core.c 268.3 KB
Newer Older
T
Thomas Gleixner 已提交
1
/*
I
Ingo Molnar 已提交
2
 * Performance events core code:
T
Thomas Gleixner 已提交
3
 *
4
 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5
 *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6
 *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
A
Al Viro 已提交
7
 *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8
 *
I
Ingo Molnar 已提交
9
 * For licensing details see kernel-base/COPYING
T
Thomas Gleixner 已提交
10 11 12
 */

#include <linux/fs.h>
13
#include <linux/mm.h>
T
Thomas Gleixner 已提交
14 15
#include <linux/cpu.h>
#include <linux/smp.h>
P
Peter Zijlstra 已提交
16
#include <linux/idr.h>
17
#include <linux/file.h>
T
Thomas Gleixner 已提交
18
#include <linux/poll.h>
19
#include <linux/slab.h>
20
#include <linux/hash.h>
21
#include <linux/tick.h>
T
Thomas Gleixner 已提交
22
#include <linux/sysfs.h>
23
#include <linux/dcache.h>
T
Thomas Gleixner 已提交
24
#include <linux/percpu.h>
25
#include <linux/ptrace.h>
P
Peter Zijlstra 已提交
26
#include <linux/reboot.h>
27
#include <linux/vmstat.h>
P
Peter Zijlstra 已提交
28
#include <linux/device.h>
29
#include <linux/export.h>
30
#include <linux/vmalloc.h>
31 32
#include <linux/hardirq.h>
#include <linux/rculist.h>
T
Thomas Gleixner 已提交
33 34 35
#include <linux/uaccess.h>
#include <linux/syscalls.h>
#include <linux/anon_inodes.h>
I
Ingo Molnar 已提交
36
#include <linux/kernel_stat.h>
37
#include <linux/cgroup.h>
38
#include <linux/perf_event.h>
39
#include <linux/trace_events.h>
40
#include <linux/hw_breakpoint.h>
41
#include <linux/mm_types.h>
42
#include <linux/module.h>
43
#include <linux/mman.h>
P
Pawel Moll 已提交
44
#include <linux/compat.h>
45 46
#include <linux/bpf.h>
#include <linux/filter.h>
47 48
#include <linux/namei.h>
#include <linux/parser.h>
49
#include <linux/sched/clock.h>
50
#include <linux/sched/mm.h>
51 52
#include <linux/proc_ns.h>
#include <linux/mount.h>
T
Thomas Gleixner 已提交
53

54 55
#include "internal.h"

56 57
#include <asm/irq_regs.h>

58 59
typedef int (*remote_function_f)(void *);

60
struct remote_function_call {
61
	struct task_struct	*p;
62
	remote_function_f	func;
63 64
	void			*info;
	int			ret;
65 66 67 68 69 70 71 72
};

static void remote_function(void *data)
{
	struct remote_function_call *tfc = data;
	struct task_struct *p = tfc->p;

	if (p) {
73 74 75 76 77 78 79 80 81 82 83
		/* -EAGAIN */
		if (task_cpu(p) != smp_processor_id())
			return;

		/*
		 * Now that we're on right CPU with IRQs disabled, we can test
		 * if we hit the right task without races.
		 */

		tfc->ret = -ESRCH; /* No such (running) process */
		if (p != current)
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
			return;
	}

	tfc->ret = tfc->func(tfc->info);
}

/**
 * task_function_call - call a function on the cpu on which a task runs
 * @p:		the task to evaluate
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func when the task is currently running. This might
 * be on the current CPU, which just calls the function directly
 *
 * returns: @func return value, or
 *	    -ESRCH  - when the process isn't running
 *	    -EAGAIN - when the process moved away
 */
static int
104
task_function_call(struct task_struct *p, remote_function_f func, void *info)
105 106
{
	struct remote_function_call data = {
107 108 109
		.p	= p,
		.func	= func,
		.info	= info,
110
		.ret	= -EAGAIN,
111
	};
112
	int ret;
113

114 115 116 117 118
	do {
		ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
		if (!ret)
			ret = data.ret;
	} while (ret == -EAGAIN);
119

120
	return ret;
121 122 123 124 125 126 127 128 129 130 131
}

/**
 * cpu_function_call - call a function on the cpu
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func on the remote cpu.
 *
 * returns: @func return value or -ENXIO when the cpu is offline
 */
132
static int cpu_function_call(int cpu, remote_function_f func, void *info)
133 134
{
	struct remote_function_call data = {
135 136 137 138
		.p	= NULL,
		.func	= func,
		.info	= info,
		.ret	= -ENXIO, /* No such CPU */
139 140 141 142 143 144 145
	};

	smp_call_function_single(cpu, remote_function, &data, 1);

	return data.ret;
}

146 147 148 149 150 151 152 153
static inline struct perf_cpu_context *
__get_cpu_context(struct perf_event_context *ctx)
{
	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
}

static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
			  struct perf_event_context *ctx)
154
{
155 156 157 158 159 160 161 162 163 164 165 166 167
	raw_spin_lock(&cpuctx->ctx.lock);
	if (ctx)
		raw_spin_lock(&ctx->lock);
}

static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
			    struct perf_event_context *ctx)
{
	if (ctx)
		raw_spin_unlock(&ctx->lock);
	raw_spin_unlock(&cpuctx->ctx.lock);
}

168 169 170 171
#define TASK_TOMBSTONE ((void *)-1L)

static bool is_kernel_event(struct perf_event *event)
{
172
	return READ_ONCE(event->owner) == TASK_TOMBSTONE;
173 174
}

175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
/*
 * On task ctx scheduling...
 *
 * When !ctx->nr_events a task context will not be scheduled. This means
 * we can disable the scheduler hooks (for performance) without leaving
 * pending task ctx state.
 *
 * This however results in two special cases:
 *
 *  - removing the last event from a task ctx; this is relatively straight
 *    forward and is done in __perf_remove_from_context.
 *
 *  - adding the first event to a task ctx; this is tricky because we cannot
 *    rely on ctx->is_active and therefore cannot use event_function_call().
 *    See perf_install_in_context().
 *
 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
 */

194 195 196 197 198 199 200 201 202 203 204 205 206
typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
			struct perf_event_context *, void *);

struct event_function_struct {
	struct perf_event *event;
	event_f func;
	void *data;
};

static int event_function(void *info)
{
	struct event_function_struct *efs = info;
	struct perf_event *event = efs->event;
207
	struct perf_event_context *ctx = event->ctx;
208 209
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
	struct perf_event_context *task_ctx = cpuctx->task_ctx;
210
	int ret = 0;
211 212 213

	WARN_ON_ONCE(!irqs_disabled());

214
	perf_ctx_lock(cpuctx, task_ctx);
215 216 217 218 219
	/*
	 * Since we do the IPI call without holding ctx->lock things can have
	 * changed, double check we hit the task we set out to hit.
	 */
	if (ctx->task) {
220
		if (ctx->task != current) {
221
			ret = -ESRCH;
222 223
			goto unlock;
		}
224 225 226 227 228 229 230 231 232 233 234 235 236

		/*
		 * We only use event_function_call() on established contexts,
		 * and event_function() is only ever called when active (or
		 * rather, we'll have bailed in task_function_call() or the
		 * above ctx->task != current test), therefore we must have
		 * ctx->is_active here.
		 */
		WARN_ON_ONCE(!ctx->is_active);
		/*
		 * And since we have ctx->is_active, cpuctx->task_ctx must
		 * match.
		 */
237 238 239
		WARN_ON_ONCE(task_ctx != ctx);
	} else {
		WARN_ON_ONCE(&cpuctx->ctx != ctx);
240
	}
241

242
	efs->func(event, cpuctx, ctx, efs->data);
243
unlock:
244 245
	perf_ctx_unlock(cpuctx, task_ctx);

246
	return ret;
247 248 249
}

static void event_function_call(struct perf_event *event, event_f func, void *data)
250 251
{
	struct perf_event_context *ctx = event->ctx;
252
	struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
253 254 255 256 257
	struct event_function_struct efs = {
		.event = event,
		.func = func,
		.data = data,
	};
258

P
Peter Zijlstra 已提交
259 260 261 262 263 264 265 266
	if (!event->parent) {
		/*
		 * If this is a !child event, we must hold ctx::mutex to
		 * stabilize the the event->ctx relation. See
		 * perf_event_ctx_lock().
		 */
		lockdep_assert_held(&ctx->mutex);
	}
267 268

	if (!task) {
269
		cpu_function_call(event->cpu, event_function, &efs);
270 271 272
		return;
	}

273 274 275
	if (task == TASK_TOMBSTONE)
		return;

276
again:
277
	if (!task_function_call(task, event_function, &efs))
278 279 280
		return;

	raw_spin_lock_irq(&ctx->lock);
281 282 283 284 285
	/*
	 * Reload the task pointer, it might have been changed by
	 * a concurrent perf_event_context_sched_out().
	 */
	task = ctx->task;
286 287 288
	if (task == TASK_TOMBSTONE) {
		raw_spin_unlock_irq(&ctx->lock);
		return;
289
	}
290 291 292 293 294
	if (ctx->is_active) {
		raw_spin_unlock_irq(&ctx->lock);
		goto again;
	}
	func(event, NULL, ctx, data);
295 296 297
	raw_spin_unlock_irq(&ctx->lock);
}

298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345
/*
 * Similar to event_function_call() + event_function(), but hard assumes IRQs
 * are already disabled and we're on the right CPU.
 */
static void event_function_local(struct perf_event *event, event_f func, void *data)
{
	struct perf_event_context *ctx = event->ctx;
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
	struct task_struct *task = READ_ONCE(ctx->task);
	struct perf_event_context *task_ctx = NULL;

	WARN_ON_ONCE(!irqs_disabled());

	if (task) {
		if (task == TASK_TOMBSTONE)
			return;

		task_ctx = ctx;
	}

	perf_ctx_lock(cpuctx, task_ctx);

	task = ctx->task;
	if (task == TASK_TOMBSTONE)
		goto unlock;

	if (task) {
		/*
		 * We must be either inactive or active and the right task,
		 * otherwise we're screwed, since we cannot IPI to somewhere
		 * else.
		 */
		if (ctx->is_active) {
			if (WARN_ON_ONCE(task != current))
				goto unlock;

			if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
				goto unlock;
		}
	} else {
		WARN_ON_ONCE(&cpuctx->ctx != ctx);
	}

	func(event, cpuctx, ctx, data);
unlock:
	perf_ctx_unlock(cpuctx, task_ctx);
}

S
Stephane Eranian 已提交
346 347
#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
		       PERF_FLAG_FD_OUTPUT  |\
348 349
		       PERF_FLAG_PID_CGROUP |\
		       PERF_FLAG_FD_CLOEXEC)
S
Stephane Eranian 已提交
350

351 352 353 354 355 356 357
/*
 * branch priv levels that need permission checks
 */
#define PERF_SAMPLE_BRANCH_PERM_PLM \
	(PERF_SAMPLE_BRANCH_KERNEL |\
	 PERF_SAMPLE_BRANCH_HV)

358 359 360
enum event_type_t {
	EVENT_FLEXIBLE = 0x1,
	EVENT_PINNED = 0x2,
361
	EVENT_TIME = 0x4,
362 363
	/* see ctx_resched() for details */
	EVENT_CPU = 0x8,
364 365 366
	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
};

S
Stephane Eranian 已提交
367 368 369 370
/*
 * perf_sched_events : >0 events exist
 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
 */
371 372 373 374 375 376 377

static void perf_sched_delayed(struct work_struct *work);
DEFINE_STATIC_KEY_FALSE(perf_sched_events);
static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
static DEFINE_MUTEX(perf_sched_mutex);
static atomic_t perf_sched_count;

S
Stephane Eranian 已提交
378
static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
379
static DEFINE_PER_CPU(int, perf_sched_cb_usages);
380
static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
S
Stephane Eranian 已提交
381

382 383
static atomic_t nr_mmap_events __read_mostly;
static atomic_t nr_comm_events __read_mostly;
384
static atomic_t nr_namespaces_events __read_mostly;
385
static atomic_t nr_task_events __read_mostly;
386
static atomic_t nr_freq_events __read_mostly;
387
static atomic_t nr_switch_events __read_mostly;
388

P
Peter Zijlstra 已提交
389 390 391
static LIST_HEAD(pmus);
static DEFINE_MUTEX(pmus_lock);
static struct srcu_struct pmus_srcu;
392
static cpumask_var_t perf_online_mask;
P
Peter Zijlstra 已提交
393

394
/*
395
 * perf event paranoia level:
396 397
 *  -1 - not paranoid at all
 *   0 - disallow raw tracepoint access for unpriv
398
 *   1 - disallow cpu events for unpriv
399
 *   2 - disallow kernel profiling for unpriv
400
 */
401
int sysctl_perf_event_paranoid __read_mostly = 2;
402

403 404
/* Minimum for 512 kiB + 1 user control page */
int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
405 406

/*
407
 * max perf event sample rate
408
 */
409 410 411 412 413 414 415 416 417
#define DEFAULT_MAX_SAMPLE_RATE		100000
#define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
#define DEFAULT_CPU_TIME_MAX_PERCENT	25

int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;

static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;

P
Peter Zijlstra 已提交
418 419
static int perf_sample_allowed_ns __read_mostly =
	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
420

421
static void update_perf_cpu_limits(void)
422 423 424 425
{
	u64 tmp = perf_sample_period_ns;

	tmp *= sysctl_perf_cpu_time_max_percent;
426 427 428 429 430
	tmp = div_u64(tmp, 100);
	if (!tmp)
		tmp = 1;

	WRITE_ONCE(perf_sample_allowed_ns, tmp);
431
}
P
Peter Zijlstra 已提交
432

433 434
static int perf_rotate_context(struct perf_cpu_context *cpuctx);

P
Peter Zijlstra 已提交
435 436 437 438
int perf_proc_update_handler(struct ctl_table *table, int write,
		void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
439
	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
P
Peter Zijlstra 已提交
440 441 442 443

	if (ret || !write)
		return ret;

444 445 446 447 448 449 450
	/*
	 * If throttling is disabled don't allow the write:
	 */
	if (sysctl_perf_cpu_time_max_percent == 100 ||
	    sysctl_perf_cpu_time_max_percent == 0)
		return -EINVAL;

P
Peter Zijlstra 已提交
451
	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
452 453 454 455 456 457 458 459 460 461 462 463
	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
	update_perf_cpu_limits();

	return 0;
}

int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;

int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
				void __user *buffer, size_t *lenp,
				loff_t *ppos)
{
464
	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
465 466 467 468

	if (ret || !write)
		return ret;

469 470
	if (sysctl_perf_cpu_time_max_percent == 100 ||
	    sysctl_perf_cpu_time_max_percent == 0) {
471 472 473 474 475 476
		printk(KERN_WARNING
		       "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
		WRITE_ONCE(perf_sample_allowed_ns, 0);
	} else {
		update_perf_cpu_limits();
	}
P
Peter Zijlstra 已提交
477 478 479

	return 0;
}
480

481 482 483 484 485 486 487
/*
 * perf samples are done in some very critical code paths (NMIs).
 * If they take too much CPU time, the system can lock up and not
 * get any real work done.  This will drop the sample rate when
 * we detect that events are taking too long.
 */
#define NR_ACCUMULATED_SAMPLES 128
P
Peter Zijlstra 已提交
488
static DEFINE_PER_CPU(u64, running_sample_length);
489

490 491 492
static u64 __report_avg;
static u64 __report_allowed;

493
static void perf_duration_warn(struct irq_work *w)
494
{
495
	printk_ratelimited(KERN_INFO
496 497 498 499
		"perf: interrupt took too long (%lld > %lld), lowering "
		"kernel.perf_event_max_sample_rate to %d\n",
		__report_avg, __report_allowed,
		sysctl_perf_event_sample_rate);
500 501 502 503 504 505
}

static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);

void perf_sample_event_took(u64 sample_len_ns)
{
506 507 508 509
	u64 max_len = READ_ONCE(perf_sample_allowed_ns);
	u64 running_len;
	u64 avg_len;
	u32 max;
510

511
	if (max_len == 0)
512 513
		return;

514 515 516 517 518
	/* Decay the counter by 1 average sample. */
	running_len = __this_cpu_read(running_sample_length);
	running_len -= running_len/NR_ACCUMULATED_SAMPLES;
	running_len += sample_len_ns;
	__this_cpu_write(running_sample_length, running_len);
519 520

	/*
521 522
	 * Note: this will be biased artifically low until we have
	 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
523 524
	 * from having to maintain a count.
	 */
525 526
	avg_len = running_len/NR_ACCUMULATED_SAMPLES;
	if (avg_len <= max_len)
527 528
		return;

529 530
	__report_avg = avg_len;
	__report_allowed = max_len;
531

532 533 534 535 536 537 538 539 540
	/*
	 * Compute a throttle threshold 25% below the current duration.
	 */
	avg_len += avg_len / 4;
	max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
	if (avg_len < max)
		max /= (u32)avg_len;
	else
		max = 1;
541

542 543 544 545 546
	WRITE_ONCE(perf_sample_allowed_ns, avg_len);
	WRITE_ONCE(max_samples_per_tick, max);

	sysctl_perf_event_sample_rate = max * HZ;
	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
547

548
	if (!irq_work_queue(&perf_duration_work)) {
549
		early_printk("perf: interrupt took too long (%lld > %lld), lowering "
550
			     "kernel.perf_event_max_sample_rate to %d\n",
551
			     __report_avg, __report_allowed,
552 553
			     sysctl_perf_event_sample_rate);
	}
554 555
}

556
static atomic64_t perf_event_id;
557

558 559 560 561
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type);

static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
562 563 564 565 566
			     enum event_type_t event_type,
			     struct task_struct *task);

static void update_context_time(struct perf_event_context *ctx);
static u64 perf_event_time(struct perf_event *event);
567

568
void __weak perf_event_print_debug(void)	{ }
T
Thomas Gleixner 已提交
569

570
extern __weak const char *perf_pmu_name(void)
T
Thomas Gleixner 已提交
571
{
572
	return "pmu";
T
Thomas Gleixner 已提交
573 574
}

575 576 577 578 579
static inline u64 perf_clock(void)
{
	return local_clock();
}

580 581 582 583 584
static inline u64 perf_event_clock(struct perf_event *event)
{
	return event->clock();
}

S
Stephane Eranian 已提交
585 586 587 588 589 590 591 592
#ifdef CONFIG_CGROUP_PERF

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);

593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608
	/* @event doesn't care about cgroup */
	if (!event->cgrp)
		return true;

	/* wants specific cgroup scope but @cpuctx isn't associated with any */
	if (!cpuctx->cgrp)
		return false;

	/*
	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
	 * also enabled for all its descendant cgroups.  If @cpuctx's
	 * cgroup is a descendant of @event's (the test covers identity
	 * case), it's a match.
	 */
	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
				    event->cgrp->css.cgroup);
S
Stephane Eranian 已提交
609 610 611 612
}

static inline void perf_detach_cgroup(struct perf_event *event)
{
Z
Zefan Li 已提交
613
	css_put(&event->cgrp->css);
S
Stephane Eranian 已提交
614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651
	event->cgrp = NULL;
}

static inline int is_cgroup_event(struct perf_event *event)
{
	return event->cgrp != NULL;
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	struct perf_cgroup_info *t;

	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	return t->time;
}

static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
{
	struct perf_cgroup_info *info;
	u64 now;

	now = perf_clock();

	info = this_cpu_ptr(cgrp->info);

	info->time += now - info->timestamp;
	info->timestamp = now;
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
	struct perf_cgroup *cgrp_out = cpuctx->cgrp;
	if (cgrp_out)
		__update_cgrp_time(cgrp_out);
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
652 653
	struct perf_cgroup *cgrp;

S
Stephane Eranian 已提交
654
	/*
655 656
	 * ensure we access cgroup data only when needed and
	 * when we know the cgroup is pinned (css_get)
S
Stephane Eranian 已提交
657
	 */
658
	if (!is_cgroup_event(event))
S
Stephane Eranian 已提交
659 660
		return;

661
	cgrp = perf_cgroup_from_task(current, event->ctx);
662 663 664
	/*
	 * Do not update time when cgroup is not active
	 */
665
       if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
666
		__update_cgrp_time(event->cgrp);
S
Stephane Eranian 已提交
667 668 669
}

static inline void
670 671
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
672 673 674 675
{
	struct perf_cgroup *cgrp;
	struct perf_cgroup_info *info;

676 677 678 679 680 681
	/*
	 * ctx->lock held by caller
	 * ensure we do not access cgroup data
	 * unless we have the cgroup pinned (css_get)
	 */
	if (!task || !ctx->nr_cgroups)
S
Stephane Eranian 已提交
682 683
		return;

684
	cgrp = perf_cgroup_from_task(task, ctx);
S
Stephane Eranian 已提交
685
	info = this_cpu_ptr(cgrp->info);
686
	info->timestamp = ctx->timestamp;
S
Stephane Eranian 已提交
687 688
}

689 690
static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);

S
Stephane Eranian 已提交
691 692 693 694 695 696 697 698 699
#define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
#define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */

/*
 * reschedule events based on the cgroup constraint of task.
 *
 * mode SWOUT : schedule out everything
 * mode SWIN : schedule in based on cgroup for next
 */
700
static void perf_cgroup_switch(struct task_struct *task, int mode)
S
Stephane Eranian 已提交
701 702
{
	struct perf_cpu_context *cpuctx;
703
	struct list_head *list;
S
Stephane Eranian 已提交
704 705 706
	unsigned long flags;

	/*
707 708
	 * Disable interrupts and preemption to avoid this CPU's
	 * cgrp_cpuctx_entry to change under us.
S
Stephane Eranian 已提交
709 710 711
	 */
	local_irq_save(flags);

712 713 714
	list = this_cpu_ptr(&cgrp_cpuctx_list);
	list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) {
		WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
S
Stephane Eranian 已提交
715

716 717
		perf_ctx_lock(cpuctx, cpuctx->task_ctx);
		perf_pmu_disable(cpuctx->ctx.pmu);
S
Stephane Eranian 已提交
718

719 720 721 722 723 724 725 726
		if (mode & PERF_CGROUP_SWOUT) {
			cpu_ctx_sched_out(cpuctx, EVENT_ALL);
			/*
			 * must not be done before ctxswout due
			 * to event_filter_match() in event_sched_out()
			 */
			cpuctx->cgrp = NULL;
		}
S
Stephane Eranian 已提交
727

728 729 730 731 732 733 734 735 736 737 738 739
		if (mode & PERF_CGROUP_SWIN) {
			WARN_ON_ONCE(cpuctx->cgrp);
			/*
			 * set cgrp before ctxsw in to allow
			 * event_filter_match() to not have to pass
			 * task around
			 * we pass the cpuctx->ctx to perf_cgroup_from_task()
			 * because cgorup events are only per-cpu
			 */
			cpuctx->cgrp = perf_cgroup_from_task(task,
							     &cpuctx->ctx);
			cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
S
Stephane Eranian 已提交
740
		}
741 742
		perf_pmu_enable(cpuctx->ctx.pmu);
		perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
S
Stephane Eranian 已提交
743 744 745 746 747
	}

	local_irq_restore(flags);
}

748 749
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
750
{
751 752 753
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

754
	rcu_read_lock();
755 756
	/*
	 * we come here when we know perf_cgroup_events > 0
757 758
	 * we do not need to pass the ctx here because we know
	 * we are holding the rcu lock
759
	 */
760
	cgrp1 = perf_cgroup_from_task(task, NULL);
761
	cgrp2 = perf_cgroup_from_task(next, NULL);
762 763 764 765 766 767 768 769

	/*
	 * only schedule out current cgroup events if we know
	 * that we are switching to a different cgroup. Otherwise,
	 * do no touch the cgroup events.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
770 771

	rcu_read_unlock();
S
Stephane Eranian 已提交
772 773
}

774 775
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
776
{
777 778 779
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

780
	rcu_read_lock();
781 782
	/*
	 * we come here when we know perf_cgroup_events > 0
783 784
	 * we do not need to pass the ctx here because we know
	 * we are holding the rcu lock
785
	 */
786 787
	cgrp1 = perf_cgroup_from_task(task, NULL);
	cgrp2 = perf_cgroup_from_task(prev, NULL);
788 789 790 791 792 793 794 795

	/*
	 * only need to schedule in cgroup events if we are changing
	 * cgroup during ctxsw. Cgroup events were not scheduled
	 * out of ctxsw out if that was not the case.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
796 797

	rcu_read_unlock();
S
Stephane Eranian 已提交
798 799 800 801 802 803 804 805
}

static inline int perf_cgroup_connect(int fd, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	struct perf_cgroup *cgrp;
	struct cgroup_subsys_state *css;
806 807
	struct fd f = fdget(fd);
	int ret = 0;
S
Stephane Eranian 已提交
808

809
	if (!f.file)
S
Stephane Eranian 已提交
810 811
		return -EBADF;

A
Al Viro 已提交
812
	css = css_tryget_online_from_dir(f.file->f_path.dentry,
813
					 &perf_event_cgrp_subsys);
814 815 816 817
	if (IS_ERR(css)) {
		ret = PTR_ERR(css);
		goto out;
	}
S
Stephane Eranian 已提交
818 819 820 821 822 823 824 825 826 827 828 829 830

	cgrp = container_of(css, struct perf_cgroup, css);
	event->cgrp = cgrp;

	/*
	 * all events in a group must monitor
	 * the same cgroup because a task belongs
	 * to only one perf cgroup at a time
	 */
	if (group_leader && group_leader->cgrp != cgrp) {
		perf_detach_cgroup(event);
		ret = -EINVAL;
	}
831
out:
832
	fdput(f);
S
Stephane Eranian 已提交
833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876
	return ret;
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
	struct perf_cgroup_info *t;
	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	event->shadow_ctx_time = now - t->timestamp;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
	/*
	 * when the current task's perf cgroup does not match
	 * the event's, we need to remember to call the
	 * perf_mark_enable() function the first time a task with
	 * a matching perf cgroup is scheduled in.
	 */
	if (is_cgroup_event(event) && !perf_cgroup_match(event))
		event->cgrp_defer_enabled = 1;
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
	struct perf_event *sub;
	u64 tstamp = perf_event_time(event);

	if (!event->cgrp_defer_enabled)
		return;

	event->cgrp_defer_enabled = 0;

	event->tstamp_enabled = tstamp - event->total_time_enabled;
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
			sub->cgrp_defer_enabled = 0;
		}
	}
}
877 878 879 880 881 882 883 884 885 886

/*
 * Update cpuctx->cgrp so that it is set when first cgroup event is added and
 * cleared when last cgroup event is removed.
 */
static inline void
list_update_cgroup_event(struct perf_event *event,
			 struct perf_event_context *ctx, bool add)
{
	struct perf_cpu_context *cpuctx;
887
	struct list_head *cpuctx_entry;
888 889 890 891 892 893 894 895 896 897 898 899 900

	if (!is_cgroup_event(event))
		return;

	if (add && ctx->nr_cgroups++)
		return;
	else if (!add && --ctx->nr_cgroups)
		return;
	/*
	 * Because cgroup events are always per-cpu events,
	 * this will always be called from the right CPU.
	 */
	cpuctx = __get_cpu_context(ctx);
901 902 903 904 905 906 907 908
	cpuctx_entry = &cpuctx->cgrp_cpuctx_entry;
	/* cpuctx->cgrp is NULL unless a cgroup event is active in this CPU .*/
	if (add) {
		list_add(cpuctx_entry, this_cpu_ptr(&cgrp_cpuctx_list));
		if (perf_cgroup_from_task(current, ctx) == event->cgrp)
			cpuctx->cgrp = event->cgrp;
	} else {
		list_del(cpuctx_entry);
909
		cpuctx->cgrp = NULL;
910
	}
911 912
}

S
Stephane Eranian 已提交
913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936
#else /* !CONFIG_CGROUP_PERF */

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	return true;
}

static inline void perf_detach_cgroup(struct perf_event *event)
{}

static inline int is_cgroup_event(struct perf_event *event)
{
	return 0;
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
}

937 938
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
939 940 941
{
}

942 943
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
944 945 946 947 948 949 950 951 952 953 954
{
}

static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	return -EINVAL;
}

static inline void
955 956
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984
{
}

void
perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
{
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	return 0;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
}
985 986 987 988 989 990 991

static inline void
list_update_cgroup_event(struct perf_event *event,
			 struct perf_event_context *ctx, bool add)
{
}

S
Stephane Eranian 已提交
992 993
#endif

994 995 996 997 998 999
/*
 * set default to be dependent on timer tick just
 * like original code
 */
#define PERF_CPU_HRTIMER (1000 / HZ)
/*
1000
 * function must be called with interrupts disabled
1001
 */
1002
static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1003 1004 1005 1006 1007 1008 1009 1010 1011
{
	struct perf_cpu_context *cpuctx;
	int rotations = 0;

	WARN_ON(!irqs_disabled());

	cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
	rotations = perf_rotate_context(cpuctx);

P
Peter Zijlstra 已提交
1012 1013
	raw_spin_lock(&cpuctx->hrtimer_lock);
	if (rotations)
1014
		hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
P
Peter Zijlstra 已提交
1015 1016 1017
	else
		cpuctx->hrtimer_active = 0;
	raw_spin_unlock(&cpuctx->hrtimer_lock);
1018

P
Peter Zijlstra 已提交
1019
	return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1020 1021
}

1022
static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
1023
{
1024
	struct hrtimer *timer = &cpuctx->hrtimer;
1025
	struct pmu *pmu = cpuctx->ctx.pmu;
1026
	u64 interval;
1027 1028 1029 1030 1031

	/* no multiplexing needed for SW PMU */
	if (pmu->task_ctx_nr == perf_sw_context)
		return;

1032 1033 1034 1035
	/*
	 * check default is sane, if not set then force to
	 * default interval (1/tick)
	 */
1036 1037 1038
	interval = pmu->hrtimer_interval_ms;
	if (interval < 1)
		interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1039

1040
	cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1041

P
Peter Zijlstra 已提交
1042 1043
	raw_spin_lock_init(&cpuctx->hrtimer_lock);
	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
1044
	timer->function = perf_mux_hrtimer_handler;
1045 1046
}

1047
static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1048
{
1049
	struct hrtimer *timer = &cpuctx->hrtimer;
1050
	struct pmu *pmu = cpuctx->ctx.pmu;
P
Peter Zijlstra 已提交
1051
	unsigned long flags;
1052 1053 1054

	/* not for SW PMU */
	if (pmu->task_ctx_nr == perf_sw_context)
1055
		return 0;
1056

P
Peter Zijlstra 已提交
1057 1058 1059 1060 1061 1062 1063
	raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
	if (!cpuctx->hrtimer_active) {
		cpuctx->hrtimer_active = 1;
		hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
		hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
	}
	raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1064

1065
	return 0;
1066 1067
}

P
Peter Zijlstra 已提交
1068
void perf_pmu_disable(struct pmu *pmu)
1069
{
P
Peter Zijlstra 已提交
1070 1071 1072
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!(*count)++)
		pmu->pmu_disable(pmu);
1073 1074
}

P
Peter Zijlstra 已提交
1075
void perf_pmu_enable(struct pmu *pmu)
1076
{
P
Peter Zijlstra 已提交
1077 1078 1079
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!--(*count))
		pmu->pmu_enable(pmu);
1080 1081
}

1082
static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1083 1084

/*
1085 1086 1087 1088
 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
 * perf_event_task_tick() are fully serialized because they're strictly cpu
 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
 * disabled, while perf_event_task_tick is called from IRQ context.
1089
 */
1090
static void perf_event_ctx_activate(struct perf_event_context *ctx)
1091
{
1092
	struct list_head *head = this_cpu_ptr(&active_ctx_list);
1093

1094
	WARN_ON(!irqs_disabled());
1095

1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107
	WARN_ON(!list_empty(&ctx->active_ctx_list));

	list_add(&ctx->active_ctx_list, head);
}

static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
{
	WARN_ON(!irqs_disabled());

	WARN_ON(list_empty(&ctx->active_ctx_list));

	list_del_init(&ctx->active_ctx_list);
1108 1109
}

1110
static void get_ctx(struct perf_event_context *ctx)
1111
{
1112
	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
1113 1114
}

1115 1116 1117 1118 1119 1120 1121 1122 1123
static void free_ctx(struct rcu_head *head)
{
	struct perf_event_context *ctx;

	ctx = container_of(head, struct perf_event_context, rcu_head);
	kfree(ctx->task_ctx_data);
	kfree(ctx);
}

1124
static void put_ctx(struct perf_event_context *ctx)
1125
{
1126 1127 1128
	if (atomic_dec_and_test(&ctx->refcount)) {
		if (ctx->parent_ctx)
			put_ctx(ctx->parent_ctx);
1129
		if (ctx->task && ctx->task != TASK_TOMBSTONE)
1130
			put_task_struct(ctx->task);
1131
		call_rcu(&ctx->rcu_head, free_ctx);
1132
	}
1133 1134
}

P
Peter Zijlstra 已提交
1135 1136 1137 1138 1139 1140 1141
/*
 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
 * perf_pmu_migrate_context() we need some magic.
 *
 * Those places that change perf_event::ctx will hold both
 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
 *
1142 1143 1144 1145
 * Lock ordering is by mutex address. There are two other sites where
 * perf_event_context::mutex nests and those are:
 *
 *  - perf_event_exit_task_context()	[ child , 0 ]
1146 1147
 *      perf_event_exit_event()
 *        put_event()			[ parent, 1 ]
1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164
 *
 *  - perf_event_init_context()		[ parent, 0 ]
 *      inherit_task_group()
 *        inherit_group()
 *          inherit_event()
 *            perf_event_alloc()
 *              perf_init_event()
 *                perf_try_init_event()	[ child , 1 ]
 *
 * While it appears there is an obvious deadlock here -- the parent and child
 * nesting levels are inverted between the two. This is in fact safe because
 * life-time rules separate them. That is an exiting task cannot fork, and a
 * spawning task cannot (yet) exit.
 *
 * But remember that that these are parent<->child context relations, and
 * migration does not affect children, therefore these two orderings should not
 * interact.
P
Peter Zijlstra 已提交
1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187
 *
 * The change in perf_event::ctx does not affect children (as claimed above)
 * because the sys_perf_event_open() case will install a new event and break
 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
 * concerned with cpuctx and that doesn't have children.
 *
 * The places that change perf_event::ctx will issue:
 *
 *   perf_remove_from_context();
 *   synchronize_rcu();
 *   perf_install_in_context();
 *
 * to affect the change. The remove_from_context() + synchronize_rcu() should
 * quiesce the event, after which we can install it in the new location. This
 * means that only external vectors (perf_fops, prctl) can perturb the event
 * while in transit. Therefore all such accessors should also acquire
 * perf_event_context::mutex to serialize against this.
 *
 * However; because event->ctx can change while we're waiting to acquire
 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
 * function.
 *
 * Lock order:
1188
 *    cred_guard_mutex
P
Peter Zijlstra 已提交
1189 1190 1191
 *	task_struct::perf_event_mutex
 *	  perf_event_context::mutex
 *	    perf_event::child_mutex;
P
Peter Zijlstra 已提交
1192
 *	      perf_event_context::lock
P
Peter Zijlstra 已提交
1193 1194 1195
 *	    perf_event::mmap_mutex
 *	    mmap_sem
 */
P
Peter Zijlstra 已提交
1196 1197
static struct perf_event_context *
perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
P
Peter Zijlstra 已提交
1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209
{
	struct perf_event_context *ctx;

again:
	rcu_read_lock();
	ctx = ACCESS_ONCE(event->ctx);
	if (!atomic_inc_not_zero(&ctx->refcount)) {
		rcu_read_unlock();
		goto again;
	}
	rcu_read_unlock();

P
Peter Zijlstra 已提交
1210
	mutex_lock_nested(&ctx->mutex, nesting);
P
Peter Zijlstra 已提交
1211 1212 1213 1214 1215 1216 1217 1218 1219
	if (event->ctx != ctx) {
		mutex_unlock(&ctx->mutex);
		put_ctx(ctx);
		goto again;
	}

	return ctx;
}

P
Peter Zijlstra 已提交
1220 1221 1222 1223 1224 1225
static inline struct perf_event_context *
perf_event_ctx_lock(struct perf_event *event)
{
	return perf_event_ctx_lock_nested(event, 0);
}

P
Peter Zijlstra 已提交
1226 1227 1228 1229 1230 1231 1232
static void perf_event_ctx_unlock(struct perf_event *event,
				  struct perf_event_context *ctx)
{
	mutex_unlock(&ctx->mutex);
	put_ctx(ctx);
}

1233 1234 1235 1236 1237 1238 1239
/*
 * This must be done under the ctx->lock, such as to serialize against
 * context_equiv(), therefore we cannot call put_ctx() since that might end up
 * calling scheduler related locks and ctx->lock nests inside those.
 */
static __must_check struct perf_event_context *
unclone_ctx(struct perf_event_context *ctx)
1240
{
1241 1242 1243 1244 1245
	struct perf_event_context *parent_ctx = ctx->parent_ctx;

	lockdep_assert_held(&ctx->lock);

	if (parent_ctx)
1246
		ctx->parent_ctx = NULL;
1247
	ctx->generation++;
1248 1249

	return parent_ctx;
1250 1251
}

1252 1253
static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
				enum pid_type type)
1254
{
1255
	u32 nr;
1256 1257 1258 1259 1260 1261
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

1262 1263 1264 1265 1266
	nr = __task_pid_nr_ns(p, type, event->ns);
	/* avoid -1 if it is idle thread or runs in another ns */
	if (!nr && !pid_alive(p))
		nr = -1;
	return nr;
1267 1268
}

1269
static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1270
{
1271 1272
	return perf_event_pid_type(event, p, __PIDTYPE_TGID);
}
1273

1274 1275 1276
static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
{
	return perf_event_pid_type(event, p, PIDTYPE_PID);
1277 1278
}

1279
/*
1280
 * If we inherit events we want to return the parent event id
1281 1282
 * to userspace.
 */
1283
static u64 primary_event_id(struct perf_event *event)
1284
{
1285
	u64 id = event->id;
1286

1287 1288
	if (event->parent)
		id = event->parent->id;
1289 1290 1291 1292

	return id;
}

1293
/*
1294
 * Get the perf_event_context for a task and lock it.
1295
 *
1296 1297 1298
 * This has to cope with with the fact that until it is locked,
 * the context could get moved to another task.
 */
1299
static struct perf_event_context *
P
Peter Zijlstra 已提交
1300
perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1301
{
1302
	struct perf_event_context *ctx;
1303

P
Peter Zijlstra 已提交
1304
retry:
1305 1306 1307
	/*
	 * One of the few rules of preemptible RCU is that one cannot do
	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1308
	 * part of the read side critical section was irqs-enabled -- see
1309 1310 1311
	 * rcu_read_unlock_special().
	 *
	 * Since ctx->lock nests under rq->lock we must ensure the entire read
1312
	 * side critical section has interrupts disabled.
1313
	 */
1314
	local_irq_save(*flags);
1315
	rcu_read_lock();
P
Peter Zijlstra 已提交
1316
	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1317 1318 1319 1320
	if (ctx) {
		/*
		 * If this context is a clone of another, it might
		 * get swapped for another underneath us by
1321
		 * perf_event_task_sched_out, though the
1322 1323 1324 1325 1326 1327
		 * rcu_read_lock() protects us from any context
		 * getting freed.  Lock the context and check if it
		 * got swapped before we could get the lock, and retry
		 * if so.  If we locked the right context, then it
		 * can't get swapped on us any more.
		 */
1328
		raw_spin_lock(&ctx->lock);
P
Peter Zijlstra 已提交
1329
		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1330
			raw_spin_unlock(&ctx->lock);
1331
			rcu_read_unlock();
1332
			local_irq_restore(*flags);
1333 1334
			goto retry;
		}
1335

1336 1337
		if (ctx->task == TASK_TOMBSTONE ||
		    !atomic_inc_not_zero(&ctx->refcount)) {
1338
			raw_spin_unlock(&ctx->lock);
1339
			ctx = NULL;
P
Peter Zijlstra 已提交
1340 1341
		} else {
			WARN_ON_ONCE(ctx->task != task);
1342
		}
1343 1344
	}
	rcu_read_unlock();
1345 1346
	if (!ctx)
		local_irq_restore(*flags);
1347 1348 1349 1350 1351 1352 1353 1354
	return ctx;
}

/*
 * Get the context for a task and increment its pin_count so it
 * can't get swapped to another task.  This also increments its
 * reference count so that the context can't get freed.
 */
P
Peter Zijlstra 已提交
1355 1356
static struct perf_event_context *
perf_pin_task_context(struct task_struct *task, int ctxn)
1357
{
1358
	struct perf_event_context *ctx;
1359 1360
	unsigned long flags;

P
Peter Zijlstra 已提交
1361
	ctx = perf_lock_task_context(task, ctxn, &flags);
1362 1363
	if (ctx) {
		++ctx->pin_count;
1364
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1365 1366 1367 1368
	}
	return ctx;
}

1369
static void perf_unpin_context(struct perf_event_context *ctx)
1370 1371 1372
{
	unsigned long flags;

1373
	raw_spin_lock_irqsave(&ctx->lock, flags);
1374
	--ctx->pin_count;
1375
	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1376 1377
}

1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388
/*
 * Update the record of the current time in a context.
 */
static void update_context_time(struct perf_event_context *ctx)
{
	u64 now = perf_clock();

	ctx->time += now - ctx->timestamp;
	ctx->timestamp = now;
}

1389 1390 1391
static u64 perf_event_time(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
S
Stephane Eranian 已提交
1392 1393 1394 1395

	if (is_cgroup_event(event))
		return perf_cgroup_event_time(event);

1396 1397 1398
	return ctx ? ctx->time : 0;
}

1399 1400 1401 1402 1403 1404 1405 1406
/*
 * Update the total_time_enabled and total_time_running fields for a event.
 */
static void update_event_times(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	u64 run_end;

1407 1408
	lockdep_assert_held(&ctx->lock);

1409 1410 1411
	if (event->state < PERF_EVENT_STATE_INACTIVE ||
	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
		return;
1412

S
Stephane Eranian 已提交
1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423
	/*
	 * in cgroup mode, time_enabled represents
	 * the time the event was enabled AND active
	 * tasks were in the monitored cgroup. This is
	 * independent of the activity of the context as
	 * there may be a mix of cgroup and non-cgroup events.
	 *
	 * That is why we treat cgroup events differently
	 * here.
	 */
	if (is_cgroup_event(event))
1424
		run_end = perf_cgroup_event_time(event);
S
Stephane Eranian 已提交
1425 1426
	else if (ctx->is_active)
		run_end = ctx->time;
1427 1428 1429 1430
	else
		run_end = event->tstamp_stopped;

	event->total_time_enabled = run_end - event->tstamp_enabled;
1431 1432 1433 1434

	if (event->state == PERF_EVENT_STATE_INACTIVE)
		run_end = event->tstamp_stopped;
	else
1435
		run_end = perf_event_time(event);
1436 1437

	event->total_time_running = run_end - event->tstamp_running;
S
Stephane Eranian 已提交
1438

1439 1440
}

1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452
/*
 * Update total_time_enabled and total_time_running for all events in a group.
 */
static void update_group_times(struct perf_event *leader)
{
	struct perf_event *event;

	update_event_times(leader);
	list_for_each_entry(event, &leader->sibling_list, group_entry)
		update_event_times(event);
}

1453 1454 1455 1456 1457 1458 1459
static enum event_type_t get_event_type(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	enum event_type_t event_type;

	lockdep_assert_held(&ctx->lock);

1460 1461 1462 1463 1464 1465 1466
	/*
	 * It's 'group type', really, because if our group leader is
	 * pinned, so are we.
	 */
	if (event->group_leader != event)
		event = event->group_leader;

1467 1468 1469 1470 1471 1472 1473
	event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
	if (!ctx->task)
		event_type |= EVENT_CPU;

	return event_type;
}

1474 1475 1476 1477 1478 1479 1480 1481 1482
static struct list_head *
ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
{
	if (event->attr.pinned)
		return &ctx->pinned_groups;
	else
		return &ctx->flexible_groups;
}

1483
/*
1484
 * Add a event from the lists for its context.
1485 1486
 * Must be called with ctx->mutex and ctx->lock held.
 */
1487
static void
1488
list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1489
{
P
Peter Zijlstra 已提交
1490 1491
	lockdep_assert_held(&ctx->lock);

1492 1493
	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
	event->attach_state |= PERF_ATTACH_CONTEXT;
1494 1495

	/*
1496 1497 1498
	 * If we're a stand alone event or group leader, we go to the context
	 * list, group events are kept attached to the group so that
	 * perf_group_detach can, at all times, locate all siblings.
1499
	 */
1500
	if (event->group_leader == event) {
1501 1502
		struct list_head *list;

