igb_main.c 189.4 KB
Newer Older
1 2 3
/*******************************************************************************

  Intel(R) Gigabit Ethernet Linux driver
4
  Copyright(c) 2007-2009 Intel Corporation.
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

  This program is free software; you can redistribute it and/or modify it
  under the terms and conditions of the GNU General Public License,
  version 2, as published by the Free Software Foundation.

  This program is distributed in the hope it will be useful, but WITHOUT
  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  more details.

  You should have received a copy of the GNU General Public License along with
  this program; if not, write to the Free Software Foundation, Inc.,
  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.

  The full GNU General Public License is included in this distribution in
  the file called "COPYING".

  Contact Information:
  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497

*******************************************************************************/

#include <linux/module.h>
#include <linux/types.h>
#include <linux/init.h>
#include <linux/vmalloc.h>
#include <linux/pagemap.h>
#include <linux/netdevice.h>
#include <linux/ipv6.h>
35
#include <linux/slab.h>
36 37
#include <net/checksum.h>
#include <net/ip6_checksum.h>
38
#include <linux/net_tstamp.h>
39 40 41 42
#include <linux/mii.h>
#include <linux/ethtool.h>
#include <linux/if_vlan.h>
#include <linux/pci.h>
43
#include <linux/pci-aspm.h>
44 45 46
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/if_ether.h>
47
#include <linux/aer.h>
48
#include <linux/prefetch.h>
49
#ifdef CONFIG_IGB_DCA
J
Jeb Cramer 已提交
50 51
#include <linux/dca.h>
#endif
52 53
#include "igb.h"

C
Carolyn Wyborny 已提交
54 55 56 57 58 59
#define MAJ 3
#define MIN 0
#define BUILD 6
#define KFIX 2
#define DRV_VERSION __stringify(MAJ) "." __stringify(MIN) "." \
__stringify(BUILD) "-k" __stringify(KFIX)
60 61 62 63
char igb_driver_name[] = "igb";
char igb_driver_version[] = DRV_VERSION;
static const char igb_driver_string[] =
				"Intel(R) Gigabit Ethernet Network Driver";
64
static const char igb_copyright[] = "Copyright (c) 2007-2011 Intel Corporation.";
65 66 67 68 69

static const struct e1000_info *igb_info_tbl[] = {
	[board_82575] = &e1000_82575_info,
};

70
static DEFINE_PCI_DEVICE_TABLE(igb_pci_tbl) = {
71 72 73 74
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
75 76
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
77
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
78 79 80
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
81 82
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
G
Gasparakis, Joseph 已提交
83 84
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
A
Alexander Duyck 已提交
85
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
86
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
87
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
A
Alexander Duyck 已提交
88 89
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
90
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
91
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
92
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
93 94 95 96 97 98 99 100 101 102 103 104 105 106
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
	/* required last entry */
	{0, }
};

MODULE_DEVICE_TABLE(pci, igb_pci_tbl);

void igb_reset(struct igb_adapter *);
static int igb_setup_all_tx_resources(struct igb_adapter *);
static int igb_setup_all_rx_resources(struct igb_adapter *);
static void igb_free_all_tx_resources(struct igb_adapter *);
static void igb_free_all_rx_resources(struct igb_adapter *);
107
static void igb_setup_mrqc(struct igb_adapter *);
108 109
static int igb_probe(struct pci_dev *, const struct pci_device_id *);
static void __devexit igb_remove(struct pci_dev *pdev);
A
Anders Berggren 已提交
110
static void igb_init_hw_timer(struct igb_adapter *adapter);
111 112 113 114 115 116 117
static int igb_sw_init(struct igb_adapter *);
static int igb_open(struct net_device *);
static int igb_close(struct net_device *);
static void igb_configure_tx(struct igb_adapter *);
static void igb_configure_rx(struct igb_adapter *);
static void igb_clean_all_tx_rings(struct igb_adapter *);
static void igb_clean_all_rx_rings(struct igb_adapter *);
118 119
static void igb_clean_tx_ring(struct igb_ring *);
static void igb_clean_rx_ring(struct igb_ring *);
120
static void igb_set_rx_mode(struct net_device *);
121 122 123
static void igb_update_phy_info(unsigned long);
static void igb_watchdog(unsigned long);
static void igb_watchdog_task(struct work_struct *);
124
static netdev_tx_t igb_xmit_frame_adv(struct sk_buff *skb, struct net_device *);
E
Eric Dumazet 已提交
125 126
static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *dev,
						 struct rtnl_link_stats64 *stats);
127 128
static int igb_change_mtu(struct net_device *, int);
static int igb_set_mac(struct net_device *, void *);
129
static void igb_set_uta(struct igb_adapter *adapter);
130 131 132
static irqreturn_t igb_intr(int irq, void *);
static irqreturn_t igb_intr_msi(int irq, void *);
static irqreturn_t igb_msix_other(int irq, void *);
133
static irqreturn_t igb_msix_ring(int irq, void *);
134
#ifdef CONFIG_IGB_DCA
135
static void igb_update_dca(struct igb_q_vector *);
J
Jeb Cramer 已提交
136
static void igb_setup_dca(struct igb_adapter *);
137
#endif /* CONFIG_IGB_DCA */
138
static bool igb_clean_tx_irq(struct igb_q_vector *);
139
static int igb_poll(struct napi_struct *, int);
140
static bool igb_clean_rx_irq_adv(struct igb_q_vector *, int *, int);
141 142 143 144 145 146 147
static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
static void igb_tx_timeout(struct net_device *);
static void igb_reset_task(struct work_struct *);
static void igb_vlan_rx_register(struct net_device *, struct vlan_group *);
static void igb_vlan_rx_add_vid(struct net_device *, u16);
static void igb_vlan_rx_kill_vid(struct net_device *, u16);
static void igb_restore_vlan(struct igb_adapter *);
148
static void igb_rar_set_qsel(struct igb_adapter *, u8 *, u32 , u8);
149 150 151
static void igb_ping_all_vfs(struct igb_adapter *);
static void igb_msg_task(struct igb_adapter *);
static void igb_vmm_control(struct igb_adapter *);
152
static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
153
static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
154 155 156 157 158 159
static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
static int igb_ndo_set_vf_vlan(struct net_device *netdev,
			       int vf, u16 vlan, u8 qos);
static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate);
static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
				 struct ifla_vf_info *ivi);
160
static void igb_check_vf_rate_limit(struct igb_adapter *);
161 162

