setup_64.c 25.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12
/*
 * 
 * Common boot and setup code.
 *
 * Copyright (C) 2001 PPC64 Team, IBM Corp
 *
 *      This program is free software; you can redistribute it and/or
 *      modify it under the terms of the GNU General Public License
 *      as published by the Free Software Foundation; either version
 *      2 of the License, or (at your option) any later version.
 */

13
#include <linux/export.h>
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
#include <linux/string.h>
#include <linux/sched.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/reboot.h>
#include <linux/delay.h>
#include <linux/initrd.h>
#include <linux/seq_file.h>
#include <linux/ioport.h>
#include <linux/console.h>
#include <linux/utsname.h>
#include <linux/tty.h>
#include <linux/root_dev.h>
#include <linux/notifier.h>
#include <linux/cpu.h>
#include <linux/unistd.h>
#include <linux/serial.h>
#include <linux/serial_8250.h>
32
#include <linux/bootmem.h>
33
#include <linux/pci.h>
34
#include <linux/lockdep.h>
Y
Yinghai Lu 已提交
35
#include <linux/memblock.h>
36
#include <linux/memory.h>
37
#include <linux/nmi.h>
38

39
#include <asm/debugfs.h>
40
#include <asm/io.h>
41
#include <asm/kdump.h>
42 43 44 45 46 47 48 49 50
#include <asm/prom.h>
#include <asm/processor.h>
#include <asm/pgtable.h>
#include <asm/smp.h>
#include <asm/elf.h>
#include <asm/machdep.h>
#include <asm/paca.h>
#include <asm/time.h>
#include <asm/cputable.h>
51
#include <asm/dt_cpu_ftrs.h>
52 53 54 55 56 57 58 59 60 61 62
#include <asm/sections.h>
#include <asm/btext.h>
#include <asm/nvram.h>
#include <asm/setup.h>
#include <asm/rtas.h>
#include <asm/iommu.h>
#include <asm/serial.h>
#include <asm/cache.h>
#include <asm/page.h>
#include <asm/mmu.h>
#include <asm/firmware.h>
P
Paul Mackerras 已提交
63
#include <asm/xmon.h>
D
David Gibson 已提交
64
#include <asm/udbg.h>
65
#include <asm/kexec.h>
66
#include <asm/code-patching.h>
67
#include <asm/livepatch.h>
68
#include <asm/opal.h>
69
#include <asm/cputhreads.h>
70
#include <asm/hw_irq.h>
71
#include <asm/feature-fixups.h>
72

73 74
#include "setup.h"

75 76 77 78 79 80
#ifdef DEBUG
#define DBG(fmt...) udbg_printf(fmt)
#else
#define DBG(fmt...)
#endif

81
int spinning_secondaries;
82 83
u64 ppc64_pft_size;

84
struct ppc64_caches ppc64_caches = {
85 86 87 88 89 90 91 92
	.l1d = {
		.block_size = 0x40,
		.log_block_size = 6,
	},
	.l1i = {
		.block_size = 0x40,
		.log_block_size = 6
	},
93
};
94 95
EXPORT_SYMBOL_GPL(ppc64_caches);

96
#if defined(CONFIG_PPC_BOOK3E) && defined(CONFIG_SMP)
97
void __init setup_tlb_core_data(void)
98 99 100
{
	int cpu;

101 102
	BUILD_BUG_ON(offsetof(struct tlb_core_data, lock) != 0);

103 104 105
	for_each_possible_cpu(cpu) {
		int first = cpu_first_thread_sibling(cpu);

106 107 108 109 110 111 112 113
		/*
		 * If we boot via kdump on a non-primary thread,
		 * make sure we point at the thread that actually
		 * set up this TLB.
		 */
		if (cpu_first_thread_sibling(boot_cpuid) == first)
			first = boot_cpuid;

114
		paca_ptrs[cpu]->tcd_ptr = &paca_ptrs[first]->tcd;
115 116 117 118 119

		/*
		 * If we have threads, we need either tlbsrx.
		 * or e6500 tablewalk mode, or else TLB handlers
		 * will be racy and could produce duplicate entries.
120
		 * Should we panic instead?
121
		 */
122 123 124 125
		WARN_ONCE(smt_enabled_at_boot >= 2 &&
			  !mmu_has_feature(MMU_FTR_USE_TLBRSRV) &&
			  book3e_htw_mode != PPC_HTW_E6500,
			  "%s: unsupported MMU configuration\n", __func__);
126 127 128 129
	}
}
#endif

