setup_64.c 24.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12
/*
 * 
 * Common boot and setup code.
 *
 * Copyright (C) 2001 PPC64 Team, IBM Corp
 *
 *      This program is free software; you can redistribute it and/or
 *      modify it under the terms of the GNU General Public License
 *      as published by the Free Software Foundation; either version
 *      2 of the License, or (at your option) any later version.
 */

13
#include <linux/export.h>
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
#include <linux/string.h>
#include <linux/sched.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/reboot.h>
#include <linux/delay.h>
#include <linux/initrd.h>
#include <linux/seq_file.h>
#include <linux/ioport.h>
#include <linux/console.h>
#include <linux/utsname.h>
#include <linux/tty.h>
#include <linux/root_dev.h>
#include <linux/notifier.h>
#include <linux/cpu.h>
#include <linux/unistd.h>
#include <linux/serial.h>
#include <linux/serial_8250.h>
32
#include <linux/bootmem.h>
33
#include <linux/pci.h>
34
#include <linux/lockdep.h>
Y
Yinghai Lu 已提交
35
#include <linux/memblock.h>
36
#include <linux/memory.h>
37
#include <linux/nmi.h>
38

39
#include <asm/debugfs.h>
40
#include <asm/io.h>
41
#include <asm/kdump.h>
42 43 44 45 46 47 48 49 50
#include <asm/prom.h>
#include <asm/processor.h>
#include <asm/pgtable.h>
#include <asm/smp.h>
#include <asm/elf.h>
#include <asm/machdep.h>
#include <asm/paca.h>
#include <asm/time.h>
#include <asm/cputable.h>
51
#include <asm/dt_cpu_ftrs.h>
52 53 54 55 56 57 58 59 60 61 62
#include <asm/sections.h>
#include <asm/btext.h>
#include <asm/nvram.h>
#include <asm/setup.h>
#include <asm/rtas.h>
#include <asm/iommu.h>
#include <asm/serial.h>
#include <asm/cache.h>
#include <asm/page.h>
#include <asm/mmu.h>
#include <asm/firmware.h>
P
Paul Mackerras 已提交
63
#include <asm/xmon.h>
D
David Gibson 已提交
64
#include <asm/udbg.h>
65
#include <asm/kexec.h>
66
#include <asm/code-patching.h>
67
#include <asm/livepatch.h>
68
#include <asm/opal.h>
69
#include <asm/cputhreads.h>
70
#include <asm/hw_irq.h>
71

72 73
#include "setup.h"

74 75 76 77 78 79
#ifdef DEBUG
#define DBG(fmt...) udbg_printf(fmt)
#else
#define DBG(fmt...)
#endif

80
int spinning_secondaries;
81 82
u64 ppc64_pft_size;

83
struct ppc64_caches ppc64_caches = {
84 85 86 87 88 89 90 91
	.l1d = {
		.block_size = 0x40,
		.log_block_size = 6,
	},
	.l1i = {
		.block_size = 0x40,
		.log_block_size = 6
	},
92
};
93 94
EXPORT_SYMBOL_GPL(ppc64_caches);

95
#if defined(CONFIG_PPC_BOOK3E) && defined(CONFIG_SMP)
96
void __init setup_tlb_core_data(void)
97 98 99
{
	int cpu;

100 101
	BUILD_BUG_ON(offsetof(struct tlb_core_data, lock) != 0);

102 103 104
	for_each_possible_cpu(cpu) {
		int first = cpu_first_thread_sibling(cpu);

105 106 107 108 109 110 111 112
		/*
		 * If we boot via kdump on a non-primary thread,
		 * make sure we point at the thread that actually
		 * set up this TLB.
		 */
		if (cpu_first_thread_sibling(boot_cpuid) == first)
			first = boot_cpuid;

113 114 115 116 117 118
		paca[cpu].tcd_ptr = &paca[first].tcd;

		/*
		 * If we have threads, we need either tlbsrx.
		 * or e6500 tablewalk mode, or else TLB handlers
		 * will be racy and could produce duplicate entries.
119
		 * Should we panic instead?
120
		 */
121 122 123 124
		WARN_ONCE(smt_enabled_at_boot >= 2 &&
			  !mmu_has_feature(MMU_FTR_USE_TLBRSRV) &&
			  book3e_htw_mode != PPC_HTW_E6500,
			  "%s: unsupported MMU configuration\n", __func__);
125 126 127 128
	}
}
#endif