1503
		event->group_caps = event->event_caps;
1504

1505 1506
		list = ctx_group_list(event, ctx);
		list_add_tail(&event->group_entry, list);
P
Peter Zijlstra 已提交
1507
	}
P
Peter Zijlstra 已提交
1508

1509
	list_update_cgroup_event(event, ctx, true);
S
Stephane Eranian 已提交
1510

1511 1512 1513
	list_add_rcu(&event->event_entry, &ctx->event_list);
	ctx->nr_events++;
	if (event->attr.inherit_stat)
1514
		ctx->nr_stat++;
1515 1516

	ctx->generation++;
1517 1518
}

J
Jiri Olsa 已提交
1519 1520 1521 1522 1523 1524 1525 1526 1527
/*
 * Initialize event state based on the perf_event_attr::disabled.
 */
static inline void perf_event__state_init(struct perf_event *event)
{
	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
					      PERF_EVENT_STATE_INACTIVE;
}

P
Peter Zijlstra 已提交
1528
static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543
{
	int entry = sizeof(u64); /* value */
	int size = 0;
	int nr = 1;

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_ID)
		entry += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_GROUP) {
P
Peter Zijlstra 已提交
1544
		nr += nr_siblings;
1545 1546 1547 1548 1549 1550 1551
		size += sizeof(u64);
	}

	size += entry * nr;
	event->read_size = size;
}

P
Peter Zijlstra 已提交
1552
static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1553 1554 1555 1556 1557 1558 1559
{
	struct perf_sample_data *data;
	u16 size = 0;

	if (sample_type & PERF_SAMPLE_IP)
		size += sizeof(data->ip);

1560 1561 1562 1563 1564 1565
	if (sample_type & PERF_SAMPLE_ADDR)
		size += sizeof(data->addr);

	if (sample_type & PERF_SAMPLE_PERIOD)
		size += sizeof(data->period);

A
Andi Kleen 已提交
1566 1567 1568
	if (sample_type & PERF_SAMPLE_WEIGHT)
		size += sizeof(data->weight);

1569 1570 1571
	if (sample_type & PERF_SAMPLE_READ)
		size += event->read_size;

1572 1573 1574
	if (sample_type & PERF_SAMPLE_DATA_SRC)
		size += sizeof(data->data_src.val);

A
Andi Kleen 已提交
1575 1576 1577
	if (sample_type & PERF_SAMPLE_TRANSACTION)
		size += sizeof(data->txn);

1578 1579 1580
	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
		size += sizeof(data->phys_addr);

1581 1582 1583
	event->header_size = size;
}

P
Peter Zijlstra 已提交
1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594
/*
 * Called at perf_event creation and when events are attached/detached from a
 * group.
 */
static void perf_event__header_size(struct perf_event *event)
{
	__perf_event_read_size(event,
			       event->group_leader->nr_siblings);
	__perf_event_header_size(event, event->attr.sample_type);
}

1595 1596 1597 1598 1599 1600
static void perf_event__id_header_size(struct perf_event *event)
{
	struct perf_sample_data *data;
	u64 sample_type = event->attr.sample_type;
	u16 size = 0;

1601 1602 1603 1604 1605 1606
	if (sample_type & PERF_SAMPLE_TID)
		size += sizeof(data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		size += sizeof(data->time);

1607 1608 1609
	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		size += sizeof(data->id);

1610 1611 1612 1613 1614 1615 1616 1617 1618
	if (sample_type & PERF_SAMPLE_ID)
		size += sizeof(data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		size += sizeof(data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		size += sizeof(data->cpu_entry);

1619
	event->id_header_size = size;
1620 1621
}

P
Peter Zijlstra 已提交
1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642
static bool perf_event_validate_size(struct perf_event *event)
{
	/*
	 * The values computed here will be over-written when we actually
	 * attach the event.
	 */
	__perf_event_read_size(event, event->group_leader->nr_siblings + 1);
	__perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
	perf_event__id_header_size(event);

	/*
	 * Sum the lot; should not exceed the 64k limit we have on records.
	 * Conservative limit to allow for callchains and other variable fields.
	 */
	if (event->read_size + event->header_size +
	    event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
		return false;

	return true;
}

1643 1644
static void perf_group_attach(struct perf_event *event)
{
1645
	struct perf_event *group_leader = event->group_leader, *pos;
1646

1647 1648
	lockdep_assert_held(&event->ctx->lock);

P
Peter Zijlstra 已提交
1649 1650 1651 1652 1653 1654
	/*
	 * We can have double attach due to group movement in perf_event_open.
	 */
	if (event->attach_state & PERF_ATTACH_GROUP)
		return;

1655 1656 1657 1658 1659
	event->attach_state |= PERF_ATTACH_GROUP;

	if (group_leader == event)
		return;

P
Peter Zijlstra 已提交
1660 1661
	WARN_ON_ONCE(group_leader->ctx != event->ctx);

1662
	group_leader->group_caps &= event->event_caps;
1663 1664 1665

	list_add_tail(&event->group_entry, &group_leader->sibling_list);
	group_leader->nr_siblings++;
1666 1667 1668 1669 1670

	perf_event__header_size(group_leader);

	list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
		perf_event__header_size(pos);
1671 1672
}

1673
/*
1674
 * Remove a event from the lists for its context.
1675
 * Must be called with ctx->mutex and ctx->lock held.
1676
 */
1677
static void
1678
list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1679
{
P
Peter Zijlstra 已提交
1680 1681 1682
	WARN_ON_ONCE(event->ctx != ctx);
	lockdep_assert_held(&ctx->lock);

1683 1684 1685 1686
	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1687
		return;
1688 1689 1690

	event->attach_state &= ~PERF_ATTACH_CONTEXT;

1691
	list_update_cgroup_event(event, ctx, false);
S
Stephane Eranian 已提交
1692

1693 1694
	ctx->nr_events--;
	if (event->attr.inherit_stat)
1695
		ctx->nr_stat--;
1696

1697
	list_del_rcu(&event->event_entry);
1698

1699 1700
	if (event->group_leader == event)
		list_del_init(&event->group_entry);
P
Peter Zijlstra 已提交
1701

1702
	update_group_times(event);
1703 1704 1705 1706 1707 1708 1709 1710 1711 1712

	/*
	 * If event was in error state, then keep it
	 * that way, otherwise bogus counts will be
	 * returned on read(). The only way to get out
	 * of error state is by explicit re-enabling
	 * of the event
	 */
	if (event->state > PERF_EVENT_STATE_OFF)
		event->state = PERF_EVENT_STATE_OFF;
1713 1714

	ctx->generation++;
1715 1716
}

1717
static void perf_group_detach(struct perf_event *event)
1718 1719
{
	struct perf_event *sibling, *tmp;
1720 1721
	struct list_head *list = NULL;

1722 1723
	lockdep_assert_held(&event->ctx->lock);

1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737
	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_GROUP))
		return;

	event->attach_state &= ~PERF_ATTACH_GROUP;

	/*
	 * If this is a sibling, remove it from its group.
	 */
	if (event->group_leader != event) {
		list_del_init(&event->group_entry);
		event->group_leader->nr_siblings--;
1738
		goto out;
1739 1740 1741 1742
	}

	if (!list_empty(&event->group_entry))
		list = &event->group_entry;
1743

1744
	/*
1745 1746
	 * If this was a group event with sibling events then
	 * upgrade the siblings to singleton events by adding them
1747
	 * to whatever list we are on.
1748
	 */
1749
	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1750 1751
		if (list)
			list_move_tail(&sibling->group_entry, list);
1752
		sibling->group_leader = sibling;
1753 1754

		/* Inherit group flags from the previous leader */
1755
		sibling->group_caps = event->group_caps;
P
Peter Zijlstra 已提交
1756 1757

		WARN_ON_ONCE(sibling->ctx != event->ctx);
1758
	}
1759 1760 1761 1762 1763 1764

out:
	perf_event__header_size(event->group_leader);

	list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
		perf_event__header_size(tmp);
1765 1766
}

1767 1768
static bool is_orphaned_event(struct perf_event *event)
{
P
Peter Zijlstra 已提交
1769
	return event->state == PERF_EVENT_STATE_DEAD;
1770 1771
}

1772
static inline int __pmu_filter_match(struct perf_event *event)
1773 1774 1775 1776 1777
{
	struct pmu *pmu = event->pmu;
	return pmu->filter_match ? pmu->filter_match(event) : 1;
}

1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798
/*
 * Check whether we should attempt to schedule an event group based on
 * PMU-specific filtering. An event group can consist of HW and SW events,
 * potentially with a SW leader, so we must check all the filters, to
 * determine whether a group is schedulable:
 */
static inline int pmu_filter_match(struct perf_event *event)
{
	struct perf_event *child;

	if (!__pmu_filter_match(event))
		return 0;

	list_for_each_entry(child, &event->sibling_list, group_entry) {
		if (!__pmu_filter_match(child))
			return 0;
	}

	return 1;
}

1799 1800 1801
static inline int
event_filter_match(struct perf_event *event)
{
1802 1803
	return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
	       perf_cgroup_match(event) && pmu_filter_match(event);
1804 1805
}

1806 1807
static void
event_sched_out(struct perf_event *event,
1808
		  struct perf_cpu_context *cpuctx,
1809
		  struct perf_event_context *ctx)
1810
{
1811
	u64 tstamp = perf_event_time(event);
1812
	u64 delta;
P
Peter Zijlstra 已提交
1813 1814 1815 1816

	WARN_ON_ONCE(event->ctx != ctx);
	lockdep_assert_held(&ctx->lock);

1817 1818 1819 1820 1821 1822
	/*
	 * An event which could not be activated because of
	 * filter mismatch still needs to have its timings
	 * maintained, otherwise bogus information is return
	 * via read() for time_enabled, time_running:
	 */
1823 1824
	if (event->state == PERF_EVENT_STATE_INACTIVE &&
	    !event_filter_match(event)) {
S
Stephane Eranian 已提交
1825
		delta = tstamp - event->tstamp_stopped;
1826
		event->tstamp_running += delta;
1827
		event->tstamp_stopped = tstamp;
1828 1829
	}

1830
	if (event->state != PERF_EVENT_STATE_ACTIVE)
1831
		return;
1832

1833 1834
	perf_pmu_disable(event->pmu);

1835 1836 1837
	event->tstamp_stopped = tstamp;
	event->pmu->del(event, 0);
	event->oncpu = -1;
1838 1839 1840 1841
	event->state = PERF_EVENT_STATE_INACTIVE;
	if (event->pending_disable) {
		event->pending_disable = 0;
		event->state = PERF_EVENT_STATE_OFF;
1842
	}
1843

1844
	if (!is_software_event(event))
1845
		cpuctx->active_oncpu--;
1846 1847
	if (!--ctx->nr_active)
		perf_event_ctx_deactivate(ctx);
1848 1849
	if (event->attr.freq && event->attr.sample_freq)
		ctx->nr_freq--;
1850
	if (event->attr.exclusive || !cpuctx->active_oncpu)
1851
		cpuctx->exclusive = 0;
1852 1853

	perf_pmu_enable(event->pmu);
1854 1855
}

1856
static void
1857
group_sched_out(struct perf_event *group_event,
1858
		struct perf_cpu_context *cpuctx,
1859
		struct perf_event_context *ctx)
1860
{
1861
	struct perf_event *event;
1862
	int state = group_event->state;
1863

1864 1865
	perf_pmu_disable(ctx->pmu);

1866
	event_sched_out(group_event, cpuctx, ctx);
1867 1868 1869 1870

	/*
	 * Schedule out siblings (if any):
	 */
1871 1872
	list_for_each_entry(event, &group_event->sibling_list, group_entry)
		event_sched_out(event, cpuctx, ctx);
1873

1874 1875
	perf_pmu_enable(ctx->pmu);

1876
	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1877 1878 1879
		cpuctx->exclusive = 0;
}

1880
#define DETACH_GROUP	0x01UL
1881

T
Thomas Gleixner 已提交
1882
/*
1883
 * Cross CPU call to remove a performance event
T
Thomas Gleixner 已提交
1884
 *
1885
 * We disable the event on the hardware level first. After that we
T
Thomas Gleixner 已提交
1886 1887
 * remove it from the context list.
 */
1888 1889 1890 1891 1892
static void
__perf_remove_from_context(struct perf_event *event,
			   struct perf_cpu_context *cpuctx,
			   struct perf_event_context *ctx,
			   void *info)
T
Thomas Gleixner 已提交
1893
{
1894
	unsigned long flags = (unsigned long)info;
T
Thomas Gleixner 已提交
1895

1896
	event_sched_out(event, cpuctx, ctx);
1897
	if (flags & DETACH_GROUP)
1898
		perf_group_detach(event);
1899
	list_del_event(event, ctx);
1900 1901

	if (!ctx->nr_events && ctx->is_active) {
1902
		ctx->is_active = 0;
1903 1904 1905 1906
		if (ctx->task) {
			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
			cpuctx->task_ctx = NULL;
		}
1907
	}
T
Thomas Gleixner 已提交
1908 1909 1910
}

/*
1911
 * Remove the event from a task's (or a CPU's) list of events.
T
Thomas Gleixner 已提交
1912
 *
1913 1914
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1915 1916
 * remains valid.  This is OK when called from perf_release since
 * that only calls us on the top-level context, which can't be a clone.
1917
 * When called from perf_event_exit_task, it's OK because the
1918
 * context has been detached from its task.
T
Thomas Gleixner 已提交
1919
 */
1920
static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
T
Thomas Gleixner 已提交
1921
{
1922 1923 1924
	struct perf_event_context *ctx = event->ctx;

	lockdep_assert_held(&ctx->mutex);
T
Thomas Gleixner 已提交
1925

1926
	event_function_call(event, __perf_remove_from_context, (void *)flags);
1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944

	/*
	 * The above event_function_call() can NO-OP when it hits
	 * TASK_TOMBSTONE. In that case we must already have been detached
	 * from the context (by perf_event_exit_event()) but the grouping
	 * might still be in-tact.
	 */
	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
	if ((flags & DETACH_GROUP) &&
	    (event->attach_state & PERF_ATTACH_GROUP)) {
		/*
		 * Since in that case we cannot possibly be scheduled, simply
		 * detach now.
		 */
		raw_spin_lock_irq(&ctx->lock);
		perf_group_detach(event);
		raw_spin_unlock_irq(&ctx->lock);
	}
T
Thomas Gleixner 已提交
1945 1946
}

1947
/*
1948
 * Cross CPU call to disable a performance event
1949
 */
1950 1951 1952 1953
static void __perf_event_disable(struct perf_event *event,
				 struct perf_cpu_context *cpuctx,
				 struct perf_event_context *ctx,
				 void *info)
1954
{
1955 1956
	if (event->state < PERF_EVENT_STATE_INACTIVE)
		return;
1957

1958 1959 1960 1961 1962 1963 1964 1965
	update_context_time(ctx);
	update_cgrp_time_from_event(event);
	update_group_times(event);
	if (event == event->group_leader)
		group_sched_out(event, cpuctx, ctx);
	else
		event_sched_out(event, cpuctx, ctx);
	event->state = PERF_EVENT_STATE_OFF;
1966 1967
}

1968
/*
1969
 * Disable a event.
1970
 *
1971 1972
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1973
 * remains valid.  This condition is satisifed when called through
1974 1975
 * perf_event_for_each_child or perf_event_for_each because they
 * hold the top-level event's child_mutex, so any descendant that
1976 1977
 * goes to exit will block in perf_event_exit_event().
 *
1978
 * When called from perf_pending_event it's OK because event->ctx
1979
 * is the current context on this CPU and preemption is disabled,
1980
 * hence we can't get into perf_event_task_sched_out for this context.
1981
 */
P
Peter Zijlstra 已提交
1982
static void _perf_event_disable(struct perf_event *event)
1983
{
1984
	struct perf_event_context *ctx = event->ctx;
1985

1986
	raw_spin_lock_irq(&ctx->lock);
1987
	if (event->state <= PERF_EVENT_STATE_OFF) {
1988
		raw_spin_unlock_irq(&ctx->lock);
1989
		return;
1990
	}
1991
	raw_spin_unlock_irq(&ctx->lock);
1992

1993 1994 1995 1996 1997 1998
	event_function_call(event, __perf_event_disable, NULL);
}

void perf_event_disable_local(struct perf_event *event)
{
	event_function_local(event, __perf_event_disable, NULL);
1999
}
P
Peter Zijlstra 已提交
2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012

/*
 * Strictly speaking kernel users cannot create groups and therefore this
 * interface does not need the perf_event_ctx_lock() magic.
 */
void perf_event_disable(struct perf_event *event)
{
	struct perf_event_context *ctx;

	ctx = perf_event_ctx_lock(event);
	_perf_event_disable(event);
	perf_event_ctx_unlock(event, ctx);
}
2013
EXPORT_SYMBOL_GPL(perf_event_disable);
2014

2015 2016 2017 2018 2019 2020
void perf_event_disable_inatomic(struct perf_event *event)
{
	event->pending_disable = 1;
	irq_work_queue(&event->pending);
}

S
Stephane Eranian 已提交
2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055
static void perf_set_shadow_time(struct perf_event *event,
				 struct perf_event_context *ctx,
				 u64 tstamp)
{
	/*
	 * use the correct time source for the time snapshot
	 *
	 * We could get by without this by leveraging the
	 * fact that to get to this function, the caller
	 * has most likely already called update_context_time()
	 * and update_cgrp_time_xx() and thus both timestamp
	 * are identical (or very close). Given that tstamp is,
	 * already adjusted for cgroup, we could say that:
	 *    tstamp - ctx->timestamp
	 * is equivalent to
	 *    tstamp - cgrp->timestamp.
	 *
	 * Then, in perf_output_read(), the calculation would
	 * work with no changes because:
	 * - event is guaranteed scheduled in
	 * - no scheduled out in between
	 * - thus the timestamp would be the same
	 *
	 * But this is a bit hairy.
	 *
	 * So instead, we have an explicit cgroup call to remain
	 * within the time time source all along. We believe it
	 * is cleaner and simpler to understand.
	 */
	if (is_cgroup_event(event))
		perf_cgroup_set_shadow_time(event, tstamp);
	else
		event->shadow_ctx_time = tstamp - ctx->timestamp;
}

P
Peter Zijlstra 已提交
2056 2057 2058
#define MAX_INTERRUPTS (~0ULL)

static void perf_log_throttle(struct perf_event *event, int enable);
2059
static void perf_log_itrace_start(struct perf_event *event);
P
Peter Zijlstra 已提交
2060

2061
static int
2062
event_sched_in(struct perf_event *event,
2063
		 struct perf_cpu_context *cpuctx,
2064
		 struct perf_event_context *ctx)
2065
{
2066
	u64 tstamp = perf_event_time(event);
2067
	int ret = 0;
2068

2069 2070
	lockdep_assert_held(&ctx->lock);

2071
	if (event->state <= PERF_EVENT_STATE_OFF)
2072 2073
		return 0;

2074 2075 2076 2077 2078 2079 2080
	WRITE_ONCE(event->oncpu, smp_processor_id());
	/*
	 * Order event::oncpu write to happen before the ACTIVE state
	 * is visible.
	 */
	smp_wmb();
	WRITE_ONCE(event->state, PERF_EVENT_STATE_ACTIVE);
P
Peter Zijlstra 已提交
2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091

	/*
	 * Unthrottle events, since we scheduled we might have missed several
	 * ticks already, also for a heavily scheduling task there is little
	 * guarantee it'll get a tick in a timely manner.
	 */
	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
		perf_log_throttle(event, 1);
		event->hw.interrupts = 0;
	}

2092 2093 2094 2095 2096
	/*
	 * The new state must be visible before we turn it on in the hardware:
	 */
	smp_wmb();

2097 2098
	perf_pmu_disable(event->pmu);

2099 2100
	perf_set_shadow_time(event, ctx, tstamp);

2101 2102
	perf_log_itrace_start(event);

P
Peter Zijlstra 已提交
2103
	if (event->pmu->add(event, PERF_EF_START)) {
2104 2105
		event->state = PERF_EVENT_STATE_INACTIVE;
		event->oncpu = -1;
2106 2107
		ret = -EAGAIN;
		goto out;
2108 2109
	}

2110 2111
	event->tstamp_running += tstamp - event->tstamp_stopped;

2112
	if (!is_software_event(event))
2113
		cpuctx->active_oncpu++;
2114 2115
	if (!ctx->nr_active++)
		perf_event_ctx_activate(ctx);
2116 2117
	if (event->attr.freq && event->attr.sample_freq)
		ctx->nr_freq++;
2118

2119
	if (event->attr.exclusive)
2120 2121
		cpuctx->exclusive = 1;

2122 2123 2124 2125
out:
	perf_pmu_enable(event->pmu);

	return ret;
2126 2127
}

2128
static int
2129
group_sched_in(struct perf_event *group_event,
2130
	       struct perf_cpu_context *cpuctx,
2131
	       struct perf_event_context *ctx)
2132
{
2133
	struct perf_event *event, *partial_group = NULL;
P
Peter Zijlstra 已提交
2134
	struct pmu *pmu = ctx->pmu;
2135 2136
	u64 now = ctx->time;
	bool simulate = false;
2137

2138
	if (group_event->state == PERF_EVENT_STATE_OFF)
2139 2140
		return 0;

2141
	pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2142

2143
	if (event_sched_in(group_event, cpuctx, ctx)) {
P
Peter Zijlstra 已提交
2144
		pmu->cancel_txn(pmu);
2145
		perf_mux_hrtimer_restart(cpuctx);
2146
		return -EAGAIN;
2147
	}
2148 2149 2150 2151

	/*
	 * Schedule in siblings as one group (if any):
	 */
2152
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2153
		if (event_sched_in(event, cpuctx, ctx)) {
2154
			partial_group = event;
2155 2156 2157 2158
			goto group_error;
		}
	}

2159
	if (!pmu->commit_txn(pmu))
2160
		return 0;
2161

2162 2163 2164 2165
group_error:
	/*
	 * Groups can be scheduled in as one unit only, so undo any
	 * partial group before returning:
2166 2167 2168 2169 2170 2171 2172 2173 2174 2175
	 * The events up to the failed event are scheduled out normally,
	 * tstamp_stopped will be updated.
	 *
	 * The failed events and the remaining siblings need to have
	 * their timings updated as if they had gone thru event_sched_in()
	 * and event_sched_out(). This is required to get consistent timings
	 * across the group. This also takes care of the case where the group
	 * could never be scheduled by ensuring tstamp_stopped is set to mark
	 * the time the event was actually stopped, such that time delta
	 * calculation in update_event_times() is correct.
2176
	 */
2177 2178
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
		if (event == partial_group)
2179 2180 2181 2182 2183 2184 2185 2186
			simulate = true;

		if (simulate) {
			event->tstamp_running += now - event->tstamp_stopped;
			event->tstamp_stopped = now;
		} else {
			event_sched_out(event, cpuctx, ctx);
		}
2187
	}
2188
	event_sched_out(group_event, cpuctx, ctx);
2189

P
Peter Zijlstra 已提交
2190
	pmu->cancel_txn(pmu);
2191

2192
	perf_mux_hrtimer_restart(cpuctx);
2193

2194 2195 2196
	return -EAGAIN;
}

2197
/*
2198
 * Work out whether we can put this event group on the CPU now.
2199
 */
2200
static int group_can_go_on(struct perf_event *event,
2201 2202 2203 2204
			   struct perf_cpu_context *cpuctx,
			   int can_add_hw)
{
	/*
2205
	 * Groups consisting entirely of software events can always go on.
2206
	 */
2207
	if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2208 2209 2210
		return 1;
	/*
	 * If an exclusive group is already on, no other hardware
2211
	 * events can go on.
2212 2213 2214 2215 2216
	 */
	if (cpuctx->exclusive)
		return 0;
	/*
	 * If this group is exclusive and there are already
2217
	 * events on the CPU, it can't go on.
2218
	 */
2219
	if (event->attr.exclusive && cpuctx->active_oncpu)
2220 2221 2222 2223 2224 2225 2226 2227
		return 0;
	/*
	 * Otherwise, try to add it if all previous groups were able
	 * to go on.
	 */
	return can_add_hw;
}

2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254
/*
 * Complement to update_event_times(). This computes the tstamp_* values to
 * continue 'enabled' state from @now, and effectively discards the time
 * between the prior tstamp_stopped and now (as we were in the OFF state, or
 * just switched (context) time base).
 *
 * This further assumes '@event->state == INACTIVE' (we just came from OFF) and
 * cannot have been scheduled in yet. And going into INACTIVE state means
 * '@event->tstamp_stopped = @now'.
 *
 * Thus given the rules of update_event_times():
 *
 *   total_time_enabled = tstamp_stopped - tstamp_enabled
 *   total_time_running = tstamp_stopped - tstamp_running
 *
 * We can insert 'tstamp_stopped == now' and reverse them to compute new
 * tstamp_* values.
 */
static void __perf_event_enable_time(struct perf_event *event, u64 now)
{
	WARN_ON_ONCE(event->state != PERF_EVENT_STATE_INACTIVE);

	event->tstamp_stopped = now;
	event->tstamp_enabled = now - event->total_time_enabled;
	event->tstamp_running = now - event->total_time_running;
}

2255 2256
static void add_event_to_ctx(struct perf_event *event,
			       struct perf_event_context *ctx)
2257
{
2258 2259
	u64 tstamp = perf_event_time(event);

2260
	list_add_event(event, ctx);
2261
	perf_group_attach(event);
2262 2263 2264 2265 2266 2267
	/*
	 * We can be called with event->state == STATE_OFF when we create with
	 * .disabled = 1. In that case the IOC_ENABLE will call this function.
	 */
	if (event->state == PERF_EVENT_STATE_INACTIVE)
		__perf_event_enable_time(event, tstamp);
2268 2269
}

2270 2271 2272
static void ctx_sched_out(struct perf_event_context *ctx,
			  struct perf_cpu_context *cpuctx,
			  enum event_type_t event_type);
2273 2274 2275 2276 2277
static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
	     enum event_type_t event_type,
	     struct task_struct *task);
2278

2279
static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2280 2281
			       struct perf_event_context *ctx,
			       enum event_type_t event_type)
2282 2283 2284 2285 2286 2287 2288
{
	if (!cpuctx->task_ctx)
		return;

	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
		return;

2289
	ctx_sched_out(ctx, cpuctx, event_type);
2290 2291
}

2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303
static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
				struct perf_event_context *ctx,
				struct task_struct *task)
{
	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
}

2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318
/*
 * We want to maintain the following priority of scheduling:
 *  - CPU pinned (EVENT_CPU | EVENT_PINNED)
 *  - task pinned (EVENT_PINNED)
 *  - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
 *  - task flexible (EVENT_FLEXIBLE).
 *
 * In order to avoid unscheduling and scheduling back in everything every
 * time an event is added, only do it for the groups of equal priority and
 * below.
 *
 * This can be called after a batch operation on task events, in which case
 * event_type is a bit mask of the types of events involved. For CPU events,
 * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
 */
2319
static void ctx_resched(struct perf_cpu_context *cpuctx,
2320 2321
			struct perf_event_context *task_ctx,
			enum event_type_t event_type)
2322
{
2323 2324 2325 2326 2327 2328 2329 2330 2331 2332
	enum event_type_t ctx_event_type = event_type & EVENT_ALL;
	bool cpu_event = !!(event_type & EVENT_CPU);

	/*
	 * If pinned groups are involved, flexible groups also need to be
	 * scheduled out.
	 */
	if (event_type & EVENT_PINNED)
		event_type |= EVENT_FLEXIBLE;

2333 2334
	perf_pmu_disable(cpuctx->ctx.pmu);
	if (task_ctx)
2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348
		task_ctx_sched_out(cpuctx, task_ctx, event_type);

	/*
	 * Decide which cpu ctx groups to schedule out based on the types
	 * of events that caused rescheduling:
	 *  - EVENT_CPU: schedule out corresponding groups;
	 *  - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
	 *  - otherwise, do nothing more.
	 */
	if (cpu_event)
		cpu_ctx_sched_out(cpuctx, ctx_event_type);
	else if (ctx_event_type & EVENT_PINNED)
		cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);

2349 2350
	perf_event_sched_in(cpuctx, task_ctx, current);
	perf_pmu_enable(cpuctx->ctx.pmu);
2351 2352
}

T
Thomas Gleixner 已提交
2353
/*
2354
 * Cross CPU call to install and enable a performance event
2355
 *
2356 2357
 * Very similar to remote_function() + event_function() but cannot assume that
 * things like ctx->is_active and cpuctx->task_ctx are set.
T
Thomas Gleixner 已提交
2358
 */
2359
static int  __perf_install_in_context(void *info)
T
Thomas Gleixner 已提交
2360
{
2361 2362
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
2363
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2364
	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2365
	bool reprogram = true;
2366
	int ret = 0;
T
Thomas Gleixner 已提交
2367

2368
	raw_spin_lock(&cpuctx->ctx.lock);
2369
	if (ctx->task) {
2370 2371
		raw_spin_lock(&ctx->lock);
		task_ctx = ctx;
2372

2373
		reprogram = (ctx->task == current);
2374

2375
		/*
2376 2377 2378 2379 2380
		 * If the task is running, it must be running on this CPU,
		 * otherwise we cannot reprogram things.
		 *
		 * If its not running, we don't care, ctx->lock will
		 * serialize against it becoming runnable.
2381
		 */
2382 2383 2384 2385
		if (task_curr(ctx->task) && !reprogram) {
			ret = -ESRCH;
			goto unlock;
		}
2386

2387
		WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2388 2389
	} else if (task_ctx) {
		raw_spin_lock(&task_ctx->lock);
2390
	}
2391

2392
	if (reprogram) {
2393 2394
		ctx_sched_out(ctx, cpuctx, EVENT_TIME);
		add_event_to_ctx(event, ctx);
2395
		ctx_resched(cpuctx, task_ctx, get_event_type(event));
2396 2397 2398 2399
	} else {
		add_event_to_ctx(event, ctx);
	}

2400
unlock:
2401
	perf_ctx_unlock(cpuctx, task_ctx);
2402

2403
	return ret;
T
Thomas Gleixner 已提交
2404 2405 2406
}

/*
2407 2408 2409
 * Attach a performance event to a context.
 *
 * Very similar to event_function_call, see comment there.
T
Thomas Gleixner 已提交
2410 2411
 */
static void
2412 2413
perf_install_in_context(struct perf_event_context *ctx,
			struct perf_event *event,
T
Thomas Gleixner 已提交
2414 2415
			int cpu)
{
2416
	struct task_struct *task = READ_ONCE(ctx->task);
2417

2418 2419
	lockdep_assert_held(&ctx->mutex);

2420 2421
	if (event->cpu != -1)
		event->cpu = cpu;
2422

2423 2424 2425 2426 2427 2428
	/*
	 * Ensures that if we can observe event->ctx, both the event and ctx
	 * will be 'complete'. See perf_iterate_sb_cpu().
	 */
	smp_store_release(&event->ctx, ctx);

2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439
	if (!task) {
		cpu_function_call(cpu, __perf_install_in_context, event);
		return;
	}

	/*
	 * Should not happen, we validate the ctx is still alive before calling.
	 */
	if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
		return;

2440 2441 2442
	/*
	 * Installing events is tricky because we cannot rely on ctx->is_active
	 * to be set in case this is the nr_events 0 -> 1 transition.
2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461
	 *
	 * Instead we use task_curr(), which tells us if the task is running.
	 * However, since we use task_curr() outside of rq::lock, we can race
	 * against the actual state. This means the result can be wrong.
	 *
	 * If we get a false positive, we retry, this is harmless.
	 *
	 * If we get a false negative, things are complicated. If we are after
	 * perf_event_context_sched_in() ctx::lock will serialize us, and the
	 * value must be correct. If we're before, it doesn't matter since
	 * perf_event_context_sched_in() will program the counter.
	 *
	 * However, this hinges on the remote context switch having observed
	 * our task->perf_event_ctxp[] store, such that it will in fact take
	 * ctx::lock in perf_event_context_sched_in().
	 *
	 * We do this by task_function_call(), if the IPI fails to hit the task
	 * we know any future context switch of task must see the
	 * perf_event_ctpx[] store.
2462
	 */
2463

2464
	/*
2465 2466 2467 2468
	 * This smp_mb() orders the task->perf_event_ctxp[] store with the
	 * task_cpu() load, such that if the IPI then does not find the task
	 * running, a future context switch of that task must observe the
	 * store.
2469
	 */
2470 2471 2472
	smp_mb();
again:
	if (!task_function_call(task, __perf_install_in_context, event))
2473 2474 2475 2476
		return;

	raw_spin_lock_irq(&ctx->lock);
	task = ctx->task;
2477
	if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2478 2479 2480 2481 2482
		/*
		 * Cannot happen because we already checked above (which also
		 * cannot happen), and we hold ctx->mutex, which serializes us
		 * against perf_event_exit_task_context().
		 */
2483 2484 2485
		raw_spin_unlock_irq(&ctx->lock);
		return;
	}
2486
	/*
2487 2488
	 * If the task is not running, ctx->lock will avoid it becoming so,
	 * thus we can safely install the event.
2489
	 */
2490 2491 2492 2493 2494 2495
	if (task_curr(task)) {
		raw_spin_unlock_irq(&ctx->lock);
		goto again;
	}
	add_event_to_ctx(event, ctx);
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
2496 2497
}

2498
/*
2499
 * Put a event into inactive state and update time fields.
2500 2501 2502 2503 2504 2505
 * Enabling the leader of a group effectively enables all
 * the group members that aren't explicitly disabled, so we
 * have to update their ->tstamp_enabled also.
 * Note: this works for group members as well as group leaders
 * since the non-leader members' sibling_lists will be empty.
 */
2506
static void __perf_event_mark_enabled(struct perf_event *event)
2507
{
2508
	struct perf_event *sub;
2509
	u64 tstamp = perf_event_time(event);
2510

2511
	event->state = PERF_EVENT_STATE_INACTIVE;
2512
	__perf_event_enable_time(event, tstamp);
P
Peter Zijlstra 已提交
2513
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
2514
		/* XXX should not be > INACTIVE if event isn't */
2515
		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
2516
			__perf_event_enable_time(sub, tstamp);
P
Peter Zijlstra 已提交
2517
	}
2518 2519
}

2520
/*
2521
 * Cross CPU call to enable a performance event
2522
 */
2523 2524 2525 2526
static void __perf_event_enable(struct perf_event *event,
				struct perf_cpu_context *cpuctx,
				struct perf_event_context *ctx,
				void *info)
2527
{
2528
	struct perf_event *leader = event->group_leader;
2529
	struct perf_event_context *task_ctx;
2530

P
Peter Zijlstra 已提交
2531 2532
	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
	    event->state <= PERF_EVENT_STATE_ERROR)
2533
		return;
2534

2535 2536 2537
	if (ctx->is_active)
		ctx_sched_out(ctx, cpuctx, EVENT_TIME);

2538
	__perf_event_mark_enabled(event);
2539

2540 2541 2542
	if (!ctx->is_active)
		return;

S
Stephane Eranian 已提交
2543
	if (!event_filter_match(event)) {
2544
		if (is_cgroup_event(event))
S
Stephane Eranian 已提交
2545
			perf_cgroup_defer_enabled(event);
2546
		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2547
		return;
S
Stephane Eranian 已提交
2548
	}
2549

2550
	/*
2551
	 * If the event is in a group and isn't the group leader,
2552
	 * then don't put it on unless the group is on.
2553
	 */
2554 2555
	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2556
		return;
2557
	}
2558

2559 2560 2561
	task_ctx = cpuctx->task_ctx;
	if (ctx->task)
		WARN_ON_ONCE(task_ctx != ctx);
2562

2563
	ctx_resched(cpuctx, task_ctx, get_event_type(event));
2564 2565
}

2566
/*
2567
 * Enable a event.
2568
 *
2569 2570
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
2571
 * remains valid.  This condition is satisfied when called through
2572 2573
 * perf_event_for_each_child or perf_event_for_each as described
 * for perf_event_disable.
2574
 */
P
Peter Zijlstra 已提交
2575
static void _perf_event_enable(struct perf_event *event)
2576
{
2577
	struct perf_event_context *ctx = event->ctx;
2578

2579
	raw_spin_lock_irq(&ctx->lock);
P
Peter Zijlstra 已提交
2580 2581
	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
	    event->state <  PERF_EVENT_STATE_ERROR) {
2582
		raw_spin_unlock_irq(&ctx->lock);
2583 2584 2585 2586
		return;
	}

	/*
2587
	 * If the event is in error state, clear that first.
2588 2589 2590 2591
	 *
	 * That way, if we see the event in error state below, we know that it
	 * has gone back into error state, as distinct from the task having
	 * been scheduled away before the cross-call arrived.
2592
	 */
2593 2594
	if (event->state == PERF_EVENT_STATE_ERROR)
		event->state = PERF_EVENT_STATE_OFF;
2595
	raw_spin_unlock_irq(&ctx->lock);
2596

2597
	event_function_call(event, __perf_event_enable, NULL);
2598
}
P
Peter Zijlstra 已提交
2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610

/*
 * See perf_event_disable();
 */
void perf_event_enable(struct perf_event *event)
{
	struct perf_event_context *ctx;

	ctx = perf_event_ctx_lock(event);
	_perf_event_enable(event);
	perf_event_ctx_unlock(event, ctx);
}
2611
EXPORT_SYMBOL_GPL(perf_event_enable);
2612

2613 2614 2615 2616 2617
struct stop_event_data {
	struct perf_event	*event;
	unsigned int		restart;
};

2618 2619
static int __perf_event_stop(void *info)
{
2620 2621
	struct stop_event_data *sd = info;
	struct perf_event *event = sd->event;
2622

2623
	/* if it's already INACTIVE, do nothing */
2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638
	if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
		return 0;

	/* matches smp_wmb() in event_sched_in() */
	smp_rmb();

	/*
	 * There is a window with interrupts enabled before we get here,
	 * so we need to check again lest we try to stop another CPU's event.
	 */
	if (READ_ONCE(event->oncpu) != smp_processor_id())
		return -EAGAIN;

	event->pmu->stop(event, PERF_EF_UPDATE);

2639 2640 2641 2642 2643 2644 2645 2646 2647 2648
	/*
	 * May race with the actual stop (through perf_pmu_output_stop()),
	 * but it is only used for events with AUX ring buffer, and such
	 * events will refuse to restart because of rb::aux_mmap_count==0,
	 * see comments in perf_aux_output_begin().
	 *
	 * Since this is happening on a event-local CPU, no trace is lost
	 * while restarting.
	 */
	if (sd->restart)
2649
		event->pmu->start(event, 0);
2650

2651 2652 2653
	return 0;
}

2654
static int perf_event_stop(struct perf_event *event, int restart)
2655 2656 2657
{
	struct stop_event_data sd = {
		.event		= event,
2658
		.restart	= restart,
2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718
	};
	int ret = 0;

	do {
		if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
			return 0;

		/* matches smp_wmb() in event_sched_in() */
		smp_rmb();

		/*
		 * We only want to restart ACTIVE events, so if the event goes
		 * inactive here (event->oncpu==-1), there's nothing more to do;
		 * fall through with ret==-ENXIO.
		 */
		ret = cpu_function_call(READ_ONCE(event->oncpu),
					__perf_event_stop, &sd);
	} while (ret == -EAGAIN);

	return ret;
}

/*
 * In order to contain the amount of racy and tricky in the address filter
 * configuration management, it is a two part process:
 *
 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
 *      we update the addresses of corresponding vmas in
 *	event::addr_filters_offs array and bump the event::addr_filters_gen;
 * (p2) when an event is scheduled in (pmu::add), it calls
 *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
 *      if the generation has changed since the previous call.
 *
 * If (p1) happens while the event is active, we restart it to force (p2).
 *
 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
 *     pre-existing mappings, called once when new filters arrive via SET_FILTER
 *     ioctl;
 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
 *     registered mapping, called for every new mmap(), with mm::mmap_sem down
 *     for reading;
 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
 *     of exec.
 */
void perf_event_addr_filters_sync(struct perf_event *event)
{
	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);

	if (!has_addr_filter(event))
		return;

	raw_spin_lock(&ifh->lock);
	if (event->addr_filters_gen != event->hw.addr_filters_gen) {
		event->pmu->addr_filters_sync(event);
		event->hw.addr_filters_gen = event->addr_filters_gen;
	}
	raw_spin_unlock(&ifh->lock);
}
EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);

P
Peter Zijlstra 已提交
2719
static int _perf_event_refresh(struct perf_event *event, int refresh)
2720
{
2721
	/*
2722
	 * not supported on inherited events
2723
	 */
2724
	if (event->attr.inherit || !is_sampling_event(event))
2725 2726
		return -EINVAL;

2727
	atomic_add(refresh, &event->event_limit);
P
Peter Zijlstra 已提交
2728
	_perf_event_enable(event);
2729 2730

	return 0;
2731
}
P
Peter Zijlstra 已提交
2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746

/*
 * See perf_event_disable()
 */
int perf_event_refresh(struct perf_event *event, int refresh)
{
	struct perf_event_context *ctx;
	int ret;

	ctx = perf_event_ctx_lock(event);
	ret = _perf_event_refresh(event, refresh);
	perf_event_ctx_unlock(event, ctx);

	return ret;
}
2747
EXPORT_SYMBOL_GPL(perf_event_refresh);
2748

2749 2750 2751
static void ctx_sched_out(struct perf_event_context *ctx,
			  struct perf_cpu_context *cpuctx,
			  enum event_type_t event_type)
2752
{
2753
	int is_active = ctx->is_active;
P
Peter Zijlstra 已提交
2754
	struct perf_event *event;
2755

P
Peter Zijlstra 已提交
2756
	lockdep_assert_held(&ctx->lock);
2757

2758 2759 2760 2761 2762 2763 2764
	if (likely(!ctx->nr_events)) {
		/*
		 * See __perf_remove_from_context().
		 */
		WARN_ON_ONCE(ctx->is_active);
		if (ctx->task)
			WARN_ON_ONCE(cpuctx->task_ctx);
2765
		return;
2766 2767
	}

2768
	ctx->is_active &= ~event_type;
2769 2770 2771
	if (!(ctx->is_active & EVENT_ALL))
		ctx->is_active = 0;

2772 2773 2774 2775 2776
	if (ctx->task) {
		WARN_ON_ONCE(cpuctx->task_ctx != ctx);
		if (!ctx->is_active)
			cpuctx->task_ctx = NULL;
	}
2777

2778 2779 2780 2781 2782 2783 2784 2785 2786 2787
	/*
	 * Always update time if it was set; not only when it changes.
	 * Otherwise we can 'forget' to update time for any but the last
	 * context we sched out. For example:
	 *
	 *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
	 *   ctx_sched_out(.event_type = EVENT_PINNED)
	 *
	 * would only update time for the pinned events.
	 */
2788 2789 2790 2791 2792 2793
	if (is_active & EVENT_TIME) {
		/* update (and stop) ctx time */
		update_context_time(ctx);
		update_cgrp_time_from_cpuctx(cpuctx);
	}

2794 2795
	is_active ^= ctx->is_active; /* changed bits */

2796
	if (!ctx->nr_active || !(is_active & EVENT_ALL))
2797
		return;
2798

P
Peter Zijlstra 已提交
2799
	perf_pmu_disable(ctx->pmu);
2800
	if (is_active & EVENT_PINNED) {
2801 2802
		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
2803
	}
2804

2805
	if (is_active & EVENT_FLEXIBLE) {
2806
		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2807
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
2808
	}
P
Peter Zijlstra 已提交
2809
	perf_pmu_enable(ctx->pmu);
2810 2811
}

2812
/*
2813 2814 2815 2816 2817 2818
 * Test whether two contexts are equivalent, i.e. whether they have both been
 * cloned from the same version of the same context.
 *
 * Equivalence is measured using a generation number in the context that is
 * incremented on each modification to it; see unclone_ctx(), list_add_event()
 * and list_del_event().
2819
 */
2820 2821
static int context_equiv(struct perf_event_context *ctx1,
			 struct perf_event_context *ctx2)
2822
{
2823 2824 2825
	lockdep_assert_held(&ctx1->lock);
	lockdep_assert_held(&ctx2->lock);

2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847
	/* Pinning disables the swap optimization */
	if (ctx1->pin_count || ctx2->pin_count)
		return 0;

	/* If ctx1 is the parent of ctx2 */
	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
		return 1;

	/* If ctx2 is the parent of ctx1 */
	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
		return 1;

	/*
	 * If ctx1 and ctx2 have the same parent; we flatten the parent
	 * hierarchy, see perf_event_init_context().
	 */
	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
			ctx1->parent_gen == ctx2->parent_gen)
		return 1;

	/* Unmatched */
	return 0;
2848 2849
}

2850 2851
static void __perf_event_sync_stat(struct perf_event *event,
				     struct perf_event *next_event)
2852 2853 2854
{
	u64 value;

2855
	if (!event->attr.inherit_stat)
2856 2857 2858
		return;

