setup_64.c 23.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12
/*
 * 
 * Common boot and setup code.
 *
 * Copyright (C) 2001 PPC64 Team, IBM Corp
 *
 *      This program is free software; you can redistribute it and/or
 *      modify it under the terms of the GNU General Public License
 *      as published by the Free Software Foundation; either version
 *      2 of the License, or (at your option) any later version.
 */

13
#define DEBUG
14

15
#include <linux/export.h>
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
#include <linux/string.h>
#include <linux/sched.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/reboot.h>
#include <linux/delay.h>
#include <linux/initrd.h>
#include <linux/seq_file.h>
#include <linux/ioport.h>
#include <linux/console.h>
#include <linux/utsname.h>
#include <linux/tty.h>
#include <linux/root_dev.h>
#include <linux/notifier.h>
#include <linux/cpu.h>
#include <linux/unistd.h>
#include <linux/serial.h>
#include <linux/serial_8250.h>
34
#include <linux/bootmem.h>
35
#include <linux/pci.h>
36
#include <linux/lockdep.h>
Y
Yinghai Lu 已提交
37
#include <linux/memblock.h>
38
#include <linux/memory.h>
39
#include <linux/nmi.h>
40

41
#include <asm/io.h>
42
#include <asm/kdump.h>
43 44 45 46 47 48 49 50 51
#include <asm/prom.h>
#include <asm/processor.h>
#include <asm/pgtable.h>
#include <asm/smp.h>
#include <asm/elf.h>
#include <asm/machdep.h>
#include <asm/paca.h>
#include <asm/time.h>
#include <asm/cputable.h>
52
#include <asm/dt_cpu_ftrs.h>
53 54 55 56 57 58 59 60 61 62 63
#include <asm/sections.h>
#include <asm/btext.h>
#include <asm/nvram.h>
#include <asm/setup.h>
#include <asm/rtas.h>
#include <asm/iommu.h>
#include <asm/serial.h>
#include <asm/cache.h>
#include <asm/page.h>
#include <asm/mmu.h>
#include <asm/firmware.h>
P
Paul Mackerras 已提交
64
#include <asm/xmon.h>
D
David Gibson 已提交
65
#include <asm/udbg.h>
66
#include <asm/kexec.h>
67
#include <asm/code-patching.h>
68
#include <asm/livepatch.h>
69
#include <asm/opal.h>
70
#include <asm/cputhreads.h>
71

72 73
#include "setup.h"

74 75 76 77 78 79
#ifdef DEBUG
#define DBG(fmt...) udbg_printf(fmt)
#else
#define DBG(fmt...)
#endif

80
int spinning_secondaries;
81 82
u64 ppc64_pft_size;

83
struct ppc64_caches ppc64_caches = {
84 85 86 87 88 89 90 91
	.l1d = {
		.block_size = 0x40,
		.log_block_size = 6,
	},
	.l1i = {
		.block_size = 0x40,
		.log_block_size = 6
	},
92
};
93 94
EXPORT_SYMBOL_GPL(ppc64_caches);

95
#if defined(CONFIG_PPC_BOOK3E) && defined(CONFIG_SMP)
96
void __init setup_tlb_core_data(void)
97 98 99
{
	int cpu;

100 101
	BUILD_BUG_ON(offsetof(struct tlb_core_data, lock) != 0);

102 103 104
	for_each_possible_cpu(cpu) {
		int first = cpu_first_thread_sibling(cpu);

105 106 107 108 109 110 111 112
		/*
		 * If we boot via kdump on a non-primary thread,
		 * make sure we point at the thread that actually
		 * set up this TLB.
		 */
		if (cpu_first_thread_sibling(boot_cpuid) == first)
			first = boot_cpuid;

113 114 115 116 117 118
		paca[cpu].tcd_ptr = &paca[first].tcd;

		/*
		 * If we have threads, we need either tlbsrx.
		 * or e6500 tablewalk mode, or else TLB handlers
		 * will be racy and could produce duplicate entries.
119
		 * Should we panic instead?
120
		 */
121 122 123 124
		WARN_ONCE(smt_enabled_at_boot >= 2 &&
			  !mmu_has_feature(MMU_FTR_USE_TLBRSRV) &&
			  book3e_htw_mode != PPC_HTW_E6500,
			  "%s: unsupported MMU configuration\n", __func__);
125 126 127 128
	}
}
#endif

