setup_64.c 24.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12
/*
 * 
 * Common boot and setup code.
 *
 * Copyright (C) 2001 PPC64 Team, IBM Corp
 *
 *      This program is free software; you can redistribute it and/or
 *      modify it under the terms of the GNU General Public License
 *      as published by the Free Software Foundation; either version
 *      2 of the License, or (at your option) any later version.
 */

13
#include <linux/export.h>
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
#include <linux/string.h>
#include <linux/sched.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/reboot.h>
#include <linux/delay.h>
#include <linux/initrd.h>
#include <linux/seq_file.h>
#include <linux/ioport.h>
#include <linux/console.h>
#include <linux/utsname.h>
#include <linux/tty.h>
#include <linux/root_dev.h>
#include <linux/notifier.h>
#include <linux/cpu.h>
#include <linux/unistd.h>
#include <linux/serial.h>
#include <linux/serial_8250.h>
32
#include <linux/bootmem.h>
33
#include <linux/pci.h>
34
#include <linux/lockdep.h>
Y
Yinghai Lu 已提交
35
#include <linux/memblock.h>
36
#include <linux/memory.h>
37
#include <linux/nmi.h>
38

39
#include <asm/debugfs.h>
40
#include <asm/io.h>
41
#include <asm/kdump.h>
42 43 44 45 46 47 48 49 50
#include <asm/prom.h>
#include <asm/processor.h>
#include <asm/pgtable.h>
#include <asm/smp.h>
#include <asm/elf.h>
#include <asm/machdep.h>
#include <asm/paca.h>
#include <asm/time.h>
#include <asm/cputable.h>
51
#include <asm/dt_cpu_ftrs.h>
52 53 54 55 56 57 58 59 60 61 62
#include <asm/sections.h>
#include <asm/btext.h>
#include <asm/nvram.h>
#include <asm/setup.h>
#include <asm/rtas.h>
#include <asm/iommu.h>
#include <asm/serial.h>
#include <asm/cache.h>
#include <asm/page.h>
#include <asm/mmu.h>
#include <asm/firmware.h>
P
Paul Mackerras 已提交
63
#include <asm/xmon.h>
D
David Gibson 已提交
64
#include <asm/udbg.h>
65
#include <asm/kexec.h>
66
#include <asm/code-patching.h>
67
#include <asm/livepatch.h>
68
#include <asm/opal.h>
69
#include <asm/cputhreads.h>
70
#include <asm/hw_irq.h>
71

72 73
#include "setup.h"

74 75 76 77 78 79
#ifdef DEBUG
#define DBG(fmt...) udbg_printf(fmt)
#else
#define DBG(fmt...)
#endif

80
int spinning_secondaries;
81 82
u64 ppc64_pft_size;

83
struct ppc64_caches ppc64_caches = {
84 85 86 87 88 89 90 91
	.l1d = {
		.block_size = 0x40,
		.log_block_size = 6,
	},
	.l1i = {
		.block_size = 0x40,
		.log_block_size = 6
	},
92
};
93 94
EXPORT_SYMBOL_GPL(ppc64_caches);

95
#if defined(CONFIG_PPC_BOOK3E) && defined(CONFIG_SMP)
96
void __init setup_tlb_core_data(void)
97 98 99
{
	int cpu;

100 101
	BUILD_BUG_ON(offsetof(struct tlb_core_data, lock) != 0);

102 103 104
	for_each_possible_cpu(cpu) {
		int first = cpu_first_thread_sibling(cpu);

105 106 107 108 109 110 111 112
		/*
		 * If we boot via kdump on a non-primary thread,
		 * make sure we point at the thread that actually
		 * set up this TLB.
		 */
		if (cpu_first_thread_sibling(boot_cpuid) == first)
			first = boot_cpuid;

113
		paca_ptrs[cpu]->tcd_ptr = &paca_ptrs[first]->tcd;
114 115 116 117 118

		/*
		 * If we have threads, we need either tlbsrx.
		 * or e6500 tablewalk mode, or else TLB handlers
		 * will be racy and could produce duplicate entries.
119
		 * Should we panic instead?
120
		 */
121 122 123 124
		WARN_ONCE(smt_enabled_at_boot >= 2 &&
			  !mmu_has_feature(MMU_FTR_USE_TLBRSRV) &&
			  book3e_htw_mode != PPC_HTW_E6500,
			  "%s: unsupported MMU configuration\n", __func__);
125 126 127 128
	}
}
#endif