129 130
#ifdef CONFIG_SMP

131
static char *smt_enabled_cmdline;
132 133

/* Look for ibm,smt-enabled OF option */
134
void __init check_smt_enabled(void)
135 136
{
	struct device_node *dn;
137
	const char *smt_option;
138

139 140
	/* Default to enabling all threads */
	smt_enabled_at_boot = threads_per_core;
141

142 143 144 145 146 147 148
	/* Allow the command line to overrule the OF option */
	if (smt_enabled_cmdline) {
		if (!strcmp(smt_enabled_cmdline, "on"))
			smt_enabled_at_boot = threads_per_core;
		else if (!strcmp(smt_enabled_cmdline, "off"))
			smt_enabled_at_boot = 0;
		else {
149
			int smt;
150 151
			int rc;

152
			rc = kstrtoint(smt_enabled_cmdline, 10, &smt);
153 154
			if (!rc)
				smt_enabled_at_boot =
155
					min(threads_per_core, smt);
156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
		}
	} else {
		dn = of_find_node_by_path("/options");
		if (dn) {
			smt_option = of_get_property(dn, "ibm,smt-enabled",
						     NULL);

			if (smt_option) {
				if (!strcmp(smt_option, "on"))
					smt_enabled_at_boot = threads_per_core;
				else if (!strcmp(smt_option, "off"))
					smt_enabled_at_boot = 0;
			}

			of_node_put(dn);
		}
	}
173 174 175 176 177
}

/* Look for smt-enabled= cmdline option */
static int __init early_smt_enabled(char *p)
{
178
	smt_enabled_cmdline = p;
179 180 181 182 183 184
	return 0;
}
early_param("smt-enabled", early_smt_enabled);

#endif /* CONFIG_SMP */

185
/** Fix up paca fields required for the boot cpu */
186
static void __init fixup_boot_paca(void)
187 188 189 190 191
{
	/* The boot cpu is started */
	get_paca()->cpu_start = 1;
	/* Allow percpu accesses to work until we setup percpu data */
	get_paca()->data_offset = 0;
192
	/* Mark interrupts disabled in PACA */
193
	irq_soft_mask_set(IRQS_DISABLED);
194 195
}

196
static void __init configure_exceptions(void)
197
{
198
	/*
199 200
	 * Setup the trampolines from the lowmem exception vectors
	 * to the kdump kernel when not using a relocatable kernel.
201
	 */
202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
	setup_kdump_trampoline();

	/* Under a PAPR hypervisor, we need hypercalls */
	if (firmware_has_feature(FW_FEATURE_SET_MODE)) {
		/* Enable AIL if possible */
		pseries_enable_reloc_on_exc();

		/*
		 * Tell the hypervisor that we want our exceptions to
		 * be taken in little endian mode.
		 *
		 * We don't call this for big endian as our calling convention
		 * makes us always enter in BE, and the call may fail under
		 * some circumstances with kdump.
		 */
#ifdef __LITTLE_ENDIAN__
		pseries_little_endian_exceptions();
#endif
	} else {
		/* Set endian mode using OPAL */
		if (firmware_has_feature(FW_FEATURE_OPAL))
			opal_configure_cores();

225
		/* AIL on native is done in cpu_ready_for_interrupts() */
226 227 228
	}
}

229 230
static void cpu_ready_for_interrupts(void)
{
231 232 233 234 235 236 237
	/*
	 * Enable AIL if supported, and we are in hypervisor mode. This
	 * is called once for every processor.
	 *
	 * If we are not in hypervisor mode the job is done once for
	 * the whole partition in configure_exceptions().
	 */
238 239
	if (cpu_has_feature(CPU_FTR_HVMODE) &&
	    cpu_has_feature(CPU_FTR_ARCH_207S)) {
240 241 242 243
		unsigned long lpcr = mfspr(SPRN_LPCR);
		mtspr(SPRN_LPCR, lpcr | LPCR_AIL_3);
	}

244 245 246 247 248 249 250 251 252
	/*
	 * Fixup HFSCR:TM based on CPU features. The bit is set by our
	 * early asm init because at that point we haven't updated our
	 * CPU features from firmware and device-tree. Here we have,
	 * so let's do it.
	 */
	if (cpu_has_feature(CPU_FTR_HVMODE) && !cpu_has_feature(CPU_FTR_TM_COMP))
		mtspr(SPRN_HFSCR, mfspr(SPRN_HFSCR) & ~HFSCR_TM);

