core.c 278.3 KB
Newer Older
T
Thomas Gleixner 已提交
1
/*
I
Ingo Molnar 已提交
2
 * Performance events core code:
T
Thomas Gleixner 已提交
3
 *
4
 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5
 *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6
 *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
A
Al Viro 已提交
7
 *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8
 *
I
Ingo Molnar 已提交
9
 * For licensing details see kernel-base/COPYING
T
Thomas Gleixner 已提交
10 11 12
 */

#include <linux/fs.h>
13
#include <linux/mm.h>
T
Thomas Gleixner 已提交
14 15
#include <linux/cpu.h>
#include <linux/smp.h>
P
Peter Zijlstra 已提交
16
#include <linux/idr.h>
17
#include <linux/file.h>
T
Thomas Gleixner 已提交
18
#include <linux/poll.h>
19
#include <linux/slab.h>
20
#include <linux/hash.h>
21
#include <linux/tick.h>
T
Thomas Gleixner 已提交
22
#include <linux/sysfs.h>
23
#include <linux/dcache.h>
T
Thomas Gleixner 已提交
24
#include <linux/percpu.h>
25
#include <linux/ptrace.h>
P
Peter Zijlstra 已提交
26
#include <linux/reboot.h>
27
#include <linux/vmstat.h>
P
Peter Zijlstra 已提交
28
#include <linux/device.h>
29
#include <linux/export.h>
30
#include <linux/vmalloc.h>
31 32
#include <linux/hardirq.h>
#include <linux/rculist.h>
T
Thomas Gleixner 已提交
33 34 35
#include <linux/uaccess.h>
#include <linux/syscalls.h>
#include <linux/anon_inodes.h>
I
Ingo Molnar 已提交
36
#include <linux/kernel_stat.h>
37
#include <linux/cgroup.h>
38
#include <linux/perf_event.h>
39
#include <linux/trace_events.h>
40
#include <linux/hw_breakpoint.h>
41
#include <linux/mm_types.h>
42
#include <linux/module.h>
43
#include <linux/mman.h>
P
Pawel Moll 已提交
44
#include <linux/compat.h>
45 46
#include <linux/bpf.h>
#include <linux/filter.h>
47 48
#include <linux/namei.h>
#include <linux/parser.h>
49
#include <linux/sched/clock.h>
50
#include <linux/sched/mm.h>
51 52
#include <linux/proc_ns.h>
#include <linux/mount.h>
T
Thomas Gleixner 已提交
53

54 55
#include "internal.h"

56 57
#include <asm/irq_regs.h>

58 59
typedef int (*remote_function_f)(void *);

60
struct remote_function_call {
61
	struct task_struct	*p;
62
	remote_function_f	func;
63 64
	void			*info;
	int			ret;
65 66 67 68 69 70 71 72
};

static void remote_function(void *data)
{
	struct remote_function_call *tfc = data;
	struct task_struct *p = tfc->p;

	if (p) {
73 74 75 76 77 78 79 80 81 82 83
		/* -EAGAIN */
		if (task_cpu(p) != smp_processor_id())
			return;

		/*
		 * Now that we're on right CPU with IRQs disabled, we can test
		 * if we hit the right task without races.
		 */

		tfc->ret = -ESRCH; /* No such (running) process */
		if (p != current)
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
			return;
	}

	tfc->ret = tfc->func(tfc->info);
}

/**
 * task_function_call - call a function on the cpu on which a task runs
 * @p:		the task to evaluate
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func when the task is currently running. This might
 * be on the current CPU, which just calls the function directly
 *
 * returns: @func return value, or
 *	    -ESRCH  - when the process isn't running
 *	    -EAGAIN - when the process moved away
 */
static int
104
task_function_call(struct task_struct *p, remote_function_f func, void *info)
105 106
{
	struct remote_function_call data = {
107 108 109
		.p	= p,
		.func	= func,
		.info	= info,
110
		.ret	= -EAGAIN,
111
	};
112
	int ret;
113

114 115 116 117 118
	do {
		ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
		if (!ret)
			ret = data.ret;
	} while (ret == -EAGAIN);
119

120
	return ret;
121 122 123 124 125 126 127 128 129 130 131
}

/**
 * cpu_function_call - call a function on the cpu
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func on the remote cpu.
 *
 * returns: @func return value or -ENXIO when the cpu is offline
 */
132
static int cpu_function_call(int cpu, remote_function_f func, void *info)
133 134
{
	struct remote_function_call data = {
135 136 137 138
		.p	= NULL,
		.func	= func,
		.info	= info,
		.ret	= -ENXIO, /* No such CPU */
139 140 141 142 143 144 145
	};

	smp_call_function_single(cpu, remote_function, &data, 1);

	return data.ret;
}

146 147 148 149 150 151 152 153
static inline struct perf_cpu_context *
__get_cpu_context(struct perf_event_context *ctx)
{
	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
}

static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
			  struct perf_event_context *ctx)
154
{
155 156 157 158 159 160 161 162 163 164 165 166 167
	raw_spin_lock(&cpuctx->ctx.lock);
	if (ctx)
		raw_spin_lock(&ctx->lock);
}

static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
			    struct perf_event_context *ctx)
{
	if (ctx)
		raw_spin_unlock(&ctx->lock);
	raw_spin_unlock(&cpuctx->ctx.lock);
}

168 169 170 171
#define TASK_TOMBSTONE ((void *)-1L)

static bool is_kernel_event(struct perf_event *event)
{
172
	return READ_ONCE(event->owner) == TASK_TOMBSTONE;
173 174
}

175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
/*
 * On task ctx scheduling...
 *
 * When !ctx->nr_events a task context will not be scheduled. This means
 * we can disable the scheduler hooks (for performance) without leaving
 * pending task ctx state.
 *
 * This however results in two special cases:
 *
 *  - removing the last event from a task ctx; this is relatively straight
 *    forward and is done in __perf_remove_from_context.
 *
 *  - adding the first event to a task ctx; this is tricky because we cannot
 *    rely on ctx->is_active and therefore cannot use event_function_call().
 *    See perf_install_in_context().
 *
 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
 */

194 195 196 197 198 199 200 201 202 203 204 205 206
typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
			struct perf_event_context *, void *);

struct event_function_struct {
	struct perf_event *event;
	event_f func;
	void *data;
};

static int event_function(void *info)
{
	struct event_function_struct *efs = info;
	struct perf_event *event = efs->event;
207
	struct perf_event_context *ctx = event->ctx;
208 209
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
	struct perf_event_context *task_ctx = cpuctx->task_ctx;
210
	int ret = 0;
211

212
	lockdep_assert_irqs_disabled();
213

214
	perf_ctx_lock(cpuctx, task_ctx);
215 216 217 218 219
	/*
	 * Since we do the IPI call without holding ctx->lock things can have
	 * changed, double check we hit the task we set out to hit.
	 */
	if (ctx->task) {
220
		if (ctx->task != current) {
221
			ret = -ESRCH;
222 223
			goto unlock;
		}
224 225 226 227 228 229 230 231 232 233 234 235 236

		/*
		 * We only use event_function_call() on established contexts,
		 * and event_function() is only ever called when active (or
		 * rather, we'll have bailed in task_function_call() or the
		 * above ctx->task != current test), therefore we must have
		 * ctx->is_active here.
		 */
		WARN_ON_ONCE(!ctx->is_active);
		/*
		 * And since we have ctx->is_active, cpuctx->task_ctx must
		 * match.
		 */
237 238 239
		WARN_ON_ONCE(task_ctx != ctx);
	} else {
		WARN_ON_ONCE(&cpuctx->ctx != ctx);
240
	}
241

242
	efs->func(event, cpuctx, ctx, efs->data);
243
unlock:
244 245
	perf_ctx_unlock(cpuctx, task_ctx);

246
	return ret;
247 248 249
}

static void event_function_call(struct perf_event *event, event_f func, void *data)
250 251
{
	struct perf_event_context *ctx = event->ctx;
252
	struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
253 254 255 256 257
	struct event_function_struct efs = {
		.event = event,
		.func = func,
		.data = data,
	};
258

P
Peter Zijlstra 已提交
259 260 261 262 263 264 265 266
	if (!event->parent) {
		/*
		 * If this is a !child event, we must hold ctx::mutex to
		 * stabilize the the event->ctx relation. See
		 * perf_event_ctx_lock().
		 */
		lockdep_assert_held(&ctx->mutex);
	}
267 268

	if (!task) {
269
		cpu_function_call(event->cpu, event_function, &efs);
270 271 272
		return;
	}

273 274 275
	if (task == TASK_TOMBSTONE)
		return;

276
again:
277
	if (!task_function_call(task, event_function, &efs))
278 279 280
		return;

	raw_spin_lock_irq(&ctx->lock);
281 282 283 284 285
	/*
	 * Reload the task pointer, it might have been changed by
	 * a concurrent perf_event_context_sched_out().
	 */
	task = ctx->task;
286 287 288
	if (task == TASK_TOMBSTONE) {
		raw_spin_unlock_irq(&ctx->lock);
		return;
289
	}
290 291 292 293 294
	if (ctx->is_active) {
		raw_spin_unlock_irq(&ctx->lock);
		goto again;
	}
	func(event, NULL, ctx, data);
295 296 297
	raw_spin_unlock_irq(&ctx->lock);
}

298 299 300 301 302 303 304 305 306 307 308
/*
 * Similar to event_function_call() + event_function(), but hard assumes IRQs
 * are already disabled and we're on the right CPU.
 */
static void event_function_local(struct perf_event *event, event_f func, void *data)
{
	struct perf_event_context *ctx = event->ctx;
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
	struct task_struct *task = READ_ONCE(ctx->task);
	struct perf_event_context *task_ctx = NULL;

309
	lockdep_assert_irqs_disabled();
310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345

	if (task) {
		if (task == TASK_TOMBSTONE)
			return;

		task_ctx = ctx;
	}

	perf_ctx_lock(cpuctx, task_ctx);

	task = ctx->task;
	if (task == TASK_TOMBSTONE)
		goto unlock;

	if (task) {
		/*
		 * We must be either inactive or active and the right task,
		 * otherwise we're screwed, since we cannot IPI to somewhere
		 * else.
		 */
		if (ctx->is_active) {
			if (WARN_ON_ONCE(task != current))
				goto unlock;

			if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
				goto unlock;
		}
	} else {
		WARN_ON_ONCE(&cpuctx->ctx != ctx);
	}

	func(event, cpuctx, ctx, data);
unlock:
	perf_ctx_unlock(cpuctx, task_ctx);
}

S
Stephane Eranian 已提交
346 347
#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
		       PERF_FLAG_FD_OUTPUT  |\
348 349
		       PERF_FLAG_PID_CGROUP |\
		       PERF_FLAG_FD_CLOEXEC)
S
Stephane Eranian 已提交
350

351 352 353 354 355 356 357
/*
 * branch priv levels that need permission checks
 */
#define PERF_SAMPLE_BRANCH_PERM_PLM \
	(PERF_SAMPLE_BRANCH_KERNEL |\
	 PERF_SAMPLE_BRANCH_HV)

358 359 360
enum event_type_t {
	EVENT_FLEXIBLE = 0x1,
	EVENT_PINNED = 0x2,
361
	EVENT_TIME = 0x4,
362 363
	/* see ctx_resched() for details */
	EVENT_CPU = 0x8,
364 365 366
	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
};

S
Stephane Eranian 已提交
367 368 369 370
/*
 * perf_sched_events : >0 events exist
 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
 */
371 372 373 374 375 376 377

static void perf_sched_delayed(struct work_struct *work);
DEFINE_STATIC_KEY_FALSE(perf_sched_events);
static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
static DEFINE_MUTEX(perf_sched_mutex);
static atomic_t perf_sched_count;

S
Stephane Eranian 已提交
378
static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
379
static DEFINE_PER_CPU(int, perf_sched_cb_usages);
380
static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
S
Stephane Eranian 已提交
381

382 383
static atomic_t nr_mmap_events __read_mostly;
static atomic_t nr_comm_events __read_mostly;
384
static atomic_t nr_namespaces_events __read_mostly;
385
static atomic_t nr_task_events __read_mostly;
386
static atomic_t nr_freq_events __read_mostly;
387
static atomic_t nr_switch_events __read_mostly;
388

P
Peter Zijlstra 已提交
389 390 391
static LIST_HEAD(pmus);
static DEFINE_MUTEX(pmus_lock);
static struct srcu_struct pmus_srcu;
392
static cpumask_var_t perf_online_mask;
P
Peter Zijlstra 已提交
393

394
/*
395
 * perf event paranoia level:
396 397
 *  -1 - not paranoid at all
 *   0 - disallow raw tracepoint access for unpriv
398
 *   1 - disallow cpu events for unpriv
399
 *   2 - disallow kernel profiling for unpriv
400
 */
401
int sysctl_perf_event_paranoid __read_mostly = 2;
402

403 404
/* Minimum for 512 kiB + 1 user control page */
int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
405 406

/*
407
 * max perf event sample rate
408
 */
409 410 411 412 413 414 415 416 417
#define DEFAULT_MAX_SAMPLE_RATE		100000
#define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
#define DEFAULT_CPU_TIME_MAX_PERCENT	25

int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;

static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;

P
Peter Zijlstra 已提交
418 419
static int perf_sample_allowed_ns __read_mostly =
	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
420

421
static void update_perf_cpu_limits(void)
422 423 424 425
{
	u64 tmp = perf_sample_period_ns;

	tmp *= sysctl_perf_cpu_time_max_percent;
426 427 428 429 430
	tmp = div_u64(tmp, 100);
	if (!tmp)
		tmp = 1;

	WRITE_ONCE(perf_sample_allowed_ns, tmp);
431
}
P
Peter Zijlstra 已提交
432

433
static bool perf_rotate_context(struct perf_cpu_context *cpuctx);
434

P
Peter Zijlstra 已提交
435 436 437 438
int perf_proc_update_handler(struct ctl_table *table, int write,
		void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
439
	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
P
Peter Zijlstra 已提交
440 441 442 443

	if (ret || !write)
		return ret;

444 445 446 447 448 449 450
	/*
	 * If throttling is disabled don't allow the write:
	 */
	if (sysctl_perf_cpu_time_max_percent == 100 ||
	    sysctl_perf_cpu_time_max_percent == 0)
		return -EINVAL;

P
Peter Zijlstra 已提交
451
	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
452 453 454 455 456 457 458 459 460 461 462 463
	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
	update_perf_cpu_limits();

	return 0;
}

int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;

int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
				void __user *buffer, size_t *lenp,
				loff_t *ppos)
{
464
	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
465 466 467 468

	if (ret || !write)
		return ret;

469 470
	if (sysctl_perf_cpu_time_max_percent == 100 ||
	    sysctl_perf_cpu_time_max_percent == 0) {
471 472 473 474 475 476
		printk(KERN_WARNING
		       "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
		WRITE_ONCE(perf_sample_allowed_ns, 0);
	} else {
		update_perf_cpu_limits();
	}
P
Peter Zijlstra 已提交
477 478 479

	return 0;
}
480

481 482 483 484 485 486 487
/*
 * perf samples are done in some very critical code paths (NMIs).
 * If they take too much CPU time, the system can lock up and not
 * get any real work done.  This will drop the sample rate when
 * we detect that events are taking too long.
 */
#define NR_ACCUMULATED_SAMPLES 128
P
Peter Zijlstra 已提交
488
static DEFINE_PER_CPU(u64, running_sample_length);
489

490 491 492
static u64 __report_avg;
static u64 __report_allowed;

493
static void perf_duration_warn(struct irq_work *w)
494
{
495
	printk_ratelimited(KERN_INFO
496 497 498 499
		"perf: interrupt took too long (%lld > %lld), lowering "
		"kernel.perf_event_max_sample_rate to %d\n",
		__report_avg, __report_allowed,
		sysctl_perf_event_sample_rate);
500 501 502 503 504 505
}

static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);

void perf_sample_event_took(u64 sample_len_ns)
{
506 507 508 509
	u64 max_len = READ_ONCE(perf_sample_allowed_ns);
	u64 running_len;
	u64 avg_len;
	u32 max;
510

511
	if (max_len == 0)
512 513
		return;

514 515 516 517 518
	/* Decay the counter by 1 average sample. */
	running_len = __this_cpu_read(running_sample_length);
	running_len -= running_len/NR_ACCUMULATED_SAMPLES;
	running_len += sample_len_ns;
	__this_cpu_write(running_sample_length, running_len);
519 520

	/*
521 522
	 * Note: this will be biased artifically low until we have
	 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
523 524
	 * from having to maintain a count.
	 */
525 526
	avg_len = running_len/NR_ACCUMULATED_SAMPLES;
	if (avg_len <= max_len)
527 528
		return;

529 530
	__report_avg = avg_len;
	__report_allowed = max_len;
531

532 533 534 535 536 537 538 539 540
	/*
	 * Compute a throttle threshold 25% below the current duration.
	 */
	avg_len += avg_len / 4;
	max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
	if (avg_len < max)
		max /= (u32)avg_len;
	else
		max = 1;
541

542 543 544 545 546
	WRITE_ONCE(perf_sample_allowed_ns, avg_len);
	WRITE_ONCE(max_samples_per_tick, max);

	sysctl_perf_event_sample_rate = max * HZ;
	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
547

548
	if (!irq_work_queue(&perf_duration_work)) {
549
		early_printk("perf: interrupt took too long (%lld > %lld), lowering "
550
			     "kernel.perf_event_max_sample_rate to %d\n",
551
			     __report_avg, __report_allowed,
552 553
			     sysctl_perf_event_sample_rate);
	}
554 555
}

556
static atomic64_t perf_event_id;
557

558 559 560 561
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type);

static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
562 563 564 565 566
			     enum event_type_t event_type,
			     struct task_struct *task);

static void update_context_time(struct perf_event_context *ctx);
static u64 perf_event_time(struct perf_event *event);
567

568
void __weak perf_event_print_debug(void)	{ }
T
Thomas Gleixner 已提交
569

570
extern __weak const char *perf_pmu_name(void)
T
Thomas Gleixner 已提交
571
{
572
	return "pmu";
T
Thomas Gleixner 已提交
573 574
}

575 576 577 578 579
static inline u64 perf_clock(void)
{
	return local_clock();
}

580 581 582 583 584
static inline u64 perf_event_clock(struct perf_event *event)
{
	return event->clock();
}

585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645
/*
 * State based event timekeeping...
 *
 * The basic idea is to use event->state to determine which (if any) time
 * fields to increment with the current delta. This means we only need to
 * update timestamps when we change state or when they are explicitly requested
 * (read).
 *
 * Event groups make things a little more complicated, but not terribly so. The
 * rules for a group are that if the group leader is OFF the entire group is
 * OFF, irrespecive of what the group member states are. This results in
 * __perf_effective_state().
 *
 * A futher ramification is that when a group leader flips between OFF and
 * !OFF, we need to update all group member times.
 *
 *
 * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
 * need to make sure the relevant context time is updated before we try and
 * update our timestamps.
 */

static __always_inline enum perf_event_state
__perf_effective_state(struct perf_event *event)
{
	struct perf_event *leader = event->group_leader;

	if (leader->state <= PERF_EVENT_STATE_OFF)
		return leader->state;

	return event->state;
}

static __always_inline void
__perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
{
	enum perf_event_state state = __perf_effective_state(event);
	u64 delta = now - event->tstamp;

	*enabled = event->total_time_enabled;
	if (state >= PERF_EVENT_STATE_INACTIVE)
		*enabled += delta;

	*running = event->total_time_running;
	if (state >= PERF_EVENT_STATE_ACTIVE)
		*running += delta;
}

static void perf_event_update_time(struct perf_event *event)
{
	u64 now = perf_event_time(event);

	__perf_update_times(event, now, &event->total_time_enabled,
					&event->total_time_running);
	event->tstamp = now;
}

static void perf_event_update_sibling_time(struct perf_event *leader)
{
	struct perf_event *sibling;

P
Peter Zijlstra 已提交
646
	for_each_sibling_event(sibling, leader)
647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666
		perf_event_update_time(sibling);
}

static void
perf_event_set_state(struct perf_event *event, enum perf_event_state state)
{
	if (event->state == state)
		return;

	perf_event_update_time(event);
	/*
	 * If a group leader gets enabled/disabled all its siblings
	 * are affected too.
	 */
	if ((event->state < 0) ^ (state < 0))
		perf_event_update_sibling_time(event);

	WRITE_ONCE(event->state, state);
}

S
Stephane Eranian 已提交
667 668 669 670 671 672 673 674
#ifdef CONFIG_CGROUP_PERF

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);

675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690
	/* @event doesn't care about cgroup */
	if (!event->cgrp)
		return true;

	/* wants specific cgroup scope but @cpuctx isn't associated with any */
	if (!cpuctx->cgrp)
		return false;

	/*
	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
	 * also enabled for all its descendant cgroups.  If @cpuctx's
	 * cgroup is a descendant of @event's (the test covers identity
	 * case), it's a match.
	 */
	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
				    event->cgrp->css.cgroup);
S
Stephane Eranian 已提交
691 692 693 694
}

static inline void perf_detach_cgroup(struct perf_event *event)
{
Z
Zefan Li 已提交
695
	css_put(&event->cgrp->css);
S
Stephane Eranian 已提交
696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726
	event->cgrp = NULL;
}

static inline int is_cgroup_event(struct perf_event *event)
{
	return event->cgrp != NULL;
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	struct perf_cgroup_info *t;

	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	return t->time;
}

static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
{
	struct perf_cgroup_info *info;
	u64 now;

	now = perf_clock();

	info = this_cpu_ptr(cgrp->info);

	info->time += now - info->timestamp;
	info->timestamp = now;
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
727 728 729 730 731 732 733 734 735
	struct perf_cgroup *cgrp = cpuctx->cgrp;
	struct cgroup_subsys_state *css;

	if (cgrp) {
		for (css = &cgrp->css; css; css = css->parent) {
			cgrp = container_of(css, struct perf_cgroup, css);
			__update_cgrp_time(cgrp);
		}
	}
S
Stephane Eranian 已提交
736 737 738 739
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
740 741
	struct perf_cgroup *cgrp;

S
Stephane Eranian 已提交
742
	/*
743 744
	 * ensure we access cgroup data only when needed and
	 * when we know the cgroup is pinned (css_get)
S
Stephane Eranian 已提交
745
	 */
746
	if (!is_cgroup_event(event))
S
Stephane Eranian 已提交
747 748
		return;

749
	cgrp = perf_cgroup_from_task(current, event->ctx);
750 751 752
	/*
	 * Do not update time when cgroup is not active
	 */
753
       if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
754
		__update_cgrp_time(event->cgrp);
S
Stephane Eranian 已提交
755 756 757
}

static inline void
758 759
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
760 761 762
{
	struct perf_cgroup *cgrp;
	struct perf_cgroup_info *info;
763
	struct cgroup_subsys_state *css;
S
Stephane Eranian 已提交
764

765 766 767 768 769 770
	/*
	 * ctx->lock held by caller
	 * ensure we do not access cgroup data
	 * unless we have the cgroup pinned (css_get)
	 */
	if (!task || !ctx->nr_cgroups)
S
Stephane Eranian 已提交
771 772
		return;

773
	cgrp = perf_cgroup_from_task(task, ctx);
774 775 776 777 778 779

	for (css = &cgrp->css; css; css = css->parent) {
		cgrp = container_of(css, struct perf_cgroup, css);
		info = this_cpu_ptr(cgrp->info);
		info->timestamp = ctx->timestamp;
	}
S
Stephane Eranian 已提交
780 781
}

782 783
static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);

S
Stephane Eranian 已提交
784 785 786 787 788 789 790 791 792
#define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
#define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */

/*
 * reschedule events based on the cgroup constraint of task.
 *
 * mode SWOUT : schedule out everything
 * mode SWIN : schedule in based on cgroup for next
 */
793
static void perf_cgroup_switch(struct task_struct *task, int mode)
S
Stephane Eranian 已提交
794 795
{
	struct perf_cpu_context *cpuctx;
796
	struct list_head *list;
S
Stephane Eranian 已提交
797 798 799
	unsigned long flags;

	/*
800 801
	 * Disable interrupts and preemption to avoid this CPU's
	 * cgrp_cpuctx_entry to change under us.
S
Stephane Eranian 已提交
802 803 804
	 */
	local_irq_save(flags);

805 806 807
	list = this_cpu_ptr(&cgrp_cpuctx_list);
	list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) {
		WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
S
Stephane Eranian 已提交
808

809 810
		perf_ctx_lock(cpuctx, cpuctx->task_ctx);
		perf_pmu_disable(cpuctx->ctx.pmu);
S
Stephane Eranian 已提交
811

812 813 814 815 816 817 818 819
		if (mode & PERF_CGROUP_SWOUT) {
			cpu_ctx_sched_out(cpuctx, EVENT_ALL);
			/*
			 * must not be done before ctxswout due
			 * to event_filter_match() in event_sched_out()
			 */
			cpuctx->cgrp = NULL;
		}
S
Stephane Eranian 已提交
820

821 822 823 824 825 826 827 828 829 830 831 832
		if (mode & PERF_CGROUP_SWIN) {
			WARN_ON_ONCE(cpuctx->cgrp);
			/*
			 * set cgrp before ctxsw in to allow
			 * event_filter_match() to not have to pass
			 * task around
			 * we pass the cpuctx->ctx to perf_cgroup_from_task()
			 * because cgorup events are only per-cpu
			 */
			cpuctx->cgrp = perf_cgroup_from_task(task,
							     &cpuctx->ctx);
			cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
S
Stephane Eranian 已提交
833
		}
834 835
		perf_pmu_enable(cpuctx->ctx.pmu);
		perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
S
Stephane Eranian 已提交
836 837 838 839 840
	}

	local_irq_restore(flags);
}

841 842
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
843
{
844 845 846
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

847
	rcu_read_lock();
848 849
	/*
	 * we come here when we know perf_cgroup_events > 0
850 851
	 * we do not need to pass the ctx here because we know
	 * we are holding the rcu lock
852
	 */
853
	cgrp1 = perf_cgroup_from_task(task, NULL);
854
	cgrp2 = perf_cgroup_from_task(next, NULL);
855 856 857 858 859 860 861 862

	/*
	 * only schedule out current cgroup events if we know
	 * that we are switching to a different cgroup. Otherwise,
	 * do no touch the cgroup events.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
863 864

	rcu_read_unlock();
S
Stephane Eranian 已提交
865 866
}

867 868
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
869
{
870 871 872
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

873
	rcu_read_lock();
874 875
	/*
	 * we come here when we know perf_cgroup_events > 0
876 877
	 * we do not need to pass the ctx here because we know
	 * we are holding the rcu lock
878
	 */
879 880
	cgrp1 = perf_cgroup_from_task(task, NULL);
	cgrp2 = perf_cgroup_from_task(prev, NULL);
881 882 883 884 885 886 887 888

	/*
	 * only need to schedule in cgroup events if we are changing
	 * cgroup during ctxsw. Cgroup events were not scheduled
	 * out of ctxsw out if that was not the case.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
889 890

	rcu_read_unlock();
S
Stephane Eranian 已提交
891 892 893 894 895 896 897 898
}

static inline int perf_cgroup_connect(int fd, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	struct perf_cgroup *cgrp;
	struct cgroup_subsys_state *css;
899 900
	struct fd f = fdget(fd);
	int ret = 0;
S
Stephane Eranian 已提交
901

902
	if (!f.file)
S
Stephane Eranian 已提交
903 904
		return -EBADF;

A
Al Viro 已提交
905
	css = css_tryget_online_from_dir(f.file->f_path.dentry,
906
					 &perf_event_cgrp_subsys);
907 908 909 910
	if (IS_ERR(css)) {
		ret = PTR_ERR(css);
		goto out;
	}
S
Stephane Eranian 已提交
911 912 913 914 915 916 917 918 919 920 921 922 923

	cgrp = container_of(css, struct perf_cgroup, css);
	event->cgrp = cgrp;

	/*
	 * all events in a group must monitor
	 * the same cgroup because a task belongs
	 * to only one perf cgroup at a time
	 */
	if (group_leader && group_leader->cgrp != cgrp) {
		perf_detach_cgroup(event);
		ret = -EINVAL;
	}
924
out:
925
	fdput(f);
S
Stephane Eranian 已提交
926 927 928 929 930 931 932 933 934 935 936
	return ret;
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
	struct perf_cgroup_info *t;
	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	event->shadow_ctx_time = now - t->timestamp;
}

937 938 939 940 941 942 943 944 945
/*
 * Update cpuctx->cgrp so that it is set when first cgroup event is added and
 * cleared when last cgroup event is removed.
 */
static inline void
list_update_cgroup_event(struct perf_event *event,
			 struct perf_event_context *ctx, bool add)
{
	struct perf_cpu_context *cpuctx;
946
	struct list_head *cpuctx_entry;
947 948 949 950 951 952 953 954 955

	if (!is_cgroup_event(event))
		return;

	/*
	 * Because cgroup events are always per-cpu events,
	 * this will always be called from the right CPU.
	 */
	cpuctx = __get_cpu_context(ctx);
956 957 958 959 960 961 962 963

	/*
	 * Since setting cpuctx->cgrp is conditional on the current @cgrp
	 * matching the event's cgroup, we must do this for every new event,
	 * because if the first would mismatch, the second would not try again
	 * and we would leave cpuctx->cgrp unset.
	 */
	if (add && !cpuctx->cgrp) {
964 965 966 967
		struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);

		if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
			cpuctx->cgrp = cgrp;
968
	}
969 970 971 972 973 974 975 976 977 978 979 980 981 982 983

	if (add && ctx->nr_cgroups++)
		return;
	else if (!add && --ctx->nr_cgroups)
		return;

	/* no cgroup running */
	if (!add)
		cpuctx->cgrp = NULL;

	cpuctx_entry = &cpuctx->cgrp_cpuctx_entry;
	if (add)
		list_add(cpuctx_entry, this_cpu_ptr(&cgrp_cpuctx_list));
	else
		list_del(cpuctx_entry);
984 985
}

S
Stephane Eranian 已提交
986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009
#else /* !CONFIG_CGROUP_PERF */

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	return true;
}

static inline void perf_detach_cgroup(struct perf_event *event)
{}

static inline int is_cgroup_event(struct perf_event *event)
{
	return 0;
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
}

1010 1011
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
1012 1013 1014
{
}

1015 1016
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027
{
}

static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	return -EINVAL;
}

static inline void
1028 1029
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047
{
}

void
perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
{
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	return 0;
}

1048 1049 1050 1051 1052 1053
static inline void
list_update_cgroup_event(struct perf_event *event,
			 struct perf_event_context *ctx, bool add)
{
}

S
Stephane Eranian 已提交
1054 1055
#endif

1056 1057 1058 1059 1060 1061
/*
 * set default to be dependent on timer tick just
 * like original code
 */
#define PERF_CPU_HRTIMER (1000 / HZ)
/*
1062
 * function must be called with interrupts disabled
1063
 */
1064
static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1065 1066
{
	struct perf_cpu_context *cpuctx;
1067
	bool rotations;
1068

1069
	lockdep_assert_irqs_disabled();
1070 1071 1072 1073

	cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
	rotations = perf_rotate_context(cpuctx);

P
Peter Zijlstra 已提交
1074 1075
	raw_spin_lock(&cpuctx->hrtimer_lock);
	if (rotations)
1076
		hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
P
Peter Zijlstra 已提交
1077 1078 1079
	else
		cpuctx->hrtimer_active = 0;
	raw_spin_unlock(&cpuctx->hrtimer_lock);
1080

P
Peter Zijlstra 已提交
1081
	return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1082 1083
}

1084
static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
1085
{
1086
	struct hrtimer *timer = &cpuctx->hrtimer;
1087
	struct pmu *pmu = cpuctx->ctx.pmu;
1088
	u64 interval;
1089 1090 1091 1092 1093

	/* no multiplexing needed for SW PMU */
	if (pmu->task_ctx_nr == perf_sw_context)
		return;

1094 1095 1096 1097
	/*
	 * check default is sane, if not set then force to
	 * default interval (1/tick)
	 */
1098 1099 1100
	interval = pmu->hrtimer_interval_ms;
	if (interval < 1)
		interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1101

1102
	cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1103

P
Peter Zijlstra 已提交
1104 1105
	raw_spin_lock_init(&cpuctx->hrtimer_lock);
	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
1106
	timer->function = perf_mux_hrtimer_handler;
1107 1108
}

1109
static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1110
{
1111
	struct hrtimer *timer = &cpuctx->hrtimer;
1112
	struct pmu *pmu = cpuctx->ctx.pmu;
P
Peter Zijlstra 已提交
1113
	unsigned long flags;
1114 1115 1116

	/* not for SW PMU */
	if (pmu->task_ctx_nr == perf_sw_context)
1117
		return 0;
1118

P
Peter Zijlstra 已提交
1119 1120 1121 1122 1123 1124 1125
	raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
	if (!cpuctx->hrtimer_active) {
		cpuctx->hrtimer_active = 1;
		hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
		hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
	}
	raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1126

1127
	return 0;
1128 1129
}

P
Peter Zijlstra 已提交
1130
void perf_pmu_disable(struct pmu *pmu)
1131
{
P
Peter Zijlstra 已提交
1132 1133 1134
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!(*count)++)
		pmu->pmu_disable(pmu);
1135 1136
}

P
Peter Zijlstra 已提交
1137
void perf_pmu_enable(struct pmu *pmu)
1138
{
P
Peter Zijlstra 已提交
1139 1140 1141
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!--(*count))
		pmu->pmu_enable(pmu);
1142 1143
}

1144
static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1145 1146

/*
1147 1148 1149 1150
 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
 * perf_event_task_tick() are fully serialized because they're strictly cpu
 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
 * disabled, while perf_event_task_tick is called from IRQ context.
1151
 */
1152
static void perf_event_ctx_activate(struct perf_event_context *ctx)
1153
{
1154
	struct list_head *head = this_cpu_ptr(&active_ctx_list);
1155

1156
	lockdep_assert_irqs_disabled();
1157

1158 1159 1160 1161 1162 1163 1164
	WARN_ON(!list_empty(&ctx->active_ctx_list));

	list_add(&ctx->active_ctx_list, head);
}

static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
{
1165
	lockdep_assert_irqs_disabled();
1166 1167 1168 1169

	WARN_ON(list_empty(&ctx->active_ctx_list));

	list_del_init(&ctx->active_ctx_list);
1170 1171
}

1172
static void get_ctx(struct perf_event_context *ctx)
1173
{
1174
	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
1175 1176
}

1177 1178 1179 1180 1181 1182 1183 1184 1185
static void free_ctx(struct rcu_head *head)
{
	struct perf_event_context *ctx;

	ctx = container_of(head, struct perf_event_context, rcu_head);
	kfree(ctx->task_ctx_data);
	kfree(ctx);
}

1186
static void put_ctx(struct perf_event_context *ctx)
1187
{
1188 1189 1190
	if (atomic_dec_and_test(&ctx->refcount)) {
		if (ctx->parent_ctx)
			put_ctx(ctx->parent_ctx);
1191
		if (ctx->task && ctx->task != TASK_TOMBSTONE)
1192
			put_task_struct(ctx->task);
1193
		call_rcu(&ctx->rcu_head, free_ctx);
1194
	}
1195 1196
}

P
Peter Zijlstra 已提交
1197 1198 1199 1200 1201 1202 1203
/*
 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
 * perf_pmu_migrate_context() we need some magic.
 *
 * Those places that change perf_event::ctx will hold both
 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
 *
1204 1205 1206 1207
 * Lock ordering is by mutex address. There are two other sites where
 * perf_event_context::mutex nests and those are:
 *
 *  - perf_event_exit_task_context()	[ child , 0 ]
1208 1209
 *      perf_event_exit_event()
 *        put_event()			[ parent, 1 ]
1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226
 *
 *  - perf_event_init_context()		[ parent, 0 ]
 *      inherit_task_group()
 *        inherit_group()
 *          inherit_event()
 *            perf_event_alloc()
 *              perf_init_event()
 *                perf_try_init_event()	[ child , 1 ]
 *
 * While it appears there is an obvious deadlock here -- the parent and child
 * nesting levels are inverted between the two. This is in fact safe because
 * life-time rules separate them. That is an exiting task cannot fork, and a
 * spawning task cannot (yet) exit.
 *
 * But remember that that these are parent<->child context relations, and
 * migration does not affect children, therefore these two orderings should not
 * interact.
P
Peter Zijlstra 已提交
1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249
 *
 * The change in perf_event::ctx does not affect children (as claimed above)
 * because the sys_perf_event_open() case will install a new event and break
 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
 * concerned with cpuctx and that doesn't have children.
 *
 * The places that change perf_event::ctx will issue:
 *
 *   perf_remove_from_context();
 *   synchronize_rcu();
 *   perf_install_in_context();
 *
 * to affect the change. The remove_from_context() + synchronize_rcu() should
 * quiesce the event, after which we can install it in the new location. This
 * means that only external vectors (perf_fops, prctl) can perturb the event
 * while in transit. Therefore all such accessors should also acquire
 * perf_event_context::mutex to serialize against this.
 *
 * However; because event->ctx can change while we're waiting to acquire
 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
 * function.
 *
 * Lock order:
1250
 *    cred_guard_mutex
P
Peter Zijlstra 已提交
1251 1252 1253
 *	task_struct::perf_event_mutex
 *	  perf_event_context::mutex
 *	    perf_event::child_mutex;
P
Peter Zijlstra 已提交
1254
 *	      perf_event_context::lock
P
Peter Zijlstra 已提交
1255 1256
 *	    perf_event::mmap_mutex
 *	    mmap_sem
1257 1258 1259 1260
 *
 *    cpu_hotplug_lock
 *      pmus_lock
 *	  cpuctx->mutex / perf_event_context::mutex
P
Peter Zijlstra 已提交
1261
 */
P
Peter Zijlstra 已提交
1262 1263
static struct perf_event_context *
perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
P
Peter Zijlstra 已提交
1264 1265 1266 1267 1268
{
	struct perf_event_context *ctx;

again:
	rcu_read_lock();
1269
	ctx = READ_ONCE(event->ctx);
P
Peter Zijlstra 已提交
1270 1271 1272 1273 1274 1275
	if (!atomic_inc_not_zero(&ctx->refcount)) {
		rcu_read_unlock();
		goto again;
	}
	rcu_read_unlock();

P
Peter Zijlstra 已提交
1276
	mutex_lock_nested(&ctx->mutex, nesting);
P
Peter Zijlstra 已提交
1277 1278 1279 1280 1281 1282 1283 1284 1285
	if (event->ctx != ctx) {
		mutex_unlock(&ctx->mutex);
		put_ctx(ctx);
		goto again;
	}

	return ctx;
}

P
Peter Zijlstra 已提交
1286 1287 1288 1289 1290 1291
static inline struct perf_event_context *
perf_event_ctx_lock(struct perf_event *event)
{
	return perf_event_ctx_lock_nested(event, 0);
}

P
Peter Zijlstra 已提交
1292 1293 1294 1295 1296 1297 1298
static void perf_event_ctx_unlock(struct perf_event *event,
				  struct perf_event_context *ctx)
{
	mutex_unlock(&ctx->mutex);
	put_ctx(ctx);
}

1299 1300 1301 1302 1303 1304 1305
/*
 * This must be done under the ctx->lock, such as to serialize against
 * context_equiv(), therefore we cannot call put_ctx() since that might end up
 * calling scheduler related locks and ctx->lock nests inside those.
 */
static __must_check struct perf_event_context *
unclone_ctx(struct perf_event_context *ctx)
1306
{
1307 1308 1309 1310 1311
	struct perf_event_context *parent_ctx = ctx->parent_ctx;

	lockdep_assert_held(&ctx->lock);

	if (parent_ctx)
1312
		ctx->parent_ctx = NULL;
1313
	ctx->generation++;
1314 1315

	return parent_ctx;
1316 1317
}

1318 1319
static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
				enum pid_type type)
1320
{
1321
	u32 nr;
1322 1323 1324 1325 1326 1327
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

1328 1329 1330 1331 1332
	nr = __task_pid_nr_ns(p, type, event->ns);
	/* avoid -1 if it is idle thread or runs in another ns */
	if (!nr && !pid_alive(p))
		nr = -1;
	return nr;
1333 1334
}

1335
static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1336
{
1337 1338
	return perf_event_pid_type(event, p, __PIDTYPE_TGID);
}
1339

1340 1341 1342
static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
{
	return perf_event_pid_type(event, p, PIDTYPE_PID);
1343 1344
}

1345
/*
1346
 * If we inherit events we want to return the parent event id
1347 1348
 * to userspace.
 */
1349
static u64 primary_event_id(struct perf_event *event)
1350
{
1351
	u64 id = event->id;
1352

1353 1354
	if (event->parent)
		id = event->parent->id;
1355 1356 1357 1358

	return id;
}

1359
/*
1360
 * Get the perf_event_context for a task and lock it.
1361
 *
1362 1363 1364
 * This has to cope with with the fact that until it is locked,
 * the context could get moved to another task.
 */
1365
static struct perf_event_context *
P
Peter Zijlstra 已提交
1366
perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1367
{
1368
	struct perf_event_context *ctx;
1369

P
Peter Zijlstra 已提交
1370
retry:
1371 1372 1373
	/*
	 * One of the few rules of preemptible RCU is that one cannot do
	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1374
	 * part of the read side critical section was irqs-enabled -- see
1375 1376 1377
	 * rcu_read_unlock_special().
	 *
	 * Since ctx->lock nests under rq->lock we must ensure the entire read
1378
	 * side critical section has interrupts disabled.
1379
	 */
1380
	local_irq_save(*flags);
1381
	rcu_read_lock();
P
Peter Zijlstra 已提交
1382
	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1383 1384 1385 1386
	if (ctx) {
		/*
		 * If this context is a clone of another, it might
		 * get swapped for another underneath us by
1387
		 * perf_event_task_sched_out, though the
1388 1389 1390 1391 1392 1393
		 * rcu_read_lock() protects us from any context
		 * getting freed.  Lock the context and check if it
		 * got swapped before we could get the lock, and retry
		 * if so.  If we locked the right context, then it
		 * can't get swapped on us any more.
		 */
1394
		raw_spin_lock(&ctx->lock);
P
Peter Zijlstra 已提交
1395
		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1396
			raw_spin_unlock(&ctx->lock);
1397
			rcu_read_unlock();
1398
			local_irq_restore(*flags);
1399 1400
			goto retry;
		}
1401

1402 1403
		if (ctx->task == TASK_TOMBSTONE ||
		    !atomic_inc_not_zero(&ctx->refcount)) {
1404
			raw_spin_unlock(&ctx->lock);
1405
			ctx = NULL;
P
Peter Zijlstra 已提交
1406 1407
		} else {
			WARN_ON_ONCE(ctx->task != task);
1408
		}
1409 1410
	}
	rcu_read_unlock();
1411 1412
	if (!ctx)
		local_irq_restore(*flags);
1413 1414 1415 1416 1417 1418 1419 1420
	return ctx;
}

/*
 * Get the context for a task and increment its pin_count so it
 * can't get swapped to another task.  This also increments its
 * reference count so that the context can't get freed.
 */
P
Peter Zijlstra 已提交
1421 1422
static struct perf_event_context *
perf_pin_task_context(struct task_struct *task, int ctxn)
1423
{
1424
	struct perf_event_context *ctx;
1425 1426
	unsigned long flags;

P
Peter Zijlstra 已提交
1427
	ctx = perf_lock_task_context(task, ctxn, &flags);
1428 1429
	if (ctx) {
		++ctx->pin_count;
1430
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1431 1432 1433 1434
	}
	return ctx;
}

1435
static void perf_unpin_context(struct perf_event_context *ctx)
1436 1437 1438
{
	unsigned long flags;

1439
	raw_spin_lock_irqsave(&ctx->lock, flags);
1440
	--ctx->pin_count;
1441
	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1442 1443
}

1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454
/*
 * Update the record of the current time in a context.
 */
static void update_context_time(struct perf_event_context *ctx)
{
	u64 now = perf_clock();

	ctx->time += now - ctx->timestamp;
	ctx->timestamp = now;
}

1455 1456 1457
static u64 perf_event_time(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
S
Stephane Eranian 已提交
1458 1459 1460 1461

	if (is_cgroup_event(event))
		return perf_cgroup_event_time(event);

1462 1463 1464
	return ctx ? ctx->time : 0;
}

1465 1466 1467 1468 1469 1470 1471
static enum event_type_t get_event_type(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	enum event_type_t event_type;

	lockdep_assert_held(&ctx->lock);

1472 1473 1474 1475 1476 1477 1478
	/*
	 * It's 'group type', really, because if our group leader is
	 * pinned, so are we.
	 */
	if (event->group_leader != event)
		event = event->group_leader;

1479 1480 1481 1482 1483 1484 1485
	event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
	if (!ctx->task)
		event_type |= EVENT_CPU;

	return event_type;
}

1486
/*
1487
 * Helper function to initialize event group nodes.
1488
 */
1489
static void init_event_group(struct perf_event *event)
1490 1491 1492 1493 1494 1495 1496
{
	RB_CLEAR_NODE(&event->group_node);
	event->group_index = 0;
}

/*
 * Extract pinned or flexible groups from the context
1497
 * based on event attrs bits.
1498 1499 1500
 */
static struct perf_event_groups *
get_event_groups(struct perf_event *event, struct perf_event_context *ctx)
1501 1502 1503 1504 1505 1506 1507
{
	if (event->attr.pinned)
		return &ctx->pinned_groups;
	else
		return &ctx->flexible_groups;
}

1508
/*
1509
 * Helper function to initializes perf_event_group trees.
1510
 */
1511
static void perf_event_groups_init(struct perf_event_groups *groups)
1512 1513 1514 1515 1516 1517 1518
{
	groups->tree = RB_ROOT;
	groups->index = 0;
}

/*
 * Compare function for event groups;
1519 1520 1521
 *
 * Implements complex key that first sorts by CPU and then by virtual index
 * which provides ordering when rotating groups for the same CPU.
1522
 */
1523 1524
static bool
perf_event_groups_less(struct perf_event *left, struct perf_event *right)
1525
{
1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536
	if (left->cpu < right->cpu)
		return true;
	if (left->cpu > right->cpu)
		return false;

	if (left->group_index < right->group_index)
		return true;
	if (left->group_index > right->group_index)
		return false;

	return false;
1537 1538 1539
}

/*
1540 1541 1542
 * Insert @event into @groups' tree; using {@event->cpu, ++@groups->index} for
 * key (see perf_event_groups_less). This places it last inside the CPU
 * subtree.
1543 1544 1545
 */
static void
perf_event_groups_insert(struct perf_event_groups *groups,
1546
			 struct perf_event *event)
1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558
{
	struct perf_event *node_event;
	struct rb_node *parent;
	struct rb_node **node;

	event->group_index = ++groups->index;

	node = &groups->tree.rb_node;
	parent = *node;

	while (*node) {
		parent = *node;
1559
		node_event = container_of(*node, struct perf_event, group_node);
1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571

		if (perf_event_groups_less(event, node_event))
			node = &parent->rb_left;
		else
			node = &parent->rb_right;
	}

	rb_link_node(&event->group_node, parent, node);
	rb_insert_color(&event->group_node, &groups->tree);
}