129 130
#ifdef CONFIG_SMP

131
static char *smt_enabled_cmdline;
132 133

/* Look for ibm,smt-enabled OF option */
134
void __init check_smt_enabled(void)
135 136
{
	struct device_node *dn;
137
	const char *smt_option;
138

139 140
	/* Default to enabling all threads */
	smt_enabled_at_boot = threads_per_core;
141

142 143 144 145 146 147 148
	/* Allow the command line to overrule the OF option */
	if (smt_enabled_cmdline) {
		if (!strcmp(smt_enabled_cmdline, "on"))
			smt_enabled_at_boot = threads_per_core;
		else if (!strcmp(smt_enabled_cmdline, "off"))
			smt_enabled_at_boot = 0;
		else {
149
			int smt;
150 151
			int rc;

152
			rc = kstrtoint(smt_enabled_cmdline, 10, &smt);
153 154
			if (!rc)
				smt_enabled_at_boot =
155
					min(threads_per_core, smt);
156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
		}
	} else {
		dn = of_find_node_by_path("/options");
		if (dn) {
			smt_option = of_get_property(dn, "ibm,smt-enabled",
						     NULL);

			if (smt_option) {
				if (!strcmp(smt_option, "on"))
					smt_enabled_at_boot = threads_per_core;
				else if (!strcmp(smt_option, "off"))
					smt_enabled_at_boot = 0;
			}

			of_node_put(dn);
		}
	}
173 174 175 176 177
}

/* Look for smt-enabled= cmdline option */
static int __init early_smt_enabled(char *p)
{
178
	smt_enabled_cmdline = p;
179 180 181 182 183 184
	return 0;
}
early_param("smt-enabled", early_smt_enabled);

#endif /* CONFIG_SMP */

185
/** Fix up paca fields required for the boot cpu */
186
static void __init fixup_boot_paca(void)
187 188 189 190 191
{
	/* The boot cpu is started */
	get_paca()->cpu_start = 1;
	/* Allow percpu accesses to work until we setup percpu data */
	get_paca()->data_offset = 0;
192
	/* Mark interrupts disabled in PACA */
193
	irq_soft_mask_set(IRQS_DISABLED);
194 195
}

196
static void __init configure_exceptions(void)
197
{
198
	/*
199 200
	 * Setup the trampolines from the lowmem exception vectors
	 * to the kdump kernel when not using a relocatable kernel.
201
	 */
202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
	setup_kdump_trampoline();

	/* Under a PAPR hypervisor, we need hypercalls */
	if (firmware_has_feature(FW_FEATURE_SET_MODE)) {
		/* Enable AIL if possible */
		pseries_enable_reloc_on_exc();

		/*
		 * Tell the hypervisor that we want our exceptions to
		 * be taken in little endian mode.
		 *
		 * We don't call this for big endian as our calling convention
		 * makes us always enter in BE, and the call may fail under
		 * some circumstances with kdump.
		 */
#ifdef __LITTLE_ENDIAN__
		pseries_little_endian_exceptions();
#endif
	} else {
		/* Set endian mode using OPAL */
		if (firmware_has_feature(FW_FEATURE_OPAL))
			opal_configure_cores();

225
		/* AIL on native is done in cpu_ready_for_interrupts() */
226 227 228
	}
}

229 230
static void cpu_ready_for_interrupts(void)
{
231 232 233 234 235 236 237
	/*
	 * Enable AIL if supported, and we are in hypervisor mode. This
	 * is called once for every processor.
	 *
	 * If we are not in hypervisor mode the job is done once for
	 * the whole partition in configure_exceptions().
	 */
238 239
	if (cpu_has_feature(CPU_FTR_HVMODE) &&
	    cpu_has_feature(CPU_FTR_ARCH_207S)) {
240 241 242 243
		unsigned long lpcr = mfspr(SPRN_LPCR);
		mtspr(SPRN_LPCR, lpcr | LPCR_AIL_3);
	}

244 245 246 247 248 249 250 251 252
	/*
	 * Fixup HFSCR:TM based on CPU features. The bit is set by our
	 * early asm init because at that point we haven't updated our
	 * CPU features from firmware and device-tree. Here we have,
	 * so let's do it.
	 */
	if (cpu_has_feature(CPU_FTR_HVMODE) && !cpu_has_feature(CPU_FTR_TM_COMP))
		mtspr(SPRN_HFSCR, mfspr(SPRN_HFSCR) & ~HFSCR_TM);

