setup_64.c 15.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
/*
 * 
 * Common boot and setup code.
 *
 * Copyright (C) 2001 PPC64 Team, IBM Corp
 *
 *      This program is free software; you can redistribute it and/or
 *      modify it under the terms of the GNU General Public License
 *      as published by the Free Software Foundation; either version
 *      2 of the License, or (at your option) any later version.
 */

#undef DEBUG

#include <linux/module.h>
#include <linux/string.h>
#include <linux/sched.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/reboot.h>
#include <linux/delay.h>
#include <linux/initrd.h>
#include <linux/seq_file.h>
#include <linux/ioport.h>
#include <linux/console.h>
#include <linux/utsname.h>
#include <linux/tty.h>
#include <linux/root_dev.h>
#include <linux/notifier.h>
#include <linux/cpu.h>
#include <linux/unistd.h>
#include <linux/serial.h>
#include <linux/serial_8250.h>
34
#include <linux/bootmem.h>
35
#include <linux/pci.h>
36
#include <linux/lockdep.h>
37
#include <linux/lmb.h>
38
#include <asm/io.h>
39
#include <asm/kdump.h>
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
#include <asm/prom.h>
#include <asm/processor.h>
#include <asm/pgtable.h>
#include <asm/smp.h>
#include <asm/elf.h>
#include <asm/machdep.h>
#include <asm/paca.h>
#include <asm/time.h>
#include <asm/cputable.h>
#include <asm/sections.h>
#include <asm/btext.h>
#include <asm/nvram.h>
#include <asm/setup.h>
#include <asm/system.h>
#include <asm/rtas.h>
#include <asm/iommu.h>
#include <asm/serial.h>
#include <asm/cache.h>
#include <asm/page.h>
#include <asm/mmu.h>
#include <asm/firmware.h>
P
Paul Mackerras 已提交
61
#include <asm/xmon.h>
D
David Gibson 已提交
62
#include <asm/udbg.h>
63
#include <asm/kexec.h>
64

S
Stephen Rothwell 已提交
65 66
#include "setup.h"

67 68 69 70 71 72 73 74 75 76
#ifdef DEBUG
#define DBG(fmt...) udbg_printf(fmt)
#else
#define DBG(fmt...)
#endif

int have_of = 1;
int boot_cpuid = 0;
u64 ppc64_pft_size;

77 78 79 80
/* Pick defaults since we might want to patch instructions
 * before we've read this from the device tree.
 */
struct ppc64_caches ppc64_caches = {
81 82 83 84
	.dline_size = 0x40,
	.log_dline_size = 6,
	.iline_size = 0x40,
	.log_iline_size = 6
85
};
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
EXPORT_SYMBOL_GPL(ppc64_caches);

/*
 * These are used in binfmt_elf.c to put aux entries on the stack
 * for each elf executable being started.
 */
int dcache_bsize;
int icache_bsize;
int ucache_bsize;

#ifdef CONFIG_SMP

static int smt_enabled_cmdline;

/* Look for ibm,smt-enabled OF option */
static void check_smt_enabled(void)
{
	struct device_node *dn;
104
	const char *smt_option;
105 106 107 108 109 110 111 112

	/* Allow the command line to overrule the OF option */
	if (smt_enabled_cmdline)
		return;

	dn = of_find_node_by_path("/options");

	if (dn) {
113
		smt_option = of_get_property(dn, "ibm,smt-enabled", NULL);
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140

                if (smt_option) {
			if (!strcmp(smt_option, "on"))
				smt_enabled_at_boot = 1;
			else if (!strcmp(smt_option, "off"))
				smt_enabled_at_boot = 0;
                }
        }
}

/* Look for smt-enabled= cmdline option */
static int __init early_smt_enabled(char *p)
{
	smt_enabled_cmdline = 1;

	if (!p)
		return 0;

	if (!strcmp(p, "on") || !strcmp(p, "1"))
		smt_enabled_at_boot = 1;
	else if (!strcmp(p, "off") || !strcmp(p, "0"))
		smt_enabled_at_boot = 0;

	return 0;
}
early_param("smt-enabled", early_smt_enabled);

P
Paul Mackerras 已提交
141 142
#else
#define check_smt_enabled()
143 144
#endif /* CONFIG_SMP */

