core.c 267.6 KB
Newer Older
T
Thomas Gleixner 已提交
1
/*
I
Ingo Molnar 已提交
2
 * Performance events core code:
T
Thomas Gleixner 已提交
3
 *
4
 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5
 *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6
 *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
A
Al Viro 已提交
7
 *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8
 *
I
Ingo Molnar 已提交
9
 * For licensing details see kernel-base/COPYING
T
Thomas Gleixner 已提交
10 11 12
 */

#include <linux/fs.h>
13
#include <linux/mm.h>
T
Thomas Gleixner 已提交
14 15
#include <linux/cpu.h>
#include <linux/smp.h>
P
Peter Zijlstra 已提交
16
#include <linux/idr.h>
17
#include <linux/file.h>
T
Thomas Gleixner 已提交
18
#include <linux/poll.h>
19
#include <linux/slab.h>
20
#include <linux/hash.h>
21
#include <linux/tick.h>
T
Thomas Gleixner 已提交
22
#include <linux/sysfs.h>
23
#include <linux/dcache.h>
T
Thomas Gleixner 已提交
24
#include <linux/percpu.h>
25
#include <linux/ptrace.h>
P
Peter Zijlstra 已提交
26
#include <linux/reboot.h>
27
#include <linux/vmstat.h>
P
Peter Zijlstra 已提交
28
#include <linux/device.h>
29
#include <linux/export.h>
30
#include <linux/vmalloc.h>
31 32
#include <linux/hardirq.h>
#include <linux/rculist.h>
T
Thomas Gleixner 已提交
33 34 35
#include <linux/uaccess.h>
#include <linux/syscalls.h>
#include <linux/anon_inodes.h>
I
Ingo Molnar 已提交
36
#include <linux/kernel_stat.h>
37
#include <linux/cgroup.h>
38
#include <linux/perf_event.h>
39
#include <linux/trace_events.h>
40
#include <linux/hw_breakpoint.h>
41
#include <linux/mm_types.h>
42
#include <linux/module.h>
43
#include <linux/mman.h>
P
Pawel Moll 已提交
44
#include <linux/compat.h>
45 46
#include <linux/bpf.h>
#include <linux/filter.h>
47 48
#include <linux/namei.h>
#include <linux/parser.h>
49
#include <linux/sched/clock.h>
50
#include <linux/sched/mm.h>
51 52
#include <linux/proc_ns.h>
#include <linux/mount.h>
T
Thomas Gleixner 已提交
53

54 55
#include "internal.h"

56 57
#include <asm/irq_regs.h>

58 59
typedef int (*remote_function_f)(void *);

60
struct remote_function_call {
61
	struct task_struct	*p;
62
	remote_function_f	func;
63 64
	void			*info;
	int			ret;
65 66 67 68 69 70 71 72
};

static void remote_function(void *data)
{
	struct remote_function_call *tfc = data;
	struct task_struct *p = tfc->p;

	if (p) {
73 74 75 76 77 78 79 80 81 82 83
		/* -EAGAIN */
		if (task_cpu(p) != smp_processor_id())
			return;

		/*
		 * Now that we're on right CPU with IRQs disabled, we can test
		 * if we hit the right task without races.
		 */

		tfc->ret = -ESRCH; /* No such (running) process */
		if (p != current)
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
			return;
	}

	tfc->ret = tfc->func(tfc->info);
}

/**
 * task_function_call - call a function on the cpu on which a task runs
 * @p:		the task to evaluate
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func when the task is currently running. This might
 * be on the current CPU, which just calls the function directly
 *
 * returns: @func return value, or
 *	    -ESRCH  - when the process isn't running
 *	    -EAGAIN - when the process moved away
 */
static int
104
task_function_call(struct task_struct *p, remote_function_f func, void *info)
105 106
{
	struct remote_function_call data = {
107 108 109
		.p	= p,
		.func	= func,
		.info	= info,
110
		.ret	= -EAGAIN,
111
	};
112
	int ret;
113

114 115 116 117 118
	do {
		ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
		if (!ret)
			ret = data.ret;
	} while (ret == -EAGAIN);
119

120
	return ret;
121 122 123 124 125 126 127 128 129 130 131
}

/**
 * cpu_function_call - call a function on the cpu
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func on the remote cpu.
 *
 * returns: @func return value or -ENXIO when the cpu is offline
 */
132
static int cpu_function_call(int cpu, remote_function_f func, void *info)
133 134
{
	struct remote_function_call data = {
135 136 137 138
		.p	= NULL,
		.func	= func,
		.info	= info,
		.ret	= -ENXIO, /* No such CPU */
139 140 141 142 143 144 145
	};

	smp_call_function_single(cpu, remote_function, &data, 1);

	return data.ret;
}

146 147 148 149 150 151 152 153
static inline struct perf_cpu_context *
__get_cpu_context(struct perf_event_context *ctx)
{
	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
}

static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
			  struct perf_event_context *ctx)
154
{
155 156 157 158 159 160 161 162 163 164 165 166 167
	raw_spin_lock(&cpuctx->ctx.lock);
	if (ctx)
		raw_spin_lock(&ctx->lock);
}

static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
			    struct perf_event_context *ctx)
{
	if (ctx)
		raw_spin_unlock(&ctx->lock);
	raw_spin_unlock(&cpuctx->ctx.lock);
}

168 169 170 171
#define TASK_TOMBSTONE ((void *)-1L)

static bool is_kernel_event(struct perf_event *event)
{
172
	return READ_ONCE(event->owner) == TASK_TOMBSTONE;
173 174
}

175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
/*
 * On task ctx scheduling...
 *
 * When !ctx->nr_events a task context will not be scheduled. This means
 * we can disable the scheduler hooks (for performance) without leaving
 * pending task ctx state.
 *
 * This however results in two special cases:
 *
 *  - removing the last event from a task ctx; this is relatively straight
 *    forward and is done in __perf_remove_from_context.
 *
 *  - adding the first event to a task ctx; this is tricky because we cannot
 *    rely on ctx->is_active and therefore cannot use event_function_call().
 *    See perf_install_in_context().
 *
 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
 */

194 195 196 197 198 199 200 201 202 203 204 205 206
typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
			struct perf_event_context *, void *);

struct event_function_struct {
	struct perf_event *event;
	event_f func;
	void *data;
};

static int event_function(void *info)
{
	struct event_function_struct *efs = info;
	struct perf_event *event = efs->event;
207
	struct perf_event_context *ctx = event->ctx;
208 209
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
	struct perf_event_context *task_ctx = cpuctx->task_ctx;
210
	int ret = 0;
211 212 213

	WARN_ON_ONCE(!irqs_disabled());

214
	perf_ctx_lock(cpuctx, task_ctx);
215 216 217 218 219
	/*
	 * Since we do the IPI call without holding ctx->lock things can have
	 * changed, double check we hit the task we set out to hit.
	 */
	if (ctx->task) {
220
		if (ctx->task != current) {
221
			ret = -ESRCH;
222 223
			goto unlock;
		}
224 225 226 227 228 229 230 231 232 233 234 235 236

		/*
		 * We only use event_function_call() on established contexts,
		 * and event_function() is only ever called when active (or
		 * rather, we'll have bailed in task_function_call() or the
		 * above ctx->task != current test), therefore we must have
		 * ctx->is_active here.
		 */
		WARN_ON_ONCE(!ctx->is_active);
		/*
		 * And since we have ctx->is_active, cpuctx->task_ctx must
		 * match.
		 */
237 238 239
		WARN_ON_ONCE(task_ctx != ctx);
	} else {
		WARN_ON_ONCE(&cpuctx->ctx != ctx);
240
	}
241

242
	efs->func(event, cpuctx, ctx, efs->data);
243
unlock:
244 245
	perf_ctx_unlock(cpuctx, task_ctx);

246
	return ret;
247 248 249
}

static void event_function_call(struct perf_event *event, event_f func, void *data)
250 251
{
	struct perf_event_context *ctx = event->ctx;
252
	struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
253 254 255 256 257
	struct event_function_struct efs = {
		.event = event,
		.func = func,
		.data = data,
	};
258

P
Peter Zijlstra 已提交
259 260 261 262 263 264 265 266
	if (!event->parent) {
		/*
		 * If this is a !child event, we must hold ctx::mutex to
		 * stabilize the the event->ctx relation. See
		 * perf_event_ctx_lock().
		 */
		lockdep_assert_held(&ctx->mutex);
	}
267 268

	if (!task) {
269
		cpu_function_call(event->cpu, event_function, &efs);
270 271 272
		return;
	}

273 274 275
	if (task == TASK_TOMBSTONE)
		return;

276
again:
277
	if (!task_function_call(task, event_function, &efs))
278 279 280
		return;

	raw_spin_lock_irq(&ctx->lock);
281 282 283 284 285
	/*
	 * Reload the task pointer, it might have been changed by
	 * a concurrent perf_event_context_sched_out().
	 */
	task = ctx->task;
286 287 288
	if (task == TASK_TOMBSTONE) {
		raw_spin_unlock_irq(&ctx->lock);
		return;
289
	}
290 291 292 293 294
	if (ctx->is_active) {
		raw_spin_unlock_irq(&ctx->lock);
		goto again;
	}
	func(event, NULL, ctx, data);
295 296 297
	raw_spin_unlock_irq(&ctx->lock);
}

298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345
/*
 * Similar to event_function_call() + event_function(), but hard assumes IRQs
 * are already disabled and we're on the right CPU.
 */
static void event_function_local(struct perf_event *event, event_f func, void *data)
{
	struct perf_event_context *ctx = event->ctx;
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
	struct task_struct *task = READ_ONCE(ctx->task);
	struct perf_event_context *task_ctx = NULL;

	WARN_ON_ONCE(!irqs_disabled());

	if (task) {
		if (task == TASK_TOMBSTONE)
			return;

		task_ctx = ctx;
	}

	perf_ctx_lock(cpuctx, task_ctx);

	task = ctx->task;
	if (task == TASK_TOMBSTONE)
		goto unlock;

	if (task) {
		/*
		 * We must be either inactive or active and the right task,
		 * otherwise we're screwed, since we cannot IPI to somewhere
		 * else.
		 */
		if (ctx->is_active) {
			if (WARN_ON_ONCE(task != current))
				goto unlock;

			if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
				goto unlock;
		}
	} else {
		WARN_ON_ONCE(&cpuctx->ctx != ctx);
	}

	func(event, cpuctx, ctx, data);
unlock:
	perf_ctx_unlock(cpuctx, task_ctx);
}

S
Stephane Eranian 已提交
346 347
#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
		       PERF_FLAG_FD_OUTPUT  |\
348 349
		       PERF_FLAG_PID_CGROUP |\
		       PERF_FLAG_FD_CLOEXEC)
S
Stephane Eranian 已提交
350

351 352 353 354 355 356 357
/*
 * branch priv levels that need permission checks
 */
#define PERF_SAMPLE_BRANCH_PERM_PLM \
	(PERF_SAMPLE_BRANCH_KERNEL |\
	 PERF_SAMPLE_BRANCH_HV)

358 359 360
enum event_type_t {
	EVENT_FLEXIBLE = 0x1,
	EVENT_PINNED = 0x2,
361
	EVENT_TIME = 0x4,
362 363
	/* see ctx_resched() for details */
	EVENT_CPU = 0x8,
364 365 366
	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
};

S
Stephane Eranian 已提交
367 368 369 370
/*
 * perf_sched_events : >0 events exist
 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
 */
371 372 373 374 375 376 377

static void perf_sched_delayed(struct work_struct *work);
DEFINE_STATIC_KEY_FALSE(perf_sched_events);
static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
static DEFINE_MUTEX(perf_sched_mutex);
static atomic_t perf_sched_count;

S
Stephane Eranian 已提交
378
static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
379
static DEFINE_PER_CPU(int, perf_sched_cb_usages);
380
static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
S
Stephane Eranian 已提交
381

382 383
static atomic_t nr_mmap_events __read_mostly;
static atomic_t nr_comm_events __read_mostly;
384
static atomic_t nr_namespaces_events __read_mostly;
385
static atomic_t nr_task_events __read_mostly;
386
static atomic_t nr_freq_events __read_mostly;
387
static atomic_t nr_switch_events __read_mostly;
388

P
Peter Zijlstra 已提交
389 390 391
static LIST_HEAD(pmus);
static DEFINE_MUTEX(pmus_lock);
static struct srcu_struct pmus_srcu;
392
static cpumask_var_t perf_online_mask;
P
Peter Zijlstra 已提交
393

394
/*
395
 * perf event paranoia level:
396 397
 *  -1 - not paranoid at all
 *   0 - disallow raw tracepoint access for unpriv
398
 *   1 - disallow cpu events for unpriv
399
 *   2 - disallow kernel profiling for unpriv
400
 */
401
int sysctl_perf_event_paranoid __read_mostly = 2;
402

403 404
/* Minimum for 512 kiB + 1 user control page */
int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
405 406

/*
407
 * max perf event sample rate
408
 */
409 410 411 412 413 414 415 416 417
#define DEFAULT_MAX_SAMPLE_RATE		100000
#define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
#define DEFAULT_CPU_TIME_MAX_PERCENT	25

int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;

static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;

P
Peter Zijlstra 已提交
418 419
static int perf_sample_allowed_ns __read_mostly =
	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
420

421
static void update_perf_cpu_limits(void)
422 423 424 425
{
	u64 tmp = perf_sample_period_ns;

	tmp *= sysctl_perf_cpu_time_max_percent;
426 427 428 429 430
	tmp = div_u64(tmp, 100);
	if (!tmp)
		tmp = 1;

	WRITE_ONCE(perf_sample_allowed_ns, tmp);
431
}
P
Peter Zijlstra 已提交
432

433 434
static int perf_rotate_context(struct perf_cpu_context *cpuctx);

P
Peter Zijlstra 已提交
435 436 437 438
int perf_proc_update_handler(struct ctl_table *table, int write,
		void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
439
	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
P
Peter Zijlstra 已提交
440 441 442 443

	if (ret || !write)
		return ret;

444 445 446 447 448 449 450
	/*
	 * If throttling is disabled don't allow the write:
	 */
	if (sysctl_perf_cpu_time_max_percent == 100 ||
	    sysctl_perf_cpu_time_max_percent == 0)
		return -EINVAL;

P
Peter Zijlstra 已提交
451
	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
452 453 454 455 456 457 458 459 460 461 462 463
	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
	update_perf_cpu_limits();

	return 0;
}

int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;

int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
				void __user *buffer, size_t *lenp,
				loff_t *ppos)
{
464
	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
465 466 467 468

	if (ret || !write)
		return ret;

469 470
	if (sysctl_perf_cpu_time_max_percent == 100 ||
	    sysctl_perf_cpu_time_max_percent == 0) {
471 472 473 474 475 476
		printk(KERN_WARNING
		       "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
		WRITE_ONCE(perf_sample_allowed_ns, 0);
	} else {
		update_perf_cpu_limits();
	}
P
Peter Zijlstra 已提交
477 478 479

	return 0;
}
480

481 482 483 484 485 486 487
/*
 * perf samples are done in some very critical code paths (NMIs).
 * If they take too much CPU time, the system can lock up and not
 * get any real work done.  This will drop the sample rate when
 * we detect that events are taking too long.
 */
#define NR_ACCUMULATED_SAMPLES 128
P
Peter Zijlstra 已提交
488
static DEFINE_PER_CPU(u64, running_sample_length);
489

490 491 492
static u64 __report_avg;
static u64 __report_allowed;

493
static void perf_duration_warn(struct irq_work *w)
494
{
495
	printk_ratelimited(KERN_INFO
496 497 498 499
		"perf: interrupt took too long (%lld > %lld), lowering "
		"kernel.perf_event_max_sample_rate to %d\n",
		__report_avg, __report_allowed,
		sysctl_perf_event_sample_rate);
500 501 502 503 504 505
}

static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);

void perf_sample_event_took(u64 sample_len_ns)
{
506 507 508 509
	u64 max_len = READ_ONCE(perf_sample_allowed_ns);
	u64 running_len;
	u64 avg_len;
	u32 max;
510

511
	if (max_len == 0)
512 513
		return;

514 515 516 517 518
	/* Decay the counter by 1 average sample. */
	running_len = __this_cpu_read(running_sample_length);
	running_len -= running_len/NR_ACCUMULATED_SAMPLES;
	running_len += sample_len_ns;
	__this_cpu_write(running_sample_length, running_len);
519 520

	/*
521 522
	 * Note: this will be biased artifically low until we have
	 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
523 524
	 * from having to maintain a count.
	 */
525 526
	avg_len = running_len/NR_ACCUMULATED_SAMPLES;
	if (avg_len <= max_len)
527 528
		return;

529 530
	__report_avg = avg_len;
	__report_allowed = max_len;
531

532 533 534 535 536 537 538 539 540
	/*
	 * Compute a throttle threshold 25% below the current duration.
	 */
	avg_len += avg_len / 4;
	max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
	if (avg_len < max)
		max /= (u32)avg_len;
	else
		max = 1;
541

542 543 544 545 546
	WRITE_ONCE(perf_sample_allowed_ns, avg_len);
	WRITE_ONCE(max_samples_per_tick, max);

	sysctl_perf_event_sample_rate = max * HZ;
	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
547

548
	if (!irq_work_queue(&perf_duration_work)) {
549
		early_printk("perf: interrupt took too long (%lld > %lld), lowering "
550
			     "kernel.perf_event_max_sample_rate to %d\n",
551
			     __report_avg, __report_allowed,
552 553
			     sysctl_perf_event_sample_rate);
	}
554 555
}

556
static atomic64_t perf_event_id;
557

558 559 560 561
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type);

static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
562 563 564 565 566
			     enum event_type_t event_type,
			     struct task_struct *task);

static void update_context_time(struct perf_event_context *ctx);
static u64 perf_event_time(struct perf_event *event);
567

568
void __weak perf_event_print_debug(void)	{ }
T
Thomas Gleixner 已提交
569

570
extern __weak const char *perf_pmu_name(void)
T
Thomas Gleixner 已提交
571
{
572
	return "pmu";
T
Thomas Gleixner 已提交
573 574
}

575 576 577 578 579
static inline u64 perf_clock(void)
{
	return local_clock();
}

580 581 582 583 584
static inline u64 perf_event_clock(struct perf_event *event)
{
	return event->clock();
}

S
Stephane Eranian 已提交
585 586 587 588 589 590 591 592
#ifdef CONFIG_CGROUP_PERF

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);

593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608
	/* @event doesn't care about cgroup */
	if (!event->cgrp)
		return true;

	/* wants specific cgroup scope but @cpuctx isn't associated with any */
	if (!cpuctx->cgrp)
		return false;

	/*
	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
	 * also enabled for all its descendant cgroups.  If @cpuctx's
	 * cgroup is a descendant of @event's (the test covers identity
	 * case), it's a match.
	 */
	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
				    event->cgrp->css.cgroup);
S
Stephane Eranian 已提交
609 610 611 612
}

static inline void perf_detach_cgroup(struct perf_event *event)
{
Z
Zefan Li 已提交
613
	css_put(&event->cgrp->css);
S
Stephane Eranian 已提交
614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651
	event->cgrp = NULL;
}

static inline int is_cgroup_event(struct perf_event *event)
{
	return event->cgrp != NULL;
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	struct perf_cgroup_info *t;

	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	return t->time;
}

static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
{
	struct perf_cgroup_info *info;
	u64 now;

	now = perf_clock();

	info = this_cpu_ptr(cgrp->info);

	info->time += now - info->timestamp;
	info->timestamp = now;
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
	struct perf_cgroup *cgrp_out = cpuctx->cgrp;
	if (cgrp_out)
		__update_cgrp_time(cgrp_out);
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
652 653
	struct perf_cgroup *cgrp;

S
Stephane Eranian 已提交
654
	/*
655 656
	 * ensure we access cgroup data only when needed and
	 * when we know the cgroup is pinned (css_get)
S
Stephane Eranian 已提交
657
	 */
658
	if (!is_cgroup_event(event))
S
Stephane Eranian 已提交
659 660
		return;

661
	cgrp = perf_cgroup_from_task(current, event->ctx);
662 663 664
	/*
	 * Do not update time when cgroup is not active
	 */
665
       if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
666
		__update_cgrp_time(event->cgrp);
S
Stephane Eranian 已提交
667 668 669
}

static inline void
670 671
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
672 673 674 675
{
	struct perf_cgroup *cgrp;
	struct perf_cgroup_info *info;

676 677 678 679 680 681
	/*
	 * ctx->lock held by caller
	 * ensure we do not access cgroup data
	 * unless we have the cgroup pinned (css_get)
	 */
	if (!task || !ctx->nr_cgroups)
S
Stephane Eranian 已提交
682 683
		return;

684
	cgrp = perf_cgroup_from_task(task, ctx);
S
Stephane Eranian 已提交
685
	info = this_cpu_ptr(cgrp->info);
686
	info->timestamp = ctx->timestamp;
S
Stephane Eranian 已提交
687 688
}

689 690
static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);

S
Stephane Eranian 已提交
691 692 693 694 695 696 697 698 699
#define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
#define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */

/*
 * reschedule events based on the cgroup constraint of task.
 *
 * mode SWOUT : schedule out everything
 * mode SWIN : schedule in based on cgroup for next
 */
700
static void perf_cgroup_switch(struct task_struct *task, int mode)
S
Stephane Eranian 已提交
701 702
{
	struct perf_cpu_context *cpuctx;
703
	struct list_head *list;
S
Stephane Eranian 已提交
704 705 706
	unsigned long flags;

	/*
707 708
	 * Disable interrupts and preemption to avoid this CPU's
	 * cgrp_cpuctx_entry to change under us.
S
Stephane Eranian 已提交
709 710 711
	 */
	local_irq_save(flags);

712 713 714
	list = this_cpu_ptr(&cgrp_cpuctx_list);
	list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) {
		WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
S
Stephane Eranian 已提交
715

716 717
		perf_ctx_lock(cpuctx, cpuctx->task_ctx);
		perf_pmu_disable(cpuctx->ctx.pmu);
S
Stephane Eranian 已提交
718

719 720 721 722 723 724 725 726
		if (mode & PERF_CGROUP_SWOUT) {
			cpu_ctx_sched_out(cpuctx, EVENT_ALL);
			/*
			 * must not be done before ctxswout due
			 * to event_filter_match() in event_sched_out()
			 */
			cpuctx->cgrp = NULL;
		}
S
Stephane Eranian 已提交
727

728 729 730 731 732 733 734 735 736 737 738 739
		if (mode & PERF_CGROUP_SWIN) {
			WARN_ON_ONCE(cpuctx->cgrp);
			/*
			 * set cgrp before ctxsw in to allow
			 * event_filter_match() to not have to pass
			 * task around
			 * we pass the cpuctx->ctx to perf_cgroup_from_task()
			 * because cgorup events are only per-cpu
			 */
			cpuctx->cgrp = perf_cgroup_from_task(task,
							     &cpuctx->ctx);
			cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
S
Stephane Eranian 已提交
740
		}
741 742
		perf_pmu_enable(cpuctx->ctx.pmu);
		perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
S
Stephane Eranian 已提交
743 744 745 746 747
	}

	local_irq_restore(flags);
}

748 749
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
750
{
751 752 753
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

754
	rcu_read_lock();
755 756
	/*
	 * we come here when we know perf_cgroup_events > 0
757 758
	 * we do not need to pass the ctx here because we know
	 * we are holding the rcu lock
759
	 */
760
	cgrp1 = perf_cgroup_from_task(task, NULL);
761
	cgrp2 = perf_cgroup_from_task(next, NULL);
762 763 764 765 766 767 768 769

	/*
	 * only schedule out current cgroup events if we know
	 * that we are switching to a different cgroup. Otherwise,
	 * do no touch the cgroup events.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
770 771

	rcu_read_unlock();
S
Stephane Eranian 已提交
772 773
}

774 775
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
776
{
777 778 779
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

780
	rcu_read_lock();
781 782
	/*
	 * we come here when we know perf_cgroup_events > 0
783 784
	 * we do not need to pass the ctx here because we know
	 * we are holding the rcu lock
785
	 */
786 787
	cgrp1 = perf_cgroup_from_task(task, NULL);
	cgrp2 = perf_cgroup_from_task(prev, NULL);
788 789 790 791 792 793 794 795

	/*
	 * only need to schedule in cgroup events if we are changing
	 * cgroup during ctxsw. Cgroup events were not scheduled
	 * out of ctxsw out if that was not the case.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
796 797

	rcu_read_unlock();
S
Stephane Eranian 已提交
798 799 800 801 802 803 804 805
}

static inline int perf_cgroup_connect(int fd, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	struct perf_cgroup *cgrp;
	struct cgroup_subsys_state *css;
806 807
	struct fd f = fdget(fd);
	int ret = 0;
S
Stephane Eranian 已提交
808

809
	if (!f.file)
S
Stephane Eranian 已提交
810 811
		return -EBADF;

A
Al Viro 已提交
812
	css = css_tryget_online_from_dir(f.file->f_path.dentry,
813
					 &perf_event_cgrp_subsys);
814 815 816 817
	if (IS_ERR(css)) {
		ret = PTR_ERR(css);
		goto out;
	}
S
Stephane Eranian 已提交
818 819 820 821 822 823 824 825 826 827 828 829 830

	cgrp = container_of(css, struct perf_cgroup, css);
	event->cgrp = cgrp;

	/*
	 * all events in a group must monitor
	 * the same cgroup because a task belongs
	 * to only one perf cgroup at a time
	 */
	if (group_leader && group_leader->cgrp != cgrp) {
		perf_detach_cgroup(event);
		ret = -EINVAL;
	}
831
out:
832
	fdput(f);
S
Stephane Eranian 已提交
833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876
	return ret;
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
	struct perf_cgroup_info *t;
	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	event->shadow_ctx_time = now - t->timestamp;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
	/*
	 * when the current task's perf cgroup does not match
	 * the event's, we need to remember to call the
	 * perf_mark_enable() function the first time a task with
	 * a matching perf cgroup is scheduled in.
	 */
	if (is_cgroup_event(event) && !perf_cgroup_match(event))
		event->cgrp_defer_enabled = 1;
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
	struct perf_event *sub;
	u64 tstamp = perf_event_time(event);

	if (!event->cgrp_defer_enabled)
		return;

	event->cgrp_defer_enabled = 0;

	event->tstamp_enabled = tstamp - event->total_time_enabled;
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
			sub->cgrp_defer_enabled = 0;
		}
	}
}
877 878 879 880 881 882 883 884 885 886

/*
 * Update cpuctx->cgrp so that it is set when first cgroup event is added and
 * cleared when last cgroup event is removed.
 */
static inline void
list_update_cgroup_event(struct perf_event *event,
			 struct perf_event_context *ctx, bool add)
{
	struct perf_cpu_context *cpuctx;
887
	struct list_head *cpuctx_entry;
888 889 890 891 892 893 894 895 896 897 898 899 900

	if (!is_cgroup_event(event))
		return;

	if (add && ctx->nr_cgroups++)
		return;
	else if (!add && --ctx->nr_cgroups)
		return;
	/*
	 * Because cgroup events are always per-cpu events,
	 * this will always be called from the right CPU.
	 */
	cpuctx = __get_cpu_context(ctx);
901 902 903
	cpuctx_entry = &cpuctx->cgrp_cpuctx_entry;
	/* cpuctx->cgrp is NULL unless a cgroup event is active in this CPU .*/
	if (add) {
904 905
		struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);

906
		list_add(cpuctx_entry, this_cpu_ptr(&cgrp_cpuctx_list));
907 908
		if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
			cpuctx->cgrp = cgrp;
909 910
	} else {
		list_del(cpuctx_entry);
911
		cpuctx->cgrp = NULL;
912
	}
913 914
}

S
Stephane Eranian 已提交
915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938
#else /* !CONFIG_CGROUP_PERF */

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	return true;
}

static inline void perf_detach_cgroup(struct perf_event *event)
{}

static inline int is_cgroup_event(struct perf_event *event)
{
	return 0;
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
}

939 940
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
941 942 943
{
}

944 945
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
946 947 948 949 950 951 952 953 954 955 956
{
}

static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	return -EINVAL;
}

static inline void
957 958
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986
{
}

void
perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
{
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	return 0;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
}
987 988 989 990 991 992 993

static inline void
list_update_cgroup_event(struct perf_event *event,
			 struct perf_event_context *ctx, bool add)
{
}

S
Stephane Eranian 已提交
994 995
#endif

996 997 998 999 1000 1001
/*
 * set default to be dependent on timer tick just
 * like original code
 */
#define PERF_CPU_HRTIMER (1000 / HZ)
/*
1002
 * function must be called with interrupts disabled
1003
 */
1004
static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1005 1006 1007 1008 1009 1010 1011 1012 1013
{
	struct perf_cpu_context *cpuctx;
	int rotations = 0;

	WARN_ON(!irqs_disabled());

	cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
	rotations = perf_rotate_context(cpuctx);

P
Peter Zijlstra 已提交
1014 1015
	raw_spin_lock(&cpuctx->hrtimer_lock);
	if (rotations)
1016
		hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
P
Peter Zijlstra 已提交
1017 1018 1019
	else
		cpuctx->hrtimer_active = 0;
	raw_spin_unlock(&cpuctx->hrtimer_lock);
1020

P
Peter Zijlstra 已提交
1021
	return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1022 1023
}

1024
static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
1025
{
1026
	struct hrtimer *timer = &cpuctx->hrtimer;
1027
	struct pmu *pmu = cpuctx->ctx.pmu;
1028
	u64 interval;
1029 1030 1031 1032 1033

	/* no multiplexing needed for SW PMU */
	if (pmu->task_ctx_nr == perf_sw_context)
		return;

1034 1035 1036 1037
	/*
	 * check default is sane, if not set then force to
	 * default interval (1/tick)
	 */
1038 1039 1040
	interval = pmu->hrtimer_interval_ms;
	if (interval < 1)
		interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1041

1042
	cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1043

P
Peter Zijlstra 已提交
1044 1045
	raw_spin_lock_init(&cpuctx->hrtimer_lock);
	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
1046
	timer->function = perf_mux_hrtimer_handler;
1047 1048
}

1049
static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1050
{
1051
	struct hrtimer *timer = &cpuctx->hrtimer;
1052
	struct pmu *pmu = cpuctx->ctx.pmu;
P
Peter Zijlstra 已提交
1053
	unsigned long flags;
1054 1055 1056

	/* not for SW PMU */
	if (pmu->task_ctx_nr == perf_sw_context)
1057
		return 0;
1058

P
Peter Zijlstra 已提交
1059 1060 1061 1062 1063 1064 1065
	raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
	if (!cpuctx->hrtimer_active) {
		cpuctx->hrtimer_active = 1;
		hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
		hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
	}
	raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1066

1067
	return 0;
1068 1069
}

P
Peter Zijlstra 已提交
1070
void perf_pmu_disable(struct pmu *pmu)
1071
{
P
Peter Zijlstra 已提交
1072 1073 1074
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!(*count)++)
		pmu->pmu_disable(pmu);
1075 1076
}

P
Peter Zijlstra 已提交
1077
void perf_pmu_enable(struct pmu *pmu)
1078
{
P
Peter Zijlstra 已提交
1079 1080 1081
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!--(*count))
		pmu->pmu_enable(pmu);
1082 1083
}

1084
static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1085 1086

/*
1087 1088 1089 1090
 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
 * perf_event_task_tick() are fully serialized because they're strictly cpu
 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
 * disabled, while perf_event_task_tick is called from IRQ context.
1091
 */
1092
static void perf_event_ctx_activate(struct perf_event_context *ctx)
1093
{
1094
	struct list_head *head = this_cpu_ptr(&active_ctx_list);
1095

1096
	WARN_ON(!irqs_disabled());
1097

1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109
	WARN_ON(!list_empty(&ctx->active_ctx_list));

	list_add(&ctx->active_ctx_list, head);
}

static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
{
	WARN_ON(!irqs_disabled());

	WARN_ON(list_empty(&ctx->active_ctx_list));

	list_del_init(&ctx->active_ctx_list);
1110 1111
}

1112
static void get_ctx(struct perf_event_context *ctx)
1113
{
1114
	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
1115 1116
}

1117 1118 1119 1120 1121 1122 1123 1124 1125
static void free_ctx(struct rcu_head *head)
{
	struct perf_event_context *ctx;

	ctx = container_of(head, struct perf_event_context, rcu_head);
	kfree(ctx->task_ctx_data);
	kfree(ctx);
}

1126
static void put_ctx(struct perf_event_context *ctx)
1127
{
1128 1129 1130
	if (atomic_dec_and_test(&ctx->refcount)) {
		if (ctx->parent_ctx)
			put_ctx(ctx->parent_ctx);
1131
		if (ctx->task && ctx->task != TASK_TOMBSTONE)
1132
			put_task_struct(ctx->task);
1133
		call_rcu(&ctx->rcu_head, free_ctx);
1134
	}
1135 1136
}

P
Peter Zijlstra 已提交
1137 1138 1139 1140 1141 1142 1143
/*
 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
 * perf_pmu_migrate_context() we need some magic.
 *
 * Those places that change perf_event::ctx will hold both
 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
 *
1144 1145 1146 1147
 * Lock ordering is by mutex address. There are two other sites where
 * perf_event_context::mutex nests and those are:
 *
 *  - perf_event_exit_task_context()	[ child , 0 ]
1148 1149
 *      perf_event_exit_event()
 *        put_event()			[ parent, 1 ]
1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166
 *
 *  - perf_event_init_context()		[ parent, 0 ]
 *      inherit_task_group()
 *        inherit_group()
 *          inherit_event()
 *            perf_event_alloc()
 *              perf_init_event()
 *                perf_try_init_event()	[ child , 1 ]
 *
 * While it appears there is an obvious deadlock here -- the parent and child
 * nesting levels are inverted between the two. This is in fact safe because
 * life-time rules separate them. That is an exiting task cannot fork, and a
 * spawning task cannot (yet) exit.
 *
 * But remember that that these are parent<->child context relations, and
 * migration does not affect children, therefore these two orderings should not
 * interact.
P
Peter Zijlstra 已提交
1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189
 *
 * The change in perf_event::ctx does not affect children (as claimed above)
 * because the sys_perf_event_open() case will install a new event and break
 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
 * concerned with cpuctx and that doesn't have children.
 *
 * The places that change perf_event::ctx will issue:
 *
 *   perf_remove_from_context();
 *   synchronize_rcu();
 *   perf_install_in_context();
 *
 * to affect the change. The remove_from_context() + synchronize_rcu() should
 * quiesce the event, after which we can install it in the new location. This
 * means that only external vectors (perf_fops, prctl) can perturb the event
 * while in transit. Therefore all such accessors should also acquire
 * perf_event_context::mutex to serialize against this.
 *
 * However; because event->ctx can change while we're waiting to acquire
 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
 * function.
 *
 * Lock order:
1190
 *    cred_guard_mutex
P
Peter Zijlstra 已提交
1191 1192 1193
 *	task_struct::perf_event_mutex
 *	  perf_event_context::mutex
 *	    perf_event::child_mutex;
P
Peter Zijlstra 已提交
1194
 *	      perf_event_context::lock
P
Peter Zijlstra 已提交
1195 1196 1197
 *	    perf_event::mmap_mutex
 *	    mmap_sem
 */
P
Peter Zijlstra 已提交
1198 1199
static struct perf_event_context *
perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
P
Peter Zijlstra 已提交
1200 1201 1202 1203 1204
{
	struct perf_event_context *ctx;

again:
	rcu_read_lock();
1205
	ctx = READ_ONCE(event->ctx);
P
Peter Zijlstra 已提交
1206 1207 1208 1209 1210 1211
	if (!atomic_inc_not_zero(&ctx->refcount)) {
		rcu_read_unlock();
		goto again;
	}
	rcu_read_unlock();

P
Peter Zijlstra 已提交
1212
	mutex_lock_nested(&ctx->mutex, nesting);
P
Peter Zijlstra 已提交
1213 1214 1215 1216 1217 1218 1219 1220 1221
	if (event->ctx != ctx) {
		mutex_unlock(&ctx->mutex);
		put_ctx(ctx);
		goto again;
	}

	return ctx;
}

P
Peter Zijlstra 已提交
1222 1223 1224 1225 1226 1227
static inline struct perf_event_context *
perf_event_ctx_lock(struct perf_event *event)
{
	return perf_event_ctx_lock_nested(event, 0);
}

P
Peter Zijlstra 已提交
1228 1229 1230 1231 1232 1233 1234
static void perf_event_ctx_unlock(struct perf_event *event,
				  struct perf_event_context *ctx)
{
	mutex_unlock(&ctx->mutex);
	put_ctx(ctx);
}

1235 1236 1237 1238 1239 1240 1241
/*
 * This must be done under the ctx->lock, such as to serialize against
 * context_equiv(), therefore we cannot call put_ctx() since that might end up
 * calling scheduler related locks and ctx->lock nests inside those.
 */
static __must_check struct perf_event_context *
unclone_ctx(struct perf_event_context *ctx)
1242
{
1243 1244 1245 1246 1247
	struct perf_event_context *parent_ctx = ctx->parent_ctx;

	lockdep_assert_held(&ctx->lock);

	if (parent_ctx)
1248
		ctx->parent_ctx = NULL;
1249
	ctx->generation++;
1250 1251

	return parent_ctx;
1252 1253
}

1254 1255
static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
				enum pid_type type)
1256
{
1257
	u32 nr;
1258 1259 1260 1261 1262 1263
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

1264 1265 1266 1267 1268
	nr = __task_pid_nr_ns(p, type, event->ns);
	/* avoid -1 if it is idle thread or runs in another ns */
	if (!nr && !pid_alive(p))
		nr = -1;
	return nr;
1269 1270
}

1271
static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1272
{
1273 1274
	return perf_event_pid_type(event, p, __PIDTYPE_TGID);
}
1275

1276 1277 1278
static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
{
	return perf_event_pid_type(event, p, PIDTYPE_PID);
1279 1280
}

1281
/*
1282
 * If we inherit events we want to return the parent event id
1283 1284
 * to userspace.
 */
1285
static u64 primary_event_id(struct perf_event *event)
1286
{
1287
	u64 id = event->id;
1288

1289 1290
	if (event->parent)
		id = event->parent->id;
1291 1292 1293 1294

	return id;
}

1295
/*
1296
 * Get the perf_event_context for a task and lock it.
1297
 *
1298 1299 1300
 * This has to cope with with the fact that until it is locked,
 * the context could get moved to another task.
 */
1301
static struct perf_event_context *
P
Peter Zijlstra 已提交
1302
perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1303
{
1304
	struct perf_event_context *ctx;
1305

P
Peter Zijlstra 已提交
1306
retry:
1307 1308 1309
	/*
	 * One of the few rules of preemptible RCU is that one cannot do
	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1310
	 * part of the read side critical section was irqs-enabled -- see
1311 1312 1313
	 * rcu_read_unlock_special().
	 *
	 * Since ctx->lock nests under rq->lock we must ensure the entire read
1314
	 * side critical section has interrupts disabled.
1315
	 */
1316
	local_irq_save(*flags);
1317
	rcu_read_lock();
P
Peter Zijlstra 已提交
1318
	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1319 1320 1321 1322
	if (ctx) {
		/*
		 * If this context is a clone of another, it might
		 * get swapped for another underneath us by
1323
		 * perf_event_task_sched_out, though the
1324 1325 1326 1327 1328 1329
		 * rcu_read_lock() protects us from any context
		 * getting freed.  Lock the context and check if it
		 * got swapped before we could get the lock, and retry
		 * if so.  If we locked the right context, then it
		 * can't get swapped on us any more.
		 */
1330
		raw_spin_lock(&ctx->lock);
P
Peter Zijlstra 已提交
1331
		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1332
			raw_spin_unlock(&ctx->lock);
1333
			rcu_read_unlock();
1334
			local_irq_restore(*flags);
1335 1336
			goto retry;
		}
1337

1338 1339
		if (ctx->task == TASK_TOMBSTONE ||
		    !atomic_inc_not_zero(&ctx->refcount)) {
1340
			raw_spin_unlock(&ctx->lock);
1341
			ctx = NULL;
P
Peter Zijlstra 已提交
1342 1343
		} else {
			WARN_ON_ONCE(ctx->task != task);
1344
		}
1345 1346
	}
	rcu_read_unlock();
1347 1348
	if (!ctx)
		local_irq_restore(*flags);
1349 1350 1351 1352 1353 1354 1355 1356
	return ctx;
}

/*
 * Get the context for a task and increment its pin_count so it
 * can't get swapped to another task.  This also increments its
 * reference count so that the context can't get freed.
 */
P
Peter Zijlstra 已提交
1357 1358
static struct perf_event_context *
perf_pin_task_context(struct task_struct *task, int ctxn)
1359
{
1360
	struct perf_event_context *ctx;
1361 1362
	unsigned long flags;

P
Peter Zijlstra 已提交
1363
	ctx = perf_lock_task_context(task, ctxn, &flags);
1364 1365
	if (ctx) {
		++ctx->pin_count;
1366
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1367 1368 1369 1370
	}
	return ctx;
}

1371
static void perf_unpin_context(struct perf_event_context *ctx)
1372 1373 1374
{
	unsigned long flags;

1375
	raw_spin_lock_irqsave(&ctx->lock, flags);
1376
	--ctx->pin_count;
1377
	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1378 1379
}

1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390
/*
 * Update the record of the current time in a context.
 */
static void update_context_time(struct perf_event_context *ctx)
{
	u64 now = perf_clock();

	ctx->time += now - ctx->timestamp;
	ctx->timestamp = now;
}

1391 1392 1393
static u64 perf_event_time(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
S
Stephane Eranian 已提交
1394 1395 1396 1397

	if (is_cgroup_event(event))
		return perf_cgroup_event_time(event);

1398 1399 1400
	return ctx ? ctx->time : 0;
}

1401 1402 1403 1404 1405 1406 1407 1408
/*
 * Update the total_time_enabled and total_time_running fields for a event.
 */
static void update_event_times(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	u64 run_end;

1409 1410
	lockdep_assert_held(&ctx->lock);

1411 1412 1413
	if (event->state < PERF_EVENT_STATE_INACTIVE ||
	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
		return;
1414

S
Stephane Eranian 已提交
1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425
	/*
	 * in cgroup mode, time_enabled represents
	 * the time the event was enabled AND active
	 * tasks were in the monitored cgroup. This is
	 * independent of the activity of the context as
	 * there may be a mix of cgroup and non-cgroup events.
	 *
	 * That is why we treat cgroup events differently
	 * here.
	 */
	if (is_cgroup_event(event))
1426
		run_end = perf_cgroup_event_time(event);
S
Stephane Eranian 已提交
1427 1428
	else if (ctx->is_active)
		run_end = ctx->time;
1429 1430 1431 1432
	else
		run_end = event->tstamp_stopped;

	event->total_time_enabled = run_end - event->tstamp_enabled;
1433 1434 1435 1436

	if (event->state == PERF_EVENT_STATE_INACTIVE)
		run_end = event->tstamp_stopped;
	else
1437
		run_end = perf_event_time(event);
1438 1439

	event->total_time_running = run_end - event->tstamp_running;
S
Stephane Eranian 已提交
1440

1441 1442
}

1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454
/*
 * Update total_time_enabled and total_time_running for all events in a group.
 */
static void update_group_times(struct perf_event *leader)
{
	struct perf_event *event;

	update_event_times(leader);
	list_for_each_entry(event, &leader->sibling_list, group_entry)
		update_event_times(event);
}

1455 1456 1457 1458 1459 1460 1461
static enum event_type_t get_event_type(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	enum event_type_t event_type;

	lockdep_assert_held(&ctx->lock);

1462 1463 1464 1465 1466 1467 1468
	/*
	 * It's 'group type', really, because if our group leader is
	 * pinned, so are we.
	 */
	if (event->group_leader != event)
		event = event->group_leader;

1469 1470 1471 1472 1473 1474 1475
	event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
	if (!ctx->task)
		event_type |= EVENT_CPU;

	return event_type;
}

1476 1477 1478 1479 1480 1481 1482 1483 1484
static struct list_head *
ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
{
	if (event->attr.pinned)
		return &ctx->pinned_groups;
	else
		return &ctx->flexible_groups;
}

1485
/*
1486
 * Add a event from the lists for its context.
1487 1488
 * Must be called with ctx->mutex and ctx->lock held.
 */
1489
static void
1490
list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1491
{
P
Peter Zijlstra 已提交
1492 1493
	lockdep_assert_held(&ctx->lock);

1494 1495
	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
	event->attach_state |= PERF_ATTACH_CONTEXT;
1496 1497

	/*
1498 1499 1500
	 * If we're a stand alone event or group leader, we go to the context
	 * list, group events are kept attached to the group so that
	 * perf_group_detach can, at all times, locate all siblings.
1501
	 */
1502
	if (event->group_leader == event) {
1503 1504
		struct list_head *list;

