core.c 264.9 KB
Newer Older
T
Thomas Gleixner 已提交
1
/*
I
Ingo Molnar 已提交
2
 * Performance events core code:
T
Thomas Gleixner 已提交
3
 *
4
 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5
 *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6
 *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
A
Al Viro 已提交
7
 *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8
 *
I
Ingo Molnar 已提交
9
 * For licensing details see kernel-base/COPYING
T
Thomas Gleixner 已提交
10 11 12
 */

#include <linux/fs.h>
13
#include <linux/mm.h>
T
Thomas Gleixner 已提交
14 15
#include <linux/cpu.h>
#include <linux/smp.h>
P
Peter Zijlstra 已提交
16
#include <linux/idr.h>
17
#include <linux/file.h>
T
Thomas Gleixner 已提交
18
#include <linux/poll.h>
19
#include <linux/slab.h>
20
#include <linux/hash.h>
21
#include <linux/tick.h>
T
Thomas Gleixner 已提交
22
#include <linux/sysfs.h>
23
#include <linux/dcache.h>
T
Thomas Gleixner 已提交
24
#include <linux/percpu.h>
25
#include <linux/ptrace.h>
P
Peter Zijlstra 已提交
26
#include <linux/reboot.h>
27
#include <linux/vmstat.h>
P
Peter Zijlstra 已提交
28
#include <linux/device.h>
29
#include <linux/export.h>
30
#include <linux/vmalloc.h>
31 32
#include <linux/hardirq.h>
#include <linux/rculist.h>
T
Thomas Gleixner 已提交
33 34 35
#include <linux/uaccess.h>
#include <linux/syscalls.h>
#include <linux/anon_inodes.h>
I
Ingo Molnar 已提交
36
#include <linux/kernel_stat.h>
37
#include <linux/cgroup.h>
38
#include <linux/perf_event.h>
39
#include <linux/trace_events.h>
40
#include <linux/hw_breakpoint.h>
41
#include <linux/mm_types.h>
42
#include <linux/module.h>
43
#include <linux/mman.h>
P
Pawel Moll 已提交
44
#include <linux/compat.h>
45 46
#include <linux/bpf.h>
#include <linux/filter.h>
47 48
#include <linux/namei.h>
#include <linux/parser.h>
49
#include <linux/sched/clock.h>
50
#include <linux/sched/mm.h>
51 52
#include <linux/proc_ns.h>
#include <linux/mount.h>
T
Thomas Gleixner 已提交
53

54 55
#include "internal.h"

56 57
#include <asm/irq_regs.h>

58 59
typedef int (*remote_function_f)(void *);

60
struct remote_function_call {
61
	struct task_struct	*p;
62
	remote_function_f	func;
63 64
	void			*info;
	int			ret;
65 66 67 68 69 70 71 72
};

static void remote_function(void *data)
{
	struct remote_function_call *tfc = data;
	struct task_struct *p = tfc->p;

	if (p) {
73 74 75 76 77 78 79 80 81 82 83
		/* -EAGAIN */
		if (task_cpu(p) != smp_processor_id())
			return;

		/*
		 * Now that we're on right CPU with IRQs disabled, we can test
		 * if we hit the right task without races.
		 */

		tfc->ret = -ESRCH; /* No such (running) process */
		if (p != current)
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
			return;
	}

	tfc->ret = tfc->func(tfc->info);
}

/**
 * task_function_call - call a function on the cpu on which a task runs
 * @p:		the task to evaluate
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func when the task is currently running. This might
 * be on the current CPU, which just calls the function directly
 *
 * returns: @func return value, or
 *	    -ESRCH  - when the process isn't running
 *	    -EAGAIN - when the process moved away
 */
static int
104
task_function_call(struct task_struct *p, remote_function_f func, void *info)
105 106
{
	struct remote_function_call data = {
107 108 109
		.p	= p,
		.func	= func,
		.info	= info,
110
		.ret	= -EAGAIN,
111
	};
112
	int ret;
113

114 115 116 117 118
	do {
		ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
		if (!ret)
			ret = data.ret;
	} while (ret == -EAGAIN);
119

120
	return ret;
121 122 123 124 125 126 127 128 129 130 131
}

/**
 * cpu_function_call - call a function on the cpu
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func on the remote cpu.
 *
 * returns: @func return value or -ENXIO when the cpu is offline
 */
132
static int cpu_function_call(int cpu, remote_function_f func, void *info)
133 134
{
	struct remote_function_call data = {
135 136 137 138
		.p	= NULL,
		.func	= func,
		.info	= info,
		.ret	= -ENXIO, /* No such CPU */
139 140 141 142 143 144 145
	};

	smp_call_function_single(cpu, remote_function, &data, 1);

	return data.ret;
}

146 147 148 149 150 151 152 153
static inline struct perf_cpu_context *
__get_cpu_context(struct perf_event_context *ctx)
{
	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
}

static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
			  struct perf_event_context *ctx)
154
{
155 156 157 158 159 160 161 162 163 164 165 166 167
	raw_spin_lock(&cpuctx->ctx.lock);
	if (ctx)
		raw_spin_lock(&ctx->lock);
}

static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
			    struct perf_event_context *ctx)
{
	if (ctx)
		raw_spin_unlock(&ctx->lock);
	raw_spin_unlock(&cpuctx->ctx.lock);
}

168 169 170 171
#define TASK_TOMBSTONE ((void *)-1L)

static bool is_kernel_event(struct perf_event *event)
{
172
	return READ_ONCE(event->owner) == TASK_TOMBSTONE;
173 174
}

175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
/*
 * On task ctx scheduling...
 *
 * When !ctx->nr_events a task context will not be scheduled. This means
 * we can disable the scheduler hooks (for performance) without leaving
 * pending task ctx state.
 *
 * This however results in two special cases:
 *
 *  - removing the last event from a task ctx; this is relatively straight
 *    forward and is done in __perf_remove_from_context.
 *
 *  - adding the first event to a task ctx; this is tricky because we cannot
 *    rely on ctx->is_active and therefore cannot use event_function_call().
 *    See perf_install_in_context().
 *
 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
 */

194 195 196 197 198 199 200 201 202 203 204 205 206
typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
			struct perf_event_context *, void *);

struct event_function_struct {
	struct perf_event *event;
	event_f func;
	void *data;
};

static int event_function(void *info)
{
	struct event_function_struct *efs = info;
	struct perf_event *event = efs->event;
207
	struct perf_event_context *ctx = event->ctx;
208 209
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
	struct perf_event_context *task_ctx = cpuctx->task_ctx;
210
	int ret = 0;
211

212
	lockdep_assert_irqs_disabled();
213

214
	perf_ctx_lock(cpuctx, task_ctx);
215 216 217 218 219
	/*
	 * Since we do the IPI call without holding ctx->lock things can have
	 * changed, double check we hit the task we set out to hit.
	 */
	if (ctx->task) {
220
		if (ctx->task != current) {
221
			ret = -ESRCH;
222 223
			goto unlock;
		}
224 225 226 227 228 229 230 231 232 233 234 235 236

		/*
		 * We only use event_function_call() on established contexts,
		 * and event_function() is only ever called when active (or
		 * rather, we'll have bailed in task_function_call() or the
		 * above ctx->task != current test), therefore we must have
		 * ctx->is_active here.
		 */
		WARN_ON_ONCE(!ctx->is_active);
		/*
		 * And since we have ctx->is_active, cpuctx->task_ctx must
		 * match.
		 */
237 238 239
		WARN_ON_ONCE(task_ctx != ctx);
	} else {
		WARN_ON_ONCE(&cpuctx->ctx != ctx);
240
	}
241

242
	efs->func(event, cpuctx, ctx, efs->data);
243
unlock:
244 245
	perf_ctx_unlock(cpuctx, task_ctx);

246
	return ret;
247 248 249
}

static void event_function_call(struct perf_event *event, event_f func, void *data)
250 251
{
	struct perf_event_context *ctx = event->ctx;
252
	struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
253 254 255 256 257
	struct event_function_struct efs = {
		.event = event,
		.func = func,
		.data = data,
	};
258

P
Peter Zijlstra 已提交
259 260 261 262 263 264 265 266
	if (!event->parent) {
		/*
		 * If this is a !child event, we must hold ctx::mutex to
		 * stabilize the the event->ctx relation. See
		 * perf_event_ctx_lock().
		 */
		lockdep_assert_held(&ctx->mutex);
	}
267 268

	if (!task) {
269
		cpu_function_call(event->cpu, event_function, &efs);
270 271 272
		return;
	}

273 274 275
	if (task == TASK_TOMBSTONE)
		return;

276
again:
277
	if (!task_function_call(task, event_function, &efs))
278 279 280
		return;

	raw_spin_lock_irq(&ctx->lock);
281 282 283 284 285
	/*
	 * Reload the task pointer, it might have been changed by
	 * a concurrent perf_event_context_sched_out().
	 */
	task = ctx->task;
286 287 288
	if (task == TASK_TOMBSTONE) {
		raw_spin_unlock_irq(&ctx->lock);
		return;
289
	}
290 291 292 293 294
	if (ctx->is_active) {
		raw_spin_unlock_irq(&ctx->lock);
		goto again;
	}
	func(event, NULL, ctx, data);
295 296 297
	raw_spin_unlock_irq(&ctx->lock);
}

298 299 300 301 302 303 304 305 306 307 308
/*
 * Similar to event_function_call() + event_function(), but hard assumes IRQs
 * are already disabled and we're on the right CPU.
 */
static void event_function_local(struct perf_event *event, event_f func, void *data)
{
	struct perf_event_context *ctx = event->ctx;
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
	struct task_struct *task = READ_ONCE(ctx->task);
	struct perf_event_context *task_ctx = NULL;

309
	lockdep_assert_irqs_disabled();
310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345

	if (task) {
		if (task == TASK_TOMBSTONE)
			return;

		task_ctx = ctx;
	}

	perf_ctx_lock(cpuctx, task_ctx);

	task = ctx->task;
	if (task == TASK_TOMBSTONE)
		goto unlock;

	if (task) {
		/*
		 * We must be either inactive or active and the right task,
		 * otherwise we're screwed, since we cannot IPI to somewhere
		 * else.
		 */
		if (ctx->is_active) {
			if (WARN_ON_ONCE(task != current))
				goto unlock;

			if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
				goto unlock;
		}
	} else {
		WARN_ON_ONCE(&cpuctx->ctx != ctx);
	}

	func(event, cpuctx, ctx, data);
unlock:
	perf_ctx_unlock(cpuctx, task_ctx);
}

S
Stephane Eranian 已提交
346 347
#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
		       PERF_FLAG_FD_OUTPUT  |\
348 349
		       PERF_FLAG_PID_CGROUP |\
		       PERF_FLAG_FD_CLOEXEC)
S
Stephane Eranian 已提交
350

351 352 353 354 355 356 357
/*
 * branch priv levels that need permission checks
 */
#define PERF_SAMPLE_BRANCH_PERM_PLM \
	(PERF_SAMPLE_BRANCH_KERNEL |\
	 PERF_SAMPLE_BRANCH_HV)

358 359 360
enum event_type_t {
	EVENT_FLEXIBLE = 0x1,
	EVENT_PINNED = 0x2,
361
	EVENT_TIME = 0x4,
362 363
	/* see ctx_resched() for details */
	EVENT_CPU = 0x8,
364 365 366
	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
};

S
Stephane Eranian 已提交
367 368 369 370
/*
 * perf_sched_events : >0 events exist
 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
 */
371 372 373 374 375 376 377

static void perf_sched_delayed(struct work_struct *work);
DEFINE_STATIC_KEY_FALSE(perf_sched_events);
static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
static DEFINE_MUTEX(perf_sched_mutex);
static atomic_t perf_sched_count;

S
Stephane Eranian 已提交
378
static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
379
static DEFINE_PER_CPU(int, perf_sched_cb_usages);
380
static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
S
Stephane Eranian 已提交
381

382 383
static atomic_t nr_mmap_events __read_mostly;
static atomic_t nr_comm_events __read_mostly;
384
static atomic_t nr_namespaces_events __read_mostly;
385
static atomic_t nr_task_events __read_mostly;
386
static atomic_t nr_freq_events __read_mostly;
387
static atomic_t nr_switch_events __read_mostly;
388

P
Peter Zijlstra 已提交
389 390 391
static LIST_HEAD(pmus);
static DEFINE_MUTEX(pmus_lock);
static struct srcu_struct pmus_srcu;
392
static cpumask_var_t perf_online_mask;
P
Peter Zijlstra 已提交
393

394
/*
395
 * perf event paranoia level:
396 397
 *  -1 - not paranoid at all
 *   0 - disallow raw tracepoint access for unpriv
398
 *   1 - disallow cpu events for unpriv
399
 *   2 - disallow kernel profiling for unpriv
400
 */
401
int sysctl_perf_event_paranoid __read_mostly = 2;
402

403 404
/* Minimum for 512 kiB + 1 user control page */
int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
405 406

/*
407
 * max perf event sample rate
408
 */
409 410 411 412 413 414 415 416 417
#define DEFAULT_MAX_SAMPLE_RATE		100000
#define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
#define DEFAULT_CPU_TIME_MAX_PERCENT	25

int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;

static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;

P
Peter Zijlstra 已提交
418 419
static int perf_sample_allowed_ns __read_mostly =
	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
420

421
static void update_perf_cpu_limits(void)
422 423 424 425
{
	u64 tmp = perf_sample_period_ns;

	tmp *= sysctl_perf_cpu_time_max_percent;
426 427 428 429 430
	tmp = div_u64(tmp, 100);
	if (!tmp)
		tmp = 1;

	WRITE_ONCE(perf_sample_allowed_ns, tmp);
431
}
P
Peter Zijlstra 已提交
432

433 434
static int perf_rotate_context(struct perf_cpu_context *cpuctx);

P
Peter Zijlstra 已提交
435 436 437 438
int perf_proc_update_handler(struct ctl_table *table, int write,
		void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
439
	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
P
Peter Zijlstra 已提交
440 441 442 443

	if (ret || !write)
		return ret;

444 445 446 447 448 449 450
	/*
	 * If throttling is disabled don't allow the write:
	 */
	if (sysctl_perf_cpu_time_max_percent == 100 ||
	    sysctl_perf_cpu_time_max_percent == 0)
		return -EINVAL;

P
Peter Zijlstra 已提交
451
	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
452 453 454 455 456 457 458 459 460 461 462 463
	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
	update_perf_cpu_limits();

	return 0;
}

int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;

int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
				void __user *buffer, size_t *lenp,
				loff_t *ppos)
{
464
	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
465 466 467 468

	if (ret || !write)
		return ret;

469 470
	if (sysctl_perf_cpu_time_max_percent == 100 ||
	    sysctl_perf_cpu_time_max_percent == 0) {
471 472 473 474 475 476
		printk(KERN_WARNING
		       "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
		WRITE_ONCE(perf_sample_allowed_ns, 0);
	} else {
		update_perf_cpu_limits();
	}
P
Peter Zijlstra 已提交
477 478 479

	return 0;
}
480

481 482 483 484 485 486 487
/*
 * perf samples are done in some very critical code paths (NMIs).
 * If they take too much CPU time, the system can lock up and not
 * get any real work done.  This will drop the sample rate when
 * we detect that events are taking too long.
 */
#define NR_ACCUMULATED_SAMPLES 128
P
Peter Zijlstra 已提交
488
static DEFINE_PER_CPU(u64, running_sample_length);
489

490 491 492
static u64 __report_avg;
static u64 __report_allowed;

493
static void perf_duration_warn(struct irq_work *w)
494
{
495
	printk_ratelimited(KERN_INFO
496 497 498 499
		"perf: interrupt took too long (%lld > %lld), lowering "
		"kernel.perf_event_max_sample_rate to %d\n",
		__report_avg, __report_allowed,
		sysctl_perf_event_sample_rate);
500 501 502 503 504 505
}

static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);

void perf_sample_event_took(u64 sample_len_ns)
{
506 507 508 509
	u64 max_len = READ_ONCE(perf_sample_allowed_ns);
	u64 running_len;
	u64 avg_len;
	u32 max;
510

511
	if (max_len == 0)
512 513
		return;

514 515 516 517 518
	/* Decay the counter by 1 average sample. */
	running_len = __this_cpu_read(running_sample_length);
	running_len -= running_len/NR_ACCUMULATED_SAMPLES;
	running_len += sample_len_ns;
	__this_cpu_write(running_sample_length, running_len);
519 520

	/*
521 522
	 * Note: this will be biased artifically low until we have
	 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
523 524
	 * from having to maintain a count.
	 */
525 526
	avg_len = running_len/NR_ACCUMULATED_SAMPLES;
	if (avg_len <= max_len)
527 528
		return;

529 530
	__report_avg = avg_len;
	__report_allowed = max_len;
531

532 533 534 535 536 537 538 539 540
	/*
	 * Compute a throttle threshold 25% below the current duration.
	 */
	avg_len += avg_len / 4;
	max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
	if (avg_len < max)
		max /= (u32)avg_len;
	else
		max = 1;
541

542 543 544 545 546
	WRITE_ONCE(perf_sample_allowed_ns, avg_len);
	WRITE_ONCE(max_samples_per_tick, max);

	sysctl_perf_event_sample_rate = max * HZ;
	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
547

548
	if (!irq_work_queue(&perf_duration_work)) {
549
		early_printk("perf: interrupt took too long (%lld > %lld), lowering "
550
			     "kernel.perf_event_max_sample_rate to %d\n",
551
			     __report_avg, __report_allowed,
552 553
			     sysctl_perf_event_sample_rate);
	}
554 555
}

556
static atomic64_t perf_event_id;
557

558 559 560 561
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type);

static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
562 563 564 565 566
			     enum event_type_t event_type,
			     struct task_struct *task);

static void update_context_time(struct perf_event_context *ctx);
static u64 perf_event_time(struct perf_event *event);
567

568
void __weak perf_event_print_debug(void)	{ }
T
Thomas Gleixner 已提交
569

570
extern __weak const char *perf_pmu_name(void)
T
Thomas Gleixner 已提交
571
{
572
	return "pmu";
T
Thomas Gleixner 已提交
573 574
}

575 576 577 578 579
static inline u64 perf_clock(void)
{
	return local_clock();
}

580 581 582 583 584
static inline u64 perf_event_clock(struct perf_event *event)
{
	return event->clock();
}

585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666
/*
 * State based event timekeeping...
 *
 * The basic idea is to use event->state to determine which (if any) time
 * fields to increment with the current delta. This means we only need to
 * update timestamps when we change state or when they are explicitly requested
 * (read).
 *
 * Event groups make things a little more complicated, but not terribly so. The
 * rules for a group are that if the group leader is OFF the entire group is
 * OFF, irrespecive of what the group member states are. This results in
 * __perf_effective_state().
 *
 * A futher ramification is that when a group leader flips between OFF and
 * !OFF, we need to update all group member times.
 *
 *
 * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
 * need to make sure the relevant context time is updated before we try and
 * update our timestamps.
 */

static __always_inline enum perf_event_state
__perf_effective_state(struct perf_event *event)
{
	struct perf_event *leader = event->group_leader;

	if (leader->state <= PERF_EVENT_STATE_OFF)
		return leader->state;

	return event->state;
}

static __always_inline void
__perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
{
	enum perf_event_state state = __perf_effective_state(event);
	u64 delta = now - event->tstamp;

	*enabled = event->total_time_enabled;
	if (state >= PERF_EVENT_STATE_INACTIVE)
		*enabled += delta;

	*running = event->total_time_running;
	if (state >= PERF_EVENT_STATE_ACTIVE)
		*running += delta;
}

static void perf_event_update_time(struct perf_event *event)
{
	u64 now = perf_event_time(event);

	__perf_update_times(event, now, &event->total_time_enabled,
					&event->total_time_running);
	event->tstamp = now;
}

static void perf_event_update_sibling_time(struct perf_event *leader)
{
	struct perf_event *sibling;

	list_for_each_entry(sibling, &leader->sibling_list, group_entry)
		perf_event_update_time(sibling);
}

static void
perf_event_set_state(struct perf_event *event, enum perf_event_state state)
{
	if (event->state == state)
		return;

	perf_event_update_time(event);
	/*
	 * If a group leader gets enabled/disabled all its siblings
	 * are affected too.
	 */
	if ((event->state < 0) ^ (state < 0))
		perf_event_update_sibling_time(event);

	WRITE_ONCE(event->state, state);
}

S
Stephane Eranian 已提交
667 668 669 670 671 672 673 674
#ifdef CONFIG_CGROUP_PERF

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);

675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690
	/* @event doesn't care about cgroup */
	if (!event->cgrp)
		return true;

	/* wants specific cgroup scope but @cpuctx isn't associated with any */
	if (!cpuctx->cgrp)
		return false;

	/*
	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
	 * also enabled for all its descendant cgroups.  If @cpuctx's
	 * cgroup is a descendant of @event's (the test covers identity
	 * case), it's a match.
	 */
	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
				    event->cgrp->css.cgroup);
S
Stephane Eranian 已提交
691 692 693 694
}

static inline void perf_detach_cgroup(struct perf_event *event)
{
Z
Zefan Li 已提交
695
	css_put(&event->cgrp->css);
S
Stephane Eranian 已提交
696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733
	event->cgrp = NULL;
}

static inline int is_cgroup_event(struct perf_event *event)
{
	return event->cgrp != NULL;
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	struct perf_cgroup_info *t;

	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	return t->time;
}

static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
{
	struct perf_cgroup_info *info;
	u64 now;

	now = perf_clock();

	info = this_cpu_ptr(cgrp->info);

	info->time += now - info->timestamp;
	info->timestamp = now;
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
	struct perf_cgroup *cgrp_out = cpuctx->cgrp;
	if (cgrp_out)
		__update_cgrp_time(cgrp_out);
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
734 735
	struct perf_cgroup *cgrp;

S
Stephane Eranian 已提交
736
	/*
737 738
	 * ensure we access cgroup data only when needed and
	 * when we know the cgroup is pinned (css_get)
S
Stephane Eranian 已提交
739
	 */
740
	if (!is_cgroup_event(event))
S
Stephane Eranian 已提交
741 742
		return;

743
	cgrp = perf_cgroup_from_task(current, event->ctx);
744 745 746
	/*
	 * Do not update time when cgroup is not active
	 */
747
       if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
748
		__update_cgrp_time(event->cgrp);
S
Stephane Eranian 已提交
749 750 751
}

static inline void
752 753
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
754 755 756 757
{
	struct perf_cgroup *cgrp;
	struct perf_cgroup_info *info;

758 759 760 761 762 763
	/*
	 * ctx->lock held by caller
	 * ensure we do not access cgroup data
	 * unless we have the cgroup pinned (css_get)
	 */
	if (!task || !ctx->nr_cgroups)
S
Stephane Eranian 已提交
764 765
		return;

766
	cgrp = perf_cgroup_from_task(task, ctx);
S
Stephane Eranian 已提交
767
	info = this_cpu_ptr(cgrp->info);
768
	info->timestamp = ctx->timestamp;
S
Stephane Eranian 已提交
769 770
}

771 772
static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);

S
Stephane Eranian 已提交
773 774 775 776 777 778 779 780 781
#define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
#define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */

/*
 * reschedule events based on the cgroup constraint of task.
 *
 * mode SWOUT : schedule out everything
 * mode SWIN : schedule in based on cgroup for next
 */
782
static void perf_cgroup_switch(struct task_struct *task, int mode)
S
Stephane Eranian 已提交
783 784
{
	struct perf_cpu_context *cpuctx;
785
	struct list_head *list;
S
Stephane Eranian 已提交
786 787 788
	unsigned long flags;

	/*
789 790
	 * Disable interrupts and preemption to avoid this CPU's
	 * cgrp_cpuctx_entry to change under us.
S
Stephane Eranian 已提交
791 792 793
	 */
	local_irq_save(flags);

794 795 796
	list = this_cpu_ptr(&cgrp_cpuctx_list);
	list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) {
		WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
S
Stephane Eranian 已提交
797

798 799
		perf_ctx_lock(cpuctx, cpuctx->task_ctx);
		perf_pmu_disable(cpuctx->ctx.pmu);
S
Stephane Eranian 已提交
800

801 802 803 804 805 806 807 808
		if (mode & PERF_CGROUP_SWOUT) {
			cpu_ctx_sched_out(cpuctx, EVENT_ALL);
			/*
			 * must not be done before ctxswout due
			 * to event_filter_match() in event_sched_out()
			 */
			cpuctx->cgrp = NULL;
		}
S
Stephane Eranian 已提交
809

810 811 812 813 814 815 816 817 818 819 820 821
		if (mode & PERF_CGROUP_SWIN) {
			WARN_ON_ONCE(cpuctx->cgrp);
			/*
			 * set cgrp before ctxsw in to allow
			 * event_filter_match() to not have to pass
			 * task around
			 * we pass the cpuctx->ctx to perf_cgroup_from_task()
			 * because cgorup events are only per-cpu
			 */
			cpuctx->cgrp = perf_cgroup_from_task(task,
							     &cpuctx->ctx);
			cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
S
Stephane Eranian 已提交
822
		}
823 824
		perf_pmu_enable(cpuctx->ctx.pmu);
		perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
S
Stephane Eranian 已提交
825 826 827 828 829
	}

	local_irq_restore(flags);
}

830 831
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
832
{
833 834 835
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

836
	rcu_read_lock();
837 838
	/*
	 * we come here when we know perf_cgroup_events > 0
839 840
	 * we do not need to pass the ctx here because we know
	 * we are holding the rcu lock
841
	 */
842
	cgrp1 = perf_cgroup_from_task(task, NULL);
843
	cgrp2 = perf_cgroup_from_task(next, NULL);
844 845 846 847 848 849 850 851

	/*
	 * only schedule out current cgroup events if we know
	 * that we are switching to a different cgroup. Otherwise,
	 * do no touch the cgroup events.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
852 853

	rcu_read_unlock();
S
Stephane Eranian 已提交
854 855
}

856 857
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
858
{
859 860 861
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

862
	rcu_read_lock();
863 864
	/*
	 * we come here when we know perf_cgroup_events > 0
865 866
	 * we do not need to pass the ctx here because we know
	 * we are holding the rcu lock
867
	 */
868 869
	cgrp1 = perf_cgroup_from_task(task, NULL);
	cgrp2 = perf_cgroup_from_task(prev, NULL);
870 871 872 873 874 875 876 877

	/*
	 * only need to schedule in cgroup events if we are changing
	 * cgroup during ctxsw. Cgroup events were not scheduled
	 * out of ctxsw out if that was not the case.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
878 879

	rcu_read_unlock();
S
Stephane Eranian 已提交
880 881 882 883 884 885 886 887
}

static inline int perf_cgroup_connect(int fd, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	struct perf_cgroup *cgrp;
	struct cgroup_subsys_state *css;
888 889
	struct fd f = fdget(fd);
	int ret = 0;
S
Stephane Eranian 已提交
890

891
	if (!f.file)
S
Stephane Eranian 已提交
892 893
		return -EBADF;

A
Al Viro 已提交
894
	css = css_tryget_online_from_dir(f.file->f_path.dentry,
895
					 &perf_event_cgrp_subsys);
896 897 898 899
	if (IS_ERR(css)) {
		ret = PTR_ERR(css);
		goto out;
	}
S
Stephane Eranian 已提交
900 901 902 903 904 905 906 907 908 909 910 911 912

	cgrp = container_of(css, struct perf_cgroup, css);
	event->cgrp = cgrp;

	/*
	 * all events in a group must monitor
	 * the same cgroup because a task belongs
	 * to only one perf cgroup at a time
	 */
	if (group_leader && group_leader->cgrp != cgrp) {
		perf_detach_cgroup(event);
		ret = -EINVAL;
	}
913
out:
914
	fdput(f);
S
Stephane Eranian 已提交
915 916 917 918 919 920 921 922 923 924 925
	return ret;
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
	struct perf_cgroup_info *t;
	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	event->shadow_ctx_time = now - t->timestamp;
}

926 927 928 929 930 931 932 933 934
/*
 * Update cpuctx->cgrp so that it is set when first cgroup event is added and
 * cleared when last cgroup event is removed.
 */
static inline void
list_update_cgroup_event(struct perf_event *event,
			 struct perf_event_context *ctx, bool add)
{
	struct perf_cpu_context *cpuctx;
935
	struct list_head *cpuctx_entry;
936 937 938 939 940 941 942 943 944 945 946 947 948

	if (!is_cgroup_event(event))
		return;

	if (add && ctx->nr_cgroups++)
		return;
	else if (!add && --ctx->nr_cgroups)
		return;
	/*
	 * Because cgroup events are always per-cpu events,
	 * this will always be called from the right CPU.
	 */
	cpuctx = __get_cpu_context(ctx);
949 950 951
	cpuctx_entry = &cpuctx->cgrp_cpuctx_entry;
	/* cpuctx->cgrp is NULL unless a cgroup event is active in this CPU .*/
	if (add) {
952 953
		struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);

954
		list_add(cpuctx_entry, this_cpu_ptr(&cgrp_cpuctx_list));
955 956
		if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
			cpuctx->cgrp = cgrp;
957 958
	} else {
		list_del(cpuctx_entry);
959
		cpuctx->cgrp = NULL;
960
	}
961 962
}

S
Stephane Eranian 已提交
963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986
#else /* !CONFIG_CGROUP_PERF */

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	return true;
}

static inline void perf_detach_cgroup(struct perf_event *event)
{}

static inline int is_cgroup_event(struct perf_event *event)
{
	return 0;
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
}

987 988
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
989 990 991
{
}

992 993
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
994 995 996 997 998 999 1000 1001 1002 1003 1004
{
}

static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	return -EINVAL;
}

static inline void
1005 1006
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024
{
}

void
perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
{
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	return 0;
}

1025 1026 1027 1028 1029 1030
static inline void
list_update_cgroup_event(struct perf_event *event,
			 struct perf_event_context *ctx, bool add)
{
}

S
Stephane Eranian 已提交
1031 1032
#endif

1033 1034 1035 1036 1037 1038
/*
 * set default to be dependent on timer tick just
 * like original code
 */
#define PERF_CPU_HRTIMER (1000 / HZ)
/*
1039
 * function must be called with interrupts disabled
1040
 */
1041
static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1042 1043 1044 1045
{
	struct perf_cpu_context *cpuctx;
	int rotations = 0;

1046
	lockdep_assert_irqs_disabled();
1047 1048 1049 1050

	cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
	rotations = perf_rotate_context(cpuctx);

P
Peter Zijlstra 已提交
1051 1052
	raw_spin_lock(&cpuctx->hrtimer_lock);
	if (rotations)
1053
		hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
P
Peter Zijlstra 已提交
1054 1055 1056
	else
		cpuctx->hrtimer_active = 0;
	raw_spin_unlock(&cpuctx->hrtimer_lock);
1057

P
Peter Zijlstra 已提交
1058
	return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1059 1060
}

1061
static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
1062
{
1063
	struct hrtimer *timer = &cpuctx->hrtimer;
1064
	struct pmu *pmu = cpuctx->ctx.pmu;
1065
	u64 interval;
1066 1067 1068 1069 1070

	/* no multiplexing needed for SW PMU */
	if (pmu->task_ctx_nr == perf_sw_context)
		return;

1071 1072 1073 1074
	/*
	 * check default is sane, if not set then force to
	 * default interval (1/tick)
	 */
1075 1076 1077
	interval = pmu->hrtimer_interval_ms;
	if (interval < 1)
		interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1078

1079
	cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1080

P
Peter Zijlstra 已提交
1081 1082
	raw_spin_lock_init(&cpuctx->hrtimer_lock);
	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
1083
	timer->function = perf_mux_hrtimer_handler;
1084 1085
}

1086
static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1087
{
1088
	struct hrtimer *timer = &cpuctx->hrtimer;
1089
	struct pmu *pmu = cpuctx->ctx.pmu;
P
Peter Zijlstra 已提交
1090
	unsigned long flags;
1091 1092 1093

	/* not for SW PMU */
	if (pmu->task_ctx_nr == perf_sw_context)
1094
		return 0;
1095

P
Peter Zijlstra 已提交
1096 1097 1098 1099 1100 1101 1102
	raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
	if (!cpuctx->hrtimer_active) {
		cpuctx->hrtimer_active = 1;
		hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
		hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
	}
	raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1103

1104
	return 0;
1105 1106
}

P
Peter Zijlstra 已提交
1107
void perf_pmu_disable(struct pmu *pmu)
1108
{
P
Peter Zijlstra 已提交
1109 1110 1111
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!(*count)++)
		pmu->pmu_disable(pmu);
1112 1113
}

P
Peter Zijlstra 已提交
1114
void perf_pmu_enable(struct pmu *pmu)
1115
{
P
Peter Zijlstra 已提交
1116 1117 1118
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!--(*count))
		pmu->pmu_enable(pmu);
1119 1120
}

1121
static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1122 1123

/*
1124 1125 1126 1127
 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
 * perf_event_task_tick() are fully serialized because they're strictly cpu
 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
 * disabled, while perf_event_task_tick is called from IRQ context.
1128
 */
1129
static void perf_event_ctx_activate(struct perf_event_context *ctx)
1130
{
1131
	struct list_head *head = this_cpu_ptr(&active_ctx_list);
1132

1133
	lockdep_assert_irqs_disabled();
1134

1135 1136 1137 1138 1139 1140 1141
	WARN_ON(!list_empty(&ctx->active_ctx_list));

	list_add(&ctx->active_ctx_list, head);
}

static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
{
1142
	lockdep_assert_irqs_disabled();
1143 1144 1145 1146

	WARN_ON(list_empty(&ctx->active_ctx_list));

	list_del_init(&ctx->active_ctx_list);
1147 1148
}

1149
static void get_ctx(struct perf_event_context *ctx)
1150
{
1151
	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
1152 1153
}

1154 1155 1156 1157 1158 1159 1160 1161 1162
static void free_ctx(struct rcu_head *head)
{
	struct perf_event_context *ctx;

	ctx = container_of(head, struct perf_event_context, rcu_head);
	kfree(ctx->task_ctx_data);
	kfree(ctx);
}

1163
static void put_ctx(struct perf_event_context *ctx)
1164
{
1165 1166 1167
	if (atomic_dec_and_test(&ctx->refcount)) {
		if (ctx->parent_ctx)
			put_ctx(ctx->parent_ctx);
1168
		if (ctx->task && ctx->task != TASK_TOMBSTONE)
1169
			put_task_struct(ctx->task);
1170
		call_rcu(&ctx->rcu_head, free_ctx);
1171
	}
1172 1173
}

P
Peter Zijlstra 已提交
1174 1175 1176 1177 1178 1179 1180
/*
 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
 * perf_pmu_migrate_context() we need some magic.
 *
 * Those places that change perf_event::ctx will hold both
 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
 *
1181 1182 1183 1184
 * Lock ordering is by mutex address. There are two other sites where
 * perf_event_context::mutex nests and those are:
 *
 *  - perf_event_exit_task_context()	[ child , 0 ]
1185 1186
 *      perf_event_exit_event()
 *        put_event()			[ parent, 1 ]
1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203
 *
 *  - perf_event_init_context()		[ parent, 0 ]
 *      inherit_task_group()
 *        inherit_group()
 *          inherit_event()
 *            perf_event_alloc()
 *              perf_init_event()
 *                perf_try_init_event()	[ child , 1 ]
 *
 * While it appears there is an obvious deadlock here -- the parent and child
 * nesting levels are inverted between the two. This is in fact safe because
 * life-time rules separate them. That is an exiting task cannot fork, and a
 * spawning task cannot (yet) exit.
 *
 * But remember that that these are parent<->child context relations, and
 * migration does not affect children, therefore these two orderings should not
 * interact.
P
Peter Zijlstra 已提交
1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226
 *
 * The change in perf_event::ctx does not affect children (as claimed above)
 * because the sys_perf_event_open() case will install a new event and break
 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
 * concerned with cpuctx and that doesn't have children.
 *
 * The places that change perf_event::ctx will issue:
 *
 *   perf_remove_from_context();
 *   synchronize_rcu();
 *   perf_install_in_context();
 *
 * to affect the change. The remove_from_context() + synchronize_rcu() should
 * quiesce the event, after which we can install it in the new location. This
 * means that only external vectors (perf_fops, prctl) can perturb the event
 * while in transit. Therefore all such accessors should also acquire
 * perf_event_context::mutex to serialize against this.
 *
 * However; because event->ctx can change while we're waiting to acquire
 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
 * function.
 *
 * Lock order:
1227
 *    cred_guard_mutex
P
Peter Zijlstra 已提交
1228 1229 1230
 *	task_struct::perf_event_mutex
 *	  perf_event_context::mutex
 *	    perf_event::child_mutex;
P
Peter Zijlstra 已提交
1231
 *	      perf_event_context::lock
P
Peter Zijlstra 已提交
1232 1233 1234
 *	    perf_event::mmap_mutex
 *	    mmap_sem
 */
P
Peter Zijlstra 已提交
1235 1236
static struct perf_event_context *
perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
P
Peter Zijlstra 已提交
1237 1238 1239 1240 1241
{
	struct perf_event_context *ctx;

again:
	rcu_read_lock();
1242
	ctx = READ_ONCE(event->ctx);
P
Peter Zijlstra 已提交
1243 1244 1245 1246 1247 1248
	if (!atomic_inc_not_zero(&ctx->refcount)) {
		rcu_read_unlock();
		goto again;
	}
	rcu_read_unlock();

P
Peter Zijlstra 已提交
1249
	mutex_lock_nested(&ctx->mutex, nesting);
P
Peter Zijlstra 已提交
1250 1251 1252 1253 1254 1255 1256 1257 1258
	if (event->ctx != ctx) {
		mutex_unlock(&ctx->mutex);
		put_ctx(ctx);
		goto again;
	}

	return ctx;
}

P
Peter Zijlstra 已提交
1259 1260 1261 1262 1263 1264
static inline struct perf_event_context *
perf_event_ctx_lock(struct perf_event *event)
{
	return perf_event_ctx_lock_nested(event, 0);
}

P
Peter Zijlstra 已提交
1265 1266 1267 1268 1269 1270 1271
static void perf_event_ctx_unlock(struct perf_event *event,
				  struct perf_event_context *ctx)
{
	mutex_unlock(&ctx->mutex);
	put_ctx(ctx);
}

1272 1273 1274 1275 1276 1277 1278
/*
 * This must be done under the ctx->lock, such as to serialize against
 * context_equiv(), therefore we cannot call put_ctx() since that might end up
 * calling scheduler related locks and ctx->lock nests inside those.
 */
static __must_check struct perf_event_context *
unclone_ctx(struct perf_event_context *ctx)
1279
{
1280 1281 1282 1283 1284
	struct perf_event_context *parent_ctx = ctx->parent_ctx;

	lockdep_assert_held(&ctx->lock);

	if (parent_ctx)
1285
		ctx->parent_ctx = NULL;
1286
	ctx->generation++;
1287 1288

	return parent_ctx;
1289 1290
}

1291 1292
static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
				enum pid_type type)
1293
{
1294
	u32 nr;
1295 1296 1297 1298 1299 1300
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

1301 1302 1303 1304 1305
	nr = __task_pid_nr_ns(p, type, event->ns);
	/* avoid -1 if it is idle thread or runs in another ns */
	if (!nr && !pid_alive(p))
		nr = -1;
	return nr;
1306 1307
}

1308
static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1309
{
1310 1311
	return perf_event_pid_type(event, p, __PIDTYPE_TGID);
}
1312

1313 1314 1315
static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
{
	return perf_event_pid_type(event, p, PIDTYPE_PID);
1316 1317
}

1318
/*
1319
 * If we inherit events we want to return the parent event id
1320 1321
 * to userspace.
 */
1322
static u64 primary_event_id(struct perf_event *event)
1323
{
1324
	u64 id = event->id;
1325

1326 1327
	if (event->parent)
		id = event->parent->id;
1328 1329 1330 1331

	return id;
}

1332
/*
1333
 * Get the perf_event_context for a task and lock it.
1334
 *
1335 1336 1337
 * This has to cope with with the fact that until it is locked,
 * the context could get moved to another task.
 */
1338
static struct perf_event_context *
P
Peter Zijlstra 已提交
1339
perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1340
{
1341
	struct perf_event_context *ctx;
1342

P
Peter Zijlstra 已提交
1343
retry:
1344 1345 1346
	/*
	 * One of the few rules of preemptible RCU is that one cannot do
	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1347
	 * part of the read side critical section was irqs-enabled -- see
1348 1349 1350
	 * rcu_read_unlock_special().
	 *
	 * Since ctx->lock nests under rq->lock we must ensure the entire read
1351
	 * side critical section has interrupts disabled.
1352
	 */
1353
	local_irq_save(*flags);
1354
	rcu_read_lock();
P
Peter Zijlstra 已提交
1355
	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1356 1357 1358 1359
	if (ctx) {
		/*
		 * If this context is a clone of another, it might
		 * get swapped for another underneath us by
1360
		 * perf_event_task_sched_out, though the
1361 1362 1363 1364 1365 1366
		 * rcu_read_lock() protects us from any context
		 * getting freed.  Lock the context and check if it
		 * got swapped before we could get the lock, and retry
		 * if so.  If we locked the right context, then it
		 * can't get swapped on us any more.
		 */
1367
		raw_spin_lock(&ctx->lock);
P
Peter Zijlstra 已提交
1368
		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1369
			raw_spin_unlock(&ctx->lock);
1370
			rcu_read_unlock();
1371
			local_irq_restore(*flags);
1372 1373
			goto retry;
		}
1374

1375 1376
		if (ctx->task == TASK_TOMBSTONE ||
		    !atomic_inc_not_zero(&ctx->refcount)) {
1377
			raw_spin_unlock(&ctx->lock);
1378
			ctx = NULL;
P
Peter Zijlstra 已提交
1379 1380
		} else {
			WARN_ON_ONCE(ctx->task != task);
1381
		}
1382 1383
	}
	rcu_read_unlock();
1384 1385
	if (!ctx)
		local_irq_restore(*flags);
1386 1387 1388 1389 1390 1391 1392 1393
	return ctx;
}

/*
 * Get the context for a task and increment its pin_count so it
 * can't get swapped to another task.  This also increments its
 * reference count so that the context can't get freed.
 */
P
Peter Zijlstra 已提交
1394 1395
static struct perf_event_context *
perf_pin_task_context(struct task_struct *task, int ctxn)
1396
{
1397
	struct perf_event_context *ctx;
1398 1399
	unsigned long flags;

P
Peter Zijlstra 已提交
1400
	ctx = perf_lock_task_context(task, ctxn, &flags);
1401 1402
	if (ctx) {
		++ctx->pin_count;
1403
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1404 1405 1406 1407
	}
	return ctx;
}

1408
static void perf_unpin_context(struct perf_event_context *ctx)
1409 1410 1411
{
	unsigned long flags;

1412
	raw_spin_lock_irqsave(&ctx->lock, flags);
1413
	--ctx->pin_count;
1414
	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1415 1416
}

1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427
/*
 * Update the record of the current time in a context.
 */
static void update_context_time(struct perf_event_context *ctx)
{
	u64 now = perf_clock();

	ctx->time += now - ctx->timestamp;
	ctx->timestamp = now;
}

1428 1429 1430
static u64 perf_event_time(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
S
Stephane Eranian 已提交
1431 1432 1433 1434

	if (is_cgroup_event(event))
		return perf_cgroup_event_time(event);

1435 1436 1437
	return ctx ? ctx->time : 0;
}

1438 1439 1440 1441 1442 1443 1444
static enum event_type_t get_event_type(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	enum event_type_t event_type;

	lockdep_assert_held(&ctx->lock);

1445 1446 1447 1448 1449 1450 1451
	/*
	 * It's 'group type', really, because if our group leader is
	 * pinned, so are we.
	 */
	if (event->group_leader != event)
		event = event->group_leader;

1452 1453 1454 1455 1456 1457 1458
	event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
	if (!ctx->task)
		event_type |= EVENT_CPU;

	return event_type;
}

1459 1460 1461 1462 1463 1464 1465 1466 1467
static struct list_head *
ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
{
	if (event->attr.pinned)
		return &ctx->pinned_groups;
	else
		return &ctx->flexible_groups;
}

1468
/*
1469
 * Add a event from the lists for its context.
1470 1471
 * Must be called with ctx->mutex and ctx->lock held.
 */
1472
static void
1473
list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1474
{
P
Peter Zijlstra 已提交
1475 1476
	lockdep_assert_held(&ctx->lock);

