setup_64.c 25.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12
/*
 * 
 * Common boot and setup code.
 *
 * Copyright (C) 2001 PPC64 Team, IBM Corp
 *
 *      This program is free software; you can redistribute it and/or
 *      modify it under the terms of the GNU General Public License
 *      as published by the Free Software Foundation; either version
 *      2 of the License, or (at your option) any later version.
 */

13
#include <linux/export.h>
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
#include <linux/string.h>
#include <linux/sched.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/reboot.h>
#include <linux/delay.h>
#include <linux/initrd.h>
#include <linux/seq_file.h>
#include <linux/ioport.h>
#include <linux/console.h>
#include <linux/utsname.h>
#include <linux/tty.h>
#include <linux/root_dev.h>
#include <linux/notifier.h>
#include <linux/cpu.h>
#include <linux/unistd.h>
#include <linux/serial.h>
#include <linux/serial_8250.h>
32
#include <linux/bootmem.h>
33
#include <linux/pci.h>
34
#include <linux/lockdep.h>
Y
Yinghai Lu 已提交
35
#include <linux/memblock.h>
36
#include <linux/memory.h>
37
#include <linux/nmi.h>
38

39
#include <asm/debugfs.h>
40
#include <asm/io.h>
41
#include <asm/kdump.h>
42 43 44 45 46 47 48 49 50
#include <asm/prom.h>
#include <asm/processor.h>
#include <asm/pgtable.h>
#include <asm/smp.h>
#include <asm/elf.h>
#include <asm/machdep.h>
#include <asm/paca.h>
#include <asm/time.h>
#include <asm/cputable.h>
51
#include <asm/dt_cpu_ftrs.h>
52 53 54 55 56 57 58 59 60 61 62
#include <asm/sections.h>
#include <asm/btext.h>
#include <asm/nvram.h>
#include <asm/setup.h>
#include <asm/rtas.h>
#include <asm/iommu.h>
#include <asm/serial.h>
#include <asm/cache.h>
#include <asm/page.h>
#include <asm/mmu.h>
#include <asm/firmware.h>
P
Paul Mackerras 已提交
63
#include <asm/xmon.h>
D
David Gibson 已提交
64
#include <asm/udbg.h>
65
#include <asm/kexec.h>
66
#include <asm/code-patching.h>
67
#include <asm/livepatch.h>
68
#include <asm/opal.h>
69
#include <asm/cputhreads.h>
70
#include <asm/hw_irq.h>
71

72 73
#include "setup.h"

74 75 76 77 78 79
#ifdef DEBUG
#define DBG(fmt...) udbg_printf(fmt)
#else
#define DBG(fmt...)
#endif

80
int spinning_secondaries;
81 82
u64 ppc64_pft_size;

83
struct ppc64_caches ppc64_caches = {
84 85 86 87 88 89 90 91
	.l1d = {
		.block_size = 0x40,
		.log_block_size = 6,
	},
	.l1i = {
		.block_size = 0x40,
		.log_block_size = 6
	},
92
};
93 94
EXPORT_SYMBOL_GPL(ppc64_caches);

95
#if defined(CONFIG_PPC_BOOK3E) && defined(CONFIG_SMP)
96
void __init setup_tlb_core_data(void)
97 98 99
{
	int cpu;

100 101
	BUILD_BUG_ON(offsetof(struct tlb_core_data, lock) != 0);

102 103 104
	for_each_possible_cpu(cpu) {
		int first = cpu_first_thread_sibling(cpu);

105 106 107 108 109 110 111 112
		/*
		 * If we boot via kdump on a non-primary thread,
		 * make sure we point at the thread that actually
		 * set up this TLB.
		 */
		if (cpu_first_thread_sibling(boot_cpuid) == first)
			first = boot_cpuid;

113
		paca_ptrs[cpu]->tcd_ptr = &paca_ptrs[first]->tcd;
114 115 116 117 118

		/*
		 * If we have threads, we need either tlbsrx.
		 * or e6500 tablewalk mode, or else TLB handlers
		 * will be racy and could produce duplicate entries.
119
		 * Should we panic instead?
120
		 */
121 122 123 124
		WARN_ONCE(smt_enabled_at_boot >= 2 &&
			  !mmu_has_feature(MMU_FTR_USE_TLBRSRV) &&
			  book3e_htw_mode != PPC_HTW_E6500,
			  "%s: unsupported MMU configuration\n", __func__);
125 126 127 128
	}
}
#endif