	/*
2859
	 * Update the event value, we cannot use perf_event_read()
2860 2861
	 * because we're in the middle of a context switch and have IRQs
	 * disabled, which upsets smp_call_function_single(), however
2862
	 * we know the event must be on the current CPU, therefore we
2863 2864
	 * don't need to use it.
	 */
2865 2866
	switch (event->state) {
	case PERF_EVENT_STATE_ACTIVE:
2867 2868
		event->pmu->read(event);
		/* fall-through */
2869

2870 2871
	case PERF_EVENT_STATE_INACTIVE:
		update_event_times(event);
2872 2873 2874 2875 2876 2877 2878
		break;

	default:
		break;
	}

	/*
2879
	 * In order to keep per-task stats reliable we need to flip the event
2880 2881
	 * values when we flip the contexts.
	 */
2882 2883 2884
	value = local64_read(&next_event->count);
	value = local64_xchg(&event->count, value);
	local64_set(&next_event->count, value);
2885

2886 2887
	swap(event->total_time_enabled, next_event->total_time_enabled);
	swap(event->total_time_running, next_event->total_time_running);
2888

2889
	/*
2890
	 * Since we swizzled the values, update the user visible data too.
2891
	 */
2892 2893
	perf_event_update_userpage(event);
	perf_event_update_userpage(next_event);
2894 2895
}

2896 2897
static void perf_event_sync_stat(struct perf_event_context *ctx,
				   struct perf_event_context *next_ctx)
2898
{
2899
	struct perf_event *event, *next_event;
2900 2901 2902 2903

	if (!ctx->nr_stat)
		return;

2904 2905
	update_context_time(ctx);

2906 2907
	event = list_first_entry(&ctx->event_list,
				   struct perf_event, event_entry);
2908

2909 2910
	next_event = list_first_entry(&next_ctx->event_list,
					struct perf_event, event_entry);
2911

2912 2913
	while (&event->event_entry != &ctx->event_list &&
	       &next_event->event_entry != &next_ctx->event_list) {
2914

2915
		__perf_event_sync_stat(event, next_event);
2916

2917 2918
		event = list_next_entry(event, event_entry);
		next_event = list_next_entry(next_event, event_entry);
2919 2920 2921
	}
}

2922 2923
static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
					 struct task_struct *next)
T
Thomas Gleixner 已提交
2924
{
P
Peter Zijlstra 已提交
2925
	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2926
	struct perf_event_context *next_ctx;
2927
	struct perf_event_context *parent, *next_parent;
P
Peter Zijlstra 已提交
2928
	struct perf_cpu_context *cpuctx;
2929
	int do_switch = 1;
T
Thomas Gleixner 已提交
2930

P
Peter Zijlstra 已提交
2931 2932
	if (likely(!ctx))
		return;
2933

P
Peter Zijlstra 已提交
2934 2935
	cpuctx = __get_cpu_context(ctx);
	if (!cpuctx->task_ctx)
T
Thomas Gleixner 已提交
2936 2937
		return;

2938
	rcu_read_lock();
P
Peter Zijlstra 已提交
2939
	next_ctx = next->perf_event_ctxp[ctxn];
2940 2941 2942 2943 2944 2945 2946
	if (!next_ctx)
		goto unlock;

	parent = rcu_dereference(ctx->parent_ctx);
	next_parent = rcu_dereference(next_ctx->parent_ctx);

	/* If neither context have a parent context; they cannot be clones. */
2947
	if (!parent && !next_parent)
2948 2949 2950
		goto unlock;

	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2951 2952 2953 2954 2955 2956 2957 2958 2959
		/*
		 * Looks like the two contexts are clones, so we might be
		 * able to optimize the context switch.  We lock both
		 * contexts and check that they are clones under the
		 * lock (including re-checking that neither has been
		 * uncloned in the meantime).  It doesn't matter which
		 * order we take the locks because no other cpu could
		 * be trying to lock both of these tasks.
		 */
2960 2961
		raw_spin_lock(&ctx->lock);
		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2962
		if (context_equiv(ctx, next_ctx)) {
2963 2964
			WRITE_ONCE(ctx->task, next);
			WRITE_ONCE(next_ctx->task, task);
2965 2966 2967

			swap(ctx->task_ctx_data, next_ctx->task_ctx_data);

2968 2969 2970 2971 2972 2973 2974 2975 2976 2977
			/*
			 * RCU_INIT_POINTER here is safe because we've not
			 * modified the ctx and the above modification of
			 * ctx->task and ctx->task_ctx_data are immaterial
			 * since those values are always verified under
			 * ctx->lock which we're now holding.
			 */
			RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
			RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);

2978
			do_switch = 0;
2979

2980
			perf_event_sync_stat(ctx, next_ctx);
2981
		}
2982 2983
		raw_spin_unlock(&next_ctx->lock);
		raw_spin_unlock(&ctx->lock);
2984
	}
2985
unlock:
2986
	rcu_read_unlock();
2987

2988
	if (do_switch) {
2989
		raw_spin_lock(&ctx->lock);
2990
		task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
2991
		raw_spin_unlock(&ctx->lock);
2992
	}
T
Thomas Gleixner 已提交
2993 2994
}

2995 2996
static DEFINE_PER_CPU(struct list_head, sched_cb_list);

2997 2998
void perf_sched_cb_dec(struct pmu *pmu)
{
2999 3000
	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

3001
	this_cpu_dec(perf_sched_cb_usages);
3002 3003 3004

	if (!--cpuctx->sched_cb_usage)
		list_del(&cpuctx->sched_cb_entry);
3005 3006
}

3007

3008 3009
void perf_sched_cb_inc(struct pmu *pmu)
{
3010 3011 3012 3013 3014
	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

	if (!cpuctx->sched_cb_usage++)
		list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));

3015 3016 3017 3018 3019 3020
	this_cpu_inc(perf_sched_cb_usages);
}

/*
 * This function provides the context switch callback to the lower code
 * layer. It is invoked ONLY when the context switch callback is enabled.
3021 3022 3023 3024
 *
 * This callback is relevant even to per-cpu events; for example multi event
 * PEBS requires this to provide PID/TID information. This requires we flush
 * all queued PEBS records before we context switch to a new task.
3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035
 */
static void perf_pmu_sched_task(struct task_struct *prev,
				struct task_struct *next,
				bool sched_in)
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;

	if (prev == next)
		return;

3036
	list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
3037
		pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
3038

3039 3040
		if (WARN_ON_ONCE(!pmu->sched_task))
			continue;
3041

3042 3043
		perf_ctx_lock(cpuctx, cpuctx->task_ctx);
		perf_pmu_disable(pmu);
3044

3045
		pmu->sched_task(cpuctx->task_ctx, sched_in);
3046

3047 3048
		perf_pmu_enable(pmu);
		perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3049 3050 3051
	}
}

3052 3053 3054
static void perf_event_switch(struct task_struct *task,
			      struct task_struct *next_prev, bool sched_in);

P
Peter Zijlstra 已提交
3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068
#define for_each_task_context_nr(ctxn)					\
	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)

/*
 * Called from scheduler to remove the events of the current task,
 * with interrupts disabled.
 *
 * We stop each event and update the event value in event->count.
 *
 * This does not protect us against NMI, but disable()
 * sets the disabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * not restart the event.
 */
3069 3070
void __perf_event_task_sched_out(struct task_struct *task,
				 struct task_struct *next)
P
Peter Zijlstra 已提交
3071 3072 3073
{
	int ctxn;

3074 3075 3076
	if (__this_cpu_read(perf_sched_cb_usages))
		perf_pmu_sched_task(task, next, false);

3077 3078 3079
	if (atomic_read(&nr_switch_events))
		perf_event_switch(task, next, false);

P
Peter Zijlstra 已提交
3080 3081
	for_each_task_context_nr(ctxn)
		perf_event_context_sched_out(task, ctxn, next);
S
Stephane Eranian 已提交
3082 3083 3084 3085 3086 3087

	/*
	 * if cgroup events exist on this CPU, then we need
	 * to check if we have to switch out PMU state.
	 * cgroup event are system-wide mode only
	 */
3088
	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3089
		perf_cgroup_sched_out(task, next);
P
Peter Zijlstra 已提交
3090 3091
}

3092 3093 3094 3095 3096 3097 3098
/*
 * Called with IRQs disabled
 */
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type)
{
	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
3099 3100
}

3101
static void
3102
ctx_pinned_sched_in(struct perf_event_context *ctx,
3103
		    struct perf_cpu_context *cpuctx)
T
Thomas Gleixner 已提交
3104
{
3105
	struct perf_event *event;
T
Thomas Gleixner 已提交
3106

3107 3108
	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
		if (event->state <= PERF_EVENT_STATE_OFF)
3109
			continue;
3110
		if (!event_filter_match(event))
3111 3112
			continue;

S
Stephane Eranian 已提交
3113 3114 3115 3116
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

3117
		if (group_can_go_on(event, cpuctx, 1))
3118
			group_sched_in(event, cpuctx, ctx);
3119 3120 3121 3122 3123

		/*
		 * If this pinned group hasn't been scheduled,
		 * put it in error state.
		 */
3124 3125 3126
		if (event->state == PERF_EVENT_STATE_INACTIVE) {
			update_group_times(event);
			event->state = PERF_EVENT_STATE_ERROR;
3127
		}
3128
	}
3129 3130 3131 3132
}

static void
ctx_flexible_sched_in(struct perf_event_context *ctx,
3133
		      struct perf_cpu_context *cpuctx)
3134 3135 3136
{
	struct perf_event *event;
	int can_add_hw = 1;
3137

3138 3139 3140
	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
		/* Ignore events in OFF or ERROR state */
		if (event->state <= PERF_EVENT_STATE_OFF)
3141
			continue;
3142 3143
		/*
		 * Listen to the 'cpu' scheduling filter constraint
3144
		 * of events:
3145
		 */
3146
		if (!event_filter_match(event))
T
Thomas Gleixner 已提交
3147 3148
			continue;

S
Stephane Eranian 已提交
3149 3150 3151 3152
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

P
Peter Zijlstra 已提交
3153
		if (group_can_go_on(event, cpuctx, can_add_hw)) {
3154
			if (group_sched_in(event, cpuctx, ctx))
3155
				can_add_hw = 0;
P
Peter Zijlstra 已提交
3156
		}
T
Thomas Gleixner 已提交
3157
	}
3158 3159 3160 3161 3162
}

static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
3163 3164
	     enum event_type_t event_type,
	     struct task_struct *task)
3165
{
3166
	int is_active = ctx->is_active;
P
Peter Zijlstra 已提交
3167 3168 3169
	u64 now;

	lockdep_assert_held(&ctx->lock);
S
Stephane Eranian 已提交
3170

3171
	if (likely(!ctx->nr_events))
3172
		return;
3173

3174
	ctx->is_active |= (event_type | EVENT_TIME);
3175 3176 3177 3178 3179 3180 3181
	if (ctx->task) {
		if (!is_active)
			cpuctx->task_ctx = ctx;
		else
			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
	}

3182 3183 3184 3185 3186 3187 3188 3189 3190
	is_active ^= ctx->is_active; /* changed bits */

	if (is_active & EVENT_TIME) {
		/* start ctx time */
		now = perf_clock();
		ctx->timestamp = now;
		perf_cgroup_set_timestamp(task, ctx);
	}

3191 3192 3193 3194
	/*
	 * First go through the list and put on any pinned groups
	 * in order to give them the best chance of going on.
	 */
3195
	if (is_active & EVENT_PINNED)
3196
		ctx_pinned_sched_in(ctx, cpuctx);
3197 3198

	/* Then walk through the lower prio flexible groups */
3199
	if (is_active & EVENT_FLEXIBLE)
3200
		ctx_flexible_sched_in(ctx, cpuctx);
3201 3202
}

3203
static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
3204 3205
			     enum event_type_t event_type,
			     struct task_struct *task)
3206 3207 3208
{
	struct perf_event_context *ctx = &cpuctx->ctx;

S
Stephane Eranian 已提交
3209
	ctx_sched_in(ctx, cpuctx, event_type, task);
3210 3211
}

S
Stephane Eranian 已提交
3212 3213
static void perf_event_context_sched_in(struct perf_event_context *ctx,
					struct task_struct *task)
3214
{
P
Peter Zijlstra 已提交
3215
	struct perf_cpu_context *cpuctx;
3216

P
Peter Zijlstra 已提交
3217
	cpuctx = __get_cpu_context(ctx);
3218 3219 3220
	if (cpuctx->task_ctx == ctx)
		return;

3221
	perf_ctx_lock(cpuctx, ctx);
3222 3223 3224 3225 3226 3227 3228
	/*
	 * We must check ctx->nr_events while holding ctx->lock, such
	 * that we serialize against perf_install_in_context().
	 */
	if (!ctx->nr_events)
		goto unlock;

P
Peter Zijlstra 已提交
3229
	perf_pmu_disable(ctx->pmu);
3230 3231 3232 3233
	/*
	 * We want to keep the following priority order:
	 * cpu pinned (that don't need to move), task pinned,
	 * cpu flexible, task flexible.
3234 3235 3236
	 *
	 * However, if task's ctx is not carrying any pinned
	 * events, no need to flip the cpuctx's events around.
3237
	 */
3238 3239
	if (!list_empty(&ctx->pinned_groups))
		cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3240
	perf_event_sched_in(cpuctx, ctx, task);
3241
	perf_pmu_enable(ctx->pmu);
3242 3243

unlock:
3244
	perf_ctx_unlock(cpuctx, ctx);
3245 3246
}

P
Peter Zijlstra 已提交
3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257
/*
 * Called from scheduler to add the events of the current task
 * with interrupts disabled.
 *
 * We restore the event value and then enable it.
 *
 * This does not protect us against NMI, but enable()
 * sets the enabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * keep the event running.
 */
3258 3259
void __perf_event_task_sched_in(struct task_struct *prev,
				struct task_struct *task)
P
Peter Zijlstra 已提交
3260 3261 3262 3263
{
	struct perf_event_context *ctx;
	int ctxn;

3264 3265 3266 3267 3268 3269 3270 3271 3272 3273
	/*
	 * If cgroup events exist on this CPU, then we need to check if we have
	 * to switch in PMU state; cgroup event are system-wide mode only.
	 *
	 * Since cgroup events are CPU events, we must schedule these in before
	 * we schedule in the task events.
	 */
	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
		perf_cgroup_sched_in(prev, task);

P
Peter Zijlstra 已提交
3274 3275 3276 3277 3278
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (likely(!ctx))
			continue;

S
Stephane Eranian 已提交
3279
		perf_event_context_sched_in(ctx, task);
P
Peter Zijlstra 已提交
3280
	}
3281

3282 3283 3284
	if (atomic_read(&nr_switch_events))
		perf_event_switch(task, prev, true);

3285 3286
	if (__this_cpu_read(perf_sched_cb_usages))
		perf_pmu_sched_task(prev, task, true);
3287 3288
}

3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315
static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
{
	u64 frequency = event->attr.sample_freq;
	u64 sec = NSEC_PER_SEC;
	u64 divisor, dividend;

	int count_fls, nsec_fls, frequency_fls, sec_fls;

	count_fls = fls64(count);
	nsec_fls = fls64(nsec);
	frequency_fls = fls64(frequency);
	sec_fls = 30;

	/*
	 * We got @count in @nsec, with a target of sample_freq HZ
	 * the target period becomes:
	 *
	 *             @count * 10^9
	 * period = -------------------
	 *          @nsec * sample_freq
	 *
	 */

	/*
	 * Reduce accuracy by one bit such that @a and @b converge
	 * to a similar magnitude.
	 */
3316
#define REDUCE_FLS(a, b)		\
3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355
do {					\
	if (a##_fls > b##_fls) {	\
		a >>= 1;		\
		a##_fls--;		\
	} else {			\
		b >>= 1;		\
		b##_fls--;		\
	}				\
} while (0)

	/*
	 * Reduce accuracy until either term fits in a u64, then proceed with
	 * the other, so that finally we can do a u64/u64 division.
	 */
	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
		REDUCE_FLS(nsec, frequency);
		REDUCE_FLS(sec, count);
	}

	if (count_fls + sec_fls > 64) {
		divisor = nsec * frequency;

		while (count_fls + sec_fls > 64) {
			REDUCE_FLS(count, sec);
			divisor >>= 1;
		}

		dividend = count * sec;
	} else {
		dividend = count * sec;

		while (nsec_fls + frequency_fls > 64) {
			REDUCE_FLS(nsec, frequency);
			dividend >>= 1;
		}

		divisor = nsec * frequency;
	}

3356 3357 3358
	if (!divisor)
		return dividend;

3359 3360 3361
	return div64_u64(dividend, divisor);
}

3362 3363 3364
static DEFINE_PER_CPU(int, perf_throttled_count);
static DEFINE_PER_CPU(u64, perf_throttled_seq);

3365
static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
3366
{
3367
	struct hw_perf_event *hwc = &event->hw;
3368
	s64 period, sample_period;
3369 3370
	s64 delta;

3371
	period = perf_calculate_period(event, nsec, count);
3372 3373 3374 3375 3376 3377 3378 3379 3380 3381

	delta = (s64)(period - hwc->sample_period);
	delta = (delta + 7) / 8; /* low pass filter */

	sample_period = hwc->sample_period + delta;

	if (!sample_period)
		sample_period = 1;

	hwc->sample_period = sample_period;
3382

3383
	if (local64_read(&hwc->period_left) > 8*sample_period) {
3384 3385 3386
		if (disable)
			event->pmu->stop(event, PERF_EF_UPDATE);

3387
		local64_set(&hwc->period_left, 0);
3388 3389 3390

		if (disable)
			event->pmu->start(event, PERF_EF_RELOAD);
3391
	}
3392 3393
}

3394 3395 3396 3397 3398 3399 3400
/*
 * combine freq adjustment with unthrottling to avoid two passes over the
 * events. At the same time, make sure, having freq events does not change
 * the rate of unthrottling as that would introduce bias.
 */
static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
					   int needs_unthr)
3401
{
3402 3403
	struct perf_event *event;
	struct hw_perf_event *hwc;
3404
	u64 now, period = TICK_NSEC;
3405
	s64 delta;
3406

3407 3408 3409 3410 3411 3412
	/*
	 * only need to iterate over all events iff:
	 * - context have events in frequency mode (needs freq adjust)
	 * - there are events to unthrottle on this cpu
	 */
	if (!(ctx->nr_freq || needs_unthr))
3413 3414
		return;

3415
	raw_spin_lock(&ctx->lock);
3416
	perf_pmu_disable(ctx->pmu);
3417

3418
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3419
		if (event->state != PERF_EVENT_STATE_ACTIVE)
3420 3421
			continue;

3422
		if (!event_filter_match(event))
3423 3424
			continue;

3425 3426
		perf_pmu_disable(event->pmu);

3427
		hwc = &event->hw;
3428

3429
		if (hwc->interrupts == MAX_INTERRUPTS) {
3430
			hwc->interrupts = 0;
3431
			perf_log_throttle(event, 1);
P
Peter Zijlstra 已提交
3432
			event->pmu->start(event, 0);
3433 3434
		}

3435
		if (!event->attr.freq || !event->attr.sample_freq)
3436
			goto next;
3437

3438 3439 3440 3441 3442
		/*
		 * stop the event and update event->count
		 */
		event->pmu->stop(event, PERF_EF_UPDATE);

3443
		now = local64_read(&event->count);
3444 3445
		delta = now - hwc->freq_count_stamp;
		hwc->freq_count_stamp = now;
3446

3447 3448 3449
		/*
		 * restart the event
		 * reload only if value has changed
3450 3451 3452
		 * we have stopped the event so tell that
		 * to perf_adjust_period() to avoid stopping it
		 * twice.
3453
		 */
3454
		if (delta > 0)
3455
			perf_adjust_period(event, period, delta, false);
3456 3457

		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3458 3459
	next:
		perf_pmu_enable(event->pmu);
3460
	}
3461

3462
	perf_pmu_enable(ctx->pmu);
3463
	raw_spin_unlock(&ctx->lock);
3464 3465
}

3466
/*
3467
 * Round-robin a context's events:
3468
 */
3469
static void rotate_ctx(struct perf_event_context *ctx)
T
Thomas Gleixner 已提交
3470
{
3471 3472 3473 3474 3475 3476
	/*
	 * Rotate the first entry last of non-pinned groups. Rotation might be
	 * disabled by the inheritance code.
	 */
	if (!ctx->rotate_disable)
		list_rotate_left(&ctx->flexible_groups);
3477 3478
}

3479
static int perf_rotate_context(struct perf_cpu_context *cpuctx)
3480
{
P
Peter Zijlstra 已提交
3481
	struct perf_event_context *ctx = NULL;
3482
	int rotate = 0;
3483

3484 3485 3486 3487
	if (cpuctx->ctx.nr_events) {
		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
			rotate = 1;
	}
3488

P
Peter Zijlstra 已提交
3489
	ctx = cpuctx->task_ctx;
3490 3491 3492 3493
	if (ctx && ctx->nr_events) {
		if (ctx->nr_events != ctx->nr_active)
			rotate = 1;
	}
3494

3495
	if (!rotate)
3496 3497
		goto done;

3498
	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
P
Peter Zijlstra 已提交
3499
	perf_pmu_disable(cpuctx->ctx.pmu);
3500

3501 3502 3503
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
	if (ctx)
		ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
T
Thomas Gleixner 已提交
3504

3505 3506 3507
	rotate_ctx(&cpuctx->ctx);
	if (ctx)
		rotate_ctx(ctx);
3508

3509
	perf_event_sched_in(cpuctx, ctx, current);
3510

3511 3512
	perf_pmu_enable(cpuctx->ctx.pmu);
	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3513
done:
3514 3515

	return rotate;
3516 3517 3518 3519
}

void perf_event_task_tick(void)
{
3520 3521
	struct list_head *head = this_cpu_ptr(&active_ctx_list);
	struct perf_event_context *ctx, *tmp;
3522
	int throttled;
3523

3524 3525
	WARN_ON(!irqs_disabled());

3526 3527
	__this_cpu_inc(perf_throttled_seq);
	throttled = __this_cpu_xchg(perf_throttled_count, 0);
3528
	tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
3529

3530
	list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3531
		perf_adjust_freq_unthr_context(ctx, throttled);
T
Thomas Gleixner 已提交
3532 3533
}

3534 3535 3536 3537 3538 3539 3540 3541 3542 3543
static int event_enable_on_exec(struct perf_event *event,
				struct perf_event_context *ctx)
{
	if (!event->attr.enable_on_exec)
		return 0;

	event->attr.enable_on_exec = 0;
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
		return 0;

3544
	__perf_event_mark_enabled(event);
3545 3546 3547 3548

	return 1;
}

3549
/*
3550
 * Enable all of a task's events that have been marked enable-on-exec.
3551 3552
 * This expects task == current.
 */
3553
static void perf_event_enable_on_exec(int ctxn)
3554
{
3555
	struct perf_event_context *ctx, *clone_ctx = NULL;
3556
	enum event_type_t event_type = 0;
3557
	struct perf_cpu_context *cpuctx;
3558
	struct perf_event *event;
3559 3560 3561 3562
	unsigned long flags;
	int enabled = 0;

	local_irq_save(flags);
3563
	ctx = current->perf_event_ctxp[ctxn];
3564
	if (!ctx || !ctx->nr_events)
3565 3566
		goto out;

3567 3568
	cpuctx = __get_cpu_context(ctx);
	perf_ctx_lock(cpuctx, ctx);
3569
	ctx_sched_out(ctx, cpuctx, EVENT_TIME);
3570
	list_for_each_entry(event, &ctx->event_list, event_entry) {
3571
		enabled |= event_enable_on_exec(event, ctx);
3572 3573
		event_type |= get_event_type(event);
	}
3574 3575

	/*
3576
	 * Unclone and reschedule this context if we enabled any event.
3577
	 */
3578
	if (enabled) {
3579
		clone_ctx = unclone_ctx(ctx);
3580
		ctx_resched(cpuctx, ctx, event_type);
3581 3582
	} else {
		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
3583 3584
	}
	perf_ctx_unlock(cpuctx, ctx);
3585

P
Peter Zijlstra 已提交
3586
out:
3587
	local_irq_restore(flags);
3588 3589 3590

	if (clone_ctx)
		put_ctx(clone_ctx);
3591 3592
}

3593 3594 3595
struct perf_read_data {
	struct perf_event *event;
	bool group;
3596
	int ret;
3597 3598
};

3599
static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
3600 3601 3602 3603
{
	u16 local_pkg, event_pkg;

	if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
3604 3605 3606 3607
		int local_cpu = smp_processor_id();

		event_pkg = topology_physical_package_id(event_cpu);
		local_pkg = topology_physical_package_id(local_cpu);
3608 3609 3610 3611 3612 3613 3614 3615

		if (event_pkg == local_pkg)
			return local_cpu;
	}

	return event_cpu;
}

T
Thomas Gleixner 已提交
3616
/*
3617
 * Cross CPU call to read the hardware event
T
Thomas Gleixner 已提交
3618
 */
3619
static void __perf_event_read(void *info)
T
Thomas Gleixner 已提交
3620
{
3621 3622
	struct perf_read_data *data = info;
	struct perf_event *sub, *event = data->event;
3623
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
3624
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3625
	struct pmu *pmu = event->pmu;
I
Ingo Molnar 已提交
3626

3627 3628 3629 3630
	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu.  If not it has been
	 * scheduled out before the smp call arrived.  In that case
3631 3632
	 * event->count would have been updated to a recent sample
	 * when the event was scheduled out.
3633 3634 3635 3636
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

3637
	raw_spin_lock(&ctx->lock);
S
Stephane Eranian 已提交
3638
	if (ctx->is_active) {
3639
		update_context_time(ctx);
S
Stephane Eranian 已提交
3640 3641
		update_cgrp_time_from_event(event);
	}
3642

3643
	update_event_times(event);
3644 3645
	if (event->state != PERF_EVENT_STATE_ACTIVE)
		goto unlock;
3646

3647 3648 3649
	if (!data->group) {
		pmu->read(event);
		data->ret = 0;
3650
		goto unlock;
3651 3652 3653 3654 3655
	}

	pmu->start_txn(pmu, PERF_PMU_TXN_READ);

	pmu->read(event);
3656 3657 3658

	list_for_each_entry(sub, &event->sibling_list, group_entry) {
		update_event_times(sub);
3659 3660 3661 3662 3663
		if (sub->state == PERF_EVENT_STATE_ACTIVE) {
			/*
			 * Use sibling's PMU rather than @event's since
			 * sibling could be on different (eg: software) PMU.
			 */
3664
			sub->pmu->read(sub);
3665
		}
3666
	}
3667 3668

	data->ret = pmu->commit_txn(pmu);
3669 3670

unlock:
3671
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
3672 3673
}

P
Peter Zijlstra 已提交
3674 3675
static inline u64 perf_event_count(struct perf_event *event)
{
3676
	return local64_read(&event->count) + atomic64_read(&event->child_count);
P
Peter Zijlstra 已提交
3677 3678
}

3679 3680 3681 3682 3683 3684 3685 3686
/*
 * NMI-safe method to read a local event, that is an event that
 * is:
 *   - either for the current task, or for this CPU
 *   - does not have inherit set, for inherited task events
 *     will not be local and we cannot read them atomically
 *   - must not have a pmu::count method
 */
3687 3688
int perf_event_read_local(struct perf_event *event, u64 *value,
			  u64 *enabled, u64 *running)
3689 3690
{
	unsigned long flags;
3691
	int ret = 0;
3692
	u64 now;
3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703

	/*
	 * Disabling interrupts avoids all counter scheduling (context
	 * switches, timer based rotation and IPIs).
	 */
	local_irq_save(flags);

	/*
	 * It must not be an event with inherit set, we cannot read
	 * all child counters from atomic context.
	 */
3704 3705 3706 3707
	if (event->attr.inherit) {
		ret = -EOPNOTSUPP;
		goto out;
	}
3708

3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721
	/* If this is a per-task event, it must be for current */
	if ((event->attach_state & PERF_ATTACH_TASK) &&
	    event->hw.target != current) {
		ret = -EINVAL;
		goto out;
	}

	/* If this is a per-CPU event, it must be for this CPU */
	if (!(event->attach_state & PERF_ATTACH_TASK) &&
	    event->cpu != smp_processor_id()) {
		ret = -EINVAL;
		goto out;
	}
3722

3723 3724 3725
	now = event->shadow_ctx_time + perf_clock();
	if (enabled)
		*enabled = now - event->tstamp_enabled;
3726 3727 3728 3729 3730
	/*
	 * If the event is currently on this CPU, its either a per-task event,
	 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
	 * oncpu == -1).
	 */
3731
	if (event->oncpu == smp_processor_id()) {
3732
		event->pmu->read(event);
3733 3734 3735 3736 3737
		if (running)
			*running = now - event->tstamp_running;
	} else if (running) {
		*running = event->total_time_running;
	}
3738

3739 3740
	*value = local64_read(&event->count);
out:
3741 3742
	local_irq_restore(flags);

3743
	return ret;
3744 3745
}

3746
static int perf_event_read(struct perf_event *event, bool group)
T
Thomas Gleixner 已提交
3747
{
3748
	int event_cpu, ret = 0;
3749

T
Thomas Gleixner 已提交
3750
	/*
3751 3752
	 * If event is enabled and currently active on a CPU, update the
	 * value in the event structure:
T
Thomas Gleixner 已提交
3753
	 */
3754
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
3755 3756 3757
		struct perf_read_data data = {
			.event = event,
			.group = group,
3758
			.ret = 0,
3759
		};
3760

3761 3762 3763 3764 3765 3766
		event_cpu = READ_ONCE(event->oncpu);
		if ((unsigned)event_cpu >= nr_cpu_ids)
			return 0;

		preempt_disable();
		event_cpu = __perf_event_read_cpu(event, event_cpu);
3767

3768 3769 3770 3771
		/*
		 * Purposely ignore the smp_call_function_single() return
		 * value.
		 *
3772
		 * If event_cpu isn't a valid CPU it means the event got
3773 3774 3775 3776 3777
		 * scheduled out and that will have updated the event count.
		 *
		 * Therefore, either way, we'll have an up-to-date event count
		 * after this.
		 */
3778 3779
		(void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
		preempt_enable();
3780
		ret = data.ret;
3781
	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
P
Peter Zijlstra 已提交
3782 3783 3784
		struct perf_event_context *ctx = event->ctx;
		unsigned long flags;

3785
		raw_spin_lock_irqsave(&ctx->lock, flags);
3786 3787 3788 3789 3790
		/*
		 * may read while context is not active
		 * (e.g., thread is blocked), in that case
		 * we cannot update context time
		 */
S
Stephane Eranian 已提交
3791
		if (ctx->is_active) {
3792
			update_context_time(ctx);
S
Stephane Eranian 已提交
3793 3794
			update_cgrp_time_from_event(event);
		}
3795 3796 3797 3798
		if (group)
			update_group_times(event);
		else
			update_event_times(event);
3799
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
3800
	}
3801 3802

	return ret;
T
Thomas Gleixner 已提交
3803 3804
}

3805
/*
3806
 * Initialize the perf_event context in a task_struct:
3807
 */
3808
static void __perf_event_init_context(struct perf_event_context *ctx)
3809
{
3810
	raw_spin_lock_init(&ctx->lock);
3811
	mutex_init(&ctx->mutex);
3812
	INIT_LIST_HEAD(&ctx->active_ctx_list);
3813 3814
	INIT_LIST_HEAD(&ctx->pinned_groups);
	INIT_LIST_HEAD(&ctx->flexible_groups);
3815 3816
	INIT_LIST_HEAD(&ctx->event_list);
	atomic_set(&ctx->refcount, 1);
3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831
}

static struct perf_event_context *
alloc_perf_context(struct pmu *pmu, struct task_struct *task)
{
	struct perf_event_context *ctx;

	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
	if (!ctx)
		return NULL;

	__perf_event_init_context(ctx);
	if (task) {
		ctx->task = task;
		get_task_struct(task);
T
Thomas Gleixner 已提交
3832
	}
3833 3834 3835
	ctx->pmu = pmu;

	return ctx;
3836 3837
}

3838 3839 3840 3841
static struct task_struct *
find_lively_task_by_vpid(pid_t vpid)
{
	struct task_struct *task;
T
Thomas Gleixner 已提交
3842 3843

	rcu_read_lock();
3844
	if (!vpid)
T
Thomas Gleixner 已提交
3845 3846
		task = current;
	else
3847
		task = find_task_by_vpid(vpid);
T
Thomas Gleixner 已提交
3848 3849 3850 3851 3852 3853 3854
	if (task)
		get_task_struct(task);
	rcu_read_unlock();

	if (!task)
		return ERR_PTR(-ESRCH);

3855 3856 3857
	return task;
}

3858 3859 3860
/*
 * Returns a matching context with refcount and pincount.
 */
P
Peter Zijlstra 已提交
3861
static struct perf_event_context *
3862 3863
find_get_context(struct pmu *pmu, struct task_struct *task,
		struct perf_event *event)
T
Thomas Gleixner 已提交
3864
{
3865
	struct perf_event_context *ctx, *clone_ctx = NULL;
3866
	struct perf_cpu_context *cpuctx;
3867
	void *task_ctx_data = NULL;
3868
	unsigned long flags;
P
Peter Zijlstra 已提交
3869
	int ctxn, err;
3870
	int cpu = event->cpu;
T
Thomas Gleixner 已提交
3871

3872
	if (!task) {
3873
		/* Must be root to operate on a CPU event: */
3874
		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
T
Thomas Gleixner 已提交
3875 3876
			return ERR_PTR(-EACCES);

P
Peter Zijlstra 已提交
3877
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
T
Thomas Gleixner 已提交
3878
		ctx = &cpuctx->ctx;
3879
		get_ctx(ctx);
3880
		++ctx->pin_count;
T
Thomas Gleixner 已提交
3881 3882 3883 3884

		return ctx;
	}

P
Peter Zijlstra 已提交
3885 3886 3887 3888 3889
	err = -EINVAL;
	ctxn = pmu->task_ctx_nr;
	if (ctxn < 0)
		goto errout;

3890 3891 3892 3893 3894 3895 3896 3897
	if (event->attach_state & PERF_ATTACH_TASK_DATA) {
		task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
		if (!task_ctx_data) {
			err = -ENOMEM;
			goto errout;
		}
	}

P
Peter Zijlstra 已提交
3898
retry:
P
Peter Zijlstra 已提交
3899
	ctx = perf_lock_task_context(task, ctxn, &flags);
3900
	if (ctx) {
3901
		clone_ctx = unclone_ctx(ctx);
3902
		++ctx->pin_count;
3903 3904 3905 3906 3907

		if (task_ctx_data && !ctx->task_ctx_data) {
			ctx->task_ctx_data = task_ctx_data;
			task_ctx_data = NULL;
		}
3908
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3909 3910 3911

		if (clone_ctx)
			put_ctx(clone_ctx);
3912
	} else {
3913
		ctx = alloc_perf_context(pmu, task);
3914 3915 3916
		err = -ENOMEM;
		if (!ctx)
			goto errout;
3917

3918 3919 3920 3921 3922
		if (task_ctx_data) {
			ctx->task_ctx_data = task_ctx_data;
			task_ctx_data = NULL;
		}

3923 3924 3925 3926 3927 3928 3929 3930 3931 3932
		err = 0;
		mutex_lock(&task->perf_event_mutex);
		/*
		 * If it has already passed perf_event_exit_task().
		 * we must see PF_EXITING, it takes this mutex too.
		 */
		if (task->flags & PF_EXITING)
			err = -ESRCH;
		else if (task->perf_event_ctxp[ctxn])
			err = -EAGAIN;
3933
		else {
3934
			get_ctx(ctx);
3935
			++ctx->pin_count;
3936
			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3937
		}
3938 3939 3940
		mutex_unlock(&task->perf_event_mutex);

		if (unlikely(err)) {
3941
			put_ctx(ctx);
3942 3943 3944 3945

			if (err == -EAGAIN)
				goto retry;
			goto errout;
3946 3947 3948
		}
	}

3949
	kfree(task_ctx_data);
T
Thomas Gleixner 已提交
3950
	return ctx;
3951

P
Peter Zijlstra 已提交
3952
errout:
3953
	kfree(task_ctx_data);
3954
	return ERR_PTR(err);
T
Thomas Gleixner 已提交
3955 3956
}

L
Li Zefan 已提交
3957
static void perf_event_free_filter(struct perf_event *event);
3958
static void perf_event_free_bpf_prog(struct perf_event *event);
L
Li Zefan 已提交
3959

3960
static void free_event_rcu(struct rcu_head *head)
P
Peter Zijlstra 已提交
3961
{
3962
	struct perf_event *event;
P
Peter Zijlstra 已提交
3963

3964 3965 3966
	event = container_of(head, struct perf_event, rcu_head);
	if (event->ns)
		put_pid_ns(event->ns);
L
Li Zefan 已提交
3967
	perf_event_free_filter(event);
3968
	kfree(event);
P
Peter Zijlstra 已提交
3969 3970
}

3971 3972
static void ring_buffer_attach(struct perf_event *event,
			       struct ring_buffer *rb);
3973

3974 3975 3976 3977 3978 3979 3980 3981 3982
static void detach_sb_event(struct perf_event *event)
{
	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);

	raw_spin_lock(&pel->lock);
	list_del_rcu(&event->sb_list);
	raw_spin_unlock(&pel->lock);
}

3983
static bool is_sb_event(struct perf_event *event)
3984
{
3985 3986
	struct perf_event_attr *attr = &event->attr;

3987
	if (event->parent)
3988
		return false;
3989 3990

	if (event->attach_state & PERF_ATTACH_TASK)
3991
		return false;
3992

3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004
	if (attr->mmap || attr->mmap_data || attr->mmap2 ||
	    attr->comm || attr->comm_exec ||
	    attr->task ||
	    attr->context_switch)
		return true;
	return false;
}

static void unaccount_pmu_sb_event(struct perf_event *event)
{
	if (is_sb_event(event))
		detach_sb_event(event);
4005 4006
}

4007
static void unaccount_event_cpu(struct perf_event *event, int cpu)
4008
{
4009 4010 4011 4012 4013 4014
	if (event->parent)
		return;

	if (is_cgroup_event(event))
		atomic_dec(&per_cpu(perf_cgroup_events, cpu));
}
4015

4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037
#ifdef CONFIG_NO_HZ_FULL
static DEFINE_SPINLOCK(nr_freq_lock);
#endif

static void unaccount_freq_event_nohz(void)
{
#ifdef CONFIG_NO_HZ_FULL
	spin_lock(&nr_freq_lock);
	if (atomic_dec_and_test(&nr_freq_events))
		tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
	spin_unlock(&nr_freq_lock);
#endif
}

static void unaccount_freq_event(void)
{
	if (tick_nohz_full_enabled())
		unaccount_freq_event_nohz();
	else
		atomic_dec(&nr_freq_events);
}

4038 4039
static void unaccount_event(struct perf_event *event)
{
4040 4041
	bool dec = false;

4042 4043 4044 4045
	if (event->parent)
		return;

	if (event->attach_state & PERF_ATTACH_TASK)
4046
		dec = true;
4047 4048 4049 4050
	if (event->attr.mmap || event->attr.mmap_data)
		atomic_dec(&nr_mmap_events);
	if (event->attr.comm)
		atomic_dec(&nr_comm_events);
4051 4052
	if (event->attr.namespaces)
		atomic_dec(&nr_namespaces_events);
4053 4054
	if (event->attr.task)
		atomic_dec(&nr_task_events);
4055
	if (event->attr.freq)
4056
		unaccount_freq_event();
4057
	if (event->attr.context_switch) {
4058
		dec = true;
4059 4060
		atomic_dec(&nr_switch_events);
	}
4061
	if (is_cgroup_event(event))
4062
		dec = true;
4063
	if (has_branch_stack(event))
4064 4065
		dec = true;

4066 4067 4068 4069
	if (dec) {
		if (!atomic_add_unless(&perf_sched_count, -1, 1))
			schedule_delayed_work(&perf_sched_work, HZ);
	}
4070 4071

	unaccount_event_cpu(event, event->cpu);
4072 4073

	unaccount_pmu_sb_event(event);
4074
}
4075

4076 4077 4078 4079 4080 4081 4082 4083
static void perf_sched_delayed(struct work_struct *work)
{
	mutex_lock(&perf_sched_mutex);
	if (atomic_dec_and_test(&perf_sched_count))
		static_branch_disable(&perf_sched_events);
	mutex_unlock(&perf_sched_mutex);
}

4084 4085 4086 4087 4088 4089 4090 4091 4092 4093
/*
 * The following implement mutual exclusion of events on "exclusive" pmus
 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
 * at a time, so we disallow creating events that might conflict, namely:
 *
 *  1) cpu-wide events in the presence of per-task events,
 *  2) per-task events in the presence of cpu-wide events,
 *  3) two matching events on the same context.
 *
 * The former two cases are handled in the allocation path (perf_event_alloc(),
P
Peter Zijlstra 已提交
4094
 * _free_event()), the latter -- before the first perf_install_in_context().
4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142
 */
static int exclusive_event_init(struct perf_event *event)
{
	struct pmu *pmu = event->pmu;

	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
		return 0;

	/*
	 * Prevent co-existence of per-task and cpu-wide events on the
	 * same exclusive pmu.
	 *
	 * Negative pmu::exclusive_cnt means there are cpu-wide
	 * events on this "exclusive" pmu, positive means there are
	 * per-task events.
	 *
	 * Since this is called in perf_event_alloc() path, event::ctx
	 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
	 * to mean "per-task event", because unlike other attach states it
	 * never gets cleared.
	 */
	if (event->attach_state & PERF_ATTACH_TASK) {
		if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
			return -EBUSY;
	} else {
		if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
			return -EBUSY;
	}

	return 0;
}

static void exclusive_event_destroy(struct perf_event *event)
{
	struct pmu *pmu = event->pmu;

	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
		return;

	/* see comment in exclusive_event_init() */
	if (event->attach_state & PERF_ATTACH_TASK)
		atomic_dec(&pmu->exclusive_cnt);
	else
		atomic_inc(&pmu->exclusive_cnt);
}

static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
{
4143
	if ((e1->pmu == e2->pmu) &&
4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168
	    (e1->cpu == e2->cpu ||
	     e1->cpu == -1 ||
	     e2->cpu == -1))
		return true;
	return false;
}

/* Called under the same ctx::mutex as perf_install_in_context() */
static bool exclusive_event_installable(struct perf_event *event,
					struct perf_event_context *ctx)
{
	struct perf_event *iter_event;
	struct pmu *pmu = event->pmu;

	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
		return true;

	list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
		if (exclusive_event_match(iter_event, event))
			return false;
	}

	return true;
}

4169 4170 4171
static void perf_addr_filters_splice(struct perf_event *event,
				       struct list_head *head);

P
Peter Zijlstra 已提交
4172
static void _free_event(struct perf_event *event)
4173
{
4174
	irq_work_sync(&event->pending);
4175

4176
	unaccount_event(event);
4177

4178
	if (event->rb) {
4179 4180 4181 4182 4183 4184 4185
		/*
		 * Can happen when we close an event with re-directed output.
		 *
		 * Since we have a 0 refcount, perf_mmap_close() will skip
		 * over us; possibly making our ring_buffer_put() the last.
		 */
		mutex_lock(&event->mmap_mutex);
4186
		ring_buffer_attach(event, NULL);
4187
		mutex_unlock(&event->mmap_mutex);
4188 4189
	}

S
Stephane Eranian 已提交
4190 4191 4192
	if (is_cgroup_event(event))
		perf_detach_cgroup(event);

P
Peter Zijlstra 已提交
4193 4194 4195 4196 4197 4198
	if (!event->parent) {
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
			put_callchain_buffers();
	}

	perf_event_free_bpf_prog(event);
4199 4200
	perf_addr_filters_splice(event, NULL);
	kfree(event->addr_filters_offs);
P
Peter Zijlstra 已提交
4201 4202 4203 4204 4205 4206 4207

	if (event->destroy)
		event->destroy(event);

	if (event->ctx)
		put_ctx(event->ctx);

4208 4209
	exclusive_event_destroy(event);
	module_put(event->pmu->module);
P
Peter Zijlstra 已提交
4210 4211

	call_rcu(&event->rcu_head, free_event_rcu);
4212 4213
}

P
Peter Zijlstra 已提交
4214 4215 4216 4217 4218
/*
 * Used to free events which have a known refcount of 1, such as in error paths
 * where the event isn't exposed yet and inherited events.
 */
static void free_event(struct perf_event *event)
T
Thomas Gleixner 已提交
4219
{
P
Peter Zijlstra 已提交
4220 4221 4222 4223 4224 4225
	if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
				"unexpected event refcount: %ld; ptr=%p\n",
				atomic_long_read(&event->refcount), event)) {
		/* leak to avoid use-after-free */
		return;
	}
T
Thomas Gleixner 已提交
4226