1477 1478
	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
	event->attach_state |= PERF_ATTACH_CONTEXT;
1479

1480 1481
	event->tstamp = perf_event_time(event);

1482
	/*
1483 1484 1485
	 * If we're a stand alone event or group leader, we go to the context
	 * list, group events are kept attached to the group so that
	 * perf_group_detach can, at all times, locate all siblings.
1486
	 */
1487
	if (event->group_leader == event) {
1488 1489
		struct list_head *list;

1490
		event->group_caps = event->event_caps;
1491

1492 1493
		list = ctx_group_list(event, ctx);
		list_add_tail(&event->group_entry, list);
P
Peter Zijlstra 已提交
1494
	}
P
Peter Zijlstra 已提交
1495

1496
	list_update_cgroup_event(event, ctx, true);
S
Stephane Eranian 已提交
1497

1498 1499 1500
	list_add_rcu(&event->event_entry, &ctx->event_list);
	ctx->nr_events++;
	if (event->attr.inherit_stat)
1501
		ctx->nr_stat++;
1502 1503

	ctx->generation++;
1504 1505
}

J
Jiri Olsa 已提交
1506 1507 1508 1509 1510 1511 1512 1513 1514
/*
 * Initialize event state based on the perf_event_attr::disabled.
 */
static inline void perf_event__state_init(struct perf_event *event)
{
	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
					      PERF_EVENT_STATE_INACTIVE;
}

P
Peter Zijlstra 已提交
1515
static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530
{
	int entry = sizeof(u64); /* value */
	int size = 0;
	int nr = 1;

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_ID)
		entry += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_GROUP) {
P
Peter Zijlstra 已提交
1531
		nr += nr_siblings;
1532 1533 1534 1535 1536 1537 1538
		size += sizeof(u64);
	}

	size += entry * nr;
	event->read_size = size;
}

P
Peter Zijlstra 已提交
1539
static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1540 1541 1542 1543 1544 1545 1546
{
	struct perf_sample_data *data;
	u16 size = 0;

	if (sample_type & PERF_SAMPLE_IP)
		size += sizeof(data->ip);

1547 1548 1549 1550 1551 1552
	if (sample_type & PERF_SAMPLE_ADDR)
		size += sizeof(data->addr);

	if (sample_type & PERF_SAMPLE_PERIOD)
		size += sizeof(data->period);

A
Andi Kleen 已提交
1553 1554 1555
	if (sample_type & PERF_SAMPLE_WEIGHT)
		size += sizeof(data->weight);

1556 1557 1558
	if (sample_type & PERF_SAMPLE_READ)
		size += event->read_size;

1559 1560 1561
	if (sample_type & PERF_SAMPLE_DATA_SRC)
		size += sizeof(data->data_src.val);

A
Andi Kleen 已提交
1562 1563 1564
	if (sample_type & PERF_SAMPLE_TRANSACTION)
		size += sizeof(data->txn);

1565 1566 1567
	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
		size += sizeof(data->phys_addr);

1568 1569 1570
	event->header_size = size;
}

P
Peter Zijlstra 已提交
1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581
/*
 * Called at perf_event creation and when events are attached/detached from a
 * group.
 */
static void perf_event__header_size(struct perf_event *event)
{
	__perf_event_read_size(event,
			       event->group_leader->nr_siblings);
	__perf_event_header_size(event, event->attr.sample_type);
}

1582 1583 1584 1585 1586 1587
static void perf_event__id_header_size(struct perf_event *event)
{
	struct perf_sample_data *data;
	u64 sample_type = event->attr.sample_type;
	u16 size = 0;

1588 1589 1590 1591 1592 1593
	if (sample_type & PERF_SAMPLE_TID)
		size += sizeof(data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		size += sizeof(data->time);

1594 1595 1596
	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		size += sizeof(data->id);

1597 1598 1599 1600 1601 1602 1603 1604 1605
	if (sample_type & PERF_SAMPLE_ID)
		size += sizeof(data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		size += sizeof(data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		size += sizeof(data->cpu_entry);

1606
	event->id_header_size = size;
1607 1608
}

P
Peter Zijlstra 已提交
1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629
static bool perf_event_validate_size(struct perf_event *event)
{
	/*
	 * The values computed here will be over-written when we actually
	 * attach the event.
	 */
	__perf_event_read_size(event, event->group_leader->nr_siblings + 1);
	__perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
	perf_event__id_header_size(event);

	/*
	 * Sum the lot; should not exceed the 64k limit we have on records.
	 * Conservative limit to allow for callchains and other variable fields.
	 */
	if (event->read_size + event->header_size +
	    event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
		return false;

	return true;
}

1630 1631
static void perf_group_attach(struct perf_event *event)
{
1632
	struct perf_event *group_leader = event->group_leader, *pos;
1633

1634 1635
	lockdep_assert_held(&event->ctx->lock);

P
Peter Zijlstra 已提交
1636 1637 1638 1639 1640 1641
	/*
	 * We can have double attach due to group movement in perf_event_open.
	 */
	if (event->attach_state & PERF_ATTACH_GROUP)
		return;

1642 1643 1644 1645 1646
	event->attach_state |= PERF_ATTACH_GROUP;

	if (group_leader == event)
		return;

P
Peter Zijlstra 已提交
1647 1648
	WARN_ON_ONCE(group_leader->ctx != event->ctx);

1649
	group_leader->group_caps &= event->event_caps;
1650 1651 1652

	list_add_tail(&event->group_entry, &group_leader->sibling_list);
	group_leader->nr_siblings++;
1653 1654 1655 1656 1657

	perf_event__header_size(group_leader);

	list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
		perf_event__header_size(pos);
1658 1659
}

1660
/*
1661
 * Remove a event from the lists for its context.
1662
 * Must be called with ctx->mutex and ctx->lock held.
1663
 */
1664
static void
1665
list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1666
{
P
Peter Zijlstra 已提交
1667 1668 1669
	WARN_ON_ONCE(event->ctx != ctx);
	lockdep_assert_held(&ctx->lock);

1670 1671 1672 1673
	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1674
		return;
1675 1676 1677

	event->attach_state &= ~PERF_ATTACH_CONTEXT;

1678
	list_update_cgroup_event(event, ctx, false);
S
Stephane Eranian 已提交
1679

1680 1681
	ctx->nr_events--;
	if (event->attr.inherit_stat)
1682
		ctx->nr_stat--;
1683

1684
	list_del_rcu(&event->event_entry);
1685

1686 1687
	if (event->group_leader == event)
		list_del_init(&event->group_entry);
P
Peter Zijlstra 已提交
1688

1689 1690 1691 1692 1693 1694 1695 1696
	/*
	 * If event was in error state, then keep it
	 * that way, otherwise bogus counts will be
	 * returned on read(). The only way to get out
	 * of error state is by explicit re-enabling
	 * of the event
	 */
	if (event->state > PERF_EVENT_STATE_OFF)
1697
		perf_event_set_state(event, PERF_EVENT_STATE_OFF);
1698 1699

	ctx->generation++;
1700 1701
}

1702
static void perf_group_detach(struct perf_event *event)
1703 1704
{
	struct perf_event *sibling, *tmp;
1705 1706
	struct list_head *list = NULL;

1707 1708
	lockdep_assert_held(&event->ctx->lock);

1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722
	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_GROUP))
		return;

	event->attach_state &= ~PERF_ATTACH_GROUP;

	/*
	 * If this is a sibling, remove it from its group.
	 */
	if (event->group_leader != event) {
		list_del_init(&event->group_entry);
		event->group_leader->nr_siblings--;
1723
		goto out;
1724 1725 1726 1727
	}

	if (!list_empty(&event->group_entry))
		list = &event->group_entry;
1728

1729
	/*
1730 1731
	 * If this was a group event with sibling events then
	 * upgrade the siblings to singleton events by adding them
1732
	 * to whatever list we are on.
1733
	 */
1734
	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1735 1736
		if (list)
			list_move_tail(&sibling->group_entry, list);
1737
		sibling->group_leader = sibling;
1738 1739

		/* Inherit group flags from the previous leader */
1740
		sibling->group_caps = event->group_caps;
P
Peter Zijlstra 已提交
1741 1742

		WARN_ON_ONCE(sibling->ctx != event->ctx);
1743
	}
1744 1745 1746 1747 1748 1749

out:
	perf_event__header_size(event->group_leader);

	list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
		perf_event__header_size(tmp);
1750 1751
}

1752 1753
static bool is_orphaned_event(struct perf_event *event)
{
P
Peter Zijlstra 已提交
1754
	return event->state == PERF_EVENT_STATE_DEAD;
1755 1756
}

1757
static inline int __pmu_filter_match(struct perf_event *event)
1758 1759 1760 1761 1762
{
	struct pmu *pmu = event->pmu;
	return pmu->filter_match ? pmu->filter_match(event) : 1;
}

1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783
/*
 * Check whether we should attempt to schedule an event group based on
 * PMU-specific filtering. An event group can consist of HW and SW events,
 * potentially with a SW leader, so we must check all the filters, to
 * determine whether a group is schedulable:
 */
static inline int pmu_filter_match(struct perf_event *event)
{
	struct perf_event *child;

	if (!__pmu_filter_match(event))
		return 0;

	list_for_each_entry(child, &event->sibling_list, group_entry) {
		if (!__pmu_filter_match(child))
			return 0;
	}

	return 1;
}

1784 1785 1786
static inline int
event_filter_match(struct perf_event *event)
{
1787 1788
	return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
	       perf_cgroup_match(event) && pmu_filter_match(event);
1789 1790
}

1791 1792
static void
event_sched_out(struct perf_event *event,
1793
		  struct perf_cpu_context *cpuctx,
1794
		  struct perf_event_context *ctx)
1795
{
1796
	enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
P
Peter Zijlstra 已提交
1797 1798 1799 1800

	WARN_ON_ONCE(event->ctx != ctx);
	lockdep_assert_held(&ctx->lock);

1801
	if (event->state != PERF_EVENT_STATE_ACTIVE)
1802
		return;
1803

1804 1805
	perf_pmu_disable(event->pmu);

1806 1807
	event->pmu->del(event, 0);
	event->oncpu = -1;
1808

1809 1810
	if (event->pending_disable) {
		event->pending_disable = 0;
1811
		state = PERF_EVENT_STATE_OFF;
1812
	}
1813
	perf_event_set_state(event, state);
1814

1815
	if (!is_software_event(event))
1816
		cpuctx->active_oncpu--;
1817 1818
	if (!--ctx->nr_active)
		perf_event_ctx_deactivate(ctx);
1819 1820
	if (event->attr.freq && event->attr.sample_freq)
		ctx->nr_freq--;
1821
	if (event->attr.exclusive || !cpuctx->active_oncpu)
1822
		cpuctx->exclusive = 0;
1823 1824

	perf_pmu_enable(event->pmu);
1825 1826
}

1827
static void
1828
group_sched_out(struct perf_event *group_event,
1829
		struct perf_cpu_context *cpuctx,
1830
		struct perf_event_context *ctx)
1831
{
1832
	struct perf_event *event;
1833 1834 1835

	if (group_event->state != PERF_EVENT_STATE_ACTIVE)
		return;
1836

1837 1838
	perf_pmu_disable(ctx->pmu);

1839
	event_sched_out(group_event, cpuctx, ctx);
1840 1841 1842 1843

	/*
	 * Schedule out siblings (if any):
	 */
1844 1845
	list_for_each_entry(event, &group_event->sibling_list, group_entry)
		event_sched_out(event, cpuctx, ctx);
1846

1847 1848
	perf_pmu_enable(ctx->pmu);

1849
	if (group_event->attr.exclusive)
1850 1851 1852
		cpuctx->exclusive = 0;
}

1853
#define DETACH_GROUP	0x01UL
1854

T
Thomas Gleixner 已提交
1855
/*
1856
 * Cross CPU call to remove a performance event
T
Thomas Gleixner 已提交
1857
 *
1858
 * We disable the event on the hardware level first. After that we
T
Thomas Gleixner 已提交
1859 1860
 * remove it from the context list.
 */
1861 1862 1863 1864 1865
static void
__perf_remove_from_context(struct perf_event *event,
			   struct perf_cpu_context *cpuctx,
			   struct perf_event_context *ctx,
			   void *info)
T
Thomas Gleixner 已提交
1866
{
1867
	unsigned long flags = (unsigned long)info;
T
Thomas Gleixner 已提交
1868

1869 1870 1871 1872 1873
	if (ctx->is_active & EVENT_TIME) {
		update_context_time(ctx);
		update_cgrp_time_from_cpuctx(cpuctx);
	}

1874
	event_sched_out(event, cpuctx, ctx);
1875
	if (flags & DETACH_GROUP)
1876
		perf_group_detach(event);
1877
	list_del_event(event, ctx);
1878 1879

	if (!ctx->nr_events && ctx->is_active) {
1880
		ctx->is_active = 0;
1881 1882 1883 1884
		if (ctx->task) {
			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
			cpuctx->task_ctx = NULL;
		}
1885
	}
T
Thomas Gleixner 已提交
1886 1887 1888
}

/*
1889
 * Remove the event from a task's (or a CPU's) list of events.
T
Thomas Gleixner 已提交
1890
 *
1891 1892
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1893 1894
 * remains valid.  This is OK when called from perf_release since
 * that only calls us on the top-level context, which can't be a clone.
1895
 * When called from perf_event_exit_task, it's OK because the
1896
 * context has been detached from its task.
T
Thomas Gleixner 已提交
1897
 */
1898
static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
T
Thomas Gleixner 已提交
1899
{
1900 1901 1902
	struct perf_event_context *ctx = event->ctx;

	lockdep_assert_held(&ctx->mutex);
T
Thomas Gleixner 已提交
1903

1904
	event_function_call(event, __perf_remove_from_context, (void *)flags);
1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922

	/*
	 * The above event_function_call() can NO-OP when it hits
	 * TASK_TOMBSTONE. In that case we must already have been detached
	 * from the context (by perf_event_exit_event()) but the grouping
	 * might still be in-tact.
	 */
	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
	if ((flags & DETACH_GROUP) &&
	    (event->attach_state & PERF_ATTACH_GROUP)) {
		/*
		 * Since in that case we cannot possibly be scheduled, simply
		 * detach now.
		 */
		raw_spin_lock_irq(&ctx->lock);
		perf_group_detach(event);
		raw_spin_unlock_irq(&ctx->lock);
	}
T
Thomas Gleixner 已提交
1923 1924
}

1925
/*
1926
 * Cross CPU call to disable a performance event
1927
 */
1928 1929 1930 1931
static void __perf_event_disable(struct perf_event *event,
				 struct perf_cpu_context *cpuctx,
				 struct perf_event_context *ctx,
				 void *info)
1932
{
1933 1934
	if (event->state < PERF_EVENT_STATE_INACTIVE)
		return;
1935

1936 1937 1938 1939 1940
	if (ctx->is_active & EVENT_TIME) {
		update_context_time(ctx);
		update_cgrp_time_from_event(event);
	}

1941 1942 1943 1944
	if (event == event->group_leader)
		group_sched_out(event, cpuctx, ctx);
	else
		event_sched_out(event, cpuctx, ctx);
1945 1946

	perf_event_set_state(event, PERF_EVENT_STATE_OFF);
1947 1948
}

1949
/*
1950
 * Disable a event.
1951
 *
1952 1953
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1954
 * remains valid.  This condition is satisifed when called through
1955 1956
 * perf_event_for_each_child or perf_event_for_each because they
 * hold the top-level event's child_mutex, so any descendant that
1957 1958
 * goes to exit will block in perf_event_exit_event().
 *
1959
 * When called from perf_pending_event it's OK because event->ctx
1960
 * is the current context on this CPU and preemption is disabled,
1961
 * hence we can't get into perf_event_task_sched_out for this context.
1962
 */
P
Peter Zijlstra 已提交
1963
static void _perf_event_disable(struct perf_event *event)
1964
{
1965
	struct perf_event_context *ctx = event->ctx;
1966

1967
	raw_spin_lock_irq(&ctx->lock);
1968
	if (event->state <= PERF_EVENT_STATE_OFF) {
1969
		raw_spin_unlock_irq(&ctx->lock);
1970
		return;
1971
	}
1972
	raw_spin_unlock_irq(&ctx->lock);
1973

1974 1975 1976 1977 1978 1979
	event_function_call(event, __perf_event_disable, NULL);
}

void perf_event_disable_local(struct perf_event *event)
{
	event_function_local(event, __perf_event_disable, NULL);
1980
}
P
Peter Zijlstra 已提交
1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993

/*
 * Strictly speaking kernel users cannot create groups and therefore this
 * interface does not need the perf_event_ctx_lock() magic.
 */
void perf_event_disable(struct perf_event *event)
{
	struct perf_event_context *ctx;

	ctx = perf_event_ctx_lock(event);
	_perf_event_disable(event);
	perf_event_ctx_unlock(event, ctx);
}
1994
EXPORT_SYMBOL_GPL(perf_event_disable);
1995

1996 1997 1998 1999 2000 2001
void perf_event_disable_inatomic(struct perf_event *event)
{
	event->pending_disable = 1;
	irq_work_queue(&event->pending);
}

S
Stephane Eranian 已提交
2002
static void perf_set_shadow_time(struct perf_event *event,
2003
				 struct perf_event_context *ctx)
S
Stephane Eranian 已提交
2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030
{
	/*
	 * use the correct time source for the time snapshot
	 *
	 * We could get by without this by leveraging the
	 * fact that to get to this function, the caller
	 * has most likely already called update_context_time()
	 * and update_cgrp_time_xx() and thus both timestamp
	 * are identical (or very close). Given that tstamp is,
	 * already adjusted for cgroup, we could say that:
	 *    tstamp - ctx->timestamp
	 * is equivalent to
	 *    tstamp - cgrp->timestamp.
	 *
	 * Then, in perf_output_read(), the calculation would
	 * work with no changes because:
	 * - event is guaranteed scheduled in
	 * - no scheduled out in between
	 * - thus the timestamp would be the same
	 *
	 * But this is a bit hairy.
	 *
	 * So instead, we have an explicit cgroup call to remain
	 * within the time time source all along. We believe it
	 * is cleaner and simpler to understand.
	 */
	if (is_cgroup_event(event))
2031
		perf_cgroup_set_shadow_time(event, event->tstamp);
S
Stephane Eranian 已提交
2032
	else
2033
		event->shadow_ctx_time = event->tstamp - ctx->timestamp;
S
Stephane Eranian 已提交
2034 2035
}

P
Peter Zijlstra 已提交
2036 2037 2038
#define MAX_INTERRUPTS (~0ULL)

static void perf_log_throttle(struct perf_event *event, int enable);
2039
static void perf_log_itrace_start(struct perf_event *event);
P
Peter Zijlstra 已提交
2040

2041
static int
2042
event_sched_in(struct perf_event *event,
2043
		 struct perf_cpu_context *cpuctx,
2044
		 struct perf_event_context *ctx)
2045
{
2046
	int ret = 0;
2047

2048 2049
	lockdep_assert_held(&ctx->lock);

2050
	if (event->state <= PERF_EVENT_STATE_OFF)
2051 2052
		return 0;

2053 2054
	WRITE_ONCE(event->oncpu, smp_processor_id());
	/*
P
Peter Zijlstra 已提交
2055 2056 2057
	 * Order event::oncpu write to happen before the ACTIVE state is
	 * visible. This allows perf_event_{stop,read}() to observe the correct
	 * ->oncpu if it sees ACTIVE.
2058 2059
	 */
	smp_wmb();
2060
	perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
P
Peter Zijlstra 已提交
2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071

	/*
	 * Unthrottle events, since we scheduled we might have missed several
	 * ticks already, also for a heavily scheduling task there is little
	 * guarantee it'll get a tick in a timely manner.
	 */
	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
		perf_log_throttle(event, 1);
		event->hw.interrupts = 0;
	}

2072 2073
	perf_pmu_disable(event->pmu);

2074
	perf_set_shadow_time(event, ctx);
2075

2076 2077
	perf_log_itrace_start(event);

P
Peter Zijlstra 已提交
2078
	if (event->pmu->add(event, PERF_EF_START)) {
2079
		perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2080
		event->oncpu = -1;
2081 2082
		ret = -EAGAIN;
		goto out;
2083 2084
	}

2085
	if (!is_software_event(event))
2086
		cpuctx->active_oncpu++;
2087 2088
	if (!ctx->nr_active++)
		perf_event_ctx_activate(ctx);
2089 2090
	if (event->attr.freq && event->attr.sample_freq)
		ctx->nr_freq++;
2091

2092
	if (event->attr.exclusive)
2093 2094
		cpuctx->exclusive = 1;

2095 2096 2097 2098
out:
	perf_pmu_enable(event->pmu);

	return ret;
2099 2100
}

2101
static int
2102
group_sched_in(struct perf_event *group_event,
2103
	       struct perf_cpu_context *cpuctx,
2104
	       struct perf_event_context *ctx)
2105
{
2106
	struct perf_event *event, *partial_group = NULL;
P
Peter Zijlstra 已提交
2107
	struct pmu *pmu = ctx->pmu;
2108

2109
	if (group_event->state == PERF_EVENT_STATE_OFF)
2110 2111
		return 0;

2112
	pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2113

2114
	if (event_sched_in(group_event, cpuctx, ctx)) {
P
Peter Zijlstra 已提交
2115
		pmu->cancel_txn(pmu);
2116
		perf_mux_hrtimer_restart(cpuctx);
2117
		return -EAGAIN;
2118
	}
2119 2120 2121 2122

	/*
	 * Schedule in siblings as one group (if any):
	 */
2123
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2124
		if (event_sched_in(event, cpuctx, ctx)) {
2125
			partial_group = event;
2126 2127 2128 2129
			goto group_error;
		}
	}

2130
	if (!pmu->commit_txn(pmu))
2131
		return 0;
2132

2133 2134 2135 2136
group_error:
	/*
	 * Groups can be scheduled in as one unit only, so undo any
	 * partial group before returning:
2137
	 * The events up to the failed event are scheduled out normally.
2138
	 */
2139 2140
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
		if (event == partial_group)
2141
			break;
2142

2143
		event_sched_out(event, cpuctx, ctx);
2144
	}
2145
	event_sched_out(group_event, cpuctx, ctx);
2146

P
Peter Zijlstra 已提交
2147
	pmu->cancel_txn(pmu);
2148

2149
	perf_mux_hrtimer_restart(cpuctx);
2150

2151 2152 2153
	return -EAGAIN;
}

2154
/*
2155
 * Work out whether we can put this event group on the CPU now.
2156
 */
2157
static int group_can_go_on(struct perf_event *event,
2158 2159 2160 2161
			   struct perf_cpu_context *cpuctx,
			   int can_add_hw)
{
	/*
2162
	 * Groups consisting entirely of software events can always go on.
2163
	 */
2164
	if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2165 2166 2167
		return 1;
	/*
	 * If an exclusive group is already on, no other hardware
2168
	 * events can go on.
2169 2170 2171 2172 2173
	 */
	if (cpuctx->exclusive)
		return 0;
	/*
	 * If this group is exclusive and there are already
2174
	 * events on the CPU, it can't go on.
2175
	 */
2176
	if (event->attr.exclusive && cpuctx->active_oncpu)
2177 2178 2179 2180 2181 2182 2183 2184
		return 0;
	/*
	 * Otherwise, try to add it if all previous groups were able
	 * to go on.
	 */
	return can_add_hw;
}

2185 2186
static void add_event_to_ctx(struct perf_event *event,
			       struct perf_event_context *ctx)
2187
{
2188
	list_add_event(event, ctx);
2189
	perf_group_attach(event);
2190 2191
}

2192 2193 2194
static void ctx_sched_out(struct perf_event_context *ctx,
			  struct perf_cpu_context *cpuctx,
			  enum event_type_t event_type);
2195 2196 2197 2198 2199
static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
	     enum event_type_t event_type,
	     struct task_struct *task);
2200

2201
static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2202 2203
			       struct perf_event_context *ctx,
			       enum event_type_t event_type)
2204 2205 2206 2207 2208 2209 2210
{
	if (!cpuctx->task_ctx)
		return;

	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
		return;

2211
	ctx_sched_out(ctx, cpuctx, event_type);
2212 2213
}

2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225
static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
				struct perf_event_context *ctx,
				struct task_struct *task)
{
	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
}

2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240
/*
 * We want to maintain the following priority of scheduling:
 *  - CPU pinned (EVENT_CPU | EVENT_PINNED)
 *  - task pinned (EVENT_PINNED)
 *  - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
 *  - task flexible (EVENT_FLEXIBLE).
 *
 * In order to avoid unscheduling and scheduling back in everything every
 * time an event is added, only do it for the groups of equal priority and
 * below.
 *
 * This can be called after a batch operation on task events, in which case
 * event_type is a bit mask of the types of events involved. For CPU events,
 * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
 */
2241
static void ctx_resched(struct perf_cpu_context *cpuctx,
2242 2243
			struct perf_event_context *task_ctx,
			enum event_type_t event_type)
2244
{
2245 2246 2247 2248 2249 2250 2251 2252 2253 2254
	enum event_type_t ctx_event_type = event_type & EVENT_ALL;
	bool cpu_event = !!(event_type & EVENT_CPU);

	/*
	 * If pinned groups are involved, flexible groups also need to be
	 * scheduled out.
	 */
	if (event_type & EVENT_PINNED)
		event_type |= EVENT_FLEXIBLE;

2255 2256
	perf_pmu_disable(cpuctx->ctx.pmu);
	if (task_ctx)
2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270
		task_ctx_sched_out(cpuctx, task_ctx, event_type);

	/*
	 * Decide which cpu ctx groups to schedule out based on the types
	 * of events that caused rescheduling:
	 *  - EVENT_CPU: schedule out corresponding groups;
	 *  - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
	 *  - otherwise, do nothing more.
	 */
	if (cpu_event)
		cpu_ctx_sched_out(cpuctx, ctx_event_type);
	else if (ctx_event_type & EVENT_PINNED)
		cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);

2271 2272
	perf_event_sched_in(cpuctx, task_ctx, current);
	perf_pmu_enable(cpuctx->ctx.pmu);
2273 2274
}

T
Thomas Gleixner 已提交
2275
/*
2276
 * Cross CPU call to install and enable a performance event
2277
 *
2278 2279
 * Very similar to remote_function() + event_function() but cannot assume that
 * things like ctx->is_active and cpuctx->task_ctx are set.
T
Thomas Gleixner 已提交
2280
 */
2281
static int  __perf_install_in_context(void *info)
T
Thomas Gleixner 已提交
2282
{
2283 2284
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
2285
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2286
	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2287
	bool reprogram = true;
2288
	int ret = 0;
T
Thomas Gleixner 已提交
2289

2290
	raw_spin_lock(&cpuctx->ctx.lock);
2291
	if (ctx->task) {
2292 2293
		raw_spin_lock(&ctx->lock);
		task_ctx = ctx;
2294

2295
		reprogram = (ctx->task == current);
2296

2297
		/*
2298 2299 2300 2301 2302
		 * If the task is running, it must be running on this CPU,
		 * otherwise we cannot reprogram things.
		 *
		 * If its not running, we don't care, ctx->lock will
		 * serialize against it becoming runnable.
2303
		 */
2304 2305 2306 2307
		if (task_curr(ctx->task) && !reprogram) {
			ret = -ESRCH;
			goto unlock;
		}
2308

2309
		WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2310 2311
	} else if (task_ctx) {
		raw_spin_lock(&task_ctx->lock);
2312
	}
2313

2314
	if (reprogram) {
2315 2316
		ctx_sched_out(ctx, cpuctx, EVENT_TIME);
		add_event_to_ctx(event, ctx);
2317
		ctx_resched(cpuctx, task_ctx, get_event_type(event));
2318 2319 2320 2321
	} else {
		add_event_to_ctx(event, ctx);
	}

2322
unlock:
2323
	perf_ctx_unlock(cpuctx, task_ctx);
2324

2325
	return ret;
T
Thomas Gleixner 已提交
2326 2327 2328
}

/*
2329 2330 2331
 * Attach a performance event to a context.
 *
 * Very similar to event_function_call, see comment there.
T
Thomas Gleixner 已提交
2332 2333
 */
static void
2334 2335
perf_install_in_context(struct perf_event_context *ctx,
			struct perf_event *event,
T
Thomas Gleixner 已提交
2336 2337
			int cpu)
{
2338
	struct task_struct *task = READ_ONCE(ctx->task);
2339

2340 2341
	lockdep_assert_held(&ctx->mutex);

2342 2343
	if (event->cpu != -1)
		event->cpu = cpu;
2344

2345 2346 2347 2348 2349 2350
	/*
	 * Ensures that if we can observe event->ctx, both the event and ctx
	 * will be 'complete'. See perf_iterate_sb_cpu().
	 */
	smp_store_release(&event->ctx, ctx);

2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361
	if (!task) {
		cpu_function_call(cpu, __perf_install_in_context, event);
		return;
	}

	/*
	 * Should not happen, we validate the ctx is still alive before calling.
	 */
	if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
		return;

2362 2363 2364
	/*
	 * Installing events is tricky because we cannot rely on ctx->is_active
	 * to be set in case this is the nr_events 0 -> 1 transition.
2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383
	 *
	 * Instead we use task_curr(), which tells us if the task is running.
	 * However, since we use task_curr() outside of rq::lock, we can race
	 * against the actual state. This means the result can be wrong.
	 *
	 * If we get a false positive, we retry, this is harmless.
	 *
	 * If we get a false negative, things are complicated. If we are after
	 * perf_event_context_sched_in() ctx::lock will serialize us, and the
	 * value must be correct. If we're before, it doesn't matter since
	 * perf_event_context_sched_in() will program the counter.
	 *
	 * However, this hinges on the remote context switch having observed
	 * our task->perf_event_ctxp[] store, such that it will in fact take
	 * ctx::lock in perf_event_context_sched_in().
	 *
	 * We do this by task_function_call(), if the IPI fails to hit the task
	 * we know any future context switch of task must see the
	 * perf_event_ctpx[] store.
2384
	 */
2385

2386
	/*
2387 2388 2389 2390
	 * This smp_mb() orders the task->perf_event_ctxp[] store with the
	 * task_cpu() load, such that if the IPI then does not find the task
	 * running, a future context switch of that task must observe the
	 * store.
2391
	 */
2392 2393 2394
	smp_mb();
again:
	if (!task_function_call(task, __perf_install_in_context, event))
2395 2396 2397 2398
		return;

	raw_spin_lock_irq(&ctx->lock);
	task = ctx->task;
2399
	if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2400 2401 2402 2403 2404
		/*
		 * Cannot happen because we already checked above (which also
		 * cannot happen), and we hold ctx->mutex, which serializes us
		 * against perf_event_exit_task_context().
		 */
2405 2406 2407
		raw_spin_unlock_irq(&ctx->lock);
		return;
	}
2408
	/*
2409 2410
	 * If the task is not running, ctx->lock will avoid it becoming so,
	 * thus we can safely install the event.
2411
	 */
2412 2413 2414 2415 2416 2417
	if (task_curr(task)) {
		raw_spin_unlock_irq(&ctx->lock);
		goto again;
	}
	add_event_to_ctx(event, ctx);
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
2418 2419
}

2420
/*
2421
 * Cross CPU call to enable a performance event
2422
 */
2423 2424 2425 2426
static void __perf_event_enable(struct perf_event *event,
				struct perf_cpu_context *cpuctx,
				struct perf_event_context *ctx,
				void *info)
2427
{
2428
	struct perf_event *leader = event->group_leader;
2429
	struct perf_event_context *task_ctx;
2430

P
Peter Zijlstra 已提交
2431 2432
	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
	    event->state <= PERF_EVENT_STATE_ERROR)
2433
		return;
2434

2435 2436 2437
	if (ctx->is_active)
		ctx_sched_out(ctx, cpuctx, EVENT_TIME);

2438
	perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2439

2440 2441 2442
	if (!ctx->is_active)
		return;

S
Stephane Eranian 已提交
2443
	if (!event_filter_match(event)) {
2444
		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2445
		return;
S
Stephane Eranian 已提交
2446
	}
2447

2448
	/*
2449
	 * If the event is in a group and isn't the group leader,
2450
	 * then don't put it on unless the group is on.
2451
	 */
2452 2453
	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2454
		return;
2455
	}
2456

2457 2458 2459
	task_ctx = cpuctx->task_ctx;
	if (ctx->task)
		WARN_ON_ONCE(task_ctx != ctx);
2460

2461
	ctx_resched(cpuctx, task_ctx, get_event_type(event));
2462 2463
}

2464
/*
2465
 * Enable a event.
2466
 *
2467 2468
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
2469
 * remains valid.  This condition is satisfied when called through
2470 2471
 * perf_event_for_each_child or perf_event_for_each as described
 * for perf_event_disable.
2472
 */
P
Peter Zijlstra 已提交
2473
static void _perf_event_enable(struct perf_event *event)
2474
{
2475
	struct perf_event_context *ctx = event->ctx;
2476

2477
	raw_spin_lock_irq(&ctx->lock);
P
Peter Zijlstra 已提交
2478 2479
	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
	    event->state <  PERF_EVENT_STATE_ERROR) {
2480
		raw_spin_unlock_irq(&ctx->lock);
2481 2482 2483 2484
		return;
	}

	/*
2485
	 * If the event is in error state, clear that first.
2486 2487 2488 2489
	 *
	 * That way, if we see the event in error state below, we know that it
	 * has gone back into error state, as distinct from the task having
	 * been scheduled away before the cross-call arrived.
2490
	 */
2491 2492
	if (event->state == PERF_EVENT_STATE_ERROR)
		event->state = PERF_EVENT_STATE_OFF;
2493
	raw_spin_unlock_irq(&ctx->lock);
2494

2495
	event_function_call(event, __perf_event_enable, NULL);
2496
}
P
Peter Zijlstra 已提交
2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508

/*
 * See perf_event_disable();
 */
void perf_event_enable(struct perf_event *event)
{
	struct perf_event_context *ctx;

	ctx = perf_event_ctx_lock(event);
	_perf_event_enable(event);
	perf_event_ctx_unlock(event, ctx);
}
2509
EXPORT_SYMBOL_GPL(perf_event_enable);
2510

2511 2512 2513 2514 2515
struct stop_event_data {
	struct perf_event	*event;
	unsigned int		restart;
};

2516 2517
static int __perf_event_stop(void *info)
{
2518 2519
	struct stop_event_data *sd = info;
	struct perf_event *event = sd->event;
2520

2521
	/* if it's already INACTIVE, do nothing */
2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536
	if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
		return 0;

	/* matches smp_wmb() in event_sched_in() */
	smp_rmb();

	/*
	 * There is a window with interrupts enabled before we get here,
	 * so we need to check again lest we try to stop another CPU's event.
	 */
	if (READ_ONCE(event->oncpu) != smp_processor_id())
		return -EAGAIN;

	event->pmu->stop(event, PERF_EF_UPDATE);

2537 2538 2539 2540 2541 2542 2543 2544 2545 2546
	/*
	 * May race with the actual stop (through perf_pmu_output_stop()),
	 * but it is only used for events with AUX ring buffer, and such
	 * events will refuse to restart because of rb::aux_mmap_count==0,
	 * see comments in perf_aux_output_begin().
	 *
	 * Since this is happening on a event-local CPU, no trace is lost
	 * while restarting.
	 */
	if (sd->restart)
2547
		event->pmu->start(event, 0);
2548

2549 2550 2551
	return 0;
}

2552
static int perf_event_stop(struct perf_event *event, int restart)
2553 2554 2555
{
	struct stop_event_data sd = {
		.event		= event,
2556
		.restart	= restart,
2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616
	};
	int ret = 0;

	do {
		if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
			return 0;

		/* matches smp_wmb() in event_sched_in() */
		smp_rmb();

		/*
		 * We only want to restart ACTIVE events, so if the event goes
		 * inactive here (event->oncpu==-1), there's nothing more to do;
		 * fall through with ret==-ENXIO.
		 */
		ret = cpu_function_call(READ_ONCE(event->oncpu),
					__perf_event_stop, &sd);
	} while (ret == -EAGAIN);

	return ret;
}

/*
 * In order to contain the amount of racy and tricky in the address filter
 * configuration management, it is a two part process:
 *
 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
 *      we update the addresses of corresponding vmas in
 *	event::addr_filters_offs array and bump the event::addr_filters_gen;
 * (p2) when an event is scheduled in (pmu::add), it calls
 *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
 *      if the generation has changed since the previous call.
 *
 * If (p1) happens while the event is active, we restart it to force (p2).
 *
 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
 *     pre-existing mappings, called once when new filters arrive via SET_FILTER
 *     ioctl;
 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
 *     registered mapping, called for every new mmap(), with mm::mmap_sem down
 *     for reading;
 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
 *     of exec.
 */
void perf_event_addr_filters_sync(struct perf_event *event)
{
	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);

	if (!has_addr_filter(event))
		return;

	raw_spin_lock(&ifh->lock);
	if (event->addr_filters_gen != event->hw.addr_filters_gen) {
		event->pmu->addr_filters_sync(event);
		event->hw.addr_filters_gen = event->addr_filters_gen;
	}
	raw_spin_unlock(&ifh->lock);
}
EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);

P
Peter Zijlstra 已提交
2617
static int _perf_event_refresh(struct perf_event *event, int refresh)
2618
{
2619
	/*
2620
	 * not supported on inherited events
2621
	 */
2622
	if (event->attr.inherit || !is_sampling_event(event))
2623 2624
		return -EINVAL;

2625
	atomic_add(refresh, &event->event_limit);
P
Peter Zijlstra 已提交
2626
	_perf_event_enable(event);
2627 2628

	return 0;
2629
}
P
Peter Zijlstra 已提交
2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644

/*
 * See perf_event_disable()
 */
int perf_event_refresh(struct perf_event *event, int refresh)
{
	struct perf_event_context *ctx;
	int ret;

	ctx = perf_event_ctx_lock(event);
	ret = _perf_event_refresh(event, refresh);
	perf_event_ctx_unlock(event, ctx);

	return ret;
}
2645
EXPORT_SYMBOL_GPL(perf_event_refresh);
2646

2647 2648 2649
static void ctx_sched_out(struct perf_event_context *ctx,
			  struct perf_cpu_context *cpuctx,
			  enum event_type_t event_type)
2650
{
2651
	int is_active = ctx->is_active;
P
Peter Zijlstra 已提交
2652
	struct perf_event *event;
2653

P
Peter Zijlstra 已提交
2654
	lockdep_assert_held(&ctx->lock);
2655

2656 2657 2658 2659 2660 2661 2662
	if (likely(!ctx->nr_events)) {
		/*
		 * See __perf_remove_from_context().
		 */
		WARN_ON_ONCE(ctx->is_active);
		if (ctx->task)
			WARN_ON_ONCE(cpuctx->task_ctx);
2663
		return;
2664 2665
	}

2666
	ctx->is_active &= ~event_type;
2667 2668 2669
	if (!(ctx->is_active & EVENT_ALL))
		ctx->is_active = 0;

2670 2671 2672 2673 2674
	if (ctx->task) {
		WARN_ON_ONCE(cpuctx->task_ctx != ctx);
		if (!ctx->is_active)
			cpuctx->task_ctx = NULL;
	}
2675

2676 2677 2678 2679 2680 2681 2682 2683 2684 2685
	/*
	 * Always update time if it was set; not only when it changes.
	 * Otherwise we can 'forget' to update time for any but the last
	 * context we sched out. For example:
	 *
	 *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
	 *   ctx_sched_out(.event_type = EVENT_PINNED)
	 *
	 * would only update time for the pinned events.
	 */
2686 2687 2688 2689 2690 2691
	if (is_active & EVENT_TIME) {
		/* update (and stop) ctx time */
		update_context_time(ctx);
		update_cgrp_time_from_cpuctx(cpuctx);
	}

2692 2693
	is_active ^= ctx->is_active; /* changed bits */

2694
	if (!ctx->nr_active || !(is_active & EVENT_ALL))
2695
		return;
2696

P
Peter Zijlstra 已提交
2697
	perf_pmu_disable(ctx->pmu);
2698
	if (is_active & EVENT_PINNED) {
2699 2700
		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
2701
	}
2702

2703
	if (is_active & EVENT_FLEXIBLE) {
2704
		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2705
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
2706
	}
P
Peter Zijlstra 已提交
2707
	perf_pmu_enable(ctx->pmu);
2708 2709
}

2710
/*
2711 2712 2713 2714 2715 2716
 * Test whether two contexts are equivalent, i.e. whether they have both been
 * cloned from the same version of the same context.
 *
 * Equivalence is measured using a generation number in the context that is
 * incremented on each modification to it; see unclone_ctx(), list_add_event()
 * and list_del_event().
2717
 */
2718 2719
static int context_equiv(struct perf_event_context *ctx1,
			 struct perf_event_context *ctx2)
2720
{
2721 2722 2723
	lockdep_assert_held(&ctx1->lock);
	lockdep_assert_held(&ctx2->lock);

2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745
	/* Pinning disables the swap optimization */
	if (ctx1->pin_count || ctx2->pin_count)
		return 0;

	/* If ctx1 is the parent of ctx2 */
	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
		return 1;

	/* If ctx2 is the parent of ctx1 */
	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
		return 1;

	/*
	 * If ctx1 and ctx2 have the same parent; we flatten the parent
	 * hierarchy, see perf_event_init_context().
	 */
	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
			ctx1->parent_gen == ctx2->parent_gen)
		return 1;

	/* Unmatched */
	return 0;
2746 2747
}

2748 2749
static void __perf_event_sync_stat(struct perf_event *event,
				     struct perf_event *next_event)
2750 2751 2752
{
	u64 value;

2753
	if (!event->attr.inherit_stat)
2754 2755 2756
		return;

	/*
2757
	 * Update the event value, we cannot use perf_event_read()
2758 2759
	 * because we're in the middle of a context switch and have IRQs
	 * disabled, which upsets smp_call_function_single(), however
2760
	 * we know the event must be on the current CPU, therefore we
2761 2762
	 * don't need to use it.
	 */
2763
	if (event->state == PERF_EVENT_STATE_ACTIVE)
2764
		event->pmu->read(event);
2765

2766
	perf_event_update_time(event);
2767 2768

	/*
2769
	 * In order to keep per-task stats reliable we need to flip the event
2770 2771
	 * values when we flip the contexts.
	 */
2772 2773 2774
	value = local64_read(&next_event->count);
	value = local64_xchg(&event->count, value);
	local64_set(&next_event->count, value);
2775

2776 2777
	swap(event->total_time_enabled, next_event->total_time_enabled);
	swap(event->total_time_running, next_event->total_time_running);
2778

2779
	/*
2780
	 * Since we swizzled the values, update the user visible data too.
2781
	 */
2782 2783
	perf_event_update_userpage(event);
	perf_event_update_userpage(next_event);
2784 2785
}

2786 2787
static void perf_event_sync_stat(struct perf_event_context *ctx,
				   struct perf_event_context *next_ctx)
2788
{
2789
	struct perf_event *event, *next_event;
2790 2791 2792 2793

	if (!ctx->nr_stat)
		return;

2794 2795
	update_context_time(ctx);

2796 2797
	event = list_first_entry(&ctx->event_list,
				   struct perf_event, event_entry);
2798

2799 2800
	next_event = list_first_entry(&next_ctx->event_list,
					struct perf_event, event_entry);
2801

2802 2803
	while (&event->event_entry != &ctx->event_list &&
	       &next_event->event_entry != &next_ctx->event_list) {
2804

2805
		__perf_event_sync_stat(event, next_event);
2806

2807 2808
		event = list_next_entry(event, event_entry);
		next_event = list_next_entry(next_event, event_entry);
2809 2810 2811
	}
}

2812 2813
static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
					 struct task_struct *next)
T
Thomas Gleixner 已提交
2814
{
P
Peter Zijlstra 已提交
2815
	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2816
	struct perf_event_context *next_ctx;
2817
	struct perf_event_context *parent, *next_parent;
P
Peter Zijlstra 已提交
2818
	struct perf_cpu_context *cpuctx;
2819
	int do_switch = 1;
T
Thomas Gleixner 已提交
2820