1505
		event->group_caps = event->event_caps;
1506

1507 1508
		list = ctx_group_list(event, ctx);
		list_add_tail(&event->group_entry, list);
P
Peter Zijlstra 已提交
1509
	}
P
Peter Zijlstra 已提交
1510

1511
	list_update_cgroup_event(event, ctx, true);
S
Stephane Eranian 已提交
1512

1513 1514 1515
	list_add_rcu(&event->event_entry, &ctx->event_list);
	ctx->nr_events++;
	if (event->attr.inherit_stat)
1516
		ctx->nr_stat++;
1517 1518

	ctx->generation++;
1519 1520
}

J
Jiri Olsa 已提交
1521 1522 1523 1524 1525 1526 1527 1528 1529
/*
 * Initialize event state based on the perf_event_attr::disabled.
 */
static inline void perf_event__state_init(struct perf_event *event)
{
	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
					      PERF_EVENT_STATE_INACTIVE;
}

P
Peter Zijlstra 已提交
1530
static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545
{
	int entry = sizeof(u64); /* value */
	int size = 0;
	int nr = 1;

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_ID)
		entry += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_GROUP) {
P
Peter Zijlstra 已提交
1546
		nr += nr_siblings;
1547 1548 1549 1550 1551 1552 1553
		size += sizeof(u64);
	}

	size += entry * nr;
	event->read_size = size;
}

P
Peter Zijlstra 已提交
1554
static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1555 1556 1557 1558 1559 1560 1561
{
	struct perf_sample_data *data;
	u16 size = 0;

	if (sample_type & PERF_SAMPLE_IP)
		size += sizeof(data->ip);

1562 1563 1564 1565 1566 1567
	if (sample_type & PERF_SAMPLE_ADDR)
		size += sizeof(data->addr);

	if (sample_type & PERF_SAMPLE_PERIOD)
		size += sizeof(data->period);

A
Andi Kleen 已提交
1568 1569 1570
	if (sample_type & PERF_SAMPLE_WEIGHT)
		size += sizeof(data->weight);

1571 1572 1573
	if (sample_type & PERF_SAMPLE_READ)
		size += event->read_size;

1574 1575 1576
	if (sample_type & PERF_SAMPLE_DATA_SRC)
		size += sizeof(data->data_src.val);

A
Andi Kleen 已提交
1577 1578 1579
	if (sample_type & PERF_SAMPLE_TRANSACTION)
		size += sizeof(data->txn);

1580 1581 1582
	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
		size += sizeof(data->phys_addr);

1583 1584 1585
	event->header_size = size;
}

P
Peter Zijlstra 已提交
1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596
/*
 * Called at perf_event creation and when events are attached/detached from a
 * group.
 */
static void perf_event__header_size(struct perf_event *event)
{
	__perf_event_read_size(event,
			       event->group_leader->nr_siblings);
	__perf_event_header_size(event, event->attr.sample_type);
}

1597 1598 1599 1600 1601 1602
static void perf_event__id_header_size(struct perf_event *event)
{
	struct perf_sample_data *data;
	u64 sample_type = event->attr.sample_type;
	u16 size = 0;

1603 1604 1605 1606 1607 1608
	if (sample_type & PERF_SAMPLE_TID)
		size += sizeof(data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		size += sizeof(data->time);

1609 1610 1611
	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		size += sizeof(data->id);

1612 1613 1614 1615 1616 1617 1618 1619 1620
	if (sample_type & PERF_SAMPLE_ID)
		size += sizeof(data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		size += sizeof(data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		size += sizeof(data->cpu_entry);

1621
	event->id_header_size = size;
1622 1623
}

P
Peter Zijlstra 已提交
1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644
static bool perf_event_validate_size(struct perf_event *event)
{
	/*
	 * The values computed here will be over-written when we actually
	 * attach the event.
	 */
	__perf_event_read_size(event, event->group_leader->nr_siblings + 1);
	__perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
	perf_event__id_header_size(event);

	/*
	 * Sum the lot; should not exceed the 64k limit we have on records.
	 * Conservative limit to allow for callchains and other variable fields.
	 */
	if (event->read_size + event->header_size +
	    event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
		return false;

	return true;
}

1645 1646
static void perf_group_attach(struct perf_event *event)
{
1647
	struct perf_event *group_leader = event->group_leader, *pos;
1648

1649 1650
	lockdep_assert_held(&event->ctx->lock);

P
Peter Zijlstra 已提交
1651 1652 1653 1654 1655 1656
	/*
	 * We can have double attach due to group movement in perf_event_open.
	 */
	if (event->attach_state & PERF_ATTACH_GROUP)
		return;

1657 1658 1659 1660 1661
	event->attach_state |= PERF_ATTACH_GROUP;

	if (group_leader == event)
		return;

P
Peter Zijlstra 已提交
1662 1663
	WARN_ON_ONCE(group_leader->ctx != event->ctx);

1664
	group_leader->group_caps &= event->event_caps;
1665 1666 1667

	list_add_tail(&event->group_entry, &group_leader->sibling_list);
	group_leader->nr_siblings++;
1668 1669 1670 1671 1672

	perf_event__header_size(group_leader);

	list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
		perf_event__header_size(pos);
1673 1674
}

1675
/*
1676
 * Remove a event from the lists for its context.
1677
 * Must be called with ctx->mutex and ctx->lock held.
1678
 */
1679
static void
1680
list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1681
{
P
Peter Zijlstra 已提交
1682 1683 1684
	WARN_ON_ONCE(event->ctx != ctx);
	lockdep_assert_held(&ctx->lock);

1685 1686 1687 1688
	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1689
		return;
1690 1691 1692

	event->attach_state &= ~PERF_ATTACH_CONTEXT;

1693
	list_update_cgroup_event(event, ctx, false);
S
Stephane Eranian 已提交
1694

1695 1696
	ctx->nr_events--;
	if (event->attr.inherit_stat)
1697
		ctx->nr_stat--;
1698

1699
	list_del_rcu(&event->event_entry);
1700

1701 1702
	if (event->group_leader == event)
		list_del_init(&event->group_entry);
P
Peter Zijlstra 已提交
1703

1704
	update_group_times(event);
1705 1706 1707 1708 1709 1710 1711 1712 1713 1714

	/*
	 * If event was in error state, then keep it
	 * that way, otherwise bogus counts will be
	 * returned on read(). The only way to get out
	 * of error state is by explicit re-enabling
	 * of the event
	 */
	if (event->state > PERF_EVENT_STATE_OFF)
		event->state = PERF_EVENT_STATE_OFF;
1715 1716

	ctx->generation++;
1717 1718
}

1719
static void perf_group_detach(struct perf_event *event)
1720 1721
{
	struct perf_event *sibling, *tmp;
1722 1723
	struct list_head *list = NULL;

1724 1725
	lockdep_assert_held(&event->ctx->lock);

1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739
	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_GROUP))
		return;

	event->attach_state &= ~PERF_ATTACH_GROUP;

	/*
	 * If this is a sibling, remove it from its group.
	 */
	if (event->group_leader != event) {
		list_del_init(&event->group_entry);
		event->group_leader->nr_siblings--;
1740
		goto out;
1741 1742 1743 1744
	}

	if (!list_empty(&event->group_entry))
		list = &event->group_entry;
1745

1746
	/*
1747 1748
	 * If this was a group event with sibling events then
	 * upgrade the siblings to singleton events by adding them
1749
	 * to whatever list we are on.
1750
	 */
1751
	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1752 1753
		if (list)
			list_move_tail(&sibling->group_entry, list);
1754
		sibling->group_leader = sibling;
1755 1756

		/* Inherit group flags from the previous leader */
1757
		sibling->group_caps = event->group_caps;
P
Peter Zijlstra 已提交
1758 1759

		WARN_ON_ONCE(sibling->ctx != event->ctx);
1760
	}
1761 1762 1763 1764 1765 1766

out:
	perf_event__header_size(event->group_leader);

	list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
		perf_event__header_size(tmp);
1767 1768
}

1769 1770
static bool is_orphaned_event(struct perf_event *event)
{
P
Peter Zijlstra 已提交
1771
	return event->state == PERF_EVENT_STATE_DEAD;
1772 1773
}

1774
static inline int __pmu_filter_match(struct perf_event *event)
1775 1776 1777 1778 1779
{
	struct pmu *pmu = event->pmu;
	return pmu->filter_match ? pmu->filter_match(event) : 1;
}

1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800
/*
 * Check whether we should attempt to schedule an event group based on
 * PMU-specific filtering. An event group can consist of HW and SW events,
 * potentially with a SW leader, so we must check all the filters, to
 * determine whether a group is schedulable:
 */
static inline int pmu_filter_match(struct perf_event *event)
{
	struct perf_event *child;

	if (!__pmu_filter_match(event))
		return 0;

	list_for_each_entry(child, &event->sibling_list, group_entry) {
		if (!__pmu_filter_match(child))
			return 0;
	}

	return 1;
}

1801 1802 1803
static inline int
event_filter_match(struct perf_event *event)
{
1804 1805
	return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
	       perf_cgroup_match(event) && pmu_filter_match(event);
1806 1807
}

1808 1809
static void
event_sched_out(struct perf_event *event,
1810
		  struct perf_cpu_context *cpuctx,
1811
		  struct perf_event_context *ctx)
1812
{
1813
	u64 tstamp = perf_event_time(event);
1814
	u64 delta;
P
Peter Zijlstra 已提交
1815 1816 1817 1818

	WARN_ON_ONCE(event->ctx != ctx);
	lockdep_assert_held(&ctx->lock);

1819 1820 1821 1822 1823 1824
	/*
	 * An event which could not be activated because of
	 * filter mismatch still needs to have its timings
	 * maintained, otherwise bogus information is return
	 * via read() for time_enabled, time_running:
	 */
1825 1826
	if (event->state == PERF_EVENT_STATE_INACTIVE &&
	    !event_filter_match(event)) {
S
Stephane Eranian 已提交
1827
		delta = tstamp - event->tstamp_stopped;
1828
		event->tstamp_running += delta;
1829
		event->tstamp_stopped = tstamp;
1830 1831
	}

1832
	if (event->state != PERF_EVENT_STATE_ACTIVE)
1833
		return;
1834

1835 1836
	perf_pmu_disable(event->pmu);

1837 1838 1839
	event->tstamp_stopped = tstamp;
	event->pmu->del(event, 0);
	event->oncpu = -1;
1840 1841 1842 1843
	event->state = PERF_EVENT_STATE_INACTIVE;
	if (event->pending_disable) {
		event->pending_disable = 0;
		event->state = PERF_EVENT_STATE_OFF;
1844
	}
1845

1846
	if (!is_software_event(event))
1847
		cpuctx->active_oncpu--;
1848 1849
	if (!--ctx->nr_active)
		perf_event_ctx_deactivate(ctx);
1850 1851
	if (event->attr.freq && event->attr.sample_freq)
		ctx->nr_freq--;
1852
	if (event->attr.exclusive || !cpuctx->active_oncpu)
1853
		cpuctx->exclusive = 0;
1854 1855

	perf_pmu_enable(event->pmu);
1856 1857
}

1858
static void
1859
group_sched_out(struct perf_event *group_event,
1860
		struct perf_cpu_context *cpuctx,
1861
		struct perf_event_context *ctx)
1862
{
1863
	struct perf_event *event;
1864
	int state = group_event->state;
1865

1866 1867
	perf_pmu_disable(ctx->pmu);

1868
	event_sched_out(group_event, cpuctx, ctx);
1869 1870 1871 1872

	/*
	 * Schedule out siblings (if any):
	 */
1873 1874
	list_for_each_entry(event, &group_event->sibling_list, group_entry)
		event_sched_out(event, cpuctx, ctx);
1875

1876 1877
	perf_pmu_enable(ctx->pmu);

1878
	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1879 1880 1881
		cpuctx->exclusive = 0;
}

1882
#define DETACH_GROUP	0x01UL
1883

T
Thomas Gleixner 已提交
1884
/*
1885
 * Cross CPU call to remove a performance event
T
Thomas Gleixner 已提交
1886
 *
1887
 * We disable the event on the hardware level first. After that we
T
Thomas Gleixner 已提交
1888 1889
 * remove it from the context list.
 */
1890 1891 1892 1893 1894
static void
__perf_remove_from_context(struct perf_event *event,
			   struct perf_cpu_context *cpuctx,
			   struct perf_event_context *ctx,
			   void *info)
T
Thomas Gleixner 已提交
1895
{
1896
	unsigned long flags = (unsigned long)info;
T
Thomas Gleixner 已提交
1897

1898
	event_sched_out(event, cpuctx, ctx);
1899
	if (flags & DETACH_GROUP)
1900
		perf_group_detach(event);
1901
	list_del_event(event, ctx);
1902 1903

	if (!ctx->nr_events && ctx->is_active) {
1904
		ctx->is_active = 0;
1905 1906 1907 1908
		if (ctx->task) {
			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
			cpuctx->task_ctx = NULL;
		}
1909
	}
T
Thomas Gleixner 已提交
1910 1911 1912
}

/*
1913
 * Remove the event from a task's (or a CPU's) list of events.
T
Thomas Gleixner 已提交
1914
 *
1915 1916
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1917 1918
 * remains valid.  This is OK when called from perf_release since
 * that only calls us on the top-level context, which can't be a clone.
1919
 * When called from perf_event_exit_task, it's OK because the
1920
 * context has been detached from its task.
T
Thomas Gleixner 已提交
1921
 */
1922
static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
T
Thomas Gleixner 已提交
1923
{
1924 1925 1926
	struct perf_event_context *ctx = event->ctx;

	lockdep_assert_held(&ctx->mutex);
T
Thomas Gleixner 已提交
1927

1928
	event_function_call(event, __perf_remove_from_context, (void *)flags);
1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946

	/*
	 * The above event_function_call() can NO-OP when it hits
	 * TASK_TOMBSTONE. In that case we must already have been detached
	 * from the context (by perf_event_exit_event()) but the grouping
	 * might still be in-tact.
	 */
	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
	if ((flags & DETACH_GROUP) &&
	    (event->attach_state & PERF_ATTACH_GROUP)) {
		/*
		 * Since in that case we cannot possibly be scheduled, simply
		 * detach now.
		 */
		raw_spin_lock_irq(&ctx->lock);
		perf_group_detach(event);
		raw_spin_unlock_irq(&ctx->lock);
	}
T
Thomas Gleixner 已提交
1947 1948
}

1949
/*
1950
 * Cross CPU call to disable a performance event
1951
 */
1952 1953 1954 1955
static void __perf_event_disable(struct perf_event *event,
				 struct perf_cpu_context *cpuctx,
				 struct perf_event_context *ctx,
				 void *info)
1956
{
1957 1958
	if (event->state < PERF_EVENT_STATE_INACTIVE)
		return;
1959

1960 1961 1962 1963 1964 1965 1966 1967
	update_context_time(ctx);
	update_cgrp_time_from_event(event);
	update_group_times(event);
	if (event == event->group_leader)
		group_sched_out(event, cpuctx, ctx);
	else
		event_sched_out(event, cpuctx, ctx);
	event->state = PERF_EVENT_STATE_OFF;
1968 1969
}

1970
/*
1971
 * Disable a event.
1972
 *
1973 1974
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1975
 * remains valid.  This condition is satisifed when called through
1976 1977
 * perf_event_for_each_child or perf_event_for_each because they
 * hold the top-level event's child_mutex, so any descendant that
1978 1979
 * goes to exit will block in perf_event_exit_event().
 *
1980
 * When called from perf_pending_event it's OK because event->ctx
1981
 * is the current context on this CPU and preemption is disabled,
1982
 * hence we can't get into perf_event_task_sched_out for this context.
1983
 */
P
Peter Zijlstra 已提交
1984
static void _perf_event_disable(struct perf_event *event)
1985
{
1986
	struct perf_event_context *ctx = event->ctx;
1987

1988
	raw_spin_lock_irq(&ctx->lock);
1989
	if (event->state <= PERF_EVENT_STATE_OFF) {
1990
		raw_spin_unlock_irq(&ctx->lock);
1991
		return;
1992
	}
1993
	raw_spin_unlock_irq(&ctx->lock);
1994

1995 1996 1997 1998 1999 2000
	event_function_call(event, __perf_event_disable, NULL);
}

void perf_event_disable_local(struct perf_event *event)
{
	event_function_local(event, __perf_event_disable, NULL);
2001
}
P
Peter Zijlstra 已提交
2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

/*
 * Strictly speaking kernel users cannot create groups and therefore this
 * interface does not need the perf_event_ctx_lock() magic.
 */
void perf_event_disable(struct perf_event *event)
{
	struct perf_event_context *ctx;

	ctx = perf_event_ctx_lock(event);
	_perf_event_disable(event);
	perf_event_ctx_unlock(event, ctx);
}
2015
EXPORT_SYMBOL_GPL(perf_event_disable);
2016

2017 2018 2019 2020 2021 2022
void perf_event_disable_inatomic(struct perf_event *event)
{
	event->pending_disable = 1;
	irq_work_queue(&event->pending);
}

S
Stephane Eranian 已提交
2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057
static void perf_set_shadow_time(struct perf_event *event,
				 struct perf_event_context *ctx,
				 u64 tstamp)
{
	/*
	 * use the correct time source for the time snapshot
	 *
	 * We could get by without this by leveraging the
	 * fact that to get to this function, the caller
	 * has most likely already called update_context_time()
	 * and update_cgrp_time_xx() and thus both timestamp
	 * are identical (or very close). Given that tstamp is,
	 * already adjusted for cgroup, we could say that:
	 *    tstamp - ctx->timestamp
	 * is equivalent to
	 *    tstamp - cgrp->timestamp.
	 *
	 * Then, in perf_output_read(), the calculation would
	 * work with no changes because:
	 * - event is guaranteed scheduled in
	 * - no scheduled out in between
	 * - thus the timestamp would be the same
	 *
	 * But this is a bit hairy.
	 *
	 * So instead, we have an explicit cgroup call to remain
	 * within the time time source all along. We believe it
	 * is cleaner and simpler to understand.
	 */
	if (is_cgroup_event(event))
		perf_cgroup_set_shadow_time(event, tstamp);
	else
		event->shadow_ctx_time = tstamp - ctx->timestamp;
}

P
Peter Zijlstra 已提交
2058 2059 2060
#define MAX_INTERRUPTS (~0ULL)

static void perf_log_throttle(struct perf_event *event, int enable);
2061
static void perf_log_itrace_start(struct perf_event *event);
P
Peter Zijlstra 已提交
2062

2063
static int
2064
event_sched_in(struct perf_event *event,
2065
		 struct perf_cpu_context *cpuctx,
2066
		 struct perf_event_context *ctx)
2067
{
2068
	u64 tstamp = perf_event_time(event);
2069
	int ret = 0;
2070

2071 2072
	lockdep_assert_held(&ctx->lock);

2073
	if (event->state <= PERF_EVENT_STATE_OFF)
2074 2075
		return 0;

2076 2077 2078 2079 2080 2081 2082
	WRITE_ONCE(event->oncpu, smp_processor_id());
	/*
	 * Order event::oncpu write to happen before the ACTIVE state
	 * is visible.
	 */
	smp_wmb();
	WRITE_ONCE(event->state, PERF_EVENT_STATE_ACTIVE);
P
Peter Zijlstra 已提交
2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093

	/*
	 * Unthrottle events, since we scheduled we might have missed several
	 * ticks already, also for a heavily scheduling task there is little
	 * guarantee it'll get a tick in a timely manner.
	 */
	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
		perf_log_throttle(event, 1);
		event->hw.interrupts = 0;
	}

2094 2095 2096 2097 2098
	/*
	 * The new state must be visible before we turn it on in the hardware:
	 */
	smp_wmb();

2099 2100
	perf_pmu_disable(event->pmu);

2101 2102
	perf_set_shadow_time(event, ctx, tstamp);

2103 2104
	perf_log_itrace_start(event);

P
Peter Zijlstra 已提交
2105
	if (event->pmu->add(event, PERF_EF_START)) {
2106 2107
		event->state = PERF_EVENT_STATE_INACTIVE;
		event->oncpu = -1;
2108 2109
		ret = -EAGAIN;
		goto out;
2110 2111
	}

2112 2113
	event->tstamp_running += tstamp - event->tstamp_stopped;

2114
	if (!is_software_event(event))
2115
		cpuctx->active_oncpu++;
2116 2117
	if (!ctx->nr_active++)
		perf_event_ctx_activate(ctx);
2118 2119
	if (event->attr.freq && event->attr.sample_freq)
		ctx->nr_freq++;
2120

2121
	if (event->attr.exclusive)
2122 2123
		cpuctx->exclusive = 1;

2124 2125 2126 2127
out:
	perf_pmu_enable(event->pmu);

	return ret;
2128 2129
}

2130
static int
2131
group_sched_in(struct perf_event *group_event,
2132
	       struct perf_cpu_context *cpuctx,
2133
	       struct perf_event_context *ctx)
2134
{
2135
	struct perf_event *event, *partial_group = NULL;
P
Peter Zijlstra 已提交
2136
	struct pmu *pmu = ctx->pmu;
2137 2138
	u64 now = ctx->time;
	bool simulate = false;
2139

2140
	if (group_event->state == PERF_EVENT_STATE_OFF)
2141 2142
		return 0;

2143
	pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2144

2145
	if (event_sched_in(group_event, cpuctx, ctx)) {
P
Peter Zijlstra 已提交
2146
		pmu->cancel_txn(pmu);
2147
		perf_mux_hrtimer_restart(cpuctx);
2148
		return -EAGAIN;
2149
	}
2150 2151 2152 2153

	/*
	 * Schedule in siblings as one group (if any):
	 */
2154
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2155
		if (event_sched_in(event, cpuctx, ctx)) {
2156
			partial_group = event;
2157 2158 2159 2160
			goto group_error;
		}
	}

2161
	if (!pmu->commit_txn(pmu))
2162
		return 0;
2163

2164 2165 2166 2167
group_error:
	/*
	 * Groups can be scheduled in as one unit only, so undo any
	 * partial group before returning:
2168 2169 2170 2171 2172 2173 2174 2175 2176 2177
	 * The events up to the failed event are scheduled out normally,
	 * tstamp_stopped will be updated.
	 *
	 * The failed events and the remaining siblings need to have
	 * their timings updated as if they had gone thru event_sched_in()
	 * and event_sched_out(). This is required to get consistent timings
	 * across the group. This also takes care of the case where the group
	 * could never be scheduled by ensuring tstamp_stopped is set to mark
	 * the time the event was actually stopped, such that time delta
	 * calculation in update_event_times() is correct.
2178
	 */
2179 2180
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
		if (event == partial_group)
2181 2182 2183 2184 2185 2186 2187 2188
			simulate = true;

		if (simulate) {
			event->tstamp_running += now - event->tstamp_stopped;
			event->tstamp_stopped = now;
		} else {
			event_sched_out(event, cpuctx, ctx);
		}
2189
	}
2190
	event_sched_out(group_event, cpuctx, ctx);
2191

P
Peter Zijlstra 已提交
2192
	pmu->cancel_txn(pmu);
2193

2194
	perf_mux_hrtimer_restart(cpuctx);
2195

2196 2197 2198
	return -EAGAIN;
}

2199
/*
2200
 * Work out whether we can put this event group on the CPU now.
2201
 */
2202
static int group_can_go_on(struct perf_event *event,
2203 2204 2205 2206
			   struct perf_cpu_context *cpuctx,
			   int can_add_hw)
{
	/*
2207
	 * Groups consisting entirely of software events can always go on.
2208
	 */
2209
	if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2210 2211 2212
		return 1;
	/*
	 * If an exclusive group is already on, no other hardware
2213
	 * events can go on.
2214 2215 2216 2217 2218
	 */
	if (cpuctx->exclusive)
		return 0;
	/*
	 * If this group is exclusive and there are already
2219
	 * events on the CPU, it can't go on.
2220
	 */
2221
	if (event->attr.exclusive && cpuctx->active_oncpu)
2222 2223 2224 2225 2226 2227 2228 2229
		return 0;
	/*
	 * Otherwise, try to add it if all previous groups were able
	 * to go on.
	 */
	return can_add_hw;
}

2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256
/*
 * Complement to update_event_times(). This computes the tstamp_* values to
 * continue 'enabled' state from @now, and effectively discards the time
 * between the prior tstamp_stopped and now (as we were in the OFF state, or
 * just switched (context) time base).
 *
 * This further assumes '@event->state == INACTIVE' (we just came from OFF) and
 * cannot have been scheduled in yet. And going into INACTIVE state means
 * '@event->tstamp_stopped = @now'.
 *
 * Thus given the rules of update_event_times():
 *
 *   total_time_enabled = tstamp_stopped - tstamp_enabled
 *   total_time_running = tstamp_stopped - tstamp_running
 *
 * We can insert 'tstamp_stopped == now' and reverse them to compute new
 * tstamp_* values.
 */
static void __perf_event_enable_time(struct perf_event *event, u64 now)
{
	WARN_ON_ONCE(event->state != PERF_EVENT_STATE_INACTIVE);

	event->tstamp_stopped = now;
	event->tstamp_enabled = now - event->total_time_enabled;
	event->tstamp_running = now - event->total_time_running;
}

2257 2258
static void add_event_to_ctx(struct perf_event *event,
			       struct perf_event_context *ctx)
2259
{
2260 2261
	u64 tstamp = perf_event_time(event);

2262
	list_add_event(event, ctx);
2263
	perf_group_attach(event);
2264 2265 2266 2267 2268 2269
	/*
	 * We can be called with event->state == STATE_OFF when we create with
	 * .disabled = 1. In that case the IOC_ENABLE will call this function.
	 */
	if (event->state == PERF_EVENT_STATE_INACTIVE)
		__perf_event_enable_time(event, tstamp);
2270 2271
}

2272 2273 2274
static void ctx_sched_out(struct perf_event_context *ctx,
			  struct perf_cpu_context *cpuctx,
			  enum event_type_t event_type);
2275 2276 2277 2278 2279
static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
	     enum event_type_t event_type,
	     struct task_struct *task);
2280

2281
static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2282 2283
			       struct perf_event_context *ctx,
			       enum event_type_t event_type)
2284 2285 2286 2287 2288 2289 2290
{
	if (!cpuctx->task_ctx)
		return;

	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
		return;

2291
	ctx_sched_out(ctx, cpuctx, event_type);
2292 2293
}

2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305
static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
				struct perf_event_context *ctx,
				struct task_struct *task)
{
	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
}

2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320
/*
 * We want to maintain the following priority of scheduling:
 *  - CPU pinned (EVENT_CPU | EVENT_PINNED)
 *  - task pinned (EVENT_PINNED)
 *  - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
 *  - task flexible (EVENT_FLEXIBLE).
 *
 * In order to avoid unscheduling and scheduling back in everything every
 * time an event is added, only do it for the groups of equal priority and
 * below.
 *
 * This can be called after a batch operation on task events, in which case
 * event_type is a bit mask of the types of events involved. For CPU events,
 * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
 */
2321
static void ctx_resched(struct perf_cpu_context *cpuctx,
2322 2323
			struct perf_event_context *task_ctx,
			enum event_type_t event_type)
2324
{
2325 2326 2327 2328 2329 2330 2331 2332 2333 2334
	enum event_type_t ctx_event_type = event_type & EVENT_ALL;
	bool cpu_event = !!(event_type & EVENT_CPU);

	/*
	 * If pinned groups are involved, flexible groups also need to be
	 * scheduled out.
	 */
	if (event_type & EVENT_PINNED)
		event_type |= EVENT_FLEXIBLE;

2335 2336
	perf_pmu_disable(cpuctx->ctx.pmu);
	if (task_ctx)
2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350
		task_ctx_sched_out(cpuctx, task_ctx, event_type);

	/*
	 * Decide which cpu ctx groups to schedule out based on the types
	 * of events that caused rescheduling:
	 *  - EVENT_CPU: schedule out corresponding groups;
	 *  - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
	 *  - otherwise, do nothing more.
	 */
	if (cpu_event)
		cpu_ctx_sched_out(cpuctx, ctx_event_type);
	else if (ctx_event_type & EVENT_PINNED)
		cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);

2351 2352
	perf_event_sched_in(cpuctx, task_ctx, current);
	perf_pmu_enable(cpuctx->ctx.pmu);
2353 2354
}

T
Thomas Gleixner 已提交
2355
/*
2356
 * Cross CPU call to install and enable a performance event
2357
 *
2358 2359
 * Very similar to remote_function() + event_function() but cannot assume that
 * things like ctx->is_active and cpuctx->task_ctx are set.
T
Thomas Gleixner 已提交
2360
 */
2361
static int  __perf_install_in_context(void *info)
T
Thomas Gleixner 已提交
2362
{
2363 2364
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
2365
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2366
	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2367
	bool reprogram = true;
2368
	int ret = 0;
T
Thomas Gleixner 已提交
2369

2370
	raw_spin_lock(&cpuctx->ctx.lock);
2371
	if (ctx->task) {
2372 2373
		raw_spin_lock(&ctx->lock);
		task_ctx = ctx;
2374

2375
		reprogram = (ctx->task == current);
2376

2377
		/*
2378 2379 2380 2381 2382
		 * If the task is running, it must be running on this CPU,
		 * otherwise we cannot reprogram things.
		 *
		 * If its not running, we don't care, ctx->lock will
		 * serialize against it becoming runnable.
2383
		 */
2384 2385 2386 2387
		if (task_curr(ctx->task) && !reprogram) {
			ret = -ESRCH;
			goto unlock;
		}
2388

2389
		WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2390 2391
	} else if (task_ctx) {
		raw_spin_lock(&task_ctx->lock);
2392
	}
2393

2394
	if (reprogram) {
2395 2396
		ctx_sched_out(ctx, cpuctx, EVENT_TIME);
		add_event_to_ctx(event, ctx);
2397
		ctx_resched(cpuctx, task_ctx, get_event_type(event));
2398 2399 2400 2401
	} else {
		add_event_to_ctx(event, ctx);
	}

2402
unlock:
2403
	perf_ctx_unlock(cpuctx, task_ctx);
2404

2405
	return ret;
T
Thomas Gleixner 已提交
2406 2407 2408
}

/*
2409 2410 2411
 * Attach a performance event to a context.
 *
 * Very similar to event_function_call, see comment there.
T
Thomas Gleixner 已提交
2412 2413
 */
static void
2414 2415
perf_install_in_context(struct perf_event_context *ctx,
			struct perf_event *event,
T
Thomas Gleixner 已提交
2416 2417
			int cpu)
{
2418
	struct task_struct *task = READ_ONCE(ctx->task);
2419

2420 2421
	lockdep_assert_held(&ctx->mutex);

2422 2423
	if (event->cpu != -1)
		event->cpu = cpu;
2424

2425 2426 2427 2428 2429 2430
	/*
	 * Ensures that if we can observe event->ctx, both the event and ctx
	 * will be 'complete'. See perf_iterate_sb_cpu().
	 */
	smp_store_release(&event->ctx, ctx);

2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441
	if (!task) {
		cpu_function_call(cpu, __perf_install_in_context, event);
		return;
	}

	/*
	 * Should not happen, we validate the ctx is still alive before calling.
	 */
	if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
		return;

2442 2443 2444
	/*
	 * Installing events is tricky because we cannot rely on ctx->is_active
	 * to be set in case this is the nr_events 0 -> 1 transition.
2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463
	 *
	 * Instead we use task_curr(), which tells us if the task is running.
	 * However, since we use task_curr() outside of rq::lock, we can race
	 * against the actual state. This means the result can be wrong.
	 *
	 * If we get a false positive, we retry, this is harmless.
	 *
	 * If we get a false negative, things are complicated. If we are after
	 * perf_event_context_sched_in() ctx::lock will serialize us, and the
	 * value must be correct. If we're before, it doesn't matter since
	 * perf_event_context_sched_in() will program the counter.
	 *
	 * However, this hinges on the remote context switch having observed
	 * our task->perf_event_ctxp[] store, such that it will in fact take
	 * ctx::lock in perf_event_context_sched_in().
	 *
	 * We do this by task_function_call(), if the IPI fails to hit the task
	 * we know any future context switch of task must see the
	 * perf_event_ctpx[] store.
2464
	 */
2465

2466
	/*
2467 2468 2469 2470
	 * This smp_mb() orders the task->perf_event_ctxp[] store with the
	 * task_cpu() load, such that if the IPI then does not find the task
	 * running, a future context switch of that task must observe the
	 * store.
2471
	 */
2472 2473 2474
	smp_mb();
again:
	if (!task_function_call(task, __perf_install_in_context, event))
2475 2476 2477 2478
		return;

	raw_spin_lock_irq(&ctx->lock);
	task = ctx->task;
2479
	if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2480 2481 2482 2483 2484
		/*
		 * Cannot happen because we already checked above (which also
		 * cannot happen), and we hold ctx->mutex, which serializes us
		 * against perf_event_exit_task_context().
		 */
2485 2486 2487
		raw_spin_unlock_irq(&ctx->lock);
		return;
	}
2488
	/*
2489 2490
	 * If the task is not running, ctx->lock will avoid it becoming so,
	 * thus we can safely install the event.
2491
	 */
2492 2493 2494 2495 2496 2497
	if (task_curr(task)) {
		raw_spin_unlock_irq(&ctx->lock);
		goto again;
	}
	add_event_to_ctx(event, ctx);
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
2498 2499
}

2500
/*
2501
 * Put a event into inactive state and update time fields.
2502 2503 2504 2505 2506 2507
 * Enabling the leader of a group effectively enables all
 * the group members that aren't explicitly disabled, so we
 * have to update their ->tstamp_enabled also.
 * Note: this works for group members as well as group leaders
 * since the non-leader members' sibling_lists will be empty.
 */
2508
static void __perf_event_mark_enabled(struct perf_event *event)
2509
{
2510
	struct perf_event *sub;
2511
	u64 tstamp = perf_event_time(event);
2512

2513
	event->state = PERF_EVENT_STATE_INACTIVE;
2514
	__perf_event_enable_time(event, tstamp);
P
Peter Zijlstra 已提交
2515
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
2516
		/* XXX should not be > INACTIVE if event isn't */
2517
		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
2518
			__perf_event_enable_time(sub, tstamp);
P
Peter Zijlstra 已提交
2519
	}
2520 2521
}

2522
/*
2523
 * Cross CPU call to enable a performance event
2524
 */
2525 2526 2527 2528
static void __perf_event_enable(struct perf_event *event,
				struct perf_cpu_context *cpuctx,
				struct perf_event_context *ctx,
				void *info)
2529
{
2530
	struct perf_event *leader = event->group_leader;
2531
	struct perf_event_context *task_ctx;
2532

P
Peter Zijlstra 已提交
2533 2534
	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
	    event->state <= PERF_EVENT_STATE_ERROR)
2535
		return;
2536

2537 2538 2539
	if (ctx->is_active)
		ctx_sched_out(ctx, cpuctx, EVENT_TIME);

2540
	__perf_event_mark_enabled(event);
2541

2542 2543 2544
	if (!ctx->is_active)
		return;

S
Stephane Eranian 已提交
2545
	if (!event_filter_match(event)) {
2546
		if (is_cgroup_event(event))
S
Stephane Eranian 已提交
2547
			perf_cgroup_defer_enabled(event);
2548
		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2549
		return;
S
Stephane Eranian 已提交
2550
	}
2551

2552
	/*
2553
	 * If the event is in a group and isn't the group leader,
2554
	 * then don't put it on unless the group is on.
2555
	 */
2556 2557
	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2558
		return;
2559
	}
2560

2561 2562 2563
	task_ctx = cpuctx->task_ctx;
	if (ctx->task)
		WARN_ON_ONCE(task_ctx != ctx);
2564

2565
	ctx_resched(cpuctx, task_ctx, get_event_type(event));
2566 2567
}

2568
/*
2569
 * Enable a event.
2570
 *
2571 2572
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
2573
 * remains valid.  This condition is satisfied when called through
2574 2575
 * perf_event_for_each_child or perf_event_for_each as described
 * for perf_event_disable.
2576
 */
P
Peter Zijlstra 已提交
2577
static void _perf_event_enable(struct perf_event *event)
2578
{
2579
	struct perf_event_context *ctx = event->ctx;
2580

2581
	raw_spin_lock_irq(&ctx->lock);
P
Peter Zijlstra 已提交
2582 2583
	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
	    event->state <  PERF_EVENT_STATE_ERROR) {
2584
		raw_spin_unlock_irq(&ctx->lock);
2585 2586 2587 2588
		return;
	}

	/*
2589
	 * If the event is in error state, clear that first.
2590 2591 2592 2593
	 *
	 * That way, if we see the event in error state below, we know that it
	 * has gone back into error state, as distinct from the task having
	 * been scheduled away before the cross-call arrived.
2594
	 */
2595 2596
	if (event->state == PERF_EVENT_STATE_ERROR)
		event->state = PERF_EVENT_STATE_OFF;
2597
	raw_spin_unlock_irq(&ctx->lock);
2598

2599
	event_function_call(event, __perf_event_enable, NULL);
2600
}
P
Peter Zijlstra 已提交
2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612

/*
 * See perf_event_disable();
 */
void perf_event_enable(struct perf_event *event)
{
	struct perf_event_context *ctx;

	ctx = perf_event_ctx_lock(event);
	_perf_event_enable(event);
	perf_event_ctx_unlock(event, ctx);
}
2613
EXPORT_SYMBOL_GPL(perf_event_enable);
2614

2615 2616 2617 2618 2619
struct stop_event_data {
	struct perf_event	*event;
	unsigned int		restart;
};

2620 2621
static int __perf_event_stop(void *info)
{
2622 2623
	struct stop_event_data *sd = info;
	struct perf_event *event = sd->event;
2624

2625
	/* if it's already INACTIVE, do nothing */
2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640
	if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
		return 0;

	/* matches smp_wmb() in event_sched_in() */
	smp_rmb();

	/*
	 * There is a window with interrupts enabled before we get here,
	 * so we need to check again lest we try to stop another CPU's event.
	 */
	if (READ_ONCE(event->oncpu) != smp_processor_id())
		return -EAGAIN;

	event->pmu->stop(event, PERF_EF_UPDATE);

2641 2642 2643 2644 2645 2646 2647 2648 2649 2650
	/*
	 * May race with the actual stop (through perf_pmu_output_stop()),
	 * but it is only used for events with AUX ring buffer, and such
	 * events will refuse to restart because of rb::aux_mmap_count==0,
	 * see comments in perf_aux_output_begin().
	 *
	 * Since this is happening on a event-local CPU, no trace is lost
	 * while restarting.
	 */
	if (sd->restart)
2651
		event->pmu->start(event, 0);
2652

2653 2654 2655
	return 0;
}

2656
static int perf_event_stop(struct perf_event *event, int restart)
2657 2658 2659
{
	struct stop_event_data sd = {
		.event		= event,
2660
		.restart	= restart,
2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720
	};
	int ret = 0;

	do {
		if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
			return 0;

		/* matches smp_wmb() in event_sched_in() */
		smp_rmb();

		/*
		 * We only want to restart ACTIVE events, so if the event goes
		 * inactive here (event->oncpu==-1), there's nothing more to do;
		 * fall through with ret==-ENXIO.
		 */
		ret = cpu_function_call(READ_ONCE(event->oncpu),
					__perf_event_stop, &sd);
	} while (ret == -EAGAIN);

	return ret;
}

/*
 * In order to contain the amount of racy and tricky in the address filter
 * configuration management, it is a two part process:
 *
 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
 *      we update the addresses of corresponding vmas in
 *	event::addr_filters_offs array and bump the event::addr_filters_gen;
 * (p2) when an event is scheduled in (pmu::add), it calls
 *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
 *      if the generation has changed since the previous call.
 *
 * If (p1) happens while the event is active, we restart it to force (p2).
 *
 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
 *     pre-existing mappings, called once when new filters arrive via SET_FILTER
 *     ioctl;
 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
 *     registered mapping, called for every new mmap(), with mm::mmap_sem down
 *     for reading;
 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
 *     of exec.
 */
void perf_event_addr_filters_sync(struct perf_event *event)
{
	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);

	if (!has_addr_filter(event))
		return;

	raw_spin_lock(&ifh->lock);
	if (event->addr_filters_gen != event->hw.addr_filters_gen) {
		event->pmu->addr_filters_sync(event);
		event->hw.addr_filters_gen = event->addr_filters_gen;
	}
	raw_spin_unlock(&ifh->lock);
}
EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);

P
Peter Zijlstra 已提交
2721
static int _perf_event_refresh(struct perf_event *event, int refresh)
2722
{
2723
	/*
2724
	 * not supported on inherited events
2725
	 */
2726
	if (event->attr.inherit || !is_sampling_event(event))
2727 2728
		return -EINVAL;

2729
	atomic_add(refresh, &event->event_limit);
P
Peter Zijlstra 已提交
2730
	_perf_event_enable(event);
2731 2732

	return 0;
2733
}
P
Peter Zijlstra 已提交
2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748

/*
 * See perf_event_disable()
 */
int perf_event_refresh(struct perf_event *event, int refresh)
{
	struct perf_event_context *ctx;
	int ret;

	ctx = perf_event_ctx_lock(event);
	ret = _perf_event_refresh(event, refresh);
	perf_event_ctx_unlock(event, ctx);

	return ret;
}
2749
EXPORT_SYMBOL_GPL(perf_event_refresh);
2750

2751 2752 2753
static void ctx_sched_out(struct perf_event_context *ctx,
			  struct perf_cpu_context *cpuctx,
			  enum event_type_t event_type)
2754
{
2755
	int is_active = ctx->is_active;
P
Peter Zijlstra 已提交
2756
	struct perf_event *event;
2757

P
Peter Zijlstra 已提交
2758
	lockdep_assert_held(&ctx->lock);
2759

2760 2761 2762 2763 2764 2765 2766
	if (likely(!ctx->nr_events)) {
		/*
		 * See __perf_remove_from_context().
		 */
		WARN_ON_ONCE(ctx->is_active);
		if (ctx->task)
			WARN_ON_ONCE(cpuctx->task_ctx);
2767
		return;
2768 2769
	}

2770
	ctx->is_active &= ~event_type;
2771 2772 2773
	if (!(ctx->is_active & EVENT_ALL))
		ctx->is_active = 0;

2774 2775 2776 2777 2778
	if (ctx->task) {
		WARN_ON_ONCE(cpuctx->task_ctx != ctx);
		if (!ctx->is_active)
			cpuctx->task_ctx = NULL;
	}
2779

2780 2781 2782 2783 2784 2785 2786 2787 2788 2789
	/*
	 * Always update time if it was set; not only when it changes.
	 * Otherwise we can 'forget' to update time for any but the last
	 * context we sched out. For example:
	 *
	 *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
	 *   ctx_sched_out(.event_type = EVENT_PINNED)
	 *
	 * would only update time for the pinned events.
	 */
2790 2791 2792 2793 2794 2795
	if (is_active & EVENT_TIME) {
		/* update (and stop) ctx time */
		update_context_time(ctx);
		update_cgrp_time_from_cpuctx(cpuctx);
	}

2796 2797
	is_active ^= ctx->is_active; /* changed bits */

2798
	if (!ctx->nr_active || !(is_active & EVENT_ALL))
2799
		return;
2800

P
Peter Zijlstra 已提交
2801
	perf_pmu_disable(ctx->pmu);
2802
	if (is_active & EVENT_PINNED) {
2803 2804
		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
2805
	}
2806

2807
	if (is_active & EVENT_FLEXIBLE) {
2808
		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2809
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
2810
	}
P
Peter Zijlstra 已提交
2811
	perf_pmu_enable(ctx->pmu);
2812 2813
}

2814
/*
2815 2816 2817 2818 2819 2820
 * Test whether two contexts are equivalent, i.e. whether they have both been
 * cloned from the same version of the same context.
 *
 * Equivalence is measured using a generation number in the context that is
 * incremented on each modification to it; see unclone_ctx(), list_add_event()
 * and list_del_event().
2821
 */
2822 2823
static int context_equiv(struct perf_event_context *ctx1,
			 struct perf_event_context *ctx2)
2824
{
2825 2826 2827
	lockdep_assert_held(&ctx1->lock);
	lockdep_assert_held(&ctx2->lock);

2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849
	/* Pinning disables the swap optimization */
	if (ctx1->pin_count || ctx2->pin_count)
		return 0;

	/* If ctx1 is the parent of ctx2 */
	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
		return 1;

	/* If ctx2 is the parent of ctx1 */
	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
		return 1;

	/*
	 * If ctx1 and ctx2 have the same parent; we flatten the parent
	 * hierarchy, see perf_event_init_context().
	 */
	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
			ctx1->parent_gen == ctx2->parent_gen)
		return 1;

