setup_64.c 20.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12
/*
 * 
 * Common boot and setup code.
 *
 * Copyright (C) 2001 PPC64 Team, IBM Corp
 *
 *      This program is free software; you can redistribute it and/or
 *      modify it under the terms of the GNU General Public License
 *      as published by the Free Software Foundation; either version
 *      2 of the License, or (at your option) any later version.
 */

13
#define DEBUG
14

15
#include <linux/export.h>
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
#include <linux/string.h>
#include <linux/sched.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/reboot.h>
#include <linux/delay.h>
#include <linux/initrd.h>
#include <linux/seq_file.h>
#include <linux/ioport.h>
#include <linux/console.h>
#include <linux/utsname.h>
#include <linux/tty.h>
#include <linux/root_dev.h>
#include <linux/notifier.h>
#include <linux/cpu.h>
#include <linux/unistd.h>
#include <linux/serial.h>
#include <linux/serial_8250.h>
34
#include <linux/bootmem.h>
35
#include <linux/pci.h>
36
#include <linux/lockdep.h>
Y
Yinghai Lu 已提交
37
#include <linux/memblock.h>
38
#include <linux/memory.h>
39
#include <linux/nmi.h>
40

41
#include <asm/io.h>
42
#include <asm/kdump.h>
43 44 45 46 47 48 49 50 51
#include <asm/prom.h>
#include <asm/processor.h>
#include <asm/pgtable.h>
#include <asm/smp.h>
#include <asm/elf.h>
#include <asm/machdep.h>
#include <asm/paca.h>
#include <asm/time.h>
#include <asm/cputable.h>
52
#include <asm/dt_cpu_ftrs.h>
53 54 55 56 57 58 59 60 61 62 63
#include <asm/sections.h>
#include <asm/btext.h>
#include <asm/nvram.h>
#include <asm/setup.h>
#include <asm/rtas.h>
#include <asm/iommu.h>
#include <asm/serial.h>
#include <asm/cache.h>
#include <asm/page.h>
#include <asm/mmu.h>
#include <asm/firmware.h>
P
Paul Mackerras 已提交
64
#include <asm/xmon.h>
D
David Gibson 已提交
65
#include <asm/udbg.h>
66
#include <asm/kexec.h>
67
#include <asm/code-patching.h>
68
#include <asm/livepatch.h>
69
#include <asm/opal.h>
70
#include <asm/cputhreads.h>
71 72 73 74 75 76 77

#ifdef DEBUG
#define DBG(fmt...) udbg_printf(fmt)
#else
#define DBG(fmt...)
#endif

78
int spinning_secondaries;
79 80
u64 ppc64_pft_size;

81
struct ppc64_caches ppc64_caches = {
82 83 84 85 86 87 88 89
	.l1d = {
		.block_size = 0x40,
		.log_block_size = 6,
	},
	.l1i = {
		.block_size = 0x40,
		.log_block_size = 6
	},
90
};
91 92
EXPORT_SYMBOL_GPL(ppc64_caches);

93
#if defined(CONFIG_PPC_BOOK3E) && defined(CONFIG_SMP)
94
void __init setup_tlb_core_data(void)
95 96 97
{
	int cpu;

98 99
	BUILD_BUG_ON(offsetof(struct tlb_core_data, lock) != 0);

100 101 102
	for_each_possible_cpu(cpu) {
		int first = cpu_first_thread_sibling(cpu);

103 104 105 106 107 108 109 110
		/*
		 * If we boot via kdump on a non-primary thread,
		 * make sure we point at the thread that actually
		 * set up this TLB.
		 */
		if (cpu_first_thread_sibling(boot_cpuid) == first)
			first = boot_cpuid;

111 112 113 114 115 116
		paca[cpu].tcd_ptr = &paca[first].tcd;