#ifdef CONFIG_PM
163
static int igb_suspend(struct pci_dev *, pm_message_t);
164 165 166
static int igb_resume(struct pci_dev *);
#endif
static void igb_shutdown(struct pci_dev *);
167
#ifdef CONFIG_IGB_DCA
J
Jeb Cramer 已提交
168 169 170 171 172 173 174
static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
static struct notifier_block dca_notifier = {
	.notifier_call	= igb_notify_dca,
	.next		= NULL,
	.priority	= 0
};
#endif
175 176 177 178
#ifdef CONFIG_NET_POLL_CONTROLLER
/* for netdump / net console */
static void igb_netpoll(struct net_device *);
#endif
179
#ifdef CONFIG_PCI_IOV
180 181 182 183 184 185
static unsigned int max_vfs = 0;
module_param(max_vfs, uint, 0);
MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate "
                 "per physical function");
#endif /* CONFIG_PCI_IOV */

186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
		     pci_channel_state_t);
static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
static void igb_io_resume(struct pci_dev *);

static struct pci_error_handlers igb_err_handler = {
	.error_detected = igb_io_error_detected,
	.slot_reset = igb_io_slot_reset,
	.resume = igb_io_resume,
};


static struct pci_driver igb_driver = {
	.name     = igb_driver_name,
	.id_table = igb_pci_tbl,
	.probe    = igb_probe,
	.remove   = __devexit_p(igb_remove),
#ifdef CONFIG_PM
L
Lucas De Marchi 已提交
204
	/* Power Management Hooks */
205 206 207 208 209 210 211 212 213 214 215 216
	.suspend  = igb_suspend,
	.resume   = igb_resume,
#endif
	.shutdown = igb_shutdown,
	.err_handler = &igb_err_handler
};

MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
MODULE_LICENSE("GPL");
MODULE_VERSION(DRV_VERSION);

217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546
struct igb_reg_info {
	u32 ofs;
	char *name;
};

static const struct igb_reg_info igb_reg_info_tbl[] = {

	/* General Registers */
	{E1000_CTRL, "CTRL"},
	{E1000_STATUS, "STATUS"},
	{E1000_CTRL_EXT, "CTRL_EXT"},

	/* Interrupt Registers */
	{E1000_ICR, "ICR"},

	/* RX Registers */
	{E1000_RCTL, "RCTL"},
	{E1000_RDLEN(0), "RDLEN"},
	{E1000_RDH(0), "RDH"},
	{E1000_RDT(0), "RDT"},
	{E1000_RXDCTL(0), "RXDCTL"},
	{E1000_RDBAL(0), "RDBAL"},
	{E1000_RDBAH(0), "RDBAH"},

	/* TX Registers */
	{E1000_TCTL, "TCTL"},
	{E1000_TDBAL(0), "TDBAL"},
	{E1000_TDBAH(0), "TDBAH"},
	{E1000_TDLEN(0), "TDLEN"},
	{E1000_TDH(0), "TDH"},
	{E1000_TDT(0), "TDT"},
	{E1000_TXDCTL(0), "TXDCTL"},
	{E1000_TDFH, "TDFH"},
	{E1000_TDFT, "TDFT"},
	{E1000_TDFHS, "TDFHS"},
	{E1000_TDFPC, "TDFPC"},

	/* List Terminator */
	{}
};