	/* Unmatched */
	return 0;
2850 2851
}

2852 2853
static void __perf_event_sync_stat(struct perf_event *event,
				     struct perf_event *next_event)
2854 2855 2856
{
	u64 value;

2857
	if (!event->attr.inherit_stat)
2858 2859 2860
		return;

	/*
2861
	 * Update the event value, we cannot use perf_event_read()
2862 2863
	 * because we're in the middle of a context switch and have IRQs
	 * disabled, which upsets smp_call_function_single(), however
2864
	 * we know the event must be on the current CPU, therefore we
2865 2866
	 * don't need to use it.
	 */
2867 2868
	switch (event->state) {
	case PERF_EVENT_STATE_ACTIVE:
2869 2870
		event->pmu->read(event);
		/* fall-through */
2871

2872 2873
	case PERF_EVENT_STATE_INACTIVE:
		update_event_times(event);
2874 2875 2876 2877 2878 2879 2880
		break;

	default:
		break;
	}

	/*
2881
	 * In order to keep per-task stats reliable we need to flip the event
2882 2883
	 * values when we flip the contexts.
	 */
2884 2885 2886
	value = local64_read(&next_event->count);
	value = local64_xchg(&event->count, value);
	local64_set(&next_event->count, value);
2887

2888 2889
	swap(event->total_time_enabled, next_event->total_time_enabled);
	swap(event->total_time_running, next_event->total_time_running);
2890

2891
	/*
2892
	 * Since we swizzled the values, update the user visible data too.
2893
	 */
2894 2895
	perf_event_update_userpage(event);
	perf_event_update_userpage(next_event);
2896 2897
}

2898 2899
static void perf_event_sync_stat(struct perf_event_context *ctx,
				   struct perf_event_context *next_ctx)
2900
{
2901
	struct perf_event *event, *next_event;
2902 2903 2904 2905

	if (!ctx->nr_stat)
		return;

2906 2907
	update_context_time(ctx);

2908 2909
	event = list_first_entry(&ctx->event_list,
				   struct perf_event, event_entry);
2910

2911 2912
	next_event = list_first_entry(&next_ctx->event_list,
					struct perf_event, event_entry);
2913

2914 2915
	while (&event->event_entry != &ctx->event_list &&
	       &next_event->event_entry != &next_ctx->event_list) {
2916

2917
		__perf_event_sync_stat(event, next_event);
2918

2919 2920
		event = list_next_entry(event, event_entry);
		next_event = list_next_entry(next_event, event_entry);
2921 2922 2923
	}
}

2924 2925
static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
					 struct task_struct *next)
T
Thomas Gleixner 已提交
2926
{
P
Peter Zijlstra 已提交
2927
	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2928
	struct perf_event_context *next_ctx;
2929
	struct perf_event_context *parent, *next_parent;
P
Peter Zijlstra 已提交
2930
	struct perf_cpu_context *cpuctx;
2931
	int do_switch = 1;
T
Thomas Gleixner 已提交
2932

P
Peter Zijlstra 已提交
2933 2934
	if (likely(!ctx))
		return;
2935

P
Peter Zijlstra 已提交
2936 2937
	cpuctx = __get_cpu_context(ctx);
	if (!cpuctx->task_ctx)
T
Thomas Gleixner 已提交
2938 2939
		return;

2940
	rcu_read_lock();
P
Peter Zijlstra 已提交
2941
	next_ctx = next->perf_event_ctxp[ctxn];
2942 2943 2944 2945 2946 2947 2948
	if (!next_ctx)
		goto unlock;

	parent = rcu_dereference(ctx->parent_ctx);
	next_parent = rcu_dereference(next_ctx->parent_ctx);

	/* If neither context have a parent context; they cannot be clones. */
2949
	if (!parent && !next_parent)
2950 2951 2952
		goto unlock;

	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2953 2954 2955 2956 2957 2958 2959 2960 2961
		/*
		 * Looks like the two contexts are clones, so we might be
		 * able to optimize the context switch.  We lock both
		 * contexts and check that they are clones under the
		 * lock (including re-checking that neither has been
		 * uncloned in the meantime).  It doesn't matter which
		 * order we take the locks because no other cpu could
		 * be trying to lock both of these tasks.
		 */
2962 2963
		raw_spin_lock(&ctx->lock);
		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2964
		if (context_equiv(ctx, next_ctx)) {
2965 2966
			WRITE_ONCE(ctx->task, next);
			WRITE_ONCE(next_ctx->task, task);
2967 2968 2969

			swap(ctx->task_ctx_data, next_ctx->task_ctx_data);

2970 2971 2972 2973 2974 2975 2976 2977 2978 2979
			/*
			 * RCU_INIT_POINTER here is safe because we've not
			 * modified the ctx and the above modification of
			 * ctx->task and ctx->task_ctx_data are immaterial
			 * since those values are always verified under
			 * ctx->lock which we're now holding.
			 */
			RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
			RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);

2980
			do_switch = 0;
2981

2982
			perf_event_sync_stat(ctx, next_ctx);
2983
		}
2984 2985
		raw_spin_unlock(&next_ctx->lock);
		raw_spin_unlock(&ctx->lock);
2986
	}
2987
unlock:
2988
	rcu_read_unlock();
2989

2990
	if (do_switch) {
2991
		raw_spin_lock(&ctx->lock);
2992
		task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
2993
		raw_spin_unlock(&ctx->lock);
2994
	}
T
Thomas Gleixner 已提交
2995 2996
}

2997 2998
static DEFINE_PER_CPU(struct list_head, sched_cb_list);

2999 3000
void perf_sched_cb_dec(struct pmu *pmu)
{
3001 3002
	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

3003
	this_cpu_dec(perf_sched_cb_usages);
3004 3005 3006

	if (!--cpuctx->sched_cb_usage)
		list_del(&cpuctx->sched_cb_entry);
3007 3008
}

3009

3010 3011
void perf_sched_cb_inc(struct pmu *pmu)
{
3012 3013 3014 3015 3016
	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

	if (!cpuctx->sched_cb_usage++)
		list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));

3017 3018 3019 3020 3021 3022
	this_cpu_inc(perf_sched_cb_usages);
}

/*
 * This function provides the context switch callback to the lower code
 * layer. It is invoked ONLY when the context switch callback is enabled.
3023 3024 3025 3026
 *
 * This callback is relevant even to per-cpu events; for example multi event
 * PEBS requires this to provide PID/TID information. This requires we flush
 * all queued PEBS records before we context switch to a new task.
3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037
 */
static void perf_pmu_sched_task(struct task_struct *prev,
				struct task_struct *next,
				bool sched_in)
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;

	if (prev == next)
		return;

3038
	list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
3039
		pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
3040

3041 3042
		if (WARN_ON_ONCE(!pmu->sched_task))
			continue;
3043

3044 3045
		perf_ctx_lock(cpuctx, cpuctx->task_ctx);
		perf_pmu_disable(pmu);
3046

3047
		pmu->sched_task(cpuctx->task_ctx, sched_in);
3048

3049 3050
		perf_pmu_enable(pmu);
		perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3051 3052 3053
	}
}

3054 3055 3056
static void perf_event_switch(struct task_struct *task,
			      struct task_struct *next_prev, bool sched_in);

P
Peter Zijlstra 已提交
3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070
#define for_each_task_context_nr(ctxn)					\
	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)

/*
 * Called from scheduler to remove the events of the current task,
 * with interrupts disabled.
 *
 * We stop each event and update the event value in event->count.
 *
 * This does not protect us against NMI, but disable()
 * sets the disabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * not restart the event.
 */
3071 3072
void __perf_event_task_sched_out(struct task_struct *task,
				 struct task_struct *next)
P
Peter Zijlstra 已提交
3073 3074 3075
{
	int ctxn;

3076 3077 3078
	if (__this_cpu_read(perf_sched_cb_usages))
		perf_pmu_sched_task(task, next, false);

3079 3080 3081
	if (atomic_read(&nr_switch_events))
		perf_event_switch(task, next, false);

P
Peter Zijlstra 已提交
3082 3083
	for_each_task_context_nr(ctxn)
		perf_event_context_sched_out(task, ctxn, next);
S
Stephane Eranian 已提交
3084 3085 3086 3087 3088 3089

	/*
	 * if cgroup events exist on this CPU, then we need
	 * to check if we have to switch out PMU state.
	 * cgroup event are system-wide mode only
	 */
3090
	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3091
		perf_cgroup_sched_out(task, next);
P
Peter Zijlstra 已提交
3092 3093
}

3094 3095 3096 3097 3098 3099 3100
/*
 * Called with IRQs disabled
 */
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type)
{
	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
3101 3102
}

3103
static void
3104
ctx_pinned_sched_in(struct perf_event_context *ctx,
3105
		    struct perf_cpu_context *cpuctx)
T
Thomas Gleixner 已提交
3106
{
3107
	struct perf_event *event;
T
Thomas Gleixner 已提交
3108

3109 3110
	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
		if (event->state <= PERF_EVENT_STATE_OFF)
3111
			continue;
3112
		if (!event_filter_match(event))
3113 3114
			continue;

S
Stephane Eranian 已提交
3115 3116 3117 3118
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

3119
		if (group_can_go_on(event, cpuctx, 1))
3120
			group_sched_in(event, cpuctx, ctx);
3121 3122 3123 3124 3125

		/*
		 * If this pinned group hasn't been scheduled,
		 * put it in error state.
		 */
3126 3127 3128
		if (event->state == PERF_EVENT_STATE_INACTIVE) {
			update_group_times(event);
			event->state = PERF_EVENT_STATE_ERROR;
3129
		}
3130
	}
3131 3132 3133 3134
}

static void
ctx_flexible_sched_in(struct perf_event_context *ctx,
3135
		      struct perf_cpu_context *cpuctx)
3136 3137 3138
{
	struct perf_event *event;
	int can_add_hw = 1;
3139

3140 3141 3142
	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
		/* Ignore events in OFF or ERROR state */
		if (event->state <= PERF_EVENT_STATE_OFF)
3143
			continue;
3144 3145
		/*
		 * Listen to the 'cpu' scheduling filter constraint
3146
		 * of events:
3147
		 */
3148
		if (!event_filter_match(event))
T
Thomas Gleixner 已提交
3149 3150
			continue;

S
Stephane Eranian 已提交
3151 3152 3153 3154
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

P
Peter Zijlstra 已提交
3155
		if (group_can_go_on(event, cpuctx, can_add_hw)) {
3156
			if (group_sched_in(event, cpuctx, ctx))
3157
				can_add_hw = 0;
P
Peter Zijlstra 已提交
3158
		}
T
Thomas Gleixner 已提交
3159
	}
3160 3161 3162 3163 3164
}

static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
3165 3166
	     enum event_type_t event_type,
	     struct task_struct *task)
3167
{
3168
	int is_active = ctx->is_active;
P
Peter Zijlstra 已提交
3169 3170 3171
	u64 now;

	lockdep_assert_held(&ctx->lock);
S
Stephane Eranian 已提交
3172

3173
	if (likely(!ctx->nr_events))
3174
		return;
3175

3176
	ctx->is_active |= (event_type | EVENT_TIME);
3177 3178 3179 3180 3181 3182 3183
	if (ctx->task) {
		if (!is_active)
			cpuctx->task_ctx = ctx;
		else
			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
	}

3184 3185 3186 3187 3188 3189 3190 3191 3192
	is_active ^= ctx->is_active; /* changed bits */

	if (is_active & EVENT_TIME) {
		/* start ctx time */
		now = perf_clock();
		ctx->timestamp = now;
		perf_cgroup_set_timestamp(task, ctx);
	}

3193 3194 3195 3196
	/*
	 * First go through the list and put on any pinned groups
	 * in order to give them the best chance of going on.
	 */
3197
	if (is_active & EVENT_PINNED)
3198
		ctx_pinned_sched_in(ctx, cpuctx);
3199 3200

	/* Then walk through the lower prio flexible groups */
3201
	if (is_active & EVENT_FLEXIBLE)
3202
		ctx_flexible_sched_in(ctx, cpuctx);
3203 3204
}

3205
static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
3206 3207
			     enum event_type_t event_type,
			     struct task_struct *task)
3208 3209 3210
{
	struct perf_event_context *ctx = &cpuctx->ctx;

S
Stephane Eranian 已提交
3211
	ctx_sched_in(ctx, cpuctx, event_type, task);
3212 3213
}

S
Stephane Eranian 已提交
3214 3215
static void perf_event_context_sched_in(struct perf_event_context *ctx,
					struct task_struct *task)
3216
{
P
Peter Zijlstra 已提交
3217
	struct perf_cpu_context *cpuctx;
3218

P
Peter Zijlstra 已提交
3219
	cpuctx = __get_cpu_context(ctx);
3220 3221 3222
	if (cpuctx->task_ctx == ctx)
		return;

3223
	perf_ctx_lock(cpuctx, ctx);
3224 3225 3226 3227 3228 3229 3230
	/*
	 * We must check ctx->nr_events while holding ctx->lock, such
	 * that we serialize against perf_install_in_context().
	 */
	if (!ctx->nr_events)
		goto unlock;

P
Peter Zijlstra 已提交
3231
	perf_pmu_disable(ctx->pmu);
3232 3233 3234 3235
	/*
	 * We want to keep the following priority order:
	 * cpu pinned (that don't need to move), task pinned,
	 * cpu flexible, task flexible.
3236 3237 3238
	 *
	 * However, if task's ctx is not carrying any pinned
	 * events, no need to flip the cpuctx's events around.
3239
	 */
3240 3241
	if (!list_empty(&ctx->pinned_groups))
		cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3242
	perf_event_sched_in(cpuctx, ctx, task);
3243
	perf_pmu_enable(ctx->pmu);
3244 3245

unlock:
3246
	perf_ctx_unlock(cpuctx, ctx);
3247 3248
}

P
Peter Zijlstra 已提交
3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259
/*
 * Called from scheduler to add the events of the current task
 * with interrupts disabled.
 *
 * We restore the event value and then enable it.
 *
 * This does not protect us against NMI, but enable()
 * sets the enabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * keep the event running.
 */
3260 3261
void __perf_event_task_sched_in(struct task_struct *prev,
				struct task_struct *task)
P
Peter Zijlstra 已提交
3262 3263 3264 3265
{
	struct perf_event_context *ctx;
	int ctxn;

3266 3267 3268 3269 3270 3271 3272 3273 3274 3275
	/*
	 * If cgroup events exist on this CPU, then we need to check if we have
	 * to switch in PMU state; cgroup event are system-wide mode only.
	 *
	 * Since cgroup events are CPU events, we must schedule these in before
	 * we schedule in the task events.
	 */
	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
		perf_cgroup_sched_in(prev, task);

P
Peter Zijlstra 已提交
3276 3277 3278 3279 3280
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (likely(!ctx))
			continue;

S
Stephane Eranian 已提交
3281
		perf_event_context_sched_in(ctx, task);
P
Peter Zijlstra 已提交
3282
	}
3283

3284 3285 3286
	if (atomic_read(&nr_switch_events))
		perf_event_switch(task, prev, true);

3287 3288
	if (__this_cpu_read(perf_sched_cb_usages))
		perf_pmu_sched_task(prev, task, true);
3289 3290
}

3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317
static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
{
	u64 frequency = event->attr.sample_freq;
	u64 sec = NSEC_PER_SEC;
	u64 divisor, dividend;

	int count_fls, nsec_fls, frequency_fls, sec_fls;

	count_fls = fls64(count);
	nsec_fls = fls64(nsec);
	frequency_fls = fls64(frequency);
	sec_fls = 30;

	/*
	 * We got @count in @nsec, with a target of sample_freq HZ
	 * the target period becomes:
	 *
	 *             @count * 10^9
	 * period = -------------------
	 *          @nsec * sample_freq
	 *
	 */

	/*
	 * Reduce accuracy by one bit such that @a and @b converge
	 * to a similar magnitude.
	 */
3318
#define REDUCE_FLS(a, b)		\
3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357
do {					\
	if (a##_fls > b##_fls) {	\
		a >>= 1;		\
		a##_fls--;		\
	} else {			\
		b >>= 1;		\
		b##_fls--;		\
	}				\
} while (0)

	/*
	 * Reduce accuracy until either term fits in a u64, then proceed with
	 * the other, so that finally we can do a u64/u64 division.
	 */
	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
		REDUCE_FLS(nsec, frequency);
		REDUCE_FLS(sec, count);
	}

	if (count_fls + sec_fls > 64) {
		divisor = nsec * frequency;

		while (count_fls + sec_fls > 64) {
			REDUCE_FLS(count, sec);
			divisor >>= 1;
		}

		dividend = count * sec;
	} else {
		dividend = count * sec;

		while (nsec_fls + frequency_fls > 64) {
			REDUCE_FLS(nsec, frequency);
			dividend >>= 1;
		}

		divisor = nsec * frequency;
	}

3358 3359 3360
	if (!divisor)
		return dividend;

3361 3362 3363
	return div64_u64(dividend, divisor);
}

3364 3365 3366
static DEFINE_PER_CPU(int, perf_throttled_count);
static DEFINE_PER_CPU(u64, perf_throttled_seq);

3367
static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
3368
{
3369
	struct hw_perf_event *hwc = &event->hw;
3370
	s64 period, sample_period;
3371 3372
	s64 delta;

3373
	period = perf_calculate_period(event, nsec, count);
3374 3375 3376 3377 3378 3379 3380 3381 3382 3383

	delta = (s64)(period - hwc->sample_period);
	delta = (delta + 7) / 8; /* low pass filter */

	sample_period = hwc->sample_period + delta;

	if (!sample_period)
		sample_period = 1;

	hwc->sample_period = sample_period;
3384

3385
	if (local64_read(&hwc->period_left) > 8*sample_period) {
3386 3387 3388
		if (disable)
			event->pmu->stop(event, PERF_EF_UPDATE);

3389
		local64_set(&hwc->period_left, 0);
3390 3391 3392

		if (disable)
			event->pmu->start(event, PERF_EF_RELOAD);
3393
	}
3394 3395
}

3396 3397 3398 3399 3400 3401 3402
/*
 * combine freq adjustment with unthrottling to avoid two passes over the
 * events. At the same time, make sure, having freq events does not change
 * the rate of unthrottling as that would introduce bias.
 */
static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
					   int needs_unthr)
3403
{
3404 3405
	struct perf_event *event;
	struct hw_perf_event *hwc;
3406
	u64 now, period = TICK_NSEC;
3407
	s64 delta;
3408

3409 3410 3411 3412 3413 3414
	/*
	 * only need to iterate over all events iff:
	 * - context have events in frequency mode (needs freq adjust)
	 * - there are events to unthrottle on this cpu
	 */
	if (!(ctx->nr_freq || needs_unthr))
3415 3416
		return;

3417
	raw_spin_lock(&ctx->lock);
3418
	perf_pmu_disable(ctx->pmu);
3419

3420
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3421
		if (event->state != PERF_EVENT_STATE_ACTIVE)
3422 3423
			continue;

3424
		if (!event_filter_match(event))
3425 3426
			continue;

3427 3428
		perf_pmu_disable(event->pmu);

3429
		hwc = &event->hw;
3430

3431
		if (hwc->interrupts == MAX_INTERRUPTS) {
3432
			hwc->interrupts = 0;
3433
			perf_log_throttle(event, 1);
P
Peter Zijlstra 已提交
3434
			event->pmu->start(event, 0);
3435 3436
		}

3437
		if (!event->attr.freq || !event->attr.sample_freq)
3438
			goto next;
3439

3440 3441 3442 3443 3444
		/*
		 * stop the event and update event->count
		 */
		event->pmu->stop(event, PERF_EF_UPDATE);

3445
		now = local64_read(&event->count);
3446 3447
		delta = now - hwc->freq_count_stamp;
		hwc->freq_count_stamp = now;
3448

3449 3450 3451
		/*
		 * restart the event
		 * reload only if value has changed
3452 3453 3454
		 * we have stopped the event so tell that
		 * to perf_adjust_period() to avoid stopping it
		 * twice.
3455
		 */
3456
		if (delta > 0)
3457
			perf_adjust_period(event, period, delta, false);
3458 3459

		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3460 3461
	next:
		perf_pmu_enable(event->pmu);
3462
	}
3463

3464
	perf_pmu_enable(ctx->pmu);
3465
	raw_spin_unlock(&ctx->lock);
3466 3467
}

3468
/*
3469
 * Round-robin a context's events:
3470
 */
3471
static void rotate_ctx(struct perf_event_context *ctx)
T
Thomas Gleixner 已提交
3472
{
3473 3474 3475 3476 3477 3478
	/*
	 * Rotate the first entry last of non-pinned groups. Rotation might be
	 * disabled by the inheritance code.
	 */
	if (!ctx->rotate_disable)
		list_rotate_left(&ctx->flexible_groups);
3479 3480
}

3481
static int perf_rotate_context(struct perf_cpu_context *cpuctx)
3482
{
P
Peter Zijlstra 已提交
3483
	struct perf_event_context *ctx = NULL;
3484
	int rotate = 0;
3485

3486 3487 3488 3489
	if (cpuctx->ctx.nr_events) {
		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
			rotate = 1;
	}
3490

P
Peter Zijlstra 已提交
3491
	ctx = cpuctx->task_ctx;
3492 3493 3494 3495
	if (ctx && ctx->nr_events) {
		if (ctx->nr_events != ctx->nr_active)
			rotate = 1;
	}
3496

3497
	if (!rotate)
3498 3499
		goto done;

3500
	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
P
Peter Zijlstra 已提交
3501
	perf_pmu_disable(cpuctx->ctx.pmu);
3502

3503 3504 3505
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
	if (ctx)
		ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
T
Thomas Gleixner 已提交
3506

3507 3508 3509
	rotate_ctx(&cpuctx->ctx);
	if (ctx)
		rotate_ctx(ctx);
3510

3511
	perf_event_sched_in(cpuctx, ctx, current);
3512

3513 3514
	perf_pmu_enable(cpuctx->ctx.pmu);
	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3515
done:
3516 3517

	return rotate;
3518 3519 3520 3521
}

void perf_event_task_tick(void)
{
3522 3523
	struct list_head *head = this_cpu_ptr(&active_ctx_list);
	struct perf_event_context *ctx, *tmp;
3524
	int throttled;
3525

3526 3527
	WARN_ON(!irqs_disabled());

3528 3529
	__this_cpu_inc(perf_throttled_seq);
	throttled = __this_cpu_xchg(perf_throttled_count, 0);
3530
	tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
3531

3532
	list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3533
		perf_adjust_freq_unthr_context(ctx, throttled);
T
Thomas Gleixner 已提交
3534 3535
}

3536 3537 3538 3539 3540 3541 3542 3543 3544 3545
static int event_enable_on_exec(struct perf_event *event,
				struct perf_event_context *ctx)
{
	if (!event->attr.enable_on_exec)
		return 0;

	event->attr.enable_on_exec = 0;
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
		return 0;

3546
	__perf_event_mark_enabled(event);
3547 3548 3549 3550

	return 1;
}

3551
/*
3552
 * Enable all of a task's events that have been marked enable-on-exec.
3553 3554
 * This expects task == current.
 */
3555
static void perf_event_enable_on_exec(int ctxn)
3556
{
3557
	struct perf_event_context *ctx, *clone_ctx = NULL;
3558
	enum event_type_t event_type = 0;
3559
	struct perf_cpu_context *cpuctx;
3560
	struct perf_event *event;
3561 3562 3563 3564
	unsigned long flags;
	int enabled = 0;

	local_irq_save(flags);
3565
	ctx = current->perf_event_ctxp[ctxn];
3566
	if (!ctx || !ctx->nr_events)
3567 3568
		goto out;

3569 3570
	cpuctx = __get_cpu_context(ctx);
	perf_ctx_lock(cpuctx, ctx);
3571
	ctx_sched_out(ctx, cpuctx, EVENT_TIME);
3572
	list_for_each_entry(event, &ctx->event_list, event_entry) {
3573
		enabled |= event_enable_on_exec(event, ctx);
3574 3575
		event_type |= get_event_type(event);
	}
3576 3577

	/*
3578
	 * Unclone and reschedule this context if we enabled any event.
3579
	 */
3580
	if (enabled) {
3581
		clone_ctx = unclone_ctx(ctx);
3582
		ctx_resched(cpuctx, ctx, event_type);
3583 3584
	} else {
		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
3585 3586
	}
	perf_ctx_unlock(cpuctx, ctx);
3587

P
Peter Zijlstra 已提交
3588
out:
3589
	local_irq_restore(flags);
3590 3591 3592

	if (clone_ctx)
		put_ctx(clone_ctx);
3593 3594
}

3595 3596 3597
struct perf_read_data {
	struct perf_event *event;
	bool group;
3598
	int ret;
3599 3600
};

3601
static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
3602 3603 3604 3605
{
	u16 local_pkg, event_pkg;

	if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
3606 3607 3608 3609
		int local_cpu = smp_processor_id();

		event_pkg = topology_physical_package_id(event_cpu);
		local_pkg = topology_physical_package_id(local_cpu);
3610 3611 3612 3613 3614 3615 3616 3617

		if (event_pkg == local_pkg)
			return local_cpu;
	}

	return event_cpu;
}

T
Thomas Gleixner 已提交
3618
/*
3619
 * Cross CPU call to read the hardware event
T
Thomas Gleixner 已提交
3620
 */
3621
static void __perf_event_read(void *info)
T
Thomas Gleixner 已提交
3622
{
3623 3624
	struct perf_read_data *data = info;
	struct perf_event *sub, *event = data->event;
3625
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
3626
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3627
	struct pmu *pmu = event->pmu;
I
Ingo Molnar 已提交
3628

3629 3630 3631 3632
	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu.  If not it has been
	 * scheduled out before the smp call arrived.  In that case
3633 3634
	 * event->count would have been updated to a recent sample
	 * when the event was scheduled out.
3635 3636 3637 3638
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

3639
	raw_spin_lock(&ctx->lock);
S
Stephane Eranian 已提交
3640
	if (ctx->is_active) {
3641
		update_context_time(ctx);
S
Stephane Eranian 已提交
3642 3643
		update_cgrp_time_from_event(event);
	}
3644

3645
	update_event_times(event);
3646 3647
	if (event->state != PERF_EVENT_STATE_ACTIVE)
		goto unlock;
3648

3649 3650 3651
	if (!data->group) {
		pmu->read(event);
		data->ret = 0;
3652
		goto unlock;
3653 3654 3655 3656 3657
	}

	pmu->start_txn(pmu, PERF_PMU_TXN_READ);

	pmu->read(event);
3658 3659 3660

	list_for_each_entry(sub, &event->sibling_list, group_entry) {
		update_event_times(sub);
3661 3662 3663 3664 3665
		if (sub->state == PERF_EVENT_STATE_ACTIVE) {
			/*
			 * Use sibling's PMU rather than @event's since
			 * sibling could be on different (eg: software) PMU.
			 */
3666
			sub->pmu->read(sub);
3667
		}
3668
	}
3669 3670

	data->ret = pmu->commit_txn(pmu);
3671 3672

unlock:
3673
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
3674 3675
}

P
Peter Zijlstra 已提交
3676 3677
static inline u64 perf_event_count(struct perf_event *event)
{
3678
	return local64_read(&event->count) + atomic64_read(&event->child_count);
P
Peter Zijlstra 已提交
3679 3680
}

3681 3682 3683 3684 3685 3686 3687 3688
/*
 * NMI-safe method to read a local event, that is an event that
 * is:
 *   - either for the current task, or for this CPU
 *   - does not have inherit set, for inherited task events
 *     will not be local and we cannot read them atomically
 *   - must not have a pmu::count method
 */
3689
int perf_event_read_local(struct perf_event *event, u64 *value)
3690 3691
{
	unsigned long flags;
3692
	int ret = 0;
3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703

	/*
	 * Disabling interrupts avoids all counter scheduling (context
	 * switches, timer based rotation and IPIs).
	 */
	local_irq_save(flags);

	/*
	 * It must not be an event with inherit set, we cannot read
	 * all child counters from atomic context.
	 */
3704 3705 3706 3707
	if (event->attr.inherit) {
		ret = -EOPNOTSUPP;
		goto out;
	}
3708

3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721
	/* If this is a per-task event, it must be for current */
	if ((event->attach_state & PERF_ATTACH_TASK) &&
	    event->hw.target != current) {
		ret = -EINVAL;
		goto out;
	}

	/* If this is a per-CPU event, it must be for this CPU */
	if (!(event->attach_state & PERF_ATTACH_TASK) &&
	    event->cpu != smp_processor_id()) {
		ret = -EINVAL;
		goto out;
	}
3722 3723 3724 3725 3726 3727 3728 3729 3730

	/*
	 * If the event is currently on this CPU, its either a per-task event,
	 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
	 * oncpu == -1).
	 */
	if (event->oncpu == smp_processor_id())
		event->pmu->read(event);

3731 3732
	*value = local64_read(&event->count);
out:
3733 3734
	local_irq_restore(flags);

3735
	return ret;
3736 3737
}

3738
static int perf_event_read(struct perf_event *event, bool group)
T
Thomas Gleixner 已提交
3739
{
3740
	int event_cpu, ret = 0;
3741

T
Thomas Gleixner 已提交
3742
	/*
3743 3744
	 * If event is enabled and currently active on a CPU, update the
	 * value in the event structure:
T
Thomas Gleixner 已提交
3745
	 */
3746
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
3747 3748 3749
		struct perf_read_data data = {
			.event = event,
			.group = group,
3750
			.ret = 0,
3751
		};
3752

3753 3754 3755 3756 3757 3758
		event_cpu = READ_ONCE(event->oncpu);
		if ((unsigned)event_cpu >= nr_cpu_ids)
			return 0;

		preempt_disable();
		event_cpu = __perf_event_read_cpu(event, event_cpu);
3759

3760 3761 3762 3763
		/*
		 * Purposely ignore the smp_call_function_single() return
		 * value.
		 *
3764
		 * If event_cpu isn't a valid CPU it means the event got
3765 3766 3767 3768 3769
		 * scheduled out and that will have updated the event count.
		 *
		 * Therefore, either way, we'll have an up-to-date event count
		 * after this.
		 */
3770 3771
		(void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
		preempt_enable();
3772
		ret = data.ret;
3773
	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
P
Peter Zijlstra 已提交
3774 3775 3776
		struct perf_event_context *ctx = event->ctx;
		unsigned long flags;

3777
		raw_spin_lock_irqsave(&ctx->lock, flags);
3778 3779 3780 3781 3782
		/*
		 * may read while context is not active
		 * (e.g., thread is blocked), in that case
		 * we cannot update context time
		 */
S
Stephane Eranian 已提交
3783
		if (ctx->is_active) {
3784
			update_context_time(ctx);
S
Stephane Eranian 已提交
3785 3786
			update_cgrp_time_from_event(event);
		}
3787 3788 3789 3790
		if (group)
			update_group_times(event);
		else
			update_event_times(event);
3791
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
3792
	}
3793 3794

	return ret;
T
Thomas Gleixner 已提交
3795 3796
}

3797
/*
3798
 * Initialize the perf_event context in a task_struct:
3799
 */
3800
static void __perf_event_init_context(struct perf_event_context *ctx)
3801
{
3802
	raw_spin_lock_init(&ctx->lock);
3803
	mutex_init(&ctx->mutex);
3804
	INIT_LIST_HEAD(&ctx->active_ctx_list);
3805 3806
	INIT_LIST_HEAD(&ctx->pinned_groups);
	INIT_LIST_HEAD(&ctx->flexible_groups);
3807 3808
	INIT_LIST_HEAD(&ctx->event_list);
	atomic_set(&ctx->refcount, 1);
3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823
}

static struct perf_event_context *
alloc_perf_context(struct pmu *pmu, struct task_struct *task)
{
	struct perf_event_context *ctx;

	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
	if (!ctx)
		return NULL;

	__perf_event_init_context(ctx);
	if (task) {
		ctx->task = task;
		get_task_struct(task);
T
Thomas Gleixner 已提交
3824
	}
3825 3826 3827
	ctx->pmu = pmu;

	return ctx;
3828 3829
}

3830 3831 3832 3833
static struct task_struct *
find_lively_task_by_vpid(pid_t vpid)
{
	struct task_struct *task;
T
Thomas Gleixner 已提交
3834 3835

	rcu_read_lock();
3836
	if (!vpid)
T
Thomas Gleixner 已提交
3837 3838
		task = current;
	else
3839
		task = find_task_by_vpid(vpid);
T
Thomas Gleixner 已提交
3840 3841 3842 3843 3844 3845 3846
	if (task)
		get_task_struct(task);
	rcu_read_unlock();

	if (!task)
		return ERR_PTR(-ESRCH);

3847 3848 3849
	return task;
}

3850 3851 3852
/*
 * Returns a matching context with refcount and pincount.
 */
P
Peter Zijlstra 已提交
3853
static struct perf_event_context *
3854 3855
find_get_context(struct pmu *pmu, struct task_struct *task,
		struct perf_event *event)
T
Thomas Gleixner 已提交
3856
{
3857
	struct perf_event_context *ctx, *clone_ctx = NULL;
3858
	struct perf_cpu_context *cpuctx;
3859
	void *task_ctx_data = NULL;
3860
	unsigned long flags;
P
Peter Zijlstra 已提交
3861
	int ctxn, err;
3862
	int cpu = event->cpu;
T
Thomas Gleixner 已提交
3863

3864
	if (!task) {
3865
		/* Must be root to operate on a CPU event: */
3866
		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
T
Thomas Gleixner 已提交
3867 3868
			return ERR_PTR(-EACCES);

P
Peter Zijlstra 已提交
3869
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
T
Thomas Gleixner 已提交
3870
		ctx = &cpuctx->ctx;
3871
		get_ctx(ctx);
3872
		++ctx->pin_count;
T
Thomas Gleixner 已提交
3873 3874 3875 3876

		return ctx;
	}

P
Peter Zijlstra 已提交
3877 3878 3879 3880 3881
	err = -EINVAL;
	ctxn = pmu->task_ctx_nr;
	if (ctxn < 0)
		goto errout;

3882 3883 3884 3885 3886 3887 3888 3889
	if (event->attach_state & PERF_ATTACH_TASK_DATA) {
		task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
		if (!task_ctx_data) {
			err = -ENOMEM;
			goto errout;
		}
	}

P
Peter Zijlstra 已提交
3890
retry:
P
Peter Zijlstra 已提交
3891
	ctx = perf_lock_task_context(task, ctxn, &flags);
3892
	if (ctx) {
3893
		clone_ctx = unclone_ctx(ctx);
3894
		++ctx->pin_count;
3895 3896 3897 3898 3899

		if (task_ctx_data && !ctx->task_ctx_data) {
			ctx->task_ctx_data = task_ctx_data;
			task_ctx_data = NULL;
		}
3900
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3901 3902 3903

		if (clone_ctx)
			put_ctx(clone_ctx);
3904
	} else {
3905
		ctx = alloc_perf_context(pmu, task);
3906 3907 3908
		err = -ENOMEM;
		if (!ctx)
			goto errout;
3909

3910 3911 3912 3913 3914
		if (task_ctx_data) {
			ctx->task_ctx_data = task_ctx_data;
			task_ctx_data = NULL;
		}

3915 3916 3917 3918 3919 3920 3921 3922 3923 3924
		err = 0;
		mutex_lock(&task->perf_event_mutex);
		/*
		 * If it has already passed perf_event_exit_task().
		 * we must see PF_EXITING, it takes this mutex too.
		 */
		if (task->flags & PF_EXITING)
			err = -ESRCH;
		else if (task->perf_event_ctxp[ctxn])
			err = -EAGAIN;
3925
		else {
3926
			get_ctx(ctx);
3927
			++ctx->pin_count;
3928
			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3929
		}
3930 3931 3932
		mutex_unlock(&task->perf_event_mutex);

		if (unlikely(err)) {
3933
			put_ctx(ctx);
3934 3935 3936 3937

			if (err == -EAGAIN)
				goto retry;
			goto errout;
3938 3939 3940
		}
	}

3941
	kfree(task_ctx_data);
T
Thomas Gleixner 已提交
3942
	return ctx;
3943

P
Peter Zijlstra 已提交
3944
errout:
3945
	kfree(task_ctx_data);
3946
	return ERR_PTR(err);
T
Thomas Gleixner 已提交
3947 3948
}

L
Li Zefan 已提交
3949
static void perf_event_free_filter(struct perf_event *event);
3950
static void perf_event_free_bpf_prog(struct perf_event *event);
L
Li Zefan 已提交
3951

3952
static void free_event_rcu(struct rcu_head *head)
P
Peter Zijlstra 已提交
3953
{
3954
	struct perf_event *event;
P
Peter Zijlstra 已提交
3955

3956 3957 3958
	event = container_of(head, struct perf_event, rcu_head);
	if (event->ns)
		put_pid_ns(event->ns);
L
Li Zefan 已提交
3959
	perf_event_free_filter(event);
3960
	kfree(event);
P
Peter Zijlstra 已提交
3961 3962
}

3963 3964
static void ring_buffer_attach(struct perf_event *event,
			       struct ring_buffer *rb);
3965

3966 3967 3968 3969 3970 3971 3972 3973 3974
static void detach_sb_event(struct perf_event *event)
{
	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);

	raw_spin_lock(&pel->lock);
	list_del_rcu(&event->sb_list);
	raw_spin_unlock(&pel->lock);
}

3975
static bool is_sb_event(struct perf_event *event)
3976
{
3977 3978
	struct perf_event_attr *attr = &event->attr;

3979
	if (event->parent)
3980
		return false;
3981 3982

	if (event->attach_state & PERF_ATTACH_TASK)
3983
		return false;
3984

3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996
	if (attr->mmap || attr->mmap_data || attr->mmap2 ||
	    attr->comm || attr->comm_exec ||
	    attr->task ||
	    attr->context_switch)
		return true;
	return false;
}

static void unaccount_pmu_sb_event(struct perf_event *event)
{
	if (is_sb_event(event))
		detach_sb_event(event);
3997 3998
}

3999
static void unaccount_event_cpu(struct perf_event *event, int cpu)
4000
{
4001 4002 4003 4004 4005 4006
	if (event->parent)
		return;

	if (is_cgroup_event(event))
		atomic_dec(&per_cpu(perf_cgroup_events, cpu));
}
4007

4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029
#ifdef CONFIG_NO_HZ_FULL
static DEFINE_SPINLOCK(nr_freq_lock);
#endif

static void unaccount_freq_event_nohz(void)
{
#ifdef CONFIG_NO_HZ_FULL
	spin_lock(&nr_freq_lock);
	if (atomic_dec_and_test(&nr_freq_events))
		tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
	spin_unlock(&nr_freq_lock);
#endif
}

static void unaccount_freq_event(void)
{
	if (tick_nohz_full_enabled())
		unaccount_freq_event_nohz();
	else
		atomic_dec(&nr_freq_events);
}

4030 4031
static void unaccount_event(struct perf_event *event)
{
4032 4033
	bool dec = false;

4034 4035 4036 4037
	if (event->parent)
		return;

	if (event->attach_state & PERF_ATTACH_TASK)
4038
		dec = true;
4039 4040 4041 4042
	if (event->attr.mmap || event->attr.mmap_data)
		atomic_dec(&nr_mmap_events);
	if (event->attr.comm)
		atomic_dec(&nr_comm_events);
4043 4044
	if (event->attr.namespaces)
		atomic_dec(&nr_namespaces_events);
4045 4046
	if (event->attr.task)
		atomic_dec(&nr_task_events);
4047
	if (event->attr.freq)
4048
		unaccount_freq_event();
4049
	if (event->attr.context_switch) {
4050
		dec = true;
4051 4052
		atomic_dec(&nr_switch_events);
	}
4053
	if (is_cgroup_event(event))
4054
		dec = true;
4055
	if (has_branch_stack(event))
4056 4057
		dec = true;

4058 4059 4060 4061
	if (dec) {
		if (!atomic_add_unless(&perf_sched_count, -1, 1))
			schedule_delayed_work(&perf_sched_work, HZ);
	}
4062 4063

	unaccount_event_cpu(event, event->cpu);
4064 4065

	unaccount_pmu_sb_event(event);
4066
}
4067

4068 4069 4070 4071 4072 4073 4074 4075
static void perf_sched_delayed(struct work_struct *work)
{
	mutex_lock(&perf_sched_mutex);
	if (atomic_dec_and_test(&perf_sched_count))
		static_branch_disable(&perf_sched_events);
	mutex_unlock(&perf_sched_mutex);
}

4076 4077 4078 4079 4080 4081 4082 4083 4084 4085
/*
 * The following implement mutual exclusion of events on "exclusive" pmus
 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
 * at a time, so we disallow creating events that might conflict, namely:
 *
 *  1) cpu-wide events in the presence of per-task events,
 *  2) per-task events in the presence of cpu-wide events,
 *  3) two matching events on the same context.
 *
 * The former two cases are handled in the allocation path (perf_event_alloc(),
P
Peter Zijlstra 已提交
4086
 * _free_event()), the latter -- before the first perf_install_in_context().
4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134
 */
static int exclusive_event_init(struct perf_event *event)
{
	struct pmu *pmu = event->pmu;

	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
		return 0;

	/*
	 * Prevent co-existence of per-task and cpu-wide events on the
	 * same exclusive pmu.
	 *
	 * Negative pmu::exclusive_cnt means there are cpu-wide
	 * events on this "exclusive" pmu, positive means there are
	 * per-task events.
	 *
	 * Since this is called in perf_event_alloc() path, event::ctx
	 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
	 * to mean "per-task event", because unlike other attach states it
	 * never gets cleared.
	 */
	if (event->attach_state & PERF_ATTACH_TASK) {
		if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
			return -EBUSY;
	} else {
		if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
			return -EBUSY;
	}

	return 0;
}

static void exclusive_event_destroy(struct perf_event *event)
{
	struct pmu *pmu = event->pmu;

	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
		return;

	/* see comment in exclusive_event_init() */
	if (event->attach_state & PERF_ATTACH_TASK)
		atomic_dec(&pmu->exclusive_cnt);
	else
		atomic_inc(&pmu->exclusive_cnt);
}

static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
{
4135
	if ((e1->pmu == e2->pmu) &&
4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160
	    (e1->cpu == e2->cpu ||
	     e1->cpu == -1 ||
	     e2->cpu == -1))
		return true;
	return false;
}

/* Called under the same ctx::mutex as perf_install_in_context() */
static bool exclusive_event_installable(struct perf_event *event,
					struct perf_event_context *ctx)
{
	struct perf_event *iter_event;
	struct pmu *pmu = event->pmu;

	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
		return true;

	list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
		if (exclusive_event_match(iter_event, event))
			return false;
	}

	return true;
}

4161 4162 4163
static void perf_addr_filters_splice(struct perf_event *event,
				       struct list_head *head);

P
Peter Zijlstra 已提交
4164
static void _free_event(struct perf_event *event)
4165
{
4166
	irq_work_sync(&event->pending);
4167

4168
	unaccount_event(event);
4169

4170
	if (event->rb) {
4171 4172 4173 4174 4175 4176 4177
		/*
		 * Can happen when we close an event with re-directed output.
		 *
		 * Since we have a 0 refcount, perf_mmap_close() will skip
		 * over us; possibly making our ring_buffer_put() the last.
		 */
		mutex_lock(&event->mmap_mutex);
4178
		ring_buffer_attach(event, NULL);
4179
		mutex_unlock(&event->mmap_mutex);
4180 4181
	}

S
Stephane Eranian 已提交
4182 4183 4184
	if (is_cgroup_event(event))
		perf_detach_cgroup(event);

P
Peter Zijlstra 已提交
4185 4186 4187 4188 4189 4190
	if (!event->parent) {
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
			put_callchain_buffers();
	}

	perf_event_free_bpf_prog(event);
4191 4192
	perf_addr_filters_splice(event, NULL);
	kfree(event->addr_filters_offs);
P
Peter Zijlstra 已提交
4193 4194 4195 4196 4197 4198 4199

	if (event->destroy)
		event->destroy(event);

	if (event->ctx)
		put_ctx(event->ctx);

4200 4201
	exclusive_event_destroy(event);
	module_put(event->pmu->module);
P
Peter Zijlstra 已提交
4202 4203

	call_rcu(&event->rcu_head, free_event_rcu);
4204 4205
}

P
Peter Zijlstra 已提交
4206 4207 4208 4209 4210
/*
 * Used to free events which have a known refcount of 1, such as in error paths
 * where the event isn't exposed yet and inherited events.
 */
static void free_event(struct perf_event *event)
T
Thomas Gleixner 已提交
4211
{
P
Peter Zijlstra 已提交
4212 4213 4214 4215 4216 4217
	if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
				"unexpected event refcount: %ld; ptr=%p\n",
				atomic_long_read(&event->refcount), event)) {
		/* leak to avoid use-after-free */
		return;
	}
T
Thomas Gleixner 已提交
4218