129 130
#ifdef CONFIG_SMP

131
static char *smt_enabled_cmdline;
132 133

/* Look for ibm,smt-enabled OF option */
134
void __init check_smt_enabled(void)
135 136
{
	struct device_node *dn;
137
	const char *smt_option;
138

139 140
	/* Default to enabling all threads */
	smt_enabled_at_boot = threads_per_core;
141

142 143 144 145 146 147 148
	/* Allow the command line to overrule the OF option */
	if (smt_enabled_cmdline) {
		if (!strcmp(smt_enabled_cmdline, "on"))
			smt_enabled_at_boot = threads_per_core;
		else if (!strcmp(smt_enabled_cmdline, "off"))
			smt_enabled_at_boot = 0;
		else {
149
			int smt;
150 151
			int rc;

152
			rc = kstrtoint(smt_enabled_cmdline, 10, &smt);
153 154
			if (!rc)
				smt_enabled_at_boot =
155
					min(threads_per_core, smt);
156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
		}
	} else {
		dn = of_find_node_by_path("/options");
		if (dn) {
			smt_option = of_get_property(dn, "ibm,smt-enabled",
						     NULL);

			if (smt_option) {
				if (!strcmp(smt_option, "on"))
					smt_enabled_at_boot = threads_per_core;
				else if (!strcmp(smt_option, "off"))
					smt_enabled_at_boot = 0;
			}

			of_node_put(dn);
		}
	}
173 174 175 176 177
}

/* Look for smt-enabled= cmdline option */
static int __init early_smt_enabled(char *p)
{
178
	smt_enabled_cmdline = p;
179 180 181 182 183 184
	return 0;
}
early_param("smt-enabled", early_smt_enabled);

#endif /* CONFIG_SMP */

185
/** Fix up paca fields required for the boot cpu */
186
static void __init fixup_boot_paca(void)
187 188 189 190 191
{
	/* The boot cpu is started */
	get_paca()->cpu_start = 1;
	/* Allow percpu accesses to work until we setup percpu data */
	get_paca()->data_offset = 0;
192
	/* Mark interrupts disabled in PACA */
193
	irq_soft_mask_set(IRQS_DISABLED);
194 195
}

196
static void __init configure_exceptions(void)
197
{
198
	/*
199 200
	 * Setup the trampolines from the lowmem exception vectors
	 * to the kdump kernel when not using a relocatable kernel.
201
	 */
202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
	setup_kdump_trampoline();

	/* Under a PAPR hypervisor, we need hypercalls */
	if (firmware_has_feature(FW_FEATURE_SET_MODE)) {
		/* Enable AIL if possible */
		pseries_enable_reloc_on_exc();

		/*
		 * Tell the hypervisor that we want our exceptions to
		 * be taken in little endian mode.
		 *
		 * We don't call this for big endian as our calling convention
		 * makes us always enter in BE, and the call may fail under
		 * some circumstances with kdump.
		 */
#ifdef __LITTLE_ENDIAN__
		pseries_little_endian_exceptions();
#endif
	} else {
		/* Set endian mode using OPAL */
		if (firmware_has_feature(FW_FEATURE_OPAL))
			opal_configure_cores();

225
		/* AIL on native is done in cpu_ready_for_interrupts() */
226 227 228
	}
}

229 230
static void cpu_ready_for_interrupts(void)
{
231 232 233 234 235 236 237
	/*
	 * Enable AIL if supported, and we are in hypervisor mode. This
	 * is called once for every processor.
	 *
	 * If we are not in hypervisor mode the job is done once for
	 * the whole partition in configure_exceptions().
	 */
238 239
	if (cpu_has_feature(CPU_FTR_HVMODE) &&
	    cpu_has_feature(CPU_FTR_ARCH_207S)) {
240 241 242 243
		unsigned long lpcr = mfspr(SPRN_LPCR);
		mtspr(SPRN_LPCR, lpcr | LPCR_AIL_3);
	}

244 245 246 247 248 249 250 251 252
	/*
	 * Fixup HFSCR:TM based on CPU features. The bit is set by our
	 * early asm init because at that point we haven't updated our
	 * CPU features from firmware and device-tree. Here we have,
	 * so let's do it.
	 */
	if (cpu_has_feature(CPU_FTR_HVMODE) && !cpu_has_feature(CPU_FTR_TM_COMP))
		mtspr(SPRN_HFSCR, mfspr(SPRN_HFSCR) & ~HFSCR_TM);