/*
 * igb_regdump - register printout routine
 */
static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
{
	int n = 0;
	char rname[16];
	u32 regs[8];

	switch (reginfo->ofs) {
	case E1000_RDLEN(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_RDLEN(n));
		break;
	case E1000_RDH(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_RDH(n));
		break;
	case E1000_RDT(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_RDT(n));
		break;
	case E1000_RXDCTL(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_RXDCTL(n));
		break;
	case E1000_RDBAL(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_RDBAL(n));
		break;
	case E1000_RDBAH(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_RDBAH(n));
		break;
	case E1000_TDBAL(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_RDBAL(n));
		break;
	case E1000_TDBAH(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_TDBAH(n));
		break;
	case E1000_TDLEN(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_TDLEN(n));
		break;
	case E1000_TDH(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_TDH(n));
		break;
	case E1000_TDT(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_TDT(n));
		break;
	case E1000_TXDCTL(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_TXDCTL(n));
		break;
	default:
		printk(KERN_INFO "%-15s %08x\n",
			reginfo->name, rd32(reginfo->ofs));
		return;
	}

	snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
	printk(KERN_INFO "%-15s ", rname);
	for (n = 0; n < 4; n++)
		printk(KERN_CONT "%08x ", regs[n]);
	printk(KERN_CONT "\n");
}

/*
 * igb_dump - Print registers, tx-rings and rx-rings
 */
static void igb_dump(struct igb_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
	struct e1000_hw *hw = &adapter->hw;
	struct igb_reg_info *reginfo;
	int n = 0;
	struct igb_ring *tx_ring;
	union e1000_adv_tx_desc *tx_desc;
	struct my_u0 { u64 a; u64 b; } *u0;
	struct igb_buffer *buffer_info;
	struct igb_ring *rx_ring;
	union e1000_adv_rx_desc *rx_desc;
	u32 staterr;
	int i = 0;

	if (!netif_msg_hw(adapter))
		return;

	/* Print netdevice Info */
	if (netdev) {
		dev_info(&adapter->pdev->dev, "Net device Info\n");
		printk(KERN_INFO "Device Name     state            "
			"trans_start      last_rx\n");
		printk(KERN_INFO "%-15s %016lX %016lX %016lX\n",
		netdev->name,
		netdev->state,
		netdev->trans_start,
		netdev->last_rx);
	}

	/* Print Registers */
	dev_info(&adapter->pdev->dev, "Register Dump\n");
	printk(KERN_INFO " Register Name   Value\n");
	for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
	     reginfo->name; reginfo++) {
		igb_regdump(hw, reginfo);
	}

	/* Print TX Ring Summary */
	if (!netdev || !netif_running(netdev))
		goto exit;

	dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
	printk(KERN_INFO "Queue [NTU] [NTC] [bi(ntc)->dma  ]"
		" leng ntw timestamp\n");
	for (n = 0; n < adapter->num_tx_queues; n++) {
		tx_ring = adapter->tx_ring[n];
		buffer_info = &tx_ring->buffer_info[tx_ring->next_to_clean];
		printk(KERN_INFO " %5d %5X %5X %016llX %04X %3X %016llX\n",
			   n, tx_ring->next_to_use, tx_ring->next_to_clean,
			   (u64)buffer_info->dma,
			   buffer_info->length,
			   buffer_info->next_to_watch,
			   (u64)buffer_info->time_stamp);
	}

	/* Print TX Rings */
	if (!netif_msg_tx_done(adapter))
		goto rx_ring_summary;

	dev_info(&adapter->pdev->dev, "TX Rings Dump\n");

	/* Transmit Descriptor Formats
	 *
	 * Advanced Transmit Descriptor
	 *   +--------------------------------------------------------------+
	 * 0 |         Buffer Address [63:0]                                |
	 *   +--------------------------------------------------------------+
	 * 8 | PAYLEN  | PORTS  |CC|IDX | STA | DCMD  |DTYP|MAC|RSV| DTALEN |
	 *   +--------------------------------------------------------------+
	 *   63      46 45    40 39 38 36 35 32 31   24             15       0
	 */

	for (n = 0; n < adapter->num_tx_queues; n++) {
		tx_ring = adapter->tx_ring[n];
		printk(KERN_INFO "------------------------------------\n");
		printk(KERN_INFO "TX QUEUE INDEX = %d\n", tx_ring->queue_index);
		printk(KERN_INFO "------------------------------------\n");
		printk(KERN_INFO "T [desc]     [address 63:0  ] "
			"[PlPOCIStDDM Ln] [bi->dma       ] "
			"leng  ntw timestamp        bi->skb\n");

		for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
			tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
			buffer_info = &tx_ring->buffer_info[i];
			u0 = (struct my_u0 *)tx_desc;
			printk(KERN_INFO "T [0x%03X]    %016llX %016llX %016llX"
				" %04X  %3X %016llX %p", i,
				le64_to_cpu(u0->a),
				le64_to_cpu(u0->b),
				(u64)buffer_info->dma,
				buffer_info->length,
				buffer_info->next_to_watch,
				(u64)buffer_info->time_stamp,
				buffer_info->skb);
			if (i == tx_ring->next_to_use &&
				i == tx_ring->next_to_clean)
				printk(KERN_CONT " NTC/U\n");
			else if (i == tx_ring->next_to_use)
				printk(KERN_CONT " NTU\n");
			else if (i == tx_ring->next_to_clean)
				printk(KERN_CONT " NTC\n");
			else
				printk(KERN_CONT "\n");

			if (netif_msg_pktdata(adapter) && buffer_info->dma != 0)
				print_hex_dump(KERN_INFO, "",
					DUMP_PREFIX_ADDRESS,
					16, 1, phys_to_virt(buffer_info->dma),
					buffer_info->length, true);
		}
	}

