core.c 183.2 KB
Newer Older
T
Thomas Gleixner 已提交
1
/*
I
Ingo Molnar 已提交
2
 * Performance events core code:
T
Thomas Gleixner 已提交
3
 *
4
 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 6
 *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
 *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
A
Al Viro 已提交
7
 *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8
 *
I
Ingo Molnar 已提交
9
 * For licensing details see kernel-base/COPYING
T
Thomas Gleixner 已提交
10 11 12
 */

#include <linux/fs.h>
13
#include <linux/mm.h>
T
Thomas Gleixner 已提交
14 15
#include <linux/cpu.h>
#include <linux/smp.h>
P
Peter Zijlstra 已提交
16
#include <linux/idr.h>
17
#include <linux/file.h>
T
Thomas Gleixner 已提交
18
#include <linux/poll.h>
19
#include <linux/slab.h>
20
#include <linux/hash.h>
21
#include <linux/tick.h>
T
Thomas Gleixner 已提交
22
#include <linux/sysfs.h>
23
#include <linux/dcache.h>
T
Thomas Gleixner 已提交
24
#include <linux/percpu.h>
25
#include <linux/ptrace.h>
P
Peter Zijlstra 已提交
26
#include <linux/reboot.h>
27
#include <linux/vmstat.h>
P
Peter Zijlstra 已提交
28
#include <linux/device.h>
29
#include <linux/export.h>
30
#include <linux/vmalloc.h>
31 32
#include <linux/hardirq.h>
#include <linux/rculist.h>
T
Thomas Gleixner 已提交
33 34 35
#include <linux/uaccess.h>
#include <linux/syscalls.h>
#include <linux/anon_inodes.h>
I
Ingo Molnar 已提交
36
#include <linux/kernel_stat.h>
37
#include <linux/perf_event.h>
L
Li Zefan 已提交
38
#include <linux/ftrace_event.h>
39
#include <linux/hw_breakpoint.h>
40
#include <linux/mm_types.h>
41
#include <linux/cgroup.h>
T
Thomas Gleixner 已提交
42

43 44
#include "internal.h"

45 46
#include <asm/irq_regs.h>

47
struct remote_function_call {
48 49 50 51
	struct task_struct	*p;
	int			(*func)(void *info);
	void			*info;
	int			ret;
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
};

static void remote_function(void *data)
{
	struct remote_function_call *tfc = data;
	struct task_struct *p = tfc->p;

	if (p) {
		tfc->ret = -EAGAIN;
		if (task_cpu(p) != smp_processor_id() || !task_curr(p))
			return;
	}

	tfc->ret = tfc->func(tfc->info);
}

/**
 * task_function_call - call a function on the cpu on which a task runs
 * @p:		the task to evaluate
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func when the task is currently running. This might
 * be on the current CPU, which just calls the function directly
 *
 * returns: @func return value, or
 *	    -ESRCH  - when the process isn't running
 *	    -EAGAIN - when the process moved away
 */
static int
task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
{
	struct remote_function_call data = {
85 86 87 88
		.p	= p,
		.func	= func,
		.info	= info,
		.ret	= -ESRCH, /* No such (running) process */
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
	};

	if (task_curr(p))
		smp_call_function_single(task_cpu(p), remote_function, &data, 1);

	return data.ret;
}

/**
 * cpu_function_call - call a function on the cpu
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func on the remote cpu.
 *
 * returns: @func return value or -ENXIO when the cpu is offline
 */
static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
{
	struct remote_function_call data = {
109 110 111 112
		.p	= NULL,
		.func	= func,
		.info	= info,
		.ret	= -ENXIO, /* No such CPU */
113 114 115 116 117 118 119
	};

	smp_call_function_single(cpu, remote_function, &data, 1);

	return data.ret;
}

S
Stephane Eranian 已提交
120 121 122 123
#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
		       PERF_FLAG_FD_OUTPUT  |\
		       PERF_FLAG_PID_CGROUP)

124 125 126 127 128 129 130
/*
 * branch priv levels that need permission checks
 */
#define PERF_SAMPLE_BRANCH_PERM_PLM \
	(PERF_SAMPLE_BRANCH_KERNEL |\
	 PERF_SAMPLE_BRANCH_HV)

131 132 133 134 135 136
enum event_type_t {
	EVENT_FLEXIBLE = 0x1,
	EVENT_PINNED = 0x2,
	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
};

S
Stephane Eranian 已提交
137 138 139 140
/*
 * perf_sched_events : >0 events exist
 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
 */
141
struct static_key_deferred perf_sched_events __read_mostly;
S
Stephane Eranian 已提交
142
static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
143
static DEFINE_PER_CPU(atomic_t, perf_branch_stack_events);
144
static DEFINE_PER_CPU(atomic_t, perf_freq_events);
S
Stephane Eranian 已提交
145

146 147 148
static atomic_t nr_mmap_events __read_mostly;
static atomic_t nr_comm_events __read_mostly;
static atomic_t nr_task_events __read_mostly;
149

P
Peter Zijlstra 已提交
150 151 152 153
static LIST_HEAD(pmus);
static DEFINE_MUTEX(pmus_lock);
static struct srcu_struct pmus_srcu;

154
/*
155
 * perf event paranoia level:
156 157
 *  -1 - not paranoid at all
 *   0 - disallow raw tracepoint access for unpriv
158
 *   1 - disallow cpu events for unpriv
159
 *   2 - disallow kernel profiling for unpriv
160
 */
161
int sysctl_perf_event_paranoid __read_mostly = 1;
162

163 164
/* Minimum for 512 kiB + 1 user control page */
int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
165 166

/*
167
 * max perf event sample rate
168
 */
169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
#define DEFAULT_MAX_SAMPLE_RATE		100000
#define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
#define DEFAULT_CPU_TIME_MAX_PERCENT	25

int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;

static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;

static atomic_t perf_sample_allowed_ns __read_mostly =
	ATOMIC_INIT( DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100);

void update_perf_cpu_limits(void)
{
	u64 tmp = perf_sample_period_ns;

	tmp *= sysctl_perf_cpu_time_max_percent;
186
	do_div(tmp, 100);
187 188
	atomic_set(&perf_sample_allowed_ns, tmp);
}
P
Peter Zijlstra 已提交
189

190 191
static int perf_rotate_context(struct perf_cpu_context *cpuctx);

P
Peter Zijlstra 已提交
192 193 194 195 196 197 198 199 200 201
int perf_proc_update_handler(struct ctl_table *table, int write,
		void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
	int ret = proc_dointvec(table, write, buffer, lenp, ppos);

	if (ret || !write)
		return ret;

	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
	update_perf_cpu_limits();

	return 0;
}

int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;

int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
				void __user *buffer, size_t *lenp,
				loff_t *ppos)
{
	int ret = proc_dointvec(table, write, buffer, lenp, ppos);

	if (ret || !write)
		return ret;

	update_perf_cpu_limits();
P
Peter Zijlstra 已提交
220 221 222

	return 0;
}
223

224 225 226 227 228 229 230 231 232 233 234 235
/*
 * perf samples are done in some very critical code paths (NMIs).
 * If they take too much CPU time, the system can lock up and not
 * get any real work done.  This will drop the sample rate when
 * we detect that events are taking too long.
 */
#define NR_ACCUMULATED_SAMPLES 128
DEFINE_PER_CPU(u64, running_sample_length);

void perf_sample_event_took(u64 sample_len_ns)
{
	u64 avg_local_sample_len;
236
	u64 local_samples_len;
237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273

	if (atomic_read(&perf_sample_allowed_ns) == 0)
		return;

	/* decay the counter by 1 average sample */
	local_samples_len = __get_cpu_var(running_sample_length);
	local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES;
	local_samples_len += sample_len_ns;
	__get_cpu_var(running_sample_length) = local_samples_len;

	/*
	 * note: this will be biased artifically low until we have
	 * seen NR_ACCUMULATED_SAMPLES.  Doing it this way keeps us
	 * from having to maintain a count.
	 */
	avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;

	if (avg_local_sample_len <= atomic_read(&perf_sample_allowed_ns))
		return;

	if (max_samples_per_tick <= 1)
		return;

	max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2);
	sysctl_perf_event_sample_rate = max_samples_per_tick * HZ;
	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;

	printk_ratelimited(KERN_WARNING
			"perf samples too long (%lld > %d), lowering "
			"kernel.perf_event_max_sample_rate to %d\n",
			avg_local_sample_len,
			atomic_read(&perf_sample_allowed_ns),
			sysctl_perf_event_sample_rate);

	update_perf_cpu_limits();
}

274
static atomic64_t perf_event_id;
275

276 277 278 279
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type);

static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
280 281 282 283 284
			     enum event_type_t event_type,
			     struct task_struct *task);

static void update_context_time(struct perf_event_context *ctx);
static u64 perf_event_time(struct perf_event *event);
285

286
void __weak perf_event_print_debug(void)	{ }
T
Thomas Gleixner 已提交
287

288
extern __weak const char *perf_pmu_name(void)
T
Thomas Gleixner 已提交
289
{
290
	return "pmu";
T
Thomas Gleixner 已提交
291 292
}

293 294 295 296 297
static inline u64 perf_clock(void)
{
	return local_clock();
}

S
Stephane Eranian 已提交
298 299 300 301 302 303
static inline struct perf_cpu_context *
__get_cpu_context(struct perf_event_context *ctx)
{
	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
}

304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319
static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
			  struct perf_event_context *ctx)
{
	raw_spin_lock(&cpuctx->ctx.lock);
	if (ctx)
		raw_spin_lock(&ctx->lock);
}

static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
			    struct perf_event_context *ctx)
{
	if (ctx)
		raw_spin_unlock(&ctx->lock);
	raw_spin_unlock(&cpuctx->ctx.lock);
}

S
Stephane Eranian 已提交
320 321
#ifdef CONFIG_CGROUP_PERF

322 323 324 325 326 327 328 329 330 331 332
/*
 * perf_cgroup_info keeps track of time_enabled for a cgroup.
 * This is a per-cpu dynamically allocated data structure.
 */
struct perf_cgroup_info {
	u64				time;
	u64				timestamp;
};

struct perf_cgroup {
	struct cgroup_subsys_state	css;
333
	struct perf_cgroup_info	__percpu *info;
334 335
};

336 337 338 339 340
/*
 * Must ensure cgroup is pinned (css_get) before calling
 * this function. In other words, we cannot call this function
 * if there is no cgroup event for the current CPU context.
 */
S
Stephane Eranian 已提交
341 342 343 344 345 346 347 348 349 350 351 352 353
static inline struct perf_cgroup *
perf_cgroup_from_task(struct task_struct *task)
{
	return container_of(task_subsys_state(task, perf_subsys_id),
			struct perf_cgroup, css);
}

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);

354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369
	/* @event doesn't care about cgroup */
	if (!event->cgrp)
		return true;

	/* wants specific cgroup scope but @cpuctx isn't associated with any */
	if (!cpuctx->cgrp)
		return false;

	/*
	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
	 * also enabled for all its descendant cgroups.  If @cpuctx's
	 * cgroup is a descendant of @event's (the test covers identity
	 * case), it's a match.
	 */
	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
				    event->cgrp->css.cgroup);
S
Stephane Eranian 已提交
370 371
}

372
static inline bool perf_tryget_cgroup(struct perf_event *event)
S
Stephane Eranian 已提交
373
{
374
	return css_tryget(&event->cgrp->css);
S
Stephane Eranian 已提交
375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422
}

static inline void perf_put_cgroup(struct perf_event *event)
{
	css_put(&event->cgrp->css);
}

static inline void perf_detach_cgroup(struct perf_event *event)
{
	perf_put_cgroup(event);
	event->cgrp = NULL;
}

static inline int is_cgroup_event(struct perf_event *event)
{
	return event->cgrp != NULL;
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	struct perf_cgroup_info *t;

	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	return t->time;
}

static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
{
	struct perf_cgroup_info *info;
	u64 now;

	now = perf_clock();

	info = this_cpu_ptr(cgrp->info);

	info->time += now - info->timestamp;
	info->timestamp = now;
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
	struct perf_cgroup *cgrp_out = cpuctx->cgrp;
	if (cgrp_out)
		__update_cgrp_time(cgrp_out);
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
423 424
	struct perf_cgroup *cgrp;

S
Stephane Eranian 已提交
425
	/*
426 427
	 * ensure we access cgroup data only when needed and
	 * when we know the cgroup is pinned (css_get)
S
Stephane Eranian 已提交
428
	 */
429
	if (!is_cgroup_event(event))
S
Stephane Eranian 已提交
430 431
		return;

432 433 434 435 436 437
	cgrp = perf_cgroup_from_task(current);
	/*
	 * Do not update time when cgroup is not active
	 */
	if (cgrp == event->cgrp)
		__update_cgrp_time(event->cgrp);
S
Stephane Eranian 已提交
438 439 440
}

static inline void
441 442
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
443 444 445 446
{
	struct perf_cgroup *cgrp;
	struct perf_cgroup_info *info;

447 448 449 450 451 452
	/*
	 * ctx->lock held by caller
	 * ensure we do not access cgroup data
	 * unless we have the cgroup pinned (css_get)
	 */
	if (!task || !ctx->nr_cgroups)
S
Stephane Eranian 已提交
453 454 455 456
		return;

	cgrp = perf_cgroup_from_task(task);
	info = this_cpu_ptr(cgrp->info);
457
	info->timestamp = ctx->timestamp;
S
Stephane Eranian 已提交
458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489
}

#define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
#define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */

/*
 * reschedule events based on the cgroup constraint of task.
 *
 * mode SWOUT : schedule out everything
 * mode SWIN : schedule in based on cgroup for next
 */
void perf_cgroup_switch(struct task_struct *task, int mode)
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	/*
	 * disable interrupts to avoid geting nr_cgroup
	 * changes via __perf_event_disable(). Also
	 * avoids preemption.
	 */
	local_irq_save(flags);

	/*
	 * we reschedule only in the presence of cgroup
	 * constrained events.
	 */
	rcu_read_lock();

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
490 491
		if (cpuctx->unique_pmu != pmu)
			continue; /* ensure we process each cpuctx once */
S
Stephane Eranian 已提交
492 493 494 495 496 497 498 499 500

		/*
		 * perf_cgroup_events says at least one
		 * context on this CPU has cgroup events.
		 *
		 * ctx->nr_cgroups reports the number of cgroup
		 * events for a context.
		 */
		if (cpuctx->ctx.nr_cgroups > 0) {
501 502
			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
			perf_pmu_disable(cpuctx->ctx.pmu);
S
Stephane Eranian 已提交
503 504 505 506 507 508 509 510 511 512 513

			if (mode & PERF_CGROUP_SWOUT) {
				cpu_ctx_sched_out(cpuctx, EVENT_ALL);
				/*
				 * must not be done before ctxswout due
				 * to event_filter_match() in event_sched_out()
				 */
				cpuctx->cgrp = NULL;
			}

			if (mode & PERF_CGROUP_SWIN) {
514
				WARN_ON_ONCE(cpuctx->cgrp);
515 516 517 518
				/*
				 * set cgrp before ctxsw in to allow
				 * event_filter_match() to not have to pass
				 * task around
S
Stephane Eranian 已提交
519 520 521 522
				 */
				cpuctx->cgrp = perf_cgroup_from_task(task);
				cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
			}
523 524
			perf_pmu_enable(cpuctx->ctx.pmu);
			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
S
Stephane Eranian 已提交
525 526 527 528 529 530 531 532
		}
	}

	rcu_read_unlock();

	local_irq_restore(flags);
}

533 534
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
535
{
536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

	/*
	 * we come here when we know perf_cgroup_events > 0
	 */
	cgrp1 = perf_cgroup_from_task(task);

	/*
	 * next is NULL when called from perf_event_enable_on_exec()
	 * that will systematically cause a cgroup_switch()
	 */
	if (next)
		cgrp2 = perf_cgroup_from_task(next);

	/*
	 * only schedule out current cgroup events if we know
	 * that we are switching to a different cgroup. Otherwise,
	 * do no touch the cgroup events.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
S
Stephane Eranian 已提交
558 559
}

560 561
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
562
{
563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

	/*
	 * we come here when we know perf_cgroup_events > 0
	 */
	cgrp1 = perf_cgroup_from_task(task);

	/* prev can never be NULL */
	cgrp2 = perf_cgroup_from_task(prev);

	/*
	 * only need to schedule in cgroup events if we are changing
	 * cgroup during ctxsw. Cgroup events were not scheduled
	 * out of ctxsw out if that was not the case.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
S
Stephane Eranian 已提交
581 582 583 584 585 586 587 588
}

static inline int perf_cgroup_connect(int fd, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	struct perf_cgroup *cgrp;
	struct cgroup_subsys_state *css;
589 590
	struct fd f = fdget(fd);
	int ret = 0;
S
Stephane Eranian 已提交
591

592
	if (!f.file)
S
Stephane Eranian 已提交
593 594
		return -EBADF;

595
	css = cgroup_css_from_dir(f.file, perf_subsys_id);
596 597 598 599
	if (IS_ERR(css)) {
		ret = PTR_ERR(css);
		goto out;
	}
S
Stephane Eranian 已提交
600 601 602 603

	cgrp = container_of(css, struct perf_cgroup, css);
	event->cgrp = cgrp;

604
	/* must be done before we fput() the file */
605 606 607 608 609
	if (!perf_tryget_cgroup(event)) {
		event->cgrp = NULL;
		ret = -ENOENT;
		goto out;
	}
610

S
Stephane Eranian 已提交
611 612 613 614 615 616 617 618 619
	/*
	 * all events in a group must monitor
	 * the same cgroup because a task belongs
	 * to only one perf cgroup at a time
	 */
	if (group_leader && group_leader->cgrp != cgrp) {
		perf_detach_cgroup(event);
		ret = -EINVAL;
	}
620
out:
621
	fdput(f);
S
Stephane Eranian 已提交
622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694
	return ret;
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
	struct perf_cgroup_info *t;
	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	event->shadow_ctx_time = now - t->timestamp;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
	/*
	 * when the current task's perf cgroup does not match
	 * the event's, we need to remember to call the
	 * perf_mark_enable() function the first time a task with
	 * a matching perf cgroup is scheduled in.
	 */
	if (is_cgroup_event(event) && !perf_cgroup_match(event))
		event->cgrp_defer_enabled = 1;
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
	struct perf_event *sub;
	u64 tstamp = perf_event_time(event);

	if (!event->cgrp_defer_enabled)
		return;

	event->cgrp_defer_enabled = 0;

	event->tstamp_enabled = tstamp - event->total_time_enabled;
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
			sub->cgrp_defer_enabled = 0;
		}
	}
}
#else /* !CONFIG_CGROUP_PERF */

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	return true;
}

static inline void perf_detach_cgroup(struct perf_event *event)
{}

static inline int is_cgroup_event(struct perf_event *event)
{
	return 0;
}

static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
{
	return 0;
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
}

695 696
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
697 698 699
{
}

700 701
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
702 703 704 705 706 707 708 709 710 711 712
{
}

static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	return -EINVAL;
}

static inline void
713 714
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744
{
}

void
perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
{
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	return 0;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
}
#endif

745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807
/*
 * set default to be dependent on timer tick just
 * like original code
 */
#define PERF_CPU_HRTIMER (1000 / HZ)
/*
 * function must be called with interrupts disbled
 */
static enum hrtimer_restart perf_cpu_hrtimer_handler(struct hrtimer *hr)
{
	struct perf_cpu_context *cpuctx;
	enum hrtimer_restart ret = HRTIMER_NORESTART;
	int rotations = 0;

	WARN_ON(!irqs_disabled());

	cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);

	rotations = perf_rotate_context(cpuctx);

	/*
	 * arm timer if needed
	 */
	if (rotations) {
		hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
		ret = HRTIMER_RESTART;
	}

	return ret;
}

/* CPU is going down */
void perf_cpu_hrtimer_cancel(int cpu)
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	if (WARN_ON(cpu != smp_processor_id()))
		return;

	local_irq_save(flags);

	rcu_read_lock();

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

		if (pmu->task_ctx_nr == perf_sw_context)
			continue;

		hrtimer_cancel(&cpuctx->hrtimer);
	}

	rcu_read_unlock();

	local_irq_restore(flags);
}

static void __perf_cpu_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
{
	struct hrtimer *hr = &cpuctx->hrtimer;
	struct pmu *pmu = cpuctx->ctx.pmu;
808
	int timer;
809 810 811 812 813

	/* no multiplexing needed for SW PMU */
	if (pmu->task_ctx_nr == perf_sw_context)
		return;

814 815 816 817 818 819 820 821 822
	/*
	 * check default is sane, if not set then force to
	 * default interval (1/tick)
	 */
	timer = pmu->hrtimer_interval_ms;
	if (timer < 1)
		timer = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;

	cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844

	hrtimer_init(hr, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
	hr->function = perf_cpu_hrtimer_handler;
}

static void perf_cpu_hrtimer_restart(struct perf_cpu_context *cpuctx)
{
	struct hrtimer *hr = &cpuctx->hrtimer;
	struct pmu *pmu = cpuctx->ctx.pmu;

	/* not for SW PMU */
	if (pmu->task_ctx_nr == perf_sw_context)
		return;

	if (hrtimer_active(hr))
		return;

	if (!hrtimer_callback_running(hr))
		__hrtimer_start_range_ns(hr, cpuctx->hrtimer_interval,
					 0, HRTIMER_MODE_REL_PINNED, 0);
}

P
Peter Zijlstra 已提交
845
void perf_pmu_disable(struct pmu *pmu)
846
{
P
Peter Zijlstra 已提交
847 848 849
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!(*count)++)
		pmu->pmu_disable(pmu);
850 851
}

P
Peter Zijlstra 已提交
852
void perf_pmu_enable(struct pmu *pmu)
853
{
P
Peter Zijlstra 已提交
854 855 856
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!--(*count))
		pmu->pmu_enable(pmu);
857 858
}

859 860 861 862 863 864 865
static DEFINE_PER_CPU(struct list_head, rotation_list);

/*
 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
 * because they're strictly cpu affine and rotate_start is called with IRQs
 * disabled, while rotate_context is called from IRQ context.
 */
P
Peter Zijlstra 已提交
866
static void perf_pmu_rotate_start(struct pmu *pmu)
867
{
P
Peter Zijlstra 已提交
868
	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
869
	struct list_head *head = &__get_cpu_var(rotation_list);
870

871
	WARN_ON(!irqs_disabled());
872

873
	if (list_empty(&cpuctx->rotation_list))
874
		list_add(&cpuctx->rotation_list, head);
875 876
}

877
static void get_ctx(struct perf_event_context *ctx)
878
{
879
	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
880 881
}

882
static void put_ctx(struct perf_event_context *ctx)
883
{
884 885 886
	if (atomic_dec_and_test(&ctx->refcount)) {
		if (ctx->parent_ctx)
			put_ctx(ctx->parent_ctx);
887 888
		if (ctx->task)
			put_task_struct(ctx->task);
889
		kfree_rcu(ctx, rcu_head);
890
	}
891 892
}

893
static void unclone_ctx(struct perf_event_context *ctx)
894 895 896 897 898 899 900
{
	if (ctx->parent_ctx) {
		put_ctx(ctx->parent_ctx);
		ctx->parent_ctx = NULL;
	}
}

901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922
static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_tgid_nr_ns(p, event->ns);
}

static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_pid_nr_ns(p, event->ns);
}

923
/*
924
 * If we inherit events we want to return the parent event id
925 926
 * to userspace.
 */
927
static u64 primary_event_id(struct perf_event *event)
928
{
929
	u64 id = event->id;
930

931 932
	if (event->parent)
		id = event->parent->id;
933 934 935 936

	return id;
}

937
/*
938
 * Get the perf_event_context for a task and lock it.
939 940 941
 * This has to cope with with the fact that until it is locked,
 * the context could get moved to another task.
 */
942
static struct perf_event_context *
P
Peter Zijlstra 已提交
943
perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
944
{
945
	struct perf_event_context *ctx;
946

P
Peter Zijlstra 已提交
947
retry:
948 949 950 951 952 953 954 955 956 957 958
	/*
	 * One of the few rules of preemptible RCU is that one cannot do
	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
	 * part of the read side critical section was preemptible -- see
	 * rcu_read_unlock_special().
	 *
	 * Since ctx->lock nests under rq->lock we must ensure the entire read
	 * side critical section is non-preemptible.
	 */
	preempt_disable();
	rcu_read_lock();
P
Peter Zijlstra 已提交
959
	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
960 961 962 963
	if (ctx) {
		/*
		 * If this context is a clone of another, it might
		 * get swapped for another underneath us by
964
		 * perf_event_task_sched_out, though the
965 966 967 968 969 970
		 * rcu_read_lock() protects us from any context
		 * getting freed.  Lock the context and check if it
		 * got swapped before we could get the lock, and retry
		 * if so.  If we locked the right context, then it
		 * can't get swapped on us any more.
		 */
971
		raw_spin_lock_irqsave(&ctx->lock, *flags);
P
Peter Zijlstra 已提交
972
		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
973
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
974 975
			rcu_read_unlock();
			preempt_enable();
976 977
			goto retry;
		}
978 979

		if (!atomic_inc_not_zero(&ctx->refcount)) {
980
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
981 982
			ctx = NULL;
		}
983 984
	}
	rcu_read_unlock();
985
	preempt_enable();
986 987 988 989 990 991 992 993
	return ctx;
}

/*
 * Get the context for a task and increment its pin_count so it
 * can't get swapped to another task.  This also increments its
 * reference count so that the context can't get freed.
 */
P
Peter Zijlstra 已提交
994 995
static struct perf_event_context *
perf_pin_task_context(struct task_struct *task, int ctxn)
996
{
997
	struct perf_event_context *ctx;
998 999
	unsigned long flags;

P
Peter Zijlstra 已提交
1000
	ctx = perf_lock_task_context(task, ctxn, &flags);
1001 1002
	if (ctx) {
		++ctx->pin_count;
1003
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1004 1005 1006 1007
	}
	return ctx;
}

1008
static void perf_unpin_context(struct perf_event_context *ctx)
1009 1010 1011
{
	unsigned long flags;

1012
	raw_spin_lock_irqsave(&ctx->lock, flags);
1013
	--ctx->pin_count;
1014
	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1015 1016
}

1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027
/*
 * Update the record of the current time in a context.
 */
static void update_context_time(struct perf_event_context *ctx)
{
	u64 now = perf_clock();

	ctx->time += now - ctx->timestamp;
	ctx->timestamp = now;
}

1028 1029 1030
static u64 perf_event_time(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
S
Stephane Eranian 已提交
1031 1032 1033 1034

	if (is_cgroup_event(event))
		return perf_cgroup_event_time(event);

1035 1036 1037
	return ctx ? ctx->time : 0;
}

1038 1039
/*
 * Update the total_time_enabled and total_time_running fields for a event.
1040
 * The caller of this function needs to hold the ctx->lock.
1041 1042 1043 1044 1045 1046 1047 1048 1049
 */
static void update_event_times(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	u64 run_end;

	if (event->state < PERF_EVENT_STATE_INACTIVE ||
	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
		return;
S
Stephane Eranian 已提交
1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060
	/*
	 * in cgroup mode, time_enabled represents
	 * the time the event was enabled AND active
	 * tasks were in the monitored cgroup. This is
	 * independent of the activity of the context as
	 * there may be a mix of cgroup and non-cgroup events.
	 *
	 * That is why we treat cgroup events differently
	 * here.
	 */
	if (is_cgroup_event(event))
1061
		run_end = perf_cgroup_event_time(event);
S
Stephane Eranian 已提交
1062 1063
	else if (ctx->is_active)
		run_end = ctx->time;
1064 1065 1066 1067
	else
		run_end = event->tstamp_stopped;

	event->total_time_enabled = run_end - event->tstamp_enabled;
1068 1069 1070 1071

	if (event->state == PERF_EVENT_STATE_INACTIVE)
		run_end = event->tstamp_stopped;
	else
1072
		run_end = perf_event_time(event);
1073 1074

	event->total_time_running = run_end - event->tstamp_running;
S
Stephane Eranian 已提交
1075

1076 1077
}

1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089
/*
 * Update total_time_enabled and total_time_running for all events in a group.
 */
static void update_group_times(struct perf_event *leader)
{
	struct perf_event *event;

	update_event_times(leader);
	list_for_each_entry(event, &leader->sibling_list, group_entry)
		update_event_times(event);
}

1090 1091 1092 1093 1094 1095 1096 1097 1098
static struct list_head *
ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
{
	if (event->attr.pinned)
		return &ctx->pinned_groups;
	else
		return &ctx->flexible_groups;
}

1099
/*
1100
 * Add a event from the lists for its context.
1101 1102
 * Must be called with ctx->mutex and ctx->lock held.
 */
1103
static void
1104
list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1105
{
1106 1107
	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
	event->attach_state |= PERF_ATTACH_CONTEXT;
1108 1109

	/*
1110 1111 1112
	 * If we're a stand alone event or group leader, we go to the context
	 * list, group events are kept attached to the group so that
	 * perf_group_detach can, at all times, locate all siblings.
1113
	 */
1114
	if (event->group_leader == event) {
1115 1116
		struct list_head *list;

1117 1118 1119
		if (is_software_event(event))
			event->group_flags |= PERF_GROUP_SOFTWARE;

1120 1121
		list = ctx_group_list(event, ctx);
		list_add_tail(&event->group_entry, list);
P
Peter Zijlstra 已提交
1122
	}
P
Peter Zijlstra 已提交
1123

1124
	if (is_cgroup_event(event))
S
Stephane Eranian 已提交
1125 1126
		ctx->nr_cgroups++;

1127 1128 1129
	if (has_branch_stack(event))
		ctx->nr_branch_stack++;

1130
	list_add_rcu(&event->event_entry, &ctx->event_list);
1131
	if (!ctx->nr_events)
P
Peter Zijlstra 已提交
1132
		perf_pmu_rotate_start(ctx->pmu);
1133 1134
	ctx->nr_events++;
	if (event->attr.inherit_stat)
1135
		ctx->nr_stat++;
1136 1137
}

J
Jiri Olsa 已提交
1138 1139 1140 1141 1142 1143 1144 1145 1146
/*
 * Initialize event state based on the perf_event_attr::disabled.
 */
static inline void perf_event__state_init(struct perf_event *event)
{
	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
					      PERF_EVENT_STATE_INACTIVE;
}

1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185
/*
 * Called at perf_event creation and when events are attached/detached from a
 * group.
 */
static void perf_event__read_size(struct perf_event *event)
{
	int entry = sizeof(u64); /* value */
	int size = 0;
	int nr = 1;