129 130
#ifdef CONFIG_SMP

131
static char *smt_enabled_cmdline;
132 133

/* Look for ibm,smt-enabled OF option */
134
void __init check_smt_enabled(void)
135 136
{
	struct device_node *dn;
137
	const char *smt_option;
138

139 140
	/* Default to enabling all threads */
	smt_enabled_at_boot = threads_per_core;
141

142 143 144 145 146 147 148
	/* Allow the command line to overrule the OF option */
	if (smt_enabled_cmdline) {
		if (!strcmp(smt_enabled_cmdline, "on"))
			smt_enabled_at_boot = threads_per_core;
		else if (!strcmp(smt_enabled_cmdline, "off"))
			smt_enabled_at_boot = 0;
		else {
149
			int smt;
150 151
			int rc;

152
			rc = kstrtoint(smt_enabled_cmdline, 10, &smt);
153 154
			if (!rc)
				smt_enabled_at_boot =
155
					min(threads_per_core, smt);
156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
		}
	} else {
		dn = of_find_node_by_path("/options");
		if (dn) {
			smt_option = of_get_property(dn, "ibm,smt-enabled",
						     NULL);

			if (smt_option) {
				if (!strcmp(smt_option, "on"))
					smt_enabled_at_boot = threads_per_core;
				else if (!strcmp(smt_option, "off"))
					smt_enabled_at_boot = 0;
			}

			of_node_put(dn);
		}
	}
173 174 175 176 177
}

/* Look for smt-enabled= cmdline option */
static int __init early_smt_enabled(char *p)
{
178
	smt_enabled_cmdline = p;
179 180 181 182 183 184
	return 0;
}
early_param("smt-enabled", early_smt_enabled);

#endif /* CONFIG_SMP */

185
/** Fix up paca fields required for the boot cpu */
186
static void __init fixup_boot_paca(void)
187 188 189 190 191 192 193
{
	/* The boot cpu is started */
	get_paca()->cpu_start = 1;
	/* Allow percpu accesses to work until we setup percpu data */
	get_paca()->data_offset = 0;
}

194
static void __init configure_exceptions(void)
195
{
196
	/*
197 198
	 * Setup the trampolines from the lowmem exception vectors
	 * to the kdump kernel when not using a relocatable kernel.
199
	 */
200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
	setup_kdump_trampoline();

	/* Under a PAPR hypervisor, we need hypercalls */
	if (firmware_has_feature(FW_FEATURE_SET_MODE)) {
		/* Enable AIL if possible */
		pseries_enable_reloc_on_exc();

		/*
		 * Tell the hypervisor that we want our exceptions to
		 * be taken in little endian mode.
		 *
		 * We don't call this for big endian as our calling convention
		 * makes us always enter in BE, and the call may fail under
		 * some circumstances with kdump.
		 */
#ifdef __LITTLE_ENDIAN__
		pseries_little_endian_exceptions();
#endif
	} else {
		/* Set endian mode using OPAL */
		if (firmware_has_feature(FW_FEATURE_OPAL))
			opal_configure_cores();

223
		/* AIL on native is done in cpu_ready_for_interrupts() */
224 225 226
	}
}

227 228
static void cpu_ready_for_interrupts(void)
{
229 230 231 232 233 234 235
	/*
	 * Enable AIL if supported, and we are in hypervisor mode. This
	 * is called once for every processor.
	 *
	 * If we are not in hypervisor mode the job is done once for
	 * the whole partition in configure_exceptions().
	 */
236 237
	if (cpu_has_feature(CPU_FTR_HVMODE) &&
	    cpu_has_feature(CPU_FTR_ARCH_207S)) {
238 239 240 241
		unsigned long lpcr = mfspr(SPRN_LPCR);
		mtspr(SPRN_LPCR, lpcr | LPCR_AIL_3);
	}