130 131
#ifdef CONFIG_SMP

132
static char *smt_enabled_cmdline;
133 134

/* Look for ibm,smt-enabled OF option */
135
void __init check_smt_enabled(void)
136 137
{
	struct device_node *dn;
138
	const char *smt_option;
139

140 141
	/* Default to enabling all threads */
	smt_enabled_at_boot = threads_per_core;
142

143 144 145 146 147 148 149
	/* Allow the command line to overrule the OF option */
	if (smt_enabled_cmdline) {
		if (!strcmp(smt_enabled_cmdline, "on"))
			smt_enabled_at_boot = threads_per_core;
		else if (!strcmp(smt_enabled_cmdline, "off"))
			smt_enabled_at_boot = 0;
		else {
150
			int smt;
151 152
			int rc;

153
			rc = kstrtoint(smt_enabled_cmdline, 10, &smt);
154 155
			if (!rc)
				smt_enabled_at_boot =
156
					min(threads_per_core, smt);
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
		}
	} else {
		dn = of_find_node_by_path("/options");
		if (dn) {
			smt_option = of_get_property(dn, "ibm,smt-enabled",
						     NULL);

			if (smt_option) {
				if (!strcmp(smt_option, "on"))
					smt_enabled_at_boot = threads_per_core;
				else if (!strcmp(smt_option, "off"))
					smt_enabled_at_boot = 0;
			}

			of_node_put(dn);
		}
	}
174 175 176 177 178
}

/* Look for smt-enabled= cmdline option */
static int __init early_smt_enabled(char *p)
{
179
	smt_enabled_cmdline = p;
180 181 182 183 184 185
	return 0;
}
early_param("smt-enabled", early_smt_enabled);

#endif /* CONFIG_SMP */

186
/** Fix up paca fields required for the boot cpu */
187
static void __init fixup_boot_paca(void)
188 189 190 191 192
{
	/* The boot cpu is started */
	get_paca()->cpu_start = 1;
	/* Allow percpu accesses to work until we setup percpu data */
	get_paca()->data_offset = 0;
193
	/* Mark interrupts disabled in PACA */
194
	irq_soft_mask_set(IRQS_DISABLED);
195 196
}

197
static void __init configure_exceptions(void)
198
{
199
	/*
200 201
	 * Setup the trampolines from the lowmem exception vectors
	 * to the kdump kernel when not using a relocatable kernel.
202
	 */
203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
	setup_kdump_trampoline();

	/* Under a PAPR hypervisor, we need hypercalls */
	if (firmware_has_feature(FW_FEATURE_SET_MODE)) {
		/* Enable AIL if possible */
		pseries_enable_reloc_on_exc();

		/*
		 * Tell the hypervisor that we want our exceptions to
		 * be taken in little endian mode.
		 *
		 * We don't call this for big endian as our calling convention
		 * makes us always enter in BE, and the call may fail under
		 * some circumstances with kdump.
		 */
#ifdef __LITTLE_ENDIAN__
		pseries_little_endian_exceptions();
#endif
	} else {
		/* Set endian mode using OPAL */
		if (firmware_has_feature(FW_FEATURE_OPAL))
			opal_configure_cores();

226
		/* AIL on native is done in cpu_ready_for_interrupts() */
227 228 229
	}
}

230 231
static void cpu_ready_for_interrupts(void)
{
232 233 234 235 236 237 238
	/*
	 * Enable AIL if supported, and we are in hypervisor mode. This
	 * is called once for every processor.
	 *
	 * If we are not in hypervisor mode the job is done once for
	 * the whole partition in configure_exceptions().
	 */
239 240
	if (cpu_has_feature(CPU_FTR_HVMODE) &&
	    cpu_has_feature(CPU_FTR_ARCH_207S)) {
241 242 243 244
		unsigned long lpcr = mfspr(SPRN_LPCR);
		mtspr(SPRN_LPCR, lpcr | LPCR_AIL_3);
	}

245 246 247 248 249 250 251 252 253
	/*
	 * Fixup HFSCR:TM based on CPU features. The bit is set by our
	 * early asm init because at that point we haven't updated our
	 * CPU features from firmware and device-tree. Here we have,
	 * so let's do it.
	 */
	if (cpu_has_feature(CPU_FTR_HVMODE) && !cpu_has_feature(CPU_FTR_TM_COMP))
		mtspr(SPRN_HFSCR, mfspr(SPRN_HFSCR) & ~HFSCR_TM);

254 255 256 257
	/* Set IR and DR in PACA MSR */
	get_paca()->kernel_msr = MSR_KERNEL;
}