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_ID)
		entry += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_GROUP) {
		nr += event->group_leader->nr_siblings;
		size += sizeof(u64);
	}

	size += entry * nr;
	event->read_size = size;
}

static void perf_event__header_size(struct perf_event *event)
{
	struct perf_sample_data *data;
	u64 sample_type = event->attr.sample_type;
	u16 size = 0;

	perf_event__read_size(event);

	if (sample_type & PERF_SAMPLE_IP)
		size += sizeof(data->ip);

1186 1187 1188 1189 1190 1191
	if (sample_type & PERF_SAMPLE_ADDR)
		size += sizeof(data->addr);

	if (sample_type & PERF_SAMPLE_PERIOD)
		size += sizeof(data->period);

A
Andi Kleen 已提交
1192 1193 1194
	if (sample_type & PERF_SAMPLE_WEIGHT)
		size += sizeof(data->weight);

1195 1196 1197
	if (sample_type & PERF_SAMPLE_READ)
		size += event->read_size;

1198 1199 1200
	if (sample_type & PERF_SAMPLE_DATA_SRC)
		size += sizeof(data->data_src.val);

1201 1202 1203 1204 1205 1206 1207 1208 1209
	event->header_size = size;
}

static void perf_event__id_header_size(struct perf_event *event)
{
	struct perf_sample_data *data;
	u64 sample_type = event->attr.sample_type;
	u16 size = 0;

1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224
	if (sample_type & PERF_SAMPLE_TID)
		size += sizeof(data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		size += sizeof(data->time);

	if (sample_type & PERF_SAMPLE_ID)
		size += sizeof(data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		size += sizeof(data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		size += sizeof(data->cpu_entry);

1225
	event->id_header_size = size;
1226 1227
}

1228 1229
static void perf_group_attach(struct perf_event *event)
{
1230
	struct perf_event *group_leader = event->group_leader, *pos;
1231

P
Peter Zijlstra 已提交
1232 1233 1234 1235 1236 1237
	/*
	 * We can have double attach due to group movement in perf_event_open.
	 */
	if (event->attach_state & PERF_ATTACH_GROUP)
		return;

1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248
	event->attach_state |= PERF_ATTACH_GROUP;

	if (group_leader == event)
		return;

	if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
			!is_software_event(event))
		group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;

	list_add_tail(&event->group_entry, &group_leader->sibling_list);
	group_leader->nr_siblings++;
1249 1250 1251 1252 1253

	perf_event__header_size(group_leader);

	list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
		perf_event__header_size(pos);
1254 1255
}

1256
/*
1257
 * Remove a event from the lists for its context.
1258
 * Must be called with ctx->mutex and ctx->lock held.
1259
 */
1260
static void
1261
list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1262
{
1263
	struct perf_cpu_context *cpuctx;
1264 1265 1266 1267
	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1268
		return;
1269 1270 1271

	event->attach_state &= ~PERF_ATTACH_CONTEXT;

1272
	if (is_cgroup_event(event)) {
S
Stephane Eranian 已提交
1273
		ctx->nr_cgroups--;
1274 1275 1276 1277 1278 1279 1280 1281 1282
		cpuctx = __get_cpu_context(ctx);
		/*
		 * if there are no more cgroup events
		 * then cler cgrp to avoid stale pointer
		 * in update_cgrp_time_from_cpuctx()
		 */
		if (!ctx->nr_cgroups)
			cpuctx->cgrp = NULL;
	}
S
Stephane Eranian 已提交
1283

1284 1285 1286
	if (has_branch_stack(event))
		ctx->nr_branch_stack--;

1287 1288
	ctx->nr_events--;
	if (event->attr.inherit_stat)
1289
		ctx->nr_stat--;
1290

1291
	list_del_rcu(&event->event_entry);
1292

1293 1294
	if (event->group_leader == event)
		list_del_init(&event->group_entry);
P
Peter Zijlstra 已提交
1295

1296
	update_group_times(event);
1297 1298 1299 1300 1301 1302 1303 1304 1305 1306

	/*
	 * If event was in error state, then keep it
	 * that way, otherwise bogus counts will be
	 * returned on read(). The only way to get out
	 * of error state is by explicit re-enabling
	 * of the event
	 */
	if (event->state > PERF_EVENT_STATE_OFF)
		event->state = PERF_EVENT_STATE_OFF;
1307 1308
}

1309
static void perf_group_detach(struct perf_event *event)
1310 1311
{
	struct perf_event *sibling, *tmp;
1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327
	struct list_head *list = NULL;

	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_GROUP))
		return;

	event->attach_state &= ~PERF_ATTACH_GROUP;

	/*
	 * If this is a sibling, remove it from its group.
	 */
	if (event->group_leader != event) {
		list_del_init(&event->group_entry);
		event->group_leader->nr_siblings--;
1328
		goto out;
1329 1330 1331 1332
	}

	if (!list_empty(&event->group_entry))
		list = &event->group_entry;
1333

1334
	/*
1335 1336
	 * If this was a group event with sibling events then
	 * upgrade the siblings to singleton events by adding them
1337
	 * to whatever list we are on.
1338
	 */
1339
	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1340 1341
		if (list)
			list_move_tail(&sibling->group_entry, list);
1342
		sibling->group_leader = sibling;
1343 1344 1345

		/* Inherit group flags from the previous leader */
		sibling->group_flags = event->group_flags;
1346
	}
1347 1348 1349 1350 1351 1352

out:
	perf_event__header_size(event->group_leader);

	list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
		perf_event__header_size(tmp);
1353 1354
}

1355 1356 1357
static inline int
event_filter_match(struct perf_event *event)
{
S
Stephane Eranian 已提交
1358 1359
	return (event->cpu == -1 || event->cpu == smp_processor_id())
	    && perf_cgroup_match(event);
1360 1361
}

1362 1363
static void
event_sched_out(struct perf_event *event,
1364
		  struct perf_cpu_context *cpuctx,
1365
		  struct perf_event_context *ctx)
1366
{
1367
	u64 tstamp = perf_event_time(event);
1368 1369 1370 1371 1372 1373 1374 1375 1376
	u64 delta;
	/*
	 * An event which could not be activated because of
	 * filter mismatch still needs to have its timings
	 * maintained, otherwise bogus information is return
	 * via read() for time_enabled, time_running:
	 */
	if (event->state == PERF_EVENT_STATE_INACTIVE
	    && !event_filter_match(event)) {
S
Stephane Eranian 已提交
1377
		delta = tstamp - event->tstamp_stopped;
1378
		event->tstamp_running += delta;
1379
		event->tstamp_stopped = tstamp;
1380 1381
	}

1382
	if (event->state != PERF_EVENT_STATE_ACTIVE)
1383
		return;
1384

1385 1386 1387 1388
	event->state = PERF_EVENT_STATE_INACTIVE;
	if (event->pending_disable) {
		event->pending_disable = 0;
		event->state = PERF_EVENT_STATE_OFF;
1389
	}
1390
	event->tstamp_stopped = tstamp;
P
Peter Zijlstra 已提交
1391
	event->pmu->del(event, 0);
1392
	event->oncpu = -1;
1393

1394
	if (!is_software_event(event))
1395 1396
		cpuctx->active_oncpu--;
	ctx->nr_active--;
1397 1398
	if (event->attr.freq && event->attr.sample_freq)
		ctx->nr_freq--;
1399
	if (event->attr.exclusive || !cpuctx->active_oncpu)
1400 1401 1402
		cpuctx->exclusive = 0;
}

1403
static void
1404
group_sched_out(struct perf_event *group_event,
1405
		struct perf_cpu_context *cpuctx,
1406
		struct perf_event_context *ctx)
1407
{
1408
	struct perf_event *event;
1409
	int state = group_event->state;
1410

1411
	event_sched_out(group_event, cpuctx, ctx);
1412 1413 1414 1415

	/*
	 * Schedule out siblings (if any):
	 */
1416 1417
	list_for_each_entry(event, &group_event->sibling_list, group_entry)
		event_sched_out(event, cpuctx, ctx);
1418

1419
	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1420 1421 1422
		cpuctx->exclusive = 0;
}

T
Thomas Gleixner 已提交
1423
/*
1424
 * Cross CPU call to remove a performance event
T
Thomas Gleixner 已提交
1425
 *
1426
 * We disable the event on the hardware level first. After that we
T
Thomas Gleixner 已提交
1427 1428
 * remove it from the context list.
 */
1429
static int __perf_remove_from_context(void *info)
T
Thomas Gleixner 已提交
1430
{
1431 1432
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1433
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
T
Thomas Gleixner 已提交
1434

1435
	raw_spin_lock(&ctx->lock);
1436 1437
	event_sched_out(event, cpuctx, ctx);
	list_del_event(event, ctx);
1438 1439 1440 1441
	if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
		ctx->is_active = 0;
		cpuctx->task_ctx = NULL;
	}
1442
	raw_spin_unlock(&ctx->lock);
1443 1444

	return 0;
T
Thomas Gleixner 已提交
1445 1446 1447 1448
}


/*
1449
 * Remove the event from a task's (or a CPU's) list of events.
T
Thomas Gleixner 已提交
1450
 *
1451
 * CPU events are removed with a smp call. For task events we only
T
Thomas Gleixner 已提交
1452
 * call when the task is on a CPU.
1453
 *
1454 1455
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1456 1457
 * remains valid.  This is OK when called from perf_release since
 * that only calls us on the top-level context, which can't be a clone.
1458
 * When called from perf_event_exit_task, it's OK because the
1459
 * context has been detached from its task.
T
Thomas Gleixner 已提交
1460
 */
1461
static void perf_remove_from_context(struct perf_event *event)
T
Thomas Gleixner 已提交
1462
{
1463
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
1464 1465
	struct task_struct *task = ctx->task;

1466 1467
	lockdep_assert_held(&ctx->mutex);

T
Thomas Gleixner 已提交
1468 1469
	if (!task) {
		/*
1470
		 * Per cpu events are removed via an smp call and
1471
		 * the removal is always successful.
T
Thomas Gleixner 已提交
1472
		 */
1473
		cpu_function_call(event->cpu, __perf_remove_from_context, event);
T
Thomas Gleixner 已提交
1474 1475 1476 1477
		return;
	}

retry:
1478 1479
	if (!task_function_call(task, __perf_remove_from_context, event))
		return;
T
Thomas Gleixner 已提交
1480

1481
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1482
	/*
1483 1484
	 * If we failed to find a running task, but find the context active now
	 * that we've acquired the ctx->lock, retry.
T
Thomas Gleixner 已提交
1485
	 */
1486
	if (ctx->is_active) {
1487
		raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1488 1489 1490 1491
		goto retry;
	}

	/*
1492 1493
	 * Since the task isn't running, its safe to remove the event, us
	 * holding the ctx->lock ensures the task won't get scheduled in.
T
Thomas Gleixner 已提交
1494
	 */
1495
	list_del_event(event, ctx);
1496
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1497 1498
}

1499
/*
1500
 * Cross CPU call to disable a performance event
1501
 */
1502
int __perf_event_disable(void *info)
1503
{
1504 1505
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1506
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1507 1508

	/*
1509 1510
	 * If this is a per-task event, need to check whether this
	 * event's task is the current task on this cpu.
1511 1512 1513
	 *
	 * Can trigger due to concurrent perf_event_context_sched_out()
	 * flipping contexts around.
1514
	 */
1515
	if (ctx->task && cpuctx->task_ctx != ctx)
1516
		return -EINVAL;
1517

1518
	raw_spin_lock(&ctx->lock);
1519 1520

	/*
1521
	 * If the event is on, turn it off.
1522 1523
	 * If it is in error state, leave it in error state.
	 */
1524
	if (event->state >= PERF_EVENT_STATE_INACTIVE) {
1525
		update_context_time(ctx);
S
Stephane Eranian 已提交
1526
		update_cgrp_time_from_event(event);
1527 1528 1529
		update_group_times(event);
		if (event == event->group_leader)
			group_sched_out(event, cpuctx, ctx);
1530
		else
1531 1532
			event_sched_out(event, cpuctx, ctx);
		event->state = PERF_EVENT_STATE_OFF;
1533 1534
	}

1535
	raw_spin_unlock(&ctx->lock);
1536 1537

	return 0;
1538 1539 1540
}

/*
1541
 * Disable a event.
1542
 *
1543 1544
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1545
 * remains valid.  This condition is satisifed when called through
1546 1547 1548 1549
 * perf_event_for_each_child or perf_event_for_each because they
 * hold the top-level event's child_mutex, so any descendant that
 * goes to exit will block in sync_child_event.
 * When called from perf_pending_event it's OK because event->ctx
1550
 * is the current context on this CPU and preemption is disabled,
1551
 * hence we can't get into perf_event_task_sched_out for this context.
1552
 */
1553
void perf_event_disable(struct perf_event *event)
1554
{
1555
	struct perf_event_context *ctx = event->ctx;
1556 1557 1558 1559
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
1560
		 * Disable the event on the cpu that it's on
1561
		 */
1562
		cpu_function_call(event->cpu, __perf_event_disable, event);
1563 1564 1565
		return;
	}

P
Peter Zijlstra 已提交
1566
retry:
1567 1568
	if (!task_function_call(task, __perf_event_disable, event))
		return;
1569

1570
	raw_spin_lock_irq(&ctx->lock);
1571
	/*
1572
	 * If the event is still active, we need to retry the cross-call.
1573
	 */
1574
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
1575
		raw_spin_unlock_irq(&ctx->lock);
1576 1577 1578 1579 1580
		/*
		 * Reload the task pointer, it might have been changed by
		 * a concurrent perf_event_context_sched_out().
		 */
		task = ctx->task;
1581 1582 1583 1584 1585 1586 1587
		goto retry;
	}

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
1588 1589 1590
	if (event->state == PERF_EVENT_STATE_INACTIVE) {
		update_group_times(event);
		event->state = PERF_EVENT_STATE_OFF;
1591
	}
1592
	raw_spin_unlock_irq(&ctx->lock);
1593
}
1594
EXPORT_SYMBOL_GPL(perf_event_disable);
1595

S
Stephane Eranian 已提交
1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630
static void perf_set_shadow_time(struct perf_event *event,
				 struct perf_event_context *ctx,
				 u64 tstamp)
{
	/*
	 * use the correct time source for the time snapshot
	 *
	 * We could get by without this by leveraging the
	 * fact that to get to this function, the caller
	 * has most likely already called update_context_time()
	 * and update_cgrp_time_xx() and thus both timestamp
	 * are identical (or very close). Given that tstamp is,
	 * already adjusted for cgroup, we could say that:
	 *    tstamp - ctx->timestamp
	 * is equivalent to
	 *    tstamp - cgrp->timestamp.
	 *
	 * Then, in perf_output_read(), the calculation would
	 * work with no changes because:
	 * - event is guaranteed scheduled in
	 * - no scheduled out in between
	 * - thus the timestamp would be the same
	 *
	 * But this is a bit hairy.
	 *
	 * So instead, we have an explicit cgroup call to remain
	 * within the time time source all along. We believe it
	 * is cleaner and simpler to understand.
	 */
	if (is_cgroup_event(event))
		perf_cgroup_set_shadow_time(event, tstamp);
	else
		event->shadow_ctx_time = tstamp - ctx->timestamp;
}

P
Peter Zijlstra 已提交
1631 1632 1633 1634
#define MAX_INTERRUPTS (~0ULL)

static void perf_log_throttle(struct perf_event *event, int enable);

1635
static int
1636
event_sched_in(struct perf_event *event,
1637
		 struct perf_cpu_context *cpuctx,
1638
		 struct perf_event_context *ctx)
1639
{
1640 1641
	u64 tstamp = perf_event_time(event);

1642
	if (event->state <= PERF_EVENT_STATE_OFF)
1643 1644
		return 0;

1645
	event->state = PERF_EVENT_STATE_ACTIVE;
1646
	event->oncpu = smp_processor_id();
P
Peter Zijlstra 已提交
1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657

	/*
	 * Unthrottle events, since we scheduled we might have missed several
	 * ticks already, also for a heavily scheduling task there is little
	 * guarantee it'll get a tick in a timely manner.
	 */
	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
		perf_log_throttle(event, 1);
		event->hw.interrupts = 0;
	}

1658 1659 1660 1661 1662
	/*
	 * The new state must be visible before we turn it on in the hardware:
	 */
	smp_wmb();

P
Peter Zijlstra 已提交
1663
	if (event->pmu->add(event, PERF_EF_START)) {
1664 1665
		event->state = PERF_EVENT_STATE_INACTIVE;
		event->oncpu = -1;
1666 1667 1668
		return -EAGAIN;
	}

1669
	event->tstamp_running += tstamp - event->tstamp_stopped;
1670

S
Stephane Eranian 已提交
1671
	perf_set_shadow_time(event, ctx, tstamp);
1672

1673
	if (!is_software_event(event))
1674
		cpuctx->active_oncpu++;
1675
	ctx->nr_active++;
1676 1677
	if (event->attr.freq && event->attr.sample_freq)
		ctx->nr_freq++;
1678

1679
	if (event->attr.exclusive)
1680 1681
		cpuctx->exclusive = 1;

1682 1683 1684
	return 0;
}

1685
static int
1686
group_sched_in(struct perf_event *group_event,
1687
	       struct perf_cpu_context *cpuctx,
1688
	       struct perf_event_context *ctx)
1689
{
1690
	struct perf_event *event, *partial_group = NULL;
P
Peter Zijlstra 已提交
1691
	struct pmu *pmu = group_event->pmu;
1692 1693
	u64 now = ctx->time;
	bool simulate = false;
1694

1695
	if (group_event->state == PERF_EVENT_STATE_OFF)
1696 1697
		return 0;

P
Peter Zijlstra 已提交
1698
	pmu->start_txn(pmu);
1699

1700
	if (event_sched_in(group_event, cpuctx, ctx)) {
P
Peter Zijlstra 已提交
1701
		pmu->cancel_txn(pmu);
1702
		perf_cpu_hrtimer_restart(cpuctx);
1703
		return -EAGAIN;
1704
	}
1705 1706 1707 1708

	/*
	 * Schedule in siblings as one group (if any):
	 */
1709
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1710
		if (event_sched_in(event, cpuctx, ctx)) {
1711
			partial_group = event;
1712 1713 1714 1715
			goto group_error;
		}
	}

1716
	if (!pmu->commit_txn(pmu))
1717
		return 0;
1718

1719 1720 1721 1722
group_error:
	/*
	 * Groups can be scheduled in as one unit only, so undo any
	 * partial group before returning:
1723 1724 1725 1726 1727 1728 1729 1730 1731 1732
	 * The events up to the failed event are scheduled out normally,
	 * tstamp_stopped will be updated.
	 *
	 * The failed events and the remaining siblings need to have
	 * their timings updated as if they had gone thru event_sched_in()
	 * and event_sched_out(). This is required to get consistent timings
	 * across the group. This also takes care of the case where the group
	 * could never be scheduled by ensuring tstamp_stopped is set to mark
	 * the time the event was actually stopped, such that time delta
	 * calculation in update_event_times() is correct.
1733
	 */
1734 1735
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
		if (event == partial_group)
1736 1737 1738 1739 1740 1741 1742 1743
			simulate = true;

		if (simulate) {
			event->tstamp_running += now - event->tstamp_stopped;
			event->tstamp_stopped = now;
		} else {
			event_sched_out(event, cpuctx, ctx);
		}
1744
	}
1745
	event_sched_out(group_event, cpuctx, ctx);
1746

P
Peter Zijlstra 已提交
1747
	pmu->cancel_txn(pmu);
1748

1749 1750
	perf_cpu_hrtimer_restart(cpuctx);

1751 1752 1753
	return -EAGAIN;
}

1754
/*
1755
 * Work out whether we can put this event group on the CPU now.
1756
 */
1757
static int group_can_go_on(struct perf_event *event,
1758 1759 1760 1761
			   struct perf_cpu_context *cpuctx,
			   int can_add_hw)
{
	/*
1762
	 * Groups consisting entirely of software events can always go on.
1763
	 */
1764
	if (event->group_flags & PERF_GROUP_SOFTWARE)
1765 1766 1767
		return 1;
	/*
	 * If an exclusive group is already on, no other hardware
1768
	 * events can go on.
1769 1770 1771 1772 1773
	 */
	if (cpuctx->exclusive)
		return 0;
	/*
	 * If this group is exclusive and there are already
1774
	 * events on the CPU, it can't go on.
1775
	 */
1776
	if (event->attr.exclusive && cpuctx->active_oncpu)
1777 1778 1779 1780 1781 1782 1783 1784
		return 0;
	/*
	 * Otherwise, try to add it if all previous groups were able
	 * to go on.
	 */
	return can_add_hw;
}

1785 1786
static void add_event_to_ctx(struct perf_event *event,
			       struct perf_event_context *ctx)
1787
{
1788 1789
	u64 tstamp = perf_event_time(event);

1790
	list_add_event(event, ctx);
1791
	perf_group_attach(event);
1792 1793 1794
	event->tstamp_enabled = tstamp;
	event->tstamp_running = tstamp;
	event->tstamp_stopped = tstamp;
1795 1796
}

1797 1798 1799 1800 1801 1802
static void task_ctx_sched_out(struct perf_event_context *ctx);
static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
	     enum event_type_t event_type,
	     struct task_struct *task);
1803

1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815
static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
				struct perf_event_context *ctx,
				struct task_struct *task)
{
	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
}

T
Thomas Gleixner 已提交
1816
/*
1817
 * Cross CPU call to install and enable a performance event
1818 1819
 *
 * Must be called with ctx->mutex held
T
Thomas Gleixner 已提交
1820
 */
1821
static int  __perf_install_in_context(void *info)
T
Thomas Gleixner 已提交
1822
{
1823 1824
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1825
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1826 1827 1828
	struct perf_event_context *task_ctx = cpuctx->task_ctx;
	struct task_struct *task = current;

1829
	perf_ctx_lock(cpuctx, task_ctx);
1830
	perf_pmu_disable(cpuctx->ctx.pmu);
T
Thomas Gleixner 已提交
1831 1832

	/*
1833
	 * If there was an active task_ctx schedule it out.
T
Thomas Gleixner 已提交
1834
	 */
1835
	if (task_ctx)
1836
		task_ctx_sched_out(task_ctx);
1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850

	/*
	 * If the context we're installing events in is not the
	 * active task_ctx, flip them.
	 */
	if (ctx->task && task_ctx != ctx) {
		if (task_ctx)
			raw_spin_unlock(&task_ctx->lock);
		raw_spin_lock(&ctx->lock);
		task_ctx = ctx;
	}

	if (task_ctx) {
		cpuctx->task_ctx = task_ctx;
1851 1852
		task = task_ctx->task;
	}
1853

1854
	cpu_ctx_sched_out(cpuctx, EVENT_ALL);
T
Thomas Gleixner 已提交
1855

1856
	update_context_time(ctx);
S
Stephane Eranian 已提交
1857 1858 1859 1860 1861 1862
	/*
	 * update cgrp time only if current cgrp
	 * matches event->cgrp. Must be done before
	 * calling add_event_to_ctx()
	 */
	update_cgrp_time_from_event(event);
T
Thomas Gleixner 已提交
1863

1864
	add_event_to_ctx(event, ctx);
T
Thomas Gleixner 已提交
1865

1866
	/*
1867
	 * Schedule everything back in
1868
	 */
1869
	perf_event_sched_in(cpuctx, task_ctx, task);
1870 1871 1872

	perf_pmu_enable(cpuctx->ctx.pmu);
	perf_ctx_unlock(cpuctx, task_ctx);
1873

1874 1875 1876
	if (atomic_read(&__get_cpu_var(perf_freq_events)))
		tick_nohz_full_kick();

1877
	return 0;
T
Thomas Gleixner 已提交
1878 1879 1880
}

/*
1881
 * Attach a performance event to a context
T
Thomas Gleixner 已提交
1882
 *
1883 1884
 * First we add the event to the list with the hardware enable bit
 * in event->hw_config cleared.
T
Thomas Gleixner 已提交
1885
 *
1886
 * If the event is attached to a task which is on a CPU we use a smp
T
Thomas Gleixner 已提交
1887 1888 1889 1890
 * call to enable it in the task context. The task might have been
 * scheduled away, but we check this in the smp call again.
 */
static void
1891 1892
perf_install_in_context(struct perf_event_context *ctx,
			struct perf_event *event,
T
Thomas Gleixner 已提交
1893 1894 1895 1896
			int cpu)
{
	struct task_struct *task = ctx->task;

1897 1898
	lockdep_assert_held(&ctx->mutex);

1899
	event->ctx = ctx;
1900 1901
	if (event->cpu != -1)
		event->cpu = cpu;
1902

T
Thomas Gleixner 已提交
1903 1904
	if (!task) {
		/*
1905
		 * Per cpu events are installed via an smp call and
1906
		 * the install is always successful.
T
Thomas Gleixner 已提交
1907
		 */
1908
		cpu_function_call(cpu, __perf_install_in_context, event);
T
Thomas Gleixner 已提交
1909 1910 1911 1912
		return;
	}

retry:
1913 1914
	if (!task_function_call(task, __perf_install_in_context, event))
		return;
T
Thomas Gleixner 已提交
1915

1916
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1917
	/*
1918 1919
	 * If we failed to find a running task, but find the context active now
	 * that we've acquired the ctx->lock, retry.
T
Thomas Gleixner 已提交
1920
	 */
1921
	if (ctx->is_active) {
1922
		raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1923 1924 1925 1926
		goto retry;
	}

	/*
1927 1928
	 * Since the task isn't running, its safe to add the event, us holding
	 * the ctx->lock ensures the task won't get scheduled in.
T
Thomas Gleixner 已提交
1929
	 */
1930
	add_event_to_ctx(event, ctx);
1931
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1932 1933
}

1934
/*
1935
 * Put a event into inactive state and update time fields.
1936 1937 1938 1939 1940 1941
 * Enabling the leader of a group effectively enables all
 * the group members that aren't explicitly disabled, so we
 * have to update their ->tstamp_enabled also.
 * Note: this works for group members as well as group leaders
 * since the non-leader members' sibling_lists will be empty.
 */
1942
static void __perf_event_mark_enabled(struct perf_event *event)
1943
{
1944
	struct perf_event *sub;
1945
	u64 tstamp = perf_event_time(event);
1946

1947
	event->state = PERF_EVENT_STATE_INACTIVE;
1948
	event->tstamp_enabled = tstamp - event->total_time_enabled;
P
Peter Zijlstra 已提交
1949
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
1950 1951
		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
P
Peter Zijlstra 已提交
1952
	}
1953 1954
}

1955
/*
1956
 * Cross CPU call to enable a performance event
1957
 */
1958
static int __perf_event_enable(void *info)
1959
{
1960 1961 1962
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *leader = event->group_leader;
P
Peter Zijlstra 已提交
1963
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1964
	int err;
1965

1966 1967 1968 1969 1970 1971 1972 1973 1974 1975
	/*
	 * There's a time window between 'ctx->is_active' check
	 * in perf_event_enable function and this place having:
	 *   - IRQs on
	 *   - ctx->lock unlocked
	 *
	 * where the task could be killed and 'ctx' deactivated
	 * by perf_event_exit_task.
	 */
	if (!ctx->is_active)
1976
		return -EINVAL;
1977

1978
	raw_spin_lock(&ctx->lock);
1979
	update_context_time(ctx);
1980

1981
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
1982
		goto unlock;
S
Stephane Eranian 已提交
1983 1984 1985 1986

	/*
	 * set current task's cgroup time reference point
	 */
1987
	perf_cgroup_set_timestamp(current, ctx);
S
Stephane Eranian 已提交
1988

1989
	__perf_event_mark_enabled(event);
1990

S
Stephane Eranian 已提交
1991 1992 1993
	if (!event_filter_match(event)) {
		if (is_cgroup_event(event))
			perf_cgroup_defer_enabled(event);
1994
		goto unlock;
S
Stephane Eranian 已提交
1995
	}
1996

1997
	/*
1998
	 * If the event is in a group and isn't the group leader,
1999
	 * then don't put it on unless the group is on.
2000
	 */
2001
	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
2002
		goto unlock;
2003

2004
	if (!group_can_go_on(event, cpuctx, 1)) {
2005
		err = -EEXIST;
2006
	} else {
2007
		if (event == leader)
2008
			err = group_sched_in(event, cpuctx, ctx);
2009
		else
2010
			err = event_sched_in(event, cpuctx, ctx);
2011
	}
2012 2013 2014

	if (err) {
		/*
2015
		 * If this event can't go on and it's part of a
2016 2017
		 * group, then the whole group has to come off.
		 */
2018
		if (leader != event) {
2019
			group_sched_out(leader, cpuctx, ctx);
2020 2021
			perf_cpu_hrtimer_restart(cpuctx);
		}
2022
		if (leader->attr.pinned) {
2023
			update_group_times(leader);
2024
			leader->state = PERF_EVENT_STATE_ERROR;
2025
		}
2026 2027
	}

P
Peter Zijlstra 已提交
2028
unlock:
2029
	raw_spin_unlock(&ctx->lock);
2030 2031

	return 0;
2032 2033 2034
}

/*
2035
 * Enable a event.
2036
 *
2037 2038
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
2039
 * remains valid.  This condition is satisfied when called through
2040 2041
 * perf_event_for_each_child or perf_event_for_each as described
 * for perf_event_disable.
2042
 */
2043
void perf_event_enable(struct perf_event *event)
2044
{
2045
	struct perf_event_context *ctx = event->ctx;
2046 2047 2048 2049
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
2050
		 * Enable the event on the cpu that it's on
2051
		 */
2052
		cpu_function_call(event->cpu, __perf_event_enable, event);
2053 2054 2055
		return;
	}

2056
	raw_spin_lock_irq(&ctx->lock);
2057
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
2058 2059 2060
		goto out;

	/*
2061 2062
	 * If the event is in error state, clear that first.
	 * That way, if we see the event in error state below, we
2063 2064 2065 2066
	 * know that it has gone back into error state, as distinct
	 * from the task having been scheduled away before the
	 * cross-call arrived.
	 */
2067 2068
	if (event->state == PERF_EVENT_STATE_ERROR)
		event->state = PERF_EVENT_STATE_OFF;
2069

P
Peter Zijlstra 已提交
2070
retry:
2071
	if (!ctx->is_active) {
2072
		__perf_event_mark_enabled(event);
2073 2074 2075
		goto out;
	}