242 243 244 245 246 247 248 249 250
	/*
	 * Fixup HFSCR:TM based on CPU features. The bit is set by our
	 * early asm init because at that point we haven't updated our
	 * CPU features from firmware and device-tree. Here we have,
	 * so let's do it.
	 */
	if (cpu_has_feature(CPU_FTR_HVMODE) && !cpu_has_feature(CPU_FTR_TM_COMP))
		mtspr(SPRN_HFSCR, mfspr(SPRN_HFSCR) & ~HFSCR_TM);

251 252 253 254
	/* Set IR and DR in PACA MSR */
	get_paca()->kernel_msr = MSR_KERNEL;
}

255 256 257 258 259 260
/*
 * Early initialization entry point. This is called by head.S
 * with MMU translation disabled. We rely on the "feature" of
 * the CPU that ignores the top 2 bits of the address in real
 * mode so we can access kernel globals normally provided we
 * only toy with things in the RMO region. From here, we do
Y
Yinghai Lu 已提交
261
 * some early parsing of the device-tree to setup out MEMBLOCK
262 263 264 265 266 267 268 269 270 271 272 273 274 275
 * data structures, and allocate & initialize the hash table
 * and segment tables so we can start running with translation
 * enabled.
 *
 * It is this function which will call the probe() callback of
 * the various platform types and copy the matching one to the
 * global ppc_md structure. Your platform can eventually do
 * some very early initializations from the probe() routine, but
 * this is not recommended, be very careful as, for example, the
 * device-tree is not accessible via normal means at this point.
 */

void __init early_setup(unsigned long dt_ptr)
{
276 277
	static __initdata struct paca_struct boot_paca;

278 279
	/* -------- printk is _NOT_ safe to use here ! ------- */

280 281 282 283
	/* Try new device tree based feature discovery ... */
	if (!dt_cpu_ftrs_init(__va(dt_ptr)))
		/* Otherwise use the old style CPU table */
		identify_cpu(0, mfspr(SPRN_PVR));
284

285
	/* Assume we're on cpu 0 for now. Don't write to the paca yet! */
286 287
	initialise_paca(&boot_paca, 0);
	setup_paca(&boot_paca);
288
	fixup_boot_paca();
289

290 291
	/* -------- printk is now safe to use ------- */

292 293 294
	/* Enable early debugging if any specified (see udbg.h) */
	udbg_early_init();

295
 	DBG(" -> early_setup(), dt_ptr: 0x%lx\n", dt_ptr);
296 297

	/*
298 299 300
	 * Do early initialization using the flattened device
	 * tree, such as retrieving the physical memory map or
	 * calculating/retrieving the hash table size.
301 302 303
	 */
	early_init_devtree(__va(dt_ptr));

304
	/* Now we know the logical id of our boot cpu, setup the paca. */
305
	setup_paca(&paca[boot_cpuid]);
306
	fixup_boot_paca();
307

308
	/*
309 310
	 * Configure exception handlers. This include setting up trampolines
	 * if needed, setting exception endian mode, etc...
311
	 */
312
	configure_exceptions();
313

314 315
	/* Apply all the dynamic patching */
	apply_feature_fixups();
316
	setup_feature_keys();
317

318 319 320
	/* Initialize the hash table or TLB handling */
	early_init_mmu();

321 322 323 324 325 326 327
	/*
	 * After firmware and early platform setup code has set things up,
	 * we note the SPR values for configurable control/performance
	 * registers, and use those as initial defaults.
	 */
	record_spr_defaults();

328 329 330
	/*
	 * At this point, we can let interrupts switch to virtual mode
	 * (the MMU has been setup), so adjust the MSR in the PACA to
331
	 * have IR and DR set and enable AIL if it exists
332
	 */
333
	cpu_ready_for_interrupts();
334

335
	DBG(" <- early_setup()\n");
336 337 338 339 340 341 342 343 344 345 346 347

#ifdef CONFIG_PPC_EARLY_DEBUG_BOOTX
	/*
	 * This needs to be done *last* (after the above DBG() even)
	 *
	 * Right after we return from this function, we turn on the MMU
	 * which means the real-mode access trick that btext does will
	 * no longer work, it needs to switch to using a real MMU
	 * mapping. This call will ensure that it does
	 */
	btext_map();
#endif /* CONFIG_PPC_EARLY_DEBUG_BOOTX */
348 349
}