258 259 260 261 262 263 264 265
unsigned long spr_default_dscr = 0;

void __init record_spr_defaults(void)
{
	if (early_cpu_has_feature(CPU_FTR_DSCR))
		spr_default_dscr = mfspr(SPRN_DSCR);
}

266 267 268 269 270 271
/*
 * Early initialization entry point. This is called by head.S
 * with MMU translation disabled. We rely on the "feature" of
 * the CPU that ignores the top 2 bits of the address in real
 * mode so we can access kernel globals normally provided we
 * only toy with things in the RMO region. From here, we do
Y
Yinghai Lu 已提交
272
 * some early parsing of the device-tree to setup out MEMBLOCK
273 274 275 276 277 278 279 280 281 282 283 284 285 286
 * data structures, and allocate & initialize the hash table
 * and segment tables so we can start running with translation
 * enabled.
 *
 * It is this function which will call the probe() callback of
 * the various platform types and copy the matching one to the
 * global ppc_md structure. Your platform can eventually do
 * some very early initializations from the probe() routine, but
 * this is not recommended, be very careful as, for example, the
 * device-tree is not accessible via normal means at this point.
 */

void __init early_setup(unsigned long dt_ptr)
{
287 288
	static __initdata struct paca_struct boot_paca;

289 290
	/* -------- printk is _NOT_ safe to use here ! ------- */

291 292 293 294
	/* Try new device tree based feature discovery ... */
	if (!dt_cpu_ftrs_init(__va(dt_ptr)))
		/* Otherwise use the old style CPU table */
		identify_cpu(0, mfspr(SPRN_PVR));
295

296
	/* Assume we're on cpu 0 for now. Don't write to the paca yet! */
297 298
	initialise_paca(&boot_paca, 0);
	setup_paca(&boot_paca);
299
	fixup_boot_paca();
300

301 302
	/* -------- printk is now safe to use ------- */

303 304 305
	/* Enable early debugging if any specified (see udbg.h) */
	udbg_early_init();

306
 	DBG(" -> early_setup(), dt_ptr: 0x%lx\n", dt_ptr);
307 308

	/*
309 310 311
	 * Do early initialization using the flattened device
	 * tree, such as retrieving the physical memory map or
	 * calculating/retrieving the hash table size.
312 313 314
	 */
	early_init_devtree(__va(dt_ptr));

315
	/* Now we know the logical id of our boot cpu, setup the paca. */
316 317 318 319
	if (boot_cpuid != 0) {
		/* Poison paca_ptrs[0] again if it's not the boot cpu */
		memset(&paca_ptrs[0], 0x88, sizeof(paca_ptrs[0]));
	}
320
	setup_paca(paca_ptrs[boot_cpuid]);
321
	fixup_boot_paca();
322

323
	/*
324 325
	 * Configure exception handlers. This include setting up trampolines
	 * if needed, setting exception endian mode, etc...
326
	 */
327
	configure_exceptions();
328

329 330
	/* Apply all the dynamic patching */
	apply_feature_fixups();
331
	setup_feature_keys();
332

333 334 335
	/* Initialize the hash table or TLB handling */
	early_init_mmu();

336 337 338 339 340 341 342
	/*
	 * After firmware and early platform setup code has set things up,
	 * we note the SPR values for configurable control/performance
	 * registers, and use those as initial defaults.
	 */
	record_spr_defaults();

343 344 345
	/*
	 * At this point, we can let interrupts switch to virtual mode
	 * (the MMU has been setup), so adjust the MSR in the PACA to
346
	 * have IR and DR set and enable AIL if it exists
347
	 */
348
	cpu_ready_for_interrupts();
349

350 351 352 353 354 355 356
	/*
	 * We enable ftrace here, but since we only support DYNAMIC_FTRACE, it
	 * will only actually get enabled on the boot cpu much later once
	 * ftrace itself has been initialized.
	 */
	this_cpu_enable_ftrace();

357
	DBG(" <- early_setup()\n");
358 359 360 361 362 363 364 365 366 367 368 369

#ifdef CONFIG_PPC_EARLY_DEBUG_BOOTX
	/*
	 * This needs to be done *last* (after the above DBG() even)
	 *
	 * Right after we return from this function, we turn on the MMU
	 * which means the real-mode access trick that btext does will
	 * no longer work, it needs to switch to using a real MMU
	 * mapping. This call will ensure that it does
	 */
	btext_map();
#endif /* CONFIG_PPC_EARLY_DEBUG_BOOTX */
370 371
}