/*
1572
 * Helper function to insert event into the pinned or flexible groups.
1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583
 */
static void
add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx)
{
	struct perf_event_groups *groups;

	groups = get_event_groups(event, ctx);
	perf_event_groups_insert(groups, event);
}

/*
1584
 * Delete a group from a tree.
1585 1586 1587
 */
static void
perf_event_groups_delete(struct perf_event_groups *groups,
1588
			 struct perf_event *event)
1589
{
1590 1591
	WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) ||
		     RB_EMPTY_ROOT(&groups->tree));
1592

1593
	rb_erase(&event->group_node, &groups->tree);
1594 1595 1596 1597
	init_event_group(event);
}

/*
1598
 * Helper function to delete event from its groups.
1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609
 */
static void
del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx)
{
	struct perf_event_groups *groups;

	groups = get_event_groups(event, ctx);
	perf_event_groups_delete(groups, event);
}

/*
1610
 * Get the leftmost event in the @cpu subtree.
1611 1612 1613 1614 1615 1616 1617 1618
 */
static struct perf_event *
perf_event_groups_first(struct perf_event_groups *groups, int cpu)
{
	struct perf_event *node_event = NULL, *match = NULL;
	struct rb_node *node = groups->tree.rb_node;

	while (node) {
1619
		node_event = container_of(node, struct perf_event, group_node);
1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633

		if (cpu < node_event->cpu) {
			node = node->rb_left;
		} else if (cpu > node_event->cpu) {
			node = node->rb_right;
		} else {
			match = node_event;
			node = node->rb_left;
		}
	}

	return match;
}

1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648
/*
 * Like rb_entry_next_safe() for the @cpu subtree.
 */
static struct perf_event *
perf_event_groups_next(struct perf_event *event)
{
	struct perf_event *next;

	next = rb_entry_safe(rb_next(&event->group_node), typeof(*event), group_node);
	if (next && next->cpu == event->cpu)
		return next;

	return NULL;
}

1649
/*
1650
 * Iterate through the whole groups tree.
1651
 */
1652 1653 1654 1655 1656
#define perf_event_groups_for_each(event, groups)			\
	for (event = rb_entry_safe(rb_first(&((groups)->tree)),		\
				typeof(*event), group_node); event;	\
		event = rb_entry_safe(rb_next(&event->group_node),	\
				typeof(*event), group_node))
1657

1658
/*
1659
 * Add a event from the lists for its context.
1660 1661
 * Must be called with ctx->mutex and ctx->lock held.
 */
1662
static void
1663
list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1664
{
P
Peter Zijlstra 已提交
1665 1666
	lockdep_assert_held(&ctx->lock);

1667 1668
	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
	event->attach_state |= PERF_ATTACH_CONTEXT;
1669

1670 1671
	event->tstamp = perf_event_time(event);

1672
	/*
1673 1674 1675
	 * If we're a stand alone event or group leader, we go to the context
	 * list, group events are kept attached to the group so that
	 * perf_group_detach can, at all times, locate all siblings.
1676
	 */
1677
	if (event->group_leader == event) {
1678
		event->group_caps = event->event_caps;
1679
		add_event_to_groups(event, ctx);
P
Peter Zijlstra 已提交
1680
	}
P
Peter Zijlstra 已提交
1681

1682
	list_update_cgroup_event(event, ctx, true);
S
Stephane Eranian 已提交
1683

1684 1685 1686
	list_add_rcu(&event->event_entry, &ctx->event_list);
	ctx->nr_events++;
	if (event->attr.inherit_stat)
1687
		ctx->nr_stat++;
1688 1689

	ctx->generation++;
1690 1691
}

J
Jiri Olsa 已提交
1692 1693 1694 1695 1696 1697 1698 1699 1700
/*
 * Initialize event state based on the perf_event_attr::disabled.
 */
static inline void perf_event__state_init(struct perf_event *event)
{
	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
					      PERF_EVENT_STATE_INACTIVE;
}

P
Peter Zijlstra 已提交
1701
static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716
{
	int entry = sizeof(u64); /* value */
	int size = 0;
	int nr = 1;

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_ID)
		entry += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_GROUP) {
P
Peter Zijlstra 已提交
1717
		nr += nr_siblings;
1718 1719 1720 1721 1722 1723 1724
		size += sizeof(u64);
	}

	size += entry * nr;
	event->read_size = size;
}

P
Peter Zijlstra 已提交
1725
static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1726 1727 1728 1729 1730 1731 1732
{
	struct perf_sample_data *data;
	u16 size = 0;

	if (sample_type & PERF_SAMPLE_IP)
		size += sizeof(data->ip);

1733 1734 1735 1736 1737 1738
	if (sample_type & PERF_SAMPLE_ADDR)
		size += sizeof(data->addr);

	if (sample_type & PERF_SAMPLE_PERIOD)
		size += sizeof(data->period);

A
Andi Kleen 已提交
1739 1740 1741
	if (sample_type & PERF_SAMPLE_WEIGHT)
		size += sizeof(data->weight);

1742 1743 1744
	if (sample_type & PERF_SAMPLE_READ)
		size += event->read_size;

1745 1746 1747
	if (sample_type & PERF_SAMPLE_DATA_SRC)
		size += sizeof(data->data_src.val);

A
Andi Kleen 已提交
1748 1749 1750
	if (sample_type & PERF_SAMPLE_TRANSACTION)
		size += sizeof(data->txn);

1751 1752 1753
	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
		size += sizeof(data->phys_addr);

1754 1755 1756
	event->header_size = size;
}

P
Peter Zijlstra 已提交
1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767
/*
 * Called at perf_event creation and when events are attached/detached from a
 * group.
 */
static void perf_event__header_size(struct perf_event *event)
{
	__perf_event_read_size(event,
			       event->group_leader->nr_siblings);
	__perf_event_header_size(event, event->attr.sample_type);
}

1768 1769 1770 1771 1772 1773
static void perf_event__id_header_size(struct perf_event *event)
{
	struct perf_sample_data *data;
	u64 sample_type = event->attr.sample_type;
	u16 size = 0;

1774 1775 1776 1777 1778 1779
	if (sample_type & PERF_SAMPLE_TID)
		size += sizeof(data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		size += sizeof(data->time);

1780 1781 1782
	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		size += sizeof(data->id);

1783 1784 1785 1786 1787 1788 1789 1790 1791
	if (sample_type & PERF_SAMPLE_ID)
		size += sizeof(data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		size += sizeof(data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		size += sizeof(data->cpu_entry);

1792
	event->id_header_size = size;
1793 1794
}

P
Peter Zijlstra 已提交
1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815
static bool perf_event_validate_size(struct perf_event *event)
{
	/*
	 * The values computed here will be over-written when we actually
	 * attach the event.
	 */
	__perf_event_read_size(event, event->group_leader->nr_siblings + 1);
	__perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
	perf_event__id_header_size(event);

	/*
	 * Sum the lot; should not exceed the 64k limit we have on records.
	 * Conservative limit to allow for callchains and other variable fields.
	 */
	if (event->read_size + event->header_size +
	    event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
		return false;

	return true;
}

1816 1817
static void perf_group_attach(struct perf_event *event)
{
1818
	struct perf_event *group_leader = event->group_leader, *pos;
1819

1820 1821
	lockdep_assert_held(&event->ctx->lock);

P
Peter Zijlstra 已提交
1822 1823 1824 1825 1826 1827
	/*
	 * We can have double attach due to group movement in perf_event_open.
	 */
	if (event->attach_state & PERF_ATTACH_GROUP)
		return;

1828 1829 1830 1831 1832
	event->attach_state |= PERF_ATTACH_GROUP;

	if (group_leader == event)
		return;

P
Peter Zijlstra 已提交
1833 1834
	WARN_ON_ONCE(group_leader->ctx != event->ctx);

1835
	group_leader->group_caps &= event->event_caps;
1836

1837
	list_add_tail(&event->sibling_list, &group_leader->sibling_list);
1838
	group_leader->nr_siblings++;
1839 1840 1841

	perf_event__header_size(group_leader);

P
Peter Zijlstra 已提交
1842
	for_each_sibling_event(pos, group_leader)
1843
		perf_event__header_size(pos);
1844 1845
}

1846
/*
1847
 * Remove a event from the lists for its context.
1848
 * Must be called with ctx->mutex and ctx->lock held.
1849
 */
1850
static void
1851
list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1852
{
P
Peter Zijlstra 已提交
1853 1854 1855
	WARN_ON_ONCE(event->ctx != ctx);
	lockdep_assert_held(&ctx->lock);

1856 1857 1858 1859
	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1860
		return;
1861 1862 1863

	event->attach_state &= ~PERF_ATTACH_CONTEXT;

1864
	list_update_cgroup_event(event, ctx, false);
S
Stephane Eranian 已提交
1865

1866 1867
	ctx->nr_events--;
	if (event->attr.inherit_stat)
1868
		ctx->nr_stat--;
1869

1870
	list_del_rcu(&event->event_entry);
1871

1872
	if (event->group_leader == event)
1873
		del_event_from_groups(event, ctx);
P
Peter Zijlstra 已提交
1874

1875 1876 1877 1878 1879 1880 1881 1882
	/*
	 * If event was in error state, then keep it
	 * that way, otherwise bogus counts will be
	 * returned on read(). The only way to get out
	 * of error state is by explicit re-enabling
	 * of the event
	 */
	if (event->state > PERF_EVENT_STATE_OFF)
1883
		perf_event_set_state(event, PERF_EVENT_STATE_OFF);
1884 1885

	ctx->generation++;
1886 1887
}

1888
static void perf_group_detach(struct perf_event *event)
1889 1890
{
	struct perf_event *sibling, *tmp;
1891
	struct perf_event_context *ctx = event->ctx;
1892

1893
	lockdep_assert_held(&ctx->lock);
1894

1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906
	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_GROUP))
		return;

	event->attach_state &= ~PERF_ATTACH_GROUP;

	/*
	 * If this is a sibling, remove it from its group.
	 */
	if (event->group_leader != event) {
1907
		list_del_init(&event->sibling_list);
1908
		event->group_leader->nr_siblings--;
1909
		goto out;
1910 1911
	}

1912
	/*
1913 1914
	 * If this was a group event with sibling events then
	 * upgrade the siblings to singleton events by adding them
1915
	 * to whatever list we are on.
1916
	 */
1917
	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) {
1918

1919
		sibling->group_leader = sibling;
1920
		list_del_init(&sibling->sibling_list);
1921 1922

		/* Inherit group flags from the previous leader */
1923
		sibling->group_caps = event->group_caps;
P
Peter Zijlstra 已提交
1924

1925 1926
		if (!RB_EMPTY_NODE(&event->group_node)) {
			add_event_to_groups(sibling, event->ctx);
1927 1928 1929 1930 1931 1932 1933

			if (sibling->state == PERF_EVENT_STATE_ACTIVE) {
				struct list_head *list = sibling->attr.pinned ?
					&ctx->pinned_active : &ctx->flexible_active;

				list_add_tail(&sibling->active_list, list);
			}
1934 1935
		}

P
Peter Zijlstra 已提交
1936
		WARN_ON_ONCE(sibling->ctx != event->ctx);
1937
	}
1938 1939 1940 1941

out:
	perf_event__header_size(event->group_leader);

P
Peter Zijlstra 已提交
1942
	for_each_sibling_event(tmp, event->group_leader)
1943
		perf_event__header_size(tmp);
1944 1945
}

1946 1947
static bool is_orphaned_event(struct perf_event *event)
{
P
Peter Zijlstra 已提交
1948
	return event->state == PERF_EVENT_STATE_DEAD;
1949 1950
}

1951
static inline int __pmu_filter_match(struct perf_event *event)
1952 1953 1954 1955 1956
{
	struct pmu *pmu = event->pmu;
	return pmu->filter_match ? pmu->filter_match(event) : 1;
}

1957 1958 1959 1960 1961 1962 1963 1964
/*
 * Check whether we should attempt to schedule an event group based on
 * PMU-specific filtering. An event group can consist of HW and SW events,
 * potentially with a SW leader, so we must check all the filters, to
 * determine whether a group is schedulable:
 */
static inline int pmu_filter_match(struct perf_event *event)
{
P
Peter Zijlstra 已提交
1965
	struct perf_event *sibling;
1966 1967 1968 1969

	if (!__pmu_filter_match(event))
		return 0;

P
Peter Zijlstra 已提交
1970 1971
	for_each_sibling_event(sibling, event) {
		if (!__pmu_filter_match(sibling))
1972 1973 1974 1975 1976 1977
			return 0;
	}

	return 1;
}

1978 1979 1980
static inline int
event_filter_match(struct perf_event *event)
{
1981 1982
	return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
	       perf_cgroup_match(event) && pmu_filter_match(event);
1983 1984
}

1985 1986
static void
event_sched_out(struct perf_event *event,
1987
		  struct perf_cpu_context *cpuctx,
1988
		  struct perf_event_context *ctx)
1989
{
1990
	enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
P
Peter Zijlstra 已提交
1991 1992 1993 1994

	WARN_ON_ONCE(event->ctx != ctx);
	lockdep_assert_held(&ctx->lock);

1995
	if (event->state != PERF_EVENT_STATE_ACTIVE)
1996
		return;
1997

1998 1999 2000 2001 2002 2003 2004
	/*
	 * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but
	 * we can schedule events _OUT_ individually through things like
	 * __perf_remove_from_context().
	 */
	list_del_init(&event->active_list);

2005 2006
	perf_pmu_disable(event->pmu);

2007 2008
	event->pmu->del(event, 0);
	event->oncpu = -1;
2009

2010 2011
	if (event->pending_disable) {
		event->pending_disable = 0;
2012
		state = PERF_EVENT_STATE_OFF;
2013
	}
2014
	perf_event_set_state(event, state);
2015

2016
	if (!is_software_event(event))
2017
		cpuctx->active_oncpu--;
2018 2019
	if (!--ctx->nr_active)
		perf_event_ctx_deactivate(ctx);
2020 2021
	if (event->attr.freq && event->attr.sample_freq)
		ctx->nr_freq--;
2022
	if (event->attr.exclusive || !cpuctx->active_oncpu)
2023
		cpuctx->exclusive = 0;
2024 2025

	perf_pmu_enable(event->pmu);
2026 2027
}

2028
static void
2029
group_sched_out(struct perf_event *group_event,
2030
		struct perf_cpu_context *cpuctx,
2031
		struct perf_event_context *ctx)
2032
{
2033
	struct perf_event *event;
2034 2035 2036

	if (group_event->state != PERF_EVENT_STATE_ACTIVE)
		return;
2037

2038 2039
	perf_pmu_disable(ctx->pmu);

2040
	event_sched_out(group_event, cpuctx, ctx);
2041 2042 2043 2044

	/*
	 * Schedule out siblings (if any):
	 */
P
Peter Zijlstra 已提交
2045
	for_each_sibling_event(event, group_event)
2046
		event_sched_out(event, cpuctx, ctx);
2047

2048 2049
	perf_pmu_enable(ctx->pmu);

2050
	if (group_event->attr.exclusive)
2051 2052 2053
		cpuctx->exclusive = 0;
}

2054
#define DETACH_GROUP	0x01UL
2055

T
Thomas Gleixner 已提交
2056
/*
2057
 * Cross CPU call to remove a performance event
T
Thomas Gleixner 已提交
2058
 *
2059
 * We disable the event on the hardware level first. After that we
T
Thomas Gleixner 已提交
2060 2061
 * remove it from the context list.
 */
2062 2063 2064 2065 2066
static void
__perf_remove_from_context(struct perf_event *event,
			   struct perf_cpu_context *cpuctx,
			   struct perf_event_context *ctx,
			   void *info)
T
Thomas Gleixner 已提交
2067
{
2068
	unsigned long flags = (unsigned long)info;
T
Thomas Gleixner 已提交
2069

2070 2071 2072 2073 2074
	if (ctx->is_active & EVENT_TIME) {
		update_context_time(ctx);
		update_cgrp_time_from_cpuctx(cpuctx);
	}

2075
	event_sched_out(event, cpuctx, ctx);
2076
	if (flags & DETACH_GROUP)
2077
		perf_group_detach(event);
2078
	list_del_event(event, ctx);
2079 2080

	if (!ctx->nr_events && ctx->is_active) {
2081
		ctx->is_active = 0;
2082 2083 2084 2085
		if (ctx->task) {
			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
			cpuctx->task_ctx = NULL;
		}
2086
	}
T
Thomas Gleixner 已提交
2087 2088 2089
}

/*
2090
 * Remove the event from a task's (or a CPU's) list of events.
T
Thomas Gleixner 已提交
2091
 *
2092 2093
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
2094 2095
 * remains valid.  This is OK when called from perf_release since
 * that only calls us on the top-level context, which can't be a clone.
2096
 * When called from perf_event_exit_task, it's OK because the
2097
 * context has been detached from its task.
T
Thomas Gleixner 已提交
2098
 */
2099
static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
T
Thomas Gleixner 已提交
2100
{
2101 2102 2103
	struct perf_event_context *ctx = event->ctx;

	lockdep_assert_held(&ctx->mutex);
T
Thomas Gleixner 已提交
2104

2105
	event_function_call(event, __perf_remove_from_context, (void *)flags);
2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123

	/*
	 * The above event_function_call() can NO-OP when it hits
	 * TASK_TOMBSTONE. In that case we must already have been detached
	 * from the context (by perf_event_exit_event()) but the grouping
	 * might still be in-tact.
	 */
	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
	if ((flags & DETACH_GROUP) &&
	    (event->attach_state & PERF_ATTACH_GROUP)) {
		/*
		 * Since in that case we cannot possibly be scheduled, simply
		 * detach now.
		 */
		raw_spin_lock_irq(&ctx->lock);
		perf_group_detach(event);
		raw_spin_unlock_irq(&ctx->lock);
	}
T
Thomas Gleixner 已提交
2124 2125
}

2126
/*
2127
 * Cross CPU call to disable a performance event
2128
 */
2129 2130 2131 2132
static void __perf_event_disable(struct perf_event *event,
				 struct perf_cpu_context *cpuctx,
				 struct perf_event_context *ctx,
				 void *info)
2133
{
2134 2135
	if (event->state < PERF_EVENT_STATE_INACTIVE)
		return;
2136

2137 2138 2139 2140 2141
	if (ctx->is_active & EVENT_TIME) {
		update_context_time(ctx);
		update_cgrp_time_from_event(event);
	}

2142 2143 2144 2145
	if (event == event->group_leader)
		group_sched_out(event, cpuctx, ctx);
	else
		event_sched_out(event, cpuctx, ctx);
2146 2147

	perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2148 2149
}

2150
/*
2151
 * Disable a event.
2152
 *
2153 2154
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
2155
 * remains valid.  This condition is satisifed when called through
2156 2157
 * perf_event_for_each_child or perf_event_for_each because they
 * hold the top-level event's child_mutex, so any descendant that
2158 2159
 * goes to exit will block in perf_event_exit_event().
 *
2160
 * When called from perf_pending_event it's OK because event->ctx
2161
 * is the current context on this CPU and preemption is disabled,
2162
 * hence we can't get into perf_event_task_sched_out for this context.
2163
 */
P
Peter Zijlstra 已提交
2164
static void _perf_event_disable(struct perf_event *event)
2165
{
2166
	struct perf_event_context *ctx = event->ctx;
2167

2168
	raw_spin_lock_irq(&ctx->lock);
2169
	if (event->state <= PERF_EVENT_STATE_OFF) {
2170
		raw_spin_unlock_irq(&ctx->lock);
2171
		return;
2172
	}
2173
	raw_spin_unlock_irq(&ctx->lock);
2174

2175 2176 2177 2178 2179 2180
	event_function_call(event, __perf_event_disable, NULL);
}

void perf_event_disable_local(struct perf_event *event)
{
	event_function_local(event, __perf_event_disable, NULL);
2181
}
P
Peter Zijlstra 已提交
2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194

/*
 * Strictly speaking kernel users cannot create groups and therefore this
 * interface does not need the perf_event_ctx_lock() magic.
 */
void perf_event_disable(struct perf_event *event)
{
	struct perf_event_context *ctx;

	ctx = perf_event_ctx_lock(event);
	_perf_event_disable(event);
	perf_event_ctx_unlock(event, ctx);
}
2195
EXPORT_SYMBOL_GPL(perf_event_disable);
2196

2197 2198 2199 2200 2201 2202
void perf_event_disable_inatomic(struct perf_event *event)
{
	event->pending_disable = 1;
	irq_work_queue(&event->pending);
}

S
Stephane Eranian 已提交
2203
static void perf_set_shadow_time(struct perf_event *event,
2204
				 struct perf_event_context *ctx)
S
Stephane Eranian 已提交
2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231
{
	/*
	 * use the correct time source for the time snapshot
	 *
	 * We could get by without this by leveraging the
	 * fact that to get to this function, the caller
	 * has most likely already called update_context_time()
	 * and update_cgrp_time_xx() and thus both timestamp
	 * are identical (or very close). Given that tstamp is,
	 * already adjusted for cgroup, we could say that:
	 *    tstamp - ctx->timestamp
	 * is equivalent to
	 *    tstamp - cgrp->timestamp.
	 *
	 * Then, in perf_output_read(), the calculation would
	 * work with no changes because:
	 * - event is guaranteed scheduled in
	 * - no scheduled out in between
	 * - thus the timestamp would be the same
	 *
	 * But this is a bit hairy.
	 *
	 * So instead, we have an explicit cgroup call to remain
	 * within the time time source all along. We believe it
	 * is cleaner and simpler to understand.
	 */
	if (is_cgroup_event(event))
2232
		perf_cgroup_set_shadow_time(event, event->tstamp);
S
Stephane Eranian 已提交
2233
	else
2234
		event->shadow_ctx_time = event->tstamp - ctx->timestamp;
S
Stephane Eranian 已提交
2235 2236
}

P
Peter Zijlstra 已提交
2237 2238 2239
#define MAX_INTERRUPTS (~0ULL)

static void perf_log_throttle(struct perf_event *event, int enable);
2240
static void perf_log_itrace_start(struct perf_event *event);
P
Peter Zijlstra 已提交
2241

2242
static int
2243
event_sched_in(struct perf_event *event,
2244
		 struct perf_cpu_context *cpuctx,
2245
		 struct perf_event_context *ctx)
2246
{
2247
	int ret = 0;
2248

2249 2250
	lockdep_assert_held(&ctx->lock);

2251
	if (event->state <= PERF_EVENT_STATE_OFF)
2252 2253
		return 0;

2254 2255
	WRITE_ONCE(event->oncpu, smp_processor_id());
	/*
P
Peter Zijlstra 已提交
2256 2257 2258
	 * Order event::oncpu write to happen before the ACTIVE state is
	 * visible. This allows perf_event_{stop,read}() to observe the correct
	 * ->oncpu if it sees ACTIVE.
2259 2260
	 */
	smp_wmb();
2261
	perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
P
Peter Zijlstra 已提交
2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272

	/*
	 * Unthrottle events, since we scheduled we might have missed several
	 * ticks already, also for a heavily scheduling task there is little
	 * guarantee it'll get a tick in a timely manner.
	 */
	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
		perf_log_throttle(event, 1);
		event->hw.interrupts = 0;
	}

2273 2274
	perf_pmu_disable(event->pmu);

2275
	perf_set_shadow_time(event, ctx);
2276

2277 2278
	perf_log_itrace_start(event);

P
Peter Zijlstra 已提交
2279
	if (event->pmu->add(event, PERF_EF_START)) {
2280
		perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2281
		event->oncpu = -1;
2282 2283
		ret = -EAGAIN;
		goto out;
2284 2285
	}

2286
	if (!is_software_event(event))
2287
		cpuctx->active_oncpu++;
2288 2289
	if (!ctx->nr_active++)
		perf_event_ctx_activate(ctx);
2290 2291
	if (event->attr.freq && event->attr.sample_freq)
		ctx->nr_freq++;
2292

2293
	if (event->attr.exclusive)
2294 2295
		cpuctx->exclusive = 1;

2296 2297 2298 2299
out:
	perf_pmu_enable(event->pmu);

	return ret;
2300 2301
}

2302
static int
2303
group_sched_in(struct perf_event *group_event,
2304
	       struct perf_cpu_context *cpuctx,
2305
	       struct perf_event_context *ctx)
2306
{
2307
	struct perf_event *event, *partial_group = NULL;
P
Peter Zijlstra 已提交
2308
	struct pmu *pmu = ctx->pmu;
2309

2310
	if (group_event->state == PERF_EVENT_STATE_OFF)
2311 2312
		return 0;

2313
	pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2314

2315
	if (event_sched_in(group_event, cpuctx, ctx)) {
P
Peter Zijlstra 已提交
2316
		pmu->cancel_txn(pmu);
2317
		perf_mux_hrtimer_restart(cpuctx);
2318
		return -EAGAIN;
2319
	}
2320 2321 2322 2323

	/*
	 * Schedule in siblings as one group (if any):
	 */
P
Peter Zijlstra 已提交
2324
	for_each_sibling_event(event, group_event) {
2325
		if (event_sched_in(event, cpuctx, ctx)) {
2326
			partial_group = event;
2327 2328 2329 2330
			goto group_error;
		}
	}

2331
	if (!pmu->commit_txn(pmu))
2332
		return 0;
2333

2334 2335 2336 2337
group_error:
	/*
	 * Groups can be scheduled in as one unit only, so undo any
	 * partial group before returning:
2338
	 * The events up to the failed event are scheduled out normally.
2339
	 */
P
Peter Zijlstra 已提交
2340
	for_each_sibling_event(event, group_event) {
2341
		if (event == partial_group)
2342
			break;
2343

2344
		event_sched_out(event, cpuctx, ctx);
2345
	}
2346
	event_sched_out(group_event, cpuctx, ctx);
2347

P
Peter Zijlstra 已提交
2348
	pmu->cancel_txn(pmu);
2349

2350
	perf_mux_hrtimer_restart(cpuctx);
2351

2352 2353 2354
	return -EAGAIN;
}

2355
/*
2356
 * Work out whether we can put this event group on the CPU now.
2357
 */
2358
static int group_can_go_on(struct perf_event *event,
2359 2360 2361 2362
			   struct perf_cpu_context *cpuctx,
			   int can_add_hw)
{
	/*
2363
	 * Groups consisting entirely of software events can always go on.
2364
	 */
2365
	if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2366 2367 2368
		return 1;
	/*
	 * If an exclusive group is already on, no other hardware
2369
	 * events can go on.
2370 2371 2372 2373 2374
	 */
	if (cpuctx->exclusive)
		return 0;
	/*
	 * If this group is exclusive and there are already
2375
	 * events on the CPU, it can't go on.
2376
	 */
2377
	if (event->attr.exclusive && cpuctx->active_oncpu)
2378 2379 2380 2381 2382 2383 2384 2385
		return 0;
	/*
	 * Otherwise, try to add it if all previous groups were able
	 * to go on.
	 */
	return can_add_hw;
}

2386 2387
static void add_event_to_ctx(struct perf_event *event,
			       struct perf_event_context *ctx)
2388
{
2389
	list_add_event(event, ctx);
2390
	perf_group_attach(event);
2391 2392
}

2393 2394 2395
static void ctx_sched_out(struct perf_event_context *ctx,
			  struct perf_cpu_context *cpuctx,
			  enum event_type_t event_type);
2396 2397 2398 2399 2400
static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
	     enum event_type_t event_type,
	     struct task_struct *task);
2401

2402
static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2403 2404
			       struct perf_event_context *ctx,
			       enum event_type_t event_type)
2405 2406 2407 2408 2409 2410 2411
{
	if (!cpuctx->task_ctx)
		return;

	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
		return;

2412
	ctx_sched_out(ctx, cpuctx, event_type);
2413 2414
}

2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426
static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
				struct perf_event_context *ctx,
				struct task_struct *task)
{
	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
}

2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441
/*
 * We want to maintain the following priority of scheduling:
 *  - CPU pinned (EVENT_CPU | EVENT_PINNED)
 *  - task pinned (EVENT_PINNED)
 *  - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
 *  - task flexible (EVENT_FLEXIBLE).
 *
 * In order to avoid unscheduling and scheduling back in everything every
 * time an event is added, only do it for the groups of equal priority and
 * below.
 *
 * This can be called after a batch operation on task events, in which case
 * event_type is a bit mask of the types of events involved. For CPU events,
 * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
 */
2442
static void ctx_resched(struct perf_cpu_context *cpuctx,
2443 2444
			struct perf_event_context *task_ctx,
			enum event_type_t event_type)
2445
{
2446
	enum event_type_t ctx_event_type;
2447 2448 2449 2450 2451 2452 2453 2454 2455
	bool cpu_event = !!(event_type & EVENT_CPU);

	/*
	 * If pinned groups are involved, flexible groups also need to be
	 * scheduled out.
	 */
	if (event_type & EVENT_PINNED)
		event_type |= EVENT_FLEXIBLE;

2456 2457
	ctx_event_type = event_type & EVENT_ALL;

2458 2459
	perf_pmu_disable(cpuctx->ctx.pmu);
	if (task_ctx)
2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473
		task_ctx_sched_out(cpuctx, task_ctx, event_type);

	/*
	 * Decide which cpu ctx groups to schedule out based on the types
	 * of events that caused rescheduling:
	 *  - EVENT_CPU: schedule out corresponding groups;
	 *  - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
	 *  - otherwise, do nothing more.
	 */
	if (cpu_event)
		cpu_ctx_sched_out(cpuctx, ctx_event_type);
	else if (ctx_event_type & EVENT_PINNED)
		cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);

2474 2475
	perf_event_sched_in(cpuctx, task_ctx, current);
	perf_pmu_enable(cpuctx->ctx.pmu);
2476 2477
}

T
Thomas Gleixner 已提交
2478
/*
2479
 * Cross CPU call to install and enable a performance event
2480
 *
2481 2482
 * Very similar to remote_function() + event_function() but cannot assume that
 * things like ctx->is_active and cpuctx->task_ctx are set.
T
Thomas Gleixner 已提交
2483
 */
2484
static int  __perf_install_in_context(void *info)
T
Thomas Gleixner 已提交
2485
{
2486 2487
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
2488
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2489
	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2490
	bool reprogram = true;
2491
	int ret = 0;
T
Thomas Gleixner 已提交
2492

2493
	raw_spin_lock(&cpuctx->ctx.lock);
2494
	if (ctx->task) {
2495 2496
		raw_spin_lock(&ctx->lock);
		task_ctx = ctx;
2497

2498
		reprogram = (ctx->task == current);
2499

2500
		/*
2501 2502 2503 2504 2505
		 * If the task is running, it must be running on this CPU,
		 * otherwise we cannot reprogram things.
		 *
		 * If its not running, we don't care, ctx->lock will
		 * serialize against it becoming runnable.
2506
		 */
2507 2508 2509 2510
		if (task_curr(ctx->task) && !reprogram) {
			ret = -ESRCH;
			goto unlock;
		}
2511

2512
		WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2513 2514
	} else if (task_ctx) {
		raw_spin_lock(&task_ctx->lock);
2515
	}
2516

2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528
#ifdef CONFIG_CGROUP_PERF
	if (is_cgroup_event(event)) {
		/*
		 * If the current cgroup doesn't match the event's
		 * cgroup, we should not try to schedule it.
		 */
		struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
		reprogram = cgroup_is_descendant(cgrp->css.cgroup,
					event->cgrp->css.cgroup);
	}
#endif

2529
	if (reprogram) {
2530 2531
		ctx_sched_out(ctx, cpuctx, EVENT_TIME);
		add_event_to_ctx(event, ctx);
2532
		ctx_resched(cpuctx, task_ctx, get_event_type(event));
2533 2534 2535 2536
	} else {
		add_event_to_ctx(event, ctx);
	}

2537
unlock:
2538
	perf_ctx_unlock(cpuctx, task_ctx);
2539

2540
	return ret;
T
Thomas Gleixner 已提交
2541 2542 2543
}

/*
2544 2545 2546
 * Attach a performance event to a context.
 *
 * Very similar to event_function_call, see comment there.
T
Thomas Gleixner 已提交
2547 2548
 */
static void
2549 2550
perf_install_in_context(struct perf_event_context *ctx,
			struct perf_event *event,
T
Thomas Gleixner 已提交
2551 2552
			int cpu)
{
2553
	struct task_struct *task = READ_ONCE(ctx->task);
2554

2555 2556
	lockdep_assert_held(&ctx->mutex);

2557 2558
	if (event->cpu != -1)
		event->cpu = cpu;
2559

2560 2561 2562 2563 2564 2565
	/*
	 * Ensures that if we can observe event->ctx, both the event and ctx
	 * will be 'complete'. See perf_iterate_sb_cpu().
	 */
	smp_store_release(&event->ctx, ctx);

2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576
	if (!task) {
		cpu_function_call(cpu, __perf_install_in_context, event);
		return;
	}

	/*
	 * Should not happen, we validate the ctx is still alive before calling.
	 */
	if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
		return;

2577 2578 2579
	/*
	 * Installing events is tricky because we cannot rely on ctx->is_active
	 * to be set in case this is the nr_events 0 -> 1 transition.
2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598
	 *
	 * Instead we use task_curr(), which tells us if the task is running.
	 * However, since we use task_curr() outside of rq::lock, we can race
	 * against the actual state. This means the result can be wrong.
	 *
	 * If we get a false positive, we retry, this is harmless.
	 *
	 * If we get a false negative, things are complicated. If we are after
	 * perf_event_context_sched_in() ctx::lock will serialize us, and the
	 * value must be correct. If we're before, it doesn't matter since
	 * perf_event_context_sched_in() will program the counter.
	 *
	 * However, this hinges on the remote context switch having observed
	 * our task->perf_event_ctxp[] store, such that it will in fact take
	 * ctx::lock in perf_event_context_sched_in().
	 *
	 * We do this by task_function_call(), if the IPI fails to hit the task
	 * we know any future context switch of task must see the
	 * perf_event_ctpx[] store.
2599
	 */
2600

2601
	/*
2602 2603 2604 2605
	 * This smp_mb() orders the task->perf_event_ctxp[] store with the
	 * task_cpu() load, such that if the IPI then does not find the task
	 * running, a future context switch of that task must observe the
	 * store.
2606
	 */
2607 2608 2609
	smp_mb();
again:
	if (!task_function_call(task, __perf_install_in_context, event))
2610 2611 2612 2613
		return;

	raw_spin_lock_irq(&ctx->lock);
	task = ctx->task;
2614
	if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2615 2616 2617 2618 2619
		/*
		 * Cannot happen because we already checked above (which also
		 * cannot happen), and we hold ctx->mutex, which serializes us
		 * against perf_event_exit_task_context().
		 */
2620 2621 2622
		raw_spin_unlock_irq(&ctx->lock);
		return;
	}
2623
	/*
2624 2625
	 * If the task is not running, ctx->lock will avoid it becoming so,
	 * thus we can safely install the event.
2626
	 */
2627 2628 2629 2630 2631 2632
	if (task_curr(task)) {
		raw_spin_unlock_irq(&ctx->lock);
		goto again;
	}
	add_event_to_ctx(event, ctx);
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
2633 2634
}

2635
/*
2636
 * Cross CPU call to enable a performance event
2637
 */
2638 2639 2640 2641
static void __perf_event_enable(struct perf_event *event,
				struct perf_cpu_context *cpuctx,
				struct perf_event_context *ctx,
				void *info)
2642
{
2643
	struct perf_event *leader = event->group_leader;
2644
	struct perf_event_context *task_ctx;
2645

P
Peter Zijlstra 已提交
2646 2647
	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
	    event->state <= PERF_EVENT_STATE_ERROR)
2648
		return;
2649

2650 2651 2652
	if (ctx->is_active)
		ctx_sched_out(ctx, cpuctx, EVENT_TIME);

2653
	perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2654

2655 2656 2657
	if (!ctx->is_active)
		return;

S
Stephane Eranian 已提交
2658
	if (!event_filter_match(event)) {
2659
		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2660
		return;
S
Stephane Eranian 已提交
2661
	}
2662

2663
	/*
2664
	 * If the event is in a group and isn't the group leader,
2665
	 * then don't put it on unless the group is on.
2666
	 */
2667 2668
	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2669
		return;
2670
	}
2671

2672 2673 2674
	task_ctx = cpuctx->task_ctx;
	if (ctx->task)
		WARN_ON_ONCE(task_ctx != ctx);
2675

2676
	ctx_resched(cpuctx, task_ctx, get_event_type(event));
2677 2678
}

2679
/*
2680
 * Enable a event.
2681
 *
2682 2683
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
2684
 * remains valid.  This condition is satisfied when called through
2685 2686
 * perf_event_for_each_child or perf_event_for_each as described
 * for perf_event_disable.
2687
 */
P
Peter Zijlstra 已提交
2688
static void _perf_event_enable(struct perf_event *event)
2689
{
2690
	struct perf_event_context *ctx = event->ctx;
2691

2692
	raw_spin_lock_irq(&ctx->lock);
P
Peter Zijlstra 已提交
2693 2694
	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
	    event->state <  PERF_EVENT_STATE_ERROR) {
2695
		raw_spin_unlock_irq(&ctx->lock);
2696 2697 2698 2699
		return;
	}

	/*
2700
	 * If the event is in error state, clear that first.
2701 2702 2703 2704
	 *
	 * That way, if we see the event in error state below, we know that it
	 * has gone back into error state, as distinct from the task having
	 * been scheduled away before the cross-call arrived.
2705
	 */
2706 2707
	if (event->state == PERF_EVENT_STATE_ERROR)
		event->state = PERF_EVENT_STATE_OFF;
2708
	raw_spin_unlock_irq(&ctx->lock);
2709

2710
	event_function_call(event, __perf_event_enable, NULL);
2711
}
P
Peter Zijlstra 已提交
2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723

/*
 * See perf_event_disable();
 */
void perf_event_enable(struct perf_event *event)
{
	struct perf_event_context *ctx;

	ctx = perf_event_ctx_lock(event);
	_perf_event_enable(event);
	perf_event_ctx_unlock(event, ctx);
}
2724
EXPORT_SYMBOL_GPL(perf_event_enable);
2725

2726 2727 2728 2729 2730
struct stop_event_data {
	struct perf_event	*event;
	unsigned int		restart;
};

2731 2732
static int __perf_event_stop(void *info)
{
2733 2734
	struct stop_event_data *sd = info;
	struct perf_event *event = sd->event;
2735

2736
	/* if it's already INACTIVE, do nothing */
2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751
	if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
		return 0;

	/* matches smp_wmb() in event_sched_in() */
	smp_rmb();

	/*
	 * There is a window with interrupts enabled before we get here,
	 * so we need to check again lest we try to stop another CPU's event.
	 */
	if (READ_ONCE(event->oncpu) != smp_processor_id())
		return -EAGAIN;

	event->pmu->stop(event, PERF_EF_UPDATE);

2752 2753 2754 2755 2756 2757 2758 2759 2760 2761
	/*
	 * May race with the actual stop (through perf_pmu_output_stop()),
	 * but it is only used for events with AUX ring buffer, and such
	 * events will refuse to restart because of rb::aux_mmap_count==0,
	 * see comments in perf_aux_output_begin().
	 *
	 * Since this is happening on a event-local CPU, no trace is lost
	 * while restarting.
	 */
	if (sd->restart)
2762
		event->pmu->start(event, 0);
2763

2764 2765 2766
	return 0;
}

2767
static int perf_event_stop(struct perf_event *event, int restart)
2768 2769 2770
{
	struct stop_event_data sd = {
		.event		= event,
2771
		.restart	= restart,
2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831
	};
	int ret = 0;

	do {
		if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
			return 0;

		/* matches smp_wmb() in event_sched_in() */
		smp_rmb();

		/*
		 * We only want to restart ACTIVE events, so if the event goes
		 * inactive here (event->oncpu==-1), there's nothing more to do;
		 * fall through with ret==-ENXIO.
		 */
		ret = cpu_function_call(READ_ONCE(event->oncpu),
					__perf_event_stop, &sd);
	} while (ret == -EAGAIN);

	return ret;
}

/*
 * In order to contain the amount of racy and tricky in the address filter
 * configuration management, it is a two part process:
 *
 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
 *      we update the addresses of corresponding vmas in
 *	event::addr_filters_offs array and bump the event::addr_filters_gen;
 * (p2) when an event is scheduled in (pmu::add), it calls
 *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
 *      if the generation has changed since the previous call.
 *
 * If (p1) happens while the event is active, we restart it to force (p2).
 *
 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
 *     pre-existing mappings, called once when new filters arrive via SET_FILTER
 *     ioctl;
 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
 *     registered mapping, called for every new mmap(), with mm::mmap_sem down
 *     for reading;
 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
 *     of exec.
 */
void perf_event_addr_filters_sync(struct perf_event *event)
{
	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);

	if (!has_addr_filter(event))
		return;

	raw_spin_lock(&ifh->lock);
	if (event->addr_filters_gen != event->hw.addr_filters_gen) {
		event->pmu->addr_filters_sync(event);
		event->hw.addr_filters_gen = event->addr_filters_gen;
	}
	raw_spin_unlock(&ifh->lock);
}
EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);

P
Peter Zijlstra 已提交
2832
static int _perf_event_refresh(struct perf_event *event, int refresh)
2833
{
2834
	/*
2835
	 * not supported on inherited events
2836
	 */
2837
	if (event->attr.inherit || !is_sampling_event(event))
2838 2839
		return -EINVAL;

2840
	atomic_add(refresh, &event->event_limit);
P
Peter Zijlstra 已提交
2841
	_perf_event_enable(event);
2842 2843

	return 0;
2844
}
P
Peter Zijlstra 已提交
2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859

/*
 * See perf_event_disable()
 */
int perf_event_refresh(struct perf_event *event, int refresh)
{
	struct perf_event_context *ctx;
	int ret;

	ctx = perf_event_ctx_lock(event);
	ret = _perf_event_refresh(event, refresh);
	perf_event_ctx_unlock(event, ctx);

	return ret;
}
2860
EXPORT_SYMBOL_GPL(perf_event_refresh);
2861

2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896
static int perf_event_modify_breakpoint(struct perf_event *bp,
					 struct perf_event_attr *attr)
{
	int err;

	_perf_event_disable(bp);

	err = modify_user_hw_breakpoint_check(bp, attr, true);
	if (err) {
		if (!bp->attr.disabled)
			_perf_event_enable(bp);

		return err;
	}

	if (!attr->disabled)
		_perf_event_enable(bp);
	return 0;
}

static int perf_event_modify_attr(struct perf_event *event,
				  struct perf_event_attr *attr)
{
	if (event->attr.type != attr->type)
		return -EINVAL;

	switch (event->attr.type) {
	case PERF_TYPE_BREAKPOINT:
		return perf_event_modify_breakpoint(event, attr);
	default:
		/* Place holder for future additions. */
		return -EOPNOTSUPP;
	}
}

2897 2898 2899
static void ctx_sched_out(struct perf_event_context *ctx,
			  struct perf_cpu_context *cpuctx,
			  enum event_type_t event_type)
2900
{
2901
	struct perf_event *event, *tmp;
2902
	int is_active = ctx->is_active;
2903

P
Peter Zijlstra 已提交
2904
	lockdep_assert_held(&ctx->lock);
2905

2906 2907 2908 2909 2910 2911 2912
	if (likely(!ctx->nr_events)) {
		/*
		 * See __perf_remove_from_context().
		 */
		WARN_ON_ONCE(ctx->is_active);
		if (ctx->task)
			WARN_ON_ONCE(cpuctx->task_ctx);
2913
		return;
2914 2915
	}

2916
	ctx->is_active &= ~event_type;
2917 2918 2919
	if (!(ctx->is_active & EVENT_ALL))
		ctx->is_active = 0;

2920 2921 2922 2923 2924
	if (ctx->task) {
		WARN_ON_ONCE(cpuctx->task_ctx != ctx);
		if (!ctx->is_active)
			cpuctx->task_ctx = NULL;
	}
2925

2926 2927 2928 2929 2930 2931 2932 2933 2934 2935
	/*
	 * Always update time if it was set; not only when it changes.
	 * Otherwise we can 'forget' to update time for any but the last
	 * context we sched out. For example:
	 *
	 *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
	 *   ctx_sched_out(.event_type = EVENT_PINNED)
	 *
	 * would only update time for the pinned events.
	 */
2936 2937 2938 2939 2940 2941
	if (is_active & EVENT_TIME) {
		/* update (and stop) ctx time */
		update_context_time(ctx);
		update_cgrp_time_from_cpuctx(cpuctx);
	}

2942 2943
	is_active ^= ctx->is_active; /* changed bits */

2944
	if (!ctx->nr_active || !(is_active & EVENT_ALL))
2945
		return;
2946

P
Peter Zijlstra 已提交
2947
	perf_pmu_disable(ctx->pmu);
2948
	if (is_active & EVENT_PINNED) {
2949
		list_for_each_entry_safe(event, tmp, &ctx->pinned_active, active_list)
2950
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
2951
	}
2952

2953
	if (is_active & EVENT_FLEXIBLE) {
2954
		list_for_each_entry_safe(event, tmp, &ctx->flexible_active, active_list)
2955
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
2956
	}
P
Peter Zijlstra 已提交
2957
	perf_pmu_enable(ctx->pmu);
2958 2959
}

2960
/*
2961 2962 2963 2964 2965 2966
 * Test whether two contexts are equivalent, i.e. whether they have both been
 * cloned from the same version of the same context.
 *
 * Equivalence is measured using a generation number in the context that is
 * incremented on each modification to it; see unclone_ctx(), list_add_event()
 * and list_del_event().
2967
 */
2968 2969
static int context_equiv(struct perf_event_context *ctx1,
			 struct perf_event_context *ctx2)
2970
{
2971 2972 2973
	lockdep_assert_held(&ctx1->lock);
	lockdep_assert_held(&ctx2->lock);

2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995
	/* Pinning disables the swap optimization */
	if (ctx1->pin_count || ctx2->pin_count)
		return 0;

	/* If ctx1 is the parent of ctx2 */
	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
		return 1;

	/* If ctx2 is the parent of ctx1 */
	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
		return 1;

	/*
	 * If ctx1 and ctx2 have the same parent; we flatten the parent
	 * hierarchy, see perf_event_init_context().
	 */
	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
			ctx1->parent_gen == ctx2->parent_gen)
		return 1;

	/* Unmatched */
	return 0;
2996 2997
}

2998 2999
static void __perf_event_sync_stat(struct perf_event *event,
				     struct perf_event *next_event)
3000 3001 3002
{
	u64 value;

3003
	if (!event->attr.inherit_stat)
3004 3005 3006
		return;