253 254 255 256
	/* Set IR and DR in PACA MSR */
	get_paca()->kernel_msr = MSR_KERNEL;
}

257 258 259 260 261 262
/*
 * Early initialization entry point. This is called by head.S
 * with MMU translation disabled. We rely on the "feature" of
 * the CPU that ignores the top 2 bits of the address in real
 * mode so we can access kernel globals normally provided we
 * only toy with things in the RMO region. From here, we do
Y
Yinghai Lu 已提交
263
 * some early parsing of the device-tree to setup out MEMBLOCK
264 265 266 267 268 269 270 271 272 273 274 275 276 277
 * data structures, and allocate & initialize the hash table
 * and segment tables so we can start running with translation
 * enabled.
 *
 * It is this function which will call the probe() callback of
 * the various platform types and copy the matching one to the
 * global ppc_md structure. Your platform can eventually do
 * some very early initializations from the probe() routine, but
 * this is not recommended, be very careful as, for example, the
 * device-tree is not accessible via normal means at this point.
 */

void __init early_setup(unsigned long dt_ptr)
{
278 279
	static __initdata struct paca_struct boot_paca;

280 281
	/* -------- printk is _NOT_ safe to use here ! ------- */

282 283 284 285
	/* Try new device tree based feature discovery ... */
	if (!dt_cpu_ftrs_init(__va(dt_ptr)))
		/* Otherwise use the old style CPU table */
		identify_cpu(0, mfspr(SPRN_PVR));
286

287
	/* Assume we're on cpu 0 for now. Don't write to the paca yet! */
288 289
	initialise_paca(&boot_paca, 0);
	setup_paca(&boot_paca);
290
	fixup_boot_paca();
291

292 293
	/* -------- printk is now safe to use ------- */

294 295 296
	/* Enable early debugging if any specified (see udbg.h) */
	udbg_early_init();

297
 	DBG(" -> early_setup(), dt_ptr: 0x%lx\n", dt_ptr);
298 299

	/*
300 301 302
	 * Do early initialization using the flattened device
	 * tree, such as retrieving the physical memory map or
	 * calculating/retrieving the hash table size.
303 304 305
	 */
	early_init_devtree(__va(dt_ptr));

306
	/* Now we know the logical id of our boot cpu, setup the paca. */
307
	setup_paca(&paca[boot_cpuid]);
308
	fixup_boot_paca();
309

310
	/*
311 312
	 * Configure exception handlers. This include setting up trampolines
	 * if needed, setting exception endian mode, etc...
313
	 */
314
	configure_exceptions();
315

316 317
	/* Apply all the dynamic patching */
	apply_feature_fixups();
318
	setup_feature_keys();
319

320 321 322
	/* Initialize the hash table or TLB handling */
	early_init_mmu();

323 324 325 326 327 328 329
	/*
	 * After firmware and early platform setup code has set things up,
	 * we note the SPR values for configurable control/performance
	 * registers, and use those as initial defaults.
	 */
	record_spr_defaults();

330 331 332
	/*
	 * At this point, we can let interrupts switch to virtual mode
	 * (the MMU has been setup), so adjust the MSR in the PACA to
333
	 * have IR and DR set and enable AIL if it exists
334
	 */
335
	cpu_ready_for_interrupts();
336

337
	DBG(" <- early_setup()\n");
338 339 340 341 342 343 344 345 346 347 348 349

#ifdef CONFIG_PPC_EARLY_DEBUG_BOOTX
	/*
	 * This needs to be done *last* (after the above DBG() even)
	 *
	 * Right after we return from this function, we turn on the MMU
	 * which means the real-mode access trick that btext does will
	 * no longer work, it needs to switch to using a real MMU
	 * mapping. This call will ensure that it does
	 */
	btext_map();
#endif /* CONFIG_PPC_EARLY_DEBUG_BOOTX */
350 351
}

352 353 354
#ifdef CONFIG_SMP
void early_setup_secondary(void)
{
355
	/* Mark interrupts disabled in PACA */
356
	irq_soft_mask_set(IRQS_DISABLED);
357

358 359
	/* Initialize the hash table or TLB handling */
	early_init_mmu_secondary();
360 361 362 363 364 365