372 373 374
#ifdef CONFIG_SMP
void early_setup_secondary(void)
{
375
	/* Mark interrupts disabled in PACA */
376
	irq_soft_mask_set(IRQS_DISABLED);
377

378 379
	/* Initialize the hash table or TLB handling */
	early_init_mmu_secondary();
380 381 382 383 384 385

	/*
	 * At this point, we can let interrupts switch to virtual mode
	 * (the MMU has been setup), so adjust the MSR in the PACA to
	 * have IR and DR set.
	 */
386
	cpu_ready_for_interrupts();
387 388 389
}

#endif /* CONFIG_SMP */
390

391 392 393 394 395 396 397 398
void panic_smp_self_stop(void)
{
	hard_irq_disable();
	spin_begin();
	while (1)
		spin_cpu_relax();
}

399
#if defined(CONFIG_SMP) || defined(CONFIG_KEXEC_CORE)
400 401
static bool use_spinloop(void)
{
402 403 404 405 406 407 408 409
	if (IS_ENABLED(CONFIG_PPC_BOOK3S)) {
		/*
		 * See comments in head_64.S -- not all platforms insert
		 * secondaries at __secondary_hold and wait at the spin
		 * loop.
		 */
		if (firmware_has_feature(FW_FEATURE_OPAL))
			return false;
410
		return true;
411
	}
412 413 414 415 416 417 418 419

	/*
	 * When book3e boots from kexec, the ePAPR spin table does
	 * not get used.
	 */
	return of_property_read_bool(of_chosen, "linux,booted-from-kexec");
}

420 421
void smp_release_cpus(void)
{
422
	unsigned long *ptr;
423
	int i;
424

425 426 427
	if (!use_spinloop())
		return;

428 429 430 431 432 433
	DBG(" -> smp_release_cpus()\n");

	/* All secondary cpus are spinning on a common spinloop, release them
	 * all now so they can start to spin on their individual paca
	 * spinloops. For non SMP kernels, the secondary cpus never get out
	 * of the common spinloop.
434
	 */
435

436 437
	ptr  = (unsigned long *)((unsigned long)&__secondary_hold_spinloop
			- PHYSICAL_START);
438
	*ptr = ppc_function_entry(generic_secondary_smp_init);
439 440 441 442 443

	/* And wait a bit for them to catch up */
	for (i = 0; i < 100000; i++) {
		mb();
		HMT_low();
444
		if (spinning_secondaries == 0)
445 446 447
			break;
		udelay(1);
	}
448
	DBG("spinning_secondaries = %d\n", spinning_secondaries);
449 450 451

	DBG(" <- smp_release_cpus()\n");
}
452
#endif /* CONFIG_SMP || CONFIG_KEXEC_CORE */
453

454
/*
455 456
 * Initialize some remaining members of the ppc64_caches and systemcfg
 * structures
457 458 459 460
 * (at least until we get rid of them completely). This is mostly some
 * cache informations about the CPU that will be used by cache flush
 * routines and/or provided to userland
 */
461 462 463 464 465 466 467 468 469

static void init_cache_info(struct ppc_cache_info *info, u32 size, u32 lsize,
			    u32 bsize, u32 sets)
{
	info->size = size;
	info->sets = sets;
	info->line_size = lsize;
	info->block_size = bsize;
	info->log_block_size = __ilog2(bsize);
470 471 472 473
	if (bsize)
		info->blocks_per_page = PAGE_SIZE / bsize;
	else
		info->blocks_per_page = 0;
474 475 476 477 478

	if (sets == 0)
		info->assoc = 0xffff;
	else
		info->assoc = size / (sets * lsize);
479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537
}

static bool __init parse_cache_info(struct device_node *np,
				    bool icache,
				    struct ppc_cache_info *info)
{
	static const char *ipropnames[] __initdata = {
		"i-cache-size",
		"i-cache-sets",
		"i-cache-block-size",
		"i-cache-line-size",
	};
	static const char *dpropnames[] __initdata = {
		"d-cache-size",
		"d-cache-sets",
		"d-cache-block-size",
		"d-cache-line-size",
	};
	const char **propnames = icache ? ipropnames : dpropnames;
	const __be32 *sizep, *lsizep, *bsizep, *setsp;
	u32 size, lsize, bsize, sets;
	bool success = true;