145 146 147 148 149 150 151
/* Put the paca pointer into r13 and SPRG3 */
void __init setup_paca(int cpu)
{
	local_paca = &paca[cpu];
	mtspr(SPRN_SPRG3, local_paca);
}

152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
/*
 * Early initialization entry point. This is called by head.S
 * with MMU translation disabled. We rely on the "feature" of
 * the CPU that ignores the top 2 bits of the address in real
 * mode so we can access kernel globals normally provided we
 * only toy with things in the RMO region. From here, we do
 * some early parsing of the device-tree to setup out LMB
 * data structures, and allocate & initialize the hash table
 * and segment tables so we can start running with translation
 * enabled.
 *
 * It is this function which will call the probe() callback of
 * the various platform types and copy the matching one to the
 * global ppc_md structure. Your platform can eventually do
 * some very early initializations from the probe() routine, but
 * this is not recommended, be very careful as, for example, the
 * device-tree is not accessible via normal means at this point.
 */

void __init early_setup(unsigned long dt_ptr)
{
173 174 175
	/* Fill in any unititialised pacas */
	initialise_pacas();

176
	/* Identify CPU type */
177
	identify_cpu(0, mfspr(SPRN_PVR));
178

179 180 181
	/* Assume we're on cpu 0 for now. Don't write to the paca yet! */
	setup_paca(0);

182 183
	/* Enable early debugging if any specified (see udbg.h) */
	udbg_early_init();
184

185 186 187
	/* Initialize lockdep early or else spinlocks will blow */
	lockdep_init();

188
 	DBG(" -> early_setup(), dt_ptr: 0x%lx\n", dt_ptr);
189 190

	/*
191 192 193
	 * Do early initialization using the flattened device
	 * tree, such as retrieving the physical memory map or
	 * calculating/retrieving the hash table size.
194 195 196
	 */
	early_init_devtree(__va(dt_ptr));

197
	/* Now we know the logical id of our boot cpu, setup the paca. */
198
	setup_paca(boot_cpuid);
199 200 201 202 203 204

	/* Fix up paca fields required for the boot cpu */
	get_paca()->cpu_start = 1;
	get_paca()->stab_real = __pa((u64)&initial_stab);
	get_paca()->stab_addr = (u64)&initial_stab;

205 206
	/* Probe the machine type */
	probe_machine();
207

208
	setup_kdump_trampoline();
209

210 211 212
	DBG("Found, Initializing memory management...\n");

	/*
213 214 215
	 * Initialize the MMU Hash table and create the linear mapping
	 * of memory. Has to be done before stab/slb initialization as
	 * this is currently where the page size encoding is obtained
216
	 */
217
	htab_initialize();
218 219

	/*
220
	 * Initialize stab / SLB management except on iSeries
221
	 */
222 223 224 225
	if (cpu_has_feature(CPU_FTR_SLB))
		slb_initialize();
	else if (!firmware_has_feature(FW_FEATURE_ISERIES))
		stab_initialize(get_paca()->stab_real);
226 227 228 229

	DBG(" <- early_setup()\n");
}

230 231 232 233 234
#ifdef CONFIG_SMP
void early_setup_secondary(void)
{
	struct paca_struct *lpaca = get_paca();

235 236
	/* Mark interrupts enabled in PACA */
	lpaca->soft_enabled = 0;
237 238 239 240 241 242 243 244 245 246 247 248 249 250 251

	/* Initialize hash table for that CPU */
	htab_initialize_secondary();

	/* Initialize STAB/SLB. We use a virtual address as it works
	 * in real mode on pSeries and we want a virutal address on
	 * iSeries anyway
	 */
	if (cpu_has_feature(CPU_FTR_SLB))
		slb_initialize();
	else
		stab_initialize(lpaca->stab_addr);
}

#endif /* CONFIG_SMP */
252

253 254 255 256
#if defined(CONFIG_SMP) || defined(CONFIG_KEXEC)
void smp_release_cpus(void)
{
	extern unsigned long __secondary_hold_spinloop;
257
	unsigned long *ptr;
258 259 260 261 262 263 264 265 266 267

	DBG(" -> smp_release_cpus()\n");