	/*
	 * At this point, we can let interrupts switch to virtual mode
	 * (the MMU has been setup), so adjust the MSR in the PACA to
	 * have IR and DR set.
	 */
366
	cpu_ready_for_interrupts();
367 368 369
}

#endif /* CONFIG_SMP */
370

371
#if defined(CONFIG_SMP) || defined(CONFIG_KEXEC_CORE)
372 373
static bool use_spinloop(void)
{
374 375 376 377 378 379 380 381
	if (IS_ENABLED(CONFIG_PPC_BOOK3S)) {
		/*
		 * See comments in head_64.S -- not all platforms insert
		 * secondaries at __secondary_hold and wait at the spin
		 * loop.
		 */
		if (firmware_has_feature(FW_FEATURE_OPAL))
			return false;
382
		return true;
383
	}
384 385 386 387 388 389 390 391

	/*
	 * When book3e boots from kexec, the ePAPR spin table does
	 * not get used.
	 */
	return of_property_read_bool(of_chosen, "linux,booted-from-kexec");
}

392 393
void smp_release_cpus(void)
{
394
	unsigned long *ptr;
395
	int i;
396

397 398 399
	if (!use_spinloop())
		return;

400 401 402 403 404 405
	DBG(" -> smp_release_cpus()\n");

	/* All secondary cpus are spinning on a common spinloop, release them
	 * all now so they can start to spin on their individual paca
	 * spinloops. For non SMP kernels, the secondary cpus never get out
	 * of the common spinloop.
406
	 */
407

408 409
	ptr  = (unsigned long *)((unsigned long)&__secondary_hold_spinloop
			- PHYSICAL_START);
410
	*ptr = ppc_function_entry(generic_secondary_smp_init);
411 412 413 414 415

	/* And wait a bit for them to catch up */
	for (i = 0; i < 100000; i++) {
		mb();
		HMT_low();
416
		if (spinning_secondaries == 0)
417 418 419
			break;
		udelay(1);
	}
420
	DBG("spinning_secondaries = %d\n", spinning_secondaries);
421 422 423

	DBG(" <- smp_release_cpus()\n");
}
424
#endif /* CONFIG_SMP || CONFIG_KEXEC_CORE */
425

426
/*
427 428
 * Initialize some remaining members of the ppc64_caches and systemcfg
 * structures
429 430 431 432
 * (at least until we get rid of them completely). This is mostly some
 * cache informations about the CPU that will be used by cache flush
 * routines and/or provided to userland
 */
433 434 435 436 437 438 439 440 441

static void init_cache_info(struct ppc_cache_info *info, u32 size, u32 lsize,
			    u32 bsize, u32 sets)
{
	info->size = size;
	info->sets = sets;
	info->line_size = lsize;
	info->block_size = bsize;
	info->log_block_size = __ilog2(bsize);
442 443 444 445
	if (bsize)
		info->blocks_per_page = PAGE_SIZE / bsize;
	else
		info->blocks_per_page = 0;
446 447 448 449 450

	if (sets == 0)
		info->assoc = 0xffff;
	else
		info->assoc = size / (sets * lsize);
451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509
}

static bool __init parse_cache_info(struct device_node *np,
				    bool icache,
				    struct ppc_cache_info *info)
{
	static const char *ipropnames[] __initdata = {
		"i-cache-size",
		"i-cache-sets",
		"i-cache-block-size",
		"i-cache-line-size",
	};
	static const char *dpropnames[] __initdata = {
		"d-cache-size",
		"d-cache-sets",
		"d-cache-block-size",
		"d-cache-line-size",
	};
	const char **propnames = icache ? ipropnames : dpropnames;
	const __be32 *sizep, *lsizep, *bsizep, *setsp;
	u32 size, lsize, bsize, sets;
	bool success = true;

	size = 0;
	sets = -1u;
	lsize = bsize = cur_cpu_spec->dcache_bsize;
	sizep = of_get_property(np, propnames[0], NULL);
	if (sizep != NULL)
		size = be32_to_cpu(*sizep);
	setsp = of_get_property(np, propnames[1], NULL);
	if (setsp != NULL)
		sets = be32_to_cpu(*setsp);
	bsizep = of_get_property(np, propnames[2], NULL);
	lsizep = of_get_property(np, propnames[3], NULL);
	if (bsizep == NULL)
		bsizep = lsizep;
	if (lsizep != NULL)
		lsize = be32_to_cpu(*lsizep);
	if (bsizep != NULL)
		bsize = be32_to_cpu(*bsizep);
	if (sizep == NULL || bsizep == NULL || lsizep == NULL)
		success = false;