P
Peter Zijlstra 已提交
4227
	_free_event(event);
T
Thomas Gleixner 已提交
4228 4229
}

4230
/*
4231
 * Remove user event from the owner task.
4232
 */
4233
static void perf_remove_from_owner(struct perf_event *event)
4234
{
P
Peter Zijlstra 已提交
4235
	struct task_struct *owner;
4236

P
Peter Zijlstra 已提交
4237 4238
	rcu_read_lock();
	/*
4239 4240 4241
	 * Matches the smp_store_release() in perf_event_exit_task(). If we
	 * observe !owner it means the list deletion is complete and we can
	 * indeed free this event, otherwise we need to serialize on
P
Peter Zijlstra 已提交
4242 4243
	 * owner->perf_event_mutex.
	 */
4244
	owner = lockless_dereference(event->owner);
P
Peter Zijlstra 已提交
4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255
	if (owner) {
		/*
		 * Since delayed_put_task_struct() also drops the last
		 * task reference we can safely take a new reference
		 * while holding the rcu_read_lock().
		 */
		get_task_struct(owner);
	}
	rcu_read_unlock();

	if (owner) {
P
Peter Zijlstra 已提交
4256 4257 4258 4259 4260 4261 4262 4263 4264 4265
		/*
		 * If we're here through perf_event_exit_task() we're already
		 * holding ctx->mutex which would be an inversion wrt. the
		 * normal lock order.
		 *
		 * However we can safely take this lock because its the child
		 * ctx->mutex.
		 */
		mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);

P
Peter Zijlstra 已提交
4266 4267 4268 4269 4270 4271
		/*
		 * We have to re-check the event->owner field, if it is cleared
		 * we raced with perf_event_exit_task(), acquiring the mutex
		 * ensured they're done, and we can proceed with freeing the
		 * event.
		 */
4272
		if (event->owner) {
P
Peter Zijlstra 已提交
4273
			list_del_init(&event->owner_entry);
4274 4275
			smp_store_release(&event->owner, NULL);
		}
P
Peter Zijlstra 已提交
4276 4277 4278
		mutex_unlock(&owner->perf_event_mutex);
		put_task_struct(owner);
	}
4279 4280 4281 4282 4283 4284 4285
}

static void put_event(struct perf_event *event)
{
	if (!atomic_long_dec_and_test(&event->refcount))
		return;

4286 4287 4288 4289 4290 4291 4292 4293 4294 4295
	_free_event(event);
}

/*
 * Kill an event dead; while event:refcount will preserve the event
 * object, it will not preserve its functionality. Once the last 'user'
 * gives up the object, we'll destroy the thing.
 */
int perf_event_release_kernel(struct perf_event *event)
{
4296
	struct perf_event_context *ctx = event->ctx;
4297 4298
	struct perf_event *child, *tmp;

4299 4300 4301 4302 4303 4304 4305 4306 4307 4308
	/*
	 * If we got here through err_file: fput(event_file); we will not have
	 * attached to a context yet.
	 */
	if (!ctx) {
		WARN_ON_ONCE(event->attach_state &
				(PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
		goto no_ctx;
	}

4309 4310
	if (!is_kernel_event(event))
		perf_remove_from_owner(event);
P
Peter Zijlstra 已提交
4311

4312
	ctx = perf_event_ctx_lock(event);
P
Peter Zijlstra 已提交
4313
	WARN_ON_ONCE(ctx->parent_ctx);
P
Peter Zijlstra 已提交
4314
	perf_remove_from_context(event, DETACH_GROUP);
P
Peter Zijlstra 已提交
4315

P
Peter Zijlstra 已提交
4316
	raw_spin_lock_irq(&ctx->lock);
P
Peter Zijlstra 已提交
4317
	/*
4318
	 * Mark this event as STATE_DEAD, there is no external reference to it
P
Peter Zijlstra 已提交
4319
	 * anymore.
P
Peter Zijlstra 已提交
4320
	 *
P
Peter Zijlstra 已提交
4321 4322 4323
	 * Anybody acquiring event->child_mutex after the below loop _must_
	 * also see this, most importantly inherit_event() which will avoid
	 * placing more children on the list.
P
Peter Zijlstra 已提交
4324
	 *
4325 4326
	 * Thus this guarantees that we will in fact observe and kill _ALL_
	 * child events.
P
Peter Zijlstra 已提交
4327
	 */
P
Peter Zijlstra 已提交
4328 4329 4330 4331
	event->state = PERF_EVENT_STATE_DEAD;
	raw_spin_unlock_irq(&ctx->lock);

	perf_event_ctx_unlock(event, ctx);
P
Peter Zijlstra 已提交
4332

4333 4334 4335
again:
	mutex_lock(&event->child_mutex);
	list_for_each_entry(child, &event->child_list, child_list) {
4336

4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385
		/*
		 * Cannot change, child events are not migrated, see the
		 * comment with perf_event_ctx_lock_nested().
		 */
		ctx = lockless_dereference(child->ctx);
		/*
		 * Since child_mutex nests inside ctx::mutex, we must jump
		 * through hoops. We start by grabbing a reference on the ctx.
		 *
		 * Since the event cannot get freed while we hold the
		 * child_mutex, the context must also exist and have a !0
		 * reference count.
		 */
		get_ctx(ctx);

		/*
		 * Now that we have a ctx ref, we can drop child_mutex, and
		 * acquire ctx::mutex without fear of it going away. Then we
		 * can re-acquire child_mutex.
		 */
		mutex_unlock(&event->child_mutex);
		mutex_lock(&ctx->mutex);
		mutex_lock(&event->child_mutex);

		/*
		 * Now that we hold ctx::mutex and child_mutex, revalidate our
		 * state, if child is still the first entry, it didn't get freed
		 * and we can continue doing so.
		 */
		tmp = list_first_entry_or_null(&event->child_list,
					       struct perf_event, child_list);
		if (tmp == child) {
			perf_remove_from_context(child, DETACH_GROUP);
			list_del(&child->child_list);
			free_event(child);
			/*
			 * This matches the refcount bump in inherit_event();
			 * this can't be the last reference.
			 */
			put_event(event);
		}

		mutex_unlock(&event->child_mutex);
		mutex_unlock(&ctx->mutex);
		put_ctx(ctx);
		goto again;
	}
	mutex_unlock(&event->child_mutex);

4386 4387
no_ctx:
	put_event(event); /* Must be the 'last' reference */
P
Peter Zijlstra 已提交
4388 4389 4390 4391
	return 0;
}
EXPORT_SYMBOL_GPL(perf_event_release_kernel);

4392 4393 4394
/*
 * Called when the last reference to the file is gone.
 */
4395 4396
static int perf_release(struct inode *inode, struct file *file)
{
4397
	perf_event_release_kernel(file->private_data);
4398
	return 0;
4399 4400
}

4401
static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4402
{
4403
	struct perf_event *child;
4404 4405
	u64 total = 0;

4406 4407 4408
	*enabled = 0;
	*running = 0;

4409
	mutex_lock(&event->child_mutex);
4410

4411
	(void)perf_event_read(event, false);
4412 4413
	total += perf_event_count(event);

4414 4415 4416 4417 4418 4419
	*enabled += event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
	*running += event->total_time_running +
			atomic64_read(&event->child_total_time_running);

	list_for_each_entry(child, &event->child_list, child_list) {
4420
		(void)perf_event_read(child, false);
4421
		total += perf_event_count(child);
4422 4423 4424
		*enabled += child->total_time_enabled;
		*running += child->total_time_running;
	}
4425
	mutex_unlock(&event->child_mutex);
4426 4427 4428

	return total;
}
4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440

u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
{
	struct perf_event_context *ctx;
	u64 count;

	ctx = perf_event_ctx_lock(event);
	count = __perf_event_read_value(event, enabled, running);
	perf_event_ctx_unlock(event, ctx);

	return count;
}
4441
EXPORT_SYMBOL_GPL(perf_event_read_value);
4442

4443
static int __perf_read_group_add(struct perf_event *leader,
4444
					u64 read_format, u64 *values)
4445
{
4446
	struct perf_event_context *ctx = leader->ctx;
4447
	struct perf_event *sub;
4448
	unsigned long flags;
4449
	int n = 1; /* skip @nr */
4450
	int ret;
P
Peter Zijlstra 已提交
4451

4452 4453 4454
	ret = perf_event_read(leader, true);
	if (ret)
		return ret;
4455

4456 4457
	raw_spin_lock_irqsave(&ctx->lock, flags);

4458 4459 4460 4461 4462 4463 4464 4465 4466
	/*
	 * Since we co-schedule groups, {enabled,running} times of siblings
	 * will be identical to those of the leader, so we only publish one
	 * set.
	 */
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
		values[n++] += leader->total_time_enabled +
			atomic64_read(&leader->child_total_time_enabled);
	}
4467

4468 4469 4470 4471 4472 4473 4474 4475 4476
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
		values[n++] += leader->total_time_running +
			atomic64_read(&leader->child_total_time_running);
	}

	/*
	 * Write {count,id} tuples for every sibling.
	 */
	values[n++] += perf_event_count(leader);
4477 4478
	if (read_format & PERF_FORMAT_ID)
		values[n++] = primary_event_id(leader);
4479

4480 4481 4482 4483 4484
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
		values[n++] += perf_event_count(sub);
		if (read_format & PERF_FORMAT_ID)
			values[n++] = primary_event_id(sub);
	}
4485

4486
	raw_spin_unlock_irqrestore(&ctx->lock, flags);
4487
	return 0;
4488
}
4489

4490 4491 4492 4493 4494
static int perf_read_group(struct perf_event *event,
				   u64 read_format, char __user *buf)
{
	struct perf_event *leader = event->group_leader, *child;
	struct perf_event_context *ctx = leader->ctx;
4495
	int ret;
4496
	u64 *values;
4497

4498
	lockdep_assert_held(&ctx->mutex);
4499

4500 4501 4502
	values = kzalloc(event->read_size, GFP_KERNEL);
	if (!values)
		return -ENOMEM;
4503

4504 4505 4506 4507 4508 4509 4510
	values[0] = 1 + leader->nr_siblings;

	/*
	 * By locking the child_mutex of the leader we effectively
	 * lock the child list of all siblings.. XXX explain how.
	 */
	mutex_lock(&leader->child_mutex);
4511

4512 4513 4514 4515 4516 4517 4518 4519 4520
	ret = __perf_read_group_add(leader, read_format, values);
	if (ret)
		goto unlock;

	list_for_each_entry(child, &leader->child_list, child_list) {
		ret = __perf_read_group_add(child, read_format, values);
		if (ret)
			goto unlock;
	}
4521

4522
	mutex_unlock(&leader->child_mutex);
4523

4524
	ret = event->read_size;
4525 4526
	if (copy_to_user(buf, values, event->read_size))
		ret = -EFAULT;
4527
	goto out;
4528

4529 4530 4531
unlock:
	mutex_unlock(&leader->child_mutex);
out:
4532
	kfree(values);
4533
	return ret;
4534 4535
}

4536
static int perf_read_one(struct perf_event *event,
4537 4538
				 u64 read_format, char __user *buf)
{
4539
	u64 enabled, running;
4540 4541 4542
	u64 values[4];
	int n = 0;

4543
	values[n++] = __perf_event_read_value(event, &enabled, &running);
4544 4545 4546 4547
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
4548
	if (read_format & PERF_FORMAT_ID)
4549
		values[n++] = primary_event_id(event);
4550 4551 4552 4553 4554 4555 4556

	if (copy_to_user(buf, values, n * sizeof(u64)))
		return -EFAULT;

	return n * sizeof(u64);
}

4557 4558 4559 4560
static bool is_event_hup(struct perf_event *event)
{
	bool no_children;

P
Peter Zijlstra 已提交
4561
	if (event->state > PERF_EVENT_STATE_EXIT)
4562 4563 4564 4565 4566 4567 4568 4569
		return false;

	mutex_lock(&event->child_mutex);
	no_children = list_empty(&event->child_list);
	mutex_unlock(&event->child_mutex);
	return no_children;
}

T
Thomas Gleixner 已提交
4570
/*
4571
 * Read the performance event - simple non blocking version for now
T
Thomas Gleixner 已提交
4572 4573
 */
static ssize_t
4574
__perf_read(struct perf_event *event, char __user *buf, size_t count)
T
Thomas Gleixner 已提交
4575
{
4576
	u64 read_format = event->attr.read_format;
4577
	int ret;
T
Thomas Gleixner 已提交
4578

4579
	/*
4580
	 * Return end-of-file for a read on a event that is in
4581 4582 4583
	 * error state (i.e. because it was pinned but it couldn't be
	 * scheduled on to the CPU at some point).
	 */
4584
	if (event->state == PERF_EVENT_STATE_ERROR)
4585 4586
		return 0;

4587
	if (count < event->read_size)
4588 4589
		return -ENOSPC;

4590
	WARN_ON_ONCE(event->ctx->parent_ctx);
4591
	if (read_format & PERF_FORMAT_GROUP)
4592
		ret = perf_read_group(event, read_format, buf);
4593
	else
4594
		ret = perf_read_one(event, read_format, buf);
T
Thomas Gleixner 已提交
4595

4596
	return ret;
T
Thomas Gleixner 已提交
4597 4598 4599 4600 4601
}

static ssize_t
perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
4602
	struct perf_event *event = file->private_data;
P
Peter Zijlstra 已提交
4603 4604
	struct perf_event_context *ctx;
	int ret;
T
Thomas Gleixner 已提交
4605

P
Peter Zijlstra 已提交
4606
	ctx = perf_event_ctx_lock(event);
4607
	ret = __perf_read(event, buf, count);
P
Peter Zijlstra 已提交
4608 4609 4610
	perf_event_ctx_unlock(event, ctx);

	return ret;
T
Thomas Gleixner 已提交
4611 4612 4613 4614
}

static unsigned int perf_poll(struct file *file, poll_table *wait)
{
4615
	struct perf_event *event = file->private_data;
4616
	struct ring_buffer *rb;
4617
	unsigned int events = POLLHUP;
P
Peter Zijlstra 已提交
4618

4619
	poll_wait(file, &event->waitq, wait);
4620

4621
	if (is_event_hup(event))
4622
		return events;
P
Peter Zijlstra 已提交
4623

4624
	/*
4625 4626
	 * Pin the event->rb by taking event->mmap_mutex; otherwise
	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4627 4628
	 */
	mutex_lock(&event->mmap_mutex);
4629 4630
	rb = event->rb;
	if (rb)
4631
		events = atomic_xchg(&rb->poll, 0);
4632
	mutex_unlock(&event->mmap_mutex);
T
Thomas Gleixner 已提交
4633 4634 4635
	return events;
}

P
Peter Zijlstra 已提交
4636
static void _perf_event_reset(struct perf_event *event)
4637
{
4638
	(void)perf_event_read(event, false);
4639
	local64_set(&event->count, 0);
4640
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
4641 4642
}

4643
/*
4644 4645
 * Holding the top-level event's child_mutex means that any
 * descendant process that has inherited this event will block
4646
 * in perf_event_exit_event() if it goes to exit, thus satisfying the
4647
 * task existence requirements of perf_event_enable/disable.
4648
 */
4649 4650
static void perf_event_for_each_child(struct perf_event *event,
					void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
4651
{
4652
	struct perf_event *child;
P
Peter Zijlstra 已提交
4653

4654
	WARN_ON_ONCE(event->ctx->parent_ctx);
P
Peter Zijlstra 已提交
4655

4656 4657 4658
	mutex_lock(&event->child_mutex);
	func(event);
	list_for_each_entry(child, &event->child_list, child_list)
P
Peter Zijlstra 已提交
4659
		func(child);
4660
	mutex_unlock(&event->child_mutex);
P
Peter Zijlstra 已提交
4661 4662
}

4663 4664
static void perf_event_for_each(struct perf_event *event,
				  void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
4665
{
4666 4667
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *sibling;
P
Peter Zijlstra 已提交
4668

P
Peter Zijlstra 已提交
4669 4670
	lockdep_assert_held(&ctx->mutex);

4671
	event = event->group_leader;
4672

4673 4674
	perf_event_for_each_child(event, func);
	list_for_each_entry(sibling, &event->sibling_list, group_entry)
4675
		perf_event_for_each_child(sibling, func);
4676 4677
}

4678 4679 4680 4681
static void __perf_event_period(struct perf_event *event,
				struct perf_cpu_context *cpuctx,
				struct perf_event_context *ctx,
				void *info)
4682
{
4683
	u64 value = *((u64 *)info);
4684
	bool active;
4685

4686 4687
	if (event->attr.freq) {
		event->attr.sample_freq = value;
4688
	} else {
4689 4690
		event->attr.sample_period = value;
		event->hw.sample_period = value;
4691
	}
4692 4693 4694 4695

	active = (event->state == PERF_EVENT_STATE_ACTIVE);
	if (active) {
		perf_pmu_disable(ctx->pmu);
4696 4697 4698 4699 4700 4701 4702 4703
		/*
		 * We could be throttled; unthrottle now to avoid the tick
		 * trying to unthrottle while we already re-started the event.
		 */
		if (event->hw.interrupts == MAX_INTERRUPTS) {
			event->hw.interrupts = 0;
			perf_log_throttle(event, 1);
		}
4704 4705 4706 4707 4708 4709 4710 4711 4712
		event->pmu->stop(event, PERF_EF_UPDATE);
	}

	local64_set(&event->hw.period_left, 0);

	if (active) {
		event->pmu->start(event, PERF_EF_RELOAD);
		perf_pmu_enable(ctx->pmu);
	}
4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730
}

static int perf_event_period(struct perf_event *event, u64 __user *arg)
{
	u64 value;

	if (!is_sampling_event(event))
		return -EINVAL;

	if (copy_from_user(&value, arg, sizeof(value)))
		return -EFAULT;

	if (!value)
		return -EINVAL;

	if (event->attr.freq && value > sysctl_perf_event_sample_rate)
		return -EINVAL;

4731
	event_function_call(event, __perf_event_period, &value);
4732

4733
	return 0;
4734 4735
}

4736 4737
static const struct file_operations perf_fops;

4738
static inline int perf_fget_light(int fd, struct fd *p)
4739
{
4740 4741 4742
	struct fd f = fdget(fd);
	if (!f.file)
		return -EBADF;
4743

4744 4745 4746
	if (f.file->f_op != &perf_fops) {
		fdput(f);
		return -EBADF;
4747
	}
4748 4749
	*p = f;
	return 0;
4750 4751 4752 4753
}

static int perf_event_set_output(struct perf_event *event,
				 struct perf_event *output_event);
L
Li Zefan 已提交
4754
static int perf_event_set_filter(struct perf_event *event, void __user *arg);
4755
static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
4756

P
Peter Zijlstra 已提交
4757
static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
4758
{
4759
	void (*func)(struct perf_event *);
P
Peter Zijlstra 已提交
4760
	u32 flags = arg;
4761 4762

	switch (cmd) {
4763
	case PERF_EVENT_IOC_ENABLE:
P
Peter Zijlstra 已提交
4764
		func = _perf_event_enable;
4765
		break;
4766
	case PERF_EVENT_IOC_DISABLE:
P
Peter Zijlstra 已提交
4767
		func = _perf_event_disable;
4768
		break;
4769
	case PERF_EVENT_IOC_RESET:
P
Peter Zijlstra 已提交
4770
		func = _perf_event_reset;
4771
		break;
P
Peter Zijlstra 已提交
4772

4773
	case PERF_EVENT_IOC_REFRESH:
P
Peter Zijlstra 已提交
4774
		return _perf_event_refresh(event, arg);
4775

4776 4777
	case PERF_EVENT_IOC_PERIOD:
		return perf_event_period(event, (u64 __user *)arg);
4778

4779 4780 4781 4782 4783 4784 4785 4786 4787
	case PERF_EVENT_IOC_ID:
	{
		u64 id = primary_event_id(event);

		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
			return -EFAULT;
		return 0;
	}

4788
	case PERF_EVENT_IOC_SET_OUTPUT:
4789 4790 4791
	{
		int ret;
		if (arg != -1) {
4792 4793 4794 4795 4796 4797 4798 4799 4800 4801
			struct perf_event *output_event;
			struct fd output;
			ret = perf_fget_light(arg, &output);
			if (ret)
				return ret;
			output_event = output.file->private_data;
			ret = perf_event_set_output(event, output_event);
			fdput(output);
		} else {
			ret = perf_event_set_output(event, NULL);
4802 4803 4804
		}
		return ret;
	}
4805

L
Li Zefan 已提交
4806 4807 4808
	case PERF_EVENT_IOC_SET_FILTER:
		return perf_event_set_filter(event, (void __user *)arg);

4809 4810 4811
	case PERF_EVENT_IOC_SET_BPF:
		return perf_event_set_bpf_prog(event, arg);

4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824
	case PERF_EVENT_IOC_PAUSE_OUTPUT: {
		struct ring_buffer *rb;

		rcu_read_lock();
		rb = rcu_dereference(event->rb);
		if (!rb || !rb->nr_pages) {
			rcu_read_unlock();
			return -EINVAL;
		}
		rb_toggle_paused(rb, !!arg);
		rcu_read_unlock();
		return 0;
	}
4825
	default:
P
Peter Zijlstra 已提交
4826
		return -ENOTTY;
4827
	}
P
Peter Zijlstra 已提交
4828 4829

	if (flags & PERF_IOC_FLAG_GROUP)
4830
		perf_event_for_each(event, func);
P
Peter Zijlstra 已提交
4831
	else
4832
		perf_event_for_each_child(event, func);
P
Peter Zijlstra 已提交
4833 4834

	return 0;
4835 4836
}

P
Peter Zijlstra 已提交
4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849
static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
	struct perf_event *event = file->private_data;
	struct perf_event_context *ctx;
	long ret;

	ctx = perf_event_ctx_lock(event);
	ret = _perf_ioctl(event, cmd, arg);
	perf_event_ctx_unlock(event, ctx);

	return ret;
}

P
Pawel Moll 已提交
4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869
#ifdef CONFIG_COMPAT
static long perf_compat_ioctl(struct file *file, unsigned int cmd,
				unsigned long arg)
{
	switch (_IOC_NR(cmd)) {
	case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
	case _IOC_NR(PERF_EVENT_IOC_ID):
		/* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
		if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
			cmd &= ~IOCSIZE_MASK;
			cmd |= sizeof(void *) << IOCSIZE_SHIFT;
		}
		break;
	}
	return perf_ioctl(file, cmd, arg);
}
#else
# define perf_compat_ioctl NULL
#endif

4870
int perf_event_task_enable(void)
4871
{
P
Peter Zijlstra 已提交
4872
	struct perf_event_context *ctx;
4873
	struct perf_event *event;
4874

4875
	mutex_lock(&current->perf_event_mutex);
P
Peter Zijlstra 已提交
4876 4877 4878 4879 4880
	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
		ctx = perf_event_ctx_lock(event);
		perf_event_for_each_child(event, _perf_event_enable);
		perf_event_ctx_unlock(event, ctx);
	}
4881
	mutex_unlock(&current->perf_event_mutex);
4882 4883 4884 4885

	return 0;
}

4886
int perf_event_task_disable(void)
4887
{
P
Peter Zijlstra 已提交
4888
	struct perf_event_context *ctx;
4889
	struct perf_event *event;
4890

4891
	mutex_lock(&current->perf_event_mutex);
P
Peter Zijlstra 已提交
4892 4893 4894 4895 4896
	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
		ctx = perf_event_ctx_lock(event);
		perf_event_for_each_child(event, _perf_event_disable);
		perf_event_ctx_unlock(event, ctx);
	}
4897
	mutex_unlock(&current->perf_event_mutex);
4898 4899 4900 4901

	return 0;
}

4902
static int perf_event_index(struct perf_event *event)
4903
{
P
Peter Zijlstra 已提交
4904 4905 4906
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;

4907
	if (event->state != PERF_EVENT_STATE_ACTIVE)
4908 4909
		return 0;

4910
	return event->pmu->event_idx(event);
4911 4912
}

4913
static void calc_timer_values(struct perf_event *event,
4914
				u64 *now,
4915 4916
				u64 *enabled,
				u64 *running)
4917
{
4918
	u64 ctx_time;
4919

4920 4921
	*now = perf_clock();
	ctx_time = event->shadow_ctx_time + *now;
4922 4923 4924 4925
	*enabled = ctx_time - event->tstamp_enabled;
	*running = ctx_time - event->tstamp_running;
}

4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940
static void perf_event_init_userpage(struct perf_event *event)
{
	struct perf_event_mmap_page *userpg;
	struct ring_buffer *rb;

	rcu_read_lock();
	rb = rcu_dereference(event->rb);
	if (!rb)
		goto unlock;

	userpg = rb->user_page;

	/* Allow new userspace to detect that bit 0 is deprecated */
	userpg->cap_bit0_is_deprecated = 1;
	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
4941 4942
	userpg->data_offset = PAGE_SIZE;
	userpg->data_size = perf_data_size(rb);
4943 4944 4945 4946 4947

unlock:
	rcu_read_unlock();
}

4948 4949
void __weak arch_perf_update_userpage(
	struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
4950 4951 4952
{
}

4953 4954 4955 4956 4957
/*
 * Callers need to ensure there can be no nesting of this function, otherwise
 * the seqlock logic goes bad. We can not serialize this because the arch
 * code calls this from NMI context.
 */
4958
void perf_event_update_userpage(struct perf_event *event)
4959
{
4960
	struct perf_event_mmap_page *userpg;
4961
	struct ring_buffer *rb;
4962
	u64 enabled, running, now;
4963 4964

	rcu_read_lock();
4965 4966 4967 4968
	rb = rcu_dereference(event->rb);
	if (!rb)
		goto unlock;

4969 4970 4971 4972 4973 4974 4975 4976 4977
	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we can be called in
	 * NMI context
	 */
4978
	calc_timer_values(event, &now, &enabled, &running);
4979

4980
	userpg = rb->user_page;
4981 4982 4983 4984 4985
	/*
	 * Disable preemption so as to not let the corresponding user-space
	 * spin too long if we get preempted.
	 */
	preempt_disable();
4986
	++userpg->lock;
4987
	barrier();
4988
	userpg->index = perf_event_index(event);
P
Peter Zijlstra 已提交
4989
	userpg->offset = perf_event_count(event);
4990
	if (userpg->index)
4991
		userpg->offset -= local64_read(&event->hw.prev_count);
4992

4993
	userpg->time_enabled = enabled +
4994
			atomic64_read(&event->child_total_time_enabled);
4995

4996
	userpg->time_running = running +
4997
			atomic64_read(&event->child_total_time_running);
4998

4999
	arch_perf_update_userpage(event, userpg, now);
5000

5001
	barrier();
5002
	++userpg->lock;
5003
	preempt_enable();
5004
unlock:
5005
	rcu_read_unlock();
5006 5007
}

5008
static int perf_mmap_fault(struct vm_fault *vmf)
5009
{
5010
	struct perf_event *event = vmf->vma->vm_file->private_data;
5011
	struct ring_buffer *rb;
5012 5013 5014 5015 5016 5017 5018 5019 5020
	int ret = VM_FAULT_SIGBUS;

	if (vmf->flags & FAULT_FLAG_MKWRITE) {
		if (vmf->pgoff == 0)
			ret = 0;
		return ret;
	}

	rcu_read_lock();
5021 5022
	rb = rcu_dereference(event->rb);
	if (!rb)
5023 5024 5025 5026 5027
		goto unlock;

	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
		goto unlock;

5028
	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
5029 5030 5031 5032
	if (!vmf->page)
		goto unlock;

	get_page(vmf->page);
5033
	vmf->page->mapping = vmf->vma->vm_file->f_mapping;
5034 5035 5036 5037 5038 5039 5040 5041 5042
	vmf->page->index   = vmf->pgoff;

	ret = 0;
unlock:
	rcu_read_unlock();

	return ret;
}

5043 5044 5045
static void ring_buffer_attach(struct perf_event *event,
			       struct ring_buffer *rb)
{
5046
	struct ring_buffer *old_rb = NULL;
5047 5048
	unsigned long flags;

5049 5050 5051 5052 5053 5054
	if (event->rb) {
		/*
		 * Should be impossible, we set this when removing
		 * event->rb_entry and wait/clear when adding event->rb_entry.
		 */
		WARN_ON_ONCE(event->rcu_pending);
5055

5056 5057 5058 5059
		old_rb = event->rb;
		spin_lock_irqsave(&old_rb->event_lock, flags);
		list_del_rcu(&event->rb_entry);
		spin_unlock_irqrestore(&old_rb->event_lock, flags);
5060

5061 5062
		event->rcu_batches = get_state_synchronize_rcu();
		event->rcu_pending = 1;
5063
	}
5064

5065
	if (rb) {
5066 5067 5068 5069 5070
		if (event->rcu_pending) {
			cond_synchronize_rcu(event->rcu_batches);
			event->rcu_pending = 0;
		}

5071 5072 5073 5074 5075
		spin_lock_irqsave(&rb->event_lock, flags);
		list_add_rcu(&event->rb_entry, &rb->event_list);
		spin_unlock_irqrestore(&rb->event_lock, flags);
	}

5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088
	/*
	 * Avoid racing with perf_mmap_close(AUX): stop the event
	 * before swizzling the event::rb pointer; if it's getting
	 * unmapped, its aux_mmap_count will be 0 and it won't
	 * restart. See the comment in __perf_pmu_output_stop().
	 *
	 * Data will inevitably be lost when set_output is done in
	 * mid-air, but then again, whoever does it like this is
	 * not in for the data anyway.
	 */
	if (has_aux(event))
		perf_event_stop(event, 0);

5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099
	rcu_assign_pointer(event->rb, rb);

	if (old_rb) {
		ring_buffer_put(old_rb);
		/*
		 * Since we detached before setting the new rb, so that we
		 * could attach the new rb, we could have missed a wakeup.
		 * Provide it now.
		 */
		wake_up_all(&event->waitq);
	}
5100 5101 5102 5103 5104 5105 5106 5107
}

static void ring_buffer_wakeup(struct perf_event *event)
{
	struct ring_buffer *rb;

	rcu_read_lock();
	rb = rcu_dereference(event->rb);
5108 5109 5110 5111
	if (rb) {
		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
			wake_up_all(&event->waitq);
	}
5112 5113 5114
	rcu_read_unlock();
}

5115
struct ring_buffer *ring_buffer_get(struct perf_event *event)
5116
{
5117
	struct ring_buffer *rb;
5118

5119
	rcu_read_lock();
5120 5121 5122 5123
	rb = rcu_dereference(event->rb);
	if (rb) {
		if (!atomic_inc_not_zero(&rb->refcount))
			rb = NULL;
5124 5125 5126
	}
	rcu_read_unlock();

5127
	return rb;
5128 5129
}

5130
void ring_buffer_put(struct ring_buffer *rb)
5131
{
5132
	if (!atomic_dec_and_test(&rb->refcount))
5133
		return;
5134

5135
	WARN_ON_ONCE(!list_empty(&rb->event_list));
5136

5137
	call_rcu(&rb->rcu_head, rb_free_rcu);
5138 5139 5140 5141
}

static void perf_mmap_open(struct vm_area_struct *vma)
{
5142
	struct perf_event *event = vma->vm_file->private_data;
5143

5144
	atomic_inc(&event->mmap_count);
5145
	atomic_inc(&event->rb->mmap_count);
5146

5147 5148 5149
	if (vma->vm_pgoff)
		atomic_inc(&event->rb->aux_mmap_count);

5150
	if (event->pmu->event_mapped)
5151
		event->pmu->event_mapped(event, vma->vm_mm);
5152 5153
}

5154 5155
static void perf_pmu_output_stop(struct perf_event *event);

5156 5157 5158 5159 5160 5161 5162 5163
/*
 * A buffer can be mmap()ed multiple times; either directly through the same
 * event, or through other events by use of perf_event_set_output().
 *
 * In order to undo the VM accounting done by perf_mmap() we need to destroy
 * the buffer here, where we still have a VM context. This means we need
 * to detach all events redirecting to us.
 */
5164 5165
static void perf_mmap_close(struct vm_area_struct *vma)
{
5166
	struct perf_event *event = vma->vm_file->private_data;
5167

5168
	struct ring_buffer *rb = ring_buffer_get(event);
5169 5170 5171
	struct user_struct *mmap_user = rb->mmap_user;
	int mmap_locked = rb->mmap_locked;
	unsigned long size = perf_data_size(rb);
5172

5173
	if (event->pmu->event_unmapped)
5174
		event->pmu->event_unmapped(event, vma->vm_mm);
5175

5176 5177 5178 5179 5180 5181 5182
	/*
	 * rb->aux_mmap_count will always drop before rb->mmap_count and
	 * event->mmap_count, so it is ok to use event->mmap_mutex to
	 * serialize with perf_mmap here.
	 */
	if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
	    atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
5183 5184 5185 5186 5187 5188 5189 5190 5191
		/*
		 * Stop all AUX events that are writing to this buffer,
		 * so that we can free its AUX pages and corresponding PMU
		 * data. Note that after rb::aux_mmap_count dropped to zero,
		 * they won't start any more (see perf_aux_output_begin()).
		 */
		perf_pmu_output_stop(event);

		/* now it's safe to free the pages */
5192 5193 5194
		atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
		vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;

5195
		/* this has to be the last one */
5196
		rb_free_aux(rb);
5197 5198
		WARN_ON_ONCE(atomic_read(&rb->aux_refcount));

5199 5200 5201
		mutex_unlock(&event->mmap_mutex);
	}

5202 5203 5204
	atomic_dec(&rb->mmap_count);

	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
5205
		goto out_put;
5206

5207
	ring_buffer_attach(event, NULL);
5208 5209 5210
	mutex_unlock(&event->mmap_mutex);

	/* If there's still other mmap()s of this buffer, we're done. */
5211 5212
	if (atomic_read(&rb->mmap_count))
		goto out_put;
5213

5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229
	/*
	 * No other mmap()s, detach from all other events that might redirect
	 * into the now unreachable buffer. Somewhat complicated by the
	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
	 */
again:
	rcu_read_lock();
	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
		if (!atomic_long_inc_not_zero(&event->refcount)) {
			/*
			 * This event is en-route to free_event() which will
			 * detach it and remove it from the list.
			 */
			continue;
		}
		rcu_read_unlock();
5230

5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241
		mutex_lock(&event->mmap_mutex);
		/*
		 * Check we didn't race with perf_event_set_output() which can
		 * swizzle the rb from under us while we were waiting to
		 * acquire mmap_mutex.
		 *
		 * If we find a different rb; ignore this event, a next
		 * iteration will no longer find it on the list. We have to
		 * still restart the iteration to make sure we're not now
		 * iterating the wrong list.
		 */
5242 5243 5244
		if (event->rb == rb)
			ring_buffer_attach(event, NULL);

5245
		mutex_unlock(&event->mmap_mutex);
5246
		put_event(event);
5247

5248 5249 5250 5251 5252
		/*
		 * Restart the iteration; either we're on the wrong list or
		 * destroyed its integrity by doing a deletion.
		 */
		goto again;
5253
	}
5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268
	rcu_read_unlock();

	/*
	 * It could be there's still a few 0-ref events on the list; they'll
	 * get cleaned up by free_event() -- they'll also still have their
	 * ref on the rb and will free it whenever they are done with it.
	 *
	 * Aside from that, this buffer is 'fully' detached and unmapped,
	 * undo the VM accounting.
	 */

	atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
	vma->vm_mm->pinned_vm -= mmap_locked;
	free_uid(mmap_user);

5269
out_put:
5270
	ring_buffer_put(rb); /* could be last */
5271 5272
}

5273
static const struct vm_operations_struct perf_mmap_vmops = {
5274
	.open		= perf_mmap_open,
5275
	.close		= perf_mmap_close, /* non mergable */
5276 5277
	.fault		= perf_mmap_fault,
	.page_mkwrite	= perf_mmap_fault,
5278 5279 5280 5281
};

static int perf_mmap(struct file *file, struct vm_area_struct *vma)
{
5282
	struct perf_event *event = file->private_data;
5283
	unsigned long user_locked, user_lock_limit;
5284
	struct user_struct *user = current_user();
5285
	unsigned long locked, lock_limit;
5286
	struct ring_buffer *rb = NULL;
5287 5288
	unsigned long vma_size;
	unsigned long nr_pages;
5289
	long user_extra = 0, extra = 0;
5290
	int ret = 0, flags = 0;
5291

5292 5293 5294
	/*
	 * Don't allow mmap() of inherited per-task counters. This would
	 * create a performance issue due to all children writing to the
5295
	 * same rb.
5296 5297 5298 5299
	 */
	if (event->cpu == -1 && event->attr.inherit)
		return -EINVAL;

5300
	if (!(vma->vm_flags & VM_SHARED))
5301
		return -EINVAL;
5302 5303

	vma_size = vma->vm_end - vma->vm_start;
5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363

	if (vma->vm_pgoff == 0) {
		nr_pages = (vma_size / PAGE_SIZE) - 1;
	} else {
		/*
		 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
		 * mapped, all subsequent mappings should have the same size
		 * and offset. Must be above the normal perf buffer.
		 */
		u64 aux_offset, aux_size;

		if (!event->rb)
			return -EINVAL;

		nr_pages = vma_size / PAGE_SIZE;

		mutex_lock(&event->mmap_mutex);
		ret = -EINVAL;

		rb = event->rb;
		if (!rb)
			goto aux_unlock;

		aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
		aux_size = ACCESS_ONCE(rb->user_page->aux_size);

		if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
			goto aux_unlock;

		if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
			goto aux_unlock;

		/* already mapped with a different offset */
		if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
			goto aux_unlock;

		if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
			goto aux_unlock;

		/* already mapped with a different size */
		if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
			goto aux_unlock;

		if (!is_power_of_2(nr_pages))
			goto aux_unlock;

		if (!atomic_inc_not_zero(&rb->mmap_count))
			goto aux_unlock;

		if (rb_has_aux(rb)) {
			atomic_inc(&rb->aux_mmap_count);
			ret = 0;
			goto unlock;
		}

		atomic_set(&rb->aux_mmap_count, 1);
		user_extra = nr_pages;

		goto accounting;
	}
5364

5365
	/*
5366
	 * If we have rb pages ensure they're a power-of-two number, so we
5367 5368
	 * can do bitmasks instead of modulo.
	 */
5369
	if (nr_pages != 0 && !is_power_of_2(nr_pages))
5370 5371
		return -EINVAL;

5372
	if (vma_size != PAGE_SIZE * (1 + nr_pages))
5373 5374
		return -EINVAL;

5375
	WARN_ON_ONCE(event->ctx->parent_ctx);
5376
again:
5377
	mutex_lock(&event->mmap_mutex);
5378
	if (event->rb) {
5379
		if (event->rb->nr_pages != nr_pages) {
5380
			ret = -EINVAL;
5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393
			goto unlock;
		}

		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
			/*
			 * Raced against perf_mmap_close() through
			 * perf_event_set_output(). Try again, hope for better
			 * luck.
			 */
			mutex_unlock(&event->mmap_mutex);
			goto again;
		}

5394 5395 5396
		goto unlock;
	}

5397
	user_extra = nr_pages + 1;
5398 5399

accounting:
5400
	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
I
Ingo Molnar 已提交
5401 5402 5403 5404 5405 5406

	/*
	 * Increase the limit linearly with more CPUs:
	 */
	user_lock_limit *= num_online_cpus();

5407
	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
5408

5409 5410
	if (user_locked > user_lock_limit)
		extra = user_locked - user_lock_limit;
5411

5412
	lock_limit = rlimit(RLIMIT_MEMLOCK);
5413
	lock_limit >>= PAGE_SHIFT;
5414
	locked = vma->vm_mm->pinned_vm + extra;
5415

5416 5417
	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
		!capable(CAP_IPC_LOCK)) {
5418 5419 5420
		ret = -EPERM;
		goto unlock;
	}
5421

5422
	WARN_ON(!rb && event->rb);
5423

5424
	if (vma->vm_flags & VM_WRITE)
5425
		flags |= RING_BUFFER_WRITABLE;
5426

5427
	if (!rb) {
5428 5429 5430
		rb = rb_alloc(nr_pages,
			      event->attr.watermark ? event->attr.wakeup_watermark : 0,
			      event->cpu, flags);
P
Peter Zijlstra 已提交
5431

5432 5433 5434 5435
		if (!rb) {
			ret = -ENOMEM;
			goto unlock;
		}
5436

5437 5438 5439
		atomic_set(&rb->mmap_count, 1);
		rb->mmap_user = get_current_user();
		rb->mmap_locked = extra;
P
Peter Zijlstra 已提交
5440

5441
		ring_buffer_attach(event, rb);
5442

5443 5444 5445
		perf_event_init_userpage(event);
		perf_event_update_userpage(event);
	} else {
5446 5447
		ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
				   event->attr.aux_watermark, flags);
5448 5449 5450
		if (!ret)
			rb->aux_mmap_locked = extra;
	}
5451

5452
unlock:
5453 5454 5455 5456
	if (!ret) {
		atomic_long_add(user_extra, &user->locked_vm);
		vma->vm_mm->pinned_vm += extra;

5457
		atomic_inc(&event->mmap_count);
5458 5459 5460 5461
	} else if (rb) {
		atomic_dec(&rb->mmap_count);
	}
aux_unlock:
5462
	mutex_unlock(&event->mmap_mutex);
5463

5464 5465 5466 5467
	/*
	 * Since pinned accounting is per vm we cannot allow fork() to copy our
	 * vma.
	 */
P
Peter Zijlstra 已提交
5468
	vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
5469
	vma->vm_ops = &perf_mmap_vmops;
5470

5471
	if (event->pmu->event_mapped)
5472
		event->pmu->event_mapped(event, vma->vm_mm);
5473

5474
	return ret;
5475 5476
}

P
Peter Zijlstra 已提交
5477 5478
static int perf_fasync(int fd, struct file *filp, int on)
{
A
Al Viro 已提交
5479
	struct inode *inode = file_inode(filp);
5480
	struct perf_event *event = filp->private_data;
P
Peter Zijlstra 已提交
5481 5482
	int retval;

A
Al Viro 已提交
5483
	inode_lock(inode);
5484
	retval = fasync_helper(fd, filp, on, &event->fasync);
A
Al Viro 已提交
5485
	inode_unlock(inode);
P
Peter Zijlstra 已提交
5486 5487 5488 5489 5490 5491 5492

	if (retval < 0)
		return retval;

	return 0;
}

T
Thomas Gleixner 已提交
5493
static const struct file_operations perf_fops = {
5494
	.llseek			= no_llseek,
T
Thomas Gleixner 已提交
5495 5496 5497
	.release		= perf_release,
	.read			= perf_read,
	.poll			= perf_poll,
5498
	.unlocked_ioctl		= perf_ioctl,
P
Pawel Moll 已提交
5499
	.compat_ioctl		= perf_compat_ioctl,
5500
	.mmap			= perf_mmap,
P
Peter Zijlstra 已提交
5501
	.fasync			= perf_fasync,
T
Thomas Gleixner 已提交
5502 5503
};

5504
/*
5505
 * Perf event wakeup
5506 5507 5508 5509 5510
 *
 * If there's data, ensure we set the poll() state and publish everything
 * to user-space before waking everybody up.
 */

5511 5512 5513 5514 5515 5516 5517 5518
static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
{
	/* only the parent has fasync state */
	if (event->parent)
		event = event->parent;
	return &event->fasync;
}

5519
void perf_event_wakeup(struct perf_event *event)
5520
{
5521
	ring_buffer_wakeup(event);
5522

5523
	if (event->pending_kill) {
5524
		kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
5525
		event->pending_kill = 0;
5526
	}
5527 5528
}

5529
static void perf_pending_event(struct irq_work *entry)
5530
{
5531 5532
	struct perf_event *event = container_of(entry,
			struct perf_event, pending);
5533 5534 5535 5536 5537 5538 5539
	int rctx;

	rctx = perf_swevent_get_recursion_context();
	/*
	 * If we 'fail' here, that's OK, it means recursion is already disabled
	 * and we won't recurse 'further'.
	 */
5540

5541 5542
	if (event->pending_disable) {
		event->pending_disable = 0;
5543
		perf_event_disable_local(event);
5544 5545
	}

5546 5547 5548
	if (event->pending_wakeup) {
		event->pending_wakeup = 0;
		perf_event_wakeup(event);
5549
	}
5550 5551 5552

	if (rctx >= 0)
		perf_swevent_put_recursion_context(rctx);
5553 5554
}

5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575
/*
 * We assume there is only KVM supporting the callbacks.
 * Later on, we might change it to a list if there is
 * another virtualization implementation supporting the callbacks.
 */
struct perf_guest_info_callbacks *perf_guest_cbs;

int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = cbs;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);

int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = NULL;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);