		/*
		 * If we have threads, we need either tlbsrx.
		 * or e6500 tablewalk mode, or else TLB handlers
		 * will be racy and could produce duplicate entries.
117
		 * Should we panic instead?
118
		 */
119 120 121 122
		WARN_ONCE(smt_enabled_at_boot >= 2 &&
			  !mmu_has_feature(MMU_FTR_USE_TLBRSRV) &&
			  book3e_htw_mode != PPC_HTW_E6500,
			  "%s: unsupported MMU configuration\n", __func__);
123 124 125 126
	}
}
#endif

127 128
#ifdef CONFIG_SMP

129
static char *smt_enabled_cmdline;
130 131

/* Look for ibm,smt-enabled OF option */
132
void __init check_smt_enabled(void)
133 134
{
	struct device_node *dn;
135
	const char *smt_option;
136

137 138
	/* Default to enabling all threads */
	smt_enabled_at_boot = threads_per_core;
139

140 141 142 143 144 145 146
	/* Allow the command line to overrule the OF option */
	if (smt_enabled_cmdline) {
		if (!strcmp(smt_enabled_cmdline, "on"))
			smt_enabled_at_boot = threads_per_core;
		else if (!strcmp(smt_enabled_cmdline, "off"))
			smt_enabled_at_boot = 0;
		else {
147
			int smt;
148 149
			int rc;

150
			rc = kstrtoint(smt_enabled_cmdline, 10, &smt);
151 152
			if (!rc)
				smt_enabled_at_boot =
153
					min(threads_per_core, smt);
154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
		}
	} else {
		dn = of_find_node_by_path("/options");
		if (dn) {
			smt_option = of_get_property(dn, "ibm,smt-enabled",
						     NULL);

			if (smt_option) {
				if (!strcmp(smt_option, "on"))
					smt_enabled_at_boot = threads_per_core;
				else if (!strcmp(smt_option, "off"))
					smt_enabled_at_boot = 0;
			}

			of_node_put(dn);
		}
	}
171 172 173 174 175
}

/* Look for smt-enabled= cmdline option */
static int __init early_smt_enabled(char *p)
{
176
	smt_enabled_cmdline = p;
177 178 179 180 181 182
	return 0;
}
early_param("smt-enabled", early_smt_enabled);

#endif /* CONFIG_SMP */

183
/** Fix up paca fields required for the boot cpu */
184
static void __init fixup_boot_paca(void)
185 186 187 188 189 190 191
{
	/* The boot cpu is started */
	get_paca()->cpu_start = 1;
	/* Allow percpu accesses to work until we setup percpu data */
	get_paca()->data_offset = 0;
}

192
static void __init configure_exceptions(void)
193
{
194
	/*
195 196
	 * Setup the trampolines from the lowmem exception vectors
	 * to the kdump kernel when not using a relocatable kernel.
197
	 */
198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
	setup_kdump_trampoline();

	/* Under a PAPR hypervisor, we need hypercalls */
	if (firmware_has_feature(FW_FEATURE_SET_MODE)) {
		/* Enable AIL if possible */
		pseries_enable_reloc_on_exc();

		/*
		 * Tell the hypervisor that we want our exceptions to
		 * be taken in little endian mode.
		 *
		 * We don't call this for big endian as our calling convention
		 * makes us always enter in BE, and the call may fail under
		 * some circumstances with kdump.
		 */
#ifdef __LITTLE_ENDIAN__
		pseries_little_endian_exceptions();
#endif
	} else {
		/* Set endian mode using OPAL */
		if (firmware_has_feature(FW_FEATURE_OPAL))
			opal_configure_cores();

221
		/* AIL on native is done in cpu_ready_for_interrupts() */
222 223 224
	}
}

225 226
static void cpu_ready_for_interrupts(void)
{
227 228 229 230 231 232 233
	/*
	 * Enable AIL if supported, and we are in hypervisor mode. This
	 * is called once for every processor.
	 *
	 * If we are not in hypervisor mode the job is done once for
	 * the whole partition in configure_exceptions().
	 */
234 235
	if (cpu_has_feature(CPU_FTR_HVMODE) &&
	    cpu_has_feature(CPU_FTR_ARCH_207S)) {
236 237 238 239
		unsigned long lpcr = mfspr(SPRN_LPCR);
		mtspr(SPRN_LPCR, lpcr | LPCR_AIL_3);
	}