2076
	raw_spin_unlock_irq(&ctx->lock);
2077 2078 2079

	if (!task_function_call(task, __perf_event_enable, event))
		return;
2080

2081
	raw_spin_lock_irq(&ctx->lock);
2082 2083

	/*
2084
	 * If the context is active and the event is still off,
2085 2086
	 * we need to retry the cross-call.
	 */
2087 2088 2089 2090 2091 2092
	if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
		/*
		 * task could have been flipped by a concurrent
		 * perf_event_context_sched_out()
		 */
		task = ctx->task;
2093
		goto retry;
2094
	}
2095

P
Peter Zijlstra 已提交
2096
out:
2097
	raw_spin_unlock_irq(&ctx->lock);
2098
}
2099
EXPORT_SYMBOL_GPL(perf_event_enable);
2100

2101
int perf_event_refresh(struct perf_event *event, int refresh)
2102
{
2103
	/*
2104
	 * not supported on inherited events
2105
	 */
2106
	if (event->attr.inherit || !is_sampling_event(event))
2107 2108
		return -EINVAL;

2109 2110
	atomic_add(refresh, &event->event_limit);
	perf_event_enable(event);
2111 2112

	return 0;
2113
}
2114
EXPORT_SYMBOL_GPL(perf_event_refresh);
2115

2116 2117 2118
static void ctx_sched_out(struct perf_event_context *ctx,
			  struct perf_cpu_context *cpuctx,
			  enum event_type_t event_type)
2119
{
2120
	struct perf_event *event;
2121
	int is_active = ctx->is_active;
2122

2123
	ctx->is_active &= ~event_type;
2124
	if (likely(!ctx->nr_events))
2125 2126
		return;

2127
	update_context_time(ctx);
S
Stephane Eranian 已提交
2128
	update_cgrp_time_from_cpuctx(cpuctx);
2129
	if (!ctx->nr_active)
2130
		return;
2131

P
Peter Zijlstra 已提交
2132
	perf_pmu_disable(ctx->pmu);
2133
	if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
2134 2135
		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
2136
	}
2137

2138
	if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
2139
		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2140
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
2141
	}
P
Peter Zijlstra 已提交
2142
	perf_pmu_enable(ctx->pmu);
2143 2144
}

2145 2146 2147
/*
 * Test whether two contexts are equivalent, i.e. whether they
 * have both been cloned from the same version of the same context
2148 2149 2150 2151
 * and they both have the same number of enabled events.
 * If the number of enabled events is the same, then the set
 * of enabled events should be the same, because these are both
 * inherited contexts, therefore we can't access individual events
2152
 * in them directly with an fd; we can only enable/disable all
2153
 * events via prctl, or enable/disable all events in a family
2154 2155
 * via ioctl, which will have the same effect on both contexts.
 */
2156 2157
static int context_equiv(struct perf_event_context *ctx1,
			 struct perf_event_context *ctx2)
2158 2159
{
	return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
2160
		&& ctx1->parent_gen == ctx2->parent_gen
2161
		&& !ctx1->pin_count && !ctx2->pin_count;
2162 2163
}

2164 2165
static void __perf_event_sync_stat(struct perf_event *event,
				     struct perf_event *next_event)
2166 2167 2168
{
	u64 value;

2169
	if (!event->attr.inherit_stat)
2170 2171 2172
		return;

	/*
2173
	 * Update the event value, we cannot use perf_event_read()
2174 2175
	 * because we're in the middle of a context switch and have IRQs
	 * disabled, which upsets smp_call_function_single(), however
2176
	 * we know the event must be on the current CPU, therefore we
2177 2178
	 * don't need to use it.
	 */
2179 2180
	switch (event->state) {
	case PERF_EVENT_STATE_ACTIVE:
2181 2182
		event->pmu->read(event);
		/* fall-through */
2183

2184 2185
	case PERF_EVENT_STATE_INACTIVE:
		update_event_times(event);
2186 2187 2188 2189 2190 2191 2192
		break;

	default:
		break;
	}

	/*
2193
	 * In order to keep per-task stats reliable we need to flip the event
2194 2195
	 * values when we flip the contexts.
	 */
2196 2197 2198
	value = local64_read(&next_event->count);
	value = local64_xchg(&event->count, value);
	local64_set(&next_event->count, value);
2199

2200 2201
	swap(event->total_time_enabled, next_event->total_time_enabled);
	swap(event->total_time_running, next_event->total_time_running);
2202

2203
	/*
2204
	 * Since we swizzled the values, update the user visible data too.
2205
	 */
2206 2207
	perf_event_update_userpage(event);
	perf_event_update_userpage(next_event);
2208 2209 2210 2211 2212
}

#define list_next_entry(pos, member) \
	list_entry(pos->member.next, typeof(*pos), member)

2213 2214
static void perf_event_sync_stat(struct perf_event_context *ctx,
				   struct perf_event_context *next_ctx)
2215
{
2216
	struct perf_event *event, *next_event;
2217 2218 2219 2220

	if (!ctx->nr_stat)
		return;

2221 2222
	update_context_time(ctx);

2223 2224
	event = list_first_entry(&ctx->event_list,
				   struct perf_event, event_entry);
2225

2226 2227
	next_event = list_first_entry(&next_ctx->event_list,
					struct perf_event, event_entry);
2228

2229 2230
	while (&event->event_entry != &ctx->event_list &&
	       &next_event->event_entry != &next_ctx->event_list) {
2231

2232
		__perf_event_sync_stat(event, next_event);
2233

2234 2235
		event = list_next_entry(event, event_entry);
		next_event = list_next_entry(next_event, event_entry);
2236 2237 2238
	}
}

2239 2240
static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
					 struct task_struct *next)
T
Thomas Gleixner 已提交
2241
{
P
Peter Zijlstra 已提交
2242
	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2243 2244
	struct perf_event_context *next_ctx;
	struct perf_event_context *parent;
P
Peter Zijlstra 已提交
2245
	struct perf_cpu_context *cpuctx;
2246
	int do_switch = 1;
T
Thomas Gleixner 已提交
2247

P
Peter Zijlstra 已提交
2248 2249
	if (likely(!ctx))
		return;
2250

P
Peter Zijlstra 已提交
2251 2252
	cpuctx = __get_cpu_context(ctx);
	if (!cpuctx->task_ctx)
T
Thomas Gleixner 已提交
2253 2254
		return;

2255 2256
	rcu_read_lock();
	parent = rcu_dereference(ctx->parent_ctx);
P
Peter Zijlstra 已提交
2257
	next_ctx = next->perf_event_ctxp[ctxn];
2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268
	if (parent && next_ctx &&
	    rcu_dereference(next_ctx->parent_ctx) == parent) {
		/*
		 * Looks like the two contexts are clones, so we might be
		 * able to optimize the context switch.  We lock both
		 * contexts and check that they are clones under the
		 * lock (including re-checking that neither has been
		 * uncloned in the meantime).  It doesn't matter which
		 * order we take the locks because no other cpu could
		 * be trying to lock both of these tasks.
		 */
2269 2270
		raw_spin_lock(&ctx->lock);
		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2271
		if (context_equiv(ctx, next_ctx)) {
2272 2273
			/*
			 * XXX do we need a memory barrier of sorts
2274
			 * wrt to rcu_dereference() of perf_event_ctxp
2275
			 */
P
Peter Zijlstra 已提交
2276 2277
			task->perf_event_ctxp[ctxn] = next_ctx;
			next->perf_event_ctxp[ctxn] = ctx;
2278 2279 2280
			ctx->task = next;
			next_ctx->task = task;
			do_switch = 0;
2281

2282
			perf_event_sync_stat(ctx, next_ctx);
2283
		}
2284 2285
		raw_spin_unlock(&next_ctx->lock);
		raw_spin_unlock(&ctx->lock);
2286
	}
2287
	rcu_read_unlock();
2288

2289
	if (do_switch) {
2290
		raw_spin_lock(&ctx->lock);
2291
		ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2292
		cpuctx->task_ctx = NULL;
2293
		raw_spin_unlock(&ctx->lock);
2294
	}
T
Thomas Gleixner 已提交
2295 2296
}

P
Peter Zijlstra 已提交
2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310
#define for_each_task_context_nr(ctxn)					\
	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)

/*
 * Called from scheduler to remove the events of the current task,
 * with interrupts disabled.
 *
 * We stop each event and update the event value in event->count.
 *
 * This does not protect us against NMI, but disable()
 * sets the disabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * not restart the event.
 */
2311 2312
void __perf_event_task_sched_out(struct task_struct *task,
				 struct task_struct *next)
P
Peter Zijlstra 已提交
2313 2314 2315 2316 2317
{
	int ctxn;

	for_each_task_context_nr(ctxn)
		perf_event_context_sched_out(task, ctxn, next);
S
Stephane Eranian 已提交
2318 2319 2320 2321 2322 2323 2324

	/*
	 * if cgroup events exist on this CPU, then we need
	 * to check if we have to switch out PMU state.
	 * cgroup event are system-wide mode only
	 */
	if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2325
		perf_cgroup_sched_out(task, next);
P
Peter Zijlstra 已提交
2326 2327
}

2328
static void task_ctx_sched_out(struct perf_event_context *ctx)
2329
{
P
Peter Zijlstra 已提交
2330
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2331

2332 2333
	if (!cpuctx->task_ctx)
		return;
2334 2335 2336 2337

	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
		return;

2338
	ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2339 2340 2341
	cpuctx->task_ctx = NULL;
}

2342 2343 2344 2345 2346 2347 2348
/*
 * Called with IRQs disabled
 */
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type)
{
	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2349 2350
}

2351
static void
2352
ctx_pinned_sched_in(struct perf_event_context *ctx,
2353
		    struct perf_cpu_context *cpuctx)
T
Thomas Gleixner 已提交
2354
{
2355
	struct perf_event *event;
T
Thomas Gleixner 已提交
2356

2357 2358
	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
		if (event->state <= PERF_EVENT_STATE_OFF)
2359
			continue;
2360
		if (!event_filter_match(event))
2361 2362
			continue;

S
Stephane Eranian 已提交
2363 2364 2365 2366
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

2367
		if (group_can_go_on(event, cpuctx, 1))
2368
			group_sched_in(event, cpuctx, ctx);
2369 2370 2371 2372 2373

		/*
		 * If this pinned group hasn't been scheduled,
		 * put it in error state.
		 */
2374 2375 2376
		if (event->state == PERF_EVENT_STATE_INACTIVE) {
			update_group_times(event);
			event->state = PERF_EVENT_STATE_ERROR;
2377
		}
2378
	}
2379 2380 2381 2382
}

static void
ctx_flexible_sched_in(struct perf_event_context *ctx,
2383
		      struct perf_cpu_context *cpuctx)
2384 2385 2386
{
	struct perf_event *event;
	int can_add_hw = 1;
2387

2388 2389 2390
	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
		/* Ignore events in OFF or ERROR state */
		if (event->state <= PERF_EVENT_STATE_OFF)
2391
			continue;
2392 2393
		/*
		 * Listen to the 'cpu' scheduling filter constraint
2394
		 * of events:
2395
		 */
2396
		if (!event_filter_match(event))
T
Thomas Gleixner 已提交
2397 2398
			continue;

S
Stephane Eranian 已提交
2399 2400 2401 2402
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

P
Peter Zijlstra 已提交
2403
		if (group_can_go_on(event, cpuctx, can_add_hw)) {
2404
			if (group_sched_in(event, cpuctx, ctx))
2405
				can_add_hw = 0;
P
Peter Zijlstra 已提交
2406
		}
T
Thomas Gleixner 已提交
2407
	}
2408 2409 2410 2411 2412
}

static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
2413 2414
	     enum event_type_t event_type,
	     struct task_struct *task)
2415
{
S
Stephane Eranian 已提交
2416
	u64 now;
2417
	int is_active = ctx->is_active;
S
Stephane Eranian 已提交
2418

2419
	ctx->is_active |= event_type;
2420
	if (likely(!ctx->nr_events))
2421
		return;
2422

S
Stephane Eranian 已提交
2423 2424
	now = perf_clock();
	ctx->timestamp = now;
2425
	perf_cgroup_set_timestamp(task, ctx);
2426 2427 2428 2429
	/*
	 * First go through the list and put on any pinned groups
	 * in order to give them the best chance of going on.
	 */
2430
	if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
2431
		ctx_pinned_sched_in(ctx, cpuctx);
2432 2433

	/* Then walk through the lower prio flexible groups */
2434
	if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
2435
		ctx_flexible_sched_in(ctx, cpuctx);
2436 2437
}

2438
static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
2439 2440
			     enum event_type_t event_type,
			     struct task_struct *task)
2441 2442 2443
{
	struct perf_event_context *ctx = &cpuctx->ctx;

S
Stephane Eranian 已提交
2444
	ctx_sched_in(ctx, cpuctx, event_type, task);
2445 2446
}

S
Stephane Eranian 已提交
2447 2448
static void perf_event_context_sched_in(struct perf_event_context *ctx,
					struct task_struct *task)
2449
{
P
Peter Zijlstra 已提交
2450
	struct perf_cpu_context *cpuctx;
2451

P
Peter Zijlstra 已提交
2452
	cpuctx = __get_cpu_context(ctx);
2453 2454 2455
	if (cpuctx->task_ctx == ctx)
		return;

2456
	perf_ctx_lock(cpuctx, ctx);
P
Peter Zijlstra 已提交
2457
	perf_pmu_disable(ctx->pmu);
2458 2459 2460 2461 2462 2463 2464
	/*
	 * We want to keep the following priority order:
	 * cpu pinned (that don't need to move), task pinned,
	 * cpu flexible, task flexible.
	 */
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);

2465 2466
	if (ctx->nr_events)
		cpuctx->task_ctx = ctx;
2467

2468 2469
	perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);

2470 2471 2472
	perf_pmu_enable(ctx->pmu);
	perf_ctx_unlock(cpuctx, ctx);

2473 2474 2475 2476
	/*
	 * Since these rotations are per-cpu, we need to ensure the
	 * cpu-context we got scheduled on is actually rotating.
	 */
P
Peter Zijlstra 已提交
2477
	perf_pmu_rotate_start(ctx->pmu);
2478 2479
}

2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539
/*
 * When sampling the branck stack in system-wide, it may be necessary
 * to flush the stack on context switch. This happens when the branch
 * stack does not tag its entries with the pid of the current task.
 * Otherwise it becomes impossible to associate a branch entry with a
 * task. This ambiguity is more likely to appear when the branch stack
 * supports priv level filtering and the user sets it to monitor only
 * at the user level (which could be a useful measurement in system-wide
 * mode). In that case, the risk is high of having a branch stack with
 * branch from multiple tasks. Flushing may mean dropping the existing
 * entries or stashing them somewhere in the PMU specific code layer.
 *
 * This function provides the context switch callback to the lower code
 * layer. It is invoked ONLY when there is at least one system-wide context
 * with at least one active event using taken branch sampling.
 */
static void perf_branch_stack_sched_in(struct task_struct *prev,
				       struct task_struct *task)
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	/* no need to flush branch stack if not changing task */
	if (prev == task)
		return;

	local_irq_save(flags);

	rcu_read_lock();

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

		/*
		 * check if the context has at least one
		 * event using PERF_SAMPLE_BRANCH_STACK
		 */
		if (cpuctx->ctx.nr_branch_stack > 0
		    && pmu->flush_branch_stack) {

			pmu = cpuctx->ctx.pmu;

			perf_ctx_lock(cpuctx, cpuctx->task_ctx);

			perf_pmu_disable(pmu);

			pmu->flush_branch_stack();

			perf_pmu_enable(pmu);

			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
		}
	}

	rcu_read_unlock();

	local_irq_restore(flags);
}

P
Peter Zijlstra 已提交
2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550
/*
 * Called from scheduler to add the events of the current task
 * with interrupts disabled.
 *
 * We restore the event value and then enable it.
 *
 * This does not protect us against NMI, but enable()
 * sets the enabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * keep the event running.
 */
2551 2552
void __perf_event_task_sched_in(struct task_struct *prev,
				struct task_struct *task)
P
Peter Zijlstra 已提交
2553 2554 2555 2556 2557 2558 2559 2560 2561
{
	struct perf_event_context *ctx;
	int ctxn;

	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (likely(!ctx))
			continue;

S
Stephane Eranian 已提交
2562
		perf_event_context_sched_in(ctx, task);
P
Peter Zijlstra 已提交
2563
	}
S
Stephane Eranian 已提交
2564 2565 2566 2567 2568 2569
	/*
	 * if cgroup events exist on this CPU, then we need
	 * to check if we have to switch in PMU state.
	 * cgroup event are system-wide mode only
	 */
	if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2570
		perf_cgroup_sched_in(prev, task);
2571 2572 2573 2574

	/* check for system-wide branch_stack events */
	if (atomic_read(&__get_cpu_var(perf_branch_stack_events)))
		perf_branch_stack_sched_in(prev, task);
2575 2576
}

2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603
static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
{
	u64 frequency = event->attr.sample_freq;
	u64 sec = NSEC_PER_SEC;
	u64 divisor, dividend;

	int count_fls, nsec_fls, frequency_fls, sec_fls;

	count_fls = fls64(count);
	nsec_fls = fls64(nsec);
	frequency_fls = fls64(frequency);
	sec_fls = 30;

	/*
	 * We got @count in @nsec, with a target of sample_freq HZ
	 * the target period becomes:
	 *
	 *             @count * 10^9
	 * period = -------------------
	 *          @nsec * sample_freq
	 *
	 */

	/*
	 * Reduce accuracy by one bit such that @a and @b converge
	 * to a similar magnitude.
	 */
2604
#define REDUCE_FLS(a, b)		\
2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643
do {					\
	if (a##_fls > b##_fls) {	\
		a >>= 1;		\
		a##_fls--;		\
	} else {			\
		b >>= 1;		\
		b##_fls--;		\
	}				\
} while (0)

	/*
	 * Reduce accuracy until either term fits in a u64, then proceed with
	 * the other, so that finally we can do a u64/u64 division.
	 */
	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
		REDUCE_FLS(nsec, frequency);
		REDUCE_FLS(sec, count);
	}

	if (count_fls + sec_fls > 64) {
		divisor = nsec * frequency;

		while (count_fls + sec_fls > 64) {
			REDUCE_FLS(count, sec);
			divisor >>= 1;
		}

		dividend = count * sec;
	} else {
		dividend = count * sec;

		while (nsec_fls + frequency_fls > 64) {
			REDUCE_FLS(nsec, frequency);
			dividend >>= 1;
		}

		divisor = nsec * frequency;
	}

2644 2645 2646
	if (!divisor)
		return dividend;

2647 2648 2649
	return div64_u64(dividend, divisor);
}

2650 2651 2652
static DEFINE_PER_CPU(int, perf_throttled_count);
static DEFINE_PER_CPU(u64, perf_throttled_seq);

2653
static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
2654
{
2655
	struct hw_perf_event *hwc = &event->hw;
2656
	s64 period, sample_period;
2657 2658
	s64 delta;

2659
	period = perf_calculate_period(event, nsec, count);
2660 2661 2662 2663 2664 2665 2666 2667 2668 2669

	delta = (s64)(period - hwc->sample_period);
	delta = (delta + 7) / 8; /* low pass filter */

	sample_period = hwc->sample_period + delta;

	if (!sample_period)
		sample_period = 1;

	hwc->sample_period = sample_period;
2670

2671
	if (local64_read(&hwc->period_left) > 8*sample_period) {
2672 2673 2674
		if (disable)
			event->pmu->stop(event, PERF_EF_UPDATE);

2675
		local64_set(&hwc->period_left, 0);
2676 2677 2678

		if (disable)
			event->pmu->start(event, PERF_EF_RELOAD);
2679
	}
2680 2681
}

2682 2683 2684 2685 2686 2687 2688
/*
 * combine freq adjustment with unthrottling to avoid two passes over the
 * events. At the same time, make sure, having freq events does not change
 * the rate of unthrottling as that would introduce bias.
 */
static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
					   int needs_unthr)
2689
{
2690 2691
	struct perf_event *event;
	struct hw_perf_event *hwc;
2692
	u64 now, period = TICK_NSEC;
2693
	s64 delta;
2694

2695 2696 2697 2698 2699 2700
	/*
	 * only need to iterate over all events iff:
	 * - context have events in frequency mode (needs freq adjust)
	 * - there are events to unthrottle on this cpu
	 */
	if (!(ctx->nr_freq || needs_unthr))
2701 2702
		return;

2703
	raw_spin_lock(&ctx->lock);
2704
	perf_pmu_disable(ctx->pmu);
2705

2706
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
2707
		if (event->state != PERF_EVENT_STATE_ACTIVE)
2708 2709
			continue;

2710
		if (!event_filter_match(event))
2711 2712
			continue;

2713
		hwc = &event->hw;
2714

2715 2716
		if (needs_unthr && hwc->interrupts == MAX_INTERRUPTS) {
			hwc->interrupts = 0;
2717
			perf_log_throttle(event, 1);
P
Peter Zijlstra 已提交
2718
			event->pmu->start(event, 0);
2719 2720
		}

2721
		if (!event->attr.freq || !event->attr.sample_freq)
2722 2723
			continue;

2724 2725 2726 2727 2728
		/*
		 * stop the event and update event->count
		 */
		event->pmu->stop(event, PERF_EF_UPDATE);

2729
		now = local64_read(&event->count);
2730 2731
		delta = now - hwc->freq_count_stamp;
		hwc->freq_count_stamp = now;
2732

2733 2734 2735
		/*
		 * restart the event
		 * reload only if value has changed
2736 2737 2738
		 * we have stopped the event so tell that
		 * to perf_adjust_period() to avoid stopping it
		 * twice.
2739
		 */
2740
		if (delta > 0)
2741
			perf_adjust_period(event, period, delta, false);
2742 2743

		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
2744
	}
2745

2746
	perf_pmu_enable(ctx->pmu);
2747
	raw_spin_unlock(&ctx->lock);
2748 2749
}

2750
/*
2751
 * Round-robin a context's events:
2752
 */
2753
static void rotate_ctx(struct perf_event_context *ctx)
T
Thomas Gleixner 已提交
2754
{
2755 2756 2757 2758 2759 2760
	/*
	 * Rotate the first entry last of non-pinned groups. Rotation might be
	 * disabled by the inheritance code.
	 */
	if (!ctx->rotate_disable)
		list_rotate_left(&ctx->flexible_groups);
2761 2762
}

2763
/*
2764 2765 2766
 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
 * because they're strictly cpu affine and rotate_start is called with IRQs
 * disabled, while rotate_context is called from IRQ context.
2767
 */
2768
static int perf_rotate_context(struct perf_cpu_context *cpuctx)
2769
{
P
Peter Zijlstra 已提交
2770
	struct perf_event_context *ctx = NULL;
2771
	int rotate = 0, remove = 1;
2772

2773
	if (cpuctx->ctx.nr_events) {
2774
		remove = 0;
2775 2776 2777
		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
			rotate = 1;
	}
2778

P
Peter Zijlstra 已提交
2779
	ctx = cpuctx->task_ctx;
2780
	if (ctx && ctx->nr_events) {
2781
		remove = 0;
2782 2783 2784
		if (ctx->nr_events != ctx->nr_active)
			rotate = 1;
	}
2785

2786
	if (!rotate)
2787 2788
		goto done;

2789
	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
P
Peter Zijlstra 已提交
2790
	perf_pmu_disable(cpuctx->ctx.pmu);
2791

2792 2793 2794
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
	if (ctx)
		ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
T
Thomas Gleixner 已提交
2795

2796 2797 2798
	rotate_ctx(&cpuctx->ctx);
	if (ctx)
		rotate_ctx(ctx);
2799

2800
	perf_event_sched_in(cpuctx, ctx, current);
2801

2802 2803
	perf_pmu_enable(cpuctx->ctx.pmu);
	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2804
done:
2805 2806
	if (remove)
		list_del_init(&cpuctx->rotation_list);
2807 2808

	return rotate;
2809 2810
}

2811 2812 2813
#ifdef CONFIG_NO_HZ_FULL
bool perf_event_can_stop_tick(void)
{
2814 2815
	if (atomic_read(&__get_cpu_var(perf_freq_events)) ||
	    __this_cpu_read(perf_throttled_count))
2816
		return false;
2817 2818
	else
		return true;
2819 2820 2821
}
#endif

2822 2823 2824 2825
void perf_event_task_tick(void)
{
	struct list_head *head = &__get_cpu_var(rotation_list);
	struct perf_cpu_context *cpuctx, *tmp;
2826 2827
	struct perf_event_context *ctx;
	int throttled;
2828

2829 2830
	WARN_ON(!irqs_disabled());

2831 2832 2833
	__this_cpu_inc(perf_throttled_seq);
	throttled = __this_cpu_xchg(perf_throttled_count, 0);

2834
	list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
2835 2836 2837 2838 2839 2840
		ctx = &cpuctx->ctx;
		perf_adjust_freq_unthr_context(ctx, throttled);

		ctx = cpuctx->task_ctx;
		if (ctx)
			perf_adjust_freq_unthr_context(ctx, throttled);
2841
	}
T
Thomas Gleixner 已提交
2842 2843
}

2844 2845 2846 2847 2848 2849 2850 2851 2852 2853
static int event_enable_on_exec(struct perf_event *event,
				struct perf_event_context *ctx)
{
	if (!event->attr.enable_on_exec)
		return 0;

	event->attr.enable_on_exec = 0;
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
		return 0;

2854
	__perf_event_mark_enabled(event);
2855 2856 2857 2858

	return 1;
}

2859
/*
2860
 * Enable all of a task's events that have been marked enable-on-exec.
2861 2862
 * This expects task == current.
 */
P
Peter Zijlstra 已提交
2863
static void perf_event_enable_on_exec(struct perf_event_context *ctx)
2864
{
2865
	struct perf_event *event;
2866 2867
	unsigned long flags;
	int enabled = 0;
2868
	int ret;
2869 2870

	local_irq_save(flags);
2871
	if (!ctx || !ctx->nr_events)
2872 2873
		goto out;

2874 2875 2876 2877 2878 2879 2880
	/*
	 * We must ctxsw out cgroup events to avoid conflict
	 * when invoking perf_task_event_sched_in() later on
	 * in this function. Otherwise we end up trying to
	 * ctxswin cgroup events which are already scheduled
	 * in.
	 */
2881
	perf_cgroup_sched_out(current, NULL);
2882

2883
	raw_spin_lock(&ctx->lock);
2884
	task_ctx_sched_out(ctx);
2885

2886
	list_for_each_entry(event, &ctx->event_list, event_entry) {
2887 2888 2889
		ret = event_enable_on_exec(event, ctx);
		if (ret)
			enabled = 1;
2890 2891 2892
	}

	/*
2893
	 * Unclone this context if we enabled any event.
2894
	 */
2895 2896
	if (enabled)
		unclone_ctx(ctx);
2897

2898
	raw_spin_unlock(&ctx->lock);
2899

2900 2901 2902
	/*
	 * Also calls ctxswin for cgroup events, if any:
	 */
S
Stephane Eranian 已提交
2903
	perf_event_context_sched_in(ctx, ctx->task);
P
Peter Zijlstra 已提交
2904
out:
2905 2906 2907
	local_irq_restore(flags);
}

T
Thomas Gleixner 已提交
2908
/*
2909
 * Cross CPU call to read the hardware event
T
Thomas Gleixner 已提交
2910
 */
2911
static void __perf_event_read(void *info)
T
Thomas Gleixner 已提交
2912
{
2913 2914
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
2915
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
I
Ingo Molnar 已提交
2916

2917 2918 2919 2920
	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu.  If not it has been
	 * scheduled out before the smp call arrived.  In that case
2921 2922
	 * event->count would have been updated to a recent sample
	 * when the event was scheduled out.
2923 2924 2925 2926
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

2927
	raw_spin_lock(&ctx->lock);
S
Stephane Eranian 已提交
2928
	if (ctx->is_active) {
2929
		update_context_time(ctx);
S
Stephane Eranian 已提交
2930 2931
		update_cgrp_time_from_event(event);
	}
2932
	update_event_times(event);
2933 2934
	if (event->state == PERF_EVENT_STATE_ACTIVE)
		event->pmu->read(event);
2935
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
2936 2937
}

P
Peter Zijlstra 已提交
2938 2939
static inline u64 perf_event_count(struct perf_event *event)
{
2940
	return local64_read(&event->count) + atomic64_read(&event->child_count);
P
Peter Zijlstra 已提交
2941 2942
}

2943
static u64 perf_event_read(struct perf_event *event)
T
Thomas Gleixner 已提交
2944 2945
{
	/*
2946 2947
	 * If event is enabled and currently active on a CPU, update the
	 * value in the event structure:
T
Thomas Gleixner 已提交
2948
	 */
2949 2950 2951 2952
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
		smp_call_function_single(event->oncpu,
					 __perf_event_read, event, 1);
	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
P
Peter Zijlstra 已提交
2953 2954 2955
		struct perf_event_context *ctx = event->ctx;
		unsigned long flags;

2956
		raw_spin_lock_irqsave(&ctx->lock, flags);
2957 2958 2959 2960 2961
		/*
		 * may read while context is not active
		 * (e.g., thread is blocked), in that case
		 * we cannot update context time
		 */
S
Stephane Eranian 已提交
2962
		if (ctx->is_active) {
2963
			update_context_time(ctx);
S
Stephane Eranian 已提交
2964 2965
			update_cgrp_time_from_event(event);
		}
2966
		update_event_times(event);
2967
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
2968 2969
	}

P
Peter Zijlstra 已提交
2970
	return perf_event_count(event);
T
Thomas Gleixner 已提交
2971 2972
}

2973
/*
2974
 * Initialize the perf_event context in a task_struct:
2975
 */
2976
static void __perf_event_init_context(struct perf_event_context *ctx)
2977
{
2978
	raw_spin_lock_init(&ctx->lock);
2979
	mutex_init(&ctx->mutex);
2980 2981
	INIT_LIST_HEAD(&ctx->pinned_groups);
	INIT_LIST_HEAD(&ctx->flexible_groups);
2982 2983
	INIT_LIST_HEAD(&ctx->event_list);
	atomic_set(&ctx->refcount, 1);
2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998
}

static struct perf_event_context *
alloc_perf_context(struct pmu *pmu, struct task_struct *task)
{
	struct perf_event_context *ctx;

	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
	if (!ctx)
		return NULL;