5576 5577 5578 5579 5580
static void
perf_output_sample_regs(struct perf_output_handle *handle,
			struct pt_regs *regs, u64 mask)
{
	int bit;
5581
	DECLARE_BITMAP(_mask, 64);
5582

5583 5584
	bitmap_from_u64(_mask, mask);
	for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
5585 5586 5587 5588 5589 5590 5591
		u64 val;

		val = perf_reg_value(regs, bit);
		perf_output_put(handle, val);
	}
}

5592
static void perf_sample_regs_user(struct perf_regs *regs_user,
5593 5594
				  struct pt_regs *regs,
				  struct pt_regs *regs_user_copy)
5595
{
5596 5597
	if (user_mode(regs)) {
		regs_user->abi = perf_reg_abi(current);
5598
		regs_user->regs = regs;
5599 5600
	} else if (current->mm) {
		perf_get_regs_user(regs_user, regs, regs_user_copy);
5601 5602 5603
	} else {
		regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
		regs_user->regs = NULL;
5604 5605 5606
	}
}

5607 5608 5609 5610 5611 5612 5613 5614
static void perf_sample_regs_intr(struct perf_regs *regs_intr,
				  struct pt_regs *regs)
{
	regs_intr->regs = regs;
	regs_intr->abi  = perf_reg_abi(current);
}


5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709
/*
 * Get remaining task size from user stack pointer.
 *
 * It'd be better to take stack vma map and limit this more
 * precisly, but there's no way to get it safely under interrupt,
 * so using TASK_SIZE as limit.
 */
static u64 perf_ustack_task_size(struct pt_regs *regs)
{
	unsigned long addr = perf_user_stack_pointer(regs);

	if (!addr || addr >= TASK_SIZE)
		return 0;

	return TASK_SIZE - addr;
}

static u16
perf_sample_ustack_size(u16 stack_size, u16 header_size,
			struct pt_regs *regs)
{
	u64 task_size;

	/* No regs, no stack pointer, no dump. */
	if (!regs)
		return 0;

	/*
	 * Check if we fit in with the requested stack size into the:
	 * - TASK_SIZE
	 *   If we don't, we limit the size to the TASK_SIZE.
	 *
	 * - remaining sample size
	 *   If we don't, we customize the stack size to
	 *   fit in to the remaining sample size.
	 */

	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
	stack_size = min(stack_size, (u16) task_size);

	/* Current header size plus static size and dynamic size. */
	header_size += 2 * sizeof(u64);

	/* Do we fit in with the current stack dump size? */
	if ((u16) (header_size + stack_size) < header_size) {
		/*
		 * If we overflow the maximum size for the sample,
		 * we customize the stack dump size to fit in.
		 */
		stack_size = USHRT_MAX - header_size - sizeof(u64);
		stack_size = round_up(stack_size, sizeof(u64));
	}

	return stack_size;
}

static void
perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
			  struct pt_regs *regs)
{
	/* Case of a kernel thread, nothing to dump */
	if (!regs) {
		u64 size = 0;
		perf_output_put(handle, size);
	} else {
		unsigned long sp;
		unsigned int rem;
		u64 dyn_size;

		/*
		 * We dump:
		 * static size
		 *   - the size requested by user or the best one we can fit
		 *     in to the sample max size
		 * data
		 *   - user stack dump data
		 * dynamic size
		 *   - the actual dumped size
		 */

		/* Static size. */
		perf_output_put(handle, dump_size);

		/* Data. */
		sp = perf_user_stack_pointer(regs);
		rem = __output_copy_user(handle, (void *) sp, dump_size);
		dyn_size = dump_size - rem;

		perf_output_skip(handle, rem);

		/* Dynamic size. */
		perf_output_put(handle, dyn_size);
	}
}

5710 5711 5712
static void __perf_event_header__init_id(struct perf_event_header *header,
					 struct perf_sample_data *data,
					 struct perf_event *event)
5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725
{
	u64 sample_type = event->attr.sample_type;

	data->type = sample_type;
	header->size += event->id_header_size;

	if (sample_type & PERF_SAMPLE_TID) {
		/* namespace issues */
		data->tid_entry.pid = perf_event_pid(event, current);
		data->tid_entry.tid = perf_event_tid(event, current);
	}

	if (sample_type & PERF_SAMPLE_TIME)
5726
		data->time = perf_event_clock(event);
5727

5728
	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739
		data->id = primary_event_id(event);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		data->stream_id = event->id;

	if (sample_type & PERF_SAMPLE_CPU) {
		data->cpu_entry.cpu	 = raw_smp_processor_id();
		data->cpu_entry.reserved = 0;
	}
}

5740 5741 5742
void perf_event_header__init_id(struct perf_event_header *header,
				struct perf_sample_data *data,
				struct perf_event *event)
5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766
{
	if (event->attr.sample_id_all)
		__perf_event_header__init_id(header, data, event);
}

static void __perf_event__output_id_sample(struct perf_output_handle *handle,
					   struct perf_sample_data *data)
{
	u64 sample_type = data->type;

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);
5767 5768 5769

	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		perf_output_put(handle, data->id);
5770 5771
}

5772 5773 5774
void perf_event__output_id_sample(struct perf_event *event,
				  struct perf_output_handle *handle,
				  struct perf_sample_data *sample)
5775 5776 5777 5778 5779
{
	if (event->attr.sample_id_all)
		__perf_event__output_id_sample(handle, sample);
}

5780
static void perf_output_read_one(struct perf_output_handle *handle,
5781 5782
				 struct perf_event *event,
				 u64 enabled, u64 running)
5783
{
5784
	u64 read_format = event->attr.read_format;
5785 5786 5787
	u64 values[4];
	int n = 0;

P
Peter Zijlstra 已提交
5788
	values[n++] = perf_event_count(event);
5789
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5790
		values[n++] = enabled +
5791
			atomic64_read(&event->child_total_time_enabled);
5792 5793
	}
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5794
		values[n++] = running +
5795
			atomic64_read(&event->child_total_time_running);
5796 5797
	}
	if (read_format & PERF_FORMAT_ID)
5798
		values[n++] = primary_event_id(event);
5799

5800
	__output_copy(handle, values, n * sizeof(u64));
5801 5802 5803
}

static void perf_output_read_group(struct perf_output_handle *handle,
5804 5805
			    struct perf_event *event,
			    u64 enabled, u64 running)
5806
{
5807 5808
	struct perf_event *leader = event->group_leader, *sub;
	u64 read_format = event->attr.read_format;
5809 5810 5811 5812 5813 5814
	u64 values[5];
	int n = 0;

	values[n++] = 1 + leader->nr_siblings;

	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5815
		values[n++] = enabled;
5816 5817

	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5818
		values[n++] = running;
5819

5820
	if (leader != event)
5821 5822
		leader->pmu->read(leader);

P
Peter Zijlstra 已提交
5823
	values[n++] = perf_event_count(leader);
5824
	if (read_format & PERF_FORMAT_ID)
5825
		values[n++] = primary_event_id(leader);
5826

5827
	__output_copy(handle, values, n * sizeof(u64));
5828

5829
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
5830 5831
		n = 0;

5832 5833
		if ((sub != event) &&
		    (sub->state == PERF_EVENT_STATE_ACTIVE))
5834 5835
			sub->pmu->read(sub);

P
Peter Zijlstra 已提交
5836
		values[n++] = perf_event_count(sub);
5837
		if (read_format & PERF_FORMAT_ID)
5838
			values[n++] = primary_event_id(sub);
5839

5840
		__output_copy(handle, values, n * sizeof(u64));
5841 5842 5843
	}
}

5844 5845 5846
#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
				 PERF_FORMAT_TOTAL_TIME_RUNNING)

5847 5848 5849 5850 5851 5852 5853
/*
 * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
 *
 * The problem is that its both hard and excessively expensive to iterate the
 * child list, not to mention that its impossible to IPI the children running
 * on another CPU, from interrupt/NMI context.
 */
5854
static void perf_output_read(struct perf_output_handle *handle,
5855
			     struct perf_event *event)
5856
{
5857
	u64 enabled = 0, running = 0, now;
5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868
	u64 read_format = event->attr.read_format;

	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we are called in
	 * NMI context
	 */
5869
	if (read_format & PERF_FORMAT_TOTAL_TIMES)
5870
		calc_timer_values(event, &now, &enabled, &running);
5871

5872
	if (event->attr.read_format & PERF_FORMAT_GROUP)
5873
		perf_output_read_group(handle, event, enabled, running);
5874
	else
5875
		perf_output_read_one(handle, event, enabled, running);
5876 5877
}

5878 5879 5880
void perf_output_sample(struct perf_output_handle *handle,
			struct perf_event_header *header,
			struct perf_sample_data *data,
5881
			struct perf_event *event)
5882 5883 5884 5885 5886
{
	u64 sample_type = data->type;

	perf_output_put(handle, *header);

5887 5888 5889
	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		perf_output_put(handle, data->id);

5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914
	if (sample_type & PERF_SAMPLE_IP)
		perf_output_put(handle, data->ip);

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ADDR)
		perf_output_put(handle, data->addr);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);

	if (sample_type & PERF_SAMPLE_PERIOD)
		perf_output_put(handle, data->period);

	if (sample_type & PERF_SAMPLE_READ)
5915
		perf_output_read(handle, event);
5916 5917 5918 5919 5920 5921 5922 5923 5924 5925

	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
		if (data->callchain) {
			int size = 1;

			if (data->callchain)
				size += data->callchain->nr;

			size *= sizeof(u64);

5926
			__output_copy(handle, data->callchain, size);
5927 5928 5929 5930 5931 5932 5933
		} else {
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}

	if (sample_type & PERF_SAMPLE_RAW) {
5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953
		struct perf_raw_record *raw = data->raw;

		if (raw) {
			struct perf_raw_frag *frag = &raw->frag;

			perf_output_put(handle, raw->size);
			do {
				if (frag->copy) {
					__output_custom(handle, frag->copy,
							frag->data, frag->size);
				} else {
					__output_copy(handle, frag->data,
						      frag->size);
				}
				if (perf_raw_frag_last(frag))
					break;
				frag = frag->next;
			} while (1);
			if (frag->pad)
				__output_skip(handle, NULL, frag->pad);
5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964
		} else {
			struct {
				u32	size;
				u32	data;
			} raw = {
				.size = sizeof(u32),
				.data = 0,
			};
			perf_output_put(handle, raw);
		}
	}
5965

5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982
	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
		if (data->br_stack) {
			size_t size;

			size = data->br_stack->nr
			     * sizeof(struct perf_branch_entry);

			perf_output_put(handle, data->br_stack->nr);
			perf_output_copy(handle, data->br_stack->entries, size);
		} else {
			/*
			 * we always store at least the value of nr
			 */
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}
5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999

	if (sample_type & PERF_SAMPLE_REGS_USER) {
		u64 abi = data->regs_user.abi;

		/*
		 * If there are no regs to dump, notice it through
		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
		 */
		perf_output_put(handle, abi);

		if (abi) {
			u64 mask = event->attr.sample_regs_user;
			perf_output_sample_regs(handle,
						data->regs_user.regs,
						mask);
		}
	}
6000

6001
	if (sample_type & PERF_SAMPLE_STACK_USER) {
6002 6003 6004
		perf_output_sample_ustack(handle,
					  data->stack_user_size,
					  data->regs_user.regs);
6005
	}
A
Andi Kleen 已提交
6006 6007 6008

	if (sample_type & PERF_SAMPLE_WEIGHT)
		perf_output_put(handle, data->weight);
6009 6010 6011

	if (sample_type & PERF_SAMPLE_DATA_SRC)
		perf_output_put(handle, data->data_src.val);
6012

A
Andi Kleen 已提交
6013 6014 6015
	if (sample_type & PERF_SAMPLE_TRANSACTION)
		perf_output_put(handle, data->txn);

6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032
	if (sample_type & PERF_SAMPLE_REGS_INTR) {
		u64 abi = data->regs_intr.abi;
		/*
		 * If there are no regs to dump, notice it through
		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
		 */
		perf_output_put(handle, abi);

		if (abi) {
			u64 mask = event->attr.sample_regs_intr;

			perf_output_sample_regs(handle,
						data->regs_intr.regs,
						mask);
		}
	}

6033 6034 6035
	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
		perf_output_put(handle, data->phys_addr);

6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048
	if (!event->attr.watermark) {
		int wakeup_events = event->attr.wakeup_events;

		if (wakeup_events) {
			struct ring_buffer *rb = handle->rb;
			int events = local_inc_return(&rb->events);

			if (events >= wakeup_events) {
				local_sub(wakeup_events, &rb->events);
				local_inc(&rb->wakeup);
			}
		}
	}
6049 6050
}

6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082
static u64 perf_virt_to_phys(u64 virt)
{
	u64 phys_addr = 0;
	struct page *p = NULL;

	if (!virt)
		return 0;

	if (virt >= TASK_SIZE) {
		/* If it's vmalloc()d memory, leave phys_addr as 0 */
		if (virt_addr_valid((void *)(uintptr_t)virt) &&
		    !(virt >= VMALLOC_START && virt < VMALLOC_END))
			phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
	} else {
		/*
		 * Walking the pages tables for user address.
		 * Interrupts are disabled, so it prevents any tear down
		 * of the page tables.
		 * Try IRQ-safe __get_user_pages_fast first.
		 * If failed, leave phys_addr as 0.
		 */
		if ((current->mm != NULL) &&
		    (__get_user_pages_fast(virt, 1, 0, &p) == 1))
			phys_addr = page_to_phys(p) + virt % PAGE_SIZE;

		if (p)
			put_page(p);
	}

	return phys_addr;
}

6083 6084
void perf_prepare_sample(struct perf_event_header *header,
			 struct perf_sample_data *data,
6085
			 struct perf_event *event,
6086
			 struct pt_regs *regs)
6087
{
6088
	u64 sample_type = event->attr.sample_type;
6089

6090
	header->type = PERF_RECORD_SAMPLE;
6091
	header->size = sizeof(*header) + event->header_size;
6092 6093 6094

	header->misc = 0;
	header->misc |= perf_misc_flags(regs);
6095

6096
	__perf_event_header__init_id(header, data, event);
6097

6098
	if (sample_type & PERF_SAMPLE_IP)
6099 6100
		data->ip = perf_instruction_pointer(regs);

6101
	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
6102
		int size = 1;
6103

6104
		data->callchain = perf_callchain(event, regs);
6105 6106 6107 6108 6109

		if (data->callchain)
			size += data->callchain->nr;

		header->size += size * sizeof(u64);
6110 6111
	}

6112
	if (sample_type & PERF_SAMPLE_RAW) {
6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132
		struct perf_raw_record *raw = data->raw;
		int size;

		if (raw) {
			struct perf_raw_frag *frag = &raw->frag;
			u32 sum = 0;

			do {
				sum += frag->size;
				if (perf_raw_frag_last(frag))
					break;
				frag = frag->next;
			} while (1);

			size = round_up(sum + sizeof(u32), sizeof(u64));
			raw->size = size - sizeof(u32);
			frag->pad = raw->size - sum;
		} else {
			size = sizeof(u64);
		}
6133

6134
		header->size += size;
6135
	}
6136 6137 6138 6139 6140 6141 6142 6143 6144

	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
		int size = sizeof(u64); /* nr */
		if (data->br_stack) {
			size += data->br_stack->nr
			      * sizeof(struct perf_branch_entry);
		}
		header->size += size;
	}
6145

6146
	if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
6147 6148
		perf_sample_regs_user(&data->regs_user, regs,
				      &data->regs_user_copy);
6149

6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160
	if (sample_type & PERF_SAMPLE_REGS_USER) {
		/* regs dump ABI info */
		int size = sizeof(u64);

		if (data->regs_user.regs) {
			u64 mask = event->attr.sample_regs_user;
			size += hweight64(mask) * sizeof(u64);
		}

		header->size += size;
	}
6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172

	if (sample_type & PERF_SAMPLE_STACK_USER) {
		/*
		 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
		 * processed as the last one or have additional check added
		 * in case new sample type is added, because we could eat
		 * up the rest of the sample size.
		 */
		u16 stack_size = event->attr.sample_stack_user;
		u16 size = sizeof(u64);

		stack_size = perf_sample_ustack_size(stack_size, header->size,
6173
						     data->regs_user.regs);
6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185

		/*
		 * If there is something to dump, add space for the dump
		 * itself and for the field that tells the dynamic size,
		 * which is how many have been actually dumped.
		 */
		if (stack_size)
			size += sizeof(u64) + stack_size;

		data->stack_user_size = stack_size;
		header->size += size;
	}
6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200

	if (sample_type & PERF_SAMPLE_REGS_INTR) {
		/* regs dump ABI info */
		int size = sizeof(u64);

		perf_sample_regs_intr(&data->regs_intr, regs);

		if (data->regs_intr.regs) {
			u64 mask = event->attr.sample_regs_intr;

			size += hweight64(mask) * sizeof(u64);
		}

		header->size += size;
	}
6201 6202 6203

	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
		data->phys_addr = perf_virt_to_phys(data->addr);
6204
}
6205

6206 6207 6208 6209 6210 6211 6212
static void __always_inline
__perf_event_output(struct perf_event *event,
		    struct perf_sample_data *data,
		    struct pt_regs *regs,
		    int (*output_begin)(struct perf_output_handle *,
					struct perf_event *,
					unsigned int))
6213 6214 6215
{
	struct perf_output_handle handle;
	struct perf_event_header header;
6216

6217 6218 6219
	/* protect the callchain buffers */
	rcu_read_lock();

6220
	perf_prepare_sample(&header, data, event, regs);
P
Peter Zijlstra 已提交
6221

6222
	if (output_begin(&handle, event, header.size))
6223
		goto exit;
6224

6225
	perf_output_sample(&handle, &header, data, event);
6226

6227
	perf_output_end(&handle);
6228 6229 6230

exit:
	rcu_read_unlock();
6231 6232
}

6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256
void
perf_event_output_forward(struct perf_event *event,
			 struct perf_sample_data *data,
			 struct pt_regs *regs)
{
	__perf_event_output(event, data, regs, perf_output_begin_forward);
}

void
perf_event_output_backward(struct perf_event *event,
			   struct perf_sample_data *data,
			   struct pt_regs *regs)
{
	__perf_event_output(event, data, regs, perf_output_begin_backward);
}

void
perf_event_output(struct perf_event *event,
		  struct perf_sample_data *data,
		  struct pt_regs *regs)
{
	__perf_event_output(event, data, regs, perf_output_begin);
}

6257
/*
6258
 * read event_id
6259 6260 6261 6262 6263 6264 6265 6266 6267 6268
 */

struct perf_read_event {
	struct perf_event_header	header;

	u32				pid;
	u32				tid;
};

static void
6269
perf_event_read_event(struct perf_event *event,
6270 6271 6272
			struct task_struct *task)
{
	struct perf_output_handle handle;
6273
	struct perf_sample_data sample;
6274
	struct perf_read_event read_event = {
6275
		.header = {
6276
			.type = PERF_RECORD_READ,
6277
			.misc = 0,
6278
			.size = sizeof(read_event) + event->read_size,
6279
		},
6280 6281
		.pid = perf_event_pid(event, task),
		.tid = perf_event_tid(event, task),
6282
	};
6283
	int ret;
6284

6285
	perf_event_header__init_id(&read_event.header, &sample, event);
6286
	ret = perf_output_begin(&handle, event, read_event.header.size);
6287 6288 6289
	if (ret)
		return;

6290
	perf_output_put(&handle, read_event);
6291
	perf_output_read(&handle, event);
6292
	perf_event__output_id_sample(event, &handle, &sample);
6293

6294 6295 6296
	perf_output_end(&handle);
}

6297
typedef void (perf_iterate_f)(struct perf_event *event, void *data);
6298 6299

static void
6300 6301
perf_iterate_ctx(struct perf_event_context *ctx,
		   perf_iterate_f output,
6302
		   void *data, bool all)
6303 6304 6305 6306
{
	struct perf_event *event;

	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6307 6308 6309 6310 6311 6312 6313
		if (!all) {
			if (event->state < PERF_EVENT_STATE_INACTIVE)
				continue;
			if (!event_filter_match(event))
				continue;
		}

6314
		output(event, data);
6315 6316 6317
	}
}

6318
static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
6319 6320 6321 6322 6323
{
	struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
	struct perf_event *event;

	list_for_each_entry_rcu(event, &pel->list, sb_list) {
6324 6325 6326 6327 6328 6329 6330 6331
		/*
		 * Skip events that are not fully formed yet; ensure that
		 * if we observe event->ctx, both event and ctx will be
		 * complete enough. See perf_install_in_context().
		 */
		if (!smp_load_acquire(&event->ctx))
			continue;

6332 6333 6334 6335 6336 6337 6338 6339
		if (event->state < PERF_EVENT_STATE_INACTIVE)
			continue;
		if (!event_filter_match(event))
			continue;
		output(event, data);
	}
}

6340 6341 6342 6343 6344 6345
/*
 * Iterate all events that need to receive side-band events.
 *
 * For new callers; ensure that account_pmu_sb_event() includes
 * your event, otherwise it might not get delivered.
 */
6346
static void
6347
perf_iterate_sb(perf_iterate_f output, void *data,
6348 6349 6350 6351 6352
	       struct perf_event_context *task_ctx)
{
	struct perf_event_context *ctx;
	int ctxn;

6353 6354 6355
	rcu_read_lock();
	preempt_disable();

J
Jiri Olsa 已提交
6356
	/*
6357 6358
	 * If we have task_ctx != NULL we only notify the task context itself.
	 * The task_ctx is set only for EXIT events before releasing task
J
Jiri Olsa 已提交
6359 6360 6361
	 * context.
	 */
	if (task_ctx) {
6362 6363
		perf_iterate_ctx(task_ctx, output, data, false);
		goto done;
J
Jiri Olsa 已提交
6364 6365
	}

6366
	perf_iterate_sb_cpu(output, data);
6367 6368

	for_each_task_context_nr(ctxn) {
6369 6370
		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		if (ctx)
6371
			perf_iterate_ctx(ctx, output, data, false);
6372
	}
6373
done:
6374
	preempt_enable();
6375
	rcu_read_unlock();
6376 6377
}

6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406
/*
 * Clear all file-based filters at exec, they'll have to be
 * re-instated when/if these objects are mmapped again.
 */
static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
{
	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
	struct perf_addr_filter *filter;
	unsigned int restart = 0, count = 0;
	unsigned long flags;

	if (!has_addr_filter(event))
		return;

	raw_spin_lock_irqsave(&ifh->lock, flags);
	list_for_each_entry(filter, &ifh->list, entry) {
		if (filter->inode) {
			event->addr_filters_offs[count] = 0;
			restart++;
		}

		count++;
	}

	if (restart)
		event->addr_filters_gen++;
	raw_spin_unlock_irqrestore(&ifh->lock, flags);

	if (restart)
6407
		perf_event_stop(event, 1);
6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422
}

void perf_event_exec(void)
{
	struct perf_event_context *ctx;
	int ctxn;

	rcu_read_lock();
	for_each_task_context_nr(ctxn) {
		ctx = current->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;

		perf_event_enable_on_exec(ctxn);

6423
		perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
6424 6425 6426 6427 6428
				   true);
	}
	rcu_read_unlock();
}

6429 6430 6431 6432 6433 6434 6435 6436 6437 6438
struct remote_output {
	struct ring_buffer	*rb;
	int			err;
};

static void __perf_event_output_stop(struct perf_event *event, void *data)
{
	struct perf_event *parent = event->parent;
	struct remote_output *ro = data;
	struct ring_buffer *rb = ro->rb;
6439 6440 6441
	struct stop_event_data sd = {
		.event	= event,
	};
6442 6443 6444 6445 6446 6447 6448 6449 6450

	if (!has_aux(event))
		return;

	if (!parent)
		parent = event;

	/*
	 * In case of inheritance, it will be the parent that links to the
6451 6452 6453 6454 6455 6456 6457
	 * ring-buffer, but it will be the child that's actually using it.
	 *
	 * We are using event::rb to determine if the event should be stopped,
	 * however this may race with ring_buffer_attach() (through set_output),
	 * which will make us skip the event that actually needs to be stopped.
	 * So ring_buffer_attach() has to stop an aux event before re-assigning
	 * its rb pointer.
6458 6459
	 */
	if (rcu_dereference(parent->rb) == rb)
6460
		ro->err = __perf_event_stop(&sd);
6461 6462 6463 6464 6465 6466
}

static int __perf_pmu_output_stop(void *info)
{
	struct perf_event *event = info;
	struct pmu *pmu = event->pmu;
6467
	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
6468 6469 6470 6471 6472
	struct remote_output ro = {
		.rb	= event->rb,
	};

	rcu_read_lock();
6473
	perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
6474
	if (cpuctx->task_ctx)
6475
		perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
6476
				   &ro, false);
6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509
	rcu_read_unlock();

	return ro.err;
}

static void perf_pmu_output_stop(struct perf_event *event)
{
	struct perf_event *iter;
	int err, cpu;

restart:
	rcu_read_lock();
	list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
		/*
		 * For per-CPU events, we need to make sure that neither they
		 * nor their children are running; for cpu==-1 events it's
		 * sufficient to stop the event itself if it's active, since
		 * it can't have children.
		 */
		cpu = iter->cpu;
		if (cpu == -1)
			cpu = READ_ONCE(iter->oncpu);

		if (cpu == -1)
			continue;

		err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
		if (err == -EAGAIN) {
			rcu_read_unlock();
			goto restart;
		}
	}
	rcu_read_unlock();
6510 6511
}

P
Peter Zijlstra 已提交
6512
/*
P
Peter Zijlstra 已提交
6513 6514
 * task tracking -- fork/exit
 *
6515
 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
P
Peter Zijlstra 已提交
6516 6517
 */

P
Peter Zijlstra 已提交
6518
struct perf_task_event {
6519
	struct task_struct		*task;
6520
	struct perf_event_context	*task_ctx;
P
Peter Zijlstra 已提交
6521 6522 6523 6524 6525 6526

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				ppid;
P
Peter Zijlstra 已提交
6527 6528
		u32				tid;
		u32				ptid;
6529
		u64				time;
6530
	} event_id;
P
Peter Zijlstra 已提交
6531 6532
};

6533 6534
static int perf_event_task_match(struct perf_event *event)
{
6535 6536 6537
	return event->attr.comm  || event->attr.mmap ||
	       event->attr.mmap2 || event->attr.mmap_data ||
	       event->attr.task;
6538 6539
}

6540
static void perf_event_task_output(struct perf_event *event,
6541
				   void *data)
P
Peter Zijlstra 已提交
6542
{
6543
	struct perf_task_event *task_event = data;
P
Peter Zijlstra 已提交
6544
	struct perf_output_handle handle;
6545
	struct perf_sample_data	sample;
P
Peter Zijlstra 已提交
6546
	struct task_struct *task = task_event->task;
6547
	int ret, size = task_event->event_id.header.size;
6548

6549 6550 6551
	if (!perf_event_task_match(event))
		return;

6552
	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
P
Peter Zijlstra 已提交
6553

6554
	ret = perf_output_begin(&handle, event,
6555
				task_event->event_id.header.size);
6556
	if (ret)
6557
		goto out;
P
Peter Zijlstra 已提交
6558

6559 6560
	task_event->event_id.pid = perf_event_pid(event, task);
	task_event->event_id.ppid = perf_event_pid(event, current);
P
Peter Zijlstra 已提交
6561

6562 6563
	task_event->event_id.tid = perf_event_tid(event, task);
	task_event->event_id.ptid = perf_event_tid(event, current);
P
Peter Zijlstra 已提交
6564

6565 6566
	task_event->event_id.time = perf_event_clock(event);

6567
	perf_output_put(&handle, task_event->event_id);
6568

6569 6570
	perf_event__output_id_sample(event, &handle, &sample);

P
Peter Zijlstra 已提交
6571
	perf_output_end(&handle);
6572 6573
out:
	task_event->event_id.header.size = size;
P
Peter Zijlstra 已提交
6574 6575
}

6576 6577
static void perf_event_task(struct task_struct *task,
			      struct perf_event_context *task_ctx,
6578
			      int new)
P
Peter Zijlstra 已提交
6579
{
P
Peter Zijlstra 已提交
6580
	struct perf_task_event task_event;
P
Peter Zijlstra 已提交
6581

6582 6583 6584
	if (!atomic_read(&nr_comm_events) &&
	    !atomic_read(&nr_mmap_events) &&
	    !atomic_read(&nr_task_events))
P
Peter Zijlstra 已提交
6585 6586
		return;

P
Peter Zijlstra 已提交
6587
	task_event = (struct perf_task_event){
6588 6589
		.task	  = task,
		.task_ctx = task_ctx,
6590
		.event_id    = {
P
Peter Zijlstra 已提交
6591
			.header = {
6592
				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
6593
				.misc = 0,
6594
				.size = sizeof(task_event.event_id),
P
Peter Zijlstra 已提交
6595
			},
6596 6597
			/* .pid  */
			/* .ppid */
P
Peter Zijlstra 已提交
6598 6599
			/* .tid  */
			/* .ptid */
6600
			/* .time */
P
Peter Zijlstra 已提交
6601 6602 6603
		},
	};

6604
	perf_iterate_sb(perf_event_task_output,
6605 6606
		       &task_event,
		       task_ctx);
P
Peter Zijlstra 已提交
6607 6608
}

6609
void perf_event_fork(struct task_struct *task)
P
Peter Zijlstra 已提交
6610
{
6611
	perf_event_task(task, NULL, 1);
6612
	perf_event_namespaces(task);
P
Peter Zijlstra 已提交
6613 6614
}

6615 6616 6617 6618 6619
/*
 * comm tracking
 */

struct perf_comm_event {
6620 6621
	struct task_struct	*task;
	char			*comm;
6622 6623 6624 6625 6626 6627 6628
	int			comm_size;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
6629
	} event_id;
6630 6631
};

6632 6633 6634 6635 6636
static int perf_event_comm_match(struct perf_event *event)
{
	return event->attr.comm;
}

6637
static void perf_event_comm_output(struct perf_event *event,
6638
				   void *data)
6639
{
6640
	struct perf_comm_event *comm_event = data;
6641
	struct perf_output_handle handle;
6642
	struct perf_sample_data sample;
6643
	int size = comm_event->event_id.header.size;
6644 6645
	int ret;

6646 6647 6648
	if (!perf_event_comm_match(event))
		return;

6649 6650
	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
6651
				comm_event->event_id.header.size);
6652 6653

	if (ret)
6654
		goto out;
6655

6656 6657
	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
6658

6659
	perf_output_put(&handle, comm_event->event_id);
6660
	__output_copy(&handle, comm_event->comm,
6661
				   comm_event->comm_size);
6662 6663 6664

	perf_event__output_id_sample(event, &handle, &sample);

6665
	perf_output_end(&handle);
6666 6667
out:
	comm_event->event_id.header.size = size;
6668 6669
}

6670
static void perf_event_comm_event(struct perf_comm_event *comm_event)
6671
{
6672
	char comm[TASK_COMM_LEN];
6673 6674
	unsigned int size;

6675
	memset(comm, 0, sizeof(comm));
6676
	strlcpy(comm, comm_event->task->comm, sizeof(comm));
6677
	size = ALIGN(strlen(comm)+1, sizeof(u64));
6678 6679 6680 6681

	comm_event->comm = comm;
	comm_event->comm_size = size;

6682
	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
P
Peter Zijlstra 已提交
6683

6684
	perf_iterate_sb(perf_event_comm_output,
6685 6686
		       comm_event,
		       NULL);
6687 6688
}

6689
void perf_event_comm(struct task_struct *task, bool exec)
6690
{
6691 6692
	struct perf_comm_event comm_event;

6693
	if (!atomic_read(&nr_comm_events))
6694
		return;
6695

6696
	comm_event = (struct perf_comm_event){
6697
		.task	= task,
6698 6699
		/* .comm      */
		/* .comm_size */
6700
		.event_id  = {
6701
			.header = {
6702
				.type = PERF_RECORD_COMM,
6703
				.misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
6704 6705 6706 6707
				/* .size */
			},
			/* .pid */
			/* .tid */
6708 6709 6710
		},
	};

6711
	perf_event_comm_event(&comm_event);
6712 6713
}

6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839
/*
 * namespaces tracking
 */

struct perf_namespaces_event {
	struct task_struct		*task;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
		u64				nr_namespaces;
		struct perf_ns_link_info	link_info[NR_NAMESPACES];
	} event_id;
};

static int perf_event_namespaces_match(struct perf_event *event)
{
	return event->attr.namespaces;
}

static void perf_event_namespaces_output(struct perf_event *event,
					 void *data)
{
	struct perf_namespaces_event *namespaces_event = data;
	struct perf_output_handle handle;
	struct perf_sample_data sample;
	int ret;

	if (!perf_event_namespaces_match(event))
		return;

	perf_event_header__init_id(&namespaces_event->event_id.header,
				   &sample, event);
	ret = perf_output_begin(&handle, event,
				namespaces_event->event_id.header.size);
	if (ret)
		return;

	namespaces_event->event_id.pid = perf_event_pid(event,
							namespaces_event->task);
	namespaces_event->event_id.tid = perf_event_tid(event,
							namespaces_event->task);

	perf_output_put(&handle, namespaces_event->event_id);

	perf_event__output_id_sample(event, &handle, &sample);

	perf_output_end(&handle);
}

static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
				   struct task_struct *task,
				   const struct proc_ns_operations *ns_ops)
{
	struct path ns_path;
	struct inode *ns_inode;
	void *error;

	error = ns_get_path(&ns_path, task, ns_ops);
	if (!error) {
		ns_inode = ns_path.dentry->d_inode;
		ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
		ns_link_info->ino = ns_inode->i_ino;
	}
}

void perf_event_namespaces(struct task_struct *task)
{
	struct perf_namespaces_event namespaces_event;
	struct perf_ns_link_info *ns_link_info;

	if (!atomic_read(&nr_namespaces_events))
		return;

	namespaces_event = (struct perf_namespaces_event){
		.task	= task,
		.event_id  = {
			.header = {
				.type = PERF_RECORD_NAMESPACES,
				.misc = 0,
				.size = sizeof(namespaces_event.event_id),
			},
			/* .pid */
			/* .tid */
			.nr_namespaces = NR_NAMESPACES,
			/* .link_info[NR_NAMESPACES] */
		},
	};

	ns_link_info = namespaces_event.event_id.link_info;

	perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
			       task, &mntns_operations);

#ifdef CONFIG_USER_NS
	perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
			       task, &userns_operations);
#endif
#ifdef CONFIG_NET_NS
	perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
			       task, &netns_operations);
#endif
#ifdef CONFIG_UTS_NS
	perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
			       task, &utsns_operations);
#endif
#ifdef CONFIG_IPC_NS
	perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
			       task, &ipcns_operations);
#endif
#ifdef CONFIG_PID_NS
	perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
			       task, &pidns_operations);
#endif
#ifdef CONFIG_CGROUPS
	perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
			       task, &cgroupns_operations);
#endif

	perf_iterate_sb(perf_event_namespaces_output,
			&namespaces_event,
			NULL);
}

6840 6841 6842 6843 6844
/*
 * mmap tracking
 */

struct perf_mmap_event {
6845 6846 6847 6848
	struct vm_area_struct	*vma;

	const char		*file_name;
	int			file_size;
6849 6850 6851
	int			maj, min;
	u64			ino;
	u64			ino_generation;
6852
	u32			prot, flags;
6853 6854 6855 6856 6857 6858 6859 6860 6861

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
		u64				start;
		u64				len;
		u64				pgoff;
6862
	} event_id;
6863 6864
};

6865 6866 6867 6868 6869 6870 6871 6872
static int perf_event_mmap_match(struct perf_event *event,
				 void *data)
{
	struct perf_mmap_event *mmap_event = data;
	struct vm_area_struct *vma = mmap_event->vma;
	int executable = vma->vm_flags & VM_EXEC;

	return (!executable && event->attr.mmap_data) ||
6873
	       (executable && (event->attr.mmap || event->attr.mmap2));
6874 6875
}

6876
static void perf_event_mmap_output(struct perf_event *event,
6877
				   void *data)
6878
{
6879
	struct perf_mmap_event *mmap_event = data;
6880
	struct perf_output_handle handle;
6881
	struct perf_sample_data sample;
6882
	int size = mmap_event->event_id.header.size;
6883
	int ret;
6884

6885 6886 6887
	if (!perf_event_mmap_match(event, data))
		return;

6888 6889 6890 6891 6892
	if (event->attr.mmap2) {
		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
		mmap_event->event_id.header.size += sizeof(mmap_event->min);
		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
6893
		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
6894 6895
		mmap_event->event_id.header.size += sizeof(mmap_event->prot);
		mmap_event->event_id.header.size += sizeof(mmap_event->flags);
6896 6897
	}

6898 6899
	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
6900
				mmap_event->event_id.header.size);
6901
	if (ret)
6902
		goto out;
6903

6904 6905
	mmap_event->event_id.pid = perf_event_pid(event, current);
	mmap_event->event_id.tid = perf_event_tid(event, current);
6906

6907
	perf_output_put(&handle, mmap_event->event_id);
6908 6909 6910 6911 6912 6913

	if (event->attr.mmap2) {
		perf_output_put(&handle, mmap_event->maj);
		perf_output_put(&handle, mmap_event->min);
		perf_output_put(&handle, mmap_event->ino);
		perf_output_put(&handle, mmap_event->ino_generation);
6914 6915
		perf_output_put(&handle, mmap_event->prot);
		perf_output_put(&handle, mmap_event->flags);
6916 6917
	}

6918
	__output_copy(&handle, mmap_event->file_name,
6919
				   mmap_event->file_size);
6920 6921 6922

	perf_event__output_id_sample(event, &handle, &sample);

6923
	perf_output_end(&handle);
6924 6925
out:
	mmap_event->event_id.header.size = size;
6926 6927
}

6928
static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
6929
{
6930 6931
	struct vm_area_struct *vma = mmap_event->vma;
	struct file *file = vma->vm_file;
6932 6933
	int maj = 0, min = 0;
	u64 ino = 0, gen = 0;
6934
	u32 prot = 0, flags = 0;
6935 6936 6937
	unsigned int size;
	char tmp[16];
	char *buf = NULL;
6938
	char *name;
6939

6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960
	if (vma->vm_flags & VM_READ)
		prot |= PROT_READ;
	if (vma->vm_flags & VM_WRITE)
		prot |= PROT_WRITE;
	if (vma->vm_flags & VM_EXEC)
		prot |= PROT_EXEC;

	if (vma->vm_flags & VM_MAYSHARE)
		flags = MAP_SHARED;
	else
		flags = MAP_PRIVATE;

	if (vma->vm_flags & VM_DENYWRITE)
		flags |= MAP_DENYWRITE;
	if (vma->vm_flags & VM_MAYEXEC)
		flags |= MAP_EXECUTABLE;
	if (vma->vm_flags & VM_LOCKED)
		flags |= MAP_LOCKED;
	if (vma->vm_flags & VM_HUGETLB)
		flags |= MAP_HUGETLB;

6961
	if (file) {
6962 6963
		struct inode *inode;
		dev_t dev;
6964

6965
		buf = kmalloc(PATH_MAX, GFP_KERNEL);
6966
		if (!buf) {
6967 6968
			name = "//enomem";
			goto cpy_name;
6969
		}
6970
		/*
6971
		 * d_path() works from the end of the rb backwards, so we
6972 6973 6974
		 * need to add enough zero bytes after the string to handle
		 * the 64bit alignment we do later.
		 */
M
Miklos Szeredi 已提交
6975
		name = file_path(file, buf, PATH_MAX - sizeof(u64));
6976
		if (IS_ERR(name)) {
6977 6978
			name = "//toolong";
			goto cpy_name;
6979
		}
6980 6981 6982 6983 6984 6985
		inode = file_inode(vma->vm_file);
		dev = inode->i_sb->s_dev;
		ino = inode->i_ino;
		gen = inode->i_generation;
		maj = MAJOR(dev);
		min = MINOR(dev);
6986

6987
		goto got_name;
6988
	} else {
6989 6990 6991 6992 6993 6994
		if (vma->vm_ops && vma->vm_ops->name) {
			name = (char *) vma->vm_ops->name(vma);
			if (name)
				goto cpy_name;
		}

6995
		name = (char *)arch_vma_name(vma);
6996 6997
		if (name)
			goto cpy_name;
6998

6999
		if (vma->vm_start <= vma->vm_mm->start_brk &&
7000
				vma->vm_end >= vma->vm_mm->brk) {
7001 7002
			name = "[heap]";
			goto cpy_name;
7003 7004
		}
		if (vma->vm_start <= vma->vm_mm->start_stack &&
7005
				vma->vm_end >= vma->vm_mm->start_stack) {
7006 7007
			name = "[stack]";
			goto cpy_name;
7008 7009
		}

7010 7011
		name = "//anon";
		goto cpy_name;
7012 7013
	}

7014 7015 7016
cpy_name:
	strlcpy(tmp, name, sizeof(tmp));
	name = tmp;
7017
got_name:
7018 7019 7020 7021 7022 7023 7024 7025
	/*
	 * Since our buffer works in 8 byte units we need to align our string
	 * size to a multiple of 8. However, we must guarantee the tail end is
	 * zero'd out to avoid leaking random bits to userspace.
	 */
	size = strlen(name)+1;
	while (!IS_ALIGNED(size, sizeof(u64)))
		name[size++] = '\0';
7026 7027 7028

	mmap_event->file_name = name;
	mmap_event->file_size = size;
7029 7030 7031 7032
	mmap_event->maj = maj;
	mmap_event->min = min;
	mmap_event->ino = ino;
	mmap_event->ino_generation = gen;
7033 7034
	mmap_event->prot = prot;
	mmap_event->flags = flags;
7035

7036 7037 7038
	if (!(vma->vm_flags & VM_EXEC))
		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;

7039
	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
7040

7041
	perf_iterate_sb(perf_event_mmap_output,
7042 7043
		       mmap_event,
		       NULL);
7044

7045 7046 7047
	kfree(buf);
}

7048 7049 7050 7051 7052 7053 7054
/*
 * Check whether inode and address range match filter criteria.
 */
static bool perf_addr_filter_match(struct perf_addr_filter *filter,
				     struct file *file, unsigned long offset,
				     unsigned long size)
{
A
Al Viro 已提交
7055
	if (filter->inode != file_inode(file))
7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097
		return false;

	if (filter->offset > offset + size)
		return false;

	if (filter->offset + filter->size < offset)
		return false;

	return true;
}

static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
{
	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
	struct vm_area_struct *vma = data;
	unsigned long off = vma->vm_pgoff << PAGE_SHIFT, flags;
	struct file *file = vma->vm_file;
	struct perf_addr_filter *filter;
	unsigned int restart = 0, count = 0;

	if (!has_addr_filter(event))
		return;

	if (!file)
		return;

	raw_spin_lock_irqsave(&ifh->lock, flags);
	list_for_each_entry(filter, &ifh->list, entry) {
		if (perf_addr_filter_match(filter, file, off,
					     vma->vm_end - vma->vm_start)) {
			event->addr_filters_offs[count] = vma->vm_start;
			restart++;
		}

		count++;
	}

	if (restart)
		event->addr_filters_gen++;
	raw_spin_unlock_irqrestore(&ifh->lock, flags);

	if (restart)
7098
		perf_event_stop(event, 1);
7099 7100 7101 7102 7103 7104 7105 7106 7107 7108
}

/*
 * Adjust all task's events' filters to the new vma
 */
static void perf_addr_filters_adjust(struct vm_area_struct *vma)
{
	struct perf_event_context *ctx;
	int ctxn;

7109 7110 7111 7112 7113 7114 7115
	/*
	 * Data tracing isn't supported yet and as such there is no need
	 * to keep track of anything that isn't related to executable code:
	 */
	if (!(vma->vm_flags & VM_EXEC))
		return;

7116 7117 7118 7119 7120 7121
	rcu_read_lock();
	for_each_task_context_nr(ctxn) {
		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		if (!ctx)
			continue;

7122
		perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
7123 7124 7125 7126
	}
	rcu_read_unlock();
}

7127
void perf_event_mmap(struct vm_area_struct *vma)
7128
{
7129 7130
	struct perf_mmap_event mmap_event;

7131
	if (!atomic_read(&nr_mmap_events))
7132 7133 7134
		return;

	mmap_event = (struct perf_mmap_event){
7135
		.vma	= vma,
7136 7137
		/* .file_name */
		/* .file_size */
7138
		.event_id  = {
7139
			.header = {
7140
				.type = PERF_RECORD_MMAP,
7141
				.misc = PERF_RECORD_MISC_USER,
7142 7143 7144 7145
				/* .size */
			},
			/* .pid */
			/* .tid */
7146 7147
			.start  = vma->vm_start,
			.len    = vma->vm_end - vma->vm_start,
7148
			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
7149
		},
7150 7151 7152 7153
		/* .maj (attr_mmap2 only) */
		/* .min (attr_mmap2 only) */
		/* .ino (attr_mmap2 only) */
		/* .ino_generation (attr_mmap2 only) */
7154 7155
		/* .prot (attr_mmap2 only) */
		/* .flags (attr_mmap2 only) */
7156 7157
	};