240 241 242 243 244 245 246 247 248
	/*
	 * Fixup HFSCR:TM based on CPU features. The bit is set by our
	 * early asm init because at that point we haven't updated our
	 * CPU features from firmware and device-tree. Here we have,
	 * so let's do it.
	 */
	if (cpu_has_feature(CPU_FTR_HVMODE) && !cpu_has_feature(CPU_FTR_TM_COMP))
		mtspr(SPRN_HFSCR, mfspr(SPRN_HFSCR) & ~HFSCR_TM);

249 250 251 252
	/* Set IR and DR in PACA MSR */
	get_paca()->kernel_msr = MSR_KERNEL;
}

253 254 255 256 257 258
/*
 * Early initialization entry point. This is called by head.S
 * with MMU translation disabled. We rely on the "feature" of
 * the CPU that ignores the top 2 bits of the address in real
 * mode so we can access kernel globals normally provided we
 * only toy with things in the RMO region. From here, we do
Y
Yinghai Lu 已提交
259
 * some early parsing of the device-tree to setup out MEMBLOCK
260 261 262 263 264 265 266 267 268 269 270 271 272 273
 * data structures, and allocate & initialize the hash table
 * and segment tables so we can start running with translation
 * enabled.
 *
 * It is this function which will call the probe() callback of
 * the various platform types and copy the matching one to the
 * global ppc_md structure. Your platform can eventually do
 * some very early initializations from the probe() routine, but
 * this is not recommended, be very careful as, for example, the
 * device-tree is not accessible via normal means at this point.
 */

void __init early_setup(unsigned long dt_ptr)
{
274 275
	static __initdata struct paca_struct boot_paca;

276 277
	/* -------- printk is _NOT_ safe to use here ! ------- */

278 279 280 281
	/* Try new device tree based feature discovery ... */
	if (!dt_cpu_ftrs_init(__va(dt_ptr)))
		/* Otherwise use the old style CPU table */
		identify_cpu(0, mfspr(SPRN_PVR));
282

283
	/* Assume we're on cpu 0 for now. Don't write to the paca yet! */
284 285
	initialise_paca(&boot_paca, 0);
	setup_paca(&boot_paca);
286
	fixup_boot_paca();
287

288 289
	/* -------- printk is now safe to use ------- */

290 291 292
	/* Enable early debugging if any specified (see udbg.h) */
	udbg_early_init();

293
 	DBG(" -> early_setup(), dt_ptr: 0x%lx\n", dt_ptr);
294 295

	/*
296 297 298
	 * Do early initialization using the flattened device
	 * tree, such as retrieving the physical memory map or
	 * calculating/retrieving the hash table size.
299 300 301
	 */
	early_init_devtree(__va(dt_ptr));

302
	/* Now we know the logical id of our boot cpu, setup the paca. */
303
	setup_paca(&paca[boot_cpuid]);
304
	fixup_boot_paca();
305

306
	/*
307 308
	 * Configure exception handlers. This include setting up trampolines
	 * if needed, setting exception endian mode, etc...
309
	 */
310
	configure_exceptions();
311

312 313
	/* Apply all the dynamic patching */
	apply_feature_fixups();
314
	setup_feature_keys();
315

316 317 318
	/* Initialize the hash table or TLB handling */
	early_init_mmu();

319 320 321
	/*
	 * At this point, we can let interrupts switch to virtual mode
	 * (the MMU has been setup), so adjust the MSR in the PACA to
322
	 * have IR and DR set and enable AIL if it exists
323
	 */
324
	cpu_ready_for_interrupts();
325

326
	DBG(" <- early_setup()\n");
327 328 329 330 331 332 333 334 335 336 337 338

#ifdef CONFIG_PPC_EARLY_DEBUG_BOOTX
	/*
	 * This needs to be done *last* (after the above DBG() even)
	 *
	 * Right after we return from this function, we turn on the MMU
	 * which means the real-mode access trick that btext does will
	 * no longer work, it needs to switch to using a real MMU
	 * mapping. This call will ensure that it does
	 */
	btext_map();
#endif /* CONFIG_PPC_EARLY_DEBUG_BOOTX */
339 340
}