	/* Print RX Rings Summary */
rx_ring_summary:
	dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
	printk(KERN_INFO "Queue [NTU] [NTC]\n");
	for (n = 0; n < adapter->num_rx_queues; n++) {
		rx_ring = adapter->rx_ring[n];
		printk(KERN_INFO " %5d %5X %5X\n", n,
			   rx_ring->next_to_use, rx_ring->next_to_clean);
	}

	/* Print RX Rings */
	if (!netif_msg_rx_status(adapter))
		goto exit;

	dev_info(&adapter->pdev->dev, "RX Rings Dump\n");

	/* Advanced Receive Descriptor (Read) Format
	 *    63                                           1        0
	 *    +-----------------------------------------------------+
	 *  0 |       Packet Buffer Address [63:1]           |A0/NSE|
	 *    +----------------------------------------------+------+
	 *  8 |       Header Buffer Address [63:1]           |  DD  |
	 *    +-----------------------------------------------------+
	 *
	 *
	 * Advanced Receive Descriptor (Write-Back) Format
	 *
	 *   63       48 47    32 31  30      21 20 17 16   4 3     0
	 *   +------------------------------------------------------+
	 * 0 | Packet     IP     |SPH| HDR_LEN   | RSV|Packet|  RSS |
	 *   | Checksum   Ident  |   |           |    | Type | Type |
	 *   +------------------------------------------------------+
	 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
	 *   +------------------------------------------------------+
	 *   63       48 47    32 31            20 19               0
	 */

	for (n = 0; n < adapter->num_rx_queues; n++) {
		rx_ring = adapter->rx_ring[n];
		printk(KERN_INFO "------------------------------------\n");
		printk(KERN_INFO "RX QUEUE INDEX = %d\n", rx_ring->queue_index);
		printk(KERN_INFO "------------------------------------\n");
		printk(KERN_INFO "R  [desc]      [ PktBuf     A0] "
			"[  HeadBuf   DD] [bi->dma       ] [bi->skb] "
			"<-- Adv Rx Read format\n");
		printk(KERN_INFO "RWB[desc]      [PcsmIpSHl PtRs] "
			"[vl er S cks ln] ---------------- [bi->skb] "
			"<-- Adv Rx Write-Back format\n");

		for (i = 0; i < rx_ring->count; i++) {
			buffer_info = &rx_ring->buffer_info[i];
			rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
			u0 = (struct my_u0 *)rx_desc;
			staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
			if (staterr & E1000_RXD_STAT_DD) {
				/* Descriptor Done */
				printk(KERN_INFO "RWB[0x%03X]     %016llX "
					"%016llX ---------------- %p", i,
					le64_to_cpu(u0->a),
					le64_to_cpu(u0->b),
					buffer_info->skb);
			} else {
				printk(KERN_INFO "R  [0x%03X]     %016llX "
					"%016llX %016llX %p", i,
					le64_to_cpu(u0->a),
					le64_to_cpu(u0->b),
					(u64)buffer_info->dma,
					buffer_info->skb);

				if (netif_msg_pktdata(adapter)) {
					print_hex_dump(KERN_INFO, "",
						DUMP_PREFIX_ADDRESS,
						16, 1,
						phys_to_virt(buffer_info->dma),
						rx_ring->rx_buffer_len, true);
					if (rx_ring->rx_buffer_len
						< IGB_RXBUFFER_1024)
						print_hex_dump(KERN_INFO, "",
						  DUMP_PREFIX_ADDRESS,
						  16, 1,
						  phys_to_virt(
						    buffer_info->page_dma +
						    buffer_info->page_offset),
						  PAGE_SIZE/2, true);
				}
			}

			if (i == rx_ring->next_to_use)
				printk(KERN_CONT " NTU\n");
			else if (i == rx_ring->next_to_clean)
				printk(KERN_CONT " NTC\n");
			else
				printk(KERN_CONT "\n");

		}
	}

exit:
	return;
}


P
Patrick Ohly 已提交
547 548 549 550 551 552 553 554
/**
 * igb_read_clock - read raw cycle counter (to be used by time counter)
 */
static cycle_t igb_read_clock(const struct cyclecounter *tc)
{
	struct igb_adapter *adapter =
		container_of(tc, struct igb_adapter, cycles);
	struct e1000_hw *hw = &adapter->hw;
555 556
	u64 stamp = 0;
	int shift = 0;
P
Patrick Ohly 已提交
557