253 254 255 256
	/* Set IR and DR in PACA MSR */
	get_paca()->kernel_msr = MSR_KERNEL;
}

257 258 259 260 261 262 263 264
unsigned long spr_default_dscr = 0;

void __init record_spr_defaults(void)
{
	if (early_cpu_has_feature(CPU_FTR_DSCR))
		spr_default_dscr = mfspr(SPRN_DSCR);
}

265 266 267 268 269 270
/*
 * Early initialization entry point. This is called by head.S
 * with MMU translation disabled. We rely on the "feature" of
 * the CPU that ignores the top 2 bits of the address in real
 * mode so we can access kernel globals normally provided we
 * only toy with things in the RMO region. From here, we do
Y
Yinghai Lu 已提交
271
 * some early parsing of the device-tree to setup out MEMBLOCK
272 273 274 275 276 277 278 279 280 281 282 283 284 285
 * data structures, and allocate & initialize the hash table
 * and segment tables so we can start running with translation
 * enabled.
 *
 * It is this function which will call the probe() callback of
 * the various platform types and copy the matching one to the
 * global ppc_md structure. Your platform can eventually do
 * some very early initializations from the probe() routine, but
 * this is not recommended, be very careful as, for example, the
 * device-tree is not accessible via normal means at this point.
 */

void __init early_setup(unsigned long dt_ptr)
{
286 287
	static __initdata struct paca_struct boot_paca;

288 289
	/* -------- printk is _NOT_ safe to use here ! ------- */

290 291 292 293
	/* Try new device tree based feature discovery ... */
	if (!dt_cpu_ftrs_init(__va(dt_ptr)))
		/* Otherwise use the old style CPU table */
		identify_cpu(0, mfspr(SPRN_PVR));
294

295
	/* Assume we're on cpu 0 for now. Don't write to the paca yet! */
296 297
	initialise_paca(&boot_paca, 0);
	setup_paca(&boot_paca);
298
	fixup_boot_paca();
299

300 301
	/* -------- printk is now safe to use ------- */

302 303 304
	/* Enable early debugging if any specified (see udbg.h) */
	udbg_early_init();

305
 	DBG(" -> early_setup(), dt_ptr: 0x%lx\n", dt_ptr);
306 307

	/*
308 309 310
	 * Do early initialization using the flattened device
	 * tree, such as retrieving the physical memory map or
	 * calculating/retrieving the hash table size.
311 312 313
	 */
	early_init_devtree(__va(dt_ptr));

314
	/* Now we know the logical id of our boot cpu, setup the paca. */
315 316 317 318
	if (boot_cpuid != 0) {
		/* Poison paca_ptrs[0] again if it's not the boot cpu */
		memset(&paca_ptrs[0], 0x88, sizeof(paca_ptrs[0]));
	}
319
	setup_paca(paca_ptrs[boot_cpuid]);
320
	fixup_boot_paca();
321

322
	/*
323 324
	 * Configure exception handlers. This include setting up trampolines
	 * if needed, setting exception endian mode, etc...
325
	 */
326
	configure_exceptions();
327

328 329
	/* Apply all the dynamic patching */
	apply_feature_fixups();
330
	setup_feature_keys();
331

332 333 334
	/* Initialize the hash table or TLB handling */
	early_init_mmu();

335 336 337 338 339 340 341
	/*
	 * After firmware and early platform setup code has set things up,
	 * we note the SPR values for configurable control/performance
	 * registers, and use those as initial defaults.
	 */
	record_spr_defaults();

342 343 344
	/*
	 * At this point, we can let interrupts switch to virtual mode
	 * (the MMU has been setup), so adjust the MSR in the PACA to
345
	 * have IR and DR set and enable AIL if it exists
346
	 */
347
	cpu_ready_for_interrupts();
348

349
	DBG(" <- early_setup()\n");
350 351 352 353 354 355 356 357 358 359 360 361

#ifdef CONFIG_PPC_EARLY_DEBUG_BOOTX
	/*
	 * This needs to be done *last* (after the above DBG() even)
	 *
	 * Right after we return from this function, we turn on the MMU
	 * which means the real-mode access trick that btext does will
	 * no longer work, it needs to switch to using a real MMU
	 * mapping. This call will ensure that it does
	 */
	btext_map();
#endif /* CONFIG_PPC_EARLY_DEBUG_BOOTX */
362 363
}