341 342 343
#ifdef CONFIG_SMP
void early_setup_secondary(void)
{
344
	/* Mark interrupts disabled in PACA */
345
	get_paca()->soft_enabled = 0;
346

347 348
	/* Initialize the hash table or TLB handling */
	early_init_mmu_secondary();
349 350 351 352 353 354

	/*
	 * At this point, we can let interrupts switch to virtual mode
	 * (the MMU has been setup), so adjust the MSR in the PACA to
	 * have IR and DR set.
	 */
355
	cpu_ready_for_interrupts();
356 357 358
}

#endif /* CONFIG_SMP */
359

360
#if defined(CONFIG_SMP) || defined(CONFIG_KEXEC_CORE)
361 362 363 364 365 366 367 368 369 370 371 372
static bool use_spinloop(void)
{
	if (!IS_ENABLED(CONFIG_PPC_BOOK3E))
		return true;

	/*
	 * When book3e boots from kexec, the ePAPR spin table does
	 * not get used.
	 */
	return of_property_read_bool(of_chosen, "linux,booted-from-kexec");
}

373 374
void smp_release_cpus(void)
{
375
	unsigned long *ptr;
376
	int i;
377

378 379 380
	if (!use_spinloop())
		return;

381 382 383 384 385 386
	DBG(" -> smp_release_cpus()\n");

	/* All secondary cpus are spinning on a common spinloop, release them
	 * all now so they can start to spin on their individual paca
	 * spinloops. For non SMP kernels, the secondary cpus never get out
	 * of the common spinloop.
387
	 */
388

389 390
	ptr  = (unsigned long *)((unsigned long)&__secondary_hold_spinloop
			- PHYSICAL_START);
391
	*ptr = ppc_function_entry(generic_secondary_smp_init);
392 393 394 395 396

	/* And wait a bit for them to catch up */
	for (i = 0; i < 100000; i++) {
		mb();
		HMT_low();
397
		if (spinning_secondaries == 0)
398 399 400
			break;
		udelay(1);
	}
401
	DBG("spinning_secondaries = %d\n", spinning_secondaries);
402 403 404

	DBG(" <- smp_release_cpus()\n");
}
405
#endif /* CONFIG_SMP || CONFIG_KEXEC_CORE */
406

407
/*
408 409
 * Initialize some remaining members of the ppc64_caches and systemcfg
 * structures
410 411 412 413
 * (at least until we get rid of them completely). This is mostly some
 * cache informations about the CPU that will be used by cache flush
 * routines and/or provided to userland
 */
414 415 416 417 418 419 420 421 422

static void init_cache_info(struct ppc_cache_info *info, u32 size, u32 lsize,
			    u32 bsize, u32 sets)
{
	info->size = size;
	info->sets = sets;
	info->line_size = lsize;
	info->block_size = bsize;
	info->log_block_size = __ilog2(bsize);
423 424 425 426
	if (bsize)
		info->blocks_per_page = PAGE_SIZE / bsize;
	else
		info->blocks_per_page = 0;
427 428 429 430 431

	if (sets == 0)
		info->assoc = 0xffff;
	else
		info->assoc = size / (sets * lsize);
432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490
}

static bool __init parse_cache_info(struct device_node *np,
				    bool icache,
				    struct ppc_cache_info *info)
{
	static const char *ipropnames[] __initdata = {
		"i-cache-size",
		"i-cache-sets",
		"i-cache-block-size",
		"i-cache-line-size",
	};
	static const char *dpropnames[] __initdata = {
		"d-cache-size",
		"d-cache-sets",
		"d-cache-block-size",
		"d-cache-line-size",
	};
	const char **propnames = icache ? ipropnames : dpropnames;
	const __be32 *sizep, *lsizep, *bsizep, *setsp;
	u32 size, lsize, bsize, sets;
	bool success = true;