	__perf_event_init_context(ctx);
	if (task) {
		ctx->task = task;
		get_task_struct(task);
T
Thomas Gleixner 已提交
2999
	}
3000 3001 3002
	ctx->pmu = pmu;

	return ctx;
3003 3004
}

3005 3006 3007 3008 3009
static struct task_struct *
find_lively_task_by_vpid(pid_t vpid)
{
	struct task_struct *task;
	int err;
T
Thomas Gleixner 已提交
3010 3011

	rcu_read_lock();
3012
	if (!vpid)
T
Thomas Gleixner 已提交
3013 3014
		task = current;
	else
3015
		task = find_task_by_vpid(vpid);
T
Thomas Gleixner 已提交
3016 3017 3018 3019 3020 3021 3022 3023
	if (task)
		get_task_struct(task);
	rcu_read_unlock();

	if (!task)
		return ERR_PTR(-ESRCH);

	/* Reuse ptrace permission checks for now. */
3024 3025 3026 3027
	err = -EACCES;
	if (!ptrace_may_access(task, PTRACE_MODE_READ))
		goto errout;

3028 3029 3030 3031 3032 3033 3034
	return task;
errout:
	put_task_struct(task);
	return ERR_PTR(err);

}

3035 3036 3037
/*
 * Returns a matching context with refcount and pincount.
 */
P
Peter Zijlstra 已提交
3038
static struct perf_event_context *
M
Matt Helsley 已提交
3039
find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
T
Thomas Gleixner 已提交
3040
{
3041
	struct perf_event_context *ctx;
3042
	struct perf_cpu_context *cpuctx;
3043
	unsigned long flags;
P
Peter Zijlstra 已提交
3044
	int ctxn, err;
T
Thomas Gleixner 已提交
3045

3046
	if (!task) {
3047
		/* Must be root to operate on a CPU event: */
3048
		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
T
Thomas Gleixner 已提交
3049 3050 3051
			return ERR_PTR(-EACCES);

		/*
3052
		 * We could be clever and allow to attach a event to an
T
Thomas Gleixner 已提交
3053 3054 3055
		 * offline CPU and activate it when the CPU comes up, but
		 * that's for later.
		 */
3056
		if (!cpu_online(cpu))
T
Thomas Gleixner 已提交
3057 3058
			return ERR_PTR(-ENODEV);

P
Peter Zijlstra 已提交
3059
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
T
Thomas Gleixner 已提交
3060
		ctx = &cpuctx->ctx;
3061
		get_ctx(ctx);
3062
		++ctx->pin_count;
T
Thomas Gleixner 已提交
3063 3064 3065 3066

		return ctx;
	}

P
Peter Zijlstra 已提交
3067 3068 3069 3070 3071
	err = -EINVAL;
	ctxn = pmu->task_ctx_nr;
	if (ctxn < 0)
		goto errout;

P
Peter Zijlstra 已提交
3072
retry:
P
Peter Zijlstra 已提交
3073
	ctx = perf_lock_task_context(task, ctxn, &flags);
3074
	if (ctx) {
3075
		unclone_ctx(ctx);
3076
		++ctx->pin_count;
3077
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3078
	} else {
3079
		ctx = alloc_perf_context(pmu, task);
3080 3081 3082
		err = -ENOMEM;
		if (!ctx)
			goto errout;
3083

3084 3085 3086 3087 3088 3089 3090 3091 3092 3093
		err = 0;
		mutex_lock(&task->perf_event_mutex);
		/*
		 * If it has already passed perf_event_exit_task().
		 * we must see PF_EXITING, it takes this mutex too.
		 */
		if (task->flags & PF_EXITING)
			err = -ESRCH;
		else if (task->perf_event_ctxp[ctxn])
			err = -EAGAIN;
3094
		else {
3095
			get_ctx(ctx);
3096
			++ctx->pin_count;
3097
			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3098
		}
3099 3100 3101
		mutex_unlock(&task->perf_event_mutex);

		if (unlikely(err)) {
3102
			put_ctx(ctx);
3103 3104 3105 3106

			if (err == -EAGAIN)
				goto retry;
			goto errout;
3107 3108 3109
		}
	}

T
Thomas Gleixner 已提交
3110
	return ctx;
3111

P
Peter Zijlstra 已提交
3112
errout:
3113
	return ERR_PTR(err);
T
Thomas Gleixner 已提交
3114 3115
}

L
Li Zefan 已提交
3116 3117
static void perf_event_free_filter(struct perf_event *event);

3118
static void free_event_rcu(struct rcu_head *head)
P
Peter Zijlstra 已提交
3119
{
3120
	struct perf_event *event;
P
Peter Zijlstra 已提交
3121

3122 3123 3124
	event = container_of(head, struct perf_event, rcu_head);
	if (event->ns)
		put_pid_ns(event->ns);
L
Li Zefan 已提交
3125
	perf_event_free_filter(event);
3126
	kfree(event);
P
Peter Zijlstra 已提交
3127 3128
}

3129
static void ring_buffer_put(struct ring_buffer *rb);
3130
static void ring_buffer_detach(struct perf_event *event, struct ring_buffer *rb);
3131

3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142
static void unaccount_event_cpu(struct perf_event *event, int cpu)
{
	if (event->parent)
		return;

	if (has_branch_stack(event)) {
		if (!(event->attach_state & PERF_ATTACH_TASK))
			atomic_dec(&per_cpu(perf_branch_stack_events, cpu));
	}
	if (is_cgroup_event(event))
		atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3143 3144 3145

	if (event->attr.freq)
		atomic_dec(&per_cpu(perf_freq_events, cpu));
3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168
}

static void unaccount_event(struct perf_event *event)
{
	if (event->parent)
		return;

	if (event->attach_state & PERF_ATTACH_TASK)
		static_key_slow_dec_deferred(&perf_sched_events);
	if (event->attr.mmap || event->attr.mmap_data)
		atomic_dec(&nr_mmap_events);
	if (event->attr.comm)
		atomic_dec(&nr_comm_events);
	if (event->attr.task)
		atomic_dec(&nr_task_events);
	if (is_cgroup_event(event))
		static_key_slow_dec_deferred(&perf_sched_events);
	if (has_branch_stack(event))
		static_key_slow_dec_deferred(&perf_sched_events);

	unaccount_event_cpu(event, event->cpu);
}

3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183
static void __free_event(struct perf_event *event)
{
	if (!event->parent) {
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
			put_callchain_buffers();
	}

	if (event->destroy)
		event->destroy(event);

	if (event->ctx)
		put_ctx(event->ctx);

	call_rcu(&event->rcu_head, free_event_rcu);
}
3184
static void free_event(struct perf_event *event)
3185
{
3186
	irq_work_sync(&event->pending);
3187

3188
	unaccount_event(event);
3189

3190
	if (event->rb) {
3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206
		struct ring_buffer *rb;

		/*
		 * Can happen when we close an event with re-directed output.
		 *
		 * Since we have a 0 refcount, perf_mmap_close() will skip
		 * over us; possibly making our ring_buffer_put() the last.
		 */
		mutex_lock(&event->mmap_mutex);
		rb = event->rb;
		if (rb) {
			rcu_assign_pointer(event->rb, NULL);
			ring_buffer_detach(event, rb);
			ring_buffer_put(rb); /* could be last */
		}
		mutex_unlock(&event->mmap_mutex);
3207 3208
	}

S
Stephane Eranian 已提交
3209 3210 3211
	if (is_cgroup_event(event))
		perf_detach_cgroup(event);

P
Peter Zijlstra 已提交
3212

3213
	__free_event(event);
3214 3215
}

3216
int perf_event_release_kernel(struct perf_event *event)
T
Thomas Gleixner 已提交
3217
{
3218
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
3219

3220
	WARN_ON_ONCE(ctx->parent_ctx);
3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233
	/*
	 * There are two ways this annotation is useful:
	 *
	 *  1) there is a lock recursion from perf_event_exit_task
	 *     see the comment there.
	 *
	 *  2) there is a lock-inversion with mmap_sem through
	 *     perf_event_read_group(), which takes faults while
	 *     holding ctx->mutex, however this is called after
	 *     the last filedesc died, so there is no possibility
	 *     to trigger the AB-BA case.
	 */
	mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
3234
	raw_spin_lock_irq(&ctx->lock);
3235
	perf_group_detach(event);
3236
	raw_spin_unlock_irq(&ctx->lock);
3237
	perf_remove_from_context(event);
3238
	mutex_unlock(&ctx->mutex);
T
Thomas Gleixner 已提交
3239

3240
	free_event(event);
T
Thomas Gleixner 已提交
3241 3242 3243

	return 0;
}
3244
EXPORT_SYMBOL_GPL(perf_event_release_kernel);
T
Thomas Gleixner 已提交
3245

3246 3247 3248
/*
 * Called when the last reference to the file is gone.
 */
3249
static void put_event(struct perf_event *event)
3250
{
P
Peter Zijlstra 已提交
3251
	struct task_struct *owner;
3252

3253 3254
	if (!atomic_long_dec_and_test(&event->refcount))
		return;
3255

P
Peter Zijlstra 已提交
3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288
	rcu_read_lock();
	owner = ACCESS_ONCE(event->owner);
	/*
	 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
	 * !owner it means the list deletion is complete and we can indeed
	 * free this event, otherwise we need to serialize on
	 * owner->perf_event_mutex.
	 */
	smp_read_barrier_depends();
	if (owner) {
		/*
		 * Since delayed_put_task_struct() also drops the last
		 * task reference we can safely take a new reference
		 * while holding the rcu_read_lock().
		 */
		get_task_struct(owner);
	}
	rcu_read_unlock();

	if (owner) {
		mutex_lock(&owner->perf_event_mutex);
		/*
		 * We have to re-check the event->owner field, if it is cleared
		 * we raced with perf_event_exit_task(), acquiring the mutex
		 * ensured they're done, and we can proceed with freeing the
		 * event.
		 */
		if (event->owner)
			list_del_init(&event->owner_entry);
		mutex_unlock(&owner->perf_event_mutex);
		put_task_struct(owner);
	}

3289 3290 3291 3292 3293 3294 3295
	perf_event_release_kernel(event);
}

static int perf_release(struct inode *inode, struct file *file)
{
	put_event(file->private_data);
	return 0;
3296 3297
}

3298
u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
3299
{
3300
	struct perf_event *child;
3301 3302
	u64 total = 0;

3303 3304 3305
	*enabled = 0;
	*running = 0;

3306
	mutex_lock(&event->child_mutex);
3307
	total += perf_event_read(event);
3308 3309 3310 3311 3312 3313
	*enabled += event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
	*running += event->total_time_running +
			atomic64_read(&event->child_total_time_running);

	list_for_each_entry(child, &event->child_list, child_list) {
3314
		total += perf_event_read(child);
3315 3316 3317
		*enabled += child->total_time_enabled;
		*running += child->total_time_running;
	}
3318
	mutex_unlock(&event->child_mutex);
3319 3320 3321

	return total;
}
3322
EXPORT_SYMBOL_GPL(perf_event_read_value);
3323

3324
static int perf_event_read_group(struct perf_event *event,
3325 3326
				   u64 read_format, char __user *buf)
{
3327
	struct perf_event *leader = event->group_leader, *sub;
3328 3329
	int n = 0, size = 0, ret = -EFAULT;
	struct perf_event_context *ctx = leader->ctx;
3330
	u64 values[5];
3331
	u64 count, enabled, running;
3332

3333
	mutex_lock(&ctx->mutex);
3334
	count = perf_event_read_value(leader, &enabled, &running);
3335 3336

	values[n++] = 1 + leader->nr_siblings;
3337 3338 3339 3340
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
3341 3342 3343
	values[n++] = count;
	if (read_format & PERF_FORMAT_ID)
		values[n++] = primary_event_id(leader);
3344 3345 3346 3347

	size = n * sizeof(u64);

	if (copy_to_user(buf, values, size))
3348
		goto unlock;
3349

3350
	ret = size;
3351

3352
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3353
		n = 0;
3354

3355
		values[n++] = perf_event_read_value(sub, &enabled, &running);
3356 3357 3358 3359 3360
		if (read_format & PERF_FORMAT_ID)
			values[n++] = primary_event_id(sub);

		size = n * sizeof(u64);

3361
		if (copy_to_user(buf + ret, values, size)) {
3362 3363 3364
			ret = -EFAULT;
			goto unlock;
		}
3365 3366

		ret += size;
3367
	}
3368 3369
unlock:
	mutex_unlock(&ctx->mutex);
3370

3371
	return ret;
3372 3373
}

3374
static int perf_event_read_one(struct perf_event *event,
3375 3376
				 u64 read_format, char __user *buf)
{
3377
	u64 enabled, running;
3378 3379 3380
	u64 values[4];
	int n = 0;

3381 3382 3383 3384 3385
	values[n++] = perf_event_read_value(event, &enabled, &running);
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
3386
	if (read_format & PERF_FORMAT_ID)
3387
		values[n++] = primary_event_id(event);
3388 3389 3390 3391 3392 3393 3394

	if (copy_to_user(buf, values, n * sizeof(u64)))
		return -EFAULT;

	return n * sizeof(u64);
}

T
Thomas Gleixner 已提交
3395
/*
3396
 * Read the performance event - simple non blocking version for now
T
Thomas Gleixner 已提交
3397 3398
 */
static ssize_t
3399
perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
T
Thomas Gleixner 已提交
3400
{
3401
	u64 read_format = event->attr.read_format;
3402
	int ret;
T
Thomas Gleixner 已提交
3403

3404
	/*
3405
	 * Return end-of-file for a read on a event that is in
3406 3407 3408
	 * error state (i.e. because it was pinned but it couldn't be
	 * scheduled on to the CPU at some point).
	 */
3409
	if (event->state == PERF_EVENT_STATE_ERROR)
3410 3411
		return 0;

3412
	if (count < event->read_size)
3413 3414
		return -ENOSPC;

3415
	WARN_ON_ONCE(event->ctx->parent_ctx);
3416
	if (read_format & PERF_FORMAT_GROUP)
3417
		ret = perf_event_read_group(event, read_format, buf);
3418
	else
3419
		ret = perf_event_read_one(event, read_format, buf);
T
Thomas Gleixner 已提交
3420

3421
	return ret;
T
Thomas Gleixner 已提交
3422 3423 3424 3425 3426
}

static ssize_t
perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
3427
	struct perf_event *event = file->private_data;
T
Thomas Gleixner 已提交
3428

3429
	return perf_read_hw(event, buf, count);
T
Thomas Gleixner 已提交
3430 3431 3432 3433
}

static unsigned int perf_poll(struct file *file, poll_table *wait)
{
3434
	struct perf_event *event = file->private_data;
3435
	struct ring_buffer *rb;
3436
	unsigned int events = POLL_HUP;
P
Peter Zijlstra 已提交
3437

3438
	/*
3439 3440
	 * Pin the event->rb by taking event->mmap_mutex; otherwise
	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
3441 3442
	 */
	mutex_lock(&event->mmap_mutex);
3443 3444
	rb = event->rb;
	if (rb)
3445
		events = atomic_xchg(&rb->poll, 0);
3446 3447
	mutex_unlock(&event->mmap_mutex);

3448
	poll_wait(file, &event->waitq, wait);
T
Thomas Gleixner 已提交
3449 3450 3451 3452

	return events;
}

3453
static void perf_event_reset(struct perf_event *event)
3454
{
3455
	(void)perf_event_read(event);
3456
	local64_set(&event->count, 0);
3457
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
3458 3459
}

3460
/*
3461 3462 3463 3464
 * Holding the top-level event's child_mutex means that any
 * descendant process that has inherited this event will block
 * in sync_child_event if it goes to exit, thus satisfying the
 * task existence requirements of perf_event_enable/disable.
3465
 */
3466 3467
static void perf_event_for_each_child(struct perf_event *event,
					void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
3468
{
3469
	struct perf_event *child;
P
Peter Zijlstra 已提交
3470

3471 3472 3473 3474
	WARN_ON_ONCE(event->ctx->parent_ctx);
	mutex_lock(&event->child_mutex);
	func(event);
	list_for_each_entry(child, &event->child_list, child_list)
P
Peter Zijlstra 已提交
3475
		func(child);
3476
	mutex_unlock(&event->child_mutex);
P
Peter Zijlstra 已提交
3477 3478
}

3479 3480
static void perf_event_for_each(struct perf_event *event,
				  void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
3481
{
3482 3483
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *sibling;
P
Peter Zijlstra 已提交
3484

3485 3486
	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
3487
	event = event->group_leader;
3488

3489 3490
	perf_event_for_each_child(event, func);
	list_for_each_entry(sibling, &event->sibling_list, group_entry)
3491
		perf_event_for_each_child(sibling, func);
3492
	mutex_unlock(&ctx->mutex);
3493 3494
}

3495
static int perf_event_period(struct perf_event *event, u64 __user *arg)
3496
{
3497
	struct perf_event_context *ctx = event->ctx;
3498 3499 3500
	int ret = 0;
	u64 value;

3501
	if (!is_sampling_event(event))
3502 3503
		return -EINVAL;

3504
	if (copy_from_user(&value, arg, sizeof(value)))
3505 3506 3507 3508 3509
		return -EFAULT;

	if (!value)
		return -EINVAL;

3510
	raw_spin_lock_irq(&ctx->lock);
3511 3512
	if (event->attr.freq) {
		if (value > sysctl_perf_event_sample_rate) {
3513 3514 3515 3516
			ret = -EINVAL;
			goto unlock;
		}

3517
		event->attr.sample_freq = value;
3518
	} else {
3519 3520
		event->attr.sample_period = value;
		event->hw.sample_period = value;
3521 3522
	}
unlock:
3523
	raw_spin_unlock_irq(&ctx->lock);
3524 3525 3526 3527

	return ret;
}

3528 3529
static const struct file_operations perf_fops;

3530
static inline int perf_fget_light(int fd, struct fd *p)
3531
{
3532 3533 3534
	struct fd f = fdget(fd);
	if (!f.file)
		return -EBADF;
3535

3536 3537 3538
	if (f.file->f_op != &perf_fops) {
		fdput(f);
		return -EBADF;
3539
	}
3540 3541
	*p = f;
	return 0;
3542 3543 3544 3545
}

static int perf_event_set_output(struct perf_event *event,
				 struct perf_event *output_event);
L
Li Zefan 已提交
3546
static int perf_event_set_filter(struct perf_event *event, void __user *arg);
3547

3548 3549
static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
3550 3551
	struct perf_event *event = file->private_data;
	void (*func)(struct perf_event *);
P
Peter Zijlstra 已提交
3552
	u32 flags = arg;
3553 3554

	switch (cmd) {
3555 3556
	case PERF_EVENT_IOC_ENABLE:
		func = perf_event_enable;
3557
		break;
3558 3559
	case PERF_EVENT_IOC_DISABLE:
		func = perf_event_disable;
3560
		break;
3561 3562
	case PERF_EVENT_IOC_RESET:
		func = perf_event_reset;
3563
		break;
P
Peter Zijlstra 已提交
3564

3565 3566
	case PERF_EVENT_IOC_REFRESH:
		return perf_event_refresh(event, arg);
3567

3568 3569
	case PERF_EVENT_IOC_PERIOD:
		return perf_event_period(event, (u64 __user *)arg);
3570

3571
	case PERF_EVENT_IOC_SET_OUTPUT:
3572 3573 3574
	{
		int ret;
		if (arg != -1) {
3575 3576 3577 3578 3579 3580 3581 3582 3583 3584
			struct perf_event *output_event;
			struct fd output;
			ret = perf_fget_light(arg, &output);
			if (ret)
				return ret;
			output_event = output.file->private_data;
			ret = perf_event_set_output(event, output_event);
			fdput(output);
		} else {
			ret = perf_event_set_output(event, NULL);
3585 3586 3587
		}
		return ret;
	}
3588

L
Li Zefan 已提交
3589 3590 3591
	case PERF_EVENT_IOC_SET_FILTER:
		return perf_event_set_filter(event, (void __user *)arg);

3592
	default:
P
Peter Zijlstra 已提交
3593
		return -ENOTTY;
3594
	}
P
Peter Zijlstra 已提交
3595 3596

	if (flags & PERF_IOC_FLAG_GROUP)
3597
		perf_event_for_each(event, func);
P
Peter Zijlstra 已提交
3598
	else
3599
		perf_event_for_each_child(event, func);
P
Peter Zijlstra 已提交
3600 3601

	return 0;
3602 3603
}

3604
int perf_event_task_enable(void)
3605
{
3606
	struct perf_event *event;
3607

3608 3609 3610 3611
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_enable);
	mutex_unlock(&current->perf_event_mutex);
3612 3613 3614 3615

	return 0;
}

3616
int perf_event_task_disable(void)
3617
{
3618
	struct perf_event *event;
3619

3620 3621 3622 3623
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_disable);
	mutex_unlock(&current->perf_event_mutex);
3624 3625 3626 3627

	return 0;
}

3628
static int perf_event_index(struct perf_event *event)
3629
{
P
Peter Zijlstra 已提交
3630 3631 3632
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;

3633
	if (event->state != PERF_EVENT_STATE_ACTIVE)
3634 3635
		return 0;

3636
	return event->pmu->event_idx(event);
3637 3638
}

3639
static void calc_timer_values(struct perf_event *event,
3640
				u64 *now,
3641 3642
				u64 *enabled,
				u64 *running)
3643
{
3644
	u64 ctx_time;
3645

3646 3647
	*now = perf_clock();
	ctx_time = event->shadow_ctx_time + *now;
3648 3649 3650 3651
	*enabled = ctx_time - event->tstamp_enabled;
	*running = ctx_time - event->tstamp_running;
}

3652
void __weak arch_perf_update_userpage(struct perf_event_mmap_page *userpg, u64 now)
3653 3654 3655
{
}

3656 3657 3658 3659 3660
/*
 * Callers need to ensure there can be no nesting of this function, otherwise
 * the seqlock logic goes bad. We can not serialize this because the arch
 * code calls this from NMI context.
 */
3661
void perf_event_update_userpage(struct perf_event *event)
3662
{
3663
	struct perf_event_mmap_page *userpg;
3664
	struct ring_buffer *rb;
3665
	u64 enabled, running, now;
3666 3667

	rcu_read_lock();
3668 3669 3670 3671 3672 3673 3674 3675 3676
	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we can be called in
	 * NMI context
	 */
3677
	calc_timer_values(event, &now, &enabled, &running);
3678 3679
	rb = rcu_dereference(event->rb);
	if (!rb)
3680 3681
		goto unlock;

3682
	userpg = rb->user_page;
3683

3684 3685 3686 3687 3688
	/*
	 * Disable preemption so as to not let the corresponding user-space
	 * spin too long if we get preempted.
	 */
	preempt_disable();
3689
	++userpg->lock;
3690
	barrier();
3691
	userpg->index = perf_event_index(event);
P
Peter Zijlstra 已提交
3692
	userpg->offset = perf_event_count(event);
3693
	if (userpg->index)
3694
		userpg->offset -= local64_read(&event->hw.prev_count);
3695

3696
	userpg->time_enabled = enabled +
3697
			atomic64_read(&event->child_total_time_enabled);
3698

3699
	userpg->time_running = running +
3700
			atomic64_read(&event->child_total_time_running);
3701

3702
	arch_perf_update_userpage(userpg, now);
3703

3704
	barrier();
3705
	++userpg->lock;
3706
	preempt_enable();
3707
unlock:
3708
	rcu_read_unlock();
3709 3710
}

3711 3712 3713
static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct perf_event *event = vma->vm_file->private_data;
3714
	struct ring_buffer *rb;
3715 3716 3717 3718 3719 3720 3721 3722 3723
	int ret = VM_FAULT_SIGBUS;

	if (vmf->flags & FAULT_FLAG_MKWRITE) {
		if (vmf->pgoff == 0)
			ret = 0;
		return ret;
	}

	rcu_read_lock();
3724 3725
	rb = rcu_dereference(event->rb);
	if (!rb)
3726 3727 3728 3729 3730
		goto unlock;

	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
		goto unlock;

3731
	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745
	if (!vmf->page)
		goto unlock;

	get_page(vmf->page);
	vmf->page->mapping = vma->vm_file->f_mapping;
	vmf->page->index   = vmf->pgoff;

	ret = 0;
unlock:
	rcu_read_unlock();

	return ret;
}

3746 3747 3748 3749 3750 3751 3752 3753 3754
static void ring_buffer_attach(struct perf_event *event,
			       struct ring_buffer *rb)
{
	unsigned long flags;

	if (!list_empty(&event->rb_entry))
		return;

	spin_lock_irqsave(&rb->event_lock, flags);
3755 3756
	if (list_empty(&event->rb_entry))
		list_add(&event->rb_entry, &rb->event_list);
3757 3758 3759
	spin_unlock_irqrestore(&rb->event_lock, flags);
}

3760
static void ring_buffer_detach(struct perf_event *event, struct ring_buffer *rb)
3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778
{
	unsigned long flags;

	if (list_empty(&event->rb_entry))
		return;

	spin_lock_irqsave(&rb->event_lock, flags);
	list_del_init(&event->rb_entry);
	wake_up_all(&event->waitq);
	spin_unlock_irqrestore(&rb->event_lock, flags);
}

static void ring_buffer_wakeup(struct perf_event *event)
{
	struct ring_buffer *rb;

	rcu_read_lock();
	rb = rcu_dereference(event->rb);
3779 3780 3781 3782
	if (rb) {
		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
			wake_up_all(&event->waitq);
	}
3783 3784 3785
	rcu_read_unlock();
}

3786
static void rb_free_rcu(struct rcu_head *rcu_head)
3787
{
3788
	struct ring_buffer *rb;
3789

3790 3791
	rb = container_of(rcu_head, struct ring_buffer, rcu_head);
	rb_free(rb);
3792 3793
}

3794
static struct ring_buffer *ring_buffer_get(struct perf_event *event)
3795
{
3796
	struct ring_buffer *rb;
3797

3798
	rcu_read_lock();
3799 3800 3801 3802
	rb = rcu_dereference(event->rb);
	if (rb) {
		if (!atomic_inc_not_zero(&rb->refcount))
			rb = NULL;
3803 3804 3805
	}
	rcu_read_unlock();

3806
	return rb;
3807 3808
}

3809
static void ring_buffer_put(struct ring_buffer *rb)
3810
{
3811
	if (!atomic_dec_and_test(&rb->refcount))
3812
		return;
3813

3814
	WARN_ON_ONCE(!list_empty(&rb->event_list));
3815

3816
	call_rcu(&rb->rcu_head, rb_free_rcu);
3817 3818 3819 3820
}

static void perf_mmap_open(struct vm_area_struct *vma)
{
3821
	struct perf_event *event = vma->vm_file->private_data;
3822

3823
	atomic_inc(&event->mmap_count);
3824
	atomic_inc(&event->rb->mmap_count);
3825 3826
}

3827 3828 3829 3830 3831 3832 3833 3834
/*
 * A buffer can be mmap()ed multiple times; either directly through the same
 * event, or through other events by use of perf_event_set_output().
 *
 * In order to undo the VM accounting done by perf_mmap() we need to destroy
 * the buffer here, where we still have a VM context. This means we need
 * to detach all events redirecting to us.
 */
3835 3836
static void perf_mmap_close(struct vm_area_struct *vma)
{
3837
	struct perf_event *event = vma->vm_file->private_data;
3838

3839 3840 3841 3842
	struct ring_buffer *rb = event->rb;
	struct user_struct *mmap_user = rb->mmap_user;
	int mmap_locked = rb->mmap_locked;
	unsigned long size = perf_data_size(rb);
3843

3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858
	atomic_dec(&rb->mmap_count);

	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
		return;

	/* Detach current event from the buffer. */
	rcu_assign_pointer(event->rb, NULL);
	ring_buffer_detach(event, rb);
	mutex_unlock(&event->mmap_mutex);

	/* If there's still other mmap()s of this buffer, we're done. */
	if (atomic_read(&rb->mmap_count)) {
		ring_buffer_put(rb); /* can't be last */
		return;
	}
3859

3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875
	/*
	 * No other mmap()s, detach from all other events that might redirect
	 * into the now unreachable buffer. Somewhat complicated by the
	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
	 */
again:
	rcu_read_lock();
	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
		if (!atomic_long_inc_not_zero(&event->refcount)) {
			/*
			 * This event is en-route to free_event() which will
			 * detach it and remove it from the list.
			 */
			continue;
		}
		rcu_read_unlock();
3876

3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891
		mutex_lock(&event->mmap_mutex);
		/*
		 * Check we didn't race with perf_event_set_output() which can
		 * swizzle the rb from under us while we were waiting to
		 * acquire mmap_mutex.
		 *
		 * If we find a different rb; ignore this event, a next
		 * iteration will no longer find it on the list. We have to
		 * still restart the iteration to make sure we're not now
		 * iterating the wrong list.
		 */
		if (event->rb == rb) {
			rcu_assign_pointer(event->rb, NULL);
			ring_buffer_detach(event, rb);
			ring_buffer_put(rb); /* can't be last, we still have one */
P
Peter Zijlstra 已提交
3892
		}
3893
		mutex_unlock(&event->mmap_mutex);
3894
		put_event(event);
3895

3896 3897 3898 3899 3900
		/*
		 * Restart the iteration; either we're on the wrong list or
		 * destroyed its integrity by doing a deletion.
		 */
		goto again;
3901
	}
3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917
	rcu_read_unlock();

	/*
	 * It could be there's still a few 0-ref events on the list; they'll
	 * get cleaned up by free_event() -- they'll also still have their
	 * ref on the rb and will free it whenever they are done with it.
	 *
	 * Aside from that, this buffer is 'fully' detached and unmapped,
	 * undo the VM accounting.
	 */

	atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
	vma->vm_mm->pinned_vm -= mmap_locked;
	free_uid(mmap_user);

	ring_buffer_put(rb); /* could be last */
3918 3919
}

3920
static const struct vm_operations_struct perf_mmap_vmops = {
3921 3922 3923 3924
	.open		= perf_mmap_open,
	.close		= perf_mmap_close,
	.fault		= perf_mmap_fault,
	.page_mkwrite	= perf_mmap_fault,
3925 3926 3927 3928
};

static int perf_mmap(struct file *file, struct vm_area_struct *vma)
{
3929
	struct perf_event *event = file->private_data;
3930
	unsigned long user_locked, user_lock_limit;
3931
	struct user_struct *user = current_user();
3932
	unsigned long locked, lock_limit;
3933
	struct ring_buffer *rb;
3934 3935
	unsigned long vma_size;
	unsigned long nr_pages;
3936
	long user_extra, extra;
3937
	int ret = 0, flags = 0;
3938

3939 3940 3941
	/*
	 * Don't allow mmap() of inherited per-task counters. This would
	 * create a performance issue due to all children writing to the
3942
	 * same rb.
3943 3944 3945 3946
	 */
	if (event->cpu == -1 && event->attr.inherit)
		return -EINVAL;

