_head *head);

P
Peter Zijlstra 已提交
4126
static void _free_event(struct perf_event *event)
4127
{
4128
	irq_work_sync(&event->pending);
4129

4130
	unaccount_event(event);
4131

4132
	if (event->rb) {
4133 4134 4135 4136 4137 4138 4139
		/*
		 * Can happen when we close an event with re-directed output.
		 *
		 * Since we have a 0 refcount, perf_mmap_close() will skip
		 * over us; possibly making our ring_buffer_put() the last.
		 */
		mutex_lock(&event->mmap_mutex);
4140
		ring_buffer_attach(event, NULL);
4141
		mutex_unlock(&event->mmap_mutex);
4142 4143
	}

S
Stephane Eranian 已提交
4144 4145 4146
	if (is_cgroup_event(event))
		perf_detach_cgroup(event);

P
Peter Zijlstra 已提交
4147 4148 4149 4150 4151 4152
	if (!event->parent) {
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
			put_callchain_buffers();
	}

	perf_event_free_bpf_prog(event);
4153 4154
	perf_addr_filters_splice(event, NULL);
	kfree(event->addr_filters_offs);
P
Peter Zijlstra 已提交
4155 4156 4157 4158 4159 4160 4161

	if (event->destroy)
		event->destroy(event);

	if (event->ctx)
		put_ctx(event->ctx);

4162 4163
	exclusive_event_destroy(event);
	module_put(event->pmu->module);
P
Peter Zijlstra 已提交
4164 4165

	call_rcu(&event->rcu_head, free_event_rcu);
4166 4167
}

P
Peter Zijlstra 已提交
4168 4169 4170 4171 4172
/*
 * Used to free events which have a known refcount of 1, such as in error paths
 * where the event isn't exposed yet and inherited events.
 */
static void free_event(struct perf_event *event)
T
Thomas Gleixner 已提交
4173
{
P
Peter Zijlstra 已提交
4174 4175 4176 4177 4178 4179
	if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
				"unexpected event refcount: %ld; ptr=%p\n",
				atomic_long_read(&event->refcount), event)) {
		/* leak to avoid use-after-free */
		return;
	}
T
Thomas Gleixner 已提交
4180

P
Peter Zijlstra 已提交
4181
	_free_event(event);
T
Thomas Gleixner 已提交
4182 4183
}

4184
/*
4185
 * Remove user event from the owner task.
4186
 */
4187
static void perf_remove_from_owner(struct perf_event *event)
4188
{
P
Peter Zijlstra 已提交
4189
	struct task_struct *owner;
4190

P
Peter Zijlstra 已提交
4191 4192
	rcu_read_lock();
	/*
4193 4194 4195
	 * Matches the smp_store_release() in perf_event_exit_task(). If we
	 * observe !owner it means the list deletion is complete and we can
	 * indeed free this event, otherwise we need to serialize on
P
Peter Zijlstra 已提交
4196 4197
	 * owner->perf_event_mutex.
	 */
4198
	owner = lockless_dereference(event->owner);
P
Peter Zijlstra 已提交
4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209
	if (owner) {
		/*
		 * Since delayed_put_task_struct() also drops the last
		 * task reference we can safely take a new reference
		 * while holding the rcu_read_lock().
		 */
		get_task_struct(owner);
	}
	rcu_read_unlock();

	if (owner) {
P
Peter Zijlstra 已提交
4210 4211 4212 4213 4214 4215 4216 4217 4218 4219
		/*
		 * If we're here through perf_event_exit_task() we're already
		 * holding ctx->mutex which would be an inversion wrt. the
		 * normal lock order.
		 *
		 * However we can safely take this lock because its the child
		 * ctx->mutex.
		 */
		mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);

P
Peter Zijlstra 已提交
4220 4221 4222 4223 4224 4225
		/*
		 * We have to re-check the event->owner field, if it is cleared
		 * we raced with perf_event_exit_task(), acquiring the mutex
		 * ensured they're done, and we can proceed with freeing the
		 * event.
		 */
4226
		if (event->owner) {
P
Peter Zijlstra 已提交
4227
			list_del_init(&event->owner_entry);
4228 4229
			smp_store_release(&event->owner, NULL);
		}
P
Peter Zijlstra 已提交
4230 4231 4232
		mutex_unlock(&owner->perf_event_mutex);
		put_task_struct(owner);
	}
4233 4234 4235 4236 4237 4238 4239
}

static void put_event(struct perf_event *event)
{
	if (!atomic_long_dec_and_test(&event->refcount))
		return;

4240 4241 4242 4243 4244 4245 4246 4247 4248 4249
	_free_event(event);
}

/*
 * Kill an event dead; while event:refcount will preserve the event
 * object, it will not preserve its functionality. Once the last 'user'
 * gives up the object, we'll destroy the thing.
 */
int perf_event_release_kernel(struct perf_event *event)
{
4250
	struct perf_event_context *ctx = event->ctx;
4251 4252
	struct perf_event *child, *tmp;

4253 4254 4255 4256 4257 4258 4259 4260 4261 4262
	/*
	 * If we got here through err_file: fput(event_file); we will not have
	 * attached to a context yet.
	 */
	if (!ctx) {
		WARN_ON_ONCE(event->attach_state &
				(PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
		goto no_ctx;
	}

4263 4264
	if (!is_kernel_event(event))
		perf_remove_from_owner(event);
P
Peter Zijlstra 已提交
4265

4266
	ctx = perf_event_ctx_lock(event);
P
Peter Zijlstra 已提交
4267
	WARN_ON_ONCE(ctx->parent_ctx);
P
Peter Zijlstra 已提交
4268
	perf_remove_from_context(event, DETACH_GROUP);
P
Peter Zijlstra 已提交
4269

P
Peter Zijlstra 已提交
4270
	raw_spin_lock_irq(&ctx->lock);
P
Peter Zijlstra 已提交
4271
	/*
4272
	 * Mark this event as STATE_DEAD, there is no external reference to it
P
Peter Zijlstra 已提交
4273
	 * anymore.
P
Peter Zijlstra 已提交
4274
	 *
P
Peter Zijlstra 已提交
4275 4276 4277
	 * Anybody acquiring event->child_mutex after the below loop _must_
	 * also see this, most importantly inherit_event() which will avoid
	 * placing more children on the list.
P
Peter Zijlstra 已提交
4278
	 *
4279 4280
	 * Thus this guarantees that we will in fact observe and kill _ALL_
	 * child events.
P
Peter Zijlstra 已提交
4281
	 */
P
Peter Zijlstra 已提交
4282 4283 4284 4285
	event->state = PERF_EVENT_STATE_DEAD;
	raw_spin_unlock_irq(&ctx->lock);

	perf_event_ctx_unlock(event, ctx);
P
Peter Zijlstra 已提交
4286

4287 4288 4289
again:
	mutex_lock(&event->child_mutex);
	list_for_each_entry(child, &event->child_list, child_list) {
4290

4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339
		/*
		 * Cannot change, child events are not migrated, see the
		 * comment with perf_event_ctx_lock_nested().
		 */
		ctx = lockless_dereference(child->ctx);
		/*
		 * Since child_mutex nests inside ctx::mutex, we must jump
		 * through hoops. We start by grabbing a reference on the ctx.
		 *
		 * Since the event cannot get freed while we hold the
		 * child_mutex, the context must also exist and have a !0
		 * reference count.
		 */
		get_ctx(ctx);

		/*
		 * Now that we have a ctx ref, we can drop child_mutex, and
		 * acquire ctx::mutex without fear of it going away. Then we
		 * can re-acquire child_mutex.
		 */
		mutex_unlock(&event->child_mutex);
		mutex_lock(&ctx->mutex);
		mutex_lock(&event->child_mutex);

		/*
		 * Now that we hold ctx::mutex and child_mutex, revalidate our
		 * state, if child is still the first entry, it didn't get freed
		 * and we can continue doing so.
		 */
		tmp = list_first_entry_or_null(&event->child_list,
					       struct perf_event, child_list);
		if (tmp == child) {
			perf_remove_from_context(child, DETACH_GROUP);
			list_del(&child->child_list);
			free_event(child);
			/*
			 * This matches the refcount bump in inherit_event();
			 * this can't be the last reference.
			 */
			put_event(event);
		}

		mutex_unlock(&event->child_mutex);
		mutex_unlock(&ctx->mutex);
		put_ctx(ctx);
		goto again;
	}
	mutex_unlock(&event->child_mutex);

4340 4341
no_ctx:
	put_event(event); /* Must be the 'last' reference */
P
Peter Zijlstra 已提交
4342 4343 4344 4345
	return 0;
}
EXPORT_SYMBOL_GPL(perf_event_release_kernel);

4346 4347 4348
/*
 * Called when the last reference to the file is gone.
 */
4349 4350
static int perf_release(struct inode *inode, struct file *file)
{
4351
	perf_event_release_kernel(file->private_data);
4352
	return 0;
4353 4354
}

4355
u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4356
{
4357
	struct perf_event *child;
4358 4359
	u64 total = 0;

4360 4361 4362
	*enabled = 0;
	*running = 0;

4363
	mutex_lock(&event->child_mutex);
4364

4365
	(void)perf_event_read(event, false);
4366 4367
	total += perf_event_count(event);

4368 4369 4370 4371 4372 4373
	*enabled += event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
	*running += event->total_time_running +
			atomic64_read(&event->child_total_time_running);

	list_for_each_entry(child, &event->child_list, child_list) {
4374
		(void)perf_event_read(child, false);
4375
		total += perf_event_count(child);
4376 4377 4378
		*enabled += child->total_time_enabled;
		*running += child->total_time_running;
	}
4379
	mutex_unlock(&event->child_mutex);
4380 4381 4382

	return total;
}
4383
EXPORT_SYMBOL_GPL(perf_event_read_value);
4384

4385
static int __perf_read_group_add(struct perf_event *leader,
4386
					u64 read_format, u64 *values)
4387
{
4388
	struct perf_event_context *ctx = leader->ctx;
4389
	struct perf_event *sub;
4390
	unsigned long flags;
4391
	int n = 1; /* skip @nr */
4392
	int ret;
P
Peter Zijlstra 已提交
4393

4394 4395 4396
	ret = perf_event_read(leader, true);
	if (ret)
		return ret;
4397

4398 4399 4400 4401 4402 4403 4404 4405 4406
	/*
	 * Since we co-schedule groups, {enabled,running} times of siblings
	 * will be identical to those of the leader, so we only publish one
	 * set.
	 */
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
		values[n++] += leader->total_time_enabled +
			atomic64_read(&leader->child_total_time_enabled);
	}
4407

4408 4409 4410 4411 4412 4413 4414 4415 4416
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
		values[n++] += leader->total_time_running +
			atomic64_read(&leader->child_total_time_running);
	}

	/*
	 * Write {count,id} tuples for every sibling.
	 */
	values[n++] += perf_event_count(leader);
4417 4418
	if (read_format & PERF_FORMAT_ID)
		values[n++] = primary_event_id(leader);
4419

4420 4421
	raw_spin_lock_irqsave(&ctx->lock, flags);

4422 4423 4424 4425 4426
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
		values[n++] += perf_event_count(sub);
		if (read_format & PERF_FORMAT_ID)
			values[n++] = primary_event_id(sub);
	}
4427

4428
	raw_spin_unlock_irqrestore(&ctx->lock, flags);
4429
	return 0;
4430
}
4431

4432 4433 4434 4435 4436
static int perf_read_group(struct perf_event *event,
				   u64 read_format, char __user *buf)
{
	struct perf_event *leader = event->group_leader, *child;
	struct perf_event_context *ctx = leader->ctx;
4437
	int ret;
4438
	u64 *values;
4439

4440
	lockdep_assert_held(&ctx->mutex);
4441

4442 4443 4444
	values = kzalloc(event->read_size, GFP_KERNEL);
	if (!values)
		return -ENOMEM;
4445

4446 4447 4448 4449 4450 4451 4452
	values[0] = 1 + leader->nr_siblings;

	/*
	 * By locking the child_mutex of the leader we effectively
	 * lock the child list of all siblings.. XXX explain how.
	 */
	mutex_lock(&leader->child_mutex);
4453

4454 4455 4456 4457 4458 4459 4460 4461 4462
	ret = __perf_read_group_add(leader, read_format, values);
	if (ret)
		goto unlock;

	list_for_each_entry(child, &leader->child_list, child_list) {
		ret = __perf_read_group_add(child, read_format, values);
		if (ret)
			goto unlock;
	}
4463

4464
	mutex_unlock(&leader->child_mutex);
4465

4466
	ret = event->read_size;
4467 4468
	if (copy_to_user(buf, values, event->read_size))
		ret = -EFAULT;
4469
	goto out;
4470

4471 4472 4473
unlock:
	mutex_unlock(&leader->child_mutex);
out:
4474
	kfree(values);
4475
	return ret;
4476 4477
}

4478
static int perf_read_one(struct perf_event *event,
4479 4480
				 u64 read_format, char __user *buf)
{
4481
	u64 enabled, running;
4482 4483 4484
	u64 values[4];
	int n = 0;

4485 4486 4487 4488 4489
	values[n++] = perf_event_read_value(event, &enabled, &running);
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
4490
	if (read_format & PERF_FORMAT_ID)
4491
		values[n++] = primary_event_id(event);
4492 4493 4494 4495 4496 4497 4498

	if (copy_to_user(buf, values, n * sizeof(u64)))
		return -EFAULT;

	return n * sizeof(u64);
}

4499 4500 4501 4502
static bool is_event_hup(struct perf_event *event)
{
	bool no_children;

P
Peter Zijlstra 已提交
4503
	if (event->state > PERF_EVENT_STATE_EXIT)
4504 4505 4506 4507 4508 4509 4510 4511
		return false;

	mutex_lock(&event->child_mutex);
	no_children = list_empty(&event->child_list);
	mutex_unlock(&event->child_mutex);
	return no_children;
}

T
Thomas Gleixner 已提交
4512
/*
4513
 * Read the performance event - simple non blocking version for now
T
Thomas Gleixner 已提交
4514 4515
 */
static ssize_t
4516
__perf_read(struct perf_event *event, char __user *buf, size_t count)
T
Thomas Gleixner 已提交
4517
{
4518
	u64 read_format = event->attr.read_format;
4519
	int ret;
T
Thomas Gleixner 已提交
4520

4521
	/*
4522
	 * Return end-of-file for a read on a event that is in
4523 4524 4525
	 * error state (i.e. because it was pinned but it couldn't be
	 * scheduled on to the CPU at some point).
	 */
4526
	if (event->state == PERF_EVENT_STATE_ERROR)
4527 4528
		return 0;

4529
	if (count < event->read_size)
4530 4531
		return -ENOSPC;

4532
	WARN_ON_ONCE(event->ctx->parent_ctx);
4533
	if (read_format & PERF_FORMAT_GROUP)
4534
		ret = perf_read_group(event, read_format, buf);
4535
	else
4536
		ret = perf_read_one(event, read_format, buf);
T
Thomas Gleixner 已提交
4537

4538
	return ret;
T
Thomas Gleixner 已提交
4539 4540 4541 4542 4543
}

static ssize_t
perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
4544
	struct perf_event *event = file->private_data;
P
Peter Zijlstra 已提交
4545 4546
	struct perf_event_context *ctx;
	int ret;
T
Thomas Gleixner 已提交
4547

P
Peter Zijlstra 已提交
4548
	ctx = perf_event_ctx_lock(event);
4549
	ret = __perf_read(event, buf, count);
P
Peter Zijlstra 已提交
4550 4551 4552
	perf_event_ctx_unlock(event, ctx);

	return ret;
T
Thomas Gleixner 已提交
4553 4554 4555 4556
}

static unsigned int perf_poll(struct file *file, poll_table *wait)
{
4557
	struct perf_event *event = file->private_data;
4558
	struct ring_buffer *rb;
4559
	unsigned int events = POLLHUP;
P
Peter Zijlstra 已提交
4560

4561
	poll_wait(file, &event->waitq, wait);
4562

4563
	if (is_event_hup(event))
4564
		return events;
P
Peter Zijlstra 已提交
4565

4566
	/*
4567 4568
	 * Pin the event->rb by taking event->mmap_mutex; otherwise
	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4569 4570
	 */
	mutex_lock(&event->mmap_mutex);
4571 4572
	rb = event->rb;
	if (rb)
4573
		events = atomic_xchg(&rb->poll, 0);
4574
	mutex_unlock(&event->mmap_mutex);
T
Thomas Gleixner 已提交
4575 4576 4577
	return events;
}

P
Peter Zijlstra 已提交
4578
static void _perf_event_reset(struct perf_event *event)
4579
{
4580
	(void)perf_event_read(event, false);
4581
	local64_set(&event->count, 0);
4582
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
4583 4584
}

4585
/*
4586 4587
 * Holding the top-level event's child_mutex means that any
 * descendant process that has inherited this event will block
4588
 * in perf_event_exit_event() if it goes to exit, thus satisfying the
4589
 * task existence requirements of perf_event_enable/disable.
4590
 */
4591 4592
static void perf_event_for_each_child(struct perf_event *event,
					void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
4593
{
4594
	struct perf_event *child;
P
Peter Zijlstra 已提交
4595

4596
	WARN_ON_ONCE(event->ctx->parent_ctx);
P
Peter Zijlstra 已提交
4597

4598 4599 4600
	mutex_lock(&event->child_mutex);
	func(event);
	list_for_each_entry(child, &event->child_list, child_list)
P
Peter Zijlstra 已提交
4601
		func(child);
4602
	mutex_unlock(&event->child_mutex);
P
Peter Zijlstra 已提交
4603 4604
}

4605 4606
static void perf_event_for_each(struct perf_event *event,
				  void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
4607
{
4608 4609
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *sibling;
P
Peter Zijlstra 已提交
4610

P
Peter Zijlstra 已提交
4611 4612
	lockdep_assert_held(&ctx->mutex);

4613
	event = event->group_leader;
4614

4615 4616
	perf_event_for_each_child(event, func);
	list_for_each_entry(sibling, &event->sibling_list, group_entry)
4617
		perf_event_for_each_child(sibling, func);
4618 4619
}

4620 4621 4622 4623
static void __perf_event_period(struct perf_event *event,
				struct perf_cpu_context *cpuctx,
				struct perf_event_context *ctx,
				void *info)
4624
{
4625
	u64 value = *((u64 *)info);
4626
	bool active;
4627

4628 4629
	if (event->attr.freq) {
		event->attr.sample_freq = value;
4630
	} else {
4631 4632
		event->attr.sample_period = value;
		event->hw.sample_period = value;
4633
	}
4634 4635 4636 4637

	active = (event->state == PERF_EVENT_STATE_ACTIVE);
	if (active) {
		perf_pmu_disable(ctx->pmu);
4638 4639 4640 4641 4642 4643 4644 4645
		/*
		 * We could be throttled; unthrottle now to avoid the tick
		 * trying to unthrottle while we already re-started the event.
		 */
		if (event->hw.interrupts == MAX_INTERRUPTS) {
			event->hw.interrupts = 0;
			perf_log_throttle(event, 1);
		}
4646 4647 4648 4649 4650 4651 4652 4653 4654
		event->pmu->stop(event, PERF_EF_UPDATE);
	}

	local64_set(&event->hw.period_left, 0);

	if (active) {
		event->pmu->start(event, PERF_EF_RELOAD);
		perf_pmu_enable(ctx->pmu);
	}
4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672
}

static int perf_event_period(struct perf_event *event, u64 __user *arg)
{
	u64 value;

	if (!is_sampling_event(event))
		return -EINVAL;

	if (copy_from_user(&value, arg, sizeof(value)))
		return -EFAULT;

	if (!value)
		return -EINVAL;

	if (event->attr.freq && value > sysctl_perf_event_sample_rate)
		return -EINVAL;

4673
	event_function_call(event, __perf_event_period, &value);
4674

4675
	return 0;
4676 4677
}

4678 4679
static const struct file_operations perf_fops;

4680
static inline int perf_fget_light(int fd, struct fd *p)
4681
{
4682 4683 4684
	struct fd f = fdget(fd);
	if (!f.file)
		return -EBADF;
4685

4686 4687 4688
	if (f.file->f_op != &perf_fops) {
		fdput(f);
		return -EBADF;
4689
	}
4690 4691
	*p = f;
	return 0;
4692 4693 4694 4695
}

static int perf_event_set_output(struct perf_event *event,
				 struct perf_event *output_event);
L
Li Zefan 已提交
4696
static int perf_event_set_filter(struct perf_event *event, void __user *arg);
4697
static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
4698

P
Peter Zijlstra 已提交
4699
static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
4700
{
4701
	void (*func)(struct perf_event *);
P
Peter Zijlstra 已提交
4702
	u32 flags = arg;
4703 4704

	switch (cmd) {
4705
	case PERF_EVENT_IOC_ENABLE:
P
Peter Zijlstra 已提交
4706
		func = _perf_event_enable;
4707
		break;
4708
	case PERF_EVENT_IOC_DISABLE:
P
Peter Zijlstra 已提交
4709
		func = _perf_event_disable;
4710
		break;
4711
	case PERF_EVENT_IOC_RESET:
P
Peter Zijlstra 已提交
4712
		func = _perf_event_reset;
4713
		break;
P
Peter Zijlstra 已提交
4714

4715
	case PERF_EVENT_IOC_REFRESH:
P
Peter Zijlstra 已提交
4716
		return _perf_event_refresh(event, arg);
4717

4718 4719
	case PERF_EVENT_IOC_PERIOD:
		return perf_event_period(event, (u64 __user *)arg);
4720

4721 4722 4723 4724 4725 4726 4727 4728 4729
	case PERF_EVENT_IOC_ID:
	{
		u64 id = primary_event_id(event);

		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
			return -EFAULT;
		return 0;
	}

4730
	case PERF_EVENT_IOC_SET_OUTPUT:
4731 4732 4733
	{
		int ret;
		if (arg != -1) {
4734 4735 4736 4737 4738 4739 4740 4741 4742 4743
			struct perf_event *output_event;
			struct fd output;
			ret = perf_fget_light(arg, &output);
			if (ret)
				return ret;
			output_event = output.file->private_data;
			ret = perf_event_set_output(event, output_event);
			fdput(output);
		} else {
			ret = perf_event_set_output(event, NULL);
4744 4745 4746
		}
		return ret;
	}
4747

L
Li Zefan 已提交
4748 4749 4750
	case PERF_EVENT_IOC_SET_FILTER:
		return perf_event_set_filter(event, (void __user *)arg);

4751 4752 4753
	case PERF_EVENT_IOC_SET_BPF:
		return perf_event_set_bpf_prog(event, arg);

4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766
	case PERF_EVENT_IOC_PAUSE_OUTPUT: {
		struct ring_buffer *rb;

		rcu_read_lock();
		rb = rcu_dereference(event->rb);
		if (!rb || !rb->nr_pages) {
			rcu_read_unlock();
			return -EINVAL;
		}
		rb_toggle_paused(rb, !!arg);
		rcu_read_unlock();
		return 0;
	}
4767
	default:
P
Peter Zijlstra 已提交
4768
		return -ENOTTY;
4769
	}
P
Peter Zijlstra 已提交
4770 4771

	if (flags & PERF_IOC_FLAG_GROUP)
4772
		perf_event_for_each(event, func);
P
Peter Zijlstra 已提交
4773
	else
4774
		perf_event_for_each_child(event, func);
P
Peter Zijlstra 已提交
4775 4776

	return 0;
4777 4778
}

P
Peter Zijlstra 已提交
4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791
static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
	struct perf_event *event = file->private_data;
	struct perf_event_context *ctx;
	long ret;

	ctx = perf_event_ctx_lock(event);
	ret = _perf_ioctl(event, cmd, arg);
	perf_event_ctx_unlock(event, ctx);

	return ret;
}

P
Pawel Moll 已提交
4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811
#ifdef CONFIG_COMPAT
static long perf_compat_ioctl(struct file *file, unsigned int cmd,
				unsigned long arg)
{
	switch (_IOC_NR(cmd)) {
	case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
	case _IOC_NR(PERF_EVENT_IOC_ID):
		/* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
		if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
			cmd &= ~IOCSIZE_MASK;
			cmd |= sizeof(void *) << IOCSIZE_SHIFT;
		}
		break;
	}
	return perf_ioctl(file, cmd, arg);
}
#else
# define perf_compat_ioctl NULL
#endif

4812
int perf_event_task_enable(void)
4813
{
P
Peter Zijlstra 已提交
4814
	struct perf_event_context *ctx;
4815
	struct perf_event *event;
4816

4817
	mutex_lock(&current->perf_event_mutex);
P
Peter Zijlstra 已提交
4818 4819 4820 4821 4822
	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
		ctx = perf_event_ctx_lock(event);
		perf_event_for_each_child(event, _perf_event_enable);
		perf_event_ctx_unlock(event, ctx);
	}
4823
	mutex_unlock(&current->perf_event_mutex);
4824 4825 4826 4827

	return 0;
}

4828
int perf_event_task_disable(void)
4829
{
P
Peter Zijlstra 已提交
4830
	struct perf_event_context *ctx;
4831
	struct perf_event *event;
4832

4833
	mutex_lock(&current->perf_event_mutex);
P
Peter Zijlstra 已提交
4834 4835 4836 4837 4838
	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
		ctx = perf_event_ctx_lock(event);
		perf_event_for_each_child(event, _perf_event_disable);
		perf_event_ctx_unlock(event, ctx);
	}
4839
	mutex_unlock(&current->perf_event_mutex);
4840 4841 4842 4843

	return 0;
}

4844
static int perf_event_index(struct perf_event *event)
4845
{
P
Peter Zijlstra 已提交
4846 4847 4848
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;

4849
	if (event->state != PERF_EVENT_STATE_ACTIVE)
4850 4851
		return 0;

4852
	return event->pmu->event_idx(event);
4853 4854
}

4855
static void calc_timer_values(struct perf_event *event,
4856
				u64 *now,
4857 4858
				u64 *enabled,
				u64 *running)
4859
{
4860
	u64 ctx_time;
4861

4862 4863
	*now = perf_clock();
	ctx_time = event->shadow_ctx_time + *now;
4864 4865 4866 4867
	*enabled = ctx_time - event->tstamp_enabled;
	*running = ctx_time - event->tstamp_running;
}

4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882
static void perf_event_init_userpage(struct perf_event *event)
{
	struct perf_event_mmap_page *userpg;
	struct ring_buffer *rb;

	rcu_read_lock();
	rb = rcu_dereference(event->rb);
	if (!rb)
		goto unlock;

	userpg = rb->user_page;

	/* Allow new userspace to detect that bit 0 is deprecated */
	userpg->cap_bit0_is_deprecated = 1;
	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
4883 4884
	userpg->data_offset = PAGE_SIZE;
	userpg->data_size = perf_data_size(rb);
4885 4886 4887 4888 4889

unlock:
	rcu_read_unlock();
}

4890 4891
void __weak arch_perf_update_userpage(
	struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
4892 4893 4894
{
}

4895 4896 4897 4898 4899
/*
 * Callers need to ensure there can be no nesting of this function, otherwise
 * the seqlock logic goes bad. We can not serialize this because the arch
 * code calls this from NMI context.
 */
4900
void perf_event_update_userpage(struct perf_event *event)
4901
{
4902
	struct perf_event_mmap_page *userpg;
4903
	struct ring_buffer *rb;
4904
	u64 enabled, running, now;
4905 4906

	rcu_read_lock();
4907 4908 4909 4910
	rb = rcu_dereference(event->rb);
	if (!rb)
		goto unlock;

4911 4912 4913 4914 4915 4916 4917 4918 4919
	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we can be called in
	 * NMI context
	 */
4920
	calc_timer_values(event, &now, &enabled, &running);
4921