	/*
	 * OF is weird .. it represents fully associative caches
	 * as "1 way" which doesn't make much sense and doesn't
	 * leave room for direct mapped. We'll assume that 0
	 * in OF means direct mapped for that reason.
	 */
	if (sets == 1)
		sets = 0;
	else if (sets == 0)
		sets = 1;

	init_cache_info(info, size, lsize, bsize, sets);

	return success;
}

510
void __init initialize_cache_info(void)
511
{
512 513
	struct device_node *cpu = NULL, *l2, *l3 = NULL;
	u32 pvr;
514 515 516

	DBG(" -> initialize_cache_info()\n");

517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532
	/*
	 * All shipping POWER8 machines have a firmware bug that
	 * puts incorrect information in the device-tree. This will
	 * be (hopefully) fixed for future chips but for now hard
	 * code the values if we are running on one of these
	 */
	pvr = PVR_VER(mfspr(SPRN_PVR));
	if (pvr == PVR_POWER8 || pvr == PVR_POWER8E ||
	    pvr == PVR_POWER8NVL) {
						/* size    lsize   blk  sets */
		init_cache_info(&ppc64_caches.l1i, 0x8000,   128,  128, 32);
		init_cache_info(&ppc64_caches.l1d, 0x10000,  128,  128, 64);
		init_cache_info(&ppc64_caches.l2,  0x80000,  128,  0,   512);
		init_cache_info(&ppc64_caches.l3,  0x800000, 128,  0,   8192);
	} else
		cpu = of_find_node_by_type(NULL, "cpu");
533

534 535 536 537
	/*
	 * We're assuming *all* of the CPUs have the same
	 * d-cache and i-cache sizes... -Peter
	 */
538 539
	if (cpu) {
		if (!parse_cache_info(cpu, false, &ppc64_caches.l1d))
540 541
			DBG("Argh, can't find dcache properties !\n");

542
		if (!parse_cache_info(cpu, true, &ppc64_caches.l1i))
543
			DBG("Argh, can't find icache properties !\n");
544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559

		/*
		 * Try to find the L2 and L3 if any. Assume they are
		 * unified and use the D-side properties.
		 */
		l2 = of_find_next_cache_node(cpu);
		of_node_put(cpu);
		if (l2) {
			parse_cache_info(l2, false, &ppc64_caches.l2);
			l3 = of_find_next_cache_node(l2);
			of_node_put(l2);
		}
		if (l3) {
			parse_cache_info(l3, false, &ppc64_caches.l3);
			of_node_put(l3);
		}
560 561
	}

562
	/* For use by binfmt_elf */
563 564
	dcache_bsize = ppc64_caches.l1d.block_size;
	icache_bsize = ppc64_caches.l1i.block_size;
565

566 567 568
	cur_cpu_spec->dcache_bsize = dcache_bsize;
	cur_cpu_spec->icache_bsize = icache_bsize;

569 570 571
	DBG(" <- initialize_cache_info()\n");
}

572 573 574 575 576 577 578 579
/*
 * This returns the limit below which memory accesses to the linear
 * mapping are guarnateed not to cause an architectural exception (e.g.,
 * TLB or SLB miss fault).
 *
 * This is used to allocate PACAs and various interrupt stacks that
 * that are accessed early in interrupt handlers that must not cause
 * re-entrant interrupts.
580
 */
581
__init u64 ppc64_bolted_size(void)
582
{
583 584
#ifdef CONFIG_PPC_BOOK3E
	/* Freescale BookE bolts the entire linear mapping */
585 586
	/* XXX: BookE ppc64_rma_limit setup seems to disagree? */
	if (early_mmu_has_feature(MMU_FTR_TYPE_FSL_E))
587 588 589 590
		return linear_map_top;
	/* Other BookE, we assume the first GB is bolted */
	return 1ul << 30;
#else
591
	/* BookS radix, does not take faults on linear mapping */
592 593 594
	if (early_radix_enabled())
		return ULONG_MAX;