	size = 0;
	sets = -1u;
	lsize = bsize = cur_cpu_spec->dcache_bsize;
	sizep = of_get_property(np, propnames[0], NULL);
	if (sizep != NULL)
		size = be32_to_cpu(*sizep);
	setsp = of_get_property(np, propnames[1], NULL);
	if (setsp != NULL)
		sets = be32_to_cpu(*setsp);
	bsizep = of_get_property(np, propnames[2], NULL);
	lsizep = of_get_property(np, propnames[3], NULL);
	if (bsizep == NULL)
		bsizep = lsizep;
	if (lsizep != NULL)
		lsize = be32_to_cpu(*lsizep);
	if (bsizep != NULL)
		bsize = be32_to_cpu(*bsizep);
	if (sizep == NULL || bsizep == NULL || lsizep == NULL)
		success = false;

	/*
	 * OF is weird .. it represents fully associative caches
	 * as "1 way" which doesn't make much sense and doesn't
	 * leave room for direct mapped. We'll assume that 0
	 * in OF means direct mapped for that reason.
	 */
	if (sets == 1)
		sets = 0;
	else if (sets == 0)
		sets = 1;

	init_cache_info(info, size, lsize, bsize, sets);

	return success;
}

538
void __init initialize_cache_info(void)
539
{
540 541
	struct device_node *cpu = NULL, *l2, *l3 = NULL;
	u32 pvr;
542 543 544

	DBG(" -> initialize_cache_info()\n");

545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560
	/*
	 * All shipping POWER8 machines have a firmware bug that
	 * puts incorrect information in the device-tree. This will
	 * be (hopefully) fixed for future chips but for now hard
	 * code the values if we are running on one of these
	 */
	pvr = PVR_VER(mfspr(SPRN_PVR));
	if (pvr == PVR_POWER8 || pvr == PVR_POWER8E ||
	    pvr == PVR_POWER8NVL) {
						/* size    lsize   blk  sets */
		init_cache_info(&ppc64_caches.l1i, 0x8000,   128,  128, 32);
		init_cache_info(&ppc64_caches.l1d, 0x10000,  128,  128, 64);
		init_cache_info(&ppc64_caches.l2,  0x80000,  128,  0,   512);
		init_cache_info(&ppc64_caches.l3,  0x800000, 128,  0,   8192);
	} else
		cpu = of_find_node_by_type(NULL, "cpu");
561

562 563 564 565
	/*
	 * We're assuming *all* of the CPUs have the same
	 * d-cache and i-cache sizes... -Peter
	 */
566 567
	if (cpu) {
		if (!parse_cache_info(cpu, false, &ppc64_caches.l1d))
568 569
			DBG("Argh, can't find dcache properties !\n");

570
		if (!parse_cache_info(cpu, true, &ppc64_caches.l1i))
571
			DBG("Argh, can't find icache properties !\n");
572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587

		/*
		 * Try to find the L2 and L3 if any. Assume they are
		 * unified and use the D-side properties.
		 */
		l2 = of_find_next_cache_node(cpu);
		of_node_put(cpu);
		if (l2) {
			parse_cache_info(l2, false, &ppc64_caches.l2);
			l3 = of_find_next_cache_node(l2);
			of_node_put(l2);
		}
		if (l3) {
			parse_cache_info(l3, false, &ppc64_caches.l3);
			of_node_put(l3);
		}
588 589
	}

590
	/* For use by binfmt_elf */
591 592
	dcache_bsize = ppc64_caches.l1d.block_size;
	icache_bsize = ppc64_caches.l1i.block_size;
593

594 595 596
	cur_cpu_spec->dcache_bsize = dcache_bsize;
	cur_cpu_spec->icache_bsize = icache_bsize;

597 598 599
	DBG(" <- initialize_cache_info()\n");
}

600 601 602 603 604 605 606 607
/*
 * This returns the limit below which memory accesses to the linear
 * mapping are guarnateed not to cause an architectural exception (e.g.,
 * TLB or SLB miss fault).
 *
 * This is used to allocate PACAs and various interrupt stacks that
 * that are accessed early in interrupt handlers that must not cause
 * re-entrant interrupts.
608
 */
609
__init u64 ppc64_bolted_size(void)
610
{
611 612
#ifdef CONFIG_PPC_BOOK3E
	/* Freescale BookE bolts the entire linear mapping */
613 614
	/* XXX: BookE ppc64_rma_limit setup seems to disagree? */
	if (early_mmu_has_feature(MMU_FTR_TYPE_FSL_E))
615 616 617 618
		return linear_map_top;
	/* Other BookE, we assume the first GB is bolted */
	return 1ul << 30;
#else
619
	/* BookS radix, does not take faults on linear mapping */
620 621 622
	if (early_radix_enabled())
		return ULONG_MAX;