253 254 255 256
	/* Set IR and DR in PACA MSR */
	get_paca()->kernel_msr = MSR_KERNEL;
}

257 258 259 260 261 262 263 264
unsigned long spr_default_dscr = 0;

void __init record_spr_defaults(void)
{
	if (early_cpu_has_feature(CPU_FTR_DSCR))
		spr_default_dscr = mfspr(SPRN_DSCR);
}

265 266 267 268 269 270
/*
 * Early initialization entry point. This is called by head.S
 * with MMU translation disabled. We rely on the "feature" of
 * the CPU that ignores the top 2 bits of the address in real
 * mode so we can access kernel globals normally provided we
 * only toy with things in the RMO region. From here, we do
Y
Yinghai Lu 已提交
271
 * some early parsing of the device-tree to setup out MEMBLOCK
272 273 274 275 276 277 278 279 280 281 282 283 284 285
 * data structures, and allocate & initialize the hash table
 * and segment tables so we can start running with translation
 * enabled.
 *
 * It is this function which will call the probe() callback of
 * the various platform types and copy the matching one to the
 * global ppc_md structure. Your platform can eventually do
 * some very early initializations from the probe() routine, but
 * this is not recommended, be very careful as, for example, the
 * device-tree is not accessible via normal means at this point.
 */

void __init early_setup(unsigned long dt_ptr)
{
286 287
	static __initdata struct paca_struct boot_paca;

288 289
	/* -------- printk is _NOT_ safe to use here ! ------- */

290 291 292 293
	/* Try new device tree based feature discovery ... */
	if (!dt_cpu_ftrs_init(__va(dt_ptr)))
		/* Otherwise use the old style CPU table */
		identify_cpu(0, mfspr(SPRN_PVR));
294

295
	/* Assume we're on cpu 0 for now. Don't write to the paca yet! */
296 297
	initialise_paca(&boot_paca, 0);
	setup_paca(&boot_paca);
298
	fixup_boot_paca();
299

300 301
	/* -------- printk is now safe to use ------- */

302 303 304
	/* Enable early debugging if any specified (see udbg.h) */
	udbg_early_init();

305
 	DBG(" -> early_setup(), dt_ptr: 0x%lx\n", dt_ptr);
306 307

	/*
308 309 310
	 * Do early initialization using the flattened device
	 * tree, such as retrieving the physical memory map or
	 * calculating/retrieving the hash table size.
311 312 313
	 */
	early_init_devtree(__va(dt_ptr));

314
	/* Now we know the logical id of our boot cpu, setup the paca. */
315 316 317 318
	if (boot_cpuid != 0) {
		/* Poison paca_ptrs[0] again if it's not the boot cpu */
		memset(&paca_ptrs[0], 0x88, sizeof(paca_ptrs[0]));
	}
319
	setup_paca(paca_ptrs[boot_cpuid]);
320
	fixup_boot_paca();
321

322
	/*
323 324
	 * Configure exception handlers. This include setting up trampolines
	 * if needed, setting exception endian mode, etc...
325
	 */
326
	configure_exceptions();
327

328 329
	/* Apply all the dynamic patching */
	apply_feature_fixups();
330
	setup_feature_keys();
331

332 333 334
	/* Initialize the hash table or TLB handling */
	early_init_mmu();

335 336 337 338 339 340 341
	/*
	 * After firmware and early platform setup code has set things up,
	 * we note the SPR values for configurable control/performance
	 * registers, and use those as initial defaults.
	 */
	record_spr_defaults();

342 343 344
	/*
	 * At this point, we can let interrupts switch to virtual mode
	 * (the MMU has been setup), so adjust the MSR in the PACA to
345
	 * have IR and DR set and enable AIL if it exists
346
	 */
347
	cpu_ready_for_interrupts();
348

349 350 351 352 353 354 355
	/*
	 * We enable ftrace here, but since we only support DYNAMIC_FTRACE, it
	 * will only actually get enabled on the boot cpu much later once
	 * ftrace itself has been initialized.
	 */
	this_cpu_enable_ftrace();

356
	DBG(" <- early_setup()\n");
357 358 359 360 361 362 363 364 365 366 367 368

#ifdef CONFIG_PPC_EARLY_DEBUG_BOOTX
	/*
	 * This needs to be done *last* (after the above DBG() even)
	 *
	 * Right after we return from this function, we turn on the MMU
	 * which means the real-mode access trick that btext does will
	 * no longer work, it needs to switch to using a real MMU
	 * mapping. This call will ensure that it does
	 */
	btext_map();
#endif /* CONFIG_PPC_EARLY_DEBUG_BOOTX */
369 370
}