595 596
	/* BookS hash, the first segment is bolted */
	if (early_mmu_has_feature(MMU_FTR_1T_SEGMENT))
597 598
		return 1UL << SID_SHIFT_1T;
	return 1UL << SID_SHIFT;
599
#endif
600 601
}

602
void __init irqstack_early_init(void)
603
{
604
	u64 limit = ppc64_bolted_size();
605 606 607
	unsigned int i;

	/*
608
	 * Interrupt stacks must be in the first segment since we
609 610
	 * cannot afford to take SLB misses on them. They are not
	 * accessed in realmode.
611
	 */
612
	for_each_possible_cpu(i) {
613
		softirq_ctx[i] = (struct thread_info *)
Y
Yinghai Lu 已提交
614
			__va(memblock_alloc_base(THREAD_SIZE,
615
					    THREAD_SIZE, limit));
616
		hardirq_ctx[i] = (struct thread_info *)
Y
Yinghai Lu 已提交
617
			__va(memblock_alloc_base(THREAD_SIZE,
618
					    THREAD_SIZE, limit));
619 620 621
	}
}

622
#ifdef CONFIG_PPC_BOOK3E
623
void __init exc_lvl_early_init(void)
624 625
{
	unsigned int i;
626
	unsigned long sp;
627 628

	for_each_possible_cpu(i) {
629 630 631 632 633 634 635 636 637 638 639
		sp = memblock_alloc(THREAD_SIZE, THREAD_SIZE);
		critirq_ctx[i] = (struct thread_info *)__va(sp);
		paca[i].crit_kstack = __va(sp + THREAD_SIZE);

		sp = memblock_alloc(THREAD_SIZE, THREAD_SIZE);
		dbgirq_ctx[i] = (struct thread_info *)__va(sp);
		paca[i].dbg_kstack = __va(sp + THREAD_SIZE);

		sp = memblock_alloc(THREAD_SIZE, THREAD_SIZE);
		mcheckirq_ctx[i] = (struct thread_info *)__va(sp);
		paca[i].mc_kstack = __va(sp + THREAD_SIZE);
640
	}
641 642

	if (cpu_has_feature(CPU_FTR_DEBUG_LVL_EXC))
643
		patch_exception(0x040, exc_debug_debug_book3e);
644 645 646
}
#endif

647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664
/*
 * Emergency stacks are used for a range of things, from asynchronous
 * NMIs (system reset, machine check) to synchronous, process context.
 * We set preempt_count to zero, even though that isn't necessarily correct. To
 * get the right value we'd need to copy it from the previous thread_info, but
 * doing that might fault causing more problems.
 * TODO: what to do with accounting?
 */
static void emerg_stack_init_thread_info(struct thread_info *ti, int cpu)
{
	ti->task = NULL;
	ti->cpu = cpu;
	ti->preempt_count = 0;
	ti->local_flags = 0;
	ti->flags = 0;
	klp_init_thread_info(ti);
}

665 666
/*
 * Stack space used when we detect a bad kernel stack pointer, and
667 668
 * early in SMP boots before relocation is enabled. Exclusive emergency
 * stack for machine checks.
669
 */
670
void __init emergency_stack_init(void)
671
{
672
	u64 limit;
673 674 675 676 677 678 679 680
	unsigned int i;

	/*
	 * Emergency stacks must be under 256MB, we cannot afford to take
	 * SLB misses on them. The ABI also requires them to be 128-byte
	 * aligned.
	 *
	 * Since we use these as temporary stacks during secondary CPU
681 682 683
	 * bringup, machine check, system reset, and HMI, we need to get
	 * at them in real mode. This means they must also be within the RMO
	 * region.
684 685 686 687
	 *
	 * The IRQ stacks allocated elsewhere in this file are zeroed and
	 * initialized in kernel/irq.c. These are initialized here in order
	 * to have emergency stacks available as early as possible.
688
	 */
689
	limit = min(ppc64_bolted_size(), ppc64_rma_size);
690

691
	for_each_possible_cpu(i) {
692 693
		struct thread_info *ti;
		ti = __va(memblock_alloc_base(THREAD_SIZE, THREAD_SIZE, limit));
694 695
		memset(ti, 0, THREAD_SIZE);
		emerg_stack_init_thread_info(ti, i);
696
		paca[i].emergency_sp = (void *)ti + THREAD_SIZE;
697 698