P
Peter Zijlstra 已提交
4219
	_free_event(event);
T
Thomas Gleixner 已提交
4220 4221
}

4222
/*
4223
 * Remove user event from the owner task.
4224
 */
4225
static void perf_remove_from_owner(struct perf_event *event)
4226
{
P
Peter Zijlstra 已提交
4227
	struct task_struct *owner;
4228

P
Peter Zijlstra 已提交
4229 4230
	rcu_read_lock();
	/*
4231 4232 4233
	 * Matches the smp_store_release() in perf_event_exit_task(). If we
	 * observe !owner it means the list deletion is complete and we can
	 * indeed free this event, otherwise we need to serialize on
P
Peter Zijlstra 已提交
4234 4235
	 * owner->perf_event_mutex.
	 */
4236
	owner = READ_ONCE(event->owner);
P
Peter Zijlstra 已提交
4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247
	if (owner) {
		/*
		 * Since delayed_put_task_struct() also drops the last
		 * task reference we can safely take a new reference
		 * while holding the rcu_read_lock().
		 */
		get_task_struct(owner);
	}
	rcu_read_unlock();

	if (owner) {
P
Peter Zijlstra 已提交
4248 4249 4250 4251 4252 4253 4254 4255 4256 4257
		/*
		 * If we're here through perf_event_exit_task() we're already
		 * holding ctx->mutex which would be an inversion wrt. the
		 * normal lock order.
		 *
		 * However we can safely take this lock because its the child
		 * ctx->mutex.
		 */
		mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);

P
Peter Zijlstra 已提交
4258 4259 4260 4261 4262 4263
		/*
		 * We have to re-check the event->owner field, if it is cleared
		 * we raced with perf_event_exit_task(), acquiring the mutex
		 * ensured they're done, and we can proceed with freeing the
		 * event.
		 */
4264
		if (event->owner) {
P
Peter Zijlstra 已提交
4265
			list_del_init(&event->owner_entry);
4266 4267
			smp_store_release(&event->owner, NULL);
		}
P
Peter Zijlstra 已提交
4268 4269 4270
		mutex_unlock(&owner->perf_event_mutex);
		put_task_struct(owner);
	}
4271 4272 4273 4274 4275 4276 4277
}

static void put_event(struct perf_event *event)
{
	if (!atomic_long_dec_and_test(&event->refcount))
		return;

4278 4279 4280 4281 4282 4283 4284 4285 4286 4287
	_free_event(event);
}

/*
 * Kill an event dead; while event:refcount will preserve the event
 * object, it will not preserve its functionality. Once the last 'user'
 * gives up the object, we'll destroy the thing.
 */
int perf_event_release_kernel(struct perf_event *event)
{
4288
	struct perf_event_context *ctx = event->ctx;
4289 4290
	struct perf_event *child, *tmp;

4291 4292 4293 4294 4295 4296 4297 4298 4299 4300
	/*
	 * If we got here through err_file: fput(event_file); we will not have
	 * attached to a context yet.
	 */
	if (!ctx) {
		WARN_ON_ONCE(event->attach_state &
				(PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
		goto no_ctx;
	}

4301 4302
	if (!is_kernel_event(event))
		perf_remove_from_owner(event);
P
Peter Zijlstra 已提交
4303

4304
	ctx = perf_event_ctx_lock(event);
P
Peter Zijlstra 已提交
4305
	WARN_ON_ONCE(ctx->parent_ctx);
P
Peter Zijlstra 已提交
4306
	perf_remove_from_context(event, DETACH_GROUP);
P
Peter Zijlstra 已提交
4307

P
Peter Zijlstra 已提交
4308
	raw_spin_lock_irq(&ctx->lock);
P
Peter Zijlstra 已提交
4309
	/*
4310
	 * Mark this event as STATE_DEAD, there is no external reference to it
P
Peter Zijlstra 已提交
4311
	 * anymore.
P
Peter Zijlstra 已提交
4312
	 *
P
Peter Zijlstra 已提交
4313 4314 4315
	 * Anybody acquiring event->child_mutex after the below loop _must_
	 * also see this, most importantly inherit_event() which will avoid
	 * placing more children on the list.
P
Peter Zijlstra 已提交
4316
	 *
4317 4318
	 * Thus this guarantees that we will in fact observe and kill _ALL_
	 * child events.
P
Peter Zijlstra 已提交
4319
	 */
P
Peter Zijlstra 已提交
4320 4321 4322 4323
	event->state = PERF_EVENT_STATE_DEAD;
	raw_spin_unlock_irq(&ctx->lock);

	perf_event_ctx_unlock(event, ctx);
P
Peter Zijlstra 已提交
4324

4325 4326 4327
again:
	mutex_lock(&event->child_mutex);
	list_for_each_entry(child, &event->child_list, child_list) {
4328

4329 4330 4331 4332
		/*
		 * Cannot change, child events are not migrated, see the
		 * comment with perf_event_ctx_lock_nested().
		 */
4333
		ctx = READ_ONCE(child->ctx);
4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377
		/*
		 * Since child_mutex nests inside ctx::mutex, we must jump
		 * through hoops. We start by grabbing a reference on the ctx.
		 *
		 * Since the event cannot get freed while we hold the
		 * child_mutex, the context must also exist and have a !0
		 * reference count.
		 */
		get_ctx(ctx);

		/*
		 * Now that we have a ctx ref, we can drop child_mutex, and
		 * acquire ctx::mutex without fear of it going away. Then we
		 * can re-acquire child_mutex.
		 */
		mutex_unlock(&event->child_mutex);
		mutex_lock(&ctx->mutex);
		mutex_lock(&event->child_mutex);

		/*
		 * Now that we hold ctx::mutex and child_mutex, revalidate our
		 * state, if child is still the first entry, it didn't get freed
		 * and we can continue doing so.
		 */
		tmp = list_first_entry_or_null(&event->child_list,
					       struct perf_event, child_list);
		if (tmp == child) {
			perf_remove_from_context(child, DETACH_GROUP);
			list_del(&child->child_list);
			free_event(child);
			/*
			 * This matches the refcount bump in inherit_event();
			 * this can't be the last reference.
			 */
			put_event(event);
		}

		mutex_unlock(&event->child_mutex);
		mutex_unlock(&ctx->mutex);
		put_ctx(ctx);
		goto again;
	}
	mutex_unlock(&event->child_mutex);

4378 4379
no_ctx:
	put_event(event); /* Must be the 'last' reference */
P
Peter Zijlstra 已提交
4380 4381 4382 4383
	return 0;
}
EXPORT_SYMBOL_GPL(perf_event_release_kernel);

4384 4385 4386
/*
 * Called when the last reference to the file is gone.
 */
4387 4388
static int perf_release(struct inode *inode, struct file *file)
{
4389
	perf_event_release_kernel(file->private_data);
4390
	return 0;
4391 4392
}

4393
u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4394
{
4395
	struct perf_event *child;
4396 4397
	u64 total = 0;

4398 4399 4400
	*enabled = 0;
	*running = 0;

4401
	mutex_lock(&event->child_mutex);
4402

4403
	(void)perf_event_read(event, false);
4404 4405
	total += perf_event_count(event);

4406 4407 4408 4409 4410 4411
	*enabled += event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
	*running += event->total_time_running +
			atomic64_read(&event->child_total_time_running);

	list_for_each_entry(child, &event->child_list, child_list) {
4412
		(void)perf_event_read(child, false);
4413
		total += perf_event_count(child);
4414 4415 4416
		*enabled += child->total_time_enabled;
		*running += child->total_time_running;
	}
4417
	mutex_unlock(&event->child_mutex);
4418 4419 4420

	return total;
}
4421
EXPORT_SYMBOL_GPL(perf_event_read_value);
4422

4423
static int __perf_read_group_add(struct perf_event *leader,
4424
					u64 read_format, u64 *values)
4425
{
4426
	struct perf_event_context *ctx = leader->ctx;
4427
	struct perf_event *sub;
4428
	unsigned long flags;
4429
	int n = 1; /* skip @nr */
4430
	int ret;
P
Peter Zijlstra 已提交
4431

4432 4433 4434
	ret = perf_event_read(leader, true);
	if (ret)
		return ret;
4435

4436 4437 4438 4439 4440 4441 4442 4443 4444
	/*
	 * Since we co-schedule groups, {enabled,running} times of siblings
	 * will be identical to those of the leader, so we only publish one
	 * set.
	 */
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
		values[n++] += leader->total_time_enabled +
			atomic64_read(&leader->child_total_time_enabled);
	}
4445

4446 4447 4448 4449 4450 4451 4452 4453 4454
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
		values[n++] += leader->total_time_running +
			atomic64_read(&leader->child_total_time_running);
	}

	/*
	 * Write {count,id} tuples for every sibling.
	 */
	values[n++] += perf_event_count(leader);
4455 4456
	if (read_format & PERF_FORMAT_ID)
		values[n++] = primary_event_id(leader);
4457

4458 4459
	raw_spin_lock_irqsave(&ctx->lock, flags);

4460 4461 4462 4463 4464
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
		values[n++] += perf_event_count(sub);
		if (read_format & PERF_FORMAT_ID)
			values[n++] = primary_event_id(sub);
	}
4465

4466
	raw_spin_unlock_irqrestore(&ctx->lock, flags);
4467
	return 0;
4468
}
4469

4470 4471 4472 4473 4474
static int perf_read_group(struct perf_event *event,
				   u64 read_format, char __user *buf)
{
	struct perf_event *leader = event->group_leader, *child;
	struct perf_event_context *ctx = leader->ctx;
4475
	int ret;
4476
	u64 *values;
4477

4478
	lockdep_assert_held(&ctx->mutex);
4479

4480 4481 4482
	values = kzalloc(event->read_size, GFP_KERNEL);
	if (!values)
		return -ENOMEM;
4483

4484 4485 4486 4487 4488 4489 4490
	values[0] = 1 + leader->nr_siblings;

	/*
	 * By locking the child_mutex of the leader we effectively
	 * lock the child list of all siblings.. XXX explain how.
	 */
	mutex_lock(&leader->child_mutex);
4491

4492 4493 4494 4495 4496 4497 4498 4499 4500
	ret = __perf_read_group_add(leader, read_format, values);
	if (ret)
		goto unlock;

	list_for_each_entry(child, &leader->child_list, child_list) {
		ret = __perf_read_group_add(child, read_format, values);
		if (ret)
			goto unlock;
	}
4501

4502
	mutex_unlock(&leader->child_mutex);
4503

4504
	ret = event->read_size;
4505 4506
	if (copy_to_user(buf, values, event->read_size))
		ret = -EFAULT;
4507
	goto out;
4508

4509 4510 4511
unlock:
	mutex_unlock(&leader->child_mutex);
out:
4512
	kfree(values);
4513
	return ret;
4514 4515
}

4516
static int perf_read_one(struct perf_event *event,
4517 4518
				 u64 read_format, char __user *buf)
{
4519
	u64 enabled, running;
4520 4521 4522
	u64 values[4];
	int n = 0;

4523 4524 4525 4526 4527
	values[n++] = perf_event_read_value(event, &enabled, &running);
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
4528
	if (read_format & PERF_FORMAT_ID)
4529
		values[n++] = primary_event_id(event);
4530 4531 4532 4533 4534 4535 4536

	if (copy_to_user(buf, values, n * sizeof(u64)))
		return -EFAULT;

	return n * sizeof(u64);
}

4537 4538 4539 4540
static bool is_event_hup(struct perf_event *event)
{
	bool no_children;

P
Peter Zijlstra 已提交
4541
	if (event->state > PERF_EVENT_STATE_EXIT)
4542 4543 4544 4545 4546 4547 4548 4549
		return false;

	mutex_lock(&event->child_mutex);
	no_children = list_empty(&event->child_list);
	mutex_unlock(&event->child_mutex);
	return no_children;
}

T
Thomas Gleixner 已提交
4550
/*
4551
 * Read the performance event - simple non blocking version for now
T
Thomas Gleixner 已提交
4552 4553
 */
static ssize_t
4554
__perf_read(struct perf_event *event, char __user *buf, size_t count)
T
Thomas Gleixner 已提交
4555
{
4556
	u64 read_format = event->attr.read_format;
4557
	int ret;
T
Thomas Gleixner 已提交
4558

4559
	/*
4560
	 * Return end-of-file for a read on a event that is in
4561 4562 4563
	 * error state (i.e. because it was pinned but it couldn't be
	 * scheduled on to the CPU at some point).
	 */
4564
	if (event->state == PERF_EVENT_STATE_ERROR)
4565 4566
		return 0;

4567
	if (count < event->read_size)
4568 4569
		return -ENOSPC;

4570
	WARN_ON_ONCE(event->ctx->parent_ctx);
4571
	if (read_format & PERF_FORMAT_GROUP)
4572
		ret = perf_read_group(event, read_format, buf);
4573
	else
4574
		ret = perf_read_one(event, read_format, buf);
T
Thomas Gleixner 已提交
4575

4576
	return ret;
T
Thomas Gleixner 已提交
4577 4578 4579 4580 4581
}

static ssize_t
perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
4582
	struct perf_event *event = file->private_data;
P
Peter Zijlstra 已提交
4583 4584
	struct perf_event_context *ctx;
	int ret;
T
Thomas Gleixner 已提交
4585

P
Peter Zijlstra 已提交
4586
	ctx = perf_event_ctx_lock(event);
4587
	ret = __perf_read(event, buf, count);
P
Peter Zijlstra 已提交
4588 4589 4590
	perf_event_ctx_unlock(event, ctx);

	return ret;
T
Thomas Gleixner 已提交
4591 4592 4593 4594
}

static unsigned int perf_poll(struct file *file, poll_table *wait)
{
4595
	struct perf_event *event = file->private_data;
4596
	struct ring_buffer *rb;
4597
	unsigned int events = POLLHUP;
P
Peter Zijlstra 已提交
4598

4599
	poll_wait(file, &event->waitq, wait);
4600

4601
	if (is_event_hup(event))
4602
		return events;
P
Peter Zijlstra 已提交
4603

4604
	/*
4605 4606
	 * Pin the event->rb by taking event->mmap_mutex; otherwise
	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4607 4608
	 */
	mutex_lock(&event->mmap_mutex);
4609 4610
	rb = event->rb;
	if (rb)
4611
		events = atomic_xchg(&rb->poll, 0);
4612
	mutex_unlock(&event->mmap_mutex);
T
Thomas Gleixner 已提交
4613 4614 4615
	return events;
}

P
Peter Zijlstra 已提交
4616
static void _perf_event_reset(struct perf_event *event)
4617
{
4618
	(void)perf_event_read(event, false);
4619
	local64_set(&event->count, 0);
4620
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
4621 4622
}

4623
/*
4624 4625
 * Holding the top-level event's child_mutex means that any
 * descendant process that has inherited this event will block
4626
 * in perf_event_exit_event() if it goes to exit, thus satisfying the
4627
 * task existence requirements of perf_event_enable/disable.
4628
 */
4629 4630
static void perf_event_for_each_child(struct perf_event *event,
					void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
4631
{
4632
	struct perf_event *child;
P
Peter Zijlstra 已提交
4633

4634
	WARN_ON_ONCE(event->ctx->parent_ctx);
P
Peter Zijlstra 已提交
4635

4636 4637 4638
	mutex_lock(&event->child_mutex);
	func(event);
	list_for_each_entry(child, &event->child_list, child_list)
P
Peter Zijlstra 已提交
4639
		func(child);
4640
	mutex_unlock(&event->child_mutex);
P
Peter Zijlstra 已提交
4641 4642
}

4643 4644
static void perf_event_for_each(struct perf_event *event,
				  void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
4645
{
4646 4647
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *sibling;
P
Peter Zijlstra 已提交
4648

P
Peter Zijlstra 已提交
4649 4650
	lockdep_assert_held(&ctx->mutex);

4651
	event = event->group_leader;
4652

4653 4654
	perf_event_for_each_child(event, func);
	list_for_each_entry(sibling, &event->sibling_list, group_entry)
4655
		perf_event_for_each_child(sibling, func);
4656 4657
}

4658 4659 4660 4661
static void __perf_event_period(struct perf_event *event,
				struct perf_cpu_context *cpuctx,
				struct perf_event_context *ctx,
				void *info)
4662
{
4663
	u64 value = *((u64 *)info);
4664
	bool active;
4665

4666 4667
	if (event->attr.freq) {
		event->attr.sample_freq = value;
4668
	} else {
4669 4670
		event->attr.sample_period = value;
		event->hw.sample_period = value;
4671
	}
4672 4673 4674 4675

	active = (event->state == PERF_EVENT_STATE_ACTIVE);
	if (active) {
		perf_pmu_disable(ctx->pmu);
4676 4677 4678 4679 4680 4681 4682 4683
		/*
		 * We could be throttled; unthrottle now to avoid the tick
		 * trying to unthrottle while we already re-started the event.
		 */
		if (event->hw.interrupts == MAX_INTERRUPTS) {
			event->hw.interrupts = 0;
			perf_log_throttle(event, 1);
		}
4684 4685 4686 4687 4688 4689 4690 4691 4692
		event->pmu->stop(event, PERF_EF_UPDATE);
	}

	local64_set(&event->hw.period_left, 0);

	if (active) {
		event->pmu->start(event, PERF_EF_RELOAD);
		perf_pmu_enable(ctx->pmu);
	}
4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710
}

static int perf_event_period(struct perf_event *event, u64 __user *arg)
{
	u64 value;

	if (!is_sampling_event(event))
		return -EINVAL;

	if (copy_from_user(&value, arg, sizeof(value)))
		return -EFAULT;

	if (!value)
		return -EINVAL;

	if (event->attr.freq && value > sysctl_perf_event_sample_rate)
		return -EINVAL;

4711
	event_function_call(event, __perf_event_period, &value);
4712

4713
	return 0;
4714 4715
}

4716 4717
static const struct file_operations perf_fops;

4718
static inline int perf_fget_light(int fd, struct fd *p)
4719
{
4720 4721 4722
	struct fd f = fdget(fd);
	if (!f.file)
		return -EBADF;
4723

4724 4725 4726
	if (f.file->f_op != &perf_fops) {
		fdput(f);
		return -EBADF;
4727
	}
4728 4729
	*p = f;
	return 0;
4730 4731 4732 4733
}

static int perf_event_set_output(struct perf_event *event,
				 struct perf_event *output_event);
L
Li Zefan 已提交
4734
static int perf_event_set_filter(struct perf_event *event, void __user *arg);
4735
static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
4736

P
Peter Zijlstra 已提交
4737
static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
4738
{
4739
	void (*func)(struct perf_event *);
P
Peter Zijlstra 已提交
4740
	u32 flags = arg;
4741 4742

	switch (cmd) {
4743
	case PERF_EVENT_IOC_ENABLE:
P
Peter Zijlstra 已提交
4744
		func = _perf_event_enable;
4745
		break;
4746
	case PERF_EVENT_IOC_DISABLE:
P
Peter Zijlstra 已提交
4747
		func = _perf_event_disable;
4748
		break;
4749
	case PERF_EVENT_IOC_RESET:
P
Peter Zijlstra 已提交
4750
		func = _perf_event_reset;
4751
		break;
P
Peter Zijlstra 已提交
4752

4753
	case PERF_EVENT_IOC_REFRESH:
P
Peter Zijlstra 已提交
4754
		return _perf_event_refresh(event, arg);
4755

4756 4757
	case PERF_EVENT_IOC_PERIOD:
		return perf_event_period(event, (u64 __user *)arg);
4758

4759 4760 4761 4762 4763 4764 4765 4766 4767
	case PERF_EVENT_IOC_ID:
	{
		u64 id = primary_event_id(event);

		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
			return -EFAULT;
		return 0;
	}

4768
	case PERF_EVENT_IOC_SET_OUTPUT:
4769 4770 4771
	{
		int ret;
		if (arg != -1) {
4772 4773 4774 4775 4776 4777 4778 4779 4780 4781
			struct perf_event *output_event;
			struct fd output;
			ret = perf_fget_light(arg, &output);
			if (ret)
				return ret;
			output_event = output.file->private_data;
			ret = perf_event_set_output(event, output_event);
			fdput(output);
		} else {
			ret = perf_event_set_output(event, NULL);
4782 4783 4784
		}
		return ret;
	}
4785

L
Li Zefan 已提交
4786 4787 4788
	case PERF_EVENT_IOC_SET_FILTER:
		return perf_event_set_filter(event, (void __user *)arg);

4789 4790 4791
	case PERF_EVENT_IOC_SET_BPF:
		return perf_event_set_bpf_prog(event, arg);

4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804
	case PERF_EVENT_IOC_PAUSE_OUTPUT: {
		struct ring_buffer *rb;

		rcu_read_lock();
		rb = rcu_dereference(event->rb);
		if (!rb || !rb->nr_pages) {
			rcu_read_unlock();
			return -EINVAL;
		}
		rb_toggle_paused(rb, !!arg);
		rcu_read_unlock();
		return 0;
	}
4805
	default:
P
Peter Zijlstra 已提交
4806
		return -ENOTTY;
4807
	}
P
Peter Zijlstra 已提交
4808 4809

	if (flags & PERF_IOC_FLAG_GROUP)
4810
		perf_event_for_each(event, func);
P
Peter Zijlstra 已提交
4811
	else
4812
		perf_event_for_each_child(event, func);
P
Peter Zijlstra 已提交
4813 4814

	return 0;
4815 4816
}

P
Peter Zijlstra 已提交
4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829
static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
	struct perf_event *event = file->private_data;
	struct perf_event_context *ctx;
	long ret;

	ctx = perf_event_ctx_lock(event);
	ret = _perf_ioctl(event, cmd, arg);
	perf_event_ctx_unlock(event, ctx);

	return ret;
}

P
Pawel Moll 已提交
4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849
#ifdef CONFIG_COMPAT
static long perf_compat_ioctl(struct file *file, unsigned int cmd,
				unsigned long arg)
{
	switch (_IOC_NR(cmd)) {
	case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
	case _IOC_NR(PERF_EVENT_IOC_ID):
		/* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
		if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
			cmd &= ~IOCSIZE_MASK;
			cmd |= sizeof(void *) << IOCSIZE_SHIFT;
		}
		break;
	}
	return perf_ioctl(file, cmd, arg);
}
#else
# define perf_compat_ioctl NULL
#endif

4850
int perf_event_task_enable(void)
4851
{
P
Peter Zijlstra 已提交
4852
	struct perf_event_context *ctx;
4853
	struct perf_event *event;
4854

4855
	mutex_lock(&current->perf_event_mutex);
P
Peter Zijlstra 已提交
4856 4857 4858 4859 4860
	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
		ctx = perf_event_ctx_lock(event);
		perf_event_for_each_child(event, _perf_event_enable);
		perf_event_ctx_unlock(event, ctx);
	}
4861
	mutex_unlock(&current->perf_event_mutex);
4862 4863 4864 4865

	return 0;
}

4866
int perf_event_task_disable(void)
4867
{
P
Peter Zijlstra 已提交
4868
	struct perf_event_context *ctx;
4869
	struct perf_event *event;
4870

4871
	mutex_lock(&current->perf_event_mutex);
P
Peter Zijlstra 已提交
4872 4873 4874 4875 4876
	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
		ctx = perf_event_ctx_lock(event);
		perf_event_for_each_child(event, _perf_event_disable);
		perf_event_ctx_unlock(event, ctx);
	}
4877
	mutex_unlock(&current->perf_event_mutex);
4878 4879 4880 4881

	return 0;
}

4882
static int perf_event_index(struct perf_event *event)
4883
{
P
Peter Zijlstra 已提交
4884 4885 4886
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;

4887
	if (event->state != PERF_EVENT_STATE_ACTIVE)
4888 4889
		return 0;

4890
	return event->pmu->event_idx(event);
4891 4892
}

4893
static void calc_timer_values(struct perf_event *event,
4894
				u64 *now,
4895 4896
				u64 *enabled,
				u64 *running)
4897
{
4898
	u64 ctx_time;
4899

4900 4901
	*now = perf_clock();
	ctx_time = event->shadow_ctx_time + *now;
4902 4903 4904 4905
	*enabled = ctx_time - event->tstamp_enabled;
	*running = ctx_time - event->tstamp_running;
}

4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920
static void perf_event_init_userpage(struct perf_event *event)
{
	struct perf_event_mmap_page *userpg;
	struct ring_buffer *rb;

	rcu_read_lock();
	rb = rcu_dereference(event->rb);
	if (!rb)
		goto unlock;

	userpg = rb->user_page;

	/* Allow new userspace to detect that bit 0 is deprecated */
	userpg->cap_bit0_is_deprecated = 1;
	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
4921 4922
	userpg->data_offset = PAGE_SIZE;
	userpg->data_size = perf_data_size(rb);
4923 4924 4925 4926 4927

unlock:
	rcu_read_unlock();
}

4928 4929
void __weak arch_perf_update_userpage(
	struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
4930 4931 4932
{
}

4933 4934 4935 4936 4937
/*
 * Callers need to ensure there can be no nesting of this function, otherwise
 * the seqlock logic goes bad. We can not serialize this because the arch
 * code calls this from NMI context.
 */
4938
void perf_event_update_userpage(struct perf_event *event)
4939
{
4940
	struct perf_event_mmap_page *userpg;
4941
	struct ring_buffer *rb;
4942
	u64 enabled, running, now;
4943 4944

	rcu_read_lock();
4945 4946 4947 4948
	rb = rcu_dereference(event->rb);
	if (!rb)
		goto unlock;

4949 4950 4951 4952 4953 4954 4955 4956 4957
	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we can be called in
	 * NMI context
	 */
4958
	calc_timer_values(event, &now, &enabled, &running);
4959

4960
	userpg = rb->user_page;
4961 4962 4963 4964 4965
	/*
	 * Disable preemption so as to not let the corresponding user-space
	 * spin too long if we get preempted.
	 */
	preempt_disable();
4966
	++userpg->lock;
4967
	barrier();
4968
	userpg->index = perf_event_index(event);
P
Peter Zijlstra 已提交
4969
	userpg->offset = perf_event_count(event);
4970
	if (userpg->index)
4971
		userpg->offset -= local64_read(&event->hw.prev_count);
4972

4973
	userpg->time_enabled = enabled +
4974
			atomic64_read(&event->child_total_time_enabled);
4975

4976
	userpg->time_running = running +
4977
			atomic64_read(&event->child_total_time_running);
4978

4979
	arch_perf_update_userpage(event, userpg, now);
4980

4981
	barrier();
4982
	++userpg->lock;
4983
	preempt_enable();
4984
unlock:
4985
	rcu_read_unlock();
4986 4987
}

4988
static int perf_mmap_fault(struct vm_fault *vmf)
4989
{
4990
	struct perf_event *event = vmf->vma->vm_file->private_data;
4991
	struct ring_buffer *rb;
4992 4993 4994 4995 4996 4997 4998 4999 5000
	int ret = VM_FAULT_SIGBUS;

	if (vmf->flags & FAULT_FLAG_MKWRITE) {
		if (vmf->pgoff == 0)
			ret = 0;
		return ret;
	}

	rcu_read_lock();
5001 5002
	rb = rcu_dereference(event->rb);
	if (!rb)
5003 5004 5005 5006 5007
		goto unlock;

	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
		goto unlock;

5008
	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
5009 5010 5011 5012
	if (!vmf->page)
		goto unlock;

	get_page(vmf->page);
5013
	vmf->page->mapping = vmf->vma->vm_file->f_mapping;
5014 5015 5016 5017 5018 5019 5020 5021 5022
	vmf->page->index   = vmf->pgoff;

	ret = 0;
unlock:
	rcu_read_unlock();

	return ret;
}

5023 5024 5025
static void ring_buffer_attach(struct perf_event *event,
			       struct ring_buffer *rb)
{
5026
	struct ring_buffer *old_rb = NULL;
5027 5028
	unsigned long flags;

5029 5030 5031 5032 5033 5034
	if (event->rb) {
		/*
		 * Should be impossible, we set this when removing
		 * event->rb_entry and wait/clear when adding event->rb_entry.
		 */
		WARN_ON_ONCE(event->rcu_pending);
5035

5036 5037 5038 5039
		old_rb = event->rb;
		spin_lock_irqsave(&old_rb->event_lock, flags);
		list_del_rcu(&event->rb_entry);
		spin_unlock_irqrestore(&old_rb->event_lock, flags);
5040

5041 5042
		event->rcu_batches = get_state_synchronize_rcu();
		event->rcu_pending = 1;
5043
	}
5044

5045
	if (rb) {
5046 5047 5048 5049 5050
		if (event->rcu_pending) {
			cond_synchronize_rcu(event->rcu_batches);
			event->rcu_pending = 0;
		}

5051 5052 5053 5054 5055
		spin_lock_irqsave(&rb->event_lock, flags);
		list_add_rcu(&event->rb_entry, &rb->event_list);
		spin_unlock_irqrestore(&rb->event_lock, flags);
	}

5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068
	/*
	 * Avoid racing with perf_mmap_close(AUX): stop the event
	 * before swizzling the event::rb pointer; if it's getting
	 * unmapped, its aux_mmap_count will be 0 and it won't
	 * restart. See the comment in __perf_pmu_output_stop().
	 *
	 * Data will inevitably be lost when set_output is done in
	 * mid-air, but then again, whoever does it like this is
	 * not in for the data anyway.
	 */
	if (has_aux(event))
		perf_event_stop(event, 0);

5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079
	rcu_assign_pointer(event->rb, rb);

	if (old_rb) {
		ring_buffer_put(old_rb);
		/*
		 * Since we detached before setting the new rb, so that we
		 * could attach the new rb, we could have missed a wakeup.
		 * Provide it now.
		 */
		wake_up_all(&event->waitq);
	}
5080 5081 5082 5083 5084 5085 5086 5087
}

static void ring_buffer_wakeup(struct perf_event *event)
{
	struct ring_buffer *rb;

	rcu_read_lock();
	rb = rcu_dereference(event->rb);
5088 5089 5090 5091
	if (rb) {
		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
			wake_up_all(&event->waitq);
	}
5092 5093 5094
	rcu_read_unlock();
}

5095
struct ring_buffer *ring_buffer_get(struct perf_event *event)
5096
{
5097
	struct ring_buffer *rb;
5098

5099
	rcu_read_lock();
5100 5101 5102 5103
	rb = rcu_dereference(event->rb);
	if (rb) {
		if (!atomic_inc_not_zero(&rb->refcount))
			rb = NULL;
5104 5105 5106
	}
	rcu_read_unlock();

5107
	return rb;
5108 5109
}

5110
void ring_buffer_put(struct ring_buffer *rb)
5111
{
5112
	if (!atomic_dec_and_test(&rb->refcount))
5113
		return;
5114

5115
	WARN_ON_ONCE(!list_empty(&rb->event_list));
5116

5117
	call_rcu(&rb->rcu_head, rb_free_rcu);
5118 5119 5120 5121
}

static void perf_mmap_open(struct vm_area_struct *vma)
{
5122
	struct perf_event *event = vma->vm_file->private_data;
5123

5124
	atomic_inc(&event->mmap_count);
5125
	atomic_inc(&event->rb->mmap_count);
5126

5127 5128 5129
	if (vma->vm_pgoff)
		atomic_inc(&event->rb->aux_mmap_count);

5130
	if (event->pmu->event_mapped)
5131
		event->pmu->event_mapped(event, vma->vm_mm);
5132 5133
}

5134 5135
static void perf_pmu_output_stop(struct perf_event *event);

5136 5137 5138 5139 5140 5141 5142 5143
/*
 * A buffer can be mmap()ed multiple times; either directly through the same
 * event, or through other events by use of perf_event_set_output().
 *
 * In order to undo the VM accounting done by perf_mmap() we need to destroy
 * the buffer here, where we still have a VM context. This means we need
 * to detach all events redirecting to us.
 */
5144 5145
static void perf_mmap_close(struct vm_area_struct *vma)
{
5146
	struct perf_event *event = vma->vm_file->private_data;
5147

5148
	struct ring_buffer *rb = ring_buffer_get(event);
5149 5150 5151
	struct user_struct *mmap_user = rb->mmap_user;
	int mmap_locked = rb->mmap_locked;
	unsigned long size = perf_data_size(rb);
5152

5153
	if (event->pmu->event_unmapped)
5154
		event->pmu->event_unmapped(event, vma->vm_mm);
5155

5156 5157 5158 5159 5160 5161 5162
	/*
	 * rb->aux_mmap_count will always drop before rb->mmap_count and
	 * event->mmap_count, so it is ok to use event->mmap_mutex to
	 * serialize with perf_mmap here.
	 */
	if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
	    atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
5163 5164 5165 5166 5167 5168 5169 5170 5171
		/*
		 * Stop all AUX events that are writing to this buffer,
		 * so that we can free its AUX pages and corresponding PMU
		 * data. Note that after rb::aux_mmap_count dropped to zero,
		 * they won't start any more (see perf_aux_output_begin()).
		 */
		perf_pmu_output_stop(event);

		/* now it's safe to free the pages */
5172 5173 5174
		atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
		vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;

5175
		/* this has to be the last one */
5176
		rb_free_aux(rb);
5177 5178
		WARN_ON_ONCE(atomic_read(&rb->aux_refcount));

5179 5180 5181
		mutex_unlock(&event->mmap_mutex);
	}

5182 5183 5184
	atomic_dec(&rb->mmap_count);

	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
5185
		goto out_put;
5186

5187
	ring_buffer_attach(event, NULL);
5188 5189 5190
	mutex_unlock(&event->mmap_mutex);

	/* If there's still other mmap()s of this buffer, we're done. */
5191 5192
	if (atomic_read(&rb->mmap_count))
		goto out_put;
5193

5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209
	/*
	 * No other mmap()s, detach from all other events that might redirect
	 * into the now unreachable buffer. Somewhat complicated by the
	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
	 */
again:
	rcu_read_lock();
	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
		if (!atomic_long_inc_not_zero(&event->refcount)) {
			/*
			 * This event is en-route to free_event() which will
			 * detach it and remove it from the list.
			 */
			continue;
		}
		rcu_read_unlock();
5210

5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221
		mutex_lock(&event->mmap_mutex);
		/*
		 * Check we didn't race with perf_event_set_output() which can
		 * swizzle the rb from under us while we were waiting to
		 * acquire mmap_mutex.
		 *
		 * If we find a different rb; ignore this event, a next
		 * iteration will no longer find it on the list. We have to
		 * still restart the iteration to make sure we're not now
		 * iterating the wrong list.
		 */
5222 5223 5224
		if (event->rb == rb)
			ring_buffer_attach(event, NULL);

5225
		mutex_unlock(&event->mmap_mutex);
5226
		put_event(event);
5227

5228 5229 5230 5231 5232
		/*
		 * Restart the iteration; either we're on the wrong list or
		 * destroyed its integrity by doing a deletion.
		 */
		goto again;
5233
	}
5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248
	rcu_read_unlock();

	/*
	 * It could be there's still a few 0-ref events on the list; they'll
	 * get cleaned up by free_event() -- they'll also still have their
	 * ref on the rb and will free it whenever they are done with it.
	 *
	 * Aside from that, this buffer is 'fully' detached and unmapped,
	 * undo the VM accounting.
	 */

	atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
	vma->vm_mm->pinned_vm -= mmap_locked;
	free_uid(mmap_user);

5249
out_put:
5250
	ring_buffer_put(rb); /* could be last */
5251 5252
}

5253
static const struct vm_operations_struct perf_mmap_vmops = {
5254
	.open		= perf_mmap_open,
5255
	.close		= perf_mmap_close, /* non mergable */
5256 5257
	.fault		= perf_mmap_fault,
	.page_mkwrite	= perf_mmap_fault,
5258 5259 5260 5261
};

static int perf_mmap(struct file *file, struct vm_area_struct *vma)
{
5262
	struct perf_event *event = file->private_data;
5263
	unsigned long user_locked, user_lock_limit;
5264
	struct user_struct *user = current_user();
5265
	unsigned long locked, lock_limit;
5266
	struct ring_buffer *rb = NULL;
5267 5268
	unsigned long vma_size;
	unsigned long nr_pages;
5269
	long user_extra = 0, extra = 0;
5270
	int ret = 0, flags = 0;
5271

5272 5273 5274
	/*
	 * Don't allow mmap() of inherited per-task counters. This would
	 * create a performance issue due to all children writing to the
5275
	 * same rb.
5276 5277 5278 5279
	 */
	if (event->cpu == -1 && event->attr.inherit)
		return -EINVAL;

5280
	if (!(vma->vm_flags & VM_SHARED))
5281
		return -EINVAL;
5282 5283

	vma_size = vma->vm_end - vma->vm_start;
5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306

	if (vma->vm_pgoff == 0) {
		nr_pages = (vma_size / PAGE_SIZE) - 1;
	} else {
		/*
		 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
		 * mapped, all subsequent mappings should have the same size
		 * and offset. Must be above the normal perf buffer.
		 */
		u64 aux_offset, aux_size;

		if (!event->rb)
			return -EINVAL;

		nr_pages = vma_size / PAGE_SIZE;

		mutex_lock(&event->mmap_mutex);
		ret = -EINVAL;

		rb = event->rb;
		if (!rb)
			goto aux_unlock;

5307 5308
		aux_offset = READ_ONCE(rb->user_page->aux_offset);
		aux_size = READ_ONCE(rb->user_page->aux_size);
5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343

		if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
			goto aux_unlock;

		if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
			goto aux_unlock;

		/* already mapped with a different offset */
		if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
			goto aux_unlock;

		if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
			goto aux_unlock;

		/* already mapped with a different size */
		if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
			goto aux_unlock;

		if (!is_power_of_2(nr_pages))
			goto aux_unlock;

		if (!atomic_inc_not_zero(&rb->mmap_count))
			goto aux_unlock;

		if (rb_has_aux(rb)) {
			atomic_inc(&rb->aux_mmap_count);
			ret = 0;
			goto unlock;
		}

		atomic_set(&rb->aux_mmap_count, 1);
		user_extra = nr_pages;

		goto accounting;
	}
5344

5345
	/*
5346
	 * If we have rb pages ensure they're a power-of-two number, so we
5347 5348
	 * can do bitmasks instead of modulo.
	 */
5349
	if (nr_pages != 0 && !is_power_of_2(nr_pages))
5350 5351
		return -EINVAL;

5352
	if (vma_size != PAGE_SIZE * (1 + nr_pages))
5353 5354
		return -EINVAL;

5355
	WARN_ON_ONCE(event->ctx->parent_ctx);
5356
again:
5357
	mutex_lock(&event->mmap_mutex);
5358
	if (event->rb) {
5359
		if (event->rb->nr_pages != nr_pages) {
5360
			ret = -EINVAL;
5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373
			goto unlock;
		}

		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
			/*
			 * Raced against perf_mmap_close() through
			 * perf_event_set_output(). Try again, hope for better
			 * luck.
			 */
			mutex_unlock(&event->mmap_mutex);
			goto again;
		}

5374 5375 5376
		goto unlock;
	}

5377
	user_extra = nr_pages + 1;
5378 5379

accounting:
5380
	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
I
Ingo Molnar 已提交
5381 5382 5383 5384 5385 5386

	/*
	 * Increase the limit linearly with more CPUs:
	 */
	user_lock_limit *= num_online_cpus();

5387
	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
5388

5389 5390
	if (user_locked > user_lock_limit)
		extra = user_locked - user_lock_limit;
5391

5392
	lock_limit = rlimit(RLIMIT_MEMLOCK);
5393
	lock_limit >>= PAGE_SHIFT;
5394
	locked = vma->vm_mm->pinned_vm + extra;
5395

5396 5397
	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
		!capable(CAP_IPC_LOCK)) {
5398 5399 5400
		ret = -EPERM;
		goto unlock;
	}
5401

5402
	WARN_ON(!rb && event->rb);
5403

5404
	if (vma->vm_flags & VM_WRITE)
5405
		flags |= RING_BUFFER_WRITABLE;
5406

5407
	if (!rb) {
5408 5409 5410
		rb = rb_alloc(nr_pages,
			      event->attr.watermark ? event->attr.wakeup_watermark : 0,
			      event->cpu, flags);
P
Peter Zijlstra 已提交
5411

5412 5413 5414 5415
		if (!rb) {
			ret = -ENOMEM;
			goto unlock;
		}
5416

5417 5418 5419
		atomic_set(&rb->mmap_count, 1);
		rb->mmap_user = get_current_user();
		rb->mmap_locked = extra;
P
Peter Zijlstra 已提交
5420

5421
		ring_buffer_attach(event, rb);
5422

5423 5424 5425
		perf_event_init_userpage(event);
		perf_event_update_userpage(event);
	} else {
5426 5427
		ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
				   event->attr.aux_watermark, flags);
5428 5429 5430
		if (!ret)
			rb->aux_mmap_locked = extra;
	}
5431

5432
unlock:
5433 5434 5435 5436
	if (!ret) {
		atomic_long_add(user_extra, &user->locked_vm);
		vma->vm_mm->pinned_vm += extra;

5437
		atomic_inc(&event->mmap_count);
5438 5439 5440 5441
	} else if (rb) {
		atomic_dec(&rb->mmap_count);
	}
aux_unlock:
5442
	mutex_unlock(&event->mmap_mutex);
5443

5444 5445 5446 5447
	/*
	 * Since pinned accounting is per vm we cannot allow fork() to copy our
	 * vma.
	 */
P
Peter Zijlstra 已提交
5448
	vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
5449
	vma->vm_ops = &perf_mmap_vmops;
5450

5451
	if (event->pmu->event_mapped)
5452
		event->pmu->event_mapped(event, vma->vm_mm);
5453

5454
	return ret;
5455 5456
}

P
Peter Zijlstra 已提交
5457 5458
static int perf_fasync(int fd, struct file *filp, int on)
{
A
Al Viro 已提交
5459
	struct inode *inode = file_inode(filp);
5460
	struct perf_event *event = filp->private_data;
P
Peter Zijlstra 已提交
5461 5462
	int retval;

A
Al Viro 已提交
5463
	inode_lock(inode);
5464
	retval = fasync_helper(fd, filp, on, &event->fasync);
A
Al Viro 已提交
5465
	inode_unlock(inode);
P
Peter Zijlstra 已提交
5466 5467 5468 5469 5470 5471 5472

	if (retval < 0)
		return retval;

	return 0;
}

T
Thomas Gleixner 已提交
5473
static const struct file_operations perf_fops = {
5474
	.llseek			= no_llseek,
T
Thomas Gleixner 已提交
5475 5476 5477
	.release		= perf_release,
	.read			= perf_read,
	.poll			= perf_poll,
5478
	.unlocked_ioctl		= perf_ioctl,
P
Pawel Moll 已提交
5479
	.compat_ioctl		= perf_compat_ioctl,
5480
	.mmap			= perf_mmap,
P
Peter Zijlstra 已提交
5481
	.fasync			= perf_fasync,
T
Thomas Gleixner 已提交
5482 5483
};

5484
/*
5485
 * Perf event wakeup
5486 5487 5488 5489 5490
 *
 * If there's data, ensure we set the poll() state and publish everything
 * to user-space before waking everybody up.
 */

5491 5492 5493 5494 5495 5496 5497 5498
static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
{
	/* only the parent has fasync state */
	if (event->parent)
		event = event->parent;
	return &event->fasync;
}

5499
void perf_event_wakeup(struct perf_event *event)
5500
{
5501
	ring_buffer_wakeup(event);
5502

5503
	if (event->pending_kill) {
5504
		kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
5505
		event->pending_kill = 0;
5506
	}
5507 5508
}

5509
static void perf_pending_event(struct irq_work *entry)
5510
{
5511 5512
	struct perf_event *event = container_of(entry,
			struct perf_event, pending);
5513 5514 5515 5516 5517 5518 5519
	int rctx;

	rctx = perf_swevent_get_recursion_context();
	/*
	 * If we 'fail' here, that's OK, it means recursion is already disabled
	 * and we won't recurse 'further'.
	 */
5520

5521 5522
	if (event->pending_disable) {
		event->pending_disable = 0;
5523
		perf_event_disable_local(event);
5524 5525
	}

5526 5527 5528
	if (event->pending_wakeup) {
		event->pending_wakeup = 0;
		perf_event_wakeup(event);
5529
	}
5530 5531 5532

	if (rctx >= 0)
		perf_swevent_put_recursion_context(rctx);
5533 5534
}

5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555
/*
 * We assume there is only KVM supporting the callbacks.
 * Later on, we might change it to a list if there is
 * another virtualization implementation supporting the callbacks.
 */
struct perf_guest_info_callbacks *perf_guest_cbs;

int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = cbs;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);

int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = NULL;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);

5556 5557 5558 5559 5560
static void
perf_output_sample_regs(struct perf_output_handle *handle,
			struct pt_regs *regs, u64 mask)
{
	int bit;
5561
	DECLARE_BITMAP(_mask, 64);
5562