558 559 560 561 562 563 564 565 566 567
	/*
	 * The timestamp latches on lowest register read. For the 82580
	 * the lowest register is SYSTIMR instead of SYSTIML.  However we never
	 * adjusted TIMINCA so SYSTIMR will just read as all 0s so ignore it.
	 */
	if (hw->mac.type == e1000_82580) {
		stamp = rd32(E1000_SYSTIMR) >> 8;
		shift = IGB_82580_TSYNC_SHIFT;
	}

568 569
	stamp |= (u64)rd32(E1000_SYSTIML) << shift;
	stamp |= (u64)rd32(E1000_SYSTIMH) << (shift + 32);
P
Patrick Ohly 已提交
570 571 572
	return stamp;
}

573
/**
574
 * igb_get_hw_dev - return device
575 576
 * used by hardware layer to print debugging information
 **/
577
struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
578 579
{
	struct igb_adapter *adapter = hw->back;
580
	return adapter->netdev;
581
}
P
Patrick Ohly 已提交
582

583 584 585 586 587 588 589 590 591 592 593 594 595 596
/**
 * igb_init_module - Driver Registration Routine
 *
 * igb_init_module is the first routine called when the driver is
 * loaded. All it does is register with the PCI subsystem.
 **/
static int __init igb_init_module(void)
{
	int ret;
	printk(KERN_INFO "%s - version %s\n",
	       igb_driver_string, igb_driver_version);

	printk(KERN_INFO "%s\n", igb_copyright);

597
#ifdef CONFIG_IGB_DCA
J
Jeb Cramer 已提交
598 599
	dca_register_notify(&dca_notifier);
#endif
600
	ret = pci_register_driver(&igb_driver);
601 602 603 604 605 606 607 608 609 610 611 612 613
	return ret;
}

module_init(igb_init_module);

/**
 * igb_exit_module - Driver Exit Cleanup Routine
 *
 * igb_exit_module is called just before the driver is removed
 * from memory.
 **/
static void __exit igb_exit_module(void)
{
614
#ifdef CONFIG_IGB_DCA
J
Jeb Cramer 已提交
615 616
	dca_unregister_notify(&dca_notifier);
#endif
617 618 619 620 621
	pci_unregister_driver(&igb_driver);
}

module_exit(igb_exit_module);

622 623 624 625 626 627 628 629 630 631
#define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
/**
 * igb_cache_ring_register - Descriptor ring to register mapping
 * @adapter: board private structure to initialize
 *
 * Once we know the feature-set enabled for the device, we'll cache
 * the register offset the descriptor ring is assigned to.
 **/
static void igb_cache_ring_register(struct igb_adapter *adapter)
{
632
	int i = 0, j = 0;
633
	u32 rbase_offset = adapter->vfs_allocated_count;
634 635 636 637 638 639 640 641

	switch (adapter->hw.mac.type) {
	case e1000_82576:
		/* The queues are allocated for virtualization such that VF 0
		 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
		 * In order to avoid collision we start at the first free queue
		 * and continue consuming queues in the same sequence
		 */
642
		if (adapter->vfs_allocated_count) {
643
			for (; i < adapter->rss_queues; i++)
644 645
				adapter->rx_ring[i]->reg_idx = rbase_offset +
				                               Q_IDX_82576(i);
646
		}
647
	case e1000_82575:
648
	case e1000_82580:
649
	case e1000_i350:
650
	default:
651
		for (; i < adapter->num_rx_queues; i++)
652
			adapter->rx_ring[i]->reg_idx = rbase_offset + i;
653
		for (; j < adapter->num_tx_queues; j++)
654
			adapter->tx_ring[j]->reg_idx = rbase_offset + j;
655 656 657 658
		break;
	}
}

659 660
static void igb_free_queues(struct igb_adapter *adapter)
{
661
	int i;
662

663 664 665 666 667 668 669 670
	for (i = 0; i < adapter->num_tx_queues; i++) {
		kfree(adapter->tx_ring[i]);
		adapter->tx_ring[i] = NULL;
	}
	for (i = 0; i < adapter->num_rx_queues; i++) {
		kfree(adapter->rx_ring[i]);
		adapter->rx_ring[i] = NULL;
	}
671 672 673 674
	adapter->num_rx_queues = 0;
	adapter->num_tx_queues = 0;
}

675 676 677 678 679 680 681 682 683
/**
 * igb_alloc_queues - Allocate memory for all rings
 * @adapter: board private structure to initialize
 *
 * We allocate one ring per queue at run-time since we don't know the
 * number of queues at compile-time.
 **/
static int igb_alloc_queues(struct igb_adapter *adapter)
{
684
	struct igb_ring *ring;
685 686
	int i;

687
	for (i = 0; i < adapter->num_tx_queues; i++) {
688 689 690
		ring = kzalloc(sizeof(struct igb_ring), GFP_KERNEL);
		if (!ring)
			goto err;
691
		ring->count = adapter->tx_ring_count;
692
		ring->queue_index = i;
693
		ring->dev = &adapter->pdev->dev;
694
		ring->netdev = adapter->netdev;
695 696 697
		/* For 82575, context index must be unique per ring. */
		if (adapter->hw.mac.type == e1000_82575)
			ring->flags = IGB_RING_FLAG_TX_CTX_IDX;
698
		adapter->tx_ring[i] = ring;
699
	}
700