364 365 366
#ifdef CONFIG_SMP
void early_setup_secondary(void)
{
367
	/* Mark interrupts disabled in PACA */
368
	irq_soft_mask_set(IRQS_DISABLED);
369

370 371
	/* Initialize the hash table or TLB handling */
	early_init_mmu_secondary();
372 373 374 375 376 377

	/*
	 * At this point, we can let interrupts switch to virtual mode
	 * (the MMU has been setup), so adjust the MSR in the PACA to
	 * have IR and DR set.
	 */
378
	cpu_ready_for_interrupts();
379 380 381
}

#endif /* CONFIG_SMP */
382

383
#if defined(CONFIG_SMP) || defined(CONFIG_KEXEC_CORE)
384 385
static bool use_spinloop(void)
{
386 387 388 389 390 391 392 393
	if (IS_ENABLED(CONFIG_PPC_BOOK3S)) {
		/*
		 * See comments in head_64.S -- not all platforms insert
		 * secondaries at __secondary_hold and wait at the spin
		 * loop.
		 */
		if (firmware_has_feature(FW_FEATURE_OPAL))
			return false;
394
		return true;
395
	}
396 397 398 399 400 401 402 403

	/*
	 * When book3e boots from kexec, the ePAPR spin table does
	 * not get used.
	 */
	return of_property_read_bool(of_chosen, "linux,booted-from-kexec");
}

404 405
void smp_release_cpus(void)
{
406
	unsigned long *ptr;
407
	int i;
408

409 410 411
	if (!use_spinloop())
		return;

412 413 414 415 416 417
	DBG(" -> smp_release_cpus()\n");

	/* All secondary cpus are spinning on a common spinloop, release them
	 * all now so they can start to spin on their individual paca
	 * spinloops. For non SMP kernels, the secondary cpus never get out
	 * of the common spinloop.
418
	 */
419

420 421
	ptr  = (unsigned long *)((unsigned long)&__secondary_hold_spinloop
			- PHYSICAL_START);
422
	*ptr = ppc_function_entry(generic_secondary_smp_init);
423 424 425 426 427

	/* And wait a bit for them to catch up */
	for (i = 0; i < 100000; i++) {
		mb();
		HMT_low();
428
		if (spinning_secondaries == 0)
429 430 431
			break;
		udelay(1);
	}
432
	DBG("spinning_secondaries = %d\n", spinning_secondaries);
433 434 435

	DBG(" <- smp_release_cpus()\n");
}
436
#endif /* CONFIG_SMP || CONFIG_KEXEC_CORE */
437

438
/*
439 440
 * Initialize some remaining members of the ppc64_caches and systemcfg
 * structures
441 442 443 444
 * (at least until we get rid of them completely). This is mostly some
 * cache informations about the CPU that will be used by cache flush
 * routines and/or provided to userland
 */
445 446 447 448 449 450 451 452 453

static void init_cache_info(struct ppc_cache_info *info, u32 size, u32 lsize,
			    u32 bsize, u32 sets)
{
	info->size = size;
	info->sets = sets;
	info->line_size = lsize;
	info->block_size = bsize;
	info->log_block_size = __ilog2(bsize);
454 455 456 457
	if (bsize)
		info->blocks_per_page = PAGE_SIZE / bsize;
	else
		info->blocks_per_page = 0;
458 459 460 461 462

	if (sets == 0)
		info->assoc = 0xffff;
	else
		info->assoc = size / (sets * lsize);
463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521
}

static bool __init parse_cache_info(struct device_node *np,
				    bool icache,
				    struct ppc_cache_info *info)
{
	static const char *ipropnames[] __initdata = {
		"i-cache-size",
		"i-cache-sets",
		"i-cache-block-size",
		"i-cache-line-size",
	};
	static const char *dpropnames[] __initdata = {
		"d-cache-size",
		"d-cache-sets",
		"d-cache-block-size",
		"d-cache-line-size",
	};
	const char **propnames = icache ? ipropnames : dpropnames;
	const __be32 *sizep, *lsizep, *bsizep, *setsp;
	u32 size, lsize, bsize, sets;
	bool success = true;

	size = 0;
	sets = -1u;
	lsize = bsize = cur_cpu_spec->dcache_bsize;
	sizep = of_get_property(np, propnames[0], NULL);
	if (sizep != NULL)
		size = be32_to_cpu(*sizep);
	setsp = of_get_property(np, propnames[1], NULL);
	if (setsp != NULL)
		sets = be32_to_cpu(*setsp);
	bsizep = of_get_property(np, propnames[2], NULL);
	lsizep = of_get_property(np, propnames[3], NULL);
	if (bsizep == NULL)
		bsizep = lsizep;
	if (lsizep != NULL)
		lsize = be32_to_cpu(*lsizep);
	if (bsizep != NULL)
		bsize = be32_to_cpu(*bsizep);
	if (sizep == NULL || bsizep == NULL || lsizep == NULL)
		success = false;