623 624
	/* BookS hash, the first segment is bolted */
	if (early_mmu_has_feature(MMU_FTR_1T_SEGMENT))
625 626
		return 1UL << SID_SHIFT_1T;
	return 1UL << SID_SHIFT;
627
#endif
628 629
}

630 631 632 633 634 635 636 637 638 639 640 641 642 643 644
static void *__init alloc_stack(unsigned long limit, int cpu)
{
	unsigned long pa;

	pa = memblock_alloc_base_nid(THREAD_SIZE, THREAD_SIZE, limit,
					early_cpu_to_node(cpu), MEMBLOCK_NONE);
	if (!pa) {
		pa = memblock_alloc_base(THREAD_SIZE, THREAD_SIZE, limit);
		if (!pa)
			panic("cannot allocate stacks");
	}

	return __va(pa);
}

645
void __init irqstack_early_init(void)
646
{
647
	u64 limit = ppc64_bolted_size();
648 649 650
	unsigned int i;

	/*
651
	 * Interrupt stacks must be in the first segment since we
652 653
	 * cannot afford to take SLB misses on them. They are not
	 * accessed in realmode.
654
	 */
655
	for_each_possible_cpu(i) {
656 657
		softirq_ctx[i] = alloc_stack(limit, i);
		hardirq_ctx[i] = alloc_stack(limit, i);
658 659 660
	}
}

661
#ifdef CONFIG_PPC_BOOK3E
662
void __init exc_lvl_early_init(void)
663 664 665 666
{
	unsigned int i;

	for_each_possible_cpu(i) {
667 668 669 670 671
		void *sp;

		sp = alloc_stack(ULONG_MAX, i);
		critirq_ctx[i] = sp;
		paca_ptrs[i]->crit_kstack = sp + THREAD_SIZE;
672

673 674 675
		sp = alloc_stack(ULONG_MAX, i);
		dbgirq_ctx[i] = sp;
		paca_ptrs[i]->dbg_kstack = sp + THREAD_SIZE;
676

677 678 679
		sp = alloc_stack(ULONG_MAX, i);
		mcheckirq_ctx[i] = sp;
		paca_ptrs[i]->mc_kstack = sp + THREAD_SIZE;
680
	}
681 682

	if (cpu_has_feature(CPU_FTR_DEBUG_LVL_EXC))
683
		patch_exception(0x040, exc_debug_debug_book3e);
684 685 686
}
#endif

687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704
/*
 * Emergency stacks are used for a range of things, from asynchronous
 * NMIs (system reset, machine check) to synchronous, process context.
 * We set preempt_count to zero, even though that isn't necessarily correct. To
 * get the right value we'd need to copy it from the previous thread_info, but
 * doing that might fault causing more problems.
 * TODO: what to do with accounting?
 */
static void emerg_stack_init_thread_info(struct thread_info *ti, int cpu)
{
	ti->task = NULL;
	ti->cpu = cpu;
	ti->preempt_count = 0;
	ti->local_flags = 0;
	ti->flags = 0;
	klp_init_thread_info(ti);
}

705 706
/*
 * Stack space used when we detect a bad kernel stack pointer, and
707 708
 * early in SMP boots before relocation is enabled. Exclusive emergency
 * stack for machine checks.
709
 */
710
void __init emergency_stack_init(void)
711
{
712
	u64 limit;
713 714 715 716 717 718 719 720
	unsigned int i;

	/*
	 * Emergency stacks must be under 256MB, we cannot afford to take
	 * SLB misses on them. The ABI also requires them to be 128-byte
	 * aligned.
	 *
	 * Since we use these as temporary stacks during secondary CPU
721 722 723
	 * bringup, machine check, system reset, and HMI, we need to get
	 * at them in real mode. This means they must also be within the RMO
	 * region.
724 725 726 727
	 *
	 * The IRQ stacks allocated elsewhere in this file are zeroed and
	 * initialized in kernel/irq.c. These are initialized here in order
	 * to have emergency stacks available as early as possible.
728
	 */
729
	limit = min(ppc64_bolted_size(), ppc64_rma_size);
730

731
	for_each_possible_cpu(i) {
732
		struct thread_info *ti;
733 734

		ti = alloc_stack(limit, i);
735 736
		memset(ti, 0, THREAD_SIZE);
		emerg_stack_init_thread_info(ti, i);
737
		paca_ptrs[i]->emergency_sp = (void *)ti + THREAD_SIZE;
738 739