	size = 0;
	sets = -1u;
	lsize = bsize = cur_cpu_spec->dcache_bsize;
	sizep = of_get_property(np, propnames[0], NULL);
	if (sizep != NULL)
		size = be32_to_cpu(*sizep);
	setsp = of_get_property(np, propnames[1], NULL);
	if (setsp != NULL)
		sets = be32_to_cpu(*setsp);
	bsizep = of_get_property(np, propnames[2], NULL);
	lsizep = of_get_property(np, propnames[3], NULL);
	if (bsizep == NULL)
		bsizep = lsizep;
	if (lsizep != NULL)
		lsize = be32_to_cpu(*lsizep);
	if (bsizep != NULL)
		bsize = be32_to_cpu(*bsizep);
	if (sizep == NULL || bsizep == NULL || lsizep == NULL)
		success = false;

	/*
	 * OF is weird .. it represents fully associative caches
	 * as "1 way" which doesn't make much sense and doesn't
	 * leave room for direct mapped. We'll assume that 0
	 * in OF means direct mapped for that reason.
	 */
	if (sets == 1)
		sets = 0;
	else if (sets == 0)
		sets = 1;

	init_cache_info(info, size, lsize, bsize, sets);

	return success;
}

491
void __init initialize_cache_info(void)
492
{
493 494
	struct device_node *cpu = NULL, *l2, *l3 = NULL;
	u32 pvr;
495 496 497

	DBG(" -> initialize_cache_info()\n");

498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513
	/*
	 * All shipping POWER8 machines have a firmware bug that
	 * puts incorrect information in the device-tree. This will
	 * be (hopefully) fixed for future chips but for now hard
	 * code the values if we are running on one of these
	 */
	pvr = PVR_VER(mfspr(SPRN_PVR));
	if (pvr == PVR_POWER8 || pvr == PVR_POWER8E ||
	    pvr == PVR_POWER8NVL) {
						/* size    lsize   blk  sets */
		init_cache_info(&ppc64_caches.l1i, 0x8000,   128,  128, 32);
		init_cache_info(&ppc64_caches.l1d, 0x10000,  128,  128, 64);
		init_cache_info(&ppc64_caches.l2,  0x80000,  128,  0,   512);
		init_cache_info(&ppc64_caches.l3,  0x800000, 128,  0,   8192);
	} else
		cpu = of_find_node_by_type(NULL, "cpu");
514

515 516 517 518
	/*
	 * We're assuming *all* of the CPUs have the same
	 * d-cache and i-cache sizes... -Peter
	 */
519 520
	if (cpu) {
		if (!parse_cache_info(cpu, false, &ppc64_caches.l1d))
521 522
			DBG("Argh, can't find dcache properties !\n");

523
		if (!parse_cache_info(cpu, true, &ppc64_caches.l1i))
524
			DBG("Argh, can't find icache properties !\n");
525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540

		/*
		 * Try to find the L2 and L3 if any. Assume they are
		 * unified and use the D-side properties.
		 */
		l2 = of_find_next_cache_node(cpu);
		of_node_put(cpu);
		if (l2) {
			parse_cache_info(l2, false, &ppc64_caches.l2);
			l3 = of_find_next_cache_node(l2);
			of_node_put(l2);
		}
		if (l3) {
			parse_cache_info(l3, false, &ppc64_caches.l3);
			of_node_put(l3);
		}
541 542
	}

543
	/* For use by binfmt_elf */
544 545
	dcache_bsize = ppc64_caches.l1d.block_size;
	icache_bsize = ppc64_caches.l1i.block_size;
546

547 548 549
	cur_cpu_spec->dcache_bsize = dcache_bsize;
	cur_cpu_spec->icache_bsize = icache_bsize;

550 551 552
	DBG(" <- initialize_cache_info()\n");
}

553 554 555 556 557
/* This returns the limit below which memory accesses to the linear
 * mapping are guarnateed not to cause a TLB or SLB miss. This is
 * used to allocate interrupt or emergency stacks for which our
 * exception entry path doesn't deal with being interrupted.
 */
558
static __init u64 safe_stack_limit(void)
559
{
560 561 562 563 564 565 566
#ifdef CONFIG_PPC_BOOK3E
	/* Freescale BookE bolts the entire linear mapping */
	if (mmu_has_feature(MMU_FTR_TYPE_FSL_E))
		return linear_map_top;
	/* Other BookE, we assume the first GB is bolted */
	return 1ul << 30;
#else
567 568 569
	if (early_radix_enabled())
		return ULONG_MAX;