7158
	perf_addr_filters_adjust(vma);
7159
	perf_event_mmap_event(&mmap_event);
7160 7161
}

A
Alexander Shishkin 已提交
7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195
void perf_event_aux_event(struct perf_event *event, unsigned long head,
			  unsigned long size, u64 flags)
{
	struct perf_output_handle handle;
	struct perf_sample_data sample;
	struct perf_aux_event {
		struct perf_event_header	header;
		u64				offset;
		u64				size;
		u64				flags;
	} rec = {
		.header = {
			.type = PERF_RECORD_AUX,
			.misc = 0,
			.size = sizeof(rec),
		},
		.offset		= head,
		.size		= size,
		.flags		= flags,
	};
	int ret;

	perf_event_header__init_id(&rec.header, &sample, event);
	ret = perf_output_begin(&handle, event, rec.header.size);

	if (ret)
		return;

	perf_output_put(&handle, rec);
	perf_event__output_id_sample(event, &handle, &sample);

	perf_output_end(&handle);
}

7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228
/*
 * Lost/dropped samples logging
 */
void perf_log_lost_samples(struct perf_event *event, u64 lost)
{
	struct perf_output_handle handle;
	struct perf_sample_data sample;
	int ret;

	struct {
		struct perf_event_header	header;
		u64				lost;
	} lost_samples_event = {
		.header = {
			.type = PERF_RECORD_LOST_SAMPLES,
			.misc = 0,
			.size = sizeof(lost_samples_event),
		},
		.lost		= lost,
	};

	perf_event_header__init_id(&lost_samples_event.header, &sample, event);

	ret = perf_output_begin(&handle, event,
				lost_samples_event.header.size);
	if (ret)
		return;

	perf_output_put(&handle, lost_samples_event);
	perf_event__output_id_sample(event, &handle, &sample);
	perf_output_end(&handle);
}

7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308
/*
 * context_switch tracking
 */

struct perf_switch_event {
	struct task_struct	*task;
	struct task_struct	*next_prev;

	struct {
		struct perf_event_header	header;
		u32				next_prev_pid;
		u32				next_prev_tid;
	} event_id;
};

static int perf_event_switch_match(struct perf_event *event)
{
	return event->attr.context_switch;
}

static void perf_event_switch_output(struct perf_event *event, void *data)
{
	struct perf_switch_event *se = data;
	struct perf_output_handle handle;
	struct perf_sample_data sample;
	int ret;

	if (!perf_event_switch_match(event))
		return;

	/* Only CPU-wide events are allowed to see next/prev pid/tid */
	if (event->ctx->task) {
		se->event_id.header.type = PERF_RECORD_SWITCH;
		se->event_id.header.size = sizeof(se->event_id.header);
	} else {
		se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
		se->event_id.header.size = sizeof(se->event_id);
		se->event_id.next_prev_pid =
					perf_event_pid(event, se->next_prev);
		se->event_id.next_prev_tid =
					perf_event_tid(event, se->next_prev);
	}

	perf_event_header__init_id(&se->event_id.header, &sample, event);

	ret = perf_output_begin(&handle, event, se->event_id.header.size);
	if (ret)
		return;

	if (event->ctx->task)
		perf_output_put(&handle, se->event_id.header);
	else
		perf_output_put(&handle, se->event_id);

	perf_event__output_id_sample(event, &handle, &sample);

	perf_output_end(&handle);
}

static void perf_event_switch(struct task_struct *task,
			      struct task_struct *next_prev, bool sched_in)
{
	struct perf_switch_event switch_event;

	/* N.B. caller checks nr_switch_events != 0 */

	switch_event = (struct perf_switch_event){
		.task		= task,
		.next_prev	= next_prev,
		.event_id	= {
			.header = {
				/* .type */
				.misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
				/* .size */
			},
			/* .next_prev_pid */
			/* .next_prev_tid */
		},
	};

7309
	perf_iterate_sb(perf_event_switch_output,
7310 7311 7312 7313
		       &switch_event,
		       NULL);
}

7314 7315 7316 7317
/*
 * IRQ throttle logging
 */

7318
static void perf_log_throttle(struct perf_event *event, int enable)
7319 7320
{
	struct perf_output_handle handle;
7321
	struct perf_sample_data sample;
7322 7323 7324 7325 7326
	int ret;

	struct {
		struct perf_event_header	header;
		u64				time;
7327
		u64				id;
7328
		u64				stream_id;
7329 7330
	} throttle_event = {
		.header = {
7331
			.type = PERF_RECORD_THROTTLE,
7332 7333 7334
			.misc = 0,
			.size = sizeof(throttle_event),
		},
7335
		.time		= perf_event_clock(event),
7336 7337
		.id		= primary_event_id(event),
		.stream_id	= event->id,
7338 7339
	};

7340
	if (enable)
7341
		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
7342

7343 7344 7345
	perf_event_header__init_id(&throttle_event.header, &sample, event);

	ret = perf_output_begin(&handle, event,
7346
				throttle_event.header.size);
7347 7348 7349 7350
	if (ret)
		return;

	perf_output_put(&handle, throttle_event);
7351
	perf_event__output_id_sample(event, &handle, &sample);
7352 7353 7354
	perf_output_end(&handle);
}

7355 7356 7357 7358 7359
void perf_event_itrace_started(struct perf_event *event)
{
	event->attach_state |= PERF_ATTACH_ITRACE;
}

7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374
static void perf_log_itrace_start(struct perf_event *event)
{
	struct perf_output_handle handle;
	struct perf_sample_data sample;
	struct perf_aux_event {
		struct perf_event_header        header;
		u32				pid;
		u32				tid;
	} rec;
	int ret;

	if (event->parent)
		event = event->parent;

	if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
7375
	    event->attach_state & PERF_ATTACH_ITRACE)
7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395
		return;

	rec.header.type	= PERF_RECORD_ITRACE_START;
	rec.header.misc	= 0;
	rec.header.size	= sizeof(rec);
	rec.pid	= perf_event_pid(event, current);
	rec.tid	= perf_event_tid(event, current);

	perf_event_header__init_id(&rec.header, &sample, event);
	ret = perf_output_begin(&handle, event, rec.header.size);

	if (ret)
		return;

	perf_output_put(&handle, rec);
	perf_event__output_id_sample(event, &handle, &sample);

	perf_output_end(&handle);
}

7396 7397
static int
__perf_event_account_interrupt(struct perf_event *event, int throttle)
7398
{
7399
	struct hw_perf_event *hwc = &event->hw;
7400
	int ret = 0;
7401
	u64 seq;
7402

7403 7404 7405 7406 7407 7408 7409 7410 7411
	seq = __this_cpu_read(perf_throttled_seq);
	if (seq != hwc->interrupts_seq) {
		hwc->interrupts_seq = seq;
		hwc->interrupts = 1;
	} else {
		hwc->interrupts++;
		if (unlikely(throttle
			     && hwc->interrupts >= max_samples_per_tick)) {
			__this_cpu_inc(perf_throttled_count);
7412
			tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
P
Peter Zijlstra 已提交
7413 7414
			hwc->interrupts = MAX_INTERRUPTS;
			perf_log_throttle(event, 0);
7415 7416
			ret = 1;
		}
7417
	}
7418

7419
	if (event->attr.freq) {
P
Peter Zijlstra 已提交
7420
		u64 now = perf_clock();
7421
		s64 delta = now - hwc->freq_time_stamp;
7422

7423
		hwc->freq_time_stamp = now;
7424

7425
		if (delta > 0 && delta < 2*TICK_NSEC)
7426
			perf_adjust_period(event, delta, hwc->last_period, true);
7427 7428
	}

7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455
	return ret;
}

int perf_event_account_interrupt(struct perf_event *event)
{
	return __perf_event_account_interrupt(event, 1);
}

/*
 * Generic event overflow handling, sampling.
 */

static int __perf_event_overflow(struct perf_event *event,
				   int throttle, struct perf_sample_data *data,
				   struct pt_regs *regs)
{
	int events = atomic_read(&event->event_limit);
	int ret = 0;

	/*
	 * Non-sampling counters might still use the PMI to fold short
	 * hardware counters, ignore those.
	 */
	if (unlikely(!is_sampling_event(event)))
		return 0;

	ret = __perf_event_account_interrupt(event, throttle);
7456

7457 7458
	/*
	 * XXX event_limit might not quite work as expected on inherited
7459
	 * events
7460 7461
	 */

7462 7463
	event->pending_kill = POLL_IN;
	if (events && atomic_dec_and_test(&event->event_limit)) {
7464
		ret = 1;
7465
		event->pending_kill = POLL_HUP;
7466 7467

		perf_event_disable_inatomic(event);
7468 7469
	}

7470
	READ_ONCE(event->overflow_handler)(event, data, regs);
7471

7472
	if (*perf_event_fasync(event) && event->pending_kill) {
7473 7474
		event->pending_wakeup = 1;
		irq_work_queue(&event->pending);
P
Peter Zijlstra 已提交
7475 7476
	}

7477
	return ret;
7478 7479
}

7480
int perf_event_overflow(struct perf_event *event,
7481 7482
			  struct perf_sample_data *data,
			  struct pt_regs *regs)
7483
{
7484
	return __perf_event_overflow(event, 1, data, regs);
7485 7486
}

7487
/*
7488
 * Generic software event infrastructure
7489 7490
 */

7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501
struct swevent_htable {
	struct swevent_hlist		*swevent_hlist;
	struct mutex			hlist_mutex;
	int				hlist_refcount;

	/* Recursion avoidance in each contexts */
	int				recursion[PERF_NR_CONTEXTS];
};

static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);

7502
/*
7503 7504
 * We directly increment event->count and keep a second value in
 * event->hw.period_left to count intervals. This period event
7505 7506 7507 7508
 * is kept in the range [-sample_period, 0] so that we can use the
 * sign as trigger.
 */

7509
u64 perf_swevent_set_period(struct perf_event *event)
7510
{
7511
	struct hw_perf_event *hwc = &event->hw;
7512 7513 7514 7515 7516
	u64 period = hwc->last_period;
	u64 nr, offset;
	s64 old, val;

	hwc->last_period = hwc->sample_period;
7517 7518

again:
7519
	old = val = local64_read(&hwc->period_left);
7520 7521
	if (val < 0)
		return 0;
7522

7523 7524 7525
	nr = div64_u64(period + val, period);
	offset = nr * period;
	val -= offset;
7526
	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7527
		goto again;
7528

7529
	return nr;
7530 7531
}

7532
static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
7533
				    struct perf_sample_data *data,
7534
				    struct pt_regs *regs)
7535
{
7536
	struct hw_perf_event *hwc = &event->hw;
7537
	int throttle = 0;
7538

7539 7540
	if (!overflow)
		overflow = perf_swevent_set_period(event);
7541

7542 7543
	if (hwc->interrupts == MAX_INTERRUPTS)
		return;
7544

7545
	for (; overflow; overflow--) {
7546
		if (__perf_event_overflow(event, throttle,
7547
					    data, regs)) {
7548 7549 7550 7551 7552 7553
			/*
			 * We inhibit the overflow from happening when
			 * hwc->interrupts == MAX_INTERRUPTS.
			 */
			break;
		}
7554
		throttle = 1;
7555
	}
7556 7557
}

P
Peter Zijlstra 已提交
7558
static void perf_swevent_event(struct perf_event *event, u64 nr,
7559
			       struct perf_sample_data *data,
7560
			       struct pt_regs *regs)
7561
{
7562
	struct hw_perf_event *hwc = &event->hw;
7563

7564
	local64_add(nr, &event->count);
7565

7566 7567 7568
	if (!regs)
		return;

7569
	if (!is_sampling_event(event))
7570
		return;
7571

7572 7573 7574 7575 7576 7577
	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
		data->period = nr;
		return perf_swevent_overflow(event, 1, data, regs);
	} else
		data->period = event->hw.last_period;

7578
	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
7579
		return perf_swevent_overflow(event, 1, data, regs);
7580

7581
	if (local64_add_negative(nr, &hwc->period_left))
7582
		return;
7583

7584
	perf_swevent_overflow(event, 0, data, regs);
7585 7586
}

7587 7588 7589
static int perf_exclude_event(struct perf_event *event,
			      struct pt_regs *regs)
{
P
Peter Zijlstra 已提交
7590
	if (event->hw.state & PERF_HES_STOPPED)
7591
		return 1;
P
Peter Zijlstra 已提交
7592

7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603
	if (regs) {
		if (event->attr.exclude_user && user_mode(regs))
			return 1;

		if (event->attr.exclude_kernel && !user_mode(regs))
			return 1;
	}

	return 0;
}

7604
static int perf_swevent_match(struct perf_event *event,
P
Peter Zijlstra 已提交
7605
				enum perf_type_id type,
L
Li Zefan 已提交
7606 7607 7608
				u32 event_id,
				struct perf_sample_data *data,
				struct pt_regs *regs)
7609
{
7610
	if (event->attr.type != type)
7611
		return 0;
7612

7613
	if (event->attr.config != event_id)
7614 7615
		return 0;

7616 7617
	if (perf_exclude_event(event, regs))
		return 0;
7618 7619 7620 7621

	return 1;
}

7622 7623 7624 7625 7626 7627 7628
static inline u64 swevent_hash(u64 type, u32 event_id)
{
	u64 val = event_id | (type << 32);

	return hash_64(val, SWEVENT_HLIST_BITS);
}

7629 7630
static inline struct hlist_head *
__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
7631
{
7632 7633 7634 7635
	u64 hash = swevent_hash(type, event_id);

	return &hlist->heads[hash];
}
7636

7637 7638
/* For the read side: events when they trigger */
static inline struct hlist_head *
7639
find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
7640 7641
{
	struct swevent_hlist *hlist;
7642

7643
	hlist = rcu_dereference(swhash->swevent_hlist);
7644 7645 7646
	if (!hlist)
		return NULL;

7647 7648 7649 7650 7651
	return __find_swevent_head(hlist, type, event_id);
}

/* For the event head insertion and removal in the hlist */
static inline struct hlist_head *
7652
find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
7653 7654 7655 7656 7657 7658 7659 7660 7661 7662
{
	struct swevent_hlist *hlist;
	u32 event_id = event->attr.config;
	u64 type = event->attr.type;

	/*
	 * Event scheduling is always serialized against hlist allocation
	 * and release. Which makes the protected version suitable here.
	 * The context lock guarantees that.
	 */
7663
	hlist = rcu_dereference_protected(swhash->swevent_hlist,
7664 7665 7666 7667 7668
					  lockdep_is_held(&event->ctx->lock));
	if (!hlist)
		return NULL;

	return __find_swevent_head(hlist, type, event_id);
7669 7670 7671
}

static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
7672
				    u64 nr,
7673 7674
				    struct perf_sample_data *data,
				    struct pt_regs *regs)
7675
{
7676
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7677
	struct perf_event *event;
7678
	struct hlist_head *head;
7679

7680
	rcu_read_lock();
7681
	head = find_swevent_head_rcu(swhash, type, event_id);
7682 7683 7684
	if (!head)
		goto end;

7685
	hlist_for_each_entry_rcu(event, head, hlist_entry) {
L
Li Zefan 已提交
7686
		if (perf_swevent_match(event, type, event_id, data, regs))
7687
			perf_swevent_event(event, nr, data, regs);
7688
	}
7689 7690
end:
	rcu_read_unlock();
7691 7692
}

7693 7694
DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);

7695
int perf_swevent_get_recursion_context(void)
P
Peter Zijlstra 已提交
7696
{
7697
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
P
Peter Zijlstra 已提交
7698

7699
	return get_recursion_context(swhash->recursion);
P
Peter Zijlstra 已提交
7700
}
I
Ingo Molnar 已提交
7701
EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
P
Peter Zijlstra 已提交
7702

7703
void perf_swevent_put_recursion_context(int rctx)
7704
{
7705
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7706

7707
	put_recursion_context(swhash->recursion, rctx);
7708
}
7709

7710
void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7711
{
7712
	struct perf_sample_data data;
7713

7714
	if (WARN_ON_ONCE(!regs))
7715
		return;
7716

7717
	perf_sample_data_init(&data, addr, 0);
7718
	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730
}

void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
{
	int rctx;

	preempt_disable_notrace();
	rctx = perf_swevent_get_recursion_context();
	if (unlikely(rctx < 0))
		goto fail;

	___perf_sw_event(event_id, nr, regs, addr);
7731 7732

	perf_swevent_put_recursion_context(rctx);
7733
fail:
7734
	preempt_enable_notrace();
7735 7736
}

7737
static void perf_swevent_read(struct perf_event *event)
7738 7739 7740
{
}

P
Peter Zijlstra 已提交
7741
static int perf_swevent_add(struct perf_event *event, int flags)
7742
{
7743
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7744
	struct hw_perf_event *hwc = &event->hw;
7745 7746
	struct hlist_head *head;

7747
	if (is_sampling_event(event)) {
7748
		hwc->last_period = hwc->sample_period;
7749
		perf_swevent_set_period(event);
7750
	}
7751

P
Peter Zijlstra 已提交
7752 7753
	hwc->state = !(flags & PERF_EF_START);

7754
	head = find_swevent_head(swhash, event);
P
Peter Zijlstra 已提交
7755
	if (WARN_ON_ONCE(!head))
7756 7757 7758
		return -EINVAL;

	hlist_add_head_rcu(&event->hlist_entry, head);
7759
	perf_event_update_userpage(event);
7760

7761 7762 7763
	return 0;
}

P
Peter Zijlstra 已提交
7764
static void perf_swevent_del(struct perf_event *event, int flags)
7765
{
7766
	hlist_del_rcu(&event->hlist_entry);
7767 7768
}

P
Peter Zijlstra 已提交
7769
static void perf_swevent_start(struct perf_event *event, int flags)
7770
{
P
Peter Zijlstra 已提交
7771
	event->hw.state = 0;
7772
}
I
Ingo Molnar 已提交
7773

P
Peter Zijlstra 已提交
7774
static void perf_swevent_stop(struct perf_event *event, int flags)
7775
{
P
Peter Zijlstra 已提交
7776
	event->hw.state = PERF_HES_STOPPED;
7777 7778
}

7779 7780
/* Deref the hlist from the update side */
static inline struct swevent_hlist *
7781
swevent_hlist_deref(struct swevent_htable *swhash)
7782
{
7783 7784
	return rcu_dereference_protected(swhash->swevent_hlist,
					 lockdep_is_held(&swhash->hlist_mutex));
7785 7786
}

7787
static void swevent_hlist_release(struct swevent_htable *swhash)
7788
{
7789
	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
7790

7791
	if (!hlist)
7792 7793
		return;

7794
	RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
7795
	kfree_rcu(hlist, rcu_head);
7796 7797
}

7798
static void swevent_hlist_put_cpu(int cpu)
7799
{
7800
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7801

7802
	mutex_lock(&swhash->hlist_mutex);
7803

7804 7805
	if (!--swhash->hlist_refcount)
		swevent_hlist_release(swhash);
7806

7807
	mutex_unlock(&swhash->hlist_mutex);
7808 7809
}

7810
static void swevent_hlist_put(void)
7811 7812 7813 7814
{
	int cpu;

	for_each_possible_cpu(cpu)
7815
		swevent_hlist_put_cpu(cpu);
7816 7817
}

7818
static int swevent_hlist_get_cpu(int cpu)
7819
{
7820
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7821 7822
	int err = 0;

7823
	mutex_lock(&swhash->hlist_mutex);
7824 7825
	if (!swevent_hlist_deref(swhash) &&
	    cpumask_test_cpu(cpu, perf_online_mask)) {
7826 7827 7828 7829 7830 7831 7832
		struct swevent_hlist *hlist;

		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
		if (!hlist) {
			err = -ENOMEM;
			goto exit;
		}
7833
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
7834
	}
7835
	swhash->hlist_refcount++;
P
Peter Zijlstra 已提交
7836
exit:
7837
	mutex_unlock(&swhash->hlist_mutex);
7838 7839 7840 7841

	return err;
}

7842
static int swevent_hlist_get(void)
7843
{
7844
	int err, cpu, failed_cpu;
7845

7846
	mutex_lock(&pmus_lock);
7847
	for_each_possible_cpu(cpu) {
7848
		err = swevent_hlist_get_cpu(cpu);
7849 7850 7851 7852 7853
		if (err) {
			failed_cpu = cpu;
			goto fail;
		}
	}
7854
	mutex_unlock(&pmus_lock);
7855
	return 0;
P
Peter Zijlstra 已提交
7856
fail:
7857 7858 7859
	for_each_possible_cpu(cpu) {
		if (cpu == failed_cpu)
			break;
7860
		swevent_hlist_put_cpu(cpu);
7861
	}
7862
	mutex_unlock(&pmus_lock);
7863 7864 7865
	return err;
}

7866
struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
7867

7868 7869 7870
static void sw_perf_event_destroy(struct perf_event *event)
{
	u64 event_id = event->attr.config;
7871

7872 7873
	WARN_ON(event->parent);

7874
	static_key_slow_dec(&perf_swevent_enabled[event_id]);
7875
	swevent_hlist_put();
7876 7877 7878 7879
}

static int perf_swevent_init(struct perf_event *event)
{
7880
	u64 event_id = event->attr.config;
7881 7882 7883 7884

	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

7885 7886 7887 7888 7889 7890
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

7891 7892 7893 7894 7895 7896 7897 7898 7899
	switch (event_id) {
	case PERF_COUNT_SW_CPU_CLOCK:
	case PERF_COUNT_SW_TASK_CLOCK:
		return -ENOENT;

	default:
		break;
	}

7900
	if (event_id >= PERF_COUNT_SW_MAX)
7901 7902 7903 7904 7905
		return -ENOENT;

	if (!event->parent) {
		int err;

7906
		err = swevent_hlist_get();
7907 7908 7909
		if (err)
			return err;

7910
		static_key_slow_inc(&perf_swevent_enabled[event_id]);
7911 7912 7913 7914 7915 7916 7917
		event->destroy = sw_perf_event_destroy;
	}

	return 0;
}

static struct pmu perf_swevent = {
7918
	.task_ctx_nr	= perf_sw_context,
7919

7920 7921
	.capabilities	= PERF_PMU_CAP_NO_NMI,

7922
	.event_init	= perf_swevent_init,
P
Peter Zijlstra 已提交
7923 7924 7925 7926
	.add		= perf_swevent_add,
	.del		= perf_swevent_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
7927 7928 7929
	.read		= perf_swevent_read,
};

7930 7931
#ifdef CONFIG_EVENT_TRACING

7932 7933 7934
static int perf_tp_filter_match(struct perf_event *event,
				struct perf_sample_data *data)
{
7935
	void *record = data->raw->frag.data;
7936

7937 7938 7939 7940
	/* only top level events have filters set */
	if (event->parent)
		event = event->parent;

7941 7942 7943 7944 7945 7946 7947 7948 7949
	if (likely(!event->filter) || filter_match_preds(event->filter, record))
		return 1;
	return 0;
}

static int perf_tp_event_match(struct perf_event *event,
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
7950 7951
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;
7952 7953 7954 7955
	/*
	 * All tracepoints are from kernel-space.
	 */
	if (event->attr.exclude_kernel)
7956 7957 7958 7959 7960 7961 7962 7963
		return 0;

	if (!perf_tp_filter_match(event, data))
		return 0;

	return 1;
}

7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978
void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
			       struct trace_event_call *call, u64 count,
			       struct pt_regs *regs, struct hlist_head *head,
			       struct task_struct *task)
{
	struct bpf_prog *prog = call->prog;

	if (prog) {
		*(struct pt_regs **)raw_data = regs;
		if (!trace_call_bpf(prog, raw_data) || hlist_empty(head)) {
			perf_swevent_put_recursion_context(rctx);
			return;
		}
	}
	perf_tp_event(call->event.type, count, raw_data, size, regs, head,
7979
		      rctx, task, NULL);
7980 7981 7982
}
EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);

7983
void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
7984
		   struct pt_regs *regs, struct hlist_head *head, int rctx,
7985
		   struct task_struct *task, struct perf_event *event)
7986 7987
{
	struct perf_sample_data data;
7988

7989
	struct perf_raw_record raw = {
7990 7991 7992 7993
		.frag = {
			.size = entry_size,
			.data = record,
		},
7994 7995
	};

7996
	perf_sample_data_init(&data, 0, 0);
7997 7998
	data.raw = &raw;

7999 8000
	perf_trace_buf_update(record, event_type);

8001 8002
	/* Use the given event instead of the hlist */
	if (event) {
8003
		if (perf_tp_event_match(event, &data, regs))
8004
			perf_swevent_event(event, count, &data, regs);
8005 8006 8007 8008 8009
	} else {
		hlist_for_each_entry_rcu(event, head, hlist_entry) {
			if (perf_tp_event_match(event, &data, regs))
				perf_swevent_event(event, count, &data, regs);
		}
8010
	}
8011

8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036
	/*
	 * If we got specified a target task, also iterate its context and
	 * deliver this event there too.
	 */
	if (task && task != current) {
		struct perf_event_context *ctx;
		struct trace_entry *entry = record;

		rcu_read_lock();
		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
		if (!ctx)
			goto unlock;

		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
			if (event->attr.type != PERF_TYPE_TRACEPOINT)
				continue;
			if (event->attr.config != entry->type)
				continue;
			if (perf_tp_event_match(event, &data, regs))
				perf_swevent_event(event, count, &data, regs);
		}
unlock:
		rcu_read_unlock();
	}

8037
	perf_swevent_put_recursion_context(rctx);
8038 8039 8040
}
EXPORT_SYMBOL_GPL(perf_tp_event);

8041
static void tp_perf_event_destroy(struct perf_event *event)
8042
{
8043
	perf_trace_destroy(event);
8044 8045
}

8046
static int perf_tp_event_init(struct perf_event *event)
8047
{
8048 8049
	int err;

8050 8051 8052
	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -ENOENT;

8053 8054 8055 8056 8057 8058
	/*
	 * no branch sampling for tracepoint events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

8059 8060
	err = perf_trace_init(event);
	if (err)
8061
		return err;
8062

8063
	event->destroy = tp_perf_event_destroy;
8064

8065 8066 8067 8068
	return 0;
}

static struct pmu perf_tracepoint = {
8069 8070
	.task_ctx_nr	= perf_sw_context,

8071
	.event_init	= perf_tp_event_init,
P
Peter Zijlstra 已提交
8072 8073 8074 8075
	.add		= perf_trace_add,
	.del		= perf_trace_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
8076 8077 8078 8079 8080
	.read		= perf_swevent_read,
};

static inline void perf_tp_register(void)
{
P
Peter Zijlstra 已提交
8081
	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
8082
}
L
Li Zefan 已提交
8083 8084 8085 8086 8087 8088

static void perf_event_free_filter(struct perf_event *event)
{
	ftrace_profile_free_filter(event);
}

8089 8090 8091 8092 8093 8094 8095 8096
#ifdef CONFIG_BPF_SYSCALL
static void bpf_overflow_handler(struct perf_event *event,
				 struct perf_sample_data *data,
				 struct pt_regs *regs)
{
	struct bpf_perf_event_data_kern ctx = {
		.data = data,
		.regs = regs,
8097
		.event = event,
8098 8099 8100 8101 8102 8103 8104
	};
	int ret = 0;

	preempt_disable();
	if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
		goto out;
	rcu_read_lock();
8105
	ret = BPF_PROG_RUN(event->prog, &ctx);
8106 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116 8117 8118 8119 8120 8121 8122 8123 8124 8125 8126 8127 8128 8129 8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157
	rcu_read_unlock();
out:
	__this_cpu_dec(bpf_prog_active);
	preempt_enable();
	if (!ret)
		return;

	event->orig_overflow_handler(event, data, regs);
}

static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
{
	struct bpf_prog *prog;

	if (event->overflow_handler_context)
		/* hw breakpoint or kernel counter */
		return -EINVAL;

	if (event->prog)
		return -EEXIST;

	prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
	if (IS_ERR(prog))
		return PTR_ERR(prog);

	event->prog = prog;
	event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
	WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
	return 0;
}

static void perf_event_free_bpf_handler(struct perf_event *event)
{
	struct bpf_prog *prog = event->prog;

	if (!prog)
		return;

	WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
	event->prog = NULL;
	bpf_prog_put(prog);
}
#else
static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
{
	return -EOPNOTSUPP;
}
static void perf_event_free_bpf_handler(struct perf_event *event)
{
}
#endif

8158 8159
static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
{
8160
	bool is_kprobe, is_tracepoint, is_syscall_tp;
8161 8162 8163
	struct bpf_prog *prog;

	if (event->attr.type != PERF_TYPE_TRACEPOINT)
8164
		return perf_event_set_bpf_handler(event, prog_fd);
8165 8166 8167 8168

	if (event->tp_event->prog)
		return -EEXIST;

8169 8170
	is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
	is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
8171 8172
	is_syscall_tp = is_syscall_trace_event(event->tp_event);
	if (!is_kprobe && !is_tracepoint && !is_syscall_tp)
8173
		/* bpf programs can only be attached to u/kprobe or tracepoint */
8174 8175 8176 8177 8178 8179
		return -EINVAL;

	prog = bpf_prog_get(prog_fd);
	if (IS_ERR(prog))
		return PTR_ERR(prog);

8180
	if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
8181 8182
	    (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
	    (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
8183 8184 8185 8186 8187
		/* valid fd, but invalid bpf program type */
		bpf_prog_put(prog);
		return -EINVAL;
	}

8188
	if (is_tracepoint || is_syscall_tp) {
8189 8190 8191 8192 8193 8194 8195
		int off = trace_event_get_offsets(event->tp_event);

		if (prog->aux->max_ctx_offset > off) {
			bpf_prog_put(prog);
			return -EACCES;
		}
	}
8196
	event->tp_event->prog = prog;
8197
	event->tp_event->bpf_prog_owner = event;
8198 8199 8200 8201 8202 8203 8204 8205

	return 0;
}

static void perf_event_free_bpf_prog(struct perf_event *event)
{
	struct bpf_prog *prog;

8206 8207
	perf_event_free_bpf_handler(event);

8208 8209 8210 8211
	if (!event->tp_event)
		return;

	prog = event->tp_event->prog;
8212
	if (prog && event->tp_event->bpf_prog_owner == event) {
8213
		event->tp_event->prog = NULL;
8214
		bpf_prog_put(prog);
8215 8216 8217
	}
}

8218
#else
L
Li Zefan 已提交
8219

8220
static inline void perf_tp_register(void)
8221 8222
{
}
L
Li Zefan 已提交
8223 8224 8225 8226 8227

static void perf_event_free_filter(struct perf_event *event)
{
}

8228 8229 8230 8231 8232 8233 8234 8235
static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
{
	return -ENOENT;
}

static void perf_event_free_bpf_prog(struct perf_event *event)
{
}
8236
#endif /* CONFIG_EVENT_TRACING */
8237

8238
#ifdef CONFIG_HAVE_HW_BREAKPOINT
8239
void perf_bp_event(struct perf_event *bp, void *data)
8240
{
8241 8242 8243
	struct perf_sample_data sample;
	struct pt_regs *regs = data;

8244
	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
8245

P
Peter Zijlstra 已提交
8246
	if (!bp->hw.state && !perf_exclude_event(bp, regs))
8247
		perf_swevent_event(bp, 1, &sample, regs);
8248 8249 8250
}
#endif

8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315 8316 8317 8318 8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346 8347 8348 8349 8350 8351 8352 8353 8354 8355
/*
 * Allocate a new address filter
 */
static struct perf_addr_filter *
perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
{
	int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
	struct perf_addr_filter *filter;

	filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
	if (!filter)
		return NULL;

	INIT_LIST_HEAD(&filter->entry);
	list_add_tail(&filter->entry, filters);

	return filter;
}

static void free_filters_list(struct list_head *filters)
{
	struct perf_addr_filter *filter, *iter;

	list_for_each_entry_safe(filter, iter, filters, entry) {
		if (filter->inode)
			iput(filter->inode);
		list_del(&filter->entry);
		kfree(filter);
	}
}

/*
 * Free existing address filters and optionally install new ones
 */
static void perf_addr_filters_splice(struct perf_event *event,
				     struct list_head *head)
{
	unsigned long flags;
	LIST_HEAD(list);

	if (!has_addr_filter(event))
		return;

	/* don't bother with children, they don't have their own filters */
	if (event->parent)
		return;

	raw_spin_lock_irqsave(&event->addr_filters.lock, flags);

	list_splice_init(&event->addr_filters.list, &list);
	if (head)
		list_splice(head, &event->addr_filters.list);

	raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);

	free_filters_list(&list);
}

/*
 * Scan through mm's vmas and see if one of them matches the
 * @filter; if so, adjust filter's address range.
 * Called with mm::mmap_sem down for reading.
 */
static unsigned long perf_addr_filter_apply(struct perf_addr_filter *filter,
					    struct mm_struct *mm)
{
	struct vm_area_struct *vma;

	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		struct file *file = vma->vm_file;
		unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
		unsigned long vma_size = vma->vm_end - vma->vm_start;

		if (!file)
			continue;

		if (!perf_addr_filter_match(filter, file, off, vma_size))
			continue;

		return vma->vm_start;
	}

	return 0;
}

/*
 * Update event's address range filters based on the
 * task's existing mappings, if any.
 */
static void perf_event_addr_filters_apply(struct perf_event *event)
{
	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
	struct task_struct *task = READ_ONCE(event->ctx->task);
	struct perf_addr_filter *filter;
	struct mm_struct *mm = NULL;
	unsigned int count = 0;
	unsigned long flags;

	/*
	 * We may observe TASK_TOMBSTONE, which means that the event tear-down
	 * will stop on the parent's child_mutex that our caller is also holding
	 */
	if (task == TASK_TOMBSTONE)
		return;

8356 8357 8358
	if (!ifh->nr_file_filters)
		return;

8359 8360 8361 8362 8363 8364 8365 8366 8367 8368
	mm = get_task_mm(event->ctx->task);
	if (!mm)
		goto restart;

	down_read(&mm->mmap_sem);

	raw_spin_lock_irqsave(&ifh->lock, flags);
	list_for_each_entry(filter, &ifh->list, entry) {
		event->addr_filters_offs[count] = 0;

8369 8370 8371 8372 8373
		/*
		 * Adjust base offset if the filter is associated to a binary
		 * that needs to be mapped:
		 */
		if (filter->inode)
8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386 8387
			event->addr_filters_offs[count] =
				perf_addr_filter_apply(filter, mm);

		count++;
	}

	event->addr_filters_gen++;
	raw_spin_unlock_irqrestore(&ifh->lock, flags);

	up_read(&mm->mmap_sem);

	mmput(mm);

restart:
8388
	perf_event_stop(event, 1);
8389 8390 8391 8392 8393 8394 8395 8396 8397 8398 8399 8400 8401 8402 8403 8404 8405 8406 8407 8408 8409
}

/*
 * Address range filtering: limiting the data to certain
 * instruction address ranges. Filters are ioctl()ed to us from
 * userspace as ascii strings.
 *
 * Filter string format:
 *
 * ACTION RANGE_SPEC
 * where ACTION is one of the
 *  * "filter": limit the trace to this region
 *  * "start": start tracing from this address
 *  * "stop": stop tracing at this address/region;
 * RANGE_SPEC is
 *  * for kernel addresses: <start address>[/<size>]
 *  * for object files:     <start address>[/<size>]@</path/to/object/file>
 *
 * if <size> is not specified, the range is treated as a single address.
 */
enum {
8410
	IF_ACT_NONE = -1,
8411 8412 8413 8414 8415 8416 8417 8418 8419 8420 8421 8422 8423 8424 8425 8426 8427 8428 8429 8430 8431 8432 8433
	IF_ACT_FILTER,
	IF_ACT_START,
	IF_ACT_STOP,
	IF_SRC_FILE,
	IF_SRC_KERNEL,
	IF_SRC_FILEADDR,
	IF_SRC_KERNELADDR,
};

enum {
	IF_STATE_ACTION = 0,
	IF_STATE_SOURCE,
	IF_STATE_END,
};

static const match_table_t if_tokens = {
	{ IF_ACT_FILTER,	"filter" },
	{ IF_ACT_START,		"start" },
	{ IF_ACT_STOP,		"stop" },
	{ IF_SRC_FILE,		"%u/%u@%s" },
	{ IF_SRC_KERNEL,	"%u/%u" },
	{ IF_SRC_FILEADDR,	"%u@%s" },
	{ IF_SRC_KERNELADDR,	"%u" },
8434
	{ IF_ACT_NONE,		NULL },
8435 8436 8437 8438 8439 8440 8441 8442 8443 8444 8445 8446 8447 8448 8449 8450 8451 8452 8453 8454 8455 8456 8457 8458 8459 8460 8461 8462 8463 8464 8465 8466 8467 8468 8469 8470 8471 8472 8473 8474 8475 8476 8477 8478 8479 8480 8481 8482 8483 8484 8485 8486 8487 8488 8489 8490 8491 8492 8493 8494 8495 8496 8497 8498 8499 8500 8501 8502 8503 8504 8505
};

/*
 * Address filter string parser
 */
static int
perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
			     struct list_head *filters)
{
	struct perf_addr_filter *filter = NULL;
	char *start, *orig, *filename = NULL;
	struct path path;
	substring_t args[MAX_OPT_ARGS];
	int state = IF_STATE_ACTION, token;
	unsigned int kernel = 0;
	int ret = -EINVAL;

	orig = fstr = kstrdup(fstr, GFP_KERNEL);
	if (!fstr)
		return -ENOMEM;

	while ((start = strsep(&fstr, " ,\n")) != NULL) {
		ret = -EINVAL;

		if (!*start)
			continue;

		/* filter definition begins */
		if (state == IF_STATE_ACTION) {
			filter = perf_addr_filter_new(event, filters);
			if (!filter)
				goto fail;
		}

		token = match_token(start, if_tokens, args);
		switch (token) {
		case IF_ACT_FILTER:
		case IF_ACT_START:
			filter->filter = 1;

		case IF_ACT_STOP:
			if (state != IF_STATE_ACTION)
				goto fail;

			state = IF_STATE_SOURCE;
			break;

		case IF_SRC_KERNELADDR:
		case IF_SRC_KERNEL:
			kernel = 1;

		case IF_SRC_FILEADDR:
		case IF_SRC_FILE:
			if (state != IF_STATE_SOURCE)
				goto fail;

			if (token == IF_SRC_FILE || token == IF_SRC_KERNEL)
				filter->range = 1;

			*args[0].to = 0;
			ret = kstrtoul(args[0].from, 0, &filter->offset);
			if (ret)
				goto fail;

			if (filter->range) {
				*args[1].to = 0;
				ret = kstrtoul(args[1].from, 0, &filter->size);
				if (ret)
					goto fail;
			}

8506 8507 8508 8509
			if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
				int fpos = filter->range ? 2 : 1;

				filename = match_strdup(&args[fpos]);
8510 8511 8512 8513 8514 8515 8516 8517 8518 8519 8520 8521 8522 8523 8524 8525 8526 8527 8528
				if (!filename) {
					ret = -ENOMEM;
					goto fail;
				}
			}

			state = IF_STATE_END;
			break;

		default:
			goto fail;
		}

		/*
		 * Filter definition is fully parsed, validate and install it.
		 * Make sure that it doesn't contradict itself or the event's
		 * attribute.
		 */
		if (state == IF_STATE_END) {
8529
			ret = -EINVAL;
8530 8531 8532 8533 8534 8535 8536
			if (kernel && event->attr.exclude_kernel)
				goto fail;

			if (!kernel) {
				if (!filename)
					goto fail;

8537 8538 8539 8540 8541 8542 8543 8544 8545 8546 8547 8548
				/*
				 * For now, we only support file-based filters
				 * in per-task events; doing so for CPU-wide
				 * events requires additional context switching
				 * trickery, since same object code will be
				 * mapped at different virtual addresses in
				 * different processes.
				 */
				ret = -EOPNOTSUPP;
				if (!event->ctx->task)
					goto fail_free_name;

8549 8550 8551 8552 8553 8554 8555 8556 8557 8558 8559 8560 8561 8562 8563
				/* look up the path and grab its inode */
				ret = kern_path(filename, LOOKUP_FOLLOW, &path);
				if (ret)
					goto fail_free_name;

				filter->inode = igrab(d_inode(path.dentry));
				path_put(&path);
				kfree(filename);
				filename = NULL;

				ret = -EINVAL;
				if (!filter->inode ||
				    !S_ISREG(filter->inode->i_mode))
					/* free_filters_list() will iput() */
					goto fail;
8564 8565

				event->addr_filters.nr_file_filters++;
8566 8567 8568 8569 8570 8571 8572 8573 8574 8575 8576 8577 8578 8579 8580 8581 8582 8583 8584 8585 8586 8587 8588 8589 8590 8591 8592 8593 8594 8595 8596 8597 8598 8599 8600 8601 8602 8603 8604 8605 8606
			}

			/* ready to consume more filters */
			state = IF_STATE_ACTION;
			filter = NULL;
		}
	}

	if (state != IF_STATE_ACTION)
		goto fail;

	kfree(orig);

	return 0;

fail_free_name:
	kfree(filename);
fail:
	free_filters_list(filters);
	kfree(orig);

	return ret;
}

static int
perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
{
	LIST_HEAD(filters);
	int ret;

	/*
	 * Since this is called in perf_ioctl() path, we're already holding
	 * ctx::mutex.
	 */
	lockdep_assert_held(&event->ctx->mutex);

	if (WARN_ON_ONCE(event->parent))
		return -EINVAL;

	ret = perf_event_parse_addr_filter(event, filter_str, &filters);
	if (ret)
8607
		goto fail_clear_files;
8608 8609

	ret = event->pmu->addr_filters_validate(&filters);
8610 8611
	if (ret)
		goto fail_free_filters;
8612 8613 8614 8615 8616 8617 8618

	/* remove existing filters, if any */
	perf_addr_filters_splice(event, &filters);

	/* install new filters */
	perf_event_for_each_child(event, perf_event_addr_filters_apply);

8619 8620 8621 8622 8623 8624 8625 8626
	return ret;

fail_free_filters:
	free_filters_list(&filters);

fail_clear_files:
	event->addr_filters.nr_file_filters = 0;

8627 8628 8629
	return ret;
}

8630 8631 8632 8633 8634
static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	char *filter_str;
	int ret = -EINVAL;

8635 8636 8637
	if ((event->attr.type != PERF_TYPE_TRACEPOINT ||
	    !IS_ENABLED(CONFIG_EVENT_TRACING)) &&
	    !has_addr_filter(event))
8638 8639 8640 8641 8642 8643 8644 8645 8646 8647
		return -EINVAL;

	filter_str = strndup_user(arg, PAGE_SIZE);
	if (IS_ERR(filter_str))
		return PTR_ERR(filter_str);

	if (IS_ENABLED(CONFIG_EVENT_TRACING) &&
	    event->attr.type == PERF_TYPE_TRACEPOINT)
		ret = ftrace_profile_set_filter(event, event->attr.config,
						filter_str);
8648 8649
	else if (has_addr_filter(event))
		ret = perf_event_set_addr_filter(event, filter_str);
8650 8651 8652 8653 8654

	kfree(filter_str);
	return ret;
}

8655 8656 8657
/*
 * hrtimer based swevent callback
 */
8658

8659
static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
8660
{
8661 8662 8663 8664 8665
	enum hrtimer_restart ret = HRTIMER_RESTART;
	struct perf_sample_data data;
	struct pt_regs *regs;
	struct perf_event *event;
	u64 period;
8666

8667
	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
P
Peter Zijlstra 已提交
8668 8669 8670 8671

	if (event->state != PERF_EVENT_STATE_ACTIVE)
		return HRTIMER_NORESTART;

8672
	event->pmu->read(event);
8673

8674
	perf_sample_data_init(&data, 0, event->hw.last_period);
8675 8676 8677
	regs = get_irq_regs();

	if (regs && !perf_exclude_event(event, regs)) {
8678
		if (!(event->attr.exclude_idle && is_idle_task(current)))
8679
			if (__perf_event_overflow(event, 1, &data, regs))
8680 8681
				ret = HRTIMER_NORESTART;
	}
8682

8683 8684
	period = max_t(u64, 10000, event->hw.sample_period);
	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
8685

8686
	return ret;
8687 8688
}

8689
static void perf_swevent_start_hrtimer(struct perf_event *event)
8690
{
8691
	struct hw_perf_event *hwc = &event->hw;
8692 8693 8694 8695
	s64 period;

	if (!is_sampling_event(event))
		return;
8696

8697 8698 8699 8700
	period = local64_read(&hwc->period_left);
	if (period) {
		if (period < 0)
			period = 10000;
P
Peter Zijlstra 已提交
8701