4922
	userpg = rb->user_page;
4923 4924 4925 4926 4927
	/*
	 * Disable preemption so as to not let the corresponding user-space
	 * spin too long if we get preempted.
	 */
	preempt_disable();
4928
	++userpg->lock;
4929
	barrier();
4930
	userpg->index = perf_event_index(event);
P
Peter Zijlstra 已提交
4931
	userpg->offset = perf_event_count(event);
4932
	if (userpg->index)
4933
		userpg->offset -= local64_read(&event->hw.prev_count);
4934

4935
	userpg->time_enabled = enabled +
4936
			atomic64_read(&event->child_total_time_enabled);
4937

4938
	userpg->time_running = running +
4939
			atomic64_read(&event->child_total_time_running);
4940

4941
	arch_perf_update_userpage(event, userpg, now);
4942

4943
	barrier();
4944
	++userpg->lock;
4945
	preempt_enable();
4946
unlock:
4947
	rcu_read_unlock();
4948 4949
}

4950
static int perf_mmap_fault(struct vm_fault *vmf)
4951
{
4952
	struct perf_event *event = vmf->vma->vm_file->private_data;
4953
	struct ring_buffer *rb;
4954 4955 4956 4957 4958 4959 4960 4961 4962
	int ret = VM_FAULT_SIGBUS;

	if (vmf->flags & FAULT_FLAG_MKWRITE) {
		if (vmf->pgoff == 0)
			ret = 0;
		return ret;
	}

	rcu_read_lock();
4963 4964
	rb = rcu_dereference(event->rb);
	if (!rb)
4965 4966 4967 4968 4969
		goto unlock;

	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
		goto unlock;

4970
	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
4971 4972 4973 4974
	if (!vmf->page)
		goto unlock;

	get_page(vmf->page);
4975
	vmf->page->mapping = vmf->vma->vm_file->f_mapping;
4976 4977 4978 4979 4980 4981 4982 4983 4984
	vmf->page->index   = vmf->pgoff;

	ret = 0;
unlock:
	rcu_read_unlock();

	return ret;
}

4985 4986 4987
static void ring_buffer_attach(struct perf_event *event,
			       struct ring_buffer *rb)
{
4988
	struct ring_buffer *old_rb = NULL;
4989 4990
	unsigned long flags;

4991 4992 4993 4994 4995 4996
	if (event->rb) {
		/*
		 * Should be impossible, we set this when removing
		 * event->rb_entry and wait/clear when adding event->rb_entry.
		 */
		WARN_ON_ONCE(event->rcu_pending);
4997

4998 4999 5000 5001
		old_rb = event->rb;
		spin_lock_irqsave(&old_rb->event_lock, flags);
		list_del_rcu(&event->rb_entry);
		spin_unlock_irqrestore(&old_rb->event_lock, flags);
5002

5003 5004
		event->rcu_batches = get_state_synchronize_rcu();
		event->rcu_pending = 1;
5005
	}
5006

5007
	if (rb) {
5008 5009 5010 5011 5012
		if (event->rcu_pending) {
			cond_synchronize_rcu(event->rcu_batches);
			event->rcu_pending = 0;
		}

5013 5014 5015 5016 5017
		spin_lock_irqsave(&rb->event_lock, flags);
		list_add_rcu(&event->rb_entry, &rb->event_list);
		spin_unlock_irqrestore(&rb->event_lock, flags);
	}

5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030
	/*
	 * Avoid racing with perf_mmap_close(AUX): stop the event
	 * before swizzling the event::rb pointer; if it's getting
	 * unmapped, its aux_mmap_count will be 0 and it won't
	 * restart. See the comment in __perf_pmu_output_stop().
	 *
	 * Data will inevitably be lost when set_output is done in
	 * mid-air, but then again, whoever does it like this is
	 * not in for the data anyway.
	 */
	if (has_aux(event))
		perf_event_stop(event, 0);

5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041
	rcu_assign_pointer(event->rb, rb);

	if (old_rb) {
		ring_buffer_put(old_rb);
		/*
		 * Since we detached before setting the new rb, so that we
		 * could attach the new rb, we could have missed a wakeup.
		 * Provide it now.
		 */
		wake_up_all(&event->waitq);
	}
5042 5043 5044 5045 5046 5047 5048 5049
}

static void ring_buffer_wakeup(struct perf_event *event)
{
	struct ring_buffer *rb;

	rcu_read_lock();
	rb = rcu_dereference(event->rb);
5050 5051 5052 5053
	if (rb) {
		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
			wake_up_all(&event->waitq);
	}
5054 5055 5056
	rcu_read_unlock();
}

5057
struct ring_buffer *ring_buffer_get(struct perf_event *event)
5058
{
5059
	struct ring_buffer *rb;
5060

5061
	rcu_read_lock();
5062 5063 5064 5065
	rb = rcu_dereference(event->rb);
	if (rb) {
		if (!atomic_inc_not_zero(&rb->refcount))
			rb = NULL;
5066 5067 5068
	}
	rcu_read_unlock();

5069
	return rb;
5070 5071
}

5072
void ring_buffer_put(struct ring_buffer *rb)
5073
{
5074
	if (!atomic_dec_and_test(&rb->refcount))
5075
		return;
5076

5077
	WARN_ON_ONCE(!list_empty(&rb->event_list));
5078

5079
	call_rcu(&rb->rcu_head, rb_free_rcu);
5080 5081 5082 5083
}

static void perf_mmap_open(struct vm_area_struct *vma)
{
5084
	struct perf_event *event = vma->vm_file->private_data;
5085

5086
	atomic_inc(&event->mmap_count);
5087
	atomic_inc(&event->rb->mmap_count);
5088

5089 5090 5091
	if (vma->vm_pgoff)
		atomic_inc(&event->rb->aux_mmap_count);

5092 5093
	if (event->pmu->event_mapped)
		event->pmu->event_mapped(event);
5094 5095
}

5096 5097
static void perf_pmu_output_stop(struct perf_event *event);

5098 5099 5100 5101 5102 5103 5104 5105
/*
 * A buffer can be mmap()ed multiple times; either directly through the same
 * event, or through other events by use of perf_event_set_output().
 *
 * In order to undo the VM accounting done by perf_mmap() we need to destroy
 * the buffer here, where we still have a VM context. This means we need
 * to detach all events redirecting to us.
 */
5106 5107
static void perf_mmap_close(struct vm_area_struct *vma)
{
5108
	struct perf_event *event = vma->vm_file->private_data;
5109

5110
	struct ring_buffer *rb = ring_buffer_get(event);
5111 5112 5113
	struct user_struct *mmap_user = rb->mmap_user;
	int mmap_locked = rb->mmap_locked;
	unsigned long size = perf_data_size(rb);
5114

5115 5116 5117
	if (event->pmu->event_unmapped)
		event->pmu->event_unmapped(event);

5118 5119 5120 5121 5122 5123 5124
	/*
	 * rb->aux_mmap_count will always drop before rb->mmap_count and
	 * event->mmap_count, so it is ok to use event->mmap_mutex to
	 * serialize with perf_mmap here.
	 */
	if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
	    atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
5125 5126 5127 5128 5129 5130 5131 5132 5133
		/*
		 * Stop all AUX events that are writing to this buffer,
		 * so that we can free its AUX pages and corresponding PMU
		 * data. Note that after rb::aux_mmap_count dropped to zero,
		 * they won't start any more (see perf_aux_output_begin()).
		 */
		perf_pmu_output_stop(event);

		/* now it's safe to free the pages */
5134 5135 5136
		atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
		vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;

5137
		/* this has to be the last one */
5138
		rb_free_aux(rb);
5139 5140
		WARN_ON_ONCE(atomic_read(&rb->aux_refcount));

5141 5142 5143
		mutex_unlock(&event->mmap_mutex);
	}

5144 5145 5146
	atomic_dec(&rb->mmap_count);

	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
5147
		goto out_put;
5148

5149
	ring_buffer_attach(event, NULL);
5150 5151 5152
	mutex_unlock(&event->mmap_mutex);

	/* If there's still other mmap()s of this buffer, we're done. */
5153 5154
	if (atomic_read(&rb->mmap_count))
		goto out_put;
5155

5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171
	/*
	 * No other mmap()s, detach from all other events that might redirect
	 * into the now unreachable buffer. Somewhat complicated by the
	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
	 */
again:
	rcu_read_lock();
	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
		if (!atomic_long_inc_not_zero(&event->refcount)) {
			/*
			 * This event is en-route to free_event() which will
			 * detach it and remove it from the list.
			 */
			continue;
		}
		rcu_read_unlock();
5172

5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183
		mutex_lock(&event->mmap_mutex);
		/*
		 * Check we didn't race with perf_event_set_output() which can
		 * swizzle the rb from under us while we were waiting to
		 * acquire mmap_mutex.
		 *
		 * If we find a different rb; ignore this event, a next
		 * iteration will no longer find it on the list. We have to
		 * still restart the iteration to make sure we're not now
		 * iterating the wrong list.
		 */
5184 5185 5186
		if (event->rb == rb)
			ring_buffer_attach(event, NULL);

5187
		mutex_unlock(&event->mmap_mutex);
5188
		put_event(event);
5189

5190 5191 5192 5193 5194
		/*
		 * Restart the iteration; either we're on the wrong list or
		 * destroyed its integrity by doing a deletion.
		 */
		goto again;
5195
	}
5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210
	rcu_read_unlock();

	/*
	 * It could be there's still a few 0-ref events on the list; they'll
	 * get cleaned up by free_event() -- they'll also still have their
	 * ref on the rb and will free it whenever they are done with it.
	 *
	 * Aside from that, this buffer is 'fully' detached and unmapped,
	 * undo the VM accounting.
	 */

	atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
	vma->vm_mm->pinned_vm -= mmap_locked;
	free_uid(mmap_user);

5211
out_put:
5212
	ring_buffer_put(rb); /* could be last */
5213 5214
}

5215
static const struct vm_operations_struct perf_mmap_vmops = {
5216
	.open		= perf_mmap_open,
5217
	.close		= perf_mmap_close, /* non mergable */
5218 5219
	.fault		= perf_mmap_fault,
	.page_mkwrite	= perf_mmap_fault,
5220 5221 5222 5223
};

static int perf_mmap(struct file *file, struct vm_area_struct *vma)
{
5224
	struct perf_event *event = file->private_data;
5225
	unsigned long user_locked, user_lock_limit;
5226
	struct user_struct *user = current_user();
5227
	unsigned long locked, lock_limit;
5228
	struct ring_buffer *rb = NULL;
5229 5230
	unsigned long vma_size;
	unsigned long nr_pages;
5231
	long user_extra = 0, extra = 0;
5232
	int ret = 0, flags = 0;
5233

5234 5235 5236
	/*
	 * Don't allow mmap() of inherited per-task counters. This would
	 * create a performance issue due to all children writing to the
5237
	 * same rb.
5238 5239 5240 5241
	 */
	if (event->cpu == -1 && event->attr.inherit)
		return -EINVAL;

5242
	if (!(vma->vm_flags & VM_SHARED))
5243
		return -EINVAL;
5244 5245

	vma_size = vma->vm_end - vma->vm_start;
5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305

	if (vma->vm_pgoff == 0) {
		nr_pages = (vma_size / PAGE_SIZE) - 1;
	} else {
		/*
		 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
		 * mapped, all subsequent mappings should have the same size
		 * and offset. Must be above the normal perf buffer.
		 */
		u64 aux_offset, aux_size;

		if (!event->rb)
			return -EINVAL;

		nr_pages = vma_size / PAGE_SIZE;

		mutex_lock(&event->mmap_mutex);
		ret = -EINVAL;

		rb = event->rb;
		if (!rb)
			goto aux_unlock;

		aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
		aux_size = ACCESS_ONCE(rb->user_page->aux_size);

		if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
			goto aux_unlock;

		if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
			goto aux_unlock;

		/* already mapped with a different offset */
		if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
			goto aux_unlock;

		if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
			goto aux_unlock;

		/* already mapped with a different size */
		if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
			goto aux_unlock;

		if (!is_power_of_2(nr_pages))
			goto aux_unlock;

		if (!atomic_inc_not_zero(&rb->mmap_count))
			goto aux_unlock;

		if (rb_has_aux(rb)) {
			atomic_inc(&rb->aux_mmap_count);
			ret = 0;
			goto unlock;
		}

		atomic_set(&rb->aux_mmap_count, 1);
		user_extra = nr_pages;

		goto accounting;
	}
5306

5307
	/*
5308
	 * If we have rb pages ensure they're a power-of-two number, so we
5309 5310
	 * can do bitmasks instead of modulo.
	 */
5311
	if (nr_pages != 0 && !is_power_of_2(nr_pages))
5312 5313
		return -EINVAL;

5314
	if (vma_size != PAGE_SIZE * (1 + nr_pages))
5315 5316
		return -EINVAL;

5317
	WARN_ON_ONCE(event->ctx->parent_ctx);
5318
again:
5319
	mutex_lock(&event->mmap_mutex);
5320
	if (event->rb) {
5321
		if (event->rb->nr_pages != nr_pages) {
5322
			ret = -EINVAL;
5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335
			goto unlock;
		}

		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
			/*
			 * Raced against perf_mmap_close() through
			 * perf_event_set_output(). Try again, hope for better
			 * luck.
			 */
			mutex_unlock(&event->mmap_mutex);
			goto again;
		}

5336 5337 5338
		goto unlock;
	}

5339
	user_extra = nr_pages + 1;
5340 5341

accounting:
5342
	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
I
Ingo Molnar 已提交
5343 5344 5345 5346 5347 5348

	/*
	 * Increase the limit linearly with more CPUs:
	 */
	user_lock_limit *= num_online_cpus();

5349
	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
5350

5351 5352
	if (user_locked > user_lock_limit)
		extra = user_locked - user_lock_limit;
5353

5354
	lock_limit = rlimit(RLIMIT_MEMLOCK);
5355
	lock_limit >>= PAGE_SHIFT;
5356
	locked = vma->vm_mm->pinned_vm + extra;
5357

5358 5359
	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
		!capable(CAP_IPC_LOCK)) {
5360 5361 5362
		ret = -EPERM;
		goto unlock;
	}
5363

5364
	WARN_ON(!rb && event->rb);
5365

5366
	if (vma->vm_flags & VM_WRITE)
5367
		flags |= RING_BUFFER_WRITABLE;
5368

5369
	if (!rb) {
5370 5371 5372
		rb = rb_alloc(nr_pages,
			      event->attr.watermark ? event->attr.wakeup_watermark : 0,
			      event->cpu, flags);
P
Peter Zijlstra 已提交
5373

5374 5375 5376 5377
		if (!rb) {
			ret = -ENOMEM;
			goto unlock;
		}
5378

5379 5380 5381
		atomic_set(&rb->mmap_count, 1);
		rb->mmap_user = get_current_user();
		rb->mmap_locked = extra;
P
Peter Zijlstra 已提交
5382

5383
		ring_buffer_attach(event, rb);
5384

5385 5386 5387
		perf_event_init_userpage(event);
		perf_event_update_userpage(event);
	} else {
5388 5389
		ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
				   event->attr.aux_watermark, flags);
5390 5391 5392
		if (!ret)
			rb->aux_mmap_locked = extra;
	}
5393

5394
unlock:
5395 5396 5397 5398
	if (!ret) {
		atomic_long_add(user_extra, &user->locked_vm);
		vma->vm_mm->pinned_vm += extra;

5399
		atomic_inc(&event->mmap_count);
5400 5401 5402 5403
	} else if (rb) {
		atomic_dec(&rb->mmap_count);
	}
aux_unlock:
5404
	mutex_unlock(&event->mmap_mutex);
5405

5406 5407 5408 5409
	/*
	 * Since pinned accounting is per vm we cannot allow fork() to copy our
	 * vma.
	 */
P
Peter Zijlstra 已提交
5410
	vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
5411
	vma->vm_ops = &perf_mmap_vmops;
5412

5413 5414 5415
	if (event->pmu->event_mapped)
		event->pmu->event_mapped(event);

5416
	return ret;
5417 5418
}

P
Peter Zijlstra 已提交
5419 5420
static int perf_fasync(int fd, struct file *filp, int on)
{
A
Al Viro 已提交
5421
	struct inode *inode = file_inode(filp);
5422
	struct perf_event *event = filp->private_data;
P
Peter Zijlstra 已提交
5423 5424
	int retval;

A
Al Viro 已提交
5425
	inode_lock(inode);
5426
	retval = fasync_helper(fd, filp, on, &event->fasync);
A
Al Viro 已提交
5427
	inode_unlock(inode);
P
Peter Zijlstra 已提交
5428 5429 5430 5431 5432 5433 5434

	if (retval < 0)
		return retval;

	return 0;
}

T
Thomas Gleixner 已提交
5435
static const struct file_operations perf_fops = {
5436
	.llseek			= no_llseek,
T
Thomas Gleixner 已提交
5437 5438 5439
	.release		= perf_release,
	.read			= perf_read,
	.poll			= perf_poll,
5440
	.unlocked_ioctl		= perf_ioctl,
P
Pawel Moll 已提交
5441
	.compat_ioctl		= perf_compat_ioctl,
5442
	.mmap			= perf_mmap,
P
Peter Zijlstra 已提交
5443
	.fasync			= perf_fasync,
T
Thomas Gleixner 已提交
5444 5445
};

5446
/*
5447
 * Perf event wakeup
5448 5449 5450 5451 5452
 *
 * If there's data, ensure we set the poll() state and publish everything
 * to user-space before waking everybody up.
 */

5453 5454 5455 5456 5457 5458 5459 5460
static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
{
	/* only the parent has fasync state */
	if (event->parent)
		event = event->parent;
	return &event->fasync;
}

5461
void perf_event_wakeup(struct perf_event *event)
5462
{
5463
	ring_buffer_wakeup(event);
5464

5465
	if (event->pending_kill) {
5466
		kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
5467
		event->pending_kill = 0;
5468
	}
5469 5470
}

5471
static void perf_pending_event(struct irq_work *entry)
5472
{
5473 5474
	struct perf_event *event = container_of(entry,
			struct perf_event, pending);
5475 5476 5477 5478 5479 5480 5481
	int rctx;

	rctx = perf_swevent_get_recursion_context();
	/*
	 * If we 'fail' here, that's OK, it means recursion is already disabled
	 * and we won't recurse 'further'.
	 */
5482

5483 5484
	if (event->pending_disable) {
		event->pending_disable = 0;
5485
		perf_event_disable_local(event);
5486 5487
	}

5488 5489 5490
	if (event->pending_wakeup) {
		event->pending_wakeup = 0;
		perf_event_wakeup(event);
5491
	}
5492 5493 5494

	if (rctx >= 0)
		perf_swevent_put_recursion_context(rctx);
5495 5496
}

5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517
/*
 * We assume there is only KVM supporting the callbacks.
 * Later on, we might change it to a list if there is
 * another virtualization implementation supporting the callbacks.
 */
struct perf_guest_info_callbacks *perf_guest_cbs;

int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = cbs;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);

int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = NULL;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);

5518 5519 5520 5521 5522
static void
perf_output_sample_regs(struct perf_output_handle *handle,
			struct pt_regs *regs, u64 mask)
{
	int bit;
5523
	DECLARE_BITMAP(_mask, 64);
5524

5525 5526
	bitmap_from_u64(_mask, mask);
	for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
5527 5528 5529 5530 5531 5532 5533
		u64 val;

		val = perf_reg_value(regs, bit);
		perf_output_put(handle, val);
	}
}

5534
static void perf_sample_regs_user(struct perf_regs *regs_user,
5535 5536
				  struct pt_regs *regs,
				  struct pt_regs *regs_user_copy)
5537
{
5538 5539
	if (user_mode(regs)) {
		regs_user->abi = perf_reg_abi(current);
5540
		regs_user->regs = regs;
5541 5542
	} else if (current->mm) {
		perf_get_regs_user(regs_user, regs, regs_user_copy);
5543 5544 5545
	} else {
		regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
		regs_user->regs = NULL;
5546 5547 5548
	}
}

5549 5550 5551 5552 5553 5554 5555 5556
static void perf_sample_regs_intr(struct perf_regs *regs_intr,
				  struct pt_regs *regs)
{
	regs_intr->regs = regs;
	regs_intr->abi  = perf_reg_abi(current);
}


5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651
/*
 * Get remaining task size from user stack pointer.
 *
 * It'd be better to take stack vma map and limit this more
 * precisly, but there's no way to get it safely under interrupt,
 * so using TASK_SIZE as limit.
 */
static u64 perf_ustack_task_size(struct pt_regs *regs)
{
	unsigned long addr = perf_user_stack_pointer(regs);

	if (!addr || addr >= TASK_SIZE)
		return 0;

	return TASK_SIZE - addr;
}

static u16
perf_sample_ustack_size(u16 stack_size, u16 header_size,
			struct pt_regs *regs)
{
	u64 task_size;

	/* No regs, no stack pointer, no dump. */
	if (!regs)
		return 0;

	/*
	 * Check if we fit in with the requested stack size into the:
	 * - TASK_SIZE
	 *   If we don't, we limit the size to the TASK_SIZE.
	 *
	 * - remaining sample size
	 *   If we don't, we customize the stack size to
	 *   fit in to the remaining sample size.
	 */

	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
	stack_size = min(stack_size, (u16) task_size);

	/* Current header size plus static size and dynamic size. */
	header_size += 2 * sizeof(u64);

	/* Do we fit in with the current stack dump size? */
	if ((u16) (header_size + stack_size) < header_size) {
		/*
		 * If we overflow the maximum size for the sample,
		 * we customize the stack dump size to fit in.
		 */
		stack_size = USHRT_MAX - header_size - sizeof(u64);
		stack_size = round_up(stack_size, sizeof(u64));
	}

	return stack_size;
}

static void
perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
			  struct pt_regs *regs)
{
	/* Case of a kernel thread, nothing to dump */
	if (!regs) {
		u64 size = 0;
		perf_output_put(handle, size);
	} else {
		unsigned long sp;
		unsigned int rem;
		u64 dyn_size;

		/*
		 * We dump:
		 * static size
		 *   - the size requested by user or the best one we can fit
		 *     in to the sample max size
		 * data
		 *   - user stack dump data
		 * dynamic size
		 *   - the actual dumped size
		 */

		/* Static size. */
		perf_output_put(handle, dump_size);

		/* Data. */
		sp = perf_user_stack_pointer(regs);
		rem = __output_copy_user(handle, (void *) sp, dump_size);
		dyn_size = dump_size - rem;

		perf_output_skip(handle, rem);

		/* Dynamic size. */
		perf_output_put(handle, dyn_size);
	}
}

5652 5653 5654
static void __perf_event_header__init_id(struct perf_event_header *header,
					 struct perf_sample_data *data,
					 struct perf_event *event)
5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667
{
	u64 sample_type = event->attr.sample_type;

	data->type = sample_type;
	header->size += event->id_header_size;

	if (sample_type & PERF_SAMPLE_TID) {
		/* namespace issues */
		data->tid_entry.pid = perf_event_pid(event, current);
		data->tid_entry.tid = perf_event_tid(event, current);
	}

	if (sample_type & PERF_SAMPLE_TIME)
5668
		data->time = perf_event_clock(event);
5669

5670
	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681
		data->id = primary_event_id(event);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		data->stream_id = event->id;

	if (sample_type & PERF_SAMPLE_CPU) {
		data->cpu_entry.cpu	 = raw_smp_processor_id();
		data->cpu_entry.reserved = 0;
	}
}

5682 5683 5684
void perf_event_header__init_id(struct perf_event_header *header,
				struct perf_sample_data *data,
				struct perf_event *event)
5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708
{
	if (event->attr.sample_id_all)
		__perf_event_header__init_id(header, data, event);
}

static void __perf_event__output_id_sample(struct perf_output_handle *handle,
					   struct perf_sample_data *data)
{
	u64 sample_type = data->type;

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);
5709 5710 5711

	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		perf_output_put(handle, data->id);
5712 5713
}

5714 5715 5716
void perf_event__output_id_sample(struct perf_event *event,
				  struct perf_output_handle *handle,
				  struct perf_sample_data *sample)
5717 5718 5719 5720 5721
{
	if (event->attr.sample_id_all)
		__perf_event__output_id_sample(handle, sample);
}

5722
static void perf_output_read_one(struct perf_output_handle *handle,
5723 5724
				 struct perf_event *event,
				 u64 enabled, u64 running)
5725
{
5726
	u64 read_format = event->attr.read_format;
5727 5728 5729
	u64 values[4];
	int n = 0;

P
Peter Zijlstra 已提交
5730
	values[n++] = perf_event_count(event);
5731
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5732
		values[n++] = enabled +
5733
			atomic64_read(&event->child_total_time_enabled);
5734 5735
	}
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5736
		values[n++] = running +
5737
			atomic64_read(&event->child_total_time_running);
5738 5739
	}
	if (read_format & PERF_FORMAT_ID)
5740
		values[n++] = primary_event_id(event);
5741

5742
	__output_copy(handle, values, n * sizeof(u64));
5743 5744 5745
}

static void perf_output_read_group(struct perf_output_handle *handle,
5746 5747
			    struct perf_event *event,
			    u64 enabled, u64 running)
5748
{
5749 5750
	struct perf_event *leader = event->group_leader, *sub;
	u64 read_format = event->attr.read_format;
5751 5752 5753 5754 5755 5756
	u64 values[5];
	int n = 0;

	values[n++] = 1 + leader->nr_siblings;

	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5757
		values[n++] = enabled;
5758 5759

	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5760
		values[n++] = running;
5761

5762
	if (leader != event)
5763 5764
		leader->pmu->read(leader);

P
Peter Zijlstra 已提交
5765
	values[n++] = perf_event_count(leader);
5766
	if (read_format & PERF_FORMAT_ID)
5767
		values[n++] = primary_event_id(leader);
5768

5769
	__output_copy(handle, values, n * sizeof(u64));
5770

5771
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
5772 5773
		n = 0;

5774 5775
		if ((sub != event) &&
		    (sub->state == PERF_EVENT_STATE_ACTIVE))
5776 5777
			sub->pmu->read(sub);

P
Peter Zijlstra 已提交
5778
		values[n++] = perf_event_count(sub);
5779
		if (read_format & PERF_FORMAT_ID)
5780
			values[n++] = primary_event_id(sub);
5781

5782
		__output_copy(handle, values, n * sizeof(u64));
5783 5784 5785
	}
}

5786 5787 5788
#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
				 PERF_FORMAT_TOTAL_TIME_RUNNING)

5789 5790 5791 5792 5793 5794 5795
/*
 * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
 *
 * The problem is that its both hard and excessively expensive to iterate the
 * child list, not to mention that its impossible to IPI the children running
 * on another CPU, from interrupt/NMI context.
 */
5796
static void perf_output_read(struct perf_output_handle *handle,
5797
			     struct perf_event *event)
5798
{
5799
	u64 enabled = 0, running = 0, now;
5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810
	u64 read_format = event->attr.read_format;

	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we are called in
	 * NMI context
	 */
5811
	if (read_format & PERF_FORMAT_TOTAL_TIMES)
5812
		calc_timer_values(event, &now, &enabled, &running);
5813

5814
	if (event->attr.read_format & PERF_FORMAT_GROUP)
5815
		perf_output_read_group(handle, event, enabled, running);
5816
	else
5817
		perf_output_read_one(handle, event, enabled, running);
5818 5819
}

5820 5821 5822
void perf_output_sample(struct perf_output_handle *handle,
			struct perf_event_header *header,
			struct perf_sample_data *data,
5823
			struct perf_event *event)
5824 5825 5826 5827 5828
{
	u64 sample_type = data->type;

	perf_output_put(handle, *header);

5829 5830 5831
	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		perf_output_put(handle, data->id);

5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856
	if (sample_type & PERF_SAMPLE_IP)
		perf_output_put(handle, data->ip);

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ADDR)
		perf_output_put(handle, data->addr);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);

	if (sample_type & PERF_SAMPLE_PERIOD)
		perf_output_put(handle, data->period);

	if (sample_type & PERF_SAMPLE_READ)
5857
		perf_output_read(handle, event);
5858 5859 5860 5861 5862 5863 5864 5865 5866 5867