	/*
3007
	 * Update the event value, we cannot use perf_event_read()
3008 3009
	 * because we're in the middle of a context switch and have IRQs
	 * disabled, which upsets smp_call_function_single(), however
3010
	 * we know the event must be on the current CPU, therefore we
3011 3012
	 * don't need to use it.
	 */
3013
	if (event->state == PERF_EVENT_STATE_ACTIVE)
3014
		event->pmu->read(event);
3015

3016
	perf_event_update_time(event);
3017 3018

	/*
3019
	 * In order to keep per-task stats reliable we need to flip the event
3020 3021
	 * values when we flip the contexts.
	 */
3022 3023 3024
	value = local64_read(&next_event->count);
	value = local64_xchg(&event->count, value);
	local64_set(&next_event->count, value);
3025

3026 3027
	swap(event->total_time_enabled, next_event->total_time_enabled);
	swap(event->total_time_running, next_event->total_time_running);
3028

3029
	/*
3030
	 * Since we swizzled the values, update the user visible data too.
3031
	 */
3032 3033
	perf_event_update_userpage(event);
	perf_event_update_userpage(next_event);
3034 3035
}

3036 3037
static void perf_event_sync_stat(struct perf_event_context *ctx,
				   struct perf_event_context *next_ctx)
3038
{
3039
	struct perf_event *event, *next_event;
3040 3041 3042 3043

	if (!ctx->nr_stat)
		return;

3044 3045
	update_context_time(ctx);

3046 3047
	event = list_first_entry(&ctx->event_list,
				   struct perf_event, event_entry);
3048

3049 3050
	next_event = list_first_entry(&next_ctx->event_list,
					struct perf_event, event_entry);
3051

3052 3053
	while (&event->event_entry != &ctx->event_list &&
	       &next_event->event_entry != &next_ctx->event_list) {
3054

3055
		__perf_event_sync_stat(event, next_event);
3056

3057 3058
		event = list_next_entry(event, event_entry);
		next_event = list_next_entry(next_event, event_entry);
3059 3060 3061
	}
}

3062 3063
static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
					 struct task_struct *next)
T
Thomas Gleixner 已提交
3064
{
P
Peter Zijlstra 已提交
3065
	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
3066
	struct perf_event_context *next_ctx;
3067
	struct perf_event_context *parent, *next_parent;
P
Peter Zijlstra 已提交
3068
	struct perf_cpu_context *cpuctx;
3069
	int do_switch = 1;
T
Thomas Gleixner 已提交
3070

P
Peter Zijlstra 已提交
3071 3072
	if (likely(!ctx))
		return;
3073

P
Peter Zijlstra 已提交
3074 3075
	cpuctx = __get_cpu_context(ctx);
	if (!cpuctx->task_ctx)
T
Thomas Gleixner 已提交
3076 3077
		return;

3078
	rcu_read_lock();
P
Peter Zijlstra 已提交
3079
	next_ctx = next->perf_event_ctxp[ctxn];
3080 3081 3082 3083 3084 3085 3086
	if (!next_ctx)
		goto unlock;

	parent = rcu_dereference(ctx->parent_ctx);
	next_parent = rcu_dereference(next_ctx->parent_ctx);

	/* If neither context have a parent context; they cannot be clones. */
3087
	if (!parent && !next_parent)
3088 3089 3090
		goto unlock;

	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
3091 3092 3093 3094 3095 3096 3097 3098 3099
		/*
		 * Looks like the two contexts are clones, so we might be
		 * able to optimize the context switch.  We lock both
		 * contexts and check that they are clones under the
		 * lock (including re-checking that neither has been
		 * uncloned in the meantime).  It doesn't matter which
		 * order we take the locks because no other cpu could
		 * be trying to lock both of these tasks.
		 */
3100 3101
		raw_spin_lock(&ctx->lock);
		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
3102
		if (context_equiv(ctx, next_ctx)) {
3103 3104
			WRITE_ONCE(ctx->task, next);
			WRITE_ONCE(next_ctx->task, task);
3105 3106 3107

			swap(ctx->task_ctx_data, next_ctx->task_ctx_data);

3108 3109 3110 3111 3112 3113 3114 3115 3116 3117
			/*
			 * RCU_INIT_POINTER here is safe because we've not
			 * modified the ctx and the above modification of
			 * ctx->task and ctx->task_ctx_data are immaterial
			 * since those values are always verified under
			 * ctx->lock which we're now holding.
			 */
			RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
			RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);

3118
			do_switch = 0;
3119

3120
			perf_event_sync_stat(ctx, next_ctx);
3121
		}
3122 3123
		raw_spin_unlock(&next_ctx->lock);
		raw_spin_unlock(&ctx->lock);
3124
	}
3125
unlock:
3126
	rcu_read_unlock();
3127

3128
	if (do_switch) {
3129
		raw_spin_lock(&ctx->lock);
3130
		task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
3131
		raw_spin_unlock(&ctx->lock);
3132
	}
T
Thomas Gleixner 已提交
3133 3134
}

3135 3136
static DEFINE_PER_CPU(struct list_head, sched_cb_list);

3137 3138
void perf_sched_cb_dec(struct pmu *pmu)
{
3139 3140
	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

3141
	this_cpu_dec(perf_sched_cb_usages);
3142 3143 3144

	if (!--cpuctx->sched_cb_usage)
		list_del(&cpuctx->sched_cb_entry);
3145 3146
}

3147

3148 3149
void perf_sched_cb_inc(struct pmu *pmu)
{
3150 3151 3152 3153 3154
	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

	if (!cpuctx->sched_cb_usage++)
		list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));

3155 3156 3157 3158 3159 3160
	this_cpu_inc(perf_sched_cb_usages);
}

/*
 * This function provides the context switch callback to the lower code
 * layer. It is invoked ONLY when the context switch callback is enabled.
3161 3162 3163 3164
 *
 * This callback is relevant even to per-cpu events; for example multi event
 * PEBS requires this to provide PID/TID information. This requires we flush
 * all queued PEBS records before we context switch to a new task.
3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175
 */
static void perf_pmu_sched_task(struct task_struct *prev,
				struct task_struct *next,
				bool sched_in)
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;

	if (prev == next)
		return;

3176
	list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
3177
		pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
3178

3179 3180
		if (WARN_ON_ONCE(!pmu->sched_task))
			continue;
3181

3182 3183
		perf_ctx_lock(cpuctx, cpuctx->task_ctx);
		perf_pmu_disable(pmu);
3184

3185
		pmu->sched_task(cpuctx->task_ctx, sched_in);
3186

3187 3188
		perf_pmu_enable(pmu);
		perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3189 3190 3191
	}
}

3192 3193 3194
static void perf_event_switch(struct task_struct *task,
			      struct task_struct *next_prev, bool sched_in);

P
Peter Zijlstra 已提交
3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208
#define for_each_task_context_nr(ctxn)					\
	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)

/*
 * Called from scheduler to remove the events of the current task,
 * with interrupts disabled.
 *
 * We stop each event and update the event value in event->count.
 *
 * This does not protect us against NMI, but disable()
 * sets the disabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * not restart the event.
 */
3209 3210
void __perf_event_task_sched_out(struct task_struct *task,
				 struct task_struct *next)
P
Peter Zijlstra 已提交
3211 3212 3213
{
	int ctxn;

3214 3215 3216
	if (__this_cpu_read(perf_sched_cb_usages))
		perf_pmu_sched_task(task, next, false);

3217 3218 3219
	if (atomic_read(&nr_switch_events))
		perf_event_switch(task, next, false);

P
Peter Zijlstra 已提交
3220 3221
	for_each_task_context_nr(ctxn)
		perf_event_context_sched_out(task, ctxn, next);
S
Stephane Eranian 已提交
3222 3223 3224 3225 3226 3227

	/*
	 * if cgroup events exist on this CPU, then we need
	 * to check if we have to switch out PMU state.
	 * cgroup event are system-wide mode only
	 */
3228
	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3229
		perf_cgroup_sched_out(task, next);
P
Peter Zijlstra 已提交
3230 3231
}

3232 3233 3234 3235 3236 3237 3238
/*
 * Called with IRQs disabled
 */
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type)
{
	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
3239 3240
}

3241 3242
static int visit_groups_merge(struct perf_event_groups *groups, int cpu,
			      int (*func)(struct perf_event *, void *), void *data)
T
Thomas Gleixner 已提交
3243
{
3244 3245
	struct perf_event **evt, *evt1, *evt2;
	int ret;
3246

3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259
	evt1 = perf_event_groups_first(groups, -1);
	evt2 = perf_event_groups_first(groups, cpu);

	while (evt1 || evt2) {
		if (evt1 && evt2) {
			if (evt1->group_index < evt2->group_index)
				evt = &evt1;
			else
				evt = &evt2;
		} else if (evt1) {
			evt = &evt1;
		} else {
			evt = &evt2;
3260
		}
3261 3262 3263 3264 3265 3266

		ret = func(*evt, data);
		if (ret)
			return ret;

		*evt = perf_event_groups_next(*evt);
3267
	}
T
Thomas Gleixner 已提交
3268

3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287
	return 0;
}

struct sched_in_data {
	struct perf_event_context *ctx;
	struct perf_cpu_context *cpuctx;
	int can_add_hw;
};

static int pinned_sched_in(struct perf_event *event, void *data)
{
	struct sched_in_data *sid = data;

	if (event->state <= PERF_EVENT_STATE_OFF)
		return 0;

	if (!event_filter_match(event))
		return 0;

3288 3289 3290 3291
	if (group_can_go_on(event, sid->cpuctx, sid->can_add_hw)) {
		if (!group_sched_in(event, sid->cpuctx, sid->ctx))
			list_add_tail(&event->active_list, &sid->ctx->pinned_active);
	}
3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313

	/*
	 * If this pinned group hasn't been scheduled,
	 * put it in error state.
	 */
	if (event->state == PERF_EVENT_STATE_INACTIVE)
		perf_event_set_state(event, PERF_EVENT_STATE_ERROR);

	return 0;
}

static int flexible_sched_in(struct perf_event *event, void *data)
{
	struct sched_in_data *sid = data;

	if (event->state <= PERF_EVENT_STATE_OFF)
		return 0;

	if (!event_filter_match(event))
		return 0;

	if (group_can_go_on(event, sid->cpuctx, sid->can_add_hw)) {
3314 3315 3316
		if (!group_sched_in(event, sid->cpuctx, sid->ctx))
			list_add_tail(&event->active_list, &sid->ctx->flexible_active);
		else
3317
			sid->can_add_hw = 0;
3318
	}
3319 3320

	return 0;
3321 3322 3323
}

static void
3324 3325
ctx_pinned_sched_in(struct perf_event_context *ctx,
		    struct perf_cpu_context *cpuctx)
3326
{
3327 3328 3329 3330 3331
	struct sched_in_data sid = {
		.ctx = ctx,
		.cpuctx = cpuctx,
		.can_add_hw = 1,
	};
3332

3333 3334 3335 3336
	visit_groups_merge(&ctx->pinned_groups,
			   smp_processor_id(),
			   pinned_sched_in, &sid);
}
3337

3338 3339 3340 3341 3342 3343 3344 3345 3346
static void
ctx_flexible_sched_in(struct perf_event_context *ctx,
		      struct perf_cpu_context *cpuctx)
{
	struct sched_in_data sid = {
		.ctx = ctx,
		.cpuctx = cpuctx,
		.can_add_hw = 1,
	};
T
Thomas Gleixner 已提交
3347

3348 3349 3350
	visit_groups_merge(&ctx->flexible_groups,
			   smp_processor_id(),
			   flexible_sched_in, &sid);
3351 3352 3353 3354 3355
}

static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
3356 3357
	     enum event_type_t event_type,
	     struct task_struct *task)
3358
{
3359
	int is_active = ctx->is_active;
P
Peter Zijlstra 已提交
3360 3361 3362
	u64 now;

	lockdep_assert_held(&ctx->lock);
S
Stephane Eranian 已提交
3363

3364
	if (likely(!ctx->nr_events))
3365
		return;
3366

3367
	ctx->is_active |= (event_type | EVENT_TIME);
3368 3369 3370 3371 3372 3373 3374
	if (ctx->task) {
		if (!is_active)
			cpuctx->task_ctx = ctx;
		else
			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
	}

3375 3376 3377 3378 3379 3380 3381 3382 3383
	is_active ^= ctx->is_active; /* changed bits */

	if (is_active & EVENT_TIME) {
		/* start ctx time */
		now = perf_clock();
		ctx->timestamp = now;
		perf_cgroup_set_timestamp(task, ctx);
	}

3384 3385 3386 3387
	/*
	 * First go through the list and put on any pinned groups
	 * in order to give them the best chance of going on.
	 */
3388
	if (is_active & EVENT_PINNED)
3389
		ctx_pinned_sched_in(ctx, cpuctx);
3390 3391

	/* Then walk through the lower prio flexible groups */
3392
	if (is_active & EVENT_FLEXIBLE)
3393
		ctx_flexible_sched_in(ctx, cpuctx);
3394 3395
}

3396
static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
3397 3398
			     enum event_type_t event_type,
			     struct task_struct *task)
3399 3400 3401
{
	struct perf_event_context *ctx = &cpuctx->ctx;

S
Stephane Eranian 已提交
3402
	ctx_sched_in(ctx, cpuctx, event_type, task);
3403 3404
}

S
Stephane Eranian 已提交
3405 3406
static void perf_event_context_sched_in(struct perf_event_context *ctx,
					struct task_struct *task)
3407
{
P
Peter Zijlstra 已提交
3408
	struct perf_cpu_context *cpuctx;
3409

P
Peter Zijlstra 已提交
3410
	cpuctx = __get_cpu_context(ctx);
3411 3412 3413
	if (cpuctx->task_ctx == ctx)
		return;

3414
	perf_ctx_lock(cpuctx, ctx);
3415 3416 3417 3418 3419 3420 3421
	/*
	 * We must check ctx->nr_events while holding ctx->lock, such
	 * that we serialize against perf_install_in_context().
	 */
	if (!ctx->nr_events)
		goto unlock;

P
Peter Zijlstra 已提交
3422
	perf_pmu_disable(ctx->pmu);
3423 3424 3425 3426
	/*
	 * We want to keep the following priority order:
	 * cpu pinned (that don't need to move), task pinned,
	 * cpu flexible, task flexible.
3427 3428 3429
	 *
	 * However, if task's ctx is not carrying any pinned
	 * events, no need to flip the cpuctx's events around.
3430
	 */
3431
	if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree))
3432
		cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3433
	perf_event_sched_in(cpuctx, ctx, task);
3434
	perf_pmu_enable(ctx->pmu);
3435 3436

unlock:
3437
	perf_ctx_unlock(cpuctx, ctx);
3438 3439
}

P
Peter Zijlstra 已提交
3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450
/*
 * Called from scheduler to add the events of the current task
 * with interrupts disabled.
 *
 * We restore the event value and then enable it.
 *
 * This does not protect us against NMI, but enable()
 * sets the enabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * keep the event running.
 */
3451 3452
void __perf_event_task_sched_in(struct task_struct *prev,
				struct task_struct *task)
P
Peter Zijlstra 已提交
3453 3454 3455 3456
{
	struct perf_event_context *ctx;
	int ctxn;

3457 3458 3459 3460 3461 3462 3463 3464 3465 3466
	/*
	 * If cgroup events exist on this CPU, then we need to check if we have
	 * to switch in PMU state; cgroup event are system-wide mode only.
	 *
	 * Since cgroup events are CPU events, we must schedule these in before
	 * we schedule in the task events.
	 */
	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
		perf_cgroup_sched_in(prev, task);

P
Peter Zijlstra 已提交
3467 3468 3469 3470 3471
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (likely(!ctx))
			continue;

S
Stephane Eranian 已提交
3472
		perf_event_context_sched_in(ctx, task);
P
Peter Zijlstra 已提交
3473
	}
3474

3475 3476 3477
	if (atomic_read(&nr_switch_events))
		perf_event_switch(task, prev, true);

3478 3479
	if (__this_cpu_read(perf_sched_cb_usages))
		perf_pmu_sched_task(prev, task, true);
3480 3481
}

3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508
static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
{
	u64 frequency = event->attr.sample_freq;
	u64 sec = NSEC_PER_SEC;
	u64 divisor, dividend;

	int count_fls, nsec_fls, frequency_fls, sec_fls;

	count_fls = fls64(count);
	nsec_fls = fls64(nsec);
	frequency_fls = fls64(frequency);
	sec_fls = 30;

	/*
	 * We got @count in @nsec, with a target of sample_freq HZ
	 * the target period becomes:
	 *
	 *             @count * 10^9
	 * period = -------------------
	 *          @nsec * sample_freq
	 *
	 */

	/*
	 * Reduce accuracy by one bit such that @a and @b converge
	 * to a similar magnitude.
	 */
3509
#define REDUCE_FLS(a, b)		\
3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548
do {					\
	if (a##_fls > b##_fls) {	\
		a >>= 1;		\
		a##_fls--;		\
	} else {			\
		b >>= 1;		\
		b##_fls--;		\
	}				\
} while (0)

	/*
	 * Reduce accuracy until either term fits in a u64, then proceed with
	 * the other, so that finally we can do a u64/u64 division.
	 */
	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
		REDUCE_FLS(nsec, frequency);
		REDUCE_FLS(sec, count);
	}

	if (count_fls + sec_fls > 64) {
		divisor = nsec * frequency;

		while (count_fls + sec_fls > 64) {
			REDUCE_FLS(count, sec);
			divisor >>= 1;
		}

		dividend = count * sec;
	} else {
		dividend = count * sec;

		while (nsec_fls + frequency_fls > 64) {
			REDUCE_FLS(nsec, frequency);
			dividend >>= 1;
		}

		divisor = nsec * frequency;
	}

3549 3550 3551
	if (!divisor)
		return dividend;

3552 3553 3554
	return div64_u64(dividend, divisor);
}

3555 3556 3557
static DEFINE_PER_CPU(int, perf_throttled_count);
static DEFINE_PER_CPU(u64, perf_throttled_seq);

3558
static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
3559
{
3560
	struct hw_perf_event *hwc = &event->hw;
3561
	s64 period, sample_period;
3562 3563
	s64 delta;

3564
	period = perf_calculate_period(event, nsec, count);
3565 3566 3567 3568 3569 3570 3571 3572 3573 3574

	delta = (s64)(period - hwc->sample_period);
	delta = (delta + 7) / 8; /* low pass filter */

	sample_period = hwc->sample_period + delta;

	if (!sample_period)
		sample_period = 1;

	hwc->sample_period = sample_period;
3575

3576
	if (local64_read(&hwc->period_left) > 8*sample_period) {
3577 3578 3579
		if (disable)
			event->pmu->stop(event, PERF_EF_UPDATE);

3580
		local64_set(&hwc->period_left, 0);
3581 3582 3583

		if (disable)
			event->pmu->start(event, PERF_EF_RELOAD);
3584
	}
3585 3586
}

3587 3588 3589 3590 3591 3592 3593
/*
 * combine freq adjustment with unthrottling to avoid two passes over the
 * events. At the same time, make sure, having freq events does not change
 * the rate of unthrottling as that would introduce bias.
 */
static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
					   int needs_unthr)
3594
{
3595 3596
	struct perf_event *event;
	struct hw_perf_event *hwc;
3597
	u64 now, period = TICK_NSEC;
3598
	s64 delta;
3599

3600 3601 3602 3603 3604 3605
	/*
	 * only need to iterate over all events iff:
	 * - context have events in frequency mode (needs freq adjust)
	 * - there are events to unthrottle on this cpu
	 */
	if (!(ctx->nr_freq || needs_unthr))
3606 3607
		return;

3608
	raw_spin_lock(&ctx->lock);
3609
	perf_pmu_disable(ctx->pmu);
3610

3611
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3612
		if (event->state != PERF_EVENT_STATE_ACTIVE)
3613 3614
			continue;

3615
		if (!event_filter_match(event))
3616 3617
			continue;

3618 3619
		perf_pmu_disable(event->pmu);

3620
		hwc = &event->hw;
3621

3622
		if (hwc->interrupts == MAX_INTERRUPTS) {
3623
			hwc->interrupts = 0;
3624
			perf_log_throttle(event, 1);
P
Peter Zijlstra 已提交
3625
			event->pmu->start(event, 0);
3626 3627
		}

3628
		if (!event->attr.freq || !event->attr.sample_freq)
3629
			goto next;
3630

3631 3632 3633 3634 3635
		/*
		 * stop the event and update event->count
		 */
		event->pmu->stop(event, PERF_EF_UPDATE);

3636
		now = local64_read(&event->count);
3637 3638
		delta = now - hwc->freq_count_stamp;
		hwc->freq_count_stamp = now;
3639

3640 3641 3642
		/*
		 * restart the event
		 * reload only if value has changed
3643 3644 3645
		 * we have stopped the event so tell that
		 * to perf_adjust_period() to avoid stopping it
		 * twice.
3646
		 */
3647
		if (delta > 0)
3648
			perf_adjust_period(event, period, delta, false);
3649 3650

		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3651 3652
	next:
		perf_pmu_enable(event->pmu);
3653
	}
3654

3655
	perf_pmu_enable(ctx->pmu);
3656
	raw_spin_unlock(&ctx->lock);
3657 3658
}

3659
/*
3660
 * Move @event to the tail of the @ctx's elegible events.
3661
 */
3662
static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event)
T
Thomas Gleixner 已提交
3663
{
3664 3665 3666 3667
	/*
	 * Rotate the first entry last of non-pinned groups. Rotation might be
	 * disabled by the inheritance code.
	 */
3668 3669
	if (ctx->rotate_disable)
		return;
3670

3671 3672
	perf_event_groups_delete(&ctx->flexible_groups, event);
	perf_event_groups_insert(&ctx->flexible_groups, event);
3673 3674
}

3675 3676
static inline struct perf_event *
ctx_first_active(struct perf_event_context *ctx)
3677
{
3678 3679 3680 3681 3682 3683 3684 3685
	return list_first_entry_or_null(&ctx->flexible_active,
					struct perf_event, active_list);
}

static bool perf_rotate_context(struct perf_cpu_context *cpuctx)
{
	struct perf_event *cpu_event = NULL, *task_event = NULL;
	bool cpu_rotate = false, task_rotate = false;
P
Peter Zijlstra 已提交
3686
	struct perf_event_context *ctx = NULL;
3687 3688 3689 3690 3691

	/*
	 * Since we run this from IRQ context, nobody can install new
	 * events, thus the event count values are stable.
	 */
3692

3693 3694
	if (cpuctx->ctx.nr_events) {
		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3695
			cpu_rotate = true;
3696
	}
3697

P
Peter Zijlstra 已提交
3698
	ctx = cpuctx->task_ctx;
3699 3700
	if (ctx && ctx->nr_events) {
		if (ctx->nr_events != ctx->nr_active)
3701
			task_rotate = true;
3702
	}
3703

3704 3705
	if (!(cpu_rotate || task_rotate))
		return false;
3706

3707
	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
P
Peter Zijlstra 已提交
3708
	perf_pmu_disable(cpuctx->ctx.pmu);
3709

3710 3711 3712 3713
	if (task_rotate)
		task_event = ctx_first_active(ctx);
	if (cpu_rotate)
		cpu_event = ctx_first_active(&cpuctx->ctx);
3714

3715 3716 3717 3718 3719
	/*
	 * As per the order given at ctx_resched() first 'pop' task flexible
	 * and then, if needed CPU flexible.
	 */
	if (task_event || (ctx && cpu_event))
3720
		ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
3721 3722
	if (cpu_event)
		cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
T
Thomas Gleixner 已提交
3723

3724 3725 3726 3727
	if (task_event)
		rotate_ctx(ctx, task_event);
	if (cpu_event)
		rotate_ctx(&cpuctx->ctx, cpu_event);
3728

3729
	perf_event_sched_in(cpuctx, ctx, current);
3730

3731 3732
	perf_pmu_enable(cpuctx->ctx.pmu);
	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3733

3734
	return true;
3735 3736 3737 3738
}

void perf_event_task_tick(void)
{
3739 3740
	struct list_head *head = this_cpu_ptr(&active_ctx_list);
	struct perf_event_context *ctx, *tmp;
3741
	int throttled;
3742

3743
	lockdep_assert_irqs_disabled();
3744

3745 3746
	__this_cpu_inc(perf_throttled_seq);
	throttled = __this_cpu_xchg(perf_throttled_count, 0);
3747
	tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
3748

3749
	list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3750
		perf_adjust_freq_unthr_context(ctx, throttled);
T
Thomas Gleixner 已提交
3751 3752
}

3753 3754 3755 3756 3757 3758 3759 3760 3761 3762
static int event_enable_on_exec(struct perf_event *event,
				struct perf_event_context *ctx)
{
	if (!event->attr.enable_on_exec)
		return 0;

	event->attr.enable_on_exec = 0;
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
		return 0;

3763
	perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
3764 3765 3766 3767

	return 1;
}

3768
/*
3769
 * Enable all of a task's events that have been marked enable-on-exec.
3770 3771
 * This expects task == current.
 */
3772
static void perf_event_enable_on_exec(int ctxn)
3773
{
3774
	struct perf_event_context *ctx, *clone_ctx = NULL;
3775
	enum event_type_t event_type = 0;
3776
	struct perf_cpu_context *cpuctx;
3777
	struct perf_event *event;
3778 3779 3780 3781
	unsigned long flags;
	int enabled = 0;

	local_irq_save(flags);
3782
	ctx = current->perf_event_ctxp[ctxn];
3783
	if (!ctx || !ctx->nr_events)
3784 3785
		goto out;

3786 3787
	cpuctx = __get_cpu_context(ctx);
	perf_ctx_lock(cpuctx, ctx);
3788
	ctx_sched_out(ctx, cpuctx, EVENT_TIME);
3789
	list_for_each_entry(event, &ctx->event_list, event_entry) {
3790
		enabled |= event_enable_on_exec(event, ctx);
3791 3792
		event_type |= get_event_type(event);
	}
3793 3794

	/*
3795
	 * Unclone and reschedule this context if we enabled any event.
3796
	 */
3797
	if (enabled) {
3798
		clone_ctx = unclone_ctx(ctx);
3799
		ctx_resched(cpuctx, ctx, event_type);
3800 3801
	} else {
		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
3802 3803
	}
	perf_ctx_unlock(cpuctx, ctx);
3804

P
Peter Zijlstra 已提交
3805
out:
3806
	local_irq_restore(flags);
3807 3808 3809

	if (clone_ctx)
		put_ctx(clone_ctx);
3810 3811
}

3812 3813 3814
struct perf_read_data {
	struct perf_event *event;
	bool group;
3815
	int ret;
3816 3817
};

3818
static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
3819 3820 3821 3822
{
	u16 local_pkg, event_pkg;

	if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
3823 3824 3825 3826
		int local_cpu = smp_processor_id();

		event_pkg = topology_physical_package_id(event_cpu);
		local_pkg = topology_physical_package_id(local_cpu);
3827 3828 3829 3830 3831 3832 3833 3834

		if (event_pkg == local_pkg)
			return local_cpu;
	}

	return event_cpu;
}

T
Thomas Gleixner 已提交
3835
/*
3836
 * Cross CPU call to read the hardware event
T
Thomas Gleixner 已提交
3837
 */
3838
static void __perf_event_read(void *info)
T
Thomas Gleixner 已提交
3839
{
3840 3841
	struct perf_read_data *data = info;
	struct perf_event *sub, *event = data->event;
3842
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
3843
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3844
	struct pmu *pmu = event->pmu;
I
Ingo Molnar 已提交
3845

3846 3847 3848 3849
	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu.  If not it has been
	 * scheduled out before the smp call arrived.  In that case
3850 3851
	 * event->count would have been updated to a recent sample
	 * when the event was scheduled out.
3852 3853 3854 3855
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

3856
	raw_spin_lock(&ctx->lock);
P
Peter Zijlstra 已提交
3857
	if (ctx->is_active & EVENT_TIME) {
3858
		update_context_time(ctx);
S
Stephane Eranian 已提交
3859 3860
		update_cgrp_time_from_event(event);
	}
3861

3862 3863 3864
	perf_event_update_time(event);
	if (data->group)
		perf_event_update_sibling_time(event);
P
Peter Zijlstra 已提交
3865

3866 3867
	if (event->state != PERF_EVENT_STATE_ACTIVE)
		goto unlock;
3868

3869 3870 3871
	if (!data->group) {
		pmu->read(event);
		data->ret = 0;
3872
		goto unlock;
3873 3874 3875 3876 3877
	}

	pmu->start_txn(pmu, PERF_PMU_TXN_READ);

	pmu->read(event);
3878

P
Peter Zijlstra 已提交
3879
	for_each_sibling_event(sub, event) {
3880 3881 3882 3883 3884
		if (sub->state == PERF_EVENT_STATE_ACTIVE) {
			/*
			 * Use sibling's PMU rather than @event's since
			 * sibling could be on different (eg: software) PMU.
			 */
3885
			sub->pmu->read(sub);
3886
		}
3887
	}
3888 3889

	data->ret = pmu->commit_txn(pmu);
3890 3891

unlock:
3892
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
3893 3894
}

P
Peter Zijlstra 已提交
3895 3896
static inline u64 perf_event_count(struct perf_event *event)
{
3897
	return local64_read(&event->count) + atomic64_read(&event->child_count);
P
Peter Zijlstra 已提交
3898 3899
}

3900 3901 3902 3903 3904 3905 3906 3907
/*
 * NMI-safe method to read a local event, that is an event that
 * is:
 *   - either for the current task, or for this CPU
 *   - does not have inherit set, for inherited task events
 *     will not be local and we cannot read them atomically
 *   - must not have a pmu::count method
 */
3908 3909
int perf_event_read_local(struct perf_event *event, u64 *value,
			  u64 *enabled, u64 *running)
3910 3911
{
	unsigned long flags;
3912
	int ret = 0;
3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923

	/*
	 * Disabling interrupts avoids all counter scheduling (context
	 * switches, timer based rotation and IPIs).
	 */
	local_irq_save(flags);

	/*
	 * It must not be an event with inherit set, we cannot read
	 * all child counters from atomic context.
	 */
3924 3925 3926 3927
	if (event->attr.inherit) {
		ret = -EOPNOTSUPP;
		goto out;
	}
3928

3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941
	/* If this is a per-task event, it must be for current */
	if ((event->attach_state & PERF_ATTACH_TASK) &&
	    event->hw.target != current) {
		ret = -EINVAL;
		goto out;
	}

	/* If this is a per-CPU event, it must be for this CPU */
	if (!(event->attach_state & PERF_ATTACH_TASK) &&
	    event->cpu != smp_processor_id()) {
		ret = -EINVAL;
		goto out;
	}
3942 3943 3944 3945 3946 3947 3948 3949 3950

	/*
	 * If the event is currently on this CPU, its either a per-task event,
	 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
	 * oncpu == -1).
	 */
	if (event->oncpu == smp_processor_id())
		event->pmu->read(event);

3951
	*value = local64_read(&event->count);
3952 3953 3954 3955 3956 3957 3958 3959 3960 3961
	if (enabled || running) {
		u64 now = event->shadow_ctx_time + perf_clock();
		u64 __enabled, __running;

		__perf_update_times(event, now, &__enabled, &__running);
		if (enabled)
			*enabled = __enabled;
		if (running)
			*running = __running;
	}
3962
out:
3963 3964
	local_irq_restore(flags);

3965
	return ret;
3966 3967
}

3968
static int perf_event_read(struct perf_event *event, bool group)
T
Thomas Gleixner 已提交
3969
{
P
Peter Zijlstra 已提交
3970
	enum perf_event_state state = READ_ONCE(event->state);
3971
	int event_cpu, ret = 0;
3972

T
Thomas Gleixner 已提交
3973
	/*
3974 3975
	 * If event is enabled and currently active on a CPU, update the
	 * value in the event structure:
T
Thomas Gleixner 已提交
3976
	 */
P
Peter Zijlstra 已提交
3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987
again:
	if (state == PERF_EVENT_STATE_ACTIVE) {
		struct perf_read_data data;

		/*
		 * Orders the ->state and ->oncpu loads such that if we see
		 * ACTIVE we must also see the right ->oncpu.
		 *
		 * Matches the smp_wmb() from event_sched_in().
		 */
		smp_rmb();
3988

3989 3990 3991 3992
		event_cpu = READ_ONCE(event->oncpu);
		if ((unsigned)event_cpu >= nr_cpu_ids)
			return 0;

P
Peter Zijlstra 已提交
3993 3994 3995 3996 3997 3998
		data = (struct perf_read_data){
			.event = event,
			.group = group,
			.ret = 0,
		};

3999 4000
		preempt_disable();
		event_cpu = __perf_event_read_cpu(event, event_cpu);
4001

4002 4003 4004 4005
		/*
		 * Purposely ignore the smp_call_function_single() return
		 * value.
		 *
4006
		 * If event_cpu isn't a valid CPU it means the event got
4007 4008 4009 4010 4011
		 * scheduled out and that will have updated the event count.
		 *
		 * Therefore, either way, we'll have an up-to-date event count
		 * after this.
		 */
4012 4013
		(void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
		preempt_enable();
4014
		ret = data.ret;
P
Peter Zijlstra 已提交
4015 4016

	} else if (state == PERF_EVENT_STATE_INACTIVE) {
P
Peter Zijlstra 已提交
4017 4018 4019
		struct perf_event_context *ctx = event->ctx;
		unsigned long flags;

4020
		raw_spin_lock_irqsave(&ctx->lock, flags);
P
Peter Zijlstra 已提交
4021 4022 4023 4024 4025 4026
		state = event->state;
		if (state != PERF_EVENT_STATE_INACTIVE) {
			raw_spin_unlock_irqrestore(&ctx->lock, flags);
			goto again;
		}

4027
		/*
P
Peter Zijlstra 已提交
4028 4029
		 * May read while context is not active (e.g., thread is
		 * blocked), in that case we cannot update context time
4030
		 */
P
Peter Zijlstra 已提交
4031
		if (ctx->is_active & EVENT_TIME) {
4032
			update_context_time(ctx);
S
Stephane Eranian 已提交
4033 4034
			update_cgrp_time_from_event(event);
		}
P
Peter Zijlstra 已提交
4035

4036
		perf_event_update_time(event);
4037
		if (group)
4038
			perf_event_update_sibling_time(event);
4039
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
4040
	}
4041 4042

	return ret;
T
Thomas Gleixner 已提交
4043 4044
}

4045
/*
4046
 * Initialize the perf_event context in a task_struct:
4047
 */
4048
static void __perf_event_init_context(struct perf_event_context *ctx)
4049
{
4050
	raw_spin_lock_init(&ctx->lock);
4051
	mutex_init(&ctx->mutex);
4052
	INIT_LIST_HEAD(&ctx->active_ctx_list);
4053 4054
	perf_event_groups_init(&ctx->pinned_groups);
	perf_event_groups_init(&ctx->flexible_groups);
4055
	INIT_LIST_HEAD(&ctx->event_list);
4056 4057
	INIT_LIST_HEAD(&ctx->pinned_active);
	INIT_LIST_HEAD(&ctx->flexible_active);
4058
	atomic_set(&ctx->refcount, 1);
4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073
}

static struct perf_event_context *
alloc_perf_context(struct pmu *pmu, struct task_struct *task)
{
	struct perf_event_context *ctx;

	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
	if (!ctx)
		return NULL;

	__perf_event_init_context(ctx);
	if (task) {
		ctx->task = task;
		get_task_struct(task);
T
Thomas Gleixner 已提交
4074
	}
4075 4076 4077
	ctx->pmu = pmu;

	return ctx;
4078 4079
}

4080 4081 4082 4083
static struct task_struct *
find_lively_task_by_vpid(pid_t vpid)
{
	struct task_struct *task;
T
Thomas Gleixner 已提交
4084 4085

	rcu_read_lock();
4086
	if (!vpid)
T
Thomas Gleixner 已提交
4087 4088
		task = current;
	else
4089
		task = find_task_by_vpid(vpid);
T
Thomas Gleixner 已提交
4090 4091 4092 4093 4094 4095 4096
	if (task)
		get_task_struct(task);
	rcu_read_unlock();

	if (!task)
		return ERR_PTR(-ESRCH);

4097 4098 4099
	return task;
}

4100 4101 4102
/*
 * Returns a matching context with refcount and pincount.
 */
P
Peter Zijlstra 已提交
4103
static struct perf_event_context *
4104 4105
find_get_context(struct pmu *pmu, struct task_struct *task,
		struct perf_event *event)
T
Thomas Gleixner 已提交
4106
{
4107
	struct perf_event_context *ctx, *clone_ctx = NULL;
4108
	struct perf_cpu_context *cpuctx;
4109
	void *task_ctx_data = NULL;
4110
	unsigned long flags;
P
Peter Zijlstra 已提交
4111
	int ctxn, err;
4112
	int cpu = event->cpu;
T
Thomas Gleixner 已提交
4113

4114
	if (!task) {
4115
		/* Must be root to operate on a CPU event: */
4116
		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
T
Thomas Gleixner 已提交
4117 4118
			return ERR_PTR(-EACCES);

P
Peter Zijlstra 已提交
4119
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
T
Thomas Gleixner 已提交
4120
		ctx = &cpuctx->ctx;
4121
		get_ctx(ctx);
4122
		++ctx->pin_count;
T
Thomas Gleixner 已提交
4123 4124 4125 4126

		return ctx;
	}

P
Peter Zijlstra 已提交
4127 4128 4129 4130 4131
	err = -EINVAL;
	ctxn = pmu->task_ctx_nr;
	if (ctxn < 0)
		goto errout;

4132 4133 4134 4135 4136 4137 4138 4139
	if (event->attach_state & PERF_ATTACH_TASK_DATA) {
		task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
		if (!task_ctx_data) {
			err = -ENOMEM;
			goto errout;
		}
	}

P
Peter Zijlstra 已提交
4140
retry:
P
Peter Zijlstra 已提交
4141
	ctx = perf_lock_task_context(task, ctxn, &flags);
4142
	if (ctx) {
4143
		clone_ctx = unclone_ctx(ctx);
4144
		++ctx->pin_count;
4145 4146 4147 4148 4149

		if (task_ctx_data && !ctx->task_ctx_data) {
			ctx->task_ctx_data = task_ctx_data;
			task_ctx_data = NULL;
		}
4150
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
4151 4152 4153

		if (clone_ctx)
			put_ctx(clone_ctx);
4154
	} else {
4155
		ctx = alloc_perf_context(pmu, task);
4156 4157 4158
		err = -ENOMEM;
		if (!ctx)
			goto errout;
4159

4160 4161 4162 4163 4164
		if (task_ctx_data) {
			ctx->task_ctx_data = task_ctx_data;
			task_ctx_data = NULL;
		}

4165 4166 4167 4168 4169 4170 4171 4172 4173 4174
		err = 0;
		mutex_lock(&task->perf_event_mutex);
		/*
		 * If it has already passed perf_event_exit_task().
		 * we must see PF_EXITING, it takes this mutex too.
		 */
		if (task->flags & PF_EXITING)
			err = -ESRCH;
		else if (task->perf_event_ctxp[ctxn])
			err = -EAGAIN;
4175
		else {
4176
			get_ctx(ctx);
4177
			++ctx->pin_count;
4178
			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
4179
		}
4180 4181 4182
		mutex_unlock(&task->perf_event_mutex);

		if (unlikely(err)) {
4183
			put_ctx(ctx);
4184 4185 4186 4187

			if (err == -EAGAIN)
				goto retry;
			goto errout;
4188 4189 4190
		}
	}

4191
	kfree(task_ctx_data);
T
Thomas Gleixner 已提交
4192
	return ctx;
4193

P
Peter Zijlstra 已提交
4194
errout:
4195
	kfree(task_ctx_data);
4196
	return ERR_PTR(err);
T
Thomas Gleixner 已提交
4197 4198
}

L
Li Zefan 已提交
4199
static void perf_event_free_filter(struct perf_event *event);
4200
static void perf_event_free_bpf_prog(struct perf_event *event);
L
Li Zefan 已提交
4201

4202
static void free_event_rcu(struct rcu_head *head)
P
Peter Zijlstra 已提交
4203
{
4204
	struct perf_event *event;
P
Peter Zijlstra 已提交
4205

4206 4207 4208
	event = container_of(head, struct perf_event, rcu_head);
	if (event->ns)
		put_pid_ns(event->ns);
L
Li Zefan 已提交
4209
	perf_event_free_filter(event);
4210
	kfree(event);
P
Peter Zijlstra 已提交
4211 4212
}

4213 4214
static void ring_buffer_attach(struct perf_event *event,
			       struct ring_buffer *rb);
4215

4216 4217 4218 4219 4220 4221 4222 4223 4224
static void detach_sb_event(struct perf_event *event)
{
	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);

	raw_spin_lock(&pel->lock);
	list_del_rcu(&event->sb_list);
	raw_spin_unlock(&pel->lock);
}

4225
static bool is_sb_event(struct perf_event *event)
4226
{
4227 4228
	struct perf_event_attr *attr = &event->attr;

4229
	if (event->parent)
4230
		return false;
4231 4232

	if (event->attach_state & PERF_ATTACH_TASK)
4233
		return false;
4234

4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246
	if (attr->mmap || attr->mmap_data || attr->mmap2 ||
	    attr->comm || attr->comm_exec ||
	    attr->task ||
	    attr->context_switch)
		return true;
	return false;
}

static void unaccount_pmu_sb_event(struct perf_event *event)
{
	if (is_sb_event(event))
		detach_sb_event(event);
4247 4248
}

4249
static void unaccount_event_cpu(struct perf_event *event, int cpu)
4250
{
4251 4252 4253 4254 4255 4256
	if (event->parent)
		return;

	if (is_cgroup_event(event))
		atomic_dec(&per_cpu(perf_cgroup_events, cpu));
}
4257

4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279
#ifdef CONFIG_NO_HZ_FULL
static DEFINE_SPINLOCK(nr_freq_lock);
#endif

static void unaccount_freq_event_nohz(void)
{
#ifdef CONFIG_NO_HZ_FULL
	spin_lock(&nr_freq_lock);
	if (atomic_dec_and_test(&nr_freq_events))
		tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
	spin_unlock(&nr_freq_lock);
#endif
}

static void unaccount_freq_event(void)
{
	if (tick_nohz_full_enabled())
		unaccount_freq_event_nohz();
	else
		atomic_dec(&nr_freq_events);
}

4280 4281
static void unaccount_event(struct perf_event *event)
{
4282 4283
	bool dec = false;

4284 4285 4286 4287
	if (event->parent)
		return;

	if (event->attach_state & PERF_ATTACH_TASK)
4288
		dec = true;
4289 4290 4291 4292
	if (event->attr.mmap || event->attr.mmap_data)
		atomic_dec(&nr_mmap_events);
	if (event->attr.comm)
		atomic_dec(&nr_comm_events);
4293 4294
	if (event->attr.namespaces)
		atomic_dec(&nr_namespaces_events);
4295 4296
	if (event->attr.task)
		atomic_dec(&nr_task_events);
4297
	if (event->attr.freq)
4298
		unaccount_freq_event();
4299
	if (event->attr.context_switch) {
4300
		dec = true;
4301 4302
		atomic_dec(&nr_switch_events);
	}
4303
	if (is_cgroup_event(event))
4304
		dec = true;
4305
	if (has_branch_stack(event))
4306 4307
		dec = true;

4308 4309 4310 4311
	if (dec) {
		if (!atomic_add_unless(&perf_sched_count, -1, 1))
			schedule_delayed_work(&perf_sched_work, HZ);
	}
4312 4313

	unaccount_event_cpu(event, event->cpu);
4314 4315

	unaccount_pmu_sb_event(event);
4316
}
4317

4318 4319 4320 4321 4322 4323 4324 4325
static void perf_sched_delayed(struct work_struct *work)
{
	mutex_lock(&perf_sched_mutex);
	if (atomic_dec_and_test(&perf_sched_count))
		static_branch_disable(&perf_sched_events);
	mutex_unlock(&perf_sched_mutex);
}

4326 4327 4328 4329 4330 4331 4332 4333 4334 4335
/*
 * The following implement mutual exclusion of events on "exclusive" pmus
 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
 * at a time, so we disallow creating events that might conflict, namely:
 *
 *  1) cpu-wide events in the presence of per-task events,
 *  2) per-task events in the presence of cpu-wide events,
 *  3) two matching events on the same context.
 *
 * The former two cases are handled in the allocation path (perf_event_alloc(),
P
Peter Zijlstra 已提交
4336
 * _free_event()), the latter -- before the first perf_install_in_context().
4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384
 */
static int exclusive_event_init(struct perf_event *event)
{
	struct pmu *pmu = event->pmu;

	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
		return 0;

	/*
	 * Prevent co-existence of per-task and cpu-wide events on the
	 * same exclusive pmu.
	 *
	 * Negative pmu::exclusive_cnt means there are cpu-wide
	 * events on this "exclusive" pmu, positive means there are
	 * per-task events.
	 *
	 * Since this is called in perf_event_alloc() path, event::ctx
	 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
	 * to mean "per-task event", because unlike other attach states it
	 * never gets cleared.
	 */
	if (event->attach_state & PERF_ATTACH_TASK) {
		if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
			return -EBUSY;
	} else {
		if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
			return -EBUSY;
	}

	return 0;
}

static void exclusive_event_destroy(struct perf_event *event)
{
	struct pmu *pmu = event->pmu;

	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
		return;

	/* see comment in exclusive_event_init() */
	if (event->attach_state & PERF_ATTACH_TASK)
		atomic_dec(&pmu->exclusive_cnt);
	else
		atomic_inc(&pmu->exclusive_cnt);
}

static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
{
4385
	if ((e1->pmu == e2->pmu) &&
4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410
	    (e1->cpu == e2->cpu ||
	     e1->cpu == -1 ||
	     e2->cpu == -1))
		return true;
	return false;
}

/* Called under the same ctx::mutex as perf_install_in_context() */
static bool exclusive_event_installable(struct perf_event *event,
					struct perf_event_context *ctx)
{
	struct perf_event *iter_event;
	struct pmu *pmu = event->pmu;

	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
		return true;

	list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
		if (exclusive_event_match(iter_event, event))
			return false;
	}

	return true;
}

4411 4412 4413
static void perf_addr_filters_splice(struct perf_event *event,
				       struct list_head *head);

P
Peter Zijlstra 已提交
4414
static void _free_event(struct perf_event *event)
4415
{
4416
	irq_work_sync(&event->pending);
4417

4418
	unaccount_event(event);
4419

4420
	if (event->rb) {
4421 4422 4423 4424 4425 4426 4427
		/*
		 * Can happen when we close an event with re-directed output.
		 *
		 * Since we have a 0 refcount, perf_mmap_close() will skip
		 * over us; possibly making our ring_buffer_put() the last.
		 */
		mutex_lock(&event->mmap_mutex);
4428
		ring_buffer_attach(event, NULL);
4429
		mutex_unlock(&event->mmap_mutex);
4430 4431
	}