5563 5564
	bitmap_from_u64(_mask, mask);
	for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
5565 5566 5567 5568 5569 5570 5571
		u64 val;

		val = perf_reg_value(regs, bit);
		perf_output_put(handle, val);
	}
}

5572
static void perf_sample_regs_user(struct perf_regs *regs_user,
5573 5574
				  struct pt_regs *regs,
				  struct pt_regs *regs_user_copy)
5575
{
5576 5577
	if (user_mode(regs)) {
		regs_user->abi = perf_reg_abi(current);
5578
		regs_user->regs = regs;
5579 5580
	} else if (current->mm) {
		perf_get_regs_user(regs_user, regs, regs_user_copy);
5581 5582 5583
	} else {
		regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
		regs_user->regs = NULL;
5584 5585 5586
	}
}

5587 5588 5589 5590 5591 5592 5593 5594
static void perf_sample_regs_intr(struct perf_regs *regs_intr,
				  struct pt_regs *regs)
{
	regs_intr->regs = regs;
	regs_intr->abi  = perf_reg_abi(current);
}


5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689
/*
 * Get remaining task size from user stack pointer.
 *
 * It'd be better to take stack vma map and limit this more
 * precisly, but there's no way to get it safely under interrupt,
 * so using TASK_SIZE as limit.
 */
static u64 perf_ustack_task_size(struct pt_regs *regs)
{
	unsigned long addr = perf_user_stack_pointer(regs);

	if (!addr || addr >= TASK_SIZE)
		return 0;

	return TASK_SIZE - addr;
}

static u16
perf_sample_ustack_size(u16 stack_size, u16 header_size,
			struct pt_regs *regs)
{
	u64 task_size;

	/* No regs, no stack pointer, no dump. */
	if (!regs)
		return 0;

	/*
	 * Check if we fit in with the requested stack size into the:
	 * - TASK_SIZE
	 *   If we don't, we limit the size to the TASK_SIZE.
	 *
	 * - remaining sample size
	 *   If we don't, we customize the stack size to
	 *   fit in to the remaining sample size.
	 */

	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
	stack_size = min(stack_size, (u16) task_size);

	/* Current header size plus static size and dynamic size. */
	header_size += 2 * sizeof(u64);

	/* Do we fit in with the current stack dump size? */
	if ((u16) (header_size + stack_size) < header_size) {
		/*
		 * If we overflow the maximum size for the sample,
		 * we customize the stack dump size to fit in.
		 */
		stack_size = USHRT_MAX - header_size - sizeof(u64);
		stack_size = round_up(stack_size, sizeof(u64));
	}

	return stack_size;
}

static void
perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
			  struct pt_regs *regs)
{
	/* Case of a kernel thread, nothing to dump */
	if (!regs) {
		u64 size = 0;
		perf_output_put(handle, size);
	} else {
		unsigned long sp;
		unsigned int rem;
		u64 dyn_size;

		/*
		 * We dump:
		 * static size
		 *   - the size requested by user or the best one we can fit
		 *     in to the sample max size
		 * data
		 *   - user stack dump data
		 * dynamic size
		 *   - the actual dumped size
		 */

		/* Static size. */
		perf_output_put(handle, dump_size);

		/* Data. */
		sp = perf_user_stack_pointer(regs);
		rem = __output_copy_user(handle, (void *) sp, dump_size);
		dyn_size = dump_size - rem;

		perf_output_skip(handle, rem);

		/* Dynamic size. */
		perf_output_put(handle, dyn_size);
	}
}

5690 5691 5692
static void __perf_event_header__init_id(struct perf_event_header *header,
					 struct perf_sample_data *data,
					 struct perf_event *event)
5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705
{
	u64 sample_type = event->attr.sample_type;

	data->type = sample_type;
	header->size += event->id_header_size;

	if (sample_type & PERF_SAMPLE_TID) {
		/* namespace issues */
		data->tid_entry.pid = perf_event_pid(event, current);
		data->tid_entry.tid = perf_event_tid(event, current);
	}

	if (sample_type & PERF_SAMPLE_TIME)
5706
		data->time = perf_event_clock(event);
5707

5708
	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719
		data->id = primary_event_id(event);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		data->stream_id = event->id;

	if (sample_type & PERF_SAMPLE_CPU) {
		data->cpu_entry.cpu	 = raw_smp_processor_id();
		data->cpu_entry.reserved = 0;
	}
}

5720 5721 5722
void perf_event_header__init_id(struct perf_event_header *header,
				struct perf_sample_data *data,
				struct perf_event *event)
5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746
{
	if (event->attr.sample_id_all)
		__perf_event_header__init_id(header, data, event);
}

static void __perf_event__output_id_sample(struct perf_output_handle *handle,
					   struct perf_sample_data *data)
{
	u64 sample_type = data->type;

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);
5747 5748 5749

	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		perf_output_put(handle, data->id);
5750 5751
}

5752 5753 5754
void perf_event__output_id_sample(struct perf_event *event,
				  struct perf_output_handle *handle,
				  struct perf_sample_data *sample)
5755 5756 5757 5758 5759
{
	if (event->attr.sample_id_all)
		__perf_event__output_id_sample(handle, sample);
}

5760
static void perf_output_read_one(struct perf_output_handle *handle,
5761 5762
				 struct perf_event *event,
				 u64 enabled, u64 running)
5763
{
5764
	u64 read_format = event->attr.read_format;
5765 5766 5767
	u64 values[4];
	int n = 0;

P
Peter Zijlstra 已提交
5768
	values[n++] = perf_event_count(event);
5769
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5770
		values[n++] = enabled +
5771
			atomic64_read(&event->child_total_time_enabled);
5772 5773
	}
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5774
		values[n++] = running +
5775
			atomic64_read(&event->child_total_time_running);
5776 5777
	}
	if (read_format & PERF_FORMAT_ID)
5778
		values[n++] = primary_event_id(event);
5779

5780
	__output_copy(handle, values, n * sizeof(u64));
5781 5782 5783
}

static void perf_output_read_group(struct perf_output_handle *handle,
5784 5785
			    struct perf_event *event,
			    u64 enabled, u64 running)
5786
{
5787 5788
	struct perf_event *leader = event->group_leader, *sub;
	u64 read_format = event->attr.read_format;
5789 5790 5791 5792 5793 5794
	u64 values[5];
	int n = 0;

	values[n++] = 1 + leader->nr_siblings;

	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5795
		values[n++] = enabled;
5796 5797

	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5798
		values[n++] = running;
5799

5800
	if (leader != event)
5801 5802
		leader->pmu->read(leader);

P
Peter Zijlstra 已提交
5803
	values[n++] = perf_event_count(leader);
5804
	if (read_format & PERF_FORMAT_ID)
5805
		values[n++] = primary_event_id(leader);
5806

5807
	__output_copy(handle, values, n * sizeof(u64));
5808

5809
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
5810 5811
		n = 0;

5812 5813
		if ((sub != event) &&
		    (sub->state == PERF_EVENT_STATE_ACTIVE))
5814 5815
			sub->pmu->read(sub);

P
Peter Zijlstra 已提交
5816
		values[n++] = perf_event_count(sub);
5817
		if (read_format & PERF_FORMAT_ID)
5818
			values[n++] = primary_event_id(sub);
5819

5820
		__output_copy(handle, values, n * sizeof(u64));
5821 5822 5823
	}
}

5824 5825 5826
#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
				 PERF_FORMAT_TOTAL_TIME_RUNNING)

5827 5828 5829 5830 5831 5832 5833
/*
 * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
 *
 * The problem is that its both hard and excessively expensive to iterate the
 * child list, not to mention that its impossible to IPI the children running
 * on another CPU, from interrupt/NMI context.
 */
5834
static void perf_output_read(struct perf_output_handle *handle,
5835
			     struct perf_event *event)
5836
{
5837
	u64 enabled = 0, running = 0, now;
5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848
	u64 read_format = event->attr.read_format;

	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we are called in
	 * NMI context
	 */
5849
	if (read_format & PERF_FORMAT_TOTAL_TIMES)
5850
		calc_timer_values(event, &now, &enabled, &running);
5851

5852
	if (event->attr.read_format & PERF_FORMAT_GROUP)
5853
		perf_output_read_group(handle, event, enabled, running);
5854
	else
5855
		perf_output_read_one(handle, event, enabled, running);
5856 5857
}

5858 5859 5860
void perf_output_sample(struct perf_output_handle *handle,
			struct perf_event_header *header,
			struct perf_sample_data *data,
5861
			struct perf_event *event)
5862 5863 5864 5865 5866
{
	u64 sample_type = data->type;

	perf_output_put(handle, *header);

5867 5868 5869
	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		perf_output_put(handle, data->id);

5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894
	if (sample_type & PERF_SAMPLE_IP)
		perf_output_put(handle, data->ip);

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ADDR)
		perf_output_put(handle, data->addr);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);

	if (sample_type & PERF_SAMPLE_PERIOD)
		perf_output_put(handle, data->period);

	if (sample_type & PERF_SAMPLE_READ)
5895
		perf_output_read(handle, event);
5896 5897 5898 5899 5900 5901 5902 5903 5904 5905

	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
		if (data->callchain) {
			int size = 1;

			if (data->callchain)
				size += data->callchain->nr;

			size *= sizeof(u64);

5906
			__output_copy(handle, data->callchain, size);
5907 5908 5909 5910 5911 5912 5913
		} else {
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}

	if (sample_type & PERF_SAMPLE_RAW) {
5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933
		struct perf_raw_record *raw = data->raw;

		if (raw) {
			struct perf_raw_frag *frag = &raw->frag;

			perf_output_put(handle, raw->size);
			do {
				if (frag->copy) {
					__output_custom(handle, frag->copy,
							frag->data, frag->size);
				} else {
					__output_copy(handle, frag->data,
						      frag->size);
				}
				if (perf_raw_frag_last(frag))
					break;
				frag = frag->next;
			} while (1);
			if (frag->pad)
				__output_skip(handle, NULL, frag->pad);
5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944
		} else {
			struct {
				u32	size;
				u32	data;
			} raw = {
				.size = sizeof(u32),
				.data = 0,
			};
			perf_output_put(handle, raw);
		}
	}
5945

5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962
	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
		if (data->br_stack) {
			size_t size;

			size = data->br_stack->nr
			     * sizeof(struct perf_branch_entry);

			perf_output_put(handle, data->br_stack->nr);
			perf_output_copy(handle, data->br_stack->entries, size);
		} else {
			/*
			 * we always store at least the value of nr
			 */
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}
5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979

	if (sample_type & PERF_SAMPLE_REGS_USER) {
		u64 abi = data->regs_user.abi;

		/*
		 * If there are no regs to dump, notice it through
		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
		 */
		perf_output_put(handle, abi);

		if (abi) {
			u64 mask = event->attr.sample_regs_user;
			perf_output_sample_regs(handle,
						data->regs_user.regs,
						mask);
		}
	}
5980

5981
	if (sample_type & PERF_SAMPLE_STACK_USER) {
5982 5983 5984
		perf_output_sample_ustack(handle,
					  data->stack_user_size,
					  data->regs_user.regs);
5985
	}
A
Andi Kleen 已提交
5986 5987 5988

	if (sample_type & PERF_SAMPLE_WEIGHT)
		perf_output_put(handle, data->weight);
5989 5990 5991

	if (sample_type & PERF_SAMPLE_DATA_SRC)
		perf_output_put(handle, data->data_src.val);
5992

A
Andi Kleen 已提交
5993 5994 5995
	if (sample_type & PERF_SAMPLE_TRANSACTION)
		perf_output_put(handle, data->txn);

5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012
	if (sample_type & PERF_SAMPLE_REGS_INTR) {
		u64 abi = data->regs_intr.abi;
		/*
		 * If there are no regs to dump, notice it through
		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
		 */
		perf_output_put(handle, abi);

		if (abi) {
			u64 mask = event->attr.sample_regs_intr;

			perf_output_sample_regs(handle,
						data->regs_intr.regs,
						mask);
		}
	}

6013 6014 6015
	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
		perf_output_put(handle, data->phys_addr);

6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028
	if (!event->attr.watermark) {
		int wakeup_events = event->attr.wakeup_events;

		if (wakeup_events) {
			struct ring_buffer *rb = handle->rb;
			int events = local_inc_return(&rb->events);

			if (events >= wakeup_events) {
				local_sub(wakeup_events, &rb->events);
				local_inc(&rb->wakeup);
			}
		}
	}
6029 6030
}

6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062
static u64 perf_virt_to_phys(u64 virt)
{
	u64 phys_addr = 0;
	struct page *p = NULL;

	if (!virt)
		return 0;

	if (virt >= TASK_SIZE) {
		/* If it's vmalloc()d memory, leave phys_addr as 0 */
		if (virt_addr_valid((void *)(uintptr_t)virt) &&
		    !(virt >= VMALLOC_START && virt < VMALLOC_END))
			phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
	} else {
		/*
		 * Walking the pages tables for user address.
		 * Interrupts are disabled, so it prevents any tear down
		 * of the page tables.
		 * Try IRQ-safe __get_user_pages_fast first.
		 * If failed, leave phys_addr as 0.
		 */
		if ((current->mm != NULL) &&
		    (__get_user_pages_fast(virt, 1, 0, &p) == 1))
			phys_addr = page_to_phys(p) + virt % PAGE_SIZE;

		if (p)
			put_page(p);
	}

	return phys_addr;
}

6063 6064
void perf_prepare_sample(struct perf_event_header *header,
			 struct perf_sample_data *data,
6065
			 struct perf_event *event,
6066
			 struct pt_regs *regs)
6067
{
6068
	u64 sample_type = event->attr.sample_type;
6069

6070
	header->type = PERF_RECORD_SAMPLE;
6071
	header->size = sizeof(*header) + event->header_size;
6072 6073 6074

	header->misc = 0;
	header->misc |= perf_misc_flags(regs);
6075

6076
	__perf_event_header__init_id(header, data, event);
6077

6078
	if (sample_type & PERF_SAMPLE_IP)
6079 6080
		data->ip = perf_instruction_pointer(regs);

6081
	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
6082
		int size = 1;
6083

6084
		data->callchain = perf_callchain(event, regs);
6085 6086 6087 6088 6089

		if (data->callchain)
			size += data->callchain->nr;

		header->size += size * sizeof(u64);
6090 6091
	}

6092
	if (sample_type & PERF_SAMPLE_RAW) {
6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112
		struct perf_raw_record *raw = data->raw;
		int size;

		if (raw) {
			struct perf_raw_frag *frag = &raw->frag;
			u32 sum = 0;

			do {
				sum += frag->size;
				if (perf_raw_frag_last(frag))
					break;
				frag = frag->next;
			} while (1);

			size = round_up(sum + sizeof(u32), sizeof(u64));
			raw->size = size - sizeof(u32);
			frag->pad = raw->size - sum;
		} else {
			size = sizeof(u64);
		}
6113

6114
		header->size += size;
6115
	}
6116 6117 6118 6119 6120 6121 6122 6123 6124

	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
		int size = sizeof(u64); /* nr */
		if (data->br_stack) {
			size += data->br_stack->nr
			      * sizeof(struct perf_branch_entry);
		}
		header->size += size;
	}
6125

6126
	if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
6127 6128
		perf_sample_regs_user(&data->regs_user, regs,
				      &data->regs_user_copy);
6129

6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140
	if (sample_type & PERF_SAMPLE_REGS_USER) {
		/* regs dump ABI info */
		int size = sizeof(u64);

		if (data->regs_user.regs) {
			u64 mask = event->attr.sample_regs_user;
			size += hweight64(mask) * sizeof(u64);
		}

		header->size += size;
	}
6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152

	if (sample_type & PERF_SAMPLE_STACK_USER) {
		/*
		 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
		 * processed as the last one or have additional check added
		 * in case new sample type is added, because we could eat
		 * up the rest of the sample size.
		 */
		u16 stack_size = event->attr.sample_stack_user;
		u16 size = sizeof(u64);

		stack_size = perf_sample_ustack_size(stack_size, header->size,
6153
						     data->regs_user.regs);
6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165

		/*
		 * If there is something to dump, add space for the dump
		 * itself and for the field that tells the dynamic size,
		 * which is how many have been actually dumped.
		 */
		if (stack_size)
			size += sizeof(u64) + stack_size;

		data->stack_user_size = stack_size;
		header->size += size;
	}
6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180

	if (sample_type & PERF_SAMPLE_REGS_INTR) {
		/* regs dump ABI info */
		int size = sizeof(u64);

		perf_sample_regs_intr(&data->regs_intr, regs);

		if (data->regs_intr.regs) {
			u64 mask = event->attr.sample_regs_intr;

			size += hweight64(mask) * sizeof(u64);
		}

		header->size += size;
	}
6181 6182 6183

	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
		data->phys_addr = perf_virt_to_phys(data->addr);
6184
}
6185

6186 6187 6188 6189 6190 6191 6192
static void __always_inline
__perf_event_output(struct perf_event *event,
		    struct perf_sample_data *data,
		    struct pt_regs *regs,
		    int (*output_begin)(struct perf_output_handle *,
					struct perf_event *,
					unsigned int))
6193 6194 6195
{
	struct perf_output_handle handle;
	struct perf_event_header header;
6196

6197 6198 6199
	/* protect the callchain buffers */
	rcu_read_lock();

6200
	perf_prepare_sample(&header, data, event, regs);
P
Peter Zijlstra 已提交
6201

6202
	if (output_begin(&handle, event, header.size))
6203
		goto exit;
6204

6205
	perf_output_sample(&handle, &header, data, event);
6206

6207
	perf_output_end(&handle);
6208 6209 6210

exit:
	rcu_read_unlock();
6211 6212
}

6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236
void
perf_event_output_forward(struct perf_event *event,
			 struct perf_sample_data *data,
			 struct pt_regs *regs)
{
	__perf_event_output(event, data, regs, perf_output_begin_forward);
}

void
perf_event_output_backward(struct perf_event *event,
			   struct perf_sample_data *data,
			   struct pt_regs *regs)
{
	__perf_event_output(event, data, regs, perf_output_begin_backward);
}

void
perf_event_output(struct perf_event *event,
		  struct perf_sample_data *data,
		  struct pt_regs *regs)
{
	__perf_event_output(event, data, regs, perf_output_begin);
}

6237
/*
6238
 * read event_id
6239 6240 6241 6242 6243 6244 6245 6246 6247 6248
 */

struct perf_read_event {
	struct perf_event_header	header;

	u32				pid;
	u32				tid;
};

static void
6249
perf_event_read_event(struct perf_event *event,
6250 6251 6252
			struct task_struct *task)
{
	struct perf_output_handle handle;
6253
	struct perf_sample_data sample;
6254
	struct perf_read_event read_event = {
6255
		.header = {
6256
			.type = PERF_RECORD_READ,
6257
			.misc = 0,
6258
			.size = sizeof(read_event) + event->read_size,
6259
		},
6260 6261
		.pid = perf_event_pid(event, task),
		.tid = perf_event_tid(event, task),
6262
	};
6263
	int ret;
6264

6265
	perf_event_header__init_id(&read_event.header, &sample, event);
6266
	ret = perf_output_begin(&handle, event, read_event.header.size);
6267 6268 6269
	if (ret)
		return;

6270
	perf_output_put(&handle, read_event);
6271
	perf_output_read(&handle, event);
6272
	perf_event__output_id_sample(event, &handle, &sample);
6273

6274 6275 6276
	perf_output_end(&handle);
}

6277
typedef void (perf_iterate_f)(struct perf_event *event, void *data);
6278 6279

static void
6280 6281
perf_iterate_ctx(struct perf_event_context *ctx,
		   perf_iterate_f output,
6282
		   void *data, bool all)
6283 6284 6285 6286
{
	struct perf_event *event;

	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6287 6288 6289 6290 6291 6292 6293
		if (!all) {
			if (event->state < PERF_EVENT_STATE_INACTIVE)
				continue;
			if (!event_filter_match(event))
				continue;
		}

6294
		output(event, data);
6295 6296 6297
	}
}

6298
static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
6299 6300 6301 6302 6303
{
	struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
	struct perf_event *event;

	list_for_each_entry_rcu(event, &pel->list, sb_list) {
6304 6305 6306 6307 6308 6309 6310 6311
		/*
		 * Skip events that are not fully formed yet; ensure that
		 * if we observe event->ctx, both event and ctx will be
		 * complete enough. See perf_install_in_context().
		 */
		if (!smp_load_acquire(&event->ctx))
			continue;

6312 6313 6314 6315 6316 6317 6318 6319
		if (event->state < PERF_EVENT_STATE_INACTIVE)
			continue;
		if (!event_filter_match(event))
			continue;
		output(event, data);
	}
}

6320 6321 6322 6323 6324 6325
/*
 * Iterate all events that need to receive side-band events.
 *
 * For new callers; ensure that account_pmu_sb_event() includes
 * your event, otherwise it might not get delivered.
 */
6326
static void
6327
perf_iterate_sb(perf_iterate_f output, void *data,
6328 6329 6330 6331 6332
	       struct perf_event_context *task_ctx)
{
	struct perf_event_context *ctx;
	int ctxn;

6333 6334 6335
	rcu_read_lock();
	preempt_disable();

J
Jiri Olsa 已提交
6336
	/*
6337 6338
	 * If we have task_ctx != NULL we only notify the task context itself.
	 * The task_ctx is set only for EXIT events before releasing task
J
Jiri Olsa 已提交
6339 6340 6341
	 * context.
	 */
	if (task_ctx) {
6342 6343
		perf_iterate_ctx(task_ctx, output, data, false);
		goto done;
J
Jiri Olsa 已提交
6344 6345
	}

6346
	perf_iterate_sb_cpu(output, data);
6347 6348

	for_each_task_context_nr(ctxn) {
6349 6350
		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		if (ctx)
6351
			perf_iterate_ctx(ctx, output, data, false);
6352
	}
6353
done:
6354
	preempt_enable();
6355
	rcu_read_unlock();
6356 6357
}

6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386
/*
 * Clear all file-based filters at exec, they'll have to be
 * re-instated when/if these objects are mmapped again.
 */
static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
{
	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
	struct perf_addr_filter *filter;
	unsigned int restart = 0, count = 0;
	unsigned long flags;

	if (!has_addr_filter(event))
		return;

	raw_spin_lock_irqsave(&ifh->lock, flags);
	list_for_each_entry(filter, &ifh->list, entry) {
		if (filter->inode) {
			event->addr_filters_offs[count] = 0;
			restart++;
		}

		count++;
	}

	if (restart)
		event->addr_filters_gen++;
	raw_spin_unlock_irqrestore(&ifh->lock, flags);

	if (restart)
6387
		perf_event_stop(event, 1);
6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402
}

void perf_event_exec(void)
{
	struct perf_event_context *ctx;
	int ctxn;

	rcu_read_lock();
	for_each_task_context_nr(ctxn) {
		ctx = current->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;

		perf_event_enable_on_exec(ctxn);

6403
		perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
6404 6405 6406 6407 6408
				   true);
	}
	rcu_read_unlock();
}

6409 6410 6411 6412 6413 6414 6415 6416 6417 6418
struct remote_output {
	struct ring_buffer	*rb;
	int			err;
};

static void __perf_event_output_stop(struct perf_event *event, void *data)
{
	struct perf_event *parent = event->parent;
	struct remote_output *ro = data;
	struct ring_buffer *rb = ro->rb;
6419 6420 6421
	struct stop_event_data sd = {
		.event	= event,
	};
6422 6423 6424 6425 6426 6427 6428 6429 6430

	if (!has_aux(event))
		return;

	if (!parent)
		parent = event;

	/*
	 * In case of inheritance, it will be the parent that links to the
6431 6432 6433 6434 6435 6436 6437
	 * ring-buffer, but it will be the child that's actually using it.
	 *
	 * We are using event::rb to determine if the event should be stopped,
	 * however this may race with ring_buffer_attach() (through set_output),
	 * which will make us skip the event that actually needs to be stopped.
	 * So ring_buffer_attach() has to stop an aux event before re-assigning
	 * its rb pointer.
6438 6439
	 */
	if (rcu_dereference(parent->rb) == rb)
6440
		ro->err = __perf_event_stop(&sd);
6441 6442 6443 6444 6445 6446
}

static int __perf_pmu_output_stop(void *info)
{
	struct perf_event *event = info;
	struct pmu *pmu = event->pmu;
6447
	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
6448 6449 6450 6451 6452
	struct remote_output ro = {
		.rb	= event->rb,
	};

	rcu_read_lock();
6453
	perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
6454
	if (cpuctx->task_ctx)
6455
		perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
6456
				   &ro, false);
6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489
	rcu_read_unlock();

	return ro.err;
}

static void perf_pmu_output_stop(struct perf_event *event)
{
	struct perf_event *iter;
	int err, cpu;

restart:
	rcu_read_lock();
	list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
		/*
		 * For per-CPU events, we need to make sure that neither they
		 * nor their children are running; for cpu==-1 events it's
		 * sufficient to stop the event itself if it's active, since
		 * it can't have children.
		 */
		cpu = iter->cpu;
		if (cpu == -1)
			cpu = READ_ONCE(iter->oncpu);

		if (cpu == -1)
			continue;

		err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
		if (err == -EAGAIN) {
			rcu_read_unlock();
			goto restart;
		}
	}
	rcu_read_unlock();
6490 6491
}

P
Peter Zijlstra 已提交
6492
/*
P
Peter Zijlstra 已提交
6493 6494
 * task tracking -- fork/exit
 *
6495
 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
P
Peter Zijlstra 已提交
6496 6497
 */

P
Peter Zijlstra 已提交
6498
struct perf_task_event {
6499
	struct task_struct		*task;
6500
	struct perf_event_context	*task_ctx;
P
Peter Zijlstra 已提交
6501 6502 6503 6504 6505 6506

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				ppid;
P
Peter Zijlstra 已提交
6507 6508
		u32				tid;
		u32				ptid;
6509
		u64				time;
6510
	} event_id;
P
Peter Zijlstra 已提交
6511 6512
};

6513 6514
static int perf_event_task_match(struct perf_event *event)
{
6515 6516 6517
	return event->attr.comm  || event->attr.mmap ||
	       event->attr.mmap2 || event->attr.mmap_data ||
	       event->attr.task;
6518 6519
}

6520
static void perf_event_task_output(struct perf_event *event,
6521
				   void *data)
P
Peter Zijlstra 已提交
6522
{
6523
	struct perf_task_event *task_event = data;
P
Peter Zijlstra 已提交
6524
	struct perf_output_handle handle;
6525
	struct perf_sample_data	sample;
P
Peter Zijlstra 已提交
6526
	struct task_struct *task = task_event->task;
6527
	int ret, size = task_event->event_id.header.size;
6528

6529 6530 6531
	if (!perf_event_task_match(event))
		return;

6532
	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
P
Peter Zijlstra 已提交
6533

6534
	ret = perf_output_begin(&handle, event,
6535
				task_event->event_id.header.size);
6536
	if (ret)
6537
		goto out;
P
Peter Zijlstra 已提交
6538

6539 6540
	task_event->event_id.pid = perf_event_pid(event, task);
	task_event->event_id.ppid = perf_event_pid(event, current);
P
Peter Zijlstra 已提交
6541

6542 6543
	task_event->event_id.tid = perf_event_tid(event, task);
	task_event->event_id.ptid = perf_event_tid(event, current);
P
Peter Zijlstra 已提交
6544

6545 6546
	task_event->event_id.time = perf_event_clock(event);

6547
	perf_output_put(&handle, task_event->event_id);
6548

6549 6550
	perf_event__output_id_sample(event, &handle, &sample);

P
Peter Zijlstra 已提交
6551
	perf_output_end(&handle);
6552 6553
out:
	task_event->event_id.header.size = size;
P
Peter Zijlstra 已提交
6554 6555
}

6556 6557
static void perf_event_task(struct task_struct *task,
			      struct perf_event_context *task_ctx,
6558
			      int new)
P
Peter Zijlstra 已提交
6559
{
P
Peter Zijlstra 已提交
6560
	struct perf_task_event task_event;
P
Peter Zijlstra 已提交
6561

6562 6563 6564
	if (!atomic_read(&nr_comm_events) &&
	    !atomic_read(&nr_mmap_events) &&
	    !atomic_read(&nr_task_events))
P
Peter Zijlstra 已提交
6565 6566
		return;

P
Peter Zijlstra 已提交
6567
	task_event = (struct perf_task_event){
6568 6569
		.task	  = task,
		.task_ctx = task_ctx,
6570
		.event_id    = {
P
Peter Zijlstra 已提交
6571
			.header = {
6572
				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
6573
				.misc = 0,
6574
				.size = sizeof(task_event.event_id),
P
Peter Zijlstra 已提交
6575
			},
6576 6577
			/* .pid  */
			/* .ppid */
P
Peter Zijlstra 已提交
6578 6579
			/* .tid  */
			/* .ptid */
6580
			/* .time */
P
Peter Zijlstra 已提交
6581 6582 6583
		},
	};

6584
	perf_iterate_sb(perf_event_task_output,
6585 6586
		       &task_event,
		       task_ctx);
P
Peter Zijlstra 已提交
6587 6588
}

6589
void perf_event_fork(struct task_struct *task)
P
Peter Zijlstra 已提交
6590
{
6591
	perf_event_task(task, NULL, 1);
6592
	perf_event_namespaces(task);
P
Peter Zijlstra 已提交
6593 6594
}

6595 6596 6597 6598 6599
/*
 * comm tracking
 */

struct perf_comm_event {
6600 6601
	struct task_struct	*task;
	char			*comm;
6602 6603 6604 6605 6606 6607 6608
	int			comm_size;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
6609
	} event_id;
6610 6611
};

6612 6613 6614 6615 6616
static int perf_event_comm_match(struct perf_event *event)
{
	return event->attr.comm;
}

6617
static void perf_event_comm_output(struct perf_event *event,
6618
				   void *data)
6619
{
6620
	struct perf_comm_event *comm_event = data;
6621
	struct perf_output_handle handle;
6622
	struct perf_sample_data sample;
6623
	int size = comm_event->event_id.header.size;
6624 6625
	int ret;

6626 6627 6628
	if (!perf_event_comm_match(event))
		return;

6629 6630
	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
6631
				comm_event->event_id.header.size);
6632 6633

	if (ret)
6634
		goto out;
6635

6636 6637
	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
6638

6639
	perf_output_put(&handle, comm_event->event_id);
6640
	__output_copy(&handle, comm_event->comm,
6641
				   comm_event->comm_size);
6642 6643 6644

	perf_event__output_id_sample(event, &handle, &sample);

6645
	perf_output_end(&handle);
6646 6647
out:
	comm_event->event_id.header.size = size;
6648 6649
}

6650
static void perf_event_comm_event(struct perf_comm_event *comm_event)
6651
{
6652
	char comm[TASK_COMM_LEN];
6653 6654
	unsigned int size;

6655
	memset(comm, 0, sizeof(comm));
6656
	strlcpy(comm, comm_event->task->comm, sizeof(comm));
6657
	size = ALIGN(strlen(comm)+1, sizeof(u64));
6658 6659 6660 6661

	comm_event->comm = comm;
	comm_event->comm_size = size;

6662
	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
P
Peter Zijlstra 已提交
6663

6664
	perf_iterate_sb(perf_event_comm_output,
6665 6666
		       comm_event,
		       NULL);
6667 6668
}

6669
void perf_event_comm(struct task_struct *task, bool exec)
6670
{
6671 6672
	struct perf_comm_event comm_event;

6673
	if (!atomic_read(&nr_comm_events))
6674
		return;
6675

6676
	comm_event = (struct perf_comm_event){
6677
		.task	= task,
6678 6679
		/* .comm      */
		/* .comm_size */
6680
		.event_id  = {
6681
			.header = {
6682
				.type = PERF_RECORD_COMM,
6683
				.misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
6684 6685 6686 6687
				/* .size */
			},
			/* .pid */
			/* .tid */
6688 6689 6690
		},
	};

6691
	perf_event_comm_event(&comm_event);
6692 6693
}

6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819
/*
 * namespaces tracking
 */

struct perf_namespaces_event {
	struct task_struct		*task;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
		u64				nr_namespaces;
		struct perf_ns_link_info	link_info[NR_NAMESPACES];
	} event_id;
};

static int perf_event_namespaces_match(struct perf_event *event)
{
	return event->attr.namespaces;
}

static void perf_event_namespaces_output(struct perf_event *event,
					 void *data)
{
	struct perf_namespaces_event *namespaces_event = data;
	struct perf_output_handle handle;
	struct perf_sample_data sample;
	int ret;

	if (!perf_event_namespaces_match(event))
		return;

	perf_event_header__init_id(&namespaces_event->event_id.header,
				   &sample, event);
	ret = perf_output_begin(&handle, event,
				namespaces_event->event_id.header.size);
	if (ret)
		return;

	namespaces_event->event_id.pid = perf_event_pid(event,
							namespaces_event->task);
	namespaces_event->event_id.tid = perf_event_tid(event,
							namespaces_event->task);

	perf_output_put(&handle, namespaces_event->event_id);

	perf_event__output_id_sample(event, &handle, &sample);

	perf_output_end(&handle);
}

static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
				   struct task_struct *task,
				   const struct proc_ns_operations *ns_ops)
{
	struct path ns_path;
	struct inode *ns_inode;
	void *error;

	error = ns_get_path(&ns_path, task, ns_ops);
	if (!error) {
		ns_inode = ns_path.dentry->d_inode;
		ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
		ns_link_info->ino = ns_inode->i_ino;
	}
}

void perf_event_namespaces(struct task_struct *task)
{
	struct perf_namespaces_event namespaces_event;
	struct perf_ns_link_info *ns_link_info;

	if (!atomic_read(&nr_namespaces_events))
		return;

	namespaces_event = (struct perf_namespaces_event){
		.task	= task,
		.event_id  = {
			.header = {
				.type = PERF_RECORD_NAMESPACES,
				.misc = 0,
				.size = sizeof(namespaces_event.event_id),
			},
			/* .pid */
			/* .tid */
			.nr_namespaces = NR_NAMESPACES,
			/* .link_info[NR_NAMESPACES] */
		},
	};

	ns_link_info = namespaces_event.event_id.link_info;

	perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
			       task, &mntns_operations);

#ifdef CONFIG_USER_NS
	perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
			       task, &userns_operations);
#endif
#ifdef CONFIG_NET_NS
	perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
			       task, &netns_operations);
#endif
#ifdef CONFIG_UTS_NS
	perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
			       task, &utsns_operations);
#endif
#ifdef CONFIG_IPC_NS
	perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
			       task, &ipcns_operations);
#endif
#ifdef CONFIG_PID_NS
	perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
			       task, &pidns_operations);
#endif
#ifdef CONFIG_CGROUPS
	perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
			       task, &cgroupns_operations);
#endif

	perf_iterate_sb(perf_event_namespaces_output,
			&namespaces_event,
			NULL);
}

6820 6821 6822 6823 6824
/*
 * mmap tracking
 */

struct perf_mmap_event {
6825 6826 6827 6828
	struct vm_area_struct	*vma;

	const char		*file_name;
	int			file_size;
6829 6830 6831
	int			maj, min;
	u64			ino;
	u64			ino_generation;
6832
	u32			prot, flags;
6833 6834 6835 6836 6837 6838 6839 6840 6841

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
		u64				start;
		u64				len;
		u64				pgoff;
6842
	} event_id;
6843 6844
};

6845 6846 6847 6848 6849 6850 6851 6852
static int perf_event_mmap_match(struct perf_event *event,
				 void *data)
{
	struct perf_mmap_event *mmap_event = data;
	struct vm_area_struct *vma = mmap_event->vma;
	int executable = vma->vm_flags & VM_EXEC;

	return (!executable && event->attr.mmap_data) ||
6853
	       (executable && (event->attr.mmap || event->attr.mmap2));
6854 6855
}

6856
static void perf_event_mmap_output(struct perf_event *event,
6857
				   void *data)
6858
{
6859
	struct perf_mmap_event *mmap_event = data;
6860
	struct perf_output_handle handle;
6861
	struct perf_sample_data sample;
6862
	int size = mmap_event->event_id.header.size;
6863
	int ret;
6864

6865 6866 6867
	if (!perf_event_mmap_match(event, data))
		return;

6868 6869 6870 6871 6872
	if (event->attr.mmap2) {
		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
		mmap_event->event_id.header.size += sizeof(mmap_event->min);
		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
6873
		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
6874 6875
		mmap_event->event_id.header.size += sizeof(mmap_event->prot);
		mmap_event->event_id.header.size += sizeof(mmap_event->flags);
6876 6877
	}

6878 6879
	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
6880
				mmap_event->event_id.header.size);
6881
	if (ret)
6882
		goto out;
6883

6884 6885
	mmap_event->event_id.pid = perf_event_pid(event, current);
	mmap_event->event_id.tid = perf_event_tid(event, current);
6886

6887
	perf_output_put(&handle, mmap_event->event_id);
6888 6889 6890 6891 6892 6893

	if (event->attr.mmap2) {
		perf_output_put(&handle, mmap_event->maj);
		perf_output_put(&handle, mmap_event->min);
		perf_output_put(&handle, mmap_event->ino);
		perf_output_put(&handle, mmap_event->ino_generation);
6894 6895
		perf_output_put(&handle, mmap_event->prot);
		perf_output_put(&handle, mmap_event->flags);
6896 6897
	}

6898
	__output_copy(&handle, mmap_event->file_name,
6899
				   mmap_event->file_size);
6900 6901 6902

	perf_event__output_id_sample(event, &handle, &sample);

6903
	perf_output_end(&handle);
6904 6905
out:
	mmap_event->event_id.header.size = size;
6906 6907
}

6908
static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
6909
{
6910 6911
	struct vm_area_struct *vma = mmap_event->vma;
	struct file *file = vma->vm_file;
6912 6913
	int maj = 0, min = 0;
	u64 ino = 0, gen = 0;
6914
	u32 prot = 0, flags = 0;
6915 6916 6917
	unsigned int size;
	char tmp[16];
	char *buf = NULL;
6918
	char *name;
6919

6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940
	if (vma->vm_flags & VM_READ)
		prot |= PROT_READ;
	if (vma->vm_flags & VM_WRITE)
		prot |= PROT_WRITE;
	if (vma->vm_flags & VM_EXEC)
		prot |= PROT_EXEC;

	if (vma->vm_flags & VM_MAYSHARE)
		flags = MAP_SHARED;
	else
		flags = MAP_PRIVATE;

	if (vma->vm_flags & VM_DENYWRITE)
		flags |= MAP_DENYWRITE;
	if (vma->vm_flags & VM_MAYEXEC)
		flags |= MAP_EXECUTABLE;
	if (vma->vm_flags & VM_LOCKED)
		flags |= MAP_LOCKED;
	if (vma->vm_flags & VM_HUGETLB)
		flags |= MAP_HUGETLB;

6941
	if (file) {
6942 6943
		struct inode *inode;
		dev_t dev;
6944

6945
		buf = kmalloc(PATH_MAX, GFP_KERNEL);
6946
		if (!buf) {
6947 6948
			name = "//enomem";
			goto cpy_name;
6949
		}
6950
		/*
6951
		 * d_path() works from the end of the rb backwards, so we
6952 6953 6954
		 * need to add enough zero bytes after the string to handle
		 * the 64bit alignment we do later.
		 */
M
Miklos Szeredi 已提交
6955
		name = file_path(file, buf, PATH_MAX - sizeof(u64));
6956
		if (IS_ERR(name)) {
6957 6958
			name = "//toolong";
			goto cpy_name;
6959
		}
6960 6961 6962 6963 6964 6965
		inode = file_inode(vma->vm_file);
		dev = inode->i_sb->s_dev;
		ino = inode->i_ino;
		gen = inode->i_generation;
		maj = MAJOR(dev);
		min = MINOR(dev);
6966

6967
		goto got_name;
6968
	} else {
6969 6970 6971 6972 6973 6974
		if (vma->vm_ops && vma->vm_ops->name) {
			name = (char *) vma->vm_ops->name(vma);
			if (name)
				goto cpy_name;
		}

6975
		name = (char *)arch_vma_name(vma);
6976 6977
		if (name)
			goto cpy_name;
6978

6979
		if (vma->vm_start <= vma->vm_mm->start_brk &&
6980
				vma->vm_end >= vma->vm_mm->brk) {
6981 6982
			name = "[heap]";
			goto cpy_name;
6983 6984
		}
		if (vma->vm_start <= vma->vm_mm->start_stack &&
6985
				vma->vm_end >= vma->vm_mm->start_stack) {
6986 6987
			name = "[stack]";
			goto cpy_name;
6988 6989
		}

6990 6991
		name = "//anon";
		goto cpy_name;
6992 6993
	}

6994 6995 6996
cpy_name:
	strlcpy(tmp, name, sizeof(tmp));
	name = tmp;
6997
got_name:
6998 6999 7000 7001 7002 7003 7004 7005
	/*
	 * Since our buffer works in 8 byte units we need to align our string
	 * size to a multiple of 8. However, we must guarantee the tail end is
	 * zero'd out to avoid leaking random bits to userspace.
	 */
	size = strlen(name)+1;
	while (!IS_ALIGNED(size, sizeof(u64)))
		name[size++] = '\0';
7006 7007 7008

	mmap_event->file_name = name;
	mmap_event->file_size = size;
7009 7010 7011 7012
	mmap_event->maj = maj;
	mmap_event->min = min;
	mmap_event->ino = ino;
	mmap_event->ino_generation = gen;
7013 7014
	mmap_event->prot = prot;
	mmap_event->flags = flags;
7015

7016 7017 7018
	if (!(vma->vm_flags & VM_EXEC))
		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;

7019
	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
7020

7021
	perf_iterate_sb(perf_event_mmap_output,
7022 7023
		       mmap_event,
		       NULL);
7024

7025 7026 7027
	kfree(buf);
}

7028 7029 7030 7031 7032 7033 7034
/*
 * Check whether inode and address range match filter criteria.
 */
static bool perf_addr_filter_match(struct perf_addr_filter *filter,
				     struct file *file, unsigned long offset,
				     unsigned long size)
{
A
Al Viro 已提交
7035
	if (filter->inode != file_inode(file))
7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077
		return false;

	if (filter->offset > offset + size)
		return false;

	if (filter->offset + filter->size < offset)
		return false;

	return true;
}

static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
{
	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
	struct vm_area_struct *vma = data;
	unsigned long off = vma->vm_pgoff << PAGE_SHIFT, flags;
	struct file *file = vma->vm_file;
	struct perf_addr_filter *filter;
	unsigned int restart = 0, count = 0;

	if (!has_addr_filter(event))
		return;

	if (!file)
		return;

	raw_spin_lock_irqsave(&ifh->lock, flags);
	list_for_each_entry(filter, &ifh->list, entry) {
		if (perf_addr_filter_match(filter, file, off,
					     vma->vm_end - vma->vm_start)) {
			event->addr_filters_offs[count] = vma->vm_start;
			restart++;
		}

		count++;
	}

	if (restart)
		event->addr_filters_gen++;
	raw_spin_unlock_irqrestore(&ifh->lock, flags);

	if (restart)
7078
		perf_event_stop(event, 1);
7079 7080 7081 7082 7083 7084 7085 7086 7087 7088
}

/*
 * Adjust all task's events' filters to the new vma
 */
static void perf_addr_filters_adjust(struct vm_area_struct *vma)
{
	struct perf_event_context *ctx;
	int ctxn;

7089 7090 7091 7092 7093 7094 7095
	/*
	 * Data tracing isn't supported yet and as such there is no need
	 * to keep track of anything that isn't related to executable code:
	 */
	if (!(vma->vm_flags & VM_EXEC))
		return;

7096 7097 7098 7099 7100 7101
	rcu_read_lock();
	for_each_task_context_nr(ctxn) {
		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		if (!ctx)
			continue;

7102
		perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
7103 7104 7105 7106
	}
	rcu_read_unlock();
}

7107
void perf_event_mmap(struct vm_area_struct *vma)
7108
{
7109 7110
	struct perf_mmap_event mmap_event;

7111
	if (!atomic_read(&nr_mmap_events))
7112 7113 7114
		return;

	mmap_event = (struct perf_mmap_event){
7115
		.vma	= vma,
7116 7117
		/* .file_name */
		/* .file_size */
7118
		.event_id  = {
7119
			.header = {
7120
				.type = PERF_RECORD_MMAP,
7121
				.misc = PERF_RECORD_MISC_USER,
7122 7123 7124 7125
				/* .size */
			},
			/* .pid */
			/* .tid */
7126 7127
			.start  = vma->vm_start,
			.len    = vma->vm_end - vma->vm_start,
7128
			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
7129
		},
7130 7131 7132 7133
		/* .maj (attr_mmap2 only) */
		/* .min (attr_mmap2 only) */
		/* .ino (attr_mmap2 only) */
		/* .ino_generation (attr_mmap2 only) */
7134 7135
		/* .prot (attr_mmap2 only) */
		/* .flags (attr_mmap2 only) */
7136 7137
	};