	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
		if (data->callchain) {
			int size = 1;

			if (data->callchain)
				size += data->callchain->nr;

			size *= sizeof(u64);

5868
			__output_copy(handle, data->callchain, size);
5869 5870 5871 5872 5873 5874 5875
		} else {
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}

	if (sample_type & PERF_SAMPLE_RAW) {
5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895
		struct perf_raw_record *raw = data->raw;

		if (raw) {
			struct perf_raw_frag *frag = &raw->frag;

			perf_output_put(handle, raw->size);
			do {
				if (frag->copy) {
					__output_custom(handle, frag->copy,
							frag->data, frag->size);
				} else {
					__output_copy(handle, frag->data,
						      frag->size);
				}
				if (perf_raw_frag_last(frag))
					break;
				frag = frag->next;
			} while (1);
			if (frag->pad)
				__output_skip(handle, NULL, frag->pad);
5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906
		} else {
			struct {
				u32	size;
				u32	data;
			} raw = {
				.size = sizeof(u32),
				.data = 0,
			};
			perf_output_put(handle, raw);
		}
	}
5907

5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924
	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
		if (data->br_stack) {
			size_t size;

			size = data->br_stack->nr
			     * sizeof(struct perf_branch_entry);

			perf_output_put(handle, data->br_stack->nr);
			perf_output_copy(handle, data->br_stack->entries, size);
		} else {
			/*
			 * we always store at least the value of nr
			 */
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}
5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941

	if (sample_type & PERF_SAMPLE_REGS_USER) {
		u64 abi = data->regs_user.abi;

		/*
		 * If there are no regs to dump, notice it through
		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
		 */
		perf_output_put(handle, abi);

		if (abi) {
			u64 mask = event->attr.sample_regs_user;
			perf_output_sample_regs(handle,
						data->regs_user.regs,
						mask);
		}
	}
5942

5943
	if (sample_type & PERF_SAMPLE_STACK_USER) {
5944 5945 5946
		perf_output_sample_ustack(handle,
					  data->stack_user_size,
					  data->regs_user.regs);
5947
	}
A
Andi Kleen 已提交
5948 5949 5950

	if (sample_type & PERF_SAMPLE_WEIGHT)
		perf_output_put(handle, data->weight);
5951 5952 5953

	if (sample_type & PERF_SAMPLE_DATA_SRC)
		perf_output_put(handle, data->data_src.val);
5954

A
Andi Kleen 已提交
5955 5956 5957
	if (sample_type & PERF_SAMPLE_TRANSACTION)
		perf_output_put(handle, data->txn);

5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974
	if (sample_type & PERF_SAMPLE_REGS_INTR) {
		u64 abi = data->regs_intr.abi;
		/*
		 * If there are no regs to dump, notice it through
		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
		 */
		perf_output_put(handle, abi);

		if (abi) {
			u64 mask = event->attr.sample_regs_intr;

			perf_output_sample_regs(handle,
						data->regs_intr.regs,
						mask);
		}
	}

5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987
	if (!event->attr.watermark) {
		int wakeup_events = event->attr.wakeup_events;

		if (wakeup_events) {
			struct ring_buffer *rb = handle->rb;
			int events = local_inc_return(&rb->events);

			if (events >= wakeup_events) {
				local_sub(wakeup_events, &rb->events);
				local_inc(&rb->wakeup);
			}
		}
	}
5988 5989 5990 5991
}

void perf_prepare_sample(struct perf_event_header *header,
			 struct perf_sample_data *data,
5992
			 struct perf_event *event,
5993
			 struct pt_regs *regs)
5994
{
5995
	u64 sample_type = event->attr.sample_type;
5996

5997
	header->type = PERF_RECORD_SAMPLE;
5998
	header->size = sizeof(*header) + event->header_size;
5999 6000 6001

	header->misc = 0;
	header->misc |= perf_misc_flags(regs);
6002

6003
	__perf_event_header__init_id(header, data, event);
6004

6005
	if (sample_type & PERF_SAMPLE_IP)
6006 6007
		data->ip = perf_instruction_pointer(regs);

6008
	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
6009
		int size = 1;
6010

6011
		data->callchain = perf_callchain(event, regs);
6012 6013 6014 6015 6016

		if (data->callchain)
			size += data->callchain->nr;

		header->size += size * sizeof(u64);
6017 6018
	}

6019
	if (sample_type & PERF_SAMPLE_RAW) {
6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039
		struct perf_raw_record *raw = data->raw;
		int size;

		if (raw) {
			struct perf_raw_frag *frag = &raw->frag;
			u32 sum = 0;

			do {
				sum += frag->size;
				if (perf_raw_frag_last(frag))
					break;
				frag = frag->next;
			} while (1);

			size = round_up(sum + sizeof(u32), sizeof(u64));
			raw->size = size - sizeof(u32);
			frag->pad = raw->size - sum;
		} else {
			size = sizeof(u64);
		}
6040

6041
		header->size += size;
6042
	}
6043 6044 6045 6046 6047 6048 6049 6050 6051

	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
		int size = sizeof(u64); /* nr */
		if (data->br_stack) {
			size += data->br_stack->nr
			      * sizeof(struct perf_branch_entry);
		}
		header->size += size;
	}
6052

6053
	if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
6054 6055
		perf_sample_regs_user(&data->regs_user, regs,
				      &data->regs_user_copy);
6056

6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067
	if (sample_type & PERF_SAMPLE_REGS_USER) {
		/* regs dump ABI info */
		int size = sizeof(u64);

		if (data->regs_user.regs) {
			u64 mask = event->attr.sample_regs_user;
			size += hweight64(mask) * sizeof(u64);
		}

		header->size += size;
	}
6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079

	if (sample_type & PERF_SAMPLE_STACK_USER) {
		/*
		 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
		 * processed as the last one or have additional check added
		 * in case new sample type is added, because we could eat
		 * up the rest of the sample size.
		 */
		u16 stack_size = event->attr.sample_stack_user;
		u16 size = sizeof(u64);

		stack_size = perf_sample_ustack_size(stack_size, header->size,
6080
						     data->regs_user.regs);
6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092

		/*
		 * If there is something to dump, add space for the dump
		 * itself and for the field that tells the dynamic size,
		 * which is how many have been actually dumped.
		 */
		if (stack_size)
			size += sizeof(u64) + stack_size;

		data->stack_user_size = stack_size;
		header->size += size;
	}
6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107

	if (sample_type & PERF_SAMPLE_REGS_INTR) {
		/* regs dump ABI info */
		int size = sizeof(u64);

		perf_sample_regs_intr(&data->regs_intr, regs);

		if (data->regs_intr.regs) {
			u64 mask = event->attr.sample_regs_intr;

			size += hweight64(mask) * sizeof(u64);
		}

		header->size += size;
	}
6108
}
6109

6110 6111 6112 6113 6114 6115 6116
static void __always_inline
__perf_event_output(struct perf_event *event,
		    struct perf_sample_data *data,
		    struct pt_regs *regs,
		    int (*output_begin)(struct perf_output_handle *,
					struct perf_event *,
					unsigned int))
6117 6118 6119
{
	struct perf_output_handle handle;
	struct perf_event_header header;
6120

6121 6122 6123
	/* protect the callchain buffers */
	rcu_read_lock();

6124
	perf_prepare_sample(&header, data, event, regs);
P
Peter Zijlstra 已提交
6125

6126
	if (output_begin(&handle, event, header.size))
6127
		goto exit;
6128

6129
	perf_output_sample(&handle, &header, data, event);
6130

6131
	perf_output_end(&handle);
6132 6133 6134

exit:
	rcu_read_unlock();
6135 6136
}

6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160
void
perf_event_output_forward(struct perf_event *event,
			 struct perf_sample_data *data,
			 struct pt_regs *regs)
{
	__perf_event_output(event, data, regs, perf_output_begin_forward);
}

void
perf_event_output_backward(struct perf_event *event,
			   struct perf_sample_data *data,
			   struct pt_regs *regs)
{
	__perf_event_output(event, data, regs, perf_output_begin_backward);
}

void
perf_event_output(struct perf_event *event,
		  struct perf_sample_data *data,
		  struct pt_regs *regs)
{
	__perf_event_output(event, data, regs, perf_output_begin);
}

6161
/*
6162
 * read event_id
6163 6164 6165 6166 6167 6168 6169 6170 6171 6172
 */

struct perf_read_event {
	struct perf_event_header	header;

	u32				pid;
	u32				tid;
};

static void
6173
perf_event_read_event(struct perf_event *event,
6174 6175 6176
			struct task_struct *task)
{
	struct perf_output_handle handle;
6177
	struct perf_sample_data sample;
6178
	struct perf_read_event read_event = {
6179
		.header = {
6180
			.type = PERF_RECORD_READ,
6181
			.misc = 0,
6182
			.size = sizeof(read_event) + event->read_size,
6183
		},
6184 6185
		.pid = perf_event_pid(event, task),
		.tid = perf_event_tid(event, task),
6186
	};
6187
	int ret;
6188

6189
	perf_event_header__init_id(&read_event.header, &sample, event);
6190
	ret = perf_output_begin(&handle, event, read_event.header.size);
6191 6192 6193
	if (ret)
		return;

6194
	perf_output_put(&handle, read_event);
6195
	perf_output_read(&handle, event);
6196
	perf_event__output_id_sample(event, &handle, &sample);
6197

6198 6199 6200
	perf_output_end(&handle);
}

6201
typedef void (perf_iterate_f)(struct perf_event *event, void *data);
6202 6203

static void
6204 6205
perf_iterate_ctx(struct perf_event_context *ctx,
		   perf_iterate_f output,
6206
		   void *data, bool all)
6207 6208 6209 6210
{
	struct perf_event *event;

	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6211 6212 6213 6214 6215 6216 6217
		if (!all) {
			if (event->state < PERF_EVENT_STATE_INACTIVE)
				continue;
			if (!event_filter_match(event))
				continue;
		}

6218
		output(event, data);
6219 6220 6221
	}
}

6222
static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
6223 6224 6225 6226 6227
{
	struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
	struct perf_event *event;

	list_for_each_entry_rcu(event, &pel->list, sb_list) {
6228 6229 6230 6231 6232 6233 6234 6235
		/*
		 * Skip events that are not fully formed yet; ensure that
		 * if we observe event->ctx, both event and ctx will be
		 * complete enough. See perf_install_in_context().
		 */
		if (!smp_load_acquire(&event->ctx))
			continue;

6236 6237 6238 6239 6240 6241 6242 6243
		if (event->state < PERF_EVENT_STATE_INACTIVE)
			continue;
		if (!event_filter_match(event))
			continue;
		output(event, data);
	}
}

6244 6245 6246 6247 6248 6249
/*
 * Iterate all events that need to receive side-band events.
 *
 * For new callers; ensure that account_pmu_sb_event() includes
 * your event, otherwise it might not get delivered.
 */
6250
static void
6251
perf_iterate_sb(perf_iterate_f output, void *data,
6252 6253 6254 6255 6256
	       struct perf_event_context *task_ctx)
{
	struct perf_event_context *ctx;
	int ctxn;

6257 6258 6259
	rcu_read_lock();
	preempt_disable();

J
Jiri Olsa 已提交
6260
	/*
6261 6262
	 * If we have task_ctx != NULL we only notify the task context itself.
	 * The task_ctx is set only for EXIT events before releasing task
J
Jiri Olsa 已提交
6263 6264 6265
	 * context.
	 */
	if (task_ctx) {
6266 6267
		perf_iterate_ctx(task_ctx, output, data, false);
		goto done;
J
Jiri Olsa 已提交
6268 6269
	}

6270
	perf_iterate_sb_cpu(output, data);
6271 6272

	for_each_task_context_nr(ctxn) {
6273 6274
		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		if (ctx)
6275
			perf_iterate_ctx(ctx, output, data, false);
6276
	}
6277
done:
6278
	preempt_enable();
6279
	rcu_read_unlock();
6280 6281
}

6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310
/*
 * Clear all file-based filters at exec, they'll have to be
 * re-instated when/if these objects are mmapped again.
 */
static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
{
	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
	struct perf_addr_filter *filter;
	unsigned int restart = 0, count = 0;
	unsigned long flags;

	if (!has_addr_filter(event))
		return;

	raw_spin_lock_irqsave(&ifh->lock, flags);
	list_for_each_entry(filter, &ifh->list, entry) {
		if (filter->inode) {
			event->addr_filters_offs[count] = 0;
			restart++;
		}

		count++;
	}

	if (restart)
		event->addr_filters_gen++;
	raw_spin_unlock_irqrestore(&ifh->lock, flags);

	if (restart)
6311
		perf_event_stop(event, 1);
6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326
}

void perf_event_exec(void)
{
	struct perf_event_context *ctx;
	int ctxn;

	rcu_read_lock();
	for_each_task_context_nr(ctxn) {
		ctx = current->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;

		perf_event_enable_on_exec(ctxn);

6327
		perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
6328 6329 6330 6331 6332
				   true);
	}
	rcu_read_unlock();
}

6333 6334 6335 6336 6337 6338 6339 6340 6341 6342
struct remote_output {
	struct ring_buffer	*rb;
	int			err;
};

static void __perf_event_output_stop(struct perf_event *event, void *data)
{
	struct perf_event *parent = event->parent;
	struct remote_output *ro = data;
	struct ring_buffer *rb = ro->rb;
6343 6344 6345
	struct stop_event_data sd = {
		.event	= event,
	};
6346 6347 6348 6349 6350 6351 6352 6353 6354

	if (!has_aux(event))
		return;

	if (!parent)
		parent = event;

	/*
	 * In case of inheritance, it will be the parent that links to the
6355 6356 6357 6358 6359 6360 6361
	 * ring-buffer, but it will be the child that's actually using it.
	 *
	 * We are using event::rb to determine if the event should be stopped,
	 * however this may race with ring_buffer_attach() (through set_output),
	 * which will make us skip the event that actually needs to be stopped.
	 * So ring_buffer_attach() has to stop an aux event before re-assigning
	 * its rb pointer.
6362 6363
	 */
	if (rcu_dereference(parent->rb) == rb)
6364
		ro->err = __perf_event_stop(&sd);
6365 6366 6367 6368 6369 6370
}

static int __perf_pmu_output_stop(void *info)
{
	struct perf_event *event = info;
	struct pmu *pmu = event->pmu;
6371
	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
6372 6373 6374 6375 6376
	struct remote_output ro = {
		.rb	= event->rb,
	};

	rcu_read_lock();
6377
	perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
6378
	if (cpuctx->task_ctx)
6379
		perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
6380
				   &ro, false);
6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413
	rcu_read_unlock();

	return ro.err;
}

static void perf_pmu_output_stop(struct perf_event *event)
{
	struct perf_event *iter;
	int err, cpu;

restart:
	rcu_read_lock();
	list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
		/*
		 * For per-CPU events, we need to make sure that neither they
		 * nor their children are running; for cpu==-1 events it's
		 * sufficient to stop the event itself if it's active, since
		 * it can't have children.
		 */
		cpu = iter->cpu;
		if (cpu == -1)
			cpu = READ_ONCE(iter->oncpu);

		if (cpu == -1)
			continue;

		err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
		if (err == -EAGAIN) {
			rcu_read_unlock();
			goto restart;
		}
	}
	rcu_read_unlock();
6414 6415
}

P
Peter Zijlstra 已提交
6416
/*
P
Peter Zijlstra 已提交
6417 6418
 * task tracking -- fork/exit
 *
6419
 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
P
Peter Zijlstra 已提交
6420 6421
 */

P
Peter Zijlstra 已提交
6422
struct perf_task_event {
6423
	struct task_struct		*task;
6424
	struct perf_event_context	*task_ctx;
P
Peter Zijlstra 已提交
6425 6426 6427 6428 6429 6430

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				ppid;
P
Peter Zijlstra 已提交
6431 6432
		u32				tid;
		u32				ptid;
6433
		u64				time;
6434
	} event_id;
P
Peter Zijlstra 已提交
6435 6436
};

6437 6438
static int perf_event_task_match(struct perf_event *event)
{
6439 6440 6441
	return event->attr.comm  || event->attr.mmap ||
	       event->attr.mmap2 || event->attr.mmap_data ||
	       event->attr.task;
6442 6443
}

6444
static void perf_event_task_output(struct perf_event *event,
6445
				   void *data)
P
Peter Zijlstra 已提交
6446
{
6447
	struct perf_task_event *task_event = data;
P
Peter Zijlstra 已提交
6448
	struct perf_output_handle handle;
6449
	struct perf_sample_data	sample;
P
Peter Zijlstra 已提交
6450
	struct task_struct *task = task_event->task;
6451
	int ret, size = task_event->event_id.header.size;
6452

6453 6454 6455
	if (!perf_event_task_match(event))
		return;

6456
	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
P
Peter Zijlstra 已提交
6457

6458
	ret = perf_output_begin(&handle, event,
6459
				task_event->event_id.header.size);
6460
	if (ret)
6461
		goto out;
P
Peter Zijlstra 已提交
6462

6463 6464
	task_event->event_id.pid = perf_event_pid(event, task);
	task_event->event_id.ppid = perf_event_pid(event, current);
P
Peter Zijlstra 已提交
6465

6466 6467
	task_event->event_id.tid = perf_event_tid(event, task);
	task_event->event_id.ptid = perf_event_tid(event, current);
P
Peter Zijlstra 已提交
6468

6469 6470
	task_event->event_id.time = perf_event_clock(event);

6471
	perf_output_put(&handle, task_event->event_id);
6472

6473 6474
	perf_event__output_id_sample(event, &handle, &sample);

P
Peter Zijlstra 已提交
6475
	perf_output_end(&handle);
6476 6477
out:
	task_event->event_id.header.size = size;
P
Peter Zijlstra 已提交
6478 6479
}

6480 6481
static void perf_event_task(struct task_struct *task,
			      struct perf_event_context *task_ctx,
6482
			      int new)
P
Peter Zijlstra 已提交
6483
{
P
Peter Zijlstra 已提交
6484
	struct perf_task_event task_event;
P
Peter Zijlstra 已提交
6485

6486 6487 6488
	if (!atomic_read(&nr_comm_events) &&
	    !atomic_read(&nr_mmap_events) &&
	    !atomic_read(&nr_task_events))
P
Peter Zijlstra 已提交
6489 6490
		return;

P
Peter Zijlstra 已提交
6491
	task_event = (struct perf_task_event){
6492 6493
		.task	  = task,
		.task_ctx = task_ctx,
6494
		.event_id    = {
P
Peter Zijlstra 已提交
6495
			.header = {
6496
				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
6497
				.misc = 0,
6498
				.size = sizeof(task_event.event_id),
P
Peter Zijlstra 已提交
6499
			},
6500 6501
			/* .pid  */
			/* .ppid */
P
Peter Zijlstra 已提交
6502 6503
			/* .tid  */
			/* .ptid */
6504
			/* .time */
P
Peter Zijlstra 已提交
6505 6506 6507
		},
	};

6508
	perf_iterate_sb(perf_event_task_output,
6509 6510
		       &task_event,
		       task_ctx);
P
Peter Zijlstra 已提交
6511 6512
}

6513
void perf_event_fork(struct task_struct *task)
P
Peter Zijlstra 已提交
6514
{
6515
	perf_event_task(task, NULL, 1);
6516
	perf_event_namespaces(task);
P
Peter Zijlstra 已提交
6517 6518
}

6519 6520 6521 6522 6523
/*
 * comm tracking
 */

struct perf_comm_event {
6524 6525
	struct task_struct	*task;
	char			*comm;
6526 6527 6528 6529 6530 6531 6532
	int			comm_size;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
6533
	} event_id;
6534 6535
};

6536 6537 6538 6539 6540
static int perf_event_comm_match(struct perf_event *event)
{
	return event->attr.comm;
}

6541
static void perf_event_comm_output(struct perf_event *event,
6542
				   void *data)
6543
{
6544
	struct perf_comm_event *comm_event = data;
6545
	struct perf_output_handle handle;
6546
	struct perf_sample_data sample;
6547
	int size = comm_event->event_id.header.size;
6548 6549
	int ret;

6550 6551 6552
	if (!perf_event_comm_match(event))
		return;

6553 6554
	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
6555
				comm_event->event_id.header.size);
6556 6557

	if (ret)
6558
		goto out;
6559

6560 6561
	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
6562

6563
	perf_output_put(&handle, comm_event->event_id);
6564
	__output_copy(&handle, comm_event->comm,
6565
				   comm_event->comm_size);
6566 6567 6568

	perf_event__output_id_sample(event, &handle, &sample);

6569
	perf_output_end(&handle);
6570 6571
out:
	comm_event->event_id.header.size = size;
6572 6573
}

6574
static void perf_event_comm_event(struct perf_comm_event *comm_event)
6575
{
6576
	char comm[TASK_COMM_LEN];
6577 6578
	unsigned int size;

6579
	memset(comm, 0, sizeof(comm));
6580
	strlcpy(comm, comm_event->task->comm, sizeof(comm));
6581
	size = ALIGN(strlen(comm)+1, sizeof(u64));
6582 6583 6584 6585

	comm_event->comm = comm;
	comm_event->comm_size = size;

6586
	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
P
Peter Zijlstra 已提交
6587

6588
	perf_iterate_sb(perf_event_comm_output,
6589 6590
		       comm_event,
		       NULL);
6591 6592
}

6593
void perf_event_comm(struct task_struct *task, bool exec)
6594
{
6595 6596
	struct perf_comm_event comm_event;

6597
	if (!atomic_read(&nr_comm_events))
6598
		return;
6599

6600
	comm_event = (struct perf_comm_event){
6601
		.task	= task,
6602 6603
		/* .comm      */
		/* .comm_size */
6604
		.event_id  = {
6605
			.header = {
6606
				.type = PERF_RECORD_COMM,
6607
				.misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
6608 6609 6610 6611
				/* .size */
			},
			/* .pid */
			/* .tid */
6612 6613 6614
		},
	};

6615
	perf_event_comm_event(&comm_event);
6616 6617
}

6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743
/*
 * namespaces tracking
 */

struct perf_namespaces_event {
	struct task_struct		*task;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
		u64				nr_namespaces;
		struct perf_ns_link_info	link_info[NR_NAMESPACES];
	} event_id;
};

static int perf_event_namespaces_match(struct perf_event *event)
{
	return event->attr.namespaces;
}

static void perf_event_namespaces_output(struct perf_event *event,
					 void *data)
{
	struct perf_namespaces_event *namespaces_event = data;
	struct perf_output_handle handle;
	struct perf_sample_data sample;
	int ret;

	if (!perf_event_namespaces_match(event))
		return;

	perf_event_header__init_id(&namespaces_event->event_id.header,
				   &sample, event);
	ret = perf_output_begin(&handle, event,
				namespaces_event->event_id.header.size);
	if (ret)
		return;

	namespaces_event->event_id.pid = perf_event_pid(event,
							namespaces_event->task);
	namespaces_event->event_id.tid = perf_event_tid(event,
							namespaces_event->task);

	perf_output_put(&handle, namespaces_event->event_id);

	perf_event__output_id_sample(event, &handle, &sample);

	perf_output_end(&handle);
}

static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
				   struct task_struct *task,
				   const struct proc_ns_operations *ns_ops)
{
	struct path ns_path;
	struct inode *ns_inode;
	void *error;

	error = ns_get_path(&ns_path, task, ns_ops);
	if (!error) {
		ns_inode = ns_path.dentry->d_inode;
		ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
		ns_link_info->ino = ns_inode->i_ino;
	}
}

void perf_event_namespaces(struct task_struct *task)
{
	struct perf_namespaces_event namespaces_event;
	struct perf_ns_link_info *ns_link_info;

	if (!atomic_read(&nr_namespaces_events))
		return;

	namespaces_event = (struct perf_namespaces_event){
		.task	= task,
		.event_id  = {
			.header = {
				.type = PERF_RECORD_NAMESPACES,
				.misc = 0,
				.size = sizeof(namespaces_event.event_id),
			},
			/* .pid */
			/* .tid */
			.nr_namespaces = NR_NAMESPACES,
			/* .link_info[NR_NAMESPACES] */
		},
	};

	ns_link_info = namespaces_event.event_id.link_info;

	perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
			       task, &mntns_operations);

#ifdef CONFIG_USER_NS
	perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
			       task, &userns_operations);
#endif
#ifdef CONFIG_NET_NS
	perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
			       task, &netns_operations);
#endif
#ifdef CONFIG_UTS_NS
	perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
			       task, &utsns_operations);
#endif
#ifdef CONFIG_IPC_NS
	perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
			       task, &ipcns_operations);
#endif
#ifdef CONFIG_PID_NS
	perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
			       task, &pidns_operations);
#endif
#ifdef CONFIG_CGROUPS
	perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
			       task, &cgroupns_operations);
#endif

	perf_iterate_sb(perf_event_namespaces_output,
			&namespaces_event,
			NULL);
}

6744 6745 6746 6747 6748
/*
 * mmap tracking
 */

struct perf_mmap_event {
6749 6750 6751 6752
	struct vm_area_struct	*vma;

	const char		*file_name;
	int			file_size;
6753 6754 6755
	int			maj, min;
	u64			ino;
	u64			ino_generation;
6756
	u32			prot, flags;
6757 6758 6759 6760 6761 6762 6763 6764 6765

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
		u64				start;
		u64				len;
		u64				pgoff;
6766
	} event_id;
6767 6768
};

6769 6770 6771 6772 6773 6774 6775 6776
static int perf_event_mmap_match(struct perf_event *event,
				 void *data)
{
	struct perf_mmap_event *mmap_event = data;
	struct vm_area_struct *vma = mmap_event->vma;
	int executable = vma->vm_flags & VM_EXEC;

	return (!executable && event->attr.mmap_data) ||
6777
	       (executable && (event->attr.mmap || event->attr.mmap2));
6778 6779
}

6780
static void perf_event_mmap_output(struct perf_event *event,
6781
				   void *data)
6782
{
6783
	struct perf_mmap_event *mmap_event = data;
6784
	struct perf_output_handle handle;
6785
	struct perf_sample_data sample;
6786
	int size = mmap_event->event_id.header.size;
6787
	int ret;
6788

6789 6790 6791
	if (!perf_event_mmap_match(event, data))
		return;

6792 6793 6794 6795 6796
	if (event->attr.mmap2) {
		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
		mmap_event->event_id.header.size += sizeof(mmap_event->min);
		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
6797
		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
6798 6799
		mmap_event->event_id.header.size += sizeof(mmap_event->prot);
		mmap_event->event_id.header.size += sizeof(mmap_event->flags);
6800 6801
	}

6802 6803
	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
6804
				mmap_event->event_id.header.size);
6805
	if (ret)
6806
		goto out;
6807

6808 6809
	mmap_event->event_id.pid = perf_event_pid(event, current);
	mmap_event->event_id.tid = perf_event_tid(event, current);
6810

6811
	perf_output_put(&handle, mmap_event->event_id);
6812 6813 6814 6815 6816 6817

	if (event->attr.mmap2) {
		perf_output_put(&handle, mmap_event->maj);
		perf_output_put(&handle, mmap_event->min);
		perf_output_put(&handle, mmap_event->ino);
		perf_output_put(&handle, mmap_event->ino_generation);
6818 6819
		perf_output_put(&handle, mmap_event->prot);
		perf_output_put(&handle, mmap_event->flags);
6820 6821
	}

6822
	__output_copy(&handle, mmap_event->file_name,
6823
				   mmap_event->file_size);
6824 6825 6826

	perf_event__output_id_sample(event, &handle, &sample);

6827
	perf_output_end(&handle);
6828 6829
out:
	mmap_event->event_id.header.size = size;
6830 6831
}

6832
static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
6833
{
6834 6835
	struct vm_area_struct *vma = mmap_event->vma;
	struct file *file = vma->vm_file;
6836 6837
	int maj = 0, min = 0;
	u64 ino = 0, gen = 0;
6838
	u32 prot = 0, flags = 0;
6839 6840 6841
	unsigned int size;
	char tmp[16];
	char *buf = NULL;
6842
	char *name;
6843