S
Stephane Eranian 已提交
4432 4433 4434
	if (is_cgroup_event(event))
		perf_detach_cgroup(event);

P
Peter Zijlstra 已提交
4435 4436 4437 4438 4439 4440
	if (!event->parent) {
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
			put_callchain_buffers();
	}

	perf_event_free_bpf_prog(event);
4441 4442
	perf_addr_filters_splice(event, NULL);
	kfree(event->addr_filters_offs);
P
Peter Zijlstra 已提交
4443 4444 4445 4446 4447 4448 4449

	if (event->destroy)
		event->destroy(event);

	if (event->ctx)
		put_ctx(event->ctx);

4450 4451 4452
	if (event->hw.target)
		put_task_struct(event->hw.target);

4453 4454
	exclusive_event_destroy(event);
	module_put(event->pmu->module);
P
Peter Zijlstra 已提交
4455 4456

	call_rcu(&event->rcu_head, free_event_rcu);
4457 4458
}

P
Peter Zijlstra 已提交
4459 4460 4461 4462 4463
/*
 * Used to free events which have a known refcount of 1, such as in error paths
 * where the event isn't exposed yet and inherited events.
 */
static void free_event(struct perf_event *event)
T
Thomas Gleixner 已提交
4464
{
P
Peter Zijlstra 已提交
4465 4466 4467 4468 4469 4470
	if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
				"unexpected event refcount: %ld; ptr=%p\n",
				atomic_long_read(&event->refcount), event)) {
		/* leak to avoid use-after-free */
		return;
	}
T
Thomas Gleixner 已提交
4471

P
Peter Zijlstra 已提交
4472
	_free_event(event);
T
Thomas Gleixner 已提交
4473 4474
}

4475
/*
4476
 * Remove user event from the owner task.
4477
 */
4478
static void perf_remove_from_owner(struct perf_event *event)
4479
{
P
Peter Zijlstra 已提交
4480
	struct task_struct *owner;
4481

P
Peter Zijlstra 已提交
4482 4483
	rcu_read_lock();
	/*
4484 4485 4486
	 * Matches the smp_store_release() in perf_event_exit_task(). If we
	 * observe !owner it means the list deletion is complete and we can
	 * indeed free this event, otherwise we need to serialize on
P
Peter Zijlstra 已提交
4487 4488
	 * owner->perf_event_mutex.
	 */
4489
	owner = READ_ONCE(event->owner);
P
Peter Zijlstra 已提交
4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500
	if (owner) {
		/*
		 * Since delayed_put_task_struct() also drops the last
		 * task reference we can safely take a new reference
		 * while holding the rcu_read_lock().
		 */
		get_task_struct(owner);
	}
	rcu_read_unlock();

	if (owner) {
P
Peter Zijlstra 已提交
4501 4502 4503 4504 4505 4506 4507 4508 4509 4510
		/*
		 * If we're here through perf_event_exit_task() we're already
		 * holding ctx->mutex which would be an inversion wrt. the
		 * normal lock order.
		 *
		 * However we can safely take this lock because its the child
		 * ctx->mutex.
		 */
		mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);

P
Peter Zijlstra 已提交
4511 4512 4513 4514 4515 4516
		/*
		 * We have to re-check the event->owner field, if it is cleared
		 * we raced with perf_event_exit_task(), acquiring the mutex
		 * ensured they're done, and we can proceed with freeing the
		 * event.
		 */
4517
		if (event->owner) {
P
Peter Zijlstra 已提交
4518
			list_del_init(&event->owner_entry);
4519 4520
			smp_store_release(&event->owner, NULL);
		}
P
Peter Zijlstra 已提交
4521 4522 4523
		mutex_unlock(&owner->perf_event_mutex);
		put_task_struct(owner);
	}
4524 4525 4526 4527 4528 4529 4530
}

static void put_event(struct perf_event *event)
{
	if (!atomic_long_dec_and_test(&event->refcount))
		return;

4531 4532 4533 4534 4535 4536 4537 4538 4539 4540
	_free_event(event);
}

/*
 * Kill an event dead; while event:refcount will preserve the event
 * object, it will not preserve its functionality. Once the last 'user'
 * gives up the object, we'll destroy the thing.
 */
int perf_event_release_kernel(struct perf_event *event)
{
4541
	struct perf_event_context *ctx = event->ctx;
4542
	struct perf_event *child, *tmp;
4543
	LIST_HEAD(free_list);
4544

4545 4546 4547 4548 4549 4550 4551 4552 4553 4554
	/*
	 * If we got here through err_file: fput(event_file); we will not have
	 * attached to a context yet.
	 */
	if (!ctx) {
		WARN_ON_ONCE(event->attach_state &
				(PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
		goto no_ctx;
	}

4555 4556
	if (!is_kernel_event(event))
		perf_remove_from_owner(event);
P
Peter Zijlstra 已提交
4557

4558
	ctx = perf_event_ctx_lock(event);
P
Peter Zijlstra 已提交
4559
	WARN_ON_ONCE(ctx->parent_ctx);
P
Peter Zijlstra 已提交
4560
	perf_remove_from_context(event, DETACH_GROUP);
P
Peter Zijlstra 已提交
4561

P
Peter Zijlstra 已提交
4562
	raw_spin_lock_irq(&ctx->lock);
P
Peter Zijlstra 已提交
4563
	/*
4564
	 * Mark this event as STATE_DEAD, there is no external reference to it
P
Peter Zijlstra 已提交
4565
	 * anymore.
P
Peter Zijlstra 已提交
4566
	 *
P
Peter Zijlstra 已提交
4567 4568 4569
	 * Anybody acquiring event->child_mutex after the below loop _must_
	 * also see this, most importantly inherit_event() which will avoid
	 * placing more children on the list.
P
Peter Zijlstra 已提交
4570
	 *
4571 4572
	 * Thus this guarantees that we will in fact observe and kill _ALL_
	 * child events.
P
Peter Zijlstra 已提交
4573
	 */
P
Peter Zijlstra 已提交
4574 4575 4576 4577
	event->state = PERF_EVENT_STATE_DEAD;
	raw_spin_unlock_irq(&ctx->lock);

	perf_event_ctx_unlock(event, ctx);
P
Peter Zijlstra 已提交
4578

4579 4580 4581
again:
	mutex_lock(&event->child_mutex);
	list_for_each_entry(child, &event->child_list, child_list) {
4582

4583 4584 4585 4586
		/*
		 * Cannot change, child events are not migrated, see the
		 * comment with perf_event_ctx_lock_nested().
		 */
4587
		ctx = READ_ONCE(child->ctx);
4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615
		/*
		 * Since child_mutex nests inside ctx::mutex, we must jump
		 * through hoops. We start by grabbing a reference on the ctx.
		 *
		 * Since the event cannot get freed while we hold the
		 * child_mutex, the context must also exist and have a !0
		 * reference count.
		 */
		get_ctx(ctx);

		/*
		 * Now that we have a ctx ref, we can drop child_mutex, and
		 * acquire ctx::mutex without fear of it going away. Then we
		 * can re-acquire child_mutex.
		 */
		mutex_unlock(&event->child_mutex);
		mutex_lock(&ctx->mutex);
		mutex_lock(&event->child_mutex);

		/*
		 * Now that we hold ctx::mutex and child_mutex, revalidate our
		 * state, if child is still the first entry, it didn't get freed
		 * and we can continue doing so.
		 */
		tmp = list_first_entry_or_null(&event->child_list,
					       struct perf_event, child_list);
		if (tmp == child) {
			perf_remove_from_context(child, DETACH_GROUP);
4616
			list_move(&child->child_list, &free_list);
4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630
			/*
			 * This matches the refcount bump in inherit_event();
			 * this can't be the last reference.
			 */
			put_event(event);
		}

		mutex_unlock(&event->child_mutex);
		mutex_unlock(&ctx->mutex);
		put_ctx(ctx);
		goto again;
	}
	mutex_unlock(&event->child_mutex);

4631 4632 4633 4634 4635
	list_for_each_entry_safe(child, tmp, &free_list, child_list) {
		list_del(&child->child_list);
		free_event(child);
	}

4636 4637
no_ctx:
	put_event(event); /* Must be the 'last' reference */
P
Peter Zijlstra 已提交
4638 4639 4640 4641
	return 0;
}
EXPORT_SYMBOL_GPL(perf_event_release_kernel);

4642 4643 4644
/*
 * Called when the last reference to the file is gone.
 */
4645 4646
static int perf_release(struct inode *inode, struct file *file)
{
4647
	perf_event_release_kernel(file->private_data);
4648
	return 0;
4649 4650
}

4651
static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4652
{
4653
	struct perf_event *child;
4654 4655
	u64 total = 0;

4656 4657 4658
	*enabled = 0;
	*running = 0;

4659
	mutex_lock(&event->child_mutex);
4660

4661
	(void)perf_event_read(event, false);
4662 4663
	total += perf_event_count(event);

4664 4665 4666 4667 4668 4669
	*enabled += event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
	*running += event->total_time_running +
			atomic64_read(&event->child_total_time_running);

	list_for_each_entry(child, &event->child_list, child_list) {
4670
		(void)perf_event_read(child, false);
4671
		total += perf_event_count(child);
4672 4673 4674
		*enabled += child->total_time_enabled;
		*running += child->total_time_running;
	}
4675
	mutex_unlock(&event->child_mutex);
4676 4677 4678

	return total;
}
4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690

u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
{
	struct perf_event_context *ctx;
	u64 count;

	ctx = perf_event_ctx_lock(event);
	count = __perf_event_read_value(event, enabled, running);
	perf_event_ctx_unlock(event, ctx);

	return count;
}
4691
EXPORT_SYMBOL_GPL(perf_event_read_value);
4692

4693
static int __perf_read_group_add(struct perf_event *leader,
4694
					u64 read_format, u64 *values)
4695
{
4696
	struct perf_event_context *ctx = leader->ctx;
4697
	struct perf_event *sub;
4698
	unsigned long flags;
4699
	int n = 1; /* skip @nr */
4700
	int ret;
P
Peter Zijlstra 已提交
4701

4702 4703 4704
	ret = perf_event_read(leader, true);
	if (ret)
		return ret;
4705

4706 4707
	raw_spin_lock_irqsave(&ctx->lock, flags);

4708 4709 4710 4711 4712 4713 4714 4715 4716
	/*
	 * Since we co-schedule groups, {enabled,running} times of siblings
	 * will be identical to those of the leader, so we only publish one
	 * set.
	 */
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
		values[n++] += leader->total_time_enabled +
			atomic64_read(&leader->child_total_time_enabled);
	}
4717

4718 4719 4720 4721 4722 4723 4724 4725 4726
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
		values[n++] += leader->total_time_running +
			atomic64_read(&leader->child_total_time_running);
	}

	/*
	 * Write {count,id} tuples for every sibling.
	 */
	values[n++] += perf_event_count(leader);
4727 4728
	if (read_format & PERF_FORMAT_ID)
		values[n++] = primary_event_id(leader);
4729

P
Peter Zijlstra 已提交
4730
	for_each_sibling_event(sub, leader) {
4731 4732 4733 4734
		values[n++] += perf_event_count(sub);
		if (read_format & PERF_FORMAT_ID)
			values[n++] = primary_event_id(sub);
	}
4735

4736
	raw_spin_unlock_irqrestore(&ctx->lock, flags);
4737
	return 0;
4738
}
4739

4740 4741 4742 4743 4744
static int perf_read_group(struct perf_event *event,
				   u64 read_format, char __user *buf)
{
	struct perf_event *leader = event->group_leader, *child;
	struct perf_event_context *ctx = leader->ctx;
4745
	int ret;
4746
	u64 *values;
4747

4748
	lockdep_assert_held(&ctx->mutex);
4749

4750 4751 4752
	values = kzalloc(event->read_size, GFP_KERNEL);
	if (!values)
		return -ENOMEM;
4753

4754 4755 4756 4757 4758 4759 4760
	values[0] = 1 + leader->nr_siblings;

	/*
	 * By locking the child_mutex of the leader we effectively
	 * lock the child list of all siblings.. XXX explain how.
	 */
	mutex_lock(&leader->child_mutex);
4761

4762 4763 4764 4765 4766 4767 4768 4769 4770
	ret = __perf_read_group_add(leader, read_format, values);
	if (ret)
		goto unlock;

	list_for_each_entry(child, &leader->child_list, child_list) {
		ret = __perf_read_group_add(child, read_format, values);
		if (ret)
			goto unlock;
	}
4771

4772
	mutex_unlock(&leader->child_mutex);
4773

4774
	ret = event->read_size;
4775 4776
	if (copy_to_user(buf, values, event->read_size))
		ret = -EFAULT;
4777
	goto out;
4778

4779 4780 4781
unlock:
	mutex_unlock(&leader->child_mutex);
out:
4782
	kfree(values);
4783
	return ret;
4784 4785
}

4786
static int perf_read_one(struct perf_event *event,
4787 4788
				 u64 read_format, char __user *buf)
{
4789
	u64 enabled, running;
4790 4791 4792
	u64 values[4];
	int n = 0;

4793
	values[n++] = __perf_event_read_value(event, &enabled, &running);
4794 4795 4796 4797
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
4798
	if (read_format & PERF_FORMAT_ID)
4799
		values[n++] = primary_event_id(event);
4800 4801 4802 4803 4804 4805 4806

	if (copy_to_user(buf, values, n * sizeof(u64)))
		return -EFAULT;

	return n * sizeof(u64);
}

4807 4808 4809 4810
static bool is_event_hup(struct perf_event *event)
{
	bool no_children;

P
Peter Zijlstra 已提交
4811
	if (event->state > PERF_EVENT_STATE_EXIT)
4812 4813 4814 4815 4816 4817 4818 4819
		return false;

	mutex_lock(&event->child_mutex);
	no_children = list_empty(&event->child_list);
	mutex_unlock(&event->child_mutex);
	return no_children;
}

T
Thomas Gleixner 已提交
4820
/*
4821
 * Read the performance event - simple non blocking version for now
T
Thomas Gleixner 已提交
4822 4823
 */
static ssize_t
4824
__perf_read(struct perf_event *event, char __user *buf, size_t count)
T
Thomas Gleixner 已提交
4825
{
4826
	u64 read_format = event->attr.read_format;
4827
	int ret;
T
Thomas Gleixner 已提交
4828

4829
	/*
4830
	 * Return end-of-file for a read on a event that is in
4831 4832 4833
	 * error state (i.e. because it was pinned but it couldn't be
	 * scheduled on to the CPU at some point).
	 */
4834
	if (event->state == PERF_EVENT_STATE_ERROR)
4835 4836
		return 0;

4837
	if (count < event->read_size)
4838 4839
		return -ENOSPC;

4840
	WARN_ON_ONCE(event->ctx->parent_ctx);
4841
	if (read_format & PERF_FORMAT_GROUP)
4842
		ret = perf_read_group(event, read_format, buf);
4843
	else
4844
		ret = perf_read_one(event, read_format, buf);
T
Thomas Gleixner 已提交
4845

4846
	return ret;
T
Thomas Gleixner 已提交
4847 4848 4849 4850 4851
}

static ssize_t
perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
4852
	struct perf_event *event = file->private_data;
P
Peter Zijlstra 已提交
4853 4854
	struct perf_event_context *ctx;
	int ret;
T
Thomas Gleixner 已提交
4855

P
Peter Zijlstra 已提交
4856
	ctx = perf_event_ctx_lock(event);
4857
	ret = __perf_read(event, buf, count);
P
Peter Zijlstra 已提交
4858 4859 4860
	perf_event_ctx_unlock(event, ctx);

	return ret;
T
Thomas Gleixner 已提交
4861 4862
}

4863
static __poll_t perf_poll(struct file *file, poll_table *wait)
T
Thomas Gleixner 已提交
4864
{
4865
	struct perf_event *event = file->private_data;
4866
	struct ring_buffer *rb;
4867
	__poll_t events = EPOLLHUP;
P
Peter Zijlstra 已提交
4868

4869
	poll_wait(file, &event->waitq, wait);
4870

4871
	if (is_event_hup(event))
4872
		return events;
P
Peter Zijlstra 已提交
4873

4874
	/*
4875 4876
	 * Pin the event->rb by taking event->mmap_mutex; otherwise
	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4877 4878
	 */
	mutex_lock(&event->mmap_mutex);
4879 4880
	rb = event->rb;
	if (rb)
4881
		events = atomic_xchg(&rb->poll, 0);
4882
	mutex_unlock(&event->mmap_mutex);
T
Thomas Gleixner 已提交
4883 4884 4885
	return events;
}

P
Peter Zijlstra 已提交
4886
static void _perf_event_reset(struct perf_event *event)
4887
{
4888
	(void)perf_event_read(event, false);
4889
	local64_set(&event->count, 0);
4890
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
4891 4892
}

4893
/*
4894 4895
 * Holding the top-level event's child_mutex means that any
 * descendant process that has inherited this event will block
4896
 * in perf_event_exit_event() if it goes to exit, thus satisfying the
4897
 * task existence requirements of perf_event_enable/disable.
4898
 */
4899 4900
static void perf_event_for_each_child(struct perf_event *event,
					void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
4901
{
4902
	struct perf_event *child;
P
Peter Zijlstra 已提交
4903

4904
	WARN_ON_ONCE(event->ctx->parent_ctx);
P
Peter Zijlstra 已提交
4905

4906 4907 4908
	mutex_lock(&event->child_mutex);
	func(event);
	list_for_each_entry(child, &event->child_list, child_list)
P
Peter Zijlstra 已提交
4909
		func(child);
4910
	mutex_unlock(&event->child_mutex);
P
Peter Zijlstra 已提交
4911 4912
}

4913 4914
static void perf_event_for_each(struct perf_event *event,
				  void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
4915
{
4916 4917
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *sibling;
P
Peter Zijlstra 已提交
4918

P
Peter Zijlstra 已提交
4919 4920
	lockdep_assert_held(&ctx->mutex);

4921
	event = event->group_leader;
4922

4923
	perf_event_for_each_child(event, func);
P
Peter Zijlstra 已提交
4924
	for_each_sibling_event(sibling, event)
4925
		perf_event_for_each_child(sibling, func);
4926 4927
}

4928 4929 4930 4931
static void __perf_event_period(struct perf_event *event,
				struct perf_cpu_context *cpuctx,
				struct perf_event_context *ctx,
				void *info)
4932
{
4933
	u64 value = *((u64 *)info);
4934
	bool active;
4935

4936 4937
	if (event->attr.freq) {
		event->attr.sample_freq = value;
4938
	} else {
4939 4940
		event->attr.sample_period = value;
		event->hw.sample_period = value;
4941
	}
4942 4943 4944 4945

	active = (event->state == PERF_EVENT_STATE_ACTIVE);
	if (active) {
		perf_pmu_disable(ctx->pmu);
4946 4947 4948 4949 4950 4951 4952 4953
		/*
		 * We could be throttled; unthrottle now to avoid the tick
		 * trying to unthrottle while we already re-started the event.
		 */
		if (event->hw.interrupts == MAX_INTERRUPTS) {
			event->hw.interrupts = 0;
			perf_log_throttle(event, 1);
		}
4954 4955 4956 4957 4958 4959 4960 4961 4962
		event->pmu->stop(event, PERF_EF_UPDATE);
	}

	local64_set(&event->hw.period_left, 0);

	if (active) {
		event->pmu->start(event, PERF_EF_RELOAD);
		perf_pmu_enable(ctx->pmu);
	}
4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980
}

static int perf_event_period(struct perf_event *event, u64 __user *arg)
{
	u64 value;

	if (!is_sampling_event(event))
		return -EINVAL;

	if (copy_from_user(&value, arg, sizeof(value)))
		return -EFAULT;

	if (!value)
		return -EINVAL;

	if (event->attr.freq && value > sysctl_perf_event_sample_rate)
		return -EINVAL;

4981
	event_function_call(event, __perf_event_period, &value);
4982

4983
	return 0;
4984 4985
}

4986 4987
static const struct file_operations perf_fops;

4988
static inline int perf_fget_light(int fd, struct fd *p)
4989
{
4990 4991 4992
	struct fd f = fdget(fd);
	if (!f.file)
		return -EBADF;
4993

4994 4995 4996
	if (f.file->f_op != &perf_fops) {
		fdput(f);
		return -EBADF;
4997
	}
4998 4999
	*p = f;
	return 0;
5000 5001 5002 5003
}

static int perf_event_set_output(struct perf_event *event,
				 struct perf_event *output_event);
L
Li Zefan 已提交
5004
static int perf_event_set_filter(struct perf_event *event, void __user *arg);
5005
static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
5006 5007
static int perf_copy_attr(struct perf_event_attr __user *uattr,
			  struct perf_event_attr *attr);
5008

P
Peter Zijlstra 已提交
5009
static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
5010
{
5011
	void (*func)(struct perf_event *);
P
Peter Zijlstra 已提交
5012
	u32 flags = arg;
5013 5014

	switch (cmd) {
5015
	case PERF_EVENT_IOC_ENABLE:
P
Peter Zijlstra 已提交
5016
		func = _perf_event_enable;
5017
		break;
5018
	case PERF_EVENT_IOC_DISABLE:
P
Peter Zijlstra 已提交
5019
		func = _perf_event_disable;
5020
		break;
5021
	case PERF_EVENT_IOC_RESET:
P
Peter Zijlstra 已提交
5022
		func = _perf_event_reset;
5023
		break;
P
Peter Zijlstra 已提交
5024

5025
	case PERF_EVENT_IOC_REFRESH:
P
Peter Zijlstra 已提交
5026
		return _perf_event_refresh(event, arg);
5027

5028 5029
	case PERF_EVENT_IOC_PERIOD:
		return perf_event_period(event, (u64 __user *)arg);
5030

5031 5032 5033 5034 5035 5036 5037 5038 5039
	case PERF_EVENT_IOC_ID:
	{
		u64 id = primary_event_id(event);

		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
			return -EFAULT;
		return 0;
	}

5040
	case PERF_EVENT_IOC_SET_OUTPUT:
5041 5042 5043
	{
		int ret;
		if (arg != -1) {
5044 5045 5046 5047 5048 5049 5050 5051 5052 5053
			struct perf_event *output_event;
			struct fd output;
			ret = perf_fget_light(arg, &output);
			if (ret)
				return ret;
			output_event = output.file->private_data;
			ret = perf_event_set_output(event, output_event);
			fdput(output);
		} else {
			ret = perf_event_set_output(event, NULL);
5054 5055 5056
		}
		return ret;
	}
5057

L
Li Zefan 已提交
5058 5059 5060
	case PERF_EVENT_IOC_SET_FILTER:
		return perf_event_set_filter(event, (void __user *)arg);

5061 5062 5063
	case PERF_EVENT_IOC_SET_BPF:
		return perf_event_set_bpf_prog(event, arg);

5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076
	case PERF_EVENT_IOC_PAUSE_OUTPUT: {
		struct ring_buffer *rb;

		rcu_read_lock();
		rb = rcu_dereference(event->rb);
		if (!rb || !rb->nr_pages) {
			rcu_read_unlock();
			return -EINVAL;
		}
		rb_toggle_paused(rb, !!arg);
		rcu_read_unlock();
		return 0;
	}
5077 5078

	case PERF_EVENT_IOC_QUERY_BPF:
5079
		return perf_event_query_prog_array(event, (void __user *)arg);
5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090

	case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: {
		struct perf_event_attr new_attr;
		int err = perf_copy_attr((struct perf_event_attr __user *)arg,
					 &new_attr);

		if (err)
			return err;

		return perf_event_modify_attr(event,  &new_attr);
	}
5091
	default:
P
Peter Zijlstra 已提交
5092
		return -ENOTTY;
5093
	}
P
Peter Zijlstra 已提交
5094 5095

	if (flags & PERF_IOC_FLAG_GROUP)
5096
		perf_event_for_each(event, func);
P
Peter Zijlstra 已提交
5097
	else
5098
		perf_event_for_each_child(event, func);
P
Peter Zijlstra 已提交
5099 5100

	return 0;
5101 5102
}

P
Peter Zijlstra 已提交
5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115
static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
	struct perf_event *event = file->private_data;
	struct perf_event_context *ctx;
	long ret;

	ctx = perf_event_ctx_lock(event);
	ret = _perf_ioctl(event, cmd, arg);
	perf_event_ctx_unlock(event, ctx);

	return ret;
}

P
Pawel Moll 已提交
5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135
#ifdef CONFIG_COMPAT
static long perf_compat_ioctl(struct file *file, unsigned int cmd,
				unsigned long arg)
{
	switch (_IOC_NR(cmd)) {
	case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
	case _IOC_NR(PERF_EVENT_IOC_ID):
		/* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
		if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
			cmd &= ~IOCSIZE_MASK;
			cmd |= sizeof(void *) << IOCSIZE_SHIFT;
		}
		break;
	}
	return perf_ioctl(file, cmd, arg);
}
#else
# define perf_compat_ioctl NULL
#endif

5136
int perf_event_task_enable(void)
5137
{
P
Peter Zijlstra 已提交
5138
	struct perf_event_context *ctx;
5139
	struct perf_event *event;
5140

5141
	mutex_lock(&current->perf_event_mutex);
P
Peter Zijlstra 已提交
5142 5143 5144 5145 5146
	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
		ctx = perf_event_ctx_lock(event);
		perf_event_for_each_child(event, _perf_event_enable);
		perf_event_ctx_unlock(event, ctx);
	}
5147
	mutex_unlock(&current->perf_event_mutex);
5148 5149 5150 5151

	return 0;
}

5152
int perf_event_task_disable(void)
5153
{
P
Peter Zijlstra 已提交
5154
	struct perf_event_context *ctx;
5155
	struct perf_event *event;
5156

5157
	mutex_lock(&current->perf_event_mutex);
P
Peter Zijlstra 已提交
5158 5159 5160 5161 5162
	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
		ctx = perf_event_ctx_lock(event);
		perf_event_for_each_child(event, _perf_event_disable);
		perf_event_ctx_unlock(event, ctx);
	}
5163
	mutex_unlock(&current->perf_event_mutex);
5164 5165 5166 5167

	return 0;
}

5168
static int perf_event_index(struct perf_event *event)
5169
{
P
Peter Zijlstra 已提交
5170 5171 5172
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;

5173
	if (event->state != PERF_EVENT_STATE_ACTIVE)
5174 5175
		return 0;

5176
	return event->pmu->event_idx(event);
5177 5178
}

5179
static void calc_timer_values(struct perf_event *event,
5180
				u64 *now,
5181 5182
				u64 *enabled,
				u64 *running)
5183
{
5184
	u64 ctx_time;
5185

5186 5187
	*now = perf_clock();
	ctx_time = event->shadow_ctx_time + *now;
5188
	__perf_update_times(event, ctx_time, enabled, running);
5189 5190
}

5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205
static void perf_event_init_userpage(struct perf_event *event)
{
	struct perf_event_mmap_page *userpg;
	struct ring_buffer *rb;

	rcu_read_lock();
	rb = rcu_dereference(event->rb);
	if (!rb)
		goto unlock;

	userpg = rb->user_page;

	/* Allow new userspace to detect that bit 0 is deprecated */
	userpg->cap_bit0_is_deprecated = 1;
	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
5206 5207
	userpg->data_offset = PAGE_SIZE;
	userpg->data_size = perf_data_size(rb);
5208 5209 5210 5211 5212

unlock:
	rcu_read_unlock();
}

5213 5214
void __weak arch_perf_update_userpage(
	struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
5215 5216 5217
{
}

5218 5219 5220 5221 5222
/*
 * Callers need to ensure there can be no nesting of this function, otherwise
 * the seqlock logic goes bad. We can not serialize this because the arch
 * code calls this from NMI context.
 */
5223
void perf_event_update_userpage(struct perf_event *event)
5224
{
5225
	struct perf_event_mmap_page *userpg;
5226
	struct ring_buffer *rb;
5227
	u64 enabled, running, now;
5228 5229

	rcu_read_lock();
5230 5231 5232 5233
	rb = rcu_dereference(event->rb);
	if (!rb)
		goto unlock;

5234 5235 5236 5237 5238 5239 5240 5241 5242
	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we can be called in
	 * NMI context
	 */
5243
	calc_timer_values(event, &now, &enabled, &running);
5244

5245
	userpg = rb->user_page;
5246 5247 5248 5249 5250
	/*
	 * Disable preemption so as to not let the corresponding user-space
	 * spin too long if we get preempted.
	 */
	preempt_disable();
5251
	++userpg->lock;
5252
	barrier();
5253
	userpg->index = perf_event_index(event);
P
Peter Zijlstra 已提交
5254
	userpg->offset = perf_event_count(event);
5255
	if (userpg->index)
5256
		userpg->offset -= local64_read(&event->hw.prev_count);
5257

5258
	userpg->time_enabled = enabled +
5259
			atomic64_read(&event->child_total_time_enabled);
5260

5261
	userpg->time_running = running +
5262
			atomic64_read(&event->child_total_time_running);
5263

5264
	arch_perf_update_userpage(event, userpg, now);
5265

5266
	barrier();
5267
	++userpg->lock;
5268
	preempt_enable();
5269
unlock:
5270
	rcu_read_unlock();
5271
}
5272
EXPORT_SYMBOL_GPL(perf_event_update_userpage);
5273

5274
static int perf_mmap_fault(struct vm_fault *vmf)
5275
{
5276
	struct perf_event *event = vmf->vma->vm_file->private_data;
5277
	struct ring_buffer *rb;
5278 5279 5280 5281 5282 5283 5284 5285 5286
	int ret = VM_FAULT_SIGBUS;

	if (vmf->flags & FAULT_FLAG_MKWRITE) {
		if (vmf->pgoff == 0)
			ret = 0;
		return ret;
	}

	rcu_read_lock();
5287 5288
	rb = rcu_dereference(event->rb);
	if (!rb)
5289 5290 5291 5292 5293
		goto unlock;

	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
		goto unlock;

5294
	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
5295 5296 5297 5298
	if (!vmf->page)
		goto unlock;

	get_page(vmf->page);
5299
	vmf->page->mapping = vmf->vma->vm_file->f_mapping;
5300 5301 5302 5303 5304 5305 5306 5307 5308
	vmf->page->index   = vmf->pgoff;

	ret = 0;
unlock:
	rcu_read_unlock();

	return ret;
}

5309 5310 5311
static void ring_buffer_attach(struct perf_event *event,
			       struct ring_buffer *rb)
{
5312
	struct ring_buffer *old_rb = NULL;
5313 5314
	unsigned long flags;

5315 5316 5317 5318 5319 5320
	if (event->rb) {
		/*
		 * Should be impossible, we set this when removing
		 * event->rb_entry and wait/clear when adding event->rb_entry.
		 */
		WARN_ON_ONCE(event->rcu_pending);
5321

5322 5323 5324 5325
		old_rb = event->rb;
		spin_lock_irqsave(&old_rb->event_lock, flags);
		list_del_rcu(&event->rb_entry);
		spin_unlock_irqrestore(&old_rb->event_lock, flags);
5326

5327 5328
		event->rcu_batches = get_state_synchronize_rcu();
		event->rcu_pending = 1;
5329
	}
5330

5331
	if (rb) {
5332 5333 5334 5335 5336
		if (event->rcu_pending) {
			cond_synchronize_rcu(event->rcu_batches);
			event->rcu_pending = 0;
		}

5337 5338 5339 5340 5341
		spin_lock_irqsave(&rb->event_lock, flags);
		list_add_rcu(&event->rb_entry, &rb->event_list);
		spin_unlock_irqrestore(&rb->event_lock, flags);
	}

5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354
	/*
	 * Avoid racing with perf_mmap_close(AUX): stop the event
	 * before swizzling the event::rb pointer; if it's getting
	 * unmapped, its aux_mmap_count will be 0 and it won't
	 * restart. See the comment in __perf_pmu_output_stop().
	 *
	 * Data will inevitably be lost when set_output is done in
	 * mid-air, but then again, whoever does it like this is
	 * not in for the data anyway.
	 */
	if (has_aux(event))
		perf_event_stop(event, 0);

5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365
	rcu_assign_pointer(event->rb, rb);

	if (old_rb) {
		ring_buffer_put(old_rb);
		/*
		 * Since we detached before setting the new rb, so that we
		 * could attach the new rb, we could have missed a wakeup.
		 * Provide it now.
		 */
		wake_up_all(&event->waitq);
	}
5366 5367 5368 5369 5370 5371 5372 5373
}

static void ring_buffer_wakeup(struct perf_event *event)
{
	struct ring_buffer *rb;

	rcu_read_lock();
	rb = rcu_dereference(event->rb);
5374 5375 5376 5377
	if (rb) {
		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
			wake_up_all(&event->waitq);
	}
5378 5379 5380
	rcu_read_unlock();
}

5381
struct ring_buffer *ring_buffer_get(struct perf_event *event)
5382
{
5383
	struct ring_buffer *rb;
5384

5385
	rcu_read_lock();
5386 5387 5388 5389
	rb = rcu_dereference(event->rb);
	if (rb) {
		if (!atomic_inc_not_zero(&rb->refcount))
			rb = NULL;
5390 5391 5392
	}
	rcu_read_unlock();

5393
	return rb;
5394 5395
}

5396
void ring_buffer_put(struct ring_buffer *rb)
5397
{
5398
	if (!atomic_dec_and_test(&rb->refcount))
5399
		return;
5400

5401
	WARN_ON_ONCE(!list_empty(&rb->event_list));
5402

5403
	call_rcu(&rb->rcu_head, rb_free_rcu);
5404 5405 5406 5407
}

static void perf_mmap_open(struct vm_area_struct *vma)
{
5408
	struct perf_event *event = vma->vm_file->private_data;
5409

5410
	atomic_inc(&event->mmap_count);
5411
	atomic_inc(&event->rb->mmap_count);
5412

5413 5414 5415
	if (vma->vm_pgoff)
		atomic_inc(&event->rb->aux_mmap_count);

5416
	if (event->pmu->event_mapped)
5417
		event->pmu->event_mapped(event, vma->vm_mm);
5418 5419
}

5420 5421
static void perf_pmu_output_stop(struct perf_event *event);

5422 5423 5424 5425 5426 5427 5428 5429
/*
 * A buffer can be mmap()ed multiple times; either directly through the same
 * event, or through other events by use of perf_event_set_output().
 *
 * In order to undo the VM accounting done by perf_mmap() we need to destroy
 * the buffer here, where we still have a VM context. This means we need
 * to detach all events redirecting to us.
 */
5430 5431
static void perf_mmap_close(struct vm_area_struct *vma)
{
5432
	struct perf_event *event = vma->vm_file->private_data;
5433

5434
	struct ring_buffer *rb = ring_buffer_get(event);
5435 5436 5437
	struct user_struct *mmap_user = rb->mmap_user;
	int mmap_locked = rb->mmap_locked;
	unsigned long size = perf_data_size(rb);
5438

5439
	if (event->pmu->event_unmapped)
5440
		event->pmu->event_unmapped(event, vma->vm_mm);
5441

5442 5443 5444 5445 5446 5447 5448
	/*
	 * rb->aux_mmap_count will always drop before rb->mmap_count and
	 * event->mmap_count, so it is ok to use event->mmap_mutex to
	 * serialize with perf_mmap here.
	 */
	if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
	    atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
5449 5450 5451 5452 5453 5454 5455 5456 5457
		/*
		 * Stop all AUX events that are writing to this buffer,
		 * so that we can free its AUX pages and corresponding PMU
		 * data. Note that after rb::aux_mmap_count dropped to zero,
		 * they won't start any more (see perf_aux_output_begin()).
		 */
		perf_pmu_output_stop(event);

		/* now it's safe to free the pages */
5458 5459 5460
		atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
		vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;

5461
		/* this has to be the last one */
5462
		rb_free_aux(rb);
5463 5464
		WARN_ON_ONCE(atomic_read(&rb->aux_refcount));

5465 5466 5467
		mutex_unlock(&event->mmap_mutex);
	}

5468 5469 5470
	atomic_dec(&rb->mmap_count);

	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
5471
		goto out_put;
5472

5473
	ring_buffer_attach(event, NULL);
5474 5475 5476
	mutex_unlock(&event->mmap_mutex);

	/* If there's still other mmap()s of this buffer, we're done. */
5477 5478
	if (atomic_read(&rb->mmap_count))
		goto out_put;
5479

5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495
	/*
	 * No other mmap()s, detach from all other events that might redirect
	 * into the now unreachable buffer. Somewhat complicated by the
	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
	 */
again:
	rcu_read_lock();
	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
		if (!atomic_long_inc_not_zero(&event->refcount)) {
			/*
			 * This event is en-route to free_event() which will
			 * detach it and remove it from the list.
			 */
			continue;
		}
		rcu_read_unlock();
5496

5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507
		mutex_lock(&event->mmap_mutex);
		/*
		 * Check we didn't race with perf_event_set_output() which can
		 * swizzle the rb from under us while we were waiting to
		 * acquire mmap_mutex.
		 *
		 * If we find a different rb; ignore this event, a next
		 * iteration will no longer find it on the list. We have to
		 * still restart the iteration to make sure we're not now
		 * iterating the wrong list.
		 */
5508 5509 5510
		if (event->rb == rb)
			ring_buffer_attach(event, NULL);

5511
		mutex_unlock(&event->mmap_mutex);
5512
		put_event(event);
5513

5514 5515 5516 5517 5518
		/*
		 * Restart the iteration; either we're on the wrong list or
		 * destroyed its integrity by doing a deletion.
		 */
		goto again;
5519
	}
5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534
	rcu_read_unlock();

	/*
	 * It could be there's still a few 0-ref events on the list; they'll
	 * get cleaned up by free_event() -- they'll also still have their
	 * ref on the rb and will free it whenever they are done with it.
	 *
	 * Aside from that, this buffer is 'fully' detached and unmapped,
	 * undo the VM accounting.
	 */

	atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
	vma->vm_mm->pinned_vm -= mmap_locked;
	free_uid(mmap_user);

5535
out_put:
5536
	ring_buffer_put(rb); /* could be last */
5537 5538
}

5539
static const struct vm_operations_struct perf_mmap_vmops = {
5540
	.open		= perf_mmap_open,
5541
	.close		= perf_mmap_close, /* non mergable */
5542 5543
	.fault		= perf_mmap_fault,
	.page_mkwrite	= perf_mmap_fault,
5544 5545 5546 5547
};

static int perf_mmap(struct file *file, struct vm_area_struct *vma)
{
5548
	struct perf_event *event = file->private_data;
5549
	unsigned long user_locked, user_lock_limit;
5550
	struct user_struct *user = current_user();
5551
	unsigned long locked, lock_limit;
5552
	struct ring_buffer *rb = NULL;
5553 5554
	unsigned long vma_size;
	unsigned long nr_pages;
5555
	long user_extra = 0, extra = 0;
5556
	int ret = 0, flags = 0;
5557

5558 5559 5560
	/*
	 * Don't allow mmap() of inherited per-task counters. This would
	 * create a performance issue due to all children writing to the
5561
	 * same rb.
5562 5563 5564 5565
	 */
	if (event->cpu == -1 && event->attr.inherit)
		return -EINVAL;

5566
	if (!(vma->vm_flags & VM_SHARED))
5567
		return -EINVAL;
5568 5569

	vma_size = vma->vm_end - vma->vm_start;
5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592

	if (vma->vm_pgoff == 0) {
		nr_pages = (vma_size / PAGE_SIZE) - 1;
	} else {
		/*
		 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
		 * mapped, all subsequent mappings should have the same size
		 * and offset. Must be above the normal perf buffer.
		 */
		u64 aux_offset, aux_size;

		if (!event->rb)
			return -EINVAL;

		nr_pages = vma_size / PAGE_SIZE;

		mutex_lock(&event->mmap_mutex);
		ret = -EINVAL;

		rb = event->rb;
		if (!rb)
			goto aux_unlock;

5593 5594
		aux_offset = READ_ONCE(rb->user_page->aux_offset);
		aux_size = READ_ONCE(rb->user_page->aux_size);
5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629

		if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
			goto aux_unlock;

		if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
			goto aux_unlock;

		/* already mapped with a different offset */
		if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
			goto aux_unlock;

		if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
			goto aux_unlock;

		/* already mapped with a different size */
		if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
			goto aux_unlock;

		if (!is_power_of_2(nr_pages))
			goto aux_unlock;

		if (!atomic_inc_not_zero(&rb->mmap_count))
			goto aux_unlock;

		if (rb_has_aux(rb)) {
			atomic_inc(&rb->aux_mmap_count);
			ret = 0;
			goto unlock;
		}

		atomic_set(&rb->aux_mmap_count, 1);
		user_extra = nr_pages;

		goto accounting;
	}
5630

5631
	/*
5632
	 * If we have rb pages ensure they're a power-of-two number, so we
5633 5634
	 * can do bitmasks instead of modulo.
	 */
5635
	if (nr_pages != 0 && !is_power_of_2(nr_pages))
5636 5637
		return -EINVAL;

5638
	if (vma_size != PAGE_SIZE * (1 + nr_pages))
5639 5640
		return -EINVAL;

5641
	WARN_ON_ONCE(event->ctx->parent_ctx);
5642
again:
5643
	mutex_lock(&event->mmap_mutex);
5644
	if (event->rb) {
5645
		if (event->rb->nr_pages != nr_pages) {
5646
			ret = -EINVAL;
5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659
			goto unlock;
		}

		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
			/*
			 * Raced against perf_mmap_close() through
			 * perf_event_set_output(). Try again, hope for better
			 * luck.
			 */
			mutex_unlock(&event->mmap_mutex);
			goto again;
		}

5660 5661 5662
		goto unlock;
	}

5663
	user_extra = nr_pages + 1;
5664 5665

accounting:
5666
	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
I
Ingo Molnar 已提交
5667 5668 5669 5670 5671 5672

	/*
	 * Increase the limit linearly with more CPUs:
	 */
	user_lock_limit *= num_online_cpus();

5673
	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
5674

5675 5676
	if (user_locked > user_lock_limit)
		extra = user_locked - user_lock_limit;
5677

5678
	lock_limit = rlimit(RLIMIT_MEMLOCK);
5679
	lock_limit >>= PAGE_SHIFT;
5680
	locked = vma->vm_mm->pinned_vm + extra;
5681

5682 5683
	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
		!capable(CAP_IPC_LOCK)) {
5684 5685 5686
		ret = -EPERM;
		goto unlock;
	}
5687

5688
	WARN_ON(!rb && event->rb);
5689

5690
	if (vma->vm_flags & VM_WRITE)
5691
		flags |= RING_BUFFER_WRITABLE;
5692

5693
	if (!rb) {
5694 5695 5696
		rb = rb_alloc(nr_pages,
			      event->attr.watermark ? event->attr.wakeup_watermark : 0,
			      event->cpu, flags);
P
Peter Zijlstra 已提交
5697

5698 5699 5700 5701
		if (!rb) {
			ret = -ENOMEM;
			goto unlock;
		}
5702

5703 5704 5705
		atomic_set(&rb->mmap_count, 1);
		rb->mmap_user = get_current_user();
		rb->mmap_locked = extra;
P
Peter Zijlstra 已提交
5706

5707
		ring_buffer_attach(event, rb);
5708

5709 5710 5711
		perf_event_init_userpage(event);
		perf_event_update_userpage(event);
	} else {
5712 5713
		ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
				   event->attr.aux_watermark, flags);
5714 5715 5716
		if (!ret)
			rb->aux_mmap_locked = extra;
	}
5717

5718
unlock:
5719 5720 5721 5722
	if (!ret) {
		atomic_long_add(user_extra, &user->locked_vm);
		vma->vm_mm->pinned_vm += extra;

5723
		atomic_inc(&event->mmap_count);
5724 5725 5726 5727
	} else if (rb) {
		atomic_dec(&rb->mmap_count);
	}
aux_unlock:
5728
	mutex_unlock(&event->mmap_mutex);
5729

5730 5731 5732 5733
	/*
	 * Since pinned accounting is per vm we cannot allow fork() to copy our
	 * vma.
	 */
P
Peter Zijlstra 已提交
5734
	vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
5735
	vma->vm_ops = &perf_mmap_vmops;
5736

5737
	if (event->pmu->event_mapped)
5738
		event->pmu->event_mapped(event, vma->vm_mm);
5739

5740
	return ret;
5741 5742
}

P
Peter Zijlstra 已提交
5743 5744
static int perf_fasync(int fd, struct file *filp, int on)
{
A
Al Viro 已提交
5745
	struct inode *inode = file_inode(filp);
5746
	struct perf_event *event = filp->private_data;
P
Peter Zijlstra 已提交
5747 5748
	int retval;

A
Al Viro 已提交
5749
	inode_lock(inode);
5750
	retval = fasync_helper(fd, filp, on, &event->fasync);
A
Al Viro 已提交
5751
	inode_unlock(inode);
P
Peter Zijlstra 已提交
5752 5753 5754 5755 5756 5757 5758

	if (retval < 0)
		return retval;

	return 0;
}

T
Thomas Gleixner 已提交
5759
static const struct file_operations perf_fops = {
5760
	.llseek			= no_llseek,
T
Thomas Gleixner 已提交
5761 5762 5763
	.release		= perf_release,
	.read			= perf_read,
	.poll			= perf_poll,
5764
	.unlocked_ioctl		= perf_ioctl,
P
Pawel Moll 已提交
5765
	.compat_ioctl		= perf_compat_ioctl,
5766
	.mmap			= perf_mmap,
P
Peter Zijlstra 已提交
5767
	.fasync			= perf_fasync,
T
Thomas Gleixner 已提交
5768 5769
};

5770
/*
5771
 * Perf event wakeup
5772 5773 5774 5775 5776
 *
 * If there's data, ensure we set the poll() state and publish everything
 * to user-space before waking everybody up.
 */

5777 5778 5779 5780 5781 5782 5783 5784
static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
{
	/* only the parent has fasync state */
	if (event->parent)
		event = event->parent;
	return &event->fasync;
}

5785
void perf_event_wakeup(struct perf_event *event)
5786
{
5787
	ring_buffer_wakeup(event);
5788

5789
	if (event->pending_kill) {
5790
		kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
5791
		event->pending_kill = 0;
5792
	}
5793 5794
}

5795
static void perf_pending_event(struct irq_work *entry)
5796
{
5797 5798
	struct perf_event *event = container_of(entry,
			struct perf_event, pending);
5799 5800 5801 5802 5803 5804 5805
	int rctx;

	rctx = perf_swevent_get_recursion_context();
	/*
	 * If we 'fail' here, that's OK, it means recursion is already disabled
	 * and we won't recurse 'further'.
	 */
5806

5807 5808
	if (event->pending_disable) {
		event->pending_disable = 0;
5809
		perf_event_disable_local(event);
5810 5811
	}

5812 5813 5814
	if (event->pending_wakeup) {
		event->pending_wakeup = 0;
		perf_event_wakeup(event);
5815
	}
5816 5817 5818

	if (rctx >= 0)
		perf_swevent_put_recursion_context(rctx);
5819 5820
}

5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841
/*
 * We assume there is only KVM supporting the callbacks.
 * Later on, we might change it to a list if there is
 * another virtualization implementation supporting the callbacks.
 */
struct perf_guest_info_callbacks *perf_guest_cbs;

int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = cbs;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);

int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = NULL;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);