350 351 352
#ifdef CONFIG_SMP
void early_setup_secondary(void)
{
353
	/* Mark interrupts disabled in PACA */
354
	get_paca()->soft_enabled = 0;
355

356 357
	/* Initialize the hash table or TLB handling */
	early_init_mmu_secondary();
358 359 360 361 362 363

	/*
	 * At this point, we can let interrupts switch to virtual mode
	 * (the MMU has been setup), so adjust the MSR in the PACA to
	 * have IR and DR set.
	 */
364
	cpu_ready_for_interrupts();
365 366 367
}

#endif /* CONFIG_SMP */
368

369
#if defined(CONFIG_SMP) || defined(CONFIG_KEXEC_CORE)
370 371
static bool use_spinloop(void)
{
372 373 374 375 376 377 378 379
	if (IS_ENABLED(CONFIG_PPC_BOOK3S)) {
		/*
		 * See comments in head_64.S -- not all platforms insert
		 * secondaries at __secondary_hold and wait at the spin
		 * loop.
		 */
		if (firmware_has_feature(FW_FEATURE_OPAL))
			return false;
380
		return true;
381
	}
382 383 384 385 386 387 388 389

	/*
	 * When book3e boots from kexec, the ePAPR spin table does
	 * not get used.
	 */
	return of_property_read_bool(of_chosen, "linux,booted-from-kexec");
}

390 391
void smp_release_cpus(void)
{
392
	unsigned long *ptr;
393
	int i;
394

395 396 397
	if (!use_spinloop())
		return;

398 399 400 401 402 403
	DBG(" -> smp_release_cpus()\n");

	/* All secondary cpus are spinning on a common spinloop, release them
	 * all now so they can start to spin on their individual paca
	 * spinloops. For non SMP kernels, the secondary cpus never get out
	 * of the common spinloop.
404
	 */
405

406 407
	ptr  = (unsigned long *)((unsigned long)&__secondary_hold_spinloop
			- PHYSICAL_START);
408
	*ptr = ppc_function_entry(generic_secondary_smp_init);
409 410 411 412 413

	/* And wait a bit for them to catch up */
	for (i = 0; i < 100000; i++) {
		mb();
		HMT_low();
414
		if (spinning_secondaries == 0)
415 416 417
			break;
		udelay(1);
	}
418
	DBG("spinning_secondaries = %d\n", spinning_secondaries);
419 420 421

	DBG(" <- smp_release_cpus()\n");
}
422
#endif /* CONFIG_SMP || CONFIG_KEXEC_CORE */
423

424
/*
425 426
 * Initialize some remaining members of the ppc64_caches and systemcfg
 * structures
427 428 429 430
 * (at least until we get rid of them completely). This is mostly some
 * cache informations about the CPU that will be used by cache flush
 * routines and/or provided to userland
 */
431 432 433 434 435 436 437 438 439

static void init_cache_info(struct ppc_cache_info *info, u32 size, u32 lsize,
			    u32 bsize, u32 sets)
{
	info->size = size;
	info->sets = sets;
	info->line_size = lsize;
	info->block_size = bsize;
	info->log_block_size = __ilog2(bsize);
440 441 442 443
	if (bsize)
		info->blocks_per_page = PAGE_SIZE / bsize;
	else
		info->blocks_per_page = 0;
444 445 446 447 448

	if (sets == 0)
		info->assoc = 0xffff;
	else
		info->assoc = size / (sets * lsize);
449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507
}

static bool __init parse_cache_info(struct device_node *np,
				    bool icache,
				    struct ppc_cache_info *info)
{
	static const char *ipropnames[] __initdata = {
		"i-cache-size",
		"i-cache-sets",
		"i-cache-block-size",
		"i-cache-line-size",
	};
	static const char *dpropnames[] __initdata = {
		"d-cache-size",
		"d-cache-sets",
		"d-cache-block-size",
		"d-cache-line-size",
	};
	const char **propnames = icache ? ipropnames : dpropnames;
	const __be32 *sizep, *lsizep, *bsizep, *setsp;
	u32 size, lsize, bsize, sets;
	bool success = true;