6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864
	if (vma->vm_flags & VM_READ)
		prot |= PROT_READ;
	if (vma->vm_flags & VM_WRITE)
		prot |= PROT_WRITE;
	if (vma->vm_flags & VM_EXEC)
		prot |= PROT_EXEC;

	if (vma->vm_flags & VM_MAYSHARE)
		flags = MAP_SHARED;
	else
		flags = MAP_PRIVATE;

	if (vma->vm_flags & VM_DENYWRITE)
		flags |= MAP_DENYWRITE;
	if (vma->vm_flags & VM_MAYEXEC)
		flags |= MAP_EXECUTABLE;
	if (vma->vm_flags & VM_LOCKED)
		flags |= MAP_LOCKED;
	if (vma->vm_flags & VM_HUGETLB)
		flags |= MAP_HUGETLB;

6865
	if (file) {
6866 6867
		struct inode *inode;
		dev_t dev;
6868

6869
		buf = kmalloc(PATH_MAX, GFP_KERNEL);
6870
		if (!buf) {
6871 6872
			name = "//enomem";
			goto cpy_name;
6873
		}
6874
		/*
6875
		 * d_path() works from the end of the rb backwards, so we
6876 6877 6878
		 * need to add enough zero bytes after the string to handle
		 * the 64bit alignment we do later.
		 */
M
Miklos Szeredi 已提交
6879
		name = file_path(file, buf, PATH_MAX - sizeof(u64));
6880
		if (IS_ERR(name)) {
6881 6882
			name = "//toolong";
			goto cpy_name;
6883
		}
6884 6885 6886 6887 6888 6889
		inode = file_inode(vma->vm_file);
		dev = inode->i_sb->s_dev;
		ino = inode->i_ino;
		gen = inode->i_generation;
		maj = MAJOR(dev);
		min = MINOR(dev);
6890

6891
		goto got_name;
6892
	} else {
6893 6894 6895 6896 6897 6898
		if (vma->vm_ops && vma->vm_ops->name) {
			name = (char *) vma->vm_ops->name(vma);
			if (name)
				goto cpy_name;
		}

6899
		name = (char *)arch_vma_name(vma);
6900 6901
		if (name)
			goto cpy_name;
6902

6903
		if (vma->vm_start <= vma->vm_mm->start_brk &&
6904
				vma->vm_end >= vma->vm_mm->brk) {
6905 6906
			name = "[heap]";
			goto cpy_name;
6907 6908
		}
		if (vma->vm_start <= vma->vm_mm->start_stack &&
6909
				vma->vm_end >= vma->vm_mm->start_stack) {
6910 6911
			name = "[stack]";
			goto cpy_name;
6912 6913
		}

6914 6915
		name = "//anon";
		goto cpy_name;
6916 6917
	}

6918 6919 6920
cpy_name:
	strlcpy(tmp, name, sizeof(tmp));
	name = tmp;
6921
got_name:
6922 6923 6924 6925 6926 6927 6928 6929
	/*
	 * Since our buffer works in 8 byte units we need to align our string
	 * size to a multiple of 8. However, we must guarantee the tail end is
	 * zero'd out to avoid leaking random bits to userspace.
	 */
	size = strlen(name)+1;
	while (!IS_ALIGNED(size, sizeof(u64)))
		name[size++] = '\0';
6930 6931 6932

	mmap_event->file_name = name;
	mmap_event->file_size = size;
6933 6934 6935 6936
	mmap_event->maj = maj;
	mmap_event->min = min;
	mmap_event->ino = ino;
	mmap_event->ino_generation = gen;
6937 6938
	mmap_event->prot = prot;
	mmap_event->flags = flags;
6939

6940 6941 6942
	if (!(vma->vm_flags & VM_EXEC))
		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;

6943
	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
6944

6945
	perf_iterate_sb(perf_event_mmap_output,
6946 6947
		       mmap_event,
		       NULL);
6948

6949 6950 6951
	kfree(buf);
}

6952 6953 6954 6955 6956 6957 6958
/*
 * Check whether inode and address range match filter criteria.
 */
static bool perf_addr_filter_match(struct perf_addr_filter *filter,
				     struct file *file, unsigned long offset,
				     unsigned long size)
{
A
Al Viro 已提交
6959
	if (filter->inode != file_inode(file))
6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001
		return false;

	if (filter->offset > offset + size)
		return false;

	if (filter->offset + filter->size < offset)
		return false;

	return true;
}

static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
{
	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
	struct vm_area_struct *vma = data;
	unsigned long off = vma->vm_pgoff << PAGE_SHIFT, flags;
	struct file *file = vma->vm_file;
	struct perf_addr_filter *filter;
	unsigned int restart = 0, count = 0;

	if (!has_addr_filter(event))
		return;

	if (!file)
		return;

	raw_spin_lock_irqsave(&ifh->lock, flags);
	list_for_each_entry(filter, &ifh->list, entry) {
		if (perf_addr_filter_match(filter, file, off,
					     vma->vm_end - vma->vm_start)) {
			event->addr_filters_offs[count] = vma->vm_start;
			restart++;
		}

		count++;
	}

	if (restart)
		event->addr_filters_gen++;
	raw_spin_unlock_irqrestore(&ifh->lock, flags);

	if (restart)
7002
		perf_event_stop(event, 1);
7003 7004 7005 7006 7007 7008 7009 7010 7011 7012
}

/*
 * Adjust all task's events' filters to the new vma
 */
static void perf_addr_filters_adjust(struct vm_area_struct *vma)
{
	struct perf_event_context *ctx;
	int ctxn;

7013 7014 7015 7016 7017 7018 7019
	/*
	 * Data tracing isn't supported yet and as such there is no need
	 * to keep track of anything that isn't related to executable code:
	 */
	if (!(vma->vm_flags & VM_EXEC))
		return;

7020 7021 7022 7023 7024 7025
	rcu_read_lock();
	for_each_task_context_nr(ctxn) {
		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		if (!ctx)
			continue;

7026
		perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
7027 7028 7029 7030
	}
	rcu_read_unlock();
}

7031
void perf_event_mmap(struct vm_area_struct *vma)
7032
{
7033 7034
	struct perf_mmap_event mmap_event;

7035
	if (!atomic_read(&nr_mmap_events))
7036 7037 7038
		return;

	mmap_event = (struct perf_mmap_event){
7039
		.vma	= vma,
7040 7041
		/* .file_name */
		/* .file_size */
7042
		.event_id  = {
7043
			.header = {
7044
				.type = PERF_RECORD_MMAP,
7045
				.misc = PERF_RECORD_MISC_USER,
7046 7047 7048 7049
				/* .size */
			},
			/* .pid */
			/* .tid */
7050 7051
			.start  = vma->vm_start,
			.len    = vma->vm_end - vma->vm_start,
7052
			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
7053
		},
7054 7055 7056 7057
		/* .maj (attr_mmap2 only) */
		/* .min (attr_mmap2 only) */
		/* .ino (attr_mmap2 only) */
		/* .ino_generation (attr_mmap2 only) */
7058 7059
		/* .prot (attr_mmap2 only) */
		/* .flags (attr_mmap2 only) */
7060 7061
	};

7062
	perf_addr_filters_adjust(vma);
7063
	perf_event_mmap_event(&mmap_event);
7064 7065
}

A
Alexander Shishkin 已提交
7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099
void perf_event_aux_event(struct perf_event *event, unsigned long head,
			  unsigned long size, u64 flags)
{
	struct perf_output_handle handle;
	struct perf_sample_data sample;
	struct perf_aux_event {
		struct perf_event_header	header;
		u64				offset;
		u64				size;
		u64				flags;
	} rec = {
		.header = {
			.type = PERF_RECORD_AUX,
			.misc = 0,
			.size = sizeof(rec),
		},
		.offset		= head,
		.size		= size,
		.flags		= flags,
	};
	int ret;

	perf_event_header__init_id(&rec.header, &sample, event);
	ret = perf_output_begin(&handle, event, rec.header.size);

	if (ret)
		return;

	perf_output_put(&handle, rec);
	perf_event__output_id_sample(event, &handle, &sample);

	perf_output_end(&handle);
}

7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132
/*
 * Lost/dropped samples logging
 */
void perf_log_lost_samples(struct perf_event *event, u64 lost)
{
	struct perf_output_handle handle;
	struct perf_sample_data sample;
	int ret;

	struct {
		struct perf_event_header	header;
		u64				lost;
	} lost_samples_event = {
		.header = {
			.type = PERF_RECORD_LOST_SAMPLES,
			.misc = 0,
			.size = sizeof(lost_samples_event),
		},
		.lost		= lost,
	};

	perf_event_header__init_id(&lost_samples_event.header, &sample, event);

	ret = perf_output_begin(&handle, event,
				lost_samples_event.header.size);
	if (ret)
		return;

	perf_output_put(&handle, lost_samples_event);
	perf_event__output_id_sample(event, &handle, &sample);
	perf_output_end(&handle);
}

7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212
/*
 * context_switch tracking
 */

struct perf_switch_event {
	struct task_struct	*task;
	struct task_struct	*next_prev;

	struct {
		struct perf_event_header	header;
		u32				next_prev_pid;
		u32				next_prev_tid;
	} event_id;
};

static int perf_event_switch_match(struct perf_event *event)
{
	return event->attr.context_switch;
}

static void perf_event_switch_output(struct perf_event *event, void *data)
{
	struct perf_switch_event *se = data;
	struct perf_output_handle handle;
	struct perf_sample_data sample;
	int ret;

	if (!perf_event_switch_match(event))
		return;

	/* Only CPU-wide events are allowed to see next/prev pid/tid */
	if (event->ctx->task) {
		se->event_id.header.type = PERF_RECORD_SWITCH;
		se->event_id.header.size = sizeof(se->event_id.header);
	} else {
		se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
		se->event_id.header.size = sizeof(se->event_id);
		se->event_id.next_prev_pid =
					perf_event_pid(event, se->next_prev);
		se->event_id.next_prev_tid =
					perf_event_tid(event, se->next_prev);
	}

	perf_event_header__init_id(&se->event_id.header, &sample, event);

	ret = perf_output_begin(&handle, event, se->event_id.header.size);
	if (ret)
		return;

	if (event->ctx->task)
		perf_output_put(&handle, se->event_id.header);
	else
		perf_output_put(&handle, se->event_id);

	perf_event__output_id_sample(event, &handle, &sample);

	perf_output_end(&handle);
}

static void perf_event_switch(struct task_struct *task,
			      struct task_struct *next_prev, bool sched_in)
{
	struct perf_switch_event switch_event;

	/* N.B. caller checks nr_switch_events != 0 */

	switch_event = (struct perf_switch_event){
		.task		= task,
		.next_prev	= next_prev,
		.event_id	= {
			.header = {
				/* .type */
				.misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
				/* .size */
			},
			/* .next_prev_pid */
			/* .next_prev_tid */
		},
	};

7213
	perf_iterate_sb(perf_event_switch_output,
7214 7215 7216 7217
		       &switch_event,
		       NULL);
}

7218 7219 7220 7221
/*
 * IRQ throttle logging
 */

7222
static void perf_log_throttle(struct perf_event *event, int enable)
7223 7224
{
	struct perf_output_handle handle;
7225
	struct perf_sample_data sample;
7226 7227 7228 7229 7230
	int ret;

	struct {
		struct perf_event_header	header;
		u64				time;
7231
		u64				id;
7232
		u64				stream_id;
7233 7234
	} throttle_event = {
		.header = {
7235
			.type = PERF_RECORD_THROTTLE,
7236 7237 7238
			.misc = 0,
			.size = sizeof(throttle_event),
		},
7239
		.time		= perf_event_clock(event),
7240 7241
		.id		= primary_event_id(event),
		.stream_id	= event->id,
7242 7243
	};

7244
	if (enable)
7245
		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
7246

7247 7248 7249
	perf_event_header__init_id(&throttle_event.header, &sample, event);

	ret = perf_output_begin(&handle, event,
7250
				throttle_event.header.size);
7251 7252 7253 7254
	if (ret)
		return;

	perf_output_put(&handle, throttle_event);
7255
	perf_event__output_id_sample(event, &handle, &sample);
7256 7257 7258
	perf_output_end(&handle);
}

7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294
static void perf_log_itrace_start(struct perf_event *event)
{
	struct perf_output_handle handle;
	struct perf_sample_data sample;
	struct perf_aux_event {
		struct perf_event_header        header;
		u32				pid;
		u32				tid;
	} rec;
	int ret;

	if (event->parent)
		event = event->parent;

	if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
	    event->hw.itrace_started)
		return;

	rec.header.type	= PERF_RECORD_ITRACE_START;
	rec.header.misc	= 0;
	rec.header.size	= sizeof(rec);
	rec.pid	= perf_event_pid(event, current);
	rec.tid	= perf_event_tid(event, current);

	perf_event_header__init_id(&rec.header, &sample, event);
	ret = perf_output_begin(&handle, event, rec.header.size);

	if (ret)
		return;

	perf_output_put(&handle, rec);
	perf_event__output_id_sample(event, &handle, &sample);

	perf_output_end(&handle);
}

7295 7296
static int
__perf_event_account_interrupt(struct perf_event *event, int throttle)
7297
{
7298
	struct hw_perf_event *hwc = &event->hw;
7299
	int ret = 0;
7300
	u64 seq;
7301

7302 7303 7304 7305 7306 7307 7308 7309 7310
	seq = __this_cpu_read(perf_throttled_seq);
	if (seq != hwc->interrupts_seq) {
		hwc->interrupts_seq = seq;
		hwc->interrupts = 1;
	} else {
		hwc->interrupts++;
		if (unlikely(throttle
			     && hwc->interrupts >= max_samples_per_tick)) {
			__this_cpu_inc(perf_throttled_count);
7311
			tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
P
Peter Zijlstra 已提交
7312 7313
			hwc->interrupts = MAX_INTERRUPTS;
			perf_log_throttle(event, 0);
7314 7315
			ret = 1;
		}
7316
	}
7317

7318
	if (event->attr.freq) {
P
Peter Zijlstra 已提交
7319
		u64 now = perf_clock();
7320
		s64 delta = now - hwc->freq_time_stamp;
7321

7322
		hwc->freq_time_stamp = now;
7323

7324
		if (delta > 0 && delta < 2*TICK_NSEC)
7325
			perf_adjust_period(event, delta, hwc->last_period, true);
7326 7327
	}

7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354
	return ret;
}

int perf_event_account_interrupt(struct perf_event *event)
{
	return __perf_event_account_interrupt(event, 1);
}

/*
 * Generic event overflow handling, sampling.
 */

static int __perf_event_overflow(struct perf_event *event,
				   int throttle, struct perf_sample_data *data,
				   struct pt_regs *regs)
{
	int events = atomic_read(&event->event_limit);
	int ret = 0;

	/*
	 * Non-sampling counters might still use the PMI to fold short
	 * hardware counters, ignore those.
	 */
	if (unlikely(!is_sampling_event(event)))
		return 0;

	ret = __perf_event_account_interrupt(event, throttle);
7355

7356 7357
	/*
	 * XXX event_limit might not quite work as expected on inherited
7358
	 * events
7359 7360
	 */

7361 7362
	event->pending_kill = POLL_IN;
	if (events && atomic_dec_and_test(&event->event_limit)) {
7363
		ret = 1;
7364
		event->pending_kill = POLL_HUP;
7365 7366

		perf_event_disable_inatomic(event);
7367 7368
	}

7369
	READ_ONCE(event->overflow_handler)(event, data, regs);
7370

7371
	if (*perf_event_fasync(event) && event->pending_kill) {
7372 7373
		event->pending_wakeup = 1;
		irq_work_queue(&event->pending);
P
Peter Zijlstra 已提交
7374 7375
	}

7376
	return ret;
7377 7378
}

7379
int perf_event_overflow(struct perf_event *event,
7380 7381
			  struct perf_sample_data *data,
			  struct pt_regs *regs)
7382
{
7383
	return __perf_event_overflow(event, 1, data, regs);
7384 7385
}

7386
/*
7387
 * Generic software event infrastructure
7388 7389
 */

7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400
struct swevent_htable {
	struct swevent_hlist		*swevent_hlist;
	struct mutex			hlist_mutex;
	int				hlist_refcount;

	/* Recursion avoidance in each contexts */
	int				recursion[PERF_NR_CONTEXTS];
};

static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);

7401
/*
7402 7403
 * We directly increment event->count and keep a second value in
 * event->hw.period_left to count intervals. This period event
7404 7405 7406 7407
 * is kept in the range [-sample_period, 0] so that we can use the
 * sign as trigger.
 */

7408
u64 perf_swevent_set_period(struct perf_event *event)
7409
{
7410
	struct hw_perf_event *hwc = &event->hw;
7411 7412 7413 7414 7415
	u64 period = hwc->last_period;
	u64 nr, offset;
	s64 old, val;

	hwc->last_period = hwc->sample_period;
7416 7417

again:
7418
	old = val = local64_read(&hwc->period_left);
7419 7420
	if (val < 0)
		return 0;
7421

7422 7423 7424
	nr = div64_u64(period + val, period);
	offset = nr * period;
	val -= offset;
7425
	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7426
		goto again;
7427

7428
	return nr;
7429 7430
}

7431
static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
7432
				    struct perf_sample_data *data,
7433
				    struct pt_regs *regs)
7434
{
7435
	struct hw_perf_event *hwc = &event->hw;
7436
	int throttle = 0;
7437

7438 7439
	if (!overflow)
		overflow = perf_swevent_set_period(event);
7440

7441 7442
	if (hwc->interrupts == MAX_INTERRUPTS)
		return;
7443

7444
	for (; overflow; overflow--) {
7445
		if (__perf_event_overflow(event, throttle,
7446
					    data, regs)) {
7447 7448 7449 7450 7451 7452
			/*
			 * We inhibit the overflow from happening when
			 * hwc->interrupts == MAX_INTERRUPTS.
			 */
			break;
		}
7453
		throttle = 1;
7454
	}
7455 7456
}

P
Peter Zijlstra 已提交
7457
static void perf_swevent_event(struct perf_event *event, u64 nr,
7458
			       struct perf_sample_data *data,
7459
			       struct pt_regs *regs)
7460
{
7461
	struct hw_perf_event *hwc = &event->hw;
7462

7463
	local64_add(nr, &event->count);
7464

7465 7466 7467
	if (!regs)
		return;

7468
	if (!is_sampling_event(event))
7469
		return;
7470

7471 7472 7473 7474 7475 7476
	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
		data->period = nr;
		return perf_swevent_overflow(event, 1, data, regs);
	} else
		data->period = event->hw.last_period;

7477
	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
7478
		return perf_swevent_overflow(event, 1, data, regs);
7479

7480
	if (local64_add_negative(nr, &hwc->period_left))
7481
		return;
7482

7483
	perf_swevent_overflow(event, 0, data, regs);
7484 7485
}

7486 7487 7488
static int perf_exclude_event(struct perf_event *event,
			      struct pt_regs *regs)
{
P
Peter Zijlstra 已提交
7489
	if (event->hw.state & PERF_HES_STOPPED)
7490
		return 1;
P
Peter Zijlstra 已提交
7491

7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502
	if (regs) {
		if (event->attr.exclude_user && user_mode(regs))
			return 1;

		if (event->attr.exclude_kernel && !user_mode(regs))
			return 1;
	}

	return 0;
}

7503
static int perf_swevent_match(struct perf_event *event,
P
Peter Zijlstra 已提交
7504
				enum perf_type_id type,
L
Li Zefan 已提交
7505 7506 7507
				u32 event_id,
				struct perf_sample_data *data,
				struct pt_regs *regs)
7508
{
7509
	if (event->attr.type != type)
7510
		return 0;
7511

7512
	if (event->attr.config != event_id)
7513 7514
		return 0;

7515 7516
	if (perf_exclude_event(event, regs))
		return 0;
7517 7518 7519 7520

	return 1;
}

7521 7522 7523 7524 7525 7526 7527
static inline u64 swevent_hash(u64 type, u32 event_id)
{
	u64 val = event_id | (type << 32);

	return hash_64(val, SWEVENT_HLIST_BITS);
}

7528 7529
static inline struct hlist_head *
__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
7530
{
7531 7532 7533 7534
	u64 hash = swevent_hash(type, event_id);

	return &hlist->heads[hash];
}
7535

7536 7537
/* For the read side: events when they trigger */
static inline struct hlist_head *
7538
find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
7539 7540
{
	struct swevent_hlist *hlist;
7541

7542
	hlist = rcu_dereference(swhash->swevent_hlist);
7543 7544 7545
	if (!hlist)
		return NULL;

7546 7547 7548 7549 7550
	return __find_swevent_head(hlist, type, event_id);
}

/* For the event head insertion and removal in the hlist */
static inline struct hlist_head *
7551
find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
7552 7553 7554 7555 7556 7557 7558 7559 7560 7561
{
	struct swevent_hlist *hlist;
	u32 event_id = event->attr.config;
	u64 type = event->attr.type;

	/*
	 * Event scheduling is always serialized against hlist allocation
	 * and release. Which makes the protected version suitable here.
	 * The context lock guarantees that.
	 */
7562
	hlist = rcu_dereference_protected(swhash->swevent_hlist,
7563 7564 7565 7566 7567
					  lockdep_is_held(&event->ctx->lock));
	if (!hlist)
		return NULL;

	return __find_swevent_head(hlist, type, event_id);
7568 7569 7570
}

static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
7571
				    u64 nr,
7572 7573
				    struct perf_sample_data *data,
				    struct pt_regs *regs)
7574
{
7575
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7576
	struct perf_event *event;
7577
	struct hlist_head *head;
7578

7579
	rcu_read_lock();
7580
	head = find_swevent_head_rcu(swhash, type, event_id);
7581 7582 7583
	if (!head)
		goto end;

7584
	hlist_for_each_entry_rcu(event, head, hlist_entry) {
L
Li Zefan 已提交
7585
		if (perf_swevent_match(event, type, event_id, data, regs))
7586
			perf_swevent_event(event, nr, data, regs);
7587
	}
7588 7589
end:
	rcu_read_unlock();
7590 7591
}

7592 7593
DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);

7594
int perf_swevent_get_recursion_context(void)
P
Peter Zijlstra 已提交
7595
{
7596
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
P
Peter Zijlstra 已提交
7597

7598
	return get_recursion_context(swhash->recursion);
P
Peter Zijlstra 已提交
7599
}
I
Ingo Molnar 已提交
7600
EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
P
Peter Zijlstra 已提交
7601

7602
void perf_swevent_put_recursion_context(int rctx)
7603
{
7604
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7605

7606
	put_recursion_context(swhash->recursion, rctx);
7607
}
7608

7609
void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7610
{
7611
	struct perf_sample_data data;
7612

7613
	if (WARN_ON_ONCE(!regs))
7614
		return;
7615

7616
	perf_sample_data_init(&data, addr, 0);
7617
	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629
}

void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
{
	int rctx;

	preempt_disable_notrace();
	rctx = perf_swevent_get_recursion_context();
	if (unlikely(rctx < 0))
		goto fail;

	___perf_sw_event(event_id, nr, regs, addr);
7630 7631

	perf_swevent_put_recursion_context(rctx);
7632
fail:
7633
	preempt_enable_notrace();
7634 7635
}

7636
static void perf_swevent_read(struct perf_event *event)
7637 7638 7639
{
}

P
Peter Zijlstra 已提交
7640
static int perf_swevent_add(struct perf_event *event, int flags)
7641
{
7642
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7643
	struct hw_perf_event *hwc = &event->hw;
7644 7645
	struct hlist_head *head;

7646
	if (is_sampling_event(event)) {
7647
		hwc->last_period = hwc->sample_period;
7648
		perf_swevent_set_period(event);
7649
	}
7650

P
Peter Zijlstra 已提交
7651 7652
	hwc->state = !(flags & PERF_EF_START);

7653
	head = find_swevent_head(swhash, event);
P
Peter Zijlstra 已提交
7654
	if (WARN_ON_ONCE(!head))
7655 7656 7657
		return -EINVAL;

	hlist_add_head_rcu(&event->hlist_entry, head);
7658
	perf_event_update_userpage(event);
7659

7660 7661 7662
	return 0;
}

P
Peter Zijlstra 已提交
7663
static void perf_swevent_del(struct perf_event *event, int flags)
7664
{
7665
	hlist_del_rcu(&event->hlist_entry);
7666 7667
}

P
Peter Zijlstra 已提交
7668
static void perf_swevent_start(struct perf_event *event, int flags)
7669
{
P
Peter Zijlstra 已提交
7670
	event->hw.state = 0;
7671
}
I
Ingo Molnar 已提交
7672

P
Peter Zijlstra 已提交
7673
static void perf_swevent_stop(struct perf_event *event, int flags)
7674
{
P
Peter Zijlstra 已提交
7675
	event->hw.state = PERF_HES_STOPPED;
7676 7677
}

7678 7679
/* Deref the hlist from the update side */
static inline struct swevent_hlist *
7680
swevent_hlist_deref(struct swevent_htable *swhash)
7681
{
7682 7683
	return rcu_dereference_protected(swhash->swevent_hlist,
					 lockdep_is_held(&swhash->hlist_mutex));
7684 7685
}

7686
static void swevent_hlist_release(struct swevent_htable *swhash)
7687
{
7688
	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
7689

7690
	if (!hlist)
7691 7692
		return;

7693
	RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
7694
	kfree_rcu(hlist, rcu_head);
7695 7696
}

7697
static void swevent_hlist_put_cpu(int cpu)
7698
{
7699
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7700

7701
	mutex_lock(&swhash->hlist_mutex);
7702

7703 7704
	if (!--swhash->hlist_refcount)
		swevent_hlist_release(swhash);
7705

7706
	mutex_unlock(&swhash->hlist_mutex);
7707 7708
}

7709
static void swevent_hlist_put(void)
7710 7711 7712 7713
{
	int cpu;

	for_each_possible_cpu(cpu)
7714
		swevent_hlist_put_cpu(cpu);
7715 7716
}

7717
static int swevent_hlist_get_cpu(int cpu)
7718
{
7719
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7720 7721
	int err = 0;

7722
	mutex_lock(&swhash->hlist_mutex);
7723 7724
	if (!swevent_hlist_deref(swhash) &&
	    cpumask_test_cpu(cpu, perf_online_mask)) {
7725 7726 7727 7728 7729 7730 7731
		struct swevent_hlist *hlist;

		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
		if (!hlist) {
			err = -ENOMEM;
			goto exit;
		}
7732
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
7733
	}
7734
	swhash->hlist_refcount++;
P
Peter Zijlstra 已提交
7735
exit:
7736
	mutex_unlock(&swhash->hlist_mutex);
7737 7738 7739 7740

	return err;
}

7741
static int swevent_hlist_get(void)
7742
{
7743
	int err, cpu, failed_cpu;
7744

7745
	mutex_lock(&pmus_lock);
7746
	for_each_possible_cpu(cpu) {
7747
		err = swevent_hlist_get_cpu(cpu);
7748 7749 7750 7751 7752
		if (err) {
			failed_cpu = cpu;
			goto fail;
		}
	}
7753
	mutex_unlock(&pmus_lock);
7754
	return 0;
P
Peter Zijlstra 已提交
7755
fail:
7756 7757 7758
	for_each_possible_cpu(cpu) {
		if (cpu == failed_cpu)
			break;
7759
		swevent_hlist_put_cpu(cpu);
7760
	}
7761
	mutex_unlock(&pmus_lock);
7762 7763 7764
	return err;
}

7765
struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
7766

7767 7768 7769
static void sw_perf_event_destroy(struct perf_event *event)
{
	u64 event_id = event->attr.config;
7770

7771 7772
	WARN_ON(event->parent);