	/*
	 * OF is weird .. it represents fully associative caches
	 * as "1 way" which doesn't make much sense and doesn't
	 * leave room for direct mapped. We'll assume that 0
	 * in OF means direct mapped for that reason.
	 */
	if (sets == 1)
		sets = 0;
	else if (sets == 0)
		sets = 1;

	init_cache_info(info, size, lsize, bsize, sets);

	return success;
}

522
void __init initialize_cache_info(void)
523
{
524 525
	struct device_node *cpu = NULL, *l2, *l3 = NULL;
	u32 pvr;
526 527 528

	DBG(" -> initialize_cache_info()\n");

529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544
	/*
	 * All shipping POWER8 machines have a firmware bug that
	 * puts incorrect information in the device-tree. This will
	 * be (hopefully) fixed for future chips but for now hard
	 * code the values if we are running on one of these
	 */
	pvr = PVR_VER(mfspr(SPRN_PVR));
	if (pvr == PVR_POWER8 || pvr == PVR_POWER8E ||
	    pvr == PVR_POWER8NVL) {
						/* size    lsize   blk  sets */
		init_cache_info(&ppc64_caches.l1i, 0x8000,   128,  128, 32);
		init_cache_info(&ppc64_caches.l1d, 0x10000,  128,  128, 64);
		init_cache_info(&ppc64_caches.l2,  0x80000,  128,  0,   512);
		init_cache_info(&ppc64_caches.l3,  0x800000, 128,  0,   8192);
	} else
		cpu = of_find_node_by_type(NULL, "cpu");
545

546 547 548 549
	/*
	 * We're assuming *all* of the CPUs have the same
	 * d-cache and i-cache sizes... -Peter
	 */
550 551
	if (cpu) {
		if (!parse_cache_info(cpu, false, &ppc64_caches.l1d))
552 553
			DBG("Argh, can't find dcache properties !\n");

554
		if (!parse_cache_info(cpu, true, &ppc64_caches.l1i))
555
			DBG("Argh, can't find icache properties !\n");
556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571

		/*
		 * Try to find the L2 and L3 if any. Assume they are
		 * unified and use the D-side properties.
		 */
		l2 = of_find_next_cache_node(cpu);
		of_node_put(cpu);
		if (l2) {
			parse_cache_info(l2, false, &ppc64_caches.l2);
			l3 = of_find_next_cache_node(l2);
			of_node_put(l2);
		}
		if (l3) {
			parse_cache_info(l3, false, &ppc64_caches.l3);
			of_node_put(l3);
		}
572 573
	}

574
	/* For use by binfmt_elf */
575 576
	dcache_bsize = ppc64_caches.l1d.block_size;
	icache_bsize = ppc64_caches.l1i.block_size;
577

578 579 580
	cur_cpu_spec->dcache_bsize = dcache_bsize;
	cur_cpu_spec->icache_bsize = icache_bsize;

581 582 583
	DBG(" <- initialize_cache_info()\n");
}

584 585 586 587 588 589 590 591
/*
 * This returns the limit below which memory accesses to the linear
 * mapping are guarnateed not to cause an architectural exception (e.g.,
 * TLB or SLB miss fault).
 *
 * This is used to allocate PACAs and various interrupt stacks that
 * that are accessed early in interrupt handlers that must not cause
 * re-entrant interrupts.
592
 */
593
__init u64 ppc64_bolted_size(void)
594
{
595 596
#ifdef CONFIG_PPC_BOOK3E
	/* Freescale BookE bolts the entire linear mapping */
597 598
	/* XXX: BookE ppc64_rma_limit setup seems to disagree? */
	if (early_mmu_has_feature(MMU_FTR_TYPE_FSL_E))
599 600 601 602
		return linear_map_top;
	/* Other BookE, we assume the first GB is bolted */
	return 1ul << 30;
#else
603
	/* BookS radix, does not take faults on linear mapping */
604 605 606
	if (early_radix_enabled())
		return ULONG_MAX;