	size = 0;
	sets = -1u;
	lsize = bsize = cur_cpu_spec->dcache_bsize;
	sizep = of_get_property(np, propnames[0], NULL);
	if (sizep != NULL)
		size = be32_to_cpu(*sizep);
	setsp = of_get_property(np, propnames[1], NULL);
	if (setsp != NULL)
		sets = be32_to_cpu(*setsp);
	bsizep = of_get_property(np, propnames[2], NULL);
	lsizep = of_get_property(np, propnames[3], NULL);
	if (bsizep == NULL)
		bsizep = lsizep;
	if (lsizep != NULL)
		lsize = be32_to_cpu(*lsizep);
	if (bsizep != NULL)
		bsize = be32_to_cpu(*bsizep);
	if (sizep == NULL || bsizep == NULL || lsizep == NULL)
		success = false;

	/*
	 * OF is weird .. it represents fully associative caches
	 * as "1 way" which doesn't make much sense and doesn't
	 * leave room for direct mapped. We'll assume that 0
	 * in OF means direct mapped for that reason.
	 */
	if (sets == 1)
		sets = 0;
	else if (sets == 0)
		sets = 1;

	init_cache_info(info, size, lsize, bsize, sets);

	return success;
}

508
void __init initialize_cache_info(void)
509
{
510 511
	struct device_node *cpu = NULL, *l2, *l3 = NULL;
	u32 pvr;
512 513 514

	DBG(" -> initialize_cache_info()\n");

515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530
	/*
	 * All shipping POWER8 machines have a firmware bug that
	 * puts incorrect information in the device-tree. This will
	 * be (hopefully) fixed for future chips but for now hard
	 * code the values if we are running on one of these
	 */
	pvr = PVR_VER(mfspr(SPRN_PVR));
	if (pvr == PVR_POWER8 || pvr == PVR_POWER8E ||
	    pvr == PVR_POWER8NVL) {
						/* size    lsize   blk  sets */
		init_cache_info(&ppc64_caches.l1i, 0x8000,   128,  128, 32);
		init_cache_info(&ppc64_caches.l1d, 0x10000,  128,  128, 64);
		init_cache_info(&ppc64_caches.l2,  0x80000,  128,  0,   512);
		init_cache_info(&ppc64_caches.l3,  0x800000, 128,  0,   8192);
	} else
		cpu = of_find_node_by_type(NULL, "cpu");
531

532 533 534 535
	/*
	 * We're assuming *all* of the CPUs have the same
	 * d-cache and i-cache sizes... -Peter
	 */
536 537
	if (cpu) {
		if (!parse_cache_info(cpu, false, &ppc64_caches.l1d))
538 539
			DBG("Argh, can't find dcache properties !\n");

540
		if (!parse_cache_info(cpu, true, &ppc64_caches.l1i))
541
			DBG("Argh, can't find icache properties !\n");
542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557

		/*
		 * Try to find the L2 and L3 if any. Assume they are
		 * unified and use the D-side properties.
		 */
		l2 = of_find_next_cache_node(cpu);
		of_node_put(cpu);
		if (l2) {
			parse_cache_info(l2, false, &ppc64_caches.l2);
			l3 = of_find_next_cache_node(l2);
			of_node_put(l2);
		}
		if (l3) {
			parse_cache_info(l3, false, &ppc64_caches.l3);
			of_node_put(l3);
		}
558 559
	}

560
	/* For use by binfmt_elf */
561 562
	dcache_bsize = ppc64_caches.l1d.block_size;
	icache_bsize = ppc64_caches.l1i.block_size;
563

564 565 566
	cur_cpu_spec->dcache_bsize = dcache_bsize;
	cur_cpu_spec->icache_bsize = icache_bsize;

567 568 569
	DBG(" <- initialize_cache_info()\n");
}

570 571 572 573 574
/* This returns the limit below which memory accesses to the linear
 * mapping are guarnateed not to cause a TLB or SLB miss. This is
 * used to allocate interrupt or emergency stacks for which our
 * exception entry path doesn't deal with being interrupted.
 */
575
static __init u64 safe_stack_limit(void)
576
{
577 578 579 580 581 582 583
#ifdef CONFIG_PPC_BOOK3E
	/* Freescale BookE bolts the entire linear mapping */
	if (mmu_has_feature(MMU_FTR_TYPE_FSL_E))
		return linear_map_top;
	/* Other BookE, we assume the first GB is bolted */
	return 1ul << 30;
#else
584 585 586
	if (early_radix_enabled())
		return ULONG_MAX;