3947
	if (!(vma->vm_flags & VM_SHARED))
3948
		return -EINVAL;
3949 3950 3951 3952

	vma_size = vma->vm_end - vma->vm_start;
	nr_pages = (vma_size / PAGE_SIZE) - 1;

3953
	/*
3954
	 * If we have rb pages ensure they're a power-of-two number, so we
3955 3956 3957
	 * can do bitmasks instead of modulo.
	 */
	if (nr_pages != 0 && !is_power_of_2(nr_pages))
3958 3959
		return -EINVAL;

3960
	if (vma_size != PAGE_SIZE * (1 + nr_pages))
3961 3962
		return -EINVAL;

3963 3964
	if (vma->vm_pgoff != 0)
		return -EINVAL;
3965

3966
	WARN_ON_ONCE(event->ctx->parent_ctx);
3967
again:
3968
	mutex_lock(&event->mmap_mutex);
3969
	if (event->rb) {
3970
		if (event->rb->nr_pages != nr_pages) {
3971
			ret = -EINVAL;
3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984
			goto unlock;
		}

		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
			/*
			 * Raced against perf_mmap_close() through
			 * perf_event_set_output(). Try again, hope for better
			 * luck.
			 */
			mutex_unlock(&event->mmap_mutex);
			goto again;
		}

3985 3986 3987
		goto unlock;
	}

3988
	user_extra = nr_pages + 1;
3989
	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
I
Ingo Molnar 已提交
3990 3991 3992 3993 3994 3995

	/*
	 * Increase the limit linearly with more CPUs:
	 */
	user_lock_limit *= num_online_cpus();

3996
	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
3997

3998 3999 4000
	extra = 0;
	if (user_locked > user_lock_limit)
		extra = user_locked - user_lock_limit;
4001

4002
	lock_limit = rlimit(RLIMIT_MEMLOCK);
4003
	lock_limit >>= PAGE_SHIFT;
4004
	locked = vma->vm_mm->pinned_vm + extra;
4005

4006 4007
	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
		!capable(CAP_IPC_LOCK)) {
4008 4009 4010
		ret = -EPERM;
		goto unlock;
	}
4011

4012
	WARN_ON(event->rb);
4013

4014
	if (vma->vm_flags & VM_WRITE)
4015
		flags |= RING_BUFFER_WRITABLE;
4016

4017 4018 4019 4020
	rb = rb_alloc(nr_pages, 
		event->attr.watermark ? event->attr.wakeup_watermark : 0,
		event->cpu, flags);

4021
	if (!rb) {
4022
		ret = -ENOMEM;
4023
		goto unlock;
4024
	}
P
Peter Zijlstra 已提交
4025

4026
	atomic_set(&rb->mmap_count, 1);
P
Peter Zijlstra 已提交
4027 4028
	rb->mmap_locked = extra;
	rb->mmap_user = get_current_user();
4029

4030
	atomic_long_add(user_extra, &user->locked_vm);
P
Peter Zijlstra 已提交
4031 4032
	vma->vm_mm->pinned_vm += extra;

4033
	ring_buffer_attach(event, rb);
P
Peter Zijlstra 已提交
4034
	rcu_assign_pointer(event->rb, rb);
4035

4036 4037
	perf_event_update_userpage(event);

4038
unlock:
4039 4040
	if (!ret)
		atomic_inc(&event->mmap_count);
4041
	mutex_unlock(&event->mmap_mutex);
4042

4043 4044 4045 4046
	/*
	 * Since pinned accounting is per vm we cannot allow fork() to copy our
	 * vma.
	 */
P
Peter Zijlstra 已提交
4047
	vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
4048
	vma->vm_ops = &perf_mmap_vmops;
4049 4050

	return ret;
4051 4052
}

P
Peter Zijlstra 已提交
4053 4054
static int perf_fasync(int fd, struct file *filp, int on)
{
A
Al Viro 已提交
4055
	struct inode *inode = file_inode(filp);
4056
	struct perf_event *event = filp->private_data;
P
Peter Zijlstra 已提交
4057 4058 4059
	int retval;

	mutex_lock(&inode->i_mutex);
4060
	retval = fasync_helper(fd, filp, on, &event->fasync);
P
Peter Zijlstra 已提交
4061 4062 4063 4064 4065 4066 4067 4068
	mutex_unlock(&inode->i_mutex);

	if (retval < 0)
		return retval;

	return 0;
}

T
Thomas Gleixner 已提交
4069
static const struct file_operations perf_fops = {
4070
	.llseek			= no_llseek,
T
Thomas Gleixner 已提交
4071 4072 4073
	.release		= perf_release,
	.read			= perf_read,
	.poll			= perf_poll,
4074 4075
	.unlocked_ioctl		= perf_ioctl,
	.compat_ioctl		= perf_ioctl,
4076
	.mmap			= perf_mmap,
P
Peter Zijlstra 已提交
4077
	.fasync			= perf_fasync,
T
Thomas Gleixner 已提交
4078 4079
};

4080
/*
4081
 * Perf event wakeup
4082 4083 4084 4085 4086
 *
 * If there's data, ensure we set the poll() state and publish everything
 * to user-space before waking everybody up.
 */

4087
void perf_event_wakeup(struct perf_event *event)
4088
{
4089
	ring_buffer_wakeup(event);
4090

4091 4092 4093
	if (event->pending_kill) {
		kill_fasync(&event->fasync, SIGIO, event->pending_kill);
		event->pending_kill = 0;
4094
	}
4095 4096
}

4097
static void perf_pending_event(struct irq_work *entry)
4098
{
4099 4100
	struct perf_event *event = container_of(entry,
			struct perf_event, pending);
4101

4102 4103 4104
	if (event->pending_disable) {
		event->pending_disable = 0;
		__perf_event_disable(event);
4105 4106
	}

4107 4108 4109
	if (event->pending_wakeup) {
		event->pending_wakeup = 0;
		perf_event_wakeup(event);
4110 4111 4112
	}
}

4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133
/*
 * We assume there is only KVM supporting the callbacks.
 * Later on, we might change it to a list if there is
 * another virtualization implementation supporting the callbacks.
 */
struct perf_guest_info_callbacks *perf_guest_cbs;

int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = cbs;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);

int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = NULL;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);

4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164
static void
perf_output_sample_regs(struct perf_output_handle *handle,
			struct pt_regs *regs, u64 mask)
{
	int bit;

	for_each_set_bit(bit, (const unsigned long *) &mask,
			 sizeof(mask) * BITS_PER_BYTE) {
		u64 val;

		val = perf_reg_value(regs, bit);
		perf_output_put(handle, val);
	}
}

static void perf_sample_regs_user(struct perf_regs_user *regs_user,
				  struct pt_regs *regs)
{
	if (!user_mode(regs)) {
		if (current->mm)
			regs = task_pt_regs(current);
		else
			regs = NULL;
	}

	if (regs) {
		regs_user->regs = regs;
		regs_user->abi  = perf_reg_abi(current);
	}
}

4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259
/*
 * Get remaining task size from user stack pointer.
 *
 * It'd be better to take stack vma map and limit this more
 * precisly, but there's no way to get it safely under interrupt,
 * so using TASK_SIZE as limit.
 */
static u64 perf_ustack_task_size(struct pt_regs *regs)
{
	unsigned long addr = perf_user_stack_pointer(regs);

	if (!addr || addr >= TASK_SIZE)
		return 0;

	return TASK_SIZE - addr;
}

static u16
perf_sample_ustack_size(u16 stack_size, u16 header_size,
			struct pt_regs *regs)
{
	u64 task_size;

	/* No regs, no stack pointer, no dump. */
	if (!regs)
		return 0;

	/*
	 * Check if we fit in with the requested stack size into the:
	 * - TASK_SIZE
	 *   If we don't, we limit the size to the TASK_SIZE.
	 *
	 * - remaining sample size
	 *   If we don't, we customize the stack size to
	 *   fit in to the remaining sample size.
	 */

	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
	stack_size = min(stack_size, (u16) task_size);

	/* Current header size plus static size and dynamic size. */
	header_size += 2 * sizeof(u64);

	/* Do we fit in with the current stack dump size? */
	if ((u16) (header_size + stack_size) < header_size) {
		/*
		 * If we overflow the maximum size for the sample,
		 * we customize the stack dump size to fit in.
		 */
		stack_size = USHRT_MAX - header_size - sizeof(u64);
		stack_size = round_up(stack_size, sizeof(u64));
	}

	return stack_size;
}

static void
perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
			  struct pt_regs *regs)
{
	/* Case of a kernel thread, nothing to dump */
	if (!regs) {
		u64 size = 0;
		perf_output_put(handle, size);
	} else {
		unsigned long sp;
		unsigned int rem;
		u64 dyn_size;

		/*
		 * We dump:
		 * static size
		 *   - the size requested by user or the best one we can fit
		 *     in to the sample max size
		 * data
		 *   - user stack dump data
		 * dynamic size
		 *   - the actual dumped size
		 */

		/* Static size. */
		perf_output_put(handle, dump_size);

		/* Data. */
		sp = perf_user_stack_pointer(regs);
		rem = __output_copy_user(handle, (void *) sp, dump_size);
		dyn_size = dump_size - rem;

		perf_output_skip(handle, rem);

		/* Dynamic size. */
		perf_output_put(handle, dyn_size);
	}
}

4260 4261 4262
static void __perf_event_header__init_id(struct perf_event_header *header,
					 struct perf_sample_data *data,
					 struct perf_event *event)
4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289
{
	u64 sample_type = event->attr.sample_type;

	data->type = sample_type;
	header->size += event->id_header_size;

	if (sample_type & PERF_SAMPLE_TID) {
		/* namespace issues */
		data->tid_entry.pid = perf_event_pid(event, current);
		data->tid_entry.tid = perf_event_tid(event, current);
	}

	if (sample_type & PERF_SAMPLE_TIME)
		data->time = perf_clock();

	if (sample_type & PERF_SAMPLE_ID)
		data->id = primary_event_id(event);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		data->stream_id = event->id;

	if (sample_type & PERF_SAMPLE_CPU) {
		data->cpu_entry.cpu	 = raw_smp_processor_id();
		data->cpu_entry.reserved = 0;
	}
}

4290 4291 4292
void perf_event_header__init_id(struct perf_event_header *header,
				struct perf_sample_data *data,
				struct perf_event *event)
4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318
{
	if (event->attr.sample_id_all)
		__perf_event_header__init_id(header, data, event);
}

static void __perf_event__output_id_sample(struct perf_output_handle *handle,
					   struct perf_sample_data *data)
{
	u64 sample_type = data->type;

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);
}

4319 4320 4321
void perf_event__output_id_sample(struct perf_event *event,
				  struct perf_output_handle *handle,
				  struct perf_sample_data *sample)
4322 4323 4324 4325 4326
{
	if (event->attr.sample_id_all)
		__perf_event__output_id_sample(handle, sample);
}

4327
static void perf_output_read_one(struct perf_output_handle *handle,
4328 4329
				 struct perf_event *event,
				 u64 enabled, u64 running)
4330
{
4331
	u64 read_format = event->attr.read_format;
4332 4333 4334
	u64 values[4];
	int n = 0;

P
Peter Zijlstra 已提交
4335
	values[n++] = perf_event_count(event);
4336
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4337
		values[n++] = enabled +
4338
			atomic64_read(&event->child_total_time_enabled);
4339 4340
	}
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4341
		values[n++] = running +
4342
			atomic64_read(&event->child_total_time_running);
4343 4344
	}
	if (read_format & PERF_FORMAT_ID)
4345
		values[n++] = primary_event_id(event);
4346

4347
	__output_copy(handle, values, n * sizeof(u64));
4348 4349 4350
}

/*
4351
 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
4352 4353
 */
static void perf_output_read_group(struct perf_output_handle *handle,
4354 4355
			    struct perf_event *event,
			    u64 enabled, u64 running)
4356
{
4357 4358
	struct perf_event *leader = event->group_leader, *sub;
	u64 read_format = event->attr.read_format;
4359 4360 4361 4362 4363 4364
	u64 values[5];
	int n = 0;

	values[n++] = 1 + leader->nr_siblings;

	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4365
		values[n++] = enabled;
4366 4367

	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4368
		values[n++] = running;
4369

4370
	if (leader != event)
4371 4372
		leader->pmu->read(leader);

P
Peter Zijlstra 已提交
4373
	values[n++] = perf_event_count(leader);
4374
	if (read_format & PERF_FORMAT_ID)
4375
		values[n++] = primary_event_id(leader);
4376

4377
	__output_copy(handle, values, n * sizeof(u64));
4378

4379
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4380 4381
		n = 0;

4382
		if (sub != event)
4383 4384
			sub->pmu->read(sub);

P
Peter Zijlstra 已提交
4385
		values[n++] = perf_event_count(sub);
4386
		if (read_format & PERF_FORMAT_ID)
4387
			values[n++] = primary_event_id(sub);
4388

4389
		__output_copy(handle, values, n * sizeof(u64));
4390 4391 4392
	}
}

4393 4394 4395
#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
				 PERF_FORMAT_TOTAL_TIME_RUNNING)

4396
static void perf_output_read(struct perf_output_handle *handle,
4397
			     struct perf_event *event)
4398
{
4399
	u64 enabled = 0, running = 0, now;
4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410
	u64 read_format = event->attr.read_format;

	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we are called in
	 * NMI context
	 */
4411
	if (read_format & PERF_FORMAT_TOTAL_TIMES)
4412
		calc_timer_values(event, &now, &enabled, &running);
4413

4414
	if (event->attr.read_format & PERF_FORMAT_GROUP)
4415
		perf_output_read_group(handle, event, enabled, running);
4416
	else
4417
		perf_output_read_one(handle, event, enabled, running);
4418 4419
}

4420 4421 4422
void perf_output_sample(struct perf_output_handle *handle,
			struct perf_event_header *header,
			struct perf_sample_data *data,
4423
			struct perf_event *event)
4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453
{
	u64 sample_type = data->type;

	perf_output_put(handle, *header);

	if (sample_type & PERF_SAMPLE_IP)
		perf_output_put(handle, data->ip);

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ADDR)
		perf_output_put(handle, data->addr);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);

	if (sample_type & PERF_SAMPLE_PERIOD)
		perf_output_put(handle, data->period);

	if (sample_type & PERF_SAMPLE_READ)
4454
		perf_output_read(handle, event);
4455 4456 4457 4458 4459 4460 4461 4462 4463 4464

	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
		if (data->callchain) {
			int size = 1;

			if (data->callchain)
				size += data->callchain->nr;

			size *= sizeof(u64);

4465
			__output_copy(handle, data->callchain, size);
4466 4467 4468 4469 4470 4471 4472 4473 4474
		} else {
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}

	if (sample_type & PERF_SAMPLE_RAW) {
		if (data->raw) {
			perf_output_put(handle, data->raw->size);
4475 4476
			__output_copy(handle, data->raw->data,
					   data->raw->size);
4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487
		} else {
			struct {
				u32	size;
				u32	data;
			} raw = {
				.size = sizeof(u32),
				.data = 0,
			};
			perf_output_put(handle, raw);
		}
	}
4488

4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505
	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
		if (data->br_stack) {
			size_t size;

			size = data->br_stack->nr
			     * sizeof(struct perf_branch_entry);

			perf_output_put(handle, data->br_stack->nr);
			perf_output_copy(handle, data->br_stack->entries, size);
		} else {
			/*
			 * we always store at least the value of nr
			 */
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}
4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522

	if (sample_type & PERF_SAMPLE_REGS_USER) {
		u64 abi = data->regs_user.abi;

		/*
		 * If there are no regs to dump, notice it through
		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
		 */
		perf_output_put(handle, abi);

		if (abi) {
			u64 mask = event->attr.sample_regs_user;
			perf_output_sample_regs(handle,
						data->regs_user.regs,
						mask);
		}
	}
4523

4524
	if (sample_type & PERF_SAMPLE_STACK_USER) {
4525 4526 4527
		perf_output_sample_ustack(handle,
					  data->stack_user_size,
					  data->regs_user.regs);
4528
	}
A
Andi Kleen 已提交
4529 4530 4531

	if (sample_type & PERF_SAMPLE_WEIGHT)
		perf_output_put(handle, data->weight);
4532 4533 4534

	if (sample_type & PERF_SAMPLE_DATA_SRC)
		perf_output_put(handle, data->data_src.val);
4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548

	if (!event->attr.watermark) {
		int wakeup_events = event->attr.wakeup_events;

		if (wakeup_events) {
			struct ring_buffer *rb = handle->rb;
			int events = local_inc_return(&rb->events);

			if (events >= wakeup_events) {
				local_sub(wakeup_events, &rb->events);
				local_inc(&rb->wakeup);
			}
		}
	}
4549 4550 4551 4552
}

void perf_prepare_sample(struct perf_event_header *header,
			 struct perf_sample_data *data,
4553
			 struct perf_event *event,
4554
			 struct pt_regs *regs)
4555
{
4556
	u64 sample_type = event->attr.sample_type;
4557

4558
	header->type = PERF_RECORD_SAMPLE;
4559
	header->size = sizeof(*header) + event->header_size;
4560 4561 4562

	header->misc = 0;
	header->misc |= perf_misc_flags(regs);
4563

4564
	__perf_event_header__init_id(header, data, event);
4565

4566
	if (sample_type & PERF_SAMPLE_IP)
4567 4568
		data->ip = perf_instruction_pointer(regs);

4569
	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
4570
		int size = 1;
4571

4572
		data->callchain = perf_callchain(event, regs);
4573 4574 4575 4576 4577

		if (data->callchain)
			size += data->callchain->nr;

		header->size += size * sizeof(u64);
4578 4579
	}

4580
	if (sample_type & PERF_SAMPLE_RAW) {
4581 4582 4583 4584 4585 4586 4587 4588
		int size = sizeof(u32);

		if (data->raw)
			size += data->raw->size;
		else
			size += sizeof(u32);

		WARN_ON_ONCE(size & (sizeof(u64)-1));
4589
		header->size += size;
4590
	}
4591 4592 4593 4594 4595 4596 4597 4598 4599

	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
		int size = sizeof(u64); /* nr */
		if (data->br_stack) {
			size += data->br_stack->nr
			      * sizeof(struct perf_branch_entry);
		}
		header->size += size;
	}
4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613

	if (sample_type & PERF_SAMPLE_REGS_USER) {
		/* regs dump ABI info */
		int size = sizeof(u64);

		perf_sample_regs_user(&data->regs_user, regs);

		if (data->regs_user.regs) {
			u64 mask = event->attr.sample_regs_user;
			size += hweight64(mask) * sizeof(u64);
		}

		header->size += size;
	}
4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642

	if (sample_type & PERF_SAMPLE_STACK_USER) {
		/*
		 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
		 * processed as the last one or have additional check added
		 * in case new sample type is added, because we could eat
		 * up the rest of the sample size.
		 */
		struct perf_regs_user *uregs = &data->regs_user;
		u16 stack_size = event->attr.sample_stack_user;
		u16 size = sizeof(u64);

		if (!uregs->abi)
			perf_sample_regs_user(uregs, regs);

		stack_size = perf_sample_ustack_size(stack_size, header->size,
						     uregs->regs);

		/*
		 * If there is something to dump, add space for the dump
		 * itself and for the field that tells the dynamic size,
		 * which is how many have been actually dumped.
		 */
		if (stack_size)
			size += sizeof(u64) + stack_size;

		data->stack_user_size = stack_size;
		header->size += size;
	}
4643
}
4644

4645
static void perf_event_output(struct perf_event *event,
4646 4647 4648 4649 4650
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
	struct perf_output_handle handle;
	struct perf_event_header header;
4651

4652 4653 4654
	/* protect the callchain buffers */
	rcu_read_lock();

4655
	perf_prepare_sample(&header, data, event, regs);
P
Peter Zijlstra 已提交
4656

4657
	if (perf_output_begin(&handle, event, header.size))
4658
		goto exit;
4659

4660
	perf_output_sample(&handle, &header, data, event);
4661

4662
	perf_output_end(&handle);
4663 4664 4665

exit:
	rcu_read_unlock();
4666 4667
}

4668
/*
4669
 * read event_id
4670 4671 4672 4673 4674 4675 4676 4677 4678 4679
 */

struct perf_read_event {
	struct perf_event_header	header;

	u32				pid;
	u32				tid;
};

static void
4680
perf_event_read_event(struct perf_event *event,
4681 4682 4683
			struct task_struct *task)
{
	struct perf_output_handle handle;
4684
	struct perf_sample_data sample;
4685
	struct perf_read_event read_event = {
4686
		.header = {
4687
			.type = PERF_RECORD_READ,
4688
			.misc = 0,
4689
			.size = sizeof(read_event) + event->read_size,
4690
		},
4691 4692
		.pid = perf_event_pid(event, task),
		.tid = perf_event_tid(event, task),
4693
	};
4694
	int ret;
4695

4696
	perf_event_header__init_id(&read_event.header, &sample, event);
4697
	ret = perf_output_begin(&handle, event, read_event.header.size);
4698 4699 4700
	if (ret)
		return;

4701
	perf_output_put(&handle, read_event);
4702
	perf_output_read(&handle, event);
4703
	perf_event__output_id_sample(event, &handle, &sample);
4704

4705 4706 4707
	perf_output_end(&handle);
}

4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721
typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);

static void
perf_event_aux_ctx(struct perf_event_context *ctx,
		   perf_event_aux_output_cb output,
		   void *data)
{
	struct perf_event *event;

	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (event->state < PERF_EVENT_STATE_INACTIVE)
			continue;
		if (!event_filter_match(event))
			continue;
4722
		output(event, data);
4723 4724 4725 4726
	}
}

static void
4727
perf_event_aux(perf_event_aux_output_cb output, void *data,
4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739
	       struct perf_event_context *task_ctx)
{
	struct perf_cpu_context *cpuctx;
	struct perf_event_context *ctx;
	struct pmu *pmu;
	int ctxn;

	rcu_read_lock();
	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
		if (cpuctx->unique_pmu != pmu)
			goto next;
4740
		perf_event_aux_ctx(&cpuctx->ctx, output, data);
4741 4742 4743 4744 4745 4746 4747
		if (task_ctx)
			goto next;
		ctxn = pmu->task_ctx_nr;
		if (ctxn < 0)
			goto next;
		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		if (ctx)
4748
			perf_event_aux_ctx(ctx, output, data);
4749 4750 4751 4752 4753 4754
next:
		put_cpu_ptr(pmu->pmu_cpu_context);
	}

	if (task_ctx) {
		preempt_disable();
4755
		perf_event_aux_ctx(task_ctx, output, data);
4756 4757 4758 4759 4760
		preempt_enable();
	}
	rcu_read_unlock();
}

P
Peter Zijlstra 已提交
4761
/*
P
Peter Zijlstra 已提交
4762 4763
 * task tracking -- fork/exit
 *
4764
 * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
P
Peter Zijlstra 已提交
4765 4766
 */

P
Peter Zijlstra 已提交
4767
struct perf_task_event {
4768
	struct task_struct		*task;
4769
	struct perf_event_context	*task_ctx;
P
Peter Zijlstra 已提交
4770 4771 4772 4773 4774 4775

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				ppid;
P
Peter Zijlstra 已提交
4776 4777
		u32				tid;
		u32				ptid;
4778
		u64				time;
4779
	} event_id;
P
Peter Zijlstra 已提交
4780 4781
};

4782 4783 4784 4785 4786 4787
static int perf_event_task_match(struct perf_event *event)
{
	return event->attr.comm || event->attr.mmap ||
	       event->attr.mmap_data || event->attr.task;
}

4788
static void perf_event_task_output(struct perf_event *event,
4789
				   void *data)
P
Peter Zijlstra 已提交
4790
{
4791
	struct perf_task_event *task_event = data;
P
Peter Zijlstra 已提交
4792
	struct perf_output_handle handle;
4793
	struct perf_sample_data	sample;
P
Peter Zijlstra 已提交
4794
	struct task_struct *task = task_event->task;
4795
	int ret, size = task_event->event_id.header.size;
4796

4797 4798 4799
	if (!perf_event_task_match(event))
		return;

4800
	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
P
Peter Zijlstra 已提交
4801

4802
	ret = perf_output_begin(&handle, event,
4803
				task_event->event_id.header.size);
4804
	if (ret)
4805
		goto out;
P
Peter Zijlstra 已提交
4806

4807 4808
	task_event->event_id.pid = perf_event_pid(event, task);
	task_event->event_id.ppid = perf_event_pid(event, current);
P
Peter Zijlstra 已提交
4809

4810 4811
	task_event->event_id.tid = perf_event_tid(event, task);
	task_event->event_id.ptid = perf_event_tid(event, current);
P
Peter Zijlstra 已提交
4812

4813
	perf_output_put(&handle, task_event->event_id);
4814

4815 4816
	perf_event__output_id_sample(event, &handle, &sample);

P
Peter Zijlstra 已提交
4817
	perf_output_end(&handle);
4818 4819
out:
	task_event->event_id.header.size = size;
P
Peter Zijlstra 已提交
4820 4821
}

4822 4823
static void perf_event_task(struct task_struct *task,
			      struct perf_event_context *task_ctx,
4824
			      int new)
P
Peter Zijlstra 已提交
4825
{
P
Peter Zijlstra 已提交
4826
	struct perf_task_event task_event;
P
Peter Zijlstra 已提交
4827

4828 4829 4830
	if (!atomic_read(&nr_comm_events) &&
	    !atomic_read(&nr_mmap_events) &&
	    !atomic_read(&nr_task_events))
P
Peter Zijlstra 已提交
4831 4832
		return;

P
Peter Zijlstra 已提交
4833
	task_event = (struct perf_task_event){
4834 4835
		.task	  = task,
		.task_ctx = task_ctx,
4836
		.event_id    = {
P
Peter Zijlstra 已提交
4837
			.header = {
4838
				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
4839
				.misc = 0,
4840
				.size = sizeof(task_event.event_id),
P
Peter Zijlstra 已提交
4841
			},
4842 4843
			/* .pid  */
			/* .ppid */
P
Peter Zijlstra 已提交
4844 4845
			/* .tid  */
			/* .ptid */
P
Peter Zijlstra 已提交
4846
			.time = perf_clock(),
P
Peter Zijlstra 已提交
4847 4848 4849
		},
	};

4850
	perf_event_aux(perf_event_task_output,
4851 4852
		       &task_event,
		       task_ctx);
P
Peter Zijlstra 已提交
4853 4854
}

4855
void perf_event_fork(struct task_struct *task)
P
Peter Zijlstra 已提交
4856
{
4857
	perf_event_task(task, NULL, 1);
P
Peter Zijlstra 已提交
4858 4859
}

4860 4861 4862 4863 4864
/*
 * comm tracking
 */

struct perf_comm_event {
4865 4866
	struct task_struct	*task;
	char			*comm;
4867 4868 4869 4870 4871 4872 4873
	int			comm_size;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
4874
	} event_id;
4875 4876
};

4877 4878 4879 4880 4881
static int perf_event_comm_match(struct perf_event *event)
{
	return event->attr.comm;
}

4882
static void perf_event_comm_output(struct perf_event *event,
4883
				   void *data)
4884
{
4885
	struct perf_comm_event *comm_event = data;
4886
	struct perf_output_handle handle;
4887
	struct perf_sample_data sample;
4888
	int size = comm_event->event_id.header.size;
4889 4890
	int ret;

4891 4892 4893
	if (!perf_event_comm_match(event))
		return;

4894 4895
	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
4896
				comm_event->event_id.header.size);
4897 4898

	if (ret)
4899
		goto out;
4900

4901 4902
	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
4903

4904
	perf_output_put(&handle, comm_event->event_id);
4905
	__output_copy(&handle, comm_event->comm,
4906
				   comm_event->comm_size);
4907 4908 4909

	perf_event__output_id_sample(event, &handle, &sample);

4910
	perf_output_end(&handle);
4911 4912
out:
	comm_event->event_id.header.size = size;
4913 4914
}

4915
static void perf_event_comm_event(struct perf_comm_event *comm_event)
4916
{
4917
	char comm[TASK_COMM_LEN];
4918 4919
	unsigned int size;

4920
	memset(comm, 0, sizeof(comm));
4921
	strlcpy(comm, comm_event->task->comm, sizeof(comm));
4922
	size = ALIGN(strlen(comm)+1, sizeof(u64));
4923 4924 4925 4926

	comm_event->comm = comm;
	comm_event->comm_size = size;

4927
	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
P
Peter Zijlstra 已提交
4928

4929
	perf_event_aux(perf_event_comm_output,
4930 4931
		       comm_event,
		       NULL);
4932 4933
}

4934
void perf_event_comm(struct task_struct *task)
4935
{
4936
	struct perf_comm_event comm_event;
P
Peter Zijlstra 已提交
4937 4938
	struct perf_event_context *ctx;
	int ctxn;
4939

4940
	rcu_read_lock();
P
Peter Zijlstra 已提交
4941 4942 4943 4944
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;
4945

P
Peter Zijlstra 已提交
4946 4947
		perf_event_enable_on_exec(ctx);
	}
4948
	rcu_read_unlock();
4949

4950
	if (!atomic_read(&nr_comm_events))
4951
		return;
4952

4953
	comm_event = (struct perf_comm_event){
4954
		.task	= task,
4955 4956
		/* .comm      */
		/* .comm_size */
4957
		.event_id  = {
4958
			.header = {
4959
				.type = PERF_RECORD_COMM,
4960 4961 4962 4963 4964
				.misc = 0,
				/* .size */
			},
			/* .pid */
			/* .tid */
4965 4966 4967
		},
	};

4968
	perf_event_comm_event(&comm_event);
4969 4970
}

4971 4972 4973 4974 4975
/*
 * mmap tracking
 */

struct perf_mmap_event {
4976 4977 4978 4979
	struct vm_area_struct	*vma;

	const char		*file_name;
	int			file_size;
4980 4981 4982 4983 4984 4985 4986 4987 4988

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
		u64				start;
		u64				len;
		u64				pgoff;
4989
	} event_id;
4990 4991
};

4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002
static int perf_event_mmap_match(struct perf_event *event,
				 void *data)
{
	struct perf_mmap_event *mmap_event = data;
	struct vm_area_struct *vma = mmap_event->vma;
	int executable = vma->vm_flags & VM_EXEC;

	return (!executable && event->attr.mmap_data) ||
	       (executable && event->attr.mmap);
}

5003
static void perf_event_mmap_output(struct perf_event *event,
5004
				   void *data)
5005
{
5006
	struct perf_mmap_event *mmap_event = data;
5007
	struct perf_output_handle handle;
5008
	struct perf_sample_data sample;
5009
	int size = mmap_event->event_id.header.size;
5010
	int ret;
5011