701
	for (i = 0; i < adapter->num_rx_queues; i++) {
702 703 704
		ring = kzalloc(sizeof(struct igb_ring), GFP_KERNEL);
		if (!ring)
			goto err;
705
		ring->count = adapter->rx_ring_count;
P
PJ Waskiewicz 已提交
706
		ring->queue_index = i;
707
		ring->dev = &adapter->pdev->dev;
708
		ring->netdev = adapter->netdev;
709
		ring->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
710 711 712 713
		ring->flags = IGB_RING_FLAG_RX_CSUM; /* enable rx checksum */
		/* set flag indicating ring supports SCTP checksum offload */
		if (adapter->hw.mac.type >= e1000_82576)
			ring->flags |= IGB_RING_FLAG_RX_SCTP_CSUM;
714
		adapter->rx_ring[i] = ring;
715
	}
716 717

	igb_cache_ring_register(adapter);
718

719
	return 0;
A
Alexander Duyck 已提交
720

721 722
err:
	igb_free_queues(adapter);
723

724
	return -ENOMEM;
A
Alexander Duyck 已提交
725 726
}

727
#define IGB_N0_QUEUE -1
728
static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
729 730
{
	u32 msixbm = 0;
731
	struct igb_adapter *adapter = q_vector->adapter;
732
	struct e1000_hw *hw = &adapter->hw;
A
Alexander Duyck 已提交
733
	u32 ivar, index;
734 735 736 737 738 739 740
	int rx_queue = IGB_N0_QUEUE;
	int tx_queue = IGB_N0_QUEUE;

	if (q_vector->rx_ring)
		rx_queue = q_vector->rx_ring->reg_idx;
	if (q_vector->tx_ring)
		tx_queue = q_vector->tx_ring->reg_idx;
A
Alexander Duyck 已提交
741 742 743

	switch (hw->mac.type) {
	case e1000_82575:
744 745 746 747
		/* The 82575 assigns vectors using a bitmask, which matches the
		   bitmask for the EICR/EIMS/EIMC registers.  To assign one
		   or more queues to a vector, we write the appropriate bits
		   into the MSIXBM register for that vector. */
748
		if (rx_queue > IGB_N0_QUEUE)
749
			msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
750
		if (tx_queue > IGB_N0_QUEUE)
751
			msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
752 753
		if (!adapter->msix_entries && msix_vector == 0)
			msixbm |= E1000_EIMS_OTHER;
754
		array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
755
		q_vector->eims_value = msixbm;
A
Alexander Duyck 已提交
756 757
		break;
	case e1000_82576:
758
		/* 82576 uses a table-based method for assigning vectors.
A
Alexander Duyck 已提交
759 760 761 762
		   Each queue has a single entry in the table to which we write
		   a vector number along with a "valid" bit.  Sadly, the layout
		   of the table is somewhat counterintuitive. */
		if (rx_queue > IGB_N0_QUEUE) {
763
			index = (rx_queue & 0x7);
A
Alexander Duyck 已提交
764
			ivar = array_rd32(E1000_IVAR0, index);
765
			if (rx_queue < 8) {
766 767 768
				/* vector goes into low byte of register */
				ivar = ivar & 0xFFFFFF00;
				ivar |= msix_vector | E1000_IVAR_VALID;
769 770 771 772
			} else {
				/* vector goes into third byte of register */
				ivar = ivar & 0xFF00FFFF;
				ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
A
Alexander Duyck 已提交
773 774 775 776
			}
			array_wr32(E1000_IVAR0, index, ivar);
		}
		if (tx_queue > IGB_N0_QUEUE) {
777
			index = (tx_queue & 0x7);
A
Alexander Duyck 已提交
778
			ivar = array_rd32(E1000_IVAR0, index);
779
			if (tx_queue < 8) {
780 781 782
				/* vector goes into second byte of register */
				ivar = ivar & 0xFFFF00FF;
				ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
783 784 785 786
			} else {
				/* vector goes into high byte of register */
				ivar = ivar & 0x00FFFFFF;
				ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
A
Alexander Duyck 已提交
787 788 789
			}
			array_wr32(E1000_IVAR0, index, ivar);
		}
790
		q_vector->eims_value = 1 << msix_vector;
A
Alexander Duyck 已提交
791
		break;
792
	case e1000_82580:
793
	case e1000_i350:
794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825
		/* 82580 uses the same table-based approach as 82576 but has fewer
		   entries as a result we carry over for queues greater than 4. */
		if (rx_queue > IGB_N0_QUEUE) {
			index = (rx_queue >> 1);
			ivar = array_rd32(E1000_IVAR0, index);
			if (rx_queue & 0x1) {
				/* vector goes into third byte of register */
				ivar = ivar & 0xFF00FFFF;
				ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
			} else {
				/* vector goes into low byte of register */
				ivar = ivar & 0xFFFFFF00;
				ivar |= msix_vector | E1000_IVAR_VALID;
			}
			array_wr32(E1000_IVAR0, index, ivar);
		}
		if (tx_queue > IGB_N0_QUEUE) {
			index = (tx_queue >> 1);
			ivar = array_rd32(E1000_IVAR0, index);
			if (tx_queue & 0x1) {
				/* vector goes into high byte of register */
				ivar = ivar & 0x00FFFFFF;
				ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
			} else {
				/* vector goes into second byte of register */
				ivar = ivar & 0xFFFF00FF;
				ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
			}
			array_wr32(E1000_IVAR0, index, ivar);
		}
		q_vector->eims_value = 1 << msix_vector;
		break;
A
Alexander Duyck 已提交
826 827 828 829
	default:
		BUG();
		break;
	}
830 831 832 833 834 835