	/* All secondary cpus are spinning on a common spinloop, release them
	 * all now so they can start to spin on their individual paca
	 * spinloops. For non SMP kernels, the secondary cpus never get out
	 * of the common spinloop.
	 * This is useless but harmless on iSeries, secondaries are already
	 * waiting on their paca spinloops. */

268 269 270
	ptr  = (unsigned long *)((unsigned long)&__secondary_hold_spinloop
			- PHYSICAL_START);
	*ptr = 1;
271 272 273 274 275 276
	mb();

	DBG(" <- smp_release_cpus()\n");
}
#endif /* CONFIG_SMP || CONFIG_KEXEC */

277
/*
278 279
 * Initialize some remaining members of the ppc64_caches and systemcfg
 * structures
280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
 * (at least until we get rid of them completely). This is mostly some
 * cache informations about the CPU that will be used by cache flush
 * routines and/or provided to userland
 */
static void __init initialize_cache_info(void)
{
	struct device_node *np;
	unsigned long num_cpus = 0;

	DBG(" -> initialize_cache_info()\n");

	for (np = NULL; (np = of_find_node_by_type(np, "cpu"));) {
		num_cpus += 1;

		/* We're assuming *all* of the CPUs have the same
		 * d-cache and i-cache sizes... -Peter
		 */

		if ( num_cpus == 1 ) {
299
			const u32 *sizep, *lsizep;
300 301 302 303
			u32 size, lsize;

			size = 0;
			lsize = cur_cpu_spec->dcache_bsize;
304
			sizep = of_get_property(np, "d-cache-size", NULL);
305 306
			if (sizep != NULL)
				size = *sizep;
307 308 309 310
			lsizep = of_get_property(np, "d-cache-block-size", NULL);
			/* fallback if block size missing */
			if (lsizep == NULL)
				lsizep = of_get_property(np, "d-cache-line-size", NULL);
311 312 313 314 315 316
			if (lsizep != NULL)
				lsize = *lsizep;
			if (sizep == 0 || lsizep == 0)
				DBG("Argh, can't find dcache properties ! "
				    "sizep: %p, lsizep: %p\n", sizep, lsizep);

317 318
			ppc64_caches.dsize = size;
			ppc64_caches.dline_size = lsize;
319 320 321 322 323
			ppc64_caches.log_dline_size = __ilog2(lsize);
			ppc64_caches.dlines_per_page = PAGE_SIZE / lsize;

			size = 0;
			lsize = cur_cpu_spec->icache_bsize;
324
			sizep = of_get_property(np, "i-cache-size", NULL);
325 326
			if (sizep != NULL)
				size = *sizep;
327 328 329
			lsizep = of_get_property(np, "i-cache-block-size", NULL);
			if (lsizep == NULL)
				lsizep = of_get_property(np, "i-cache-line-size", NULL);
330 331 332 333 334 335
			if (lsizep != NULL)
				lsize = *lsizep;
			if (sizep == 0 || lsizep == 0)
				DBG("Argh, can't find icache properties ! "
				    "sizep: %p, lsizep: %p\n", sizep, lsizep);

336 337
			ppc64_caches.isize = size;
			ppc64_caches.iline_size = lsize;
338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354
			ppc64_caches.log_iline_size = __ilog2(lsize);
			ppc64_caches.ilines_per_page = PAGE_SIZE / lsize;
		}
	}

	DBG(" <- initialize_cache_info()\n");
}


/*
 * Do some initial setup of the system.  The parameters are those which 
 * were passed in from the bootloader.
 */
void __init setup_system(void)
{
	DBG(" -> setup_system()\n");

355 356
	/* Apply the CPUs-specific and firmware specific fixups to kernel
	 * text (nop out sections not relevant to this CPU or this firmware)
357
	 */
358
	do_feature_fixups(cur_cpu_spec->cpu_features,
359
			  &__start___ftr_fixup, &__stop___ftr_fixup);
360 361
	do_feature_fixups(powerpc_firmware_features,
			  &__start___fw_ftr_fixup, &__stop___fw_ftr_fixup);
362

363 364 365 366 367 368 369
	/*
	 * Unflatten the device-tree passed by prom_init or kexec
	 */
	unflatten_device_tree();