7138
	perf_addr_filters_adjust(vma);
7139
	perf_event_mmap_event(&mmap_event);
7140 7141
}

A
Alexander Shishkin 已提交
7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175
void perf_event_aux_event(struct perf_event *event, unsigned long head,
			  unsigned long size, u64 flags)
{
	struct perf_output_handle handle;
	struct perf_sample_data sample;
	struct perf_aux_event {
		struct perf_event_header	header;
		u64				offset;
		u64				size;
		u64				flags;
	} rec = {
		.header = {
			.type = PERF_RECORD_AUX,
			.misc = 0,
			.size = sizeof(rec),
		},
		.offset		= head,
		.size		= size,
		.flags		= flags,
	};
	int ret;

	perf_event_header__init_id(&rec.header, &sample, event);
	ret = perf_output_begin(&handle, event, rec.header.size);

	if (ret)
		return;

	perf_output_put(&handle, rec);
	perf_event__output_id_sample(event, &handle, &sample);

	perf_output_end(&handle);
}

7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208
/*
 * Lost/dropped samples logging
 */
void perf_log_lost_samples(struct perf_event *event, u64 lost)
{
	struct perf_output_handle handle;
	struct perf_sample_data sample;
	int ret;

	struct {
		struct perf_event_header	header;
		u64				lost;
	} lost_samples_event = {
		.header = {
			.type = PERF_RECORD_LOST_SAMPLES,
			.misc = 0,
			.size = sizeof(lost_samples_event),
		},
		.lost		= lost,
	};

	perf_event_header__init_id(&lost_samples_event.header, &sample, event);

	ret = perf_output_begin(&handle, event,
				lost_samples_event.header.size);
	if (ret)
		return;

	perf_output_put(&handle, lost_samples_event);
	perf_event__output_id_sample(event, &handle, &sample);
	perf_output_end(&handle);
}

7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288
/*
 * context_switch tracking
 */

struct perf_switch_event {
	struct task_struct	*task;
	struct task_struct	*next_prev;

	struct {
		struct perf_event_header	header;
		u32				next_prev_pid;
		u32				next_prev_tid;
	} event_id;
};

static int perf_event_switch_match(struct perf_event *event)
{
	return event->attr.context_switch;
}

static void perf_event_switch_output(struct perf_event *event, void *data)
{
	struct perf_switch_event *se = data;
	struct perf_output_handle handle;
	struct perf_sample_data sample;
	int ret;

	if (!perf_event_switch_match(event))
		return;

	/* Only CPU-wide events are allowed to see next/prev pid/tid */
	if (event->ctx->task) {
		se->event_id.header.type = PERF_RECORD_SWITCH;
		se->event_id.header.size = sizeof(se->event_id.header);
	} else {
		se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
		se->event_id.header.size = sizeof(se->event_id);
		se->event_id.next_prev_pid =
					perf_event_pid(event, se->next_prev);
		se->event_id.next_prev_tid =
					perf_event_tid(event, se->next_prev);
	}

	perf_event_header__init_id(&se->event_id.header, &sample, event);

	ret = perf_output_begin(&handle, event, se->event_id.header.size);
	if (ret)
		return;

	if (event->ctx->task)
		perf_output_put(&handle, se->event_id.header);
	else
		perf_output_put(&handle, se->event_id);

	perf_event__output_id_sample(event, &handle, &sample);

	perf_output_end(&handle);
}

static void perf_event_switch(struct task_struct *task,
			      struct task_struct *next_prev, bool sched_in)
{
	struct perf_switch_event switch_event;

	/* N.B. caller checks nr_switch_events != 0 */

	switch_event = (struct perf_switch_event){
		.task		= task,
		.next_prev	= next_prev,
		.event_id	= {
			.header = {
				/* .type */
				.misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
				/* .size */
			},
			/* .next_prev_pid */
			/* .next_prev_tid */
		},
	};

7289
	perf_iterate_sb(perf_event_switch_output,
7290 7291 7292 7293
		       &switch_event,
		       NULL);
}

7294 7295 7296 7297
/*
 * IRQ throttle logging
 */

7298
static void perf_log_throttle(struct perf_event *event, int enable)
7299 7300
{
	struct perf_output_handle handle;
7301
	struct perf_sample_data sample;
7302 7303 7304 7305 7306
	int ret;

	struct {
		struct perf_event_header	header;
		u64				time;
7307
		u64				id;
7308
		u64				stream_id;
7309 7310
	} throttle_event = {
		.header = {
7311
			.type = PERF_RECORD_THROTTLE,
7312 7313 7314
			.misc = 0,
			.size = sizeof(throttle_event),
		},
7315
		.time		= perf_event_clock(event),
7316 7317
		.id		= primary_event_id(event),
		.stream_id	= event->id,
7318 7319
	};

7320
	if (enable)
7321
		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
7322

7323 7324 7325
	perf_event_header__init_id(&throttle_event.header, &sample, event);

	ret = perf_output_begin(&handle, event,
7326
				throttle_event.header.size);
7327 7328 7329 7330
	if (ret)
		return;

	perf_output_put(&handle, throttle_event);
7331
	perf_event__output_id_sample(event, &handle, &sample);
7332 7333 7334
	perf_output_end(&handle);
}

7335 7336 7337 7338 7339
void perf_event_itrace_started(struct perf_event *event)
{
	event->attach_state |= PERF_ATTACH_ITRACE;
}

7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354
static void perf_log_itrace_start(struct perf_event *event)
{
	struct perf_output_handle handle;
	struct perf_sample_data sample;
	struct perf_aux_event {
		struct perf_event_header        header;
		u32				pid;
		u32				tid;
	} rec;
	int ret;

	if (event->parent)
		event = event->parent;

	if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
7355
	    event->attach_state & PERF_ATTACH_ITRACE)
7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375
		return;

	rec.header.type	= PERF_RECORD_ITRACE_START;
	rec.header.misc	= 0;
	rec.header.size	= sizeof(rec);
	rec.pid	= perf_event_pid(event, current);
	rec.tid	= perf_event_tid(event, current);

	perf_event_header__init_id(&rec.header, &sample, event);
	ret = perf_output_begin(&handle, event, rec.header.size);

	if (ret)
		return;

	perf_output_put(&handle, rec);
	perf_event__output_id_sample(event, &handle, &sample);

	perf_output_end(&handle);
}

7376 7377
static int
__perf_event_account_interrupt(struct perf_event *event, int throttle)
7378
{
7379
	struct hw_perf_event *hwc = &event->hw;
7380
	int ret = 0;
7381
	u64 seq;
7382

7383 7384 7385 7386 7387 7388 7389 7390 7391
	seq = __this_cpu_read(perf_throttled_seq);
	if (seq != hwc->interrupts_seq) {
		hwc->interrupts_seq = seq;
		hwc->interrupts = 1;
	} else {
		hwc->interrupts++;
		if (unlikely(throttle
			     && hwc->interrupts >= max_samples_per_tick)) {
			__this_cpu_inc(perf_throttled_count);
7392
			tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
P
Peter Zijlstra 已提交
7393 7394
			hwc->interrupts = MAX_INTERRUPTS;
			perf_log_throttle(event, 0);
7395 7396
			ret = 1;
		}
7397
	}
7398

7399
	if (event->attr.freq) {
P
Peter Zijlstra 已提交
7400
		u64 now = perf_clock();
7401
		s64 delta = now - hwc->freq_time_stamp;
7402

7403
		hwc->freq_time_stamp = now;
7404

7405
		if (delta > 0 && delta < 2*TICK_NSEC)
7406
			perf_adjust_period(event, delta, hwc->last_period, true);
7407 7408
	}

7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435
	return ret;
}

int perf_event_account_interrupt(struct perf_event *event)
{
	return __perf_event_account_interrupt(event, 1);
}

/*
 * Generic event overflow handling, sampling.
 */

static int __perf_event_overflow(struct perf_event *event,
				   int throttle, struct perf_sample_data *data,
				   struct pt_regs *regs)
{
	int events = atomic_read(&event->event_limit);
	int ret = 0;

	/*
	 * Non-sampling counters might still use the PMI to fold short
	 * hardware counters, ignore those.
	 */
	if (unlikely(!is_sampling_event(event)))
		return 0;

	ret = __perf_event_account_interrupt(event, throttle);
7436

7437 7438
	/*
	 * XXX event_limit might not quite work as expected on inherited
7439
	 * events
7440 7441
	 */

7442 7443
	event->pending_kill = POLL_IN;
	if (events && atomic_dec_and_test(&event->event_limit)) {
7444
		ret = 1;
7445
		event->pending_kill = POLL_HUP;
7446 7447

		perf_event_disable_inatomic(event);
7448 7449
	}

7450
	READ_ONCE(event->overflow_handler)(event, data, regs);
7451

7452
	if (*perf_event_fasync(event) && event->pending_kill) {
7453 7454
		event->pending_wakeup = 1;
		irq_work_queue(&event->pending);
P
Peter Zijlstra 已提交
7455 7456
	}

7457
	return ret;
7458 7459
}

7460
int perf_event_overflow(struct perf_event *event,
7461 7462
			  struct perf_sample_data *data,
			  struct pt_regs *regs)
7463
{
7464
	return __perf_event_overflow(event, 1, data, regs);
7465 7466
}

7467
/*
7468
 * Generic software event infrastructure
7469 7470
 */

7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481
struct swevent_htable {
	struct swevent_hlist		*swevent_hlist;
	struct mutex			hlist_mutex;
	int				hlist_refcount;

	/* Recursion avoidance in each contexts */
	int				recursion[PERF_NR_CONTEXTS];
};

static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);

7482
/*
7483 7484
 * We directly increment event->count and keep a second value in
 * event->hw.period_left to count intervals. This period event
7485 7486 7487 7488
 * is kept in the range [-sample_period, 0] so that we can use the
 * sign as trigger.
 */

7489
u64 perf_swevent_set_period(struct perf_event *event)
7490
{
7491
	struct hw_perf_event *hwc = &event->hw;
7492 7493 7494 7495 7496
	u64 period = hwc->last_period;
	u64 nr, offset;
	s64 old, val;

	hwc->last_period = hwc->sample_period;
7497 7498

again:
7499
	old = val = local64_read(&hwc->period_left);
7500 7501
	if (val < 0)
		return 0;
7502

7503 7504 7505
	nr = div64_u64(period + val, period);
	offset = nr * period;
	val -= offset;
7506
	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7507
		goto again;
7508

7509
	return nr;
7510 7511
}

7512
static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
7513
				    struct perf_sample_data *data,
7514
				    struct pt_regs *regs)
7515
{
7516
	struct hw_perf_event *hwc = &event->hw;
7517
	int throttle = 0;
7518

7519 7520
	if (!overflow)
		overflow = perf_swevent_set_period(event);
7521

7522 7523
	if (hwc->interrupts == MAX_INTERRUPTS)
		return;
7524

7525
	for (; overflow; overflow--) {
7526
		if (__perf_event_overflow(event, throttle,
7527
					    data, regs)) {
7528 7529 7530 7531 7532 7533
			/*
			 * We inhibit the overflow from happening when
			 * hwc->interrupts == MAX_INTERRUPTS.
			 */
			break;
		}
7534
		throttle = 1;
7535
	}
7536 7537
}

P
Peter Zijlstra 已提交
7538
static void perf_swevent_event(struct perf_event *event, u64 nr,
7539
			       struct perf_sample_data *data,
7540
			       struct pt_regs *regs)
7541
{
7542
	struct hw_perf_event *hwc = &event->hw;
7543

7544
	local64_add(nr, &event->count);
7545

7546 7547 7548
	if (!regs)
		return;

7549
	if (!is_sampling_event(event))
7550
		return;
7551

7552 7553 7554 7555 7556 7557
	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
		data->period = nr;
		return perf_swevent_overflow(event, 1, data, regs);
	} else
		data->period = event->hw.last_period;

7558
	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
7559
		return perf_swevent_overflow(event, 1, data, regs);
7560

7561
	if (local64_add_negative(nr, &hwc->period_left))
7562
		return;
7563

7564
	perf_swevent_overflow(event, 0, data, regs);
7565 7566
}

7567 7568 7569
static int perf_exclude_event(struct perf_event *event,
			      struct pt_regs *regs)
{
P
Peter Zijlstra 已提交
7570
	if (event->hw.state & PERF_HES_STOPPED)
7571
		return 1;
P
Peter Zijlstra 已提交
7572

7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583
	if (regs) {
		if (event->attr.exclude_user && user_mode(regs))
			return 1;

		if (event->attr.exclude_kernel && !user_mode(regs))
			return 1;
	}

	return 0;
}

7584
static int perf_swevent_match(struct perf_event *event,
P
Peter Zijlstra 已提交
7585
				enum perf_type_id type,
L
Li Zefan 已提交
7586 7587 7588
				u32 event_id,
				struct perf_sample_data *data,
				struct pt_regs *regs)
7589
{
7590
	if (event->attr.type != type)
7591
		return 0;
7592

7593
	if (event->attr.config != event_id)
7594 7595
		return 0;

7596 7597
	if (perf_exclude_event(event, regs))
		return 0;
7598 7599 7600 7601

	return 1;
}

7602 7603 7604 7605 7606 7607 7608
static inline u64 swevent_hash(u64 type, u32 event_id)
{
	u64 val = event_id | (type << 32);

	return hash_64(val, SWEVENT_HLIST_BITS);
}

7609 7610
static inline struct hlist_head *
__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
7611
{
7612 7613 7614 7615
	u64 hash = swevent_hash(type, event_id);

	return &hlist->heads[hash];
}
7616

7617 7618
/* For the read side: events when they trigger */
static inline struct hlist_head *
7619
find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
7620 7621
{
	struct swevent_hlist *hlist;
7622

7623
	hlist = rcu_dereference(swhash->swevent_hlist);
7624 7625 7626
	if (!hlist)
		return NULL;

7627 7628 7629 7630 7631
	return __find_swevent_head(hlist, type, event_id);
}

/* For the event head insertion and removal in the hlist */
static inline struct hlist_head *
7632
find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
7633 7634 7635 7636 7637 7638 7639 7640 7641 7642
{
	struct swevent_hlist *hlist;
	u32 event_id = event->attr.config;
	u64 type = event->attr.type;

	/*
	 * Event scheduling is always serialized against hlist allocation
	 * and release. Which makes the protected version suitable here.
	 * The context lock guarantees that.
	 */
7643
	hlist = rcu_dereference_protected(swhash->swevent_hlist,
7644 7645 7646 7647 7648
					  lockdep_is_held(&event->ctx->lock));
	if (!hlist)
		return NULL;

	return __find_swevent_head(hlist, type, event_id);
7649 7650 7651
}

static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
7652
				    u64 nr,
7653 7654
				    struct perf_sample_data *data,
				    struct pt_regs *regs)
7655
{
7656
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7657
	struct perf_event *event;
7658
	struct hlist_head *head;
7659

7660
	rcu_read_lock();
7661
	head = find_swevent_head_rcu(swhash, type, event_id);
7662 7663 7664
	if (!head)
		goto end;

7665
	hlist_for_each_entry_rcu(event, head, hlist_entry) {
L
Li Zefan 已提交
7666
		if (perf_swevent_match(event, type, event_id, data, regs))
7667
			perf_swevent_event(event, nr, data, regs);
7668
	}
7669 7670
end:
	rcu_read_unlock();
7671 7672
}

7673 7674
DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);

7675
int perf_swevent_get_recursion_context(void)
P
Peter Zijlstra 已提交
7676
{
7677
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
P
Peter Zijlstra 已提交
7678

7679
	return get_recursion_context(swhash->recursion);
P
Peter Zijlstra 已提交
7680
}
I
Ingo Molnar 已提交
7681
EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
P
Peter Zijlstra 已提交
7682

7683
void perf_swevent_put_recursion_context(int rctx)
7684
{
7685
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7686

7687
	put_recursion_context(swhash->recursion, rctx);
7688
}
7689

7690
void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7691
{
7692
	struct perf_sample_data data;
7693

7694
	if (WARN_ON_ONCE(!regs))
7695
		return;
7696

7697
	perf_sample_data_init(&data, addr, 0);
7698
	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710
}

void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
{
	int rctx;

	preempt_disable_notrace();
	rctx = perf_swevent_get_recursion_context();
	if (unlikely(rctx < 0))
		goto fail;

	___perf_sw_event(event_id, nr, regs, addr);
7711 7712

	perf_swevent_put_recursion_context(rctx);
7713
fail:
7714
	preempt_enable_notrace();
7715 7716
}

7717
static void perf_swevent_read(struct perf_event *event)
7718 7719 7720
{
}

P
Peter Zijlstra 已提交
7721
static int perf_swevent_add(struct perf_event *event, int flags)
7722
{
7723
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7724
	struct hw_perf_event *hwc = &event->hw;
7725 7726
	struct hlist_head *head;

7727
	if (is_sampling_event(event)) {
7728
		hwc->last_period = hwc->sample_period;
7729
		perf_swevent_set_period(event);
7730
	}
7731

P
Peter Zijlstra 已提交
7732 7733
	hwc->state = !(flags & PERF_EF_START);

7734
	head = find_swevent_head(swhash, event);
P
Peter Zijlstra 已提交
7735
	if (WARN_ON_ONCE(!head))
7736 7737 7738
		return -EINVAL;

	hlist_add_head_rcu(&event->hlist_entry, head);
7739
	perf_event_update_userpage(event);
7740

7741 7742 7743
	return 0;
}

P
Peter Zijlstra 已提交
7744
static void perf_swevent_del(struct perf_event *event, int flags)
7745
{
7746
	hlist_del_rcu(&event->hlist_entry);
7747 7748
}

P
Peter Zijlstra 已提交
7749
static void perf_swevent_start(struct perf_event *event, int flags)
7750
{
P
Peter Zijlstra 已提交
7751
	event->hw.state = 0;
7752
}
I
Ingo Molnar 已提交
7753

P
Peter Zijlstra 已提交
7754
static void perf_swevent_stop(struct perf_event *event, int flags)
7755
{
P
Peter Zijlstra 已提交
7756
	event->hw.state = PERF_HES_STOPPED;
7757 7758
}

7759 7760
/* Deref the hlist from the update side */
static inline struct swevent_hlist *
7761
swevent_hlist_deref(struct swevent_htable *swhash)
7762
{
7763 7764
	return rcu_dereference_protected(swhash->swevent_hlist,
					 lockdep_is_held(&swhash->hlist_mutex));
7765 7766
}

7767
static void swevent_hlist_release(struct swevent_htable *swhash)
7768
{
7769
	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
7770

7771
	if (!hlist)
7772 7773
		return;

7774
	RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
7775
	kfree_rcu(hlist, rcu_head);
7776 7777
}

7778
static void swevent_hlist_put_cpu(int cpu)
7779
{
7780
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7781

7782
	mutex_lock(&swhash->hlist_mutex);
7783

7784 7785
	if (!--swhash->hlist_refcount)
		swevent_hlist_release(swhash);
7786

7787
	mutex_unlock(&swhash->hlist_mutex);
7788 7789
}

7790
static void swevent_hlist_put(void)
7791 7792 7793 7794
{
	int cpu;

	for_each_possible_cpu(cpu)
7795
		swevent_hlist_put_cpu(cpu);
7796 7797
}

7798
static int swevent_hlist_get_cpu(int cpu)
7799
{
7800
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7801 7802
	int err = 0;

7803
	mutex_lock(&swhash->hlist_mutex);
7804 7805
	if (!swevent_hlist_deref(swhash) &&
	    cpumask_test_cpu(cpu, perf_online_mask)) {
7806 7807 7808 7809 7810 7811 7812
		struct swevent_hlist *hlist;

		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
		if (!hlist) {
			err = -ENOMEM;
			goto exit;
		}
7813
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
7814
	}
7815
	swhash->hlist_refcount++;
P
Peter Zijlstra 已提交
7816
exit:
7817
	mutex_unlock(&swhash->hlist_mutex);
7818 7819 7820 7821

	return err;
}

7822
static int swevent_hlist_get(void)
7823
{
7824
	int err, cpu, failed_cpu;
7825

7826
	mutex_lock(&pmus_lock);
7827
	for_each_possible_cpu(cpu) {
7828
		err = swevent_hlist_get_cpu(cpu);
7829 7830 7831 7832 7833
		if (err) {
			failed_cpu = cpu;
			goto fail;
		}
	}
7834
	mutex_unlock(&pmus_lock);
7835
	return 0;
P
Peter Zijlstra 已提交
7836
fail:
7837 7838 7839
	for_each_possible_cpu(cpu) {
		if (cpu == failed_cpu)
			break;
7840
		swevent_hlist_put_cpu(cpu);
7841
	}
7842
	mutex_unlock(&pmus_lock);
7843 7844 7845
	return err;
}

7846
struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
7847

7848 7849 7850
static void sw_perf_event_destroy(struct perf_event *event)
{
	u64 event_id = event->attr.config;
7851

7852 7853
	WARN_ON(event->parent);

7854
	static_key_slow_dec(&perf_swevent_enabled[event_id]);
7855
	swevent_hlist_put();
7856 7857 7858 7859
}

static int perf_swevent_init(struct perf_event *event)
{
7860
	u64 event_id = event->attr.config;
7861 7862 7863 7864

	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

7865 7866 7867 7868 7869 7870
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

7871 7872 7873 7874 7875 7876 7877 7878 7879
	switch (event_id) {
	case PERF_COUNT_SW_CPU_CLOCK:
	case PERF_COUNT_SW_TASK_CLOCK:
		return -ENOENT;

	default:
		break;
	}

7880
	if (event_id >= PERF_COUNT_SW_MAX)
7881 7882 7883 7884 7885
		return -ENOENT;

	if (!event->parent) {
		int err;

7886
		err = swevent_hlist_get();
7887 7888 7889
		if (err)
			return err;

7890
		static_key_slow_inc(&perf_swevent_enabled[event_id]);
7891 7892 7893 7894 7895 7896 7897
		event->destroy = sw_perf_event_destroy;
	}

	return 0;
}

static struct pmu perf_swevent = {
7898
	.task_ctx_nr	= perf_sw_context,
7899

7900 7901
	.capabilities	= PERF_PMU_CAP_NO_NMI,

7902
	.event_init	= perf_swevent_init,
P
Peter Zijlstra 已提交
7903 7904 7905 7906
	.add		= perf_swevent_add,
	.del		= perf_swevent_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
7907 7908 7909
	.read		= perf_swevent_read,
};

7910 7911
#ifdef CONFIG_EVENT_TRACING

7912 7913 7914
static int perf_tp_filter_match(struct perf_event *event,
				struct perf_sample_data *data)
{
7915
	void *record = data->raw->frag.data;
7916

7917 7918 7919 7920
	/* only top level events have filters set */
	if (event->parent)
		event = event->parent;

7921 7922 7923 7924 7925 7926 7927 7928 7929
	if (likely(!event->filter) || filter_match_preds(event->filter, record))
		return 1;
	return 0;
}

static int perf_tp_event_match(struct perf_event *event,
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
7930 7931
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;
7932 7933 7934 7935
	/*
	 * All tracepoints are from kernel-space.
	 */
	if (event->attr.exclude_kernel)
7936 7937 7938 7939 7940 7941 7942 7943
		return 0;

	if (!perf_tp_filter_match(event, data))
		return 0;

	return 1;
}

7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958
void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
			       struct trace_event_call *call, u64 count,
			       struct pt_regs *regs, struct hlist_head *head,
			       struct task_struct *task)
{
	struct bpf_prog *prog = call->prog;

	if (prog) {
		*(struct pt_regs **)raw_data = regs;
		if (!trace_call_bpf(prog, raw_data) || hlist_empty(head)) {
			perf_swevent_put_recursion_context(rctx);
			return;
		}
	}
	perf_tp_event(call->event.type, count, raw_data, size, regs, head,
7959
		      rctx, task, NULL);
7960 7961 7962
}
EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);

7963
void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
7964
		   struct pt_regs *regs, struct hlist_head *head, int rctx,
7965
		   struct task_struct *task, struct perf_event *event)
7966 7967
{
	struct perf_sample_data data;
7968

7969
	struct perf_raw_record raw = {
7970 7971 7972 7973
		.frag = {
			.size = entry_size,
			.data = record,
		},
7974 7975
	};

7976
	perf_sample_data_init(&data, 0, 0);
7977 7978
	data.raw = &raw;

7979 7980
	perf_trace_buf_update(record, event_type);

7981 7982
	/* Use the given event instead of the hlist */
	if (event) {
7983
		if (perf_tp_event_match(event, &data, regs))
7984
			perf_swevent_event(event, count, &data, regs);
7985 7986 7987 7988 7989
	} else {
		hlist_for_each_entry_rcu(event, head, hlist_entry) {
			if (perf_tp_event_match(event, &data, regs))
				perf_swevent_event(event, count, &data, regs);
		}
7990
	}
7991

7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016
	/*
	 * If we got specified a target task, also iterate its context and
	 * deliver this event there too.
	 */
	if (task && task != current) {
		struct perf_event_context *ctx;
		struct trace_entry *entry = record;

		rcu_read_lock();
		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
		if (!ctx)
			goto unlock;

		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
			if (event->attr.type != PERF_TYPE_TRACEPOINT)
				continue;
			if (event->attr.config != entry->type)
				continue;
			if (perf_tp_event_match(event, &data, regs))
				perf_swevent_event(event, count, &data, regs);
		}
unlock:
		rcu_read_unlock();
	}

8017
	perf_swevent_put_recursion_context(rctx);
8018 8019 8020
}
EXPORT_SYMBOL_GPL(perf_tp_event);

8021
static void tp_perf_event_destroy(struct perf_event *event)
8022
{
8023
	perf_trace_destroy(event);
8024 8025
}

8026
static int perf_tp_event_init(struct perf_event *event)
8027
{
8028 8029
	int err;

8030 8031 8032
	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -ENOENT;

8033 8034 8035 8036 8037 8038
	/*
	 * no branch sampling for tracepoint events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

8039 8040
	err = perf_trace_init(event);
	if (err)
8041
		return err;
8042

8043
	event->destroy = tp_perf_event_destroy;
8044

8045 8046 8047 8048
	return 0;
}

static struct pmu perf_tracepoint = {
8049 8050
	.task_ctx_nr	= perf_sw_context,

8051
	.event_init	= perf_tp_event_init,
P
Peter Zijlstra 已提交
8052 8053 8054 8055
	.add		= perf_trace_add,
	.del		= perf_trace_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
8056 8057 8058 8059 8060
	.read		= perf_swevent_read,
};

static inline void perf_tp_register(void)
{
P
Peter Zijlstra 已提交
8061
	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
8062
}
L
Li Zefan 已提交
8063 8064 8065 8066 8067 8068

static void perf_event_free_filter(struct perf_event *event)
{
	ftrace_profile_free_filter(event);
}

8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083
#ifdef CONFIG_BPF_SYSCALL
static void bpf_overflow_handler(struct perf_event *event,
				 struct perf_sample_data *data,
				 struct pt_regs *regs)
{
	struct bpf_perf_event_data_kern ctx = {
		.data = data,
		.regs = regs,
	};
	int ret = 0;

	preempt_disable();
	if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
		goto out;
	rcu_read_lock();
8084
	ret = BPF_PROG_RUN(event->prog, &ctx);
8085 8086 8087 8088 8089 8090 8091 8092 8093 8094 8095 8096 8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116 8117 8118 8119 8120 8121 8122 8123 8124 8125 8126 8127 8128 8129 8130 8131 8132 8133 8134 8135 8136
	rcu_read_unlock();
out:
	__this_cpu_dec(bpf_prog_active);
	preempt_enable();
	if (!ret)
		return;

	event->orig_overflow_handler(event, data, regs);
}

static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
{
	struct bpf_prog *prog;

	if (event->overflow_handler_context)
		/* hw breakpoint or kernel counter */
		return -EINVAL;

	if (event->prog)
		return -EEXIST;

	prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
	if (IS_ERR(prog))
		return PTR_ERR(prog);

	event->prog = prog;
	event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
	WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
	return 0;
}

static void perf_event_free_bpf_handler(struct perf_event *event)
{
	struct bpf_prog *prog = event->prog;

	if (!prog)
		return;

	WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
	event->prog = NULL;
	bpf_prog_put(prog);
}
#else
static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
{
	return -EOPNOTSUPP;
}
static void perf_event_free_bpf_handler(struct perf_event *event)
{
}
#endif

8137 8138
static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
{
8139
	bool is_kprobe, is_tracepoint, is_syscall_tp;
8140 8141 8142
	struct bpf_prog *prog;

	if (event->attr.type != PERF_TYPE_TRACEPOINT)
8143
		return perf_event_set_bpf_handler(event, prog_fd);
8144 8145 8146 8147

	if (event->tp_event->prog)
		return -EEXIST;

8148 8149
	is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
	is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
8150 8151
	is_syscall_tp = is_syscall_trace_event(event->tp_event);
	if (!is_kprobe && !is_tracepoint && !is_syscall_tp)
8152
		/* bpf programs can only be attached to u/kprobe or tracepoint */
8153 8154 8155 8156 8157 8158
		return -EINVAL;

	prog = bpf_prog_get(prog_fd);
	if (IS_ERR(prog))
		return PTR_ERR(prog);

8159
	if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
8160 8161
	    (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
	    (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
8162 8163 8164 8165 8166
		/* valid fd, but invalid bpf program type */
		bpf_prog_put(prog);
		return -EINVAL;
	}

8167
	if (is_tracepoint || is_syscall_tp) {
8168 8169 8170 8171 8172 8173 8174
		int off = trace_event_get_offsets(event->tp_event);

		if (prog->aux->max_ctx_offset > off) {
			bpf_prog_put(prog);
			return -EACCES;
		}
	}
8175
	event->tp_event->prog = prog;
8176
	event->tp_event->bpf_prog_owner = event;
8177 8178 8179 8180 8181 8182 8183 8184

	return 0;
}

static void perf_event_free_bpf_prog(struct perf_event *event)
{
	struct bpf_prog *prog;

8185 8186
	perf_event_free_bpf_handler(event);

8187 8188 8189 8190
	if (!event->tp_event)
		return;

	prog = event->tp_event->prog;
8191
	if (prog && event->tp_event->bpf_prog_owner == event) {
8192
		event->tp_event->prog = NULL;
8193
		bpf_prog_put(prog);
8194 8195 8196
	}
}

8197
#else
L
Li Zefan 已提交
8198

8199
static inline void perf_tp_register(void)
8200 8201
{
}
L
Li Zefan 已提交
8202 8203 8204 8205 8206

static void perf_event_free_filter(struct perf_event *event)
{
}

8207 8208 8209 8210 8211 8212 8213 8214
static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
{
	return -ENOENT;
}

static void perf_event_free_bpf_prog(struct perf_event *event)
{
}
8215
#endif /* CONFIG_EVENT_TRACING */
8216

8217
#ifdef CONFIG_HAVE_HW_BREAKPOINT
8218
void perf_bp_event(struct perf_event *bp, void *data)
8219
{
8220 8221 8222
	struct perf_sample_data sample;
	struct pt_regs *regs = data;

8223
	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
8224

P
Peter Zijlstra 已提交
8225
	if (!bp->hw.state && !perf_exclude_event(bp, regs))
8226
		perf_swevent_event(bp, 1, &sample, regs);
8227 8228 8229
}
#endif

8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315 8316 8317 8318 8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332 8333 8334
/*
 * Allocate a new address filter
 */
static struct perf_addr_filter *
perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
{
	int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
	struct perf_addr_filter *filter;

	filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
	if (!filter)
		return NULL;

	INIT_LIST_HEAD(&filter->entry);
	list_add_tail(&filter->entry, filters);

	return filter;
}

static void free_filters_list(struct list_head *filters)
{
	struct perf_addr_filter *filter, *iter;

	list_for_each_entry_safe(filter, iter, filters, entry) {
		if (filter->inode)
			iput(filter->inode);
		list_del(&filter->entry);
		kfree(filter);
	}
}

/*
 * Free existing address filters and optionally install new ones
 */
static void perf_addr_filters_splice(struct perf_event *event,
				     struct list_head *head)
{
	unsigned long flags;
	LIST_HEAD(list);

	if (!has_addr_filter(event))
		return;

	/* don't bother with children, they don't have their own filters */
	if (event->parent)
		return;

	raw_spin_lock_irqsave(&event->addr_filters.lock, flags);

	list_splice_init(&event->addr_filters.list, &list);
	if (head)
		list_splice(head, &event->addr_filters.list);

	raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);

	free_filters_list(&list);
}

/*
 * Scan through mm's vmas and see if one of them matches the
 * @filter; if so, adjust filter's address range.
 * Called with mm::mmap_sem down for reading.
 */
static unsigned long perf_addr_filter_apply(struct perf_addr_filter *filter,
					    struct mm_struct *mm)
{
	struct vm_area_struct *vma;

	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		struct file *file = vma->vm_file;
		unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
		unsigned long vma_size = vma->vm_end - vma->vm_start;

		if (!file)
			continue;

		if (!perf_addr_filter_match(filter, file, off, vma_size))
			continue;

		return vma->vm_start;
	}

	return 0;
}

/*
 * Update event's address range filters based on the
 * task's existing mappings, if any.
 */
static void perf_event_addr_filters_apply(struct perf_event *event)
{
	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
	struct task_struct *task = READ_ONCE(event->ctx->task);
	struct perf_addr_filter *filter;
	struct mm_struct *mm = NULL;
	unsigned int count = 0;
	unsigned long flags;

	/*
	 * We may observe TASK_TOMBSTONE, which means that the event tear-down
	 * will stop on the parent's child_mutex that our caller is also holding
	 */
	if (task == TASK_TOMBSTONE)
		return;

8335 8336 8337
	if (!ifh->nr_file_filters)
		return;

8338 8339 8340 8341 8342 8343 8344 8345 8346 8347
	mm = get_task_mm(event->ctx->task);
	if (!mm)
		goto restart;

	down_read(&mm->mmap_sem);

	raw_spin_lock_irqsave(&ifh->lock, flags);
	list_for_each_entry(filter, &ifh->list, entry) {
		event->addr_filters_offs[count] = 0;

8348 8349 8350 8351 8352
		/*
		 * Adjust base offset if the filter is associated to a binary
		 * that needs to be mapped:
		 */
		if (filter->inode)
8353 8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366
			event->addr_filters_offs[count] =
				perf_addr_filter_apply(filter, mm);

		count++;
	}

	event->addr_filters_gen++;
	raw_spin_unlock_irqrestore(&ifh->lock, flags);

	up_read(&mm->mmap_sem);

	mmput(mm);

restart:
8367
	perf_event_stop(event, 1);
8368 8369 8370 8371 8372 8373 8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386 8387 8388
}

/*
 * Address range filtering: limiting the data to certain
 * instruction address ranges. Filters are ioctl()ed to us from
 * userspace as ascii strings.
 *
 * Filter string format:
 *
 * ACTION RANGE_SPEC
 * where ACTION is one of the
 *  * "filter": limit the trace to this region
 *  * "start": start tracing from this address
 *  * "stop": stop tracing at this address/region;
 * RANGE_SPEC is
 *  * for kernel addresses: <start address>[/<size>]
 *  * for object files:     <start address>[/<size>]@</path/to/object/file>
 *
 * if <size> is not specified, the range is treated as a single address.
 */
enum {
8389
	IF_ACT_NONE = -1,
8390 8391 8392 8393 8394 8395 8396 8397 8398 8399 8400 8401 8402 8403 8404 8405 8406 8407 8408 8409 8410 8411 8412
	IF_ACT_FILTER,
	IF_ACT_START,
	IF_ACT_STOP,
	IF_SRC_FILE,
	IF_SRC_KERNEL,
	IF_SRC_FILEADDR,
	IF_SRC_KERNELADDR,
};

enum {
	IF_STATE_ACTION = 0,
	IF_STATE_SOURCE,
	IF_STATE_END,
};

static const match_table_t if_tokens = {
	{ IF_ACT_FILTER,	"filter" },
	{ IF_ACT_START,		"start" },
	{ IF_ACT_STOP,		"stop" },
	{ IF_SRC_FILE,		"%u/%u@%s" },
	{ IF_SRC_KERNEL,	"%u/%u" },
	{ IF_SRC_FILEADDR,	"%u@%s" },
	{ IF_SRC_KERNELADDR,	"%u" },
8413
	{ IF_ACT_NONE,		NULL },
8414 8415 8416 8417 8418 8419 8420 8421 8422 8423 8424 8425 8426 8427 8428 8429 8430 8431 8432 8433 8434 8435 8436 8437 8438 8439 8440 8441 8442 8443 8444 8445 8446 8447 8448 8449 8450 8451 8452 8453 8454 8455 8456 8457 8458 8459 8460 8461 8462 8463 8464 8465 8466 8467 8468 8469 8470 8471 8472 8473 8474 8475 8476 8477 8478 8479 8480 8481 8482 8483 8484
};

/*
 * Address filter string parser
 */
static int
perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
			     struct list_head *filters)
{
	struct perf_addr_filter *filter = NULL;
	char *start, *orig, *filename = NULL;
	struct path path;
	substring_t args[MAX_OPT_ARGS];
	int state = IF_STATE_ACTION, token;
	unsigned int kernel = 0;
	int ret = -EINVAL;

	orig = fstr = kstrdup(fstr, GFP_KERNEL);
	if (!fstr)
		return -ENOMEM;

	while ((start = strsep(&fstr, " ,\n")) != NULL) {
		ret = -EINVAL;

		if (!*start)
			continue;

		/* filter definition begins */
		if (state == IF_STATE_ACTION) {
			filter = perf_addr_filter_new(event, filters);
			if (!filter)
				goto fail;
		}

		token = match_token(start, if_tokens, args);
		switch (token) {
		case IF_ACT_FILTER:
		case IF_ACT_START:
			filter->filter = 1;

		case IF_ACT_STOP:
			if (state != IF_STATE_ACTION)
				goto fail;

			state = IF_STATE_SOURCE;
			break;

		case IF_SRC_KERNELADDR:
		case IF_SRC_KERNEL:
			kernel = 1;

		case IF_SRC_FILEADDR:
		case IF_SRC_FILE:
			if (state != IF_STATE_SOURCE)
				goto fail;

			if (token == IF_SRC_FILE || token == IF_SRC_KERNEL)
				filter->range = 1;

			*args[0].to = 0;
			ret = kstrtoul(args[0].from, 0, &filter->offset);
			if (ret)
				goto fail;

			if (filter->range) {
				*args[1].to = 0;
				ret = kstrtoul(args[1].from, 0, &filter->size);
				if (ret)
					goto fail;
			}

8485 8486 8487 8488
			if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
				int fpos = filter->range ? 2 : 1;

				filename = match_strdup(&args[fpos]);
8489 8490 8491 8492 8493 8494 8495 8496 8497 8498 8499 8500 8501 8502 8503 8504 8505 8506 8507
				if (!filename) {
					ret = -ENOMEM;
					goto fail;
				}
			}

			state = IF_STATE_END;
			break;

		default:
			goto fail;
		}

		/*
		 * Filter definition is fully parsed, validate and install it.
		 * Make sure that it doesn't contradict itself or the event's
		 * attribute.
		 */
		if (state == IF_STATE_END) {
8508
			ret = -EINVAL;
8509 8510 8511 8512 8513 8514 8515
			if (kernel && event->attr.exclude_kernel)
				goto fail;

			if (!kernel) {
				if (!filename)
					goto fail;

8516 8517 8518 8519 8520 8521 8522 8523 8524 8525 8526 8527
				/*
				 * For now, we only support file-based filters
				 * in per-task events; doing so for CPU-wide
				 * events requires additional context switching
				 * trickery, since same object code will be
				 * mapped at different virtual addresses in
				 * different processes.
				 */
				ret = -EOPNOTSUPP;
				if (!event->ctx->task)
					goto fail_free_name;

8528 8529 8530 8531 8532 8533 8534 8535 8536 8537 8538 8539 8540 8541 8542
				/* look up the path and grab its inode */
				ret = kern_path(filename, LOOKUP_FOLLOW, &path);
				if (ret)
					goto fail_free_name;

				filter->inode = igrab(d_inode(path.dentry));
				path_put(&path);
				kfree(filename);
				filename = NULL;

				ret = -EINVAL;
				if (!filter->inode ||
				    !S_ISREG(filter->inode->i_mode))
					/* free_filters_list() will iput() */
					goto fail;
8543 8544

				event->addr_filters.nr_file_filters++;
8545 8546 8547 8548 8549 8550 8551 8552 8553 8554 8555 8556 8557 8558 8559 8560 8561 8562 8563 8564 8565 8566 8567 8568 8569 8570 8571 8572 8573 8574 8575 8576 8577 8578 8579 8580 8581 8582 8583 8584 8585
			}

			/* ready to consume more filters */
			state = IF_STATE_ACTION;
			filter = NULL;
		}
	}

	if (state != IF_STATE_ACTION)
		goto fail;

	kfree(orig);

	return 0;

fail_free_name:
	kfree(filename);
fail:
	free_filters_list(filters);
	kfree(orig);

	return ret;
}

static int
perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
{
	LIST_HEAD(filters);
	int ret;

	/*
	 * Since this is called in perf_ioctl() path, we're already holding
	 * ctx::mutex.
	 */
	lockdep_assert_held(&event->ctx->mutex);

	if (WARN_ON_ONCE(event->parent))
		return -EINVAL;

	ret = perf_event_parse_addr_filter(event, filter_str, &filters);
	if (ret)
8586
		goto fail_clear_files;
8587 8588

	ret = event->pmu->addr_filters_validate(&filters);
8589 8590
	if (ret)
		goto fail_free_filters;
8591 8592 8593 8594 8595 8596 8597

	/* remove existing filters, if any */
	perf_addr_filters_splice(event, &filters);

	/* install new filters */
	perf_event_for_each_child(event, perf_event_addr_filters_apply);

8598 8599 8600 8601 8602 8603 8604 8605
	return ret;

fail_free_filters:
	free_filters_list(&filters);

fail_clear_files:
	event->addr_filters.nr_file_filters = 0;

8606 8607 8608
	return ret;
}

8609 8610 8611 8612 8613
static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	char *filter_str;
	int ret = -EINVAL;

8614 8615 8616
	if ((event->attr.type != PERF_TYPE_TRACEPOINT ||
	    !IS_ENABLED(CONFIG_EVENT_TRACING)) &&
	    !has_addr_filter(event))
8617 8618 8619 8620 8621 8622 8623 8624 8625 8626
		return -EINVAL;

	filter_str = strndup_user(arg, PAGE_SIZE);
	if (IS_ERR(filter_str))
		return PTR_ERR(filter_str);

	if (IS_ENABLED(CONFIG_EVENT_TRACING) &&
	    event->attr.type == PERF_TYPE_TRACEPOINT)
		ret = ftrace_profile_set_filter(event, event->attr.config,
						filter_str);
8627 8628
	else if (has_addr_filter(event))
		ret = perf_event_set_addr_filter(event, filter_str);
8629 8630 8631 8632 8633

	kfree(filter_str);
	return ret;
}

8634 8635 8636
/*
 * hrtimer based swevent callback
 */
8637

8638
static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
8639
{
8640 8641 8642 8643 8644
	enum hrtimer_restart ret = HRTIMER_RESTART;
	struct perf_sample_data data;
	struct pt_regs *regs;
	struct perf_event *event;
	u64 period;
8645

8646
	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
P
Peter Zijlstra 已提交
8647 8648 8649 8650

	if (event->state != PERF_EVENT_STATE_ACTIVE)
		return HRTIMER_NORESTART;

8651
	event->pmu->read(event);
8652

8653
	perf_sample_data_init(&data, 0, event->hw.last_period);
8654 8655 8656
	regs = get_irq_regs();

	if (regs && !perf_exclude_event(event, regs)) {
8657
		if (!(event->attr.exclude_idle && is_idle_task(current)))
8658
			if (__perf_event_overflow(event, 1, &data, regs))
8659 8660
				ret = HRTIMER_NORESTART;
	}
8661

8662 8663
	period = max_t(u64, 10000, event->hw.sample_period);
	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
8664

8665
	return ret;
8666 8667
}

8668
static void perf_swevent_start_hrtimer(struct perf_event *event)
8669
{
8670
	struct hw_perf_event *hwc = &event->hw;
8671 8672 8673 8674
	s64 period;

	if (!is_sampling_event(event))
		return;
8675

8676 8677 8678 8679
	period = local64_read(&hwc->period_left);
	if (period) {
		if (period < 0)
			period = 10000;
P
Peter Zijlstra 已提交
8680