5842 5843 5844 5845 5846
static void
perf_output_sample_regs(struct perf_output_handle *handle,
			struct pt_regs *regs, u64 mask)
{
	int bit;
5847
	DECLARE_BITMAP(_mask, 64);
5848

5849 5850
	bitmap_from_u64(_mask, mask);
	for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
5851 5852 5853 5854 5855 5856 5857
		u64 val;

		val = perf_reg_value(regs, bit);
		perf_output_put(handle, val);
	}
}

5858
static void perf_sample_regs_user(struct perf_regs *regs_user,
5859 5860
				  struct pt_regs *regs,
				  struct pt_regs *regs_user_copy)
5861
{
5862 5863
	if (user_mode(regs)) {
		regs_user->abi = perf_reg_abi(current);
5864
		regs_user->regs = regs;
5865 5866
	} else if (current->mm) {
		perf_get_regs_user(regs_user, regs, regs_user_copy);
5867 5868 5869
	} else {
		regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
		regs_user->regs = NULL;
5870 5871 5872
	}
}

5873 5874 5875 5876 5877 5878 5879 5880
static void perf_sample_regs_intr(struct perf_regs *regs_intr,
				  struct pt_regs *regs)
{
	regs_intr->regs = regs;
	regs_intr->abi  = perf_reg_abi(current);
}


5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975
/*
 * Get remaining task size from user stack pointer.
 *
 * It'd be better to take stack vma map and limit this more
 * precisly, but there's no way to get it safely under interrupt,
 * so using TASK_SIZE as limit.
 */
static u64 perf_ustack_task_size(struct pt_regs *regs)
{
	unsigned long addr = perf_user_stack_pointer(regs);

	if (!addr || addr >= TASK_SIZE)
		return 0;

	return TASK_SIZE - addr;
}

static u16
perf_sample_ustack_size(u16 stack_size, u16 header_size,
			struct pt_regs *regs)
{
	u64 task_size;

	/* No regs, no stack pointer, no dump. */
	if (!regs)
		return 0;

	/*
	 * Check if we fit in with the requested stack size into the:
	 * - TASK_SIZE
	 *   If we don't, we limit the size to the TASK_SIZE.
	 *
	 * - remaining sample size
	 *   If we don't, we customize the stack size to
	 *   fit in to the remaining sample size.
	 */

	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
	stack_size = min(stack_size, (u16) task_size);

	/* Current header size plus static size and dynamic size. */
	header_size += 2 * sizeof(u64);

	/* Do we fit in with the current stack dump size? */
	if ((u16) (header_size + stack_size) < header_size) {
		/*
		 * If we overflow the maximum size for the sample,
		 * we customize the stack dump size to fit in.
		 */
		stack_size = USHRT_MAX - header_size - sizeof(u64);
		stack_size = round_up(stack_size, sizeof(u64));
	}

	return stack_size;
}

static void
perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
			  struct pt_regs *regs)
{
	/* Case of a kernel thread, nothing to dump */
	if (!regs) {
		u64 size = 0;
		perf_output_put(handle, size);
	} else {
		unsigned long sp;
		unsigned int rem;
		u64 dyn_size;

		/*
		 * We dump:
		 * static size
		 *   - the size requested by user or the best one we can fit
		 *     in to the sample max size
		 * data
		 *   - user stack dump data
		 * dynamic size
		 *   - the actual dumped size
		 */

		/* Static size. */
		perf_output_put(handle, dump_size);

		/* Data. */
		sp = perf_user_stack_pointer(regs);
		rem = __output_copy_user(handle, (void *) sp, dump_size);
		dyn_size = dump_size - rem;

		perf_output_skip(handle, rem);

		/* Dynamic size. */
		perf_output_put(handle, dyn_size);
	}
}

5976 5977 5978
static void __perf_event_header__init_id(struct perf_event_header *header,
					 struct perf_sample_data *data,
					 struct perf_event *event)
5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991
{
	u64 sample_type = event->attr.sample_type;

	data->type = sample_type;
	header->size += event->id_header_size;

	if (sample_type & PERF_SAMPLE_TID) {
		/* namespace issues */
		data->tid_entry.pid = perf_event_pid(event, current);
		data->tid_entry.tid = perf_event_tid(event, current);
	}

	if (sample_type & PERF_SAMPLE_TIME)
5992
		data->time = perf_event_clock(event);
5993

5994
	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005
		data->id = primary_event_id(event);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		data->stream_id = event->id;

	if (sample_type & PERF_SAMPLE_CPU) {
		data->cpu_entry.cpu	 = raw_smp_processor_id();
		data->cpu_entry.reserved = 0;
	}
}

6006 6007 6008
void perf_event_header__init_id(struct perf_event_header *header,
				struct perf_sample_data *data,
				struct perf_event *event)
6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032
{
	if (event->attr.sample_id_all)
		__perf_event_header__init_id(header, data, event);
}

static void __perf_event__output_id_sample(struct perf_output_handle *handle,
					   struct perf_sample_data *data)
{
	u64 sample_type = data->type;

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);
6033 6034 6035

	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		perf_output_put(handle, data->id);
6036 6037
}

6038 6039 6040
void perf_event__output_id_sample(struct perf_event *event,
				  struct perf_output_handle *handle,
				  struct perf_sample_data *sample)
6041 6042 6043 6044 6045
{
	if (event->attr.sample_id_all)
		__perf_event__output_id_sample(handle, sample);
}

6046
static void perf_output_read_one(struct perf_output_handle *handle,
6047 6048
				 struct perf_event *event,
				 u64 enabled, u64 running)
6049
{
6050
	u64 read_format = event->attr.read_format;
6051 6052 6053
	u64 values[4];
	int n = 0;

P
Peter Zijlstra 已提交
6054
	values[n++] = perf_event_count(event);
6055
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
6056
		values[n++] = enabled +
6057
			atomic64_read(&event->child_total_time_enabled);
6058 6059
	}
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
6060
		values[n++] = running +
6061
			atomic64_read(&event->child_total_time_running);
6062 6063
	}
	if (read_format & PERF_FORMAT_ID)
6064
		values[n++] = primary_event_id(event);
6065

6066
	__output_copy(handle, values, n * sizeof(u64));
6067 6068 6069
}

static void perf_output_read_group(struct perf_output_handle *handle,
6070 6071
			    struct perf_event *event,
			    u64 enabled, u64 running)
6072
{
6073 6074
	struct perf_event *leader = event->group_leader, *sub;
	u64 read_format = event->attr.read_format;
6075 6076 6077 6078 6079 6080
	u64 values[5];
	int n = 0;

	values[n++] = 1 + leader->nr_siblings;

	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
6081
		values[n++] = enabled;
6082 6083

	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
6084
		values[n++] = running;
6085

6086 6087
	if ((leader != event) &&
	    (leader->state == PERF_EVENT_STATE_ACTIVE))
6088 6089
		leader->pmu->read(leader);

P
Peter Zijlstra 已提交
6090
	values[n++] = perf_event_count(leader);
6091
	if (read_format & PERF_FORMAT_ID)
6092
		values[n++] = primary_event_id(leader);
6093

6094
	__output_copy(handle, values, n * sizeof(u64));
6095

P
Peter Zijlstra 已提交
6096
	for_each_sibling_event(sub, leader) {
6097 6098
		n = 0;

6099 6100
		if ((sub != event) &&
		    (sub->state == PERF_EVENT_STATE_ACTIVE))
6101 6102
			sub->pmu->read(sub);

P
Peter Zijlstra 已提交
6103
		values[n++] = perf_event_count(sub);
6104
		if (read_format & PERF_FORMAT_ID)
6105
			values[n++] = primary_event_id(sub);
6106

6107
		__output_copy(handle, values, n * sizeof(u64));
6108 6109 6110
	}
}

6111 6112 6113
#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
				 PERF_FORMAT_TOTAL_TIME_RUNNING)

6114 6115 6116 6117 6118 6119 6120
/*
 * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
 *
 * The problem is that its both hard and excessively expensive to iterate the
 * child list, not to mention that its impossible to IPI the children running
 * on another CPU, from interrupt/NMI context.
 */
6121
static void perf_output_read(struct perf_output_handle *handle,
6122
			     struct perf_event *event)
6123
{
6124
	u64 enabled = 0, running = 0, now;
6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135
	u64 read_format = event->attr.read_format;

	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we are called in
	 * NMI context
	 */
6136
	if (read_format & PERF_FORMAT_TOTAL_TIMES)
6137
		calc_timer_values(event, &now, &enabled, &running);
6138

6139
	if (event->attr.read_format & PERF_FORMAT_GROUP)
6140
		perf_output_read_group(handle, event, enabled, running);
6141
	else
6142
		perf_output_read_one(handle, event, enabled, running);
6143 6144
}

6145 6146 6147
void perf_output_sample(struct perf_output_handle *handle,
			struct perf_event_header *header,
			struct perf_sample_data *data,
6148
			struct perf_event *event)
6149 6150 6151 6152 6153
{
	u64 sample_type = data->type;

	perf_output_put(handle, *header);

6154 6155 6156
	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		perf_output_put(handle, data->id);

6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181
	if (sample_type & PERF_SAMPLE_IP)
		perf_output_put(handle, data->ip);

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ADDR)
		perf_output_put(handle, data->addr);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);

	if (sample_type & PERF_SAMPLE_PERIOD)
		perf_output_put(handle, data->period);

	if (sample_type & PERF_SAMPLE_READ)
6182
		perf_output_read(handle, event);
6183 6184

	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
6185
		int size = 1;
6186

6187 6188 6189
		size += data->callchain->nr;
		size *= sizeof(u64);
		__output_copy(handle, data->callchain, size);
6190 6191 6192
	}

	if (sample_type & PERF_SAMPLE_RAW) {
6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212
		struct perf_raw_record *raw = data->raw;

		if (raw) {
			struct perf_raw_frag *frag = &raw->frag;

			perf_output_put(handle, raw->size);
			do {
				if (frag->copy) {
					__output_custom(handle, frag->copy,
							frag->data, frag->size);
				} else {
					__output_copy(handle, frag->data,
						      frag->size);
				}
				if (perf_raw_frag_last(frag))
					break;
				frag = frag->next;
			} while (1);
			if (frag->pad)
				__output_skip(handle, NULL, frag->pad);
6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223
		} else {
			struct {
				u32	size;
				u32	data;
			} raw = {
				.size = sizeof(u32),
				.data = 0,
			};
			perf_output_put(handle, raw);
		}
	}
6224

6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241
	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
		if (data->br_stack) {
			size_t size;

			size = data->br_stack->nr
			     * sizeof(struct perf_branch_entry);

			perf_output_put(handle, data->br_stack->nr);
			perf_output_copy(handle, data->br_stack->entries, size);
		} else {
			/*
			 * we always store at least the value of nr
			 */
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}
6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258

	if (sample_type & PERF_SAMPLE_REGS_USER) {
		u64 abi = data->regs_user.abi;

		/*
		 * If there are no regs to dump, notice it through
		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
		 */
		perf_output_put(handle, abi);

		if (abi) {
			u64 mask = event->attr.sample_regs_user;
			perf_output_sample_regs(handle,
						data->regs_user.regs,
						mask);
		}
	}
6259

6260
	if (sample_type & PERF_SAMPLE_STACK_USER) {
6261 6262 6263
		perf_output_sample_ustack(handle,
					  data->stack_user_size,
					  data->regs_user.regs);
6264
	}
A
Andi Kleen 已提交
6265 6266 6267

	if (sample_type & PERF_SAMPLE_WEIGHT)
		perf_output_put(handle, data->weight);
6268 6269 6270

	if (sample_type & PERF_SAMPLE_DATA_SRC)
		perf_output_put(handle, data->data_src.val);
6271

A
Andi Kleen 已提交
6272 6273 6274
	if (sample_type & PERF_SAMPLE_TRANSACTION)
		perf_output_put(handle, data->txn);

6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291
	if (sample_type & PERF_SAMPLE_REGS_INTR) {
		u64 abi = data->regs_intr.abi;
		/*
		 * If there are no regs to dump, notice it through
		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
		 */
		perf_output_put(handle, abi);

		if (abi) {
			u64 mask = event->attr.sample_regs_intr;

			perf_output_sample_regs(handle,
						data->regs_intr.regs,
						mask);
		}
	}

6292 6293 6294
	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
		perf_output_put(handle, data->phys_addr);

6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307
	if (!event->attr.watermark) {
		int wakeup_events = event->attr.wakeup_events;

		if (wakeup_events) {
			struct ring_buffer *rb = handle->rb;
			int events = local_inc_return(&rb->events);

			if (events >= wakeup_events) {
				local_sub(wakeup_events, &rb->events);
				local_inc(&rb->wakeup);
			}
		}
	}
6308 6309
}

6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341
static u64 perf_virt_to_phys(u64 virt)
{
	u64 phys_addr = 0;
	struct page *p = NULL;

	if (!virt)
		return 0;

	if (virt >= TASK_SIZE) {
		/* If it's vmalloc()d memory, leave phys_addr as 0 */
		if (virt_addr_valid((void *)(uintptr_t)virt) &&
		    !(virt >= VMALLOC_START && virt < VMALLOC_END))
			phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
	} else {
		/*
		 * Walking the pages tables for user address.
		 * Interrupts are disabled, so it prevents any tear down
		 * of the page tables.
		 * Try IRQ-safe __get_user_pages_fast first.
		 * If failed, leave phys_addr as 0.
		 */
		if ((current->mm != NULL) &&
		    (__get_user_pages_fast(virt, 1, 0, &p) == 1))
			phys_addr = page_to_phys(p) + virt % PAGE_SIZE;

		if (p)
			put_page(p);
	}

	return phys_addr;
}

6342 6343
static struct perf_callchain_entry __empty_callchain = { .nr = 0, };

6344 6345 6346 6347 6348 6349 6350 6351
static struct perf_callchain_entry *
perf_callchain(struct perf_event *event, struct pt_regs *regs)
{
	bool kernel = !event->attr.exclude_callchain_kernel;
	bool user   = !event->attr.exclude_callchain_user;
	/* Disallow cross-task user callchains. */
	bool crosstask = event->ctx->task && event->ctx->task != current;
	const u32 max_stack = event->attr.sample_max_stack;
6352
	struct perf_callchain_entry *callchain;
6353 6354

	if (!kernel && !user)
6355
		return &__empty_callchain;
6356

6357 6358 6359
	callchain = get_perf_callchain(regs, 0, kernel, user,
				       max_stack, crosstask, true);
	return callchain ?: &__empty_callchain;
6360 6361
}

6362 6363
void perf_prepare_sample(struct perf_event_header *header,
			 struct perf_sample_data *data,
6364
			 struct perf_event *event,
6365
			 struct pt_regs *regs)
6366
{
6367
	u64 sample_type = event->attr.sample_type;
6368

6369
	header->type = PERF_RECORD_SAMPLE;
6370
	header->size = sizeof(*header) + event->header_size;
6371 6372 6373

	header->misc = 0;
	header->misc |= perf_misc_flags(regs);
6374

6375
	__perf_event_header__init_id(header, data, event);
6376

6377
	if (sample_type & PERF_SAMPLE_IP)
6378 6379
		data->ip = perf_instruction_pointer(regs);

6380
	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
6381
		int size = 1;
6382

6383
		data->callchain = perf_callchain(event, regs);
6384
		size += data->callchain->nr;
6385 6386

		header->size += size * sizeof(u64);
6387 6388
	}

6389
	if (sample_type & PERF_SAMPLE_RAW) {
6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409
		struct perf_raw_record *raw = data->raw;
		int size;

		if (raw) {
			struct perf_raw_frag *frag = &raw->frag;
			u32 sum = 0;

			do {
				sum += frag->size;
				if (perf_raw_frag_last(frag))
					break;
				frag = frag->next;
			} while (1);

			size = round_up(sum + sizeof(u32), sizeof(u64));
			raw->size = size - sizeof(u32);
			frag->pad = raw->size - sum;
		} else {
			size = sizeof(u64);
		}
6410

6411
		header->size += size;
6412
	}
6413 6414 6415 6416 6417 6418 6419 6420 6421

	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
		int size = sizeof(u64); /* nr */
		if (data->br_stack) {
			size += data->br_stack->nr
			      * sizeof(struct perf_branch_entry);
		}
		header->size += size;
	}
6422

6423
	if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
6424 6425
		perf_sample_regs_user(&data->regs_user, regs,
				      &data->regs_user_copy);
6426

6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437
	if (sample_type & PERF_SAMPLE_REGS_USER) {
		/* regs dump ABI info */
		int size = sizeof(u64);

		if (data->regs_user.regs) {
			u64 mask = event->attr.sample_regs_user;
			size += hweight64(mask) * sizeof(u64);
		}

		header->size += size;
	}
6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449

	if (sample_type & PERF_SAMPLE_STACK_USER) {
		/*
		 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
		 * processed as the last one or have additional check added
		 * in case new sample type is added, because we could eat
		 * up the rest of the sample size.
		 */
		u16 stack_size = event->attr.sample_stack_user;
		u16 size = sizeof(u64);

		stack_size = perf_sample_ustack_size(stack_size, header->size,
6450
						     data->regs_user.regs);
6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462

		/*
		 * If there is something to dump, add space for the dump
		 * itself and for the field that tells the dynamic size,
		 * which is how many have been actually dumped.
		 */
		if (stack_size)
			size += sizeof(u64) + stack_size;

		data->stack_user_size = stack_size;
		header->size += size;
	}
6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477

	if (sample_type & PERF_SAMPLE_REGS_INTR) {
		/* regs dump ABI info */
		int size = sizeof(u64);

		perf_sample_regs_intr(&data->regs_intr, regs);

		if (data->regs_intr.regs) {
			u64 mask = event->attr.sample_regs_intr;

			size += hweight64(mask) * sizeof(u64);
		}

		header->size += size;
	}
6478 6479 6480

	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
		data->phys_addr = perf_virt_to_phys(data->addr);
6481
}
6482

6483 6484 6485 6486 6487 6488 6489
static void __always_inline
__perf_event_output(struct perf_event *event,
		    struct perf_sample_data *data,
		    struct pt_regs *regs,
		    int (*output_begin)(struct perf_output_handle *,
					struct perf_event *,
					unsigned int))
6490 6491 6492
{
	struct perf_output_handle handle;
	struct perf_event_header header;
6493

6494 6495 6496
	/* protect the callchain buffers */
	rcu_read_lock();

6497
	perf_prepare_sample(&header, data, event, regs);
P
Peter Zijlstra 已提交
6498

6499
	if (output_begin(&handle, event, header.size))
6500
		goto exit;
6501

6502
	perf_output_sample(&handle, &header, data, event);
6503

6504
	perf_output_end(&handle);
6505 6506 6507

exit:
	rcu_read_unlock();
6508 6509
}

6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533
void
perf_event_output_forward(struct perf_event *event,
			 struct perf_sample_data *data,
			 struct pt_regs *regs)
{
	__perf_event_output(event, data, regs, perf_output_begin_forward);
}

void
perf_event_output_backward(struct perf_event *event,
			   struct perf_sample_data *data,
			   struct pt_regs *regs)
{
	__perf_event_output(event, data, regs, perf_output_begin_backward);
}

void
perf_event_output(struct perf_event *event,
		  struct perf_sample_data *data,
		  struct pt_regs *regs)
{
	__perf_event_output(event, data, regs, perf_output_begin);
}

6534
/*
6535
 * read event_id
6536 6537 6538 6539 6540 6541 6542 6543 6544 6545
 */

struct perf_read_event {
	struct perf_event_header	header;

	u32				pid;
	u32				tid;
};

static void
6546
perf_event_read_event(struct perf_event *event,
6547 6548 6549
			struct task_struct *task)
{
	struct perf_output_handle handle;
6550
	struct perf_sample_data sample;
6551
	struct perf_read_event read_event = {
6552
		.header = {
6553
			.type = PERF_RECORD_READ,
6554
			.misc = 0,
6555
			.size = sizeof(read_event) + event->read_size,
6556
		},
6557 6558
		.pid = perf_event_pid(event, task),
		.tid = perf_event_tid(event, task),
6559
	};
6560
	int ret;
6561

6562
	perf_event_header__init_id(&read_event.header, &sample, event);
6563
	ret = perf_output_begin(&handle, event, read_event.header.size);
6564 6565 6566
	if (ret)
		return;

6567
	perf_output_put(&handle, read_event);
6568
	perf_output_read(&handle, event);
6569
	perf_event__output_id_sample(event, &handle, &sample);
6570

6571 6572 6573
	perf_output_end(&handle);
}

6574
typedef void (perf_iterate_f)(struct perf_event *event, void *data);
6575 6576

static void
6577 6578
perf_iterate_ctx(struct perf_event_context *ctx,
		   perf_iterate_f output,
6579
		   void *data, bool all)
6580 6581 6582 6583
{
	struct perf_event *event;

	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6584 6585 6586 6587 6588 6589 6590
		if (!all) {
			if (event->state < PERF_EVENT_STATE_INACTIVE)
				continue;
			if (!event_filter_match(event))
				continue;
		}

6591
		output(event, data);
6592 6593 6594
	}
}

6595
static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
6596 6597 6598 6599 6600
{
	struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
	struct perf_event *event;

	list_for_each_entry_rcu(event, &pel->list, sb_list) {
6601 6602 6603 6604 6605 6606 6607 6608
		/*
		 * Skip events that are not fully formed yet; ensure that
		 * if we observe event->ctx, both event and ctx will be
		 * complete enough. See perf_install_in_context().
		 */
		if (!smp_load_acquire(&event->ctx))
			continue;

6609 6610 6611 6612 6613 6614 6615 6616
		if (event->state < PERF_EVENT_STATE_INACTIVE)
			continue;
		if (!event_filter_match(event))
			continue;
		output(event, data);
	}
}

6617 6618 6619 6620 6621 6622
/*
 * Iterate all events that need to receive side-band events.
 *
 * For new callers; ensure that account_pmu_sb_event() includes
 * your event, otherwise it might not get delivered.
 */
6623
static void
6624
perf_iterate_sb(perf_iterate_f output, void *data,
6625 6626 6627 6628 6629
	       struct perf_event_context *task_ctx)
{
	struct perf_event_context *ctx;
	int ctxn;

6630 6631 6632
	rcu_read_lock();
	preempt_disable();

J
Jiri Olsa 已提交
6633
	/*
6634 6635
	 * If we have task_ctx != NULL we only notify the task context itself.
	 * The task_ctx is set only for EXIT events before releasing task
J
Jiri Olsa 已提交
6636 6637 6638
	 * context.
	 */
	if (task_ctx) {
6639 6640
		perf_iterate_ctx(task_ctx, output, data, false);
		goto done;
J
Jiri Olsa 已提交
6641 6642
	}

6643
	perf_iterate_sb_cpu(output, data);
6644 6645

	for_each_task_context_nr(ctxn) {
6646 6647
		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		if (ctx)
6648
			perf_iterate_ctx(ctx, output, data, false);
6649
	}
6650
done:
6651
	preempt_enable();
6652
	rcu_read_unlock();
6653 6654
}

6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683
/*
 * Clear all file-based filters at exec, they'll have to be
 * re-instated when/if these objects are mmapped again.
 */
static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
{
	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
	struct perf_addr_filter *filter;
	unsigned int restart = 0, count = 0;
	unsigned long flags;

	if (!has_addr_filter(event))
		return;

	raw_spin_lock_irqsave(&ifh->lock, flags);
	list_for_each_entry(filter, &ifh->list, entry) {
		if (filter->inode) {
			event->addr_filters_offs[count] = 0;
			restart++;
		}

		count++;
	}

	if (restart)
		event->addr_filters_gen++;
	raw_spin_unlock_irqrestore(&ifh->lock, flags);

	if (restart)
6684
		perf_event_stop(event, 1);
6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699
}

void perf_event_exec(void)
{
	struct perf_event_context *ctx;
	int ctxn;

	rcu_read_lock();
	for_each_task_context_nr(ctxn) {
		ctx = current->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;

		perf_event_enable_on_exec(ctxn);

6700
		perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
6701 6702 6703 6704 6705
				   true);
	}
	rcu_read_unlock();
}

6706 6707 6708 6709 6710 6711 6712 6713 6714 6715
struct remote_output {
	struct ring_buffer	*rb;
	int			err;
};

static void __perf_event_output_stop(struct perf_event *event, void *data)
{
	struct perf_event *parent = event->parent;
	struct remote_output *ro = data;
	struct ring_buffer *rb = ro->rb;
6716 6717 6718
	struct stop_event_data sd = {
		.event	= event,
	};
6719 6720 6721 6722 6723 6724 6725 6726 6727

	if (!has_aux(event))
		return;

	if (!parent)
		parent = event;

	/*
	 * In case of inheritance, it will be the parent that links to the
6728 6729 6730 6731 6732 6733 6734
	 * ring-buffer, but it will be the child that's actually using it.
	 *
	 * We are using event::rb to determine if the event should be stopped,
	 * however this may race with ring_buffer_attach() (through set_output),
	 * which will make us skip the event that actually needs to be stopped.
	 * So ring_buffer_attach() has to stop an aux event before re-assigning
	 * its rb pointer.
6735 6736
	 */
	if (rcu_dereference(parent->rb) == rb)
6737
		ro->err = __perf_event_stop(&sd);
6738 6739 6740 6741 6742 6743
}

static int __perf_pmu_output_stop(void *info)
{
	struct perf_event *event = info;
	struct pmu *pmu = event->pmu;
6744
	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
6745 6746 6747 6748 6749
	struct remote_output ro = {
		.rb	= event->rb,
	};

	rcu_read_lock();
6750
	perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
6751
	if (cpuctx->task_ctx)
6752
		perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
6753
				   &ro, false);
6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786
	rcu_read_unlock();

	return ro.err;
}

static void perf_pmu_output_stop(struct perf_event *event)
{
	struct perf_event *iter;
	int err, cpu;

restart:
	rcu_read_lock();
	list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
		/*
		 * For per-CPU events, we need to make sure that neither they
		 * nor their children are running; for cpu==-1 events it's
		 * sufficient to stop the event itself if it's active, since
		 * it can't have children.
		 */
		cpu = iter->cpu;
		if (cpu == -1)
			cpu = READ_ONCE(iter->oncpu);

		if (cpu == -1)
			continue;

		err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
		if (err == -EAGAIN) {
			rcu_read_unlock();
			goto restart;
		}
	}
	rcu_read_unlock();
6787 6788
}

P
Peter Zijlstra 已提交
6789
/*
P
Peter Zijlstra 已提交
6790 6791
 * task tracking -- fork/exit
 *
6792
 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
P
Peter Zijlstra 已提交
6793 6794
 */

P
Peter Zijlstra 已提交
6795
struct perf_task_event {
6796
	struct task_struct		*task;
6797
	struct perf_event_context	*task_ctx;
P
Peter Zijlstra 已提交
6798 6799 6800 6801 6802 6803

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				ppid;
P
Peter Zijlstra 已提交
6804 6805
		u32				tid;
		u32				ptid;
6806
		u64				time;
6807
	} event_id;
P
Peter Zijlstra 已提交
6808 6809
};

6810 6811
static int perf_event_task_match(struct perf_event *event)
{
6812 6813 6814
	return event->attr.comm  || event->attr.mmap ||
	       event->attr.mmap2 || event->attr.mmap_data ||
	       event->attr.task;
6815 6816
}

6817
static void perf_event_task_output(struct perf_event *event,
6818
				   void *data)
P
Peter Zijlstra 已提交
6819
{
6820
	struct perf_task_event *task_event = data;
P
Peter Zijlstra 已提交
6821
	struct perf_output_handle handle;
6822
	struct perf_sample_data	sample;
P
Peter Zijlstra 已提交
6823
	struct task_struct *task = task_event->task;
6824
	int ret, size = task_event->event_id.header.size;
6825

6826 6827 6828
	if (!perf_event_task_match(event))
		return;

6829
	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
P
Peter Zijlstra 已提交
6830

6831
	ret = perf_output_begin(&handle, event,
6832
				task_event->event_id.header.size);
6833
	if (ret)
6834
		goto out;
P
Peter Zijlstra 已提交
6835

6836 6837
	task_event->event_id.pid = perf_event_pid(event, task);
	task_event->event_id.ppid = perf_event_pid(event, current);
P
Peter Zijlstra 已提交
6838

6839 6840
	task_event->event_id.tid = perf_event_tid(event, task);
	task_event->event_id.ptid = perf_event_tid(event, current);
P
Peter Zijlstra 已提交
6841

6842 6843
	task_event->event_id.time = perf_event_clock(event);

6844
	perf_output_put(&handle, task_event->event_id);
6845

6846 6847
	perf_event__output_id_sample(event, &handle, &sample);

P
Peter Zijlstra 已提交
6848
	perf_output_end(&handle);
6849 6850
out:
	task_event->event_id.header.size = size;
P
Peter Zijlstra 已提交
6851 6852
}

6853 6854
static void perf_event_task(struct task_struct *task,
			      struct perf_event_context *task_ctx,
6855
			      int new)
P
Peter Zijlstra 已提交
6856
{
P
Peter Zijlstra 已提交
6857
	struct perf_task_event task_event;
P
Peter Zijlstra 已提交
6858

6859 6860 6861
	if (!atomic_read(&nr_comm_events) &&
	    !atomic_read(&nr_mmap_events) &&
	    !atomic_read(&nr_task_events))
P
Peter Zijlstra 已提交
6862 6863
		return;

P
Peter Zijlstra 已提交
6864
	task_event = (struct perf_task_event){
6865 6866
		.task	  = task,
		.task_ctx = task_ctx,
6867
		.event_id    = {
P
Peter Zijlstra 已提交
6868
			.header = {
6869
				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
6870
				.misc = 0,
6871
				.size = sizeof(task_event.event_id),
P
Peter Zijlstra 已提交
6872
			},
6873 6874
			/* .pid  */
			/* .ppid */
P
Peter Zijlstra 已提交
6875 6876
			/* .tid  */
			/* .ptid */
6877
			/* .time */
P
Peter Zijlstra 已提交
6878 6879 6880
		},
	};

6881
	perf_iterate_sb(perf_event_task_output,
6882 6883
		       &task_event,
		       task_ctx);
P
Peter Zijlstra 已提交
6884 6885
}

6886
void perf_event_fork(struct task_struct *task)
P
Peter Zijlstra 已提交
6887
{
6888
	perf_event_task(task, NULL, 1);
6889
	perf_event_namespaces(task);
P
Peter Zijlstra 已提交
6890 6891
}

6892 6893 6894 6895 6896
/*
 * comm tracking
 */

struct perf_comm_event {
6897 6898
	struct task_struct	*task;
	char			*comm;
6899 6900 6901 6902 6903 6904 6905
	int			comm_size;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
6906
	} event_id;
6907 6908
};

6909 6910 6911 6912 6913
static int perf_event_comm_match(struct perf_event *event)
{
	return event->attr.comm;
}

6914
static void perf_event_comm_output(struct perf_event *event,
6915
				   void *data)
6916
{
6917
	struct perf_comm_event *comm_event = data;
6918
	struct perf_output_handle handle;
6919
	struct perf_sample_data sample;
6920
	int size = comm_event->event_id.header.size;
6921 6922
	int ret;

6923 6924 6925
	if (!perf_event_comm_match(event))
		return;

6926 6927
	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
6928
				comm_event->event_id.header.size);
6929 6930

	if (ret)
6931
		goto out;
6932

6933 6934
	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
6935

6936
	perf_output_put(&handle, comm_event->event_id);
6937
	__output_copy(&handle, comm_event->comm,
6938
				   comm_event->comm_size);
6939 6940 6941

	perf_event__output_id_sample(event, &handle, &sample);

6942
	perf_output_end(&handle);
6943 6944
out:
	comm_event->event_id.header.size = size;
6945 6946
}

6947
static void perf_event_comm_event(struct perf_comm_event *comm_event)
6948
{
6949
	char comm[TASK_COMM_LEN];
6950 6951
	unsigned int size;

6952
	memset(comm, 0, sizeof(comm));
6953
	strlcpy(comm, comm_event->task->comm, sizeof(comm));
6954
	size = ALIGN(strlen(comm)+1, sizeof(u64));
6955 6956 6957 6958

	comm_event->comm = comm;
	comm_event->comm_size = size;

6959
	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
P
Peter Zijlstra 已提交
6960

6961
	perf_iterate_sb(perf_event_comm_output,
6962 6963
		       comm_event,
		       NULL);
6964 6965
}

6966
void perf_event_comm(struct task_struct *task, bool exec)
6967
{
6968 6969
	struct perf_comm_event comm_event;

6970
	if (!atomic_read(&nr_comm_events))
6971
		return;
6972

6973
	comm_event = (struct perf_comm_event){
6974
		.task	= task,
6975 6976
		/* .comm      */
		/* .comm_size */
6977
		.event_id  = {
6978
			.header = {
6979
				.type = PERF_RECORD_COMM,
6980
				.misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
6981 6982 6983 6984
				/* .size */
			},
			/* .pid */
			/* .tid */
6985 6986 6987
		},
	};

6988
	perf_event_comm_event(&comm_event);
6989 6990
}

6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018
/*
 * namespaces tracking
 */

struct perf_namespaces_event {
	struct task_struct		*task;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
		u64				nr_namespaces;
		struct perf_ns_link_info	link_info[NR_NAMESPACES];
	} event_id;
};

static int perf_event_namespaces_match(struct perf_event *event)
{
	return event->attr.namespaces;
}

static void perf_event_namespaces_output(struct perf_event *event,
					 void *data)
{
	struct perf_namespaces_event *namespaces_event = data;
	struct perf_output_handle handle;
	struct perf_sample_data sample;
7019
	u16 header_size = namespaces_event->event_id.header.size;
7020 7021 7022 7023 7024 7025 7026 7027 7028 7029
	int ret;

	if (!perf_event_namespaces_match(event))
		return;

	perf_event_header__init_id(&namespaces_event->event_id.header,
				   &sample, event);
	ret = perf_output_begin(&handle, event,
				namespaces_event->event_id.header.size);
	if (ret)
7030
		goto out;
7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041

	namespaces_event->event_id.pid = perf_event_pid(event,
							namespaces_event->task);
	namespaces_event->event_id.tid = perf_event_tid(event,
							namespaces_event->task);

	perf_output_put(&handle, namespaces_event->event_id);

	perf_event__output_id_sample(event, &handle, &sample);

	perf_output_end(&handle);
7042 7043
out:
	namespaces_event->event_id.header.size = header_size;
7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058
}

static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
				   struct task_struct *task,
				   const struct proc_ns_operations *ns_ops)
{
	struct path ns_path;
	struct inode *ns_inode;
	void *error;

	error = ns_get_path(&ns_path, task, ns_ops);
	if (!error) {
		ns_inode = ns_path.dentry->d_inode;
		ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
		ns_link_info->ino = ns_inode->i_ino;
7059
		path_put(&ns_path);
7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120
	}
}

void perf_event_namespaces(struct task_struct *task)
{
	struct perf_namespaces_event namespaces_event;
	struct perf_ns_link_info *ns_link_info;

	if (!atomic_read(&nr_namespaces_events))
		return;

	namespaces_event = (struct perf_namespaces_event){
		.task	= task,
		.event_id  = {
			.header = {
				.type = PERF_RECORD_NAMESPACES,
				.misc = 0,
				.size = sizeof(namespaces_event.event_id),
			},
			/* .pid */
			/* .tid */
			.nr_namespaces = NR_NAMESPACES,
			/* .link_info[NR_NAMESPACES] */
		},
	};

	ns_link_info = namespaces_event.event_id.link_info;

	perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
			       task, &mntns_operations);

#ifdef CONFIG_USER_NS
	perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
			       task, &userns_operations);
#endif
#ifdef CONFIG_NET_NS
	perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
			       task, &netns_operations);
#endif
#ifdef CONFIG_UTS_NS
	perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
			       task, &utsns_operations);
#endif
#ifdef CONFIG_IPC_NS
	perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
			       task, &ipcns_operations);
#endif
#ifdef CONFIG_PID_NS
	perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
			       task, &pidns_operations);
#endif
#ifdef CONFIG_CGROUPS
	perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
			       task, &cgroupns_operations);
#endif

	perf_iterate_sb(perf_event_namespaces_output,
			&namespaces_event,
			NULL);
}

7121 7122 7123 7124 7125
/*
 * mmap tracking
 */

struct perf_mmap_event {
7126 7127 7128 7129
	struct vm_area_struct	*vma;

	const char		*file_name;
	int			file_size;
7130 7131 7132
	int			maj, min;
	u64			ino;
	u64			ino_generation;
7133
	u32			prot, flags;
7134 7135 7136 7137 7138 7139 7140 7141 7142

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
		u64				start;
		u64				len;
		u64				pgoff;
7143
	} event_id;
7144 7145
};

7146 7147 7148 7149 7150 7151 7152 7153
static int perf_event_mmap_match(struct perf_event *event,
				 void *data)
{
	struct perf_mmap_event *mmap_event = data;
	struct vm_area_struct *vma = mmap_event->vma;
	int executable = vma->vm_flags & VM_EXEC;

	return (!executable && event->attr.mmap_data) ||
7154
	       (executable && (event->attr.mmap || event->attr.mmap2));
7155 7156
}

7157
static void perf_event_mmap_output(struct perf_event *event,
7158
				   void *data)
7159
{
7160
	struct perf_mmap_event *mmap_event = data;
7161
	struct perf_output_handle handle;
7162
	struct perf_sample_data sample;
7163
	int size = mmap_event->event_id.header.size;
7164
	int ret;
7165

7166 7167 7168
	if (!perf_event_mmap_match(event, data))
		return;

7169 7170 7171 7172 7173
	if (event->attr.mmap2) {
		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
		mmap_event->event_id.header.size += sizeof(mmap_event->min);
		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
7174
		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
7175 7176
		mmap_event->event_id.header.size += sizeof(mmap_event->prot);
		mmap_event->event_id.header.size += sizeof(mmap_event->flags);
7177 7178
	}

7179 7180
	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
7181
				mmap_event->event_id.header.size);
7182
	if (ret)
7183
		goto out;
7184

7185 7186
	mmap_event->event_id.pid = perf_event_pid(event, current);
	mmap_event->event_id.tid = perf_event_tid(event, current);
7187

7188
	perf_output_put(&handle, mmap_event->event_id);
7189 7190 7191 7192 7193 7194

	if (event->attr.mmap2) {
		perf_output_put(&handle, mmap_event->maj);
		perf_output_put(&handle, mmap_event->min);
		perf_output_put(&handle, mmap_event->ino);
		perf_output_put(&handle, mmap_event->ino_generation);
7195 7196
		perf_output_put(&handle, mmap_event->prot);
		perf_output_put(&handle, mmap_event->flags);
7197 7198
	}

7199
	__output_copy(&handle, mmap_event->file_name,
7200
				   mmap_event->file_size);
7201 7202 7203

	perf_event__output_id_sample(event, &handle, &sample);

7204
	perf_output_end(&handle);
7205 7206
out:
	mmap_event->event_id.header.size = size;
7207 7208
}

7209
static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
7210
{
7211 7212
	struct vm_area_struct *vma = mmap_event->vma;
	struct file *file = vma->vm_file;
7213 7214
	int maj = 0, min = 0;
	u64 ino = 0, gen = 0;
7215
	u32 prot = 0, flags = 0;
7216 7217 7218
	unsigned int size;
	char tmp[16];
	char *buf = NULL;
7219
	char *name;
7220

7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241
	if (vma->vm_flags & VM_READ)
		prot |= PROT_READ;
	if (vma->vm_flags & VM_WRITE)
		prot |= PROT_WRITE;
	if (vma->vm_flags & VM_EXEC)
		prot |= PROT_EXEC;

	if (vma->vm_flags & VM_MAYSHARE)
		flags = MAP_SHARED;
	else
		flags = MAP_PRIVATE;

	if (vma->vm_flags & VM_DENYWRITE)
		flags |= MAP_DENYWRITE;
	if (vma->vm_flags & VM_MAYEXEC)
		flags |= MAP_EXECUTABLE;
	if (vma->vm_flags & VM_LOCKED)
		flags |= MAP_LOCKED;
	if (vma->vm_flags & VM_HUGETLB)
		flags |= MAP_HUGETLB;

7242
	if (file) {
7243 7244
		struct inode *inode;
		dev_t dev;
7245

7246
		buf = kmalloc(PATH_MAX, GFP_KERNEL);
7247
		if (!buf) {
7248 7249
			name = "//enomem";
			goto cpy_name;
7250
		}
7251
		/*
7252
		 * d_path() works from the end of the rb backwards, so we
7253 7254 7255
		 * need to add enough zero bytes after the string to handle
		 * the 64bit alignment we do later.
		 */
M
Miklos Szeredi 已提交
7256
		name = file_path(file, buf, PATH_MAX - sizeof(u64));
7257
		if (IS_ERR(name)) {
7258 7259
			name = "//toolong";
			goto cpy_name;
7260
		}
7261 7262 7263 7264 7265 7266
		inode = file_inode(vma->vm_file);
		dev = inode->i_sb->s_dev;
		ino = inode->i_ino;
		gen = inode->i_generation;
		maj = MAJOR(dev);
		min = MINOR(dev);
7267

7268
		goto got_name;
7269
	} else {
7270 7271 7272 7273 7274 7275
		if (vma->vm_ops && vma->vm_ops->name) {
			name = (char *) vma->vm_ops->name(vma);
			if (name)
				goto cpy_name;
		}

7276
		name = (char *)arch_vma_name(vma);
7277 7278
		if (name)
			goto cpy_name;
7279

7280
		if (vma->vm_start <= vma->vm_mm->start_brk &&
7281
				vma->vm_end >= vma->vm_mm->brk) {
7282 7283
			name = "[heap]";
			goto cpy_name;
7284 7285
		}
		if (vma->vm_start <= vma->vm_mm->start_stack &&
7286
				vma->vm_end >= vma->vm_mm->start_stack) {
7287 7288
			name = "[stack]";
			goto cpy_name;
7289 7290
		}

7291 7292
		name = "//anon";
		goto cpy_name;
7293 7294
	}

7295 7296 7297
cpy_name:
	strlcpy(tmp, name, sizeof(tmp));
	name = tmp;
7298
got_name:
7299 7300 7301 7302 7303 7304 7305 7306
	/*
	 * Since our buffer works in 8 byte units we need to align our string
	 * size to a multiple of 8. However, we must guarantee the tail end is
	 * zero'd out to avoid leaking random bits to userspace.
	 */
	size = strlen(name)+1;
	while (!IS_ALIGNED(size, sizeof(u64)))
		name[size++] = '\0';
7307 7308 7309

	mmap_event->file_name = name;
	mmap_event->file_size = size;
7310 7311 7312 7313
	mmap_event->maj = maj;
	mmap_event->min = min;
	mmap_event->ino = ino;
	mmap_event->ino_generation = gen;
7314 7315
	mmap_event->prot = prot;
	mmap_event->flags = flags;
7316

7317 7318 7319
	if (!(vma->vm_flags & VM_EXEC))
		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;

7320
	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
7321

7322
	perf_iterate_sb(perf_event_mmap_output,
7323 7324
		       mmap_event,
		       NULL);
7325

7326 7327 7328
	kfree(buf);
}

7329 7330 7331 7332 7333 7334 7335
/*
 * Check whether inode and address range match filter criteria.
 */
static bool perf_addr_filter_match(struct perf_addr_filter *filter,
				     struct file *file, unsigned long offset,
				     unsigned long size)
{
A
Al Viro 已提交
7336
	if (filter->inode != file_inode(file))
7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378
		return false;

	if (filter->offset > offset + size)
		return false;

	if (filter->offset + filter->size < offset)
		return false;

	return true;
}

static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
{
	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
	struct vm_area_struct *vma = data;
	unsigned long off = vma->vm_pgoff << PAGE_SHIFT, flags;
	struct file *file = vma->vm_file;
	struct perf_addr_filter *filter;
	unsigned int restart = 0, count = 0;

	if (!has_addr_filter(event))
		return;

	if (!file)
		return;

	raw_spin_lock_irqsave(&ifh->lock, flags);
	list_for_each_entry(filter, &ifh->list, entry) {
		if (perf_addr_filter_match(filter, file, off,
					     vma->vm_end - vma->vm_start)) {
			event->addr_filters_offs[count] = vma->vm_start;
			restart++;
		}

		count++;
	}

	if (restart)
		event->addr_filters_gen++;
	raw_spin_unlock_irqrestore(&ifh->lock, flags);

	if (restart)
7379
		perf_event_stop(event, 1);
7380 7381 7382 7383 7384 7385 7386 7387 7388 7389
}

/*
 * Adjust all task's events' filters to the new vma
 */
static void perf_addr_filters_adjust(struct vm_area_struct *vma)
{
	struct perf_event_context *ctx;
	int ctxn;

7390 7391 7392 7393 7394 7395 7396
	/*
	 * Data tracing isn't supported yet and as such there is no need
	 * to keep track of anything that isn't related to executable code:
	 */
	if (!(vma->vm_flags & VM_EXEC))
		return;

7397 7398 7399 7400 7401 7402
	rcu_read_lock();
	for_each_task_context_nr(ctxn) {
		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		if (!ctx)
			continue;

7403
		perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
7404 7405 7406 7407
	}
	rcu_read_unlock();
}

7408
void perf_event_mmap(struct vm_area_struct *vma)
7409
{
7410 7411
	struct perf_mmap_event mmap_event;

7412
	if (!atomic_read(&nr_mmap_events))
7413 7414 7415
		return;

	mmap_event = (struct perf_mmap_event){
7416
		.vma	= vma,
7417 7418
		/* .file_name */
		/* .file_size */
7419
		.event_id  = {
7420
			.header = {
7421
				.type = PERF_RECORD_MMAP,
7422
				.misc = PERF_RECORD_MISC_USER,
7423 7424 7425 7426
				/* .size */
			},
			/* .pid */
			/* .tid */
7427 7428
			.start  = vma->vm_start,
			.len    = vma->vm_end - vma->vm_start,
7429
			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
7430
		},
7431 7432 7433 7434
		/* .maj (attr_mmap2 only) */
		/* .min (attr_mmap2 only) */
		/* .ino (attr_mmap2 only) */
		/* .ino_generation (attr_mmap2 only) */
7435 7436
		/* .prot (attr_mmap2 only) */
		/* .flags (attr_mmap2 only) */
7437 7438
	};

7439
	perf_addr_filters_adjust(vma);
7440
	perf_event_mmap_event(&mmap_event);
7441 7442
}