371 372 373
#ifdef CONFIG_SMP
void early_setup_secondary(void)
{
374
	/* Mark interrupts disabled in PACA */
375
	irq_soft_mask_set(IRQS_DISABLED);
376

377 378
	/* Initialize the hash table or TLB handling */
	early_init_mmu_secondary();
379 380 381 382 383 384

	/*
	 * At this point, we can let interrupts switch to virtual mode
	 * (the MMU has been setup), so adjust the MSR in the PACA to
	 * have IR and DR set.
	 */
385
	cpu_ready_for_interrupts();
386 387 388
}

#endif /* CONFIG_SMP */
389

390
#if defined(CONFIG_SMP) || defined(CONFIG_KEXEC_CORE)
391 392
static bool use_spinloop(void)
{
393 394 395 396 397 398 399 400
	if (IS_ENABLED(CONFIG_PPC_BOOK3S)) {
		/*
		 * See comments in head_64.S -- not all platforms insert
		 * secondaries at __secondary_hold and wait at the spin
		 * loop.
		 */
		if (firmware_has_feature(FW_FEATURE_OPAL))
			return false;
401
		return true;
402
	}
403 404 405 406 407 408 409 410

	/*
	 * When book3e boots from kexec, the ePAPR spin table does
	 * not get used.
	 */
	return of_property_read_bool(of_chosen, "linux,booted-from-kexec");
}

411 412
void smp_release_cpus(void)
{
413
	unsigned long *ptr;
414
	int i;
415

416 417 418
	if (!use_spinloop())
		return;

419 420 421 422 423 424
	DBG(" -> smp_release_cpus()\n");

	/* All secondary cpus are spinning on a common spinloop, release them
	 * all now so they can start to spin on their individual paca
	 * spinloops. For non SMP kernels, the secondary cpus never get out
	 * of the common spinloop.
425
	 */
426

427 428
	ptr  = (unsigned long *)((unsigned long)&__secondary_hold_spinloop
			- PHYSICAL_START);
429
	*ptr = ppc_function_entry(generic_secondary_smp_init);
430 431 432 433 434

	/* And wait a bit for them to catch up */
	for (i = 0; i < 100000; i++) {
		mb();
		HMT_low();
435
		if (spinning_secondaries == 0)
436 437 438
			break;
		udelay(1);
	}
439
	DBG("spinning_secondaries = %d\n", spinning_secondaries);
440 441 442

	DBG(" <- smp_release_cpus()\n");
}
443
#endif /* CONFIG_SMP || CONFIG_KEXEC_CORE */
444

445
/*
446 447
 * Initialize some remaining members of the ppc64_caches and systemcfg
 * structures
448 449 450 451
 * (at least until we get rid of them completely). This is mostly some
 * cache informations about the CPU that will be used by cache flush
 * routines and/or provided to userland
 */
452 453 454 455 456 457 458 459 460

static void init_cache_info(struct ppc_cache_info *info, u32 size, u32 lsize,
			    u32 bsize, u32 sets)
{
	info->size = size;
	info->sets = sets;
	info->line_size = lsize;
	info->block_size = bsize;
	info->log_block_size = __ilog2(bsize);
461 462 463 464
	if (bsize)
		info->blocks_per_page = PAGE_SIZE / bsize;
	else
		info->blocks_per_page = 0;
465 466 467 468 469

	if (sets == 0)
		info->assoc = 0xffff;
	else
		info->assoc = size / (sets * lsize);
470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528
}

static bool __init parse_cache_info(struct device_node *np,
				    bool icache,
				    struct ppc_cache_info *info)
{
	static const char *ipropnames[] __initdata = {
		"i-cache-size",
		"i-cache-sets",
		"i-cache-block-size",
		"i-cache-line-size",
	};
	static const char *dpropnames[] __initdata = {
		"d-cache-size",
		"d-cache-sets",
		"d-cache-block-size",
		"d-cache-line-size",
	};
	const char **propnames = icache ? ipropnames : dpropnames;
	const __be32 *sizep, *lsizep, *bsizep, *setsp;
	u32 size, lsize, bsize, sets;
	bool success = true;

	size = 0;
	sets = -1u;
	lsize = bsize = cur_cpu_spec->dcache_bsize;
	sizep = of_get_property(np, propnames[0], NULL);
	if (sizep != NULL)
		size = be32_to_cpu(*sizep);
	setsp = of_get_property(np, propnames[1], NULL);
	if (setsp != NULL)
		sets = be32_to_cpu(*setsp);
	bsizep = of_get_property(np, propnames[2], NULL);
	lsizep = of_get_property(np, propnames[3], NULL);
	if (bsizep == NULL)
		bsizep = lsizep;
	if (lsizep != NULL)
		lsize = be32_to_cpu(*lsizep);
	if (bsizep != NULL)
		bsize = be32_to_cpu(*bsizep);
	if (sizep == NULL || bsizep == NULL || lsizep == NULL)
		success = false;