570 571
	/* BookS, the first segment is bolted */
	if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
572 573
		return 1UL << SID_SHIFT_1T;
	return 1UL << SID_SHIFT;
574
#endif
575 576
}

577
void __init irqstack_early_init(void)
578
{
579
	u64 limit = safe_stack_limit();
580 581 582
	unsigned int i;

	/*
583
	 * Interrupt stacks must be in the first segment since we
584 585
	 * cannot afford to take SLB misses on them. They are not
	 * accessed in realmode.
586
	 */
587
	for_each_possible_cpu(i) {
588
		softirq_ctx[i] = (struct thread_info *)
Y
Yinghai Lu 已提交
589
			__va(memblock_alloc_base(THREAD_SIZE,
590
					    THREAD_SIZE, limit));
591
		hardirq_ctx[i] = (struct thread_info *)
Y
Yinghai Lu 已提交
592
			__va(memblock_alloc_base(THREAD_SIZE,
593
					    THREAD_SIZE, limit));
594 595 596
	}
}

597
#ifdef CONFIG_PPC_BOOK3E
598
void __init exc_lvl_early_init(void)
599 600
{
	unsigned int i;
601
	unsigned long sp;
602 603

	for_each_possible_cpu(i) {
604 605 606 607 608 609 610 611 612 613 614
		sp = memblock_alloc(THREAD_SIZE, THREAD_SIZE);
		critirq_ctx[i] = (struct thread_info *)__va(sp);
		paca[i].crit_kstack = __va(sp + THREAD_SIZE);

		sp = memblock_alloc(THREAD_SIZE, THREAD_SIZE);
		dbgirq_ctx[i] = (struct thread_info *)__va(sp);
		paca[i].dbg_kstack = __va(sp + THREAD_SIZE);

		sp = memblock_alloc(THREAD_SIZE, THREAD_SIZE);
		mcheckirq_ctx[i] = (struct thread_info *)__va(sp);
		paca[i].mc_kstack = __va(sp + THREAD_SIZE);
615
	}
616 617

	if (cpu_has_feature(CPU_FTR_DEBUG_LVL_EXC))
618
		patch_exception(0x040, exc_debug_debug_book3e);
619 620 621
}
#endif

622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639
/*
 * Emergency stacks are used for a range of things, from asynchronous
 * NMIs (system reset, machine check) to synchronous, process context.
 * We set preempt_count to zero, even though that isn't necessarily correct. To
 * get the right value we'd need to copy it from the previous thread_info, but
 * doing that might fault causing more problems.
 * TODO: what to do with accounting?
 */
static void emerg_stack_init_thread_info(struct thread_info *ti, int cpu)
{
	ti->task = NULL;
	ti->cpu = cpu;
	ti->preempt_count = 0;
	ti->local_flags = 0;
	ti->flags = 0;
	klp_init_thread_info(ti);
}

640 641
/*
 * Stack space used when we detect a bad kernel stack pointer, and
642 643
 * early in SMP boots before relocation is enabled. Exclusive emergency
 * stack for machine checks.
644
 */
645
void __init emergency_stack_init(void)
646
{
647
	u64 limit;
648 649 650 651 652 653 654 655
	unsigned int i;

	/*
	 * Emergency stacks must be under 256MB, we cannot afford to take
	 * SLB misses on them. The ABI also requires them to be 128-byte
	 * aligned.
	 *
	 * Since we use these as temporary stacks during secondary CPU
656 657 658
	 * bringup, machine check, system reset, and HMI, we need to get
	 * at them in real mode. This means they must also be within the RMO
	 * region.
659 660 661 662
	 *
	 * The IRQ stacks allocated elsewhere in this file are zeroed and
	 * initialized in kernel/irq.c. These are initialized here in order
	 * to have emergency stacks available as early as possible.
663
	 */
664
	limit = min(safe_stack_limit(), ppc64_rma_size);
665