P
Peter Zijlstra 已提交
2821 2822
	if (likely(!ctx))
		return;
2823

P
Peter Zijlstra 已提交
2824 2825
	cpuctx = __get_cpu_context(ctx);
	if (!cpuctx->task_ctx)
T
Thomas Gleixner 已提交
2826 2827
		return;

2828
	rcu_read_lock();
P
Peter Zijlstra 已提交
2829
	next_ctx = next->perf_event_ctxp[ctxn];
2830 2831 2832 2833 2834 2835 2836
	if (!next_ctx)
		goto unlock;

	parent = rcu_dereference(ctx->parent_ctx);
	next_parent = rcu_dereference(next_ctx->parent_ctx);

	/* If neither context have a parent context; they cannot be clones. */
2837
	if (!parent && !next_parent)
2838 2839 2840
		goto unlock;

	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2841 2842 2843 2844 2845 2846 2847 2848 2849
		/*
		 * Looks like the two contexts are clones, so we might be
		 * able to optimize the context switch.  We lock both
		 * contexts and check that they are clones under the
		 * lock (including re-checking that neither has been
		 * uncloned in the meantime).  It doesn't matter which
		 * order we take the locks because no other cpu could
		 * be trying to lock both of these tasks.
		 */
2850 2851
		raw_spin_lock(&ctx->lock);
		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2852
		if (context_equiv(ctx, next_ctx)) {
2853 2854
			WRITE_ONCE(ctx->task, next);
			WRITE_ONCE(next_ctx->task, task);
2855 2856 2857

			swap(ctx->task_ctx_data, next_ctx->task_ctx_data);

2858 2859 2860 2861 2862 2863 2864 2865 2866 2867
			/*
			 * RCU_INIT_POINTER here is safe because we've not
			 * modified the ctx and the above modification of
			 * ctx->task and ctx->task_ctx_data are immaterial
			 * since those values are always verified under
			 * ctx->lock which we're now holding.
			 */
			RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
			RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);

2868
			do_switch = 0;
2869

2870
			perf_event_sync_stat(ctx, next_ctx);
2871
		}
2872 2873
		raw_spin_unlock(&next_ctx->lock);
		raw_spin_unlock(&ctx->lock);
2874
	}
2875
unlock:
2876
	rcu_read_unlock();
2877

2878
	if (do_switch) {
2879
		raw_spin_lock(&ctx->lock);
2880
		task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
2881
		raw_spin_unlock(&ctx->lock);
2882
	}
T
Thomas Gleixner 已提交
2883 2884
}

2885 2886
static DEFINE_PER_CPU(struct list_head, sched_cb_list);

2887 2888
void perf_sched_cb_dec(struct pmu *pmu)
{
2889 2890
	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

2891
	this_cpu_dec(perf_sched_cb_usages);
2892 2893 2894

	if (!--cpuctx->sched_cb_usage)
		list_del(&cpuctx->sched_cb_entry);
2895 2896
}

2897

2898 2899
void perf_sched_cb_inc(struct pmu *pmu)
{
2900 2901 2902 2903 2904
	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

	if (!cpuctx->sched_cb_usage++)
		list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));

2905 2906 2907 2908 2909 2910
	this_cpu_inc(perf_sched_cb_usages);
}

/*
 * This function provides the context switch callback to the lower code
 * layer. It is invoked ONLY when the context switch callback is enabled.
2911 2912 2913 2914
 *
 * This callback is relevant even to per-cpu events; for example multi event
 * PEBS requires this to provide PID/TID information. This requires we flush
 * all queued PEBS records before we context switch to a new task.
2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925
 */
static void perf_pmu_sched_task(struct task_struct *prev,
				struct task_struct *next,
				bool sched_in)
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;

	if (prev == next)
		return;

2926
	list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
2927
		pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
2928

2929 2930
		if (WARN_ON_ONCE(!pmu->sched_task))
			continue;
2931

2932 2933
		perf_ctx_lock(cpuctx, cpuctx->task_ctx);
		perf_pmu_disable(pmu);
2934

2935
		pmu->sched_task(cpuctx->task_ctx, sched_in);
2936

2937 2938
		perf_pmu_enable(pmu);
		perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2939 2940 2941
	}
}

2942 2943 2944
static void perf_event_switch(struct task_struct *task,
			      struct task_struct *next_prev, bool sched_in);

P
Peter Zijlstra 已提交
2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958
#define for_each_task_context_nr(ctxn)					\
	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)

/*
 * Called from scheduler to remove the events of the current task,
 * with interrupts disabled.
 *
 * We stop each event and update the event value in event->count.
 *
 * This does not protect us against NMI, but disable()
 * sets the disabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * not restart the event.
 */
2959 2960
void __perf_event_task_sched_out(struct task_struct *task,
				 struct task_struct *next)
P
Peter Zijlstra 已提交
2961 2962 2963
{
	int ctxn;

2964 2965 2966
	if (__this_cpu_read(perf_sched_cb_usages))
		perf_pmu_sched_task(task, next, false);

2967 2968 2969
	if (atomic_read(&nr_switch_events))
		perf_event_switch(task, next, false);

P
Peter Zijlstra 已提交
2970 2971
	for_each_task_context_nr(ctxn)
		perf_event_context_sched_out(task, ctxn, next);
S
Stephane Eranian 已提交
2972 2973 2974 2975 2976 2977

	/*
	 * if cgroup events exist on this CPU, then we need
	 * to check if we have to switch out PMU state.
	 * cgroup event are system-wide mode only
	 */
2978
	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2979
		perf_cgroup_sched_out(task, next);
P
Peter Zijlstra 已提交
2980 2981
}

2982 2983 2984 2985 2986 2987 2988
/*
 * Called with IRQs disabled
 */
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type)
{
	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2989 2990
}

2991
static void
2992
ctx_pinned_sched_in(struct perf_event_context *ctx,
2993
		    struct perf_cpu_context *cpuctx)
T
Thomas Gleixner 已提交
2994
{
2995
	struct perf_event *event;
T
Thomas Gleixner 已提交
2996

2997 2998
	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
		if (event->state <= PERF_EVENT_STATE_OFF)
2999
			continue;
3000
		if (!event_filter_match(event))
3001 3002
			continue;

3003
		if (group_can_go_on(event, cpuctx, 1))
3004
			group_sched_in(event, cpuctx, ctx);
3005 3006 3007 3008 3009

		/*
		 * If this pinned group hasn't been scheduled,
		 * put it in error state.
		 */
3010 3011
		if (event->state == PERF_EVENT_STATE_INACTIVE)
			perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
3012
	}
3013 3014 3015 3016
}

static void
ctx_flexible_sched_in(struct perf_event_context *ctx,
3017
		      struct perf_cpu_context *cpuctx)
3018 3019 3020
{
	struct perf_event *event;
	int can_add_hw = 1;
3021

3022 3023 3024
	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
		/* Ignore events in OFF or ERROR state */
		if (event->state <= PERF_EVENT_STATE_OFF)
3025
			continue;
3026 3027
		/*
		 * Listen to the 'cpu' scheduling filter constraint
3028
		 * of events:
3029
		 */
3030
		if (!event_filter_match(event))
T
Thomas Gleixner 已提交
3031 3032
			continue;

P
Peter Zijlstra 已提交
3033
		if (group_can_go_on(event, cpuctx, can_add_hw)) {
3034
			if (group_sched_in(event, cpuctx, ctx))
3035
				can_add_hw = 0;
P
Peter Zijlstra 已提交
3036
		}
T
Thomas Gleixner 已提交
3037
	}
3038 3039 3040 3041 3042
}

static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
3043 3044
	     enum event_type_t event_type,
	     struct task_struct *task)
3045
{
3046
	int is_active = ctx->is_active;
P
Peter Zijlstra 已提交
3047 3048 3049
	u64 now;

	lockdep_assert_held(&ctx->lock);
S
Stephane Eranian 已提交
3050

3051
	if (likely(!ctx->nr_events))
3052
		return;
3053

3054
	ctx->is_active |= (event_type | EVENT_TIME);
3055 3056 3057 3058 3059 3060 3061
	if (ctx->task) {
		if (!is_active)
			cpuctx->task_ctx = ctx;
		else
			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
	}

3062 3063 3064 3065 3066 3067 3068 3069 3070
	is_active ^= ctx->is_active; /* changed bits */

	if (is_active & EVENT_TIME) {
		/* start ctx time */
		now = perf_clock();
		ctx->timestamp = now;
		perf_cgroup_set_timestamp(task, ctx);
	}

3071 3072 3073 3074
	/*
	 * First go through the list and put on any pinned groups
	 * in order to give them the best chance of going on.
	 */
3075
	if (is_active & EVENT_PINNED)
3076
		ctx_pinned_sched_in(ctx, cpuctx);
3077 3078

	/* Then walk through the lower prio flexible groups */
3079
	if (is_active & EVENT_FLEXIBLE)
3080
		ctx_flexible_sched_in(ctx, cpuctx);
3081 3082
}

3083
static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
3084 3085
			     enum event_type_t event_type,
			     struct task_struct *task)
3086 3087 3088
{
	struct perf_event_context *ctx = &cpuctx->ctx;

S
Stephane Eranian 已提交
3089
	ctx_sched_in(ctx, cpuctx, event_type, task);
3090 3091
}

S
Stephane Eranian 已提交
3092 3093
static void perf_event_context_sched_in(struct perf_event_context *ctx,
					struct task_struct *task)
3094
{
P
Peter Zijlstra 已提交
3095
	struct perf_cpu_context *cpuctx;
3096

P
Peter Zijlstra 已提交
3097
	cpuctx = __get_cpu_context(ctx);
3098 3099 3100
	if (cpuctx->task_ctx == ctx)
		return;

3101
	perf_ctx_lock(cpuctx, ctx);
3102 3103 3104 3105 3106 3107 3108
	/*
	 * We must check ctx->nr_events while holding ctx->lock, such
	 * that we serialize against perf_install_in_context().
	 */
	if (!ctx->nr_events)
		goto unlock;

P
Peter Zijlstra 已提交
3109
	perf_pmu_disable(ctx->pmu);
3110 3111 3112 3113
	/*
	 * We want to keep the following priority order:
	 * cpu pinned (that don't need to move), task pinned,
	 * cpu flexible, task flexible.
3114 3115 3116
	 *
	 * However, if task's ctx is not carrying any pinned
	 * events, no need to flip the cpuctx's events around.
3117
	 */
3118 3119
	if (!list_empty(&ctx->pinned_groups))
		cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3120
	perf_event_sched_in(cpuctx, ctx, task);
3121
	perf_pmu_enable(ctx->pmu);
3122 3123

unlock:
3124
	perf_ctx_unlock(cpuctx, ctx);
3125 3126
}

P
Peter Zijlstra 已提交
3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137
/*
 * Called from scheduler to add the events of the current task
 * with interrupts disabled.
 *
 * We restore the event value and then enable it.
 *
 * This does not protect us against NMI, but enable()
 * sets the enabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * keep the event running.
 */
3138 3139
void __perf_event_task_sched_in(struct task_struct *prev,
				struct task_struct *task)
P
Peter Zijlstra 已提交
3140 3141 3142 3143
{
	struct perf_event_context *ctx;
	int ctxn;

3144 3145 3146 3147 3148 3149 3150 3151 3152 3153
	/*
	 * If cgroup events exist on this CPU, then we need to check if we have
	 * to switch in PMU state; cgroup event are system-wide mode only.
	 *
	 * Since cgroup events are CPU events, we must schedule these in before
	 * we schedule in the task events.
	 */
	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
		perf_cgroup_sched_in(prev, task);

P
Peter Zijlstra 已提交
3154 3155 3156 3157 3158
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (likely(!ctx))
			continue;

S
Stephane Eranian 已提交
3159
		perf_event_context_sched_in(ctx, task);
P
Peter Zijlstra 已提交
3160
	}
3161

3162 3163 3164
	if (atomic_read(&nr_switch_events))
		perf_event_switch(task, prev, true);

3165 3166
	if (__this_cpu_read(perf_sched_cb_usages))
		perf_pmu_sched_task(prev, task, true);
3167 3168
}

3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195
static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
{
	u64 frequency = event->attr.sample_freq;
	u64 sec = NSEC_PER_SEC;
	u64 divisor, dividend;

	int count_fls, nsec_fls, frequency_fls, sec_fls;

	count_fls = fls64(count);
	nsec_fls = fls64(nsec);
	frequency_fls = fls64(frequency);
	sec_fls = 30;

	/*
	 * We got @count in @nsec, with a target of sample_freq HZ
	 * the target period becomes:
	 *
	 *             @count * 10^9
	 * period = -------------------
	 *          @nsec * sample_freq
	 *
	 */

	/*
	 * Reduce accuracy by one bit such that @a and @b converge
	 * to a similar magnitude.
	 */
3196
#define REDUCE_FLS(a, b)		\
3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235
do {					\
	if (a##_fls > b##_fls) {	\
		a >>= 1;		\
		a##_fls--;		\
	} else {			\
		b >>= 1;		\
		b##_fls--;		\
	}				\
} while (0)

	/*
	 * Reduce accuracy until either term fits in a u64, then proceed with
	 * the other, so that finally we can do a u64/u64 division.
	 */
	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
		REDUCE_FLS(nsec, frequency);
		REDUCE_FLS(sec, count);
	}

	if (count_fls + sec_fls > 64) {
		divisor = nsec * frequency;

		while (count_fls + sec_fls > 64) {
			REDUCE_FLS(count, sec);
			divisor >>= 1;
		}

		dividend = count * sec;
	} else {
		dividend = count * sec;

		while (nsec_fls + frequency_fls > 64) {
			REDUCE_FLS(nsec, frequency);
			dividend >>= 1;
		}

		divisor = nsec * frequency;
	}

3236 3237 3238
	if (!divisor)
		return dividend;

3239 3240 3241
	return div64_u64(dividend, divisor);
}

3242 3243 3244
static DEFINE_PER_CPU(int, perf_throttled_count);
static DEFINE_PER_CPU(u64, perf_throttled_seq);

3245
static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
3246
{
3247
	struct hw_perf_event *hwc = &event->hw;
3248
	s64 period, sample_period;
3249 3250
	s64 delta;

3251
	period = perf_calculate_period(event, nsec, count);
3252 3253 3254 3255 3256 3257 3258 3259 3260 3261

	delta = (s64)(period - hwc->sample_period);
	delta = (delta + 7) / 8; /* low pass filter */

	sample_period = hwc->sample_period + delta;

	if (!sample_period)
		sample_period = 1;

	hwc->sample_period = sample_period;
3262

3263
	if (local64_read(&hwc->period_left) > 8*sample_period) {
3264 3265 3266
		if (disable)
			event->pmu->stop(event, PERF_EF_UPDATE);

3267
		local64_set(&hwc->period_left, 0);
3268 3269 3270

		if (disable)
			event->pmu->start(event, PERF_EF_RELOAD);
3271
	}
3272 3273
}

3274 3275 3276 3277 3278 3279 3280
/*
 * combine freq adjustment with unthrottling to avoid two passes over the
 * events. At the same time, make sure, having freq events does not change
 * the rate of unthrottling as that would introduce bias.
 */
static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
					   int needs_unthr)
3281
{
3282 3283
	struct perf_event *event;
	struct hw_perf_event *hwc;
3284
	u64 now, period = TICK_NSEC;
3285
	s64 delta;
3286

3287 3288 3289 3290 3291 3292
	/*
	 * only need to iterate over all events iff:
	 * - context have events in frequency mode (needs freq adjust)
	 * - there are events to unthrottle on this cpu
	 */
	if (!(ctx->nr_freq || needs_unthr))
3293 3294
		return;

3295
	raw_spin_lock(&ctx->lock);
3296
	perf_pmu_disable(ctx->pmu);
3297

3298
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3299
		if (event->state != PERF_EVENT_STATE_ACTIVE)
3300 3301
			continue;

3302
		if (!event_filter_match(event))
3303 3304
			continue;

3305 3306
		perf_pmu_disable(event->pmu);

3307
		hwc = &event->hw;
3308

3309
		if (hwc->interrupts == MAX_INTERRUPTS) {
3310
			hwc->interrupts = 0;
3311
			perf_log_throttle(event, 1);
P
Peter Zijlstra 已提交
3312
			event->pmu->start(event, 0);
3313 3314
		}

3315
		if (!event->attr.freq || !event->attr.sample_freq)
3316
			goto next;
3317

3318 3319 3320 3321 3322
		/*
		 * stop the event and update event->count
		 */
		event->pmu->stop(event, PERF_EF_UPDATE);

3323
		now = local64_read(&event->count);
3324 3325
		delta = now - hwc->freq_count_stamp;
		hwc->freq_count_stamp = now;
3326

3327 3328 3329
		/*
		 * restart the event
		 * reload only if value has changed
3330 3331 3332
		 * we have stopped the event so tell that
		 * to perf_adjust_period() to avoid stopping it
		 * twice.
3333
		 */
3334
		if (delta > 0)
3335
			perf_adjust_period(event, period, delta, false);
3336 3337

		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3338 3339
	next:
		perf_pmu_enable(event->pmu);
3340
	}
3341

3342
	perf_pmu_enable(ctx->pmu);
3343
	raw_spin_unlock(&ctx->lock);
3344 3345
}

3346
/*
3347
 * Round-robin a context's events:
3348
 */
3349
static void rotate_ctx(struct perf_event_context *ctx)
T
Thomas Gleixner 已提交
3350
{
3351 3352 3353 3354 3355 3356
	/*
	 * Rotate the first entry last of non-pinned groups. Rotation might be
	 * disabled by the inheritance code.
	 */
	if (!ctx->rotate_disable)
		list_rotate_left(&ctx->flexible_groups);
3357 3358
}

3359
static int perf_rotate_context(struct perf_cpu_context *cpuctx)
3360
{
P
Peter Zijlstra 已提交
3361
	struct perf_event_context *ctx = NULL;
3362
	int rotate = 0;
3363

3364 3365 3366 3367
	if (cpuctx->ctx.nr_events) {
		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
			rotate = 1;
	}
3368

P
Peter Zijlstra 已提交
3369
	ctx = cpuctx->task_ctx;
3370 3371 3372 3373
	if (ctx && ctx->nr_events) {
		if (ctx->nr_events != ctx->nr_active)
			rotate = 1;
	}
3374

3375
	if (!rotate)
3376 3377
		goto done;

3378
	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
P
Peter Zijlstra 已提交
3379
	perf_pmu_disable(cpuctx->ctx.pmu);
3380

3381 3382 3383
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
	if (ctx)
		ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
T
Thomas Gleixner 已提交
3384

3385 3386 3387
	rotate_ctx(&cpuctx->ctx);
	if (ctx)
		rotate_ctx(ctx);
3388

3389
	perf_event_sched_in(cpuctx, ctx, current);
3390

3391 3392
	perf_pmu_enable(cpuctx->ctx.pmu);
	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3393
done:
3394 3395

	return rotate;
3396 3397 3398 3399
}

void perf_event_task_tick(void)
{
3400 3401
	struct list_head *head = this_cpu_ptr(&active_ctx_list);
	struct perf_event_context *ctx, *tmp;
3402
	int throttled;
3403

3404
	lockdep_assert_irqs_disabled();
3405

3406 3407
	__this_cpu_inc(perf_throttled_seq);
	throttled = __this_cpu_xchg(perf_throttled_count, 0);
3408
	tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
3409

3410
	list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3411
		perf_adjust_freq_unthr_context(ctx, throttled);
T
Thomas Gleixner 已提交
3412 3413
}

3414 3415 3416 3417 3418 3419 3420 3421 3422 3423
static int event_enable_on_exec(struct perf_event *event,
				struct perf_event_context *ctx)
{
	if (!event->attr.enable_on_exec)
		return 0;

	event->attr.enable_on_exec = 0;
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
		return 0;

3424
	perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
3425 3426 3427 3428

	return 1;
}

3429
/*
3430
 * Enable all of a task's events that have been marked enable-on-exec.
3431 3432
 * This expects task == current.
 */
3433
static void perf_event_enable_on_exec(int ctxn)
3434
{
3435
	struct perf_event_context *ctx, *clone_ctx = NULL;
3436
	enum event_type_t event_type = 0;
3437
	struct perf_cpu_context *cpuctx;
3438
	struct perf_event *event;
3439 3440 3441 3442
	unsigned long flags;
	int enabled = 0;

	local_irq_save(flags);
3443
	ctx = current->perf_event_ctxp[ctxn];
3444
	if (!ctx || !ctx->nr_events)
3445 3446
		goto out;

3447 3448
	cpuctx = __get_cpu_context(ctx);
	perf_ctx_lock(cpuctx, ctx);
3449
	ctx_sched_out(ctx, cpuctx, EVENT_TIME);
3450
	list_for_each_entry(event, &ctx->event_list, event_entry) {
3451
		enabled |= event_enable_on_exec(event, ctx);
3452 3453
		event_type |= get_event_type(event);
	}
3454 3455

	/*
3456
	 * Unclone and reschedule this context if we enabled any event.
3457
	 */
3458
	if (enabled) {
3459
		clone_ctx = unclone_ctx(ctx);
3460
		ctx_resched(cpuctx, ctx, event_type);
3461 3462
	} else {
		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
3463 3464
	}
	perf_ctx_unlock(cpuctx, ctx);
3465

P
Peter Zijlstra 已提交
3466
out:
3467
	local_irq_restore(flags);
3468 3469 3470

	if (clone_ctx)
		put_ctx(clone_ctx);
3471 3472
}

3473 3474 3475
struct perf_read_data {
	struct perf_event *event;
	bool group;
3476
	int ret;
3477 3478
};

3479
static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
3480 3481 3482 3483
{
	u16 local_pkg, event_pkg;

	if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
3484 3485 3486 3487
		int local_cpu = smp_processor_id();

		event_pkg = topology_physical_package_id(event_cpu);
		local_pkg = topology_physical_package_id(local_cpu);
3488 3489 3490 3491 3492 3493 3494 3495

		if (event_pkg == local_pkg)
			return local_cpu;
	}

	return event_cpu;
}

T
Thomas Gleixner 已提交
3496
/*
3497
 * Cross CPU call to read the hardware event
T
Thomas Gleixner 已提交
3498
 */
3499
static void __perf_event_read(void *info)
T
Thomas Gleixner 已提交
3500
{
3501 3502
	struct perf_read_data *data = info;
	struct perf_event *sub, *event = data->event;
3503
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
3504
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3505
	struct pmu *pmu = event->pmu;
I
Ingo Molnar 已提交
3506

3507 3508 3509 3510
	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu.  If not it has been
	 * scheduled out before the smp call arrived.  In that case
3511 3512
	 * event->count would have been updated to a recent sample
	 * when the event was scheduled out.
3513 3514 3515 3516
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

3517
	raw_spin_lock(&ctx->lock);
P
Peter Zijlstra 已提交
3518
	if (ctx->is_active & EVENT_TIME) {
3519
		update_context_time(ctx);
S
Stephane Eranian 已提交
3520 3521
		update_cgrp_time_from_event(event);
	}
3522

3523 3524 3525
	perf_event_update_time(event);
	if (data->group)
		perf_event_update_sibling_time(event);
P
Peter Zijlstra 已提交
3526

3527 3528
	if (event->state != PERF_EVENT_STATE_ACTIVE)
		goto unlock;
3529

3530 3531 3532
	if (!data->group) {
		pmu->read(event);
		data->ret = 0;
3533
		goto unlock;
3534 3535 3536 3537 3538
	}

	pmu->start_txn(pmu, PERF_PMU_TXN_READ);

	pmu->read(event);
3539 3540

	list_for_each_entry(sub, &event->sibling_list, group_entry) {
3541 3542 3543 3544 3545
		if (sub->state == PERF_EVENT_STATE_ACTIVE) {
			/*
			 * Use sibling's PMU rather than @event's since
			 * sibling could be on different (eg: software) PMU.
			 */
3546
			sub->pmu->read(sub);
3547
		}
3548
	}
3549 3550

	data->ret = pmu->commit_txn(pmu);
3551 3552

unlock:
3553
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
3554 3555
}

P
Peter Zijlstra 已提交
3556 3557
static inline u64 perf_event_count(struct perf_event *event)
{
3558
	return local64_read(&event->count) + atomic64_read(&event->child_count);
P
Peter Zijlstra 已提交
3559 3560
}

3561 3562 3563 3564 3565 3566 3567 3568
/*
 * NMI-safe method to read a local event, that is an event that
 * is:
 *   - either for the current task, or for this CPU
 *   - does not have inherit set, for inherited task events
 *     will not be local and we cannot read them atomically
 *   - must not have a pmu::count method
 */
3569 3570
int perf_event_read_local(struct perf_event *event, u64 *value,
			  u64 *enabled, u64 *running)
3571 3572
{
	unsigned long flags;
3573
	int ret = 0;
3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584

	/*
	 * Disabling interrupts avoids all counter scheduling (context
	 * switches, timer based rotation and IPIs).
	 */
	local_irq_save(flags);

	/*
	 * It must not be an event with inherit set, we cannot read
	 * all child counters from atomic context.
	 */
3585 3586 3587 3588
	if (event->attr.inherit) {
		ret = -EOPNOTSUPP;
		goto out;
	}
3589

3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602
	/* If this is a per-task event, it must be for current */
	if ((event->attach_state & PERF_ATTACH_TASK) &&
	    event->hw.target != current) {
		ret = -EINVAL;
		goto out;
	}

	/* If this is a per-CPU event, it must be for this CPU */
	if (!(event->attach_state & PERF_ATTACH_TASK) &&
	    event->cpu != smp_processor_id()) {
		ret = -EINVAL;
		goto out;
	}
3603 3604 3605 3606 3607 3608 3609 3610 3611

	/*
	 * If the event is currently on this CPU, its either a per-task event,
	 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
	 * oncpu == -1).
	 */
	if (event->oncpu == smp_processor_id())
		event->pmu->read(event);

3612
	*value = local64_read(&event->count);
3613 3614 3615 3616 3617 3618 3619 3620 3621 3622
	if (enabled || running) {
		u64 now = event->shadow_ctx_time + perf_clock();
		u64 __enabled, __running;

		__perf_update_times(event, now, &__enabled, &__running);
		if (enabled)
			*enabled = __enabled;
		if (running)
			*running = __running;
	}
3623
out:
3624 3625
	local_irq_restore(flags);

3626
	return ret;
3627 3628
}

3629
static int perf_event_read(struct perf_event *event, bool group)
T
Thomas Gleixner 已提交
3630
{
P
Peter Zijlstra 已提交
3631
	enum perf_event_state state = READ_ONCE(event->state);
3632
	int event_cpu, ret = 0;
3633

T
Thomas Gleixner 已提交
3634
	/*
3635 3636
	 * If event is enabled and currently active on a CPU, update the
	 * value in the event structure:
T
Thomas Gleixner 已提交
3637
	 */
P
Peter Zijlstra 已提交
3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648
again:
	if (state == PERF_EVENT_STATE_ACTIVE) {
		struct perf_read_data data;

		/*
		 * Orders the ->state and ->oncpu loads such that if we see
		 * ACTIVE we must also see the right ->oncpu.
		 *
		 * Matches the smp_wmb() from event_sched_in().
		 */
		smp_rmb();
3649

3650 3651 3652 3653
		event_cpu = READ_ONCE(event->oncpu);
		if ((unsigned)event_cpu >= nr_cpu_ids)
			return 0;

P
Peter Zijlstra 已提交
3654 3655 3656 3657 3658 3659
		data = (struct perf_read_data){
			.event = event,
			.group = group,
			.ret = 0,
		};

3660 3661
		preempt_disable();
		event_cpu = __perf_event_read_cpu(event, event_cpu);
3662

3663 3664 3665 3666
		/*
		 * Purposely ignore the smp_call_function_single() return
		 * value.
		 *
3667
		 * If event_cpu isn't a valid CPU it means the event got
3668 3669 3670 3671 3672
		 * scheduled out and that will have updated the event count.
		 *
		 * Therefore, either way, we'll have an up-to-date event count
		 * after this.
		 */
3673 3674
		(void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
		preempt_enable();
3675
		ret = data.ret;
P
Peter Zijlstra 已提交
3676 3677

	} else if (state == PERF_EVENT_STATE_INACTIVE) {
P
Peter Zijlstra 已提交
3678 3679 3680
		struct perf_event_context *ctx = event->ctx;
		unsigned long flags;

3681
		raw_spin_lock_irqsave(&ctx->lock, flags);
P
Peter Zijlstra 已提交
3682 3683 3684 3685 3686 3687
		state = event->state;
		if (state != PERF_EVENT_STATE_INACTIVE) {
			raw_spin_unlock_irqrestore(&ctx->lock, flags);
			goto again;
		}

3688
		/*
P
Peter Zijlstra 已提交
3689 3690
		 * May read while context is not active (e.g., thread is
		 * blocked), in that case we cannot update context time
3691
		 */
P
Peter Zijlstra 已提交
3692
		if (ctx->is_active & EVENT_TIME) {
3693
			update_context_time(ctx);
S
Stephane Eranian 已提交
3694 3695
			update_cgrp_time_from_event(event);
		}
P
Peter Zijlstra 已提交
3696

3697
		perf_event_update_time(event);
3698
		if (group)
3699
			perf_event_update_sibling_time(event);
3700
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
3701
	}
3702 3703

	return ret;
T
Thomas Gleixner 已提交
3704 3705
}

3706
/*
3707
 * Initialize the perf_event context in a task_struct:
3708
 */
3709
static void __perf_event_init_context(struct perf_event_context *ctx)
3710
{
3711
	raw_spin_lock_init(&ctx->lock);
3712
	mutex_init(&ctx->mutex);
3713
	INIT_LIST_HEAD(&ctx->active_ctx_list);
3714 3715
	INIT_LIST_HEAD(&ctx->pinned_groups);
	INIT_LIST_HEAD(&ctx->flexible_groups);
3716 3717
	INIT_LIST_HEAD(&ctx->event_list);
	atomic_set(&ctx->refcount, 1);
3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732
}

static struct perf_event_context *
alloc_perf_context(struct pmu *pmu, struct task_struct *task)
{
	struct perf_event_context *ctx;

	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
	if (!ctx)
		return NULL;

	__perf_event_init_context(ctx);
	if (task) {
		ctx->task = task;
		get_task_struct(task);
T
Thomas Gleixner 已提交
3733
	}
3734 3735 3736
	ctx->pmu = pmu;

	return ctx;
3737 3738
}

3739 3740 3741 3742
static struct task_struct *
find_lively_task_by_vpid(pid_t vpid)
{
	struct task_struct *task;
T
Thomas Gleixner 已提交
3743 3744

	rcu_read_lock();
3745
	if (!vpid)
T
Thomas Gleixner 已提交
3746 3747
		task = current;
	else
3748
		task = find_task_by_vpid(vpid);
T
Thomas Gleixner 已提交
3749 3750 3751 3752 3753 3754 3755
	if (task)
		get_task_struct(task);
	rcu_read_unlock();

	if (!task)
		return ERR_PTR(-ESRCH);

3756 3757 3758
	return task;
}

3759 3760 3761
/*
 * Returns a matching context with refcount and pincount.
 */
P
Peter Zijlstra 已提交
3762
static struct perf_event_context *
3763 3764
find_get_context(struct pmu *pmu, struct task_struct *task,
		struct perf_event *event)
T
Thomas Gleixner 已提交
3765
{
3766
	struct perf_event_context *ctx, *clone_ctx = NULL;
3767
	struct perf_cpu_context *cpuctx;
3768
	void *task_ctx_data = NULL;
3769
	unsigned long flags;
P
Peter Zijlstra 已提交
3770
	int ctxn, err;
3771
	int cpu = event->cpu;
T
Thomas Gleixner 已提交
3772

3773
	if (!task) {
3774
		/* Must be root to operate on a CPU event: */
3775
		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
T
Thomas Gleixner 已提交
3776 3777
			return ERR_PTR(-EACCES);

P
Peter Zijlstra 已提交
3778
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
T
Thomas Gleixner 已提交
3779
		ctx = &cpuctx->ctx;
3780
		get_ctx(ctx);
3781
		++ctx->pin_count;
T
Thomas Gleixner 已提交
3782 3783 3784 3785

		return ctx;
	}

P
Peter Zijlstra 已提交
3786 3787 3788 3789 3790
	err = -EINVAL;
	ctxn = pmu->task_ctx_nr;
	if (ctxn < 0)
		goto errout;

3791 3792 3793 3794 3795 3796 3797 3798
	if (event->attach_state & PERF_ATTACH_TASK_DATA) {
		task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
		if (!task_ctx_data) {
			err = -ENOMEM;
			goto errout;
		}
	}

P
Peter Zijlstra 已提交
3799
retry:
P
Peter Zijlstra 已提交
3800
	ctx = perf_lock_task_context(task, ctxn, &flags);
3801
	if (ctx) {
3802
		clone_ctx = unclone_ctx(ctx);
3803
		++ctx->pin_count;
3804 3805 3806 3807 3808

		if (task_ctx_data && !ctx->task_ctx_data) {
			ctx->task_ctx_data = task_ctx_data;
			task_ctx_data = NULL;
		}
3809
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3810 3811 3812

		if (clone_ctx)
			put_ctx(clone_ctx);
3813
	} else {
3814
		ctx = alloc_perf_context(pmu, task);
3815 3816 3817
		err = -ENOMEM;
		if (!ctx)
			goto errout;
3818

3819 3820 3821 3822 3823
		if (task_ctx_data) {
			ctx->task_ctx_data = task_ctx_data;
			task_ctx_data = NULL;
		}

3824 3825 3826 3827 3828 3829 3830 3831 3832 3833
		err = 0;
		mutex_lock(&task->perf_event_mutex);
		/*
		 * If it has already passed perf_event_exit_task().
		 * we must see PF_EXITING, it takes this mutex too.
		 */
		if (task->flags & PF_EXITING)
			err = -ESRCH;
		else if (task->perf_event_ctxp[ctxn])
			err = -EAGAIN;
3834
		else {
3835
			get_ctx(ctx);
3836
			++ctx->pin_count;
3837
			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3838
		}
3839 3840 3841
		mutex_unlock(&task->perf_event_mutex);

		if (unlikely(err)) {
3842
			put_ctx(ctx);
3843 3844 3845 3846

			if (err == -EAGAIN)
				goto retry;
			goto errout;
3847 3848 3849
		}
	}

3850
	kfree(task_ctx_data);
T
Thomas Gleixner 已提交
3851
	return ctx;
3852

P
Peter Zijlstra 已提交
3853
errout:
3854
	kfree(task_ctx_data);
3855
	return ERR_PTR(err);
T
Thomas Gleixner 已提交
3856 3857
}

L
Li Zefan 已提交
3858
static void perf_event_free_filter(struct perf_event *event);
3859
static void perf_event_free_bpf_prog(struct perf_event *event);
L
Li Zefan 已提交
3860

3861
static void free_event_rcu(struct rcu_head *head)
P
Peter Zijlstra 已提交
3862
{
3863
	struct perf_event *event;
P
Peter Zijlstra 已提交
3864

3865 3866 3867
	event = container_of(head, struct perf_event, rcu_head);
	if (event->ns)
		put_pid_ns(event->ns);
L
Li Zefan 已提交
3868
	perf_event_free_filter(event);
3869
	kfree(event);
P
Peter Zijlstra 已提交
3870 3871
}

3872 3873
static void ring_buffer_attach(struct perf_event *event,
			       struct ring_buffer *rb);
3874

3875 3876 3877 3878 3879 3880 3881 3882 3883
static void detach_sb_event(struct perf_event *event)
{
	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);

	raw_spin_lock(&pel->lock);
	list_del_rcu(&event->sb_list);
	raw_spin_unlock(&pel->lock);
}

3884
static bool is_sb_event(struct perf_event *event)
3885
{
3886 3887
	struct perf_event_attr *attr = &event->attr;

3888
	if (event->parent)
3889
		return false;
3890 3891

	if (event->attach_state & PERF_ATTACH_TASK)
3892
		return false;
3893

3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905
	if (attr->mmap || attr->mmap_data || attr->mmap2 ||
	    attr->comm || attr->comm_exec ||
	    attr->task ||
	    attr->context_switch)
		return true;
	return false;
}

static void unaccount_pmu_sb_event(struct perf_event *event)
{
	if (is_sb_event(event))
		detach_sb_event(event);
3906 3907
}

3908
static void unaccount_event_cpu(struct perf_event *event, int cpu)
3909
{
3910 3911 3912 3913 3914 3915
	if (event->parent)
		return;

	if (is_cgroup_event(event))
		atomic_dec(&per_cpu(perf_cgroup_events, cpu));
}
3916

3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938
#ifdef CONFIG_NO_HZ_FULL
static DEFINE_SPINLOCK(nr_freq_lock);
#endif

static void unaccount_freq_event_nohz(void)
{
#ifdef CONFIG_NO_HZ_FULL
	spin_lock(&nr_freq_lock);
	if (atomic_dec_and_test(&nr_freq_events))
		tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
	spin_unlock(&nr_freq_lock);
#endif
}

static void unaccount_freq_event(void)
{
	if (tick_nohz_full_enabled())
		unaccount_freq_event_nohz();
	else
		atomic_dec(&nr_freq_events);
}

3939 3940
static void unaccount_event(struct perf_event *event)
{
3941 3942
	bool dec = false;

3943 3944 3945 3946
	if (event->parent)
		return;

	if (event->attach_state & PERF_ATTACH_TASK)
3947
		dec = true;
3948 3949 3950 3951
	if (event->attr.mmap || event->attr.mmap_data)
		atomic_dec(&nr_mmap_events);
	if (event->attr.comm)
		atomic_dec(&nr_comm_events);
3952 3953
	if (event->attr.namespaces)
		atomic_dec(&nr_namespaces_events);
3954 3955
	if (event->attr.task)
		atomic_dec(&nr_task_events);
3956
	if (event->attr.freq)
3957
		unaccount_freq_event();
3958
	if (event->attr.context_switch) {
3959
		dec = true;
3960 3961
		atomic_dec(&nr_switch_events);
	}
3962
	if (is_cgroup_event(event))
3963
		dec = true;
3964
	if (has_branch_stack(event))
3965 3966
		dec = true;

3967 3968 3969 3970
	if (dec) {
		if (!atomic_add_unless(&perf_sched_count, -1, 1))
			schedule_delayed_work(&perf_sched_work, HZ);
	}
3971 3972

	unaccount_event_cpu(event, event->cpu);
3973 3974

	unaccount_pmu_sb_event(event);
3975
}
3976

3977 3978 3979 3980 3981 3982 3983 3984
static void perf_sched_delayed(struct work_struct *work)
{
	mutex_lock(&perf_sched_mutex);
	if (atomic_dec_and_test(&perf_sched_count))
		static_branch_disable(&perf_sched_events);
	mutex_unlock(&perf_sched_mutex);
}

3985 3986 3987 3988 3989 3990 3991 3992 3993 3994
/*
 * The following implement mutual exclusion of events on "exclusive" pmus
 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
 * at a time, so we disallow creating events that might conflict, namely:
 *
 *  1) cpu-wide events in the presence of per-task events,
 *  2) per-task events in the presence of cpu-wide events,
 *  3) two matching events on the same context.
 *
 * The former two cases are handled in the allocation path (perf_event_alloc(),
P
Peter Zijlstra 已提交
3995
 * _free_event()), the latter -- before the first perf_install_in_context().
3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043
 */
static int exclusive_event_init(struct perf_event *event)
{
	struct pmu *pmu = event->pmu;

	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
		return 0;

	/*
	 * Prevent co-existence of per-task and cpu-wide events on the
	 * same exclusive pmu.
	 *
	 * Negative pmu::exclusive_cnt means there are cpu-wide
	 * events on this "exclusive" pmu, positive means there are
	 * per-task events.
	 *
	 * Since this is called in perf_event_alloc() path, event::ctx
	 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
	 * to mean "per-task event", because unlike other attach states it
	 * never gets cleared.
	 */
	if (event->attach_state & PERF_ATTACH_TASK) {
		if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
			return -EBUSY;
	} else {
		if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
			return -EBUSY;
	}

	return 0;
}

static void exclusive_event_destroy(struct perf_event *event)
{
	struct pmu *pmu = event->pmu;

	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
		return;

	/* see comment in exclusive_event_init() */
	if (event->attach_state & PERF_ATTACH_TASK)
		atomic_dec(&pmu->exclusive_cnt);
	else
		atomic_inc(&pmu->exclusive_cnt);
}

static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
{
4044
	if ((e1->pmu == e2->pmu) &&
4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069
	    (e1->cpu == e2->cpu ||
	     e1->cpu == -1 ||
	     e2->cpu == -1))
		return true;
	return false;
}

/* Called under the same ctx::mutex as perf_install_in_context() */
static bool exclusive_event_installable(struct perf_event *event,
					struct perf_event_context *ctx)
{
	struct perf_event *iter_event;
	struct pmu *pmu = event->pmu;

	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
		return true;

	list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
		if (exclusive_event_match(iter_event, event))
			return false;
	}

	return true;
}

4070 4071 4072
static void perf_addr_filters_splice(struct perf_event *event,
				       struct list_head *head);

P
Peter Zijlstra 已提交
4073
static void _free_event(struct perf_event *event)
4074
{
4075
	irq_work_sync(&event->pending);
4076

4077
	unaccount_event(event);
4078

4079
	if (event->rb) {
4080 4081 4082 4083 4084 4085 4086
		/*
		 * Can happen when we close an event with re-directed output.
		 *
		 * Since we have a 0 refcount, perf_mmap_close() will skip
		 * over us; possibly making our ring_buffer_put() the last.
		 */
		mutex_lock(&event->mmap_mutex);
4087
		ring_buffer_attach(event, NULL);
4088
		mutex_unlock(&event->mmap_mutex);
4089 4090
	}

S
Stephane Eranian 已提交
4091 4092 4093
	if (is_cgroup_event(event))
		perf_detach_cgroup(event);

P
Peter Zijlstra 已提交
4094 4095 4096 4097 4098 4099
	if (!event->parent) {
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
			put_callchain_buffers();
	}

	perf_event_free_bpf_prog(event);
4100 4101
	perf_addr_filters_splice(event, NULL);
	kfree(event->addr_filters_offs);
P
Peter Zijlstra 已提交
4102 4103 4104 4105 4106 4107 4108

	if (event->destroy)
		event->destroy(event);

	if (event->ctx)
		put_ctx(event->ctx);

4109 4110
	exclusive_event_destroy(event);
	module_put(event->pmu->module);
P
Peter Zijlstra 已提交
4111 4112

	call_rcu(&event->rcu_head, free_event_rcu);
4113 4114
}

P
Peter Zijlstra 已提交
4115 4116 4117 4118 4119
/*
 * Used to free events which have a known refcount of 1, such as in error paths
 * where the event isn't exposed yet and inherited events.
 */
static void free_event(struct perf_event *event)
T
Thomas Gleixner 已提交
4120
{
P
Peter Zijlstra 已提交
4121 4122 4123 4124 4125 4126
	if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
				"unexpected event refcount: %ld; ptr=%p\n",
				atomic_long_read(&event->refcount), event)) {
		/* leak to avoid use-after-free */
		return;
	}
T
Thomas Gleixner 已提交
4127

P
Peter Zijlstra 已提交
4128
	_free_event(event);
T
Thomas Gleixner 已提交
4129 4130
}

4131
/*
4132
 * Remove user event from the owner task.
4133
 */
4134
static void perf_remove_from_owner(struct perf_event *event)
4135
{
P
Peter Zijlstra 已提交
4136
	struct task_struct *owner;
4137

P
Peter Zijlstra 已提交
4138 4139
	rcu_read_lock();
	/*
4140 4141 4142
	 * Matches the smp_store_release() in perf_event_exit_task(). If we
	 * observe !owner it means the list deletion is complete and we can
	 * indeed free this event, otherwise we need to serialize on
P
Peter Zijlstra 已提交
4143 4144
	 * owner->perf_event_mutex.
	 */
4145
	owner = READ_ONCE(event->owner);
P
Peter Zijlstra 已提交
4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156
	if (owner) {
		/*
		 * Since delayed_put_task_struct() also drops the last
		 * task reference we can safely take a new reference
		 * while holding the rcu_read_lock().
		 */
		get_task_struct(owner);
	}
	rcu_read_unlock();

	if (owner) {
P
Peter Zijlstra 已提交
4157 4158 4159 4160 4161 4162 4163 4164 4165 4166
		/*
		 * If we're here through perf_event_exit_task() we're already
		 * holding ctx->mutex which would be an inversion wrt. the
		 * normal lock order.
		 *
		 * However we can safely take this lock because its the child
		 * ctx->mutex.
		 */
		mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);