	/* add q_vector eims value to global eims_enable_mask */
	adapter->eims_enable_mask |= q_vector->eims_value;

	/* configure q_vector to set itr on first interrupt */
	q_vector->set_itr = 1;
836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852
}

/**
 * igb_configure_msix - Configure MSI-X hardware
 *
 * igb_configure_msix sets up the hardware to properly
 * generate MSI-X interrupts.
 **/
static void igb_configure_msix(struct igb_adapter *adapter)
{
	u32 tmp;
	int i, vector = 0;
	struct e1000_hw *hw = &adapter->hw;

	adapter->eims_enable_mask = 0;

	/* set vector for other causes, i.e. link changes */
A
Alexander Duyck 已提交
853 854
	switch (hw->mac.type) {
	case e1000_82575:
855 856 857 858 859 860 861 862 863
		tmp = rd32(E1000_CTRL_EXT);
		/* enable MSI-X PBA support*/
		tmp |= E1000_CTRL_EXT_PBA_CLR;

		/* Auto-Mask interrupts upon ICR read. */
		tmp |= E1000_CTRL_EXT_EIAME;
		tmp |= E1000_CTRL_EXT_IRCA;

		wr32(E1000_CTRL_EXT, tmp);
864 865 866 867

		/* enable msix_other interrupt */
		array_wr32(E1000_MSIXBM(0), vector++,
		                      E1000_EIMS_OTHER);
P
PJ Waskiewicz 已提交
868
		adapter->eims_other = E1000_EIMS_OTHER;
869

A
Alexander Duyck 已提交
870 871 872
		break;

	case e1000_82576:
873
	case e1000_82580:
874
	case e1000_i350:
875 876 877 878 879 880 881 882
		/* Turn on MSI-X capability first, or our settings
		 * won't stick.  And it will take days to debug. */
		wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
		                E1000_GPIE_PBA | E1000_GPIE_EIAME |
		                E1000_GPIE_NSICR);

		/* enable msix_other interrupt */
		adapter->eims_other = 1 << vector;
A
Alexander Duyck 已提交
883 884
		tmp = (vector++ | E1000_IVAR_VALID) << 8;

885
		wr32(E1000_IVAR_MISC, tmp);
A
Alexander Duyck 已提交
886 887 888 889 890
		break;
	default:
		/* do nothing, since nothing else supports MSI-X */
		break;
	} /* switch (hw->mac.type) */
891 892 893

	adapter->eims_enable_mask |= adapter->eims_other;

894 895
	for (i = 0; i < adapter->num_q_vectors; i++)
		igb_assign_vector(adapter->q_vector[i], vector++);
896

897 898 899 900 901 902 903 904 905 906 907 908
	wrfl();
}

/**
 * igb_request_msix - Initialize MSI-X interrupts
 *
 * igb_request_msix allocates MSI-X vectors and requests interrupts from the
 * kernel.
 **/
static int igb_request_msix(struct igb_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
909
	struct e1000_hw *hw = &adapter->hw;
910 911
	int i, err = 0, vector = 0;

912
	err = request_irq(adapter->msix_entries[vector].vector,
913
	                  igb_msix_other, 0, netdev->name, adapter);
914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931
	if (err)
		goto out;
	vector++;

	for (i = 0; i < adapter->num_q_vectors; i++) {
		struct igb_q_vector *q_vector = adapter->q_vector[i];

		q_vector->itr_register = hw->hw_addr + E1000_EITR(vector);

		if (q_vector->rx_ring && q_vector->tx_ring)
			sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
			        q_vector->rx_ring->queue_index);
		else if (q_vector->tx_ring)
			sprintf(q_vector->name, "%s-tx-%u", netdev->name,
			        q_vector->tx_ring->queue_index);
		else if (q_vector->rx_ring)
			sprintf(q_vector->name, "%s-rx-%u", netdev->name,
			        q_vector->rx_ring->queue_index);
932
		else
933 934
			sprintf(q_vector->name, "%s-unused", netdev->name);