	/*
	 * OF is weird .. it represents fully associative caches
	 * as "1 way" which doesn't make much sense and doesn't
	 * leave room for direct mapped. We'll assume that 0
	 * in OF means direct mapped for that reason.
	 */
	if (sets == 1)
		sets = 0;
	else if (sets == 0)
		sets = 1;

	init_cache_info(info, size, lsize, bsize, sets);

	return success;
}

529
void __init initialize_cache_info(void)
530
{
531 532
	struct device_node *cpu = NULL, *l2, *l3 = NULL;
	u32 pvr;
533 534 535

	DBG(" -> initialize_cache_info()\n");

536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551
	/*
	 * All shipping POWER8 machines have a firmware bug that
	 * puts incorrect information in the device-tree. This will
	 * be (hopefully) fixed for future chips but for now hard
	 * code the values if we are running on one of these
	 */
	pvr = PVR_VER(mfspr(SPRN_PVR));
	if (pvr == PVR_POWER8 || pvr == PVR_POWER8E ||
	    pvr == PVR_POWER8NVL) {
						/* size    lsize   blk  sets */
		init_cache_info(&ppc64_caches.l1i, 0x8000,   128,  128, 32);
		init_cache_info(&ppc64_caches.l1d, 0x10000,  128,  128, 64);
		init_cache_info(&ppc64_caches.l2,  0x80000,  128,  0,   512);
		init_cache_info(&ppc64_caches.l3,  0x800000, 128,  0,   8192);
	} else
		cpu = of_find_node_by_type(NULL, "cpu");
552

553 554 555 556
	/*
	 * We're assuming *all* of the CPUs have the same
	 * d-cache and i-cache sizes... -Peter
	 */
557 558
	if (cpu) {
		if (!parse_cache_info(cpu, false, &ppc64_caches.l1d))
559 560
			DBG("Argh, can't find dcache properties !\n");

561
		if (!parse_cache_info(cpu, true, &ppc64_caches.l1i))
562
			DBG("Argh, can't find icache properties !\n");
563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578

		/*
		 * Try to find the L2 and L3 if any. Assume they are
		 * unified and use the D-side properties.
		 */
		l2 = of_find_next_cache_node(cpu);
		of_node_put(cpu);
		if (l2) {
			parse_cache_info(l2, false, &ppc64_caches.l2);
			l3 = of_find_next_cache_node(l2);
			of_node_put(l2);
		}
		if (l3) {
			parse_cache_info(l3, false, &ppc64_caches.l3);
			of_node_put(l3);
		}
579 580
	}

581
	/* For use by binfmt_elf */
582 583
	dcache_bsize = ppc64_caches.l1d.block_size;
	icache_bsize = ppc64_caches.l1i.block_size;
584

585 586 587
	cur_cpu_spec->dcache_bsize = dcache_bsize;
	cur_cpu_spec->icache_bsize = icache_bsize;

588 589 590
	DBG(" <- initialize_cache_info()\n");
}

591 592 593 594 595 596 597 598
/*
 * This returns the limit below which memory accesses to the linear
 * mapping are guarnateed not to cause an architectural exception (e.g.,
 * TLB or SLB miss fault).
 *
 * This is used to allocate PACAs and various interrupt stacks that
 * that are accessed early in interrupt handlers that must not cause
 * re-entrant interrupts.
599
 */
600
__init u64 ppc64_bolted_size(void)
601
{
602 603
#ifdef CONFIG_PPC_BOOK3E
	/* Freescale BookE bolts the entire linear mapping */
604 605
	/* XXX: BookE ppc64_rma_limit setup seems to disagree? */
	if (early_mmu_has_feature(MMU_FTR_TYPE_FSL_E))
606 607 608 609
		return linear_map_top;
	/* Other BookE, we assume the first GB is bolted */
	return 1ul << 30;
#else
610
	/* BookS radix, does not take faults on linear mapping */
611 612 613
	if (early_radix_enabled())
		return ULONG_MAX;