P
Peter Zijlstra 已提交
4167 4168 4169 4170 4171 4172
		/*
		 * We have to re-check the event->owner field, if it is cleared
		 * we raced with perf_event_exit_task(), acquiring the mutex
		 * ensured they're done, and we can proceed with freeing the
		 * event.
		 */
4173
		if (event->owner) {
P
Peter Zijlstra 已提交
4174
			list_del_init(&event->owner_entry);
4175 4176
			smp_store_release(&event->owner, NULL);
		}
P
Peter Zijlstra 已提交
4177 4178 4179
		mutex_unlock(&owner->perf_event_mutex);
		put_task_struct(owner);
	}
4180 4181 4182 4183 4184 4185 4186
}

static void put_event(struct perf_event *event)
{
	if (!atomic_long_dec_and_test(&event->refcount))
		return;

4187 4188 4189 4190 4191 4192 4193 4194 4195 4196
	_free_event(event);
}

/*
 * Kill an event dead; while event:refcount will preserve the event
 * object, it will not preserve its functionality. Once the last 'user'
 * gives up the object, we'll destroy the thing.
 */
int perf_event_release_kernel(struct perf_event *event)
{
4197
	struct perf_event_context *ctx = event->ctx;
4198 4199
	struct perf_event *child, *tmp;

4200 4201 4202 4203 4204 4205 4206 4207 4208 4209
	/*
	 * If we got here through err_file: fput(event_file); we will not have
	 * attached to a context yet.
	 */
	if (!ctx) {
		WARN_ON_ONCE(event->attach_state &
				(PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
		goto no_ctx;
	}

4210 4211
	if (!is_kernel_event(event))
		perf_remove_from_owner(event);
P
Peter Zijlstra 已提交
4212

4213
	ctx = perf_event_ctx_lock(event);
P
Peter Zijlstra 已提交
4214
	WARN_ON_ONCE(ctx->parent_ctx);
P
Peter Zijlstra 已提交
4215
	perf_remove_from_context(event, DETACH_GROUP);
P
Peter Zijlstra 已提交
4216

P
Peter Zijlstra 已提交
4217
	raw_spin_lock_irq(&ctx->lock);
P
Peter Zijlstra 已提交
4218
	/*
4219
	 * Mark this event as STATE_DEAD, there is no external reference to it
P
Peter Zijlstra 已提交
4220
	 * anymore.
P
Peter Zijlstra 已提交
4221
	 *
P
Peter Zijlstra 已提交
4222 4223 4224
	 * Anybody acquiring event->child_mutex after the below loop _must_
	 * also see this, most importantly inherit_event() which will avoid
	 * placing more children on the list.
P
Peter Zijlstra 已提交
4225
	 *
4226 4227
	 * Thus this guarantees that we will in fact observe and kill _ALL_
	 * child events.
P
Peter Zijlstra 已提交
4228
	 */
P
Peter Zijlstra 已提交
4229 4230 4231 4232
	event->state = PERF_EVENT_STATE_DEAD;
	raw_spin_unlock_irq(&ctx->lock);

	perf_event_ctx_unlock(event, ctx);
P
Peter Zijlstra 已提交
4233

4234 4235 4236
again:
	mutex_lock(&event->child_mutex);
	list_for_each_entry(child, &event->child_list, child_list) {
4237

4238 4239 4240 4241
		/*
		 * Cannot change, child events are not migrated, see the
		 * comment with perf_event_ctx_lock_nested().
		 */
4242
		ctx = READ_ONCE(child->ctx);
4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286
		/*
		 * Since child_mutex nests inside ctx::mutex, we must jump
		 * through hoops. We start by grabbing a reference on the ctx.
		 *
		 * Since the event cannot get freed while we hold the
		 * child_mutex, the context must also exist and have a !0
		 * reference count.
		 */
		get_ctx(ctx);

		/*
		 * Now that we have a ctx ref, we can drop child_mutex, and
		 * acquire ctx::mutex without fear of it going away. Then we
		 * can re-acquire child_mutex.
		 */
		mutex_unlock(&event->child_mutex);
		mutex_lock(&ctx->mutex);
		mutex_lock(&event->child_mutex);

		/*
		 * Now that we hold ctx::mutex and child_mutex, revalidate our
		 * state, if child is still the first entry, it didn't get freed
		 * and we can continue doing so.
		 */
		tmp = list_first_entry_or_null(&event->child_list,
					       struct perf_event, child_list);
		if (tmp == child) {
			perf_remove_from_context(child, DETACH_GROUP);
			list_del(&child->child_list);
			free_event(child);
			/*
			 * This matches the refcount bump in inherit_event();
			 * this can't be the last reference.
			 */
			put_event(event);
		}

		mutex_unlock(&event->child_mutex);
		mutex_unlock(&ctx->mutex);
		put_ctx(ctx);
		goto again;
	}
	mutex_unlock(&event->child_mutex);

4287 4288
no_ctx:
	put_event(event); /* Must be the 'last' reference */
P
Peter Zijlstra 已提交
4289 4290 4291 4292
	return 0;
}
EXPORT_SYMBOL_GPL(perf_event_release_kernel);

4293 4294 4295
/*
 * Called when the last reference to the file is gone.
 */
4296 4297
static int perf_release(struct inode *inode, struct file *file)
{
4298
	perf_event_release_kernel(file->private_data);
4299
	return 0;
4300 4301
}

4302
static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4303
{
4304
	struct perf_event *child;
4305 4306
	u64 total = 0;

4307 4308 4309
	*enabled = 0;
	*running = 0;

4310
	mutex_lock(&event->child_mutex);
4311

4312
	(void)perf_event_read(event, false);
4313 4314
	total += perf_event_count(event);

4315 4316 4317 4318 4319 4320
	*enabled += event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
	*running += event->total_time_running +
			atomic64_read(&event->child_total_time_running);

	list_for_each_entry(child, &event->child_list, child_list) {
4321
		(void)perf_event_read(child, false);
4322
		total += perf_event_count(child);
4323 4324 4325
		*enabled += child->total_time_enabled;
		*running += child->total_time_running;
	}
4326
	mutex_unlock(&event->child_mutex);
4327 4328 4329

	return total;
}
4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341

u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
{
	struct perf_event_context *ctx;
	u64 count;

	ctx = perf_event_ctx_lock(event);
	count = __perf_event_read_value(event, enabled, running);
	perf_event_ctx_unlock(event, ctx);

	return count;
}
4342
EXPORT_SYMBOL_GPL(perf_event_read_value);
4343

4344
static int __perf_read_group_add(struct perf_event *leader,
4345
					u64 read_format, u64 *values)
4346
{
4347
	struct perf_event_context *ctx = leader->ctx;
4348
	struct perf_event *sub;
4349
	unsigned long flags;
4350
	int n = 1; /* skip @nr */
4351
	int ret;
P
Peter Zijlstra 已提交
4352

4353 4354 4355
	ret = perf_event_read(leader, true);
	if (ret)
		return ret;
4356

4357 4358
	raw_spin_lock_irqsave(&ctx->lock, flags);

4359 4360 4361 4362 4363 4364 4365 4366 4367
	/*
	 * Since we co-schedule groups, {enabled,running} times of siblings
	 * will be identical to those of the leader, so we only publish one
	 * set.
	 */
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
		values[n++] += leader->total_time_enabled +
			atomic64_read(&leader->child_total_time_enabled);
	}
4368

4369 4370 4371 4372 4373 4374 4375 4376 4377
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
		values[n++] += leader->total_time_running +
			atomic64_read(&leader->child_total_time_running);
	}

	/*
	 * Write {count,id} tuples for every sibling.
	 */
	values[n++] += perf_event_count(leader);
4378 4379
	if (read_format & PERF_FORMAT_ID)
		values[n++] = primary_event_id(leader);
4380

4381 4382 4383 4384 4385
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
		values[n++] += perf_event_count(sub);
		if (read_format & PERF_FORMAT_ID)
			values[n++] = primary_event_id(sub);
	}
4386

4387
	raw_spin_unlock_irqrestore(&ctx->lock, flags);
4388
	return 0;
4389
}
4390

4391 4392 4393 4394 4395
static int perf_read_group(struct perf_event *event,
				   u64 read_format, char __user *buf)
{
	struct perf_event *leader = event->group_leader, *child;
	struct perf_event_context *ctx = leader->ctx;
4396
	int ret;
4397
	u64 *values;
4398

4399
	lockdep_assert_held(&ctx->mutex);
4400

4401 4402 4403
	values = kzalloc(event->read_size, GFP_KERNEL);
	if (!values)
		return -ENOMEM;
4404

4405 4406 4407 4408 4409 4410 4411
	values[0] = 1 + leader->nr_siblings;

	/*
	 * By locking the child_mutex of the leader we effectively
	 * lock the child list of all siblings.. XXX explain how.
	 */
	mutex_lock(&leader->child_mutex);
4412

4413 4414 4415 4416 4417 4418 4419 4420 4421
	ret = __perf_read_group_add(leader, read_format, values);
	if (ret)
		goto unlock;

	list_for_each_entry(child, &leader->child_list, child_list) {
		ret = __perf_read_group_add(child, read_format, values);
		if (ret)
			goto unlock;
	}
4422

4423
	mutex_unlock(&leader->child_mutex);
4424

4425
	ret = event->read_size;
4426 4427
	if (copy_to_user(buf, values, event->read_size))
		ret = -EFAULT;
4428
	goto out;
4429

4430 4431 4432
unlock:
	mutex_unlock(&leader->child_mutex);
out:
4433
	kfree(values);
4434
	return ret;
4435 4436
}

4437
static int perf_read_one(struct perf_event *event,
4438 4439
				 u64 read_format, char __user *buf)
{
4440
	u64 enabled, running;
4441 4442 4443
	u64 values[4];
	int n = 0;

4444
	values[n++] = __perf_event_read_value(event, &enabled, &running);
4445 4446 4447 4448
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
4449
	if (read_format & PERF_FORMAT_ID)
4450
		values[n++] = primary_event_id(event);
4451 4452 4453 4454 4455 4456 4457

	if (copy_to_user(buf, values, n * sizeof(u64)))
		return -EFAULT;

	return n * sizeof(u64);
}

4458 4459 4460 4461
static bool is_event_hup(struct perf_event *event)
{
	bool no_children;

P
Peter Zijlstra 已提交
4462
	if (event->state > PERF_EVENT_STATE_EXIT)
4463 4464 4465 4466 4467 4468 4469 4470
		return false;

	mutex_lock(&event->child_mutex);
	no_children = list_empty(&event->child_list);
	mutex_unlock(&event->child_mutex);
	return no_children;
}

T
Thomas Gleixner 已提交
4471
/*
4472
 * Read the performance event - simple non blocking version for now
T
Thomas Gleixner 已提交
4473 4474
 */
static ssize_t
4475
__perf_read(struct perf_event *event, char __user *buf, size_t count)
T
Thomas Gleixner 已提交
4476
{
4477
	u64 read_format = event->attr.read_format;
4478
	int ret;
T
Thomas Gleixner 已提交
4479

4480
	/*
4481
	 * Return end-of-file for a read on a event that is in
4482 4483 4484
	 * error state (i.e. because it was pinned but it couldn't be
	 * scheduled on to the CPU at some point).
	 */
4485
	if (event->state == PERF_EVENT_STATE_ERROR)
4486 4487
		return 0;

4488
	if (count < event->read_size)
4489 4490
		return -ENOSPC;

4491
	WARN_ON_ONCE(event->ctx->parent_ctx);
4492
	if (read_format & PERF_FORMAT_GROUP)
4493
		ret = perf_read_group(event, read_format, buf);
4494
	else
4495
		ret = perf_read_one(event, read_format, buf);
T
Thomas Gleixner 已提交
4496

4497
	return ret;
T
Thomas Gleixner 已提交
4498 4499 4500 4501 4502
}

static ssize_t
perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
4503
	struct perf_event *event = file->private_data;
P
Peter Zijlstra 已提交
4504 4505
	struct perf_event_context *ctx;
	int ret;
T
Thomas Gleixner 已提交
4506

P
Peter Zijlstra 已提交
4507
	ctx = perf_event_ctx_lock(event);
4508
	ret = __perf_read(event, buf, count);
P
Peter Zijlstra 已提交
4509 4510 4511
	perf_event_ctx_unlock(event, ctx);

	return ret;
T
Thomas Gleixner 已提交
4512 4513 4514 4515
}

static unsigned int perf_poll(struct file *file, poll_table *wait)
{
4516
	struct perf_event *event = file->private_data;
4517
	struct ring_buffer *rb;
4518
	unsigned int events = POLLHUP;
P
Peter Zijlstra 已提交
4519

4520
	poll_wait(file, &event->waitq, wait);
4521

4522
	if (is_event_hup(event))
4523
		return events;
P
Peter Zijlstra 已提交
4524

4525
	/*
4526 4527
	 * Pin the event->rb by taking event->mmap_mutex; otherwise
	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4528 4529
	 */
	mutex_lock(&event->mmap_mutex);
4530 4531
	rb = event->rb;
	if (rb)
4532
		events = atomic_xchg(&rb->poll, 0);
4533
	mutex_unlock(&event->mmap_mutex);
T
Thomas Gleixner 已提交
4534 4535 4536
	return events;
}

P
Peter Zijlstra 已提交
4537
static void _perf_event_reset(struct perf_event *event)
4538
{
4539
	(void)perf_event_read(event, false);
4540
	local64_set(&event->count, 0);
4541
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
4542 4543
}

4544
/*
4545 4546
 * Holding the top-level event's child_mutex means that any
 * descendant process that has inherited this event will block
4547
 * in perf_event_exit_event() if it goes to exit, thus satisfying the
4548
 * task existence requirements of perf_event_enable/disable.
4549
 */
4550 4551
static void perf_event_for_each_child(struct perf_event *event,
					void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
4552
{
4553
	struct perf_event *child;
P
Peter Zijlstra 已提交
4554

4555
	WARN_ON_ONCE(event->ctx->parent_ctx);
P
Peter Zijlstra 已提交
4556

4557 4558 4559
	mutex_lock(&event->child_mutex);
	func(event);
	list_for_each_entry(child, &event->child_list, child_list)
P
Peter Zijlstra 已提交
4560
		func(child);
4561
	mutex_unlock(&event->child_mutex);
P
Peter Zijlstra 已提交
4562 4563
}

4564 4565
static void perf_event_for_each(struct perf_event *event,
				  void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
4566
{
4567 4568
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *sibling;
P
Peter Zijlstra 已提交
4569

P
Peter Zijlstra 已提交
4570 4571
	lockdep_assert_held(&ctx->mutex);

4572
	event = event->group_leader;
4573

4574 4575
	perf_event_for_each_child(event, func);
	list_for_each_entry(sibling, &event->sibling_list, group_entry)
4576
		perf_event_for_each_child(sibling, func);
4577 4578
}

4579 4580 4581 4582
static void __perf_event_period(struct perf_event *event,
				struct perf_cpu_context *cpuctx,
				struct perf_event_context *ctx,
				void *info)
4583
{
4584
	u64 value = *((u64 *)info);
4585
	bool active;
4586

4587 4588
	if (event->attr.freq) {
		event->attr.sample_freq = value;
4589
	} else {
4590 4591
		event->attr.sample_period = value;
		event->hw.sample_period = value;
4592
	}
4593 4594 4595 4596

	active = (event->state == PERF_EVENT_STATE_ACTIVE);
	if (active) {
		perf_pmu_disable(ctx->pmu);
4597 4598 4599 4600 4601 4602 4603 4604
		/*
		 * We could be throttled; unthrottle now to avoid the tick
		 * trying to unthrottle while we already re-started the event.
		 */
		if (event->hw.interrupts == MAX_INTERRUPTS) {
			event->hw.interrupts = 0;
			perf_log_throttle(event, 1);
		}
4605 4606 4607 4608 4609 4610 4611 4612 4613
		event->pmu->stop(event, PERF_EF_UPDATE);
	}

	local64_set(&event->hw.period_left, 0);

	if (active) {
		event->pmu->start(event, PERF_EF_RELOAD);
		perf_pmu_enable(ctx->pmu);
	}
4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631
}

static int perf_event_period(struct perf_event *event, u64 __user *arg)
{
	u64 value;

	if (!is_sampling_event(event))
		return -EINVAL;

	if (copy_from_user(&value, arg, sizeof(value)))
		return -EFAULT;

	if (!value)
		return -EINVAL;

	if (event->attr.freq && value > sysctl_perf_event_sample_rate)
		return -EINVAL;

4632
	event_function_call(event, __perf_event_period, &value);
4633

4634
	return 0;
4635 4636
}

4637 4638
static const struct file_operations perf_fops;

4639
static inline int perf_fget_light(int fd, struct fd *p)
4640
{
4641 4642 4643
	struct fd f = fdget(fd);
	if (!f.file)
		return -EBADF;
4644

4645 4646 4647
	if (f.file->f_op != &perf_fops) {
		fdput(f);
		return -EBADF;
4648
	}
4649 4650
	*p = f;
	return 0;
4651 4652 4653 4654
}

static int perf_event_set_output(struct perf_event *event,
				 struct perf_event *output_event);
L
Li Zefan 已提交
4655
static int perf_event_set_filter(struct perf_event *event, void __user *arg);
4656
static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
4657

P
Peter Zijlstra 已提交
4658
static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
4659
{
4660
	void (*func)(struct perf_event *);
P
Peter Zijlstra 已提交
4661
	u32 flags = arg;
4662 4663

	switch (cmd) {
4664
	case PERF_EVENT_IOC_ENABLE:
P
Peter Zijlstra 已提交
4665
		func = _perf_event_enable;
4666
		break;
4667
	case PERF_EVENT_IOC_DISABLE:
P
Peter Zijlstra 已提交
4668
		func = _perf_event_disable;
4669
		break;
4670
	case PERF_EVENT_IOC_RESET:
P
Peter Zijlstra 已提交
4671
		func = _perf_event_reset;
4672
		break;
P
Peter Zijlstra 已提交
4673

4674
	case PERF_EVENT_IOC_REFRESH:
P
Peter Zijlstra 已提交
4675
		return _perf_event_refresh(event, arg);
4676

4677 4678
	case PERF_EVENT_IOC_PERIOD:
		return perf_event_period(event, (u64 __user *)arg);
4679

4680 4681 4682 4683 4684 4685 4686 4687 4688
	case PERF_EVENT_IOC_ID:
	{
		u64 id = primary_event_id(event);

		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
			return -EFAULT;
		return 0;
	}

4689
	case PERF_EVENT_IOC_SET_OUTPUT:
4690 4691 4692
	{
		int ret;
		if (arg != -1) {
4693 4694 4695 4696 4697 4698 4699 4700 4701 4702
			struct perf_event *output_event;
			struct fd output;
			ret = perf_fget_light(arg, &output);
			if (ret)
				return ret;
			output_event = output.file->private_data;
			ret = perf_event_set_output(event, output_event);
			fdput(output);
		} else {
			ret = perf_event_set_output(event, NULL);
4703 4704 4705
		}
		return ret;
	}
4706

L
Li Zefan 已提交
4707 4708 4709
	case PERF_EVENT_IOC_SET_FILTER:
		return perf_event_set_filter(event, (void __user *)arg);

4710 4711 4712
	case PERF_EVENT_IOC_SET_BPF:
		return perf_event_set_bpf_prog(event, arg);

4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725
	case PERF_EVENT_IOC_PAUSE_OUTPUT: {
		struct ring_buffer *rb;

		rcu_read_lock();
		rb = rcu_dereference(event->rb);
		if (!rb || !rb->nr_pages) {
			rcu_read_unlock();
			return -EINVAL;
		}
		rb_toggle_paused(rb, !!arg);
		rcu_read_unlock();
		return 0;
	}
4726
	default:
P
Peter Zijlstra 已提交
4727
		return -ENOTTY;
4728
	}
P
Peter Zijlstra 已提交
4729 4730

	if (flags & PERF_IOC_FLAG_GROUP)
4731
		perf_event_for_each(event, func);
P
Peter Zijlstra 已提交
4732
	else
4733
		perf_event_for_each_child(event, func);
P
Peter Zijlstra 已提交
4734 4735

	return 0;
4736 4737
}

P
Peter Zijlstra 已提交
4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750
static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
	struct perf_event *event = file->private_data;
	struct perf_event_context *ctx;
	long ret;

	ctx = perf_event_ctx_lock(event);
	ret = _perf_ioctl(event, cmd, arg);
	perf_event_ctx_unlock(event, ctx);

	return ret;
}

P
Pawel Moll 已提交
4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770
#ifdef CONFIG_COMPAT
static long perf_compat_ioctl(struct file *file, unsigned int cmd,
				unsigned long arg)
{
	switch (_IOC_NR(cmd)) {
	case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
	case _IOC_NR(PERF_EVENT_IOC_ID):
		/* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
		if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
			cmd &= ~IOCSIZE_MASK;
			cmd |= sizeof(void *) << IOCSIZE_SHIFT;
		}
		break;
	}
	return perf_ioctl(file, cmd, arg);
}
#else
# define perf_compat_ioctl NULL
#endif

4771
int perf_event_task_enable(void)
4772
{
P
Peter Zijlstra 已提交
4773
	struct perf_event_context *ctx;
4774
	struct perf_event *event;
4775

4776
	mutex_lock(&current->perf_event_mutex);
P
Peter Zijlstra 已提交
4777 4778 4779 4780 4781
	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
		ctx = perf_event_ctx_lock(event);
		perf_event_for_each_child(event, _perf_event_enable);
		perf_event_ctx_unlock(event, ctx);
	}
4782
	mutex_unlock(&current->perf_event_mutex);
4783 4784 4785 4786

	return 0;
}

4787
int perf_event_task_disable(void)
4788
{
P
Peter Zijlstra 已提交
4789
	struct perf_event_context *ctx;
4790
	struct perf_event *event;
4791

4792
	mutex_lock(&current->perf_event_mutex);
P
Peter Zijlstra 已提交
4793 4794 4795 4796 4797
	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
		ctx = perf_event_ctx_lock(event);
		perf_event_for_each_child(event, _perf_event_disable);
		perf_event_ctx_unlock(event, ctx);
	}
4798
	mutex_unlock(&current->perf_event_mutex);
4799 4800 4801 4802

	return 0;
}

4803
static int perf_event_index(struct perf_event *event)
4804
{
P
Peter Zijlstra 已提交
4805 4806 4807
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;

4808
	if (event->state != PERF_EVENT_STATE_ACTIVE)
4809 4810
		return 0;

4811
	return event->pmu->event_idx(event);
4812 4813
}

4814
static void calc_timer_values(struct perf_event *event,
4815
				u64 *now,
4816 4817
				u64 *enabled,
				u64 *running)
4818
{
4819
	u64 ctx_time;
4820

4821 4822
	*now = perf_clock();
	ctx_time = event->shadow_ctx_time + *now;
4823
	__perf_update_times(event, ctx_time, enabled, running);
4824 4825
}

4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840
static void perf_event_init_userpage(struct perf_event *event)
{
	struct perf_event_mmap_page *userpg;
	struct ring_buffer *rb;

	rcu_read_lock();
	rb = rcu_dereference(event->rb);
	if (!rb)
		goto unlock;

	userpg = rb->user_page;

	/* Allow new userspace to detect that bit 0 is deprecated */
	userpg->cap_bit0_is_deprecated = 1;
	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
4841 4842
	userpg->data_offset = PAGE_SIZE;
	userpg->data_size = perf_data_size(rb);
4843 4844 4845 4846 4847

unlock:
	rcu_read_unlock();
}

4848 4849
void __weak arch_perf_update_userpage(
	struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
4850 4851 4852
{
}

4853 4854 4855 4856 4857
/*
 * Callers need to ensure there can be no nesting of this function, otherwise
 * the seqlock logic goes bad. We can not serialize this because the arch
 * code calls this from NMI context.
 */
4858
void perf_event_update_userpage(struct perf_event *event)
4859
{
4860
	struct perf_event_mmap_page *userpg;
4861
	struct ring_buffer *rb;
4862
	u64 enabled, running, now;
4863 4864

	rcu_read_lock();
4865 4866 4867 4868
	rb = rcu_dereference(event->rb);
	if (!rb)
		goto unlock;

4869 4870 4871 4872 4873 4874 4875 4876 4877
	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we can be called in
	 * NMI context
	 */
4878
	calc_timer_values(event, &now, &enabled, &running);
4879

4880
	userpg = rb->user_page;
4881 4882 4883 4884 4885
	/*
	 * Disable preemption so as to not let the corresponding user-space
	 * spin too long if we get preempted.
	 */
	preempt_disable();
4886
	++userpg->lock;
4887
	barrier();
4888
	userpg->index = perf_event_index(event);
P
Peter Zijlstra 已提交
4889
	userpg->offset = perf_event_count(event);
4890
	if (userpg->index)
4891
		userpg->offset -= local64_read(&event->hw.prev_count);
4892

4893
	userpg->time_enabled = enabled +
4894
			atomic64_read(&event->child_total_time_enabled);
4895

4896
	userpg->time_running = running +
4897
			atomic64_read(&event->child_total_time_running);
4898

4899
	arch_perf_update_userpage(event, userpg, now);
4900

4901
	barrier();
4902
	++userpg->lock;
4903
	preempt_enable();
4904
unlock:
4905
	rcu_read_unlock();
4906 4907
}

4908
static int perf_mmap_fault(struct vm_fault *vmf)
4909
{
4910
	struct perf_event *event = vmf->vma->vm_file->private_data;
4911
	struct ring_buffer *rb;
4912 4913 4914 4915 4916 4917 4918 4919 4920
	int ret = VM_FAULT_SIGBUS;

	if (vmf->flags & FAULT_FLAG_MKWRITE) {
		if (vmf->pgoff == 0)
			ret = 0;
		return ret;
	}

	rcu_read_lock();
4921 4922
	rb = rcu_dereference(event->rb);
	if (!rb)
4923 4924 4925 4926 4927
		goto unlock;

	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
		goto unlock;

4928
	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
4929 4930 4931 4932
	if (!vmf->page)
		goto unlock;

	get_page(vmf->page);
4933
	vmf->page->mapping = vmf->vma->vm_file->f_mapping;
4934 4935 4936 4937 4938 4939 4940 4941 4942
	vmf->page->index   = vmf->pgoff;

	ret = 0;
unlock:
	rcu_read_unlock();

	return ret;
}

4943 4944 4945
static void ring_buffer_attach(struct perf_event *event,
			       struct ring_buffer *rb)
{
4946
	struct ring_buffer *old_rb = NULL;
4947 4948
	unsigned long flags;

4949 4950 4951 4952 4953 4954
	if (event->rb) {
		/*
		 * Should be impossible, we set this when removing
		 * event->rb_entry and wait/clear when adding event->rb_entry.
		 */
		WARN_ON_ONCE(event->rcu_pending);
4955

4956 4957 4958 4959
		old_rb = event->rb;
		spin_lock_irqsave(&old_rb->event_lock, flags);
		list_del_rcu(&event->rb_entry);
		spin_unlock_irqrestore(&old_rb->event_lock, flags);
4960

4961 4962
		event->rcu_batches = get_state_synchronize_rcu();
		event->rcu_pending = 1;
4963
	}
4964

4965
	if (rb) {
4966 4967 4968 4969 4970
		if (event->rcu_pending) {
			cond_synchronize_rcu(event->rcu_batches);
			event->rcu_pending = 0;
		}

4971 4972 4973 4974 4975
		spin_lock_irqsave(&rb->event_lock, flags);
		list_add_rcu(&event->rb_entry, &rb->event_list);
		spin_unlock_irqrestore(&rb->event_lock, flags);
	}

4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988
	/*
	 * Avoid racing with perf_mmap_close(AUX): stop the event
	 * before swizzling the event::rb pointer; if it's getting
	 * unmapped, its aux_mmap_count will be 0 and it won't
	 * restart. See the comment in __perf_pmu_output_stop().
	 *
	 * Data will inevitably be lost when set_output is done in
	 * mid-air, but then again, whoever does it like this is
	 * not in for the data anyway.
	 */
	if (has_aux(event))
		perf_event_stop(event, 0);

4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999
	rcu_assign_pointer(event->rb, rb);

	if (old_rb) {
		ring_buffer_put(old_rb);
		/*
		 * Since we detached before setting the new rb, so that we
		 * could attach the new rb, we could have missed a wakeup.
		 * Provide it now.
		 */
		wake_up_all(&event->waitq);
	}
5000 5001 5002 5003 5004 5005 5006 5007
}

static void ring_buffer_wakeup(struct perf_event *event)
{
	struct ring_buffer *rb;

	rcu_read_lock();
	rb = rcu_dereference(event->rb);
5008 5009 5010 5011
	if (rb) {
		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
			wake_up_all(&event->waitq);
	}
5012 5013 5014
	rcu_read_unlock();
}

5015
struct ring_buffer *ring_buffer_get(struct perf_event *event)
5016
{
5017
	struct ring_buffer *rb;
5018

5019
	rcu_read_lock();
5020 5021 5022 5023
	rb = rcu_dereference(event->rb);
	if (rb) {
		if (!atomic_inc_not_zero(&rb->refcount))
			rb = NULL;
5024 5025 5026
	}
	rcu_read_unlock();

5027
	return rb;
5028 5029
}

5030
void ring_buffer_put(struct ring_buffer *rb)
5031
{
5032
	if (!atomic_dec_and_test(&rb->refcount))
5033
		return;
5034

5035
	WARN_ON_ONCE(!list_empty(&rb->event_list));
5036

5037
	call_rcu(&rb->rcu_head, rb_free_rcu);
5038 5039 5040 5041
}

static void perf_mmap_open(struct vm_area_struct *vma)
{
5042
	struct perf_event *event = vma->vm_file->private_data;
5043

5044
	atomic_inc(&event->mmap_count);
5045
	atomic_inc(&event->rb->mmap_count);
5046

5047 5048 5049
	if (vma->vm_pgoff)
		atomic_inc(&event->rb->aux_mmap_count);

5050
	if (event->pmu->event_mapped)
5051
		event->pmu->event_mapped(event, vma->vm_mm);
5052 5053
}

5054 5055
static void perf_pmu_output_stop(struct perf_event *event);

5056 5057 5058 5059 5060 5061 5062 5063
/*
 * A buffer can be mmap()ed multiple times; either directly through the same
 * event, or through other events by use of perf_event_set_output().
 *
 * In order to undo the VM accounting done by perf_mmap() we need to destroy
 * the buffer here, where we still have a VM context. This means we need
 * to detach all events redirecting to us.
 */
5064 5065
static void perf_mmap_close(struct vm_area_struct *vma)
{
5066
	struct perf_event *event = vma->vm_file->private_data;
5067

5068
	struct ring_buffer *rb = ring_buffer_get(event);
5069 5070 5071
	struct user_struct *mmap_user = rb->mmap_user;
	int mmap_locked = rb->mmap_locked;
	unsigned long size = perf_data_size(rb);
5072

5073
	if (event->pmu->event_unmapped)
5074
		event->pmu->event_unmapped(event, vma->vm_mm);
5075

5076 5077 5078 5079 5080 5081 5082
	/*
	 * rb->aux_mmap_count will always drop before rb->mmap_count and
	 * event->mmap_count, so it is ok to use event->mmap_mutex to
	 * serialize with perf_mmap here.
	 */
	if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
	    atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
5083 5084 5085 5086 5087 5088 5089 5090 5091
		/*
		 * Stop all AUX events that are writing to this buffer,
		 * so that we can free its AUX pages and corresponding PMU
		 * data. Note that after rb::aux_mmap_count dropped to zero,
		 * they won't start any more (see perf_aux_output_begin()).
		 */
		perf_pmu_output_stop(event);

		/* now it's safe to free the pages */
5092 5093 5094
		atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
		vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;

5095
		/* this has to be the last one */
5096
		rb_free_aux(rb);
5097 5098
		WARN_ON_ONCE(atomic_read(&rb->aux_refcount));

5099 5100 5101
		mutex_unlock(&event->mmap_mutex);
	}

5102 5103 5104
	atomic_dec(&rb->mmap_count);

	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
5105
		goto out_put;
5106

5107
	ring_buffer_attach(event, NULL);
5108 5109 5110
	mutex_unlock(&event->mmap_mutex);

	/* If there's still other mmap()s of this buffer, we're done. */
5111 5112
	if (atomic_read(&rb->mmap_count))
		goto out_put;
5113

5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129
	/*
	 * No other mmap()s, detach from all other events that might redirect
	 * into the now unreachable buffer. Somewhat complicated by the
	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
	 */
again:
	rcu_read_lock();
	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
		if (!atomic_long_inc_not_zero(&event->refcount)) {
			/*
			 * This event is en-route to free_event() which will
			 * detach it and remove it from the list.
			 */
			continue;
		}
		rcu_read_unlock();
5130

5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141
		mutex_lock(&event->mmap_mutex);
		/*
		 * Check we didn't race with perf_event_set_output() which can
		 * swizzle the rb from under us while we were waiting to
		 * acquire mmap_mutex.
		 *
		 * If we find a different rb; ignore this event, a next
		 * iteration will no longer find it on the list. We have to
		 * still restart the iteration to make sure we're not now
		 * iterating the wrong list.
		 */
5142 5143 5144
		if (event->rb == rb)
			ring_buffer_attach(event, NULL);

5145
		mutex_unlock(&event->mmap_mutex);
5146
		put_event(event);
5147

5148 5149 5150 5151 5152
		/*
		 * Restart the iteration; either we're on the wrong list or
		 * destroyed its integrity by doing a deletion.
		 */
		goto again;
5153
	}
5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168
	rcu_read_unlock();

	/*
	 * It could be there's still a few 0-ref events on the list; they'll
	 * get cleaned up by free_event() -- they'll also still have their
	 * ref on the rb and will free it whenever they are done with it.
	 *
	 * Aside from that, this buffer is 'fully' detached and unmapped,
	 * undo the VM accounting.
	 */

	atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
	vma->vm_mm->pinned_vm -= mmap_locked;
	free_uid(mmap_user);

5169
out_put:
5170
	ring_buffer_put(rb); /* could be last */
5171 5172
}

5173
static const struct vm_operations_struct perf_mmap_vmops = {
5174
	.open		= perf_mmap_open,
5175
	.close		= perf_mmap_close, /* non mergable */
5176 5177
	.fault		= perf_mmap_fault,
	.page_mkwrite	= perf_mmap_fault,
5178 5179 5180 5181
};

static int perf_mmap(struct file *file, struct vm_area_struct *vma)
{
5182
	struct perf_event *event = file->private_data;
5183
	unsigned long user_locked, user_lock_limit;
5184
	struct user_struct *user = current_user();
5185
	unsigned long locked, lock_limit;
5186
	struct ring_buffer *rb = NULL;
5187 5188
	unsigned long vma_size;
	unsigned long nr_pages;
5189
	long user_extra = 0, extra = 0;
5190
	int ret = 0, flags = 0;
5191

5192 5193 5194
	/*
	 * Don't allow mmap() of inherited per-task counters. This would
	 * create a performance issue due to all children writing to the
5195
	 * same rb.
5196 5197 5198 5199
	 */
	if (event->cpu == -1 && event->attr.inherit)
		return -EINVAL;

5200
	if (!(vma->vm_flags & VM_SHARED))
5201
		return -EINVAL;
5202 5203

	vma_size = vma->vm_end - vma->vm_start;
5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226

	if (vma->vm_pgoff == 0) {
		nr_pages = (vma_size / PAGE_SIZE) - 1;
	} else {
		/*
		 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
		 * mapped, all subsequent mappings should have the same size
		 * and offset. Must be above the normal perf buffer.
		 */
		u64 aux_offset, aux_size;

		if (!event->rb)
			return -EINVAL;

		nr_pages = vma_size / PAGE_SIZE;

		mutex_lock(&event->mmap_mutex);
		ret = -EINVAL;

		rb = event->rb;
		if (!rb)
			goto aux_unlock;

5227 5228
		aux_offset = READ_ONCE(rb->user_page->aux_offset);
		aux_size = READ_ONCE(rb->user_page->aux_size);
5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263

		if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
			goto aux_unlock;

		if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
			goto aux_unlock;

		/* already mapped with a different offset */
		if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
			goto aux_unlock;

		if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
			goto aux_unlock;

		/* already mapped with a different size */
		if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
			goto aux_unlock;

		if (!is_power_of_2(nr_pages))
			goto aux_unlock;

		if (!atomic_inc_not_zero(&rb->mmap_count))
			goto aux_unlock;

		if (rb_has_aux(rb)) {
			atomic_inc(&rb->aux_mmap_count);
			ret = 0;
			goto unlock;
		}

		atomic_set(&rb->aux_mmap_count, 1);
		user_extra = nr_pages;

		goto accounting;
	}
5264

5265
	/*
5266
	 * If we have rb pages ensure they're a power-of-two number, so we
5267 5268
	 * can do bitmasks instead of modulo.
	 */
5269
	if (nr_pages != 0 && !is_power_of_2(nr_pages))
5270 5271
		return -EINVAL;

5272
	if (vma_size != PAGE_SIZE * (1 + nr_pages))
5273 5274
		return -EINVAL;

5275
	WARN_ON_ONCE(event->ctx->parent_ctx);
5276
again:
5277
	mutex_lock(&event->mmap_mutex);
5278
	if (event->rb) {
5279
		if (event->rb->nr_pages != nr_pages) {
5280
			ret = -EINVAL;
5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293
			goto unlock;
		}

		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
			/*
			 * Raced against perf_mmap_close() through
			 * perf_event_set_output(). Try again, hope for better
			 * luck.
			 */
			mutex_unlock(&event->mmap_mutex);
			goto again;
		}

5294 5295 5296
		goto unlock;
	}

5297
	user_extra = nr_pages + 1;
5298 5299

accounting:
5300
	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
I
Ingo Molnar 已提交
5301 5302 5303 5304 5305 5306

	/*
	 * Increase the limit linearly with more CPUs:
	 */
	user_lock_limit *= num_online_cpus();

5307
	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
5308

5309 5310
	if (user_locked > user_lock_limit)
		extra = user_locked - user_lock_limit;
5311

5312
	lock_limit = rlimit(RLIMIT_MEMLOCK);
5313
	lock_limit >>= PAGE_SHIFT;
5314
	locked = vma->vm_mm->pinned_vm + extra;
5315

5316 5317
	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
		!capable(CAP_IPC_LOCK)) {
5318 5319 5320
		ret = -EPERM;
		goto unlock;
	}
5321

5322
	WARN_ON(!rb && event->rb);
5323

5324
	if (vma->vm_flags & VM_WRITE)
5325
		flags |= RING_BUFFER_WRITABLE;
5326

5327
	if (!rb) {
5328 5329 5330
		rb = rb_alloc(nr_pages,
			      event->attr.watermark ? event->attr.wakeup_watermark : 0,
			      event->cpu, flags);
P
Peter Zijlstra 已提交
5331

5332 5333 5334 5335
		if (!rb) {
			ret = -ENOMEM;
			goto unlock;
		}
5336

5337 5338 5339
		atomic_set(&rb->mmap_count, 1);
		rb->mmap_user = get_current_user();
		rb->mmap_locked = extra;
P
Peter Zijlstra 已提交
5340

5341
		ring_buffer_attach(event, rb);
5342

5343 5344 5345
		perf_event_init_userpage(event);
		perf_event_update_userpage(event);
	} else {
5346 5347
		ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
				   event->attr.aux_watermark, flags);
5348 5349 5350
		if (!ret)
			rb->aux_mmap_locked = extra;
	}
5351

5352
unlock:
5353 5354 5355 5356
	if (!ret) {
		atomic_long_add(user_extra, &user->locked_vm);
		vma->vm_mm->pinned_vm += extra;

5357
		atomic_inc(&event->mmap_count);
5358 5359 5360 5361
	} else if (rb) {
		atomic_dec(&rb->mmap_count);
	}
aux_unlock:
5362
	mutex_unlock(&event->mmap_mutex);
5363

5364 5365 5366 5367
	/*
	 * Since pinned accounting is per vm we cannot allow fork() to copy our
	 * vma.
	 */
P
Peter Zijlstra 已提交
5368
	vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
5369
	vma->vm_ops = &perf_mmap_vmops;
5370

5371
	if (event->pmu->event_mapped)
5372
		event->pmu->event_mapped(event, vma->vm_mm);
5373

5374
	return ret;
5375 5376
}

P
Peter Zijlstra 已提交
5377 5378
static int perf_fasync(int fd, struct file *filp, int on)
{
A
Al Viro 已提交
5379
	struct inode *inode = file_inode(filp);
5380
	struct perf_event *event = filp->private_data;
P
Peter Zijlstra 已提交
5381 5382
	int retval;

A
Al Viro 已提交
5383
	inode_lock(inode);
5384
	retval = fasync_helper(fd, filp, on, &event->fasync);
A
Al Viro 已提交
5385
	inode_unlock(inode);
P
Peter Zijlstra 已提交
5386 5387 5388 5389 5390 5391 5392

	if (retval < 0)
		return retval;

	return 0;
}

T
Thomas Gleixner 已提交
5393
static const struct file_operations perf_fops = {
5394
	.llseek			= no_llseek,
T
Thomas Gleixner 已提交
5395 5396 5397
	.release		= perf_release,
	.read			= perf_read,
	.poll			= perf_poll,
5398
	.unlocked_ioctl		= perf_ioctl,
P
Pawel Moll 已提交
5399
	.compat_ioctl		= perf_compat_ioctl,
5400
	.mmap			= perf_mmap,
P
Peter Zijlstra 已提交
5401
	.fasync			= perf_fasync,
T
Thomas Gleixner 已提交
5402 5403
};

5404
/*
5405
 * Perf event wakeup
5406 5407 5408 5409 5410
 *
 * If there's data, ensure we set the poll() state and publish everything
 * to user-space before waking everybody up.
 */

5411 5412 5413 5414 5415 5416 5417 5418
static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
{
	/* only the parent has fasync state */
	if (event->parent)
		event = event->parent;
	return &event->fasync;
}

5419
void perf_event_wakeup(struct perf_event *event)
5420
{
5421
	ring_buffer_wakeup(event);
5422

5423
	if (event->pending_kill) {
5424
		kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
5425
		event->pending_kill = 0;
5426
	}
5427 5428
}

5429
static void perf_pending_event(struct irq_work *entry)
5430
{
5431 5432
	struct perf_event *event = container_of(entry,
			struct perf_event, pending);
5433 5434 5435 5436 5437 5438 5439
	int rctx;

	rctx = perf_swevent_get_recursion_context();
	/*
	 * If we 'fail' here, that's OK, it means recursion is already disabled
	 * and we won't recurse 'further'.
	 */
5440

5441 5442
	if (event->pending_disable) {
		event->pending_disable = 0;
5443
		perf_event_disable_local(event);
5444 5445
	}

5446 5447 5448
	if (event->pending_wakeup) {
		event->pending_wakeup = 0;
		perf_event_wakeup(event);
5449
	}
5450 5451 5452

	if (rctx >= 0)
		perf_swevent_put_recursion_context(rctx);
5453 5454
}

5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475
/*
 * We assume there is only KVM supporting the callbacks.
 * Later on, we might change it to a list if there is
 * another virtualization implementation supporting the callbacks.
 */
struct perf_guest_info_callbacks *perf_guest_cbs;

int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = cbs;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);

int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = NULL;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);

5476 5477 5478 5479 5480
static void
perf_output_sample_regs(struct perf_output_handle *handle,
			struct pt_regs *regs, u64 mask)
{
	int bit;
5481
	DECLARE_BITMAP(_mask, 64);
5482

5483 5484
	bitmap_from_u64(_mask, mask);
	for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
5485 5486 5487 5488 5489 5490 5491
		u64 val;

		val = perf_reg_value(regs, bit);
		perf_output_put(handle, val);
	}
}

5492
static void perf_sample_regs_user(struct perf_regs *regs_user,
5493 5494
				  struct pt_regs *regs,
				  struct pt_regs *regs_user_copy)
5495
{
5496 5497
	if (user_mode(regs)) {
		regs_user->abi = perf_reg_abi(current);
5498
		regs_user->regs = regs;
5499 5500
	} else if (current->mm) {
		perf_get_regs_user(regs_user, regs, regs_user_copy);
5501 5502 5503
	} else {
		regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
		regs_user->regs = NULL;
5504 5505 5506
	}
}