7773
	static_key_slow_dec(&perf_swevent_enabled[event_id]);
7774
	swevent_hlist_put();
7775 7776 7777 7778
}

static int perf_swevent_init(struct perf_event *event)
{
7779
	u64 event_id = event->attr.config;
7780 7781 7782 7783

	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

7784 7785 7786 7787 7788 7789
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

7790 7791 7792 7793 7794 7795 7796 7797 7798
	switch (event_id) {
	case PERF_COUNT_SW_CPU_CLOCK:
	case PERF_COUNT_SW_TASK_CLOCK:
		return -ENOENT;

	default:
		break;
	}

7799
	if (event_id >= PERF_COUNT_SW_MAX)
7800 7801 7802 7803 7804
		return -ENOENT;

	if (!event->parent) {
		int err;

7805
		err = swevent_hlist_get();
7806 7807 7808
		if (err)
			return err;

7809
		static_key_slow_inc(&perf_swevent_enabled[event_id]);
7810 7811 7812 7813 7814 7815 7816
		event->destroy = sw_perf_event_destroy;
	}

	return 0;
}

static struct pmu perf_swevent = {
7817
	.task_ctx_nr	= perf_sw_context,
7818

7819 7820
	.capabilities	= PERF_PMU_CAP_NO_NMI,

7821
	.event_init	= perf_swevent_init,
P
Peter Zijlstra 已提交
7822 7823 7824 7825
	.add		= perf_swevent_add,
	.del		= perf_swevent_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
7826 7827 7828
	.read		= perf_swevent_read,
};

7829 7830
#ifdef CONFIG_EVENT_TRACING

7831 7832 7833
static int perf_tp_filter_match(struct perf_event *event,
				struct perf_sample_data *data)
{
7834
	void *record = data->raw->frag.data;
7835

7836 7837 7838 7839
	/* only top level events have filters set */
	if (event->parent)
		event = event->parent;

7840 7841 7842 7843 7844 7845 7846 7847 7848
	if (likely(!event->filter) || filter_match_preds(event->filter, record))
		return 1;
	return 0;
}

static int perf_tp_event_match(struct perf_event *event,
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
7849 7850
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;
7851 7852 7853 7854
	/*
	 * All tracepoints are from kernel-space.
	 */
	if (event->attr.exclude_kernel)
7855 7856 7857 7858 7859 7860 7861 7862
		return 0;

	if (!perf_tp_filter_match(event, data))
		return 0;

	return 1;
}

7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881
void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
			       struct trace_event_call *call, u64 count,
			       struct pt_regs *regs, struct hlist_head *head,
			       struct task_struct *task)
{
	struct bpf_prog *prog = call->prog;

	if (prog) {
		*(struct pt_regs **)raw_data = regs;
		if (!trace_call_bpf(prog, raw_data) || hlist_empty(head)) {
			perf_swevent_put_recursion_context(rctx);
			return;
		}
	}
	perf_tp_event(call->event.type, count, raw_data, size, regs, head,
		      rctx, task);
}
EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);

7882
void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
7883 7884
		   struct pt_regs *regs, struct hlist_head *head, int rctx,
		   struct task_struct *task)
7885 7886
{
	struct perf_sample_data data;
7887 7888
	struct perf_event *event;

7889
	struct perf_raw_record raw = {
7890 7891 7892 7893
		.frag = {
			.size = entry_size,
			.data = record,
		},
7894 7895
	};

7896
	perf_sample_data_init(&data, 0, 0);
7897 7898
	data.raw = &raw;

7899 7900
	perf_trace_buf_update(record, event_type);

7901
	hlist_for_each_entry_rcu(event, head, hlist_entry) {
7902
		if (perf_tp_event_match(event, &data, regs))
7903
			perf_swevent_event(event, count, &data, regs);
7904
	}
7905

7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930
	/*
	 * If we got specified a target task, also iterate its context and
	 * deliver this event there too.
	 */
	if (task && task != current) {
		struct perf_event_context *ctx;
		struct trace_entry *entry = record;

		rcu_read_lock();
		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
		if (!ctx)
			goto unlock;

		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
			if (event->attr.type != PERF_TYPE_TRACEPOINT)
				continue;
			if (event->attr.config != entry->type)
				continue;
			if (perf_tp_event_match(event, &data, regs))
				perf_swevent_event(event, count, &data, regs);
		}
unlock:
		rcu_read_unlock();
	}

7931
	perf_swevent_put_recursion_context(rctx);
7932 7933 7934
}
EXPORT_SYMBOL_GPL(perf_tp_event);

7935
static void tp_perf_event_destroy(struct perf_event *event)
7936
{
7937
	perf_trace_destroy(event);
7938 7939
}

7940
static int perf_tp_event_init(struct perf_event *event)
7941
{
7942 7943
	int err;

7944 7945 7946
	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -ENOENT;

7947 7948 7949 7950 7951 7952
	/*
	 * no branch sampling for tracepoint events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

7953 7954
	err = perf_trace_init(event);
	if (err)
7955
		return err;
7956

7957
	event->destroy = tp_perf_event_destroy;
7958

7959 7960 7961 7962
	return 0;
}

static struct pmu perf_tracepoint = {
7963 7964
	.task_ctx_nr	= perf_sw_context,

7965
	.event_init	= perf_tp_event_init,
P
Peter Zijlstra 已提交
7966 7967 7968 7969
	.add		= perf_trace_add,
	.del		= perf_trace_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
7970 7971 7972 7973 7974
	.read		= perf_swevent_read,
};

static inline void perf_tp_register(void)
{
P
Peter Zijlstra 已提交
7975
	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
7976
}
L
Li Zefan 已提交
7977 7978 7979 7980 7981 7982

static void perf_event_free_filter(struct perf_event *event)
{
	ftrace_profile_free_filter(event);
}

7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997
#ifdef CONFIG_BPF_SYSCALL
static void bpf_overflow_handler(struct perf_event *event,
				 struct perf_sample_data *data,
				 struct pt_regs *regs)
{
	struct bpf_perf_event_data_kern ctx = {
		.data = data,
		.regs = regs,
	};
	int ret = 0;

	preempt_disable();
	if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
		goto out;
	rcu_read_lock();
7998
	ret = BPF_PROG_RUN(event->prog, &ctx);
7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050
	rcu_read_unlock();
out:
	__this_cpu_dec(bpf_prog_active);
	preempt_enable();
	if (!ret)
		return;

	event->orig_overflow_handler(event, data, regs);
}

static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
{
	struct bpf_prog *prog;

	if (event->overflow_handler_context)
		/* hw breakpoint or kernel counter */
		return -EINVAL;

	if (event->prog)
		return -EEXIST;

	prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
	if (IS_ERR(prog))
		return PTR_ERR(prog);

	event->prog = prog;
	event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
	WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
	return 0;
}

static void perf_event_free_bpf_handler(struct perf_event *event)
{
	struct bpf_prog *prog = event->prog;

	if (!prog)
		return;

	WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
	event->prog = NULL;
	bpf_prog_put(prog);
}
#else
static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
{
	return -EOPNOTSUPP;
}
static void perf_event_free_bpf_handler(struct perf_event *event)
{
}
#endif

8051 8052
static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
{
8053
	bool is_kprobe, is_tracepoint;
8054 8055 8056
	struct bpf_prog *prog;

	if (event->attr.type != PERF_TYPE_TRACEPOINT)
8057
		return perf_event_set_bpf_handler(event, prog_fd);
8058 8059 8060 8061

	if (event->tp_event->prog)
		return -EEXIST;

8062 8063 8064 8065
	is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
	is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
	if (!is_kprobe && !is_tracepoint)
		/* bpf programs can only be attached to u/kprobe or tracepoint */
8066 8067 8068 8069 8070 8071
		return -EINVAL;

	prog = bpf_prog_get(prog_fd);
	if (IS_ERR(prog))
		return PTR_ERR(prog);

8072 8073
	if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
	    (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
8074 8075 8076 8077 8078
		/* valid fd, but invalid bpf program type */
		bpf_prog_put(prog);
		return -EINVAL;
	}

8079 8080 8081 8082 8083 8084 8085 8086
	if (is_tracepoint) {
		int off = trace_event_get_offsets(event->tp_event);

		if (prog->aux->max_ctx_offset > off) {
			bpf_prog_put(prog);
			return -EACCES;
		}
	}
8087 8088 8089 8090 8091 8092 8093 8094 8095
	event->tp_event->prog = prog;

	return 0;
}

static void perf_event_free_bpf_prog(struct perf_event *event)
{
	struct bpf_prog *prog;

8096 8097
	perf_event_free_bpf_handler(event);

8098 8099 8100 8101 8102 8103
	if (!event->tp_event)
		return;

	prog = event->tp_event->prog;
	if (prog) {
		event->tp_event->prog = NULL;
8104
		bpf_prog_put(prog);
8105 8106 8107
	}
}

8108
#else
L
Li Zefan 已提交
8109

8110
static inline void perf_tp_register(void)
8111 8112
{
}
L
Li Zefan 已提交
8113 8114 8115 8116 8117

static void perf_event_free_filter(struct perf_event *event)
{
}

8118 8119 8120 8121 8122 8123 8124 8125
static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
{
	return -ENOENT;
}

static void perf_event_free_bpf_prog(struct perf_event *event)
{
}
8126
#endif /* CONFIG_EVENT_TRACING */
8127

8128
#ifdef CONFIG_HAVE_HW_BREAKPOINT
8129
void perf_bp_event(struct perf_event *bp, void *data)
8130
{
8131 8132 8133
	struct perf_sample_data sample;
	struct pt_regs *regs = data;

8134
	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
8135

P
Peter Zijlstra 已提交
8136
	if (!bp->hw.state && !perf_exclude_event(bp, regs))
8137
		perf_swevent_event(bp, 1, &sample, regs);
8138 8139 8140
}
#endif

8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245
/*
 * Allocate a new address filter
 */
static struct perf_addr_filter *
perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
{
	int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
	struct perf_addr_filter *filter;

	filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
	if (!filter)
		return NULL;

	INIT_LIST_HEAD(&filter->entry);
	list_add_tail(&filter->entry, filters);

	return filter;
}

static void free_filters_list(struct list_head *filters)
{
	struct perf_addr_filter *filter, *iter;

	list_for_each_entry_safe(filter, iter, filters, entry) {
		if (filter->inode)
			iput(filter->inode);
		list_del(&filter->entry);
		kfree(filter);
	}
}

/*
 * Free existing address filters and optionally install new ones
 */
static void perf_addr_filters_splice(struct perf_event *event,
				     struct list_head *head)
{
	unsigned long flags;
	LIST_HEAD(list);

	if (!has_addr_filter(event))
		return;

	/* don't bother with children, they don't have their own filters */
	if (event->parent)
		return;

	raw_spin_lock_irqsave(&event->addr_filters.lock, flags);

	list_splice_init(&event->addr_filters.list, &list);
	if (head)
		list_splice(head, &event->addr_filters.list);

	raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);

	free_filters_list(&list);
}

/*
 * Scan through mm's vmas and see if one of them matches the
 * @filter; if so, adjust filter's address range.
 * Called with mm::mmap_sem down for reading.
 */
static unsigned long perf_addr_filter_apply(struct perf_addr_filter *filter,
					    struct mm_struct *mm)
{
	struct vm_area_struct *vma;

	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		struct file *file = vma->vm_file;
		unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
		unsigned long vma_size = vma->vm_end - vma->vm_start;

		if (!file)
			continue;

		if (!perf_addr_filter_match(filter, file, off, vma_size))
			continue;

		return vma->vm_start;
	}

	return 0;
}

/*
 * Update event's address range filters based on the
 * task's existing mappings, if any.
 */
static void perf_event_addr_filters_apply(struct perf_event *event)
{
	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
	struct task_struct *task = READ_ONCE(event->ctx->task);
	struct perf_addr_filter *filter;
	struct mm_struct *mm = NULL;
	unsigned int count = 0;
	unsigned long flags;

	/*
	 * We may observe TASK_TOMBSTONE, which means that the event tear-down
	 * will stop on the parent's child_mutex that our caller is also holding
	 */
	if (task == TASK_TOMBSTONE)
		return;

8246 8247 8248
	if (!ifh->nr_file_filters)
		return;

8249 8250 8251 8252 8253 8254 8255 8256 8257 8258
	mm = get_task_mm(event->ctx->task);
	if (!mm)
		goto restart;

	down_read(&mm->mmap_sem);

	raw_spin_lock_irqsave(&ifh->lock, flags);
	list_for_each_entry(filter, &ifh->list, entry) {
		event->addr_filters_offs[count] = 0;

8259 8260 8261 8262 8263
		/*
		 * Adjust base offset if the filter is associated to a binary
		 * that needs to be mapped:
		 */
		if (filter->inode)
8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275 8276 8277
			event->addr_filters_offs[count] =
				perf_addr_filter_apply(filter, mm);

		count++;
	}

	event->addr_filters_gen++;
	raw_spin_unlock_irqrestore(&ifh->lock, flags);

	up_read(&mm->mmap_sem);

	mmput(mm);

restart:
8278
	perf_event_stop(event, 1);
8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296 8297 8298 8299
}

/*
 * Address range filtering: limiting the data to certain
 * instruction address ranges. Filters are ioctl()ed to us from
 * userspace as ascii strings.
 *
 * Filter string format:
 *
 * ACTION RANGE_SPEC
 * where ACTION is one of the
 *  * "filter": limit the trace to this region
 *  * "start": start tracing from this address
 *  * "stop": stop tracing at this address/region;
 * RANGE_SPEC is
 *  * for kernel addresses: <start address>[/<size>]
 *  * for object files:     <start address>[/<size>]@</path/to/object/file>
 *
 * if <size> is not specified, the range is treated as a single address.
 */
enum {
8300
	IF_ACT_NONE = -1,
8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315 8316 8317 8318 8319 8320 8321 8322 8323
	IF_ACT_FILTER,
	IF_ACT_START,
	IF_ACT_STOP,
	IF_SRC_FILE,
	IF_SRC_KERNEL,
	IF_SRC_FILEADDR,
	IF_SRC_KERNELADDR,
};

enum {
	IF_STATE_ACTION = 0,
	IF_STATE_SOURCE,
	IF_STATE_END,
};

static const match_table_t if_tokens = {
	{ IF_ACT_FILTER,	"filter" },
	{ IF_ACT_START,		"start" },
	{ IF_ACT_STOP,		"stop" },
	{ IF_SRC_FILE,		"%u/%u@%s" },
	{ IF_SRC_KERNEL,	"%u/%u" },
	{ IF_SRC_FILEADDR,	"%u@%s" },
	{ IF_SRC_KERNELADDR,	"%u" },
8324
	{ IF_ACT_NONE,		NULL },
8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346 8347 8348 8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386 8387 8388 8389 8390 8391 8392 8393 8394 8395
};

/*
 * Address filter string parser
 */
static int
perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
			     struct list_head *filters)
{
	struct perf_addr_filter *filter = NULL;
	char *start, *orig, *filename = NULL;
	struct path path;
	substring_t args[MAX_OPT_ARGS];
	int state = IF_STATE_ACTION, token;
	unsigned int kernel = 0;
	int ret = -EINVAL;

	orig = fstr = kstrdup(fstr, GFP_KERNEL);
	if (!fstr)
		return -ENOMEM;

	while ((start = strsep(&fstr, " ,\n")) != NULL) {
		ret = -EINVAL;

		if (!*start)
			continue;

		/* filter definition begins */
		if (state == IF_STATE_ACTION) {
			filter = perf_addr_filter_new(event, filters);
			if (!filter)
				goto fail;
		}

		token = match_token(start, if_tokens, args);
		switch (token) {
		case IF_ACT_FILTER:
		case IF_ACT_START:
			filter->filter = 1;

		case IF_ACT_STOP:
			if (state != IF_STATE_ACTION)
				goto fail;

			state = IF_STATE_SOURCE;
			break;

		case IF_SRC_KERNELADDR:
		case IF_SRC_KERNEL:
			kernel = 1;

		case IF_SRC_FILEADDR:
		case IF_SRC_FILE:
			if (state != IF_STATE_SOURCE)
				goto fail;

			if (token == IF_SRC_FILE || token == IF_SRC_KERNEL)
				filter->range = 1;

			*args[0].to = 0;
			ret = kstrtoul(args[0].from, 0, &filter->offset);
			if (ret)
				goto fail;

			if (filter->range) {
				*args[1].to = 0;
				ret = kstrtoul(args[1].from, 0, &filter->size);
				if (ret)
					goto fail;
			}

8396 8397 8398 8399
			if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
				int fpos = filter->range ? 2 : 1;

				filename = match_strdup(&args[fpos]);
8400 8401 8402 8403 8404 8405 8406 8407 8408 8409 8410 8411 8412 8413 8414 8415 8416 8417 8418
				if (!filename) {
					ret = -ENOMEM;
					goto fail;
				}
			}

			state = IF_STATE_END;
			break;

		default:
			goto fail;
		}

		/*
		 * Filter definition is fully parsed, validate and install it.
		 * Make sure that it doesn't contradict itself or the event's
		 * attribute.
		 */
		if (state == IF_STATE_END) {
8419
			ret = -EINVAL;
8420 8421 8422 8423 8424 8425 8426
			if (kernel && event->attr.exclude_kernel)
				goto fail;

			if (!kernel) {
				if (!filename)
					goto fail;

8427 8428 8429 8430 8431 8432 8433 8434 8435 8436 8437 8438
				/*
				 * For now, we only support file-based filters
				 * in per-task events; doing so for CPU-wide
				 * events requires additional context switching
				 * trickery, since same object code will be
				 * mapped at different virtual addresses in
				 * different processes.
				 */
				ret = -EOPNOTSUPP;
				if (!event->ctx->task)
					goto fail_free_name;

8439 8440 8441 8442 8443 8444 8445 8446 8447 8448 8449 8450 8451 8452 8453
				/* look up the path and grab its inode */
				ret = kern_path(filename, LOOKUP_FOLLOW, &path);
				if (ret)
					goto fail_free_name;

				filter->inode = igrab(d_inode(path.dentry));
				path_put(&path);
				kfree(filename);
				filename = NULL;

				ret = -EINVAL;
				if (!filter->inode ||
				    !S_ISREG(filter->inode->i_mode))
					/* free_filters_list() will iput() */
					goto fail;
8454 8455

				event->addr_filters.nr_file_filters++;
8456 8457 8458 8459 8460 8461 8462 8463 8464 8465 8466 8467 8468 8469 8470 8471 8472 8473 8474 8475 8476 8477 8478 8479 8480 8481 8482 8483 8484 8485 8486 8487 8488 8489 8490 8491 8492 8493 8494 8495 8496
			}

			/* ready to consume more filters */
			state = IF_STATE_ACTION;
			filter = NULL;
		}
	}

	if (state != IF_STATE_ACTION)
		goto fail;

	kfree(orig);

	return 0;

fail_free_name:
	kfree(filename);
fail:
	free_filters_list(filters);
	kfree(orig);

	return ret;
}

static int
perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
{
	LIST_HEAD(filters);
	int ret;

	/*
	 * Since this is called in perf_ioctl() path, we're already holding
	 * ctx::mutex.
	 */
	lockdep_assert_held(&event->ctx->mutex);

	if (WARN_ON_ONCE(event->parent))
		return -EINVAL;

	ret = perf_event_parse_addr_filter(event, filter_str, &filters);
	if (ret)
8497
		goto fail_clear_files;
8498 8499

	ret = event->pmu->addr_filters_validate(&filters);
8500 8501
	if (ret)
		goto fail_free_filters;
8502 8503 8504 8505 8506 8507 8508

	/* remove existing filters, if any */
	perf_addr_filters_splice(event, &filters);

	/* install new filters */
	perf_event_for_each_child(event, perf_event_addr_filters_apply);

8509 8510 8511 8512 8513 8514 8515 8516
	return ret;

fail_free_filters:
	free_filters_list(&filters);

fail_clear_files:
	event->addr_filters.nr_file_filters = 0;

8517 8518 8519
	return ret;
}

8520 8521 8522 8523 8524
static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	char *filter_str;
	int ret = -EINVAL;

8525 8526 8527
	if ((event->attr.type != PERF_TYPE_TRACEPOINT ||
	    !IS_ENABLED(CONFIG_EVENT_TRACING)) &&
	    !has_addr_filter(event))
8528 8529 8530 8531 8532 8533 8534 8535 8536 8537
		return -EINVAL;

	filter_str = strndup_user(arg, PAGE_SIZE);
	if (IS_ERR(filter_str))
		return PTR_ERR(filter_str);

	if (IS_ENABLED(CONFIG_EVENT_TRACING) &&
	    event->attr.type == PERF_TYPE_TRACEPOINT)
		ret = ftrace_profile_set_filter(event, event->attr.config,
						filter_str);
8538 8539
	else if (has_addr_filter(event))
		ret = perf_event_set_addr_filter(event, filter_str);
8540 8541 8542 8543 8544

	kfree(filter_str);
	return ret;
}

8545 8546 8547
/*
 * hrtimer based swevent callback
 */
8548

8549
static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
8550
{
8551 8552 8553 8554 8555
	enum hrtimer_restart ret = HRTIMER_RESTART;
	struct perf_sample_data data;
	struct pt_regs *regs;
	struct perf_event *event;
	u64 period;
8556

8557
	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
P
Peter Zijlstra 已提交
8558 8559 8560 8561

	if (event->state != PERF_EVENT_STATE_ACTIVE)
		return HRTIMER_NORESTART;

8562
	event->pmu->read(event);
8563

8564
	perf_sample_data_init(&data, 0, event->hw.last_period);
8565 8566 8567
	regs = get_irq_regs();

	if (regs && !perf_exclude_event(event, regs)) {
8568
		if (!(event->attr.exclude_idle && is_idle_task(current)))
8569
			if (__perf_event_overflow(event, 1, &data, regs))
8570 8571
				ret = HRTIMER_NORESTART;
	}
8572

8573 8574
	period = max_t(u64, 10000, event->hw.sample_period);
	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
8575

8576
	return ret;
8577 8578
}

8579
static void perf_swevent_start_hrtimer(struct perf_event *event)
8580
{
8581
	struct hw_perf_event *hwc = &event->hw;
8582 8583 8584 8585
	s64 period;

	if (!is_sampling_event(event))
		return;
8586

8587 8588 8589 8590
	period = local64_read(&hwc->period_left);
	if (period) {
		if (period < 0)
			period = 10000;
P
Peter Zijlstra 已提交
8591

8592 8593 8594 8595
		local64_set(&hwc->period_left, 0);
	} else {
		period = max_t(u64, 10000, hwc->sample_period);
	}
8596 8597
	hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
		      HRTIMER_MODE_REL_PINNED);
8598
}
8599 8600

static void perf_swevent_cancel_hrtimer(struct perf_event *event)
8601
{
8602 8603
	struct hw_perf_event *hwc = &event->hw;

8604
	if (is_sampling_event(event)) {
8605
		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
P
Peter Zijlstra 已提交
8606
		local64_set(&hwc->period_left, ktime_to_ns(remaining));
8607 8608 8609

		hrtimer_cancel(&hwc->hrtimer);
	}
8610 8611
}

P
Peter Zijlstra 已提交
8612 8613 8614 8615 8616 8617 8618 8619 8620 8621 8622 8623 8624 8625 8626 8627 8628 8629 8630 8631
static void perf_swevent_init_hrtimer(struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;

	if (!is_sampling_event(event))
		return;

	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swevent_hrtimer;

	/*
	 * Since hrtimers have a fixed rate, we can do a static freq->period
	 * mapping and avoid the whole period adjust feedback stuff.
	 */
	if (event->attr.freq) {
		long freq = event->attr.sample_freq;

		event->attr.sample_period = NSEC_PER_SEC / freq;
		hwc->sample_period = event->attr.sample_period;
		local64_set(&hwc->period_left, hwc->sample_period);
8632
		hwc->last_period = hwc->sample_period;
P
Peter Zijlstra 已提交
8633 8634 8635 8636
		event->attr.freq = 0;
	}
}

8637 8638 8639 8640 8641
/*
 * Software event: cpu wall time clock
 */

static void cpu_clock_event_update(struct perf_event *event)
8642
{
8643 8644 8645
	s64 prev;
	u64 now;

P
Peter Zijlstra 已提交
8646
	now = local_clock();
8647 8648
	prev = local64_xchg(&event->hw.prev_count, now);
	local64_add(now - prev, &event->count);
8649 8650
}

P
Peter Zijlstra 已提交
8651
static void cpu_clock_event_start(struct perf_event *event, int flags)
8652
{
P
Peter Zijlstra 已提交
8653
	local64_set(&event->hw.prev_count, local_clock());
8654 8655 8656
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
8657
static void cpu_clock_event_stop(struct perf_event *event, int flags)
8658
{
8659 8660 8661
	perf_swevent_cancel_hrtimer(event);
	cpu_clock_event_update(event);
}
8662

P
Peter Zijlstra 已提交
8663 8664 8665 8666
static int cpu_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		cpu_clock_event_start(event, flags);
8667
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
8668 8669 8670 8671 8672 8673 8674 8675 8676

	return 0;
}

static void cpu_clock_event_del(struct perf_event *event, int flags)
{
	cpu_clock_event_stop(event, flags);
}

8677 8678 8679 8680
static void cpu_clock_event_read(struct perf_event *event)
{
	cpu_clock_event_update(event);
}
8681

8682 8683 8684 8685 8686 8687 8688 8689
static int cpu_clock_event_init(struct perf_event *event)
{
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
		return -ENOENT;

8690 8691 8692 8693 8694 8695
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

P
Peter Zijlstra 已提交
8696 8697
	perf_swevent_init_hrtimer(event);

8698
	return 0;
8699 8700
}

8701
static struct pmu perf_cpu_clock = {
8702 8703
	.task_ctx_nr	= perf_sw_context,

8704 8705
	.capabilities	= PERF_PMU_CAP_NO_NMI,

8706
	.event_init	= cpu_clock_event_init,
P
Peter Zijlstra 已提交
8707 8708 8709 8710
	.add		= cpu_clock_event_add,
	.del		= cpu_clock_event_del,
	.start		= cpu_clock_event_start,
	.stop		= cpu_clock_event_stop,
8711 8712 8713 8714 8715 8716 8717 8718
	.read		= cpu_clock_event_read,
};

/*
 * Software event: task time clock
 */

static void task_clock_event_update(struct perf_event *event, u64 now)
8719
{
8720 8721
	u64 prev;
	s64 delta;
8722

8723 8724 8725 8726
	prev = local64_xchg(&event->hw.prev_count, now);
	delta = now - prev;
	local64_add(delta, &event->count);
}
8727

P
Peter Zijlstra 已提交
8728
static void task_clock_event_start(struct perf_event *event, int flags)
8729
{
P
Peter Zijlstra 已提交
8730
	local64_set(&event->hw.prev_count, event->ctx->time);
8731 8732 8733
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
8734
static void task_clock_event_stop(struct perf_event *event, int flags)
8735 8736 8737
{
	perf_swevent_cancel_hrtimer(event);
	task_clock_event_update(event, event->ctx->time);
P
Peter Zijlstra 已提交
8738 8739 8740 8741 8742 8743
}

static int task_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		task_clock_event_start(event, flags);
8744
	perf_event_update_userpage(event);
8745

P
Peter Zijlstra 已提交
8746 8747 8748 8749 8750 8751
	return 0;
}

static void task_clock_event_del(struct perf_event *event, int flags)
{
	task_clock_event_stop(event, PERF_EF_UPDATE);
8752 8753 8754 8755
}

static void task_clock_event_read(struct perf_event *event)
{
8756 8757 8758
	u64 now = perf_clock();
	u64 delta = now - event->ctx->timestamp;
	u64 time = event->ctx->time + delta;
8759 8760 8761 8762 8763

	task_clock_event_update(event, time);
}

static int task_clock_event_init(struct perf_event *event)
L
Li Zefan 已提交
8764
{
8765 8766 8767 8768 8769 8770
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
		return -ENOENT;