A
Alexander Shishkin 已提交
7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476
void perf_event_aux_event(struct perf_event *event, unsigned long head,
			  unsigned long size, u64 flags)
{
	struct perf_output_handle handle;
	struct perf_sample_data sample;
	struct perf_aux_event {
		struct perf_event_header	header;
		u64				offset;
		u64				size;
		u64				flags;
	} rec = {
		.header = {
			.type = PERF_RECORD_AUX,
			.misc = 0,
			.size = sizeof(rec),
		},
		.offset		= head,
		.size		= size,
		.flags		= flags,
	};
	int ret;

	perf_event_header__init_id(&rec.header, &sample, event);
	ret = perf_output_begin(&handle, event, rec.header.size);

	if (ret)
		return;

	perf_output_put(&handle, rec);
	perf_event__output_id_sample(event, &handle, &sample);

	perf_output_end(&handle);
}

7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509
/*
 * Lost/dropped samples logging
 */
void perf_log_lost_samples(struct perf_event *event, u64 lost)
{
	struct perf_output_handle handle;
	struct perf_sample_data sample;
	int ret;

	struct {
		struct perf_event_header	header;
		u64				lost;
	} lost_samples_event = {
		.header = {
			.type = PERF_RECORD_LOST_SAMPLES,
			.misc = 0,
			.size = sizeof(lost_samples_event),
		},
		.lost		= lost,
	};

	perf_event_header__init_id(&lost_samples_event.header, &sample, event);

	ret = perf_output_begin(&handle, event,
				lost_samples_event.header.size);
	if (ret)
		return;

	perf_output_put(&handle, lost_samples_event);
	perf_event__output_id_sample(event, &handle, &sample);
	perf_output_end(&handle);
}

7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589
/*
 * context_switch tracking
 */

struct perf_switch_event {
	struct task_struct	*task;
	struct task_struct	*next_prev;

	struct {
		struct perf_event_header	header;
		u32				next_prev_pid;
		u32				next_prev_tid;
	} event_id;
};

static int perf_event_switch_match(struct perf_event *event)
{
	return event->attr.context_switch;
}

static void perf_event_switch_output(struct perf_event *event, void *data)
{
	struct perf_switch_event *se = data;
	struct perf_output_handle handle;
	struct perf_sample_data sample;
	int ret;

	if (!perf_event_switch_match(event))
		return;

	/* Only CPU-wide events are allowed to see next/prev pid/tid */
	if (event->ctx->task) {
		se->event_id.header.type = PERF_RECORD_SWITCH;
		se->event_id.header.size = sizeof(se->event_id.header);
	} else {
		se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
		se->event_id.header.size = sizeof(se->event_id);
		se->event_id.next_prev_pid =
					perf_event_pid(event, se->next_prev);
		se->event_id.next_prev_tid =
					perf_event_tid(event, se->next_prev);
	}

	perf_event_header__init_id(&se->event_id.header, &sample, event);

	ret = perf_output_begin(&handle, event, se->event_id.header.size);
	if (ret)
		return;

	if (event->ctx->task)
		perf_output_put(&handle, se->event_id.header);
	else
		perf_output_put(&handle, se->event_id);

	perf_event__output_id_sample(event, &handle, &sample);

	perf_output_end(&handle);
}

static void perf_event_switch(struct task_struct *task,
			      struct task_struct *next_prev, bool sched_in)
{
	struct perf_switch_event switch_event;

	/* N.B. caller checks nr_switch_events != 0 */

	switch_event = (struct perf_switch_event){
		.task		= task,
		.next_prev	= next_prev,
		.event_id	= {
			.header = {
				/* .type */
				.misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
				/* .size */
			},
			/* .next_prev_pid */
			/* .next_prev_tid */
		},
	};

7590
	perf_iterate_sb(perf_event_switch_output,
7591 7592 7593 7594
		       &switch_event,
		       NULL);
}

7595 7596 7597 7598
/*
 * IRQ throttle logging
 */

7599
static void perf_log_throttle(struct perf_event *event, int enable)
7600 7601
{
	struct perf_output_handle handle;
7602
	struct perf_sample_data sample;
7603 7604 7605 7606 7607
	int ret;

	struct {
		struct perf_event_header	header;
		u64				time;
7608
		u64				id;
7609
		u64				stream_id;
7610 7611
	} throttle_event = {
		.header = {
7612
			.type = PERF_RECORD_THROTTLE,
7613 7614 7615
			.misc = 0,
			.size = sizeof(throttle_event),
		},
7616
		.time		= perf_event_clock(event),
7617 7618
		.id		= primary_event_id(event),
		.stream_id	= event->id,
7619 7620
	};

7621
	if (enable)
7622
		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
7623

7624 7625 7626
	perf_event_header__init_id(&throttle_event.header, &sample, event);

	ret = perf_output_begin(&handle, event,
7627
				throttle_event.header.size);
7628 7629 7630 7631
	if (ret)
		return;

	perf_output_put(&handle, throttle_event);
7632
	perf_event__output_id_sample(event, &handle, &sample);
7633 7634 7635
	perf_output_end(&handle);
}

7636 7637 7638 7639 7640
void perf_event_itrace_started(struct perf_event *event)
{
	event->attach_state |= PERF_ATTACH_ITRACE;
}

7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655
static void perf_log_itrace_start(struct perf_event *event)
{
	struct perf_output_handle handle;
	struct perf_sample_data sample;
	struct perf_aux_event {
		struct perf_event_header        header;
		u32				pid;
		u32				tid;
	} rec;
	int ret;

	if (event->parent)
		event = event->parent;

	if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
7656
	    event->attach_state & PERF_ATTACH_ITRACE)
7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676
		return;

	rec.header.type	= PERF_RECORD_ITRACE_START;
	rec.header.misc	= 0;
	rec.header.size	= sizeof(rec);
	rec.pid	= perf_event_pid(event, current);
	rec.tid	= perf_event_tid(event, current);

	perf_event_header__init_id(&rec.header, &sample, event);
	ret = perf_output_begin(&handle, event, rec.header.size);

	if (ret)
		return;

	perf_output_put(&handle, rec);
	perf_event__output_id_sample(event, &handle, &sample);

	perf_output_end(&handle);
}

7677 7678
static int
__perf_event_account_interrupt(struct perf_event *event, int throttle)
7679
{
7680
	struct hw_perf_event *hwc = &event->hw;
7681
	int ret = 0;
7682
	u64 seq;
7683

7684 7685 7686 7687 7688 7689 7690 7691 7692
	seq = __this_cpu_read(perf_throttled_seq);
	if (seq != hwc->interrupts_seq) {
		hwc->interrupts_seq = seq;
		hwc->interrupts = 1;
	} else {
		hwc->interrupts++;
		if (unlikely(throttle
			     && hwc->interrupts >= max_samples_per_tick)) {
			__this_cpu_inc(perf_throttled_count);
7693
			tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
P
Peter Zijlstra 已提交
7694 7695
			hwc->interrupts = MAX_INTERRUPTS;
			perf_log_throttle(event, 0);
7696 7697
			ret = 1;
		}
7698
	}
7699

7700
	if (event->attr.freq) {
P
Peter Zijlstra 已提交
7701
		u64 now = perf_clock();
7702
		s64 delta = now - hwc->freq_time_stamp;
7703

7704
		hwc->freq_time_stamp = now;
7705

7706
		if (delta > 0 && delta < 2*TICK_NSEC)
7707
			perf_adjust_period(event, delta, hwc->last_period, true);
7708 7709
	}

7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736
	return ret;
}

int perf_event_account_interrupt(struct perf_event *event)
{
	return __perf_event_account_interrupt(event, 1);
}

/*
 * Generic event overflow handling, sampling.
 */

static int __perf_event_overflow(struct perf_event *event,
				   int throttle, struct perf_sample_data *data,
				   struct pt_regs *regs)
{
	int events = atomic_read(&event->event_limit);
	int ret = 0;

	/*
	 * Non-sampling counters might still use the PMI to fold short
	 * hardware counters, ignore those.
	 */
	if (unlikely(!is_sampling_event(event)))
		return 0;

	ret = __perf_event_account_interrupt(event, throttle);
7737

7738 7739
	/*
	 * XXX event_limit might not quite work as expected on inherited
7740
	 * events
7741 7742
	 */

7743 7744
	event->pending_kill = POLL_IN;
	if (events && atomic_dec_and_test(&event->event_limit)) {
7745
		ret = 1;
7746
		event->pending_kill = POLL_HUP;
7747 7748

		perf_event_disable_inatomic(event);
7749 7750
	}

7751
	READ_ONCE(event->overflow_handler)(event, data, regs);
7752

7753
	if (*perf_event_fasync(event) && event->pending_kill) {
7754 7755
		event->pending_wakeup = 1;
		irq_work_queue(&event->pending);
P
Peter Zijlstra 已提交
7756 7757
	}

7758
	return ret;
7759 7760
}

7761
int perf_event_overflow(struct perf_event *event,
7762 7763
			  struct perf_sample_data *data,
			  struct pt_regs *regs)
7764
{
7765
	return __perf_event_overflow(event, 1, data, regs);
7766 7767
}

7768
/*
7769
 * Generic software event infrastructure
7770 7771
 */

7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782
struct swevent_htable {
	struct swevent_hlist		*swevent_hlist;
	struct mutex			hlist_mutex;
	int				hlist_refcount;

	/* Recursion avoidance in each contexts */
	int				recursion[PERF_NR_CONTEXTS];
};

static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);

7783
/*
7784 7785
 * We directly increment event->count and keep a second value in
 * event->hw.period_left to count intervals. This period event
7786 7787 7788 7789
 * is kept in the range [-sample_period, 0] so that we can use the
 * sign as trigger.
 */

7790
u64 perf_swevent_set_period(struct perf_event *event)
7791
{
7792
	struct hw_perf_event *hwc = &event->hw;
7793 7794 7795 7796 7797
	u64 period = hwc->last_period;
	u64 nr, offset;
	s64 old, val;

	hwc->last_period = hwc->sample_period;
7798 7799

again:
7800
	old = val = local64_read(&hwc->period_left);
7801 7802
	if (val < 0)
		return 0;
7803

7804 7805 7806
	nr = div64_u64(period + val, period);
	offset = nr * period;
	val -= offset;
7807
	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7808
		goto again;
7809

7810
	return nr;
7811 7812
}

7813
static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
7814
				    struct perf_sample_data *data,
7815
				    struct pt_regs *regs)
7816
{
7817
	struct hw_perf_event *hwc = &event->hw;
7818
	int throttle = 0;
7819

7820 7821
	if (!overflow)
		overflow = perf_swevent_set_period(event);
7822

7823 7824
	if (hwc->interrupts == MAX_INTERRUPTS)
		return;
7825

7826
	for (; overflow; overflow--) {
7827
		if (__perf_event_overflow(event, throttle,
7828
					    data, regs)) {
7829 7830 7831 7832 7833 7834
			/*
			 * We inhibit the overflow from happening when
			 * hwc->interrupts == MAX_INTERRUPTS.
			 */
			break;
		}
7835
		throttle = 1;
7836
	}
7837 7838
}

P
Peter Zijlstra 已提交
7839
static void perf_swevent_event(struct perf_event *event, u64 nr,
7840
			       struct perf_sample_data *data,
7841
			       struct pt_regs *regs)
7842
{
7843
	struct hw_perf_event *hwc = &event->hw;
7844

7845
	local64_add(nr, &event->count);
7846

7847 7848 7849
	if (!regs)
		return;

7850
	if (!is_sampling_event(event))
7851
		return;
7852

7853 7854 7855 7856 7857 7858
	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
		data->period = nr;
		return perf_swevent_overflow(event, 1, data, regs);
	} else
		data->period = event->hw.last_period;

7859
	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
7860
		return perf_swevent_overflow(event, 1, data, regs);
7861

7862
	if (local64_add_negative(nr, &hwc->period_left))
7863
		return;
7864

7865
	perf_swevent_overflow(event, 0, data, regs);
7866 7867
}

7868 7869 7870
static int perf_exclude_event(struct perf_event *event,
			      struct pt_regs *regs)
{
P
Peter Zijlstra 已提交
7871
	if (event->hw.state & PERF_HES_STOPPED)
7872
		return 1;
P
Peter Zijlstra 已提交
7873

7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884
	if (regs) {
		if (event->attr.exclude_user && user_mode(regs))
			return 1;

		if (event->attr.exclude_kernel && !user_mode(regs))
			return 1;
	}

	return 0;
}

7885
static int perf_swevent_match(struct perf_event *event,
P
Peter Zijlstra 已提交
7886
				enum perf_type_id type,
L
Li Zefan 已提交
7887 7888 7889
				u32 event_id,
				struct perf_sample_data *data,
				struct pt_regs *regs)
7890
{
7891
	if (event->attr.type != type)
7892
		return 0;
7893

7894
	if (event->attr.config != event_id)
7895 7896
		return 0;

7897 7898
	if (perf_exclude_event(event, regs))
		return 0;
7899 7900 7901 7902

	return 1;
}

7903 7904 7905 7906 7907 7908 7909
static inline u64 swevent_hash(u64 type, u32 event_id)
{
	u64 val = event_id | (type << 32);

	return hash_64(val, SWEVENT_HLIST_BITS);
}

7910 7911
static inline struct hlist_head *
__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
7912
{
7913 7914 7915 7916
	u64 hash = swevent_hash(type, event_id);

	return &hlist->heads[hash];
}
7917

7918 7919
/* For the read side: events when they trigger */
static inline struct hlist_head *
7920
find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
7921 7922
{
	struct swevent_hlist *hlist;
7923

7924
	hlist = rcu_dereference(swhash->swevent_hlist);
7925 7926 7927
	if (!hlist)
		return NULL;

7928 7929 7930 7931 7932
	return __find_swevent_head(hlist, type, event_id);
}

/* For the event head insertion and removal in the hlist */
static inline struct hlist_head *
7933
find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
7934 7935 7936 7937 7938 7939 7940 7941 7942 7943
{
	struct swevent_hlist *hlist;
	u32 event_id = event->attr.config;
	u64 type = event->attr.type;

	/*
	 * Event scheduling is always serialized against hlist allocation
	 * and release. Which makes the protected version suitable here.
	 * The context lock guarantees that.
	 */
7944
	hlist = rcu_dereference_protected(swhash->swevent_hlist,
7945 7946 7947 7948 7949
					  lockdep_is_held(&event->ctx->lock));
	if (!hlist)
		return NULL;

	return __find_swevent_head(hlist, type, event_id);
7950 7951 7952
}

static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
7953
				    u64 nr,
7954 7955
				    struct perf_sample_data *data,
				    struct pt_regs *regs)
7956
{
7957
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7958
	struct perf_event *event;
7959
	struct hlist_head *head;
7960

7961
	rcu_read_lock();
7962
	head = find_swevent_head_rcu(swhash, type, event_id);
7963 7964 7965
	if (!head)
		goto end;

7966
	hlist_for_each_entry_rcu(event, head, hlist_entry) {
L
Li Zefan 已提交
7967
		if (perf_swevent_match(event, type, event_id, data, regs))
7968
			perf_swevent_event(event, nr, data, regs);
7969
	}
7970 7971
end:
	rcu_read_unlock();
7972 7973
}

7974 7975
DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);

7976
int perf_swevent_get_recursion_context(void)
P
Peter Zijlstra 已提交
7977
{
7978
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
P
Peter Zijlstra 已提交
7979

7980
	return get_recursion_context(swhash->recursion);
P
Peter Zijlstra 已提交
7981
}
I
Ingo Molnar 已提交
7982
EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
P
Peter Zijlstra 已提交
7983

7984
void perf_swevent_put_recursion_context(int rctx)
7985
{
7986
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7987

7988
	put_recursion_context(swhash->recursion, rctx);
7989
}
7990

7991
void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7992
{
7993
	struct perf_sample_data data;
7994

7995
	if (WARN_ON_ONCE(!regs))
7996
		return;
7997

7998
	perf_sample_data_init(&data, addr, 0);
7999
	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011
}

void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
{
	int rctx;

	preempt_disable_notrace();
	rctx = perf_swevent_get_recursion_context();
	if (unlikely(rctx < 0))
		goto fail;

	___perf_sw_event(event_id, nr, regs, addr);
8012 8013

	perf_swevent_put_recursion_context(rctx);
8014
fail:
8015
	preempt_enable_notrace();
8016 8017
}

8018
static void perf_swevent_read(struct perf_event *event)
8019 8020 8021
{
}

P
Peter Zijlstra 已提交
8022
static int perf_swevent_add(struct perf_event *event, int flags)
8023
{
8024
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
8025
	struct hw_perf_event *hwc = &event->hw;
8026 8027
	struct hlist_head *head;

8028
	if (is_sampling_event(event)) {
8029
		hwc->last_period = hwc->sample_period;
8030
		perf_swevent_set_period(event);
8031
	}
8032

P
Peter Zijlstra 已提交
8033 8034
	hwc->state = !(flags & PERF_EF_START);

8035
	head = find_swevent_head(swhash, event);
P
Peter Zijlstra 已提交
8036
	if (WARN_ON_ONCE(!head))
8037 8038 8039
		return -EINVAL;

	hlist_add_head_rcu(&event->hlist_entry, head);
8040
	perf_event_update_userpage(event);
8041

8042 8043 8044
	return 0;
}

P
Peter Zijlstra 已提交
8045
static void perf_swevent_del(struct perf_event *event, int flags)
8046
{
8047
	hlist_del_rcu(&event->hlist_entry);
8048 8049
}

P
Peter Zijlstra 已提交
8050
static void perf_swevent_start(struct perf_event *event, int flags)
8051
{
P
Peter Zijlstra 已提交
8052
	event->hw.state = 0;
8053
}
I
Ingo Molnar 已提交
8054

P
Peter Zijlstra 已提交
8055
static void perf_swevent_stop(struct perf_event *event, int flags)
8056
{
P
Peter Zijlstra 已提交
8057
	event->hw.state = PERF_HES_STOPPED;
8058 8059
}

8060 8061
/* Deref the hlist from the update side */
static inline struct swevent_hlist *
8062
swevent_hlist_deref(struct swevent_htable *swhash)
8063
{
8064 8065
	return rcu_dereference_protected(swhash->swevent_hlist,
					 lockdep_is_held(&swhash->hlist_mutex));
8066 8067
}

8068
static void swevent_hlist_release(struct swevent_htable *swhash)
8069
{
8070
	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
8071

8072
	if (!hlist)
8073 8074
		return;

8075
	RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
8076
	kfree_rcu(hlist, rcu_head);
8077 8078
}

8079
static void swevent_hlist_put_cpu(int cpu)
8080
{
8081
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
8082

8083
	mutex_lock(&swhash->hlist_mutex);
8084

8085 8086
	if (!--swhash->hlist_refcount)
		swevent_hlist_release(swhash);
8087

8088
	mutex_unlock(&swhash->hlist_mutex);
8089 8090
}

8091
static void swevent_hlist_put(void)
8092 8093 8094 8095
{
	int cpu;

	for_each_possible_cpu(cpu)
8096
		swevent_hlist_put_cpu(cpu);
8097 8098
}

8099
static int swevent_hlist_get_cpu(int cpu)
8100
{
8101
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
8102 8103
	int err = 0;

8104
	mutex_lock(&swhash->hlist_mutex);
8105 8106
	if (!swevent_hlist_deref(swhash) &&
	    cpumask_test_cpu(cpu, perf_online_mask)) {
8107 8108 8109 8110 8111 8112 8113
		struct swevent_hlist *hlist;

		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
		if (!hlist) {
			err = -ENOMEM;
			goto exit;
		}
8114
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
8115
	}
8116
	swhash->hlist_refcount++;
P
Peter Zijlstra 已提交
8117
exit:
8118
	mutex_unlock(&swhash->hlist_mutex);
8119 8120 8121 8122

	return err;
}

8123
static int swevent_hlist_get(void)
8124
{
8125
	int err, cpu, failed_cpu;
8126

8127
	mutex_lock(&pmus_lock);
8128
	for_each_possible_cpu(cpu) {
8129
		err = swevent_hlist_get_cpu(cpu);
8130 8131 8132 8133 8134
		if (err) {
			failed_cpu = cpu;
			goto fail;
		}
	}
8135
	mutex_unlock(&pmus_lock);
8136
	return 0;
P
Peter Zijlstra 已提交
8137
fail:
8138 8139 8140
	for_each_possible_cpu(cpu) {
		if (cpu == failed_cpu)
			break;
8141
		swevent_hlist_put_cpu(cpu);
8142
	}
8143
	mutex_unlock(&pmus_lock);
8144 8145 8146
	return err;
}

8147
struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
8148

8149 8150 8151
static void sw_perf_event_destroy(struct perf_event *event)
{
	u64 event_id = event->attr.config;
8152

8153 8154
	WARN_ON(event->parent);

8155
	static_key_slow_dec(&perf_swevent_enabled[event_id]);
8156
	swevent_hlist_put();
8157 8158 8159 8160
}

static int perf_swevent_init(struct perf_event *event)
{
8161
	u64 event_id = event->attr.config;
8162 8163 8164 8165

	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

8166 8167 8168 8169 8170 8171
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

8172 8173 8174 8175 8176 8177 8178 8179 8180
	switch (event_id) {
	case PERF_COUNT_SW_CPU_CLOCK:
	case PERF_COUNT_SW_TASK_CLOCK:
		return -ENOENT;

	default:
		break;
	}

8181
	if (event_id >= PERF_COUNT_SW_MAX)
8182 8183 8184 8185 8186
		return -ENOENT;

	if (!event->parent) {
		int err;

8187
		err = swevent_hlist_get();
8188 8189 8190
		if (err)
			return err;

8191
		static_key_slow_inc(&perf_swevent_enabled[event_id]);
8192 8193 8194 8195 8196 8197 8198
		event->destroy = sw_perf_event_destroy;
	}

	return 0;
}

static struct pmu perf_swevent = {
8199
	.task_ctx_nr	= perf_sw_context,
8200

8201 8202
	.capabilities	= PERF_PMU_CAP_NO_NMI,

8203
	.event_init	= perf_swevent_init,
P
Peter Zijlstra 已提交
8204 8205 8206 8207
	.add		= perf_swevent_add,
	.del		= perf_swevent_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
8208 8209 8210
	.read		= perf_swevent_read,
};

8211 8212
#ifdef CONFIG_EVENT_TRACING

8213 8214 8215
static int perf_tp_filter_match(struct perf_event *event,
				struct perf_sample_data *data)
{
8216
	void *record = data->raw->frag.data;
8217

8218 8219 8220 8221
	/* only top level events have filters set */
	if (event->parent)
		event = event->parent;

8222 8223 8224 8225 8226 8227 8228 8229 8230
	if (likely(!event->filter) || filter_match_preds(event->filter, record))
		return 1;
	return 0;
}

static int perf_tp_event_match(struct perf_event *event,
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
8231 8232
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;
8233 8234 8235 8236
	/*
	 * All tracepoints are from kernel-space.
	 */
	if (event->attr.exclude_kernel)
8237 8238 8239 8240 8241 8242 8243 8244
		return 0;

	if (!perf_tp_filter_match(event, data))
		return 0;

	return 1;
}

8245 8246 8247 8248 8249
void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
			       struct trace_event_call *call, u64 count,
			       struct pt_regs *regs, struct hlist_head *head,
			       struct task_struct *task)
{
8250
	if (bpf_prog_array_valid(call)) {
8251
		*(struct pt_regs **)raw_data = regs;
8252
		if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
8253 8254 8255 8256 8257
			perf_swevent_put_recursion_context(rctx);
			return;
		}
	}
	perf_tp_event(call->event.type, count, raw_data, size, regs, head,
8258
		      rctx, task);
8259 8260 8261
}
EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);

8262
void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
8263
		   struct pt_regs *regs, struct hlist_head *head, int rctx,
8264
		   struct task_struct *task)
8265 8266
{
	struct perf_sample_data data;
8267
	struct perf_event *event;
8268

8269
	struct perf_raw_record raw = {
8270 8271 8272 8273
		.frag = {
			.size = entry_size,
			.data = record,
		},
8274 8275
	};

8276
	perf_sample_data_init(&data, 0, 0);
8277 8278
	data.raw = &raw;

8279 8280
	perf_trace_buf_update(record, event_type);

8281
	hlist_for_each_entry_rcu(event, head, hlist_entry) {
8282
		if (perf_tp_event_match(event, &data, regs))
8283
			perf_swevent_event(event, count, &data, regs);
8284
	}
8285

8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310
	/*
	 * If we got specified a target task, also iterate its context and
	 * deliver this event there too.
	 */
	if (task && task != current) {
		struct perf_event_context *ctx;
		struct trace_entry *entry = record;

		rcu_read_lock();
		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
		if (!ctx)
			goto unlock;

		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
			if (event->attr.type != PERF_TYPE_TRACEPOINT)
				continue;
			if (event->attr.config != entry->type)
				continue;
			if (perf_tp_event_match(event, &data, regs))
				perf_swevent_event(event, count, &data, regs);
		}
unlock:
		rcu_read_unlock();
	}

8311
	perf_swevent_put_recursion_context(rctx);
8312 8313 8314
}
EXPORT_SYMBOL_GPL(perf_tp_event);

8315
static void tp_perf_event_destroy(struct perf_event *event)
8316
{
8317
	perf_trace_destroy(event);
8318 8319
}

8320
static int perf_tp_event_init(struct perf_event *event)
8321
{
8322 8323
	int err;

8324 8325 8326
	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -ENOENT;

8327 8328 8329 8330 8331 8332
	/*
	 * no branch sampling for tracepoint events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

8333 8334
	err = perf_trace_init(event);
	if (err)
8335
		return err;
8336

8337
	event->destroy = tp_perf_event_destroy;
8338

8339 8340 8341 8342
	return 0;
}

static struct pmu perf_tracepoint = {
8343 8344
	.task_ctx_nr	= perf_sw_context,

8345
	.event_init	= perf_tp_event_init,
P
Peter Zijlstra 已提交
8346 8347 8348 8349
	.add		= perf_trace_add,
	.del		= perf_trace_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
8350 8351 8352
	.read		= perf_swevent_read,
};

8353
#if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS)
8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376 8377 8378 8379 8380
/*
 * Flags in config, used by dynamic PMU kprobe and uprobe
 * The flags should match following PMU_FORMAT_ATTR().
 *
 * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe
 *                               if not set, create kprobe/uprobe
 */
enum perf_probe_config {
	PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0,  /* [k,u]retprobe */
};

PMU_FORMAT_ATTR(retprobe, "config:0");

static struct attribute *probe_attrs[] = {
	&format_attr_retprobe.attr,
	NULL,
};

static struct attribute_group probe_format_group = {
	.name = "format",
	.attrs = probe_attrs,
};

static const struct attribute_group *probe_attr_groups[] = {
	&probe_format_group,
	NULL,
};
8381
#endif
8382

8383
#ifdef CONFIG_KPROBE_EVENTS
8384 8385 8386 8387 8388 8389 8390 8391 8392 8393 8394 8395 8396 8397 8398 8399 8400 8401 8402 8403 8404 8405 8406 8407 8408 8409 8410 8411 8412 8413 8414 8415 8416 8417 8418 8419
static int perf_kprobe_event_init(struct perf_event *event);
static struct pmu perf_kprobe = {
	.task_ctx_nr	= perf_sw_context,
	.event_init	= perf_kprobe_event_init,
	.add		= perf_trace_add,
	.del		= perf_trace_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
	.read		= perf_swevent_read,
	.attr_groups	= probe_attr_groups,
};

static int perf_kprobe_event_init(struct perf_event *event)
{
	int err;
	bool is_retprobe;

	if (event->attr.type != perf_kprobe.type)
		return -ENOENT;
	/*
	 * no branch sampling for probe events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

	is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
	err = perf_kprobe_init(event, is_retprobe);
	if (err)
		return err;

	event->destroy = perf_kprobe_destroy;

	return 0;
}
#endif /* CONFIG_KPROBE_EVENTS */

8420 8421 8422 8423 8424 8425 8426 8427 8428 8429 8430 8431 8432 8433 8434 8435 8436 8437 8438 8439 8440 8441 8442 8443 8444 8445 8446 8447 8448 8449 8450 8451 8452 8453 8454 8455 8456
#ifdef CONFIG_UPROBE_EVENTS
static int perf_uprobe_event_init(struct perf_event *event);
static struct pmu perf_uprobe = {
	.task_ctx_nr	= perf_sw_context,
	.event_init	= perf_uprobe_event_init,
	.add		= perf_trace_add,
	.del		= perf_trace_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
	.read		= perf_swevent_read,
	.attr_groups	= probe_attr_groups,
};

static int perf_uprobe_event_init(struct perf_event *event)
{
	int err;
	bool is_retprobe;

	if (event->attr.type != perf_uprobe.type)
		return -ENOENT;
	/*
	 * no branch sampling for probe events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

	is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
	err = perf_uprobe_init(event, is_retprobe);
	if (err)
		return err;

	event->destroy = perf_uprobe_destroy;

	return 0;
}
#endif /* CONFIG_UPROBE_EVENTS */

8457 8458
static inline void perf_tp_register(void)
{
P
Peter Zijlstra 已提交
8459
	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
8460 8461 8462
#ifdef CONFIG_KPROBE_EVENTS
	perf_pmu_register(&perf_kprobe, "kprobe", -1);
#endif
8463 8464 8465
#ifdef CONFIG_UPROBE_EVENTS
	perf_pmu_register(&perf_uprobe, "uprobe", -1);
#endif
8466
}
L
Li Zefan 已提交
8467 8468 8469 8470 8471 8472

static void perf_event_free_filter(struct perf_event *event)
{
	ftrace_profile_free_filter(event);
}

8473 8474 8475 8476 8477 8478 8479
#ifdef CONFIG_BPF_SYSCALL
static void bpf_overflow_handler(struct perf_event *event,
				 struct perf_sample_data *data,
				 struct pt_regs *regs)
{
	struct bpf_perf_event_data_kern ctx = {
		.data = data,
8480
		.event = event,
8481 8482 8483
	};
	int ret = 0;

8484
	ctx.regs = perf_arch_bpf_user_pt_regs(regs);
8485 8486 8487 8488
	preempt_disable();
	if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
		goto out;
	rcu_read_lock();
8489
	ret = BPF_PROG_RUN(event->prog, &ctx);
8490 8491 8492 8493 8494 8495 8496 8497 8498 8499 8500 8501 8502 8503 8504 8505 8506 8507 8508 8509 8510 8511 8512 8513 8514 8515 8516 8517 8518 8519 8520 8521 8522 8523 8524 8525 8526 8527 8528 8529 8530 8531 8532 8533 8534 8535 8536 8537 8538 8539 8540 8541
	rcu_read_unlock();
out:
	__this_cpu_dec(bpf_prog_active);
	preempt_enable();
	if (!ret)
		return;

	event->orig_overflow_handler(event, data, regs);
}

static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
{
	struct bpf_prog *prog;

	if (event->overflow_handler_context)
		/* hw breakpoint or kernel counter */
		return -EINVAL;

	if (event->prog)
		return -EEXIST;

	prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
	if (IS_ERR(prog))
		return PTR_ERR(prog);

	event->prog = prog;
	event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
	WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
	return 0;
}

static void perf_event_free_bpf_handler(struct perf_event *event)
{
	struct bpf_prog *prog = event->prog;

	if (!prog)
		return;

	WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
	event->prog = NULL;
	bpf_prog_put(prog);
}
#else
static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
{
	return -EOPNOTSUPP;
}
static void perf_event_free_bpf_handler(struct perf_event *event)
{
}
#endif

8542 8543 8544 8545 8546 8547 8548 8549 8550 8551 8552
/*
 * returns true if the event is a tracepoint, or a kprobe/upprobe created
 * with perf_event_open()
 */
static inline bool perf_event_is_tracing(struct perf_event *event)
{
	if (event->pmu == &perf_tracepoint)
		return true;
#ifdef CONFIG_KPROBE_EVENTS
	if (event->pmu == &perf_kprobe)
		return true;
8553 8554 8555 8556
#endif
#ifdef CONFIG_UPROBE_EVENTS
	if (event->pmu == &perf_uprobe)
		return true;
8557 8558 8559 8560
#endif
	return false;
}

8561 8562
static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
{
8563
	bool is_kprobe, is_tracepoint, is_syscall_tp;
8564
	struct bpf_prog *prog;
8565
	int ret;
8566

8567
	if (!perf_event_is_tracing(event))
8568
		return perf_event_set_bpf_handler(event, prog_fd);
8569

8570 8571
	is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
	is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
8572 8573
	is_syscall_tp = is_syscall_trace_event(event->tp_event);
	if (!is_kprobe && !is_tracepoint && !is_syscall_tp)
8574
		/* bpf programs can only be attached to u/kprobe or tracepoint */
8575 8576 8577 8578 8579 8580
		return -EINVAL;

	prog = bpf_prog_get(prog_fd);
	if (IS_ERR(prog))
		return PTR_ERR(prog);

8581
	if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
8582 8583
	    (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
	    (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
8584 8585 8586 8587 8588
		/* valid fd, but invalid bpf program type */
		bpf_prog_put(prog);
		return -EINVAL;
	}

8589 8590 8591 8592 8593 8594 8595
	/* Kprobe override only works for kprobes, not uprobes. */
	if (prog->kprobe_override &&
	    !(event->tp_event->flags & TRACE_EVENT_FL_KPROBE)) {
		bpf_prog_put(prog);
		return -EINVAL;
	}

8596
	if (is_tracepoint || is_syscall_tp) {
8597 8598 8599 8600 8601 8602 8603
		int off = trace_event_get_offsets(event->tp_event);

		if (prog->aux->max_ctx_offset > off) {
			bpf_prog_put(prog);
			return -EACCES;
		}
	}
8604

8605 8606 8607 8608
	ret = perf_event_attach_bpf_prog(event, prog);
	if (ret)
		bpf_prog_put(prog);
	return ret;
8609 8610 8611 8612
}

static void perf_event_free_bpf_prog(struct perf_event *event)
{
8613
	if (!perf_event_is_tracing(event)) {
8614
		perf_event_free_bpf_handler(event);
8615 8616
		return;
	}
8617
	perf_event_detach_bpf_prog(event);
8618 8619
}

8620
#else
L
Li Zefan 已提交
8621

8622
static inline void perf_tp_register(void)
8623 8624
{
}
L
Li Zefan 已提交
8625 8626 8627 8628 8629

static void perf_event_free_filter(struct perf_event *event)
{
}

8630 8631 8632 8633 8634 8635 8636 8637
static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
{
	return -ENOENT;
}

static void perf_event_free_bpf_prog(struct perf_event *event)
{
}
8638
#endif /* CONFIG_EVENT_TRACING */
8639

8640
#ifdef CONFIG_HAVE_HW_BREAKPOINT
8641
void perf_bp_event(struct perf_event *bp, void *data)
8642
{
8643 8644 8645
	struct perf_sample_data sample;
	struct pt_regs *regs = data;

8646
	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
8647

P
Peter Zijlstra 已提交
8648
	if (!bp->hw.state && !perf_exclude_event(bp, regs))
8649
		perf_swevent_event(bp, 1, &sample, regs);
8650 8651 8652
}
#endif

8653 8654 8655 8656 8657 8658 8659 8660 8661 8662 8663 8664 8665 8666 8667 8668 8669 8670 8671 8672 8673 8674 8675 8676 8677 8678 8679 8680 8681 8682 8683 8684 8685 8686 8687 8688 8689 8690 8691 8692 8693 8694 8695 8696 8697 8698 8699 8700 8701 8702 8703 8704 8705 8706 8707 8708 8709 8710 8711 8712 8713 8714 8715 8716 8717 8718 8719 8720 8721 8722 8723 8724 8725 8726 8727 8728 8729 8730 8731 8732 8733 8734 8735 8736 8737 8738 8739 8740 8741 8742 8743 8744 8745 8746 8747 8748 8749 8750 8751 8752 8753 8754 8755 8756 8757
/*
 * Allocate a new address filter
 */
static struct perf_addr_filter *
perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
{
	int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
	struct perf_addr_filter *filter;

	filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
	if (!filter)
		return NULL;

	INIT_LIST_HEAD(&filter->entry);
	list_add_tail(&filter->entry, filters);

	return filter;
}

static void free_filters_list(struct list_head *filters)
{
	struct perf_addr_filter *filter, *iter;

	list_for_each_entry_safe(filter, iter, filters, entry) {
		if (filter->inode)
			iput(filter->inode);
		list_del(&filter->entry);
		kfree(filter);
	}
}

/*
 * Free existing address filters and optionally install new ones
 */
static void perf_addr_filters_splice(struct perf_event *event,
				     struct list_head *head)
{
	unsigned long flags;
	LIST_HEAD(list);

	if (!has_addr_filter(event))
		return;

	/* don't bother with children, they don't have their own filters */
	if (event->parent)
		return;

	raw_spin_lock_irqsave(&event->addr_filters.lock, flags);

	list_splice_init(&event->addr_filters.list, &list);
	if (head)
		list_splice(head, &event->addr_filters.list);

	raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);

	free_filters_list(&list);
}

/*
 * Scan through mm's vmas and see if one of them matches the
 * @filter; if so, adjust filter's address range.
 * Called with mm::mmap_sem down for reading.
 */
static unsigned long perf_addr_filter_apply(struct perf_addr_filter *filter,
					    struct mm_struct *mm)
{
	struct vm_area_struct *vma;

	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		struct file *file = vma->vm_file;
		unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
		unsigned long vma_size = vma->vm_end - vma->vm_start;

		if (!file)
			continue;

		if (!perf_addr_filter_match(filter, file, off, vma_size))
			continue;

		return vma->vm_start;
	}

	return 0;
}

/*
 * Update event's address range filters based on the
 * task's existing mappings, if any.
 */
static void perf_event_addr_filters_apply(struct perf_event *event)
{
	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
	struct task_struct *task = READ_ONCE(event->ctx->task);
	struct perf_addr_filter *filter;
	struct mm_struct *mm = NULL;
	unsigned int count = 0;
	unsigned long flags;

	/*
	 * We may observe TASK_TOMBSTONE, which means that the event tear-down
	 * will stop on the parent's child_mutex that our caller is also holding
	 */
	if (task == TASK_TOMBSTONE)
		return;

8758 8759 8760
	if (!ifh->nr_file_filters)
		return;

8761 8762 8763 8764 8765 8766 8767 8768 8769 8770
	mm = get_task_mm(event->ctx->task);
	if (!mm)
		goto restart;

	down_read(&mm->mmap_sem);

	raw_spin_lock_irqsave(&ifh->lock, flags);
	list_for_each_entry(filter, &ifh->list, entry) {
		event->addr_filters_offs[count] = 0;

8771 8772 8773 8774 8775
		/*
		 * Adjust base offset if the filter is associated to a binary
		 * that needs to be mapped:
		 */
		if (filter->inode)
8776 8777 8778 8779 8780 8781 8782 8783 8784 8785 8786 8787 8788 8789
			event->addr_filters_offs[count] =
				perf_addr_filter_apply(filter, mm);

		count++;
	}

	event->addr_filters_gen++;
	raw_spin_unlock_irqrestore(&ifh->lock, flags);

	up_read(&mm->mmap_sem);

	mmput(mm);

restart:
8790
	perf_event_stop(event, 1);
8791 8792 8793 8794 8795 8796 8797 8798 8799 8800 8801 8802 8803 8804 8805 8806 8807 8808
}

/*
 * Address range filtering: limiting the data to certain
 * instruction address ranges. Filters are ioctl()ed to us from
 * userspace as ascii strings.
 *
 * Filter string format:
 *
 * ACTION RANGE_SPEC
 * where ACTION is one of the
 *  * "filter": limit the trace to this region
 *  * "start": start tracing from this address
 *  * "stop": stop tracing at this address/region;
 * RANGE_SPEC is
 *  * for kernel addresses: <start address>[/<size>]
 *  * for object files:     <start address>[/<size>]@</path/to/object/file>
 *
8809 8810
 * if <size> is not specified or is zero, the range is treated as a single
 * address; not valid for ACTION=="filter".
8811 8812
 */
enum {
8813
	IF_ACT_NONE = -1,
8814 8815 8816 8817 8818 8819 8820 8821 8822 8823 8824 8825 8826 8827 8828 8829 8830 8831 8832 8833 8834 8835 8836
	IF_ACT_FILTER,
	IF_ACT_START,
	IF_ACT_STOP,
	IF_SRC_FILE,
	IF_SRC_KERNEL,
	IF_SRC_FILEADDR,
	IF_SRC_KERNELADDR,
};

enum {
	IF_STATE_ACTION = 0,
	IF_STATE_SOURCE,
	IF_STATE_END,
};

static const match_table_t if_tokens = {
	{ IF_ACT_FILTER,	"filter" },
	{ IF_ACT_START,		"start" },
	{ IF_ACT_STOP,		"stop" },
	{ IF_SRC_FILE,		"%u/%u@%s" },
	{ IF_SRC_KERNEL,	"%u/%u" },
	{ IF_SRC_FILEADDR,	"%u@%s" },
	{ IF_SRC_KERNELADDR,	"%u" },
8837
	{ IF_ACT_NONE,		NULL },
8838 8839 8840 8841 8842 8843 8844 8845 8846 8847 8848 8849 8850 8851 8852 8853 8854 8855 8856 8857 8858 8859
};

/*
 * Address filter string parser
 */
static int
perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
			     struct list_head *filters)
{
	struct perf_addr_filter *filter = NULL;
	char *start, *orig, *filename = NULL;
	struct path path;
	substring_t args[MAX_OPT_ARGS];
	int state = IF_STATE_ACTION, token;
	unsigned int kernel = 0;
	int ret = -EINVAL;

	orig = fstr = kstrdup(fstr, GFP_KERNEL);
	if (!fstr)
		return -ENOMEM;

	while ((start = strsep(&fstr, " ,\n")) != NULL) {
8860 8861 8862 8863 8864
		static const enum perf_addr_filter_action_t actions[] = {
			[IF_ACT_FILTER]	= PERF_ADDR_FILTER_ACTION_FILTER,
			[IF_ACT_START]	= PERF_ADDR_FILTER_ACTION_START,
			[IF_ACT_STOP]	= PERF_ADDR_FILTER_ACTION_STOP,
		};
8865 8866 8867 8868 8869 8870 8871 8872 8873 8874 8875 8876 8877 8878 8879 8880 8881 8882 8883 8884
		ret = -EINVAL;

		if (!*start)
			continue;

		/* filter definition begins */
		if (state == IF_STATE_ACTION) {
			filter = perf_addr_filter_new(event, filters);
			if (!filter)
				goto fail;
		}

		token = match_token(start, if_tokens, args);
		switch (token) {
		case IF_ACT_FILTER:
		case IF_ACT_START:
		case IF_ACT_STOP:
			if (state != IF_STATE_ACTION)
				goto fail;

8885
			filter->action = actions[token];
8886 8887 8888 8889 8890 8891 8892 8893 8894 8895 8896 8897 8898 8899 8900 8901 8902
			state = IF_STATE_SOURCE;
			break;

		case IF_SRC_KERNELADDR:
		case IF_SRC_KERNEL:
			kernel = 1;

		case IF_SRC_FILEADDR:
		case IF_SRC_FILE:
			if (state != IF_STATE_SOURCE)
				goto fail;

			*args[0].to = 0;
			ret = kstrtoul(args[0].from, 0, &filter->offset);
			if (ret)
				goto fail;

8903
			if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) {
8904 8905 8906 8907 8908 8909
				*args[1].to = 0;
				ret = kstrtoul(args[1].from, 0, &filter->size);
				if (ret)
					goto fail;
			}

8910
			if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
8911
				int fpos = token == IF_SRC_FILE ? 2 : 1;
8912 8913

				filename = match_strdup(&args[fpos]);
8914 8915 8916 8917 8918 8919 8920 8921 8922 8923 8924 8925 8926 8927 8928 8929 8930 8931 8932
				if (!filename) {
					ret = -ENOMEM;
					goto fail;
				}
			}

			state = IF_STATE_END;
			break;

		default:
			goto fail;
		}

		/*
		 * Filter definition is fully parsed, validate and install it.
		 * Make sure that it doesn't contradict itself or the event's
		 * attribute.
		 */
		if (state == IF_STATE_END) {
8933
			ret = -EINVAL;
8934 8935 8936
			if (kernel && event->attr.exclude_kernel)
				goto fail;

8937 8938 8939 8940 8941 8942 8943 8944
			/*
			 * ACTION "filter" must have a non-zero length region
			 * specified.
			 */
			if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER &&
			    !filter->size)
				goto fail;

8945 8946 8947 8948
			if (!kernel) {
				if (!filename)
					goto fail;

8949 8950 8951 8952 8953 8954 8955 8956 8957 8958 8959 8960
				/*
				 * For now, we only support file-based filters
				 * in per-task events; doing so for CPU-wide
				 * events requires additional context switching
				 * trickery, since same object code will be
				 * mapped at different virtual addresses in
				 * different processes.
				 */
				ret = -EOPNOTSUPP;
				if (!event->ctx->task)
					goto fail_free_name;

8961 8962 8963 8964 8965 8966 8967 8968 8969 8970 8971 8972 8973 8974 8975
				/* look up the path and grab its inode */
				ret = kern_path(filename, LOOKUP_FOLLOW, &path);
				if (ret)
					goto fail_free_name;

				filter->inode = igrab(d_inode(path.dentry));
				path_put(&path);
				kfree(filename);
				filename = NULL;

				ret = -EINVAL;
				if (!filter->inode ||
				    !S_ISREG(filter->inode->i_mode))
					/* free_filters_list() will iput() */
					goto fail;
8976 8977

				event->addr_filters.nr_file_filters++;
8978 8979 8980 8981 8982 8983 8984 8985 8986 8987 8988 8989 8990 8991 8992 8993 8994 8995 8996 8997 8998 8999 9000 9001 9002 9003 9004 9005 9006 9007 9008 9009 9010 9011 9012 9013 9014 9015 9016 9017 9018
			}

			/* ready to consume more filters */
			state = IF_STATE_ACTION;
			filter = NULL;
		}
	}

	if (state != IF_STATE_ACTION)
		goto fail;

	kfree(orig);

	return 0;

fail_free_name:
	kfree(filename);
fail:
	free_filters_list(filters);
	kfree(orig);

	return ret;
}

static int
perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
{
	LIST_HEAD(filters);
	int ret;

	/*
	 * Since this is called in perf_ioctl() path, we're already holding
	 * ctx::mutex.
	 */
	lockdep_assert_held(&event->ctx->mutex);

	if (WARN_ON_ONCE(event->parent))
		return -EINVAL;

	ret = perf_event_parse_addr_filter(event, filter_str, &filters);
	if (ret)
9019
		goto fail_clear_files;
9020 9021

	ret = event->pmu->addr_filters_validate(&filters);
9022 9023
	if (ret)
		goto fail_free_filters;
9024 9025 9026 9027 9028 9029 9030

	/* remove existing filters, if any */
	perf_addr_filters_splice(event, &filters);

	/* install new filters */
	perf_event_for_each_child(event, perf_event_addr_filters_apply);

9031 9032 9033 9034 9035 9036 9037 9038
	return ret;

fail_free_filters:
	free_filters_list(&filters);

fail_clear_files:
	event->addr_filters.nr_file_filters = 0;