5507 5508 5509 5510 5511 5512 5513 5514
static void perf_sample_regs_intr(struct perf_regs *regs_intr,
				  struct pt_regs *regs)
{
	regs_intr->regs = regs;
	regs_intr->abi  = perf_reg_abi(current);
}


5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609
/*
 * Get remaining task size from user stack pointer.
 *
 * It'd be better to take stack vma map and limit this more
 * precisly, but there's no way to get it safely under interrupt,
 * so using TASK_SIZE as limit.
 */
static u64 perf_ustack_task_size(struct pt_regs *regs)
{
	unsigned long addr = perf_user_stack_pointer(regs);

	if (!addr || addr >= TASK_SIZE)
		return 0;

	return TASK_SIZE - addr;
}

static u16
perf_sample_ustack_size(u16 stack_size, u16 header_size,
			struct pt_regs *regs)
{
	u64 task_size;

	/* No regs, no stack pointer, no dump. */
	if (!regs)
		return 0;

	/*
	 * Check if we fit in with the requested stack size into the:
	 * - TASK_SIZE
	 *   If we don't, we limit the size to the TASK_SIZE.
	 *
	 * - remaining sample size
	 *   If we don't, we customize the stack size to
	 *   fit in to the remaining sample size.
	 */

	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
	stack_size = min(stack_size, (u16) task_size);

	/* Current header size plus static size and dynamic size. */
	header_size += 2 * sizeof(u64);

	/* Do we fit in with the current stack dump size? */
	if ((u16) (header_size + stack_size) < header_size) {
		/*
		 * If we overflow the maximum size for the sample,
		 * we customize the stack dump size to fit in.
		 */
		stack_size = USHRT_MAX - header_size - sizeof(u64);
		stack_size = round_up(stack_size, sizeof(u64));
	}

	return stack_size;
}

static void
perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
			  struct pt_regs *regs)
{
	/* Case of a kernel thread, nothing to dump */
	if (!regs) {
		u64 size = 0;
		perf_output_put(handle, size);
	} else {
		unsigned long sp;
		unsigned int rem;
		u64 dyn_size;

		/*
		 * We dump:
		 * static size
		 *   - the size requested by user or the best one we can fit
		 *     in to the sample max size
		 * data
		 *   - user stack dump data
		 * dynamic size
		 *   - the actual dumped size
		 */

		/* Static size. */
		perf_output_put(handle, dump_size);

		/* Data. */
		sp = perf_user_stack_pointer(regs);
		rem = __output_copy_user(handle, (void *) sp, dump_size);
		dyn_size = dump_size - rem;

		perf_output_skip(handle, rem);

		/* Dynamic size. */
		perf_output_put(handle, dyn_size);
	}
}

5610 5611 5612
static void __perf_event_header__init_id(struct perf_event_header *header,
					 struct perf_sample_data *data,
					 struct perf_event *event)
5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625
{
	u64 sample_type = event->attr.sample_type;

	data->type = sample_type;
	header->size += event->id_header_size;

	if (sample_type & PERF_SAMPLE_TID) {
		/* namespace issues */
		data->tid_entry.pid = perf_event_pid(event, current);
		data->tid_entry.tid = perf_event_tid(event, current);
	}

	if (sample_type & PERF_SAMPLE_TIME)
5626
		data->time = perf_event_clock(event);
5627

5628
	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639
		data->id = primary_event_id(event);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		data->stream_id = event->id;

	if (sample_type & PERF_SAMPLE_CPU) {
		data->cpu_entry.cpu	 = raw_smp_processor_id();
		data->cpu_entry.reserved = 0;
	}
}

5640 5641 5642
void perf_event_header__init_id(struct perf_event_header *header,
				struct perf_sample_data *data,
				struct perf_event *event)
5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666
{
	if (event->attr.sample_id_all)
		__perf_event_header__init_id(header, data, event);
}

static void __perf_event__output_id_sample(struct perf_output_handle *handle,
					   struct perf_sample_data *data)
{
	u64 sample_type = data->type;

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);
5667 5668 5669

	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		perf_output_put(handle, data->id);
5670 5671
}

5672 5673 5674
void perf_event__output_id_sample(struct perf_event *event,
				  struct perf_output_handle *handle,
				  struct perf_sample_data *sample)
5675 5676 5677 5678 5679
{
	if (event->attr.sample_id_all)
		__perf_event__output_id_sample(handle, sample);
}

5680
static void perf_output_read_one(struct perf_output_handle *handle,
5681 5682
				 struct perf_event *event,
				 u64 enabled, u64 running)
5683
{
5684
	u64 read_format = event->attr.read_format;
5685 5686 5687
	u64 values[4];
	int n = 0;

P
Peter Zijlstra 已提交
5688
	values[n++] = perf_event_count(event);
5689
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5690
		values[n++] = enabled +
5691
			atomic64_read(&event->child_total_time_enabled);
5692 5693
	}
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5694
		values[n++] = running +
5695
			atomic64_read(&event->child_total_time_running);
5696 5697
	}
	if (read_format & PERF_FORMAT_ID)
5698
		values[n++] = primary_event_id(event);
5699

5700
	__output_copy(handle, values, n * sizeof(u64));
5701 5702 5703
}

static void perf_output_read_group(struct perf_output_handle *handle,
5704 5705
			    struct perf_event *event,
			    u64 enabled, u64 running)
5706
{
5707 5708
	struct perf_event *leader = event->group_leader, *sub;
	u64 read_format = event->attr.read_format;
5709 5710 5711 5712 5713 5714
	u64 values[5];
	int n = 0;

	values[n++] = 1 + leader->nr_siblings;

	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5715
		values[n++] = enabled;
5716 5717

	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5718
		values[n++] = running;
5719

5720
	if (leader != event)
5721 5722
		leader->pmu->read(leader);

P
Peter Zijlstra 已提交
5723
	values[n++] = perf_event_count(leader);
5724
	if (read_format & PERF_FORMAT_ID)
5725
		values[n++] = primary_event_id(leader);
5726

5727
	__output_copy(handle, values, n * sizeof(u64));
5728

5729
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
5730 5731
		n = 0;

5732 5733
		if ((sub != event) &&
		    (sub->state == PERF_EVENT_STATE_ACTIVE))
5734 5735
			sub->pmu->read(sub);

P
Peter Zijlstra 已提交
5736
		values[n++] = perf_event_count(sub);
5737
		if (read_format & PERF_FORMAT_ID)
5738
			values[n++] = primary_event_id(sub);
5739

5740
		__output_copy(handle, values, n * sizeof(u64));
5741 5742 5743
	}
}

5744 5745 5746
#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
				 PERF_FORMAT_TOTAL_TIME_RUNNING)

5747 5748 5749 5750 5751 5752 5753
/*
 * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
 *
 * The problem is that its both hard and excessively expensive to iterate the
 * child list, not to mention that its impossible to IPI the children running
 * on another CPU, from interrupt/NMI context.
 */
5754
static void perf_output_read(struct perf_output_handle *handle,
5755
			     struct perf_event *event)
5756
{
5757
	u64 enabled = 0, running = 0, now;
5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768
	u64 read_format = event->attr.read_format;

	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we are called in
	 * NMI context
	 */
5769
	if (read_format & PERF_FORMAT_TOTAL_TIMES)
5770
		calc_timer_values(event, &now, &enabled, &running);
5771

5772
	if (event->attr.read_format & PERF_FORMAT_GROUP)
5773
		perf_output_read_group(handle, event, enabled, running);
5774
	else
5775
		perf_output_read_one(handle, event, enabled, running);
5776 5777
}

5778 5779 5780
void perf_output_sample(struct perf_output_handle *handle,
			struct perf_event_header *header,
			struct perf_sample_data *data,
5781
			struct perf_event *event)
5782 5783 5784 5785 5786
{
	u64 sample_type = data->type;

	perf_output_put(handle, *header);

5787 5788 5789
	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		perf_output_put(handle, data->id);

5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814
	if (sample_type & PERF_SAMPLE_IP)
		perf_output_put(handle, data->ip);

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ADDR)
		perf_output_put(handle, data->addr);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);

	if (sample_type & PERF_SAMPLE_PERIOD)
		perf_output_put(handle, data->period);

	if (sample_type & PERF_SAMPLE_READ)
5815
		perf_output_read(handle, event);
5816 5817 5818 5819 5820 5821 5822 5823 5824 5825

	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
		if (data->callchain) {
			int size = 1;

			if (data->callchain)
				size += data->callchain->nr;

			size *= sizeof(u64);

5826
			__output_copy(handle, data->callchain, size);
5827 5828 5829 5830 5831 5832 5833
		} else {
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}

	if (sample_type & PERF_SAMPLE_RAW) {
5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853
		struct perf_raw_record *raw = data->raw;

		if (raw) {
			struct perf_raw_frag *frag = &raw->frag;

			perf_output_put(handle, raw->size);
			do {
				if (frag->copy) {
					__output_custom(handle, frag->copy,
							frag->data, frag->size);
				} else {
					__output_copy(handle, frag->data,
						      frag->size);
				}
				if (perf_raw_frag_last(frag))
					break;
				frag = frag->next;
			} while (1);
			if (frag->pad)
				__output_skip(handle, NULL, frag->pad);
5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864
		} else {
			struct {
				u32	size;
				u32	data;
			} raw = {
				.size = sizeof(u32),
				.data = 0,
			};
			perf_output_put(handle, raw);
		}
	}
5865

5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882
	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
		if (data->br_stack) {
			size_t size;

			size = data->br_stack->nr
			     * sizeof(struct perf_branch_entry);

			perf_output_put(handle, data->br_stack->nr);
			perf_output_copy(handle, data->br_stack->entries, size);
		} else {
			/*
			 * we always store at least the value of nr
			 */
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}
5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899

	if (sample_type & PERF_SAMPLE_REGS_USER) {
		u64 abi = data->regs_user.abi;

		/*
		 * If there are no regs to dump, notice it through
		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
		 */
		perf_output_put(handle, abi);

		if (abi) {
			u64 mask = event->attr.sample_regs_user;
			perf_output_sample_regs(handle,
						data->regs_user.regs,
						mask);
		}
	}
5900

5901
	if (sample_type & PERF_SAMPLE_STACK_USER) {
5902 5903 5904
		perf_output_sample_ustack(handle,
					  data->stack_user_size,
					  data->regs_user.regs);
5905
	}
A
Andi Kleen 已提交
5906 5907 5908

	if (sample_type & PERF_SAMPLE_WEIGHT)
		perf_output_put(handle, data->weight);
5909 5910 5911

	if (sample_type & PERF_SAMPLE_DATA_SRC)
		perf_output_put(handle, data->data_src.val);
5912

A
Andi Kleen 已提交
5913 5914 5915
	if (sample_type & PERF_SAMPLE_TRANSACTION)
		perf_output_put(handle, data->txn);

5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932
	if (sample_type & PERF_SAMPLE_REGS_INTR) {
		u64 abi = data->regs_intr.abi;
		/*
		 * If there are no regs to dump, notice it through
		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
		 */
		perf_output_put(handle, abi);

		if (abi) {
			u64 mask = event->attr.sample_regs_intr;

			perf_output_sample_regs(handle,
						data->regs_intr.regs,
						mask);
		}
	}

5933 5934 5935
	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
		perf_output_put(handle, data->phys_addr);

5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948
	if (!event->attr.watermark) {
		int wakeup_events = event->attr.wakeup_events;

		if (wakeup_events) {
			struct ring_buffer *rb = handle->rb;
			int events = local_inc_return(&rb->events);

			if (events >= wakeup_events) {
				local_sub(wakeup_events, &rb->events);
				local_inc(&rb->wakeup);
			}
		}
	}
5949 5950
}

5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982
static u64 perf_virt_to_phys(u64 virt)
{
	u64 phys_addr = 0;
	struct page *p = NULL;

	if (!virt)
		return 0;

	if (virt >= TASK_SIZE) {
		/* If it's vmalloc()d memory, leave phys_addr as 0 */
		if (virt_addr_valid((void *)(uintptr_t)virt) &&
		    !(virt >= VMALLOC_START && virt < VMALLOC_END))
			phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
	} else {
		/*
		 * Walking the pages tables for user address.
		 * Interrupts are disabled, so it prevents any tear down
		 * of the page tables.
		 * Try IRQ-safe __get_user_pages_fast first.
		 * If failed, leave phys_addr as 0.
		 */
		if ((current->mm != NULL) &&
		    (__get_user_pages_fast(virt, 1, 0, &p) == 1))
			phys_addr = page_to_phys(p) + virt % PAGE_SIZE;

		if (p)
			put_page(p);
	}

	return phys_addr;
}

5983 5984
void perf_prepare_sample(struct perf_event_header *header,
			 struct perf_sample_data *data,
5985
			 struct perf_event *event,
5986
			 struct pt_regs *regs)
5987
{
5988
	u64 sample_type = event->attr.sample_type;
5989

5990
	header->type = PERF_RECORD_SAMPLE;
5991
	header->size = sizeof(*header) + event->header_size;
5992 5993 5994

	header->misc = 0;
	header->misc |= perf_misc_flags(regs);
5995

5996
	__perf_event_header__init_id(header, data, event);
5997

5998
	if (sample_type & PERF_SAMPLE_IP)
5999 6000
		data->ip = perf_instruction_pointer(regs);

6001
	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
6002
		int size = 1;
6003

6004
		data->callchain = perf_callchain(event, regs);
6005 6006 6007 6008 6009

		if (data->callchain)
			size += data->callchain->nr;

		header->size += size * sizeof(u64);
6010 6011
	}

6012
	if (sample_type & PERF_SAMPLE_RAW) {
6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032
		struct perf_raw_record *raw = data->raw;
		int size;

		if (raw) {
			struct perf_raw_frag *frag = &raw->frag;
			u32 sum = 0;

			do {
				sum += frag->size;
				if (perf_raw_frag_last(frag))
					break;
				frag = frag->next;
			} while (1);

			size = round_up(sum + sizeof(u32), sizeof(u64));
			raw->size = size - sizeof(u32);
			frag->pad = raw->size - sum;
		} else {
			size = sizeof(u64);
		}
6033

6034
		header->size += size;
6035
	}
6036 6037 6038 6039 6040 6041 6042 6043 6044

	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
		int size = sizeof(u64); /* nr */
		if (data->br_stack) {
			size += data->br_stack->nr
			      * sizeof(struct perf_branch_entry);
		}
		header->size += size;
	}
6045

6046
	if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
6047 6048
		perf_sample_regs_user(&data->regs_user, regs,
				      &data->regs_user_copy);
6049

6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060
	if (sample_type & PERF_SAMPLE_REGS_USER) {
		/* regs dump ABI info */
		int size = sizeof(u64);

		if (data->regs_user.regs) {
			u64 mask = event->attr.sample_regs_user;
			size += hweight64(mask) * sizeof(u64);
		}

		header->size += size;
	}
6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072

	if (sample_type & PERF_SAMPLE_STACK_USER) {
		/*
		 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
		 * processed as the last one or have additional check added
		 * in case new sample type is added, because we could eat
		 * up the rest of the sample size.
		 */
		u16 stack_size = event->attr.sample_stack_user;
		u16 size = sizeof(u64);

		stack_size = perf_sample_ustack_size(stack_size, header->size,
6073
						     data->regs_user.regs);
6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085

		/*
		 * If there is something to dump, add space for the dump
		 * itself and for the field that tells the dynamic size,
		 * which is how many have been actually dumped.
		 */
		if (stack_size)
			size += sizeof(u64) + stack_size;

		data->stack_user_size = stack_size;
		header->size += size;
	}
6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100

	if (sample_type & PERF_SAMPLE_REGS_INTR) {
		/* regs dump ABI info */
		int size = sizeof(u64);

		perf_sample_regs_intr(&data->regs_intr, regs);

		if (data->regs_intr.regs) {
			u64 mask = event->attr.sample_regs_intr;

			size += hweight64(mask) * sizeof(u64);
		}

		header->size += size;
	}
6101 6102 6103

	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
		data->phys_addr = perf_virt_to_phys(data->addr);
6104
}
6105

6106 6107 6108 6109 6110 6111 6112
static void __always_inline
__perf_event_output(struct perf_event *event,
		    struct perf_sample_data *data,
		    struct pt_regs *regs,
		    int (*output_begin)(struct perf_output_handle *,
					struct perf_event *,
					unsigned int))
6113 6114 6115
{
	struct perf_output_handle handle;
	struct perf_event_header header;
6116

6117 6118 6119
	/* protect the callchain buffers */
	rcu_read_lock();

6120
	perf_prepare_sample(&header, data, event, regs);
P
Peter Zijlstra 已提交
6121

6122
	if (output_begin(&handle, event, header.size))
6123
		goto exit;
6124

6125
	perf_output_sample(&handle, &header, data, event);
6126

6127
	perf_output_end(&handle);
6128 6129 6130

exit:
	rcu_read_unlock();
6131 6132
}

6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156
void
perf_event_output_forward(struct perf_event *event,
			 struct perf_sample_data *data,
			 struct pt_regs *regs)
{
	__perf_event_output(event, data, regs, perf_output_begin_forward);
}

void
perf_event_output_backward(struct perf_event *event,
			   struct perf_sample_data *data,
			   struct pt_regs *regs)
{
	__perf_event_output(event, data, regs, perf_output_begin_backward);
}

void
perf_event_output(struct perf_event *event,
		  struct perf_sample_data *data,
		  struct pt_regs *regs)
{
	__perf_event_output(event, data, regs, perf_output_begin);
}

6157
/*
6158
 * read event_id
6159 6160 6161 6162 6163 6164 6165 6166 6167 6168
 */

struct perf_read_event {
	struct perf_event_header	header;

	u32				pid;
	u32				tid;
};

static void
6169
perf_event_read_event(struct perf_event *event,
6170 6171 6172
			struct task_struct *task)
{
	struct perf_output_handle handle;
6173
	struct perf_sample_data sample;
6174
	struct perf_read_event read_event = {
6175
		.header = {
6176
			.type = PERF_RECORD_READ,
6177
			.misc = 0,
6178
			.size = sizeof(read_event) + event->read_size,
6179
		},
6180 6181
		.pid = perf_event_pid(event, task),
		.tid = perf_event_tid(event, task),
6182
	};
6183
	int ret;
6184

6185
	perf_event_header__init_id(&read_event.header, &sample, event);
6186
	ret = perf_output_begin(&handle, event, read_event.header.size);
6187 6188 6189
	if (ret)
		return;

6190
	perf_output_put(&handle, read_event);
6191
	perf_output_read(&handle, event);
6192
	perf_event__output_id_sample(event, &handle, &sample);
6193

6194 6195 6196
	perf_output_end(&handle);
}

6197
typedef void (perf_iterate_f)(struct perf_event *event, void *data);
6198 6199

static void
6200 6201
perf_iterate_ctx(struct perf_event_context *ctx,
		   perf_iterate_f output,
6202
		   void *data, bool all)
6203 6204 6205 6206
{
	struct perf_event *event;

	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6207 6208 6209 6210 6211 6212 6213
		if (!all) {
			if (event->state < PERF_EVENT_STATE_INACTIVE)
				continue;
			if (!event_filter_match(event))
				continue;
		}

6214
		output(event, data);
6215 6216 6217
	}
}

6218
static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
6219 6220 6221 6222 6223
{
	struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
	struct perf_event *event;

	list_for_each_entry_rcu(event, &pel->list, sb_list) {
6224 6225 6226 6227 6228 6229 6230 6231
		/*
		 * Skip events that are not fully formed yet; ensure that
		 * if we observe event->ctx, both event and ctx will be
		 * complete enough. See perf_install_in_context().
		 */
		if (!smp_load_acquire(&event->ctx))
			continue;

6232 6233 6234 6235 6236 6237 6238 6239
		if (event->state < PERF_EVENT_STATE_INACTIVE)
			continue;
		if (!event_filter_match(event))
			continue;
		output(event, data);
	}
}

6240 6241 6242 6243 6244 6245
/*
 * Iterate all events that need to receive side-band events.
 *
 * For new callers; ensure that account_pmu_sb_event() includes
 * your event, otherwise it might not get delivered.
 */
6246
static void
6247
perf_iterate_sb(perf_iterate_f output, void *data,
6248 6249 6250 6251 6252
	       struct perf_event_context *task_ctx)
{
	struct perf_event_context *ctx;
	int ctxn;

6253 6254 6255
	rcu_read_lock();
	preempt_disable();

J
Jiri Olsa 已提交
6256
	/*
6257 6258
	 * If we have task_ctx != NULL we only notify the task context itself.
	 * The task_ctx is set only for EXIT events before releasing task
J
Jiri Olsa 已提交
6259 6260 6261
	 * context.
	 */
	if (task_ctx) {
6262 6263
		perf_iterate_ctx(task_ctx, output, data, false);
		goto done;
J
Jiri Olsa 已提交
6264 6265
	}

6266
	perf_iterate_sb_cpu(output, data);
6267 6268

	for_each_task_context_nr(ctxn) {
6269 6270
		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		if (ctx)
6271
			perf_iterate_ctx(ctx, output, data, false);
6272
	}
6273
done:
6274
	preempt_enable();
6275
	rcu_read_unlock();
6276 6277
}

6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306
/*
 * Clear all file-based filters at exec, they'll have to be
 * re-instated when/if these objects are mmapped again.
 */
static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
{
	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
	struct perf_addr_filter *filter;
	unsigned int restart = 0, count = 0;
	unsigned long flags;

	if (!has_addr_filter(event))
		return;

	raw_spin_lock_irqsave(&ifh->lock, flags);
	list_for_each_entry(filter, &ifh->list, entry) {
		if (filter->inode) {
			event->addr_filters_offs[count] = 0;
			restart++;
		}

		count++;
	}

	if (restart)
		event->addr_filters_gen++;
	raw_spin_unlock_irqrestore(&ifh->lock, flags);

	if (restart)
6307
		perf_event_stop(event, 1);
6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322
}

void perf_event_exec(void)
{
	struct perf_event_context *ctx;
	int ctxn;

	rcu_read_lock();
	for_each_task_context_nr(ctxn) {
		ctx = current->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;

		perf_event_enable_on_exec(ctxn);

6323
		perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
6324 6325 6326 6327 6328
				   true);
	}
	rcu_read_unlock();
}

6329 6330 6331 6332 6333 6334 6335 6336 6337 6338
struct remote_output {
	struct ring_buffer	*rb;
	int			err;
};

static void __perf_event_output_stop(struct perf_event *event, void *data)
{
	struct perf_event *parent = event->parent;
	struct remote_output *ro = data;
	struct ring_buffer *rb = ro->rb;
6339 6340 6341
	struct stop_event_data sd = {
		.event	= event,
	};
6342 6343 6344 6345 6346 6347 6348 6349 6350

	if (!has_aux(event))
		return;

	if (!parent)
		parent = event;

	/*
	 * In case of inheritance, it will be the parent that links to the
6351 6352 6353 6354 6355 6356 6357
	 * ring-buffer, but it will be the child that's actually using it.
	 *
	 * We are using event::rb to determine if the event should be stopped,
	 * however this may race with ring_buffer_attach() (through set_output),
	 * which will make us skip the event that actually needs to be stopped.
	 * So ring_buffer_attach() has to stop an aux event before re-assigning
	 * its rb pointer.
6358 6359
	 */
	if (rcu_dereference(parent->rb) == rb)
6360
		ro->err = __perf_event_stop(&sd);
6361 6362 6363 6364 6365 6366
}

static int __perf_pmu_output_stop(void *info)
{
	struct perf_event *event = info;
	struct pmu *pmu = event->pmu;
6367
	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
6368 6369 6370 6371 6372
	struct remote_output ro = {
		.rb	= event->rb,
	};

	rcu_read_lock();
6373
	perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
6374
	if (cpuctx->task_ctx)
6375
		perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
6376
				   &ro, false);
6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409
	rcu_read_unlock();

	return ro.err;
}

static void perf_pmu_output_stop(struct perf_event *event)
{
	struct perf_event *iter;
	int err, cpu;

restart:
	rcu_read_lock();
	list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
		/*
		 * For per-CPU events, we need to make sure that neither they
		 * nor their children are running; for cpu==-1 events it's
		 * sufficient to stop the event itself if it's active, since
		 * it can't have children.
		 */
		cpu = iter->cpu;
		if (cpu == -1)
			cpu = READ_ONCE(iter->oncpu);

		if (cpu == -1)
			continue;

		err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
		if (err == -EAGAIN) {
			rcu_read_unlock();
			goto restart;
		}
	}
	rcu_read_unlock();
6410 6411
}

P
Peter Zijlstra 已提交
6412
/*
P
Peter Zijlstra 已提交
6413 6414
 * task tracking -- fork/exit
 *
6415
 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
P
Peter Zijlstra 已提交
6416 6417
 */

P
Peter Zijlstra 已提交
6418
struct perf_task_event {
6419
	struct task_struct		*task;
6420
	struct perf_event_context	*task_ctx;
P
Peter Zijlstra 已提交
6421 6422 6423 6424 6425 6426

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				ppid;
P
Peter Zijlstra 已提交
6427 6428
		u32				tid;
		u32				ptid;
6429
		u64				time;
6430
	} event_id;
P
Peter Zijlstra 已提交
6431 6432
};

6433 6434
static int perf_event_task_match(struct perf_event *event)
{
6435 6436 6437
	return event->attr.comm  || event->attr.mmap ||
	       event->attr.mmap2 || event->attr.mmap_data ||
	       event->attr.task;
6438 6439
}

6440
static void perf_event_task_output(struct perf_event *event,
6441
				   void *data)
P
Peter Zijlstra 已提交
6442
{
6443
	struct perf_task_event *task_event = data;
P
Peter Zijlstra 已提交
6444
	struct perf_output_handle handle;
6445
	struct perf_sample_data	sample;
P
Peter Zijlstra 已提交
6446
	struct task_struct *task = task_event->task;
6447
	int ret, size = task_event->event_id.header.size;
6448

6449 6450 6451
	if (!perf_event_task_match(event))
		return;

6452
	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
P
Peter Zijlstra 已提交
6453

6454
	ret = perf_output_begin(&handle, event,
6455
				task_event->event_id.header.size);
6456
	if (ret)
6457
		goto out;
P
Peter Zijlstra 已提交
6458

6459 6460
	task_event->event_id.pid = perf_event_pid(event, task);
	task_event->event_id.ppid = perf_event_pid(event, current);
P
Peter Zijlstra 已提交
6461

6462 6463
	task_event->event_id.tid = perf_event_tid(event, task);
	task_event->event_id.ptid = perf_event_tid(event, current);
P
Peter Zijlstra 已提交
6464

6465 6466
	task_event->event_id.time = perf_event_clock(event);

6467
	perf_output_put(&handle, task_event->event_id);
6468

6469 6470
	perf_event__output_id_sample(event, &handle, &sample);

P
Peter Zijlstra 已提交
6471
	perf_output_end(&handle);
6472 6473
out:
	task_event->event_id.header.size = size;
P
Peter Zijlstra 已提交
6474 6475
}

6476 6477
static void perf_event_task(struct task_struct *task,
			      struct perf_event_context *task_ctx,
6478
			      int new)
P
Peter Zijlstra 已提交
6479
{
P
Peter Zijlstra 已提交
6480
	struct perf_task_event task_event;
P
Peter Zijlstra 已提交
6481

6482 6483 6484
	if (!atomic_read(&nr_comm_events) &&
	    !atomic_read(&nr_mmap_events) &&
	    !atomic_read(&nr_task_events))
P
Peter Zijlstra 已提交
6485 6486
		return;

P
Peter Zijlstra 已提交
6487
	task_event = (struct perf_task_event){
6488 6489
		.task	  = task,
		.task_ctx = task_ctx,
6490
		.event_id    = {
P
Peter Zijlstra 已提交
6491
			.header = {
6492
				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
6493
				.misc = 0,
6494
				.size = sizeof(task_event.event_id),
P
Peter Zijlstra 已提交
6495
			},
6496 6497
			/* .pid  */
			/* .ppid */
P
Peter Zijlstra 已提交
6498 6499
			/* .tid  */
			/* .ptid */
6500
			/* .time */
P
Peter Zijlstra 已提交
6501 6502 6503
		},
	};

6504
	perf_iterate_sb(perf_event_task_output,
6505 6506
		       &task_event,
		       task_ctx);
P
Peter Zijlstra 已提交
6507 6508
}

6509
void perf_event_fork(struct task_struct *task)
P
Peter Zijlstra 已提交
6510
{
6511
	perf_event_task(task, NULL, 1);
6512
	perf_event_namespaces(task);
P
Peter Zijlstra 已提交
6513 6514
}

6515 6516 6517 6518 6519
/*
 * comm tracking
 */

struct perf_comm_event {
6520 6521
	struct task_struct	*task;
	char			*comm;
6522 6523 6524 6525 6526 6527 6528
	int			comm_size;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
6529
	} event_id;
6530 6531
};

6532 6533 6534 6535 6536
static int perf_event_comm_match(struct perf_event *event)
{
	return event->attr.comm;
}

6537
static void perf_event_comm_output(struct perf_event *event,
6538
				   void *data)
6539
{
6540
	struct perf_comm_event *comm_event = data;
6541
	struct perf_output_handle handle;
6542
	struct perf_sample_data sample;
6543
	int size = comm_event->event_id.header.size;
6544 6545
	int ret;

6546 6547 6548
	if (!perf_event_comm_match(event))
		return;

6549 6550
	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
6551
				comm_event->event_id.header.size);
6552 6553

	if (ret)
6554
		goto out;
6555

6556 6557
	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
6558

6559
	perf_output_put(&handle, comm_event->event_id);
6560
	__output_copy(&handle, comm_event->comm,
6561
				   comm_event->comm_size);
6562 6563 6564

	perf_event__output_id_sample(event, &handle, &sample);

6565
	perf_output_end(&handle);
6566 6567
out:
	comm_event->event_id.header.size = size;
6568 6569
}

6570
static void perf_event_comm_event(struct perf_comm_event *comm_event)
6571
{
6572
	char comm[TASK_COMM_LEN];
6573 6574
	unsigned int size;

6575
	memset(comm, 0, sizeof(comm));
6576
	strlcpy(comm, comm_event->task->comm, sizeof(comm));
6577
	size = ALIGN(strlen(comm)+1, sizeof(u64));
6578 6579 6580 6581

	comm_event->comm = comm;
	comm_event->comm_size = size;

6582
	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
P
Peter Zijlstra 已提交
6583

6584
	perf_iterate_sb(perf_event_comm_output,
6585 6586
		       comm_event,
		       NULL);
6587 6588
}

6589
void perf_event_comm(struct task_struct *task, bool exec)
6590
{
6591 6592
	struct perf_comm_event comm_event;

6593
	if (!atomic_read(&nr_comm_events))
6594
		return;
6595

6596
	comm_event = (struct perf_comm_event){
6597
		.task	= task,
6598 6599
		/* .comm      */
		/* .comm_size */
6600
		.event_id  = {
6601
			.header = {
6602
				.type = PERF_RECORD_COMM,
6603
				.misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
6604 6605 6606 6607
				/* .size */
			},
			/* .pid */
			/* .tid */
6608 6609 6610
		},
	};

6611
	perf_event_comm_event(&comm_event);
6612 6613
}

6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678
/*
 * namespaces tracking
 */

struct perf_namespaces_event {
	struct task_struct		*task;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
		u64				nr_namespaces;
		struct perf_ns_link_info	link_info[NR_NAMESPACES];
	} event_id;
};

static int perf_event_namespaces_match(struct perf_event *event)
{
	return event->attr.namespaces;
}

static void perf_event_namespaces_output(struct perf_event *event,
					 void *data)
{
	struct perf_namespaces_event *namespaces_event = data;
	struct perf_output_handle handle;
	struct perf_sample_data sample;
	int ret;

	if (!perf_event_namespaces_match(event))
		return;

	perf_event_header__init_id(&namespaces_event->event_id.header,
				   &sample, event);
	ret = perf_output_begin(&handle, event,
				namespaces_event->event_id.header.size);
	if (ret)
		return;

	namespaces_event->event_id.pid = perf_event_pid(event,
							namespaces_event->task);
	namespaces_event->event_id.tid = perf_event_tid(event,
							namespaces_event->task);

	perf_output_put(&handle, namespaces_event->event_id);

	perf_event__output_id_sample(event, &handle, &sample);

	perf_output_end(&handle);
}

static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
				   struct task_struct *task,
				   const struct proc_ns_operations *ns_ops)
{
	struct path ns_path;
	struct inode *ns_inode;
	void *error;

	error = ns_get_path(&ns_path, task, ns_ops);
	if (!error) {
		ns_inode = ns_path.dentry->d_inode;
		ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
		ns_link_info->ino = ns_inode->i_ino;
6679
		path_put(&ns_path);
6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740
	}
}

void perf_event_namespaces(struct task_struct *task)
{
	struct perf_namespaces_event namespaces_event;
	struct perf_ns_link_info *ns_link_info;

	if (!atomic_read(&nr_namespaces_events))
		return;

	namespaces_event = (struct perf_namespaces_event){
		.task	= task,
		.event_id  = {
			.header = {
				.type = PERF_RECORD_NAMESPACES,
				.misc = 0,
				.size = sizeof(namespaces_event.event_id),
			},
			/* .pid */
			/* .tid */
			.nr_namespaces = NR_NAMESPACES,
			/* .link_info[NR_NAMESPACES] */
		},
	};

	ns_link_info = namespaces_event.event_id.link_info;

	perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
			       task, &mntns_operations);

#ifdef CONFIG_USER_NS
	perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
			       task, &userns_operations);
#endif
#ifdef CONFIG_NET_NS
	perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
			       task, &netns_operations);
#endif
#ifdef CONFIG_UTS_NS
	perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
			       task, &utsns_operations);
#endif
#ifdef CONFIG_IPC_NS
	perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
			       task, &ipcns_operations);
#endif
#ifdef CONFIG_PID_NS
	perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
			       task, &pidns_operations);
#endif
#ifdef CONFIG_CGROUPS
	perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
			       task, &cgroupns_operations);
#endif

	perf_iterate_sb(perf_event_namespaces_output,
			&namespaces_event,
			NULL);
}

6741 6742 6743 6744 6745
/*
 * mmap tracking
 */

struct perf_mmap_event {
6746 6747 6748 6749
	struct vm_area_struct	*vma;

	const char		*file_name;
	int			file_size;
6750 6751 6752
	int			maj, min;
	u64			ino;
	u64			ino_generation;
6753
	u32			prot, flags;
6754 6755 6756 6757 6758 6759 6760 6761 6762

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
		u64				start;
		u64				len;
		u64				pgoff;
6763
	} event_id;
6764 6765
};

6766 6767 6768 6769 6770 6771 6772 6773
static int perf_event_mmap_match(struct perf_event *event,
				 void *data)
{
	struct perf_mmap_event *mmap_event = data;
	struct vm_area_struct *vma = mmap_event->vma;
	int executable = vma->vm_flags & VM_EXEC;

	return (!executable && event->attr.mmap_data) ||
6774
	       (executable && (event->attr.mmap || event->attr.mmap2));
6775 6776
}

6777
static void perf_event_mmap_output(struct perf_event *event,
6778
				   void *data)
6779
{
6780
	struct perf_mmap_event *mmap_event = data;
6781
	struct perf_output_handle handle;
6782
	struct perf_sample_data sample;
6783
	int size = mmap_event->event_id.header.size;
6784
	int ret;
6785

6786 6787 6788
	if (!perf_event_mmap_match(event, data))
		return;

6789 6790 6791 6792 6793
	if (event->attr.mmap2) {
		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
		mmap_event->event_id.header.size += sizeof(mmap_event->min);
		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
6794
		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
6795 6796
		mmap_event->event_id.header.size += sizeof(mmap_event->prot);
		mmap_event->event_id.header.size += sizeof(mmap_event->flags);
6797 6798
	}

6799 6800
	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
6801
				mmap_event->event_id.header.size);
6802
	if (ret)
6803
		goto out;
6804

6805 6806
	mmap_event->event_id.pid = perf_event_pid(event, current);
	mmap_event->event_id.tid = perf_event_tid(event, current);
6807

6808
	perf_output_put(&handle, mmap_event->event_id);
6809 6810 6811 6812 6813 6814

	if (event->attr.mmap2) {
		perf_output_put(&handle, mmap_event->maj);
		perf_output_put(&handle, mmap_event->min);
		perf_output_put(&handle, mmap_event->ino);
		perf_output_put(&handle, mmap_event->ino_generation);
6815 6816
		perf_output_put(&handle, mmap_event->prot);
		perf_output_put(&handle, mmap_event->flags);
6817 6818
	}

6819
	__output_copy(&handle, mmap_event->file_name,
6820
				   mmap_event->file_size);
6821 6822 6823

	perf_event__output_id_sample(event, &handle, &sample);

6824
	perf_output_end(&handle);
6825 6826
out:
	mmap_event->event_id.header.size = size;
6827 6828
}

6829
static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
6830
{
6831 6832
	struct vm_area_struct *vma = mmap_event->vma;
	struct file *file = vma->vm_file;
6833 6834
	int maj = 0, min = 0;
	u64 ino = 0, gen = 0;
6835
	u32 prot = 0, flags = 0;
6836 6837 6838
	unsigned int size;
	char tmp[16];
	char *buf = NULL;
6839
	char *name;
6840

6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861
	if (vma->vm_flags & VM_READ)
		prot |= PROT_READ;
	if (vma->vm_flags & VM_WRITE)
		prot |= PROT_WRITE;
	if (vma->vm_flags & VM_EXEC)
		prot |= PROT_EXEC;

	if (vma->vm_flags & VM_MAYSHARE)
		flags = MAP_SHARED;
	else
		flags = MAP_PRIVATE;

	if (vma->vm_flags & VM_DENYWRITE)
		flags |= MAP_DENYWRITE;
	if (vma->vm_flags & VM_MAYEXEC)
		flags |= MAP_EXECUTABLE;
	if (vma->vm_flags & VM_LOCKED)
		flags |= MAP_LOCKED;
	if (vma->vm_flags & VM_HUGETLB)
		flags |= MAP_HUGETLB;

6862
	if (file) {
6863 6864
		struct inode *inode;
		dev_t dev;
6865

6866
		buf = kmalloc(PATH_MAX, GFP_KERNEL);
6867
		if (!buf) {
6868 6869
			name = "//enomem";
			goto cpy_name;
6870
		}
6871
		/*
6872
		 * d_path() works from the end of the rb backwards, so we
6873 6874 6875
		 * need to add enough zero bytes after the string to handle
		 * the 64bit alignment we do later.
		 */
M
Miklos Szeredi 已提交
6876
		name = file_path(file, buf, PATH_MAX - sizeof(u64));
6877
		if (IS_ERR(name)) {
6878 6879
			name = "//toolong";
			goto cpy_name;
6880
		}
6881 6882 6883 6884 6885 6886
		inode = file_inode(vma->vm_file);
		dev = inode->i_sb->s_dev;
		ino = inode->i_ino;
		gen = inode->i_generation;
		maj = MAJOR(dev);
		min = MINOR(dev);
6887

6888
		goto got_name;
6889
	} else {
6890 6891 6892 6893 6894 6895
		if (vma->vm_ops && vma->vm_ops->name) {
			name = (char *) vma->vm_ops->name(vma);
			if (name)
				goto cpy_name;
		}

6896
		name = (char *)arch_vma_name(vma);
6897 6898
		if (name)
			goto cpy_name;
6899

6900
		if (vma->vm_start <= vma->vm_mm->start_brk &&
6901
				vma->vm_end >= vma->vm_mm->brk) {
6902 6903
			name = "[heap]";
			goto cpy_name;
6904 6905
		}
		if (vma->vm_start <= vma->vm_mm->start_stack &&
6906
				vma->vm_end >= vma->vm_mm->start_stack) {
6907 6908
			name = "[stack]";
			goto cpy_name;
6909 6910
		}

6911 6912
		name = "//anon";
		goto cpy_name;
6913 6914
	}

6915 6916 6917
cpy_name:
	strlcpy(tmp, name, sizeof(tmp));
	name = tmp;
6918
got_name:
6919 6920 6921 6922 6923 6924 6925 6926
	/*
	 * Since our buffer works in 8 byte units we need to align our string
	 * size to a multiple of 8. However, we must guarantee the tail end is
	 * zero'd out to avoid leaking random bits to userspace.
	 */
	size = strlen(name)+1;
	while (!IS_ALIGNED(size, sizeof(u64)))
		name[size++] = '\0';
6927 6928 6929

	mmap_event->file_name = name;
	mmap_event->file_size = size;
6930 6931 6932 6933
	mmap_event->maj = maj;
	mmap_event->min = min;
	mmap_event->ino = ino;
	mmap_event->ino_generation = gen;
6934 6935
	mmap_event->prot = prot;
	mmap_event->flags = flags;
6936

6937 6938 6939
	if (!(vma->vm_flags & VM_EXEC))
		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;

6940
	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
6941

6942
	perf_iterate_sb(perf_event_mmap_output,
6943 6944
		       mmap_event,
		       NULL);
6945

6946 6947 6948
	kfree(buf);
}

6949 6950 6951 6952 6953 6954 6955
/*
 * Check whether inode and address range match filter criteria.
 */
static bool perf_addr_filter_match(struct perf_addr_filter *filter,
				     struct file *file, unsigned long offset,
				     unsigned long size)
{
A
Al Viro 已提交
6956
	if (filter->inode != file_inode(file))
6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998
		return false;

	if (filter->offset > offset + size)
		return false;

	if (filter->offset + filter->size < offset)
		return false;

	return true;
}

static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
{
	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
	struct vm_area_struct *vma = data;
	unsigned long off = vma->vm_pgoff << PAGE_SHIFT, flags;
	struct file *file = vma->vm_file;
	struct perf_addr_filter *filter;
	unsigned int restart = 0, count = 0;

	if (!has_addr_filter(event))
		return;

	if (!file)
		return;

	raw_spin_lock_irqsave(&ifh->lock, flags);
	list_for_each_entry(filter, &ifh->list, entry) {
		if (perf_addr_filter_match(filter, file, off,
					     vma->vm_end - vma->vm_start)) {
			event->addr_filters_offs[count] = vma->vm_start;
			restart++;
		}

		count++;
	}

	if (restart)
		event->addr_filters_gen++;
	raw_spin_unlock_irqrestore(&ifh->lock, flags);

	if (restart)
6999
		perf_event_stop(event, 1);
7000 7001 7002 7003 7004 7005 7006 7007 7008 7009
}

/*
 * Adjust all task's events' filters to the new vma
 */
static void perf_addr_filters_adjust(struct vm_area_struct *vma)
{
	struct perf_event_context *ctx;
	int ctxn;

7010 7011 7012 7013 7014 7015 7016
	/*
	 * Data tracing isn't supported yet and as such there is no need
	 * to keep track of anything that isn't related to executable code:
	 */
	if (!(vma->vm_flags & VM_EXEC))
		return;

7017 7018 7019 7020 7021 7022
	rcu_read_lock();
	for_each_task_context_nr(ctxn) {
		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		if (!ctx)
			continue;

7023
		perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
7024 7025 7026 7027
	}
	rcu_read_unlock();
}

7028
void perf_event_mmap(struct vm_area_struct *vma)
7029
{
7030 7031
	struct perf_mmap_event mmap_event;

7032
	if (!atomic_read(&nr_mmap_events))
7033 7034 7035
		return;

	mmap_event = (struct perf_mmap_event){
7036
		.vma	= vma,
7037 7038
		/* .file_name */
		/* .file_size */
7039
		.event_id  = {
7040
			.header = {
7041
				.type = PERF_RECORD_MMAP,
7042
				.misc = PERF_RECORD_MISC_USER,
7043 7044 7045 7046
				/* .size */
			},
			/* .pid */
			/* .tid */
7047 7048
			.start  = vma->vm_start,
			.len    = vma->vm_end - vma->vm_start,
7049
			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
7050
		},
7051 7052 7053 7054
		/* .maj (attr_mmap2 only) */
		/* .min (attr_mmap2 only) */
		/* .ino (attr_mmap2 only) */
		/* .ino_generation (attr_mmap2 only) */
7055 7056
		/* .prot (attr_mmap2 only) */
		/* .flags (attr_mmap2 only) */
7057 7058
	};