607 608
	/* BookS hash, the first segment is bolted */
	if (early_mmu_has_feature(MMU_FTR_1T_SEGMENT))
609 610
		return 1UL << SID_SHIFT_1T;
	return 1UL << SID_SHIFT;
611
#endif
612 613
}

614 615 616 617 618 619 620 621 622 623 624 625 626 627 628
static void *__init alloc_stack(unsigned long limit, int cpu)
{
	unsigned long pa;

	pa = memblock_alloc_base_nid(THREAD_SIZE, THREAD_SIZE, limit,
					early_cpu_to_node(cpu), MEMBLOCK_NONE);
	if (!pa) {
		pa = memblock_alloc_base(THREAD_SIZE, THREAD_SIZE, limit);
		if (!pa)
			panic("cannot allocate stacks");
	}

	return __va(pa);
}

629
void __init irqstack_early_init(void)
630
{
631
	u64 limit = ppc64_bolted_size();
632 633 634
	unsigned int i;

	/*
635
	 * Interrupt stacks must be in the first segment since we
636 637
	 * cannot afford to take SLB misses on them. They are not
	 * accessed in realmode.
638
	 */
639
	for_each_possible_cpu(i) {
640 641
		softirq_ctx[i] = alloc_stack(limit, i);
		hardirq_ctx[i] = alloc_stack(limit, i);
642 643 644
	}
}

645
#ifdef CONFIG_PPC_BOOK3E
646
void __init exc_lvl_early_init(void)
647 648 649 650
{
	unsigned int i;

	for_each_possible_cpu(i) {
651 652 653 654 655
		void *sp;

		sp = alloc_stack(ULONG_MAX, i);
		critirq_ctx[i] = sp;
		paca_ptrs[i]->crit_kstack = sp + THREAD_SIZE;
656

657 658 659
		sp = alloc_stack(ULONG_MAX, i);
		dbgirq_ctx[i] = sp;
		paca_ptrs[i]->dbg_kstack = sp + THREAD_SIZE;
660

661 662 663
		sp = alloc_stack(ULONG_MAX, i);
		mcheckirq_ctx[i] = sp;
		paca_ptrs[i]->mc_kstack = sp + THREAD_SIZE;
664
	}
665 666

	if (cpu_has_feature(CPU_FTR_DEBUG_LVL_EXC))
667
		patch_exception(0x040, exc_debug_debug_book3e);
668 669 670
}
#endif

671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688
/*
 * Emergency stacks are used for a range of things, from asynchronous
 * NMIs (system reset, machine check) to synchronous, process context.
 * We set preempt_count to zero, even though that isn't necessarily correct. To
 * get the right value we'd need to copy it from the previous thread_info, but
 * doing that might fault causing more problems.
 * TODO: what to do with accounting?
 */
static void emerg_stack_init_thread_info(struct thread_info *ti, int cpu)
{
	ti->task = NULL;
	ti->cpu = cpu;
	ti->preempt_count = 0;
	ti->local_flags = 0;
	ti->flags = 0;
	klp_init_thread_info(ti);
}

689 690
/*
 * Stack space used when we detect a bad kernel stack pointer, and
691 692
 * early in SMP boots before relocation is enabled. Exclusive emergency
 * stack for machine checks.
693
 */
694
void __init emergency_stack_init(void)
695
{
696
	u64 limit;
697 698 699 700 701 702 703 704
	unsigned int i;

	/*
	 * Emergency stacks must be under 256MB, we cannot afford to take
	 * SLB misses on them. The ABI also requires them to be 128-byte
	 * aligned.
	 *
	 * Since we use these as temporary stacks during secondary CPU
705 706 707
	 * bringup, machine check, system reset, and HMI, we need to get
	 * at them in real mode. This means they must also be within the RMO
	 * region.
708 709 710 711
	 *
	 * The IRQ stacks allocated elsewhere in this file are zeroed and
	 * initialized in kernel/irq.c. These are initialized here in order
	 * to have emergency stacks available as early as possible.
712
	 */
713
	limit = min(ppc64_bolted_size(), ppc64_rma_size);
714