8771 8772 8773 8774 8775 8776
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

P
Peter Zijlstra 已提交
8777 8778
	perf_swevent_init_hrtimer(event);

8779
	return 0;
L
Li Zefan 已提交
8780 8781
}

8782
static struct pmu perf_task_clock = {
8783 8784
	.task_ctx_nr	= perf_sw_context,

8785 8786
	.capabilities	= PERF_PMU_CAP_NO_NMI,

8787
	.event_init	= task_clock_event_init,
P
Peter Zijlstra 已提交
8788 8789 8790 8791
	.add		= task_clock_event_add,
	.del		= task_clock_event_del,
	.start		= task_clock_event_start,
	.stop		= task_clock_event_stop,
8792 8793
	.read		= task_clock_event_read,
};
L
Li Zefan 已提交
8794

P
Peter Zijlstra 已提交
8795
static void perf_pmu_nop_void(struct pmu *pmu)
8796 8797
{
}
L
Li Zefan 已提交
8798

8799 8800 8801 8802
static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
{
}

P
Peter Zijlstra 已提交
8803
static int perf_pmu_nop_int(struct pmu *pmu)
L
Li Zefan 已提交
8804
{
P
Peter Zijlstra 已提交
8805
	return 0;
L
Li Zefan 已提交
8806 8807
}

8808
static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
8809 8810

static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
L
Li Zefan 已提交
8811
{
8812 8813 8814 8815 8816
	__this_cpu_write(nop_txn_flags, flags);

	if (flags & ~PERF_PMU_TXN_ADD)
		return;

P
Peter Zijlstra 已提交
8817
	perf_pmu_disable(pmu);
L
Li Zefan 已提交
8818 8819
}

P
Peter Zijlstra 已提交
8820 8821
static int perf_pmu_commit_txn(struct pmu *pmu)
{
8822 8823 8824 8825 8826 8827 8828
	unsigned int flags = __this_cpu_read(nop_txn_flags);

	__this_cpu_write(nop_txn_flags, 0);

	if (flags & ~PERF_PMU_TXN_ADD)
		return 0;

P
Peter Zijlstra 已提交
8829 8830 8831
	perf_pmu_enable(pmu);
	return 0;
}
8832

P
Peter Zijlstra 已提交
8833
static void perf_pmu_cancel_txn(struct pmu *pmu)
8834
{
8835 8836 8837 8838 8839 8840 8841
	unsigned int flags =  __this_cpu_read(nop_txn_flags);

	__this_cpu_write(nop_txn_flags, 0);

	if (flags & ~PERF_PMU_TXN_ADD)
		return;

P
Peter Zijlstra 已提交
8842
	perf_pmu_enable(pmu);
8843 8844
}

8845 8846
static int perf_event_idx_default(struct perf_event *event)
{
8847
	return 0;
8848 8849
}

P
Peter Zijlstra 已提交
8850 8851 8852 8853
/*
 * Ensures all contexts with the same task_ctx_nr have the same
 * pmu_cpu_context too.
 */
8854
static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
8855
{
P
Peter Zijlstra 已提交
8856
	struct pmu *pmu;
8857

P
Peter Zijlstra 已提交
8858 8859
	if (ctxn < 0)
		return NULL;
8860

P
Peter Zijlstra 已提交
8861 8862 8863 8864
	list_for_each_entry(pmu, &pmus, entry) {
		if (pmu->task_ctx_nr == ctxn)
			return pmu->pmu_cpu_context;
	}
8865

P
Peter Zijlstra 已提交
8866
	return NULL;
8867 8868
}

8869 8870
static void free_pmu_context(struct pmu *pmu)
{
P
Peter Zijlstra 已提交
8871
	mutex_lock(&pmus_lock);
8872
	free_percpu(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
8873
	mutex_unlock(&pmus_lock);
8874
}
8875 8876 8877 8878 8879 8880 8881 8882 8883 8884 8885 8886 8887 8888

/*
 * Let userspace know that this PMU supports address range filtering:
 */
static ssize_t nr_addr_filters_show(struct device *dev,
				    struct device_attribute *attr,
				    char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
}
DEVICE_ATTR_RO(nr_addr_filters);

P
Peter Zijlstra 已提交
8889
static struct idr pmu_idr;
8890

P
Peter Zijlstra 已提交
8891 8892 8893 8894 8895 8896 8897
static ssize_t
type_show(struct device *dev, struct device_attribute *attr, char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
}
8898
static DEVICE_ATTR_RO(type);
P
Peter Zijlstra 已提交
8899

8900 8901 8902 8903 8904 8905 8906 8907 8908 8909
static ssize_t
perf_event_mux_interval_ms_show(struct device *dev,
				struct device_attribute *attr,
				char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
}

8910 8911
static DEFINE_MUTEX(mux_interval_mutex);

8912 8913 8914 8915 8916 8917 8918 8919 8920 8921 8922 8923 8924 8925 8926 8927 8928 8929 8930
static ssize_t
perf_event_mux_interval_ms_store(struct device *dev,
				 struct device_attribute *attr,
				 const char *buf, size_t count)
{
	struct pmu *pmu = dev_get_drvdata(dev);
	int timer, cpu, ret;

	ret = kstrtoint(buf, 0, &timer);
	if (ret)
		return ret;

	if (timer < 1)
		return -EINVAL;

	/* same value, noting to do */
	if (timer == pmu->hrtimer_interval_ms)
		return count;

8931
	mutex_lock(&mux_interval_mutex);
8932 8933 8934
	pmu->hrtimer_interval_ms = timer;

	/* update all cpuctx for this PMU */
8935
	cpus_read_lock();
8936
	for_each_online_cpu(cpu) {
8937 8938 8939 8940
		struct perf_cpu_context *cpuctx;
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
		cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);

8941 8942
		cpu_function_call(cpu,
			(remote_function_f)perf_mux_hrtimer_restart, cpuctx);
8943
	}
8944
	cpus_read_unlock();
8945
	mutex_unlock(&mux_interval_mutex);
8946 8947 8948

	return count;
}
8949
static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
8950

8951 8952 8953 8954
static struct attribute *pmu_dev_attrs[] = {
	&dev_attr_type.attr,
	&dev_attr_perf_event_mux_interval_ms.attr,
	NULL,
P
Peter Zijlstra 已提交
8955
};
8956
ATTRIBUTE_GROUPS(pmu_dev);
P
Peter Zijlstra 已提交
8957 8958 8959 8960

static int pmu_bus_running;
static struct bus_type pmu_bus = {
	.name		= "event_source",
8961
	.dev_groups	= pmu_dev_groups,
P
Peter Zijlstra 已提交
8962 8963 8964 8965 8966 8967 8968 8969 8970 8971 8972 8973 8974 8975 8976
};

static void pmu_dev_release(struct device *dev)
{
	kfree(dev);
}

static int pmu_dev_alloc(struct pmu *pmu)
{
	int ret = -ENOMEM;

	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
	if (!pmu->dev)
		goto out;

8977
	pmu->dev->groups = pmu->attr_groups;
P
Peter Zijlstra 已提交
8978 8979 8980 8981 8982 8983 8984 8985 8986 8987 8988 8989
	device_initialize(pmu->dev);
	ret = dev_set_name(pmu->dev, "%s", pmu->name);
	if (ret)
		goto free_dev;

	dev_set_drvdata(pmu->dev, pmu);
	pmu->dev->bus = &pmu_bus;
	pmu->dev->release = pmu_dev_release;
	ret = device_add(pmu->dev);
	if (ret)
		goto free_dev;

8990 8991 8992 8993 8994 8995 8996
	/* For PMUs with address filters, throw in an extra attribute: */
	if (pmu->nr_addr_filters)
		ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);

	if (ret)
		goto del_dev;

P
Peter Zijlstra 已提交
8997 8998 8999
out:
	return ret;

9000 9001 9002
del_dev:
	device_del(pmu->dev);

P
Peter Zijlstra 已提交
9003 9004 9005 9006 9007
free_dev:
	put_device(pmu->dev);
	goto out;
}

9008
static struct lock_class_key cpuctx_mutex;
9009
static struct lock_class_key cpuctx_lock;
9010

9011
int perf_pmu_register(struct pmu *pmu, const char *name, int type)
9012
{
P
Peter Zijlstra 已提交
9013
	int cpu, ret;
9014

9015
	mutex_lock(&pmus_lock);
P
Peter Zijlstra 已提交
9016 9017 9018 9019
	ret = -ENOMEM;
	pmu->pmu_disable_count = alloc_percpu(int);
	if (!pmu->pmu_disable_count)
		goto unlock;
9020

P
Peter Zijlstra 已提交
9021 9022 9023 9024 9025 9026
	pmu->type = -1;
	if (!name)
		goto skip_type;
	pmu->name = name;

	if (type < 0) {
T
Tejun Heo 已提交
9027 9028 9029
		type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
		if (type < 0) {
			ret = type;
P
Peter Zijlstra 已提交
9030 9031 9032 9033 9034
			goto free_pdc;
		}
	}
	pmu->type = type;

P
Peter Zijlstra 已提交
9035 9036 9037 9038 9039 9040
	if (pmu_bus_running) {
		ret = pmu_dev_alloc(pmu);
		if (ret)
			goto free_idr;
	}

P
Peter Zijlstra 已提交
9041
skip_type:
9042 9043 9044
	if (pmu->task_ctx_nr == perf_hw_context) {
		static int hw_context_taken = 0;

9045 9046 9047 9048 9049 9050 9051
		/*
		 * Other than systems with heterogeneous CPUs, it never makes
		 * sense for two PMUs to share perf_hw_context. PMUs which are
		 * uncore must use perf_invalid_context.
		 */
		if (WARN_ON_ONCE(hw_context_taken &&
		    !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
9052 9053 9054 9055 9056
			pmu->task_ctx_nr = perf_invalid_context;

		hw_context_taken = 1;
	}

P
Peter Zijlstra 已提交
9057 9058 9059
	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
	if (pmu->pmu_cpu_context)
		goto got_cpu_context;
9060

W
Wei Yongjun 已提交
9061
	ret = -ENOMEM;
P
Peter Zijlstra 已提交
9062 9063
	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
	if (!pmu->pmu_cpu_context)
P
Peter Zijlstra 已提交
9064
		goto free_dev;
9065

P
Peter Zijlstra 已提交
9066 9067 9068 9069
	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
9070
		__perf_event_init_context(&cpuctx->ctx);
9071
		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
9072
		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
P
Peter Zijlstra 已提交
9073
		cpuctx->ctx.pmu = pmu;
9074
		cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
9075

9076
		__perf_mux_hrtimer_init(cpuctx, cpu);
P
Peter Zijlstra 已提交
9077
	}
9078

P
Peter Zijlstra 已提交
9079
got_cpu_context:
P
Peter Zijlstra 已提交
9080 9081 9082 9083 9084 9085 9086 9087 9088 9089 9090
	if (!pmu->start_txn) {
		if (pmu->pmu_enable) {
			/*
			 * If we have pmu_enable/pmu_disable calls, install
			 * transaction stubs that use that to try and batch
			 * hardware accesses.
			 */
			pmu->start_txn  = perf_pmu_start_txn;
			pmu->commit_txn = perf_pmu_commit_txn;
			pmu->cancel_txn = perf_pmu_cancel_txn;
		} else {
9091
			pmu->start_txn  = perf_pmu_nop_txn;
P
Peter Zijlstra 已提交
9092 9093
			pmu->commit_txn = perf_pmu_nop_int;
			pmu->cancel_txn = perf_pmu_nop_void;
9094
		}
9095
	}
9096

P
Peter Zijlstra 已提交
9097 9098 9099 9100 9101
	if (!pmu->pmu_enable) {
		pmu->pmu_enable  = perf_pmu_nop_void;
		pmu->pmu_disable = perf_pmu_nop_void;
	}

9102 9103 9104
	if (!pmu->event_idx)
		pmu->event_idx = perf_event_idx_default;

9105
	list_add_rcu(&pmu->entry, &pmus);
9106
	atomic_set(&pmu->exclusive_cnt, 0);
P
Peter Zijlstra 已提交
9107 9108
	ret = 0;
unlock:
9109 9110
	mutex_unlock(&pmus_lock);

P
Peter Zijlstra 已提交
9111
	return ret;
P
Peter Zijlstra 已提交
9112

P
Peter Zijlstra 已提交
9113 9114 9115 9116
free_dev:
	device_del(pmu->dev);
	put_device(pmu->dev);

P
Peter Zijlstra 已提交
9117 9118 9119 9120
free_idr:
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);

P
Peter Zijlstra 已提交
9121 9122 9123
free_pdc:
	free_percpu(pmu->pmu_disable_count);
	goto unlock;
9124
}
9125
EXPORT_SYMBOL_GPL(perf_pmu_register);
9126

9127
void perf_pmu_unregister(struct pmu *pmu)
9128
{
9129 9130
	int remove_device;

9131
	mutex_lock(&pmus_lock);
9132
	remove_device = pmu_bus_running;
9133 9134
	list_del_rcu(&pmu->entry);
	mutex_unlock(&pmus_lock);
9135

9136
	/*
P
Peter Zijlstra 已提交
9137 9138
	 * We dereference the pmu list under both SRCU and regular RCU, so
	 * synchronize against both of those.
9139
	 */
9140
	synchronize_srcu(&pmus_srcu);
P
Peter Zijlstra 已提交
9141
	synchronize_rcu();
9142

P
Peter Zijlstra 已提交
9143
	free_percpu(pmu->pmu_disable_count);
P
Peter Zijlstra 已提交
9144 9145
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);
9146 9147 9148 9149 9150 9151
	if (remove_device) {
		if (pmu->nr_addr_filters)
			device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
		device_del(pmu->dev);
		put_device(pmu->dev);
	}
9152
	free_pmu_context(pmu);
9153
}
9154
EXPORT_SYMBOL_GPL(perf_pmu_unregister);
9155

9156 9157
static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
{
P
Peter Zijlstra 已提交
9158
	struct perf_event_context *ctx = NULL;
9159 9160 9161 9162
	int ret;

	if (!try_module_get(pmu->module))
		return -ENODEV;
P
Peter Zijlstra 已提交
9163 9164

	if (event->group_leader != event) {
9165 9166 9167 9168 9169 9170
		/*
		 * This ctx->mutex can nest when we're called through
		 * inheritance. See the perf_event_ctx_lock_nested() comment.
		 */
		ctx = perf_event_ctx_lock_nested(event->group_leader,
						 SINGLE_DEPTH_NESTING);
P
Peter Zijlstra 已提交
9171 9172 9173
		BUG_ON(!ctx);
	}

9174 9175
	event->pmu = pmu;
	ret = pmu->event_init(event);
P
Peter Zijlstra 已提交
9176 9177 9178 9179

	if (ctx)
		perf_event_ctx_unlock(event->group_leader, ctx);

9180 9181 9182 9183 9184 9185
	if (ret)
		module_put(pmu->module);

	return ret;
}

9186
static struct pmu *perf_init_event(struct perf_event *event)
9187
{
D
Dan Carpenter 已提交
9188
	struct pmu *pmu;
9189
	int idx;
9190
	int ret;
9191 9192

	idx = srcu_read_lock(&pmus_srcu);
P
Peter Zijlstra 已提交
9193

9194 9195 9196 9197 9198 9199 9200 9201
	/* Try parent's PMU first: */
	if (event->parent && event->parent->pmu) {
		pmu = event->parent->pmu;
		ret = perf_try_init_event(pmu, event);
		if (!ret)
			goto unlock;
	}

P
Peter Zijlstra 已提交
9202 9203 9204
	rcu_read_lock();
	pmu = idr_find(&pmu_idr, event->attr.type);
	rcu_read_unlock();
9205
	if (pmu) {
9206
		ret = perf_try_init_event(pmu, event);
9207 9208
		if (ret)
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
9209
		goto unlock;
9210
	}
P
Peter Zijlstra 已提交
9211

9212
	list_for_each_entry_rcu(pmu, &pmus, entry) {
9213
		ret = perf_try_init_event(pmu, event);
9214
		if (!ret)
P
Peter Zijlstra 已提交
9215
			goto unlock;
9216

9217 9218
		if (ret != -ENOENT) {
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
9219
			goto unlock;
9220
		}
9221
	}
P
Peter Zijlstra 已提交
9222 9223
	pmu = ERR_PTR(-ENOENT);
unlock:
9224
	srcu_read_unlock(&pmus_srcu, idx);
9225

9226
	return pmu;
9227 9228
}

9229 9230 9231 9232 9233 9234 9235 9236 9237
static void attach_sb_event(struct perf_event *event)
{
	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);

	raw_spin_lock(&pel->lock);
	list_add_rcu(&event->sb_list, &pel->list);
	raw_spin_unlock(&pel->lock);
}

9238 9239 9240 9241 9242 9243 9244
/*
 * We keep a list of all !task (and therefore per-cpu) events
 * that need to receive side-band records.
 *
 * This avoids having to scan all the various PMU per-cpu contexts
 * looking for them.
 */
9245 9246
static void account_pmu_sb_event(struct perf_event *event)
{
9247
	if (is_sb_event(event))
9248 9249 9250
		attach_sb_event(event);
}

9251 9252 9253 9254 9255 9256 9257 9258 9259
static void account_event_cpu(struct perf_event *event, int cpu)
{
	if (event->parent)
		return;

	if (is_cgroup_event(event))
		atomic_inc(&per_cpu(perf_cgroup_events, cpu));
}

9260 9261 9262 9263 9264 9265 9266 9267 9268 9269 9270 9271 9272 9273 9274 9275 9276 9277 9278 9279 9280
/* Freq events need the tick to stay alive (see perf_event_task_tick). */
static void account_freq_event_nohz(void)
{
#ifdef CONFIG_NO_HZ_FULL
	/* Lock so we don't race with concurrent unaccount */
	spin_lock(&nr_freq_lock);
	if (atomic_inc_return(&nr_freq_events) == 1)
		tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
	spin_unlock(&nr_freq_lock);
#endif
}

static void account_freq_event(void)
{
	if (tick_nohz_full_enabled())
		account_freq_event_nohz();
	else
		atomic_inc(&nr_freq_events);
}


9281 9282
static void account_event(struct perf_event *event)
{
9283 9284
	bool inc = false;

9285 9286 9287
	if (event->parent)
		return;

9288
	if (event->attach_state & PERF_ATTACH_TASK)
9289
		inc = true;
9290 9291 9292 9293
	if (event->attr.mmap || event->attr.mmap_data)
		atomic_inc(&nr_mmap_events);
	if (event->attr.comm)
		atomic_inc(&nr_comm_events);
9294 9295
	if (event->attr.namespaces)
		atomic_inc(&nr_namespaces_events);
9296 9297
	if (event->attr.task)
		atomic_inc(&nr_task_events);
9298 9299
	if (event->attr.freq)
		account_freq_event();
9300 9301
	if (event->attr.context_switch) {
		atomic_inc(&nr_switch_events);
9302
		inc = true;
9303
	}
9304
	if (has_branch_stack(event))
9305
		inc = true;
9306
	if (is_cgroup_event(event))
9307 9308
		inc = true;

9309 9310 9311 9312 9313 9314 9315 9316 9317 9318 9319 9320 9321 9322 9323 9324 9325 9326 9327 9328 9329 9330
	if (inc) {
		if (atomic_inc_not_zero(&perf_sched_count))
			goto enabled;

		mutex_lock(&perf_sched_mutex);
		if (!atomic_read(&perf_sched_count)) {
			static_branch_enable(&perf_sched_events);
			/*
			 * Guarantee that all CPUs observe they key change and
			 * call the perf scheduling hooks before proceeding to
			 * install events that need them.
			 */
			synchronize_sched();
		}
		/*
		 * Now that we have waited for the sync_sched(), allow further
		 * increments to by-pass the mutex.
		 */
		atomic_inc(&perf_sched_count);
		mutex_unlock(&perf_sched_mutex);
	}
enabled:
9331 9332

	account_event_cpu(event, event->cpu);
9333 9334

	account_pmu_sb_event(event);
9335 9336
}

T
Thomas Gleixner 已提交
9337
/*
9338
 * Allocate and initialize a event structure
T
Thomas Gleixner 已提交
9339
 */
9340
static struct perf_event *
9341
perf_event_alloc(struct perf_event_attr *attr, int cpu,
9342 9343 9344
		 struct task_struct *task,
		 struct perf_event *group_leader,
		 struct perf_event *parent_event,
9345
		 perf_overflow_handler_t overflow_handler,
9346
		 void *context, int cgroup_fd)
T
Thomas Gleixner 已提交
9347
{
P
Peter Zijlstra 已提交
9348
	struct pmu *pmu;
9349 9350
	struct perf_event *event;
	struct hw_perf_event *hwc;
9351
	long err = -EINVAL;
T
Thomas Gleixner 已提交
9352

9353 9354 9355 9356 9357
	if ((unsigned)cpu >= nr_cpu_ids) {
		if (!task || cpu != -1)
			return ERR_PTR(-EINVAL);
	}

9358
	event = kzalloc(sizeof(*event), GFP_KERNEL);
9359
	if (!event)
9360
		return ERR_PTR(-ENOMEM);
T
Thomas Gleixner 已提交
9361

9362
	/*
9363
	 * Single events are their own group leaders, with an
9364 9365 9366
	 * empty sibling list:
	 */
	if (!group_leader)
9367
		group_leader = event;
9368

9369 9370
	mutex_init(&event->child_mutex);
	INIT_LIST_HEAD(&event->child_list);
9371

9372 9373 9374
	INIT_LIST_HEAD(&event->group_entry);
	INIT_LIST_HEAD(&event->event_entry);
	INIT_LIST_HEAD(&event->sibling_list);
9375
	INIT_LIST_HEAD(&event->rb_entry);
9376
	INIT_LIST_HEAD(&event->active_entry);
9377
	INIT_LIST_HEAD(&event->addr_filters.list);
9378 9379
	INIT_HLIST_NODE(&event->hlist_entry);

9380

9381
	init_waitqueue_head(&event->waitq);
9382
	init_irq_work(&event->pending, perf_pending_event);
T
Thomas Gleixner 已提交
9383

9384
	mutex_init(&event->mmap_mutex);
9385
	raw_spin_lock_init(&event->addr_filters.lock);
9386

9387
	atomic_long_set(&event->refcount, 1);
9388 9389 9390 9391 9392
	event->cpu		= cpu;
	event->attr		= *attr;
	event->group_leader	= group_leader;
	event->pmu		= NULL;
	event->oncpu		= -1;
9393

9394
	event->parent		= parent_event;
9395

9396
	event->ns		= get_pid_ns(task_active_pid_ns(current));
9397
	event->id		= atomic64_inc_return(&perf_event_id);
9398

9399
	event->state		= PERF_EVENT_STATE_INACTIVE;
9400

9401 9402 9403
	if (task) {
		event->attach_state = PERF_ATTACH_TASK;
		/*
9404 9405 9406
		 * XXX pmu::event_init needs to know what task to account to
		 * and we cannot use the ctx information because we need the
		 * pmu before we get a ctx.
9407
		 */
9408
		event->hw.target = task;
9409 9410
	}

9411 9412 9413 9414
	event->clock = &local_clock;
	if (parent_event)
		event->clock = parent_event->clock;

9415
	if (!overflow_handler && parent_event) {
9416
		overflow_handler = parent_event->overflow_handler;
9417
		context = parent_event->overflow_handler_context;
9418
#if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
9419 9420 9421 9422 9423 9424 9425 9426 9427 9428 9429 9430
		if (overflow_handler == bpf_overflow_handler) {
			struct bpf_prog *prog = bpf_prog_inc(parent_event->prog);

			if (IS_ERR(prog)) {
				err = PTR_ERR(prog);
				goto err_ns;
			}
			event->prog = prog;
			event->orig_overflow_handler =
				parent_event->orig_overflow_handler;
		}
#endif
9431
	}
9432

9433 9434 9435
	if (overflow_handler) {
		event->overflow_handler	= overflow_handler;
		event->overflow_handler_context = context;
9436 9437 9438
	} else if (is_write_backward(event)){
		event->overflow_handler = perf_event_output_backward;
		event->overflow_handler_context = NULL;
9439
	} else {
9440
		event->overflow_handler = perf_event_output_forward;
9441 9442
		event->overflow_handler_context = NULL;
	}
9443

J
Jiri Olsa 已提交
9444
	perf_event__state_init(event);
9445

9446
	pmu = NULL;
9447

9448
	hwc = &event->hw;
9449
	hwc->sample_period = attr->sample_period;
9450
	if (attr->freq && attr->sample_freq)
9451
		hwc->sample_period = 1;
9452
	hwc->last_period = hwc->sample_period;
9453

9454
	local64_set(&hwc->period_left, hwc->sample_period);
9455

9456
	/*
9457 9458
	 * We currently do not support PERF_SAMPLE_READ on inherited events.
	 * See perf_output_read().
9459
	 */
9460
	if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
9461
		goto err_ns;
9462 9463 9464

	if (!has_branch_stack(event))
		event->attr.branch_sample_type = 0;
9465

9466 9467 9468 9469 9470 9471
	if (cgroup_fd != -1) {
		err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
		if (err)
			goto err_ns;
	}

9472
	pmu = perf_init_event(event);
D
Dan Carpenter 已提交
9473
	if (IS_ERR(pmu)) {
9474
		err = PTR_ERR(pmu);
9475
		goto err_ns;
I
Ingo Molnar 已提交
9476
	}
9477

9478 9479 9480 9481
	err = exclusive_event_init(event);
	if (err)
		goto err_pmu;

9482 9483 9484 9485
	if (has_addr_filter(event)) {
		event->addr_filters_offs = kcalloc(pmu->nr_addr_filters,
						   sizeof(unsigned long),
						   GFP_KERNEL);
9486 9487
		if (!event->addr_filters_offs) {
			err = -ENOMEM;
9488
			goto err_per_task;
9489
		}
9490 9491 9492 9493 9494

		/* force hw sync on the address filters */
		event->addr_filters_gen = 1;
	}

9495
	if (!event->parent) {
9496
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
9497
			err = get_callchain_buffers(attr->sample_max_stack);
9498
			if (err)
9499
				goto err_addr_filters;
9500
		}
9501
	}
9502

9503 9504 9505
	/* symmetric to unaccount_event() in _free_event() */
	account_event(event);

9506
	return event;
9507

9508 9509 9510
err_addr_filters:
	kfree(event->addr_filters_offs);

9511 9512 9513
err_per_task:
	exclusive_event_destroy(event);

9514 9515 9516
err_pmu:
	if (event->destroy)
		event->destroy(event);
9517
	module_put(pmu->module);
9518
err_ns:
9519 9520
	if (is_cgroup_event(event))
		perf_detach_cgroup(event);
9521 9522 9523 9524 9525
	if (event->ns)
		put_pid_ns(event->ns);
	kfree(event);

	return ERR_PTR(err);
T
Thomas Gleixner 已提交
9526 9527
}

9528 9529
static int perf_copy_attr(struct perf_event_attr __user *uattr,
			  struct perf_event_attr *attr)
9530 9531
{
	u32 size;
9532
	int ret;
9533 9534 9535 9536 9537 9538 9539 9540 9541 9542 9543 9544 9545 9546 9547 9548 9549 9550 9551 9552 9553 9554 9555 9556

	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
		return -EFAULT;

	/*
	 * zero the full structure, so that a short copy will be nice.
	 */
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

	if (size > PAGE_SIZE)	/* silly large */
		goto err_size;

	if (!size)		/* abi compat */
		size = PERF_ATTR_SIZE_VER0;

	if (size < PERF_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
9557 9558 9559
	 * ensure all the unknown bits are 0 - i.e. new
	 * user-space does not rely on any kernel feature
	 * extensions we dont know about yet.
9560 9561
	 */
	if (size > sizeof(*attr)) {
9562 9563 9564
		unsigned char __user *addr;
		unsigned char __user *end;
		unsigned char val;
9565