8702 8703 8704 8705
		local64_set(&hwc->period_left, 0);
	} else {
		period = max_t(u64, 10000, hwc->sample_period);
	}
8706 8707
	hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
		      HRTIMER_MODE_REL_PINNED);
8708
}
8709 8710

static void perf_swevent_cancel_hrtimer(struct perf_event *event)
8711
{
8712 8713
	struct hw_perf_event *hwc = &event->hw;

8714
	if (is_sampling_event(event)) {
8715
		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
P
Peter Zijlstra 已提交
8716
		local64_set(&hwc->period_left, ktime_to_ns(remaining));
8717 8718 8719

		hrtimer_cancel(&hwc->hrtimer);
	}
8720 8721
}

P
Peter Zijlstra 已提交
8722 8723 8724 8725 8726 8727 8728 8729 8730 8731 8732 8733 8734 8735 8736 8737 8738 8739 8740 8741
static void perf_swevent_init_hrtimer(struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;

	if (!is_sampling_event(event))
		return;

	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swevent_hrtimer;

	/*
	 * Since hrtimers have a fixed rate, we can do a static freq->period
	 * mapping and avoid the whole period adjust feedback stuff.
	 */
	if (event->attr.freq) {
		long freq = event->attr.sample_freq;

		event->attr.sample_period = NSEC_PER_SEC / freq;
		hwc->sample_period = event->attr.sample_period;
		local64_set(&hwc->period_left, hwc->sample_period);
8742
		hwc->last_period = hwc->sample_period;
P
Peter Zijlstra 已提交
8743 8744 8745 8746
		event->attr.freq = 0;
	}
}

8747 8748 8749 8750 8751
/*
 * Software event: cpu wall time clock
 */

static void cpu_clock_event_update(struct perf_event *event)
8752
{
8753 8754 8755
	s64 prev;
	u64 now;

P
Peter Zijlstra 已提交
8756
	now = local_clock();
8757 8758
	prev = local64_xchg(&event->hw.prev_count, now);
	local64_add(now - prev, &event->count);
8759 8760
}

P
Peter Zijlstra 已提交
8761
static void cpu_clock_event_start(struct perf_event *event, int flags)
8762
{
P
Peter Zijlstra 已提交
8763
	local64_set(&event->hw.prev_count, local_clock());
8764 8765 8766
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
8767
static void cpu_clock_event_stop(struct perf_event *event, int flags)
8768
{
8769 8770 8771
	perf_swevent_cancel_hrtimer(event);
	cpu_clock_event_update(event);
}
8772

P
Peter Zijlstra 已提交
8773 8774 8775 8776
static int cpu_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		cpu_clock_event_start(event, flags);
8777
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
8778 8779 8780 8781 8782 8783 8784 8785 8786

	return 0;
}

static void cpu_clock_event_del(struct perf_event *event, int flags)
{
	cpu_clock_event_stop(event, flags);
}

8787 8788 8789 8790
static void cpu_clock_event_read(struct perf_event *event)
{
	cpu_clock_event_update(event);
}
8791

8792 8793 8794 8795 8796 8797 8798 8799
static int cpu_clock_event_init(struct perf_event *event)
{
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
		return -ENOENT;

8800 8801 8802 8803 8804 8805
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

P
Peter Zijlstra 已提交
8806 8807
	perf_swevent_init_hrtimer(event);

8808
	return 0;
8809 8810
}

8811
static struct pmu perf_cpu_clock = {
8812 8813
	.task_ctx_nr	= perf_sw_context,

8814 8815
	.capabilities	= PERF_PMU_CAP_NO_NMI,

8816
	.event_init	= cpu_clock_event_init,
P
Peter Zijlstra 已提交
8817 8818 8819 8820
	.add		= cpu_clock_event_add,
	.del		= cpu_clock_event_del,
	.start		= cpu_clock_event_start,
	.stop		= cpu_clock_event_stop,
8821 8822 8823 8824 8825 8826 8827 8828
	.read		= cpu_clock_event_read,
};

/*
 * Software event: task time clock
 */

static void task_clock_event_update(struct perf_event *event, u64 now)
8829
{
8830 8831
	u64 prev;
	s64 delta;
8832

8833 8834 8835 8836
	prev = local64_xchg(&event->hw.prev_count, now);
	delta = now - prev;
	local64_add(delta, &event->count);
}
8837

P
Peter Zijlstra 已提交
8838
static void task_clock_event_start(struct perf_event *event, int flags)
8839
{
P
Peter Zijlstra 已提交
8840
	local64_set(&event->hw.prev_count, event->ctx->time);
8841 8842 8843
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
8844
static void task_clock_event_stop(struct perf_event *event, int flags)
8845 8846 8847
{
	perf_swevent_cancel_hrtimer(event);
	task_clock_event_update(event, event->ctx->time);
P
Peter Zijlstra 已提交
8848 8849 8850 8851 8852 8853
}

static int task_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		task_clock_event_start(event, flags);
8854
	perf_event_update_userpage(event);
8855

P
Peter Zijlstra 已提交
8856 8857 8858 8859 8860 8861
	return 0;
}

static void task_clock_event_del(struct perf_event *event, int flags)
{
	task_clock_event_stop(event, PERF_EF_UPDATE);
8862 8863 8864 8865
}

static void task_clock_event_read(struct perf_event *event)
{
8866 8867 8868
	u64 now = perf_clock();
	u64 delta = now - event->ctx->timestamp;
	u64 time = event->ctx->time + delta;
8869 8870 8871 8872 8873

	task_clock_event_update(event, time);
}

static int task_clock_event_init(struct perf_event *event)
L
Li Zefan 已提交
8874
{
8875 8876 8877 8878 8879 8880
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
		return -ENOENT;

8881 8882 8883 8884 8885 8886
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

P
Peter Zijlstra 已提交
8887 8888
	perf_swevent_init_hrtimer(event);

8889
	return 0;
L
Li Zefan 已提交
8890 8891
}

8892
static struct pmu perf_task_clock = {
8893 8894
	.task_ctx_nr	= perf_sw_context,

8895 8896
	.capabilities	= PERF_PMU_CAP_NO_NMI,

8897
	.event_init	= task_clock_event_init,
P
Peter Zijlstra 已提交
8898 8899 8900 8901
	.add		= task_clock_event_add,
	.del		= task_clock_event_del,
	.start		= task_clock_event_start,
	.stop		= task_clock_event_stop,
8902 8903
	.read		= task_clock_event_read,
};
L
Li Zefan 已提交
8904

P
Peter Zijlstra 已提交
8905
static void perf_pmu_nop_void(struct pmu *pmu)
8906 8907
{
}
L
Li Zefan 已提交
8908

8909 8910 8911 8912
static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
{
}

P
Peter Zijlstra 已提交
8913
static int perf_pmu_nop_int(struct pmu *pmu)
L
Li Zefan 已提交
8914
{
P
Peter Zijlstra 已提交
8915
	return 0;
L
Li Zefan 已提交
8916 8917
}

8918
static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
8919 8920

static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
L
Li Zefan 已提交
8921
{
8922 8923 8924 8925 8926
	__this_cpu_write(nop_txn_flags, flags);

	if (flags & ~PERF_PMU_TXN_ADD)
		return;

P
Peter Zijlstra 已提交
8927
	perf_pmu_disable(pmu);
L
Li Zefan 已提交
8928 8929
}

P
Peter Zijlstra 已提交
8930 8931
static int perf_pmu_commit_txn(struct pmu *pmu)
{
8932 8933 8934 8935 8936 8937 8938
	unsigned int flags = __this_cpu_read(nop_txn_flags);

	__this_cpu_write(nop_txn_flags, 0);

	if (flags & ~PERF_PMU_TXN_ADD)
		return 0;

P
Peter Zijlstra 已提交
8939 8940 8941
	perf_pmu_enable(pmu);
	return 0;
}
8942

P
Peter Zijlstra 已提交
8943
static void perf_pmu_cancel_txn(struct pmu *pmu)
8944
{
8945 8946 8947 8948 8949 8950 8951
	unsigned int flags =  __this_cpu_read(nop_txn_flags);

	__this_cpu_write(nop_txn_flags, 0);

	if (flags & ~PERF_PMU_TXN_ADD)
		return;

P
Peter Zijlstra 已提交
8952
	perf_pmu_enable(pmu);
8953 8954
}

8955 8956
static int perf_event_idx_default(struct perf_event *event)
{
8957
	return 0;
8958 8959
}

P
Peter Zijlstra 已提交
8960 8961 8962 8963
/*
 * Ensures all contexts with the same task_ctx_nr have the same
 * pmu_cpu_context too.
 */
8964
static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
8965
{
P
Peter Zijlstra 已提交
8966
	struct pmu *pmu;
8967

P
Peter Zijlstra 已提交
8968 8969
	if (ctxn < 0)
		return NULL;
8970

P
Peter Zijlstra 已提交
8971 8972 8973 8974
	list_for_each_entry(pmu, &pmus, entry) {
		if (pmu->task_ctx_nr == ctxn)
			return pmu->pmu_cpu_context;
	}
8975

P
Peter Zijlstra 已提交
8976
	return NULL;
8977 8978
}

8979 8980
static void free_pmu_context(struct pmu *pmu)
{
8981 8982 8983 8984 8985 8986 8987 8988
	/*
	 * Static contexts such as perf_sw_context have a global lifetime
	 * and may be shared between different PMUs. Avoid freeing them
	 * when a single PMU is going away.
	 */
	if (pmu->task_ctx_nr > perf_invalid_context)
		return;

P
Peter Zijlstra 已提交
8989
	mutex_lock(&pmus_lock);
8990
	free_percpu(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
8991
	mutex_unlock(&pmus_lock);
8992
}
8993 8994 8995 8996 8997 8998 8999 9000 9001 9002 9003 9004 9005 9006

/*
 * Let userspace know that this PMU supports address range filtering:
 */
static ssize_t nr_addr_filters_show(struct device *dev,
				    struct device_attribute *attr,
				    char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
}
DEVICE_ATTR_RO(nr_addr_filters);

P
Peter Zijlstra 已提交
9007
static struct idr pmu_idr;
9008

P
Peter Zijlstra 已提交
9009 9010 9011 9012 9013 9014 9015
static ssize_t
type_show(struct device *dev, struct device_attribute *attr, char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
}
9016
static DEVICE_ATTR_RO(type);
P
Peter Zijlstra 已提交
9017

9018 9019 9020 9021 9022 9023 9024 9025 9026 9027
static ssize_t
perf_event_mux_interval_ms_show(struct device *dev,
				struct device_attribute *attr,
				char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
}

9028 9029
static DEFINE_MUTEX(mux_interval_mutex);

9030 9031 9032 9033 9034 9035 9036 9037 9038 9039 9040 9041 9042 9043 9044 9045 9046 9047 9048
static ssize_t
perf_event_mux_interval_ms_store(struct device *dev,
				 struct device_attribute *attr,
				 const char *buf, size_t count)
{
	struct pmu *pmu = dev_get_drvdata(dev);
	int timer, cpu, ret;

	ret = kstrtoint(buf, 0, &timer);
	if (ret)
		return ret;

	if (timer < 1)
		return -EINVAL;

	/* same value, noting to do */
	if (timer == pmu->hrtimer_interval_ms)
		return count;

9049
	mutex_lock(&mux_interval_mutex);
9050 9051 9052
	pmu->hrtimer_interval_ms = timer;

	/* update all cpuctx for this PMU */
9053
	cpus_read_lock();
9054
	for_each_online_cpu(cpu) {
9055 9056 9057 9058
		struct perf_cpu_context *cpuctx;
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
		cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);

9059 9060
		cpu_function_call(cpu,
			(remote_function_f)perf_mux_hrtimer_restart, cpuctx);
9061
	}
9062
	cpus_read_unlock();
9063
	mutex_unlock(&mux_interval_mutex);
9064 9065 9066

	return count;
}
9067
static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
9068

9069 9070 9071 9072
static struct attribute *pmu_dev_attrs[] = {
	&dev_attr_type.attr,
	&dev_attr_perf_event_mux_interval_ms.attr,
	NULL,
P
Peter Zijlstra 已提交
9073
};
9074
ATTRIBUTE_GROUPS(pmu_dev);
P
Peter Zijlstra 已提交
9075 9076 9077 9078

static int pmu_bus_running;
static struct bus_type pmu_bus = {
	.name		= "event_source",
9079
	.dev_groups	= pmu_dev_groups,
P
Peter Zijlstra 已提交
9080 9081 9082 9083 9084 9085 9086 9087 9088 9089 9090 9091 9092 9093 9094
};

static void pmu_dev_release(struct device *dev)
{
	kfree(dev);
}

static int pmu_dev_alloc(struct pmu *pmu)
{
	int ret = -ENOMEM;

	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
	if (!pmu->dev)
		goto out;

9095
	pmu->dev->groups = pmu->attr_groups;
P
Peter Zijlstra 已提交
9096 9097 9098 9099 9100 9101 9102 9103 9104 9105 9106 9107
	device_initialize(pmu->dev);
	ret = dev_set_name(pmu->dev, "%s", pmu->name);
	if (ret)
		goto free_dev;

	dev_set_drvdata(pmu->dev, pmu);
	pmu->dev->bus = &pmu_bus;
	pmu->dev->release = pmu_dev_release;
	ret = device_add(pmu->dev);
	if (ret)
		goto free_dev;

9108 9109 9110 9111 9112 9113 9114
	/* For PMUs with address filters, throw in an extra attribute: */
	if (pmu->nr_addr_filters)
		ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);

	if (ret)
		goto del_dev;

P
Peter Zijlstra 已提交
9115 9116 9117
out:
	return ret;

9118 9119 9120
del_dev:
	device_del(pmu->dev);

P
Peter Zijlstra 已提交
9121 9122 9123 9124 9125
free_dev:
	put_device(pmu->dev);
	goto out;
}

9126
static struct lock_class_key cpuctx_mutex;
9127
static struct lock_class_key cpuctx_lock;
9128

9129
int perf_pmu_register(struct pmu *pmu, const char *name, int type)
9130
{
P
Peter Zijlstra 已提交
9131
	int cpu, ret;
9132

9133
	mutex_lock(&pmus_lock);
P
Peter Zijlstra 已提交
9134 9135 9136 9137
	ret = -ENOMEM;
	pmu->pmu_disable_count = alloc_percpu(int);
	if (!pmu->pmu_disable_count)
		goto unlock;
9138

P
Peter Zijlstra 已提交
9139 9140 9141 9142 9143 9144
	pmu->type = -1;
	if (!name)
		goto skip_type;
	pmu->name = name;

	if (type < 0) {
T
Tejun Heo 已提交
9145 9146 9147
		type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
		if (type < 0) {
			ret = type;
P
Peter Zijlstra 已提交
9148 9149 9150 9151 9152
			goto free_pdc;
		}
	}
	pmu->type = type;

P
Peter Zijlstra 已提交
9153 9154 9155 9156 9157 9158
	if (pmu_bus_running) {
		ret = pmu_dev_alloc(pmu);
		if (ret)
			goto free_idr;
	}

P
Peter Zijlstra 已提交
9159
skip_type:
9160 9161 9162
	if (pmu->task_ctx_nr == perf_hw_context) {
		static int hw_context_taken = 0;

9163 9164 9165 9166 9167 9168 9169
		/*
		 * Other than systems with heterogeneous CPUs, it never makes
		 * sense for two PMUs to share perf_hw_context. PMUs which are
		 * uncore must use perf_invalid_context.
		 */
		if (WARN_ON_ONCE(hw_context_taken &&
		    !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
9170 9171 9172 9173 9174
			pmu->task_ctx_nr = perf_invalid_context;

		hw_context_taken = 1;
	}

P
Peter Zijlstra 已提交
9175 9176 9177
	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
	if (pmu->pmu_cpu_context)
		goto got_cpu_context;
9178

W
Wei Yongjun 已提交
9179
	ret = -ENOMEM;
P
Peter Zijlstra 已提交
9180 9181
	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
	if (!pmu->pmu_cpu_context)
P
Peter Zijlstra 已提交
9182
		goto free_dev;
9183

P
Peter Zijlstra 已提交
9184 9185 9186 9187
	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
9188
		__perf_event_init_context(&cpuctx->ctx);
9189
		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
9190
		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
P
Peter Zijlstra 已提交
9191
		cpuctx->ctx.pmu = pmu;
9192
		cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
9193

9194
		__perf_mux_hrtimer_init(cpuctx, cpu);
P
Peter Zijlstra 已提交
9195
	}
9196

P
Peter Zijlstra 已提交
9197
got_cpu_context:
P
Peter Zijlstra 已提交
9198 9199 9200 9201 9202 9203 9204 9205 9206 9207 9208
	if (!pmu->start_txn) {
		if (pmu->pmu_enable) {
			/*
			 * If we have pmu_enable/pmu_disable calls, install
			 * transaction stubs that use that to try and batch
			 * hardware accesses.
			 */
			pmu->start_txn  = perf_pmu_start_txn;
			pmu->commit_txn = perf_pmu_commit_txn;
			pmu->cancel_txn = perf_pmu_cancel_txn;
		} else {
9209
			pmu->start_txn  = perf_pmu_nop_txn;
P
Peter Zijlstra 已提交
9210 9211
			pmu->commit_txn = perf_pmu_nop_int;
			pmu->cancel_txn = perf_pmu_nop_void;
9212
		}
9213
	}
9214

P
Peter Zijlstra 已提交
9215 9216 9217 9218 9219
	if (!pmu->pmu_enable) {
		pmu->pmu_enable  = perf_pmu_nop_void;
		pmu->pmu_disable = perf_pmu_nop_void;
	}

9220 9221 9222
	if (!pmu->event_idx)
		pmu->event_idx = perf_event_idx_default;

9223
	list_add_rcu(&pmu->entry, &pmus);
9224
	atomic_set(&pmu->exclusive_cnt, 0);
P
Peter Zijlstra 已提交
9225 9226
	ret = 0;
unlock:
9227 9228
	mutex_unlock(&pmus_lock);

P
Peter Zijlstra 已提交
9229
	return ret;
P
Peter Zijlstra 已提交
9230

P
Peter Zijlstra 已提交
9231 9232 9233 9234
free_dev:
	device_del(pmu->dev);
	put_device(pmu->dev);

P
Peter Zijlstra 已提交
9235 9236 9237 9238
free_idr:
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);

P
Peter Zijlstra 已提交
9239 9240 9241
free_pdc:
	free_percpu(pmu->pmu_disable_count);
	goto unlock;
9242
}
9243
EXPORT_SYMBOL_GPL(perf_pmu_register);
9244

9245
void perf_pmu_unregister(struct pmu *pmu)
9246
{
9247 9248
	int remove_device;

9249
	mutex_lock(&pmus_lock);
9250
	remove_device = pmu_bus_running;
9251 9252
	list_del_rcu(&pmu->entry);
	mutex_unlock(&pmus_lock);
9253

9254
	/*
P
Peter Zijlstra 已提交
9255 9256
	 * We dereference the pmu list under both SRCU and regular RCU, so
	 * synchronize against both of those.
9257
	 */
9258
	synchronize_srcu(&pmus_srcu);
P
Peter Zijlstra 已提交
9259
	synchronize_rcu();
9260

P
Peter Zijlstra 已提交
9261
	free_percpu(pmu->pmu_disable_count);
P
Peter Zijlstra 已提交
9262 9263
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);
9264 9265 9266 9267 9268 9269
	if (remove_device) {
		if (pmu->nr_addr_filters)
			device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
		device_del(pmu->dev);
		put_device(pmu->dev);
	}
9270
	free_pmu_context(pmu);
9271
}
9272
EXPORT_SYMBOL_GPL(perf_pmu_unregister);
9273

9274 9275
static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
{
P
Peter Zijlstra 已提交
9276
	struct perf_event_context *ctx = NULL;
9277 9278 9279 9280
	int ret;

	if (!try_module_get(pmu->module))
		return -ENODEV;
P
Peter Zijlstra 已提交
9281 9282

	if (event->group_leader != event) {
9283 9284 9285 9286 9287 9288
		/*
		 * This ctx->mutex can nest when we're called through
		 * inheritance. See the perf_event_ctx_lock_nested() comment.
		 */
		ctx = perf_event_ctx_lock_nested(event->group_leader,
						 SINGLE_DEPTH_NESTING);
P
Peter Zijlstra 已提交
9289 9290 9291
		BUG_ON(!ctx);
	}

9292 9293
	event->pmu = pmu;
	ret = pmu->event_init(event);
P
Peter Zijlstra 已提交
9294 9295 9296 9297

	if (ctx)
		perf_event_ctx_unlock(event->group_leader, ctx);

9298 9299 9300 9301 9302 9303
	if (ret)
		module_put(pmu->module);

	return ret;
}

9304
static struct pmu *perf_init_event(struct perf_event *event)
9305
{
D
Dan Carpenter 已提交
9306
	struct pmu *pmu;
9307
	int idx;
9308
	int ret;
9309 9310

	idx = srcu_read_lock(&pmus_srcu);
P
Peter Zijlstra 已提交
9311

9312 9313 9314 9315 9316 9317 9318 9319
	/* Try parent's PMU first: */
	if (event->parent && event->parent->pmu) {
		pmu = event->parent->pmu;
		ret = perf_try_init_event(pmu, event);
		if (!ret)
			goto unlock;
	}

P
Peter Zijlstra 已提交
9320 9321 9322
	rcu_read_lock();
	pmu = idr_find(&pmu_idr, event->attr.type);
	rcu_read_unlock();
9323
	if (pmu) {
9324
		ret = perf_try_init_event(pmu, event);
9325 9326
		if (ret)
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
9327
		goto unlock;
9328
	}
P
Peter Zijlstra 已提交
9329

9330
	list_for_each_entry_rcu(pmu, &pmus, entry) {
9331
		ret = perf_try_init_event(pmu, event);
9332
		if (!ret)
P
Peter Zijlstra 已提交
9333
			goto unlock;
9334

9335 9336
		if (ret != -ENOENT) {
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
9337
			goto unlock;
9338
		}
9339
	}
P
Peter Zijlstra 已提交
9340 9341
	pmu = ERR_PTR(-ENOENT);
unlock:
9342
	srcu_read_unlock(&pmus_srcu, idx);
9343

9344
	return pmu;
9345 9346
}

9347 9348 9349 9350 9351 9352 9353 9354 9355
static void attach_sb_event(struct perf_event *event)
{
	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);

	raw_spin_lock(&pel->lock);
	list_add_rcu(&event->sb_list, &pel->list);
	raw_spin_unlock(&pel->lock);
}

9356 9357 9358 9359 9360 9361 9362
/*
 * We keep a list of all !task (and therefore per-cpu) events
 * that need to receive side-band records.
 *
 * This avoids having to scan all the various PMU per-cpu contexts
 * looking for them.
 */
9363 9364
static void account_pmu_sb_event(struct perf_event *event)
{
9365
	if (is_sb_event(event))
9366 9367 9368
		attach_sb_event(event);
}

9369 9370 9371 9372 9373 9374 9375 9376 9377
static void account_event_cpu(struct perf_event *event, int cpu)
{
	if (event->parent)
		return;

	if (is_cgroup_event(event))
		atomic_inc(&per_cpu(perf_cgroup_events, cpu));
}

9378 9379 9380 9381 9382 9383 9384 9385 9386 9387 9388 9389 9390 9391 9392 9393 9394 9395 9396 9397 9398
/* Freq events need the tick to stay alive (see perf_event_task_tick). */
static void account_freq_event_nohz(void)
{
#ifdef CONFIG_NO_HZ_FULL
	/* Lock so we don't race with concurrent unaccount */
	spin_lock(&nr_freq_lock);
	if (atomic_inc_return(&nr_freq_events) == 1)
		tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
	spin_unlock(&nr_freq_lock);
#endif
}

static void account_freq_event(void)
{
	if (tick_nohz_full_enabled())
		account_freq_event_nohz();
	else
		atomic_inc(&nr_freq_events);
}


9399 9400
static void account_event(struct perf_event *event)
{
9401 9402
	bool inc = false;

9403 9404 9405
	if (event->parent)
		return;

9406
	if (event->attach_state & PERF_ATTACH_TASK)
9407
		inc = true;
9408 9409 9410 9411
	if (event->attr.mmap || event->attr.mmap_data)
		atomic_inc(&nr_mmap_events);
	if (event->attr.comm)
		atomic_inc(&nr_comm_events);
9412 9413
	if (event->attr.namespaces)
		atomic_inc(&nr_namespaces_events);
9414 9415
	if (event->attr.task)
		atomic_inc(&nr_task_events);
9416 9417
	if (event->attr.freq)
		account_freq_event();
9418 9419
	if (event->attr.context_switch) {
		atomic_inc(&nr_switch_events);
9420
		inc = true;
9421
	}
9422
	if (has_branch_stack(event))
9423
		inc = true;
9424
	if (is_cgroup_event(event))
9425 9426
		inc = true;

9427
	if (inc) {
9428 9429 9430 9431 9432
		/*
		 * We need the mutex here because static_branch_enable()
		 * must complete *before* the perf_sched_count increment
		 * becomes visible.
		 */
9433 9434 9435 9436 9437 9438 9439 9440 9441 9442 9443 9444 9445 9446 9447 9448 9449 9450 9451 9452 9453
		if (atomic_inc_not_zero(&perf_sched_count))
			goto enabled;

		mutex_lock(&perf_sched_mutex);
		if (!atomic_read(&perf_sched_count)) {
			static_branch_enable(&perf_sched_events);
			/*
			 * Guarantee that all CPUs observe they key change and
			 * call the perf scheduling hooks before proceeding to
			 * install events that need them.
			 */
			synchronize_sched();
		}
		/*
		 * Now that we have waited for the sync_sched(), allow further
		 * increments to by-pass the mutex.
		 */
		atomic_inc(&perf_sched_count);
		mutex_unlock(&perf_sched_mutex);
	}
enabled:
9454 9455

	account_event_cpu(event, event->cpu);
9456 9457

	account_pmu_sb_event(event);
9458 9459
}

T
Thomas Gleixner 已提交
9460
/*
9461
 * Allocate and initialize a event structure
T
Thomas Gleixner 已提交
9462
 */
9463
static struct perf_event *
9464
perf_event_alloc(struct perf_event_attr *attr, int cpu,
9465 9466 9467
		 struct task_struct *task,
		 struct perf_event *group_leader,
		 struct perf_event *parent_event,
9468
		 perf_overflow_handler_t overflow_handler,
9469
		 void *context, int cgroup_fd)
T
Thomas Gleixner 已提交
9470
{
P
Peter Zijlstra 已提交
9471
	struct pmu *pmu;
9472 9473
	struct perf_event *event;
	struct hw_perf_event *hwc;
9474
	long err = -EINVAL;
T
Thomas Gleixner 已提交
9475

9476 9477 9478 9479 9480
	if ((unsigned)cpu >= nr_cpu_ids) {
		if (!task || cpu != -1)
			return ERR_PTR(-EINVAL);
	}

9481
	event = kzalloc(sizeof(*event), GFP_KERNEL);
9482
	if (!event)
9483
		return ERR_PTR(-ENOMEM);
T
Thomas Gleixner 已提交
9484

9485
	/*
9486
	 * Single events are their own group leaders, with an
9487 9488 9489
	 * empty sibling list:
	 */
	if (!group_leader)
9490
		group_leader = event;
9491

9492 9493
	mutex_init(&event->child_mutex);
	INIT_LIST_HEAD(&event->child_list);
9494

9495 9496 9497
	INIT_LIST_HEAD(&event->group_entry);
	INIT_LIST_HEAD(&event->event_entry);
	INIT_LIST_HEAD(&event->sibling_list);
9498
	INIT_LIST_HEAD(&event->rb_entry);
9499
	INIT_LIST_HEAD(&event->active_entry);
9500
	INIT_LIST_HEAD(&event->addr_filters.list);
9501 9502
	INIT_HLIST_NODE(&event->hlist_entry);

9503

9504
	init_waitqueue_head(&event->waitq);
9505
	init_irq_work(&event->pending, perf_pending_event);
T
Thomas Gleixner 已提交
9506

9507
	mutex_init(&event->mmap_mutex);
9508
	raw_spin_lock_init(&event->addr_filters.lock);
9509

9510
	atomic_long_set(&event->refcount, 1);
9511 9512 9513 9514 9515
	event->cpu		= cpu;
	event->attr		= *attr;
	event->group_leader	= group_leader;
	event->pmu		= NULL;
	event->oncpu		= -1;
9516

9517
	event->parent		= parent_event;
9518

9519
	event->ns		= get_pid_ns(task_active_pid_ns(current));
9520
	event->id		= atomic64_inc_return(&perf_event_id);
9521

9522
	event->state		= PERF_EVENT_STATE_INACTIVE;
9523

9524 9525 9526
	if (task) {
		event->attach_state = PERF_ATTACH_TASK;
		/*
9527 9528 9529
		 * XXX pmu::event_init needs to know what task to account to
		 * and we cannot use the ctx information because we need the
		 * pmu before we get a ctx.
9530
		 */
9531
		event->hw.target = task;
9532 9533
	}

9534 9535 9536 9537
	event->clock = &local_clock;
	if (parent_event)
		event->clock = parent_event->clock;

9538
	if (!overflow_handler && parent_event) {
9539
		overflow_handler = parent_event->overflow_handler;
9540
		context = parent_event->overflow_handler_context;
9541
#if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
9542 9543 9544 9545 9546 9547 9548 9549 9550 9551 9552 9553
		if (overflow_handler == bpf_overflow_handler) {
			struct bpf_prog *prog = bpf_prog_inc(parent_event->prog);

			if (IS_ERR(prog)) {
				err = PTR_ERR(prog);
				goto err_ns;
			}
			event->prog = prog;
			event->orig_overflow_handler =
				parent_event->orig_overflow_handler;
		}
#endif
9554
	}
9555

9556 9557 9558
	if (overflow_handler) {
		event->overflow_handler	= overflow_handler;
		event->overflow_handler_context = context;
9559 9560 9561
	} else if (is_write_backward(event)){
		event->overflow_handler = perf_event_output_backward;
		event->overflow_handler_context = NULL;
9562
	} else {
9563
		event->overflow_handler = perf_event_output_forward;
9564 9565
		event->overflow_handler_context = NULL;
	}
9566

J
Jiri Olsa 已提交
9567
	perf_event__state_init(event);
9568

9569
	pmu = NULL;
9570

9571
	hwc = &event->hw;
9572
	hwc->sample_period = attr->sample_period;
9573
	if (attr->freq && attr->sample_freq)
9574
		hwc->sample_period = 1;
9575
	hwc->last_period = hwc->sample_period;
9576

9577
	local64_set(&hwc->period_left, hwc->sample_period);
9578

9579
	/*
9580 9581
	 * We currently do not support PERF_SAMPLE_READ on inherited events.
	 * See perf_output_read().
9582
	 */
9583
	if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
9584
		goto err_ns;
9585 9586 9587

	if (!has_branch_stack(event))
		event->attr.branch_sample_type = 0;
9588

9589 9590 9591 9592 9593 9594
	if (cgroup_fd != -1) {
		err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
		if (err)
			goto err_ns;
	}

9595
	pmu = perf_init_event(event);
D
Dan Carpenter 已提交
9596
	if (IS_ERR(pmu)) {
9597
		err = PTR_ERR(pmu);
9598
		goto err_ns;
I
Ingo Molnar 已提交
9599
	}
9600

9601 9602 9603 9604
	err = exclusive_event_init(event);
	if (err)
		goto err_pmu;

9605 9606 9607 9608
	if (has_addr_filter(event)) {
		event->addr_filters_offs = kcalloc(pmu->nr_addr_filters,
						   sizeof(unsigned long),
						   GFP_KERNEL);
9609 9610
		if (!event->addr_filters_offs) {
			err = -ENOMEM;
9611
			goto err_per_task;
9612
		}
9613 9614 9615 9616 9617

		/* force hw sync on the address filters */
		event->addr_filters_gen = 1;
	}

9618
	if (!event->parent) {
9619
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
9620
			err = get_callchain_buffers(attr->sample_max_stack);
9621
			if (err)
9622
				goto err_addr_filters;
9623
		}
9624
	}
9625

9626 9627 9628
	/* symmetric to unaccount_event() in _free_event() */
	account_event(event);

9629
	return event;
9630

9631 9632 9633
err_addr_filters:
	kfree(event->addr_filters_offs);

9634 9635 9636
err_per_task:
	exclusive_event_destroy(event);

9637 9638 9639
err_pmu:
	if (event->destroy)
		event->destroy(event);
9640
	module_put(pmu->module);
9641
err_ns:
9642 9643
	if (is_cgroup_event(event))
		perf_detach_cgroup(event);
9644 9645 9646 9647 9648
	if (event->ns)
		put_pid_ns(event->ns);
	kfree(event);

	return ERR_PTR(err);
T
Thomas Gleixner 已提交
9649 9650
}

9651 9652
static int perf_copy_attr(struct perf_event_attr __user *uattr,
			  struct perf_event_attr *attr)
9653 9654
{
	u32 size;
9655
	int ret;
9656 9657 9658 9659 9660 9661 9662 9663 9664 9665 9666 9667 9668 9669 9670 9671 9672 9673 9674 9675 9676 9677 9678 9679

	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
		return -EFAULT;

	/*
	 * zero the full structure, so that a short copy will be nice.
	 */
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

	if (size > PAGE_SIZE)	/* silly large */
		goto err_size;

	if (!size)		/* abi compat */
		size = PERF_ATTR_SIZE_VER0;

	if (size < PERF_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
9680 9681 9682
	 * ensure all the unknown bits are 0 - i.e. new
	 * user-space does not rely on any kernel feature
	 * extensions we dont know about yet.
9683 9684
	 */
	if (size > sizeof(*attr)) {
9685 9686 9687
		unsigned char __user *addr;
		unsigned char __user *end;
		unsigned char val;
9688

9689 9690
		addr = (void __user *)uattr + sizeof(*attr);
		end  = (void __user *)uattr + size;
9691

9692
		for (; addr < end; addr++) {
9693 9694 9695 9696 9697 9698
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
9699
		size = sizeof(*attr);
9700 9701 9702 9703 9704 9705
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

9706 9707
	attr->size = size;

9708
	if (attr->__reserved_1)
9709 9710 9711 9712 9713 9714 9715 9716
		return -EINVAL;

	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
		return -EINVAL;

	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
		return -EINVAL;

9717 9718 9719 9720 9721 9722 9723 9724 9725 9726 9727 9728 9729 9730 9731 9732 9733 9734 9735 9736 9737 9738 9739 9740 9741 9742 9743 9744
	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
		u64 mask = attr->branch_sample_type;

		/* only using defined bits */
		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
			return -EINVAL;

		/* at least one branch bit must be set */
		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
			return -EINVAL;

		/* propagate priv level, when not set for branch */
		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {

			/* exclude_kernel checked on syscall entry */
			if (!attr->exclude_kernel)
				mask |= PERF_SAMPLE_BRANCH_KERNEL;

			if (!attr->exclude_user)
				mask |= PERF_SAMPLE_BRANCH_USER;

			if (!attr->exclude_hv)
				mask |= PERF_SAMPLE_BRANCH_HV;
			/*
			 * adjust user setting (for HW filter setup)
			 */
			attr->branch_sample_type = mask;
		}
9745 9746
		/* privileged levels capture (kernel, hv): check permissions */
		if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
9747 9748
		    && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
9749
	}
9750

9751
	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
9752
		ret = perf_reg_validate(attr->sample_regs_user);
9753 9754 9755 9756 9757 9758 9759 9760 9761 9762 9763 9764 9765 9766 9767 9768 9769 9770
		if (ret)
			return ret;
	}

	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
		if (!arch_perf_have_user_stack_dump())
			return -ENOSYS;

		/*
		 * We have __u32 type for the size, but so far
		 * we can only use __u16 as maximum due to the
		 * __u16 sample size limit.
		 */
		if (attr->sample_stack_user >= USHRT_MAX)
			ret = -EINVAL;
		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
			ret = -EINVAL;
	}
9771

9772 9773
	if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
		ret = perf_reg_validate(attr->sample_regs_intr);
9774 9775 9776 9777 9778 9779 9780 9781 9782
out:
	return ret;

err_size:
	put_user(sizeof(*attr), &uattr->size);
	ret = -E2BIG;
	goto out;
}

9783 9784
static int
perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
9785
{
9786
	struct ring_buffer *rb = NULL;
9787 9788
	int ret = -EINVAL;

9789
	if (!output_event)
9790 9791
		goto set;

9792 9793
	/* don't allow circular references */
	if (event == output_event)
9794 9795
		goto out;

9796 9797 9798 9799 9800 9801 9802
	/*
	 * Don't allow cross-cpu buffers
	 */
	if (output_event->cpu != event->cpu)
		goto out;

	/*
9803
	 * If its not a per-cpu rb, it must be the same task.
9804 9805 9806 9807
	 */
	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
		goto out;

9808 9809 9810 9811 9812 9813
	/*
	 * Mixing clocks in the same buffer is trouble you don't need.
	 */
	if (output_event->clock != event->clock)
		goto out;

9814 9815 9816 9817 9818 9819 9820
	/*
	 * Either writing ring buffer from beginning or from end.
	 * Mixing is not allowed.
	 */
	if (is_write_backward(output_event) != is_write_backward(event))
		goto out;

9821 9822 9823 9824 9825 9826 9827
	/*
	 * If both events generate aux data, they must be on the same PMU
	 */
	if (has_aux(event) && has_aux(output_event) &&
	    event->pmu != output_event->pmu)
		goto out;

9828
set:
9829
	mutex_lock(&event->mmap_mutex);
9830 9831 9832
	/* Can't redirect output if we've got an active mmap() */
	if (atomic_read(&event->mmap_count))
		goto unlock;
9833

9834
	if (output_event) {
9835 9836 9837
		/* get the rb we want to redirect to */
		rb = ring_buffer_get(output_event);
		if (!rb)
9838
			goto unlock;
9839 9840
	}

9841
	ring_buffer_attach(event, rb);
9842

9843
	ret = 0;
9844 9845 9846
unlock:
	mutex_unlock(&event->mmap_mutex);

9847 9848 9849 9850
out:
	return ret;
}

P
Peter Zijlstra 已提交
9851 9852 9853 9854 9855 9856 9857 9858 9859
static void mutex_lock_double(struct mutex *a, struct mutex *b)
{
	if (b < a)
		swap(a, b);

	mutex_lock(a);
	mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
}

9860 9861 9862 9863 9864 9865 9866 9867 9868 9869 9870 9871 9872 9873 9874 9875 9876 9877 9878 9879 9880 9881 9882 9883 9884 9885 9886 9887 9888 9889 9890 9891 9892 9893 9894 9895 9896
static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
{
	bool nmi_safe = false;

	switch (clk_id) {
	case CLOCK_MONOTONIC:
		event->clock = &ktime_get_mono_fast_ns;
		nmi_safe = true;
		break;

	case CLOCK_MONOTONIC_RAW:
		event->clock = &ktime_get_raw_fast_ns;
		nmi_safe = true;
		break;

	case CLOCK_REALTIME:
		event->clock = &ktime_get_real_ns;
		break;

	case CLOCK_BOOTTIME:
		event->clock = &ktime_get_boot_ns;
		break;

	case CLOCK_TAI:
		event->clock = &ktime_get_tai_ns;
		break;

	default:
		return -EINVAL;
	}

	if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
		return -EINVAL;

	return 0;
}

9897 9898 9899 9900 9901 9902 9903 9904 9905 9906 9907 9908 9909 9910 9911 9912 9913 9914 9915 9916 9917 9918 9919 9920 9921 9922 9923 9924 9925 9926 9927
/*
 * Variation on perf_event_ctx_lock_nested(), except we take two context
 * mutexes.
 */
static struct perf_event_context *
__perf_event_ctx_lock_double(struct perf_event *group_leader,
			     struct perf_event_context *ctx)
{
	struct perf_event_context *gctx;

again:
	rcu_read_lock();
	gctx = READ_ONCE(group_leader->ctx);
	if (!atomic_inc_not_zero(&gctx->refcount)) {
		rcu_read_unlock();
		goto again;
	}
	rcu_read_unlock();

	mutex_lock_double(&gctx->mutex, &ctx->mutex);

	if (group_leader->ctx != gctx) {
		mutex_unlock(&ctx->mutex);
		mutex_unlock(&gctx->mutex);
		put_ctx(gctx);
		goto again;
	}

	return gctx;
}

T
Thomas Gleixner 已提交
9928
/**
9929
 * sys_perf_event_open - open a performance event, associate it to a task/cpu
I
Ingo Molnar 已提交
9930
 *
9931
 * @attr_uptr:	event_id type attributes for monitoring/sampling
T
Thomas Gleixner 已提交
9932
 * @pid:		target pid
I
Ingo Molnar 已提交
9933
 * @cpu:		target cpu
9934
 * @group_fd:		group leader event fd
T
Thomas Gleixner 已提交
9935
 */
9936 9937
SYSCALL_DEFINE5(perf_event_open,
		struct perf_event_attr __user *, attr_uptr,
9938
		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
T
Thomas Gleixner 已提交
9939
{
9940 9941
	struct perf_event *group_leader = NULL, *output_event = NULL;
	struct perf_event *event, *sibling;
9942
	struct perf_event_attr attr;
P
Peter Zijlstra 已提交
9943
	struct perf_event_context *ctx, *uninitialized_var(gctx);
9944
	struct file *event_file = NULL;
9945
	struct fd group = {NULL, 0};
M
Matt Helsley 已提交
9946
	struct task_struct *task = NULL;
9947
	struct pmu *pmu;
9948
	int event_fd;
9949
	int move_group = 0;
9950
	int err;
9951
	int f_flags = O_RDWR;
9952
	int cgroup_fd = -1;
T
Thomas Gleixner 已提交
9953

9954
	/* for future expandability... */
S
Stephane Eranian 已提交
9955
	if (flags & ~PERF_FLAG_ALL)
9956 9957
		return -EINVAL;

9958 9959 9960
	err = perf_copy_attr(attr_uptr, &attr);
	if (err)
		return err;
9961

9962 9963 9964 9965 9966
	if (!attr.exclude_kernel) {
		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
	}

9967 9968 9969 9970 9971
	if (attr.namespaces) {
		if (!capable(CAP_SYS_ADMIN))
			return -EACCES;
	}

9972
	if (attr.freq) {
9973
		if (attr.sample_freq > sysctl_perf_event_sample_rate)
9974
			return -EINVAL;
9975 9976 9977
	} else {
		if (attr.sample_period & (1ULL << 63))
			return -EINVAL;
9978 9979
	}

9980 9981 9982 9983 9984
	/* Only privileged users can get physical addresses */
	if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR) &&
	    perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
		return -EACCES;

9985 9986 9987
	if (!attr.sample_max_stack)
		attr.sample_max_stack = sysctl_perf_event_max_stack;

S
Stephane Eranian 已提交
9988 9989 9990 9991 9992 9993 9994 9995 9996
	/*
	 * In cgroup mode, the pid argument is used to pass the fd
	 * opened to the cgroup directory in cgroupfs. The cpu argument
	 * designates the cpu on which to monitor threads from that
	 * cgroup.
	 */
	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
		return -EINVAL;

9997 9998 9999 10000
	if (flags & PERF_FLAG_FD_CLOEXEC)
		f_flags |= O_CLOEXEC;

	event_fd = get_unused_fd_flags(f_flags);
10001 10002 10003
	if (event_fd < 0)
		return event_fd;

10004
	if (group_fd != -1) {
10005 10006
		err = perf_fget_light(group_fd, &group);
		if (err)
10007
			goto err_fd;
10008
		group_leader = group.file->private_data;
10009 10010 10011 10012 10013 10014
		if (flags & PERF_FLAG_FD_OUTPUT)
			output_event = group_leader;
		if (flags & PERF_FLAG_FD_NO_GROUP)
			group_leader = NULL;
	}

S
Stephane Eranian 已提交
10015
	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
10016 10017 10018 10019 10020 10021 10022
		task = find_lively_task_by_vpid(pid);
		if (IS_ERR(task)) {
			err = PTR_ERR(task);
			goto err_group_fd;
		}
	}

10023 10024 10025 10026 10027 10028
	if (task && group_leader &&
	    group_leader->attr.inherit != attr.inherit) {
		err = -EINVAL;
		goto err_task;
	}

10029 10030 10031
	if (task) {
		err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
		if (err)
10032
			goto err_task;
10033 10034 10035 10036 10037 10038 10039 10040 10041 10042 10043 10044 10045 10046

		/*
		 * Reuse ptrace permission checks for now.
		 *
		 * We must hold cred_guard_mutex across this and any potential
		 * perf_install_in_context() call for this new event to
		 * serialize against exec() altering our credentials (and the
		 * perf_event_exit_task() that could imply).
		 */
		err = -EACCES;
		if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
			goto err_cred;
	}