614 615
	/* BookS hash, the first segment is bolted */
	if (early_mmu_has_feature(MMU_FTR_1T_SEGMENT))
616 617
		return 1UL << SID_SHIFT_1T;
	return 1UL << SID_SHIFT;
618
#endif
619 620
}

621 622 623 624 625 626 627 628 629 630 631 632 633 634 635
static void *__init alloc_stack(unsigned long limit, int cpu)
{
	unsigned long pa;

	pa = memblock_alloc_base_nid(THREAD_SIZE, THREAD_SIZE, limit,
					early_cpu_to_node(cpu), MEMBLOCK_NONE);
	if (!pa) {
		pa = memblock_alloc_base(THREAD_SIZE, THREAD_SIZE, limit);
		if (!pa)
			panic("cannot allocate stacks");
	}

	return __va(pa);
}

636
void __init irqstack_early_init(void)
637
{
638
	u64 limit = ppc64_bolted_size();
639 640 641
	unsigned int i;

	/*
642
	 * Interrupt stacks must be in the first segment since we
643 644
	 * cannot afford to take SLB misses on them. They are not
	 * accessed in realmode.
645
	 */
646
	for_each_possible_cpu(i) {
647 648
		softirq_ctx[i] = alloc_stack(limit, i);
		hardirq_ctx[i] = alloc_stack(limit, i);
649 650 651
	}
}

652
#ifdef CONFIG_PPC_BOOK3E
653
void __init exc_lvl_early_init(void)
654 655 656 657
{
	unsigned int i;

	for_each_possible_cpu(i) {
658 659 660 661 662
		void *sp;

		sp = alloc_stack(ULONG_MAX, i);
		critirq_ctx[i] = sp;
		paca_ptrs[i]->crit_kstack = sp + THREAD_SIZE;
663

664 665 666
		sp = alloc_stack(ULONG_MAX, i);
		dbgirq_ctx[i] = sp;
		paca_ptrs[i]->dbg_kstack = sp + THREAD_SIZE;
667

668 669 670
		sp = alloc_stack(ULONG_MAX, i);
		mcheckirq_ctx[i] = sp;
		paca_ptrs[i]->mc_kstack = sp + THREAD_SIZE;
671
	}
672 673

	if (cpu_has_feature(CPU_FTR_DEBUG_LVL_EXC))
674
		patch_exception(0x040, exc_debug_debug_book3e);
675 676 677
}
#endif

678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695
/*
 * Emergency stacks are used for a range of things, from asynchronous
 * NMIs (system reset, machine check) to synchronous, process context.
 * We set preempt_count to zero, even though that isn't necessarily correct. To
 * get the right value we'd need to copy it from the previous thread_info, but
 * doing that might fault causing more problems.
 * TODO: what to do with accounting?
 */
static void emerg_stack_init_thread_info(struct thread_info *ti, int cpu)
{
	ti->task = NULL;
	ti->cpu = cpu;
	ti->preempt_count = 0;
	ti->local_flags = 0;
	ti->flags = 0;
	klp_init_thread_info(ti);
}

696 697
/*
 * Stack space used when we detect a bad kernel stack pointer, and
698 699
 * early in SMP boots before relocation is enabled. Exclusive emergency
 * stack for machine checks.
700
 */
701
void __init emergency_stack_init(void)
702
{
703
	u64 limit;
704 705 706 707 708 709 710 711
	unsigned int i;

	/*
	 * Emergency stacks must be under 256MB, we cannot afford to take
	 * SLB misses on them. The ABI also requires them to be 128-byte
	 * aligned.
	 *
	 * Since we use these as temporary stacks during secondary CPU
712 713 714
	 * bringup, machine check, system reset, and HMI, we need to get
	 * at them in real mode. This means they must also be within the RMO
	 * region.
715 716 717 718
	 *
	 * The IRQ stacks allocated elsewhere in this file are zeroed and
	 * initialized in kernel/irq.c. These are initialized here in order
	 * to have emergency stacks available as early as possible.
719
	 */
720
	limit = min(ppc64_bolted_size(), ppc64_rma_size);
721

722
	for_each_possible_cpu(i) {
723
		struct thread_info *ti;
724 725

		ti = alloc_stack(limit, i);
726 727
		memset(ti, 0, THREAD_SIZE);
		emerg_stack_init_thread_info(ti, i);
728
		paca_ptrs[i]->emergency_sp = (void *)ti + THREAD_SIZE;
729 730