7059
	perf_addr_filters_adjust(vma);
7060
	perf_event_mmap_event(&mmap_event);
7061 7062
}

A
Alexander Shishkin 已提交
7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096
void perf_event_aux_event(struct perf_event *event, unsigned long head,
			  unsigned long size, u64 flags)
{
	struct perf_output_handle handle;
	struct perf_sample_data sample;
	struct perf_aux_event {
		struct perf_event_header	header;
		u64				offset;
		u64				size;
		u64				flags;
	} rec = {
		.header = {
			.type = PERF_RECORD_AUX,
			.misc = 0,
			.size = sizeof(rec),
		},
		.offset		= head,
		.size		= size,
		.flags		= flags,
	};
	int ret;

	perf_event_header__init_id(&rec.header, &sample, event);
	ret = perf_output_begin(&handle, event, rec.header.size);

	if (ret)
		return;

	perf_output_put(&handle, rec);
	perf_event__output_id_sample(event, &handle, &sample);

	perf_output_end(&handle);
}

7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129
/*
 * Lost/dropped samples logging
 */
void perf_log_lost_samples(struct perf_event *event, u64 lost)
{
	struct perf_output_handle handle;
	struct perf_sample_data sample;
	int ret;

	struct {
		struct perf_event_header	header;
		u64				lost;
	} lost_samples_event = {
		.header = {
			.type = PERF_RECORD_LOST_SAMPLES,
			.misc = 0,
			.size = sizeof(lost_samples_event),
		},
		.lost		= lost,
	};

	perf_event_header__init_id(&lost_samples_event.header, &sample, event);

	ret = perf_output_begin(&handle, event,
				lost_samples_event.header.size);
	if (ret)
		return;

	perf_output_put(&handle, lost_samples_event);
	perf_event__output_id_sample(event, &handle, &sample);
	perf_output_end(&handle);
}

7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209
/*
 * context_switch tracking
 */

struct perf_switch_event {
	struct task_struct	*task;
	struct task_struct	*next_prev;

	struct {
		struct perf_event_header	header;
		u32				next_prev_pid;
		u32				next_prev_tid;
	} event_id;
};

static int perf_event_switch_match(struct perf_event *event)
{
	return event->attr.context_switch;
}

static void perf_event_switch_output(struct perf_event *event, void *data)
{
	struct perf_switch_event *se = data;
	struct perf_output_handle handle;
	struct perf_sample_data sample;
	int ret;

	if (!perf_event_switch_match(event))
		return;

	/* Only CPU-wide events are allowed to see next/prev pid/tid */
	if (event->ctx->task) {
		se->event_id.header.type = PERF_RECORD_SWITCH;
		se->event_id.header.size = sizeof(se->event_id.header);
	} else {
		se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
		se->event_id.header.size = sizeof(se->event_id);
		se->event_id.next_prev_pid =
					perf_event_pid(event, se->next_prev);
		se->event_id.next_prev_tid =
					perf_event_tid(event, se->next_prev);
	}

	perf_event_header__init_id(&se->event_id.header, &sample, event);

	ret = perf_output_begin(&handle, event, se->event_id.header.size);
	if (ret)
		return;

	if (event->ctx->task)
		perf_output_put(&handle, se->event_id.header);
	else
		perf_output_put(&handle, se->event_id);

	perf_event__output_id_sample(event, &handle, &sample);

	perf_output_end(&handle);
}

static void perf_event_switch(struct task_struct *task,
			      struct task_struct *next_prev, bool sched_in)
{
	struct perf_switch_event switch_event;

	/* N.B. caller checks nr_switch_events != 0 */

	switch_event = (struct perf_switch_event){
		.task		= task,
		.next_prev	= next_prev,
		.event_id	= {
			.header = {
				/* .type */
				.misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
				/* .size */
			},
			/* .next_prev_pid */
			/* .next_prev_tid */
		},
	};

7210
	perf_iterate_sb(perf_event_switch_output,
7211 7212 7213 7214
		       &switch_event,
		       NULL);
}

7215 7216 7217 7218
/*
 * IRQ throttle logging
 */

7219
static void perf_log_throttle(struct perf_event *event, int enable)
7220 7221
{
	struct perf_output_handle handle;
7222
	struct perf_sample_data sample;
7223 7224 7225 7226 7227
	int ret;

	struct {
		struct perf_event_header	header;
		u64				time;
7228
		u64				id;
7229
		u64				stream_id;
7230 7231
	} throttle_event = {
		.header = {
7232
			.type = PERF_RECORD_THROTTLE,
7233 7234 7235
			.misc = 0,
			.size = sizeof(throttle_event),
		},
7236
		.time		= perf_event_clock(event),
7237 7238
		.id		= primary_event_id(event),
		.stream_id	= event->id,
7239 7240
	};

7241
	if (enable)
7242
		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
7243

7244 7245 7246
	perf_event_header__init_id(&throttle_event.header, &sample, event);

	ret = perf_output_begin(&handle, event,
7247
				throttle_event.header.size);
7248 7249 7250 7251
	if (ret)
		return;

	perf_output_put(&handle, throttle_event);
7252
	perf_event__output_id_sample(event, &handle, &sample);
7253 7254 7255
	perf_output_end(&handle);
}

7256 7257 7258 7259 7260
void perf_event_itrace_started(struct perf_event *event)
{
	event->attach_state |= PERF_ATTACH_ITRACE;
}

7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275
static void perf_log_itrace_start(struct perf_event *event)
{
	struct perf_output_handle handle;
	struct perf_sample_data sample;
	struct perf_aux_event {
		struct perf_event_header        header;
		u32				pid;
		u32				tid;
	} rec;
	int ret;

	if (event->parent)
		event = event->parent;

	if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
7276
	    event->attach_state & PERF_ATTACH_ITRACE)
7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296
		return;

	rec.header.type	= PERF_RECORD_ITRACE_START;
	rec.header.misc	= 0;
	rec.header.size	= sizeof(rec);
	rec.pid	= perf_event_pid(event, current);
	rec.tid	= perf_event_tid(event, current);

	perf_event_header__init_id(&rec.header, &sample, event);
	ret = perf_output_begin(&handle, event, rec.header.size);

	if (ret)
		return;

	perf_output_put(&handle, rec);
	perf_event__output_id_sample(event, &handle, &sample);

	perf_output_end(&handle);
}

7297 7298
static int
__perf_event_account_interrupt(struct perf_event *event, int throttle)
7299
{
7300
	struct hw_perf_event *hwc = &event->hw;
7301
	int ret = 0;
7302
	u64 seq;
7303

7304 7305 7306 7307 7308 7309 7310 7311 7312
	seq = __this_cpu_read(perf_throttled_seq);
	if (seq != hwc->interrupts_seq) {
		hwc->interrupts_seq = seq;
		hwc->interrupts = 1;
	} else {
		hwc->interrupts++;
		if (unlikely(throttle
			     && hwc->interrupts >= max_samples_per_tick)) {
			__this_cpu_inc(perf_throttled_count);
7313
			tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
P
Peter Zijlstra 已提交
7314 7315
			hwc->interrupts = MAX_INTERRUPTS;
			perf_log_throttle(event, 0);
7316 7317
			ret = 1;
		}
7318
	}
7319

7320
	if (event->attr.freq) {
P
Peter Zijlstra 已提交
7321
		u64 now = perf_clock();
7322
		s64 delta = now - hwc->freq_time_stamp;
7323

7324
		hwc->freq_time_stamp = now;
7325

7326
		if (delta > 0 && delta < 2*TICK_NSEC)
7327
			perf_adjust_period(event, delta, hwc->last_period, true);
7328 7329
	}

7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356
	return ret;
}

int perf_event_account_interrupt(struct perf_event *event)
{
	return __perf_event_account_interrupt(event, 1);
}

/*
 * Generic event overflow handling, sampling.
 */

static int __perf_event_overflow(struct perf_event *event,
				   int throttle, struct perf_sample_data *data,
				   struct pt_regs *regs)
{
	int events = atomic_read(&event->event_limit);
	int ret = 0;

	/*
	 * Non-sampling counters might still use the PMI to fold short
	 * hardware counters, ignore those.
	 */
	if (unlikely(!is_sampling_event(event)))
		return 0;

	ret = __perf_event_account_interrupt(event, throttle);
7357

7358 7359
	/*
	 * XXX event_limit might not quite work as expected on inherited
7360
	 * events
7361 7362
	 */

7363 7364
	event->pending_kill = POLL_IN;
	if (events && atomic_dec_and_test(&event->event_limit)) {
7365
		ret = 1;
7366
		event->pending_kill = POLL_HUP;
7367 7368

		perf_event_disable_inatomic(event);
7369 7370
	}

7371
	READ_ONCE(event->overflow_handler)(event, data, regs);
7372

7373
	if (*perf_event_fasync(event) && event->pending_kill) {
7374 7375
		event->pending_wakeup = 1;
		irq_work_queue(&event->pending);
P
Peter Zijlstra 已提交
7376 7377
	}

7378
	return ret;
7379 7380
}

7381
int perf_event_overflow(struct perf_event *event,
7382 7383
			  struct perf_sample_data *data,
			  struct pt_regs *regs)
7384
{
7385
	return __perf_event_overflow(event, 1, data, regs);
7386 7387
}

7388
/*
7389
 * Generic software event infrastructure
7390 7391
 */

7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402
struct swevent_htable {
	struct swevent_hlist		*swevent_hlist;
	struct mutex			hlist_mutex;
	int				hlist_refcount;

	/* Recursion avoidance in each contexts */
	int				recursion[PERF_NR_CONTEXTS];
};

static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);

7403
/*
7404 7405
 * We directly increment event->count and keep a second value in
 * event->hw.period_left to count intervals. This period event
7406 7407 7408 7409
 * is kept in the range [-sample_period, 0] so that we can use the
 * sign as trigger.
 */

7410
u64 perf_swevent_set_period(struct perf_event *event)
7411
{
7412
	struct hw_perf_event *hwc = &event->hw;
7413 7414 7415 7416 7417
	u64 period = hwc->last_period;
	u64 nr, offset;
	s64 old, val;

	hwc->last_period = hwc->sample_period;
7418 7419

again:
7420
	old = val = local64_read(&hwc->period_left);
7421 7422
	if (val < 0)
		return 0;
7423

7424 7425 7426
	nr = div64_u64(period + val, period);
	offset = nr * period;
	val -= offset;
7427
	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7428
		goto again;
7429

7430
	return nr;
7431 7432
}

7433
static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
7434
				    struct perf_sample_data *data,
7435
				    struct pt_regs *regs)
7436
{
7437
	struct hw_perf_event *hwc = &event->hw;
7438
	int throttle = 0;
7439

7440 7441
	if (!overflow)
		overflow = perf_swevent_set_period(event);
7442

7443 7444
	if (hwc->interrupts == MAX_INTERRUPTS)
		return;
7445

7446
	for (; overflow; overflow--) {
7447
		if (__perf_event_overflow(event, throttle,
7448
					    data, regs)) {
7449 7450 7451 7452 7453 7454
			/*
			 * We inhibit the overflow from happening when
			 * hwc->interrupts == MAX_INTERRUPTS.
			 */
			break;
		}
7455
		throttle = 1;
7456
	}
7457 7458
}

P
Peter Zijlstra 已提交
7459
static void perf_swevent_event(struct perf_event *event, u64 nr,
7460
			       struct perf_sample_data *data,
7461
			       struct pt_regs *regs)
7462
{
7463
	struct hw_perf_event *hwc = &event->hw;
7464

7465
	local64_add(nr, &event->count);
7466

7467 7468 7469
	if (!regs)
		return;

7470
	if (!is_sampling_event(event))
7471
		return;
7472

7473 7474 7475 7476 7477 7478
	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
		data->period = nr;
		return perf_swevent_overflow(event, 1, data, regs);
	} else
		data->period = event->hw.last_period;

7479
	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
7480
		return perf_swevent_overflow(event, 1, data, regs);
7481

7482
	if (local64_add_negative(nr, &hwc->period_left))
7483
		return;
7484

7485
	perf_swevent_overflow(event, 0, data, regs);
7486 7487
}

7488 7489 7490
static int perf_exclude_event(struct perf_event *event,
			      struct pt_regs *regs)
{
P
Peter Zijlstra 已提交
7491
	if (event->hw.state & PERF_HES_STOPPED)
7492
		return 1;
P
Peter Zijlstra 已提交
7493

7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504
	if (regs) {
		if (event->attr.exclude_user && user_mode(regs))
			return 1;

		if (event->attr.exclude_kernel && !user_mode(regs))
			return 1;
	}

	return 0;
}

7505
static int perf_swevent_match(struct perf_event *event,
P
Peter Zijlstra 已提交
7506
				enum perf_type_id type,
L
Li Zefan 已提交
7507 7508 7509
				u32 event_id,
				struct perf_sample_data *data,
				struct pt_regs *regs)
7510
{
7511
	if (event->attr.type != type)
7512
		return 0;
7513

7514
	if (event->attr.config != event_id)
7515 7516
		return 0;

7517 7518
	if (perf_exclude_event(event, regs))
		return 0;
7519 7520 7521 7522

	return 1;
}

7523 7524 7525 7526 7527 7528 7529
static inline u64 swevent_hash(u64 type, u32 event_id)
{
	u64 val = event_id | (type << 32);

	return hash_64(val, SWEVENT_HLIST_BITS);
}

7530 7531
static inline struct hlist_head *
__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
7532
{
7533 7534 7535 7536
	u64 hash = swevent_hash(type, event_id);

	return &hlist->heads[hash];
}
7537

7538 7539
/* For the read side: events when they trigger */
static inline struct hlist_head *
7540
find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
7541 7542
{
	struct swevent_hlist *hlist;
7543

7544
	hlist = rcu_dereference(swhash->swevent_hlist);
7545 7546 7547
	if (!hlist)
		return NULL;

7548 7549 7550 7551 7552
	return __find_swevent_head(hlist, type, event_id);
}

/* For the event head insertion and removal in the hlist */
static inline struct hlist_head *
7553
find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
7554 7555 7556 7557 7558 7559 7560 7561 7562 7563
{
	struct swevent_hlist *hlist;
	u32 event_id = event->attr.config;
	u64 type = event->attr.type;

	/*
	 * Event scheduling is always serialized against hlist allocation
	 * and release. Which makes the protected version suitable here.
	 * The context lock guarantees that.
	 */
7564
	hlist = rcu_dereference_protected(swhash->swevent_hlist,
7565 7566 7567 7568 7569
					  lockdep_is_held(&event->ctx->lock));
	if (!hlist)
		return NULL;

	return __find_swevent_head(hlist, type, event_id);
7570 7571 7572
}

static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
7573
				    u64 nr,
7574 7575
				    struct perf_sample_data *data,
				    struct pt_regs *regs)
7576
{
7577
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7578
	struct perf_event *event;
7579
	struct hlist_head *head;
7580

7581
	rcu_read_lock();
7582
	head = find_swevent_head_rcu(swhash, type, event_id);
7583 7584 7585
	if (!head)
		goto end;

7586
	hlist_for_each_entry_rcu(event, head, hlist_entry) {
L
Li Zefan 已提交
7587
		if (perf_swevent_match(event, type, event_id, data, regs))
7588
			perf_swevent_event(event, nr, data, regs);
7589
	}
7590 7591
end:
	rcu_read_unlock();
7592 7593
}

7594 7595
DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);

7596
int perf_swevent_get_recursion_context(void)
P
Peter Zijlstra 已提交
7597
{
7598
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
P
Peter Zijlstra 已提交
7599

7600
	return get_recursion_context(swhash->recursion);
P
Peter Zijlstra 已提交
7601
}
I
Ingo Molnar 已提交
7602
EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
P
Peter Zijlstra 已提交
7603

7604
void perf_swevent_put_recursion_context(int rctx)
7605
{
7606
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7607

7608
	put_recursion_context(swhash->recursion, rctx);
7609
}
7610

7611
void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7612
{
7613
	struct perf_sample_data data;
7614

7615
	if (WARN_ON_ONCE(!regs))
7616
		return;
7617

7618
	perf_sample_data_init(&data, addr, 0);
7619
	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631
}

void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
{
	int rctx;

	preempt_disable_notrace();
	rctx = perf_swevent_get_recursion_context();
	if (unlikely(rctx < 0))
		goto fail;

	___perf_sw_event(event_id, nr, regs, addr);
7632 7633

	perf_swevent_put_recursion_context(rctx);
7634
fail:
7635
	preempt_enable_notrace();
7636 7637
}

7638
static void perf_swevent_read(struct perf_event *event)
7639 7640 7641
{
}

P
Peter Zijlstra 已提交
7642
static int perf_swevent_add(struct perf_event *event, int flags)
7643
{
7644
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7645
	struct hw_perf_event *hwc = &event->hw;
7646 7647
	struct hlist_head *head;

7648
	if (is_sampling_event(event)) {
7649
		hwc->last_period = hwc->sample_period;
7650
		perf_swevent_set_period(event);
7651
	}
7652

P
Peter Zijlstra 已提交
7653 7654
	hwc->state = !(flags & PERF_EF_START);

7655
	head = find_swevent_head(swhash, event);
P
Peter Zijlstra 已提交
7656
	if (WARN_ON_ONCE(!head))
7657 7658 7659
		return -EINVAL;

	hlist_add_head_rcu(&event->hlist_entry, head);
7660
	perf_event_update_userpage(event);
7661

7662 7663 7664
	return 0;
}

P
Peter Zijlstra 已提交
7665
static void perf_swevent_del(struct perf_event *event, int flags)
7666
{
7667
	hlist_del_rcu(&event->hlist_entry);
7668 7669
}

P
Peter Zijlstra 已提交
7670
static void perf_swevent_start(struct perf_event *event, int flags)
7671
{
P
Peter Zijlstra 已提交
7672
	event->hw.state = 0;
7673
}
I
Ingo Molnar 已提交
7674

P
Peter Zijlstra 已提交
7675
static void perf_swevent_stop(struct perf_event *event, int flags)
7676
{
P
Peter Zijlstra 已提交
7677
	event->hw.state = PERF_HES_STOPPED;
7678 7679
}

7680 7681
/* Deref the hlist from the update side */
static inline struct swevent_hlist *
7682
swevent_hlist_deref(struct swevent_htable *swhash)
7683
{
7684 7685
	return rcu_dereference_protected(swhash->swevent_hlist,
					 lockdep_is_held(&swhash->hlist_mutex));
7686 7687
}

7688
static void swevent_hlist_release(struct swevent_htable *swhash)
7689
{
7690
	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
7691

7692
	if (!hlist)
7693 7694
		return;

7695
	RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
7696
	kfree_rcu(hlist, rcu_head);
7697 7698
}

7699
static void swevent_hlist_put_cpu(int cpu)
7700
{
7701
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7702

7703
	mutex_lock(&swhash->hlist_mutex);
7704

7705 7706
	if (!--swhash->hlist_refcount)
		swevent_hlist_release(swhash);
7707

7708
	mutex_unlock(&swhash->hlist_mutex);
7709 7710
}

7711
static void swevent_hlist_put(void)
7712 7713 7714 7715
{
	int cpu;

	for_each_possible_cpu(cpu)
7716
		swevent_hlist_put_cpu(cpu);
7717 7718
}

7719
static int swevent_hlist_get_cpu(int cpu)
7720
{
7721
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7722 7723
	int err = 0;

7724
	mutex_lock(&swhash->hlist_mutex);
7725 7726
	if (!swevent_hlist_deref(swhash) &&
	    cpumask_test_cpu(cpu, perf_online_mask)) {
7727 7728 7729 7730 7731 7732 7733
		struct swevent_hlist *hlist;

		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
		if (!hlist) {
			err = -ENOMEM;
			goto exit;
		}
7734
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
7735
	}
7736
	swhash->hlist_refcount++;
P
Peter Zijlstra 已提交
7737
exit:
7738
	mutex_unlock(&swhash->hlist_mutex);
7739 7740 7741 7742

	return err;
}

7743
static int swevent_hlist_get(void)
7744
{
7745
	int err, cpu, failed_cpu;
7746

7747
	mutex_lock(&pmus_lock);
7748
	for_each_possible_cpu(cpu) {
7749
		err = swevent_hlist_get_cpu(cpu);
7750 7751 7752 7753 7754
		if (err) {
			failed_cpu = cpu;
			goto fail;
		}
	}
7755
	mutex_unlock(&pmus_lock);
7756
	return 0;
P
Peter Zijlstra 已提交
7757
fail:
7758 7759 7760
	for_each_possible_cpu(cpu) {
		if (cpu == failed_cpu)
			break;
7761
		swevent_hlist_put_cpu(cpu);
7762
	}
7763
	mutex_unlock(&pmus_lock);
7764 7765 7766
	return err;
}

7767
struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
7768

7769 7770 7771
static void sw_perf_event_destroy(struct perf_event *event)
{
	u64 event_id = event->attr.config;
7772

7773 7774
	WARN_ON(event->parent);

7775
	static_key_slow_dec(&perf_swevent_enabled[event_id]);
7776
	swevent_hlist_put();
7777 7778 7779 7780
}

static int perf_swevent_init(struct perf_event *event)
{
7781
	u64 event_id = event->attr.config;
7782 7783 7784 7785

	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

7786 7787 7788 7789 7790 7791
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

7792 7793 7794 7795 7796 7797 7798 7799 7800
	switch (event_id) {
	case PERF_COUNT_SW_CPU_CLOCK:
	case PERF_COUNT_SW_TASK_CLOCK:
		return -ENOENT;

	default:
		break;
	}

7801
	if (event_id >= PERF_COUNT_SW_MAX)
7802 7803 7804 7805 7806
		return -ENOENT;

	if (!event->parent) {
		int err;

7807
		err = swevent_hlist_get();
7808 7809 7810
		if (err)
			return err;

7811
		static_key_slow_inc(&perf_swevent_enabled[event_id]);
7812 7813 7814 7815 7816 7817 7818
		event->destroy = sw_perf_event_destroy;
	}

	return 0;
}

static struct pmu perf_swevent = {
7819
	.task_ctx_nr	= perf_sw_context,
7820

7821 7822
	.capabilities	= PERF_PMU_CAP_NO_NMI,

7823
	.event_init	= perf_swevent_init,
P
Peter Zijlstra 已提交
7824 7825 7826 7827
	.add		= perf_swevent_add,
	.del		= perf_swevent_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
7828 7829 7830
	.read		= perf_swevent_read,
};

7831 7832
#ifdef CONFIG_EVENT_TRACING

7833 7834 7835
static int perf_tp_filter_match(struct perf_event *event,
				struct perf_sample_data *data)
{
7836
	void *record = data->raw->frag.data;
7837

7838 7839 7840 7841
	/* only top level events have filters set */
	if (event->parent)
		event = event->parent;

7842 7843 7844 7845 7846 7847 7848 7849 7850
	if (likely(!event->filter) || filter_match_preds(event->filter, record))
		return 1;
	return 0;
}

static int perf_tp_event_match(struct perf_event *event,
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
7851 7852
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;
7853 7854 7855 7856
	/*
	 * All tracepoints are from kernel-space.
	 */
	if (event->attr.exclude_kernel)
7857 7858 7859 7860 7861 7862 7863 7864
		return 0;

	if (!perf_tp_filter_match(event, data))
		return 0;

	return 1;
}

7865 7866 7867 7868 7869
void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
			       struct trace_event_call *call, u64 count,
			       struct pt_regs *regs, struct hlist_head *head,
			       struct task_struct *task)
{
7870
	if (bpf_prog_array_valid(call)) {
7871
		*(struct pt_regs **)raw_data = regs;
7872
		if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
7873 7874 7875 7876 7877
			perf_swevent_put_recursion_context(rctx);
			return;
		}
	}
	perf_tp_event(call->event.type, count, raw_data, size, regs, head,
7878
		      rctx, task);
7879 7880 7881
}
EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);

7882
void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
7883
		   struct pt_regs *regs, struct hlist_head *head, int rctx,
7884
		   struct task_struct *task)
7885 7886
{
	struct perf_sample_data data;
7887
	struct perf_event *event;
7888

7889
	struct perf_raw_record raw = {
7890 7891 7892 7893
		.frag = {
			.size = entry_size,
			.data = record,
		},
7894 7895
	};

7896
	perf_sample_data_init(&data, 0, 0);
7897 7898
	data.raw = &raw;

7899 7900
	perf_trace_buf_update(record, event_type);

7901
	hlist_for_each_entry_rcu(event, head, hlist_entry) {
7902
		if (perf_tp_event_match(event, &data, regs))
7903
			perf_swevent_event(event, count, &data, regs);
7904
	}
7905

7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930
	/*
	 * If we got specified a target task, also iterate its context and
	 * deliver this event there too.
	 */
	if (task && task != current) {
		struct perf_event_context *ctx;
		struct trace_entry *entry = record;

		rcu_read_lock();
		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
		if (!ctx)
			goto unlock;

		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
			if (event->attr.type != PERF_TYPE_TRACEPOINT)
				continue;
			if (event->attr.config != entry->type)
				continue;
			if (perf_tp_event_match(event, &data, regs))
				perf_swevent_event(event, count, &data, regs);
		}
unlock:
		rcu_read_unlock();
	}

7931
	perf_swevent_put_recursion_context(rctx);
7932 7933 7934
}
EXPORT_SYMBOL_GPL(perf_tp_event);

7935
static void tp_perf_event_destroy(struct perf_event *event)
7936
{
7937
	perf_trace_destroy(event);
7938 7939
}

7940
static int perf_tp_event_init(struct perf_event *event)
7941
{
7942 7943
	int err;

7944 7945 7946
	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -ENOENT;

7947 7948 7949 7950 7951 7952
	/*
	 * no branch sampling for tracepoint events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

7953 7954
	err = perf_trace_init(event);
	if (err)
7955
		return err;
7956

7957
	event->destroy = tp_perf_event_destroy;
7958

7959 7960 7961 7962
	return 0;
}

static struct pmu perf_tracepoint = {
7963 7964
	.task_ctx_nr	= perf_sw_context,

7965
	.event_init	= perf_tp_event_init,
P
Peter Zijlstra 已提交
7966 7967 7968 7969
	.add		= perf_trace_add,
	.del		= perf_trace_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
7970 7971 7972 7973 7974
	.read		= perf_swevent_read,
};

static inline void perf_tp_register(void)
{
P
Peter Zijlstra 已提交
7975
	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
7976
}
L
Li Zefan 已提交
7977 7978 7979 7980 7981 7982

static void perf_event_free_filter(struct perf_event *event)
{
	ftrace_profile_free_filter(event);
}

7983 7984 7985 7986 7987 7988 7989 7990
#ifdef CONFIG_BPF_SYSCALL
static void bpf_overflow_handler(struct perf_event *event,
				 struct perf_sample_data *data,
				 struct pt_regs *regs)
{
	struct bpf_perf_event_data_kern ctx = {
		.data = data,
		.regs = regs,
7991
		.event = event,
7992 7993 7994 7995 7996 7997 7998
	};
	int ret = 0;

	preempt_disable();
	if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
		goto out;
	rcu_read_lock();
7999
	ret = BPF_PROG_RUN(event->prog, &ctx);
8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051
	rcu_read_unlock();
out:
	__this_cpu_dec(bpf_prog_active);
	preempt_enable();
	if (!ret)
		return;

	event->orig_overflow_handler(event, data, regs);
}

static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
{
	struct bpf_prog *prog;

	if (event->overflow_handler_context)
		/* hw breakpoint or kernel counter */
		return -EINVAL;

	if (event->prog)
		return -EEXIST;

	prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
	if (IS_ERR(prog))
		return PTR_ERR(prog);

	event->prog = prog;
	event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
	WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
	return 0;
}

static void perf_event_free_bpf_handler(struct perf_event *event)
{
	struct bpf_prog *prog = event->prog;

	if (!prog)
		return;

	WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
	event->prog = NULL;
	bpf_prog_put(prog);
}
#else
static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
{
	return -EOPNOTSUPP;
}
static void perf_event_free_bpf_handler(struct perf_event *event)
{
}
#endif

8052 8053
static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
{
8054
	bool is_kprobe, is_tracepoint, is_syscall_tp;
8055
	struct bpf_prog *prog;
8056
	int ret;
8057 8058

	if (event->attr.type != PERF_TYPE_TRACEPOINT)
8059
		return perf_event_set_bpf_handler(event, prog_fd);
8060

8061 8062
	is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
	is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
8063 8064
	is_syscall_tp = is_syscall_trace_event(event->tp_event);
	if (!is_kprobe && !is_tracepoint && !is_syscall_tp)
8065
		/* bpf programs can only be attached to u/kprobe or tracepoint */
8066 8067 8068 8069 8070 8071
		return -EINVAL;

	prog = bpf_prog_get(prog_fd);
	if (IS_ERR(prog))
		return PTR_ERR(prog);

8072
	if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
8073 8074
	    (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
	    (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
8075 8076 8077 8078 8079
		/* valid fd, but invalid bpf program type */
		bpf_prog_put(prog);
		return -EINVAL;
	}

8080
	if (is_tracepoint || is_syscall_tp) {
8081 8082 8083 8084 8085 8086 8087
		int off = trace_event_get_offsets(event->tp_event);

		if (prog->aux->max_ctx_offset > off) {
			bpf_prog_put(prog);
			return -EACCES;
		}
	}
8088

8089 8090 8091 8092
	ret = perf_event_attach_bpf_prog(event, prog);
	if (ret)
		bpf_prog_put(prog);
	return ret;
8093 8094 8095 8096
}

static void perf_event_free_bpf_prog(struct perf_event *event)
{
8097 8098
	if (event->attr.type != PERF_TYPE_TRACEPOINT) {
		perf_event_free_bpf_handler(event);
8099 8100
		return;
	}
8101
	perf_event_detach_bpf_prog(event);
8102 8103
}

8104
#else
L
Li Zefan 已提交
8105

8106
static inline void perf_tp_register(void)
8107 8108
{
}
L
Li Zefan 已提交
8109 8110 8111 8112 8113

static void perf_event_free_filter(struct perf_event *event)
{
}

8114 8115 8116 8117 8118 8119 8120 8121
static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
{
	return -ENOENT;
}

static void perf_event_free_bpf_prog(struct perf_event *event)
{
}
8122
#endif /* CONFIG_EVENT_TRACING */
8123

8124
#ifdef CONFIG_HAVE_HW_BREAKPOINT
8125
void perf_bp_event(struct perf_event *bp, void *data)
8126
{
8127 8128 8129
	struct perf_sample_data sample;
	struct pt_regs *regs = data;

8130
	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
8131

P
Peter Zijlstra 已提交
8132
	if (!bp->hw.state && !perf_exclude_event(bp, regs))
8133
		perf_swevent_event(bp, 1, &sample, regs);
8134 8135 8136
}
#endif

8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241
/*
 * Allocate a new address filter
 */
static struct perf_addr_filter *
perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
{
	int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
	struct perf_addr_filter *filter;

	filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
	if (!filter)
		return NULL;

	INIT_LIST_HEAD(&filter->entry);
	list_add_tail(&filter->entry, filters);

	return filter;
}

static void free_filters_list(struct list_head *filters)
{
	struct perf_addr_filter *filter, *iter;

	list_for_each_entry_safe(filter, iter, filters, entry) {
		if (filter->inode)
			iput(filter->inode);
		list_del(&filter->entry);
		kfree(filter);
	}
}

/*
 * Free existing address filters and optionally install new ones
 */
static void perf_addr_filters_splice(struct perf_event *event,
				     struct list_head *head)
{
	unsigned long flags;
	LIST_HEAD(list);

	if (!has_addr_filter(event))
		return;

	/* don't bother with children, they don't have their own filters */
	if (event->parent)
		return;

	raw_spin_lock_irqsave(&event->addr_filters.lock, flags);

	list_splice_init(&event->addr_filters.list, &list);
	if (head)
		list_splice(head, &event->addr_filters.list);

	raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);

	free_filters_list(&list);
}

/*
 * Scan through mm's vmas and see if one of them matches the
 * @filter; if so, adjust filter's address range.
 * Called with mm::mmap_sem down for reading.
 */
static unsigned long perf_addr_filter_apply(struct perf_addr_filter *filter,
					    struct mm_struct *mm)
{
	struct vm_area_struct *vma;

	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		struct file *file = vma->vm_file;
		unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
		unsigned long vma_size = vma->vm_end - vma->vm_start;

		if (!file)
			continue;

		if (!perf_addr_filter_match(filter, file, off, vma_size))
			continue;

		return vma->vm_start;
	}

	return 0;
}

/*
 * Update event's address range filters based on the
 * task's existing mappings, if any.
 */
static void perf_event_addr_filters_apply(struct perf_event *event)
{
	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
	struct task_struct *task = READ_ONCE(event->ctx->task);
	struct perf_addr_filter *filter;
	struct mm_struct *mm = NULL;
	unsigned int count = 0;
	unsigned long flags;

	/*
	 * We may observe TASK_TOMBSTONE, which means that the event tear-down
	 * will stop on the parent's child_mutex that our caller is also holding
	 */
	if (task == TASK_TOMBSTONE)
		return;

8242 8243 8244
	if (!ifh->nr_file_filters)
		return;

8245 8246 8247 8248 8249 8250 8251 8252 8253 8254
	mm = get_task_mm(event->ctx->task);
	if (!mm)
		goto restart;

	down_read(&mm->mmap_sem);

	raw_spin_lock_irqsave(&ifh->lock, flags);
	list_for_each_entry(filter, &ifh->list, entry) {
		event->addr_filters_offs[count] = 0;

8255 8256 8257 8258 8259
		/*
		 * Adjust base offset if the filter is associated to a binary
		 * that needs to be mapped:
		 */
		if (filter->inode)
8260 8261 8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272 8273
			event->addr_filters_offs[count] =
				perf_addr_filter_apply(filter, mm);

		count++;
	}

	event->addr_filters_gen++;
	raw_spin_unlock_irqrestore(&ifh->lock, flags);

	up_read(&mm->mmap_sem);

	mmput(mm);

restart:
8274
	perf_event_stop(event, 1);
8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295
}

/*
 * Address range filtering: limiting the data to certain
 * instruction address ranges. Filters are ioctl()ed to us from
 * userspace as ascii strings.
 *
 * Filter string format:
 *
 * ACTION RANGE_SPEC
 * where ACTION is one of the
 *  * "filter": limit the trace to this region
 *  * "start": start tracing from this address
 *  * "stop": stop tracing at this address/region;
 * RANGE_SPEC is
 *  * for kernel addresses: <start address>[/<size>]
 *  * for object files:     <start address>[/<size>]@</path/to/object/file>
 *
 * if <size> is not specified, the range is treated as a single address.
 */
enum {
8296
	IF_ACT_NONE = -1,
8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315 8316 8317 8318 8319
	IF_ACT_FILTER,
	IF_ACT_START,
	IF_ACT_STOP,
	IF_SRC_FILE,
	IF_SRC_KERNEL,
	IF_SRC_FILEADDR,
	IF_SRC_KERNELADDR,
};

enum {
	IF_STATE_ACTION = 0,
	IF_STATE_SOURCE,
	IF_STATE_END,
};

static const match_table_t if_tokens = {
	{ IF_ACT_FILTER,	"filter" },
	{ IF_ACT_START,		"start" },
	{ IF_ACT_STOP,		"stop" },
	{ IF_SRC_FILE,		"%u/%u@%s" },
	{ IF_SRC_KERNEL,	"%u/%u" },
	{ IF_SRC_FILEADDR,	"%u@%s" },
	{ IF_SRC_KERNELADDR,	"%u" },
8320
	{ IF_ACT_NONE,		NULL },
8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346 8347 8348 8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386 8387 8388 8389 8390 8391
};

/*
 * Address filter string parser
 */
static int
perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
			     struct list_head *filters)
{
	struct perf_addr_filter *filter = NULL;
	char *start, *orig, *filename = NULL;
	struct path path;
	substring_t args[MAX_OPT_ARGS];
	int state = IF_STATE_ACTION, token;
	unsigned int kernel = 0;
	int ret = -EINVAL;

	orig = fstr = kstrdup(fstr, GFP_KERNEL);
	if (!fstr)
		return -ENOMEM;

	while ((start = strsep(&fstr, " ,\n")) != NULL) {
		ret = -EINVAL;

		if (!*start)
			continue;

		/* filter definition begins */
		if (state == IF_STATE_ACTION) {
			filter = perf_addr_filter_new(event, filters);
			if (!filter)
				goto fail;
		}

		token = match_token(start, if_tokens, args);
		switch (token) {
		case IF_ACT_FILTER:
		case IF_ACT_START:
			filter->filter = 1;

		case IF_ACT_STOP:
			if (state != IF_STATE_ACTION)
				goto fail;

			state = IF_STATE_SOURCE;
			break;

		case IF_SRC_KERNELADDR:
		case IF_SRC_KERNEL:
			kernel = 1;

		case IF_SRC_FILEADDR:
		case IF_SRC_FILE:
			if (state != IF_STATE_SOURCE)
				goto fail;

			if (token == IF_SRC_FILE || token == IF_SRC_KERNEL)
				filter->range = 1;

			*args[0].to = 0;
			ret = kstrtoul(args[0].from, 0, &filter->offset);
			if (ret)
				goto fail;

			if (filter->range) {
				*args[1].to = 0;
				ret = kstrtoul(args[1].from, 0, &filter->size);
				if (ret)
					goto fail;
			}

8392 8393 8394 8395
			if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
				int fpos = filter->range ? 2 : 1;

				filename = match_strdup(&args[fpos]);
8396 8397 8398 8399 8400 8401 8402 8403 8404 8405 8406 8407 8408 8409 8410 8411 8412 8413 8414
				if (!filename) {
					ret = -ENOMEM;
					goto fail;
				}
			}

			state = IF_STATE_END;
			break;

		default:
			goto fail;
		}

		/*
		 * Filter definition is fully parsed, validate and install it.
		 * Make sure that it doesn't contradict itself or the event's
		 * attribute.
		 */
		if (state == IF_STATE_END) {
8415
			ret = -EINVAL;
8416 8417 8418 8419 8420 8421 8422
			if (kernel && event->attr.exclude_kernel)
				goto fail;

			if (!kernel) {
				if (!filename)
					goto fail;

8423 8424 8425 8426 8427 8428 8429 8430 8431 8432 8433 8434
				/*
				 * For now, we only support file-based filters
				 * in per-task events; doing so for CPU-wide
				 * events requires additional context switching
				 * trickery, since same object code will be
				 * mapped at different virtual addresses in
				 * different processes.
				 */
				ret = -EOPNOTSUPP;
				if (!event->ctx->task)
					goto fail_free_name;

8435 8436 8437 8438 8439 8440 8441 8442 8443 8444 8445 8446 8447 8448 8449
				/* look up the path and grab its inode */
				ret = kern_path(filename, LOOKUP_FOLLOW, &path);
				if (ret)
					goto fail_free_name;

				filter->inode = igrab(d_inode(path.dentry));
				path_put(&path);
				kfree(filename);
				filename = NULL;

				ret = -EINVAL;
				if (!filter->inode ||
				    !S_ISREG(filter->inode->i_mode))
					/* free_filters_list() will iput() */
					goto fail;
8450 8451

				event->addr_filters.nr_file_filters++;
8452 8453 8454 8455 8456 8457 8458 8459 8460 8461 8462 8463 8464 8465 8466 8467 8468 8469 8470 8471 8472 8473 8474 8475 8476 8477 8478 8479 8480 8481 8482 8483 8484 8485 8486 8487 8488 8489 8490 8491 8492
			}

			/* ready to consume more filters */
			state = IF_STATE_ACTION;
			filter = NULL;
		}
	}

	if (state != IF_STATE_ACTION)
		goto fail;

	kfree(orig);

	return 0;

fail_free_name:
	kfree(filename);
fail:
	free_filters_list(filters);
	kfree(orig);

	return ret;
}

static int
perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
{
	LIST_HEAD(filters);
	int ret;

	/*
	 * Since this is called in perf_ioctl() path, we're already holding
	 * ctx::mutex.
	 */
	lockdep_assert_held(&event->ctx->mutex);

	if (WARN_ON_ONCE(event->parent))
		return -EINVAL;

	ret = perf_event_parse_addr_filter(event, filter_str, &filters);
	if (ret)
8493
		goto fail_clear_files;
8494 8495

	ret = event->pmu->addr_filters_validate(&filters);
8496 8497
	if (ret)
		goto fail_free_filters;
8498 8499 8500 8501 8502 8503 8504

	/* remove existing filters, if any */
	perf_addr_filters_splice(event, &filters);

	/* install new filters */
	perf_event_for_each_child(event, perf_event_addr_filters_apply);

8505 8506 8507 8508 8509 8510 8511 8512
	return ret;

fail_free_filters:
	free_filters_list(&filters);

fail_clear_files:
	event->addr_filters.nr_file_filters = 0;

8513 8514 8515
	return ret;
}

8516 8517 8518 8519 8520
static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	char *filter_str;
	int ret = -EINVAL;

8521 8522 8523
	if ((event->attr.type != PERF_TYPE_TRACEPOINT ||
	    !IS_ENABLED(CONFIG_EVENT_TRACING)) &&
	    !has_addr_filter(event))
8524 8525 8526 8527 8528 8529 8530 8531 8532 8533
		return -EINVAL;

	filter_str = strndup_user(arg, PAGE_SIZE);
	if (IS_ERR(filter_str))
		return PTR_ERR(filter_str);

	if (IS_ENABLED(CONFIG_EVENT_TRACING) &&
	    event->attr.type == PERF_TYPE_TRACEPOINT)
		ret = ftrace_profile_set_filter(event, event->attr.config,
						filter_str);
8534 8535
	else if (has_addr_filter(event))
		ret = perf_event_set_addr_filter(event, filter_str);
8536 8537 8538 8539 8540

	kfree(filter_str);
	return ret;
}

8541 8542 8543
/*
 * hrtimer based swevent callback
 */
8544

8545
static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
8546
{
8547 8548 8549 8550 8551
	enum hrtimer_restart ret = HRTIMER_RESTART;
	struct perf_sample_data data;
	struct pt_regs *regs;
	struct perf_event *event;
	u64 period;
8552

8553
	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
P
Peter Zijlstra 已提交
8554 8555 8556 8557

	if (event->state != PERF_EVENT_STATE_ACTIVE)
		return HRTIMER_NORESTART;

8558
	event->pmu->read(event);
8559

8560
	perf_sample_data_init(&data, 0, event->hw.last_period);
8561 8562 8563
	regs = get_irq_regs();

	if (regs && !perf_exclude_event(event, regs)) {
8564
		if (!(event->attr.exclude_idle && is_idle_task(current)))
8565
			if (__perf_event_overflow(event, 1, &data, regs))
8566 8567
				ret = HRTIMER_NORESTART;
	}
8568

8569 8570
	period = max_t(u64, 10000, event->hw.sample_period);
	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
8571

8572
	return ret;
8573 8574
}

8575
static void perf_swevent_start_hrtimer(struct perf_event *event)
8576
{
8577
	struct hw_perf_event *hwc = &event->hw;
8578 8579 8580 8581
	s64 period;

	if (!is_sampling_event(event))
		return;
8582

8583 8584 8585 8586
	period = local64_read(&hwc->period_left);
	if (period) {
		if (period < 0)
			period = 10000;
P
Peter Zijlstra 已提交
8587

8588 8589 8590 8591
		local64_set(&hwc->period_left, 0);
	} else {
		period = max_t(u64, 10000, hwc->sample_period);
	}
8592 8593
	hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
		      HRTIMER_MODE_REL_PINNED);
8594
}
8595 8596

static void perf_swevent_cancel_hrtimer(struct perf_event *event)
8597
{
8598 8599
	struct hw_perf_event *hwc = &event->hw;

8600
	if (is_sampling_event(event)) {
8601
		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
P
Peter Zijlstra 已提交
8602
		local64_set(&hwc->period_left, ktime_to_ns(remaining));
8603 8604 8605

		hrtimer_cancel(&hwc->hrtimer);
	}
8606 8607
}

P
Peter Zijlstra 已提交
8608 8609 8610 8611 8612 8613 8614 8615 8616 8617 8618 8619 8620 8621 8622 8623 8624 8625 8626 8627
static void perf_swevent_init_hrtimer(struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;

	if (!is_sampling_event(event))
		return;

	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swevent_hrtimer;