5012 5013 5014
	if (!perf_event_mmap_match(event, data))
		return;

5015 5016
	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
5017
				mmap_event->event_id.header.size);
5018
	if (ret)
5019
		goto out;
5020

5021 5022
	mmap_event->event_id.pid = perf_event_pid(event, current);
	mmap_event->event_id.tid = perf_event_tid(event, current);
5023

5024
	perf_output_put(&handle, mmap_event->event_id);
5025
	__output_copy(&handle, mmap_event->file_name,
5026
				   mmap_event->file_size);
5027 5028 5029

	perf_event__output_id_sample(event, &handle, &sample);

5030
	perf_output_end(&handle);
5031 5032
out:
	mmap_event->event_id.header.size = size;
5033 5034
}

5035
static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
5036
{
5037 5038
	struct vm_area_struct *vma = mmap_event->vma;
	struct file *file = vma->vm_file;
5039 5040 5041
	unsigned int size;
	char tmp[16];
	char *buf = NULL;
5042
	const char *name;
5043

5044 5045
	memset(tmp, 0, sizeof(tmp));

5046
	if (file) {
5047
		/*
5048
		 * d_path works from the end of the rb backwards, so we
5049 5050 5051 5052
		 * need to add enough zero bytes after the string to handle
		 * the 64bit alignment we do later.
		 */
		buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
5053 5054 5055 5056
		if (!buf) {
			name = strncpy(tmp, "//enomem", sizeof(tmp));
			goto got_name;
		}
5057
		name = d_path(&file->f_path, buf, PATH_MAX);
5058 5059 5060 5061 5062
		if (IS_ERR(name)) {
			name = strncpy(tmp, "//toolong", sizeof(tmp));
			goto got_name;
		}
	} else {
5063 5064
		if (arch_vma_name(mmap_event->vma)) {
			name = strncpy(tmp, arch_vma_name(mmap_event->vma),
5065 5066
				       sizeof(tmp) - 1);
			tmp[sizeof(tmp) - 1] = '\0';
5067
			goto got_name;
5068
		}
5069 5070 5071 5072

		if (!vma->vm_mm) {
			name = strncpy(tmp, "[vdso]", sizeof(tmp));
			goto got_name;
5073 5074 5075 5076 5077 5078 5079 5080
		} else if (vma->vm_start <= vma->vm_mm->start_brk &&
				vma->vm_end >= vma->vm_mm->brk) {
			name = strncpy(tmp, "[heap]", sizeof(tmp));
			goto got_name;
		} else if (vma->vm_start <= vma->vm_mm->start_stack &&
				vma->vm_end >= vma->vm_mm->start_stack) {
			name = strncpy(tmp, "[stack]", sizeof(tmp));
			goto got_name;
5081 5082
		}

5083 5084 5085 5086 5087
		name = strncpy(tmp, "//anon", sizeof(tmp));
		goto got_name;
	}

got_name:
5088
	size = ALIGN(strlen(name)+1, sizeof(u64));
5089 5090 5091 5092

	mmap_event->file_name = name;
	mmap_event->file_size = size;

5093 5094 5095
	if (!(vma->vm_flags & VM_EXEC))
		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;

5096
	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
5097

5098
	perf_event_aux(perf_event_mmap_output,
5099 5100
		       mmap_event,
		       NULL);
5101

5102 5103 5104
	kfree(buf);
}

5105
void perf_event_mmap(struct vm_area_struct *vma)
5106
{
5107 5108
	struct perf_mmap_event mmap_event;

5109
	if (!atomic_read(&nr_mmap_events))
5110 5111 5112
		return;

	mmap_event = (struct perf_mmap_event){
5113
		.vma	= vma,
5114 5115
		/* .file_name */
		/* .file_size */
5116
		.event_id  = {
5117
			.header = {
5118
				.type = PERF_RECORD_MMAP,
5119
				.misc = PERF_RECORD_MISC_USER,
5120 5121 5122 5123
				/* .size */
			},
			/* .pid */
			/* .tid */
5124 5125
			.start  = vma->vm_start,
			.len    = vma->vm_end - vma->vm_start,
5126
			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
5127 5128 5129
		},
	};

5130
	perf_event_mmap_event(&mmap_event);
5131 5132
}

5133 5134 5135 5136
/*
 * IRQ throttle logging
 */

5137
static void perf_log_throttle(struct perf_event *event, int enable)
5138 5139
{
	struct perf_output_handle handle;
5140
	struct perf_sample_data sample;
5141 5142 5143 5144 5145
	int ret;

	struct {
		struct perf_event_header	header;
		u64				time;
5146
		u64				id;
5147
		u64				stream_id;
5148 5149
	} throttle_event = {
		.header = {
5150
			.type = PERF_RECORD_THROTTLE,
5151 5152 5153
			.misc = 0,
			.size = sizeof(throttle_event),
		},
P
Peter Zijlstra 已提交
5154
		.time		= perf_clock(),
5155 5156
		.id		= primary_event_id(event),
		.stream_id	= event->id,
5157 5158
	};

5159
	if (enable)
5160
		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
5161

5162 5163 5164
	perf_event_header__init_id(&throttle_event.header, &sample, event);

	ret = perf_output_begin(&handle, event,
5165
				throttle_event.header.size);
5166 5167 5168 5169
	if (ret)
		return;

	perf_output_put(&handle, throttle_event);
5170
	perf_event__output_id_sample(event, &handle, &sample);
5171 5172 5173
	perf_output_end(&handle);
}

5174
/*
5175
 * Generic event overflow handling, sampling.
5176 5177
 */

5178
static int __perf_event_overflow(struct perf_event *event,
5179 5180
				   int throttle, struct perf_sample_data *data,
				   struct pt_regs *regs)
5181
{
5182 5183
	int events = atomic_read(&event->event_limit);
	struct hw_perf_event *hwc = &event->hw;
5184
	u64 seq;
5185 5186
	int ret = 0;

5187 5188 5189 5190 5191 5192 5193
	/*
	 * Non-sampling counters might still use the PMI to fold short
	 * hardware counters, ignore those.
	 */
	if (unlikely(!is_sampling_event(event)))
		return 0;

5194 5195 5196 5197 5198 5199 5200 5201 5202
	seq = __this_cpu_read(perf_throttled_seq);
	if (seq != hwc->interrupts_seq) {
		hwc->interrupts_seq = seq;
		hwc->interrupts = 1;
	} else {
		hwc->interrupts++;
		if (unlikely(throttle
			     && hwc->interrupts >= max_samples_per_tick)) {
			__this_cpu_inc(perf_throttled_count);
P
Peter Zijlstra 已提交
5203 5204
			hwc->interrupts = MAX_INTERRUPTS;
			perf_log_throttle(event, 0);
5205
			tick_nohz_full_kick();
5206 5207
			ret = 1;
		}
5208
	}
5209

5210
	if (event->attr.freq) {
P
Peter Zijlstra 已提交
5211
		u64 now = perf_clock();
5212
		s64 delta = now - hwc->freq_time_stamp;
5213

5214
		hwc->freq_time_stamp = now;
5215

5216
		if (delta > 0 && delta < 2*TICK_NSEC)
5217
			perf_adjust_period(event, delta, hwc->last_period, true);
5218 5219
	}

5220 5221
	/*
	 * XXX event_limit might not quite work as expected on inherited
5222
	 * events
5223 5224
	 */

5225 5226
	event->pending_kill = POLL_IN;
	if (events && atomic_dec_and_test(&event->event_limit)) {
5227
		ret = 1;
5228
		event->pending_kill = POLL_HUP;
5229 5230
		event->pending_disable = 1;
		irq_work_queue(&event->pending);
5231 5232
	}

5233
	if (event->overflow_handler)
5234
		event->overflow_handler(event, data, regs);
5235
	else
5236
		perf_event_output(event, data, regs);
5237

P
Peter Zijlstra 已提交
5238
	if (event->fasync && event->pending_kill) {
5239 5240
		event->pending_wakeup = 1;
		irq_work_queue(&event->pending);
P
Peter Zijlstra 已提交
5241 5242
	}

5243
	return ret;
5244 5245
}

5246
int perf_event_overflow(struct perf_event *event,
5247 5248
			  struct perf_sample_data *data,
			  struct pt_regs *regs)
5249
{
5250
	return __perf_event_overflow(event, 1, data, regs);
5251 5252
}

5253
/*
5254
 * Generic software event infrastructure
5255 5256
 */

5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267
struct swevent_htable {
	struct swevent_hlist		*swevent_hlist;
	struct mutex			hlist_mutex;
	int				hlist_refcount;

	/* Recursion avoidance in each contexts */
	int				recursion[PERF_NR_CONTEXTS];
};

static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);

5268
/*
5269 5270
 * We directly increment event->count and keep a second value in
 * event->hw.period_left to count intervals. This period event
5271 5272 5273 5274
 * is kept in the range [-sample_period, 0] so that we can use the
 * sign as trigger.
 */

5275
u64 perf_swevent_set_period(struct perf_event *event)
5276
{
5277
	struct hw_perf_event *hwc = &event->hw;
5278 5279 5280 5281 5282
	u64 period = hwc->last_period;
	u64 nr, offset;
	s64 old, val;

	hwc->last_period = hwc->sample_period;
5283 5284

again:
5285
	old = val = local64_read(&hwc->period_left);
5286 5287
	if (val < 0)
		return 0;
5288

5289 5290 5291
	nr = div64_u64(period + val, period);
	offset = nr * period;
	val -= offset;
5292
	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
5293
		goto again;
5294

5295
	return nr;
5296 5297
}

5298
static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
5299
				    struct perf_sample_data *data,
5300
				    struct pt_regs *regs)
5301
{
5302
	struct hw_perf_event *hwc = &event->hw;
5303
	int throttle = 0;
5304

5305 5306
	if (!overflow)
		overflow = perf_swevent_set_period(event);
5307

5308 5309
	if (hwc->interrupts == MAX_INTERRUPTS)
		return;
5310

5311
	for (; overflow; overflow--) {
5312
		if (__perf_event_overflow(event, throttle,
5313
					    data, regs)) {
5314 5315 5316 5317 5318 5319
			/*
			 * We inhibit the overflow from happening when
			 * hwc->interrupts == MAX_INTERRUPTS.
			 */
			break;
		}
5320
		throttle = 1;
5321
	}
5322 5323
}

P
Peter Zijlstra 已提交
5324
static void perf_swevent_event(struct perf_event *event, u64 nr,
5325
			       struct perf_sample_data *data,
5326
			       struct pt_regs *regs)
5327
{
5328
	struct hw_perf_event *hwc = &event->hw;
5329

5330
	local64_add(nr, &event->count);
5331

5332 5333 5334
	if (!regs)
		return;

5335
	if (!is_sampling_event(event))
5336
		return;
5337

5338 5339 5340 5341 5342 5343
	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
		data->period = nr;
		return perf_swevent_overflow(event, 1, data, regs);
	} else
		data->period = event->hw.last_period;

5344
	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
5345
		return perf_swevent_overflow(event, 1, data, regs);
5346

5347
	if (local64_add_negative(nr, &hwc->period_left))
5348
		return;
5349

5350
	perf_swevent_overflow(event, 0, data, regs);
5351 5352
}

5353 5354 5355
static int perf_exclude_event(struct perf_event *event,
			      struct pt_regs *regs)
{
P
Peter Zijlstra 已提交
5356
	if (event->hw.state & PERF_HES_STOPPED)
5357
		return 1;
P
Peter Zijlstra 已提交
5358

5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369
	if (regs) {
		if (event->attr.exclude_user && user_mode(regs))
			return 1;

		if (event->attr.exclude_kernel && !user_mode(regs))
			return 1;
	}

	return 0;
}

5370
static int perf_swevent_match(struct perf_event *event,
P
Peter Zijlstra 已提交
5371
				enum perf_type_id type,
L
Li Zefan 已提交
5372 5373 5374
				u32 event_id,
				struct perf_sample_data *data,
				struct pt_regs *regs)
5375
{
5376
	if (event->attr.type != type)
5377
		return 0;
5378

5379
	if (event->attr.config != event_id)
5380 5381
		return 0;

5382 5383
	if (perf_exclude_event(event, regs))
		return 0;
5384 5385 5386 5387

	return 1;
}

5388 5389 5390 5391 5392 5393 5394
static inline u64 swevent_hash(u64 type, u32 event_id)
{
	u64 val = event_id | (type << 32);

	return hash_64(val, SWEVENT_HLIST_BITS);
}

5395 5396
static inline struct hlist_head *
__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
5397
{
5398 5399 5400 5401
	u64 hash = swevent_hash(type, event_id);

	return &hlist->heads[hash];
}
5402

5403 5404
/* For the read side: events when they trigger */
static inline struct hlist_head *
5405
find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
5406 5407
{
	struct swevent_hlist *hlist;
5408

5409
	hlist = rcu_dereference(swhash->swevent_hlist);
5410 5411 5412
	if (!hlist)
		return NULL;

5413 5414 5415 5416 5417
	return __find_swevent_head(hlist, type, event_id);
}

/* For the event head insertion and removal in the hlist */
static inline struct hlist_head *
5418
find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
5419 5420 5421 5422 5423 5424 5425 5426 5427 5428
{
	struct swevent_hlist *hlist;
	u32 event_id = event->attr.config;
	u64 type = event->attr.type;

	/*
	 * Event scheduling is always serialized against hlist allocation
	 * and release. Which makes the protected version suitable here.
	 * The context lock guarantees that.
	 */
5429
	hlist = rcu_dereference_protected(swhash->swevent_hlist,
5430 5431 5432 5433 5434
					  lockdep_is_held(&event->ctx->lock));
	if (!hlist)
		return NULL;

	return __find_swevent_head(hlist, type, event_id);
5435 5436 5437
}

static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
5438
				    u64 nr,
5439 5440
				    struct perf_sample_data *data,
				    struct pt_regs *regs)
5441
{
5442
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5443
	struct perf_event *event;
5444
	struct hlist_head *head;
5445

5446
	rcu_read_lock();
5447
	head = find_swevent_head_rcu(swhash, type, event_id);
5448 5449 5450
	if (!head)
		goto end;

5451
	hlist_for_each_entry_rcu(event, head, hlist_entry) {
L
Li Zefan 已提交
5452
		if (perf_swevent_match(event, type, event_id, data, regs))
5453
			perf_swevent_event(event, nr, data, regs);
5454
	}
5455 5456
end:
	rcu_read_unlock();
5457 5458
}

5459
int perf_swevent_get_recursion_context(void)
P
Peter Zijlstra 已提交
5460
{
5461
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
P
Peter Zijlstra 已提交
5462

5463
	return get_recursion_context(swhash->recursion);
P
Peter Zijlstra 已提交
5464
}
I
Ingo Molnar 已提交
5465
EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
P
Peter Zijlstra 已提交
5466

5467
inline void perf_swevent_put_recursion_context(int rctx)
5468
{
5469
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5470

5471
	put_recursion_context(swhash->recursion, rctx);
5472
}
5473

5474
void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
5475
{
5476
	struct perf_sample_data data;
5477 5478
	int rctx;

5479
	preempt_disable_notrace();
5480 5481 5482
	rctx = perf_swevent_get_recursion_context();
	if (rctx < 0)
		return;
5483

5484
	perf_sample_data_init(&data, addr, 0);
5485

5486
	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
5487 5488

	perf_swevent_put_recursion_context(rctx);
5489
	preempt_enable_notrace();
5490 5491
}

5492
static void perf_swevent_read(struct perf_event *event)
5493 5494 5495
{
}

P
Peter Zijlstra 已提交
5496
static int perf_swevent_add(struct perf_event *event, int flags)
5497
{
5498
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5499
	struct hw_perf_event *hwc = &event->hw;
5500 5501
	struct hlist_head *head;

5502
	if (is_sampling_event(event)) {
5503
		hwc->last_period = hwc->sample_period;
5504
		perf_swevent_set_period(event);
5505
	}
5506

P
Peter Zijlstra 已提交
5507 5508
	hwc->state = !(flags & PERF_EF_START);

5509
	head = find_swevent_head(swhash, event);
5510 5511 5512 5513 5514
	if (WARN_ON_ONCE(!head))
		return -EINVAL;

	hlist_add_head_rcu(&event->hlist_entry, head);

5515 5516 5517
	return 0;
}

P
Peter Zijlstra 已提交
5518
static void perf_swevent_del(struct perf_event *event, int flags)
5519
{
5520
	hlist_del_rcu(&event->hlist_entry);
5521 5522
}

P
Peter Zijlstra 已提交
5523
static void perf_swevent_start(struct perf_event *event, int flags)
5524
{
P
Peter Zijlstra 已提交
5525
	event->hw.state = 0;
5526
}
I
Ingo Molnar 已提交
5527

P
Peter Zijlstra 已提交
5528
static void perf_swevent_stop(struct perf_event *event, int flags)
5529
{
P
Peter Zijlstra 已提交
5530
	event->hw.state = PERF_HES_STOPPED;
5531 5532
}

5533 5534
/* Deref the hlist from the update side */
static inline struct swevent_hlist *
5535
swevent_hlist_deref(struct swevent_htable *swhash)
5536
{
5537 5538
	return rcu_dereference_protected(swhash->swevent_hlist,
					 lockdep_is_held(&swhash->hlist_mutex));
5539 5540
}

5541
static void swevent_hlist_release(struct swevent_htable *swhash)
5542
{
5543
	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
5544

5545
	if (!hlist)
5546 5547
		return;

5548
	rcu_assign_pointer(swhash->swevent_hlist, NULL);
5549
	kfree_rcu(hlist, rcu_head);
5550 5551 5552 5553
}

static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
{
5554
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5555

5556
	mutex_lock(&swhash->hlist_mutex);
5557

5558 5559
	if (!--swhash->hlist_refcount)
		swevent_hlist_release(swhash);
5560

5561
	mutex_unlock(&swhash->hlist_mutex);
5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578
}

static void swevent_hlist_put(struct perf_event *event)
{
	int cpu;

	if (event->cpu != -1) {
		swevent_hlist_put_cpu(event, event->cpu);
		return;
	}

	for_each_possible_cpu(cpu)
		swevent_hlist_put_cpu(event, cpu);
}

static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
{
5579
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5580 5581
	int err = 0;

5582
	mutex_lock(&swhash->hlist_mutex);
5583

5584
	if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
5585 5586 5587 5588 5589 5590 5591
		struct swevent_hlist *hlist;

		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
		if (!hlist) {
			err = -ENOMEM;
			goto exit;
		}
5592
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
5593
	}
5594
	swhash->hlist_refcount++;
P
Peter Zijlstra 已提交
5595
exit:
5596
	mutex_unlock(&swhash->hlist_mutex);
5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619

	return err;
}

static int swevent_hlist_get(struct perf_event *event)
{
	int err;
	int cpu, failed_cpu;

	if (event->cpu != -1)
		return swevent_hlist_get_cpu(event, event->cpu);

	get_online_cpus();
	for_each_possible_cpu(cpu) {
		err = swevent_hlist_get_cpu(event, cpu);
		if (err) {
			failed_cpu = cpu;
			goto fail;
		}
	}
	put_online_cpus();

	return 0;
P
Peter Zijlstra 已提交
5620
fail:
5621 5622 5623 5624 5625 5626 5627 5628 5629 5630
	for_each_possible_cpu(cpu) {
		if (cpu == failed_cpu)
			break;
		swevent_hlist_put_cpu(event, cpu);
	}

	put_online_cpus();
	return err;
}

5631
struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
5632

5633 5634 5635
static void sw_perf_event_destroy(struct perf_event *event)
{
	u64 event_id = event->attr.config;
5636

5637 5638
	WARN_ON(event->parent);

5639
	static_key_slow_dec(&perf_swevent_enabled[event_id]);
5640 5641 5642 5643 5644
	swevent_hlist_put(event);
}

static int perf_swevent_init(struct perf_event *event)
{
5645
	u64 event_id = event->attr.config;
5646 5647 5648 5649

	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

5650 5651 5652 5653 5654 5655
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

5656 5657 5658 5659 5660 5661 5662 5663 5664
	switch (event_id) {
	case PERF_COUNT_SW_CPU_CLOCK:
	case PERF_COUNT_SW_TASK_CLOCK:
		return -ENOENT;

	default:
		break;
	}

5665
	if (event_id >= PERF_COUNT_SW_MAX)
5666 5667 5668 5669 5670 5671 5672 5673 5674
		return -ENOENT;

	if (!event->parent) {
		int err;

		err = swevent_hlist_get(event);
		if (err)
			return err;

5675
		static_key_slow_inc(&perf_swevent_enabled[event_id]);
5676 5677 5678 5679 5680 5681
		event->destroy = sw_perf_event_destroy;
	}

	return 0;
}

5682 5683 5684 5685 5686
static int perf_swevent_event_idx(struct perf_event *event)
{
	return 0;
}

5687
static struct pmu perf_swevent = {
5688
	.task_ctx_nr	= perf_sw_context,
5689

5690
	.event_init	= perf_swevent_init,
P
Peter Zijlstra 已提交
5691 5692 5693 5694
	.add		= perf_swevent_add,
	.del		= perf_swevent_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
5695
	.read		= perf_swevent_read,
5696 5697

	.event_idx	= perf_swevent_event_idx,
5698 5699
};

5700 5701
#ifdef CONFIG_EVENT_TRACING

5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715
static int perf_tp_filter_match(struct perf_event *event,
				struct perf_sample_data *data)
{
	void *record = data->raw->data;

	if (likely(!event->filter) || filter_match_preds(event->filter, record))
		return 1;
	return 0;
}

static int perf_tp_event_match(struct perf_event *event,
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
5716 5717
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;
5718 5719 5720 5721
	/*
	 * All tracepoints are from kernel-space.
	 */
	if (event->attr.exclude_kernel)
5722 5723 5724 5725 5726 5727 5728 5729 5730
		return 0;

	if (!perf_tp_filter_match(event, data))
		return 0;

	return 1;
}

void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
5731 5732
		   struct pt_regs *regs, struct hlist_head *head, int rctx,
		   struct task_struct *task)
5733 5734
{
	struct perf_sample_data data;
5735 5736
	struct perf_event *event;

5737 5738 5739 5740 5741
	struct perf_raw_record raw = {
		.size = entry_size,
		.data = record,
	};

5742
	perf_sample_data_init(&data, addr, 0);
5743 5744
	data.raw = &raw;

5745
	hlist_for_each_entry_rcu(event, head, hlist_entry) {
5746
		if (perf_tp_event_match(event, &data, regs))
5747
			perf_swevent_event(event, count, &data, regs);
5748
	}
5749

5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774
	/*
	 * If we got specified a target task, also iterate its context and
	 * deliver this event there too.
	 */
	if (task && task != current) {
		struct perf_event_context *ctx;
		struct trace_entry *entry = record;

		rcu_read_lock();
		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
		if (!ctx)
			goto unlock;

		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
			if (event->attr.type != PERF_TYPE_TRACEPOINT)
				continue;
			if (event->attr.config != entry->type)
				continue;
			if (perf_tp_event_match(event, &data, regs))
				perf_swevent_event(event, count, &data, regs);
		}
unlock:
		rcu_read_unlock();
	}

5775
	perf_swevent_put_recursion_context(rctx);
5776 5777 5778
}
EXPORT_SYMBOL_GPL(perf_tp_event);

5779
static void tp_perf_event_destroy(struct perf_event *event)
5780
{
5781
	perf_trace_destroy(event);
5782 5783
}

5784
static int perf_tp_event_init(struct perf_event *event)
5785
{
5786 5787
	int err;

5788 5789 5790
	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -ENOENT;

5791 5792 5793 5794 5795 5796
	/*
	 * no branch sampling for tracepoint events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

5797 5798
	err = perf_trace_init(event);
	if (err)
5799
		return err;
5800

5801
	event->destroy = tp_perf_event_destroy;
5802

5803 5804 5805 5806
	return 0;
}

static struct pmu perf_tracepoint = {
5807 5808
	.task_ctx_nr	= perf_sw_context,

5809
	.event_init	= perf_tp_event_init,
P
Peter Zijlstra 已提交
5810 5811 5812 5813
	.add		= perf_trace_add,
	.del		= perf_trace_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
5814
	.read		= perf_swevent_read,
5815 5816

	.event_idx	= perf_swevent_event_idx,
5817 5818 5819 5820
};

static inline void perf_tp_register(void)
{
P
Peter Zijlstra 已提交
5821
	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
5822
}
L
Li Zefan 已提交
5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	char *filter_str;
	int ret;

	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -EINVAL;

	filter_str = strndup_user(arg, PAGE_SIZE);
	if (IS_ERR(filter_str))
		return PTR_ERR(filter_str);

	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);

	kfree(filter_str);
	return ret;
}

static void perf_event_free_filter(struct perf_event *event)
{
	ftrace_profile_free_filter(event);
}

5847
#else
L
Li Zefan 已提交
5848

5849
static inline void perf_tp_register(void)
5850 5851
{
}
L
Li Zefan 已提交
5852 5853 5854 5855 5856 5857 5858 5859 5860 5861

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	return -ENOENT;
}

static void perf_event_free_filter(struct perf_event *event)
{
}

5862
#endif /* CONFIG_EVENT_TRACING */
5863

5864
#ifdef CONFIG_HAVE_HW_BREAKPOINT
5865
void perf_bp_event(struct perf_event *bp, void *data)
5866
{
5867 5868 5869
	struct perf_sample_data sample;
	struct pt_regs *regs = data;

5870
	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
5871

P
Peter Zijlstra 已提交
5872
	if (!bp->hw.state && !perf_exclude_event(bp, regs))
5873
		perf_swevent_event(bp, 1, &sample, regs);
5874 5875 5876
}
#endif

5877 5878 5879
/*
 * hrtimer based swevent callback
 */
5880

5881
static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
5882
{
5883 5884 5885 5886 5887
	enum hrtimer_restart ret = HRTIMER_RESTART;
	struct perf_sample_data data;
	struct pt_regs *regs;
	struct perf_event *event;
	u64 period;
5888

5889
	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
P
Peter Zijlstra 已提交
5890 5891 5892 5893

	if (event->state != PERF_EVENT_STATE_ACTIVE)
		return HRTIMER_NORESTART;

5894
	event->pmu->read(event);
5895

5896
	perf_sample_data_init(&data, 0, event->hw.last_period);
5897 5898 5899
	regs = get_irq_regs();

	if (regs && !perf_exclude_event(event, regs)) {
5900
		if (!(event->attr.exclude_idle && is_idle_task(current)))
5901
			if (__perf_event_overflow(event, 1, &data, regs))
5902 5903
				ret = HRTIMER_NORESTART;
	}
5904

5905 5906
	period = max_t(u64, 10000, event->hw.sample_period);
	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
5907

5908
	return ret;
5909 5910
}

5911
static void perf_swevent_start_hrtimer(struct perf_event *event)
5912
{
5913
	struct hw_perf_event *hwc = &event->hw;
5914 5915 5916 5917
	s64 period;

	if (!is_sampling_event(event))
		return;
5918

5919 5920 5921 5922
	period = local64_read(&hwc->period_left);
	if (period) {
		if (period < 0)
			period = 10000;
P
Peter Zijlstra 已提交
5923

5924 5925 5926 5927 5928
		local64_set(&hwc->period_left, 0);
	} else {
		period = max_t(u64, 10000, hwc->sample_period);
	}
	__hrtimer_start_range_ns(&hwc->hrtimer,
5929
				ns_to_ktime(period), 0,
5930
				HRTIMER_MODE_REL_PINNED, 0);
5931
}
5932 5933

static void perf_swevent_cancel_hrtimer(struct perf_event *event)
5934
{
5935 5936
	struct hw_perf_event *hwc = &event->hw;

5937
	if (is_sampling_event(event)) {
5938
		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
P
Peter Zijlstra 已提交
5939
		local64_set(&hwc->period_left, ktime_to_ns(remaining));
5940 5941 5942

		hrtimer_cancel(&hwc->hrtimer);
	}
5943 5944
}

P
Peter Zijlstra 已提交
5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964
static void perf_swevent_init_hrtimer(struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;

	if (!is_sampling_event(event))
		return;

	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swevent_hrtimer;

	/*
	 * Since hrtimers have a fixed rate, we can do a static freq->period
	 * mapping and avoid the whole period adjust feedback stuff.
	 */
	if (event->attr.freq) {
		long freq = event->attr.sample_freq;

		event->attr.sample_period = NSEC_PER_SEC / freq;
		hwc->sample_period = event->attr.sample_period;
		local64_set(&hwc->period_left, hwc->sample_period);
5965
		hwc->last_period = hwc->sample_period;
P
Peter Zijlstra 已提交
5966 5967 5968 5969
		event->attr.freq = 0;
	}
}

5970 5971 5972 5973 5974
/*
 * Software event: cpu wall time clock
 */

static void cpu_clock_event_update(struct perf_event *event)
5975
{
5976 5977 5978
	s64 prev;
	u64 now;

P
Peter Zijlstra 已提交
5979
	now = local_clock();
5980 5981
	prev = local64_xchg(&event->hw.prev_count, now);
	local64_add(now - prev, &event->count);
5982 5983
}

P
Peter Zijlstra 已提交
5984
static void cpu_clock_event_start(struct perf_event *event, int flags)
5985
{
P
Peter Zijlstra 已提交
5986
	local64_set(&event->hw.prev_count, local_clock());
5987 5988 5989
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
5990
static void cpu_clock_event_stop(struct perf_event *event, int flags)
5991
{
5992 5993 5994
	perf_swevent_cancel_hrtimer(event);
	cpu_clock_event_update(event);
}
5995

P
Peter Zijlstra 已提交
5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008
static int cpu_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		cpu_clock_event_start(event, flags);

	return 0;
}

static void cpu_clock_event_del(struct perf_event *event, int flags)
{
	cpu_clock_event_stop(event, flags);
}

6009 6010 6011 6012
static void cpu_clock_event_read(struct perf_event *event)
{
	cpu_clock_event_update(event);
}
6013

6014 6015 6016 6017 6018 6019 6020 6021
static int cpu_clock_event_init(struct perf_event *event)
{
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
		return -ENOENT;

6022 6023 6024 6025 6026 6027
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

P
Peter Zijlstra 已提交
6028 6029
	perf_swevent_init_hrtimer(event);

6030
	return 0;
6031 6032
}

6033
static struct pmu perf_cpu_clock = {
6034 6035
	.task_ctx_nr	= perf_sw_context,