9039 9040 9041
	return ret;
}

9042 9043 9044
static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	int ret = -EINVAL;
9045
	char *filter_str;
9046 9047 9048 9049 9050

	filter_str = strndup_user(arg, PAGE_SIZE);
	if (IS_ERR(filter_str))
		return PTR_ERR(filter_str);

9051 9052 9053 9054 9055 9056 9057 9058 9059 9060 9061 9062 9063 9064 9065 9066 9067 9068 9069 9070 9071
#ifdef CONFIG_EVENT_TRACING
	if (perf_event_is_tracing(event)) {
		struct perf_event_context *ctx = event->ctx;

		/*
		 * Beware, here be dragons!!
		 *
		 * the tracepoint muck will deadlock against ctx->mutex, but
		 * the tracepoint stuff does not actually need it. So
		 * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we
		 * already have a reference on ctx.
		 *
		 * This can result in event getting moved to a different ctx,
		 * but that does not affect the tracepoint state.
		 */
		mutex_unlock(&ctx->mutex);
		ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
		mutex_lock(&ctx->mutex);
	} else
#endif
	if (has_addr_filter(event))
9072
		ret = perf_event_set_addr_filter(event, filter_str);
9073 9074 9075 9076 9077

	kfree(filter_str);
	return ret;
}

9078 9079 9080
/*
 * hrtimer based swevent callback
 */
9081

9082
static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
9083
{
9084 9085 9086 9087 9088
	enum hrtimer_restart ret = HRTIMER_RESTART;
	struct perf_sample_data data;
	struct pt_regs *regs;
	struct perf_event *event;
	u64 period;
9089

9090
	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
P
Peter Zijlstra 已提交
9091 9092 9093 9094

	if (event->state != PERF_EVENT_STATE_ACTIVE)
		return HRTIMER_NORESTART;

9095
	event->pmu->read(event);
9096

9097
	perf_sample_data_init(&data, 0, event->hw.last_period);
9098 9099 9100
	regs = get_irq_regs();

	if (regs && !perf_exclude_event(event, regs)) {
9101
		if (!(event->attr.exclude_idle && is_idle_task(current)))
9102
			if (__perf_event_overflow(event, 1, &data, regs))
9103 9104
				ret = HRTIMER_NORESTART;
	}
9105

9106 9107
	period = max_t(u64, 10000, event->hw.sample_period);
	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
9108

9109
	return ret;
9110 9111
}

9112
static void perf_swevent_start_hrtimer(struct perf_event *event)
9113
{
9114
	struct hw_perf_event *hwc = &event->hw;
9115 9116 9117 9118
	s64 period;

	if (!is_sampling_event(event))
		return;
9119

9120 9121 9122 9123
	period = local64_read(&hwc->period_left);
	if (period) {
		if (period < 0)
			period = 10000;
P
Peter Zijlstra 已提交
9124

9125 9126 9127 9128
		local64_set(&hwc->period_left, 0);
	} else {
		period = max_t(u64, 10000, hwc->sample_period);
	}
9129 9130
	hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
		      HRTIMER_MODE_REL_PINNED);
9131
}
9132 9133

static void perf_swevent_cancel_hrtimer(struct perf_event *event)
9134
{
9135 9136
	struct hw_perf_event *hwc = &event->hw;

9137
	if (is_sampling_event(event)) {
9138
		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
P
Peter Zijlstra 已提交
9139
		local64_set(&hwc->period_left, ktime_to_ns(remaining));
9140 9141 9142

		hrtimer_cancel(&hwc->hrtimer);
	}
9143 9144
}

P
Peter Zijlstra 已提交
9145 9146 9147 9148 9149 9150 9151 9152 9153 9154 9155 9156 9157 9158 9159 9160 9161 9162 9163 9164
static void perf_swevent_init_hrtimer(struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;

	if (!is_sampling_event(event))
		return;

	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swevent_hrtimer;

	/*
	 * Since hrtimers have a fixed rate, we can do a static freq->period
	 * mapping and avoid the whole period adjust feedback stuff.
	 */
	if (event->attr.freq) {
		long freq = event->attr.sample_freq;

		event->attr.sample_period = NSEC_PER_SEC / freq;
		hwc->sample_period = event->attr.sample_period;
		local64_set(&hwc->period_left, hwc->sample_period);
9165
		hwc->last_period = hwc->sample_period;
P
Peter Zijlstra 已提交
9166 9167 9168 9169
		event->attr.freq = 0;
	}
}

9170 9171 9172 9173 9174
/*
 * Software event: cpu wall time clock
 */

static void cpu_clock_event_update(struct perf_event *event)
9175
{
9176 9177 9178
	s64 prev;
	u64 now;

P
Peter Zijlstra 已提交
9179
	now = local_clock();
9180 9181
	prev = local64_xchg(&event->hw.prev_count, now);
	local64_add(now - prev, &event->count);
9182 9183
}

P
Peter Zijlstra 已提交
9184
static void cpu_clock_event_start(struct perf_event *event, int flags)
9185
{
P
Peter Zijlstra 已提交
9186
	local64_set(&event->hw.prev_count, local_clock());
9187 9188 9189
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
9190
static void cpu_clock_event_stop(struct perf_event *event, int flags)
9191
{
9192 9193 9194
	perf_swevent_cancel_hrtimer(event);
	cpu_clock_event_update(event);
}
9195

P
Peter Zijlstra 已提交
9196 9197 9198 9199
static int cpu_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		cpu_clock_event_start(event, flags);
9200
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
9201 9202 9203 9204 9205 9206 9207 9208 9209

	return 0;
}

static void cpu_clock_event_del(struct perf_event *event, int flags)
{
	cpu_clock_event_stop(event, flags);
}

9210 9211 9212 9213
static void cpu_clock_event_read(struct perf_event *event)
{
	cpu_clock_event_update(event);
}
9214

9215 9216 9217 9218 9219 9220 9221 9222
static int cpu_clock_event_init(struct perf_event *event)
{
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
		return -ENOENT;

9223 9224 9225 9226 9227 9228
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

P
Peter Zijlstra 已提交
9229 9230
	perf_swevent_init_hrtimer(event);

9231
	return 0;
9232 9233
}

9234
static struct pmu perf_cpu_clock = {
9235 9236
	.task_ctx_nr	= perf_sw_context,

9237 9238
	.capabilities	= PERF_PMU_CAP_NO_NMI,

9239
	.event_init	= cpu_clock_event_init,
P
Peter Zijlstra 已提交
9240 9241 9242 9243
	.add		= cpu_clock_event_add,
	.del		= cpu_clock_event_del,
	.start		= cpu_clock_event_start,
	.stop		= cpu_clock_event_stop,
9244 9245 9246 9247 9248 9249 9250 9251
	.read		= cpu_clock_event_read,
};

/*
 * Software event: task time clock
 */

static void task_clock_event_update(struct perf_event *event, u64 now)
9252
{
9253 9254
	u64 prev;
	s64 delta;
9255

9256 9257 9258 9259
	prev = local64_xchg(&event->hw.prev_count, now);
	delta = now - prev;
	local64_add(delta, &event->count);
}
9260

P
Peter Zijlstra 已提交
9261
static void task_clock_event_start(struct perf_event *event, int flags)
9262
{
P
Peter Zijlstra 已提交
9263
	local64_set(&event->hw.prev_count, event->ctx->time);
9264 9265 9266
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
9267
static void task_clock_event_stop(struct perf_event *event, int flags)
9268 9269 9270
{
	perf_swevent_cancel_hrtimer(event);
	task_clock_event_update(event, event->ctx->time);
P
Peter Zijlstra 已提交
9271 9272 9273 9274 9275 9276
}

static int task_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		task_clock_event_start(event, flags);
9277
	perf_event_update_userpage(event);
9278

P
Peter Zijlstra 已提交
9279 9280 9281 9282 9283 9284
	return 0;
}

static void task_clock_event_del(struct perf_event *event, int flags)
{
	task_clock_event_stop(event, PERF_EF_UPDATE);
9285 9286 9287 9288
}

static void task_clock_event_read(struct perf_event *event)
{
9289 9290 9291
	u64 now = perf_clock();
	u64 delta = now - event->ctx->timestamp;
	u64 time = event->ctx->time + delta;
9292 9293 9294 9295 9296

	task_clock_event_update(event, time);
}

static int task_clock_event_init(struct perf_event *event)
L
Li Zefan 已提交
9297
{
9298 9299 9300 9301 9302 9303
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
		return -ENOENT;

9304 9305 9306 9307 9308 9309
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

P
Peter Zijlstra 已提交
9310 9311
	perf_swevent_init_hrtimer(event);

9312
	return 0;
L
Li Zefan 已提交
9313 9314
}

9315
static struct pmu perf_task_clock = {
9316 9317
	.task_ctx_nr	= perf_sw_context,

9318 9319
	.capabilities	= PERF_PMU_CAP_NO_NMI,

9320
	.event_init	= task_clock_event_init,
P
Peter Zijlstra 已提交
9321 9322 9323 9324
	.add		= task_clock_event_add,
	.del		= task_clock_event_del,
	.start		= task_clock_event_start,
	.stop		= task_clock_event_stop,
9325 9326
	.read		= task_clock_event_read,
};
L
Li Zefan 已提交
9327

P
Peter Zijlstra 已提交
9328
static void perf_pmu_nop_void(struct pmu *pmu)
9329 9330
{
}
L
Li Zefan 已提交
9331

9332 9333 9334 9335
static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
{
}

P
Peter Zijlstra 已提交
9336
static int perf_pmu_nop_int(struct pmu *pmu)
L
Li Zefan 已提交
9337
{
P
Peter Zijlstra 已提交
9338
	return 0;
L
Li Zefan 已提交
9339 9340
}

9341
static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
9342 9343

static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
L
Li Zefan 已提交
9344
{
9345 9346 9347 9348 9349
	__this_cpu_write(nop_txn_flags, flags);

	if (flags & ~PERF_PMU_TXN_ADD)
		return;

P
Peter Zijlstra 已提交
9350
	perf_pmu_disable(pmu);
L
Li Zefan 已提交
9351 9352
}

P
Peter Zijlstra 已提交
9353 9354
static int perf_pmu_commit_txn(struct pmu *pmu)
{
9355 9356 9357 9358 9359 9360 9361
	unsigned int flags = __this_cpu_read(nop_txn_flags);

	__this_cpu_write(nop_txn_flags, 0);

	if (flags & ~PERF_PMU_TXN_ADD)
		return 0;

P
Peter Zijlstra 已提交
9362 9363 9364
	perf_pmu_enable(pmu);
	return 0;
}
9365

P
Peter Zijlstra 已提交
9366
static void perf_pmu_cancel_txn(struct pmu *pmu)
9367
{
9368 9369 9370 9371 9372 9373 9374
	unsigned int flags =  __this_cpu_read(nop_txn_flags);

	__this_cpu_write(nop_txn_flags, 0);

	if (flags & ~PERF_PMU_TXN_ADD)
		return;

P
Peter Zijlstra 已提交
9375
	perf_pmu_enable(pmu);
9376 9377
}

9378 9379
static int perf_event_idx_default(struct perf_event *event)
{
9380
	return 0;
9381 9382
}

P
Peter Zijlstra 已提交
9383 9384 9385 9386
/*
 * Ensures all contexts with the same task_ctx_nr have the same
 * pmu_cpu_context too.
 */
9387
static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
9388
{
P
Peter Zijlstra 已提交
9389
	struct pmu *pmu;
9390

P
Peter Zijlstra 已提交
9391 9392
	if (ctxn < 0)
		return NULL;
9393

P
Peter Zijlstra 已提交
9394 9395 9396 9397
	list_for_each_entry(pmu, &pmus, entry) {
		if (pmu->task_ctx_nr == ctxn)
			return pmu->pmu_cpu_context;
	}
9398

P
Peter Zijlstra 已提交
9399
	return NULL;
9400 9401
}

9402 9403
static void free_pmu_context(struct pmu *pmu)
{
9404 9405 9406 9407 9408 9409 9410 9411
	/*
	 * Static contexts such as perf_sw_context have a global lifetime
	 * and may be shared between different PMUs. Avoid freeing them
	 * when a single PMU is going away.
	 */
	if (pmu->task_ctx_nr > perf_invalid_context)
		return;

P
Peter Zijlstra 已提交
9412
	mutex_lock(&pmus_lock);
9413
	free_percpu(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
9414
	mutex_unlock(&pmus_lock);
9415
}
9416 9417 9418 9419 9420 9421 9422 9423 9424 9425 9426 9427 9428 9429

/*
 * Let userspace know that this PMU supports address range filtering:
 */
static ssize_t nr_addr_filters_show(struct device *dev,
				    struct device_attribute *attr,
				    char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
}
DEVICE_ATTR_RO(nr_addr_filters);

P
Peter Zijlstra 已提交
9430
static struct idr pmu_idr;
9431

P
Peter Zijlstra 已提交
9432 9433 9434 9435 9436 9437 9438
static ssize_t
type_show(struct device *dev, struct device_attribute *attr, char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
}
9439
static DEVICE_ATTR_RO(type);
P
Peter Zijlstra 已提交
9440

9441 9442 9443 9444 9445 9446 9447 9448 9449 9450
static ssize_t
perf_event_mux_interval_ms_show(struct device *dev,
				struct device_attribute *attr,
				char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
}

9451 9452
static DEFINE_MUTEX(mux_interval_mutex);

9453 9454 9455 9456 9457 9458 9459 9460 9461 9462 9463 9464 9465 9466 9467 9468 9469 9470 9471
static ssize_t
perf_event_mux_interval_ms_store(struct device *dev,
				 struct device_attribute *attr,
				 const char *buf, size_t count)
{
	struct pmu *pmu = dev_get_drvdata(dev);
	int timer, cpu, ret;

	ret = kstrtoint(buf, 0, &timer);
	if (ret)
		return ret;

	if (timer < 1)
		return -EINVAL;

	/* same value, noting to do */
	if (timer == pmu->hrtimer_interval_ms)
		return count;

9472
	mutex_lock(&mux_interval_mutex);
9473 9474 9475
	pmu->hrtimer_interval_ms = timer;

	/* update all cpuctx for this PMU */
9476
	cpus_read_lock();
9477
	for_each_online_cpu(cpu) {
9478 9479 9480 9481
		struct perf_cpu_context *cpuctx;
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
		cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);

9482 9483
		cpu_function_call(cpu,
			(remote_function_f)perf_mux_hrtimer_restart, cpuctx);
9484
	}
9485
	cpus_read_unlock();
9486
	mutex_unlock(&mux_interval_mutex);
9487 9488 9489

	return count;
}
9490
static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
9491

9492 9493 9494 9495
static struct attribute *pmu_dev_attrs[] = {
	&dev_attr_type.attr,
	&dev_attr_perf_event_mux_interval_ms.attr,
	NULL,
P
Peter Zijlstra 已提交
9496
};
9497
ATTRIBUTE_GROUPS(pmu_dev);
P
Peter Zijlstra 已提交
9498 9499 9500 9501

static int pmu_bus_running;
static struct bus_type pmu_bus = {
	.name		= "event_source",
9502
	.dev_groups	= pmu_dev_groups,
P
Peter Zijlstra 已提交
9503 9504 9505 9506 9507 9508 9509 9510 9511 9512 9513 9514 9515 9516 9517
};

static void pmu_dev_release(struct device *dev)
{
	kfree(dev);
}

static int pmu_dev_alloc(struct pmu *pmu)
{
	int ret = -ENOMEM;

	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
	if (!pmu->dev)
		goto out;

9518
	pmu->dev->groups = pmu->attr_groups;
P
Peter Zijlstra 已提交
9519 9520 9521 9522 9523 9524 9525 9526 9527 9528 9529 9530
	device_initialize(pmu->dev);
	ret = dev_set_name(pmu->dev, "%s", pmu->name);
	if (ret)
		goto free_dev;

	dev_set_drvdata(pmu->dev, pmu);
	pmu->dev->bus = &pmu_bus;
	pmu->dev->release = pmu_dev_release;
	ret = device_add(pmu->dev);
	if (ret)
		goto free_dev;

9531 9532 9533 9534 9535 9536 9537
	/* For PMUs with address filters, throw in an extra attribute: */
	if (pmu->nr_addr_filters)
		ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);

	if (ret)
		goto del_dev;

P
Peter Zijlstra 已提交
9538 9539 9540
out:
	return ret;

9541 9542 9543
del_dev:
	device_del(pmu->dev);

P
Peter Zijlstra 已提交
9544 9545 9546 9547 9548
free_dev:
	put_device(pmu->dev);
	goto out;
}

9549
static struct lock_class_key cpuctx_mutex;
9550
static struct lock_class_key cpuctx_lock;
9551

9552
int perf_pmu_register(struct pmu *pmu, const char *name, int type)
9553
{
P
Peter Zijlstra 已提交
9554
	int cpu, ret;
9555

9556
	mutex_lock(&pmus_lock);
P
Peter Zijlstra 已提交
9557 9558 9559 9560
	ret = -ENOMEM;
	pmu->pmu_disable_count = alloc_percpu(int);
	if (!pmu->pmu_disable_count)
		goto unlock;
9561

P
Peter Zijlstra 已提交
9562 9563 9564 9565 9566 9567
	pmu->type = -1;
	if (!name)
		goto skip_type;
	pmu->name = name;

	if (type < 0) {
T
Tejun Heo 已提交
9568 9569 9570
		type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
		if (type < 0) {
			ret = type;
P
Peter Zijlstra 已提交
9571 9572 9573 9574 9575
			goto free_pdc;
		}
	}
	pmu->type = type;

P
Peter Zijlstra 已提交
9576 9577 9578 9579 9580 9581
	if (pmu_bus_running) {
		ret = pmu_dev_alloc(pmu);
		if (ret)
			goto free_idr;
	}

P
Peter Zijlstra 已提交
9582
skip_type:
9583 9584 9585
	if (pmu->task_ctx_nr == perf_hw_context) {
		static int hw_context_taken = 0;

9586 9587 9588 9589 9590 9591 9592
		/*
		 * Other than systems with heterogeneous CPUs, it never makes
		 * sense for two PMUs to share perf_hw_context. PMUs which are
		 * uncore must use perf_invalid_context.
		 */
		if (WARN_ON_ONCE(hw_context_taken &&
		    !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
9593 9594 9595 9596 9597
			pmu->task_ctx_nr = perf_invalid_context;

		hw_context_taken = 1;
	}

P
Peter Zijlstra 已提交
9598 9599 9600
	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
	if (pmu->pmu_cpu_context)
		goto got_cpu_context;
9601

W
Wei Yongjun 已提交
9602
	ret = -ENOMEM;
P
Peter Zijlstra 已提交
9603 9604
	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
	if (!pmu->pmu_cpu_context)
P
Peter Zijlstra 已提交
9605
		goto free_dev;
9606

P
Peter Zijlstra 已提交
9607 9608 9609 9610
	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
9611
		__perf_event_init_context(&cpuctx->ctx);
9612
		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
9613
		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
P
Peter Zijlstra 已提交
9614
		cpuctx->ctx.pmu = pmu;
9615
		cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
9616

9617
		__perf_mux_hrtimer_init(cpuctx, cpu);
P
Peter Zijlstra 已提交
9618
	}
9619

P
Peter Zijlstra 已提交
9620
got_cpu_context:
P
Peter Zijlstra 已提交
9621 9622 9623 9624 9625 9626 9627 9628 9629 9630 9631
	if (!pmu->start_txn) {
		if (pmu->pmu_enable) {
			/*
			 * If we have pmu_enable/pmu_disable calls, install
			 * transaction stubs that use that to try and batch
			 * hardware accesses.
			 */
			pmu->start_txn  = perf_pmu_start_txn;
			pmu->commit_txn = perf_pmu_commit_txn;
			pmu->cancel_txn = perf_pmu_cancel_txn;
		} else {
9632
			pmu->start_txn  = perf_pmu_nop_txn;
P
Peter Zijlstra 已提交
9633 9634
			pmu->commit_txn = perf_pmu_nop_int;
			pmu->cancel_txn = perf_pmu_nop_void;
9635
		}
9636
	}
9637

P
Peter Zijlstra 已提交
9638 9639 9640 9641 9642
	if (!pmu->pmu_enable) {
		pmu->pmu_enable  = perf_pmu_nop_void;
		pmu->pmu_disable = perf_pmu_nop_void;
	}

9643 9644 9645
	if (!pmu->event_idx)
		pmu->event_idx = perf_event_idx_default;

9646
	list_add_rcu(&pmu->entry, &pmus);
9647
	atomic_set(&pmu->exclusive_cnt, 0);
P
Peter Zijlstra 已提交
9648 9649
	ret = 0;
unlock:
9650 9651
	mutex_unlock(&pmus_lock);

P
Peter Zijlstra 已提交
9652
	return ret;
P
Peter Zijlstra 已提交
9653

P
Peter Zijlstra 已提交
9654 9655 9656 9657
free_dev:
	device_del(pmu->dev);
	put_device(pmu->dev);

P
Peter Zijlstra 已提交
9658 9659 9660 9661
free_idr:
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);

P
Peter Zijlstra 已提交
9662 9663 9664
free_pdc:
	free_percpu(pmu->pmu_disable_count);
	goto unlock;
9665
}
9666
EXPORT_SYMBOL_GPL(perf_pmu_register);
9667

9668
void perf_pmu_unregister(struct pmu *pmu)
9669
{
9670 9671
	int remove_device;

9672
	mutex_lock(&pmus_lock);
9673
	remove_device = pmu_bus_running;
9674 9675
	list_del_rcu(&pmu->entry);
	mutex_unlock(&pmus_lock);
9676

9677
	/*
P
Peter Zijlstra 已提交
9678 9679
	 * We dereference the pmu list under both SRCU and regular RCU, so
	 * synchronize against both of those.
9680
	 */
9681
	synchronize_srcu(&pmus_srcu);
P
Peter Zijlstra 已提交
9682
	synchronize_rcu();
9683

P
Peter Zijlstra 已提交
9684
	free_percpu(pmu->pmu_disable_count);
P
Peter Zijlstra 已提交
9685 9686
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);
9687 9688 9689 9690 9691 9692
	if (remove_device) {
		if (pmu->nr_addr_filters)
			device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
		device_del(pmu->dev);
		put_device(pmu->dev);
	}
9693
	free_pmu_context(pmu);
9694
}
9695
EXPORT_SYMBOL_GPL(perf_pmu_unregister);
9696

9697 9698
static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
{
P
Peter Zijlstra 已提交
9699
	struct perf_event_context *ctx = NULL;
9700 9701 9702 9703
	int ret;

	if (!try_module_get(pmu->module))
		return -ENODEV;
P
Peter Zijlstra 已提交
9704

9705 9706 9707 9708 9709 9710 9711
	/*
	 * A number of pmu->event_init() methods iterate the sibling_list to,
	 * for example, validate if the group fits on the PMU. Therefore,
	 * if this is a sibling event, acquire the ctx->mutex to protect
	 * the sibling_list.
	 */
	if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) {
9712 9713 9714 9715 9716 9717
		/*
		 * This ctx->mutex can nest when we're called through
		 * inheritance. See the perf_event_ctx_lock_nested() comment.
		 */
		ctx = perf_event_ctx_lock_nested(event->group_leader,
						 SINGLE_DEPTH_NESTING);
P
Peter Zijlstra 已提交
9718 9719 9720
		BUG_ON(!ctx);
	}

9721 9722
	event->pmu = pmu;
	ret = pmu->event_init(event);
P
Peter Zijlstra 已提交
9723 9724 9725 9726

	if (ctx)
		perf_event_ctx_unlock(event->group_leader, ctx);

9727 9728 9729 9730 9731 9732
	if (ret)
		module_put(pmu->module);

	return ret;
}

9733
static struct pmu *perf_init_event(struct perf_event *event)
9734
{
D
Dan Carpenter 已提交
9735
	struct pmu *pmu;
9736
	int idx;
9737
	int ret;
9738 9739

	idx = srcu_read_lock(&pmus_srcu);
P
Peter Zijlstra 已提交
9740

9741 9742 9743 9744 9745 9746 9747 9748
	/* Try parent's PMU first: */
	if (event->parent && event->parent->pmu) {
		pmu = event->parent->pmu;
		ret = perf_try_init_event(pmu, event);
		if (!ret)
			goto unlock;
	}

P
Peter Zijlstra 已提交
9749 9750 9751
	rcu_read_lock();
	pmu = idr_find(&pmu_idr, event->attr.type);
	rcu_read_unlock();
9752
	if (pmu) {
9753
		ret = perf_try_init_event(pmu, event);
9754 9755
		if (ret)
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
9756
		goto unlock;
9757
	}
P
Peter Zijlstra 已提交
9758

9759
	list_for_each_entry_rcu(pmu, &pmus, entry) {
9760
		ret = perf_try_init_event(pmu, event);
9761
		if (!ret)
P
Peter Zijlstra 已提交
9762
			goto unlock;
9763

9764 9765
		if (ret != -ENOENT) {
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
9766
			goto unlock;
9767
		}
9768
	}
P
Peter Zijlstra 已提交
9769 9770
	pmu = ERR_PTR(-ENOENT);
unlock:
9771
	srcu_read_unlock(&pmus_srcu, idx);
9772

9773
	return pmu;
9774 9775
}

9776 9777 9778 9779 9780 9781 9782 9783 9784
static void attach_sb_event(struct perf_event *event)
{
	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);

	raw_spin_lock(&pel->lock);
	list_add_rcu(&event->sb_list, &pel->list);
	raw_spin_unlock(&pel->lock);
}

9785 9786 9787 9788 9789 9790 9791
/*
 * We keep a list of all !task (and therefore per-cpu) events
 * that need to receive side-band records.
 *
 * This avoids having to scan all the various PMU per-cpu contexts
 * looking for them.
 */
9792 9793
static void account_pmu_sb_event(struct perf_event *event)
{
9794
	if (is_sb_event(event))
9795 9796 9797
		attach_sb_event(event);
}

9798 9799 9800 9801 9802 9803 9804 9805 9806
static void account_event_cpu(struct perf_event *event, int cpu)
{
	if (event->parent)
		return;

	if (is_cgroup_event(event))
		atomic_inc(&per_cpu(perf_cgroup_events, cpu));
}

9807 9808 9809 9810 9811 9812 9813 9814 9815 9816 9817 9818 9819 9820 9821 9822 9823 9824 9825 9826 9827
/* Freq events need the tick to stay alive (see perf_event_task_tick). */
static void account_freq_event_nohz(void)
{
#ifdef CONFIG_NO_HZ_FULL
	/* Lock so we don't race with concurrent unaccount */
	spin_lock(&nr_freq_lock);
	if (atomic_inc_return(&nr_freq_events) == 1)
		tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
	spin_unlock(&nr_freq_lock);
#endif
}

static void account_freq_event(void)
{
	if (tick_nohz_full_enabled())
		account_freq_event_nohz();
	else
		atomic_inc(&nr_freq_events);
}


9828 9829
static void account_event(struct perf_event *event)
{
9830 9831
	bool inc = false;

9832 9833 9834
	if (event->parent)
		return;

9835
	if (event->attach_state & PERF_ATTACH_TASK)
9836
		inc = true;
9837 9838 9839 9840
	if (event->attr.mmap || event->attr.mmap_data)
		atomic_inc(&nr_mmap_events);
	if (event->attr.comm)
		atomic_inc(&nr_comm_events);
9841 9842
	if (event->attr.namespaces)
		atomic_inc(&nr_namespaces_events);
9843 9844
	if (event->attr.task)
		atomic_inc(&nr_task_events);
9845 9846
	if (event->attr.freq)
		account_freq_event();
9847 9848
	if (event->attr.context_switch) {
		atomic_inc(&nr_switch_events);
9849
		inc = true;
9850
	}
9851
	if (has_branch_stack(event))
9852
		inc = true;
9853
	if (is_cgroup_event(event))
9854 9855
		inc = true;

9856
	if (inc) {
9857 9858 9859 9860 9861
		/*
		 * We need the mutex here because static_branch_enable()
		 * must complete *before* the perf_sched_count increment
		 * becomes visible.
		 */
9862 9863 9864 9865 9866 9867 9868 9869 9870 9871 9872 9873 9874 9875 9876 9877 9878 9879 9880 9881 9882
		if (atomic_inc_not_zero(&perf_sched_count))
			goto enabled;

		mutex_lock(&perf_sched_mutex);
		if (!atomic_read(&perf_sched_count)) {
			static_branch_enable(&perf_sched_events);
			/*
			 * Guarantee that all CPUs observe they key change and
			 * call the perf scheduling hooks before proceeding to
			 * install events that need them.
			 */
			synchronize_sched();
		}
		/*
		 * Now that we have waited for the sync_sched(), allow further
		 * increments to by-pass the mutex.
		 */
		atomic_inc(&perf_sched_count);
		mutex_unlock(&perf_sched_mutex);
	}
enabled:
9883 9884

	account_event_cpu(event, event->cpu);
9885 9886

	account_pmu_sb_event(event);
9887 9888
}

T
Thomas Gleixner 已提交
9889
/*
9890
 * Allocate and initialize a event structure
T
Thomas Gleixner 已提交
9891
 */
9892
static struct perf_event *
9893
perf_event_alloc(struct perf_event_attr *attr, int cpu,
9894 9895 9896
		 struct task_struct *task,
		 struct perf_event *group_leader,
		 struct perf_event *parent_event,
9897
		 perf_overflow_handler_t overflow_handler,
9898
		 void *context, int cgroup_fd)
T
Thomas Gleixner 已提交
9899
{
P
Peter Zijlstra 已提交
9900
	struct pmu *pmu;
9901 9902
	struct perf_event *event;
	struct hw_perf_event *hwc;
9903
	long err = -EINVAL;
T
Thomas Gleixner 已提交
9904

9905 9906 9907 9908 9909
	if ((unsigned)cpu >= nr_cpu_ids) {
		if (!task || cpu != -1)
			return ERR_PTR(-EINVAL);
	}

9910
	event = kzalloc(sizeof(*event), GFP_KERNEL);
9911
	if (!event)
9912
		return ERR_PTR(-ENOMEM);
T
Thomas Gleixner 已提交
9913

9914
	/*
9915
	 * Single events are their own group leaders, with an
9916 9917 9918
	 * empty sibling list:
	 */
	if (!group_leader)
9919
		group_leader = event;
9920

9921 9922
	mutex_init(&event->child_mutex);
	INIT_LIST_HEAD(&event->child_list);
9923

9924 9925
	INIT_LIST_HEAD(&event->event_entry);
	INIT_LIST_HEAD(&event->sibling_list);
9926
	INIT_LIST_HEAD(&event->active_list);
9927
	init_event_group(event);
9928
	INIT_LIST_HEAD(&event->rb_entry);
9929
	INIT_LIST_HEAD(&event->active_entry);
9930
	INIT_LIST_HEAD(&event->addr_filters.list);
9931 9932
	INIT_HLIST_NODE(&event->hlist_entry);

9933

9934
	init_waitqueue_head(&event->waitq);
9935
	init_irq_work(&event->pending, perf_pending_event);
T
Thomas Gleixner 已提交
9936

9937
	mutex_init(&event->mmap_mutex);
9938
	raw_spin_lock_init(&event->addr_filters.lock);
9939

9940
	atomic_long_set(&event->refcount, 1);
9941 9942 9943 9944 9945
	event->cpu		= cpu;
	event->attr		= *attr;
	event->group_leader	= group_leader;
	event->pmu		= NULL;
	event->oncpu		= -1;
9946

9947
	event->parent		= parent_event;
9948

9949
	event->ns		= get_pid_ns(task_active_pid_ns(current));
9950
	event->id		= atomic64_inc_return(&perf_event_id);
9951

9952
	event->state		= PERF_EVENT_STATE_INACTIVE;
9953

9954 9955 9956
	if (task) {
		event->attach_state = PERF_ATTACH_TASK;
		/*
9957 9958 9959
		 * XXX pmu::event_init needs to know what task to account to
		 * and we cannot use the ctx information because we need the
		 * pmu before we get a ctx.
9960
		 */
9961
		get_task_struct(task);
9962
		event->hw.target = task;
9963 9964
	}

9965 9966 9967 9968
	event->clock = &local_clock;
	if (parent_event)
		event->clock = parent_event->clock;

9969
	if (!overflow_handler && parent_event) {
9970
		overflow_handler = parent_event->overflow_handler;
9971
		context = parent_event->overflow_handler_context;
9972
#if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
9973 9974 9975 9976 9977 9978 9979 9980 9981 9982 9983 9984
		if (overflow_handler == bpf_overflow_handler) {
			struct bpf_prog *prog = bpf_prog_inc(parent_event->prog);

			if (IS_ERR(prog)) {
				err = PTR_ERR(prog);
				goto err_ns;
			}
			event->prog = prog;
			event->orig_overflow_handler =
				parent_event->orig_overflow_handler;
		}
#endif
9985
	}
9986

9987 9988 9989
	if (overflow_handler) {
		event->overflow_handler	= overflow_handler;
		event->overflow_handler_context = context;
9990 9991 9992
	} else if (is_write_backward(event)){
		event->overflow_handler = perf_event_output_backward;
		event->overflow_handler_context = NULL;
9993
	} else {
9994
		event->overflow_handler = perf_event_output_forward;
9995 9996
		event->overflow_handler_context = NULL;
	}
9997

J
Jiri Olsa 已提交
9998
	perf_event__state_init(event);
9999

10000
	pmu = NULL;
10001

10002
	hwc = &event->hw;
10003
	hwc->sample_period = attr->sample_period;
10004
	if (attr->freq && attr->sample_freq)
10005
		hwc->sample_period = 1;
10006
	hwc->last_period = hwc->sample_period;
10007

10008
	local64_set(&hwc->period_left, hwc->sample_period);
10009

10010
	/*
10011 10012
	 * We currently do not support PERF_SAMPLE_READ on inherited events.
	 * See perf_output_read().
10013
	 */
10014
	if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
10015
		goto err_ns;
10016 10017 10018

	if (!has_branch_stack(event))
		event->attr.branch_sample_type = 0;
10019

10020 10021 10022 10023 10024 10025
	if (cgroup_fd != -1) {
		err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
		if (err)
			goto err_ns;
	}

10026
	pmu = perf_init_event(event);
D
Dan Carpenter 已提交
10027
	if (IS_ERR(pmu)) {
10028
		err = PTR_ERR(pmu);
10029
		goto err_ns;
I
Ingo Molnar 已提交
10030
	}
10031

10032 10033 10034 10035
	err = exclusive_event_init(event);
	if (err)
		goto err_pmu;

10036 10037 10038 10039
	if (has_addr_filter(event)) {
		event->addr_filters_offs = kcalloc(pmu->nr_addr_filters,
						   sizeof(unsigned long),
						   GFP_KERNEL);
10040 10041
		if (!event->addr_filters_offs) {
			err = -ENOMEM;
10042
			goto err_per_task;
10043
		}
10044 10045 10046 10047 10048

		/* force hw sync on the address filters */
		event->addr_filters_gen = 1;
	}

10049
	if (!event->parent) {
10050
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
10051
			err = get_callchain_buffers(attr->sample_max_stack);
10052
			if (err)
10053
				goto err_addr_filters;
10054
		}
10055
	}
10056

10057 10058 10059
	/* symmetric to unaccount_event() in _free_event() */
	account_event(event);

10060
	return event;
10061

10062 10063 10064
err_addr_filters:
	kfree(event->addr_filters_offs);

10065 10066 10067
err_per_task:
	exclusive_event_destroy(event);

10068 10069 10070
err_pmu:
	if (event->destroy)
		event->destroy(event);
10071
	module_put(pmu->module);
10072
err_ns:
10073 10074
	if (is_cgroup_event(event))
		perf_detach_cgroup(event);
10075 10076
	if (event->ns)
		put_pid_ns(event->ns);
10077 10078
	if (event->hw.target)
		put_task_struct(event->hw.target);
10079 10080 10081
	kfree(event);

	return ERR_PTR(err);
T
Thomas Gleixner 已提交
10082 10083
}

10084 10085
static int perf_copy_attr(struct perf_event_attr __user *uattr,
			  struct perf_event_attr *attr)
10086 10087
{
	u32 size;
10088
	int ret;
10089 10090 10091 10092 10093 10094 10095 10096 10097 10098 10099 10100 10101 10102 10103 10104 10105 10106 10107 10108 10109 10110 10111 10112

	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
		return -EFAULT;

	/*
	 * zero the full structure, so that a short copy will be nice.
	 */
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

	if (size > PAGE_SIZE)	/* silly large */
		goto err_size;

	if (!size)		/* abi compat */
		size = PERF_ATTR_SIZE_VER0;

	if (size < PERF_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
10113 10114 10115
	 * ensure all the unknown bits are 0 - i.e. new
	 * user-space does not rely on any kernel feature
	 * extensions we dont know about yet.
10116 10117
	 */
	if (size > sizeof(*attr)) {
10118 10119 10120
		unsigned char __user *addr;
		unsigned char __user *end;
		unsigned char val;
10121

10122 10123
		addr = (void __user *)uattr + sizeof(*attr);
		end  = (void __user *)uattr + size;
10124

10125
		for (; addr < end; addr++) {
10126 10127 10128 10129 10130 10131
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
10132
		size = sizeof(*attr);
10133 10134 10135 10136 10137 10138
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

10139 10140
	attr->size = size;

10141
	if (attr->__reserved_1)
10142 10143 10144 10145 10146 10147 10148 10149
		return -EINVAL;

	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
		return -EINVAL;

	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
		return -EINVAL;

10150 10151 10152 10153 10154 10155 10156 10157 10158 10159 10160 10161 10162 10163 10164 10165 10166 10167 10168 10169 10170 10171 10172 10173 10174 10175 10176 10177
	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
		u64 mask = attr->branch_sample_type;

		/* only using defined bits */
		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
			return -EINVAL;

		/* at least one branch bit must be set */
		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
			return -EINVAL;

		/* propagate priv level, when not set for branch */
		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {

			/* exclude_kernel checked on syscall entry */
			if (!attr->exclude_kernel)
				mask |= PERF_SAMPLE_BRANCH_KERNEL;

			if (!attr->exclude_user)
				mask |= PERF_SAMPLE_BRANCH_USER;

			if (!attr->exclude_hv)
				mask |= PERF_SAMPLE_BRANCH_HV;
			/*
			 * adjust user setting (for HW filter setup)
			 */
			attr->branch_sample_type = mask;
		}
10178 10179
		/* privileged levels capture (kernel, hv): check permissions */
		if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
10180 10181
		    && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
10182
	}
10183

10184
	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
10185
		ret = perf_reg_validate(attr->sample_regs_user);
10186 10187 10188 10189 10190 10191 10192 10193 10194 10195 10196 10197 10198 10199 10200 10201 10202 10203
		if (ret)
			return ret;
	}

	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
		if (!arch_perf_have_user_stack_dump())
			return -ENOSYS;

		/*
		 * We have __u32 type for the size, but so far
		 * we can only use __u16 as maximum due to the
		 * __u16 sample size limit.
		 */
		if (attr->sample_stack_user >= USHRT_MAX)
			ret = -EINVAL;
		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
			ret = -EINVAL;
	}
10204

10205 10206 10207
	if (!attr->sample_max_stack)
		attr->sample_max_stack = sysctl_perf_event_max_stack;

10208 10209
	if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
		ret = perf_reg_validate(attr->sample_regs_intr);
10210 10211 10212 10213 10214 10215 10216 10217 10218
out:
	return ret;

err_size:
	put_user(sizeof(*attr), &uattr->size);
	ret = -E2BIG;
	goto out;
}

10219 10220
static int
perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
10221
{
10222
	struct ring_buffer *rb = NULL;
10223 10224
	int ret = -EINVAL;

10225
	if (!output_event)
10226 10227
		goto set;

10228 10229
	/* don't allow circular references */
	if (event == output_event)
10230 10231
		goto out;

10232 10233 10234 10235 10236 10237 10238
	/*
	 * Don't allow cross-cpu buffers
	 */
	if (output_event->cpu != event->cpu)
		goto out;

	/*
10239
	 * If its not a per-cpu rb, it must be the same task.
10240 10241 10242 10243
	 */
	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
		goto out;

10244 10245 10246 10247 10248 10249
	/*
	 * Mixing clocks in the same buffer is trouble you don't need.
	 */
	if (output_event->clock != event->clock)
		goto out;

10250 10251 10252 10253 10254 10255 10256
	/*
	 * Either writing ring buffer from beginning or from end.
	 * Mixing is not allowed.
	 */
	if (is_write_backward(output_event) != is_write_backward(event))
		goto out;

10257 10258 10259 10260 10261 10262 10263
	/*
	 * If both events generate aux data, they must be on the same PMU
	 */
	if (has_aux(event) && has_aux(output_event) &&
	    event->pmu != output_event->pmu)
		goto out;

10264
set:
10265
	mutex_lock(&event->mmap_mutex);
10266 10267 10268
	/* Can't redirect output if we've got an active mmap() */
	if (atomic_read(&event->mmap_count))
		goto unlock;
10269

10270
	if (output_event) {
10271 10272 10273
		/* get the rb we want to redirect to */
		rb = ring_buffer_get(output_event);
		if (!rb)
10274
			goto unlock;
10275 10276
	}

10277
	ring_buffer_attach(event, rb);
10278

10279
	ret = 0;
10280 10281 10282
unlock:
	mutex_unlock(&event->mmap_mutex);

10283 10284 10285 10286
out:
	return ret;
}

P
Peter Zijlstra 已提交
10287 10288 10289 10290 10291 10292 10293 10294 10295
static void mutex_lock_double(struct mutex *a, struct mutex *b)
{
	if (b < a)
		swap(a, b);

	mutex_lock(a);
	mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
}

10296 10297 10298 10299 10300 10301 10302 10303 10304 10305 10306 10307 10308 10309 10310 10311 10312 10313 10314 10315 10316 10317 10318 10319 10320 10321 10322 10323 10324 10325 10326 10327 10328 10329 10330 10331 10332
static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
{
	bool nmi_safe = false;

	switch (clk_id) {
	case CLOCK_MONOTONIC:
		event->clock = &ktime_get_mono_fast_ns;
		nmi_safe = true;
		break;

	case CLOCK_MONOTONIC_RAW:
		event->clock = &ktime_get_raw_fast_ns;
		nmi_safe = true;
		break;

	case CLOCK_REALTIME:
		event->clock = &ktime_get_real_ns;
		break;

	case CLOCK_BOOTTIME:
		event->clock = &ktime_get_boot_ns;
		break;

	case CLOCK_TAI:
		event->clock = &ktime_get_tai_ns;
		break;

	default:
		return -EINVAL;
	}

	if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
		return -EINVAL;

	return 0;
}

10333 10334 10335 10336 10337 10338 10339 10340 10341 10342 10343 10344 10345 10346 10347 10348 10349 10350 10351 10352 10353 10354 10355 10356 10357 10358 10359 10360 10361 10362 10363
/*
 * Variation on perf_event_ctx_lock_nested(), except we take two context
 * mutexes.
 */
static struct perf_event_context *
__perf_event_ctx_lock_double(struct perf_event *group_leader,
			     struct perf_event_context *ctx)
{
	struct perf_event_context *gctx;

again:
	rcu_read_lock();
	gctx = READ_ONCE(group_leader->ctx);
	if (!atomic_inc_not_zero(&gctx->refcount)) {
		rcu_read_unlock();
		goto again;
	}
	rcu_read_unlock();

	mutex_lock_double(&gctx->mutex, &ctx->mutex);

	if (group_leader->ctx != gctx) {
		mutex_unlock(&ctx->mutex);
		mutex_unlock(&gctx->mutex);
		put_ctx(gctx);
		goto again;
	}

	return gctx;
}

T
Thomas Gleixner 已提交
10364
/**
10365
 * sys_perf_event_open - open a performance event, associate it to a task/cpu
I
Ingo Molnar 已提交
10366
 *
10367
 * @attr_uptr:	event_id type attributes for monitoring/sampling
T
Thomas Gleixner 已提交
10368
 * @pid:		target pid
I
Ingo Molnar 已提交
10369
 * @cpu:		target cpu
10370
 * @group_fd:		group leader event fd
T
Thomas Gleixner 已提交
10371
 */
10372 10373
SYSCALL_DEFINE5(perf_event_open,
		struct perf_event_attr __user *, attr_uptr,
10374
		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
T
Thomas Gleixner 已提交
10375
{
10376 10377
	struct perf_event *group_leader = NULL, *output_event = NULL;
	struct perf_event *event, *sibling;
10378
	struct perf_event_attr attr;
P
Peter Zijlstra 已提交
10379
	struct perf_event_context *ctx, *uninitialized_var(gctx);
10380
	struct file *event_file = NULL;
10381
	struct fd group = {NULL, 0};
M
Matt Helsley 已提交
10382
	struct task_struct *task = NULL;
10383
	struct pmu *pmu;
10384
	int event_fd;
10385
	int move_group = 0;
10386
	int err;
10387
	int f_flags = O_RDWR;
10388
	int cgroup_fd = -1;
T
Thomas Gleixner 已提交
10389

10390
	/* for future expandability... */
S
Stephane Eranian 已提交
10391
	if (flags & ~PERF_FLAG_ALL)
10392 10393
		return -EINVAL;

10394 10395 10396
	err = perf_copy_attr(attr_uptr, &attr);
	if (err)
		return err;
10397

10398 10399 10400 10401 10402
	if (!attr.exclude_kernel) {
		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
	}

10403 10404 10405 10406 10407
	if (attr.namespaces) {
		if (!capable(CAP_SYS_ADMIN))
			return -EACCES;
	}

10408
	if (attr.freq) {
10409
		if (attr.sample_freq > sysctl_perf_event_sample_rate)
10410
			return -EINVAL;
10411 10412 10413
	} else {
		if (attr.sample_period & (1ULL << 63))
			return -EINVAL;
10414 10415
	}

10416 10417 10418 10419 10420
	/* Only privileged users can get physical addresses */
	if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR) &&
	    perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
		return -EACCES;

S
Stephane Eranian 已提交
10421 10422 10423 10424 10425 10426 10427 10428 10429
	/*
	 * In cgroup mode, the pid argument is used to pass the fd
	 * opened to the cgroup directory in cgroupfs. The cpu argument
	 * designates the cpu on which to monitor threads from that
	 * cgroup.
	 */
	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
		return -EINVAL;

10430 10431 10432 10433
	if (flags & PERF_FLAG_FD_CLOEXEC)
		f_flags |= O_CLOEXEC;

	event_fd = get_unused_fd_flags(f_flags);
10434 10435 10436
	if (event_fd < 0)
		return event_fd;

10437
	if (group_fd != -1) {
10438 10439
		err = perf_fget_light(group_fd, &group);
		if (err)
10440
			goto err_fd;
10441
		group_leader = group.file->private_data;
10442 10443 10444 10445 10446 10447
		if (flags & PERF_FLAG_FD_OUTPUT)
			output_event = group_leader;
		if (flags & PERF_FLAG_FD_NO_GROUP)
			group_leader = NULL;
	}