#ifdef CONFIG_PPC_BOOK3S_64
740
		/* emergency stack for NMI exception handling. */
741
		ti = alloc_stack(limit, i);
742 743
		memset(ti, 0, THREAD_SIZE);
		emerg_stack_init_thread_info(ti, i);
744
		paca_ptrs[i]->nmi_emergency_sp = (void *)ti + THREAD_SIZE;
745

746
		/* emergency stack for machine check exception handling. */
747
		ti = alloc_stack(limit, i);
748 749
		memset(ti, 0, THREAD_SIZE);
		emerg_stack_init_thread_info(ti, i);
750
		paca_ptrs[i]->mc_emergency_sp = (void *)ti + THREAD_SIZE;
751
#endif
752
	}
753 754
}

755
#ifdef CONFIG_SMP
756 757 758
#define PCPU_DYN_SIZE		()

static void * __init pcpu_fc_alloc(unsigned int cpu, size_t size, size_t align)
759
{
760
	return __alloc_bootmem_node(NODE_DATA(early_cpu_to_node(cpu)), size, align,
761 762
				    __pa(MAX_DMA_ADDRESS));
}
763

764 765 766 767
static void __init pcpu_fc_free(void *ptr, size_t size)
{
	free_bootmem(__pa(ptr), size);
}
768

769 770
static int pcpu_cpu_distance(unsigned int from, unsigned int to)
{
771
	if (early_cpu_to_node(from) == early_cpu_to_node(to))
772 773 774 775 776
		return LOCAL_DISTANCE;
	else
		return REMOTE_DISTANCE;
}

777 778 779
unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
EXPORT_SYMBOL(__per_cpu_offset);

780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803
void __init setup_per_cpu_areas(void)
{
	const size_t dyn_size = PERCPU_MODULE_RESERVE + PERCPU_DYNAMIC_RESERVE;
	size_t atom_size;
	unsigned long delta;
	unsigned int cpu;
	int rc;

	/*
	 * Linear mapping is one of 4K, 1M and 16M.  For 4K, no need
	 * to group units.  For larger mappings, use 1M atom which
	 * should be large enough to contain a number of units.
	 */
	if (mmu_linear_psize == MMU_PAGE_4K)
		atom_size = PAGE_SIZE;
	else
		atom_size = 1 << 20;

	rc = pcpu_embed_first_chunk(0, dyn_size, atom_size, pcpu_cpu_distance,
				    pcpu_fc_alloc, pcpu_fc_free);
	if (rc < 0)
		panic("cannot initialize percpu area (err=%d)", rc);

	delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
804 805
	for_each_possible_cpu(cpu) {
                __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
806
		paca_ptrs[cpu]->data_offset = __per_cpu_offset[cpu];
807
	}
808 809
}
#endif
810

811 812 813 814 815 816 817 818 819
#ifdef CONFIG_MEMORY_HOTPLUG_SPARSE
unsigned long memory_block_size_bytes(void)
{
	if (ppc_md.memory_block_size)
		return ppc_md.memory_block_size();

	return MIN_MEMORY_BLOCK_SIZE;
}
#endif
820

821
#if defined(CONFIG_PPC_INDIRECT_PIO) || defined(CONFIG_PPC_INDIRECT_MMIO)
822 823
struct ppc_pci_io ppc_pci_io;
EXPORT_SYMBOL(ppc_pci_io);
824
#endif
825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852

#ifdef CONFIG_HARDLOCKUP_DETECTOR_PERF
u64 hw_nmi_get_sample_period(int watchdog_thresh)
{
	return ppc_proc_freq * watchdog_thresh;
}
#endif

/*
 * The perf based hardlockup detector breaks PMU event based branches, so
 * disable it by default. Book3S has a soft-nmi hardlockup detector based
 * on the decrementer interrupt, so it does not suffer from this problem.
 *
 * It is likely to get false positives in VM guests, so disable it there
 * by default too.
 */
static int __init disable_hardlockup_detector(void)
{
#ifdef CONFIG_HARDLOCKUP_DETECTOR_PERF
	hardlockup_detector_disable();
#else
	if (firmware_has_feature(FW_FEATURE_LPAR))
		hardlockup_detector_disable();
#endif

	return 0;
}
early_initcall(disable_hardlockup_detector);
853 854 855 856

#ifdef CONFIG_PPC_BOOK3S_64
static enum l1d_flush_type enabled_flush_types;
static void *l1d_flush_fallback_area;
857
static bool no_rfi_flush;
858 859
bool rfi_flush;