6036
	.event_init	= cpu_clock_event_init,
P
Peter Zijlstra 已提交
6037 6038 6039 6040
	.add		= cpu_clock_event_add,
	.del		= cpu_clock_event_del,
	.start		= cpu_clock_event_start,
	.stop		= cpu_clock_event_stop,
6041
	.read		= cpu_clock_event_read,
6042 6043

	.event_idx	= perf_swevent_event_idx,
6044 6045 6046 6047 6048 6049 6050
};

/*
 * Software event: task time clock
 */

static void task_clock_event_update(struct perf_event *event, u64 now)
6051
{
6052 6053
	u64 prev;
	s64 delta;
6054

6055 6056 6057 6058
	prev = local64_xchg(&event->hw.prev_count, now);
	delta = now - prev;
	local64_add(delta, &event->count);
}
6059

P
Peter Zijlstra 已提交
6060
static void task_clock_event_start(struct perf_event *event, int flags)
6061
{
P
Peter Zijlstra 已提交
6062
	local64_set(&event->hw.prev_count, event->ctx->time);
6063 6064 6065
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
6066
static void task_clock_event_stop(struct perf_event *event, int flags)
6067 6068 6069
{
	perf_swevent_cancel_hrtimer(event);
	task_clock_event_update(event, event->ctx->time);
P
Peter Zijlstra 已提交
6070 6071 6072 6073 6074 6075
}

static int task_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		task_clock_event_start(event, flags);
6076

P
Peter Zijlstra 已提交
6077 6078 6079 6080 6081 6082
	return 0;
}

static void task_clock_event_del(struct perf_event *event, int flags)
{
	task_clock_event_stop(event, PERF_EF_UPDATE);
6083 6084 6085 6086
}

static void task_clock_event_read(struct perf_event *event)
{
6087 6088 6089
	u64 now = perf_clock();
	u64 delta = now - event->ctx->timestamp;
	u64 time = event->ctx->time + delta;
6090 6091 6092 6093 6094

	task_clock_event_update(event, time);
}

static int task_clock_event_init(struct perf_event *event)
L
Li Zefan 已提交
6095
{
6096 6097 6098 6099 6100 6101
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
		return -ENOENT;

6102 6103 6104 6105 6106 6107
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

P
Peter Zijlstra 已提交
6108 6109
	perf_swevent_init_hrtimer(event);

6110
	return 0;
L
Li Zefan 已提交
6111 6112
}

6113
static struct pmu perf_task_clock = {
6114 6115
	.task_ctx_nr	= perf_sw_context,

6116
	.event_init	= task_clock_event_init,
P
Peter Zijlstra 已提交
6117 6118 6119 6120
	.add		= task_clock_event_add,
	.del		= task_clock_event_del,
	.start		= task_clock_event_start,
	.stop		= task_clock_event_stop,
6121
	.read		= task_clock_event_read,
6122 6123

	.event_idx	= perf_swevent_event_idx,
6124
};
L
Li Zefan 已提交
6125

P
Peter Zijlstra 已提交
6126
static void perf_pmu_nop_void(struct pmu *pmu)
6127 6128
{
}
L
Li Zefan 已提交
6129

P
Peter Zijlstra 已提交
6130
static int perf_pmu_nop_int(struct pmu *pmu)
L
Li Zefan 已提交
6131
{
P
Peter Zijlstra 已提交
6132
	return 0;
L
Li Zefan 已提交
6133 6134
}

P
Peter Zijlstra 已提交
6135
static void perf_pmu_start_txn(struct pmu *pmu)
L
Li Zefan 已提交
6136
{
P
Peter Zijlstra 已提交
6137
	perf_pmu_disable(pmu);
L
Li Zefan 已提交
6138 6139
}

P
Peter Zijlstra 已提交
6140 6141 6142 6143 6144
static int perf_pmu_commit_txn(struct pmu *pmu)
{
	perf_pmu_enable(pmu);
	return 0;
}
6145

P
Peter Zijlstra 已提交
6146
static void perf_pmu_cancel_txn(struct pmu *pmu)
6147
{
P
Peter Zijlstra 已提交
6148
	perf_pmu_enable(pmu);
6149 6150
}

6151 6152 6153 6154 6155
static int perf_event_idx_default(struct perf_event *event)
{
	return event->hw.idx + 1;
}

P
Peter Zijlstra 已提交
6156 6157 6158 6159 6160
/*
 * Ensures all contexts with the same task_ctx_nr have the same
 * pmu_cpu_context too.
 */
static void *find_pmu_context(int ctxn)
6161
{
P
Peter Zijlstra 已提交
6162
	struct pmu *pmu;
6163

P
Peter Zijlstra 已提交
6164 6165
	if (ctxn < 0)
		return NULL;
6166

P
Peter Zijlstra 已提交
6167 6168 6169 6170
	list_for_each_entry(pmu, &pmus, entry) {
		if (pmu->task_ctx_nr == ctxn)
			return pmu->pmu_cpu_context;
	}
6171

P
Peter Zijlstra 已提交
6172
	return NULL;
6173 6174
}

6175
static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
6176
{
6177 6178 6179 6180 6181 6182 6183
	int cpu;

	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);

6184 6185
		if (cpuctx->unique_pmu == old_pmu)
			cpuctx->unique_pmu = pmu;
6186 6187 6188 6189 6190 6191
	}
}

static void free_pmu_context(struct pmu *pmu)
{
	struct pmu *i;
6192

P
Peter Zijlstra 已提交
6193
	mutex_lock(&pmus_lock);
6194
	/*
P
Peter Zijlstra 已提交
6195
	 * Like a real lame refcount.
6196
	 */
6197 6198 6199
	list_for_each_entry(i, &pmus, entry) {
		if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
			update_pmu_context(i, pmu);
P
Peter Zijlstra 已提交
6200
			goto out;
6201
		}
P
Peter Zijlstra 已提交
6202
	}
6203

6204
	free_percpu(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
6205 6206
out:
	mutex_unlock(&pmus_lock);
6207
}
P
Peter Zijlstra 已提交
6208
static struct idr pmu_idr;
6209

P
Peter Zijlstra 已提交
6210 6211 6212 6213 6214 6215 6216 6217
static ssize_t
type_show(struct device *dev, struct device_attribute *attr, char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
}

6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261
static ssize_t
perf_event_mux_interval_ms_show(struct device *dev,
				struct device_attribute *attr,
				char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
}

static ssize_t
perf_event_mux_interval_ms_store(struct device *dev,
				 struct device_attribute *attr,
				 const char *buf, size_t count)
{
	struct pmu *pmu = dev_get_drvdata(dev);
	int timer, cpu, ret;

	ret = kstrtoint(buf, 0, &timer);
	if (ret)
		return ret;

	if (timer < 1)
		return -EINVAL;

	/* same value, noting to do */
	if (timer == pmu->hrtimer_interval_ms)
		return count;

	pmu->hrtimer_interval_ms = timer;

	/* update all cpuctx for this PMU */
	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
		cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);

		if (hrtimer_active(&cpuctx->hrtimer))
			hrtimer_forward_now(&cpuctx->hrtimer, cpuctx->hrtimer_interval);
	}

	return count;
}

P
Peter Zijlstra 已提交
6262
static struct device_attribute pmu_dev_attrs[] = {
6263 6264 6265
	__ATTR_RO(type),
	__ATTR_RW(perf_event_mux_interval_ms),
	__ATTR_NULL,
P
Peter Zijlstra 已提交
6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286
};

static int pmu_bus_running;
static struct bus_type pmu_bus = {
	.name		= "event_source",
	.dev_attrs	= pmu_dev_attrs,
};

static void pmu_dev_release(struct device *dev)
{
	kfree(dev);
}

static int pmu_dev_alloc(struct pmu *pmu)
{
	int ret = -ENOMEM;

	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
	if (!pmu->dev)
		goto out;

6287
	pmu->dev->groups = pmu->attr_groups;
P
Peter Zijlstra 已提交
6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307
	device_initialize(pmu->dev);
	ret = dev_set_name(pmu->dev, "%s", pmu->name);
	if (ret)
		goto free_dev;

	dev_set_drvdata(pmu->dev, pmu);
	pmu->dev->bus = &pmu_bus;
	pmu->dev->release = pmu_dev_release;
	ret = device_add(pmu->dev);
	if (ret)
		goto free_dev;

out:
	return ret;

free_dev:
	put_device(pmu->dev);
	goto out;
}

6308
static struct lock_class_key cpuctx_mutex;
6309
static struct lock_class_key cpuctx_lock;
6310

6311
int perf_pmu_register(struct pmu *pmu, const char *name, int type)
6312
{
P
Peter Zijlstra 已提交
6313
	int cpu, ret;
6314

6315
	mutex_lock(&pmus_lock);
P
Peter Zijlstra 已提交
6316 6317 6318 6319
	ret = -ENOMEM;
	pmu->pmu_disable_count = alloc_percpu(int);
	if (!pmu->pmu_disable_count)
		goto unlock;
6320

P
Peter Zijlstra 已提交
6321 6322 6323 6324 6325 6326
	pmu->type = -1;
	if (!name)
		goto skip_type;
	pmu->name = name;

	if (type < 0) {
T
Tejun Heo 已提交
6327 6328 6329
		type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
		if (type < 0) {
			ret = type;
P
Peter Zijlstra 已提交
6330 6331 6332 6333 6334
			goto free_pdc;
		}
	}
	pmu->type = type;

P
Peter Zijlstra 已提交
6335 6336 6337 6338 6339 6340
	if (pmu_bus_running) {
		ret = pmu_dev_alloc(pmu);
		if (ret)
			goto free_idr;
	}

P
Peter Zijlstra 已提交
6341
skip_type:
P
Peter Zijlstra 已提交
6342 6343 6344
	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
	if (pmu->pmu_cpu_context)
		goto got_cpu_context;
6345

W
Wei Yongjun 已提交
6346
	ret = -ENOMEM;
P
Peter Zijlstra 已提交
6347 6348
	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
	if (!pmu->pmu_cpu_context)
P
Peter Zijlstra 已提交
6349
		goto free_dev;
6350

P
Peter Zijlstra 已提交
6351 6352 6353 6354
	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6355
		__perf_event_init_context(&cpuctx->ctx);
6356
		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
6357
		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
6358
		cpuctx->ctx.type = cpu_context;
P
Peter Zijlstra 已提交
6359
		cpuctx->ctx.pmu = pmu;
6360 6361 6362

		__perf_cpu_hrtimer_init(cpuctx, cpu);

6363
		INIT_LIST_HEAD(&cpuctx->rotation_list);
6364
		cpuctx->unique_pmu = pmu;
P
Peter Zijlstra 已提交
6365
	}
6366

P
Peter Zijlstra 已提交
6367
got_cpu_context:
P
Peter Zijlstra 已提交
6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381
	if (!pmu->start_txn) {
		if (pmu->pmu_enable) {
			/*
			 * If we have pmu_enable/pmu_disable calls, install
			 * transaction stubs that use that to try and batch
			 * hardware accesses.
			 */
			pmu->start_txn  = perf_pmu_start_txn;
			pmu->commit_txn = perf_pmu_commit_txn;
			pmu->cancel_txn = perf_pmu_cancel_txn;
		} else {
			pmu->start_txn  = perf_pmu_nop_void;
			pmu->commit_txn = perf_pmu_nop_int;
			pmu->cancel_txn = perf_pmu_nop_void;
6382
		}
6383
	}
6384

P
Peter Zijlstra 已提交
6385 6386 6387 6388 6389
	if (!pmu->pmu_enable) {
		pmu->pmu_enable  = perf_pmu_nop_void;
		pmu->pmu_disable = perf_pmu_nop_void;
	}

6390 6391 6392
	if (!pmu->event_idx)
		pmu->event_idx = perf_event_idx_default;

6393
	list_add_rcu(&pmu->entry, &pmus);
P
Peter Zijlstra 已提交
6394 6395
	ret = 0;
unlock:
6396 6397
	mutex_unlock(&pmus_lock);

P
Peter Zijlstra 已提交
6398
	return ret;
P
Peter Zijlstra 已提交
6399

P
Peter Zijlstra 已提交
6400 6401 6402 6403
free_dev:
	device_del(pmu->dev);
	put_device(pmu->dev);

P
Peter Zijlstra 已提交
6404 6405 6406 6407
free_idr:
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);

P
Peter Zijlstra 已提交
6408 6409 6410
free_pdc:
	free_percpu(pmu->pmu_disable_count);
	goto unlock;
6411 6412
}

6413
void perf_pmu_unregister(struct pmu *pmu)
6414
{
6415 6416 6417
	mutex_lock(&pmus_lock);
	list_del_rcu(&pmu->entry);
	mutex_unlock(&pmus_lock);
6418

6419
	/*
P
Peter Zijlstra 已提交
6420 6421
	 * We dereference the pmu list under both SRCU and regular RCU, so
	 * synchronize against both of those.
6422
	 */
6423
	synchronize_srcu(&pmus_srcu);
P
Peter Zijlstra 已提交
6424
	synchronize_rcu();
6425

P
Peter Zijlstra 已提交
6426
	free_percpu(pmu->pmu_disable_count);
P
Peter Zijlstra 已提交
6427 6428
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);
P
Peter Zijlstra 已提交
6429 6430
	device_del(pmu->dev);
	put_device(pmu->dev);
6431
	free_pmu_context(pmu);
6432
}
6433

6434 6435 6436 6437
struct pmu *perf_init_event(struct perf_event *event)
{
	struct pmu *pmu = NULL;
	int idx;
6438
	int ret;
6439 6440

	idx = srcu_read_lock(&pmus_srcu);
P
Peter Zijlstra 已提交
6441 6442 6443 6444

	rcu_read_lock();
	pmu = idr_find(&pmu_idr, event->attr.type);
	rcu_read_unlock();
6445
	if (pmu) {
6446
		event->pmu = pmu;
6447 6448 6449
		ret = pmu->event_init(event);
		if (ret)
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
6450
		goto unlock;
6451
	}
P
Peter Zijlstra 已提交
6452

6453
	list_for_each_entry_rcu(pmu, &pmus, entry) {
6454
		event->pmu = pmu;
6455
		ret = pmu->event_init(event);
6456
		if (!ret)
P
Peter Zijlstra 已提交
6457
			goto unlock;
6458

6459 6460
		if (ret != -ENOENT) {
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
6461
			goto unlock;
6462
		}
6463
	}
P
Peter Zijlstra 已提交
6464 6465
	pmu = ERR_PTR(-ENOENT);
unlock:
6466
	srcu_read_unlock(&pmus_srcu, idx);
6467

6468
	return pmu;
6469 6470
}

6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481
static void account_event_cpu(struct perf_event *event, int cpu)
{
	if (event->parent)
		return;

	if (has_branch_stack(event)) {
		if (!(event->attach_state & PERF_ATTACH_TASK))
			atomic_inc(&per_cpu(perf_branch_stack_events, cpu));
	}
	if (is_cgroup_event(event))
		atomic_inc(&per_cpu(perf_cgroup_events, cpu));
6482 6483 6484

	if (event->attr.freq)
		atomic_inc(&per_cpu(perf_freq_events, cpu));
6485 6486
}

6487 6488
static void account_event(struct perf_event *event)
{
6489 6490 6491
	if (event->parent)
		return;

6492 6493 6494 6495 6496 6497 6498 6499
	if (event->attach_state & PERF_ATTACH_TASK)
		static_key_slow_inc(&perf_sched_events.key);
	if (event->attr.mmap || event->attr.mmap_data)
		atomic_inc(&nr_mmap_events);
	if (event->attr.comm)
		atomic_inc(&nr_comm_events);
	if (event->attr.task)
		atomic_inc(&nr_task_events);
6500
	if (has_branch_stack(event))
6501
		static_key_slow_inc(&perf_sched_events.key);
6502
	if (is_cgroup_event(event))
6503
		static_key_slow_inc(&perf_sched_events.key);
6504 6505

	account_event_cpu(event, event->cpu);
6506 6507
}

T
Thomas Gleixner 已提交
6508
/*
6509
 * Allocate and initialize a event structure
T
Thomas Gleixner 已提交
6510
 */
6511
static struct perf_event *
6512
perf_event_alloc(struct perf_event_attr *attr, int cpu,
6513 6514 6515
		 struct task_struct *task,
		 struct perf_event *group_leader,
		 struct perf_event *parent_event,
6516 6517
		 perf_overflow_handler_t overflow_handler,
		 void *context)
T
Thomas Gleixner 已提交
6518
{
P
Peter Zijlstra 已提交
6519
	struct pmu *pmu;
6520 6521
	struct perf_event *event;
	struct hw_perf_event *hwc;
6522
	long err = -EINVAL;
T
Thomas Gleixner 已提交
6523

6524 6525 6526 6527 6528
	if ((unsigned)cpu >= nr_cpu_ids) {
		if (!task || cpu != -1)
			return ERR_PTR(-EINVAL);
	}

6529
	event = kzalloc(sizeof(*event), GFP_KERNEL);
6530
	if (!event)
6531
		return ERR_PTR(-ENOMEM);
T
Thomas Gleixner 已提交
6532

6533
	/*
6534
	 * Single events are their own group leaders, with an
6535 6536 6537
	 * empty sibling list:
	 */
	if (!group_leader)
6538
		group_leader = event;
6539

6540 6541
	mutex_init(&event->child_mutex);
	INIT_LIST_HEAD(&event->child_list);
6542

6543 6544 6545
	INIT_LIST_HEAD(&event->group_entry);
	INIT_LIST_HEAD(&event->event_entry);
	INIT_LIST_HEAD(&event->sibling_list);
6546 6547
	INIT_LIST_HEAD(&event->rb_entry);

6548
	init_waitqueue_head(&event->waitq);
6549
	init_irq_work(&event->pending, perf_pending_event);
T
Thomas Gleixner 已提交
6550

6551
	mutex_init(&event->mmap_mutex);
6552

6553
	atomic_long_set(&event->refcount, 1);
6554 6555 6556 6557 6558
	event->cpu		= cpu;
	event->attr		= *attr;
	event->group_leader	= group_leader;
	event->pmu		= NULL;
	event->oncpu		= -1;
6559

6560
	event->parent		= parent_event;
6561

6562
	event->ns		= get_pid_ns(task_active_pid_ns(current));
6563
	event->id		= atomic64_inc_return(&perf_event_id);
6564

6565
	event->state		= PERF_EVENT_STATE_INACTIVE;
6566

6567 6568
	if (task) {
		event->attach_state = PERF_ATTACH_TASK;
6569 6570 6571

		if (attr->type == PERF_TYPE_TRACEPOINT)
			event->hw.tp_target = task;
6572 6573 6574 6575
#ifdef CONFIG_HAVE_HW_BREAKPOINT
		/*
		 * hw_breakpoint is a bit difficult here..
		 */
6576
		else if (attr->type == PERF_TYPE_BREAKPOINT)
6577 6578 6579 6580
			event->hw.bp_target = task;
#endif
	}

6581
	if (!overflow_handler && parent_event) {
6582
		overflow_handler = parent_event->overflow_handler;
6583 6584
		context = parent_event->overflow_handler_context;
	}
6585

6586
	event->overflow_handler	= overflow_handler;
6587
	event->overflow_handler_context = context;
6588

J
Jiri Olsa 已提交
6589
	perf_event__state_init(event);
6590

6591
	pmu = NULL;
6592

6593
	hwc = &event->hw;
6594
	hwc->sample_period = attr->sample_period;
6595
	if (attr->freq && attr->sample_freq)
6596
		hwc->sample_period = 1;
6597
	hwc->last_period = hwc->sample_period;
6598

6599
	local64_set(&hwc->period_left, hwc->sample_period);
6600

6601
	/*
6602
	 * we currently do not support PERF_FORMAT_GROUP on inherited events
6603
	 */
6604
	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
6605
		goto err_ns;
6606

6607
	pmu = perf_init_event(event);
6608
	if (!pmu)
6609 6610
		goto err_ns;
	else if (IS_ERR(pmu)) {
6611
		err = PTR_ERR(pmu);
6612
		goto err_ns;
I
Ingo Molnar 已提交
6613
	}
6614

6615
	if (!event->parent) {
6616 6617 6618 6619 6620
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
			err = get_callchain_buffers();
			if (err)
				goto err_pmu;
		}
6621
	}
6622

6623
	return event;
6624 6625 6626 6627 6628 6629 6630 6631 6632 6633

err_pmu:
	if (event->destroy)
		event->destroy(event);
err_ns:
	if (event->ns)
		put_pid_ns(event->ns);
	kfree(event);

	return ERR_PTR(err);
T
Thomas Gleixner 已提交
6634 6635
}

6636 6637
static int perf_copy_attr(struct perf_event_attr __user *uattr,
			  struct perf_event_attr *attr)
6638 6639
{
	u32 size;
6640
	int ret;
6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664

	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
		return -EFAULT;

	/*
	 * zero the full structure, so that a short copy will be nice.
	 */
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

	if (size > PAGE_SIZE)	/* silly large */
		goto err_size;

	if (!size)		/* abi compat */
		size = PERF_ATTR_SIZE_VER0;

	if (size < PERF_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
6665 6666 6667
	 * ensure all the unknown bits are 0 - i.e. new
	 * user-space does not rely on any kernel feature
	 * extensions we dont know about yet.
6668 6669
	 */
	if (size > sizeof(*attr)) {
6670 6671 6672
		unsigned char __user *addr;
		unsigned char __user *end;
		unsigned char val;
6673

6674 6675
		addr = (void __user *)uattr + sizeof(*attr);
		end  = (void __user *)uattr + size;
6676

6677
		for (; addr < end; addr++) {
6678 6679 6680 6681 6682 6683
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
6684
		size = sizeof(*attr);
6685 6686 6687 6688 6689 6690
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

6691
	if (attr->__reserved_1)
6692 6693 6694 6695 6696 6697 6698 6699
		return -EINVAL;

	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
		return -EINVAL;

	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
		return -EINVAL;

6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727
	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
		u64 mask = attr->branch_sample_type;

		/* only using defined bits */
		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
			return -EINVAL;

		/* at least one branch bit must be set */
		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
			return -EINVAL;

		/* propagate priv level, when not set for branch */
		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {

			/* exclude_kernel checked on syscall entry */
			if (!attr->exclude_kernel)
				mask |= PERF_SAMPLE_BRANCH_KERNEL;

			if (!attr->exclude_user)
				mask |= PERF_SAMPLE_BRANCH_USER;

			if (!attr->exclude_hv)
				mask |= PERF_SAMPLE_BRANCH_HV;
			/*
			 * adjust user setting (for HW filter setup)
			 */
			attr->branch_sample_type = mask;
		}
6728 6729
		/* privileged levels capture (kernel, hv): check permissions */
		if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
6730 6731
		    && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
6732
	}
6733

6734
	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
6735
		ret = perf_reg_validate(attr->sample_regs_user);
6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753
		if (ret)
			return ret;
	}

	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
		if (!arch_perf_have_user_stack_dump())
			return -ENOSYS;

		/*
		 * We have __u32 type for the size, but so far
		 * we can only use __u16 as maximum due to the
		 * __u16 sample size limit.
		 */
		if (attr->sample_stack_user >= USHRT_MAX)
			ret = -EINVAL;
		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
			ret = -EINVAL;
	}
6754

6755 6756 6757 6758 6759 6760 6761 6762 6763
out:
	return ret;

err_size:
	put_user(sizeof(*attr), &uattr->size);
	ret = -E2BIG;
	goto out;
}

6764 6765
static int
perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
6766
{
6767
	struct ring_buffer *rb = NULL, *old_rb = NULL;
6768 6769
	int ret = -EINVAL;

6770
	if (!output_event)
6771 6772
		goto set;

6773 6774
	/* don't allow circular references */
	if (event == output_event)
6775 6776
		goto out;

6777 6778 6779 6780 6781 6782 6783
	/*
	 * Don't allow cross-cpu buffers
	 */
	if (output_event->cpu != event->cpu)
		goto out;

	/*
6784
	 * If its not a per-cpu rb, it must be the same task.
6785 6786 6787 6788
	 */
	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
		goto out;

6789
set:
6790
	mutex_lock(&event->mmap_mutex);
6791 6792 6793
	/* Can't redirect output if we've got an active mmap() */
	if (atomic_read(&event->mmap_count))
		goto unlock;
6794

6795 6796
	old_rb = event->rb;

6797
	if (output_event) {
6798 6799 6800
		/* get the rb we want to redirect to */
		rb = ring_buffer_get(output_event);
		if (!rb)
6801
			goto unlock;
6802 6803
	}

6804 6805
	if (old_rb)
		ring_buffer_detach(event, old_rb);
6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821

	if (rb)
		ring_buffer_attach(event, rb);

	rcu_assign_pointer(event->rb, rb);

	if (old_rb) {
		ring_buffer_put(old_rb);
		/*
		 * Since we detached before setting the new rb, so that we
		 * could attach the new rb, we could have missed a wakeup.
		 * Provide it now.
		 */
		wake_up_all(&event->waitq);
	}

6822
	ret = 0;
6823 6824 6825
unlock:
	mutex_unlock(&event->mmap_mutex);

6826 6827 6828 6829
out:
	return ret;
}

T
Thomas Gleixner 已提交
6830
/**
6831
 * sys_perf_event_open - open a performance event, associate it to a task/cpu
I
Ingo Molnar 已提交
6832
 *
6833
 * @attr_uptr:	event_id type attributes for monitoring/sampling
T
Thomas Gleixner 已提交
6834
 * @pid:		target pid
I
Ingo Molnar 已提交
6835
 * @cpu:		target cpu
6836
 * @group_fd:		group leader event fd
T
Thomas Gleixner 已提交
6837
 */
6838 6839
SYSCALL_DEFINE5(perf_event_open,
		struct perf_event_attr __user *, attr_uptr,
6840
		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
T
Thomas Gleixner 已提交
6841
{
6842 6843
	struct perf_event *group_leader = NULL, *output_event = NULL;
	struct perf_event *event, *sibling;
6844 6845 6846
	struct perf_event_attr attr;
	struct perf_event_context *ctx;
	struct file *event_file = NULL;
6847
	struct fd group = {NULL, 0};
M
Matt Helsley 已提交
6848
	struct task_struct *task = NULL;
6849
	struct pmu *pmu;
6850
	int event_fd;
6851
	int move_group = 0;
6852
	int err;
T
Thomas Gleixner 已提交
6853

6854
	/* for future expandability... */
S
Stephane Eranian 已提交
6855
	if (flags & ~PERF_FLAG_ALL)
6856 6857
		return -EINVAL;

6858 6859 6860
	err = perf_copy_attr(attr_uptr, &attr);
	if (err)
		return err;
6861

6862 6863 6864 6865 6866
	if (!attr.exclude_kernel) {
		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
	}

6867
	if (attr.freq) {
6868
		if (attr.sample_freq > sysctl_perf_event_sample_rate)
6869 6870 6871
			return -EINVAL;
	}

S
Stephane Eranian 已提交
6872 6873 6874 6875 6876 6877 6878 6879 6880
	/*
	 * In cgroup mode, the pid argument is used to pass the fd
	 * opened to the cgroup directory in cgroupfs. The cpu argument
	 * designates the cpu on which to monitor threads from that
	 * cgroup.
	 */
	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
		return -EINVAL;

6881
	event_fd = get_unused_fd();
6882 6883 6884
	if (event_fd < 0)
		return event_fd;

6885
	if (group_fd != -1) {
6886 6887
		err = perf_fget_light(group_fd, &group);
		if (err)
6888
			goto err_fd;
6889
		group_leader = group.file->private_data;
6890 6891 6892 6893 6894 6895
		if (flags & PERF_FLAG_FD_OUTPUT)
			output_event = group_leader;
		if (flags & PERF_FLAG_FD_NO_GROUP)
			group_leader = NULL;
	}

S
Stephane Eranian 已提交
6896
	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
6897 6898 6899 6900 6901 6902 6903
		task = find_lively_task_by_vpid(pid);
		if (IS_ERR(task)) {
			err = PTR_ERR(task);
			goto err_group_fd;
		}
	}

6904 6905
	get_online_cpus();

6906 6907
	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
				 NULL, NULL);
6908 6909
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
6910
		goto err_task;
6911 6912
	}

S
Stephane Eranian 已提交
6913 6914
	if (flags & PERF_FLAG_PID_CGROUP) {
		err = perf_cgroup_connect(pid, event, &attr, group_leader);
6915 6916 6917 6918
		if (err) {
			__free_event(event);
			goto err_task;
		}
S
Stephane Eranian 已提交
6919 6920
	}

6921 6922
	account_event(event);

6923 6924 6925 6926 6927
	/*
	 * Special case software events and allow them to be part of
	 * any hardware group.
	 */
	pmu = event->pmu;
6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950

	if (group_leader &&
	    (is_software_event(event) != is_software_event(group_leader))) {
		if (is_software_event(event)) {
			/*
			 * If event and group_leader are not both a software
			 * event, and event is, then group leader is not.
			 *
			 * Allow the addition of software events to !software
			 * groups, this is safe because software events never
			 * fail to schedule.
			 */
			pmu = group_leader->pmu;
		} else if (is_software_event(group_leader) &&
			   (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
			/*
			 * In case the group is a pure software group, and we
			 * try to add a hardware event, move the whole group to
			 * the hardware context.
			 */
			move_group = 1;
		}
	}
6951 6952 6953 6954

	/*
	 * Get the target context (task or percpu):
	 */
6955
	ctx = find_get_context(pmu, task, event->cpu);
6956 6957
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
6958
		goto err_alloc;
6959 6960
	}

6961 6962 6963 6964 6965
	if (task) {
		put_task_struct(task);
		task = NULL;
	}

I
Ingo Molnar 已提交
6966
	/*
6967
	 * Look up the group leader (we will attach this event to it):
6968
	 */
6969
	if (group_leader) {
6970
		err = -EINVAL;
6971 6972

		/*
I
Ingo Molnar 已提交
6973 6974 6975 6976
		 * Do not allow a recursive hierarchy (this new sibling
		 * becoming part of another group-sibling):
		 */
		if (group_leader->group_leader != group_leader)
6977
			goto err_context;
I
Ingo Molnar 已提交
6978 6979 6980
		/*
		 * Do not allow to attach to a group in a different
		 * task or CPU context:
6981
		 */
6982 6983 6984 6985 6986 6987 6988 6989
		if (move_group) {
			if (group_leader->ctx->type != ctx->type)
				goto err_context;
		} else {
			if (group_leader->ctx != ctx)
				goto err_context;
		}