715
	for_each_possible_cpu(i) {
716
		struct thread_info *ti;
717 718

		ti = alloc_stack(limit, i);
719 720
		memset(ti, 0, THREAD_SIZE);
		emerg_stack_init_thread_info(ti, i);
721
		paca_ptrs[i]->emergency_sp = (void *)ti + THREAD_SIZE;
722 723

#ifdef CONFIG_PPC_BOOK3S_64
724
		/* emergency stack for NMI exception handling. */
725
		ti = alloc_stack(limit, i);
726 727
		memset(ti, 0, THREAD_SIZE);
		emerg_stack_init_thread_info(ti, i);
728
		paca_ptrs[i]->nmi_emergency_sp = (void *)ti + THREAD_SIZE;
729

730
		/* emergency stack for machine check exception handling. */
731
		ti = alloc_stack(limit, i);
732 733
		memset(ti, 0, THREAD_SIZE);
		emerg_stack_init_thread_info(ti, i);
734
		paca_ptrs[i]->mc_emergency_sp = (void *)ti + THREAD_SIZE;
735
#endif
736
	}
737 738
}

739
#ifdef CONFIG_SMP
740 741 742
#define PCPU_DYN_SIZE		()

static void * __init pcpu_fc_alloc(unsigned int cpu, size_t size, size_t align)
743
{
744
	return __alloc_bootmem_node(NODE_DATA(early_cpu_to_node(cpu)), size, align,
745 746
				    __pa(MAX_DMA_ADDRESS));
}
747

748 749 750 751
static void __init pcpu_fc_free(void *ptr, size_t size)
{
	free_bootmem(__pa(ptr), size);
}
752

753 754
static int pcpu_cpu_distance(unsigned int from, unsigned int to)
{
755
	if (early_cpu_to_node(from) == early_cpu_to_node(to))
756 757 758 759 760
		return LOCAL_DISTANCE;
	else
		return REMOTE_DISTANCE;
}

761 762 763
unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
EXPORT_SYMBOL(__per_cpu_offset);

764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787
void __init setup_per_cpu_areas(void)
{
	const size_t dyn_size = PERCPU_MODULE_RESERVE + PERCPU_DYNAMIC_RESERVE;
	size_t atom_size;
	unsigned long delta;
	unsigned int cpu;
	int rc;

	/*
	 * Linear mapping is one of 4K, 1M and 16M.  For 4K, no need
	 * to group units.  For larger mappings, use 1M atom which
	 * should be large enough to contain a number of units.
	 */
	if (mmu_linear_psize == MMU_PAGE_4K)
		atom_size = PAGE_SIZE;
	else
		atom_size = 1 << 20;

	rc = pcpu_embed_first_chunk(0, dyn_size, atom_size, pcpu_cpu_distance,
				    pcpu_fc_alloc, pcpu_fc_free);
	if (rc < 0)
		panic("cannot initialize percpu area (err=%d)", rc);

	delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
788 789
	for_each_possible_cpu(cpu) {
                __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
790
		paca_ptrs[cpu]->data_offset = __per_cpu_offset[cpu];
791
	}
792 793
}
#endif
794

795 796 797 798 799 800 801 802 803
#ifdef CONFIG_MEMORY_HOTPLUG_SPARSE
unsigned long memory_block_size_bytes(void)
{
	if (ppc_md.memory_block_size)
		return ppc_md.memory_block_size();

	return MIN_MEMORY_BLOCK_SIZE;
}
#endif
804

805
#if defined(CONFIG_PPC_INDIRECT_PIO) || defined(CONFIG_PPC_INDIRECT_MMIO)
806 807
struct ppc_pci_io ppc_pci_io;
EXPORT_SYMBOL(ppc_pci_io);
808
#endif
809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836

#ifdef CONFIG_HARDLOCKUP_DETECTOR_PERF
u64 hw_nmi_get_sample_period(int watchdog_thresh)
{
	return ppc_proc_freq * watchdog_thresh;
}
#endif

/*
 * The perf based hardlockup detector breaks PMU event based branches, so
 * disable it by default. Book3S has a soft-nmi hardlockup detector based
 * on the decrementer interrupt, so it does not suffer from this problem.
 *
 * It is likely to get false positives in VM guests, so disable it there
 * by default too.
 */
static int __init disable_hardlockup_detector(void)
{
#ifdef CONFIG_HARDLOCKUP_DETECTOR_PERF
	hardlockup_detector_disable();
#else
	if (firmware_has_feature(FW_FEATURE_LPAR))
		hardlockup_detector_disable();
#endif

	return 0;
}
early_initcall(disable_hardlockup_detector);
837 838 839 840

#ifdef CONFIG_PPC_BOOK3S_64
static enum l1d_flush_type enabled_flush_types;
static void *l1d_flush_fallback_area;
841
static bool no_rfi_flush;
842 843
bool rfi_flush;