9566 9567
		addr = (void __user *)uattr + sizeof(*attr);
		end  = (void __user *)uattr + size;
9568

9569
		for (; addr < end; addr++) {
9570 9571 9572 9573 9574 9575
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
9576
		size = sizeof(*attr);
9577 9578 9579 9580 9581 9582
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

9583
	if (attr->__reserved_1)
9584 9585 9586 9587 9588 9589 9590 9591
		return -EINVAL;

	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
		return -EINVAL;

	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
		return -EINVAL;

9592 9593 9594 9595 9596 9597 9598 9599 9600 9601 9602 9603 9604 9605 9606 9607 9608 9609 9610 9611 9612 9613 9614 9615 9616 9617 9618 9619
	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
		u64 mask = attr->branch_sample_type;

		/* only using defined bits */
		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
			return -EINVAL;

		/* at least one branch bit must be set */
		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
			return -EINVAL;

		/* propagate priv level, when not set for branch */
		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {

			/* exclude_kernel checked on syscall entry */
			if (!attr->exclude_kernel)
				mask |= PERF_SAMPLE_BRANCH_KERNEL;

			if (!attr->exclude_user)
				mask |= PERF_SAMPLE_BRANCH_USER;

			if (!attr->exclude_hv)
				mask |= PERF_SAMPLE_BRANCH_HV;
			/*
			 * adjust user setting (for HW filter setup)
			 */
			attr->branch_sample_type = mask;
		}
9620 9621
		/* privileged levels capture (kernel, hv): check permissions */
		if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
9622 9623
		    && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
9624
	}
9625

9626
	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
9627
		ret = perf_reg_validate(attr->sample_regs_user);
9628 9629 9630 9631 9632 9633 9634 9635 9636 9637 9638 9639 9640 9641 9642 9643 9644 9645
		if (ret)
			return ret;
	}

	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
		if (!arch_perf_have_user_stack_dump())
			return -ENOSYS;

		/*
		 * We have __u32 type for the size, but so far
		 * we can only use __u16 as maximum due to the
		 * __u16 sample size limit.
		 */
		if (attr->sample_stack_user >= USHRT_MAX)
			ret = -EINVAL;
		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
			ret = -EINVAL;
	}
9646

9647 9648
	if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
		ret = perf_reg_validate(attr->sample_regs_intr);
9649 9650 9651 9652 9653 9654 9655 9656 9657
out:
	return ret;

err_size:
	put_user(sizeof(*attr), &uattr->size);
	ret = -E2BIG;
	goto out;
}

9658 9659
static int
perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
9660
{
9661
	struct ring_buffer *rb = NULL;
9662 9663
	int ret = -EINVAL;

9664
	if (!output_event)
9665 9666
		goto set;

9667 9668
	/* don't allow circular references */
	if (event == output_event)
9669 9670
		goto out;

9671 9672 9673 9674 9675 9676 9677
	/*
	 * Don't allow cross-cpu buffers
	 */
	if (output_event->cpu != event->cpu)
		goto out;

	/*
9678
	 * If its not a per-cpu rb, it must be the same task.
9679 9680 9681 9682
	 */
	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
		goto out;

9683 9684 9685 9686 9687 9688
	/*
	 * Mixing clocks in the same buffer is trouble you don't need.
	 */
	if (output_event->clock != event->clock)
		goto out;

9689 9690 9691 9692 9693 9694 9695
	/*
	 * Either writing ring buffer from beginning or from end.
	 * Mixing is not allowed.
	 */
	if (is_write_backward(output_event) != is_write_backward(event))
		goto out;

9696 9697 9698 9699 9700 9701 9702
	/*
	 * If both events generate aux data, they must be on the same PMU
	 */
	if (has_aux(event) && has_aux(output_event) &&
	    event->pmu != output_event->pmu)
		goto out;

9703
set:
9704
	mutex_lock(&event->mmap_mutex);
9705 9706 9707
	/* Can't redirect output if we've got an active mmap() */
	if (atomic_read(&event->mmap_count))
		goto unlock;
9708

9709
	if (output_event) {
9710 9711 9712
		/* get the rb we want to redirect to */
		rb = ring_buffer_get(output_event);
		if (!rb)
9713
			goto unlock;
9714 9715
	}

9716
	ring_buffer_attach(event, rb);
9717

9718
	ret = 0;
9719 9720 9721
unlock:
	mutex_unlock(&event->mmap_mutex);

9722 9723 9724 9725
out:
	return ret;
}

P
Peter Zijlstra 已提交
9726 9727 9728 9729 9730 9731 9732 9733 9734
static void mutex_lock_double(struct mutex *a, struct mutex *b)
{
	if (b < a)
		swap(a, b);

	mutex_lock(a);
	mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
}

9735 9736 9737 9738 9739 9740 9741 9742 9743 9744 9745 9746 9747 9748 9749 9750 9751 9752 9753 9754 9755 9756 9757 9758 9759 9760 9761 9762 9763 9764 9765 9766 9767 9768 9769 9770 9771
static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
{
	bool nmi_safe = false;

	switch (clk_id) {
	case CLOCK_MONOTONIC:
		event->clock = &ktime_get_mono_fast_ns;
		nmi_safe = true;
		break;

	case CLOCK_MONOTONIC_RAW:
		event->clock = &ktime_get_raw_fast_ns;
		nmi_safe = true;
		break;

	case CLOCK_REALTIME:
		event->clock = &ktime_get_real_ns;
		break;

	case CLOCK_BOOTTIME:
		event->clock = &ktime_get_boot_ns;
		break;

	case CLOCK_TAI:
		event->clock = &ktime_get_tai_ns;
		break;

	default:
		return -EINVAL;
	}

	if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
		return -EINVAL;

	return 0;
}

9772 9773 9774 9775 9776 9777 9778 9779 9780 9781 9782 9783 9784 9785 9786 9787 9788 9789 9790 9791 9792 9793 9794 9795 9796 9797 9798 9799 9800 9801 9802
/*
 * Variation on perf_event_ctx_lock_nested(), except we take two context
 * mutexes.
 */
static struct perf_event_context *
__perf_event_ctx_lock_double(struct perf_event *group_leader,
			     struct perf_event_context *ctx)
{
	struct perf_event_context *gctx;

again:
	rcu_read_lock();
	gctx = READ_ONCE(group_leader->ctx);
	if (!atomic_inc_not_zero(&gctx->refcount)) {
		rcu_read_unlock();
		goto again;
	}
	rcu_read_unlock();

	mutex_lock_double(&gctx->mutex, &ctx->mutex);

	if (group_leader->ctx != gctx) {
		mutex_unlock(&ctx->mutex);
		mutex_unlock(&gctx->mutex);
		put_ctx(gctx);
		goto again;
	}

	return gctx;
}

T
Thomas Gleixner 已提交
9803
/**
9804
 * sys_perf_event_open - open a performance event, associate it to a task/cpu
I
Ingo Molnar 已提交
9805
 *
9806
 * @attr_uptr:	event_id type attributes for monitoring/sampling
T
Thomas Gleixner 已提交
9807
 * @pid:		target pid
I
Ingo Molnar 已提交
9808
 * @cpu:		target cpu
9809
 * @group_fd:		group leader event fd
T
Thomas Gleixner 已提交
9810
 */
9811 9812
SYSCALL_DEFINE5(perf_event_open,
		struct perf_event_attr __user *, attr_uptr,
9813
		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
T
Thomas Gleixner 已提交
9814
{
9815 9816
	struct perf_event *group_leader = NULL, *output_event = NULL;
	struct perf_event *event, *sibling;
9817
	struct perf_event_attr attr;
P
Peter Zijlstra 已提交
9818
	struct perf_event_context *ctx, *uninitialized_var(gctx);
9819
	struct file *event_file = NULL;
9820
	struct fd group = {NULL, 0};
M
Matt Helsley 已提交
9821
	struct task_struct *task = NULL;
9822
	struct pmu *pmu;
9823
	int event_fd;
9824
	int move_group = 0;
9825
	int err;
9826
	int f_flags = O_RDWR;
9827
	int cgroup_fd = -1;
T
Thomas Gleixner 已提交
9828

9829
	/* for future expandability... */
S
Stephane Eranian 已提交
9830
	if (flags & ~PERF_FLAG_ALL)
9831 9832
		return -EINVAL;

9833 9834 9835
	err = perf_copy_attr(attr_uptr, &attr);
	if (err)
		return err;
9836

9837 9838 9839 9840 9841
	if (!attr.exclude_kernel) {
		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
	}

9842 9843 9844 9845 9846
	if (attr.namespaces) {
		if (!capable(CAP_SYS_ADMIN))
			return -EACCES;
	}

9847
	if (attr.freq) {
9848
		if (attr.sample_freq > sysctl_perf_event_sample_rate)
9849
			return -EINVAL;
9850 9851 9852
	} else {
		if (attr.sample_period & (1ULL << 63))
			return -EINVAL;
9853 9854
	}

9855 9856 9857
	if (!attr.sample_max_stack)
		attr.sample_max_stack = sysctl_perf_event_max_stack;

S
Stephane Eranian 已提交
9858 9859 9860 9861 9862 9863 9864 9865 9866
	/*
	 * In cgroup mode, the pid argument is used to pass the fd
	 * opened to the cgroup directory in cgroupfs. The cpu argument
	 * designates the cpu on which to monitor threads from that
	 * cgroup.
	 */
	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
		return -EINVAL;

9867 9868 9869 9870
	if (flags & PERF_FLAG_FD_CLOEXEC)
		f_flags |= O_CLOEXEC;

	event_fd = get_unused_fd_flags(f_flags);
9871 9872 9873
	if (event_fd < 0)
		return event_fd;

9874
	if (group_fd != -1) {
9875 9876
		err = perf_fget_light(group_fd, &group);
		if (err)
9877
			goto err_fd;
9878
		group_leader = group.file->private_data;
9879 9880 9881 9882 9883 9884
		if (flags & PERF_FLAG_FD_OUTPUT)
			output_event = group_leader;
		if (flags & PERF_FLAG_FD_NO_GROUP)
			group_leader = NULL;
	}

S
Stephane Eranian 已提交
9885
	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
9886 9887 9888 9889 9890 9891 9892
		task = find_lively_task_by_vpid(pid);
		if (IS_ERR(task)) {
			err = PTR_ERR(task);
			goto err_group_fd;
		}
	}

9893 9894 9895 9896 9897 9898
	if (task && group_leader &&
	    group_leader->attr.inherit != attr.inherit) {
		err = -EINVAL;
		goto err_task;
	}

9899 9900 9901
	if (task) {
		err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
		if (err)
9902
			goto err_task;
9903 9904 9905 9906 9907 9908 9909 9910 9911 9912 9913 9914 9915 9916

		/*
		 * Reuse ptrace permission checks for now.
		 *
		 * We must hold cred_guard_mutex across this and any potential
		 * perf_install_in_context() call for this new event to
		 * serialize against exec() altering our credentials (and the
		 * perf_event_exit_task() that could imply).
		 */
		err = -EACCES;
		if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
			goto err_cred;
	}

9917 9918 9919
	if (flags & PERF_FLAG_PID_CGROUP)
		cgroup_fd = pid;

9920
	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
9921
				 NULL, NULL, cgroup_fd);
9922 9923
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
9924
		goto err_cred;
9925 9926
	}

9927 9928
	if (is_sampling_event(event)) {
		if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
9929
			err = -EOPNOTSUPP;
9930 9931 9932 9933
			goto err_alloc;
		}
	}

9934 9935 9936 9937 9938
	/*
	 * Special case software events and allow them to be part of
	 * any hardware group.
	 */
	pmu = event->pmu;
9939

9940 9941 9942 9943 9944 9945
	if (attr.use_clockid) {
		err = perf_event_set_clock(event, attr.clockid);
		if (err)
			goto err_alloc;
	}

9946 9947 9948
	if (pmu->task_ctx_nr == perf_sw_context)
		event->event_caps |= PERF_EV_CAP_SOFTWARE;

9949 9950 9951 9952 9953 9954 9955 9956 9957 9958 9959 9960 9961
	if (group_leader &&
	    (is_software_event(event) != is_software_event(group_leader))) {
		if (is_software_event(event)) {
			/*
			 * If event and group_leader are not both a software
			 * event, and event is, then group leader is not.
			 *
			 * Allow the addition of software events to !software
			 * groups, this is safe because software events never
			 * fail to schedule.
			 */
			pmu = group_leader->pmu;
		} else if (is_software_event(group_leader) &&
9962
			   (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
9963 9964 9965 9966 9967 9968 9969 9970
			/*
			 * In case the group is a pure software group, and we
			 * try to add a hardware event, move the whole group to
			 * the hardware context.
			 */
			move_group = 1;
		}
	}
9971 9972 9973 9974

	/*
	 * Get the target context (task or percpu):
	 */
9975
	ctx = find_get_context(pmu, task, event);
9976 9977
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
9978
		goto err_alloc;
9979 9980
	}

9981 9982 9983 9984 9985
	if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
		err = -EBUSY;
		goto err_context;
	}

I
Ingo Molnar 已提交
9986
	/*
9987
	 * Look up the group leader (we will attach this event to it):
9988
	 */
9989
	if (group_leader) {
9990
		err = -EINVAL;
9991 9992

		/*
I
Ingo Molnar 已提交
9993 9994 9995 9996
		 * Do not allow a recursive hierarchy (this new sibling
		 * becoming part of another group-sibling):
		 */
		if (group_leader->group_leader != group_leader)
9997
			goto err_context;
9998 9999 10000 10001 10002

		/* All events in a group should have the same clock */
		if (group_leader->clock != event->clock)
			goto err_context;

I
Ingo Molnar 已提交
10003 10004 10005
		/*
		 * Do not allow to attach to a group in a different
		 * task or CPU context:
10006
		 */
10007
		if (move_group) {
10008 10009 10010 10011 10012 10013 10014 10015 10016 10017 10018 10019 10020
			/*
			 * Make sure we're both on the same task, or both
			 * per-cpu events.
			 */
			if (group_leader->ctx->task != ctx->task)
				goto err_context;

			/*
			 * Make sure we're both events for the same CPU;
			 * grouping events for different CPUs is broken; since
			 * you can never concurrently schedule them anyhow.
			 */
			if (group_leader->cpu != event->cpu)
10021 10022 10023 10024 10025 10026
				goto err_context;
		} else {
			if (group_leader->ctx != ctx)
				goto err_context;
		}

10027 10028 10029
		/*
		 * Only a group leader can be exclusive or pinned
		 */
10030
		if (attr.exclusive || attr.pinned)
10031
			goto err_context;
10032 10033 10034 10035 10036
	}

	if (output_event) {
		err = perf_event_set_output(event, output_event);
		if (err)
10037
			goto err_context;
10038
	}
T
Thomas Gleixner 已提交
10039

10040 10041
	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
					f_flags);
10042 10043
	if (IS_ERR(event_file)) {
		err = PTR_ERR(event_file);
10044
		event_file = NULL;
10045
		goto err_context;
10046
	}
10047

10048
	if (move_group) {
10049 10050
		gctx = __perf_event_ctx_lock_double(group_leader, ctx);

10051 10052 10053 10054
		if (gctx->task == TASK_TOMBSTONE) {
			err = -ESRCH;
			goto err_locked;
		}
10055 10056 10057 10058 10059 10060 10061 10062 10063 10064 10065 10066 10067 10068 10069 10070 10071 10072 10073

		/*
		 * Check if we raced against another sys_perf_event_open() call
		 * moving the software group underneath us.
		 */
		if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
			/*
			 * If someone moved the group out from under us, check
			 * if this new event wound up on the same ctx, if so
			 * its the regular !move_group case, otherwise fail.
			 */
			if (gctx != ctx) {
				err = -EINVAL;
				goto err_locked;
			} else {
				perf_event_ctx_unlock(group_leader, gctx);
				move_group = 0;
			}
		}
10074 10075 10076 10077
	} else {
		mutex_lock(&ctx->mutex);
	}

10078 10079 10080 10081 10082
	if (ctx->task == TASK_TOMBSTONE) {
		err = -ESRCH;
		goto err_locked;
	}

P
Peter Zijlstra 已提交
10083 10084 10085 10086 10087
	if (!perf_event_validate_size(event)) {
		err = -E2BIG;
		goto err_locked;
	}

10088 10089 10090 10091 10092 10093 10094 10095 10096 10097 10098 10099 10100 10101 10102 10103 10104
	if (!task) {
		/*
		 * Check if the @cpu we're creating an event for is online.
		 *
		 * We use the perf_cpu_context::ctx::mutex to serialize against
		 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
		 */
		struct perf_cpu_context *cpuctx =
			container_of(ctx, struct perf_cpu_context, ctx);

		if (!cpuctx->online) {
			err = -ENODEV;
			goto err_locked;
		}
	}


10105 10106 10107 10108 10109 10110 10111
	/*
	 * Must be under the same ctx::mutex as perf_install_in_context(),
	 * because we need to serialize with concurrent event creation.
	 */
	if (!exclusive_event_installable(event, ctx)) {
		/* exclusive and group stuff are assumed mutually exclusive */
		WARN_ON_ONCE(move_group);
P
Peter Zijlstra 已提交
10112

10113 10114 10115
		err = -EBUSY;
		goto err_locked;
	}
P
Peter Zijlstra 已提交
10116

10117 10118
	WARN_ON_ONCE(ctx->parent_ctx);

10119 10120 10121 10122 10123
	/*
	 * This is the point on no return; we cannot fail hereafter. This is
	 * where we start modifying current state.
	 */

10124
	if (move_group) {
P
Peter Zijlstra 已提交
10125 10126 10127 10128
		/*
		 * See perf_event_ctx_lock() for comments on the details
		 * of swizzling perf_event::ctx.
		 */
10129
		perf_remove_from_context(group_leader, 0);
10130
		put_ctx(gctx);
J
Jiri Olsa 已提交
10131

10132 10133
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
10134
			perf_remove_from_context(sibling, 0);
10135 10136 10137
			put_ctx(gctx);
		}

P
Peter Zijlstra 已提交
10138 10139 10140 10141
		/*
		 * Wait for everybody to stop referencing the events through
		 * the old lists, before installing it on new lists.
		 */
10142
		synchronize_rcu();
P
Peter Zijlstra 已提交
10143

10144 10145 10146 10147 10148 10149 10150 10151 10152 10153
		/*
		 * Install the group siblings before the group leader.
		 *
		 * Because a group leader will try and install the entire group
		 * (through the sibling list, which is still in-tact), we can
		 * end up with siblings installed in the wrong context.
		 *
		 * By installing siblings first we NO-OP because they're not
		 * reachable through the group lists.
		 */
10154 10155
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
10156
			perf_event__state_init(sibling);
10157
			perf_install_in_context(ctx, sibling, sibling->cpu);
10158 10159
			get_ctx(ctx);
		}
10160 10161 10162 10163 10164 10165 10166 10167 10168

		/*
		 * Removing from the context ends up with disabled
		 * event. What we want here is event in the initial
		 * startup state, ready to be add into new context.
		 */
		perf_event__state_init(group_leader);
		perf_install_in_context(ctx, group_leader, group_leader->cpu);
		get_ctx(ctx);
10169 10170
	}

10171 10172 10173 10174 10175 10176 10177 10178 10179
	/*
	 * Precalculate sample_data sizes; do while holding ctx::mutex such
	 * that we're serialized against further additions and before
	 * perf_install_in_context() which is the point the event is active and
	 * can use these values.
	 */
	perf_event__header_size(event);
	perf_event__id_header_size(event);

P
Peter Zijlstra 已提交
10180 10181
	event->owner = current;

10182
	perf_install_in_context(ctx, event, event->cpu);
10183
	perf_unpin_context(ctx);
P
Peter Zijlstra 已提交
10184

10185
	if (move_group)
10186
		perf_event_ctx_unlock(group_leader, gctx);
10187
	mutex_unlock(&ctx->mutex);
10188

10189 10190 10191 10192 10193
	if (task) {
		mutex_unlock(&task->signal->cred_guard_mutex);
		put_task_struct(task);
	}

10194 10195 10196
	mutex_lock(&current->perf_event_mutex);
	list_add_tail(&event->owner_entry, &current->perf_event_list);
	mutex_unlock(&current->perf_event_mutex);
10197

10198 10199 10200 10201 10202 10203
	/*
	 * Drop the reference on the group_event after placing the
	 * new event on the sibling_list. This ensures destruction
	 * of the group leader will find the pointer to itself in
	 * perf_group_detach().
	 */
10204
	fdput(group);
10205 10206
	fd_install(event_fd, event_file);
	return event_fd;
T
Thomas Gleixner 已提交
10207

10208 10209
err_locked:
	if (move_group)
10210
		perf_event_ctx_unlock(group_leader, gctx);
10211 10212 10213
	mutex_unlock(&ctx->mutex);
/* err_file: */
	fput(event_file);
10214
err_context:
10215
	perf_unpin_context(ctx);
10216
	put_ctx(ctx);
10217
err_alloc:
P
Peter Zijlstra 已提交
10218 10219 10220 10221 10222 10223
	/*
	 * If event_file is set, the fput() above will have called ->release()
	 * and that will take care of freeing the event.
	 */
	if (!event_file)
		free_event(event);
10224 10225 10226
err_cred:
	if (task)
		mutex_unlock(&task->signal->cred_guard_mutex);
10227
err_task:
P
Peter Zijlstra 已提交
10228 10229
	if (task)
		put_task_struct(task);
10230
err_group_fd:
10231
	fdput(group);
10232 10233
err_fd:
	put_unused_fd(event_fd);
10234
	return err;
T
Thomas Gleixner 已提交
10235 10236
}

10237 10238 10239 10240 10241
/**
 * perf_event_create_kernel_counter
 *
 * @attr: attributes of the counter to create
 * @cpu: cpu in which the counter is bound
M
Matt Helsley 已提交
10242
 * @task: task to profile (NULL for percpu)
10243 10244 10245
 */
struct perf_event *
perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
M
Matt Helsley 已提交
10246
				 struct task_struct *task,
10247 10248
				 perf_overflow_handler_t overflow_handler,
				 void *context)
10249 10250
{
	struct perf_event_context *ctx;
10251
	struct perf_event *event;
10252
	int err;
10253

10254 10255 10256
	/*
	 * Get the target context (task or percpu):
	 */
10257

10258
	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
10259
				 overflow_handler, context, -1);
10260 10261 10262 10263
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
		goto err;
	}
10264

10265
	/* Mark owner so we could distinguish it from user events. */
10266
	event->owner = TASK_TOMBSTONE;
10267

10268
	ctx = find_get_context(event->pmu, task, event);
10269 10270
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
10271
		goto err_free;
10272
	}
10273 10274 10275

	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
10276 10277 10278 10279 10280
	if (ctx->task == TASK_TOMBSTONE) {
		err = -ESRCH;
		goto err_unlock;
	}

10281 10282 10283 10284 10285 10286 10287 10288 10289 10290 10291 10292 10293 10294 10295
	if (!task) {
		/*
		 * Check if the @cpu we're creating an event for is online.
		 *
		 * We use the perf_cpu_context::ctx::mutex to serialize against
		 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
		 */
		struct perf_cpu_context *cpuctx =
			container_of(ctx, struct perf_cpu_context, ctx);
		if (!cpuctx->online) {
			err = -ENODEV;
			goto err_unlock;
		}
	}

10296 10297
	if (!exclusive_event_installable(event, ctx)) {
		err = -EBUSY;
10298
		goto err_unlock;
10299 10300
	}

10301
	perf_install_in_context(ctx, event, cpu);
10302
	perf_unpin_context(ctx);
10303 10304 10305 10306
	mutex_unlock(&ctx->mutex);

	return event;

10307 10308 10309 10310
err_unlock:
	mutex_unlock(&ctx->mutex);
	perf_unpin_context(ctx);
	put_ctx(ctx);
10311 10312 10313
err_free:
	free_event(event);
err:
10314
	return ERR_PTR(err);
10315
}
10316
EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
10317

10318 10319 10320 10321 10322 10323 10324 10325 10326 10327
void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
{
	struct perf_event_context *src_ctx;
	struct perf_event_context *dst_ctx;
	struct perf_event *event, *tmp;
	LIST_HEAD(events);

	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;

P
Peter Zijlstra 已提交
10328 10329 10330 10331 10332
	/*
	 * See perf_event_ctx_lock() for comments on the details
	 * of swizzling perf_event::ctx.
	 */
	mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
10333 10334
	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
				 event_entry) {
10335
		perf_remove_from_context(event, 0);
10336
		unaccount_event_cpu(event, src_cpu);
10337
		put_ctx(src_ctx);
10338
		list_add(&event->migrate_entry, &events);
10339 10340
	}

10341 10342 10343
	/*
	 * Wait for the events to quiesce before re-instating them.
	 */
10344 10345
	synchronize_rcu();

10346 10347 10348 10349 10350 10351 10352 10353 10354 10355 10356 10357 10358 10359 10360 10361 10362 10363 10364 10365 10366 10367 10368 10369
	/*
	 * Re-instate events in 2 passes.
	 *
	 * Skip over group leaders and only install siblings on this first
	 * pass, siblings will not get enabled without a leader, however a
	 * leader will enable its siblings, even if those are still on the old
	 * context.
	 */
	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
		if (event->group_leader == event)
			continue;

		list_del(&event->migrate_entry);
		if (event->state >= PERF_EVENT_STATE_OFF)
			event->state = PERF_EVENT_STATE_INACTIVE;
		account_event_cpu(event, dst_cpu);
		perf_install_in_context(dst_ctx, event, dst_cpu);
		get_ctx(dst_ctx);
	}

	/*
	 * Once all the siblings are setup properly, install the group leaders
	 * to make it go.
	 */
10370 10371
	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
		list_del(&event->migrate_entry);
10372 10373
		if (event->state >= PERF_EVENT_STATE_OFF)
			event->state = PERF_EVENT_STATE_INACTIVE;
10374
		account_event_cpu(event, dst_cpu);
10375 10376 10377 10378
		perf_install_in_context(dst_ctx, event, dst_cpu);
		get_ctx(dst_ctx);
	}
	mutex_unlock(&dst_ctx->mutex);
P
Peter Zijlstra 已提交
10379
	mutex_unlock(&src_ctx->mutex);
10380 10381 10382
}
EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);

10383
static void sync_child_event(struct perf_event *child_event,
10384
			       struct task_struct *child)
10385
{
10386
	struct perf_event *parent_event = child_event->parent;
10387
	u64 child_val;
10388

10389 10390
	if (child_event->attr.inherit_stat)
		perf_event_read_event(child_event, child);
10391

P
Peter Zijlstra 已提交
10392
	child_val = perf_event_count(child_event);
10393 10394 10395 10396

	/*
	 * Add back the child's count to the parent's count:
	 */
10397
	atomic64_add(child_val, &parent_event->child_count);
10398 10399 10400 10401
	atomic64_add(child_event->total_time_enabled,
		     &parent_event->child_total_time_enabled);
	atomic64_add(child_event->total_time_running,
		     &parent_event->child_total_time_running);
10402 10403
}

10404
static void
10405 10406 10407
perf_event_exit_event(struct perf_event *child_event,
		      struct perf_event_context *child_ctx,
		      struct task_struct *child)
10408
{
10409 10410
	struct perf_event *parent_event = child_event->parent;

10411 10412 10413 10414 10415 10416 10417 10418 10419 10420 10421 10422
	/*
	 * Do not destroy the 'original' grouping; because of the context
	 * switch optimization the original events could've ended up in a
	 * random child task.
	 *
	 * If we were to destroy the original group, all group related
	 * operations would cease to function properly after this random
	 * child dies.
	 *
	 * Do destroy all inherited groups, we don't care about those
	 * and being thorough is better.
	 */
10423 10424 10425
	raw_spin_lock_irq(&child_ctx->lock);
	WARN_ON_ONCE(child_ctx->is_active);