8681 8682 8683 8684
		local64_set(&hwc->period_left, 0);
	} else {
		period = max_t(u64, 10000, hwc->sample_period);
	}
8685 8686
	hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
		      HRTIMER_MODE_REL_PINNED);
8687
}
8688 8689

static void perf_swevent_cancel_hrtimer(struct perf_event *event)
8690
{
8691 8692
	struct hw_perf_event *hwc = &event->hw;

8693
	if (is_sampling_event(event)) {
8694
		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
P
Peter Zijlstra 已提交
8695
		local64_set(&hwc->period_left, ktime_to_ns(remaining));
8696 8697 8698

		hrtimer_cancel(&hwc->hrtimer);
	}
8699 8700
}

P
Peter Zijlstra 已提交
8701 8702 8703 8704 8705 8706 8707 8708 8709 8710 8711 8712 8713 8714 8715 8716 8717 8718 8719 8720
static void perf_swevent_init_hrtimer(struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;

	if (!is_sampling_event(event))
		return;

	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swevent_hrtimer;

	/*
	 * Since hrtimers have a fixed rate, we can do a static freq->period
	 * mapping and avoid the whole period adjust feedback stuff.
	 */
	if (event->attr.freq) {
		long freq = event->attr.sample_freq;

		event->attr.sample_period = NSEC_PER_SEC / freq;
		hwc->sample_period = event->attr.sample_period;
		local64_set(&hwc->period_left, hwc->sample_period);
8721
		hwc->last_period = hwc->sample_period;
P
Peter Zijlstra 已提交
8722 8723 8724 8725
		event->attr.freq = 0;
	}
}

8726 8727 8728 8729 8730
/*
 * Software event: cpu wall time clock
 */

static void cpu_clock_event_update(struct perf_event *event)
8731
{
8732 8733 8734
	s64 prev;
	u64 now;

P
Peter Zijlstra 已提交
8735
	now = local_clock();
8736 8737
	prev = local64_xchg(&event->hw.prev_count, now);
	local64_add(now - prev, &event->count);
8738 8739
}

P
Peter Zijlstra 已提交
8740
static void cpu_clock_event_start(struct perf_event *event, int flags)
8741
{
P
Peter Zijlstra 已提交
8742
	local64_set(&event->hw.prev_count, local_clock());
8743 8744 8745
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
8746
static void cpu_clock_event_stop(struct perf_event *event, int flags)
8747
{
8748 8749 8750
	perf_swevent_cancel_hrtimer(event);
	cpu_clock_event_update(event);
}
8751

P
Peter Zijlstra 已提交
8752 8753 8754 8755
static int cpu_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		cpu_clock_event_start(event, flags);
8756
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
8757 8758 8759 8760 8761 8762 8763 8764 8765

	return 0;
}

static void cpu_clock_event_del(struct perf_event *event, int flags)
{
	cpu_clock_event_stop(event, flags);
}

8766 8767 8768 8769
static void cpu_clock_event_read(struct perf_event *event)
{
	cpu_clock_event_update(event);
}
8770

8771 8772 8773 8774 8775 8776 8777 8778
static int cpu_clock_event_init(struct perf_event *event)
{
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
		return -ENOENT;

8779 8780 8781 8782 8783 8784
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

P
Peter Zijlstra 已提交
8785 8786
	perf_swevent_init_hrtimer(event);

8787
	return 0;
8788 8789
}

8790
static struct pmu perf_cpu_clock = {
8791 8792
	.task_ctx_nr	= perf_sw_context,

8793 8794
	.capabilities	= PERF_PMU_CAP_NO_NMI,

8795
	.event_init	= cpu_clock_event_init,
P
Peter Zijlstra 已提交
8796 8797 8798 8799
	.add		= cpu_clock_event_add,
	.del		= cpu_clock_event_del,
	.start		= cpu_clock_event_start,
	.stop		= cpu_clock_event_stop,
8800 8801 8802 8803 8804 8805 8806 8807
	.read		= cpu_clock_event_read,
};

/*
 * Software event: task time clock
 */

static void task_clock_event_update(struct perf_event *event, u64 now)
8808
{
8809 8810
	u64 prev;
	s64 delta;
8811

8812 8813 8814 8815
	prev = local64_xchg(&event->hw.prev_count, now);
	delta = now - prev;
	local64_add(delta, &event->count);
}
8816

P
Peter Zijlstra 已提交
8817
static void task_clock_event_start(struct perf_event *event, int flags)
8818
{
P
Peter Zijlstra 已提交
8819
	local64_set(&event->hw.prev_count, event->ctx->time);
8820 8821 8822
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
8823
static void task_clock_event_stop(struct perf_event *event, int flags)
8824 8825 8826
{
	perf_swevent_cancel_hrtimer(event);
	task_clock_event_update(event, event->ctx->time);
P
Peter Zijlstra 已提交
8827 8828 8829 8830 8831 8832
}

static int task_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		task_clock_event_start(event, flags);
8833
	perf_event_update_userpage(event);
8834

P
Peter Zijlstra 已提交
8835 8836 8837 8838 8839 8840
	return 0;
}

static void task_clock_event_del(struct perf_event *event, int flags)
{
	task_clock_event_stop(event, PERF_EF_UPDATE);
8841 8842 8843 8844
}

static void task_clock_event_read(struct perf_event *event)
{
8845 8846 8847
	u64 now = perf_clock();
	u64 delta = now - event->ctx->timestamp;
	u64 time = event->ctx->time + delta;
8848 8849 8850 8851 8852

	task_clock_event_update(event, time);
}

static int task_clock_event_init(struct perf_event *event)
L
Li Zefan 已提交
8853
{
8854 8855 8856 8857 8858 8859
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
		return -ENOENT;

8860 8861 8862 8863 8864 8865
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

P
Peter Zijlstra 已提交
8866 8867
	perf_swevent_init_hrtimer(event);

8868
	return 0;
L
Li Zefan 已提交
8869 8870
}

8871
static struct pmu perf_task_clock = {
8872 8873
	.task_ctx_nr	= perf_sw_context,

8874 8875
	.capabilities	= PERF_PMU_CAP_NO_NMI,

8876
	.event_init	= task_clock_event_init,
P
Peter Zijlstra 已提交
8877 8878 8879 8880
	.add		= task_clock_event_add,
	.del		= task_clock_event_del,
	.start		= task_clock_event_start,
	.stop		= task_clock_event_stop,
8881 8882
	.read		= task_clock_event_read,
};
L
Li Zefan 已提交
8883

P
Peter Zijlstra 已提交
8884
static void perf_pmu_nop_void(struct pmu *pmu)
8885 8886
{
}
L
Li Zefan 已提交
8887

8888 8889 8890 8891
static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
{
}

P
Peter Zijlstra 已提交
8892
static int perf_pmu_nop_int(struct pmu *pmu)
L
Li Zefan 已提交
8893
{
P
Peter Zijlstra 已提交
8894
	return 0;
L
Li Zefan 已提交
8895 8896
}

8897
static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
8898 8899

static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
L
Li Zefan 已提交
8900
{
8901 8902 8903 8904 8905
	__this_cpu_write(nop_txn_flags, flags);

	if (flags & ~PERF_PMU_TXN_ADD)
		return;

P
Peter Zijlstra 已提交
8906
	perf_pmu_disable(pmu);
L
Li Zefan 已提交
8907 8908
}

P
Peter Zijlstra 已提交
8909 8910
static int perf_pmu_commit_txn(struct pmu *pmu)
{
8911 8912 8913 8914 8915 8916 8917
	unsigned int flags = __this_cpu_read(nop_txn_flags);

	__this_cpu_write(nop_txn_flags, 0);

	if (flags & ~PERF_PMU_TXN_ADD)
		return 0;

P
Peter Zijlstra 已提交
8918 8919 8920
	perf_pmu_enable(pmu);
	return 0;
}
8921

P
Peter Zijlstra 已提交
8922
static void perf_pmu_cancel_txn(struct pmu *pmu)
8923
{
8924 8925 8926 8927 8928 8929 8930
	unsigned int flags =  __this_cpu_read(nop_txn_flags);

	__this_cpu_write(nop_txn_flags, 0);

	if (flags & ~PERF_PMU_TXN_ADD)
		return;

P
Peter Zijlstra 已提交
8931
	perf_pmu_enable(pmu);
8932 8933
}

8934 8935
static int perf_event_idx_default(struct perf_event *event)
{
8936
	return 0;
8937 8938
}

P
Peter Zijlstra 已提交
8939 8940 8941 8942
/*
 * Ensures all contexts with the same task_ctx_nr have the same
 * pmu_cpu_context too.
 */
8943
static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
8944
{
P
Peter Zijlstra 已提交
8945
	struct pmu *pmu;
8946

P
Peter Zijlstra 已提交
8947 8948
	if (ctxn < 0)
		return NULL;
8949

P
Peter Zijlstra 已提交
8950 8951 8952 8953
	list_for_each_entry(pmu, &pmus, entry) {
		if (pmu->task_ctx_nr == ctxn)
			return pmu->pmu_cpu_context;
	}
8954

P
Peter Zijlstra 已提交
8955
	return NULL;
8956 8957
}

8958 8959
static void free_pmu_context(struct pmu *pmu)
{
8960 8961 8962 8963 8964 8965 8966 8967
	/*
	 * Static contexts such as perf_sw_context have a global lifetime
	 * and may be shared between different PMUs. Avoid freeing them
	 * when a single PMU is going away.
	 */
	if (pmu->task_ctx_nr > perf_invalid_context)
		return;

P
Peter Zijlstra 已提交
8968
	mutex_lock(&pmus_lock);
8969
	free_percpu(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
8970
	mutex_unlock(&pmus_lock);
8971
}
8972 8973 8974 8975 8976 8977 8978 8979 8980 8981 8982 8983 8984 8985

/*
 * Let userspace know that this PMU supports address range filtering:
 */
static ssize_t nr_addr_filters_show(struct device *dev,
				    struct device_attribute *attr,
				    char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
}
DEVICE_ATTR_RO(nr_addr_filters);

P
Peter Zijlstra 已提交
8986
static struct idr pmu_idr;
8987

P
Peter Zijlstra 已提交
8988 8989 8990 8991 8992 8993 8994
static ssize_t
type_show(struct device *dev, struct device_attribute *attr, char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
}
8995
static DEVICE_ATTR_RO(type);
P
Peter Zijlstra 已提交
8996

8997 8998 8999 9000 9001 9002 9003 9004 9005 9006
static ssize_t
perf_event_mux_interval_ms_show(struct device *dev,
				struct device_attribute *attr,
				char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
}

9007 9008
static DEFINE_MUTEX(mux_interval_mutex);

9009 9010 9011 9012 9013 9014 9015 9016 9017 9018 9019 9020 9021 9022 9023 9024 9025 9026 9027
static ssize_t
perf_event_mux_interval_ms_store(struct device *dev,
				 struct device_attribute *attr,
				 const char *buf, size_t count)
{
	struct pmu *pmu = dev_get_drvdata(dev);
	int timer, cpu, ret;

	ret = kstrtoint(buf, 0, &timer);
	if (ret)
		return ret;

	if (timer < 1)
		return -EINVAL;

	/* same value, noting to do */
	if (timer == pmu->hrtimer_interval_ms)
		return count;

9028
	mutex_lock(&mux_interval_mutex);
9029 9030 9031
	pmu->hrtimer_interval_ms = timer;

	/* update all cpuctx for this PMU */
9032
	cpus_read_lock();
9033
	for_each_online_cpu(cpu) {
9034 9035 9036 9037
		struct perf_cpu_context *cpuctx;
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
		cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);

9038 9039
		cpu_function_call(cpu,
			(remote_function_f)perf_mux_hrtimer_restart, cpuctx);
9040
	}
9041
	cpus_read_unlock();
9042
	mutex_unlock(&mux_interval_mutex);
9043 9044 9045

	return count;
}
9046
static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
9047

9048 9049 9050 9051
static struct attribute *pmu_dev_attrs[] = {
	&dev_attr_type.attr,
	&dev_attr_perf_event_mux_interval_ms.attr,
	NULL,
P
Peter Zijlstra 已提交
9052
};
9053
ATTRIBUTE_GROUPS(pmu_dev);
P
Peter Zijlstra 已提交
9054 9055 9056 9057

static int pmu_bus_running;
static struct bus_type pmu_bus = {
	.name		= "event_source",
9058
	.dev_groups	= pmu_dev_groups,
P
Peter Zijlstra 已提交
9059 9060 9061 9062 9063 9064 9065 9066 9067 9068 9069 9070 9071 9072 9073
};

static void pmu_dev_release(struct device *dev)
{
	kfree(dev);
}

static int pmu_dev_alloc(struct pmu *pmu)
{
	int ret = -ENOMEM;

	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
	if (!pmu->dev)
		goto out;

9074
	pmu->dev->groups = pmu->attr_groups;
P
Peter Zijlstra 已提交
9075 9076 9077 9078 9079 9080 9081 9082 9083 9084 9085 9086
	device_initialize(pmu->dev);
	ret = dev_set_name(pmu->dev, "%s", pmu->name);
	if (ret)
		goto free_dev;

	dev_set_drvdata(pmu->dev, pmu);
	pmu->dev->bus = &pmu_bus;
	pmu->dev->release = pmu_dev_release;
	ret = device_add(pmu->dev);
	if (ret)
		goto free_dev;

9087 9088 9089 9090 9091 9092 9093
	/* For PMUs with address filters, throw in an extra attribute: */
	if (pmu->nr_addr_filters)
		ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);

	if (ret)
		goto del_dev;

P
Peter Zijlstra 已提交
9094 9095 9096
out:
	return ret;

9097 9098 9099
del_dev:
	device_del(pmu->dev);

P
Peter Zijlstra 已提交
9100 9101 9102 9103 9104
free_dev:
	put_device(pmu->dev);
	goto out;
}

9105
static struct lock_class_key cpuctx_mutex;
9106
static struct lock_class_key cpuctx_lock;
9107

9108
int perf_pmu_register(struct pmu *pmu, const char *name, int type)
9109
{
P
Peter Zijlstra 已提交
9110
	int cpu, ret;
9111

9112
	mutex_lock(&pmus_lock);
P
Peter Zijlstra 已提交
9113 9114 9115 9116
	ret = -ENOMEM;
	pmu->pmu_disable_count = alloc_percpu(int);
	if (!pmu->pmu_disable_count)
		goto unlock;
9117

P
Peter Zijlstra 已提交
9118 9119 9120 9121 9122 9123
	pmu->type = -1;
	if (!name)
		goto skip_type;
	pmu->name = name;

	if (type < 0) {
T
Tejun Heo 已提交
9124 9125 9126
		type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
		if (type < 0) {
			ret = type;
P
Peter Zijlstra 已提交
9127 9128 9129 9130 9131
			goto free_pdc;
		}
	}
	pmu->type = type;

P
Peter Zijlstra 已提交
9132 9133 9134 9135 9136 9137
	if (pmu_bus_running) {
		ret = pmu_dev_alloc(pmu);
		if (ret)
			goto free_idr;
	}

P
Peter Zijlstra 已提交
9138
skip_type:
9139 9140 9141
	if (pmu->task_ctx_nr == perf_hw_context) {
		static int hw_context_taken = 0;

9142 9143 9144 9145 9146 9147 9148
		/*
		 * Other than systems with heterogeneous CPUs, it never makes
		 * sense for two PMUs to share perf_hw_context. PMUs which are
		 * uncore must use perf_invalid_context.
		 */
		if (WARN_ON_ONCE(hw_context_taken &&
		    !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
9149 9150 9151 9152 9153
			pmu->task_ctx_nr = perf_invalid_context;

		hw_context_taken = 1;
	}

P
Peter Zijlstra 已提交
9154 9155 9156
	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
	if (pmu->pmu_cpu_context)
		goto got_cpu_context;
9157

W
Wei Yongjun 已提交
9158
	ret = -ENOMEM;
P
Peter Zijlstra 已提交
9159 9160
	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
	if (!pmu->pmu_cpu_context)
P
Peter Zijlstra 已提交
9161
		goto free_dev;
9162

P
Peter Zijlstra 已提交
9163 9164 9165 9166
	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
9167
		__perf_event_init_context(&cpuctx->ctx);
9168
		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
9169
		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
P
Peter Zijlstra 已提交
9170
		cpuctx->ctx.pmu = pmu;
9171
		cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
9172

9173
		__perf_mux_hrtimer_init(cpuctx, cpu);
P
Peter Zijlstra 已提交
9174
	}
9175

P
Peter Zijlstra 已提交
9176
got_cpu_context:
P
Peter Zijlstra 已提交
9177 9178 9179 9180 9181 9182 9183 9184 9185 9186 9187
	if (!pmu->start_txn) {
		if (pmu->pmu_enable) {
			/*
			 * If we have pmu_enable/pmu_disable calls, install
			 * transaction stubs that use that to try and batch
			 * hardware accesses.
			 */
			pmu->start_txn  = perf_pmu_start_txn;
			pmu->commit_txn = perf_pmu_commit_txn;
			pmu->cancel_txn = perf_pmu_cancel_txn;
		} else {
9188
			pmu->start_txn  = perf_pmu_nop_txn;
P
Peter Zijlstra 已提交
9189 9190
			pmu->commit_txn = perf_pmu_nop_int;
			pmu->cancel_txn = perf_pmu_nop_void;
9191
		}
9192
	}
9193

P
Peter Zijlstra 已提交
9194 9195 9196 9197 9198
	if (!pmu->pmu_enable) {
		pmu->pmu_enable  = perf_pmu_nop_void;
		pmu->pmu_disable = perf_pmu_nop_void;
	}

9199 9200 9201
	if (!pmu->event_idx)
		pmu->event_idx = perf_event_idx_default;

9202
	list_add_rcu(&pmu->entry, &pmus);
9203
	atomic_set(&pmu->exclusive_cnt, 0);
P
Peter Zijlstra 已提交
9204 9205
	ret = 0;
unlock:
9206 9207
	mutex_unlock(&pmus_lock);

P
Peter Zijlstra 已提交
9208
	return ret;
P
Peter Zijlstra 已提交
9209

P
Peter Zijlstra 已提交
9210 9211 9212 9213
free_dev:
	device_del(pmu->dev);
	put_device(pmu->dev);

P
Peter Zijlstra 已提交
9214 9215 9216 9217
free_idr:
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);

P
Peter Zijlstra 已提交
9218 9219 9220
free_pdc:
	free_percpu(pmu->pmu_disable_count);
	goto unlock;
9221
}
9222
EXPORT_SYMBOL_GPL(perf_pmu_register);
9223

9224
void perf_pmu_unregister(struct pmu *pmu)
9225
{
9226 9227
	int remove_device;

9228
	mutex_lock(&pmus_lock);
9229
	remove_device = pmu_bus_running;
9230 9231
	list_del_rcu(&pmu->entry);
	mutex_unlock(&pmus_lock);
9232

9233
	/*
P
Peter Zijlstra 已提交
9234 9235
	 * We dereference the pmu list under both SRCU and regular RCU, so
	 * synchronize against both of those.
9236
	 */
9237
	synchronize_srcu(&pmus_srcu);
P
Peter Zijlstra 已提交
9238
	synchronize_rcu();
9239

P
Peter Zijlstra 已提交
9240
	free_percpu(pmu->pmu_disable_count);
P
Peter Zijlstra 已提交
9241 9242
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);
9243 9244 9245 9246 9247 9248
	if (remove_device) {
		if (pmu->nr_addr_filters)
			device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
		device_del(pmu->dev);
		put_device(pmu->dev);
	}
9249
	free_pmu_context(pmu);
9250
}
9251
EXPORT_SYMBOL_GPL(perf_pmu_unregister);
9252

9253 9254
static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
{
P
Peter Zijlstra 已提交
9255
	struct perf_event_context *ctx = NULL;
9256 9257 9258 9259
	int ret;

	if (!try_module_get(pmu->module))
		return -ENODEV;
P
Peter Zijlstra 已提交
9260 9261

	if (event->group_leader != event) {
9262 9263 9264 9265 9266 9267
		/*
		 * This ctx->mutex can nest when we're called through
		 * inheritance. See the perf_event_ctx_lock_nested() comment.
		 */
		ctx = perf_event_ctx_lock_nested(event->group_leader,
						 SINGLE_DEPTH_NESTING);
P
Peter Zijlstra 已提交
9268 9269 9270
		BUG_ON(!ctx);
	}

9271 9272
	event->pmu = pmu;
	ret = pmu->event_init(event);
P
Peter Zijlstra 已提交
9273 9274 9275 9276

	if (ctx)
		perf_event_ctx_unlock(event->group_leader, ctx);

9277 9278 9279 9280 9281 9282
	if (ret)
		module_put(pmu->module);

	return ret;
}

9283
static struct pmu *perf_init_event(struct perf_event *event)
9284
{
D
Dan Carpenter 已提交
9285
	struct pmu *pmu;
9286
	int idx;
9287
	int ret;
9288 9289

	idx = srcu_read_lock(&pmus_srcu);
P
Peter Zijlstra 已提交
9290

9291 9292 9293 9294 9295 9296 9297 9298
	/* Try parent's PMU first: */
	if (event->parent && event->parent->pmu) {
		pmu = event->parent->pmu;
		ret = perf_try_init_event(pmu, event);
		if (!ret)
			goto unlock;
	}

P
Peter Zijlstra 已提交
9299 9300 9301
	rcu_read_lock();
	pmu = idr_find(&pmu_idr, event->attr.type);
	rcu_read_unlock();
9302
	if (pmu) {
9303
		ret = perf_try_init_event(pmu, event);
9304 9305
		if (ret)
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
9306
		goto unlock;
9307
	}
P
Peter Zijlstra 已提交
9308

9309
	list_for_each_entry_rcu(pmu, &pmus, entry) {
9310
		ret = perf_try_init_event(pmu, event);
9311
		if (!ret)
P
Peter Zijlstra 已提交
9312
			goto unlock;
9313

9314 9315
		if (ret != -ENOENT) {
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
9316
			goto unlock;
9317
		}
9318
	}
P
Peter Zijlstra 已提交
9319 9320
	pmu = ERR_PTR(-ENOENT);
unlock:
9321
	srcu_read_unlock(&pmus_srcu, idx);
9322

9323
	return pmu;
9324 9325
}

9326 9327 9328 9329 9330 9331 9332 9333 9334
static void attach_sb_event(struct perf_event *event)
{
	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);

	raw_spin_lock(&pel->lock);
	list_add_rcu(&event->sb_list, &pel->list);
	raw_spin_unlock(&pel->lock);
}

9335 9336 9337 9338 9339 9340 9341
/*
 * We keep a list of all !task (and therefore per-cpu) events
 * that need to receive side-band records.
 *
 * This avoids having to scan all the various PMU per-cpu contexts
 * looking for them.
 */
9342 9343
static void account_pmu_sb_event(struct perf_event *event)
{
9344
	if (is_sb_event(event))
9345 9346 9347
		attach_sb_event(event);
}

9348 9349 9350 9351 9352 9353 9354 9355 9356
static void account_event_cpu(struct perf_event *event, int cpu)
{
	if (event->parent)
		return;

	if (is_cgroup_event(event))
		atomic_inc(&per_cpu(perf_cgroup_events, cpu));
}

9357 9358 9359 9360 9361 9362 9363 9364 9365 9366 9367 9368 9369 9370 9371 9372 9373 9374 9375 9376 9377
/* Freq events need the tick to stay alive (see perf_event_task_tick). */
static void account_freq_event_nohz(void)
{
#ifdef CONFIG_NO_HZ_FULL
	/* Lock so we don't race with concurrent unaccount */
	spin_lock(&nr_freq_lock);
	if (atomic_inc_return(&nr_freq_events) == 1)
		tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
	spin_unlock(&nr_freq_lock);
#endif
}

static void account_freq_event(void)
{
	if (tick_nohz_full_enabled())
		account_freq_event_nohz();
	else
		atomic_inc(&nr_freq_events);
}


9378 9379
static void account_event(struct perf_event *event)
{
9380 9381
	bool inc = false;

9382 9383 9384
	if (event->parent)
		return;

9385
	if (event->attach_state & PERF_ATTACH_TASK)
9386
		inc = true;
9387 9388 9389 9390
	if (event->attr.mmap || event->attr.mmap_data)
		atomic_inc(&nr_mmap_events);
	if (event->attr.comm)
		atomic_inc(&nr_comm_events);
9391 9392
	if (event->attr.namespaces)
		atomic_inc(&nr_namespaces_events);
9393 9394
	if (event->attr.task)
		atomic_inc(&nr_task_events);
9395 9396
	if (event->attr.freq)
		account_freq_event();
9397 9398
	if (event->attr.context_switch) {
		atomic_inc(&nr_switch_events);
9399
		inc = true;
9400
	}
9401
	if (has_branch_stack(event))
9402
		inc = true;
9403
	if (is_cgroup_event(event))
9404 9405
		inc = true;

9406 9407 9408 9409 9410 9411 9412 9413 9414 9415 9416 9417 9418 9419 9420 9421 9422 9423 9424 9425 9426 9427
	if (inc) {
		if (atomic_inc_not_zero(&perf_sched_count))
			goto enabled;

		mutex_lock(&perf_sched_mutex);
		if (!atomic_read(&perf_sched_count)) {
			static_branch_enable(&perf_sched_events);
			/*
			 * Guarantee that all CPUs observe they key change and
			 * call the perf scheduling hooks before proceeding to
			 * install events that need them.
			 */
			synchronize_sched();
		}
		/*
		 * Now that we have waited for the sync_sched(), allow further
		 * increments to by-pass the mutex.
		 */
		atomic_inc(&perf_sched_count);
		mutex_unlock(&perf_sched_mutex);
	}
enabled:
9428 9429

	account_event_cpu(event, event->cpu);
9430 9431

	account_pmu_sb_event(event);
9432 9433
}

T
Thomas Gleixner 已提交
9434
/*
9435
 * Allocate and initialize a event structure
T
Thomas Gleixner 已提交
9436
 */
9437
static struct perf_event *
9438
perf_event_alloc(struct perf_event_attr *attr, int cpu,
9439 9440 9441
		 struct task_struct *task,
		 struct perf_event *group_leader,
		 struct perf_event *parent_event,
9442
		 perf_overflow_handler_t overflow_handler,
9443
		 void *context, int cgroup_fd)
T
Thomas Gleixner 已提交
9444
{
P
Peter Zijlstra 已提交
9445
	struct pmu *pmu;
9446 9447
	struct perf_event *event;
	struct hw_perf_event *hwc;
9448
	long err = -EINVAL;
T
Thomas Gleixner 已提交
9449

9450 9451 9452 9453 9454
	if ((unsigned)cpu >= nr_cpu_ids) {
		if (!task || cpu != -1)
			return ERR_PTR(-EINVAL);
	}

9455
	event = kzalloc(sizeof(*event), GFP_KERNEL);
9456
	if (!event)
9457
		return ERR_PTR(-ENOMEM);
T
Thomas Gleixner 已提交
9458

9459
	/*
9460
	 * Single events are their own group leaders, with an
9461 9462 9463
	 * empty sibling list:
	 */
	if (!group_leader)
9464
		group_leader = event;
9465

9466 9467
	mutex_init(&event->child_mutex);
	INIT_LIST_HEAD(&event->child_list);
9468

9469 9470 9471
	INIT_LIST_HEAD(&event->group_entry);
	INIT_LIST_HEAD(&event->event_entry);
	INIT_LIST_HEAD(&event->sibling_list);
9472
	INIT_LIST_HEAD(&event->rb_entry);
9473
	INIT_LIST_HEAD(&event->active_entry);
9474
	INIT_LIST_HEAD(&event->addr_filters.list);
9475 9476
	INIT_HLIST_NODE(&event->hlist_entry);

9477

9478
	init_waitqueue_head(&event->waitq);
9479
	init_irq_work(&event->pending, perf_pending_event);
T
Thomas Gleixner 已提交
9480

9481
	mutex_init(&event->mmap_mutex);
9482
	raw_spin_lock_init(&event->addr_filters.lock);
9483

9484
	atomic_long_set(&event->refcount, 1);
9485 9486 9487 9488 9489
	event->cpu		= cpu;
	event->attr		= *attr;
	event->group_leader	= group_leader;
	event->pmu		= NULL;
	event->oncpu		= -1;
9490

9491
	event->parent		= parent_event;
9492

9493
	event->ns		= get_pid_ns(task_active_pid_ns(current));
9494
	event->id		= atomic64_inc_return(&perf_event_id);
9495

9496
	event->state		= PERF_EVENT_STATE_INACTIVE;
9497

9498 9499 9500
	if (task) {
		event->attach_state = PERF_ATTACH_TASK;
		/*
9501 9502 9503
		 * XXX pmu::event_init needs to know what task to account to
		 * and we cannot use the ctx information because we need the
		 * pmu before we get a ctx.
9504
		 */
9505
		event->hw.target = task;
9506 9507
	}

9508 9509 9510 9511
	event->clock = &local_clock;
	if (parent_event)
		event->clock = parent_event->clock;

9512
	if (!overflow_handler && parent_event) {
9513
		overflow_handler = parent_event->overflow_handler;
9514
		context = parent_event->overflow_handler_context;
9515
#if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
9516 9517 9518 9519 9520 9521 9522 9523 9524 9525 9526 9527
		if (overflow_handler == bpf_overflow_handler) {
			struct bpf_prog *prog = bpf_prog_inc(parent_event->prog);

			if (IS_ERR(prog)) {
				err = PTR_ERR(prog);
				goto err_ns;
			}
			event->prog = prog;
			event->orig_overflow_handler =
				parent_event->orig_overflow_handler;
		}
#endif
9528
	}
9529

9530 9531 9532
	if (overflow_handler) {
		event->overflow_handler	= overflow_handler;
		event->overflow_handler_context = context;
9533 9534 9535
	} else if (is_write_backward(event)){
		event->overflow_handler = perf_event_output_backward;
		event->overflow_handler_context = NULL;
9536
	} else {
9537
		event->overflow_handler = perf_event_output_forward;
9538 9539
		event->overflow_handler_context = NULL;
	}
9540

J
Jiri Olsa 已提交
9541
	perf_event__state_init(event);
9542

9543
	pmu = NULL;
9544

9545
	hwc = &event->hw;
9546
	hwc->sample_period = attr->sample_period;
9547
	if (attr->freq && attr->sample_freq)
9548
		hwc->sample_period = 1;
9549
	hwc->last_period = hwc->sample_period;
9550

9551
	local64_set(&hwc->period_left, hwc->sample_period);
9552

9553
	/*
9554 9555
	 * We currently do not support PERF_SAMPLE_READ on inherited events.
	 * See perf_output_read().
9556
	 */
9557
	if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
9558
		goto err_ns;
9559 9560 9561

	if (!has_branch_stack(event))
		event->attr.branch_sample_type = 0;
9562

9563 9564 9565 9566 9567 9568
	if (cgroup_fd != -1) {
		err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
		if (err)
			goto err_ns;
	}

9569
	pmu = perf_init_event(event);
D
Dan Carpenter 已提交
9570
	if (IS_ERR(pmu)) {
9571
		err = PTR_ERR(pmu);
9572
		goto err_ns;
I
Ingo Molnar 已提交
9573
	}
9574

9575 9576 9577 9578
	err = exclusive_event_init(event);
	if (err)
		goto err_pmu;

9579 9580 9581 9582
	if (has_addr_filter(event)) {
		event->addr_filters_offs = kcalloc(pmu->nr_addr_filters,
						   sizeof(unsigned long),
						   GFP_KERNEL);
9583 9584
		if (!event->addr_filters_offs) {
			err = -ENOMEM;
9585
			goto err_per_task;
9586
		}
9587 9588 9589 9590 9591

		/* force hw sync on the address filters */
		event->addr_filters_gen = 1;
	}

9592
	if (!event->parent) {
9593
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
9594
			err = get_callchain_buffers(attr->sample_max_stack);
9595
			if (err)
9596
				goto err_addr_filters;
9597
		}
9598
	}
9599

9600 9601 9602
	/* symmetric to unaccount_event() in _free_event() */
	account_event(event);

9603
	return event;
9604

9605 9606 9607
err_addr_filters:
	kfree(event->addr_filters_offs);

9608 9609 9610
err_per_task:
	exclusive_event_destroy(event);

9611 9612 9613
err_pmu:
	if (event->destroy)
		event->destroy(event);
9614
	module_put(pmu->module);
9615
err_ns:
9616 9617
	if (is_cgroup_event(event))
		perf_detach_cgroup(event);
9618 9619 9620 9621 9622
	if (event->ns)
		put_pid_ns(event->ns);
	kfree(event);

	return ERR_PTR(err);
T
Thomas Gleixner 已提交
9623 9624
}

9625 9626
static int perf_copy_attr(struct perf_event_attr __user *uattr,
			  struct perf_event_attr *attr)
9627 9628
{
	u32 size;
9629
	int ret;
9630 9631 9632 9633 9634 9635 9636 9637 9638 9639 9640 9641 9642 9643 9644 9645 9646 9647 9648 9649 9650 9651 9652 9653

	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
		return -EFAULT;

	/*
	 * zero the full structure, so that a short copy will be nice.
	 */
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

	if (size > PAGE_SIZE)	/* silly large */
		goto err_size;

	if (!size)		/* abi compat */
		size = PERF_ATTR_SIZE_VER0;

	if (size < PERF_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
9654 9655 9656
	 * ensure all the unknown bits are 0 - i.e. new
	 * user-space does not rely on any kernel feature
	 * extensions we dont know about yet.
9657 9658
	 */
	if (size > sizeof(*attr)) {
9659 9660 9661
		unsigned char __user *addr;
		unsigned char __user *end;
		unsigned char val;
9662

9663 9664
		addr = (void __user *)uattr + sizeof(*attr);
		end  = (void __user *)uattr + size;
9665

9666
		for (; addr < end; addr++) {
9667 9668 9669 9670 9671 9672
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
9673
		size = sizeof(*attr);
9674 9675 9676 9677 9678 9679
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

9680 9681
	attr->size = size;

9682
	if (attr->__reserved_1)
9683 9684 9685 9686 9687 9688 9689 9690
		return -EINVAL;

	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
		return -EINVAL;

	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
		return -EINVAL;

9691 9692 9693 9694 9695 9696 9697 9698 9699 9700 9701 9702 9703 9704 9705 9706 9707 9708 9709 9710 9711 9712 9713 9714 9715 9716 9717 9718
	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
		u64 mask = attr->branch_sample_type;

		/* only using defined bits */
		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
			return -EINVAL;

		/* at least one branch bit must be set */
		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
			return -EINVAL;

		/* propagate priv level, when not set for branch */
		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {

			/* exclude_kernel checked on syscall entry */
			if (!attr->exclude_kernel)
				mask |= PERF_SAMPLE_BRANCH_KERNEL;

			if (!attr->exclude_user)
				mask |= PERF_SAMPLE_BRANCH_USER;

			if (!attr->exclude_hv)
				mask |= PERF_SAMPLE_BRANCH_HV;
			/*
			 * adjust user setting (for HW filter setup)
			 */
			attr->branch_sample_type = mask;
		}
9719 9720
		/* privileged levels capture (kernel, hv): check permissions */
		if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
9721 9722
		    && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
9723
	}
9724

9725
	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
9726
		ret = perf_reg_validate(attr->sample_regs_user);
9727 9728 9729 9730 9731 9732 9733 9734 9735 9736 9737 9738 9739 9740 9741 9742 9743 9744
		if (ret)
			return ret;
	}

	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
		if (!arch_perf_have_user_stack_dump())
			return -ENOSYS;

		/*
		 * We have __u32 type for the size, but so far
		 * we can only use __u16 as maximum due to the
		 * __u16 sample size limit.
		 */
		if (attr->sample_stack_user >= USHRT_MAX)
			ret = -EINVAL;
		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
			ret = -EINVAL;
	}
9745

9746 9747
	if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
		ret = perf_reg_validate(attr->sample_regs_intr);
9748 9749 9750 9751 9752 9753 9754 9755 9756
out:
	return ret;

err_size:
	put_user(sizeof(*attr), &uattr->size);
	ret = -E2BIG;
	goto out;
}

9757 9758
static int
perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
9759
{
9760
	struct ring_buffer *rb = NULL;
9761 9762
	int ret = -EINVAL;

9763
	if (!output_event)
9764 9765
		goto set;

9766 9767
	/* don't allow circular references */
	if (event == output_event)
9768 9769
		goto out;

9770 9771 9772 9773 9774 9775 9776
	/*
	 * Don't allow cross-cpu buffers
	 */
	if (output_event->cpu != event->cpu)
		goto out;

	/*
9777
	 * If its not a per-cpu rb, it must be the same task.
9778 9779 9780 9781
	 */
	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
		goto out;

9782 9783 9784 9785 9786 9787
	/*
	 * Mixing clocks in the same buffer is trouble you don't need.
	 */
	if (output_event->clock != event->clock)
		goto out;

9788 9789 9790 9791 9792 9793 9794
	/*
	 * Either writing ring buffer from beginning or from end.
	 * Mixing is not allowed.
	 */
	if (is_write_backward(output_event) != is_write_backward(event))
		goto out;

9795 9796 9797 9798 9799 9800 9801
	/*
	 * If both events generate aux data, they must be on the same PMU
	 */
	if (has_aux(event) && has_aux(output_event) &&
	    event->pmu != output_event->pmu)
		goto out;

9802
set:
9803
	mutex_lock(&event->mmap_mutex);
9804 9805 9806
	/* Can't redirect output if we've got an active mmap() */
	if (atomic_read(&event->mmap_count))
		goto unlock;
9807

9808
	if (output_event) {
9809 9810 9811
		/* get the rb we want to redirect to */
		rb = ring_buffer_get(output_event);
		if (!rb)
9812
			goto unlock;
9813 9814
	}

9815
	ring_buffer_attach(event, rb);
9816

9817
	ret = 0;
9818 9819 9820
unlock:
	mutex_unlock(&event->mmap_mutex);

9821 9822 9823 9824
out:
	return ret;
}

P
Peter Zijlstra 已提交
9825 9826 9827 9828 9829 9830 9831 9832 9833
static void mutex_lock_double(struct mutex *a, struct mutex *b)
{
	if (b < a)
		swap(a, b);

	mutex_lock(a);
	mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
}

9834 9835 9836 9837 9838 9839 9840 9841 9842 9843 9844 9845 9846 9847 9848 9849 9850 9851 9852 9853 9854 9855 9856 9857 9858 9859 9860 9861 9862 9863 9864 9865 9866 9867 9868 9869 9870
static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
{
	bool nmi_safe = false;

	switch (clk_id) {
	case CLOCK_MONOTONIC:
		event->clock = &ktime_get_mono_fast_ns;
		nmi_safe = true;
		break;

	case CLOCK_MONOTONIC_RAW:
		event->clock = &ktime_get_raw_fast_ns;
		nmi_safe = true;
		break;

	case CLOCK_REALTIME:
		event->clock = &ktime_get_real_ns;
		break;

	case CLOCK_BOOTTIME:
		event->clock = &ktime_get_boot_ns;
		break;

	case CLOCK_TAI:
		event->clock = &ktime_get_tai_ns;
		break;

	default:
		return -EINVAL;
	}

	if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
		return -EINVAL;

	return 0;
}

9871 9872 9873 9874 9875 9876 9877 9878 9879 9880 9881 9882 9883 9884 9885 9886 9887 9888 9889 9890 9891 9892 9893 9894 9895 9896 9897 9898 9899 9900 9901
/*
 * Variation on perf_event_ctx_lock_nested(), except we take two context
 * mutexes.
 */
static struct perf_event_context *
__perf_event_ctx_lock_double(struct perf_event *group_leader,
			     struct perf_event_context *ctx)
{
	struct perf_event_context *gctx;

again:
	rcu_read_lock();
	gctx = READ_ONCE(group_leader->ctx);
	if (!atomic_inc_not_zero(&gctx->refcount)) {
		rcu_read_unlock();
		goto again;
	}
	rcu_read_unlock();

	mutex_lock_double(&gctx->mutex, &ctx->mutex);

	if (group_leader->ctx != gctx) {
		mutex_unlock(&ctx->mutex);
		mutex_unlock(&gctx->mutex);
		put_ctx(gctx);
		goto again;
	}

	return gctx;
}

T
Thomas Gleixner 已提交
9902
/**
9903
 * sys_perf_event_open - open a performance event, associate it to a task/cpu
I
Ingo Molnar 已提交
9904
 *
9905
 * @attr_uptr:	event_id type attributes for monitoring/sampling
T
Thomas Gleixner 已提交
9906
 * @pid:		target pid
I
Ingo Molnar 已提交
9907
 * @cpu:		target cpu
9908
 * @group_fd:		group leader event fd
T
Thomas Gleixner 已提交
9909
 */
9910 9911
SYSCALL_DEFINE5(perf_event_open,
		struct perf_event_attr __user *, attr_uptr,
9912
		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
T
Thomas Gleixner 已提交
9913
{
9914 9915
	struct perf_event *group_leader = NULL, *output_event = NULL;
	struct perf_event *event, *sibling;
9916
	struct perf_event_attr attr;
P
Peter Zijlstra 已提交
9917
	struct perf_event_context *ctx, *uninitialized_var(gctx);
9918
	struct file *event_file = NULL;
9919
	struct fd group = {NULL, 0};
M
Matt Helsley 已提交
9920
	struct task_struct *task = NULL;
9921
	struct pmu *pmu;
9922
	int event_fd;
9923
	int move_group = 0;
9924
	int err;
9925
	int f_flags = O_RDWR;
9926
	int cgroup_fd = -1;
T
Thomas Gleixner 已提交
9927

9928
	/* for future expandability... */
S
Stephane Eranian 已提交
9929
	if (flags & ~PERF_FLAG_ALL)
9930 9931
		return -EINVAL;

9932 9933 9934
	err = perf_copy_attr(attr_uptr, &attr);
	if (err)
		return err;
9935

9936 9937 9938 9939 9940
	if (!attr.exclude_kernel) {
		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
	}

9941 9942 9943 9944 9945
	if (attr.namespaces) {
		if (!capable(CAP_SYS_ADMIN))
			return -EACCES;
	}

9946
	if (attr.freq) {
9947
		if (attr.sample_freq > sysctl_perf_event_sample_rate)
9948
			return -EINVAL;
9949 9950 9951
	} else {
		if (attr.sample_period & (1ULL << 63))
			return -EINVAL;
9952 9953
	}

9954 9955 9956 9957 9958
	/* Only privileged users can get physical addresses */
	if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR) &&
	    perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
		return -EACCES;

9959 9960 9961
	if (!attr.sample_max_stack)
		attr.sample_max_stack = sysctl_perf_event_max_stack;

S
Stephane Eranian 已提交
9962 9963 9964 9965 9966 9967 9968 9969 9970
	/*
	 * In cgroup mode, the pid argument is used to pass the fd
	 * opened to the cgroup directory in cgroupfs. The cpu argument
	 * designates the cpu on which to monitor threads from that
	 * cgroup.
	 */
	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
		return -EINVAL;

9971 9972 9973 9974
	if (flags & PERF_FLAG_FD_CLOEXEC)
		f_flags |= O_CLOEXEC;

	event_fd = get_unused_fd_flags(f_flags);
9975 9976 9977
	if (event_fd < 0)
		return event_fd;

9978
	if (group_fd != -1) {
9979 9980
		err = perf_fget_light(group_fd, &group);
		if (err)
9981
			goto err_fd;
9982
		group_leader = group.file->private_data;
9983 9984 9985 9986 9987 9988
		if (flags & PERF_FLAG_FD_OUTPUT)
			output_event = group_leader;
		if (flags & PERF_FLAG_FD_NO_GROUP)
			group_leader = NULL;
	}

S
Stephane Eranian 已提交
9989
	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
9990 9991 9992 9993 9994 9995 9996
		task = find_lively_task_by_vpid(pid);
		if (IS_ERR(task)) {
			err = PTR_ERR(task);
			goto err_group_fd;
		}
	}

9997 9998 9999 10000 10001 10002
	if (task && group_leader &&
	    group_leader->attr.inherit != attr.inherit) {
		err = -EINVAL;
		goto err_task;
	}

10003 10004 10005
	if (task) {
		err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
		if (err)
10006
			goto err_task;
10007 10008 10009 10010 10011 10012 10013 10014 10015 10016 10017 10018 10019 10020

		/*
		 * Reuse ptrace permission checks for now.
		 *
		 * We must hold cred_guard_mutex across this and any potential
		 * perf_install_in_context() call for this new event to
		 * serialize against exec() altering our credentials (and the
		 * perf_event_exit_task() that could imply).
		 */
		err = -EACCES;
		if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
			goto err_cred;
	}

10021 10022 10023
	if (flags & PERF_FLAG_PID_CGROUP)
		cgroup_fd = pid;