6990 6991 6992
		/*
		 * Only a group leader can be exclusive or pinned
		 */
6993
		if (attr.exclusive || attr.pinned)
6994
			goto err_context;
6995 6996 6997 6998 6999
	}

	if (output_event) {
		err = perf_event_set_output(event, output_event);
		if (err)
7000
			goto err_context;
7001
	}
T
Thomas Gleixner 已提交
7002

7003 7004 7005
	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
	if (IS_ERR(event_file)) {
		err = PTR_ERR(event_file);
7006
		goto err_context;
7007
	}
7008

7009 7010 7011 7012
	if (move_group) {
		struct perf_event_context *gctx = group_leader->ctx;

		mutex_lock(&gctx->mutex);
7013
		perf_remove_from_context(group_leader);
J
Jiri Olsa 已提交
7014 7015 7016 7017 7018 7019 7020

		/*
		 * Removing from the context ends up with disabled
		 * event. What we want here is event in the initial
		 * startup state, ready to be add into new context.
		 */
		perf_event__state_init(group_leader);
7021 7022
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
7023
			perf_remove_from_context(sibling);
J
Jiri Olsa 已提交
7024
			perf_event__state_init(sibling);
7025 7026 7027 7028
			put_ctx(gctx);
		}
		mutex_unlock(&gctx->mutex);
		put_ctx(gctx);
7029
	}
7030

7031
	WARN_ON_ONCE(ctx->parent_ctx);
7032
	mutex_lock(&ctx->mutex);
7033 7034

	if (move_group) {
7035
		synchronize_rcu();
7036
		perf_install_in_context(ctx, group_leader, event->cpu);
7037 7038 7039
		get_ctx(ctx);
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
7040
			perf_install_in_context(ctx, sibling, event->cpu);
7041 7042 7043 7044
			get_ctx(ctx);
		}
	}

7045
	perf_install_in_context(ctx, event, event->cpu);
7046
	++ctx->generation;
7047
	perf_unpin_context(ctx);
7048
	mutex_unlock(&ctx->mutex);
7049

7050 7051
	put_online_cpus();

7052
	event->owner = current;
P
Peter Zijlstra 已提交
7053

7054 7055 7056
	mutex_lock(&current->perf_event_mutex);
	list_add_tail(&event->owner_entry, &current->perf_event_list);
	mutex_unlock(&current->perf_event_mutex);
7057

7058 7059 7060 7061
	/*
	 * Precalculate sample_data sizes
	 */
	perf_event__header_size(event);
7062
	perf_event__id_header_size(event);
7063

7064 7065 7066 7067 7068 7069
	/*
	 * Drop the reference on the group_event after placing the
	 * new event on the sibling_list. This ensures destruction
	 * of the group leader will find the pointer to itself in
	 * perf_group_detach().
	 */
7070
	fdput(group);
7071 7072
	fd_install(event_fd, event_file);
	return event_fd;
T
Thomas Gleixner 已提交
7073

7074
err_context:
7075
	perf_unpin_context(ctx);
7076
	put_ctx(ctx);
7077
err_alloc:
7078
	free_event(event);
P
Peter Zijlstra 已提交
7079
err_task:
7080
	put_online_cpus();
P
Peter Zijlstra 已提交
7081 7082
	if (task)
		put_task_struct(task);
7083
err_group_fd:
7084
	fdput(group);
7085 7086
err_fd:
	put_unused_fd(event_fd);
7087
	return err;
T
Thomas Gleixner 已提交
7088 7089
}

7090 7091 7092 7093 7094
/**
 * perf_event_create_kernel_counter
 *
 * @attr: attributes of the counter to create
 * @cpu: cpu in which the counter is bound
M
Matt Helsley 已提交
7095
 * @task: task to profile (NULL for percpu)
7096 7097 7098
 */
struct perf_event *
perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
M
Matt Helsley 已提交
7099
				 struct task_struct *task,
7100 7101
				 perf_overflow_handler_t overflow_handler,
				 void *context)
7102 7103
{
	struct perf_event_context *ctx;
7104
	struct perf_event *event;
7105
	int err;
7106

7107 7108 7109
	/*
	 * Get the target context (task or percpu):
	 */
7110

7111 7112
	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
				 overflow_handler, context);
7113 7114 7115 7116
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
		goto err;
	}
7117

7118 7119
	account_event(event);

M
Matt Helsley 已提交
7120
	ctx = find_get_context(event->pmu, task, cpu);
7121 7122
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
7123
		goto err_free;
7124
	}
7125 7126 7127 7128 7129

	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
	perf_install_in_context(ctx, event, cpu);
	++ctx->generation;
7130
	perf_unpin_context(ctx);
7131 7132 7133 7134
	mutex_unlock(&ctx->mutex);

	return event;

7135 7136 7137
err_free:
	free_event(event);
err:
7138
	return ERR_PTR(err);
7139
}
7140
EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
7141

7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155
void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
{
	struct perf_event_context *src_ctx;
	struct perf_event_context *dst_ctx;
	struct perf_event *event, *tmp;
	LIST_HEAD(events);

	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;

	mutex_lock(&src_ctx->mutex);
	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
				 event_entry) {
		perf_remove_from_context(event);
7156
		unaccount_event_cpu(event, src_cpu);
7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168
		put_ctx(src_ctx);
		list_add(&event->event_entry, &events);
	}
	mutex_unlock(&src_ctx->mutex);

	synchronize_rcu();

	mutex_lock(&dst_ctx->mutex);
	list_for_each_entry_safe(event, tmp, &events, event_entry) {
		list_del(&event->event_entry);
		if (event->state >= PERF_EVENT_STATE_OFF)
			event->state = PERF_EVENT_STATE_INACTIVE;
7169
		account_event_cpu(event, dst_cpu);
7170 7171 7172 7173 7174 7175 7176
		perf_install_in_context(dst_ctx, event, dst_cpu);
		get_ctx(dst_ctx);
	}
	mutex_unlock(&dst_ctx->mutex);
}
EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);

7177
static void sync_child_event(struct perf_event *child_event,
7178
			       struct task_struct *child)
7179
{
7180
	struct perf_event *parent_event = child_event->parent;
7181
	u64 child_val;
7182

7183 7184
	if (child_event->attr.inherit_stat)
		perf_event_read_event(child_event, child);
7185

P
Peter Zijlstra 已提交
7186
	child_val = perf_event_count(child_event);
7187 7188 7189 7190

	/*
	 * Add back the child's count to the parent's count:
	 */
7191
	atomic64_add(child_val, &parent_event->child_count);
7192 7193 7194 7195
	atomic64_add(child_event->total_time_enabled,
		     &parent_event->child_total_time_enabled);
	atomic64_add(child_event->total_time_running,
		     &parent_event->child_total_time_running);
7196 7197

	/*
7198
	 * Remove this event from the parent's list
7199
	 */
7200 7201 7202 7203
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_del_init(&child_event->child_list);
	mutex_unlock(&parent_event->child_mutex);
7204 7205

	/*
7206
	 * Release the parent event, if this was the last
7207 7208
	 * reference to it.
	 */
7209
	put_event(parent_event);
7210 7211
}

7212
static void
7213 7214
__perf_event_exit_task(struct perf_event *child_event,
			 struct perf_event_context *child_ctx,
7215
			 struct task_struct *child)
7216
{
7217 7218 7219 7220 7221
	if (child_event->parent) {
		raw_spin_lock_irq(&child_ctx->lock);
		perf_group_detach(child_event);
		raw_spin_unlock_irq(&child_ctx->lock);
	}
7222

7223
	perf_remove_from_context(child_event);
7224

7225
	/*
7226
	 * It can happen that the parent exits first, and has events
7227
	 * that are still around due to the child reference. These
7228
	 * events need to be zapped.
7229
	 */
7230
	if (child_event->parent) {
7231 7232
		sync_child_event(child_event, child);
		free_event(child_event);
7233
	}
7234 7235
}

P
Peter Zijlstra 已提交
7236
static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
7237
{
7238 7239
	struct perf_event *child_event, *tmp;
	struct perf_event_context *child_ctx;
7240
	unsigned long flags;
7241

P
Peter Zijlstra 已提交
7242
	if (likely(!child->perf_event_ctxp[ctxn])) {
7243
		perf_event_task(child, NULL, 0);
7244
		return;
P
Peter Zijlstra 已提交
7245
	}
7246

7247
	local_irq_save(flags);
7248 7249 7250 7251 7252 7253
	/*
	 * We can't reschedule here because interrupts are disabled,
	 * and either child is current or it is a task that can't be
	 * scheduled, so we are now safe from rescheduling changing
	 * our context.
	 */
7254
	child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
7255 7256 7257

	/*
	 * Take the context lock here so that if find_get_context is
7258
	 * reading child->perf_event_ctxp, we wait until it has
7259 7260
	 * incremented the context's refcount before we do put_ctx below.
	 */
7261
	raw_spin_lock(&child_ctx->lock);
7262
	task_ctx_sched_out(child_ctx);
P
Peter Zijlstra 已提交
7263
	child->perf_event_ctxp[ctxn] = NULL;
7264 7265 7266
	/*
	 * If this context is a clone; unclone it so it can't get
	 * swapped to another process while we're removing all
7267
	 * the events from it.
7268 7269
	 */
	unclone_ctx(child_ctx);
7270
	update_context_time(child_ctx);
7271
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
7272 7273

	/*
7274 7275 7276
	 * Report the task dead after unscheduling the events so that we
	 * won't get any samples after PERF_RECORD_EXIT. We can however still
	 * get a few PERF_RECORD_READ events.
P
Peter Zijlstra 已提交
7277
	 */
7278
	perf_event_task(child, child_ctx, 0);
7279

7280 7281 7282
	/*
	 * We can recurse on the same lock type through:
	 *
7283 7284
	 *   __perf_event_exit_task()
	 *     sync_child_event()
7285 7286
	 *       put_event()
	 *         mutex_lock(&ctx->mutex)
7287 7288 7289
	 *
	 * But since its the parent context it won't be the same instance.
	 */
7290
	mutex_lock(&child_ctx->mutex);
7291

7292
again:
7293 7294 7295 7296 7297
	list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
				 group_entry)
		__perf_event_exit_task(child_event, child_ctx, child);

	list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
7298
				 group_entry)
7299
		__perf_event_exit_task(child_event, child_ctx, child);
7300 7301

	/*
7302
	 * If the last event was a group event, it will have appended all
7303 7304 7305
	 * its siblings to the list, but we obtained 'tmp' before that which
	 * will still point to the list head terminating the iteration.
	 */
7306 7307
	if (!list_empty(&child_ctx->pinned_groups) ||
	    !list_empty(&child_ctx->flexible_groups))
7308
		goto again;
7309 7310 7311 7312

	mutex_unlock(&child_ctx->mutex);

	put_ctx(child_ctx);
7313 7314
}

P
Peter Zijlstra 已提交
7315 7316 7317 7318 7319
/*
 * When a child task exits, feed back event values to parent events.
 */
void perf_event_exit_task(struct task_struct *child)
{
P
Peter Zijlstra 已提交
7320
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
7321 7322
	int ctxn;

P
Peter Zijlstra 已提交
7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337
	mutex_lock(&child->perf_event_mutex);
	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
				 owner_entry) {
		list_del_init(&event->owner_entry);

		/*
		 * Ensure the list deletion is visible before we clear
		 * the owner, closes a race against perf_release() where
		 * we need to serialize on the owner->perf_event_mutex.
		 */
		smp_wmb();
		event->owner = NULL;
	}
	mutex_unlock(&child->perf_event_mutex);

P
Peter Zijlstra 已提交
7338 7339 7340 7341
	for_each_task_context_nr(ctxn)
		perf_event_exit_task_context(child, ctxn);
}

7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353
static void perf_free_event(struct perf_event *event,
			    struct perf_event_context *ctx)
{
	struct perf_event *parent = event->parent;

	if (WARN_ON_ONCE(!parent))
		return;

	mutex_lock(&parent->child_mutex);
	list_del_init(&event->child_list);
	mutex_unlock(&parent->child_mutex);

7354
	put_event(parent);
7355

7356
	perf_group_detach(event);
7357 7358 7359 7360
	list_del_event(event, ctx);
	free_event(event);
}

7361 7362
/*
 * free an unexposed, unused context as created by inheritance by
P
Peter Zijlstra 已提交
7363
 * perf_event_init_task below, used by fork() in case of fail.
7364
 */
7365
void perf_event_free_task(struct task_struct *task)
7366
{
P
Peter Zijlstra 已提交
7367
	struct perf_event_context *ctx;
7368
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
7369
	int ctxn;
7370

P
Peter Zijlstra 已提交
7371 7372 7373 7374
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;
7375

P
Peter Zijlstra 已提交
7376
		mutex_lock(&ctx->mutex);
7377
again:
P
Peter Zijlstra 已提交
7378 7379 7380
		list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
				group_entry)
			perf_free_event(event, ctx);
7381

P
Peter Zijlstra 已提交
7382 7383 7384
		list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
				group_entry)
			perf_free_event(event, ctx);
7385

P
Peter Zijlstra 已提交
7386 7387 7388
		if (!list_empty(&ctx->pinned_groups) ||
				!list_empty(&ctx->flexible_groups))
			goto again;
7389

P
Peter Zijlstra 已提交
7390
		mutex_unlock(&ctx->mutex);
7391

P
Peter Zijlstra 已提交
7392 7393
		put_ctx(ctx);
	}
7394 7395
}

7396 7397 7398 7399 7400 7401 7402 7403
void perf_event_delayed_put(struct task_struct *task)
{
	int ctxn;

	for_each_task_context_nr(ctxn)
		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
}

P
Peter Zijlstra 已提交
7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415
/*
 * inherit a event from parent task to child task:
 */
static struct perf_event *
inherit_event(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event *group_leader,
	      struct perf_event_context *child_ctx)
{
	struct perf_event *child_event;
7416
	unsigned long flags;
P
Peter Zijlstra 已提交
7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428

	/*
	 * Instead of creating recursive hierarchies of events,
	 * we link inherited events back to the original parent,
	 * which has a filp for sure, which we use as the reference
	 * count:
	 */
	if (parent_event->parent)
		parent_event = parent_event->parent;

	child_event = perf_event_alloc(&parent_event->attr,
					   parent_event->cpu,
7429
					   child,
P
Peter Zijlstra 已提交
7430
					   group_leader, parent_event,
7431
				           NULL, NULL);
P
Peter Zijlstra 已提交
7432 7433
	if (IS_ERR(child_event))
		return child_event;
7434 7435 7436 7437 7438 7439

	if (!atomic_long_inc_not_zero(&parent_event->refcount)) {
		free_event(child_event);
		return NULL;
	}

P
Peter Zijlstra 已提交
7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463
	get_ctx(child_ctx);

	/*
	 * Make the child state follow the state of the parent event,
	 * not its attr.disabled bit.  We hold the parent's mutex,
	 * so we won't race with perf_event_{en, dis}able_family.
	 */
	if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
		child_event->state = PERF_EVENT_STATE_INACTIVE;
	else
		child_event->state = PERF_EVENT_STATE_OFF;

	if (parent_event->attr.freq) {
		u64 sample_period = parent_event->hw.sample_period;
		struct hw_perf_event *hwc = &child_event->hw;

		hwc->sample_period = sample_period;
		hwc->last_period   = sample_period;

		local64_set(&hwc->period_left, sample_period);
	}

	child_event->ctx = child_ctx;
	child_event->overflow_handler = parent_event->overflow_handler;
7464 7465
	child_event->overflow_handler_context
		= parent_event->overflow_handler_context;
P
Peter Zijlstra 已提交
7466

7467 7468 7469 7470
	/*
	 * Precalculate sample_data sizes
	 */
	perf_event__header_size(child_event);
7471
	perf_event__id_header_size(child_event);
7472

P
Peter Zijlstra 已提交
7473 7474 7475
	/*
	 * Link it up in the child's context:
	 */
7476
	raw_spin_lock_irqsave(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
7477
	add_event_to_ctx(child_event, child_ctx);
7478
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511

	/*
	 * Link this into the parent event's child list
	 */
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_add_tail(&child_event->child_list, &parent_event->child_list);
	mutex_unlock(&parent_event->child_mutex);

	return child_event;
}

static int inherit_group(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event_context *child_ctx)
{
	struct perf_event *leader;
	struct perf_event *sub;
	struct perf_event *child_ctr;

	leader = inherit_event(parent_event, parent, parent_ctx,
				 child, NULL, child_ctx);
	if (IS_ERR(leader))
		return PTR_ERR(leader);
	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
		child_ctr = inherit_event(sub, parent, parent_ctx,
					    child, leader, child_ctx);
		if (IS_ERR(child_ctr))
			return PTR_ERR(child_ctr);
	}
	return 0;
7512 7513 7514 7515 7516
}

static int
inherit_task_group(struct perf_event *event, struct task_struct *parent,
		   struct perf_event_context *parent_ctx,
P
Peter Zijlstra 已提交
7517
		   struct task_struct *child, int ctxn,
7518 7519 7520
		   int *inherited_all)
{
	int ret;
P
Peter Zijlstra 已提交
7521
	struct perf_event_context *child_ctx;
7522 7523 7524 7525

	if (!event->attr.inherit) {
		*inherited_all = 0;
		return 0;
7526 7527
	}

7528
	child_ctx = child->perf_event_ctxp[ctxn];
7529 7530 7531 7532 7533 7534 7535
	if (!child_ctx) {
		/*
		 * This is executed from the parent task context, so
		 * inherit events that have been marked for cloning.
		 * First allocate and initialize a context for the
		 * child.
		 */
7536

7537
		child_ctx = alloc_perf_context(parent_ctx->pmu, child);
7538 7539
		if (!child_ctx)
			return -ENOMEM;
7540

P
Peter Zijlstra 已提交
7541
		child->perf_event_ctxp[ctxn] = child_ctx;
7542 7543 7544 7545 7546 7547 7548 7549 7550
	}

	ret = inherit_group(event, parent, parent_ctx,
			    child, child_ctx);

	if (ret)
		*inherited_all = 0;

	return ret;
7551 7552
}

7553
/*
7554
 * Initialize the perf_event context in task_struct
7555
 */
P
Peter Zijlstra 已提交
7556
int perf_event_init_context(struct task_struct *child, int ctxn)
7557
{
7558
	struct perf_event_context *child_ctx, *parent_ctx;
7559 7560
	struct perf_event_context *cloned_ctx;
	struct perf_event *event;
7561
	struct task_struct *parent = current;
7562
	int inherited_all = 1;
7563
	unsigned long flags;
7564
	int ret = 0;
7565

P
Peter Zijlstra 已提交
7566
	if (likely(!parent->perf_event_ctxp[ctxn]))
7567 7568
		return 0;

7569
	/*
7570 7571
	 * If the parent's context is a clone, pin it so it won't get
	 * swapped under us.
7572
	 */
P
Peter Zijlstra 已提交
7573
	parent_ctx = perf_pin_task_context(parent, ctxn);
7574

7575 7576 7577 7578 7579 7580 7581
	/*
	 * No need to check if parent_ctx != NULL here; since we saw
	 * it non-NULL earlier, the only reason for it to become NULL
	 * is if we exit, and since we're currently in the middle of
	 * a fork we can't be exiting at the same time.
	 */

7582 7583 7584 7585
	/*
	 * Lock the parent list. No need to lock the child - not PID
	 * hashed yet and not running, so nobody can access it.
	 */
7586
	mutex_lock(&parent_ctx->mutex);
7587 7588 7589 7590 7591

	/*
	 * We dont have to disable NMIs - we are only looking at
	 * the list, not manipulating it:
	 */
7592
	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
P
Peter Zijlstra 已提交
7593 7594
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
7595 7596 7597
		if (ret)
			break;
	}
7598

7599 7600 7601 7602 7603 7604 7605 7606 7607
	/*
	 * We can't hold ctx->lock when iterating the ->flexible_group list due
	 * to allocations, but we need to prevent rotation because
	 * rotate_ctx() will change the list from interrupt context.
	 */
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 1;
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);

7608
	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
P
Peter Zijlstra 已提交
7609 7610
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
7611
		if (ret)
7612
			break;
7613 7614
	}

7615 7616 7617
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 0;

P
Peter Zijlstra 已提交
7618
	child_ctx = child->perf_event_ctxp[ctxn];
7619

7620
	if (child_ctx && inherited_all) {
7621 7622 7623
		/*
		 * Mark the child context as a clone of the parent
		 * context, or of whatever the parent is a clone of.
P
Peter Zijlstra 已提交
7624 7625 7626
		 *
		 * Note that if the parent is a clone, the holding of
		 * parent_ctx->lock avoids it from being uncloned.
7627
		 */
P
Peter Zijlstra 已提交
7628
		cloned_ctx = parent_ctx->parent_ctx;
7629 7630
		if (cloned_ctx) {
			child_ctx->parent_ctx = cloned_ctx;
7631
			child_ctx->parent_gen = parent_ctx->parent_gen;
7632 7633 7634 7635 7636
		} else {
			child_ctx->parent_ctx = parent_ctx;
			child_ctx->parent_gen = parent_ctx->generation;
		}
		get_ctx(child_ctx->parent_ctx);
7637 7638
	}

P
Peter Zijlstra 已提交
7639
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
7640
	mutex_unlock(&parent_ctx->mutex);
7641

7642
	perf_unpin_context(parent_ctx);
7643
	put_ctx(parent_ctx);
7644

7645
	return ret;
7646 7647
}

P
Peter Zijlstra 已提交
7648 7649 7650 7651 7652 7653 7654
/*
 * Initialize the perf_event context in task_struct
 */
int perf_event_init_task(struct task_struct *child)
{
	int ctxn, ret;

7655 7656 7657 7658
	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
	mutex_init(&child->perf_event_mutex);
	INIT_LIST_HEAD(&child->perf_event_list);

P
Peter Zijlstra 已提交
7659 7660 7661 7662 7663 7664 7665 7666 7667
	for_each_task_context_nr(ctxn) {
		ret = perf_event_init_context(child, ctxn);
		if (ret)
			return ret;
	}

	return 0;
}

7668 7669
static void __init perf_event_init_all_cpus(void)
{
7670
	struct swevent_htable *swhash;
7671 7672 7673
	int cpu;

	for_each_possible_cpu(cpu) {
7674 7675
		swhash = &per_cpu(swevent_htable, cpu);
		mutex_init(&swhash->hlist_mutex);
7676
		INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
7677 7678 7679
	}
}

7680
static void perf_event_init_cpu(int cpu)
T
Thomas Gleixner 已提交
7681
{
P
Peter Zijlstra 已提交
7682
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
T
Thomas Gleixner 已提交
7683

7684
	mutex_lock(&swhash->hlist_mutex);
7685
	if (swhash->hlist_refcount > 0) {
7686 7687
		struct swevent_hlist *hlist;

7688 7689 7690
		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
		WARN_ON(!hlist);
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
7691
	}
7692
	mutex_unlock(&swhash->hlist_mutex);
T
Thomas Gleixner 已提交
7693 7694
}

P
Peter Zijlstra 已提交
7695
#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
7696
static void perf_pmu_rotate_stop(struct pmu *pmu)
T
Thomas Gleixner 已提交
7697
{
7698 7699 7700 7701 7702 7703 7704
	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

	WARN_ON(!irqs_disabled());

	list_del_init(&cpuctx->rotation_list);
}

P
Peter Zijlstra 已提交
7705
static void __perf_event_exit_context(void *__info)
T
Thomas Gleixner 已提交
7706
{
P
Peter Zijlstra 已提交
7707
	struct perf_event_context *ctx = __info;
7708
	struct perf_event *event, *tmp;
T
Thomas Gleixner 已提交
7709

P
Peter Zijlstra 已提交
7710
	perf_pmu_rotate_stop(ctx->pmu);
7711

7712
	list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
7713
		__perf_remove_from_context(event);
7714
	list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
7715
		__perf_remove_from_context(event);
T
Thomas Gleixner 已提交
7716
}
P
Peter Zijlstra 已提交
7717 7718 7719 7720 7721 7722 7723 7724 7725

static void perf_event_exit_cpu_context(int cpu)
{
	struct perf_event_context *ctx;
	struct pmu *pmu;
	int idx;

	idx = srcu_read_lock(&pmus_srcu);
	list_for_each_entry_rcu(pmu, &pmus, entry) {
7726
		ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
P
Peter Zijlstra 已提交
7727 7728 7729 7730 7731 7732 7733 7734

		mutex_lock(&ctx->mutex);
		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
		mutex_unlock(&ctx->mutex);
	}
	srcu_read_unlock(&pmus_srcu, idx);
}

7735
static void perf_event_exit_cpu(int cpu)
T
Thomas Gleixner 已提交
7736
{
7737
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7738

7739 7740 7741
	mutex_lock(&swhash->hlist_mutex);
	swevent_hlist_release(swhash);
	mutex_unlock(&swhash->hlist_mutex);
7742

P
Peter Zijlstra 已提交
7743
	perf_event_exit_cpu_context(cpu);
T
Thomas Gleixner 已提交
7744 7745
}
#else
7746
static inline void perf_event_exit_cpu(int cpu) { }
T
Thomas Gleixner 已提交
7747 7748
#endif

P
Peter Zijlstra 已提交
7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768
static int
perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
{
	int cpu;

	for_each_online_cpu(cpu)
		perf_event_exit_cpu(cpu);

	return NOTIFY_OK;
}

/*
 * Run the perf reboot notifier at the very last possible moment so that
 * the generic watchdog code runs as long as possible.
 */
static struct notifier_block perf_reboot_notifier = {
	.notifier_call = perf_reboot,
	.priority = INT_MIN,
};

7769
static int
T
Thomas Gleixner 已提交
7770 7771 7772 7773
perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
{
	unsigned int cpu = (long)hcpu;

7774
	switch (action & ~CPU_TASKS_FROZEN) {
T
Thomas Gleixner 已提交
7775 7776

	case CPU_UP_PREPARE:
P
Peter Zijlstra 已提交
7777
	case CPU_DOWN_FAILED:
7778
		perf_event_init_cpu(cpu);
T
Thomas Gleixner 已提交
7779 7780
		break;

P
Peter Zijlstra 已提交
7781
	case CPU_UP_CANCELED:
T
Thomas Gleixner 已提交
7782
	case CPU_DOWN_PREPARE:
7783
		perf_event_exit_cpu(cpu);
T
Thomas Gleixner 已提交
7784 7785 7786 7787 7788 7789 7790 7791
		break;
	default:
		break;
	}

	return NOTIFY_OK;
}

7792
void __init perf_event_init(void)
T
Thomas Gleixner 已提交
7793
{
7794 7795
	int ret;

P
Peter Zijlstra 已提交
7796 7797
	idr_init(&pmu_idr);

7798
	perf_event_init_all_cpus();
7799
	init_srcu_struct(&pmus_srcu);
P
Peter Zijlstra 已提交
7800 7801 7802
	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
	perf_pmu_register(&perf_cpu_clock, NULL, -1);
	perf_pmu_register(&perf_task_clock, NULL, -1);
7803 7804
	perf_tp_register();
	perf_cpu_notifier(perf_cpu_notify);
P
Peter Zijlstra 已提交
7805
	register_reboot_notifier(&perf_reboot_notifier);
7806 7807 7808

	ret = init_hw_breakpoint();
	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
7809 7810 7811

	/* do not patch jump label more than once per second */
	jump_label_rate_limit(&perf_sched_events, HZ);
7812 7813 7814 7815 7816 7817 7818

	/*
	 * Build time assertion that we keep the data_head at the intended
	 * location.  IOW, validation we got the __reserved[] size right.
	 */
	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
		     != 1024);
T
Thomas Gleixner 已提交
7819
}
P
Peter Zijlstra 已提交
7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847

static int __init perf_event_sysfs_init(void)
{
	struct pmu *pmu;
	int ret;

	mutex_lock(&pmus_lock);

	ret = bus_register(&pmu_bus);
	if (ret)
		goto unlock;

	list_for_each_entry(pmu, &pmus, entry) {
		if (!pmu->name || pmu->type < 0)
			continue;

		ret = pmu_dev_alloc(pmu);
		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
	}
	pmu_bus_running = 1;
	ret = 0;

unlock:
	mutex_unlock(&pmus_lock);

	return ret;
}
device_initcall(perf_event_sysfs_init);
S
Stephane Eranian 已提交
7848 7849

#ifdef CONFIG_CGROUP_PERF
7850
static struct cgroup_subsys_state *perf_cgroup_css_alloc(struct cgroup *cont)
S
Stephane Eranian 已提交
7851 7852 7853
{
	struct perf_cgroup *jc;

7854
	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
S
Stephane Eranian 已提交
7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866
	if (!jc)
		return ERR_PTR(-ENOMEM);

	jc->info = alloc_percpu(struct perf_cgroup_info);
	if (!jc->info) {
		kfree(jc);
		return ERR_PTR(-ENOMEM);
	}

	return &jc->css;
}

7867
static void perf_cgroup_css_free(struct cgroup *cont)
S
Stephane Eranian 已提交
7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882
{
	struct perf_cgroup *jc;
	jc = container_of(cgroup_subsys_state(cont, perf_subsys_id),
			  struct perf_cgroup, css);
	free_percpu(jc->info);
	kfree(jc);
}

static int __perf_cgroup_move(void *info)
{
	struct task_struct *task = info;
	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
	return 0;
}

7883
static void perf_cgroup_attach(struct cgroup *cgrp, struct cgroup_taskset *tset)
S
Stephane Eranian 已提交
7884
{
7885 7886 7887 7888
	struct task_struct *task;

	cgroup_taskset_for_each(task, cgrp, tset)
		task_function_call(task, __perf_cgroup_move, task);
S
Stephane Eranian 已提交
7889 7890
}

7891 7892
static void perf_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp,
			     struct task_struct *task)
S
Stephane Eranian 已提交
7893 7894 7895 7896 7897 7898 7899 7900 7901
{
	/*
	 * cgroup_exit() is called in the copy_process() failure path.
	 * Ignore this case since the task hasn't ran yet, this avoids
	 * trying to poke a half freed task state from generic code.
	 */
	if (!(task->flags & PF_EXITING))
		return;

7902
	task_function_call(task, __perf_cgroup_move, task);
S
Stephane Eranian 已提交
7903 7904 7905
}

struct cgroup_subsys perf_subsys = {
7906 7907
	.name		= "perf_event",
	.subsys_id	= perf_subsys_id,
7908 7909
	.css_alloc	= perf_cgroup_css_alloc,
	.css_free	= perf_cgroup_css_free,
7910
	.exit		= perf_cgroup_exit,
7911
	.attach		= perf_cgroup_attach,
S
Stephane Eranian 已提交
7912 7913
};
#endif /* CONFIG_CGROUP_PERF */