	/*
	 * Fill the ppc64_caches & systemcfg structures with informations
370
 	 * retrieved from the device-tree.
371 372 373
	 */
	initialize_cache_info();

374 375 376 377 378
	/*
	 * Initialize irq remapping subsystem
	 */
	irq_early_init();

379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395
#ifdef CONFIG_PPC_RTAS
	/*
	 * Initialize RTAS if available
	 */
	rtas_initialize();
#endif /* CONFIG_PPC_RTAS */

	/*
	 * Check if we have an initrd provided via the device-tree
	 */
	check_for_initrd();

	/*
	 * Do some platform specific early initializations, that includes
	 * setting up the hash table pointers. It also sets up some interrupt-mapping
	 * related options that will be used by finish_device_tree()
	 */
396 397
	if (ppc_md.init_early)
		ppc_md.init_early();
398

399 400 401 402 403 404 405
 	/*
	 * We can discover serial ports now since the above did setup the
	 * hash table management for us, thus ioremap works. We do that early
	 * so that further code can be debugged
	 */
	find_legacy_serial_ports();

406 407 408 409 410
	/*
	 * Register early console
	 */
	register_early_udbg_console();

411 412 413 414
	/*
	 * Initialize xmon
	 */
	xmon_setup();
415

P
Paul Mackerras 已提交
416 417
	check_smt_enabled();
	smp_setup_cpu_maps();
418

419
#ifdef CONFIG_SMP
420 421 422 423
	/* Release secondary cpus out of their spinloops at 0x60 now that
	 * we can map physical -> logical CPU ids
	 */
	smp_release_cpus();
424
#endif
425

426
	printk("Starting Linux PPC64 %s\n", init_utsname()->version);
427 428 429

	printk("-----------------------------------------------------\n");
	printk("ppc64_pft_size                = 0x%lx\n", ppc64_pft_size);
430
	printk("physicalMemorySize            = 0x%lx\n", lmb_phys_mem_size());
431 432 433 434 435 436 437 438
	if (ppc64_caches.dline_size != 0x80)
		printk("ppc64_caches.dcache_line_size = 0x%x\n",
		       ppc64_caches.dline_size);
	if (ppc64_caches.iline_size != 0x80)
		printk("ppc64_caches.icache_line_size = 0x%x\n",
		       ppc64_caches.iline_size);
	if (htab_address)
		printk("htab_address                  = 0x%p\n", htab_address);
439
	printk("htab_hash_mask                = 0x%lx\n", htab_hash_mask);
440
#if PHYSICAL_START > 0
441
	printk("physical_start                = 0x%lx\n", PHYSICAL_START);
442
#endif
443 444 445 446 447 448 449 450 451 452 453 454 455 456
	printk("-----------------------------------------------------\n");

	DBG(" <- setup_system()\n");
}

#ifdef CONFIG_IRQSTACKS
static void __init irqstack_early_init(void)
{
	unsigned int i;

	/*
	 * interrupt stacks must be under 256MB, we cannot afford to take
	 * SLB misses on them.
	 */
457
	for_each_possible_cpu(i) {
458 459 460 461 462 463
		softirq_ctx[i] = (struct thread_info *)
			__va(lmb_alloc_base(THREAD_SIZE,
					    THREAD_SIZE, 0x10000000));
		hardirq_ctx[i] = (struct thread_info *)
			__va(lmb_alloc_base(THREAD_SIZE,
					    THREAD_SIZE, 0x10000000));
464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489
	}
}
#else
#define irqstack_early_init()
#endif

/*
 * Stack space used when we detect a bad kernel stack pointer, and
 * early in SMP boots before relocation is enabled.
 */
static void __init emergency_stack_init(void)
{
	unsigned long limit;
	unsigned int i;

	/*
	 * Emergency stacks must be under 256MB, we cannot afford to take
	 * SLB misses on them. The ABI also requires them to be 128-byte
	 * aligned.
	 *
	 * Since we use these as temporary stacks during secondary CPU
	 * bringup, we need to get at them in real mode. This means they
	 * must also be within the RMO region.
	 */
	limit = min(0x10000000UL, lmb.rmo_size);

490
	for_each_possible_cpu(i)
491 492
		paca[i].emergency_sp =
		__va(lmb_alloc_base(HW_PAGE_SIZE, 128, limit)) + HW_PAGE_SIZE;
493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517
}