S
Stephane Eranian 已提交
10448
	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
10449 10450 10451 10452 10453 10454 10455
		task = find_lively_task_by_vpid(pid);
		if (IS_ERR(task)) {
			err = PTR_ERR(task);
			goto err_group_fd;
		}
	}

10456 10457 10458 10459 10460 10461
	if (task && group_leader &&
	    group_leader->attr.inherit != attr.inherit) {
		err = -EINVAL;
		goto err_task;
	}

10462 10463 10464
	if (task) {
		err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
		if (err)
10465
			goto err_task;
10466 10467 10468 10469 10470 10471 10472 10473 10474 10475 10476 10477 10478 10479

		/*
		 * Reuse ptrace permission checks for now.
		 *
		 * We must hold cred_guard_mutex across this and any potential
		 * perf_install_in_context() call for this new event to
		 * serialize against exec() altering our credentials (and the
		 * perf_event_exit_task() that could imply).
		 */
		err = -EACCES;
		if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
			goto err_cred;
	}

10480 10481 10482
	if (flags & PERF_FLAG_PID_CGROUP)
		cgroup_fd = pid;

10483
	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
10484
				 NULL, NULL, cgroup_fd);
10485 10486
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
10487
		goto err_cred;
10488 10489
	}

10490 10491
	if (is_sampling_event(event)) {
		if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
10492
			err = -EOPNOTSUPP;
10493 10494 10495 10496
			goto err_alloc;
		}
	}

10497 10498 10499 10500 10501
	/*
	 * Special case software events and allow them to be part of
	 * any hardware group.
	 */
	pmu = event->pmu;
10502

10503 10504 10505 10506 10507 10508
	if (attr.use_clockid) {
		err = perf_event_set_clock(event, attr.clockid);
		if (err)
			goto err_alloc;
	}

10509 10510 10511
	if (pmu->task_ctx_nr == perf_sw_context)
		event->event_caps |= PERF_EV_CAP_SOFTWARE;

10512 10513 10514 10515 10516 10517 10518 10519 10520 10521 10522 10523 10524
	if (group_leader &&
	    (is_software_event(event) != is_software_event(group_leader))) {
		if (is_software_event(event)) {
			/*
			 * If event and group_leader are not both a software
			 * event, and event is, then group leader is not.
			 *
			 * Allow the addition of software events to !software
			 * groups, this is safe because software events never
			 * fail to schedule.
			 */
			pmu = group_leader->pmu;
		} else if (is_software_event(group_leader) &&
10525
			   (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
10526 10527 10528 10529 10530 10531 10532 10533
			/*
			 * In case the group is a pure software group, and we
			 * try to add a hardware event, move the whole group to
			 * the hardware context.
			 */
			move_group = 1;
		}
	}
10534 10535 10536 10537

	/*
	 * Get the target context (task or percpu):
	 */
10538
	ctx = find_get_context(pmu, task, event);
10539 10540
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
10541
		goto err_alloc;
10542 10543
	}

10544 10545 10546 10547 10548
	if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
		err = -EBUSY;
		goto err_context;
	}

I
Ingo Molnar 已提交
10549
	/*
10550
	 * Look up the group leader (we will attach this event to it):
10551
	 */
10552
	if (group_leader) {
10553
		err = -EINVAL;
10554 10555

		/*
I
Ingo Molnar 已提交
10556 10557 10558 10559
		 * Do not allow a recursive hierarchy (this new sibling
		 * becoming part of another group-sibling):
		 */
		if (group_leader->group_leader != group_leader)
10560
			goto err_context;
10561 10562 10563 10564 10565

		/* All events in a group should have the same clock */
		if (group_leader->clock != event->clock)
			goto err_context;

I
Ingo Molnar 已提交
10566
		/*
10567 10568 10569
		 * Make sure we're both events for the same CPU;
		 * grouping events for different CPUs is broken; since
		 * you can never concurrently schedule them anyhow.
10570
		 */
10571 10572
		if (group_leader->cpu != event->cpu)
			goto err_context;
10573

10574 10575 10576 10577 10578 10579 10580 10581 10582 10583 10584 10585 10586 10587
		/*
		 * Make sure we're both on the same task, or both
		 * per-CPU events.
		 */
		if (group_leader->ctx->task != ctx->task)
			goto err_context;

		/*
		 * Do not allow to attach to a group in a different task
		 * or CPU context. If we're moving SW events, we'll fix
		 * this up later, so allow that.
		 */
		if (!move_group && group_leader->ctx != ctx)
			goto err_context;
10588

10589 10590 10591
		/*
		 * Only a group leader can be exclusive or pinned
		 */
10592
		if (attr.exclusive || attr.pinned)
10593
			goto err_context;
10594 10595 10596 10597 10598
	}

	if (output_event) {
		err = perf_event_set_output(event, output_event);
		if (err)
10599
			goto err_context;
10600
	}
T
Thomas Gleixner 已提交
10601

10602 10603
	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
					f_flags);
10604 10605
	if (IS_ERR(event_file)) {
		err = PTR_ERR(event_file);
10606
		event_file = NULL;
10607
		goto err_context;
10608
	}
10609

10610
	if (move_group) {
10611 10612
		gctx = __perf_event_ctx_lock_double(group_leader, ctx);

10613 10614 10615 10616
		if (gctx->task == TASK_TOMBSTONE) {
			err = -ESRCH;
			goto err_locked;
		}
10617 10618 10619 10620 10621 10622 10623 10624 10625 10626 10627 10628 10629 10630 10631 10632 10633 10634 10635

		/*
		 * Check if we raced against another sys_perf_event_open() call
		 * moving the software group underneath us.
		 */
		if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
			/*
			 * If someone moved the group out from under us, check
			 * if this new event wound up on the same ctx, if so
			 * its the regular !move_group case, otherwise fail.
			 */
			if (gctx != ctx) {
				err = -EINVAL;
				goto err_locked;
			} else {
				perf_event_ctx_unlock(group_leader, gctx);
				move_group = 0;
			}
		}
10636 10637 10638 10639
	} else {
		mutex_lock(&ctx->mutex);
	}

10640 10641 10642 10643 10644
	if (ctx->task == TASK_TOMBSTONE) {
		err = -ESRCH;
		goto err_locked;
	}

P
Peter Zijlstra 已提交
10645 10646 10647 10648 10649
	if (!perf_event_validate_size(event)) {
		err = -E2BIG;
		goto err_locked;
	}

10650 10651 10652 10653 10654 10655 10656 10657 10658 10659 10660 10661 10662 10663 10664 10665 10666
	if (!task) {
		/*
		 * Check if the @cpu we're creating an event for is online.
		 *
		 * We use the perf_cpu_context::ctx::mutex to serialize against
		 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
		 */
		struct perf_cpu_context *cpuctx =
			container_of(ctx, struct perf_cpu_context, ctx);

		if (!cpuctx->online) {
			err = -ENODEV;
			goto err_locked;
		}
	}


10667 10668 10669 10670 10671 10672 10673
	/*
	 * Must be under the same ctx::mutex as perf_install_in_context(),
	 * because we need to serialize with concurrent event creation.
	 */
	if (!exclusive_event_installable(event, ctx)) {
		/* exclusive and group stuff are assumed mutually exclusive */
		WARN_ON_ONCE(move_group);
P
Peter Zijlstra 已提交
10674

10675 10676 10677
		err = -EBUSY;
		goto err_locked;
	}
P
Peter Zijlstra 已提交
10678

10679 10680
	WARN_ON_ONCE(ctx->parent_ctx);

10681 10682 10683 10684 10685
	/*
	 * This is the point on no return; we cannot fail hereafter. This is
	 * where we start modifying current state.
	 */

10686
	if (move_group) {
P
Peter Zijlstra 已提交
10687 10688 10689 10690
		/*
		 * See perf_event_ctx_lock() for comments on the details
		 * of swizzling perf_event::ctx.
		 */
10691
		perf_remove_from_context(group_leader, 0);
10692
		put_ctx(gctx);
J
Jiri Olsa 已提交
10693

P
Peter Zijlstra 已提交
10694
		for_each_sibling_event(sibling, group_leader) {
10695
			perf_remove_from_context(sibling, 0);
10696 10697 10698
			put_ctx(gctx);
		}

P
Peter Zijlstra 已提交
10699 10700 10701 10702
		/*
		 * Wait for everybody to stop referencing the events through
		 * the old lists, before installing it on new lists.
		 */
10703
		synchronize_rcu();
P
Peter Zijlstra 已提交
10704

10705 10706 10707 10708 10709 10710 10711 10712 10713 10714
		/*
		 * Install the group siblings before the group leader.
		 *
		 * Because a group leader will try and install the entire group
		 * (through the sibling list, which is still in-tact), we can
		 * end up with siblings installed in the wrong context.
		 *
		 * By installing siblings first we NO-OP because they're not
		 * reachable through the group lists.
		 */
P
Peter Zijlstra 已提交
10715
		for_each_sibling_event(sibling, group_leader) {
10716
			perf_event__state_init(sibling);
10717
			perf_install_in_context(ctx, sibling, sibling->cpu);
10718 10719
			get_ctx(ctx);
		}
10720 10721 10722 10723 10724 10725 10726 10727 10728

		/*
		 * Removing from the context ends up with disabled
		 * event. What we want here is event in the initial
		 * startup state, ready to be add into new context.
		 */
		perf_event__state_init(group_leader);
		perf_install_in_context(ctx, group_leader, group_leader->cpu);
		get_ctx(ctx);
10729 10730
	}

10731 10732 10733 10734 10735 10736 10737 10738 10739
	/*
	 * Precalculate sample_data sizes; do while holding ctx::mutex such
	 * that we're serialized against further additions and before
	 * perf_install_in_context() which is the point the event is active and
	 * can use these values.
	 */
	perf_event__header_size(event);
	perf_event__id_header_size(event);

P
Peter Zijlstra 已提交
10740 10741
	event->owner = current;

10742
	perf_install_in_context(ctx, event, event->cpu);
10743
	perf_unpin_context(ctx);
P
Peter Zijlstra 已提交
10744

10745
	if (move_group)
10746
		perf_event_ctx_unlock(group_leader, gctx);
10747
	mutex_unlock(&ctx->mutex);
10748

10749 10750 10751 10752 10753
	if (task) {
		mutex_unlock(&task->signal->cred_guard_mutex);
		put_task_struct(task);
	}

10754 10755 10756
	mutex_lock(&current->perf_event_mutex);
	list_add_tail(&event->owner_entry, &current->perf_event_list);
	mutex_unlock(&current->perf_event_mutex);
10757

10758 10759 10760 10761 10762 10763
	/*
	 * Drop the reference on the group_event after placing the
	 * new event on the sibling_list. This ensures destruction
	 * of the group leader will find the pointer to itself in
	 * perf_group_detach().
	 */
10764
	fdput(group);
10765 10766
	fd_install(event_fd, event_file);
	return event_fd;
T
Thomas Gleixner 已提交
10767

10768 10769
err_locked:
	if (move_group)
10770
		perf_event_ctx_unlock(group_leader, gctx);
10771 10772 10773
	mutex_unlock(&ctx->mutex);
/* err_file: */
	fput(event_file);
10774
err_context:
10775
	perf_unpin_context(ctx);
10776
	put_ctx(ctx);
10777
err_alloc:
P
Peter Zijlstra 已提交
10778 10779 10780 10781 10782 10783
	/*
	 * If event_file is set, the fput() above will have called ->release()
	 * and that will take care of freeing the event.
	 */
	if (!event_file)
		free_event(event);
10784 10785 10786
err_cred:
	if (task)
		mutex_unlock(&task->signal->cred_guard_mutex);
10787
err_task:
P
Peter Zijlstra 已提交
10788 10789
	if (task)
		put_task_struct(task);
10790
err_group_fd:
10791
	fdput(group);
10792 10793
err_fd:
	put_unused_fd(event_fd);
10794
	return err;
T
Thomas Gleixner 已提交
10795 10796
}

10797 10798 10799 10800 10801
/**
 * perf_event_create_kernel_counter
 *
 * @attr: attributes of the counter to create
 * @cpu: cpu in which the counter is bound
M
Matt Helsley 已提交
10802
 * @task: task to profile (NULL for percpu)
10803 10804 10805
 */
struct perf_event *
perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
M
Matt Helsley 已提交
10806
				 struct task_struct *task,
10807 10808
				 perf_overflow_handler_t overflow_handler,
				 void *context)
10809 10810
{
	struct perf_event_context *ctx;
10811
	struct perf_event *event;
10812
	int err;
10813

10814 10815 10816
	/*
	 * Get the target context (task or percpu):
	 */
10817

10818
	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
10819
				 overflow_handler, context, -1);
10820 10821 10822 10823
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
		goto err;
	}
10824

10825
	/* Mark owner so we could distinguish it from user events. */
10826
	event->owner = TASK_TOMBSTONE;
10827

10828
	ctx = find_get_context(event->pmu, task, event);
10829 10830
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
10831
		goto err_free;
10832
	}
10833 10834 10835

	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
10836 10837 10838 10839 10840
	if (ctx->task == TASK_TOMBSTONE) {
		err = -ESRCH;
		goto err_unlock;
	}

10841 10842 10843 10844 10845 10846 10847 10848 10849 10850 10851 10852 10853 10854 10855
	if (!task) {
		/*
		 * Check if the @cpu we're creating an event for is online.
		 *
		 * We use the perf_cpu_context::ctx::mutex to serialize against
		 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
		 */
		struct perf_cpu_context *cpuctx =
			container_of(ctx, struct perf_cpu_context, ctx);
		if (!cpuctx->online) {
			err = -ENODEV;
			goto err_unlock;
		}
	}

10856 10857
	if (!exclusive_event_installable(event, ctx)) {
		err = -EBUSY;
10858
		goto err_unlock;
10859 10860
	}

10861
	perf_install_in_context(ctx, event, cpu);
10862
	perf_unpin_context(ctx);
10863 10864 10865 10866
	mutex_unlock(&ctx->mutex);

	return event;

10867 10868 10869 10870
err_unlock:
	mutex_unlock(&ctx->mutex);
	perf_unpin_context(ctx);
	put_ctx(ctx);
10871 10872 10873
err_free:
	free_event(event);
err:
10874
	return ERR_PTR(err);
10875
}
10876
EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
10877

10878 10879 10880 10881 10882 10883 10884 10885 10886 10887
void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
{
	struct perf_event_context *src_ctx;
	struct perf_event_context *dst_ctx;
	struct perf_event *event, *tmp;
	LIST_HEAD(events);

	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;

P
Peter Zijlstra 已提交
10888 10889 10890 10891 10892
	/*
	 * See perf_event_ctx_lock() for comments on the details
	 * of swizzling perf_event::ctx.
	 */
	mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
10893 10894
	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
				 event_entry) {
10895
		perf_remove_from_context(event, 0);
10896
		unaccount_event_cpu(event, src_cpu);
10897
		put_ctx(src_ctx);
10898
		list_add(&event->migrate_entry, &events);
10899 10900
	}

10901 10902 10903
	/*
	 * Wait for the events to quiesce before re-instating them.
	 */
10904 10905
	synchronize_rcu();

10906 10907 10908 10909 10910 10911 10912 10913 10914 10915 10916 10917 10918 10919 10920 10921 10922 10923 10924 10925 10926 10927 10928 10929
	/*
	 * Re-instate events in 2 passes.
	 *
	 * Skip over group leaders and only install siblings on this first
	 * pass, siblings will not get enabled without a leader, however a
	 * leader will enable its siblings, even if those are still on the old
	 * context.
	 */
	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
		if (event->group_leader == event)
			continue;

		list_del(&event->migrate_entry);
		if (event->state >= PERF_EVENT_STATE_OFF)
			event->state = PERF_EVENT_STATE_INACTIVE;
		account_event_cpu(event, dst_cpu);
		perf_install_in_context(dst_ctx, event, dst_cpu);
		get_ctx(dst_ctx);
	}

	/*
	 * Once all the siblings are setup properly, install the group leaders
	 * to make it go.
	 */
10930 10931
	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
		list_del(&event->migrate_entry);
10932 10933
		if (event->state >= PERF_EVENT_STATE_OFF)
			event->state = PERF_EVENT_STATE_INACTIVE;
10934
		account_event_cpu(event, dst_cpu);
10935 10936 10937 10938
		perf_install_in_context(dst_ctx, event, dst_cpu);
		get_ctx(dst_ctx);
	}
	mutex_unlock(&dst_ctx->mutex);
P
Peter Zijlstra 已提交
10939
	mutex_unlock(&src_ctx->mutex);
10940 10941 10942
}
EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);

10943
static void sync_child_event(struct perf_event *child_event,
10944
			       struct task_struct *child)
10945
{
10946
	struct perf_event *parent_event = child_event->parent;
10947
	u64 child_val;
10948

10949 10950
	if (child_event->attr.inherit_stat)
		perf_event_read_event(child_event, child);
10951

P
Peter Zijlstra 已提交
10952
	child_val = perf_event_count(child_event);
10953 10954 10955 10956

	/*
	 * Add back the child's count to the parent's count:
	 */
10957
	atomic64_add(child_val, &parent_event->child_count);
10958 10959 10960 10961
	atomic64_add(child_event->total_time_enabled,
		     &parent_event->child_total_time_enabled);
	atomic64_add(child_event->total_time_running,
		     &parent_event->child_total_time_running);
10962 10963
}

10964
static void
10965 10966 10967
perf_event_exit_event(struct perf_event *child_event,
		      struct perf_event_context *child_ctx,
		      struct task_struct *child)
10968
{
10969 10970
	struct perf_event *parent_event = child_event->parent;

10971 10972 10973 10974 10975 10976 10977 10978 10979 10980 10981 10982
	/*
	 * Do not destroy the 'original' grouping; because of the context
	 * switch optimization the original events could've ended up in a
	 * random child task.
	 *
	 * If we were to destroy the original group, all group related
	 * operations would cease to function properly after this random
	 * child dies.
	 *
	 * Do destroy all inherited groups, we don't care about those
	 * and being thorough is better.
	 */
10983 10984 10985
	raw_spin_lock_irq(&child_ctx->lock);
	WARN_ON_ONCE(child_ctx->is_active);

10986
	if (parent_event)
10987 10988
		perf_group_detach(child_event);
	list_del_event(child_event, child_ctx);
10989
	perf_event_set_state(child_event, PERF_EVENT_STATE_EXIT); /* is_event_hup() */
10990
	raw_spin_unlock_irq(&child_ctx->lock);
10991

10992
	/*
10993
	 * Parent events are governed by their filedesc, retain them.
10994
	 */
10995
	if (!parent_event) {
10996
		perf_event_wakeup(child_event);
10997
		return;
10998
	}
10999 11000 11001 11002 11003 11004 11005 11006 11007 11008 11009 11010 11011 11012 11013 11014 11015 11016 11017 11018
	/*
	 * Child events can be cleaned up.
	 */

	sync_child_event(child_event, child);

	/*
	 * Remove this event from the parent's list
	 */
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_del_init(&child_event->child_list);
	mutex_unlock(&parent_event->child_mutex);

	/*
	 * Kick perf_poll() for is_event_hup().
	 */
	perf_event_wakeup(parent_event);
	free_event(child_event);
	put_event(parent_event);
11019 11020
}

P
Peter Zijlstra 已提交
11021
static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
11022
{
11023
	struct perf_event_context *child_ctx, *clone_ctx = NULL;
11024 11025 11026
	struct perf_event *child_event, *next;

	WARN_ON_ONCE(child != current);
11027

11028
	child_ctx = perf_pin_task_context(child, ctxn);
11029
	if (!child_ctx)
11030 11031
		return;

11032
	/*
11033 11034 11035 11036 11037 11038 11039 11040
	 * In order to reduce the amount of tricky in ctx tear-down, we hold
	 * ctx::mutex over the entire thing. This serializes against almost
	 * everything that wants to access the ctx.
	 *
	 * The exception is sys_perf_event_open() /
	 * perf_event_create_kernel_count() which does find_get_context()
	 * without ctx::mutex (it cannot because of the move_group double mutex
	 * lock thing). See the comments in perf_install_in_context().
11041
	 */
11042
	mutex_lock(&child_ctx->mutex);
11043 11044

	/*
11045 11046 11047
	 * In a single ctx::lock section, de-schedule the events and detach the
	 * context from the task such that we cannot ever get it scheduled back
	 * in.
11048
	 */
11049
	raw_spin_lock_irq(&child_ctx->lock);
11050
	task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
11051

11052
	/*
11053 11054
	 * Now that the context is inactive, destroy the task <-> ctx relation
	 * and mark the context dead.
11055
	 */
11056 11057 11058 11059
	RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
	put_ctx(child_ctx); /* cannot be last */
	WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
	put_task_struct(current); /* cannot be last */
11060

11061
	clone_ctx = unclone_ctx(child_ctx);
11062
	raw_spin_unlock_irq(&child_ctx->lock);
P
Peter Zijlstra 已提交
11063

11064 11065
	if (clone_ctx)
		put_ctx(clone_ctx);
11066

P
Peter Zijlstra 已提交
11067
	/*
11068 11069 11070
	 * Report the task dead after unscheduling the events so that we
	 * won't get any samples after PERF_RECORD_EXIT. We can however still
	 * get a few PERF_RECORD_READ events.
P
Peter Zijlstra 已提交
11071
	 */
11072
	perf_event_task(child, child_ctx, 0);
11073

11074
	list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
11075
		perf_event_exit_event(child_event, child_ctx, child);
11076

11077 11078 11079
	mutex_unlock(&child_ctx->mutex);

	put_ctx(child_ctx);
11080 11081
}

P
Peter Zijlstra 已提交
11082 11083
/*
 * When a child task exits, feed back event values to parent events.
11084 11085 11086
 *
 * Can be called with cred_guard_mutex held when called from
 * install_exec_creds().
P
Peter Zijlstra 已提交
11087 11088 11089
 */
void perf_event_exit_task(struct task_struct *child)
{
P
Peter Zijlstra 已提交
11090
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
11091 11092
	int ctxn;

P
Peter Zijlstra 已提交
11093 11094 11095 11096 11097 11098 11099 11100 11101 11102
	mutex_lock(&child->perf_event_mutex);
	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
				 owner_entry) {
		list_del_init(&event->owner_entry);

		/*
		 * Ensure the list deletion is visible before we clear
		 * the owner, closes a race against perf_release() where
		 * we need to serialize on the owner->perf_event_mutex.
		 */
11103
		smp_store_release(&event->owner, NULL);
P
Peter Zijlstra 已提交
11104 11105 11106
	}
	mutex_unlock(&child->perf_event_mutex);

P
Peter Zijlstra 已提交
11107 11108
	for_each_task_context_nr(ctxn)
		perf_event_exit_task_context(child, ctxn);
J
Jiri Olsa 已提交
11109 11110 11111 11112 11113 11114 11115 11116

	/*
	 * The perf_event_exit_task_context calls perf_event_task
	 * with child's task_ctx, which generates EXIT events for
	 * child contexts and sets child->perf_event_ctxp[] to NULL.
	 * At this point we need to send EXIT events to cpu contexts.
	 */
	perf_event_task(child, NULL, 0);
P
Peter Zijlstra 已提交
11117 11118
}

11119 11120 11121 11122 11123 11124 11125 11126 11127 11128 11129 11130
static void perf_free_event(struct perf_event *event,
			    struct perf_event_context *ctx)
{
	struct perf_event *parent = event->parent;

	if (WARN_ON_ONCE(!parent))
		return;

	mutex_lock(&parent->child_mutex);
	list_del_init(&event->child_list);
	mutex_unlock(&parent->child_mutex);

11131
	put_event(parent);
11132

P
Peter Zijlstra 已提交
11133
	raw_spin_lock_irq(&ctx->lock);
11134
	perf_group_detach(event);
11135
	list_del_event(event, ctx);
P
Peter Zijlstra 已提交
11136
	raw_spin_unlock_irq(&ctx->lock);
11137 11138 11139
	free_event(event);
}

11140
/*
P
Peter Zijlstra 已提交
11141
 * Free an unexposed, unused context as created by inheritance by
P
Peter Zijlstra 已提交
11142
 * perf_event_init_task below, used by fork() in case of fail.
P
Peter Zijlstra 已提交
11143 11144 11145
 *
 * Not all locks are strictly required, but take them anyway to be nice and
 * help out with the lockdep assertions.
11146
 */
11147
void perf_event_free_task(struct task_struct *task)
11148
{
P
Peter Zijlstra 已提交
11149
	struct perf_event_context *ctx;
11150
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
11151
	int ctxn;
11152

P
Peter Zijlstra 已提交
11153 11154 11155 11156
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;
11157

P
Peter Zijlstra 已提交
11158
		mutex_lock(&ctx->mutex);
11159 11160 11161 11162 11163 11164 11165 11166 11167 11168 11169
		raw_spin_lock_irq(&ctx->lock);
		/*
		 * Destroy the task <-> ctx relation and mark the context dead.
		 *
		 * This is important because even though the task hasn't been
		 * exposed yet the context has been (through child_list).
		 */
		RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
		WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
		put_task_struct(task); /* cannot be last */
		raw_spin_unlock_irq(&ctx->lock);
11170

11171
		list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
P
Peter Zijlstra 已提交
11172
			perf_free_event(event, ctx);
11173

P
Peter Zijlstra 已提交
11174 11175 11176
		mutex_unlock(&ctx->mutex);
		put_ctx(ctx);
	}
11177 11178
}

11179 11180 11181 11182 11183 11184 11185 11186
void perf_event_delayed_put(struct task_struct *task)
{
	int ctxn;

	for_each_task_context_nr(ctxn)
		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
}

11187
struct file *perf_event_get(unsigned int fd)
11188
{
11189
	struct file *file;
11190

11191 11192 11193
	file = fget_raw(fd);
	if (!file)
		return ERR_PTR(-EBADF);
11194

11195 11196 11197 11198
	if (file->f_op != &perf_fops) {
		fput(file);
		return ERR_PTR(-EBADF);
	}
11199

11200
	return file;
11201 11202 11203 11204 11205 11206 11207 11208 11209 11210
}

const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
{
	if (!event)
		return ERR_PTR(-EINVAL);

	return &event->attr;
}

P
Peter Zijlstra 已提交
11211
/*
11212 11213 11214 11215 11216 11217
 * Inherit a event from parent task to child task.
 *
 * Returns:
 *  - valid pointer on success
 *  - NULL for orphaned events
 *  - IS_ERR() on error
P
Peter Zijlstra 已提交
11218 11219 11220 11221 11222 11223 11224 11225 11226
 */
static struct perf_event *
inherit_event(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event *group_leader,
	      struct perf_event_context *child_ctx)
{
11227
	enum perf_event_state parent_state = parent_event->state;
P
Peter Zijlstra 已提交
11228
	struct perf_event *child_event;
11229
	unsigned long flags;
P
Peter Zijlstra 已提交
11230 11231 11232 11233 11234 11235 11236 11237 11238 11239 11240 11241

	/*
	 * Instead of creating recursive hierarchies of events,
	 * we link inherited events back to the original parent,
	 * which has a filp for sure, which we use as the reference
	 * count:
	 */
	if (parent_event->parent)
		parent_event = parent_event->parent;

	child_event = perf_event_alloc(&parent_event->attr,
					   parent_event->cpu,
11242
					   child,
P
Peter Zijlstra 已提交
11243
					   group_leader, parent_event,
11244
					   NULL, NULL, -1);
P
Peter Zijlstra 已提交
11245 11246
	if (IS_ERR(child_event))
		return child_event;
11247

11248 11249 11250 11251 11252 11253 11254 11255 11256 11257 11258 11259 11260

	if ((child_event->attach_state & PERF_ATTACH_TASK_DATA) &&
	    !child_ctx->task_ctx_data) {
		struct pmu *pmu = child_event->pmu;

		child_ctx->task_ctx_data = kzalloc(pmu->task_ctx_size,
						   GFP_KERNEL);
		if (!child_ctx->task_ctx_data) {
			free_event(child_event);
			return NULL;
		}
	}

11261 11262 11263 11264 11265 11266 11267
	/*
	 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
	 * must be under the same lock in order to serialize against
	 * perf_event_release_kernel(), such that either we must observe
	 * is_orphaned_event() or they will observe us on the child_list.
	 */
	mutex_lock(&parent_event->child_mutex);
11268 11269
	if (is_orphaned_event(parent_event) ||
	    !atomic_long_inc_not_zero(&parent_event->refcount)) {
11270
		mutex_unlock(&parent_event->child_mutex);
11271
		/* task_ctx_data is freed with child_ctx */
11272 11273 11274 11275
		free_event(child_event);
		return NULL;
	}

P
Peter Zijlstra 已提交
11276 11277 11278 11279 11280 11281 11282
	get_ctx(child_ctx);

	/*
	 * Make the child state follow the state of the parent event,
	 * not its attr.disabled bit.  We hold the parent's mutex,
	 * so we won't race with perf_event_{en, dis}able_family.
	 */
11283
	if (parent_state >= PERF_EVENT_STATE_INACTIVE)
P
Peter Zijlstra 已提交
11284 11285 11286 11287 11288 11289 11290 11291 11292 11293 11294 11295 11296 11297 11298 11299
		child_event->state = PERF_EVENT_STATE_INACTIVE;
	else
		child_event->state = PERF_EVENT_STATE_OFF;

	if (parent_event->attr.freq) {
		u64 sample_period = parent_event->hw.sample_period;
		struct hw_perf_event *hwc = &child_event->hw;

		hwc->sample_period = sample_period;
		hwc->last_period   = sample_period;

		local64_set(&hwc->period_left, sample_period);
	}

	child_event->ctx = child_ctx;
	child_event->overflow_handler = parent_event->overflow_handler;
11300 11301
	child_event->overflow_handler_context
		= parent_event->overflow_handler_context;
P
Peter Zijlstra 已提交
11302

11303 11304 11305 11306
	/*
	 * Precalculate sample_data sizes
	 */
	perf_event__header_size(child_event);
11307
	perf_event__id_header_size(child_event);
11308

P
Peter Zijlstra 已提交
11309 11310 11311
	/*
	 * Link it up in the child's context:
	 */
11312
	raw_spin_lock_irqsave(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
11313
	add_event_to_ctx(child_event, child_ctx);
11314
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
11315 11316 11317 11318 11319 11320 11321 11322 11323 11324

	/*
	 * Link this into the parent event's child list
	 */
	list_add_tail(&child_event->child_list, &parent_event->child_list);
	mutex_unlock(&parent_event->child_mutex);

	return child_event;
}

11325 11326 11327 11328 11329 11330 11331 11332 11333 11334
/*
 * Inherits an event group.
 *
 * This will quietly suppress orphaned events; !inherit_event() is not an error.
 * This matches with perf_event_release_kernel() removing all child events.
 *
 * Returns:
 *  - 0 on success
 *  - <0 on error
 */
P
Peter Zijlstra 已提交
11335 11336 11337 11338 11339 11340 11341 11342 11343 11344 11345 11346 11347 11348
static int inherit_group(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event_context *child_ctx)
{
	struct perf_event *leader;
	struct perf_event *sub;
	struct perf_event *child_ctr;

	leader = inherit_event(parent_event, parent, parent_ctx,
				 child, NULL, child_ctx);
	if (IS_ERR(leader))
		return PTR_ERR(leader);
11349 11350 11351 11352 11353
	/*
	 * @leader can be NULL here because of is_orphaned_event(). In this
	 * case inherit_event() will create individual events, similar to what
	 * perf_group_detach() would do anyway.
	 */
P
Peter Zijlstra 已提交
11354
	for_each_sibling_event(sub, parent_event) {
P
Peter Zijlstra 已提交
11355 11356 11357 11358 11359 11360
		child_ctr = inherit_event(sub, parent, parent_ctx,
					    child, leader, child_ctx);
		if (IS_ERR(child_ctr))
			return PTR_ERR(child_ctr);
	}
	return 0;
11361 11362
}

11363 11364 11365 11366 11367 11368 11369 11370 11371 11372 11373
/*
 * Creates the child task context and tries to inherit the event-group.
 *
 * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
 * inherited_all set when we 'fail' to inherit an orphaned event; this is
 * consistent with perf_event_release_kernel() removing all child events.
 *
 * Returns:
 *  - 0 on success
 *  - <0 on error
 */
11374 11375 11376
static int
inherit_task_group(struct perf_event *event, struct task_struct *parent,
		   struct perf_event_context *parent_ctx,
P
Peter Zijlstra 已提交
11377
		   struct task_struct *child, int ctxn,
11378 11379 11380
		   int *inherited_all)
{
	int ret;
P
Peter Zijlstra 已提交
11381
	struct perf_event_context *child_ctx;
11382 11383 11384 11385

	if (!event->attr.inherit) {
		*inherited_all = 0;
		return 0;
11386 11387
	}

11388
	child_ctx = child->perf_event_ctxp[ctxn];
11389 11390 11391 11392 11393 11394 11395
	if (!child_ctx) {
		/*
		 * This is executed from the parent task context, so
		 * inherit events that have been marked for cloning.
		 * First allocate and initialize a context for the
		 * child.
		 */
11396
		child_ctx = alloc_perf_context(parent_ctx->pmu, child);
11397 11398
		if (!child_ctx)
			return -ENOMEM;
11399

P
Peter Zijlstra 已提交
11400
		child->perf_event_ctxp[ctxn] = child_ctx;
11401 11402 11403 11404 11405 11406 11407 11408 11409
	}

	ret = inherit_group(event, parent, parent_ctx,
			    child, child_ctx);

	if (ret)
		*inherited_all = 0;

	return ret;
11410 11411
}

11412
/*
11413
 * Initialize the perf_event context in task_struct
11414
 */
11415
static int perf_event_init_context(struct task_struct *child, int ctxn)
11416
{
11417
	struct perf_event_context *child_ctx, *parent_ctx;
11418 11419
	struct perf_event_context *cloned_ctx;
	struct perf_event *event;
11420
	struct task_struct *parent = current;
11421
	int inherited_all = 1;
11422
	unsigned long flags;
11423
	int ret = 0;
11424

P
Peter Zijlstra 已提交
11425
	if (likely(!parent->perf_event_ctxp[ctxn]))
11426 11427
		return 0;

11428
	/*
11429 11430
	 * If the parent's context is a clone, pin it so it won't get
	 * swapped under us.
11431
	 */
P
Peter Zijlstra 已提交
11432
	parent_ctx = perf_pin_task_context(parent, ctxn);
11433 11434
	if (!parent_ctx)
		return 0;
11435

11436 11437 11438 11439 11440 11441 11442
	/*
	 * No need to check if parent_ctx != NULL here; since we saw
	 * it non-NULL earlier, the only reason for it to become NULL
	 * is if we exit, and since we're currently in the middle of
	 * a fork we can't be exiting at the same time.
	 */

11443 11444 11445 11446
	/*
	 * Lock the parent list. No need to lock the child - not PID
	 * hashed yet and not running, so nobody can access it.
	 */
11447
	mutex_lock(&parent_ctx->mutex);
11448 11449 11450 11451 11452

	/*
	 * We dont have to disable NMIs - we are only looking at
	 * the list, not manipulating it:
	 */
11453
	perf_event_groups_for_each(event, &parent_ctx->pinned_groups) {
P
Peter Zijlstra 已提交
11454 11455
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
11456
		if (ret)
11457
			goto out_unlock;
11458
	}
11459

11460 11461 11462 11463 11464 11465 11466 11467 11468
	/*
	 * We can't hold ctx->lock when iterating the ->flexible_group list due
	 * to allocations, but we need to prevent rotation because
	 * rotate_ctx() will change the list from interrupt context.
	 */
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 1;
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);

11469
	perf_event_groups_for_each(event, &parent_ctx->flexible_groups) {
P
Peter Zijlstra 已提交
11470 11471
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
11472
		if (ret)
11473
			goto out_unlock;
11474 11475
	}

11476 11477 11478
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 0;

P
Peter Zijlstra 已提交
11479
	child_ctx = child->perf_event_ctxp[ctxn];
11480

11481
	if (child_ctx && inherited_all) {
11482 11483 11484
		/*
		 * Mark the child context as a clone of the parent
		 * context, or of whatever the parent is a clone of.
P
Peter Zijlstra 已提交
11485 11486 11487
		 *
		 * Note that if the parent is a clone, the holding of
		 * parent_ctx->lock avoids it from being uncloned.
11488
		 */
P
Peter Zijlstra 已提交
11489
		cloned_ctx = parent_ctx->parent_ctx;
11490 11491
		if (cloned_ctx) {
			child_ctx->parent_ctx = cloned_ctx;
11492
			child_ctx->parent_gen = parent_ctx->parent_gen;
11493 11494 11495 11496 11497
		} else {
			child_ctx->parent_ctx = parent_ctx;
			child_ctx->parent_gen = parent_ctx->generation;
		}
		get_ctx(child_ctx->parent_ctx);
11498 11499
	}

P
Peter Zijlstra 已提交
11500
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
11501
out_unlock:
11502
	mutex_unlock(&parent_ctx->mutex);
11503

11504
	perf_unpin_context(parent_ctx);
11505
	put_ctx(parent_ctx);
11506

11507
	return ret;
11508 11509
}

P
Peter Zijlstra 已提交
11510 11511 11512 11513 11514 11515 11516
/*
 * Initialize the perf_event context in task_struct
 */
int perf_event_init_task(struct task_struct *child)
{
	int ctxn, ret;

11517 11518 11519 11520
	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
	mutex_init(&child->perf_event_mutex);
	INIT_LIST_HEAD(&child->perf_event_list);

P
Peter Zijlstra 已提交
11521 11522
	for_each_task_context_nr(ctxn) {
		ret = perf_event_init_context(child, ctxn);
P
Peter Zijlstra 已提交
11523 11524
		if (ret) {
			perf_event_free_task(child);
P
Peter Zijlstra 已提交
11525
			return ret;
P
Peter Zijlstra 已提交
11526
		}
P
Peter Zijlstra 已提交
11527 11528 11529 11530 11531
	}

	return 0;
}

11532 11533
static void __init perf_event_init_all_cpus(void)
{
11534
	struct swevent_htable *swhash;
11535 11536
	int cpu;

11537 11538
	zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);

11539
	for_each_possible_cpu(cpu) {
11540 11541
		swhash = &per_cpu(swevent_htable, cpu);
		mutex_init(&swhash->hlist_mutex);
11542
		INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
11543 11544 11545

		INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
		raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
11546

11547 11548 11549
#ifdef CONFIG_CGROUP_PERF
		INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
#endif
11550
		INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
11551 11552 11553
	}
}

11554
void perf_swevent_init_cpu(unsigned int cpu)
T
Thomas Gleixner 已提交
11555
{
P
Peter Zijlstra 已提交
11556
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
T
Thomas Gleixner 已提交
11557

11558
	mutex_lock(&swhash->hlist_mutex);
11559
	if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
11560 11561
		struct swevent_hlist *hlist;

11562 11563 11564
		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
		WARN_ON(!hlist);
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
11565
	}
11566
	mutex_unlock(&swhash->hlist_mutex);
T
Thomas Gleixner 已提交
11567 11568
}

11569
#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
P
Peter Zijlstra 已提交
11570
static void __perf_event_exit_context(void *__info)
T
Thomas Gleixner 已提交
11571
{
P
Peter Zijlstra 已提交
11572
	struct perf_event_context *ctx = __info;
11573 11574
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
	struct perf_event *event;
T
Thomas Gleixner 已提交
11575

11576
	raw_spin_lock(&ctx->lock);
11577
	ctx_sched_out(ctx, cpuctx, EVENT_TIME);
11578
	list_for_each_entry(event, &ctx->event_list, event_entry)
11579
		__perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
11580
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
11581
}
P
Peter Zijlstra 已提交
11582 11583 11584

static void perf_event_exit_cpu_context(int cpu)
{
11585
	struct perf_cpu_context *cpuctx;
P
Peter Zijlstra 已提交
11586 11587 11588
	struct perf_event_context *ctx;
	struct pmu *pmu;

11589 11590 11591 11592
	mutex_lock(&pmus_lock);
	list_for_each_entry(pmu, &pmus, entry) {
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
		ctx = &cpuctx->ctx;
P
Peter Zijlstra 已提交
11593 11594 11595

		mutex_lock(&ctx->mutex);
		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
11596
		cpuctx->online = 0;
P
Peter Zijlstra 已提交
11597 11598
		mutex_unlock(&ctx->mutex);
	}
11599 11600
	cpumask_clear_cpu(cpu, perf_online_mask);
	mutex_unlock(&pmus_lock);
P
Peter Zijlstra 已提交
11601
}
11602 11603 11604 11605 11606
#else

static void perf_event_exit_cpu_context(int cpu) { }

#endif
P
Peter Zijlstra 已提交
11607

11608 11609 11610 11611 11612 11613 11614 11615 11616 11617 11618 11619 11620 11621 11622 11623 11624 11625 11626 11627 11628 11629 11630
int perf_event_init_cpu(unsigned int cpu)
{
	struct perf_cpu_context *cpuctx;
	struct perf_event_context *ctx;
	struct pmu *pmu;

	perf_swevent_init_cpu(cpu);

	mutex_lock(&pmus_lock);
	cpumask_set_cpu(cpu, perf_online_mask);
	list_for_each_entry(pmu, &pmus, entry) {
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
		ctx = &cpuctx->ctx;

		mutex_lock(&ctx->mutex);
		cpuctx->online = 1;
		mutex_unlock(&ctx->mutex);
	}
	mutex_unlock(&pmus_lock);

	return 0;
}

11631
int perf_event_exit_cpu(unsigned int cpu)
T
Thomas Gleixner 已提交
11632
{
P
Peter Zijlstra 已提交
11633
	perf_event_exit_cpu_context(cpu);
11634
	return 0;
T
Thomas Gleixner 已提交
11635 11636
}

P
Peter Zijlstra 已提交
11637 11638 11639 11640 11641 11642 11643 11644 11645 11646 11647 11648 11649 11650 11651 11652 11653 11654 11655 11656
static int
perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
{
	int cpu;

	for_each_online_cpu(cpu)
		perf_event_exit_cpu(cpu);

	return NOTIFY_OK;
}

/*
 * Run the perf reboot notifier at the very last possible moment so that
 * the generic watchdog code runs as long as possible.
 */
static struct notifier_block perf_reboot_notifier = {
	.notifier_call = perf_reboot,
	.priority = INT_MIN,
};

11657
void __init perf_event_init(void)
T
Thomas Gleixner 已提交
11658
{
11659 11660
	int ret;

P
Peter Zijlstra 已提交
11661 11662
	idr_init(&pmu_idr);

11663
	perf_event_init_all_cpus();
11664
	init_srcu_struct(&pmus_srcu);
P
Peter Zijlstra 已提交
11665 11666 11667
	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
	perf_pmu_register(&perf_cpu_clock, NULL, -1);
	perf_pmu_register(&perf_task_clock, NULL, -1);
11668
	perf_tp_register();
11669
	perf_event_init_cpu(smp_processor_id());
P
Peter Zijlstra 已提交
11670
	register_reboot_notifier(&perf_reboot_notifier);
11671 11672 11673

	ret = init_hw_breakpoint();
	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
11674

11675 11676 11677 11678 11679 11680
	/*
	 * Build time assertion that we keep the data_head at the intended
	 * location.  IOW, validation we got the __reserved[] size right.
	 */
	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
		     != 1024);
T
Thomas Gleixner 已提交
11681
}
P
Peter Zijlstra 已提交
11682

11683 11684 11685 11686 11687 11688 11689 11690 11691 11692 11693
ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
			      char *page)
{
	struct perf_pmu_events_attr *pmu_attr =
		container_of(attr, struct perf_pmu_events_attr, attr);

	if (pmu_attr->event_str)
		return sprintf(page, "%s\n", pmu_attr->event_str);

	return 0;
}
11694
EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
11695

P
Peter Zijlstra 已提交
11696 11697 11698 11699 11700 11701 11702 11703 11704 11705 11706 11707 11708 11709 11710 11711 11712 11713 11714 11715 11716 11717 11718 11719 11720 11721 11722
static int __init perf_event_sysfs_init(void)
{
	struct pmu *pmu;
	int ret;

	mutex_lock(&pmus_lock);

	ret = bus_register(&pmu_bus);
	if (ret)
		goto unlock;

	list_for_each_entry(pmu, &pmus, entry) {
		if (!pmu->name || pmu->type < 0)
			continue;

		ret = pmu_dev_alloc(pmu);
		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
	}
	pmu_bus_running = 1;
	ret = 0;

unlock:
	mutex_unlock(&pmus_lock);

	return ret;
}
device_initcall(perf_event_sysfs_init);
S
Stephane Eranian 已提交
11723 11724

#ifdef CONFIG_CGROUP_PERF
11725 11726
static struct cgroup_subsys_state *
perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
S
Stephane Eranian 已提交
11727 11728 11729
{
	struct perf_cgroup *jc;

11730
	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
S
Stephane Eranian 已提交
11731 11732 11733 11734 11735 11736 11737 11738 11739 11740 11741 11742
	if (!jc)
		return ERR_PTR(-ENOMEM);

	jc->info = alloc_percpu(struct perf_cgroup_info);
	if (!jc->info) {
		kfree(jc);
		return ERR_PTR(-ENOMEM);
	}

	return &jc->css;
}

11743
static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
S
Stephane Eranian 已提交
11744
{
11745 11746
	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);

S
Stephane Eranian 已提交
11747 11748 11749 11750 11751 11752 11753
	free_percpu(jc->info);
	kfree(jc);
}

static int __perf_cgroup_move(void *info)
{
	struct task_struct *task = info;
11754
	rcu_read_lock();
S
Stephane Eranian 已提交
11755
	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
11756
	rcu_read_unlock();
S
Stephane Eranian 已提交
11757 11758 11759
	return 0;
}

11760
static void perf_cgroup_attach(struct cgroup_taskset *tset)
S
Stephane Eranian 已提交
11761
{
11762
	struct task_struct *task;
11763
	struct cgroup_subsys_state *css;
11764

11765
	cgroup_taskset_for_each(task, css, tset)
11766
		task_function_call(task, __perf_cgroup_move, task);
S
Stephane Eranian 已提交
11767 11768
}

11769
struct cgroup_subsys perf_event_cgrp_subsys = {
11770 11771
	.css_alloc	= perf_cgroup_css_alloc,
	.css_free	= perf_cgroup_css_free,
11772
	.attach		= perf_cgroup_attach,
11773 11774 11775 11776 11777 11778
	/*
	 * Implicitly enable on dfl hierarchy so that perf events can
	 * always be filtered by cgroup2 path as long as perf_event
	 * controller is not mounted on a legacy hierarchy.
	 */
	.implicit_on_dfl = true,
11779
	.threaded	= true,
S
Stephane Eranian 已提交
11780 11781
};
#endif /* CONFIG_CGROUP_PERF */