10047 10048 10049
	if (flags & PERF_FLAG_PID_CGROUP)
		cgroup_fd = pid;

10050
	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
10051
				 NULL, NULL, cgroup_fd);
10052 10053
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
10054
		goto err_cred;
10055 10056
	}

10057 10058
	if (is_sampling_event(event)) {
		if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
10059
			err = -EOPNOTSUPP;
10060 10061 10062 10063
			goto err_alloc;
		}
	}

10064 10065 10066 10067 10068
	/*
	 * Special case software events and allow them to be part of
	 * any hardware group.
	 */
	pmu = event->pmu;
10069

10070 10071 10072 10073 10074 10075
	if (attr.use_clockid) {
		err = perf_event_set_clock(event, attr.clockid);
		if (err)
			goto err_alloc;
	}

10076 10077 10078
	if (pmu->task_ctx_nr == perf_sw_context)
		event->event_caps |= PERF_EV_CAP_SOFTWARE;

10079 10080 10081 10082 10083 10084 10085 10086 10087 10088 10089 10090 10091
	if (group_leader &&
	    (is_software_event(event) != is_software_event(group_leader))) {
		if (is_software_event(event)) {
			/*
			 * If event and group_leader are not both a software
			 * event, and event is, then group leader is not.
			 *
			 * Allow the addition of software events to !software
			 * groups, this is safe because software events never
			 * fail to schedule.
			 */
			pmu = group_leader->pmu;
		} else if (is_software_event(group_leader) &&
10092
			   (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
10093 10094 10095 10096 10097 10098 10099 10100
			/*
			 * In case the group is a pure software group, and we
			 * try to add a hardware event, move the whole group to
			 * the hardware context.
			 */
			move_group = 1;
		}
	}
10101 10102 10103 10104

	/*
	 * Get the target context (task or percpu):
	 */
10105
	ctx = find_get_context(pmu, task, event);
10106 10107
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
10108
		goto err_alloc;
10109 10110
	}

10111 10112 10113 10114 10115
	if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
		err = -EBUSY;
		goto err_context;
	}

I
Ingo Molnar 已提交
10116
	/*
10117
	 * Look up the group leader (we will attach this event to it):
10118
	 */
10119
	if (group_leader) {
10120
		err = -EINVAL;
10121 10122

		/*
I
Ingo Molnar 已提交
10123 10124 10125 10126
		 * Do not allow a recursive hierarchy (this new sibling
		 * becoming part of another group-sibling):
		 */
		if (group_leader->group_leader != group_leader)
10127
			goto err_context;
10128 10129 10130 10131 10132

		/* All events in a group should have the same clock */
		if (group_leader->clock != event->clock)
			goto err_context;

I
Ingo Molnar 已提交
10133
		/*
10134 10135 10136
		 * Make sure we're both events for the same CPU;
		 * grouping events for different CPUs is broken; since
		 * you can never concurrently schedule them anyhow.
10137
		 */
10138 10139
		if (group_leader->cpu != event->cpu)
			goto err_context;
10140

10141 10142 10143 10144 10145 10146 10147 10148 10149 10150 10151 10152 10153 10154
		/*
		 * Make sure we're both on the same task, or both
		 * per-CPU events.
		 */
		if (group_leader->ctx->task != ctx->task)
			goto err_context;

		/*
		 * Do not allow to attach to a group in a different task
		 * or CPU context. If we're moving SW events, we'll fix
		 * this up later, so allow that.
		 */
		if (!move_group && group_leader->ctx != ctx)
			goto err_context;
10155

10156 10157 10158
		/*
		 * Only a group leader can be exclusive or pinned
		 */
10159
		if (attr.exclusive || attr.pinned)
10160
			goto err_context;
10161 10162 10163 10164 10165
	}

	if (output_event) {
		err = perf_event_set_output(event, output_event);
		if (err)
10166
			goto err_context;
10167
	}
T
Thomas Gleixner 已提交
10168

10169 10170
	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
					f_flags);
10171 10172
	if (IS_ERR(event_file)) {
		err = PTR_ERR(event_file);
10173
		event_file = NULL;
10174
		goto err_context;
10175
	}
10176

10177
	if (move_group) {
10178 10179
		gctx = __perf_event_ctx_lock_double(group_leader, ctx);

10180 10181 10182 10183
		if (gctx->task == TASK_TOMBSTONE) {
			err = -ESRCH;
			goto err_locked;
		}
10184 10185 10186 10187 10188 10189 10190 10191 10192 10193 10194 10195 10196 10197 10198 10199 10200 10201 10202

		/*
		 * Check if we raced against another sys_perf_event_open() call
		 * moving the software group underneath us.
		 */
		if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
			/*
			 * If someone moved the group out from under us, check
			 * if this new event wound up on the same ctx, if so
			 * its the regular !move_group case, otherwise fail.
			 */
			if (gctx != ctx) {
				err = -EINVAL;
				goto err_locked;
			} else {
				perf_event_ctx_unlock(group_leader, gctx);
				move_group = 0;
			}
		}
10203 10204 10205 10206
	} else {
		mutex_lock(&ctx->mutex);
	}

10207 10208 10209 10210 10211
	if (ctx->task == TASK_TOMBSTONE) {
		err = -ESRCH;
		goto err_locked;
	}

P
Peter Zijlstra 已提交
10212 10213 10214 10215 10216
	if (!perf_event_validate_size(event)) {
		err = -E2BIG;
		goto err_locked;
	}

10217 10218 10219 10220 10221 10222 10223 10224 10225 10226 10227 10228 10229 10230 10231 10232 10233
	if (!task) {
		/*
		 * Check if the @cpu we're creating an event for is online.
		 *
		 * We use the perf_cpu_context::ctx::mutex to serialize against
		 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
		 */
		struct perf_cpu_context *cpuctx =
			container_of(ctx, struct perf_cpu_context, ctx);

		if (!cpuctx->online) {
			err = -ENODEV;
			goto err_locked;
		}
	}


10234 10235 10236 10237 10238 10239 10240
	/*
	 * Must be under the same ctx::mutex as perf_install_in_context(),
	 * because we need to serialize with concurrent event creation.
	 */
	if (!exclusive_event_installable(event, ctx)) {
		/* exclusive and group stuff are assumed mutually exclusive */
		WARN_ON_ONCE(move_group);
P
Peter Zijlstra 已提交
10241

10242 10243 10244
		err = -EBUSY;
		goto err_locked;
	}
P
Peter Zijlstra 已提交
10245

10246 10247
	WARN_ON_ONCE(ctx->parent_ctx);

10248 10249 10250 10251 10252
	/*
	 * This is the point on no return; we cannot fail hereafter. This is
	 * where we start modifying current state.
	 */

10253
	if (move_group) {
P
Peter Zijlstra 已提交
10254 10255 10256 10257
		/*
		 * See perf_event_ctx_lock() for comments on the details
		 * of swizzling perf_event::ctx.
		 */
10258
		perf_remove_from_context(group_leader, 0);
10259
		put_ctx(gctx);
J
Jiri Olsa 已提交
10260

10261 10262
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
10263
			perf_remove_from_context(sibling, 0);
10264 10265 10266
			put_ctx(gctx);
		}

P
Peter Zijlstra 已提交
10267 10268 10269 10270
		/*
		 * Wait for everybody to stop referencing the events through
		 * the old lists, before installing it on new lists.
		 */
10271
		synchronize_rcu();
P
Peter Zijlstra 已提交
10272

10273 10274 10275 10276 10277 10278 10279 10280 10281 10282
		/*
		 * Install the group siblings before the group leader.
		 *
		 * Because a group leader will try and install the entire group
		 * (through the sibling list, which is still in-tact), we can
		 * end up with siblings installed in the wrong context.
		 *
		 * By installing siblings first we NO-OP because they're not
		 * reachable through the group lists.
		 */
10283 10284
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
10285
			perf_event__state_init(sibling);
10286
			perf_install_in_context(ctx, sibling, sibling->cpu);
10287 10288
			get_ctx(ctx);
		}
10289 10290 10291 10292 10293 10294 10295 10296 10297

		/*
		 * Removing from the context ends up with disabled
		 * event. What we want here is event in the initial
		 * startup state, ready to be add into new context.
		 */
		perf_event__state_init(group_leader);
		perf_install_in_context(ctx, group_leader, group_leader->cpu);
		get_ctx(ctx);
10298 10299
	}

10300 10301 10302 10303 10304 10305 10306 10307 10308
	/*
	 * Precalculate sample_data sizes; do while holding ctx::mutex such
	 * that we're serialized against further additions and before
	 * perf_install_in_context() which is the point the event is active and
	 * can use these values.
	 */
	perf_event__header_size(event);
	perf_event__id_header_size(event);

P
Peter Zijlstra 已提交
10309 10310
	event->owner = current;

10311
	perf_install_in_context(ctx, event, event->cpu);
10312
	perf_unpin_context(ctx);
P
Peter Zijlstra 已提交
10313

10314
	if (move_group)
10315
		perf_event_ctx_unlock(group_leader, gctx);
10316
	mutex_unlock(&ctx->mutex);
10317

10318 10319 10320 10321 10322
	if (task) {
		mutex_unlock(&task->signal->cred_guard_mutex);
		put_task_struct(task);
	}

10323 10324 10325
	mutex_lock(&current->perf_event_mutex);
	list_add_tail(&event->owner_entry, &current->perf_event_list);
	mutex_unlock(&current->perf_event_mutex);
10326

10327 10328 10329 10330 10331 10332
	/*
	 * Drop the reference on the group_event after placing the
	 * new event on the sibling_list. This ensures destruction
	 * of the group leader will find the pointer to itself in
	 * perf_group_detach().
	 */
10333
	fdput(group);
10334 10335
	fd_install(event_fd, event_file);
	return event_fd;
T
Thomas Gleixner 已提交
10336

10337 10338
err_locked:
	if (move_group)
10339
		perf_event_ctx_unlock(group_leader, gctx);
10340 10341 10342
	mutex_unlock(&ctx->mutex);
/* err_file: */
	fput(event_file);
10343
err_context:
10344
	perf_unpin_context(ctx);
10345
	put_ctx(ctx);
10346
err_alloc:
P
Peter Zijlstra 已提交
10347 10348 10349 10350 10351 10352
	/*
	 * If event_file is set, the fput() above will have called ->release()
	 * and that will take care of freeing the event.
	 */
	if (!event_file)
		free_event(event);
10353 10354 10355
err_cred:
	if (task)
		mutex_unlock(&task->signal->cred_guard_mutex);
10356
err_task:
P
Peter Zijlstra 已提交
10357 10358
	if (task)
		put_task_struct(task);
10359
err_group_fd:
10360
	fdput(group);
10361 10362
err_fd:
	put_unused_fd(event_fd);
10363
	return err;
T
Thomas Gleixner 已提交
10364 10365
}

10366 10367 10368 10369 10370
/**
 * perf_event_create_kernel_counter
 *
 * @attr: attributes of the counter to create
 * @cpu: cpu in which the counter is bound
M
Matt Helsley 已提交
10371
 * @task: task to profile (NULL for percpu)
10372 10373 10374
 */
struct perf_event *
perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
M
Matt Helsley 已提交
10375
				 struct task_struct *task,
10376 10377
				 perf_overflow_handler_t overflow_handler,
				 void *context)
10378 10379
{
	struct perf_event_context *ctx;
10380
	struct perf_event *event;
10381
	int err;
10382

10383 10384 10385
	/*
	 * Get the target context (task or percpu):
	 */
10386

10387
	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
10388
				 overflow_handler, context, -1);
10389 10390 10391 10392
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
		goto err;
	}
10393

10394
	/* Mark owner so we could distinguish it from user events. */
10395
	event->owner = TASK_TOMBSTONE;
10396

10397
	ctx = find_get_context(event->pmu, task, event);
10398 10399
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
10400
		goto err_free;
10401
	}
10402 10403 10404

	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
10405 10406 10407 10408 10409
	if (ctx->task == TASK_TOMBSTONE) {
		err = -ESRCH;
		goto err_unlock;
	}

10410 10411 10412 10413 10414 10415 10416 10417 10418 10419 10420 10421 10422 10423 10424
	if (!task) {
		/*
		 * Check if the @cpu we're creating an event for is online.
		 *
		 * We use the perf_cpu_context::ctx::mutex to serialize against
		 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
		 */
		struct perf_cpu_context *cpuctx =
			container_of(ctx, struct perf_cpu_context, ctx);
		if (!cpuctx->online) {
			err = -ENODEV;
			goto err_unlock;
		}
	}

10425 10426
	if (!exclusive_event_installable(event, ctx)) {
		err = -EBUSY;
10427
		goto err_unlock;
10428 10429
	}

10430
	perf_install_in_context(ctx, event, cpu);
10431
	perf_unpin_context(ctx);
10432 10433 10434 10435
	mutex_unlock(&ctx->mutex);

	return event;

10436 10437 10438 10439
err_unlock:
	mutex_unlock(&ctx->mutex);
	perf_unpin_context(ctx);
	put_ctx(ctx);
10440 10441 10442
err_free:
	free_event(event);
err:
10443
	return ERR_PTR(err);
10444
}
10445
EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
10446

10447 10448 10449 10450 10451 10452 10453 10454 10455 10456
void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
{
	struct perf_event_context *src_ctx;
	struct perf_event_context *dst_ctx;
	struct perf_event *event, *tmp;
	LIST_HEAD(events);

	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;

P
Peter Zijlstra 已提交
10457 10458 10459 10460 10461
	/*
	 * See perf_event_ctx_lock() for comments on the details
	 * of swizzling perf_event::ctx.
	 */
	mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
10462 10463
	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
				 event_entry) {
10464
		perf_remove_from_context(event, 0);
10465
		unaccount_event_cpu(event, src_cpu);
10466
		put_ctx(src_ctx);
10467
		list_add(&event->migrate_entry, &events);
10468 10469
	}

10470 10471 10472
	/*
	 * Wait for the events to quiesce before re-instating them.
	 */
10473 10474
	synchronize_rcu();

10475 10476 10477 10478 10479 10480 10481 10482 10483 10484 10485 10486 10487 10488 10489 10490 10491 10492 10493 10494 10495 10496 10497 10498
	/*
	 * Re-instate events in 2 passes.
	 *
	 * Skip over group leaders and only install siblings on this first
	 * pass, siblings will not get enabled without a leader, however a
	 * leader will enable its siblings, even if those are still on the old
	 * context.
	 */
	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
		if (event->group_leader == event)
			continue;

		list_del(&event->migrate_entry);
		if (event->state >= PERF_EVENT_STATE_OFF)
			event->state = PERF_EVENT_STATE_INACTIVE;
		account_event_cpu(event, dst_cpu);
		perf_install_in_context(dst_ctx, event, dst_cpu);
		get_ctx(dst_ctx);
	}

	/*
	 * Once all the siblings are setup properly, install the group leaders
	 * to make it go.
	 */
10499 10500
	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
		list_del(&event->migrate_entry);
10501 10502
		if (event->state >= PERF_EVENT_STATE_OFF)
			event->state = PERF_EVENT_STATE_INACTIVE;
10503
		account_event_cpu(event, dst_cpu);
10504 10505 10506 10507
		perf_install_in_context(dst_ctx, event, dst_cpu);
		get_ctx(dst_ctx);
	}
	mutex_unlock(&dst_ctx->mutex);
P
Peter Zijlstra 已提交
10508
	mutex_unlock(&src_ctx->mutex);
10509 10510 10511
}
EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);

10512
static void sync_child_event(struct perf_event *child_event,
10513
			       struct task_struct *child)
10514
{
10515
	struct perf_event *parent_event = child_event->parent;
10516
	u64 child_val;
10517

10518 10519
	if (child_event->attr.inherit_stat)
		perf_event_read_event(child_event, child);
10520

P
Peter Zijlstra 已提交
10521
	child_val = perf_event_count(child_event);
10522 10523 10524 10525

	/*
	 * Add back the child's count to the parent's count:
	 */
10526
	atomic64_add(child_val, &parent_event->child_count);
10527 10528 10529 10530
	atomic64_add(child_event->total_time_enabled,
		     &parent_event->child_total_time_enabled);
	atomic64_add(child_event->total_time_running,
		     &parent_event->child_total_time_running);
10531 10532
}

10533
static void
10534 10535 10536
perf_event_exit_event(struct perf_event *child_event,
		      struct perf_event_context *child_ctx,
		      struct task_struct *child)
10537
{
10538 10539
	struct perf_event *parent_event = child_event->parent;

10540 10541 10542 10543 10544 10545 10546 10547 10548 10549 10550 10551
	/*
	 * Do not destroy the 'original' grouping; because of the context
	 * switch optimization the original events could've ended up in a
	 * random child task.
	 *
	 * If we were to destroy the original group, all group related
	 * operations would cease to function properly after this random
	 * child dies.
	 *
	 * Do destroy all inherited groups, we don't care about those
	 * and being thorough is better.
	 */
10552 10553 10554
	raw_spin_lock_irq(&child_ctx->lock);
	WARN_ON_ONCE(child_ctx->is_active);

10555
	if (parent_event)
10556 10557
		perf_group_detach(child_event);
	list_del_event(child_event, child_ctx);
P
Peter Zijlstra 已提交
10558
	child_event->state = PERF_EVENT_STATE_EXIT; /* is_event_hup() */
10559
	raw_spin_unlock_irq(&child_ctx->lock);
10560

10561
	/*
10562
	 * Parent events are governed by their filedesc, retain them.
10563
	 */
10564
	if (!parent_event) {
10565
		perf_event_wakeup(child_event);
10566
		return;
10567
	}
10568 10569 10570 10571 10572 10573 10574 10575 10576 10577 10578 10579 10580 10581 10582 10583 10584 10585 10586 10587
	/*
	 * Child events can be cleaned up.
	 */

	sync_child_event(child_event, child);

	/*
	 * Remove this event from the parent's list
	 */
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_del_init(&child_event->child_list);
	mutex_unlock(&parent_event->child_mutex);

	/*
	 * Kick perf_poll() for is_event_hup().
	 */
	perf_event_wakeup(parent_event);
	free_event(child_event);
	put_event(parent_event);
10588 10589
}

P
Peter Zijlstra 已提交
10590
static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
10591
{
10592
	struct perf_event_context *child_ctx, *clone_ctx = NULL;
10593 10594 10595
	struct perf_event *child_event, *next;

	WARN_ON_ONCE(child != current);
10596

10597
	child_ctx = perf_pin_task_context(child, ctxn);
10598
	if (!child_ctx)
10599 10600
		return;

10601
	/*
10602 10603 10604 10605 10606 10607 10608 10609
	 * In order to reduce the amount of tricky in ctx tear-down, we hold
	 * ctx::mutex over the entire thing. This serializes against almost
	 * everything that wants to access the ctx.
	 *
	 * The exception is sys_perf_event_open() /
	 * perf_event_create_kernel_count() which does find_get_context()
	 * without ctx::mutex (it cannot because of the move_group double mutex
	 * lock thing). See the comments in perf_install_in_context().
10610
	 */
10611
	mutex_lock(&child_ctx->mutex);
10612 10613

	/*
10614 10615 10616
	 * In a single ctx::lock section, de-schedule the events and detach the
	 * context from the task such that we cannot ever get it scheduled back
	 * in.
10617
	 */
10618
	raw_spin_lock_irq(&child_ctx->lock);
10619
	task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
10620

10621
	/*
10622 10623
	 * Now that the context is inactive, destroy the task <-> ctx relation
	 * and mark the context dead.
10624
	 */
10625 10626 10627 10628
	RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
	put_ctx(child_ctx); /* cannot be last */
	WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
	put_task_struct(current); /* cannot be last */
10629

10630
	clone_ctx = unclone_ctx(child_ctx);
10631
	raw_spin_unlock_irq(&child_ctx->lock);
P
Peter Zijlstra 已提交
10632

10633 10634
	if (clone_ctx)
		put_ctx(clone_ctx);
10635

P
Peter Zijlstra 已提交
10636
	/*
10637 10638 10639
	 * Report the task dead after unscheduling the events so that we
	 * won't get any samples after PERF_RECORD_EXIT. We can however still
	 * get a few PERF_RECORD_READ events.
P
Peter Zijlstra 已提交
10640
	 */
10641
	perf_event_task(child, child_ctx, 0);
10642

10643
	list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
10644
		perf_event_exit_event(child_event, child_ctx, child);
10645

10646 10647 10648
	mutex_unlock(&child_ctx->mutex);

	put_ctx(child_ctx);
10649 10650
}

P
Peter Zijlstra 已提交
10651 10652
/*
 * When a child task exits, feed back event values to parent events.
10653 10654 10655
 *
 * Can be called with cred_guard_mutex held when called from
 * install_exec_creds().
P
Peter Zijlstra 已提交
10656 10657 10658
 */
void perf_event_exit_task(struct task_struct *child)
{
P
Peter Zijlstra 已提交
10659
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
10660 10661
	int ctxn;

P
Peter Zijlstra 已提交
10662 10663 10664 10665 10666 10667 10668 10669 10670 10671
	mutex_lock(&child->perf_event_mutex);
	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
				 owner_entry) {
		list_del_init(&event->owner_entry);

		/*
		 * Ensure the list deletion is visible before we clear
		 * the owner, closes a race against perf_release() where
		 * we need to serialize on the owner->perf_event_mutex.
		 */
10672
		smp_store_release(&event->owner, NULL);
P
Peter Zijlstra 已提交
10673 10674 10675
	}
	mutex_unlock(&child->perf_event_mutex);

P
Peter Zijlstra 已提交
10676 10677
	for_each_task_context_nr(ctxn)
		perf_event_exit_task_context(child, ctxn);
J
Jiri Olsa 已提交
10678 10679 10680 10681 10682 10683 10684 10685

	/*
	 * The perf_event_exit_task_context calls perf_event_task
	 * with child's task_ctx, which generates EXIT events for
	 * child contexts and sets child->perf_event_ctxp[] to NULL.
	 * At this point we need to send EXIT events to cpu contexts.
	 */
	perf_event_task(child, NULL, 0);
P
Peter Zijlstra 已提交
10686 10687
}

10688 10689 10690 10691 10692 10693 10694 10695 10696 10697 10698 10699
static void perf_free_event(struct perf_event *event,
			    struct perf_event_context *ctx)
{
	struct perf_event *parent = event->parent;

	if (WARN_ON_ONCE(!parent))
		return;

	mutex_lock(&parent->child_mutex);
	list_del_init(&event->child_list);
	mutex_unlock(&parent->child_mutex);

10700
	put_event(parent);
10701

P
Peter Zijlstra 已提交
10702
	raw_spin_lock_irq(&ctx->lock);
10703
	perf_group_detach(event);
10704
	list_del_event(event, ctx);
P
Peter Zijlstra 已提交
10705
	raw_spin_unlock_irq(&ctx->lock);
10706 10707 10708
	free_event(event);
}

10709
/*
P
Peter Zijlstra 已提交
10710
 * Free an unexposed, unused context as created by inheritance by
P
Peter Zijlstra 已提交
10711
 * perf_event_init_task below, used by fork() in case of fail.
P
Peter Zijlstra 已提交
10712 10713 10714
 *
 * Not all locks are strictly required, but take them anyway to be nice and
 * help out with the lockdep assertions.
10715
 */
10716
void perf_event_free_task(struct task_struct *task)
10717
{
P
Peter Zijlstra 已提交
10718
	struct perf_event_context *ctx;
10719
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
10720
	int ctxn;
10721

P
Peter Zijlstra 已提交
10722 10723 10724 10725
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;
10726

P
Peter Zijlstra 已提交
10727
		mutex_lock(&ctx->mutex);
10728 10729 10730 10731 10732 10733 10734 10735 10736 10737 10738
		raw_spin_lock_irq(&ctx->lock);
		/*
		 * Destroy the task <-> ctx relation and mark the context dead.
		 *
		 * This is important because even though the task hasn't been
		 * exposed yet the context has been (through child_list).
		 */
		RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
		WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
		put_task_struct(task); /* cannot be last */
		raw_spin_unlock_irq(&ctx->lock);
10739

10740
		list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
P
Peter Zijlstra 已提交
10741
			perf_free_event(event, ctx);
10742

P
Peter Zijlstra 已提交
10743 10744 10745
		mutex_unlock(&ctx->mutex);
		put_ctx(ctx);
	}
10746 10747
}

10748 10749 10750 10751 10752 10753 10754 10755
void perf_event_delayed_put(struct task_struct *task)
{
	int ctxn;

	for_each_task_context_nr(ctxn)
		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
}

10756
struct file *perf_event_get(unsigned int fd)
10757
{
10758
	struct file *file;
10759

10760 10761 10762
	file = fget_raw(fd);
	if (!file)
		return ERR_PTR(-EBADF);
10763

10764 10765 10766 10767
	if (file->f_op != &perf_fops) {
		fput(file);
		return ERR_PTR(-EBADF);
	}
10768

10769
	return file;
10770 10771 10772 10773 10774 10775 10776 10777 10778 10779
}

const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
{
	if (!event)
		return ERR_PTR(-EINVAL);

	return &event->attr;
}

P
Peter Zijlstra 已提交
10780
/*
10781 10782 10783 10784 10785 10786
 * Inherit a event from parent task to child task.
 *
 * Returns:
 *  - valid pointer on success
 *  - NULL for orphaned events
 *  - IS_ERR() on error
P
Peter Zijlstra 已提交
10787 10788 10789 10790 10791 10792 10793 10794 10795
 */
static struct perf_event *
inherit_event(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event *group_leader,
	      struct perf_event_context *child_ctx)
{
10796
	enum perf_event_active_state parent_state = parent_event->state;
P
Peter Zijlstra 已提交
10797
	struct perf_event *child_event;
10798
	unsigned long flags;
P
Peter Zijlstra 已提交
10799 10800 10801 10802 10803 10804 10805 10806 10807 10808 10809 10810

	/*
	 * Instead of creating recursive hierarchies of events,
	 * we link inherited events back to the original parent,
	 * which has a filp for sure, which we use as the reference
	 * count:
	 */
	if (parent_event->parent)
		parent_event = parent_event->parent;

	child_event = perf_event_alloc(&parent_event->attr,
					   parent_event->cpu,
10811
					   child,
P
Peter Zijlstra 已提交
10812
					   group_leader, parent_event,
10813
					   NULL, NULL, -1);
P
Peter Zijlstra 已提交
10814 10815
	if (IS_ERR(child_event))
		return child_event;
10816

10817 10818 10819 10820 10821 10822 10823
	/*
	 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
	 * must be under the same lock in order to serialize against
	 * perf_event_release_kernel(), such that either we must observe
	 * is_orphaned_event() or they will observe us on the child_list.
	 */
	mutex_lock(&parent_event->child_mutex);
10824 10825
	if (is_orphaned_event(parent_event) ||
	    !atomic_long_inc_not_zero(&parent_event->refcount)) {
10826
		mutex_unlock(&parent_event->child_mutex);
10827 10828 10829 10830
		free_event(child_event);
		return NULL;
	}

P
Peter Zijlstra 已提交
10831 10832 10833 10834 10835 10836 10837
	get_ctx(child_ctx);

	/*
	 * Make the child state follow the state of the parent event,
	 * not its attr.disabled bit.  We hold the parent's mutex,
	 * so we won't race with perf_event_{en, dis}able_family.
	 */
10838
	if (parent_state >= PERF_EVENT_STATE_INACTIVE)
P
Peter Zijlstra 已提交
10839 10840 10841 10842 10843 10844 10845 10846 10847 10848 10849 10850 10851 10852 10853 10854
		child_event->state = PERF_EVENT_STATE_INACTIVE;
	else
		child_event->state = PERF_EVENT_STATE_OFF;

	if (parent_event->attr.freq) {
		u64 sample_period = parent_event->hw.sample_period;
		struct hw_perf_event *hwc = &child_event->hw;

		hwc->sample_period = sample_period;
		hwc->last_period   = sample_period;

		local64_set(&hwc->period_left, sample_period);
	}

	child_event->ctx = child_ctx;
	child_event->overflow_handler = parent_event->overflow_handler;
10855 10856
	child_event->overflow_handler_context
		= parent_event->overflow_handler_context;
P
Peter Zijlstra 已提交
10857

10858 10859 10860 10861
	/*
	 * Precalculate sample_data sizes
	 */
	perf_event__header_size(child_event);
10862
	perf_event__id_header_size(child_event);
10863

P
Peter Zijlstra 已提交
10864 10865 10866
	/*
	 * Link it up in the child's context:
	 */
10867
	raw_spin_lock_irqsave(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
10868
	add_event_to_ctx(child_event, child_ctx);
10869
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
10870 10871 10872 10873 10874 10875 10876 10877 10878 10879

	/*
	 * Link this into the parent event's child list
	 */
	list_add_tail(&child_event->child_list, &parent_event->child_list);
	mutex_unlock(&parent_event->child_mutex);

	return child_event;
}

10880 10881 10882 10883 10884 10885 10886 10887 10888 10889
/*
 * Inherits an event group.
 *
 * This will quietly suppress orphaned events; !inherit_event() is not an error.
 * This matches with perf_event_release_kernel() removing all child events.
 *
 * Returns:
 *  - 0 on success
 *  - <0 on error
 */
P
Peter Zijlstra 已提交
10890 10891 10892 10893 10894 10895 10896 10897 10898 10899 10900 10901 10902 10903
static int inherit_group(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event_context *child_ctx)
{
	struct perf_event *leader;
	struct perf_event *sub;
	struct perf_event *child_ctr;

	leader = inherit_event(parent_event, parent, parent_ctx,
				 child, NULL, child_ctx);
	if (IS_ERR(leader))
		return PTR_ERR(leader);
10904 10905 10906 10907 10908
	/*
	 * @leader can be NULL here because of is_orphaned_event(). In this
	 * case inherit_event() will create individual events, similar to what
	 * perf_group_detach() would do anyway.
	 */
P
Peter Zijlstra 已提交
10909 10910 10911 10912 10913 10914 10915
	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
		child_ctr = inherit_event(sub, parent, parent_ctx,
					    child, leader, child_ctx);
		if (IS_ERR(child_ctr))
			return PTR_ERR(child_ctr);
	}
	return 0;
10916 10917
}

10918 10919 10920 10921 10922 10923 10924 10925 10926 10927 10928
/*
 * Creates the child task context and tries to inherit the event-group.
 *
 * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
 * inherited_all set when we 'fail' to inherit an orphaned event; this is
 * consistent with perf_event_release_kernel() removing all child events.
 *
 * Returns:
 *  - 0 on success
 *  - <0 on error
 */
10929 10930 10931
static int
inherit_task_group(struct perf_event *event, struct task_struct *parent,
		   struct perf_event_context *parent_ctx,
P
Peter Zijlstra 已提交
10932
		   struct task_struct *child, int ctxn,
10933 10934 10935
		   int *inherited_all)
{
	int ret;
P
Peter Zijlstra 已提交
10936
	struct perf_event_context *child_ctx;
10937 10938 10939 10940

	if (!event->attr.inherit) {
		*inherited_all = 0;
		return 0;
10941 10942
	}

10943
	child_ctx = child->perf_event_ctxp[ctxn];
10944 10945 10946 10947 10948 10949 10950
	if (!child_ctx) {
		/*
		 * This is executed from the parent task context, so
		 * inherit events that have been marked for cloning.
		 * First allocate and initialize a context for the
		 * child.
		 */
10951
		child_ctx = alloc_perf_context(parent_ctx->pmu, child);
10952 10953
		if (!child_ctx)
			return -ENOMEM;
10954

P
Peter Zijlstra 已提交
10955
		child->perf_event_ctxp[ctxn] = child_ctx;
10956 10957 10958 10959 10960 10961 10962 10963 10964
	}

	ret = inherit_group(event, parent, parent_ctx,
			    child, child_ctx);

	if (ret)
		*inherited_all = 0;

	return ret;
10965 10966
}

10967
/*
10968
 * Initialize the perf_event context in task_struct
10969
 */
10970
static int perf_event_init_context(struct task_struct *child, int ctxn)
10971
{
10972
	struct perf_event_context *child_ctx, *parent_ctx;
10973 10974
	struct perf_event_context *cloned_ctx;
	struct perf_event *event;
10975
	struct task_struct *parent = current;
10976
	int inherited_all = 1;
10977
	unsigned long flags;
10978
	int ret = 0;
10979

P
Peter Zijlstra 已提交
10980
	if (likely(!parent->perf_event_ctxp[ctxn]))
10981 10982
		return 0;

10983
	/*
10984 10985
	 * If the parent's context is a clone, pin it so it won't get
	 * swapped under us.
10986
	 */
P
Peter Zijlstra 已提交
10987
	parent_ctx = perf_pin_task_context(parent, ctxn);
10988 10989
	if (!parent_ctx)
		return 0;
10990

10991 10992 10993 10994 10995 10996 10997
	/*
	 * No need to check if parent_ctx != NULL here; since we saw
	 * it non-NULL earlier, the only reason for it to become NULL
	 * is if we exit, and since we're currently in the middle of
	 * a fork we can't be exiting at the same time.
	 */

10998 10999 11000 11001
	/*
	 * Lock the parent list. No need to lock the child - not PID
	 * hashed yet and not running, so nobody can access it.
	 */
11002
	mutex_lock(&parent_ctx->mutex);
11003 11004 11005 11006 11007

	/*
	 * We dont have to disable NMIs - we are only looking at
	 * the list, not manipulating it:
	 */
11008
	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
P
Peter Zijlstra 已提交
11009 11010
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
11011
		if (ret)
11012
			goto out_unlock;
11013
	}
11014

11015 11016 11017 11018 11019 11020 11021 11022 11023
	/*
	 * We can't hold ctx->lock when iterating the ->flexible_group list due
	 * to allocations, but we need to prevent rotation because
	 * rotate_ctx() will change the list from interrupt context.
	 */
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 1;
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);

11024
	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
P
Peter Zijlstra 已提交
11025 11026
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
11027
		if (ret)
11028
			goto out_unlock;
11029 11030
	}

11031 11032 11033
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 0;

P
Peter Zijlstra 已提交
11034
	child_ctx = child->perf_event_ctxp[ctxn];
11035

11036
	if (child_ctx && inherited_all) {
11037 11038 11039
		/*
		 * Mark the child context as a clone of the parent
		 * context, or of whatever the parent is a clone of.
P
Peter Zijlstra 已提交
11040 11041 11042
		 *
		 * Note that if the parent is a clone, the holding of
		 * parent_ctx->lock avoids it from being uncloned.
11043
		 */
P
Peter Zijlstra 已提交
11044
		cloned_ctx = parent_ctx->parent_ctx;
11045 11046
		if (cloned_ctx) {
			child_ctx->parent_ctx = cloned_ctx;
11047
			child_ctx->parent_gen = parent_ctx->parent_gen;
11048 11049 11050 11051 11052
		} else {
			child_ctx->parent_ctx = parent_ctx;
			child_ctx->parent_gen = parent_ctx->generation;
		}
		get_ctx(child_ctx->parent_ctx);
11053 11054
	}

P
Peter Zijlstra 已提交
11055
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
11056
out_unlock:
11057
	mutex_unlock(&parent_ctx->mutex);
11058

11059
	perf_unpin_context(parent_ctx);
11060
	put_ctx(parent_ctx);
11061

11062
	return ret;
11063 11064
}

P
Peter Zijlstra 已提交
11065 11066 11067 11068 11069 11070 11071
/*
 * Initialize the perf_event context in task_struct
 */
int perf_event_init_task(struct task_struct *child)
{
	int ctxn, ret;

11072 11073 11074 11075
	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
	mutex_init(&child->perf_event_mutex);
	INIT_LIST_HEAD(&child->perf_event_list);

P
Peter Zijlstra 已提交
11076 11077
	for_each_task_context_nr(ctxn) {
		ret = perf_event_init_context(child, ctxn);
P
Peter Zijlstra 已提交
11078 11079
		if (ret) {
			perf_event_free_task(child);
P
Peter Zijlstra 已提交
11080
			return ret;
P
Peter Zijlstra 已提交
11081
		}
P
Peter Zijlstra 已提交
11082 11083 11084 11085 11086
	}

	return 0;
}

11087 11088
static void __init perf_event_init_all_cpus(void)
{
11089
	struct swevent_htable *swhash;
11090 11091
	int cpu;

11092 11093
	zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);

11094
	for_each_possible_cpu(cpu) {
11095 11096
		swhash = &per_cpu(swevent_htable, cpu);
		mutex_init(&swhash->hlist_mutex);
11097
		INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
11098 11099 11100

		INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
		raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
11101

11102 11103 11104
#ifdef CONFIG_CGROUP_PERF
		INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
#endif
11105
		INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
11106 11107 11108
	}
}

11109
void perf_swevent_init_cpu(unsigned int cpu)
T
Thomas Gleixner 已提交
11110
{
P
Peter Zijlstra 已提交
11111
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
T
Thomas Gleixner 已提交
11112

11113
	mutex_lock(&swhash->hlist_mutex);
11114
	if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
11115 11116
		struct swevent_hlist *hlist;

11117 11118 11119
		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
		WARN_ON(!hlist);
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
11120
	}
11121
	mutex_unlock(&swhash->hlist_mutex);
T
Thomas Gleixner 已提交
11122 11123
}

11124
#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
P
Peter Zijlstra 已提交
11125
static void __perf_event_exit_context(void *__info)
T
Thomas Gleixner 已提交
11126
{
P
Peter Zijlstra 已提交
11127
	struct perf_event_context *ctx = __info;
11128 11129
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
	struct perf_event *event;
T
Thomas Gleixner 已提交
11130

11131
	raw_spin_lock(&ctx->lock);
11132
	ctx_sched_out(ctx, cpuctx, EVENT_TIME);
11133
	list_for_each_entry(event, &ctx->event_list, event_entry)
11134
		__perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
11135
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
11136
}
P
Peter Zijlstra 已提交
11137 11138 11139

static void perf_event_exit_cpu_context(int cpu)
{
11140
	struct perf_cpu_context *cpuctx;
P
Peter Zijlstra 已提交
11141 11142 11143
	struct perf_event_context *ctx;
	struct pmu *pmu;

11144 11145 11146 11147
	mutex_lock(&pmus_lock);
	list_for_each_entry(pmu, &pmus, entry) {
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
		ctx = &cpuctx->ctx;
P
Peter Zijlstra 已提交
11148 11149 11150

		mutex_lock(&ctx->mutex);
		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
11151
		cpuctx->online = 0;
P
Peter Zijlstra 已提交
11152 11153
		mutex_unlock(&ctx->mutex);
	}
11154 11155
	cpumask_clear_cpu(cpu, perf_online_mask);
	mutex_unlock(&pmus_lock);
P
Peter Zijlstra 已提交
11156
}
11157 11158 11159 11160 11161
#else

static void perf_event_exit_cpu_context(int cpu) { }

#endif
P
Peter Zijlstra 已提交
11162

11163 11164 11165 11166 11167 11168 11169 11170 11171 11172 11173 11174 11175 11176 11177 11178 11179 11180 11181 11182 11183 11184 11185
int perf_event_init_cpu(unsigned int cpu)
{
	struct perf_cpu_context *cpuctx;
	struct perf_event_context *ctx;
	struct pmu *pmu;

	perf_swevent_init_cpu(cpu);

	mutex_lock(&pmus_lock);
	cpumask_set_cpu(cpu, perf_online_mask);
	list_for_each_entry(pmu, &pmus, entry) {
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
		ctx = &cpuctx->ctx;

		mutex_lock(&ctx->mutex);
		cpuctx->online = 1;
		mutex_unlock(&ctx->mutex);
	}
	mutex_unlock(&pmus_lock);

	return 0;
}

11186
int perf_event_exit_cpu(unsigned int cpu)
T
Thomas Gleixner 已提交
11187
{
P
Peter Zijlstra 已提交
11188
	perf_event_exit_cpu_context(cpu);
11189
	return 0;
T
Thomas Gleixner 已提交
11190 11191
}

P
Peter Zijlstra 已提交
11192 11193 11194 11195 11196 11197 11198 11199 11200 11201 11202 11203 11204 11205 11206 11207 11208 11209 11210 11211
static int
perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
{
	int cpu;

	for_each_online_cpu(cpu)
		perf_event_exit_cpu(cpu);

	return NOTIFY_OK;
}

/*
 * Run the perf reboot notifier at the very last possible moment so that
 * the generic watchdog code runs as long as possible.
 */
static struct notifier_block perf_reboot_notifier = {
	.notifier_call = perf_reboot,
	.priority = INT_MIN,
};

11212
void __init perf_event_init(void)
T
Thomas Gleixner 已提交
11213
{
11214 11215
	int ret;

P
Peter Zijlstra 已提交
11216 11217
	idr_init(&pmu_idr);

11218
	perf_event_init_all_cpus();
11219
	init_srcu_struct(&pmus_srcu);
P
Peter Zijlstra 已提交
11220 11221 11222
	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
	perf_pmu_register(&perf_cpu_clock, NULL, -1);
	perf_pmu_register(&perf_task_clock, NULL, -1);
11223
	perf_tp_register();
11224
	perf_event_init_cpu(smp_processor_id());
P
Peter Zijlstra 已提交
11225
	register_reboot_notifier(&perf_reboot_notifier);
11226 11227 11228

	ret = init_hw_breakpoint();
	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
11229

11230 11231 11232 11233 11234 11235
	/*
	 * Build time assertion that we keep the data_head at the intended
	 * location.  IOW, validation we got the __reserved[] size right.
	 */
	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
		     != 1024);
T
Thomas Gleixner 已提交
11236
}
P
Peter Zijlstra 已提交
11237

11238 11239 11240 11241 11242 11243 11244 11245 11246 11247 11248
ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
			      char *page)
{
	struct perf_pmu_events_attr *pmu_attr =
		container_of(attr, struct perf_pmu_events_attr, attr);

	if (pmu_attr->event_str)
		return sprintf(page, "%s\n", pmu_attr->event_str);

	return 0;
}
11249
EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
11250

P
Peter Zijlstra 已提交
11251 11252 11253 11254 11255 11256 11257 11258 11259 11260 11261 11262 11263 11264 11265 11266 11267 11268 11269 11270 11271 11272 11273 11274 11275 11276 11277
static int __init perf_event_sysfs_init(void)
{
	struct pmu *pmu;
	int ret;

	mutex_lock(&pmus_lock);

	ret = bus_register(&pmu_bus);
	if (ret)
		goto unlock;

	list_for_each_entry(pmu, &pmus, entry) {
		if (!pmu->name || pmu->type < 0)
			continue;

		ret = pmu_dev_alloc(pmu);
		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
	}
	pmu_bus_running = 1;
	ret = 0;

unlock:
	mutex_unlock(&pmus_lock);

	return ret;
}
device_initcall(perf_event_sysfs_init);
S
Stephane Eranian 已提交
11278 11279

#ifdef CONFIG_CGROUP_PERF
11280 11281
static struct cgroup_subsys_state *
perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
S
Stephane Eranian 已提交
11282 11283 11284
{
	struct perf_cgroup *jc;

11285
	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
S
Stephane Eranian 已提交
11286 11287 11288 11289 11290 11291 11292 11293 11294 11295 11296 11297
	if (!jc)
		return ERR_PTR(-ENOMEM);

	jc->info = alloc_percpu(struct perf_cgroup_info);
	if (!jc->info) {
		kfree(jc);
		return ERR_PTR(-ENOMEM);
	}

	return &jc->css;
}

11298
static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
S
Stephane Eranian 已提交
11299
{
11300 11301
	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);

S
Stephane Eranian 已提交
11302 11303 11304 11305 11306 11307 11308
	free_percpu(jc->info);
	kfree(jc);
}

static int __perf_cgroup_move(void *info)
{
	struct task_struct *task = info;
11309
	rcu_read_lock();
S
Stephane Eranian 已提交
11310
	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
11311
	rcu_read_unlock();
S
Stephane Eranian 已提交
11312 11313 11314
	return 0;
}

11315
static void perf_cgroup_attach(struct cgroup_taskset *tset)
S
Stephane Eranian 已提交
11316
{
11317
	struct task_struct *task;
11318
	struct cgroup_subsys_state *css;
11319

11320
	cgroup_taskset_for_each(task, css, tset)
11321
		task_function_call(task, __perf_cgroup_move, task);
S
Stephane Eranian 已提交
11322 11323
}

11324
struct cgroup_subsys perf_event_cgrp_subsys = {
11325 11326
	.css_alloc	= perf_cgroup_css_alloc,
	.css_free	= perf_cgroup_css_free,
11327
	.attach		= perf_cgroup_attach,
11328 11329 11330 11331 11332 11333
	/*
	 * Implicitly enable on dfl hierarchy so that perf events can
	 * always be filtered by cgroup2 path as long as perf_event
	 * controller is not mounted on a legacy hierarchy.
	 */
	.implicit_on_dfl = true,
11334
	.threaded	= true,
S
Stephane Eranian 已提交
11335 11336
};
#endif /* CONFIG_CGROUP_PERF */