	/*
	 * Since hrtimers have a fixed rate, we can do a static freq->period
	 * mapping and avoid the whole period adjust feedback stuff.
	 */
	if (event->attr.freq) {
		long freq = event->attr.sample_freq;

		event->attr.sample_period = NSEC_PER_SEC / freq;
		hwc->sample_period = event->attr.sample_period;
		local64_set(&hwc->period_left, hwc->sample_period);
8628
		hwc->last_period = hwc->sample_period;
P
Peter Zijlstra 已提交
8629 8630 8631 8632
		event->attr.freq = 0;
	}
}

8633 8634 8635 8636 8637
/*
 * Software event: cpu wall time clock
 */

static void cpu_clock_event_update(struct perf_event *event)
8638
{
8639 8640 8641
	s64 prev;
	u64 now;

P
Peter Zijlstra 已提交
8642
	now = local_clock();
8643 8644
	prev = local64_xchg(&event->hw.prev_count, now);
	local64_add(now - prev, &event->count);
8645 8646
}

P
Peter Zijlstra 已提交
8647
static void cpu_clock_event_start(struct perf_event *event, int flags)
8648
{
P
Peter Zijlstra 已提交
8649
	local64_set(&event->hw.prev_count, local_clock());
8650 8651 8652
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
8653
static void cpu_clock_event_stop(struct perf_event *event, int flags)
8654
{
8655 8656 8657
	perf_swevent_cancel_hrtimer(event);
	cpu_clock_event_update(event);
}
8658

P
Peter Zijlstra 已提交
8659 8660 8661 8662
static int cpu_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		cpu_clock_event_start(event, flags);
8663
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
8664 8665 8666 8667 8668 8669 8670 8671 8672

	return 0;
}

static void cpu_clock_event_del(struct perf_event *event, int flags)
{
	cpu_clock_event_stop(event, flags);
}

8673 8674 8675 8676
static void cpu_clock_event_read(struct perf_event *event)
{
	cpu_clock_event_update(event);
}
8677

8678 8679 8680 8681 8682 8683 8684 8685
static int cpu_clock_event_init(struct perf_event *event)
{
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
		return -ENOENT;

8686 8687 8688 8689 8690 8691
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

P
Peter Zijlstra 已提交
8692 8693
	perf_swevent_init_hrtimer(event);

8694
	return 0;
8695 8696
}

8697
static struct pmu perf_cpu_clock = {
8698 8699
	.task_ctx_nr	= perf_sw_context,

8700 8701
	.capabilities	= PERF_PMU_CAP_NO_NMI,

8702
	.event_init	= cpu_clock_event_init,
P
Peter Zijlstra 已提交
8703 8704 8705 8706
	.add		= cpu_clock_event_add,
	.del		= cpu_clock_event_del,
	.start		= cpu_clock_event_start,
	.stop		= cpu_clock_event_stop,
8707 8708 8709 8710 8711 8712 8713 8714
	.read		= cpu_clock_event_read,
};

/*
 * Software event: task time clock
 */

static void task_clock_event_update(struct perf_event *event, u64 now)
8715
{
8716 8717
	u64 prev;
	s64 delta;
8718

8719 8720 8721 8722
	prev = local64_xchg(&event->hw.prev_count, now);
	delta = now - prev;
	local64_add(delta, &event->count);
}
8723

P
Peter Zijlstra 已提交
8724
static void task_clock_event_start(struct perf_event *event, int flags)
8725
{
P
Peter Zijlstra 已提交
8726
	local64_set(&event->hw.prev_count, event->ctx->time);
8727 8728 8729
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
8730
static void task_clock_event_stop(struct perf_event *event, int flags)
8731 8732 8733
{
	perf_swevent_cancel_hrtimer(event);
	task_clock_event_update(event, event->ctx->time);
P
Peter Zijlstra 已提交
8734 8735 8736 8737 8738 8739
}

static int task_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		task_clock_event_start(event, flags);
8740
	perf_event_update_userpage(event);
8741

P
Peter Zijlstra 已提交
8742 8743 8744 8745 8746 8747
	return 0;
}

static void task_clock_event_del(struct perf_event *event, int flags)
{
	task_clock_event_stop(event, PERF_EF_UPDATE);
8748 8749 8750 8751
}

static void task_clock_event_read(struct perf_event *event)
{
8752 8753 8754
	u64 now = perf_clock();
	u64 delta = now - event->ctx->timestamp;
	u64 time = event->ctx->time + delta;
8755 8756 8757 8758 8759

	task_clock_event_update(event, time);
}

static int task_clock_event_init(struct perf_event *event)
L
Li Zefan 已提交
8760
{
8761 8762 8763 8764 8765 8766
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
		return -ENOENT;

8767 8768 8769 8770 8771 8772
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

P
Peter Zijlstra 已提交
8773 8774
	perf_swevent_init_hrtimer(event);

8775
	return 0;
L
Li Zefan 已提交
8776 8777
}

8778
static struct pmu perf_task_clock = {
8779 8780
	.task_ctx_nr	= perf_sw_context,

8781 8782
	.capabilities	= PERF_PMU_CAP_NO_NMI,

8783
	.event_init	= task_clock_event_init,
P
Peter Zijlstra 已提交
8784 8785 8786 8787
	.add		= task_clock_event_add,
	.del		= task_clock_event_del,
	.start		= task_clock_event_start,
	.stop		= task_clock_event_stop,
8788 8789
	.read		= task_clock_event_read,
};
L
Li Zefan 已提交
8790

P
Peter Zijlstra 已提交
8791
static void perf_pmu_nop_void(struct pmu *pmu)
8792 8793
{
}
L
Li Zefan 已提交
8794

8795 8796 8797 8798
static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
{
}

P
Peter Zijlstra 已提交
8799
static int perf_pmu_nop_int(struct pmu *pmu)
L
Li Zefan 已提交
8800
{
P
Peter Zijlstra 已提交
8801
	return 0;
L
Li Zefan 已提交
8802 8803
}

8804
static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
8805 8806

static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
L
Li Zefan 已提交
8807
{
8808 8809 8810 8811 8812
	__this_cpu_write(nop_txn_flags, flags);

	if (flags & ~PERF_PMU_TXN_ADD)
		return;

P
Peter Zijlstra 已提交
8813
	perf_pmu_disable(pmu);
L
Li Zefan 已提交
8814 8815
}

P
Peter Zijlstra 已提交
8816 8817
static int perf_pmu_commit_txn(struct pmu *pmu)
{
8818 8819 8820 8821 8822 8823 8824
	unsigned int flags = __this_cpu_read(nop_txn_flags);

	__this_cpu_write(nop_txn_flags, 0);

	if (flags & ~PERF_PMU_TXN_ADD)
		return 0;

P
Peter Zijlstra 已提交
8825 8826 8827
	perf_pmu_enable(pmu);
	return 0;
}
8828

P
Peter Zijlstra 已提交
8829
static void perf_pmu_cancel_txn(struct pmu *pmu)
8830
{
8831 8832 8833 8834 8835 8836 8837
	unsigned int flags =  __this_cpu_read(nop_txn_flags);

	__this_cpu_write(nop_txn_flags, 0);

	if (flags & ~PERF_PMU_TXN_ADD)
		return;

P
Peter Zijlstra 已提交
8838
	perf_pmu_enable(pmu);
8839 8840
}

8841 8842
static int perf_event_idx_default(struct perf_event *event)
{
8843
	return 0;
8844 8845
}

P
Peter Zijlstra 已提交
8846 8847 8848 8849
/*
 * Ensures all contexts with the same task_ctx_nr have the same
 * pmu_cpu_context too.
 */
8850
static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
8851
{
P
Peter Zijlstra 已提交
8852
	struct pmu *pmu;
8853

P
Peter Zijlstra 已提交
8854 8855
	if (ctxn < 0)
		return NULL;
8856

P
Peter Zijlstra 已提交
8857 8858 8859 8860
	list_for_each_entry(pmu, &pmus, entry) {
		if (pmu->task_ctx_nr == ctxn)
			return pmu->pmu_cpu_context;
	}
8861

P
Peter Zijlstra 已提交
8862
	return NULL;
8863 8864
}

8865 8866
static void free_pmu_context(struct pmu *pmu)
{
8867 8868 8869 8870 8871 8872 8873 8874
	/*
	 * Static contexts such as perf_sw_context have a global lifetime
	 * and may be shared between different PMUs. Avoid freeing them
	 * when a single PMU is going away.
	 */
	if (pmu->task_ctx_nr > perf_invalid_context)
		return;

P
Peter Zijlstra 已提交
8875
	mutex_lock(&pmus_lock);
8876
	free_percpu(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
8877
	mutex_unlock(&pmus_lock);
8878
}
8879 8880 8881 8882 8883 8884 8885 8886 8887 8888 8889 8890 8891 8892

/*
 * Let userspace know that this PMU supports address range filtering:
 */
static ssize_t nr_addr_filters_show(struct device *dev,
				    struct device_attribute *attr,
				    char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
}
DEVICE_ATTR_RO(nr_addr_filters);

P
Peter Zijlstra 已提交
8893
static struct idr pmu_idr;
8894

P
Peter Zijlstra 已提交
8895 8896 8897 8898 8899 8900 8901
static ssize_t
type_show(struct device *dev, struct device_attribute *attr, char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
}
8902
static DEVICE_ATTR_RO(type);
P
Peter Zijlstra 已提交
8903

8904 8905 8906 8907 8908 8909 8910 8911 8912 8913
static ssize_t
perf_event_mux_interval_ms_show(struct device *dev,
				struct device_attribute *attr,
				char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
}

8914 8915
static DEFINE_MUTEX(mux_interval_mutex);

8916 8917 8918 8919 8920 8921 8922 8923 8924 8925 8926 8927 8928 8929 8930 8931 8932 8933 8934
static ssize_t
perf_event_mux_interval_ms_store(struct device *dev,
				 struct device_attribute *attr,
				 const char *buf, size_t count)
{
	struct pmu *pmu = dev_get_drvdata(dev);
	int timer, cpu, ret;

	ret = kstrtoint(buf, 0, &timer);
	if (ret)
		return ret;

	if (timer < 1)
		return -EINVAL;

	/* same value, noting to do */
	if (timer == pmu->hrtimer_interval_ms)
		return count;

8935
	mutex_lock(&mux_interval_mutex);
8936 8937 8938
	pmu->hrtimer_interval_ms = timer;

	/* update all cpuctx for this PMU */
8939
	cpus_read_lock();
8940
	for_each_online_cpu(cpu) {
8941 8942 8943 8944
		struct perf_cpu_context *cpuctx;
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
		cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);

8945 8946
		cpu_function_call(cpu,
			(remote_function_f)perf_mux_hrtimer_restart, cpuctx);
8947
	}
8948
	cpus_read_unlock();
8949
	mutex_unlock(&mux_interval_mutex);
8950 8951 8952

	return count;
}
8953
static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
8954

8955 8956 8957 8958
static struct attribute *pmu_dev_attrs[] = {
	&dev_attr_type.attr,
	&dev_attr_perf_event_mux_interval_ms.attr,
	NULL,
P
Peter Zijlstra 已提交
8959
};
8960
ATTRIBUTE_GROUPS(pmu_dev);
P
Peter Zijlstra 已提交
8961 8962 8963 8964

static int pmu_bus_running;
static struct bus_type pmu_bus = {
	.name		= "event_source",
8965
	.dev_groups	= pmu_dev_groups,
P
Peter Zijlstra 已提交
8966 8967 8968 8969 8970 8971 8972 8973 8974 8975 8976 8977 8978 8979 8980
};

static void pmu_dev_release(struct device *dev)
{
	kfree(dev);
}

static int pmu_dev_alloc(struct pmu *pmu)
{
	int ret = -ENOMEM;

	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
	if (!pmu->dev)
		goto out;

8981
	pmu->dev->groups = pmu->attr_groups;
P
Peter Zijlstra 已提交
8982 8983 8984 8985 8986 8987 8988 8989 8990 8991 8992 8993
	device_initialize(pmu->dev);
	ret = dev_set_name(pmu->dev, "%s", pmu->name);
	if (ret)
		goto free_dev;

	dev_set_drvdata(pmu->dev, pmu);
	pmu->dev->bus = &pmu_bus;
	pmu->dev->release = pmu_dev_release;
	ret = device_add(pmu->dev);
	if (ret)
		goto free_dev;

8994 8995 8996 8997 8998 8999 9000
	/* For PMUs with address filters, throw in an extra attribute: */
	if (pmu->nr_addr_filters)
		ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);

	if (ret)
		goto del_dev;

P
Peter Zijlstra 已提交
9001 9002 9003
out:
	return ret;

9004 9005 9006
del_dev:
	device_del(pmu->dev);

P
Peter Zijlstra 已提交
9007 9008 9009 9010 9011
free_dev:
	put_device(pmu->dev);
	goto out;
}

9012
static struct lock_class_key cpuctx_mutex;
9013
static struct lock_class_key cpuctx_lock;
9014

9015
int perf_pmu_register(struct pmu *pmu, const char *name, int type)
9016
{
P
Peter Zijlstra 已提交
9017
	int cpu, ret;
9018

9019
	mutex_lock(&pmus_lock);
P
Peter Zijlstra 已提交
9020 9021 9022 9023
	ret = -ENOMEM;
	pmu->pmu_disable_count = alloc_percpu(int);
	if (!pmu->pmu_disable_count)
		goto unlock;
9024

P
Peter Zijlstra 已提交
9025 9026 9027 9028 9029 9030
	pmu->type = -1;
	if (!name)
		goto skip_type;
	pmu->name = name;

	if (type < 0) {
T
Tejun Heo 已提交
9031 9032 9033
		type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
		if (type < 0) {
			ret = type;
P
Peter Zijlstra 已提交
9034 9035 9036 9037 9038
			goto free_pdc;
		}
	}
	pmu->type = type;

P
Peter Zijlstra 已提交
9039 9040 9041 9042 9043 9044
	if (pmu_bus_running) {
		ret = pmu_dev_alloc(pmu);
		if (ret)
			goto free_idr;
	}

P
Peter Zijlstra 已提交
9045
skip_type:
9046 9047 9048
	if (pmu->task_ctx_nr == perf_hw_context) {
		static int hw_context_taken = 0;

9049 9050 9051 9052 9053 9054 9055
		/*
		 * Other than systems with heterogeneous CPUs, it never makes
		 * sense for two PMUs to share perf_hw_context. PMUs which are
		 * uncore must use perf_invalid_context.
		 */
		if (WARN_ON_ONCE(hw_context_taken &&
		    !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
9056 9057 9058 9059 9060
			pmu->task_ctx_nr = perf_invalid_context;

		hw_context_taken = 1;
	}

P
Peter Zijlstra 已提交
9061 9062 9063
	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
	if (pmu->pmu_cpu_context)
		goto got_cpu_context;
9064

W
Wei Yongjun 已提交
9065
	ret = -ENOMEM;
P
Peter Zijlstra 已提交
9066 9067
	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
	if (!pmu->pmu_cpu_context)
P
Peter Zijlstra 已提交
9068
		goto free_dev;
9069

P
Peter Zijlstra 已提交
9070 9071 9072 9073
	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
9074
		__perf_event_init_context(&cpuctx->ctx);
9075
		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
9076
		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
P
Peter Zijlstra 已提交
9077
		cpuctx->ctx.pmu = pmu;
9078
		cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
9079

9080
		__perf_mux_hrtimer_init(cpuctx, cpu);
P
Peter Zijlstra 已提交
9081
	}
9082

P
Peter Zijlstra 已提交
9083
got_cpu_context:
P
Peter Zijlstra 已提交
9084 9085 9086 9087 9088 9089 9090 9091 9092 9093 9094
	if (!pmu->start_txn) {
		if (pmu->pmu_enable) {
			/*
			 * If we have pmu_enable/pmu_disable calls, install
			 * transaction stubs that use that to try and batch
			 * hardware accesses.
			 */
			pmu->start_txn  = perf_pmu_start_txn;
			pmu->commit_txn = perf_pmu_commit_txn;
			pmu->cancel_txn = perf_pmu_cancel_txn;
		} else {
9095
			pmu->start_txn  = perf_pmu_nop_txn;
P
Peter Zijlstra 已提交
9096 9097
			pmu->commit_txn = perf_pmu_nop_int;
			pmu->cancel_txn = perf_pmu_nop_void;
9098
		}
9099
	}
9100

P
Peter Zijlstra 已提交
9101 9102 9103 9104 9105
	if (!pmu->pmu_enable) {
		pmu->pmu_enable  = perf_pmu_nop_void;
		pmu->pmu_disable = perf_pmu_nop_void;
	}

9106 9107 9108
	if (!pmu->event_idx)
		pmu->event_idx = perf_event_idx_default;

9109
	list_add_rcu(&pmu->entry, &pmus);
9110
	atomic_set(&pmu->exclusive_cnt, 0);
P
Peter Zijlstra 已提交
9111 9112
	ret = 0;
unlock:
9113 9114
	mutex_unlock(&pmus_lock);

P
Peter Zijlstra 已提交
9115
	return ret;
P
Peter Zijlstra 已提交
9116

P
Peter Zijlstra 已提交
9117 9118 9119 9120
free_dev:
	device_del(pmu->dev);
	put_device(pmu->dev);

P
Peter Zijlstra 已提交
9121 9122 9123 9124
free_idr:
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);

P
Peter Zijlstra 已提交
9125 9126 9127
free_pdc:
	free_percpu(pmu->pmu_disable_count);
	goto unlock;
9128
}
9129
EXPORT_SYMBOL_GPL(perf_pmu_register);
9130

9131
void perf_pmu_unregister(struct pmu *pmu)
9132
{
9133 9134
	int remove_device;

9135
	mutex_lock(&pmus_lock);
9136
	remove_device = pmu_bus_running;
9137 9138
	list_del_rcu(&pmu->entry);
	mutex_unlock(&pmus_lock);
9139

9140
	/*
P
Peter Zijlstra 已提交
9141 9142
	 * We dereference the pmu list under both SRCU and regular RCU, so
	 * synchronize against both of those.
9143
	 */
9144
	synchronize_srcu(&pmus_srcu);
P
Peter Zijlstra 已提交
9145
	synchronize_rcu();
9146

P
Peter Zijlstra 已提交
9147
	free_percpu(pmu->pmu_disable_count);
P
Peter Zijlstra 已提交
9148 9149
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);
9150 9151 9152 9153 9154 9155
	if (remove_device) {
		if (pmu->nr_addr_filters)
			device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
		device_del(pmu->dev);
		put_device(pmu->dev);
	}
9156
	free_pmu_context(pmu);
9157
}
9158
EXPORT_SYMBOL_GPL(perf_pmu_unregister);
9159

9160 9161
static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
{
P
Peter Zijlstra 已提交
9162
	struct perf_event_context *ctx = NULL;
9163 9164 9165 9166
	int ret;

	if (!try_module_get(pmu->module))
		return -ENODEV;
P
Peter Zijlstra 已提交
9167 9168

	if (event->group_leader != event) {
9169 9170 9171 9172 9173 9174
		/*
		 * This ctx->mutex can nest when we're called through
		 * inheritance. See the perf_event_ctx_lock_nested() comment.
		 */
		ctx = perf_event_ctx_lock_nested(event->group_leader,
						 SINGLE_DEPTH_NESTING);
P
Peter Zijlstra 已提交
9175 9176 9177
		BUG_ON(!ctx);
	}

9178 9179
	event->pmu = pmu;
	ret = pmu->event_init(event);
P
Peter Zijlstra 已提交
9180 9181 9182 9183

	if (ctx)
		perf_event_ctx_unlock(event->group_leader, ctx);

9184 9185 9186 9187 9188 9189
	if (ret)
		module_put(pmu->module);

	return ret;
}

9190
static struct pmu *perf_init_event(struct perf_event *event)
9191
{
D
Dan Carpenter 已提交
9192
	struct pmu *pmu;
9193
	int idx;
9194
	int ret;
9195 9196

	idx = srcu_read_lock(&pmus_srcu);
P
Peter Zijlstra 已提交
9197

9198 9199 9200 9201 9202 9203 9204 9205
	/* Try parent's PMU first: */
	if (event->parent && event->parent->pmu) {
		pmu = event->parent->pmu;
		ret = perf_try_init_event(pmu, event);
		if (!ret)
			goto unlock;
	}

P
Peter Zijlstra 已提交
9206 9207 9208
	rcu_read_lock();
	pmu = idr_find(&pmu_idr, event->attr.type);
	rcu_read_unlock();
9209
	if (pmu) {
9210
		ret = perf_try_init_event(pmu, event);
9211 9212
		if (ret)
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
9213
		goto unlock;
9214
	}
P
Peter Zijlstra 已提交
9215

9216
	list_for_each_entry_rcu(pmu, &pmus, entry) {
9217
		ret = perf_try_init_event(pmu, event);
9218
		if (!ret)
P
Peter Zijlstra 已提交
9219
			goto unlock;
9220

9221 9222
		if (ret != -ENOENT) {
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
9223
			goto unlock;
9224
		}
9225
	}
P
Peter Zijlstra 已提交
9226 9227
	pmu = ERR_PTR(-ENOENT);
unlock:
9228
	srcu_read_unlock(&pmus_srcu, idx);
9229

9230
	return pmu;
9231 9232
}

9233 9234 9235 9236 9237 9238 9239 9240 9241
static void attach_sb_event(struct perf_event *event)
{
	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);

	raw_spin_lock(&pel->lock);
	list_add_rcu(&event->sb_list, &pel->list);
	raw_spin_unlock(&pel->lock);
}

9242 9243 9244 9245 9246 9247 9248
/*
 * We keep a list of all !task (and therefore per-cpu) events
 * that need to receive side-band records.
 *
 * This avoids having to scan all the various PMU per-cpu contexts
 * looking for them.
 */
9249 9250
static void account_pmu_sb_event(struct perf_event *event)
{
9251
	if (is_sb_event(event))
9252 9253 9254
		attach_sb_event(event);
}

9255 9256 9257 9258 9259 9260 9261 9262 9263
static void account_event_cpu(struct perf_event *event, int cpu)
{
	if (event->parent)
		return;

	if (is_cgroup_event(event))
		atomic_inc(&per_cpu(perf_cgroup_events, cpu));
}

9264 9265 9266 9267 9268 9269 9270 9271 9272 9273 9274 9275 9276 9277 9278 9279 9280 9281 9282 9283 9284
/* Freq events need the tick to stay alive (see perf_event_task_tick). */
static void account_freq_event_nohz(void)
{
#ifdef CONFIG_NO_HZ_FULL
	/* Lock so we don't race with concurrent unaccount */
	spin_lock(&nr_freq_lock);
	if (atomic_inc_return(&nr_freq_events) == 1)
		tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
	spin_unlock(&nr_freq_lock);
#endif
}

static void account_freq_event(void)
{
	if (tick_nohz_full_enabled())
		account_freq_event_nohz();
	else
		atomic_inc(&nr_freq_events);
}


9285 9286
static void account_event(struct perf_event *event)
{
9287 9288
	bool inc = false;

9289 9290 9291
	if (event->parent)
		return;

9292
	if (event->attach_state & PERF_ATTACH_TASK)
9293
		inc = true;
9294 9295 9296 9297
	if (event->attr.mmap || event->attr.mmap_data)
		atomic_inc(&nr_mmap_events);
	if (event->attr.comm)
		atomic_inc(&nr_comm_events);
9298 9299
	if (event->attr.namespaces)
		atomic_inc(&nr_namespaces_events);
9300 9301
	if (event->attr.task)
		atomic_inc(&nr_task_events);
9302 9303
	if (event->attr.freq)
		account_freq_event();
9304 9305
	if (event->attr.context_switch) {
		atomic_inc(&nr_switch_events);
9306
		inc = true;
9307
	}
9308
	if (has_branch_stack(event))
9309
		inc = true;
9310
	if (is_cgroup_event(event))
9311 9312
		inc = true;

9313
	if (inc) {
9314 9315 9316 9317 9318
		/*
		 * We need the mutex here because static_branch_enable()
		 * must complete *before* the perf_sched_count increment
		 * becomes visible.
		 */
9319 9320 9321 9322 9323 9324 9325 9326 9327 9328 9329 9330 9331 9332 9333 9334 9335 9336 9337 9338 9339
		if (atomic_inc_not_zero(&perf_sched_count))
			goto enabled;

		mutex_lock(&perf_sched_mutex);
		if (!atomic_read(&perf_sched_count)) {
			static_branch_enable(&perf_sched_events);
			/*
			 * Guarantee that all CPUs observe they key change and
			 * call the perf scheduling hooks before proceeding to
			 * install events that need them.
			 */
			synchronize_sched();
		}
		/*
		 * Now that we have waited for the sync_sched(), allow further
		 * increments to by-pass the mutex.
		 */
		atomic_inc(&perf_sched_count);
		mutex_unlock(&perf_sched_mutex);
	}
enabled:
9340 9341

	account_event_cpu(event, event->cpu);
9342 9343

	account_pmu_sb_event(event);
9344 9345
}

T
Thomas Gleixner 已提交
9346
/*
9347
 * Allocate and initialize a event structure
T
Thomas Gleixner 已提交
9348
 */
9349
static struct perf_event *
9350
perf_event_alloc(struct perf_event_attr *attr, int cpu,
9351 9352 9353
		 struct task_struct *task,
		 struct perf_event *group_leader,
		 struct perf_event *parent_event,
9354
		 perf_overflow_handler_t overflow_handler,
9355
		 void *context, int cgroup_fd)
T
Thomas Gleixner 已提交
9356
{
P
Peter Zijlstra 已提交
9357
	struct pmu *pmu;
9358 9359
	struct perf_event *event;
	struct hw_perf_event *hwc;
9360
	long err = -EINVAL;
T
Thomas Gleixner 已提交
9361

9362 9363 9364 9365 9366
	if ((unsigned)cpu >= nr_cpu_ids) {
		if (!task || cpu != -1)
			return ERR_PTR(-EINVAL);
	}

9367
	event = kzalloc(sizeof(*event), GFP_KERNEL);
9368
	if (!event)
9369
		return ERR_PTR(-ENOMEM);
T
Thomas Gleixner 已提交
9370

9371
	/*
9372
	 * Single events are their own group leaders, with an
9373 9374 9375
	 * empty sibling list:
	 */
	if (!group_leader)
9376
		group_leader = event;
9377

9378 9379
	mutex_init(&event->child_mutex);
	INIT_LIST_HEAD(&event->child_list);
9380

9381 9382 9383
	INIT_LIST_HEAD(&event->group_entry);
	INIT_LIST_HEAD(&event->event_entry);
	INIT_LIST_HEAD(&event->sibling_list);
9384
	INIT_LIST_HEAD(&event->rb_entry);
9385
	INIT_LIST_HEAD(&event->active_entry);
9386
	INIT_LIST_HEAD(&event->addr_filters.list);
9387 9388
	INIT_HLIST_NODE(&event->hlist_entry);

9389

9390
	init_waitqueue_head(&event->waitq);
9391
	init_irq_work(&event->pending, perf_pending_event);
T
Thomas Gleixner 已提交
9392

9393
	mutex_init(&event->mmap_mutex);
9394
	raw_spin_lock_init(&event->addr_filters.lock);
9395

9396
	atomic_long_set(&event->refcount, 1);
9397 9398 9399 9400 9401
	event->cpu		= cpu;
	event->attr		= *attr;
	event->group_leader	= group_leader;
	event->pmu		= NULL;
	event->oncpu		= -1;
9402

9403
	event->parent		= parent_event;
9404

9405
	event->ns		= get_pid_ns(task_active_pid_ns(current));
9406
	event->id		= atomic64_inc_return(&perf_event_id);
9407

9408
	event->state		= PERF_EVENT_STATE_INACTIVE;
9409

9410 9411 9412
	if (task) {
		event->attach_state = PERF_ATTACH_TASK;
		/*
9413 9414 9415
		 * XXX pmu::event_init needs to know what task to account to
		 * and we cannot use the ctx information because we need the
		 * pmu before we get a ctx.
9416
		 */
9417
		event->hw.target = task;
9418 9419
	}

9420 9421 9422 9423
	event->clock = &local_clock;
	if (parent_event)
		event->clock = parent_event->clock;

9424
	if (!overflow_handler && parent_event) {
9425
		overflow_handler = parent_event->overflow_handler;
9426
		context = parent_event->overflow_handler_context;
9427
#if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
9428 9429 9430 9431 9432 9433 9434 9435 9436 9437 9438 9439
		if (overflow_handler == bpf_overflow_handler) {
			struct bpf_prog *prog = bpf_prog_inc(parent_event->prog);

			if (IS_ERR(prog)) {
				err = PTR_ERR(prog);
				goto err_ns;
			}
			event->prog = prog;
			event->orig_overflow_handler =
				parent_event->orig_overflow_handler;
		}
#endif
9440
	}
9441

9442 9443 9444
	if (overflow_handler) {
		event->overflow_handler	= overflow_handler;
		event->overflow_handler_context = context;
9445 9446 9447
	} else if (is_write_backward(event)){
		event->overflow_handler = perf_event_output_backward;
		event->overflow_handler_context = NULL;
9448
	} else {
9449
		event->overflow_handler = perf_event_output_forward;
9450 9451
		event->overflow_handler_context = NULL;
	}
9452

J
Jiri Olsa 已提交
9453
	perf_event__state_init(event);
9454

9455
	pmu = NULL;
9456

9457
	hwc = &event->hw;
9458
	hwc->sample_period = attr->sample_period;
9459
	if (attr->freq && attr->sample_freq)
9460
		hwc->sample_period = 1;
9461
	hwc->last_period = hwc->sample_period;
9462

9463
	local64_set(&hwc->period_left, hwc->sample_period);
9464

9465
	/*
9466 9467
	 * We currently do not support PERF_SAMPLE_READ on inherited events.
	 * See perf_output_read().
9468
	 */
9469
	if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
9470
		goto err_ns;
9471 9472 9473

	if (!has_branch_stack(event))
		event->attr.branch_sample_type = 0;
9474

9475 9476 9477 9478 9479 9480
	if (cgroup_fd != -1) {
		err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
		if (err)
			goto err_ns;
	}

9481
	pmu = perf_init_event(event);
D
Dan Carpenter 已提交
9482
	if (IS_ERR(pmu)) {
9483
		err = PTR_ERR(pmu);
9484
		goto err_ns;
I
Ingo Molnar 已提交
9485
	}
9486

9487 9488 9489 9490
	err = exclusive_event_init(event);
	if (err)
		goto err_pmu;

9491 9492 9493 9494
	if (has_addr_filter(event)) {
		event->addr_filters_offs = kcalloc(pmu->nr_addr_filters,
						   sizeof(unsigned long),
						   GFP_KERNEL);
9495 9496
		if (!event->addr_filters_offs) {
			err = -ENOMEM;
9497
			goto err_per_task;
9498
		}
9499 9500 9501 9502 9503

		/* force hw sync on the address filters */
		event->addr_filters_gen = 1;
	}

9504
	if (!event->parent) {
9505
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
9506
			err = get_callchain_buffers(attr->sample_max_stack);
9507
			if (err)
9508
				goto err_addr_filters;
9509
		}
9510
	}
9511

9512 9513 9514
	/* symmetric to unaccount_event() in _free_event() */
	account_event(event);

9515
	return event;
9516

9517 9518 9519
err_addr_filters:
	kfree(event->addr_filters_offs);

9520 9521 9522
err_per_task:
	exclusive_event_destroy(event);

9523 9524 9525
err_pmu:
	if (event->destroy)
		event->destroy(event);
9526
	module_put(pmu->module);
9527
err_ns:
9528 9529
	if (is_cgroup_event(event))
		perf_detach_cgroup(event);
9530 9531 9532 9533 9534
	if (event->ns)
		put_pid_ns(event->ns);
	kfree(event);

	return ERR_PTR(err);
T
Thomas Gleixner 已提交
9535 9536
}

9537 9538
static int perf_copy_attr(struct perf_event_attr __user *uattr,
			  struct perf_event_attr *attr)
9539 9540
{
	u32 size;
9541
	int ret;
9542 9543 9544 9545 9546 9547 9548 9549 9550 9551 9552 9553 9554 9555 9556 9557 9558 9559 9560 9561 9562 9563 9564 9565

	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
		return -EFAULT;

	/*
	 * zero the full structure, so that a short copy will be nice.
	 */
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

	if (size > PAGE_SIZE)	/* silly large */
		goto err_size;

	if (!size)		/* abi compat */
		size = PERF_ATTR_SIZE_VER0;

	if (size < PERF_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
9566 9567 9568
	 * ensure all the unknown bits are 0 - i.e. new
	 * user-space does not rely on any kernel feature
	 * extensions we dont know about yet.
9569 9570
	 */
	if (size > sizeof(*attr)) {
9571 9572 9573
		unsigned char __user *addr;
		unsigned char __user *end;
		unsigned char val;
9574

9575 9576
		addr = (void __user *)uattr + sizeof(*attr);
		end  = (void __user *)uattr + size;
9577

9578
		for (; addr < end; addr++) {
9579 9580 9581 9582 9583 9584
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
9585
		size = sizeof(*attr);
9586 9587 9588 9589 9590 9591
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

9592 9593
	attr->size = size;

9594
	if (attr->__reserved_1)
9595 9596 9597 9598 9599 9600 9601 9602
		return -EINVAL;

	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
		return -EINVAL;

	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
		return -EINVAL;

9603 9604 9605 9606 9607 9608 9609 9610 9611 9612 9613 9614 9615 9616 9617 9618 9619 9620 9621 9622 9623 9624 9625 9626 9627 9628 9629 9630
	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
		u64 mask = attr->branch_sample_type;

		/* only using defined bits */
		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
			return -EINVAL;

		/* at least one branch bit must be set */
		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
			return -EINVAL;

		/* propagate priv level, when not set for branch */
		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {

			/* exclude_kernel checked on syscall entry */
			if (!attr->exclude_kernel)
				mask |= PERF_SAMPLE_BRANCH_KERNEL;

			if (!attr->exclude_user)
				mask |= PERF_SAMPLE_BRANCH_USER;

			if (!attr->exclude_hv)
				mask |= PERF_SAMPLE_BRANCH_HV;
			/*
			 * adjust user setting (for HW filter setup)
			 */
			attr->branch_sample_type = mask;
		}
9631 9632
		/* privileged levels capture (kernel, hv): check permissions */
		if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
9633 9634
		    && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
9635
	}
9636

9637
	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
9638
		ret = perf_reg_validate(attr->sample_regs_user);
9639 9640 9641 9642 9643 9644 9645 9646 9647 9648 9649 9650 9651 9652 9653 9654 9655 9656
		if (ret)
			return ret;
	}

	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
		if (!arch_perf_have_user_stack_dump())
			return -ENOSYS;

		/*
		 * We have __u32 type for the size, but so far
		 * we can only use __u16 as maximum due to the
		 * __u16 sample size limit.
		 */
		if (attr->sample_stack_user >= USHRT_MAX)
			ret = -EINVAL;
		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
			ret = -EINVAL;
	}
9657

9658 9659
	if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
		ret = perf_reg_validate(attr->sample_regs_intr);
9660 9661 9662 9663 9664 9665 9666 9667 9668
out:
	return ret;

err_size:
	put_user(sizeof(*attr), &uattr->size);
	ret = -E2BIG;
	goto out;
}

9669 9670
static int
perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
9671
{
9672
	struct ring_buffer *rb = NULL;
9673 9674
	int ret = -EINVAL;

9675
	if (!output_event)
9676 9677
		goto set;

9678 9679
	/* don't allow circular references */
	if (event == output_event)
9680 9681
		goto out;

9682 9683 9684 9685 9686 9687 9688
	/*
	 * Don't allow cross-cpu buffers
	 */
	if (output_event->cpu != event->cpu)
		goto out;

	/*
9689
	 * If its not a per-cpu rb, it must be the same task.
9690 9691 9692 9693
	 */
	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
		goto out;

9694 9695 9696 9697 9698 9699
	/*
	 * Mixing clocks in the same buffer is trouble you don't need.
	 */
	if (output_event->clock != event->clock)
		goto out;

9700 9701 9702 9703 9704 9705 9706
	/*
	 * Either writing ring buffer from beginning or from end.
	 * Mixing is not allowed.
	 */
	if (is_write_backward(output_event) != is_write_backward(event))
		goto out;

9707 9708 9709 9710 9711 9712 9713
	/*
	 * If both events generate aux data, they must be on the same PMU
	 */
	if (has_aux(event) && has_aux(output_event) &&
	    event->pmu != output_event->pmu)
		goto out;

9714
set:
9715
	mutex_lock(&event->mmap_mutex);
9716 9717 9718
	/* Can't redirect output if we've got an active mmap() */
	if (atomic_read(&event->mmap_count))
		goto unlock;
9719

9720
	if (output_event) {
9721 9722 9723
		/* get the rb we want to redirect to */
		rb = ring_buffer_get(output_event);
		if (!rb)
9724
			goto unlock;
9725 9726
	}

9727
	ring_buffer_attach(event, rb);
9728

9729
	ret = 0;
9730 9731 9732
unlock:
	mutex_unlock(&event->mmap_mutex);

9733 9734 9735 9736
out:
	return ret;
}

P
Peter Zijlstra 已提交
9737 9738 9739 9740 9741 9742 9743 9744 9745
static void mutex_lock_double(struct mutex *a, struct mutex *b)
{
	if (b < a)
		swap(a, b);

	mutex_lock(a);
	mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
}

9746 9747 9748 9749 9750 9751 9752 9753 9754 9755 9756 9757 9758 9759 9760 9761 9762 9763 9764 9765 9766 9767 9768 9769 9770 9771 9772 9773 9774 9775 9776 9777 9778 9779 9780 9781 9782
static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
{
	bool nmi_safe = false;

	switch (clk_id) {
	case CLOCK_MONOTONIC:
		event->clock = &ktime_get_mono_fast_ns;
		nmi_safe = true;
		break;

	case CLOCK_MONOTONIC_RAW:
		event->clock = &ktime_get_raw_fast_ns;
		nmi_safe = true;
		break;

	case CLOCK_REALTIME:
		event->clock = &ktime_get_real_ns;
		break;

	case CLOCK_BOOTTIME:
		event->clock = &ktime_get_boot_ns;
		break;

	case CLOCK_TAI:
		event->clock = &ktime_get_tai_ns;
		break;

	default:
		return -EINVAL;
	}

	if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
		return -EINVAL;

	return 0;
}

9783 9784 9785 9786 9787 9788 9789 9790 9791 9792 9793 9794 9795 9796 9797 9798 9799 9800 9801 9802 9803 9804 9805 9806 9807 9808 9809 9810 9811 9812 9813
/*
 * Variation on perf_event_ctx_lock_nested(), except we take two context
 * mutexes.
 */
static struct perf_event_context *
__perf_event_ctx_lock_double(struct perf_event *group_leader,
			     struct perf_event_context *ctx)
{
	struct perf_event_context *gctx;

again:
	rcu_read_lock();
	gctx = READ_ONCE(group_leader->ctx);
	if (!atomic_inc_not_zero(&gctx->refcount)) {
		rcu_read_unlock();
		goto again;
	}
	rcu_read_unlock();

	mutex_lock_double(&gctx->mutex, &ctx->mutex);

	if (group_leader->ctx != gctx) {
		mutex_unlock(&ctx->mutex);
		mutex_unlock(&gctx->mutex);
		put_ctx(gctx);
		goto again;
	}

	return gctx;
}

T
Thomas Gleixner 已提交
9814
/**
9815
 * sys_perf_event_open - open a performance event, associate it to a task/cpu
I
Ingo Molnar 已提交
9816
 *
9817
 * @attr_uptr:	event_id type attributes for monitoring/sampling
T
Thomas Gleixner 已提交
9818
 * @pid:		target pid
I
Ingo Molnar 已提交
9819
 * @cpu:		target cpu
9820
 * @group_fd:		group leader event fd
T
Thomas Gleixner 已提交
9821
 */
9822 9823
SYSCALL_DEFINE5(perf_event_open,
		struct perf_event_attr __user *, attr_uptr,
9824
		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
T
Thomas Gleixner 已提交
9825
{
9826 9827
	struct perf_event *group_leader = NULL, *output_event = NULL;
	struct perf_event *event, *sibling;
9828
	struct perf_event_attr attr;
P
Peter Zijlstra 已提交
9829
	struct perf_event_context *ctx, *uninitialized_var(gctx);
9830
	struct file *event_file = NULL;
9831
	struct fd group = {NULL, 0};
M
Matt Helsley 已提交
9832
	struct task_struct *task = NULL;
9833
	struct pmu *pmu;
9834
	int event_fd;
9835
	int move_group = 0;
9836
	int err;
9837
	int f_flags = O_RDWR;
9838
	int cgroup_fd = -1;
T
Thomas Gleixner 已提交
9839

9840
	/* for future expandability... */
S
Stephane Eranian 已提交
9841
	if (flags & ~PERF_FLAG_ALL)
9842 9843
		return -EINVAL;

9844 9845 9846
	err = perf_copy_attr(attr_uptr, &attr);
	if (err)
		return err;
9847

9848 9849 9850 9851 9852
	if (!attr.exclude_kernel) {
		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
	}

9853 9854 9855 9856 9857
	if (attr.namespaces) {
		if (!capable(CAP_SYS_ADMIN))
			return -EACCES;
	}

9858
	if (attr.freq) {
9859
		if (attr.sample_freq > sysctl_perf_event_sample_rate)
9860
			return -EINVAL;
9861 9862 9863
	} else {
		if (attr.sample_period & (1ULL << 63))
			return -EINVAL;
9864 9865
	}

9866 9867 9868 9869 9870
	/* Only privileged users can get physical addresses */
	if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR) &&
	    perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
		return -EACCES;

9871 9872 9873
	if (!attr.sample_max_stack)
		attr.sample_max_stack = sysctl_perf_event_max_stack;

S
Stephane Eranian 已提交
9874 9875 9876 9877 9878 9879 9880 9881 9882
	/*
	 * In cgroup mode, the pid argument is used to pass the fd
	 * opened to the cgroup directory in cgroupfs. The cpu argument
	 * designates the cpu on which to monitor threads from that
	 * cgroup.
	 */
	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
		return -EINVAL;

9883 9884 9885 9886
	if (flags & PERF_FLAG_FD_CLOEXEC)
		f_flags |= O_CLOEXEC;

	event_fd = get_unused_fd_flags(f_flags);
9887 9888 9889
	if (event_fd < 0)
		return event_fd;

9890
	if (group_fd != -1) {
9891 9892
		err = perf_fget_light(group_fd, &group);
		if (err)
9893
			goto err_fd;
9894
		group_leader = group.file->private_data;
9895 9896 9897 9898 9899 9900
		if (flags & PERF_FLAG_FD_OUTPUT)
			output_event = group_leader;
		if (flags & PERF_FLAG_FD_NO_GROUP)
			group_leader = NULL;
	}

S
Stephane Eranian 已提交
9901
	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
9902 9903 9904 9905 9906 9907 9908
		task = find_lively_task_by_vpid(pid);
		if (IS_ERR(task)) {
			err = PTR_ERR(task);
			goto err_group_fd;
		}
	}

9909 9910 9911 9912 9913 9914
	if (task && group_leader &&
	    group_leader->attr.inherit != attr.inherit) {
		err = -EINVAL;
		goto err_task;
	}

9915 9916 9917
	if (task) {
		err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
		if (err)
9918
			goto err_task;
9919 9920 9921 9922 9923 9924 9925 9926 9927 9928 9929 9930 9931 9932

		/*
		 * Reuse ptrace permission checks for now.
		 *
		 * We must hold cred_guard_mutex across this and any potential
		 * perf_install_in_context() call for this new event to
		 * serialize against exec() altering our credentials (and the
		 * perf_event_exit_task() that could imply).
		 */
		err = -EACCES;
		if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
			goto err_cred;
	}

9933 9934 9935
	if (flags & PERF_FLAG_PID_CGROUP)
		cgroup_fd = pid;

9936
	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
9937
				 NULL, NULL, cgroup_fd);
9938 9939
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
9940
		goto err_cred;
9941 9942
	}

9943 9944
	if (is_sampling_event(event)) {
		if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
9945
			err = -EOPNOTSUPP;
9946 9947 9948 9949
			goto err_alloc;
		}
	}

9950 9951 9952 9953 9954
	/*
	 * Special case software events and allow them to be part of
	 * any hardware group.
	 */
	pmu = event->pmu;
9955