#ifdef CONFIG_PPC_BOOK3S_64
731
		/* emergency stack for NMI exception handling. */
732
		ti = alloc_stack(limit, i);
733 734
		memset(ti, 0, THREAD_SIZE);
		emerg_stack_init_thread_info(ti, i);
735
		paca_ptrs[i]->nmi_emergency_sp = (void *)ti + THREAD_SIZE;
736

737
		/* emergency stack for machine check exception handling. */
738
		ti = alloc_stack(limit, i);
739 740
		memset(ti, 0, THREAD_SIZE);
		emerg_stack_init_thread_info(ti, i);
741
		paca_ptrs[i]->mc_emergency_sp = (void *)ti + THREAD_SIZE;
742
#endif
743
	}
744 745
}

746
#ifdef CONFIG_SMP
747 748 749
#define PCPU_DYN_SIZE		()

static void * __init pcpu_fc_alloc(unsigned int cpu, size_t size, size_t align)
750
{
751
	return __alloc_bootmem_node(NODE_DATA(early_cpu_to_node(cpu)), size, align,
752 753
				    __pa(MAX_DMA_ADDRESS));
}
754

755 756 757 758
static void __init pcpu_fc_free(void *ptr, size_t size)
{
	free_bootmem(__pa(ptr), size);
}
759

760 761
static int pcpu_cpu_distance(unsigned int from, unsigned int to)
{
762
	if (early_cpu_to_node(from) == early_cpu_to_node(to))
763 764 765 766 767
		return LOCAL_DISTANCE;
	else
		return REMOTE_DISTANCE;
}

768 769 770
unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
EXPORT_SYMBOL(__per_cpu_offset);

771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794
void __init setup_per_cpu_areas(void)
{
	const size_t dyn_size = PERCPU_MODULE_RESERVE + PERCPU_DYNAMIC_RESERVE;
	size_t atom_size;
	unsigned long delta;
	unsigned int cpu;
	int rc;

	/*
	 * Linear mapping is one of 4K, 1M and 16M.  For 4K, no need
	 * to group units.  For larger mappings, use 1M atom which
	 * should be large enough to contain a number of units.
	 */
	if (mmu_linear_psize == MMU_PAGE_4K)
		atom_size = PAGE_SIZE;
	else
		atom_size = 1 << 20;

	rc = pcpu_embed_first_chunk(0, dyn_size, atom_size, pcpu_cpu_distance,
				    pcpu_fc_alloc, pcpu_fc_free);
	if (rc < 0)
		panic("cannot initialize percpu area (err=%d)", rc);

	delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
795 796
	for_each_possible_cpu(cpu) {
                __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
797
		paca_ptrs[cpu]->data_offset = __per_cpu_offset[cpu];
798
	}
799 800
}
#endif
801

802 803 804 805 806 807 808 809 810
#ifdef CONFIG_MEMORY_HOTPLUG_SPARSE
unsigned long memory_block_size_bytes(void)
{
	if (ppc_md.memory_block_size)
		return ppc_md.memory_block_size();

	return MIN_MEMORY_BLOCK_SIZE;
}
#endif
811

812
#if defined(CONFIG_PPC_INDIRECT_PIO) || defined(CONFIG_PPC_INDIRECT_MMIO)
813 814
struct ppc_pci_io ppc_pci_io;
EXPORT_SYMBOL(ppc_pci_io);
815
#endif
816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843

#ifdef CONFIG_HARDLOCKUP_DETECTOR_PERF
u64 hw_nmi_get_sample_period(int watchdog_thresh)
{
	return ppc_proc_freq * watchdog_thresh;
}
#endif

/*
 * The perf based hardlockup detector breaks PMU event based branches, so
 * disable it by default. Book3S has a soft-nmi hardlockup detector based
 * on the decrementer interrupt, so it does not suffer from this problem.
 *
 * It is likely to get false positives in VM guests, so disable it there
 * by default too.
 */
static int __init disable_hardlockup_detector(void)
{
#ifdef CONFIG_HARDLOCKUP_DETECTOR_PERF
	hardlockup_detector_disable();
#else
	if (firmware_has_feature(FW_FEATURE_LPAR))
		hardlockup_detector_disable();
#endif

	return 0;
}
early_initcall(disable_hardlockup_detector);
844 845 846 847

#ifdef CONFIG_PPC_BOOK3S_64
static enum l1d_flush_type enabled_flush_types;
static void *l1d_flush_fallback_area;
848
static bool no_rfi_flush;
849 850
bool rfi_flush;