587 588
	/* BookS, the first segment is bolted */
	if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
589 590
		return 1UL << SID_SHIFT_1T;
	return 1UL << SID_SHIFT;
591
#endif
592 593
}

594
void __init irqstack_early_init(void)
595
{
596
	u64 limit = safe_stack_limit();
597 598 599
	unsigned int i;

	/*
600
	 * Interrupt stacks must be in the first segment since we
601 602
	 * cannot afford to take SLB misses on them. They are not
	 * accessed in realmode.
603
	 */
604
	for_each_possible_cpu(i) {
605
		softirq_ctx[i] = (struct thread_info *)
Y
Yinghai Lu 已提交
606
			__va(memblock_alloc_base(THREAD_SIZE,
607
					    THREAD_SIZE, limit));
608
		hardirq_ctx[i] = (struct thread_info *)
Y
Yinghai Lu 已提交
609
			__va(memblock_alloc_base(THREAD_SIZE,
610
					    THREAD_SIZE, limit));
611 612 613
	}
}

614
#ifdef CONFIG_PPC_BOOK3E
615
void __init exc_lvl_early_init(void)
616 617
{
	unsigned int i;
618
	unsigned long sp;
619 620

	for_each_possible_cpu(i) {
621 622 623 624 625 626 627 628 629 630 631
		sp = memblock_alloc(THREAD_SIZE, THREAD_SIZE);
		critirq_ctx[i] = (struct thread_info *)__va(sp);
		paca[i].crit_kstack = __va(sp + THREAD_SIZE);

		sp = memblock_alloc(THREAD_SIZE, THREAD_SIZE);
		dbgirq_ctx[i] = (struct thread_info *)__va(sp);
		paca[i].dbg_kstack = __va(sp + THREAD_SIZE);

		sp = memblock_alloc(THREAD_SIZE, THREAD_SIZE);
		mcheckirq_ctx[i] = (struct thread_info *)__va(sp);
		paca[i].mc_kstack = __va(sp + THREAD_SIZE);
632
	}
633 634

	if (cpu_has_feature(CPU_FTR_DEBUG_LVL_EXC))
635
		patch_exception(0x040, exc_debug_debug_book3e);
636 637 638
}
#endif

639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656
/*
 * Emergency stacks are used for a range of things, from asynchronous
 * NMIs (system reset, machine check) to synchronous, process context.
 * We set preempt_count to zero, even though that isn't necessarily correct. To
 * get the right value we'd need to copy it from the previous thread_info, but
 * doing that might fault causing more problems.
 * TODO: what to do with accounting?
 */
static void emerg_stack_init_thread_info(struct thread_info *ti, int cpu)
{
	ti->task = NULL;
	ti->cpu = cpu;
	ti->preempt_count = 0;
	ti->local_flags = 0;
	ti->flags = 0;
	klp_init_thread_info(ti);
}

657 658
/*
 * Stack space used when we detect a bad kernel stack pointer, and
659 660
 * early in SMP boots before relocation is enabled. Exclusive emergency
 * stack for machine checks.
661
 */
662
void __init emergency_stack_init(void)
663
{
664
	u64 limit;
665 666 667 668 669 670 671 672
	unsigned int i;

	/*
	 * Emergency stacks must be under 256MB, we cannot afford to take
	 * SLB misses on them. The ABI also requires them to be 128-byte
	 * aligned.
	 *
	 * Since we use these as temporary stacks during secondary CPU
673 674 675
	 * bringup, machine check, system reset, and HMI, we need to get
	 * at them in real mode. This means they must also be within the RMO
	 * region.
676 677 678 679
	 *
	 * The IRQ stacks allocated elsewhere in this file are zeroed and
	 * initialized in kernel/irq.c. These are initialized here in order
	 * to have emergency stacks available as early as possible.
680
	 */
681
	limit = min(safe_stack_limit(), ppc64_rma_size);
682