#ifdef CONFIG_PPC_BOOK3S_64
699 700
		/* emergency stack for NMI exception handling. */
		ti = __va(memblock_alloc_base(THREAD_SIZE, THREAD_SIZE, limit));
701 702
		memset(ti, 0, THREAD_SIZE);
		emerg_stack_init_thread_info(ti, i);
703 704
		paca[i].nmi_emergency_sp = (void *)ti + THREAD_SIZE;

705
		/* emergency stack for machine check exception handling. */
706
		ti = __va(memblock_alloc_base(THREAD_SIZE, THREAD_SIZE, limit));
707 708
		memset(ti, 0, THREAD_SIZE);
		emerg_stack_init_thread_info(ti, i);
709
		paca[i].mc_emergency_sp = (void *)ti + THREAD_SIZE;
710
#endif
711
	}
712 713
}

714
#ifdef CONFIG_SMP
715 716 717
#define PCPU_DYN_SIZE		()

static void * __init pcpu_fc_alloc(unsigned int cpu, size_t size, size_t align)
718
{
719
	return __alloc_bootmem_node(NODE_DATA(early_cpu_to_node(cpu)), size, align,
720 721
				    __pa(MAX_DMA_ADDRESS));
}
722

723 724 725 726
static void __init pcpu_fc_free(void *ptr, size_t size)
{
	free_bootmem(__pa(ptr), size);
}
727

728 729
static int pcpu_cpu_distance(unsigned int from, unsigned int to)
{
730
	if (early_cpu_to_node(from) == early_cpu_to_node(to))
731 732 733 734 735
		return LOCAL_DISTANCE;
	else
		return REMOTE_DISTANCE;
}

736 737 738
unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
EXPORT_SYMBOL(__per_cpu_offset);

739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762
void __init setup_per_cpu_areas(void)
{
	const size_t dyn_size = PERCPU_MODULE_RESERVE + PERCPU_DYNAMIC_RESERVE;
	size_t atom_size;
	unsigned long delta;
	unsigned int cpu;
	int rc;

	/*
	 * Linear mapping is one of 4K, 1M and 16M.  For 4K, no need
	 * to group units.  For larger mappings, use 1M atom which
	 * should be large enough to contain a number of units.
	 */
	if (mmu_linear_psize == MMU_PAGE_4K)
		atom_size = PAGE_SIZE;
	else
		atom_size = 1 << 20;

	rc = pcpu_embed_first_chunk(0, dyn_size, atom_size, pcpu_cpu_distance,
				    pcpu_fc_alloc, pcpu_fc_free);
	if (rc < 0)
		panic("cannot initialize percpu area (err=%d)", rc);

	delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
763 764 765 766
	for_each_possible_cpu(cpu) {
                __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
		paca[cpu].data_offset = __per_cpu_offset[cpu];
	}
767 768
}
#endif
769

770 771 772 773 774 775 776 777 778
#ifdef CONFIG_MEMORY_HOTPLUG_SPARSE
unsigned long memory_block_size_bytes(void)
{
	if (ppc_md.memory_block_size)
		return ppc_md.memory_block_size();

	return MIN_MEMORY_BLOCK_SIZE;
}
#endif
779

780
#if defined(CONFIG_PPC_INDIRECT_PIO) || defined(CONFIG_PPC_INDIRECT_MMIO)
781 782
struct ppc_pci_io ppc_pci_io;
EXPORT_SYMBOL(ppc_pci_io);
783
#endif
784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811

#ifdef CONFIG_HARDLOCKUP_DETECTOR_PERF
u64 hw_nmi_get_sample_period(int watchdog_thresh)
{
	return ppc_proc_freq * watchdog_thresh;
}
#endif

/*
 * The perf based hardlockup detector breaks PMU event based branches, so
 * disable it by default. Book3S has a soft-nmi hardlockup detector based
 * on the decrementer interrupt, so it does not suffer from this problem.
 *
 * It is likely to get false positives in VM guests, so disable it there
 * by default too.
 */
static int __init disable_hardlockup_detector(void)
{
#ifdef CONFIG_HARDLOCKUP_DETECTOR_PERF
	hardlockup_detector_disable();
#else
	if (firmware_has_feature(FW_FEATURE_LPAR))
		hardlockup_detector_disable();
#endif

	return 0;
}
early_initcall(disable_hardlockup_detector);
812 813 814 815

#ifdef CONFIG_PPC_BOOK3S_64
static enum l1d_flush_type enabled_flush_types;
static void *l1d_flush_fallback_area;
816
static bool no_rfi_flush;
817 818
bool rfi_flush;