851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870
static int __init handle_no_rfi_flush(char *p)
{
	pr_info("rfi-flush: disabled on command line.");
	no_rfi_flush = true;
	return 0;
}
early_param("no_rfi_flush", handle_no_rfi_flush);

/*
 * The RFI flush is not KPTI, but because users will see doco that says to use
 * nopti we hijack that option here to also disable the RFI flush.
 */
static int __init handle_no_pti(char *p)
{
	pr_info("rfi-flush: disabling due to 'nopti' on command line.\n");
	handle_no_rfi_flush(NULL);
	return 0;
}
early_param("nopti", handle_no_pti);

871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889
static void do_nothing(void *unused)
{
	/*
	 * We don't need to do the flush explicitly, just enter+exit kernel is
	 * sufficient, the RFI exit handlers will do the right thing.
	 */
}

void rfi_flush_enable(bool enable)
{
	if (enable) {
		do_rfi_flush_fixups(enabled_flush_types);
		on_each_cpu(do_nothing, NULL, 1);
	} else
		do_rfi_flush_fixups(L1D_FLUSH_NONE);

	rfi_flush = enable;
}

890
static void __ref init_fallback_flush(void)
891 892 893 894
{
	u64 l1d_size, limit;
	int cpu;

895 896 897 898
	/* Only allocate the fallback flush area once (at boot time). */
	if (l1d_flush_fallback_area)
		return;

899
	l1d_size = ppc64_caches.l1d.size;
900 901 902 903 904 905 906 907 908 909 910

	/*
	 * If there is no d-cache-size property in the device tree, l1d_size
	 * could be zero. That leads to the loop in the asm wrapping around to
	 * 2^64-1, and then walking off the end of the fallback area and
	 * eventually causing a page fault which is fatal. Just default to
	 * something vaguely sane.
	 */
	if (!l1d_size)
		l1d_size = (64 * 1024);

911
	limit = min(ppc64_bolted_size(), ppc64_rma_size);
912 913 914 915 916 917 918 919 920 921

	/*
	 * Align to L1d size, and size it at 2x L1d size, to catch possible
	 * hardware prefetch runoff. We don't have a recipe for load patterns to
	 * reliably avoid the prefetcher.
	 */
	l1d_flush_fallback_area = __va(memblock_alloc_base(l1d_size * 2, l1d_size, limit));
	memset(l1d_flush_fallback_area, 0, l1d_size * 2);

	for_each_possible_cpu(cpu) {
922 923 924
		struct paca_struct *paca = paca_ptrs[cpu];
		paca->rfi_flush_fallback_area = l1d_flush_fallback_area;
		paca->l1d_flush_size = l1d_size;
925 926 927
	}
}

928
void setup_rfi_flush(enum l1d_flush_type types, bool enable)
929 930
{
	if (types & L1D_FLUSH_FALLBACK) {
931
		pr_info("rfi-flush: fallback displacement flush available\n");
932 933 934 935
		init_fallback_flush();
	}

	if (types & L1D_FLUSH_ORI)
936
		pr_info("rfi-flush: ori type flush available\n");
937 938

	if (types & L1D_FLUSH_MTTRIG)
939
		pr_info("rfi-flush: mttrig type flush available\n");
940 941 942

	enabled_flush_types = types;

943 944
	if (!no_rfi_flush)
		rfi_flush_enable(enable);
945
}
946

947 948 949
#ifdef CONFIG_DEBUG_FS
static int rfi_flush_set(void *data, u64 val)
{
950 951
	bool enable;

952
	if (val == 1)
953
		enable = true;
954
	else if (val == 0)
955
		enable = false;
956 957 958
	else
		return -EINVAL;

959 960 961 962
	/* Only do anything if we're changing state */
	if (enable != rfi_flush)
		rfi_flush_enable(enable);

963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980
	return 0;
}

static int rfi_flush_get(void *data, u64 *val)
{
	*val = rfi_flush ? 1 : 0;
	return 0;
}

DEFINE_SIMPLE_ATTRIBUTE(fops_rfi_flush, rfi_flush_get, rfi_flush_set, "%llu\n");

static __init int rfi_flush_debugfs_init(void)
{
	debugfs_create_file("rfi_flush", 0600, powerpc_debugfs_root, NULL, &fops_rfi_flush);
	return 0;
}
device_initcall(rfi_flush_debugfs_init);
#endif
981
#endif /* CONFIG_PPC_BOOK3S_64 */