683
	for_each_possible_cpu(i) {
684 685
		struct thread_info *ti;
		ti = __va(memblock_alloc_base(THREAD_SIZE, THREAD_SIZE, limit));
686 687
		memset(ti, 0, THREAD_SIZE);
		emerg_stack_init_thread_info(ti, i);
688
		paca[i].emergency_sp = (void *)ti + THREAD_SIZE;
689 690

#ifdef CONFIG_PPC_BOOK3S_64
691 692
		/* emergency stack for NMI exception handling. */
		ti = __va(memblock_alloc_base(THREAD_SIZE, THREAD_SIZE, limit));
693 694
		memset(ti, 0, THREAD_SIZE);
		emerg_stack_init_thread_info(ti, i);
695 696
		paca[i].nmi_emergency_sp = (void *)ti + THREAD_SIZE;

697
		/* emergency stack for machine check exception handling. */
698
		ti = __va(memblock_alloc_base(THREAD_SIZE, THREAD_SIZE, limit));
699 700
		memset(ti, 0, THREAD_SIZE);
		emerg_stack_init_thread_info(ti, i);
701
		paca[i].mc_emergency_sp = (void *)ti + THREAD_SIZE;
702
#endif
703
	}
704 705
}

706
#ifdef CONFIG_SMP
707 708 709
#define PCPU_DYN_SIZE		()

static void * __init pcpu_fc_alloc(unsigned int cpu, size_t size, size_t align)
710
{
711
	return __alloc_bootmem_node(NODE_DATA(early_cpu_to_node(cpu)), size, align,
712 713
				    __pa(MAX_DMA_ADDRESS));
}
714

715 716 717 718
static void __init pcpu_fc_free(void *ptr, size_t size)
{
	free_bootmem(__pa(ptr), size);
}
719

720 721
static int pcpu_cpu_distance(unsigned int from, unsigned int to)
{
722
	if (early_cpu_to_node(from) == early_cpu_to_node(to))
723 724 725 726 727
		return LOCAL_DISTANCE;
	else
		return REMOTE_DISTANCE;
}

728 729 730
unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
EXPORT_SYMBOL(__per_cpu_offset);

731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754
void __init setup_per_cpu_areas(void)
{
	const size_t dyn_size = PERCPU_MODULE_RESERVE + PERCPU_DYNAMIC_RESERVE;
	size_t atom_size;
	unsigned long delta;
	unsigned int cpu;
	int rc;

	/*
	 * Linear mapping is one of 4K, 1M and 16M.  For 4K, no need
	 * to group units.  For larger mappings, use 1M atom which
	 * should be large enough to contain a number of units.
	 */
	if (mmu_linear_psize == MMU_PAGE_4K)
		atom_size = PAGE_SIZE;
	else
		atom_size = 1 << 20;

	rc = pcpu_embed_first_chunk(0, dyn_size, atom_size, pcpu_cpu_distance,
				    pcpu_fc_alloc, pcpu_fc_free);
	if (rc < 0)
		panic("cannot initialize percpu area (err=%d)", rc);

	delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
755 756 757 758
	for_each_possible_cpu(cpu) {
                __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
		paca[cpu].data_offset = __per_cpu_offset[cpu];
	}
759 760
}
#endif
761

762 763 764 765 766 767 768 769 770
#ifdef CONFIG_MEMORY_HOTPLUG_SPARSE
unsigned long memory_block_size_bytes(void)
{
	if (ppc_md.memory_block_size)
		return ppc_md.memory_block_size();

	return MIN_MEMORY_BLOCK_SIZE;
}
#endif
771

772
#if defined(CONFIG_PPC_INDIRECT_PIO) || defined(CONFIG_PPC_INDIRECT_MMIO)
773 774
struct ppc_pci_io ppc_pci_io;
EXPORT_SYMBOL(ppc_pci_io);
775
#endif
776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803

#ifdef CONFIG_HARDLOCKUP_DETECTOR_PERF
u64 hw_nmi_get_sample_period(int watchdog_thresh)
{
	return ppc_proc_freq * watchdog_thresh;
}
#endif