860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879
static int __init handle_no_rfi_flush(char *p)
{
	pr_info("rfi-flush: disabled on command line.");
	no_rfi_flush = true;
	return 0;
}
early_param("no_rfi_flush", handle_no_rfi_flush);

/*
 * The RFI flush is not KPTI, but because users will see doco that says to use
 * nopti we hijack that option here to also disable the RFI flush.
 */
static int __init handle_no_pti(char *p)
{
	pr_info("rfi-flush: disabling due to 'nopti' on command line.\n");
	handle_no_rfi_flush(NULL);
	return 0;
}
early_param("nopti", handle_no_pti);

880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898
static void do_nothing(void *unused)
{
	/*
	 * We don't need to do the flush explicitly, just enter+exit kernel is
	 * sufficient, the RFI exit handlers will do the right thing.
	 */
}

void rfi_flush_enable(bool enable)
{
	if (enable) {
		do_rfi_flush_fixups(enabled_flush_types);
		on_each_cpu(do_nothing, NULL, 1);
	} else
		do_rfi_flush_fixups(L1D_FLUSH_NONE);

	rfi_flush = enable;
}

899
static void __ref init_fallback_flush(void)
900 901 902 903
{
	u64 l1d_size, limit;
	int cpu;

904 905 906 907
	/* Only allocate the fallback flush area once (at boot time). */
	if (l1d_flush_fallback_area)
		return;

908
	l1d_size = ppc64_caches.l1d.size;
909 910 911 912 913 914 915 916 917 918 919

	/*
	 * If there is no d-cache-size property in the device tree, l1d_size
	 * could be zero. That leads to the loop in the asm wrapping around to
	 * 2^64-1, and then walking off the end of the fallback area and
	 * eventually causing a page fault which is fatal. Just default to
	 * something vaguely sane.
	 */
	if (!l1d_size)
		l1d_size = (64 * 1024);

920
	limit = min(ppc64_bolted_size(), ppc64_rma_size);
921 922 923 924 925 926 927 928 929 930

	/*
	 * Align to L1d size, and size it at 2x L1d size, to catch possible
	 * hardware prefetch runoff. We don't have a recipe for load patterns to
	 * reliably avoid the prefetcher.
	 */
	l1d_flush_fallback_area = __va(memblock_alloc_base(l1d_size * 2, l1d_size, limit));
	memset(l1d_flush_fallback_area, 0, l1d_size * 2);

	for_each_possible_cpu(cpu) {
931 932 933
		struct paca_struct *paca = paca_ptrs[cpu];
		paca->rfi_flush_fallback_area = l1d_flush_fallback_area;
		paca->l1d_flush_size = l1d_size;
934 935 936
	}
}

937
void setup_rfi_flush(enum l1d_flush_type types, bool enable)
938 939
{
	if (types & L1D_FLUSH_FALLBACK) {
940
		pr_info("rfi-flush: fallback displacement flush available\n");
941 942 943 944
		init_fallback_flush();
	}

	if (types & L1D_FLUSH_ORI)
945
		pr_info("rfi-flush: ori type flush available\n");
946 947

	if (types & L1D_FLUSH_MTTRIG)
948
		pr_info("rfi-flush: mttrig type flush available\n");
949 950 951

	enabled_flush_types = types;

952 953
	if (!no_rfi_flush)
		rfi_flush_enable(enable);
954
}
955

956 957 958
#ifdef CONFIG_DEBUG_FS
static int rfi_flush_set(void *data, u64 val)
{
959 960
	bool enable;

961
	if (val == 1)
962
		enable = true;
963
	else if (val == 0)
964
		enable = false;
965 966 967
	else
		return -EINVAL;

968 969 970 971
	/* Only do anything if we're changing state */
	if (enable != rfi_flush)
		rfi_flush_enable(enable);

972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989
	return 0;
}

static int rfi_flush_get(void *data, u64 *val)
{
	*val = rfi_flush ? 1 : 0;
	return 0;
}

DEFINE_SIMPLE_ATTRIBUTE(fops_rfi_flush, rfi_flush_get, rfi_flush_set, "%llu\n");

static __init int rfi_flush_debugfs_init(void)
{
	debugfs_create_file("rfi_flush", 0600, powerpc_debugfs_root, NULL, &fops_rfi_flush);
	return 0;
}
device_initcall(rfi_flush_debugfs_init);
#endif
990
#endif /* CONFIG_PPC_BOOK3S_64 */