10024
	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
10025
				 NULL, NULL, cgroup_fd);
10026 10027
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
10028
		goto err_cred;
10029 10030
	}

10031 10032
	if (is_sampling_event(event)) {
		if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
10033
			err = -EOPNOTSUPP;
10034 10035 10036 10037
			goto err_alloc;
		}
	}

10038 10039 10040 10041 10042
	/*
	 * Special case software events and allow them to be part of
	 * any hardware group.
	 */
	pmu = event->pmu;
10043

10044 10045 10046 10047 10048 10049
	if (attr.use_clockid) {
		err = perf_event_set_clock(event, attr.clockid);
		if (err)
			goto err_alloc;
	}

10050 10051 10052
	if (pmu->task_ctx_nr == perf_sw_context)
		event->event_caps |= PERF_EV_CAP_SOFTWARE;

10053 10054 10055 10056 10057 10058 10059 10060 10061 10062 10063 10064 10065
	if (group_leader &&
	    (is_software_event(event) != is_software_event(group_leader))) {
		if (is_software_event(event)) {
			/*
			 * If event and group_leader are not both a software
			 * event, and event is, then group leader is not.
			 *
			 * Allow the addition of software events to !software
			 * groups, this is safe because software events never
			 * fail to schedule.
			 */
			pmu = group_leader->pmu;
		} else if (is_software_event(group_leader) &&
10066
			   (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
10067 10068 10069 10070 10071 10072 10073 10074
			/*
			 * In case the group is a pure software group, and we
			 * try to add a hardware event, move the whole group to
			 * the hardware context.
			 */
			move_group = 1;
		}
	}
10075 10076 10077 10078

	/*
	 * Get the target context (task or percpu):
	 */
10079
	ctx = find_get_context(pmu, task, event);
10080 10081
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
10082
		goto err_alloc;
10083 10084
	}

10085 10086 10087 10088 10089
	if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
		err = -EBUSY;
		goto err_context;
	}

I
Ingo Molnar 已提交
10090
	/*
10091
	 * Look up the group leader (we will attach this event to it):
10092
	 */
10093
	if (group_leader) {
10094
		err = -EINVAL;
10095 10096

		/*
I
Ingo Molnar 已提交
10097 10098 10099 10100
		 * Do not allow a recursive hierarchy (this new sibling
		 * becoming part of another group-sibling):
		 */
		if (group_leader->group_leader != group_leader)
10101
			goto err_context;
10102 10103 10104 10105 10106

		/* All events in a group should have the same clock */
		if (group_leader->clock != event->clock)
			goto err_context;

I
Ingo Molnar 已提交
10107
		/*
10108 10109 10110
		 * Make sure we're both events for the same CPU;
		 * grouping events for different CPUs is broken; since
		 * you can never concurrently schedule them anyhow.
10111
		 */
10112 10113
		if (group_leader->cpu != event->cpu)
			goto err_context;
10114

10115 10116 10117 10118 10119 10120 10121 10122 10123 10124 10125 10126 10127 10128
		/*
		 * Make sure we're both on the same task, or both
		 * per-CPU events.
		 */
		if (group_leader->ctx->task != ctx->task)
			goto err_context;

		/*
		 * Do not allow to attach to a group in a different task
		 * or CPU context. If we're moving SW events, we'll fix
		 * this up later, so allow that.
		 */
		if (!move_group && group_leader->ctx != ctx)
			goto err_context;
10129

10130 10131 10132
		/*
		 * Only a group leader can be exclusive or pinned
		 */
10133
		if (attr.exclusive || attr.pinned)
10134
			goto err_context;
10135 10136 10137 10138 10139
	}

	if (output_event) {
		err = perf_event_set_output(event, output_event);
		if (err)
10140
			goto err_context;
10141
	}
T
Thomas Gleixner 已提交
10142

10143 10144
	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
					f_flags);
10145 10146
	if (IS_ERR(event_file)) {
		err = PTR_ERR(event_file);
10147
		event_file = NULL;
10148
		goto err_context;
10149
	}
10150

10151
	if (move_group) {
10152 10153
		gctx = __perf_event_ctx_lock_double(group_leader, ctx);

10154 10155 10156 10157
		if (gctx->task == TASK_TOMBSTONE) {
			err = -ESRCH;
			goto err_locked;
		}
10158 10159 10160 10161 10162 10163 10164 10165 10166 10167 10168 10169 10170 10171 10172 10173 10174 10175 10176

		/*
		 * Check if we raced against another sys_perf_event_open() call
		 * moving the software group underneath us.
		 */
		if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
			/*
			 * If someone moved the group out from under us, check
			 * if this new event wound up on the same ctx, if so
			 * its the regular !move_group case, otherwise fail.
			 */
			if (gctx != ctx) {
				err = -EINVAL;
				goto err_locked;
			} else {
				perf_event_ctx_unlock(group_leader, gctx);
				move_group = 0;
			}
		}
10177 10178 10179 10180
	} else {
		mutex_lock(&ctx->mutex);
	}

10181 10182 10183 10184 10185
	if (ctx->task == TASK_TOMBSTONE) {
		err = -ESRCH;
		goto err_locked;
	}

P
Peter Zijlstra 已提交
10186 10187 10188 10189 10190
	if (!perf_event_validate_size(event)) {
		err = -E2BIG;
		goto err_locked;
	}

10191 10192 10193 10194 10195 10196 10197 10198 10199 10200 10201 10202 10203 10204 10205 10206 10207
	if (!task) {
		/*
		 * Check if the @cpu we're creating an event for is online.
		 *
		 * We use the perf_cpu_context::ctx::mutex to serialize against
		 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
		 */
		struct perf_cpu_context *cpuctx =
			container_of(ctx, struct perf_cpu_context, ctx);

		if (!cpuctx->online) {
			err = -ENODEV;
			goto err_locked;
		}
	}


10208 10209 10210 10211 10212 10213 10214
	/*
	 * Must be under the same ctx::mutex as perf_install_in_context(),
	 * because we need to serialize with concurrent event creation.
	 */
	if (!exclusive_event_installable(event, ctx)) {
		/* exclusive and group stuff are assumed mutually exclusive */
		WARN_ON_ONCE(move_group);
P
Peter Zijlstra 已提交
10215

10216 10217 10218
		err = -EBUSY;
		goto err_locked;
	}
P
Peter Zijlstra 已提交
10219

10220 10221
	WARN_ON_ONCE(ctx->parent_ctx);

10222 10223 10224 10225 10226
	/*
	 * This is the point on no return; we cannot fail hereafter. This is
	 * where we start modifying current state.
	 */

10227
	if (move_group) {
P
Peter Zijlstra 已提交
10228 10229 10230 10231
		/*
		 * See perf_event_ctx_lock() for comments on the details
		 * of swizzling perf_event::ctx.
		 */
10232
		perf_remove_from_context(group_leader, 0);
10233
		put_ctx(gctx);
J
Jiri Olsa 已提交
10234

10235 10236
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
10237
			perf_remove_from_context(sibling, 0);
10238 10239 10240
			put_ctx(gctx);
		}

P
Peter Zijlstra 已提交
10241 10242 10243 10244
		/*
		 * Wait for everybody to stop referencing the events through
		 * the old lists, before installing it on new lists.
		 */
10245
		synchronize_rcu();
P
Peter Zijlstra 已提交
10246

10247 10248 10249 10250 10251 10252 10253 10254 10255 10256
		/*
		 * Install the group siblings before the group leader.
		 *
		 * Because a group leader will try and install the entire group
		 * (through the sibling list, which is still in-tact), we can
		 * end up with siblings installed in the wrong context.
		 *
		 * By installing siblings first we NO-OP because they're not
		 * reachable through the group lists.
		 */
10257 10258
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
10259
			perf_event__state_init(sibling);
10260
			perf_install_in_context(ctx, sibling, sibling->cpu);
10261 10262
			get_ctx(ctx);
		}
10263 10264 10265 10266 10267 10268 10269 10270 10271

		/*
		 * Removing from the context ends up with disabled
		 * event. What we want here is event in the initial
		 * startup state, ready to be add into new context.
		 */
		perf_event__state_init(group_leader);
		perf_install_in_context(ctx, group_leader, group_leader->cpu);
		get_ctx(ctx);
10272 10273
	}

10274 10275 10276 10277 10278 10279 10280 10281 10282
	/*
	 * Precalculate sample_data sizes; do while holding ctx::mutex such
	 * that we're serialized against further additions and before
	 * perf_install_in_context() which is the point the event is active and
	 * can use these values.
	 */
	perf_event__header_size(event);
	perf_event__id_header_size(event);

P
Peter Zijlstra 已提交
10283 10284
	event->owner = current;

10285
	perf_install_in_context(ctx, event, event->cpu);
10286
	perf_unpin_context(ctx);
P
Peter Zijlstra 已提交
10287

10288
	if (move_group)
10289
		perf_event_ctx_unlock(group_leader, gctx);
10290
	mutex_unlock(&ctx->mutex);
10291

10292 10293 10294 10295 10296
	if (task) {
		mutex_unlock(&task->signal->cred_guard_mutex);
		put_task_struct(task);
	}

10297 10298 10299
	mutex_lock(&current->perf_event_mutex);
	list_add_tail(&event->owner_entry, &current->perf_event_list);
	mutex_unlock(&current->perf_event_mutex);
10300

10301 10302 10303 10304 10305 10306
	/*
	 * Drop the reference on the group_event after placing the
	 * new event on the sibling_list. This ensures destruction
	 * of the group leader will find the pointer to itself in
	 * perf_group_detach().
	 */
10307
	fdput(group);
10308 10309
	fd_install(event_fd, event_file);
	return event_fd;
T
Thomas Gleixner 已提交
10310

10311 10312
err_locked:
	if (move_group)
10313
		perf_event_ctx_unlock(group_leader, gctx);
10314 10315 10316
	mutex_unlock(&ctx->mutex);
/* err_file: */
	fput(event_file);
10317
err_context:
10318
	perf_unpin_context(ctx);
10319
	put_ctx(ctx);
10320
err_alloc:
P
Peter Zijlstra 已提交
10321 10322 10323 10324 10325 10326
	/*
	 * If event_file is set, the fput() above will have called ->release()
	 * and that will take care of freeing the event.
	 */
	if (!event_file)
		free_event(event);
10327 10328 10329
err_cred:
	if (task)
		mutex_unlock(&task->signal->cred_guard_mutex);
10330
err_task:
P
Peter Zijlstra 已提交
10331 10332
	if (task)
		put_task_struct(task);
10333
err_group_fd:
10334
	fdput(group);
10335 10336
err_fd:
	put_unused_fd(event_fd);
10337
	return err;
T
Thomas Gleixner 已提交
10338 10339
}

10340 10341 10342 10343 10344
/**
 * perf_event_create_kernel_counter
 *
 * @attr: attributes of the counter to create
 * @cpu: cpu in which the counter is bound
M
Matt Helsley 已提交
10345
 * @task: task to profile (NULL for percpu)
10346 10347 10348
 */
struct perf_event *
perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
M
Matt Helsley 已提交
10349
				 struct task_struct *task,
10350 10351
				 perf_overflow_handler_t overflow_handler,
				 void *context)
10352 10353
{
	struct perf_event_context *ctx;
10354
	struct perf_event *event;
10355
	int err;
10356

10357 10358 10359
	/*
	 * Get the target context (task or percpu):
	 */
10360

10361
	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
10362
				 overflow_handler, context, -1);
10363 10364 10365 10366
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
		goto err;
	}
10367

10368
	/* Mark owner so we could distinguish it from user events. */
10369
	event->owner = TASK_TOMBSTONE;
10370

10371
	ctx = find_get_context(event->pmu, task, event);
10372 10373
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
10374
		goto err_free;
10375
	}
10376 10377 10378

	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
10379 10380 10381 10382 10383
	if (ctx->task == TASK_TOMBSTONE) {
		err = -ESRCH;
		goto err_unlock;
	}

10384 10385 10386 10387 10388 10389 10390 10391 10392 10393 10394 10395 10396 10397 10398
	if (!task) {
		/*
		 * Check if the @cpu we're creating an event for is online.
		 *
		 * We use the perf_cpu_context::ctx::mutex to serialize against
		 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
		 */
		struct perf_cpu_context *cpuctx =
			container_of(ctx, struct perf_cpu_context, ctx);
		if (!cpuctx->online) {
			err = -ENODEV;
			goto err_unlock;
		}
	}

10399 10400
	if (!exclusive_event_installable(event, ctx)) {
		err = -EBUSY;
10401
		goto err_unlock;
10402 10403
	}

10404
	perf_install_in_context(ctx, event, cpu);
10405
	perf_unpin_context(ctx);
10406 10407 10408 10409
	mutex_unlock(&ctx->mutex);

	return event;

10410 10411 10412 10413
err_unlock:
	mutex_unlock(&ctx->mutex);
	perf_unpin_context(ctx);
	put_ctx(ctx);
10414 10415 10416
err_free:
	free_event(event);
err:
10417
	return ERR_PTR(err);
10418
}
10419
EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
10420

10421 10422 10423 10424 10425 10426 10427 10428 10429 10430
void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
{
	struct perf_event_context *src_ctx;
	struct perf_event_context *dst_ctx;
	struct perf_event *event, *tmp;
	LIST_HEAD(events);

	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;

P
Peter Zijlstra 已提交
10431 10432 10433 10434 10435
	/*
	 * See perf_event_ctx_lock() for comments on the details
	 * of swizzling perf_event::ctx.
	 */
	mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
10436 10437
	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
				 event_entry) {
10438
		perf_remove_from_context(event, 0);
10439
		unaccount_event_cpu(event, src_cpu);
10440
		put_ctx(src_ctx);
10441
		list_add(&event->migrate_entry, &events);
10442 10443
	}

10444 10445 10446
	/*
	 * Wait for the events to quiesce before re-instating them.
	 */
10447 10448
	synchronize_rcu();

10449 10450 10451 10452 10453 10454 10455 10456 10457 10458 10459 10460 10461 10462 10463 10464 10465 10466 10467 10468 10469 10470 10471 10472
	/*
	 * Re-instate events in 2 passes.
	 *
	 * Skip over group leaders and only install siblings on this first
	 * pass, siblings will not get enabled without a leader, however a
	 * leader will enable its siblings, even if those are still on the old
	 * context.
	 */
	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
		if (event->group_leader == event)
			continue;

		list_del(&event->migrate_entry);
		if (event->state >= PERF_EVENT_STATE_OFF)
			event->state = PERF_EVENT_STATE_INACTIVE;
		account_event_cpu(event, dst_cpu);
		perf_install_in_context(dst_ctx, event, dst_cpu);
		get_ctx(dst_ctx);
	}

	/*
	 * Once all the siblings are setup properly, install the group leaders
	 * to make it go.
	 */
10473 10474
	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
		list_del(&event->migrate_entry);
10475 10476
		if (event->state >= PERF_EVENT_STATE_OFF)
			event->state = PERF_EVENT_STATE_INACTIVE;
10477
		account_event_cpu(event, dst_cpu);
10478 10479 10480 10481
		perf_install_in_context(dst_ctx, event, dst_cpu);
		get_ctx(dst_ctx);
	}
	mutex_unlock(&dst_ctx->mutex);
P
Peter Zijlstra 已提交
10482
	mutex_unlock(&src_ctx->mutex);
10483 10484 10485
}
EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);

10486
static void sync_child_event(struct perf_event *child_event,
10487
			       struct task_struct *child)
10488
{
10489
	struct perf_event *parent_event = child_event->parent;
10490
	u64 child_val;
10491

10492 10493
	if (child_event->attr.inherit_stat)
		perf_event_read_event(child_event, child);
10494

P
Peter Zijlstra 已提交
10495
	child_val = perf_event_count(child_event);
10496 10497 10498 10499

	/*
	 * Add back the child's count to the parent's count:
	 */
10500
	atomic64_add(child_val, &parent_event->child_count);
10501 10502 10503 10504
	atomic64_add(child_event->total_time_enabled,
		     &parent_event->child_total_time_enabled);
	atomic64_add(child_event->total_time_running,
		     &parent_event->child_total_time_running);
10505 10506
}

10507
static void
10508 10509 10510
perf_event_exit_event(struct perf_event *child_event,
		      struct perf_event_context *child_ctx,
		      struct task_struct *child)
10511
{
10512 10513
	struct perf_event *parent_event = child_event->parent;

10514 10515 10516 10517 10518 10519 10520 10521 10522 10523 10524 10525
	/*
	 * Do not destroy the 'original' grouping; because of the context
	 * switch optimization the original events could've ended up in a
	 * random child task.
	 *
	 * If we were to destroy the original group, all group related
	 * operations would cease to function properly after this random
	 * child dies.
	 *
	 * Do destroy all inherited groups, we don't care about those
	 * and being thorough is better.
	 */
10526 10527 10528
	raw_spin_lock_irq(&child_ctx->lock);
	WARN_ON_ONCE(child_ctx->is_active);

10529
	if (parent_event)
10530 10531
		perf_group_detach(child_event);
	list_del_event(child_event, child_ctx);
P
Peter Zijlstra 已提交
10532
	child_event->state = PERF_EVENT_STATE_EXIT; /* is_event_hup() */
10533
	raw_spin_unlock_irq(&child_ctx->lock);
10534

10535
	/*
10536
	 * Parent events are governed by their filedesc, retain them.
10537
	 */
10538
	if (!parent_event) {
10539
		perf_event_wakeup(child_event);
10540
		return;
10541
	}
10542 10543 10544 10545 10546 10547 10548 10549 10550 10551 10552 10553 10554 10555 10556 10557 10558 10559 10560 10561
	/*
	 * Child events can be cleaned up.
	 */

	sync_child_event(child_event, child);

	/*
	 * Remove this event from the parent's list
	 */
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_del_init(&child_event->child_list);
	mutex_unlock(&parent_event->child_mutex);

	/*
	 * Kick perf_poll() for is_event_hup().
	 */
	perf_event_wakeup(parent_event);
	free_event(child_event);
	put_event(parent_event);
10562 10563
}

P
Peter Zijlstra 已提交
10564
static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
10565
{
10566
	struct perf_event_context *child_ctx, *clone_ctx = NULL;
10567 10568 10569
	struct perf_event *child_event, *next;

	WARN_ON_ONCE(child != current);
10570

10571
	child_ctx = perf_pin_task_context(child, ctxn);
10572
	if (!child_ctx)
10573 10574
		return;

10575
	/*
10576 10577 10578 10579 10580 10581 10582 10583
	 * In order to reduce the amount of tricky in ctx tear-down, we hold
	 * ctx::mutex over the entire thing. This serializes against almost
	 * everything that wants to access the ctx.
	 *
	 * The exception is sys_perf_event_open() /
	 * perf_event_create_kernel_count() which does find_get_context()
	 * without ctx::mutex (it cannot because of the move_group double mutex
	 * lock thing). See the comments in perf_install_in_context().
10584
	 */
10585
	mutex_lock(&child_ctx->mutex);
10586 10587

	/*
10588 10589 10590
	 * In a single ctx::lock section, de-schedule the events and detach the
	 * context from the task such that we cannot ever get it scheduled back
	 * in.
10591
	 */
10592
	raw_spin_lock_irq(&child_ctx->lock);
10593
	task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
10594

10595
	/*
10596 10597
	 * Now that the context is inactive, destroy the task <-> ctx relation
	 * and mark the context dead.
10598
	 */
10599 10600 10601 10602
	RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
	put_ctx(child_ctx); /* cannot be last */
	WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
	put_task_struct(current); /* cannot be last */
10603

10604
	clone_ctx = unclone_ctx(child_ctx);
10605
	raw_spin_unlock_irq(&child_ctx->lock);
P
Peter Zijlstra 已提交
10606

10607 10608
	if (clone_ctx)
		put_ctx(clone_ctx);
10609

P
Peter Zijlstra 已提交
10610
	/*
10611 10612 10613
	 * Report the task dead after unscheduling the events so that we
	 * won't get any samples after PERF_RECORD_EXIT. We can however still
	 * get a few PERF_RECORD_READ events.
P
Peter Zijlstra 已提交
10614
	 */
10615
	perf_event_task(child, child_ctx, 0);
10616

10617
	list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
10618
		perf_event_exit_event(child_event, child_ctx, child);
10619

10620 10621 10622
	mutex_unlock(&child_ctx->mutex);

	put_ctx(child_ctx);
10623 10624
}

P
Peter Zijlstra 已提交
10625 10626
/*
 * When a child task exits, feed back event values to parent events.
10627 10628 10629
 *
 * Can be called with cred_guard_mutex held when called from
 * install_exec_creds().
P
Peter Zijlstra 已提交
10630 10631 10632
 */
void perf_event_exit_task(struct task_struct *child)
{
P
Peter Zijlstra 已提交
10633
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
10634 10635
	int ctxn;

P
Peter Zijlstra 已提交
10636 10637 10638 10639 10640 10641 10642 10643 10644 10645
	mutex_lock(&child->perf_event_mutex);
	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
				 owner_entry) {
		list_del_init(&event->owner_entry);

		/*
		 * Ensure the list deletion is visible before we clear
		 * the owner, closes a race against perf_release() where
		 * we need to serialize on the owner->perf_event_mutex.
		 */
10646
		smp_store_release(&event->owner, NULL);
P
Peter Zijlstra 已提交
10647 10648 10649
	}
	mutex_unlock(&child->perf_event_mutex);

P
Peter Zijlstra 已提交
10650 10651
	for_each_task_context_nr(ctxn)
		perf_event_exit_task_context(child, ctxn);
J
Jiri Olsa 已提交
10652 10653 10654 10655 10656 10657 10658 10659

	/*
	 * The perf_event_exit_task_context calls perf_event_task
	 * with child's task_ctx, which generates EXIT events for
	 * child contexts and sets child->perf_event_ctxp[] to NULL.
	 * At this point we need to send EXIT events to cpu contexts.
	 */
	perf_event_task(child, NULL, 0);
P
Peter Zijlstra 已提交
10660 10661
}

10662 10663 10664 10665 10666 10667 10668 10669 10670 10671 10672 10673
static void perf_free_event(struct perf_event *event,
			    struct perf_event_context *ctx)
{
	struct perf_event *parent = event->parent;

	if (WARN_ON_ONCE(!parent))
		return;

	mutex_lock(&parent->child_mutex);
	list_del_init(&event->child_list);
	mutex_unlock(&parent->child_mutex);

10674
	put_event(parent);
10675

P
Peter Zijlstra 已提交
10676
	raw_spin_lock_irq(&ctx->lock);
10677
	perf_group_detach(event);
10678
	list_del_event(event, ctx);
P
Peter Zijlstra 已提交
10679
	raw_spin_unlock_irq(&ctx->lock);
10680 10681 10682
	free_event(event);
}

10683
/*
P
Peter Zijlstra 已提交
10684
 * Free an unexposed, unused context as created by inheritance by
P
Peter Zijlstra 已提交
10685
 * perf_event_init_task below, used by fork() in case of fail.
P
Peter Zijlstra 已提交
10686 10687 10688
 *
 * Not all locks are strictly required, but take them anyway to be nice and
 * help out with the lockdep assertions.
10689
 */
10690
void perf_event_free_task(struct task_struct *task)
10691
{
P
Peter Zijlstra 已提交
10692
	struct perf_event_context *ctx;
10693
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
10694
	int ctxn;
10695

P
Peter Zijlstra 已提交
10696 10697 10698 10699
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;
10700

P
Peter Zijlstra 已提交
10701
		mutex_lock(&ctx->mutex);
10702 10703 10704 10705 10706 10707 10708 10709 10710 10711 10712
		raw_spin_lock_irq(&ctx->lock);
		/*
		 * Destroy the task <-> ctx relation and mark the context dead.
		 *
		 * This is important because even though the task hasn't been
		 * exposed yet the context has been (through child_list).
		 */
		RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
		WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
		put_task_struct(task); /* cannot be last */
		raw_spin_unlock_irq(&ctx->lock);
10713

10714
		list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
P
Peter Zijlstra 已提交
10715
			perf_free_event(event, ctx);
10716

P
Peter Zijlstra 已提交
10717 10718 10719
		mutex_unlock(&ctx->mutex);
		put_ctx(ctx);
	}
10720 10721
}

10722 10723 10724 10725 10726 10727 10728 10729
void perf_event_delayed_put(struct task_struct *task)
{
	int ctxn;

	for_each_task_context_nr(ctxn)
		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
}

10730
struct file *perf_event_get(unsigned int fd)
10731
{
10732
	struct file *file;
10733

10734 10735 10736
	file = fget_raw(fd);
	if (!file)
		return ERR_PTR(-EBADF);
10737

10738 10739 10740 10741
	if (file->f_op != &perf_fops) {
		fput(file);
		return ERR_PTR(-EBADF);
	}
10742

10743
	return file;
10744 10745 10746 10747 10748 10749 10750 10751 10752 10753
}

const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
{
	if (!event)
		return ERR_PTR(-EINVAL);

	return &event->attr;
}

P
Peter Zijlstra 已提交
10754
/*
10755 10756 10757 10758 10759 10760
 * Inherit a event from parent task to child task.
 *
 * Returns:
 *  - valid pointer on success
 *  - NULL for orphaned events
 *  - IS_ERR() on error
P
Peter Zijlstra 已提交
10761 10762 10763 10764 10765 10766 10767 10768 10769
 */
static struct perf_event *
inherit_event(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event *group_leader,
	      struct perf_event_context *child_ctx)
{
10770
	enum perf_event_active_state parent_state = parent_event->state;
P
Peter Zijlstra 已提交
10771
	struct perf_event *child_event;
10772
	unsigned long flags;
P
Peter Zijlstra 已提交
10773 10774 10775 10776 10777 10778 10779 10780 10781 10782 10783 10784

	/*
	 * Instead of creating recursive hierarchies of events,
	 * we link inherited events back to the original parent,
	 * which has a filp for sure, which we use as the reference
	 * count:
	 */
	if (parent_event->parent)
		parent_event = parent_event->parent;

	child_event = perf_event_alloc(&parent_event->attr,
					   parent_event->cpu,
10785
					   child,
P
Peter Zijlstra 已提交
10786
					   group_leader, parent_event,
10787
					   NULL, NULL, -1);
P
Peter Zijlstra 已提交
10788 10789
	if (IS_ERR(child_event))
		return child_event;
10790

10791 10792 10793 10794 10795 10796 10797
	/*
	 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
	 * must be under the same lock in order to serialize against
	 * perf_event_release_kernel(), such that either we must observe
	 * is_orphaned_event() or they will observe us on the child_list.
	 */
	mutex_lock(&parent_event->child_mutex);
10798 10799
	if (is_orphaned_event(parent_event) ||
	    !atomic_long_inc_not_zero(&parent_event->refcount)) {
10800
		mutex_unlock(&parent_event->child_mutex);
10801 10802 10803 10804
		free_event(child_event);
		return NULL;
	}

P
Peter Zijlstra 已提交
10805 10806 10807 10808 10809 10810 10811
	get_ctx(child_ctx);

	/*
	 * Make the child state follow the state of the parent event,
	 * not its attr.disabled bit.  We hold the parent's mutex,
	 * so we won't race with perf_event_{en, dis}able_family.
	 */
10812
	if (parent_state >= PERF_EVENT_STATE_INACTIVE)
P
Peter Zijlstra 已提交
10813 10814 10815 10816 10817 10818 10819 10820 10821 10822 10823 10824 10825 10826 10827 10828
		child_event->state = PERF_EVENT_STATE_INACTIVE;
	else
		child_event->state = PERF_EVENT_STATE_OFF;

	if (parent_event->attr.freq) {
		u64 sample_period = parent_event->hw.sample_period;
		struct hw_perf_event *hwc = &child_event->hw;

		hwc->sample_period = sample_period;
		hwc->last_period   = sample_period;

		local64_set(&hwc->period_left, sample_period);
	}

	child_event->ctx = child_ctx;
	child_event->overflow_handler = parent_event->overflow_handler;
10829 10830
	child_event->overflow_handler_context
		= parent_event->overflow_handler_context;
P
Peter Zijlstra 已提交
10831

10832 10833 10834 10835
	/*
	 * Precalculate sample_data sizes
	 */
	perf_event__header_size(child_event);
10836
	perf_event__id_header_size(child_event);
10837

P
Peter Zijlstra 已提交
10838 10839 10840
	/*
	 * Link it up in the child's context:
	 */
10841
	raw_spin_lock_irqsave(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
10842
	add_event_to_ctx(child_event, child_ctx);
10843
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
10844 10845 10846 10847 10848 10849 10850 10851 10852 10853

	/*
	 * Link this into the parent event's child list
	 */
	list_add_tail(&child_event->child_list, &parent_event->child_list);
	mutex_unlock(&parent_event->child_mutex);

	return child_event;
}

10854 10855 10856 10857 10858 10859 10860 10861 10862 10863
/*
 * Inherits an event group.
 *
 * This will quietly suppress orphaned events; !inherit_event() is not an error.
 * This matches with perf_event_release_kernel() removing all child events.
 *
 * Returns:
 *  - 0 on success
 *  - <0 on error
 */
P
Peter Zijlstra 已提交
10864 10865 10866 10867 10868 10869 10870 10871 10872 10873 10874 10875 10876 10877
static int inherit_group(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event_context *child_ctx)
{
	struct perf_event *leader;
	struct perf_event *sub;
	struct perf_event *child_ctr;

	leader = inherit_event(parent_event, parent, parent_ctx,
				 child, NULL, child_ctx);
	if (IS_ERR(leader))
		return PTR_ERR(leader);
10878 10879 10880 10881 10882
	/*
	 * @leader can be NULL here because of is_orphaned_event(). In this
	 * case inherit_event() will create individual events, similar to what
	 * perf_group_detach() would do anyway.
	 */
P
Peter Zijlstra 已提交
10883 10884 10885 10886 10887 10888 10889
	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
		child_ctr = inherit_event(sub, parent, parent_ctx,
					    child, leader, child_ctx);
		if (IS_ERR(child_ctr))
			return PTR_ERR(child_ctr);
	}
	return 0;
10890 10891
}

10892 10893 10894 10895 10896 10897 10898 10899 10900 10901 10902
/*
 * Creates the child task context and tries to inherit the event-group.
 *
 * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
 * inherited_all set when we 'fail' to inherit an orphaned event; this is
 * consistent with perf_event_release_kernel() removing all child events.
 *
 * Returns:
 *  - 0 on success
 *  - <0 on error
 */
10903 10904 10905
static int
inherit_task_group(struct perf_event *event, struct task_struct *parent,
		   struct perf_event_context *parent_ctx,
P
Peter Zijlstra 已提交
10906
		   struct task_struct *child, int ctxn,
10907 10908 10909
		   int *inherited_all)
{
	int ret;
P
Peter Zijlstra 已提交
10910
	struct perf_event_context *child_ctx;
10911 10912 10913 10914

	if (!event->attr.inherit) {
		*inherited_all = 0;
		return 0;
10915 10916
	}

10917
	child_ctx = child->perf_event_ctxp[ctxn];
10918 10919 10920 10921 10922 10923 10924
	if (!child_ctx) {
		/*
		 * This is executed from the parent task context, so
		 * inherit events that have been marked for cloning.
		 * First allocate and initialize a context for the
		 * child.
		 */
10925
		child_ctx = alloc_perf_context(parent_ctx->pmu, child);
10926 10927
		if (!child_ctx)
			return -ENOMEM;
10928

P
Peter Zijlstra 已提交
10929
		child->perf_event_ctxp[ctxn] = child_ctx;
10930 10931 10932 10933 10934 10935 10936 10937 10938
	}

	ret = inherit_group(event, parent, parent_ctx,
			    child, child_ctx);

	if (ret)
		*inherited_all = 0;

	return ret;
10939 10940
}

10941
/*
10942
 * Initialize the perf_event context in task_struct
10943
 */
10944
static int perf_event_init_context(struct task_struct *child, int ctxn)
10945
{
10946
	struct perf_event_context *child_ctx, *parent_ctx;
10947 10948
	struct perf_event_context *cloned_ctx;
	struct perf_event *event;
10949
	struct task_struct *parent = current;
10950
	int inherited_all = 1;
10951
	unsigned long flags;
10952
	int ret = 0;
10953

P
Peter Zijlstra 已提交
10954
	if (likely(!parent->perf_event_ctxp[ctxn]))
10955 10956
		return 0;

10957
	/*
10958 10959
	 * If the parent's context is a clone, pin it so it won't get
	 * swapped under us.
10960
	 */
P
Peter Zijlstra 已提交
10961
	parent_ctx = perf_pin_task_context(parent, ctxn);
10962 10963
	if (!parent_ctx)
		return 0;
10964

10965 10966 10967 10968 10969 10970 10971
	/*
	 * No need to check if parent_ctx != NULL here; since we saw
	 * it non-NULL earlier, the only reason for it to become NULL
	 * is if we exit, and since we're currently in the middle of
	 * a fork we can't be exiting at the same time.
	 */

10972 10973 10974 10975
	/*
	 * Lock the parent list. No need to lock the child - not PID
	 * hashed yet and not running, so nobody can access it.
	 */
10976
	mutex_lock(&parent_ctx->mutex);
10977 10978 10979 10980 10981

	/*
	 * We dont have to disable NMIs - we are only looking at
	 * the list, not manipulating it:
	 */
10982
	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
P
Peter Zijlstra 已提交
10983 10984
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
10985
		if (ret)
10986
			goto out_unlock;
10987
	}
10988

10989 10990 10991 10992 10993 10994 10995 10996 10997
	/*
	 * We can't hold ctx->lock when iterating the ->flexible_group list due
	 * to allocations, but we need to prevent rotation because
	 * rotate_ctx() will change the list from interrupt context.
	 */
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 1;
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);

10998
	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
P
Peter Zijlstra 已提交
10999 11000
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
11001
		if (ret)
11002
			goto out_unlock;
11003 11004
	}

11005 11006 11007
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 0;

P
Peter Zijlstra 已提交
11008
	child_ctx = child->perf_event_ctxp[ctxn];
11009

11010
	if (child_ctx && inherited_all) {
11011 11012 11013
		/*
		 * Mark the child context as a clone of the parent
		 * context, or of whatever the parent is a clone of.
P
Peter Zijlstra 已提交
11014 11015 11016
		 *
		 * Note that if the parent is a clone, the holding of
		 * parent_ctx->lock avoids it from being uncloned.
11017
		 */
P
Peter Zijlstra 已提交
11018
		cloned_ctx = parent_ctx->parent_ctx;
11019 11020
		if (cloned_ctx) {
			child_ctx->parent_ctx = cloned_ctx;
11021
			child_ctx->parent_gen = parent_ctx->parent_gen;
11022 11023 11024 11025 11026
		} else {
			child_ctx->parent_ctx = parent_ctx;
			child_ctx->parent_gen = parent_ctx->generation;
		}
		get_ctx(child_ctx->parent_ctx);
11027 11028
	}

P
Peter Zijlstra 已提交
11029
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
11030
out_unlock:
11031
	mutex_unlock(&parent_ctx->mutex);
11032

11033
	perf_unpin_context(parent_ctx);
11034
	put_ctx(parent_ctx);
11035

11036
	return ret;
11037 11038
}

P
Peter Zijlstra 已提交
11039 11040 11041 11042 11043 11044 11045
/*
 * Initialize the perf_event context in task_struct
 */
int perf_event_init_task(struct task_struct *child)
{
	int ctxn, ret;

11046 11047 11048 11049
	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
	mutex_init(&child->perf_event_mutex);
	INIT_LIST_HEAD(&child->perf_event_list);

P
Peter Zijlstra 已提交
11050 11051
	for_each_task_context_nr(ctxn) {
		ret = perf_event_init_context(child, ctxn);
P
Peter Zijlstra 已提交
11052 11053
		if (ret) {
			perf_event_free_task(child);
P
Peter Zijlstra 已提交
11054
			return ret;
P
Peter Zijlstra 已提交
11055
		}
P
Peter Zijlstra 已提交
11056 11057 11058 11059 11060
	}

	return 0;
}

11061 11062
static void __init perf_event_init_all_cpus(void)
{
11063
	struct swevent_htable *swhash;
11064 11065
	int cpu;

11066 11067
	zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);

11068
	for_each_possible_cpu(cpu) {
11069 11070
		swhash = &per_cpu(swevent_htable, cpu);
		mutex_init(&swhash->hlist_mutex);
11071
		INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
11072 11073 11074

		INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
		raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
11075

11076 11077 11078
#ifdef CONFIG_CGROUP_PERF
		INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
#endif
11079
		INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
11080 11081 11082
	}
}

11083
void perf_swevent_init_cpu(unsigned int cpu)
T
Thomas Gleixner 已提交
11084
{
P
Peter Zijlstra 已提交
11085
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
T
Thomas Gleixner 已提交
11086

11087
	mutex_lock(&swhash->hlist_mutex);
11088
	if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
11089 11090
		struct swevent_hlist *hlist;

11091 11092 11093
		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
		WARN_ON(!hlist);
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
11094
	}
11095
	mutex_unlock(&swhash->hlist_mutex);
T
Thomas Gleixner 已提交
11096 11097
}

11098
#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
P
Peter Zijlstra 已提交
11099
static void __perf_event_exit_context(void *__info)
T
Thomas Gleixner 已提交
11100
{
P
Peter Zijlstra 已提交
11101
	struct perf_event_context *ctx = __info;
11102 11103
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
	struct perf_event *event;
T
Thomas Gleixner 已提交
11104

11105 11106
	raw_spin_lock(&ctx->lock);
	list_for_each_entry(event, &ctx->event_list, event_entry)
11107
		__perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
11108
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
11109
}
P
Peter Zijlstra 已提交
11110 11111 11112

static void perf_event_exit_cpu_context(int cpu)
{
11113
	struct perf_cpu_context *cpuctx;
P
Peter Zijlstra 已提交
11114 11115 11116
	struct perf_event_context *ctx;
	struct pmu *pmu;

11117 11118 11119 11120
	mutex_lock(&pmus_lock);
	list_for_each_entry(pmu, &pmus, entry) {
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
		ctx = &cpuctx->ctx;
P
Peter Zijlstra 已提交
11121 11122 11123

		mutex_lock(&ctx->mutex);
		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
11124
		cpuctx->online = 0;
P
Peter Zijlstra 已提交
11125 11126
		mutex_unlock(&ctx->mutex);
	}
11127 11128
	cpumask_clear_cpu(cpu, perf_online_mask);
	mutex_unlock(&pmus_lock);
P
Peter Zijlstra 已提交
11129
}
11130 11131 11132 11133 11134
#else

static void perf_event_exit_cpu_context(int cpu) { }

#endif
P
Peter Zijlstra 已提交
11135

11136 11137 11138 11139 11140 11141 11142 11143 11144 11145 11146 11147 11148 11149 11150 11151 11152 11153 11154 11155 11156 11157 11158
int perf_event_init_cpu(unsigned int cpu)
{
	struct perf_cpu_context *cpuctx;
	struct perf_event_context *ctx;
	struct pmu *pmu;

	perf_swevent_init_cpu(cpu);

	mutex_lock(&pmus_lock);
	cpumask_set_cpu(cpu, perf_online_mask);
	list_for_each_entry(pmu, &pmus, entry) {
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
		ctx = &cpuctx->ctx;

		mutex_lock(&ctx->mutex);
		cpuctx->online = 1;
		mutex_unlock(&ctx->mutex);
	}
	mutex_unlock(&pmus_lock);

	return 0;
}

11159
int perf_event_exit_cpu(unsigned int cpu)
T
Thomas Gleixner 已提交
11160
{
P
Peter Zijlstra 已提交
11161
	perf_event_exit_cpu_context(cpu);
11162
	return 0;
T
Thomas Gleixner 已提交
11163 11164
}

P
Peter Zijlstra 已提交
11165 11166 11167 11168 11169 11170 11171 11172 11173 11174 11175 11176 11177 11178 11179 11180 11181 11182 11183 11184
static int
perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
{
	int cpu;

	for_each_online_cpu(cpu)
		perf_event_exit_cpu(cpu);

	return NOTIFY_OK;
}

/*
 * Run the perf reboot notifier at the very last possible moment so that
 * the generic watchdog code runs as long as possible.
 */
static struct notifier_block perf_reboot_notifier = {
	.notifier_call = perf_reboot,
	.priority = INT_MIN,
};

11185
void __init perf_event_init(void)
T
Thomas Gleixner 已提交
11186
{
11187 11188
	int ret;

P
Peter Zijlstra 已提交
11189 11190
	idr_init(&pmu_idr);

11191
	perf_event_init_all_cpus();
11192
	init_srcu_struct(&pmus_srcu);
P
Peter Zijlstra 已提交
11193 11194 11195
	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
	perf_pmu_register(&perf_cpu_clock, NULL, -1);
	perf_pmu_register(&perf_task_clock, NULL, -1);
11196
	perf_tp_register();
11197
	perf_event_init_cpu(smp_processor_id());
P
Peter Zijlstra 已提交
11198
	register_reboot_notifier(&perf_reboot_notifier);
11199 11200 11201

	ret = init_hw_breakpoint();
	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
11202

11203 11204 11205 11206 11207 11208
	/*
	 * Build time assertion that we keep the data_head at the intended
	 * location.  IOW, validation we got the __reserved[] size right.
	 */
	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
		     != 1024);
T
Thomas Gleixner 已提交
11209
}
P
Peter Zijlstra 已提交
11210

11211 11212 11213 11214 11215 11216 11217 11218 11219 11220 11221
ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
			      char *page)
{
	struct perf_pmu_events_attr *pmu_attr =
		container_of(attr, struct perf_pmu_events_attr, attr);

	if (pmu_attr->event_str)
		return sprintf(page, "%s\n", pmu_attr->event_str);

	return 0;
}
11222
EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
11223

P
Peter Zijlstra 已提交
11224 11225 11226 11227 11228 11229 11230 11231 11232 11233 11234 11235 11236 11237 11238 11239 11240 11241 11242 11243 11244 11245 11246 11247 11248 11249 11250
static int __init perf_event_sysfs_init(void)
{
	struct pmu *pmu;
	int ret;

	mutex_lock(&pmus_lock);

	ret = bus_register(&pmu_bus);
	if (ret)
		goto unlock;

	list_for_each_entry(pmu, &pmus, entry) {
		if (!pmu->name || pmu->type < 0)
			continue;

		ret = pmu_dev_alloc(pmu);
		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
	}
	pmu_bus_running = 1;
	ret = 0;

unlock:
	mutex_unlock(&pmus_lock);

	return ret;
}
device_initcall(perf_event_sysfs_init);
S
Stephane Eranian 已提交
11251 11252

#ifdef CONFIG_CGROUP_PERF
11253 11254
static struct cgroup_subsys_state *
perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
S
Stephane Eranian 已提交
11255 11256 11257
{
	struct perf_cgroup *jc;

11258
	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
S
Stephane Eranian 已提交
11259 11260 11261 11262 11263 11264 11265 11266 11267 11268 11269 11270
	if (!jc)
		return ERR_PTR(-ENOMEM);

	jc->info = alloc_percpu(struct perf_cgroup_info);
	if (!jc->info) {
		kfree(jc);
		return ERR_PTR(-ENOMEM);
	}

	return &jc->css;
}

11271
static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
S
Stephane Eranian 已提交
11272
{
11273 11274
	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);

S
Stephane Eranian 已提交
11275 11276 11277 11278 11279 11280 11281
	free_percpu(jc->info);
	kfree(jc);
}

static int __perf_cgroup_move(void *info)
{
	struct task_struct *task = info;
11282
	rcu_read_lock();
S
Stephane Eranian 已提交
11283
	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
11284
	rcu_read_unlock();
S
Stephane Eranian 已提交
11285 11286 11287
	return 0;
}

11288
static void perf_cgroup_attach(struct cgroup_taskset *tset)
S
Stephane Eranian 已提交
11289
{
11290
	struct task_struct *task;
11291
	struct cgroup_subsys_state *css;
11292

11293
	cgroup_taskset_for_each(task, css, tset)
11294
		task_function_call(task, __perf_cgroup_move, task);
S
Stephane Eranian 已提交
11295 11296
}

11297
struct cgroup_subsys perf_event_cgrp_subsys = {
11298 11299
	.css_alloc	= perf_cgroup_css_alloc,
	.css_free	= perf_cgroup_css_free,
11300
	.attach		= perf_cgroup_attach,
11301 11302 11303 11304 11305 11306
	/*
	 * Implicitly enable on dfl hierarchy so that perf events can
	 * always be filtered by cgroup2 path as long as perf_event
	 * controller is not mounted on a legacy hierarchy.
	 */
	.implicit_on_dfl = true,
11307
	.threaded	= true,
S
Stephane Eranian 已提交
11308 11309
};
#endif /* CONFIG_CGROUP_PERF */