/*
 * The perf based hardlockup detector breaks PMU event based branches, so
 * disable it by default. Book3S has a soft-nmi hardlockup detector based
 * on the decrementer interrupt, so it does not suffer from this problem.
 *
 * It is likely to get false positives in VM guests, so disable it there
 * by default too.
 */
static int __init disable_hardlockup_detector(void)
{
#ifdef CONFIG_HARDLOCKUP_DETECTOR_PERF
	hardlockup_detector_disable();
#else
	if (firmware_has_feature(FW_FEATURE_LPAR))
		hardlockup_detector_disable();
#endif

	return 0;
}
early_initcall(disable_hardlockup_detector);
804 805 806 807

#ifdef CONFIG_PPC_BOOK3S_64
static enum l1d_flush_type enabled_flush_types;
static void *l1d_flush_fallback_area;
808
static bool no_rfi_flush;
809 810
bool rfi_flush;

811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830
static int __init handle_no_rfi_flush(char *p)
{
	pr_info("rfi-flush: disabled on command line.");
	no_rfi_flush = true;
	return 0;
}
early_param("no_rfi_flush", handle_no_rfi_flush);

/*
 * The RFI flush is not KPTI, but because users will see doco that says to use
 * nopti we hijack that option here to also disable the RFI flush.
 */
static int __init handle_no_pti(char *p)
{
	pr_info("rfi-flush: disabling due to 'nopti' on command line.\n");
	handle_no_rfi_flush(NULL);
	return 0;
}
early_param("nopti", handle_no_pti);

831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900
static void do_nothing(void *unused)
{
	/*
	 * We don't need to do the flush explicitly, just enter+exit kernel is
	 * sufficient, the RFI exit handlers will do the right thing.
	 */
}

void rfi_flush_enable(bool enable)
{
	if (rfi_flush == enable)
		return;

	if (enable) {
		do_rfi_flush_fixups(enabled_flush_types);
		on_each_cpu(do_nothing, NULL, 1);
	} else
		do_rfi_flush_fixups(L1D_FLUSH_NONE);

	rfi_flush = enable;
}

static void init_fallback_flush(void)
{
	u64 l1d_size, limit;
	int cpu;

	l1d_size = ppc64_caches.l1d.size;
	limit = min(safe_stack_limit(), ppc64_rma_size);

	/*
	 * Align to L1d size, and size it at 2x L1d size, to catch possible
	 * hardware prefetch runoff. We don't have a recipe for load patterns to
	 * reliably avoid the prefetcher.
	 */
	l1d_flush_fallback_area = __va(memblock_alloc_base(l1d_size * 2, l1d_size, limit));
	memset(l1d_flush_fallback_area, 0, l1d_size * 2);

	for_each_possible_cpu(cpu) {
		/*
		 * The fallback flush is currently coded for 8-way
		 * associativity. Different associativity is possible, but it
		 * will be treated as 8-way and may not evict the lines as
		 * effectively.
		 *
		 * 128 byte lines are mandatory.
		 */
		u64 c = l1d_size / 8;

		paca[cpu].rfi_flush_fallback_area = l1d_flush_fallback_area;
		paca[cpu].l1d_flush_congruence = c;
		paca[cpu].l1d_flush_sets = c / 128;
	}
}

void __init setup_rfi_flush(enum l1d_flush_type types, bool enable)
{
	if (types & L1D_FLUSH_FALLBACK) {
		pr_info("rfi-flush: Using fallback displacement flush\n");
		init_fallback_flush();
	}

	if (types & L1D_FLUSH_ORI)
		pr_info("rfi-flush: Using ori type flush\n");

	if (types & L1D_FLUSH_MTTRIG)
		pr_info("rfi-flush: Using mttrig type flush\n");

	enabled_flush_types = types;

901 902
	if (!no_rfi_flush)
		rfi_flush_enable(enable);
903
}
904 905 906 907 908 909 910 911

ssize_t cpu_show_meltdown(struct device *dev, struct device_attribute *attr, char *buf)
{
	if (rfi_flush)
		return sprintf(buf, "Mitigation: RFI Flush\n");

	return sprintf(buf, "Vulnerable\n");
}
912
#endif /* CONFIG_PPC_BOOK3S_64 */