/*
 * Called into from start_kernel, after lock_kernel has been called.
 * Initializes bootmem, which is unsed to manage page allocation until
 * mem_init is called.
 */
void __init setup_arch(char **cmdline_p)
{
	ppc64_boot_msg(0x12, "Setup Arch");

	*cmdline_p = cmd_line;

	/*
	 * Set cache line size based on type of cpu as a default.
	 * Systems with OF can look in the properties on the cpu node(s)
	 * for a possibly more accurate value.
	 */
	dcache_bsize = ppc64_caches.dline_size;
	icache_bsize = ppc64_caches.iline_size;

	/* reboot on panic */
	panic_timeout = 180;

	if (ppc_md.panic)
518
		setup_panic();
519

520
	init_mm.start_code = (unsigned long)_stext;
521 522 523 524 525 526 527 528 529 530 531 532 533
	init_mm.end_code = (unsigned long) _etext;
	init_mm.end_data = (unsigned long) _edata;
	init_mm.brk = klimit;
	
	irqstack_early_init();
	emergency_stack_init();

	stabs_alloc();

	/* set up the bootmem stuff with available memory */
	do_init_bootmem();
	sparse_init();

534 535 536 537
#ifdef CONFIG_DUMMY_CONSOLE
	conswitchp = &dummy_con;
#endif

538 539
	if (ppc_md.setup_arch)
		ppc_md.setup_arch();
540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581

	paging_init();
	ppc64_boot_msg(0x15, "Setup Done");
}


/* ToDo: do something useful if ppc_md is not yet setup. */
#define PPC64_LINUX_FUNCTION 0x0f000000
#define PPC64_IPL_MESSAGE 0xc0000000
#define PPC64_TERM_MESSAGE 0xb0000000

static void ppc64_do_msg(unsigned int src, const char *msg)
{
	if (ppc_md.progress) {
		char buf[128];

		sprintf(buf, "%08X\n", src);
		ppc_md.progress(buf, 0);
		snprintf(buf, 128, "%s", msg);
		ppc_md.progress(buf, 0);
	}
}

/* Print a boot progress message. */
void ppc64_boot_msg(unsigned int src, const char *msg)
{
	ppc64_do_msg(PPC64_LINUX_FUNCTION|PPC64_IPL_MESSAGE|src, msg);
	printk("[boot]%04x %s\n", src, msg);
}

/* Print a termination message (print only -- does not stop the kernel) */
void ppc64_terminate_msg(unsigned int src, const char *msg)
{
	ppc64_do_msg(PPC64_LINUX_FUNCTION|PPC64_TERM_MESSAGE|src, msg);
	printk("[terminate]%04x %s\n", src, msg);
}

void cpu_die(void)
{
	if (ppc_md.cpu_die)
		ppc_md.cpu_die();
}
582 583 584 585 586 587 588 589 590

#ifdef CONFIG_SMP
void __init setup_per_cpu_areas(void)
{
	int i;
	unsigned long size;
	char *ptr;

	/* Copy section for each CPU (we discard the original) */
591
	size = ALIGN(__per_cpu_end - __per_cpu_start, PAGE_SIZE);
592 593 594 595 596
#ifdef CONFIG_MODULES
	if (size < PERCPU_ENOUGH_ROOM)
		size = PERCPU_ENOUGH_ROOM;
#endif

597
	for_each_possible_cpu(i) {
598
		ptr = alloc_bootmem_pages_node(NODE_DATA(cpu_to_node(i)), size);
599 600 601 602 603 604
		if (!ptr)
			panic("Cannot allocate cpu data for CPU %d\n", i);

		paca[i].data_offset = ptr - __per_cpu_start;
		memcpy(ptr, __per_cpu_start, __per_cpu_end - __per_cpu_start);
	}
605 606 607

	/* Now that per_cpu is setup, initialize cpu_sibling_map */
	smp_setup_cpu_sibling_map();
608 609
}
#endif
610 611 612 613 614 615 616


#ifdef CONFIG_PPC_INDIRECT_IO
struct ppc_pci_io ppc_pci_io;
EXPORT_SYMBOL(ppc_pci_io);
#endif /* CONFIG_PPC_INDIRECT_IO */