666
	for_each_possible_cpu(i) {
667 668
		struct thread_info *ti;
		ti = __va(memblock_alloc_base(THREAD_SIZE, THREAD_SIZE, limit));
669 670
		memset(ti, 0, THREAD_SIZE);
		emerg_stack_init_thread_info(ti, i);
671
		paca[i].emergency_sp = (void *)ti + THREAD_SIZE;
672 673

#ifdef CONFIG_PPC_BOOK3S_64
674 675
		/* emergency stack for NMI exception handling. */
		ti = __va(memblock_alloc_base(THREAD_SIZE, THREAD_SIZE, limit));
676 677
		memset(ti, 0, THREAD_SIZE);
		emerg_stack_init_thread_info(ti, i);
678 679
		paca[i].nmi_emergency_sp = (void *)ti + THREAD_SIZE;

680
		/* emergency stack for machine check exception handling. */
681
		ti = __va(memblock_alloc_base(THREAD_SIZE, THREAD_SIZE, limit));
682 683
		memset(ti, 0, THREAD_SIZE);
		emerg_stack_init_thread_info(ti, i);
684
		paca[i].mc_emergency_sp = (void *)ti + THREAD_SIZE;
685
#endif
686
	}
687 688
}

689
#ifdef CONFIG_SMP
690 691 692
#define PCPU_DYN_SIZE		()

static void * __init pcpu_fc_alloc(unsigned int cpu, size_t size, size_t align)
693
{
694
	return __alloc_bootmem_node(NODE_DATA(early_cpu_to_node(cpu)), size, align,
695 696
				    __pa(MAX_DMA_ADDRESS));
}
697

698 699 700 701
static void __init pcpu_fc_free(void *ptr, size_t size)
{
	free_bootmem(__pa(ptr), size);
}
702

703 704
static int pcpu_cpu_distance(unsigned int from, unsigned int to)
{
705
	if (early_cpu_to_node(from) == early_cpu_to_node(to))
706 707 708 709 710
		return LOCAL_DISTANCE;
	else
		return REMOTE_DISTANCE;
}

711 712 713
unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
EXPORT_SYMBOL(__per_cpu_offset);

714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737
void __init setup_per_cpu_areas(void)
{
	const size_t dyn_size = PERCPU_MODULE_RESERVE + PERCPU_DYNAMIC_RESERVE;
	size_t atom_size;
	unsigned long delta;
	unsigned int cpu;
	int rc;

	/*
	 * Linear mapping is one of 4K, 1M and 16M.  For 4K, no need
	 * to group units.  For larger mappings, use 1M atom which
	 * should be large enough to contain a number of units.
	 */
	if (mmu_linear_psize == MMU_PAGE_4K)
		atom_size = PAGE_SIZE;
	else
		atom_size = 1 << 20;

	rc = pcpu_embed_first_chunk(0, dyn_size, atom_size, pcpu_cpu_distance,
				    pcpu_fc_alloc, pcpu_fc_free);
	if (rc < 0)
		panic("cannot initialize percpu area (err=%d)", rc);

	delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
738 739 740 741
	for_each_possible_cpu(cpu) {
                __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
		paca[cpu].data_offset = __per_cpu_offset[cpu];
	}
742 743
}
#endif
744

745 746 747 748 749 750 751 752 753
#ifdef CONFIG_MEMORY_HOTPLUG_SPARSE
unsigned long memory_block_size_bytes(void)
{
	if (ppc_md.memory_block_size)
		return ppc_md.memory_block_size();

	return MIN_MEMORY_BLOCK_SIZE;
}
#endif
754

755
#if defined(CONFIG_PPC_INDIRECT_PIO) || defined(CONFIG_PPC_INDIRECT_MMIO)
756 757
struct ppc_pci_io ppc_pci_io;
EXPORT_SYMBOL(ppc_pci_io);
758
#endif