9956 9957 9958 9959 9960 9961
	if (attr.use_clockid) {
		err = perf_event_set_clock(event, attr.clockid);
		if (err)
			goto err_alloc;
	}

9962 9963 9964
	if (pmu->task_ctx_nr == perf_sw_context)
		event->event_caps |= PERF_EV_CAP_SOFTWARE;

9965 9966 9967 9968 9969 9970 9971 9972 9973 9974 9975 9976 9977
	if (group_leader &&
	    (is_software_event(event) != is_software_event(group_leader))) {
		if (is_software_event(event)) {
			/*
			 * If event and group_leader are not both a software
			 * event, and event is, then group leader is not.
			 *
			 * Allow the addition of software events to !software
			 * groups, this is safe because software events never
			 * fail to schedule.
			 */
			pmu = group_leader->pmu;
		} else if (is_software_event(group_leader) &&
9978
			   (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
9979 9980 9981 9982 9983 9984 9985 9986
			/*
			 * In case the group is a pure software group, and we
			 * try to add a hardware event, move the whole group to
			 * the hardware context.
			 */
			move_group = 1;
		}
	}
9987 9988 9989 9990

	/*
	 * Get the target context (task or percpu):
	 */
9991
	ctx = find_get_context(pmu, task, event);
9992 9993
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
9994
		goto err_alloc;
9995 9996
	}

9997 9998 9999 10000 10001
	if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
		err = -EBUSY;
		goto err_context;
	}

I
Ingo Molnar 已提交
10002
	/*
10003
	 * Look up the group leader (we will attach this event to it):
10004
	 */
10005
	if (group_leader) {
10006
		err = -EINVAL;
10007 10008

		/*
I
Ingo Molnar 已提交
10009 10010 10011 10012
		 * Do not allow a recursive hierarchy (this new sibling
		 * becoming part of another group-sibling):
		 */
		if (group_leader->group_leader != group_leader)
10013
			goto err_context;
10014 10015 10016 10017 10018

		/* All events in a group should have the same clock */
		if (group_leader->clock != event->clock)
			goto err_context;

I
Ingo Molnar 已提交
10019
		/*
10020 10021 10022
		 * Make sure we're both events for the same CPU;
		 * grouping events for different CPUs is broken; since
		 * you can never concurrently schedule them anyhow.
10023
		 */
10024 10025
		if (group_leader->cpu != event->cpu)
			goto err_context;
10026

10027 10028 10029 10030 10031 10032 10033 10034 10035 10036 10037 10038 10039 10040
		/*
		 * Make sure we're both on the same task, or both
		 * per-CPU events.
		 */
		if (group_leader->ctx->task != ctx->task)
			goto err_context;

		/*
		 * Do not allow to attach to a group in a different task
		 * or CPU context. If we're moving SW events, we'll fix
		 * this up later, so allow that.
		 */
		if (!move_group && group_leader->ctx != ctx)
			goto err_context;
10041

10042 10043 10044
		/*
		 * Only a group leader can be exclusive or pinned
		 */
10045
		if (attr.exclusive || attr.pinned)
10046
			goto err_context;
10047 10048 10049 10050 10051
	}

	if (output_event) {
		err = perf_event_set_output(event, output_event);
		if (err)
10052
			goto err_context;
10053
	}
T
Thomas Gleixner 已提交
10054

10055 10056
	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
					f_flags);
10057 10058
	if (IS_ERR(event_file)) {
		err = PTR_ERR(event_file);
10059
		event_file = NULL;
10060
		goto err_context;
10061
	}
10062

10063
	if (move_group) {
10064 10065
		gctx = __perf_event_ctx_lock_double(group_leader, ctx);

10066 10067 10068 10069
		if (gctx->task == TASK_TOMBSTONE) {
			err = -ESRCH;
			goto err_locked;
		}
10070 10071 10072 10073 10074 10075 10076 10077 10078 10079 10080 10081 10082 10083 10084 10085 10086 10087 10088

		/*
		 * Check if we raced against another sys_perf_event_open() call
		 * moving the software group underneath us.
		 */
		if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
			/*
			 * If someone moved the group out from under us, check
			 * if this new event wound up on the same ctx, if so
			 * its the regular !move_group case, otherwise fail.
			 */
			if (gctx != ctx) {
				err = -EINVAL;
				goto err_locked;
			} else {
				perf_event_ctx_unlock(group_leader, gctx);
				move_group = 0;
			}
		}
10089 10090 10091 10092
	} else {
		mutex_lock(&ctx->mutex);
	}

10093 10094 10095 10096 10097
	if (ctx->task == TASK_TOMBSTONE) {
		err = -ESRCH;
		goto err_locked;
	}

P
Peter Zijlstra 已提交
10098 10099 10100 10101 10102
	if (!perf_event_validate_size(event)) {
		err = -E2BIG;
		goto err_locked;
	}

10103 10104 10105 10106 10107 10108 10109 10110 10111 10112 10113 10114 10115 10116 10117 10118 10119
	if (!task) {
		/*
		 * Check if the @cpu we're creating an event for is online.
		 *
		 * We use the perf_cpu_context::ctx::mutex to serialize against
		 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
		 */
		struct perf_cpu_context *cpuctx =
			container_of(ctx, struct perf_cpu_context, ctx);

		if (!cpuctx->online) {
			err = -ENODEV;
			goto err_locked;
		}
	}


10120 10121 10122 10123 10124 10125 10126
	/*
	 * Must be under the same ctx::mutex as perf_install_in_context(),
	 * because we need to serialize with concurrent event creation.
	 */
	if (!exclusive_event_installable(event, ctx)) {
		/* exclusive and group stuff are assumed mutually exclusive */
		WARN_ON_ONCE(move_group);
P
Peter Zijlstra 已提交
10127

10128 10129 10130
		err = -EBUSY;
		goto err_locked;
	}
P
Peter Zijlstra 已提交
10131

10132 10133
	WARN_ON_ONCE(ctx->parent_ctx);

10134 10135 10136 10137 10138
	/*
	 * This is the point on no return; we cannot fail hereafter. This is
	 * where we start modifying current state.
	 */

10139
	if (move_group) {
P
Peter Zijlstra 已提交
10140 10141 10142 10143
		/*
		 * See perf_event_ctx_lock() for comments on the details
		 * of swizzling perf_event::ctx.
		 */
10144
		perf_remove_from_context(group_leader, 0);
10145
		put_ctx(gctx);
J
Jiri Olsa 已提交
10146

10147 10148
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
10149
			perf_remove_from_context(sibling, 0);
10150 10151 10152
			put_ctx(gctx);
		}

P
Peter Zijlstra 已提交
10153 10154 10155 10156
		/*
		 * Wait for everybody to stop referencing the events through
		 * the old lists, before installing it on new lists.
		 */
10157
		synchronize_rcu();
P
Peter Zijlstra 已提交
10158

10159 10160 10161 10162 10163 10164 10165 10166 10167 10168
		/*
		 * Install the group siblings before the group leader.
		 *
		 * Because a group leader will try and install the entire group
		 * (through the sibling list, which is still in-tact), we can
		 * end up with siblings installed in the wrong context.
		 *
		 * By installing siblings first we NO-OP because they're not
		 * reachable through the group lists.
		 */
10169 10170
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
10171
			perf_event__state_init(sibling);
10172
			perf_install_in_context(ctx, sibling, sibling->cpu);
10173 10174
			get_ctx(ctx);
		}
10175 10176 10177 10178 10179 10180 10181 10182 10183

		/*
		 * Removing from the context ends up with disabled
		 * event. What we want here is event in the initial
		 * startup state, ready to be add into new context.
		 */
		perf_event__state_init(group_leader);
		perf_install_in_context(ctx, group_leader, group_leader->cpu);
		get_ctx(ctx);
10184 10185
	}

10186 10187 10188 10189 10190 10191 10192 10193 10194
	/*
	 * Precalculate sample_data sizes; do while holding ctx::mutex such
	 * that we're serialized against further additions and before
	 * perf_install_in_context() which is the point the event is active and
	 * can use these values.
	 */
	perf_event__header_size(event);
	perf_event__id_header_size(event);

P
Peter Zijlstra 已提交
10195 10196
	event->owner = current;

10197
	perf_install_in_context(ctx, event, event->cpu);
10198
	perf_unpin_context(ctx);
P
Peter Zijlstra 已提交
10199

10200
	if (move_group)
10201
		perf_event_ctx_unlock(group_leader, gctx);
10202
	mutex_unlock(&ctx->mutex);
10203

10204 10205 10206 10207 10208
	if (task) {
		mutex_unlock(&task->signal->cred_guard_mutex);
		put_task_struct(task);
	}

10209 10210 10211
	mutex_lock(&current->perf_event_mutex);
	list_add_tail(&event->owner_entry, &current->perf_event_list);
	mutex_unlock(&current->perf_event_mutex);
10212

10213 10214 10215 10216 10217 10218
	/*
	 * Drop the reference on the group_event after placing the
	 * new event on the sibling_list. This ensures destruction
	 * of the group leader will find the pointer to itself in
	 * perf_group_detach().
	 */
10219
	fdput(group);
10220 10221
	fd_install(event_fd, event_file);
	return event_fd;
T
Thomas Gleixner 已提交
10222

10223 10224
err_locked:
	if (move_group)
10225
		perf_event_ctx_unlock(group_leader, gctx);
10226 10227 10228
	mutex_unlock(&ctx->mutex);
/* err_file: */
	fput(event_file);
10229
err_context:
10230
	perf_unpin_context(ctx);
10231
	put_ctx(ctx);
10232
err_alloc:
P
Peter Zijlstra 已提交
10233 10234 10235 10236 10237 10238
	/*
	 * If event_file is set, the fput() above will have called ->release()
	 * and that will take care of freeing the event.
	 */
	if (!event_file)
		free_event(event);
10239 10240 10241
err_cred:
	if (task)
		mutex_unlock(&task->signal->cred_guard_mutex);
10242
err_task:
P
Peter Zijlstra 已提交
10243 10244
	if (task)
		put_task_struct(task);
10245
err_group_fd:
10246
	fdput(group);
10247 10248
err_fd:
	put_unused_fd(event_fd);
10249
	return err;
T
Thomas Gleixner 已提交
10250 10251
}

10252 10253 10254 10255 10256
/**
 * perf_event_create_kernel_counter
 *
 * @attr: attributes of the counter to create
 * @cpu: cpu in which the counter is bound
M
Matt Helsley 已提交
10257
 * @task: task to profile (NULL for percpu)
10258 10259 10260
 */
struct perf_event *
perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
M
Matt Helsley 已提交
10261
				 struct task_struct *task,
10262 10263
				 perf_overflow_handler_t overflow_handler,
				 void *context)
10264 10265
{
	struct perf_event_context *ctx;
10266
	struct perf_event *event;
10267
	int err;
10268

10269 10270 10271
	/*
	 * Get the target context (task or percpu):
	 */
10272

10273
	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
10274
				 overflow_handler, context, -1);
10275 10276 10277 10278
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
		goto err;
	}
10279

10280
	/* Mark owner so we could distinguish it from user events. */
10281
	event->owner = TASK_TOMBSTONE;
10282

10283
	ctx = find_get_context(event->pmu, task, event);
10284 10285
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
10286
		goto err_free;
10287
	}
10288 10289 10290

	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
10291 10292 10293 10294 10295
	if (ctx->task == TASK_TOMBSTONE) {
		err = -ESRCH;
		goto err_unlock;
	}

10296 10297 10298 10299 10300 10301 10302 10303 10304 10305 10306 10307 10308 10309 10310
	if (!task) {
		/*
		 * Check if the @cpu we're creating an event for is online.
		 *
		 * We use the perf_cpu_context::ctx::mutex to serialize against
		 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
		 */
		struct perf_cpu_context *cpuctx =
			container_of(ctx, struct perf_cpu_context, ctx);
		if (!cpuctx->online) {
			err = -ENODEV;
			goto err_unlock;
		}
	}

10311 10312
	if (!exclusive_event_installable(event, ctx)) {
		err = -EBUSY;
10313
		goto err_unlock;
10314 10315
	}

10316
	perf_install_in_context(ctx, event, cpu);
10317
	perf_unpin_context(ctx);
10318 10319 10320 10321
	mutex_unlock(&ctx->mutex);

	return event;

10322 10323 10324 10325
err_unlock:
	mutex_unlock(&ctx->mutex);
	perf_unpin_context(ctx);
	put_ctx(ctx);
10326 10327 10328
err_free:
	free_event(event);
err:
10329
	return ERR_PTR(err);
10330
}
10331
EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
10332

10333 10334 10335 10336 10337 10338 10339 10340 10341 10342
void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
{
	struct perf_event_context *src_ctx;
	struct perf_event_context *dst_ctx;
	struct perf_event *event, *tmp;
	LIST_HEAD(events);

	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;

P
Peter Zijlstra 已提交
10343 10344 10345 10346 10347
	/*
	 * See perf_event_ctx_lock() for comments on the details
	 * of swizzling perf_event::ctx.
	 */
	mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
10348 10349
	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
				 event_entry) {
10350
		perf_remove_from_context(event, 0);
10351
		unaccount_event_cpu(event, src_cpu);
10352
		put_ctx(src_ctx);
10353
		list_add(&event->migrate_entry, &events);
10354 10355
	}

10356 10357 10358
	/*
	 * Wait for the events to quiesce before re-instating them.
	 */
10359 10360
	synchronize_rcu();

10361 10362 10363 10364 10365 10366 10367 10368 10369 10370 10371 10372 10373 10374 10375 10376 10377 10378 10379 10380 10381 10382 10383 10384
	/*
	 * Re-instate events in 2 passes.
	 *
	 * Skip over group leaders and only install siblings on this first
	 * pass, siblings will not get enabled without a leader, however a
	 * leader will enable its siblings, even if those are still on the old
	 * context.
	 */
	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
		if (event->group_leader == event)
			continue;

		list_del(&event->migrate_entry);
		if (event->state >= PERF_EVENT_STATE_OFF)
			event->state = PERF_EVENT_STATE_INACTIVE;
		account_event_cpu(event, dst_cpu);
		perf_install_in_context(dst_ctx, event, dst_cpu);
		get_ctx(dst_ctx);
	}

	/*
	 * Once all the siblings are setup properly, install the group leaders
	 * to make it go.
	 */
10385 10386
	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
		list_del(&event->migrate_entry);
10387 10388
		if (event->state >= PERF_EVENT_STATE_OFF)
			event->state = PERF_EVENT_STATE_INACTIVE;
10389
		account_event_cpu(event, dst_cpu);
10390 10391 10392 10393
		perf_install_in_context(dst_ctx, event, dst_cpu);
		get_ctx(dst_ctx);
	}
	mutex_unlock(&dst_ctx->mutex);
P
Peter Zijlstra 已提交
10394
	mutex_unlock(&src_ctx->mutex);
10395 10396 10397
}
EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);

10398
static void sync_child_event(struct perf_event *child_event,
10399
			       struct task_struct *child)
10400
{
10401
	struct perf_event *parent_event = child_event->parent;
10402
	u64 child_val;
10403

10404 10405
	if (child_event->attr.inherit_stat)
		perf_event_read_event(child_event, child);
10406

P
Peter Zijlstra 已提交
10407
	child_val = perf_event_count(child_event);
10408 10409 10410 10411

	/*
	 * Add back the child's count to the parent's count:
	 */
10412
	atomic64_add(child_val, &parent_event->child_count);
10413 10414 10415 10416
	atomic64_add(child_event->total_time_enabled,
		     &parent_event->child_total_time_enabled);
	atomic64_add(child_event->total_time_running,
		     &parent_event->child_total_time_running);
10417 10418
}

10419
static void
10420 10421 10422
perf_event_exit_event(struct perf_event *child_event,
		      struct perf_event_context *child_ctx,
		      struct task_struct *child)
10423
{
10424 10425
	struct perf_event *parent_event = child_event->parent;

10426 10427 10428 10429 10430 10431 10432 10433 10434 10435 10436 10437
	/*
	 * Do not destroy the 'original' grouping; because of the context
	 * switch optimization the original events could've ended up in a
	 * random child task.
	 *
	 * If we were to destroy the original group, all group related
	 * operations would cease to function properly after this random
	 * child dies.
	 *
	 * Do destroy all inherited groups, we don't care about those
	 * and being thorough is better.
	 */
10438 10439 10440
	raw_spin_lock_irq(&child_ctx->lock);
	WARN_ON_ONCE(child_ctx->is_active);

10441
	if (parent_event)
10442 10443
		perf_group_detach(child_event);
	list_del_event(child_event, child_ctx);
10444
	perf_event_set_state(child_event, PERF_EVENT_STATE_EXIT); /* is_event_hup() */
10445
	raw_spin_unlock_irq(&child_ctx->lock);
10446

10447
	/*
10448
	 * Parent events are governed by their filedesc, retain them.
10449
	 */
10450
	if (!parent_event) {
10451
		perf_event_wakeup(child_event);
10452
		return;
10453
	}
10454 10455 10456 10457 10458 10459 10460 10461 10462 10463 10464 10465 10466 10467 10468 10469 10470 10471 10472 10473
	/*
	 * Child events can be cleaned up.
	 */

	sync_child_event(child_event, child);

	/*
	 * Remove this event from the parent's list
	 */
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_del_init(&child_event->child_list);
	mutex_unlock(&parent_event->child_mutex);

	/*
	 * Kick perf_poll() for is_event_hup().
	 */
	perf_event_wakeup(parent_event);
	free_event(child_event);
	put_event(parent_event);
10474 10475
}

P
Peter Zijlstra 已提交
10476
static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
10477
{
10478
	struct perf_event_context *child_ctx, *clone_ctx = NULL;
10479 10480 10481
	struct perf_event *child_event, *next;

	WARN_ON_ONCE(child != current);
10482

10483
	child_ctx = perf_pin_task_context(child, ctxn);
10484
	if (!child_ctx)
10485 10486
		return;

10487
	/*
10488 10489 10490 10491 10492 10493 10494 10495
	 * In order to reduce the amount of tricky in ctx tear-down, we hold
	 * ctx::mutex over the entire thing. This serializes against almost
	 * everything that wants to access the ctx.
	 *
	 * The exception is sys_perf_event_open() /
	 * perf_event_create_kernel_count() which does find_get_context()
	 * without ctx::mutex (it cannot because of the move_group double mutex
	 * lock thing). See the comments in perf_install_in_context().
10496
	 */
10497
	mutex_lock(&child_ctx->mutex);
10498 10499

	/*
10500 10501 10502
	 * In a single ctx::lock section, de-schedule the events and detach the
	 * context from the task such that we cannot ever get it scheduled back
	 * in.
10503
	 */
10504
	raw_spin_lock_irq(&child_ctx->lock);
10505
	task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
10506

10507
	/*
10508 10509
	 * Now that the context is inactive, destroy the task <-> ctx relation
	 * and mark the context dead.
10510
	 */
10511 10512 10513 10514
	RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
	put_ctx(child_ctx); /* cannot be last */
	WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
	put_task_struct(current); /* cannot be last */
10515

10516
	clone_ctx = unclone_ctx(child_ctx);
10517
	raw_spin_unlock_irq(&child_ctx->lock);
P
Peter Zijlstra 已提交
10518

10519 10520
	if (clone_ctx)
		put_ctx(clone_ctx);
10521

P
Peter Zijlstra 已提交
10522
	/*
10523 10524 10525
	 * Report the task dead after unscheduling the events so that we
	 * won't get any samples after PERF_RECORD_EXIT. We can however still
	 * get a few PERF_RECORD_READ events.
P
Peter Zijlstra 已提交
10526
	 */
10527
	perf_event_task(child, child_ctx, 0);
10528

10529
	list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
10530
		perf_event_exit_event(child_event, child_ctx, child);
10531

10532 10533 10534
	mutex_unlock(&child_ctx->mutex);

	put_ctx(child_ctx);
10535 10536
}

P
Peter Zijlstra 已提交
10537 10538
/*
 * When a child task exits, feed back event values to parent events.
10539 10540 10541
 *
 * Can be called with cred_guard_mutex held when called from
 * install_exec_creds().
P
Peter Zijlstra 已提交
10542 10543 10544
 */
void perf_event_exit_task(struct task_struct *child)
{
P
Peter Zijlstra 已提交
10545
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
10546 10547
	int ctxn;

P
Peter Zijlstra 已提交
10548 10549 10550 10551 10552 10553 10554 10555 10556 10557
	mutex_lock(&child->perf_event_mutex);
	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
				 owner_entry) {
		list_del_init(&event->owner_entry);

		/*
		 * Ensure the list deletion is visible before we clear
		 * the owner, closes a race against perf_release() where
		 * we need to serialize on the owner->perf_event_mutex.
		 */
10558
		smp_store_release(&event->owner, NULL);
P
Peter Zijlstra 已提交
10559 10560 10561
	}
	mutex_unlock(&child->perf_event_mutex);

P
Peter Zijlstra 已提交
10562 10563
	for_each_task_context_nr(ctxn)
		perf_event_exit_task_context(child, ctxn);
J
Jiri Olsa 已提交
10564 10565 10566 10567 10568 10569 10570 10571

	/*
	 * The perf_event_exit_task_context calls perf_event_task
	 * with child's task_ctx, which generates EXIT events for
	 * child contexts and sets child->perf_event_ctxp[] to NULL.
	 * At this point we need to send EXIT events to cpu contexts.
	 */
	perf_event_task(child, NULL, 0);
P
Peter Zijlstra 已提交
10572 10573
}

10574 10575 10576 10577 10578 10579 10580 10581 10582 10583 10584 10585
static void perf_free_event(struct perf_event *event,
			    struct perf_event_context *ctx)
{
	struct perf_event *parent = event->parent;

	if (WARN_ON_ONCE(!parent))
		return;

	mutex_lock(&parent->child_mutex);
	list_del_init(&event->child_list);
	mutex_unlock(&parent->child_mutex);

10586
	put_event(parent);
10587

P
Peter Zijlstra 已提交
10588
	raw_spin_lock_irq(&ctx->lock);
10589
	perf_group_detach(event);
10590
	list_del_event(event, ctx);
P
Peter Zijlstra 已提交
10591
	raw_spin_unlock_irq(&ctx->lock);
10592 10593 10594
	free_event(event);
}

10595
/*
P
Peter Zijlstra 已提交
10596
 * Free an unexposed, unused context as created by inheritance by
P
Peter Zijlstra 已提交
10597
 * perf_event_init_task below, used by fork() in case of fail.
P
Peter Zijlstra 已提交
10598 10599 10600
 *
 * Not all locks are strictly required, but take them anyway to be nice and
 * help out with the lockdep assertions.
10601
 */
10602
void perf_event_free_task(struct task_struct *task)
10603
{
P
Peter Zijlstra 已提交
10604
	struct perf_event_context *ctx;
10605
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
10606
	int ctxn;
10607

P
Peter Zijlstra 已提交
10608 10609 10610 10611
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;
10612

P
Peter Zijlstra 已提交
10613
		mutex_lock(&ctx->mutex);
10614 10615 10616 10617 10618 10619 10620 10621 10622 10623 10624
		raw_spin_lock_irq(&ctx->lock);
		/*
		 * Destroy the task <-> ctx relation and mark the context dead.
		 *
		 * This is important because even though the task hasn't been
		 * exposed yet the context has been (through child_list).
		 */
		RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
		WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
		put_task_struct(task); /* cannot be last */
		raw_spin_unlock_irq(&ctx->lock);
10625

10626
		list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
P
Peter Zijlstra 已提交
10627
			perf_free_event(event, ctx);
10628

P
Peter Zijlstra 已提交
10629 10630 10631
		mutex_unlock(&ctx->mutex);
		put_ctx(ctx);
	}
10632 10633
}

10634 10635 10636 10637 10638 10639 10640 10641
void perf_event_delayed_put(struct task_struct *task)
{
	int ctxn;

	for_each_task_context_nr(ctxn)
		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
}

10642
struct file *perf_event_get(unsigned int fd)
10643
{
10644
	struct file *file;
10645

10646 10647 10648
	file = fget_raw(fd);
	if (!file)
		return ERR_PTR(-EBADF);
10649

10650 10651 10652 10653
	if (file->f_op != &perf_fops) {
		fput(file);
		return ERR_PTR(-EBADF);
	}
10654

10655
	return file;
10656 10657 10658 10659 10660 10661 10662 10663 10664 10665
}

const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
{
	if (!event)
		return ERR_PTR(-EINVAL);

	return &event->attr;
}

P
Peter Zijlstra 已提交
10666
/*
10667 10668 10669 10670 10671 10672
 * Inherit a event from parent task to child task.
 *
 * Returns:
 *  - valid pointer on success
 *  - NULL for orphaned events
 *  - IS_ERR() on error
P
Peter Zijlstra 已提交
10673 10674 10675 10676 10677 10678 10679 10680 10681
 */
static struct perf_event *
inherit_event(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event *group_leader,
	      struct perf_event_context *child_ctx)
{
10682
	enum perf_event_state parent_state = parent_event->state;
P
Peter Zijlstra 已提交
10683
	struct perf_event *child_event;
10684
	unsigned long flags;
P
Peter Zijlstra 已提交
10685 10686 10687 10688 10689 10690 10691 10692 10693 10694 10695 10696

	/*
	 * Instead of creating recursive hierarchies of events,
	 * we link inherited events back to the original parent,
	 * which has a filp for sure, which we use as the reference
	 * count:
	 */
	if (parent_event->parent)
		parent_event = parent_event->parent;

	child_event = perf_event_alloc(&parent_event->attr,
					   parent_event->cpu,
10697
					   child,
P
Peter Zijlstra 已提交
10698
					   group_leader, parent_event,
10699
					   NULL, NULL, -1);
P
Peter Zijlstra 已提交
10700 10701
	if (IS_ERR(child_event))
		return child_event;
10702

10703 10704 10705 10706 10707 10708 10709
	/*
	 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
	 * must be under the same lock in order to serialize against
	 * perf_event_release_kernel(), such that either we must observe
	 * is_orphaned_event() or they will observe us on the child_list.
	 */
	mutex_lock(&parent_event->child_mutex);
10710 10711
	if (is_orphaned_event(parent_event) ||
	    !atomic_long_inc_not_zero(&parent_event->refcount)) {
10712
		mutex_unlock(&parent_event->child_mutex);
10713 10714 10715 10716
		free_event(child_event);
		return NULL;
	}

P
Peter Zijlstra 已提交
10717 10718 10719 10720 10721 10722 10723
	get_ctx(child_ctx);

	/*
	 * Make the child state follow the state of the parent event,
	 * not its attr.disabled bit.  We hold the parent's mutex,
	 * so we won't race with perf_event_{en, dis}able_family.
	 */
10724
	if (parent_state >= PERF_EVENT_STATE_INACTIVE)
P
Peter Zijlstra 已提交
10725 10726 10727 10728 10729 10730 10731 10732 10733 10734 10735 10736 10737 10738 10739 10740
		child_event->state = PERF_EVENT_STATE_INACTIVE;
	else
		child_event->state = PERF_EVENT_STATE_OFF;

	if (parent_event->attr.freq) {
		u64 sample_period = parent_event->hw.sample_period;
		struct hw_perf_event *hwc = &child_event->hw;

		hwc->sample_period = sample_period;
		hwc->last_period   = sample_period;

		local64_set(&hwc->period_left, sample_period);
	}

	child_event->ctx = child_ctx;
	child_event->overflow_handler = parent_event->overflow_handler;
10741 10742
	child_event->overflow_handler_context
		= parent_event->overflow_handler_context;
P
Peter Zijlstra 已提交
10743

10744 10745 10746 10747
	/*
	 * Precalculate sample_data sizes
	 */
	perf_event__header_size(child_event);
10748
	perf_event__id_header_size(child_event);
10749

P
Peter Zijlstra 已提交
10750 10751 10752
	/*
	 * Link it up in the child's context:
	 */
10753
	raw_spin_lock_irqsave(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
10754
	add_event_to_ctx(child_event, child_ctx);
10755
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
10756 10757 10758 10759 10760 10761 10762 10763 10764 10765

	/*
	 * Link this into the parent event's child list
	 */
	list_add_tail(&child_event->child_list, &parent_event->child_list);
	mutex_unlock(&parent_event->child_mutex);

	return child_event;
}

10766 10767 10768 10769 10770 10771 10772 10773 10774 10775
/*
 * Inherits an event group.
 *
 * This will quietly suppress orphaned events; !inherit_event() is not an error.
 * This matches with perf_event_release_kernel() removing all child events.
 *
 * Returns:
 *  - 0 on success
 *  - <0 on error
 */
P
Peter Zijlstra 已提交
10776 10777 10778 10779 10780 10781 10782 10783 10784 10785 10786 10787 10788 10789
static int inherit_group(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event_context *child_ctx)
{
	struct perf_event *leader;
	struct perf_event *sub;
	struct perf_event *child_ctr;

	leader = inherit_event(parent_event, parent, parent_ctx,
				 child, NULL, child_ctx);
	if (IS_ERR(leader))
		return PTR_ERR(leader);
10790 10791 10792 10793 10794
	/*
	 * @leader can be NULL here because of is_orphaned_event(). In this
	 * case inherit_event() will create individual events, similar to what
	 * perf_group_detach() would do anyway.
	 */
P
Peter Zijlstra 已提交
10795 10796 10797 10798 10799 10800 10801
	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
		child_ctr = inherit_event(sub, parent, parent_ctx,
					    child, leader, child_ctx);
		if (IS_ERR(child_ctr))
			return PTR_ERR(child_ctr);
	}
	return 0;
10802 10803
}

10804 10805 10806 10807 10808 10809 10810 10811 10812 10813 10814
/*
 * Creates the child task context and tries to inherit the event-group.
 *
 * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
 * inherited_all set when we 'fail' to inherit an orphaned event; this is
 * consistent with perf_event_release_kernel() removing all child events.
 *
 * Returns:
 *  - 0 on success
 *  - <0 on error
 */
10815 10816 10817
static int
inherit_task_group(struct perf_event *event, struct task_struct *parent,
		   struct perf_event_context *parent_ctx,
P
Peter Zijlstra 已提交
10818
		   struct task_struct *child, int ctxn,
10819 10820 10821
		   int *inherited_all)
{
	int ret;
P
Peter Zijlstra 已提交
10822
	struct perf_event_context *child_ctx;
10823 10824 10825 10826

	if (!event->attr.inherit) {
		*inherited_all = 0;
		return 0;
10827 10828
	}

10829
	child_ctx = child->perf_event_ctxp[ctxn];
10830 10831 10832 10833 10834 10835 10836
	if (!child_ctx) {
		/*
		 * This is executed from the parent task context, so
		 * inherit events that have been marked for cloning.
		 * First allocate and initialize a context for the
		 * child.
		 */
10837
		child_ctx = alloc_perf_context(parent_ctx->pmu, child);
10838 10839
		if (!child_ctx)
			return -ENOMEM;
10840

P
Peter Zijlstra 已提交
10841
		child->perf_event_ctxp[ctxn] = child_ctx;
10842 10843 10844 10845 10846 10847 10848 10849 10850
	}

	ret = inherit_group(event, parent, parent_ctx,
			    child, child_ctx);

	if (ret)
		*inherited_all = 0;

	return ret;
10851 10852
}

10853
/*
10854
 * Initialize the perf_event context in task_struct
10855
 */
10856
static int perf_event_init_context(struct task_struct *child, int ctxn)
10857
{
10858
	struct perf_event_context *child_ctx, *parent_ctx;
10859 10860
	struct perf_event_context *cloned_ctx;
	struct perf_event *event;
10861
	struct task_struct *parent = current;
10862
	int inherited_all = 1;
10863
	unsigned long flags;
10864
	int ret = 0;
10865

P
Peter Zijlstra 已提交
10866
	if (likely(!parent->perf_event_ctxp[ctxn]))
10867 10868
		return 0;

10869
	/*
10870 10871
	 * If the parent's context is a clone, pin it so it won't get
	 * swapped under us.
10872
	 */
P
Peter Zijlstra 已提交
10873
	parent_ctx = perf_pin_task_context(parent, ctxn);
10874 10875
	if (!parent_ctx)
		return 0;
10876

10877 10878 10879 10880 10881 10882 10883
	/*
	 * No need to check if parent_ctx != NULL here; since we saw
	 * it non-NULL earlier, the only reason for it to become NULL
	 * is if we exit, and since we're currently in the middle of
	 * a fork we can't be exiting at the same time.
	 */

10884 10885 10886 10887
	/*
	 * Lock the parent list. No need to lock the child - not PID
	 * hashed yet and not running, so nobody can access it.
	 */
10888
	mutex_lock(&parent_ctx->mutex);
10889 10890 10891 10892 10893

	/*
	 * We dont have to disable NMIs - we are only looking at
	 * the list, not manipulating it:
	 */
10894
	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
P
Peter Zijlstra 已提交
10895 10896
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
10897
		if (ret)
10898
			goto out_unlock;
10899
	}
10900

10901 10902 10903 10904 10905 10906 10907 10908 10909
	/*
	 * We can't hold ctx->lock when iterating the ->flexible_group list due
	 * to allocations, but we need to prevent rotation because
	 * rotate_ctx() will change the list from interrupt context.
	 */
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 1;
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);

10910
	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
P
Peter Zijlstra 已提交
10911 10912
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
10913
		if (ret)
10914
			goto out_unlock;
10915 10916
	}

10917 10918 10919
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 0;

P
Peter Zijlstra 已提交
10920
	child_ctx = child->perf_event_ctxp[ctxn];
10921

10922
	if (child_ctx && inherited_all) {
10923 10924 10925
		/*
		 * Mark the child context as a clone of the parent
		 * context, or of whatever the parent is a clone of.
P
Peter Zijlstra 已提交
10926 10927 10928
		 *
		 * Note that if the parent is a clone, the holding of
		 * parent_ctx->lock avoids it from being uncloned.
10929
		 */
P
Peter Zijlstra 已提交
10930
		cloned_ctx = parent_ctx->parent_ctx;
10931 10932
		if (cloned_ctx) {
			child_ctx->parent_ctx = cloned_ctx;
10933
			child_ctx->parent_gen = parent_ctx->parent_gen;
10934 10935 10936 10937 10938
		} else {
			child_ctx->parent_ctx = parent_ctx;
			child_ctx->parent_gen = parent_ctx->generation;
		}
		get_ctx(child_ctx->parent_ctx);
10939 10940
	}

P
Peter Zijlstra 已提交
10941
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
10942
out_unlock:
10943
	mutex_unlock(&parent_ctx->mutex);
10944

10945
	perf_unpin_context(parent_ctx);
10946
	put_ctx(parent_ctx);
10947

10948
	return ret;
10949 10950
}

P
Peter Zijlstra 已提交
10951 10952 10953 10954 10955 10956 10957
/*
 * Initialize the perf_event context in task_struct
 */
int perf_event_init_task(struct task_struct *child)
{
	int ctxn, ret;

10958 10959 10960 10961
	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
	mutex_init(&child->perf_event_mutex);
	INIT_LIST_HEAD(&child->perf_event_list);

P
Peter Zijlstra 已提交
10962 10963
	for_each_task_context_nr(ctxn) {
		ret = perf_event_init_context(child, ctxn);
P
Peter Zijlstra 已提交
10964 10965
		if (ret) {
			perf_event_free_task(child);
P
Peter Zijlstra 已提交
10966
			return ret;
P
Peter Zijlstra 已提交
10967
		}
P
Peter Zijlstra 已提交
10968 10969 10970 10971 10972
	}

	return 0;
}

10973 10974
static void __init perf_event_init_all_cpus(void)
{
10975
	struct swevent_htable *swhash;
10976 10977
	int cpu;

10978 10979
	zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);

10980
	for_each_possible_cpu(cpu) {
10981 10982
		swhash = &per_cpu(swevent_htable, cpu);
		mutex_init(&swhash->hlist_mutex);
10983
		INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
10984 10985 10986

		INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
		raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
10987

10988 10989 10990
#ifdef CONFIG_CGROUP_PERF
		INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
#endif
10991
		INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
10992 10993 10994
	}
}

10995
void perf_swevent_init_cpu(unsigned int cpu)
T
Thomas Gleixner 已提交
10996
{
P
Peter Zijlstra 已提交
10997
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
T
Thomas Gleixner 已提交
10998

10999
	mutex_lock(&swhash->hlist_mutex);
11000
	if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
11001 11002
		struct swevent_hlist *hlist;

11003 11004 11005
		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
		WARN_ON(!hlist);
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
11006
	}
11007
	mutex_unlock(&swhash->hlist_mutex);
T
Thomas Gleixner 已提交
11008 11009
}

11010
#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
P
Peter Zijlstra 已提交
11011
static void __perf_event_exit_context(void *__info)
T
Thomas Gleixner 已提交
11012
{
P
Peter Zijlstra 已提交
11013
	struct perf_event_context *ctx = __info;
11014 11015
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
	struct perf_event *event;
T
Thomas Gleixner 已提交
11016

11017
	raw_spin_lock(&ctx->lock);
11018
	ctx_sched_out(ctx, cpuctx, EVENT_TIME);
11019
	list_for_each_entry(event, &ctx->event_list, event_entry)
11020
		__perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
11021
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
11022
}
P
Peter Zijlstra 已提交
11023 11024 11025

static void perf_event_exit_cpu_context(int cpu)
{
11026
	struct perf_cpu_context *cpuctx;
P
Peter Zijlstra 已提交
11027 11028 11029
	struct perf_event_context *ctx;
	struct pmu *pmu;

11030 11031 11032 11033
	mutex_lock(&pmus_lock);
	list_for_each_entry(pmu, &pmus, entry) {
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
		ctx = &cpuctx->ctx;
P
Peter Zijlstra 已提交
11034 11035 11036

		mutex_lock(&ctx->mutex);
		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
11037
		cpuctx->online = 0;
P
Peter Zijlstra 已提交
11038 11039
		mutex_unlock(&ctx->mutex);
	}
11040 11041
	cpumask_clear_cpu(cpu, perf_online_mask);
	mutex_unlock(&pmus_lock);
P
Peter Zijlstra 已提交
11042
}
11043 11044 11045 11046 11047
#else

static void perf_event_exit_cpu_context(int cpu) { }

#endif
P
Peter Zijlstra 已提交
11048

11049 11050 11051 11052 11053 11054 11055 11056 11057 11058 11059 11060 11061 11062 11063 11064 11065 11066 11067 11068 11069 11070 11071
int perf_event_init_cpu(unsigned int cpu)
{
	struct perf_cpu_context *cpuctx;
	struct perf_event_context *ctx;
	struct pmu *pmu;

	perf_swevent_init_cpu(cpu);

	mutex_lock(&pmus_lock);
	cpumask_set_cpu(cpu, perf_online_mask);
	list_for_each_entry(pmu, &pmus, entry) {
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
		ctx = &cpuctx->ctx;

		mutex_lock(&ctx->mutex);
		cpuctx->online = 1;
		mutex_unlock(&ctx->mutex);
	}
	mutex_unlock(&pmus_lock);

	return 0;
}

11072
int perf_event_exit_cpu(unsigned int cpu)
T
Thomas Gleixner 已提交
11073
{
P
Peter Zijlstra 已提交
11074
	perf_event_exit_cpu_context(cpu);
11075
	return 0;
T
Thomas Gleixner 已提交
11076 11077
}

P
Peter Zijlstra 已提交
11078 11079 11080 11081 11082 11083 11084 11085 11086 11087 11088 11089 11090 11091 11092 11093 11094 11095 11096 11097
static int
perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
{
	int cpu;

	for_each_online_cpu(cpu)
		perf_event_exit_cpu(cpu);

	return NOTIFY_OK;
}

/*
 * Run the perf reboot notifier at the very last possible moment so that
 * the generic watchdog code runs as long as possible.
 */
static struct notifier_block perf_reboot_notifier = {
	.notifier_call = perf_reboot,
	.priority = INT_MIN,
};

11098
void __init perf_event_init(void)
T
Thomas Gleixner 已提交
11099
{
11100 11101
	int ret;

P
Peter Zijlstra 已提交
11102 11103
	idr_init(&pmu_idr);

11104
	perf_event_init_all_cpus();
11105
	init_srcu_struct(&pmus_srcu);
P
Peter Zijlstra 已提交
11106 11107 11108
	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
	perf_pmu_register(&perf_cpu_clock, NULL, -1);
	perf_pmu_register(&perf_task_clock, NULL, -1);
11109
	perf_tp_register();
11110
	perf_event_init_cpu(smp_processor_id());
P
Peter Zijlstra 已提交
11111
	register_reboot_notifier(&perf_reboot_notifier);
11112 11113 11114

	ret = init_hw_breakpoint();
	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
11115

11116 11117 11118 11119 11120 11121
	/*
	 * Build time assertion that we keep the data_head at the intended
	 * location.  IOW, validation we got the __reserved[] size right.
	 */
	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
		     != 1024);
T
Thomas Gleixner 已提交
11122
}
P
Peter Zijlstra 已提交
11123

11124 11125 11126 11127 11128 11129 11130 11131 11132 11133 11134
ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
			      char *page)
{
	struct perf_pmu_events_attr *pmu_attr =
		container_of(attr, struct perf_pmu_events_attr, attr);

	if (pmu_attr->event_str)
		return sprintf(page, "%s\n", pmu_attr->event_str);

	return 0;
}
11135
EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
11136

P
Peter Zijlstra 已提交
11137 11138 11139 11140 11141 11142 11143 11144 11145 11146 11147 11148 11149 11150 11151 11152 11153 11154 11155 11156 11157 11158 11159 11160 11161 11162 11163
static int __init perf_event_sysfs_init(void)
{
	struct pmu *pmu;
	int ret;

	mutex_lock(&pmus_lock);

	ret = bus_register(&pmu_bus);
	if (ret)
		goto unlock;

	list_for_each_entry(pmu, &pmus, entry) {
		if (!pmu->name || pmu->type < 0)
			continue;

		ret = pmu_dev_alloc(pmu);
		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
	}
	pmu_bus_running = 1;
	ret = 0;

unlock:
	mutex_unlock(&pmus_lock);

	return ret;
}
device_initcall(perf_event_sysfs_init);
S
Stephane Eranian 已提交
11164 11165

#ifdef CONFIG_CGROUP_PERF
11166 11167
static struct cgroup_subsys_state *
perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
S
Stephane Eranian 已提交
11168 11169 11170
{
	struct perf_cgroup *jc;

11171
	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
S
Stephane Eranian 已提交
11172 11173 11174 11175 11176 11177 11178 11179 11180 11181 11182 11183
	if (!jc)
		return ERR_PTR(-ENOMEM);

	jc->info = alloc_percpu(struct perf_cgroup_info);
	if (!jc->info) {
		kfree(jc);
		return ERR_PTR(-ENOMEM);
	}

	return &jc->css;
}

11184
static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
S
Stephane Eranian 已提交
11185
{
11186 11187
	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);

S
Stephane Eranian 已提交
11188 11189 11190 11191 11192 11193 11194
	free_percpu(jc->info);
	kfree(jc);
}

static int __perf_cgroup_move(void *info)
{
	struct task_struct *task = info;
11195
	rcu_read_lock();
S
Stephane Eranian 已提交
11196
	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
11197
	rcu_read_unlock();
S
Stephane Eranian 已提交
11198 11199 11200
	return 0;
}

11201
static void perf_cgroup_attach(struct cgroup_taskset *tset)
S
Stephane Eranian 已提交
11202
{
11203
	struct task_struct *task;
11204
	struct cgroup_subsys_state *css;
11205

11206
	cgroup_taskset_for_each(task, css, tset)
11207
		task_function_call(task, __perf_cgroup_move, task);
S
Stephane Eranian 已提交
11208 11209
}

11210
struct cgroup_subsys perf_event_cgrp_subsys = {
11211 11212
	.css_alloc	= perf_cgroup_css_alloc,
	.css_free	= perf_cgroup_css_free,
11213
	.attach		= perf_cgroup_attach,
11214 11215 11216 11217 11218 11219
	/*
	 * Implicitly enable on dfl hierarchy so that perf events can
	 * always be filtered by cgroup2 path as long as perf_event
	 * controller is not mounted on a legacy hierarchy.
	 */
	.implicit_on_dfl = true,
11220
	.threaded	= true,
S
Stephane Eranian 已提交
11221 11222
};
#endif /* CONFIG_CGROUP_PERF */