844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863
static int __init handle_no_rfi_flush(char *p)
{
	pr_info("rfi-flush: disabled on command line.");
	no_rfi_flush = true;
	return 0;
}
early_param("no_rfi_flush", handle_no_rfi_flush);

/*
 * The RFI flush is not KPTI, but because users will see doco that says to use
 * nopti we hijack that option here to also disable the RFI flush.
 */
static int __init handle_no_pti(char *p)
{
	pr_info("rfi-flush: disabling due to 'nopti' on command line.\n");
	handle_no_rfi_flush(NULL);
	return 0;
}
early_param("nopti", handle_no_pti);

864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882
static void do_nothing(void *unused)
{
	/*
	 * We don't need to do the flush explicitly, just enter+exit kernel is
	 * sufficient, the RFI exit handlers will do the right thing.
	 */
}

void rfi_flush_enable(bool enable)
{
	if (enable) {
		do_rfi_flush_fixups(enabled_flush_types);
		on_each_cpu(do_nothing, NULL, 1);
	} else
		do_rfi_flush_fixups(L1D_FLUSH_NONE);

	rfi_flush = enable;
}

883
static void __ref init_fallback_flush(void)
884 885 886 887
{
	u64 l1d_size, limit;
	int cpu;

888 889 890 891
	/* Only allocate the fallback flush area once (at boot time). */
	if (l1d_flush_fallback_area)
		return;

892
	l1d_size = ppc64_caches.l1d.size;
893
	limit = min(ppc64_bolted_size(), ppc64_rma_size);
894 895 896 897 898 899 900 901 902 903

	/*
	 * Align to L1d size, and size it at 2x L1d size, to catch possible
	 * hardware prefetch runoff. We don't have a recipe for load patterns to
	 * reliably avoid the prefetcher.
	 */
	l1d_flush_fallback_area = __va(memblock_alloc_base(l1d_size * 2, l1d_size, limit));
	memset(l1d_flush_fallback_area, 0, l1d_size * 2);

	for_each_possible_cpu(cpu) {
904 905 906
		struct paca_struct *paca = paca_ptrs[cpu];
		paca->rfi_flush_fallback_area = l1d_flush_fallback_area;
		paca->l1d_flush_size = l1d_size;
907 908 909
	}
}

910
void setup_rfi_flush(enum l1d_flush_type types, bool enable)
911 912
{
	if (types & L1D_FLUSH_FALLBACK) {
913
		pr_info("rfi-flush: fallback displacement flush available\n");
914 915 916 917
		init_fallback_flush();
	}

	if (types & L1D_FLUSH_ORI)
918
		pr_info("rfi-flush: ori type flush available\n");
919 920

	if (types & L1D_FLUSH_MTTRIG)
921
		pr_info("rfi-flush: mttrig type flush available\n");
922 923 924

	enabled_flush_types = types;

925 926
	if (!no_rfi_flush)
		rfi_flush_enable(enable);
927
}
928

929 930 931
#ifdef CONFIG_DEBUG_FS
static int rfi_flush_set(void *data, u64 val)
{
932 933
	bool enable;

934
	if (val == 1)
935
		enable = true;
936
	else if (val == 0)
937
		enable = false;
938 939 940
	else
		return -EINVAL;

941 942 943 944
	/* Only do anything if we're changing state */
	if (enable != rfi_flush)
		rfi_flush_enable(enable);

945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962
	return 0;
}

static int rfi_flush_get(void *data, u64 *val)
{
	*val = rfi_flush ? 1 : 0;
	return 0;
}

DEFINE_SIMPLE_ATTRIBUTE(fops_rfi_flush, rfi_flush_get, rfi_flush_set, "%llu\n");

static __init int rfi_flush_debugfs_init(void)
{
	debugfs_create_file("rfi_flush", 0600, powerpc_debugfs_root, NULL, &fops_rfi_flush);
	return 0;
}
device_initcall(rfi_flush_debugfs_init);
#endif
963
#endif /* CONFIG_PPC_BOOK3S_64 */