10426
	if (parent_event)
10427 10428
		perf_group_detach(child_event);
	list_del_event(child_event, child_ctx);
P
Peter Zijlstra 已提交
10429
	child_event->state = PERF_EVENT_STATE_EXIT; /* is_event_hup() */
10430
	raw_spin_unlock_irq(&child_ctx->lock);
10431

10432
	/*
10433
	 * Parent events are governed by their filedesc, retain them.
10434
	 */
10435
	if (!parent_event) {
10436
		perf_event_wakeup(child_event);
10437
		return;
10438
	}
10439 10440 10441 10442 10443 10444 10445 10446 10447 10448 10449 10450 10451 10452 10453 10454 10455 10456 10457 10458
	/*
	 * Child events can be cleaned up.
	 */

	sync_child_event(child_event, child);

	/*
	 * Remove this event from the parent's list
	 */
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_del_init(&child_event->child_list);
	mutex_unlock(&parent_event->child_mutex);

	/*
	 * Kick perf_poll() for is_event_hup().
	 */
	perf_event_wakeup(parent_event);
	free_event(child_event);
	put_event(parent_event);
10459 10460
}

P
Peter Zijlstra 已提交
10461
static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
10462
{
10463
	struct perf_event_context *child_ctx, *clone_ctx = NULL;
10464 10465 10466
	struct perf_event *child_event, *next;

	WARN_ON_ONCE(child != current);
10467

10468
	child_ctx = perf_pin_task_context(child, ctxn);
10469
	if (!child_ctx)
10470 10471
		return;

10472
	/*
10473 10474 10475 10476 10477 10478 10479 10480
	 * In order to reduce the amount of tricky in ctx tear-down, we hold
	 * ctx::mutex over the entire thing. This serializes against almost
	 * everything that wants to access the ctx.
	 *
	 * The exception is sys_perf_event_open() /
	 * perf_event_create_kernel_count() which does find_get_context()
	 * without ctx::mutex (it cannot because of the move_group double mutex
	 * lock thing). See the comments in perf_install_in_context().
10481
	 */
10482
	mutex_lock(&child_ctx->mutex);
10483 10484

	/*
10485 10486 10487
	 * In a single ctx::lock section, de-schedule the events and detach the
	 * context from the task such that we cannot ever get it scheduled back
	 * in.
10488
	 */
10489
	raw_spin_lock_irq(&child_ctx->lock);
10490
	task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
10491

10492
	/*
10493 10494
	 * Now that the context is inactive, destroy the task <-> ctx relation
	 * and mark the context dead.
10495
	 */
10496 10497 10498 10499
	RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
	put_ctx(child_ctx); /* cannot be last */
	WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
	put_task_struct(current); /* cannot be last */
10500

10501
	clone_ctx = unclone_ctx(child_ctx);
10502
	raw_spin_unlock_irq(&child_ctx->lock);
P
Peter Zijlstra 已提交
10503

10504 10505
	if (clone_ctx)
		put_ctx(clone_ctx);
10506

P
Peter Zijlstra 已提交
10507
	/*
10508 10509 10510
	 * Report the task dead after unscheduling the events so that we
	 * won't get any samples after PERF_RECORD_EXIT. We can however still
	 * get a few PERF_RECORD_READ events.
P
Peter Zijlstra 已提交
10511
	 */
10512
	perf_event_task(child, child_ctx, 0);
10513

10514
	list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
10515
		perf_event_exit_event(child_event, child_ctx, child);
10516

10517 10518 10519
	mutex_unlock(&child_ctx->mutex);

	put_ctx(child_ctx);
10520 10521
}

P
Peter Zijlstra 已提交
10522 10523
/*
 * When a child task exits, feed back event values to parent events.
10524 10525 10526
 *
 * Can be called with cred_guard_mutex held when called from
 * install_exec_creds().
P
Peter Zijlstra 已提交
10527 10528 10529
 */
void perf_event_exit_task(struct task_struct *child)
{
P
Peter Zijlstra 已提交
10530
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
10531 10532
	int ctxn;

P
Peter Zijlstra 已提交
10533 10534 10535 10536 10537 10538 10539 10540 10541 10542
	mutex_lock(&child->perf_event_mutex);
	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
				 owner_entry) {
		list_del_init(&event->owner_entry);

		/*
		 * Ensure the list deletion is visible before we clear
		 * the owner, closes a race against perf_release() where
		 * we need to serialize on the owner->perf_event_mutex.
		 */
10543
		smp_store_release(&event->owner, NULL);
P
Peter Zijlstra 已提交
10544 10545 10546
	}
	mutex_unlock(&child->perf_event_mutex);

P
Peter Zijlstra 已提交
10547 10548
	for_each_task_context_nr(ctxn)
		perf_event_exit_task_context(child, ctxn);
J
Jiri Olsa 已提交
10549 10550 10551 10552 10553 10554 10555 10556

	/*
	 * The perf_event_exit_task_context calls perf_event_task
	 * with child's task_ctx, which generates EXIT events for
	 * child contexts and sets child->perf_event_ctxp[] to NULL.
	 * At this point we need to send EXIT events to cpu contexts.
	 */
	perf_event_task(child, NULL, 0);
P
Peter Zijlstra 已提交
10557 10558
}

10559 10560 10561 10562 10563 10564 10565 10566 10567 10568 10569 10570
static void perf_free_event(struct perf_event *event,
			    struct perf_event_context *ctx)
{
	struct perf_event *parent = event->parent;

	if (WARN_ON_ONCE(!parent))
		return;

	mutex_lock(&parent->child_mutex);
	list_del_init(&event->child_list);
	mutex_unlock(&parent->child_mutex);

10571
	put_event(parent);
10572

P
Peter Zijlstra 已提交
10573
	raw_spin_lock_irq(&ctx->lock);
10574
	perf_group_detach(event);
10575
	list_del_event(event, ctx);
P
Peter Zijlstra 已提交
10576
	raw_spin_unlock_irq(&ctx->lock);
10577 10578 10579
	free_event(event);
}

10580
/*
P
Peter Zijlstra 已提交
10581
 * Free an unexposed, unused context as created by inheritance by
P
Peter Zijlstra 已提交
10582
 * perf_event_init_task below, used by fork() in case of fail.
P
Peter Zijlstra 已提交
10583 10584 10585
 *
 * Not all locks are strictly required, but take them anyway to be nice and
 * help out with the lockdep assertions.
10586
 */
10587
void perf_event_free_task(struct task_struct *task)
10588
{
P
Peter Zijlstra 已提交
10589
	struct perf_event_context *ctx;
10590
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
10591
	int ctxn;
10592

P
Peter Zijlstra 已提交
10593 10594 10595 10596
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;
10597

P
Peter Zijlstra 已提交
10598
		mutex_lock(&ctx->mutex);
10599 10600 10601 10602 10603 10604 10605 10606 10607 10608 10609
		raw_spin_lock_irq(&ctx->lock);
		/*
		 * Destroy the task <-> ctx relation and mark the context dead.
		 *
		 * This is important because even though the task hasn't been
		 * exposed yet the context has been (through child_list).
		 */
		RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
		WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
		put_task_struct(task); /* cannot be last */
		raw_spin_unlock_irq(&ctx->lock);
10610

10611
		list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
P
Peter Zijlstra 已提交
10612
			perf_free_event(event, ctx);
10613

P
Peter Zijlstra 已提交
10614 10615 10616
		mutex_unlock(&ctx->mutex);
		put_ctx(ctx);
	}
10617 10618
}

10619 10620 10621 10622 10623 10624 10625 10626
void perf_event_delayed_put(struct task_struct *task)
{
	int ctxn;

	for_each_task_context_nr(ctxn)
		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
}

10627
struct file *perf_event_get(unsigned int fd)
10628
{
10629
	struct file *file;
10630

10631 10632 10633
	file = fget_raw(fd);
	if (!file)
		return ERR_PTR(-EBADF);
10634

10635 10636 10637 10638
	if (file->f_op != &perf_fops) {
		fput(file);
		return ERR_PTR(-EBADF);
	}
10639

10640
	return file;
10641 10642 10643 10644 10645 10646 10647 10648 10649 10650
}

const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
{
	if (!event)
		return ERR_PTR(-EINVAL);

	return &event->attr;
}

P
Peter Zijlstra 已提交
10651
/*
10652 10653 10654 10655 10656 10657
 * Inherit a event from parent task to child task.
 *
 * Returns:
 *  - valid pointer on success
 *  - NULL for orphaned events
 *  - IS_ERR() on error
P
Peter Zijlstra 已提交
10658 10659 10660 10661 10662 10663 10664 10665 10666
 */
static struct perf_event *
inherit_event(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event *group_leader,
	      struct perf_event_context *child_ctx)
{
10667
	enum perf_event_active_state parent_state = parent_event->state;
P
Peter Zijlstra 已提交
10668
	struct perf_event *child_event;
10669
	unsigned long flags;
P
Peter Zijlstra 已提交
10670 10671 10672 10673 10674 10675 10676 10677 10678 10679 10680 10681

	/*
	 * Instead of creating recursive hierarchies of events,
	 * we link inherited events back to the original parent,
	 * which has a filp for sure, which we use as the reference
	 * count:
	 */
	if (parent_event->parent)
		parent_event = parent_event->parent;

	child_event = perf_event_alloc(&parent_event->attr,
					   parent_event->cpu,
10682
					   child,
P
Peter Zijlstra 已提交
10683
					   group_leader, parent_event,
10684
					   NULL, NULL, -1);
P
Peter Zijlstra 已提交
10685 10686
	if (IS_ERR(child_event))
		return child_event;
10687

10688 10689 10690 10691 10692 10693 10694
	/*
	 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
	 * must be under the same lock in order to serialize against
	 * perf_event_release_kernel(), such that either we must observe
	 * is_orphaned_event() or they will observe us on the child_list.
	 */
	mutex_lock(&parent_event->child_mutex);
10695 10696
	if (is_orphaned_event(parent_event) ||
	    !atomic_long_inc_not_zero(&parent_event->refcount)) {
10697
		mutex_unlock(&parent_event->child_mutex);
10698 10699 10700 10701
		free_event(child_event);
		return NULL;
	}

P
Peter Zijlstra 已提交
10702 10703 10704 10705 10706 10707 10708
	get_ctx(child_ctx);

	/*
	 * Make the child state follow the state of the parent event,
	 * not its attr.disabled bit.  We hold the parent's mutex,
	 * so we won't race with perf_event_{en, dis}able_family.
	 */
10709
	if (parent_state >= PERF_EVENT_STATE_INACTIVE)
P
Peter Zijlstra 已提交
10710 10711 10712 10713 10714 10715 10716 10717 10718 10719 10720 10721 10722 10723 10724 10725
		child_event->state = PERF_EVENT_STATE_INACTIVE;
	else
		child_event->state = PERF_EVENT_STATE_OFF;

	if (parent_event->attr.freq) {
		u64 sample_period = parent_event->hw.sample_period;
		struct hw_perf_event *hwc = &child_event->hw;

		hwc->sample_period = sample_period;
		hwc->last_period   = sample_period;

		local64_set(&hwc->period_left, sample_period);
	}

	child_event->ctx = child_ctx;
	child_event->overflow_handler = parent_event->overflow_handler;
10726 10727
	child_event->overflow_handler_context
		= parent_event->overflow_handler_context;
P
Peter Zijlstra 已提交
10728

10729 10730 10731 10732
	/*
	 * Precalculate sample_data sizes
	 */
	perf_event__header_size(child_event);
10733
	perf_event__id_header_size(child_event);
10734

P
Peter Zijlstra 已提交
10735 10736 10737
	/*
	 * Link it up in the child's context:
	 */
10738
	raw_spin_lock_irqsave(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
10739
	add_event_to_ctx(child_event, child_ctx);
10740
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
10741 10742 10743 10744 10745 10746 10747 10748 10749 10750

	/*
	 * Link this into the parent event's child list
	 */
	list_add_tail(&child_event->child_list, &parent_event->child_list);
	mutex_unlock(&parent_event->child_mutex);

	return child_event;
}

10751 10752 10753 10754 10755 10756 10757 10758 10759 10760
/*
 * Inherits an event group.
 *
 * This will quietly suppress orphaned events; !inherit_event() is not an error.
 * This matches with perf_event_release_kernel() removing all child events.
 *
 * Returns:
 *  - 0 on success
 *  - <0 on error
 */
P
Peter Zijlstra 已提交
10761 10762 10763 10764 10765 10766 10767 10768 10769 10770 10771 10772 10773 10774
static int inherit_group(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event_context *child_ctx)
{
	struct perf_event *leader;
	struct perf_event *sub;
	struct perf_event *child_ctr;

	leader = inherit_event(parent_event, parent, parent_ctx,
				 child, NULL, child_ctx);
	if (IS_ERR(leader))
		return PTR_ERR(leader);
10775 10776 10777 10778 10779
	/*
	 * @leader can be NULL here because of is_orphaned_event(). In this
	 * case inherit_event() will create individual events, similar to what
	 * perf_group_detach() would do anyway.
	 */
P
Peter Zijlstra 已提交
10780 10781 10782 10783 10784 10785 10786
	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
		child_ctr = inherit_event(sub, parent, parent_ctx,
					    child, leader, child_ctx);
		if (IS_ERR(child_ctr))
			return PTR_ERR(child_ctr);
	}
	return 0;
10787 10788
}

10789 10790 10791 10792 10793 10794 10795 10796 10797 10798 10799
/*
 * Creates the child task context and tries to inherit the event-group.
 *
 * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
 * inherited_all set when we 'fail' to inherit an orphaned event; this is
 * consistent with perf_event_release_kernel() removing all child events.
 *
 * Returns:
 *  - 0 on success
 *  - <0 on error
 */
10800 10801 10802
static int
inherit_task_group(struct perf_event *event, struct task_struct *parent,
		   struct perf_event_context *parent_ctx,
P
Peter Zijlstra 已提交
10803
		   struct task_struct *child, int ctxn,
10804 10805 10806
		   int *inherited_all)
{
	int ret;
P
Peter Zijlstra 已提交
10807
	struct perf_event_context *child_ctx;
10808 10809 10810 10811

	if (!event->attr.inherit) {
		*inherited_all = 0;
		return 0;
10812 10813
	}

10814
	child_ctx = child->perf_event_ctxp[ctxn];
10815 10816 10817 10818 10819 10820 10821
	if (!child_ctx) {
		/*
		 * This is executed from the parent task context, so
		 * inherit events that have been marked for cloning.
		 * First allocate and initialize a context for the
		 * child.
		 */
10822
		child_ctx = alloc_perf_context(parent_ctx->pmu, child);
10823 10824
		if (!child_ctx)
			return -ENOMEM;
10825

P
Peter Zijlstra 已提交
10826
		child->perf_event_ctxp[ctxn] = child_ctx;
10827 10828 10829 10830 10831 10832 10833 10834 10835
	}

	ret = inherit_group(event, parent, parent_ctx,
			    child, child_ctx);

	if (ret)
		*inherited_all = 0;

	return ret;
10836 10837
}

10838
/*
10839
 * Initialize the perf_event context in task_struct
10840
 */
10841
static int perf_event_init_context(struct task_struct *child, int ctxn)
10842
{
10843
	struct perf_event_context *child_ctx, *parent_ctx;
10844 10845
	struct perf_event_context *cloned_ctx;
	struct perf_event *event;
10846
	struct task_struct *parent = current;
10847
	int inherited_all = 1;
10848
	unsigned long flags;
10849
	int ret = 0;
10850

P
Peter Zijlstra 已提交
10851
	if (likely(!parent->perf_event_ctxp[ctxn]))
10852 10853
		return 0;

10854
	/*
10855 10856
	 * If the parent's context is a clone, pin it so it won't get
	 * swapped under us.
10857
	 */
P
Peter Zijlstra 已提交
10858
	parent_ctx = perf_pin_task_context(parent, ctxn);
10859 10860
	if (!parent_ctx)
		return 0;
10861

10862 10863 10864 10865 10866 10867 10868
	/*
	 * No need to check if parent_ctx != NULL here; since we saw
	 * it non-NULL earlier, the only reason for it to become NULL
	 * is if we exit, and since we're currently in the middle of
	 * a fork we can't be exiting at the same time.
	 */

10869 10870 10871 10872
	/*
	 * Lock the parent list. No need to lock the child - not PID
	 * hashed yet and not running, so nobody can access it.
	 */
10873
	mutex_lock(&parent_ctx->mutex);
10874 10875 10876 10877 10878

	/*
	 * We dont have to disable NMIs - we are only looking at
	 * the list, not manipulating it:
	 */
10879
	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
P
Peter Zijlstra 已提交
10880 10881
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
10882
		if (ret)
10883
			goto out_unlock;
10884
	}
10885

10886 10887 10888 10889 10890 10891 10892 10893 10894
	/*
	 * We can't hold ctx->lock when iterating the ->flexible_group list due
	 * to allocations, but we need to prevent rotation because
	 * rotate_ctx() will change the list from interrupt context.
	 */
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 1;
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);

10895
	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
P
Peter Zijlstra 已提交
10896 10897
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
10898
		if (ret)
10899
			goto out_unlock;
10900 10901
	}

10902 10903 10904
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 0;

P
Peter Zijlstra 已提交
10905
	child_ctx = child->perf_event_ctxp[ctxn];
10906

10907
	if (child_ctx && inherited_all) {
10908 10909 10910
		/*
		 * Mark the child context as a clone of the parent
		 * context, or of whatever the parent is a clone of.
P
Peter Zijlstra 已提交
10911 10912 10913
		 *
		 * Note that if the parent is a clone, the holding of
		 * parent_ctx->lock avoids it from being uncloned.
10914
		 */
P
Peter Zijlstra 已提交
10915
		cloned_ctx = parent_ctx->parent_ctx;
10916 10917
		if (cloned_ctx) {
			child_ctx->parent_ctx = cloned_ctx;
10918
			child_ctx->parent_gen = parent_ctx->parent_gen;
10919 10920 10921 10922 10923
		} else {
			child_ctx->parent_ctx = parent_ctx;
			child_ctx->parent_gen = parent_ctx->generation;
		}
		get_ctx(child_ctx->parent_ctx);
10924 10925
	}

P
Peter Zijlstra 已提交
10926
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
10927
out_unlock:
10928
	mutex_unlock(&parent_ctx->mutex);
10929

10930
	perf_unpin_context(parent_ctx);
10931
	put_ctx(parent_ctx);
10932

10933
	return ret;
10934 10935
}

P
Peter Zijlstra 已提交
10936 10937 10938 10939 10940 10941 10942
/*
 * Initialize the perf_event context in task_struct
 */
int perf_event_init_task(struct task_struct *child)
{
	int ctxn, ret;

10943 10944 10945 10946
	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
	mutex_init(&child->perf_event_mutex);
	INIT_LIST_HEAD(&child->perf_event_list);

P
Peter Zijlstra 已提交
10947 10948
	for_each_task_context_nr(ctxn) {
		ret = perf_event_init_context(child, ctxn);
P
Peter Zijlstra 已提交
10949 10950
		if (ret) {
			perf_event_free_task(child);
P
Peter Zijlstra 已提交
10951
			return ret;
P
Peter Zijlstra 已提交
10952
		}
P
Peter Zijlstra 已提交
10953 10954 10955 10956 10957
	}

	return 0;
}

10958 10959
static void __init perf_event_init_all_cpus(void)
{
10960
	struct swevent_htable *swhash;
10961 10962
	int cpu;

10963 10964
	zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);

10965
	for_each_possible_cpu(cpu) {
10966 10967
		swhash = &per_cpu(swevent_htable, cpu);
		mutex_init(&swhash->hlist_mutex);
10968
		INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
10969 10970 10971

		INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
		raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
10972

10973 10974 10975
#ifdef CONFIG_CGROUP_PERF
		INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
#endif
10976
		INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
10977 10978 10979
	}
}

10980
void perf_swevent_init_cpu(unsigned int cpu)
T
Thomas Gleixner 已提交
10981
{
P
Peter Zijlstra 已提交
10982
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
T
Thomas Gleixner 已提交
10983

10984
	mutex_lock(&swhash->hlist_mutex);
10985
	if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
10986 10987
		struct swevent_hlist *hlist;

10988 10989 10990
		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
		WARN_ON(!hlist);
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
10991
	}
10992
	mutex_unlock(&swhash->hlist_mutex);
T
Thomas Gleixner 已提交
10993 10994
}

10995
#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
P
Peter Zijlstra 已提交
10996
static void __perf_event_exit_context(void *__info)
T
Thomas Gleixner 已提交
10997
{
P
Peter Zijlstra 已提交
10998
	struct perf_event_context *ctx = __info;
10999 11000
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
	struct perf_event *event;
T
Thomas Gleixner 已提交
11001

11002 11003
	raw_spin_lock(&ctx->lock);
	list_for_each_entry(event, &ctx->event_list, event_entry)
11004
		__perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
11005
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
11006
}
P
Peter Zijlstra 已提交
11007 11008 11009

static void perf_event_exit_cpu_context(int cpu)
{
11010
	struct perf_cpu_context *cpuctx;
P
Peter Zijlstra 已提交
11011 11012 11013
	struct perf_event_context *ctx;
	struct pmu *pmu;

11014 11015 11016 11017
	mutex_lock(&pmus_lock);
	list_for_each_entry(pmu, &pmus, entry) {
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
		ctx = &cpuctx->ctx;
P
Peter Zijlstra 已提交
11018 11019 11020

		mutex_lock(&ctx->mutex);
		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
11021
		cpuctx->online = 0;
P
Peter Zijlstra 已提交
11022 11023
		mutex_unlock(&ctx->mutex);
	}
11024 11025
	cpumask_clear_cpu(cpu, perf_online_mask);
	mutex_unlock(&pmus_lock);
P
Peter Zijlstra 已提交
11026
}
11027 11028 11029 11030 11031
#else

static void perf_event_exit_cpu_context(int cpu) { }

#endif
P
Peter Zijlstra 已提交
11032

11033 11034 11035 11036 11037 11038 11039 11040 11041 11042 11043 11044 11045 11046 11047 11048 11049 11050 11051 11052 11053 11054 11055
int perf_event_init_cpu(unsigned int cpu)
{
	struct perf_cpu_context *cpuctx;
	struct perf_event_context *ctx;
	struct pmu *pmu;

	perf_swevent_init_cpu(cpu);

	mutex_lock(&pmus_lock);
	cpumask_set_cpu(cpu, perf_online_mask);
	list_for_each_entry(pmu, &pmus, entry) {
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
		ctx = &cpuctx->ctx;

		mutex_lock(&ctx->mutex);
		cpuctx->online = 1;
		mutex_unlock(&ctx->mutex);
	}
	mutex_unlock(&pmus_lock);

	return 0;
}

11056
int perf_event_exit_cpu(unsigned int cpu)
T
Thomas Gleixner 已提交
11057
{
P
Peter Zijlstra 已提交
11058
	perf_event_exit_cpu_context(cpu);
11059
	return 0;
T
Thomas Gleixner 已提交
11060 11061
}

P
Peter Zijlstra 已提交
11062 11063 11064 11065 11066 11067 11068 11069 11070 11071 11072 11073 11074 11075 11076 11077 11078 11079 11080 11081
static int
perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
{
	int cpu;

	for_each_online_cpu(cpu)
		perf_event_exit_cpu(cpu);

	return NOTIFY_OK;
}

/*
 * Run the perf reboot notifier at the very last possible moment so that
 * the generic watchdog code runs as long as possible.
 */
static struct notifier_block perf_reboot_notifier = {
	.notifier_call = perf_reboot,
	.priority = INT_MIN,
};

11082
void __init perf_event_init(void)
T
Thomas Gleixner 已提交
11083
{
11084 11085
	int ret;

P
Peter Zijlstra 已提交
11086 11087
	idr_init(&pmu_idr);

11088
	perf_event_init_all_cpus();
11089
	init_srcu_struct(&pmus_srcu);
P
Peter Zijlstra 已提交
11090 11091 11092
	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
	perf_pmu_register(&perf_cpu_clock, NULL, -1);
	perf_pmu_register(&perf_task_clock, NULL, -1);
11093
	perf_tp_register();
11094
	perf_event_init_cpu(smp_processor_id());
P
Peter Zijlstra 已提交
11095
	register_reboot_notifier(&perf_reboot_notifier);
11096 11097 11098

	ret = init_hw_breakpoint();
	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
11099

11100 11101 11102 11103 11104 11105
	/*
	 * Build time assertion that we keep the data_head at the intended
	 * location.  IOW, validation we got the __reserved[] size right.
	 */
	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
		     != 1024);
T
Thomas Gleixner 已提交
11106
}
P
Peter Zijlstra 已提交
11107

11108 11109 11110 11111 11112 11113 11114 11115 11116 11117 11118
ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
			      char *page)
{
	struct perf_pmu_events_attr *pmu_attr =
		container_of(attr, struct perf_pmu_events_attr, attr);

	if (pmu_attr->event_str)
		return sprintf(page, "%s\n", pmu_attr->event_str);

	return 0;
}
11119
EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
11120

P
Peter Zijlstra 已提交
11121 11122 11123 11124 11125 11126 11127 11128 11129 11130 11131 11132 11133 11134 11135 11136 11137 11138 11139 11140 11141 11142 11143 11144 11145 11146 11147
static int __init perf_event_sysfs_init(void)
{
	struct pmu *pmu;
	int ret;

	mutex_lock(&pmus_lock);

	ret = bus_register(&pmu_bus);
	if (ret)
		goto unlock;

	list_for_each_entry(pmu, &pmus, entry) {
		if (!pmu->name || pmu->type < 0)
			continue;

		ret = pmu_dev_alloc(pmu);
		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
	}
	pmu_bus_running = 1;
	ret = 0;

unlock:
	mutex_unlock(&pmus_lock);

	return ret;
}
device_initcall(perf_event_sysfs_init);
S
Stephane Eranian 已提交
11148 11149

#ifdef CONFIG_CGROUP_PERF
11150 11151
static struct cgroup_subsys_state *
perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
S
Stephane Eranian 已提交
11152 11153 11154
{
	struct perf_cgroup *jc;

11155
	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
S
Stephane Eranian 已提交
11156 11157 11158 11159 11160 11161 11162 11163 11164 11165 11166 11167
	if (!jc)
		return ERR_PTR(-ENOMEM);

	jc->info = alloc_percpu(struct perf_cgroup_info);
	if (!jc->info) {
		kfree(jc);
		return ERR_PTR(-ENOMEM);
	}

	return &jc->css;
}

11168
static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
S
Stephane Eranian 已提交
11169
{
11170 11171
	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);

S
Stephane Eranian 已提交
11172 11173 11174 11175 11176 11177 11178
	free_percpu(jc->info);
	kfree(jc);
}

static int __perf_cgroup_move(void *info)
{
	struct task_struct *task = info;
11179
	rcu_read_lock();
S
Stephane Eranian 已提交
11180
	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
11181
	rcu_read_unlock();
S
Stephane Eranian 已提交
11182 11183 11184
	return 0;
}

11185
static void perf_cgroup_attach(struct cgroup_taskset *tset)
S
Stephane Eranian 已提交
11186
{
11187
	struct task_struct *task;
11188
	struct cgroup_subsys_state *css;
11189

11190
	cgroup_taskset_for_each(task, css, tset)
11191
		task_function_call(task, __perf_cgroup_move, task);
S
Stephane Eranian 已提交
11192 11193
}

11194
struct cgroup_subsys perf_event_cgrp_subsys = {
11195 11196
	.css_alloc	= perf_cgroup_css_alloc,
	.css_free	= perf_cgroup_css_free,
11197
	.attach		= perf_cgroup_attach,
11198 11199 11200 11201 11202 11203
	/*
	 * Implicitly enable on dfl hierarchy so that perf events can
	 * always be filtered by cgroup2 path as long as perf_event
	 * controller is not mounted on a legacy hierarchy.
	 */
	.implicit_on_dfl = true,
S
Stephane Eranian 已提交
11204 11205
};
#endif /* CONFIG_CGROUP_PERF */