819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838
static int __init handle_no_rfi_flush(char *p)
{
	pr_info("rfi-flush: disabled on command line.");
	no_rfi_flush = true;
	return 0;
}
early_param("no_rfi_flush", handle_no_rfi_flush);

/*
 * The RFI flush is not KPTI, but because users will see doco that says to use
 * nopti we hijack that option here to also disable the RFI flush.
 */
static int __init handle_no_pti(char *p)
{
	pr_info("rfi-flush: disabling due to 'nopti' on command line.\n");
	handle_no_rfi_flush(NULL);
	return 0;
}
early_param("nopti", handle_no_pti);

839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862
static void do_nothing(void *unused)
{
	/*
	 * We don't need to do the flush explicitly, just enter+exit kernel is
	 * sufficient, the RFI exit handlers will do the right thing.
	 */
}

void rfi_flush_enable(bool enable)
{
	if (enable) {
		do_rfi_flush_fixups(enabled_flush_types);
		on_each_cpu(do_nothing, NULL, 1);
	} else
		do_rfi_flush_fixups(L1D_FLUSH_NONE);

	rfi_flush = enable;
}

static void init_fallback_flush(void)
{
	u64 l1d_size, limit;
	int cpu;

863 864 865 866
	/* Only allocate the fallback flush area once (at boot time). */
	if (l1d_flush_fallback_area)
		return;

867
	l1d_size = ppc64_caches.l1d.size;
868
	limit = min(ppc64_bolted_size(), ppc64_rma_size);
869 870 871 872 873 874 875 876 877 878 879

	/*
	 * Align to L1d size, and size it at 2x L1d size, to catch possible
	 * hardware prefetch runoff. We don't have a recipe for load patterns to
	 * reliably avoid the prefetcher.
	 */
	l1d_flush_fallback_area = __va(memblock_alloc_base(l1d_size * 2, l1d_size, limit));
	memset(l1d_flush_fallback_area, 0, l1d_size * 2);

	for_each_possible_cpu(cpu) {
		paca[cpu].rfi_flush_fallback_area = l1d_flush_fallback_area;
880
		paca[cpu].l1d_flush_size = l1d_size;
881 882 883
	}
}

884
void setup_rfi_flush(enum l1d_flush_type types, bool enable)
885 886 887 888 889 890 891 892 893 894 895 896 897 898
{
	if (types & L1D_FLUSH_FALLBACK) {
		pr_info("rfi-flush: Using fallback displacement flush\n");
		init_fallback_flush();
	}

	if (types & L1D_FLUSH_ORI)
		pr_info("rfi-flush: Using ori type flush\n");

	if (types & L1D_FLUSH_MTTRIG)
		pr_info("rfi-flush: Using mttrig type flush\n");

	enabled_flush_types = types;

899 900
	if (!no_rfi_flush)
		rfi_flush_enable(enable);
901
}
902

903 904 905
#ifdef CONFIG_DEBUG_FS
static int rfi_flush_set(void *data, u64 val)
{
906 907
	bool enable;

908
	if (val == 1)
909
		enable = true;
910
	else if (val == 0)
911
		enable = false;
912 913 914
	else
		return -EINVAL;

915 916 917 918
	/* Only do anything if we're changing state */
	if (enable != rfi_flush)
		rfi_flush_enable(enable);

919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937
	return 0;
}

static int rfi_flush_get(void *data, u64 *val)
{
	*val = rfi_flush ? 1 : 0;
	return 0;
}

DEFINE_SIMPLE_ATTRIBUTE(fops_rfi_flush, rfi_flush_get, rfi_flush_set, "%llu\n");

static __init int rfi_flush_debugfs_init(void)
{
	debugfs_create_file("rfi_flush", 0600, powerpc_debugfs_root, NULL, &fops_rfi_flush);
	return 0;
}
device_initcall(rfi_flush_debugfs_init);
#endif

938 939 940 941 942 943 944
ssize_t cpu_show_meltdown(struct device *dev, struct device_attribute *attr, char *buf)
{
	if (rfi_flush)
		return sprintf(buf, "Mitigation: RFI Flush\n");

	return sprintf(buf, "Vulnerable\n");
}
945
#endif /* CONFIG_PPC_BOOK3S_64 */