935
		err = request_irq(adapter->msix_entries[vector].vector,
936
		                  igb_msix_ring, 0, q_vector->name,
937
		                  q_vector);
938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954
		if (err)
			goto out;
		vector++;
	}

	igb_configure_msix(adapter);
	return 0;
out:
	return err;
}

static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
{
	if (adapter->msix_entries) {
		pci_disable_msix(adapter->pdev);
		kfree(adapter->msix_entries);
		adapter->msix_entries = NULL;
955
	} else if (adapter->flags & IGB_FLAG_HAS_MSI) {
956
		pci_disable_msi(adapter->pdev);
957
	}
958 959
}

960 961 962 963 964 965 966 967 968 969 970 971 972 973 974
/**
 * igb_free_q_vectors - Free memory allocated for interrupt vectors
 * @adapter: board private structure to initialize
 *
 * This function frees the memory allocated to the q_vectors.  In addition if
 * NAPI is enabled it will delete any references to the NAPI struct prior
 * to freeing the q_vector.
 **/
static void igb_free_q_vectors(struct igb_adapter *adapter)
{
	int v_idx;

	for (v_idx = 0; v_idx < adapter->num_q_vectors; v_idx++) {
		struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
		adapter->q_vector[v_idx] = NULL;
975 976
		if (!q_vector)
			continue;
977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994
		netif_napi_del(&q_vector->napi);
		kfree(q_vector);
	}
	adapter->num_q_vectors = 0;
}

/**
 * igb_clear_interrupt_scheme - reset the device to a state of no interrupts
 *
 * This function resets the device so that it has 0 rx queues, tx queues, and
 * MSI-X interrupts allocated.
 */
static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
{
	igb_free_queues(adapter);
	igb_free_q_vectors(adapter);
	igb_reset_interrupt_capability(adapter);
}
995 996 997 998 999 1000 1001

/**
 * igb_set_interrupt_capability - set MSI or MSI-X if supported
 *
 * Attempt to configure interrupts using the best available
 * capabilities of the hardware and kernel.
 **/
1002
static int igb_set_interrupt_capability(struct igb_adapter *adapter)
1003 1004 1005 1006
{
	int err;
	int numvecs, i;

1007
	/* Number of supported queues. */
1008
	adapter->num_rx_queues = adapter->rss_queues;
1009 1010 1011 1012
	if (adapter->vfs_allocated_count)
		adapter->num_tx_queues = 1;
	else
		adapter->num_tx_queues = adapter->rss_queues;
1013

1014 1015 1016
	/* start with one vector for every rx queue */
	numvecs = adapter->num_rx_queues;

D
Daniel Mack 已提交
1017
	/* if tx handler is separate add 1 for every tx queue */
1018 1019
	if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
		numvecs += adapter->num_tx_queues;
1020 1021 1022 1023 1024 1025

	/* store the number of vectors reserved for queues */
	adapter->num_q_vectors = numvecs;

	/* add 1 vector for link status interrupts */
	numvecs++;
1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037
	adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
					GFP_KERNEL);
	if (!adapter->msix_entries)
		goto msi_only;

	for (i = 0; i < numvecs; i++)
		adapter->msix_entries[i].entry = i;

	err = pci_enable_msix(adapter->pdev,
			      adapter->msix_entries,
			      numvecs);
	if (err == 0)
1038
		goto out;
1039 1040 1041 1042 1043

	igb_reset_interrupt_capability(adapter);

	/* If we can't do MSI-X, try MSI */
msi_only:
1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058
#ifdef CONFIG_PCI_IOV
	/* disable SR-IOV for non MSI-X configurations */
	if (adapter->vf_data) {
		struct e1000_hw *hw = &adapter->hw;
		/* disable iov and allow time for transactions to clear */
		pci_disable_sriov(adapter->pdev);
		msleep(500);

		kfree(adapter->vf_data);
		adapter->vf_data = NULL;
		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
		msleep(100);
		dev_info(&adapter->pdev->dev, "IOV Disabled\n");
	}
#endif
1059
	adapter->vfs_allocated_count = 0;
1060
	adapter->rss_queues = 1;
1061
	adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1062
	adapter->num_rx_queues = 1;
1063
	adapter->num_tx_queues = 1;
1064
	adapter->num_q_vectors = 1;
1065
	if (!pci_enable_msi(adapter->pdev))
1066
		adapter->flags |= IGB_FLAG_HAS_MSI;
1067
out:
1068 1069 1070 1071
	/* Notify the stack of the (possibly) reduced queue counts. */
	netif_set_real_num_tx_queues(adapter->netdev, adapter->num_tx_queues);
	return netif_set_real_num_rx_queues(adapter->netdev,
					    adapter->num_rx_queues);
1072 1073
}

1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099
/**
 * igb_alloc_q_vectors - Allocate memory for interrupt vectors
 * @adapter: board private structure to initialize
 *
 * We allocate one q_vector per queue interrupt.  If allocation fails we
 * return -ENOMEM.
 **/
static int igb_alloc_q_vectors(struct igb_adapter *adapter)
{
	struct igb_q_vector *q_vector;
	struct e1000_hw *hw = &adapter->hw;
	int v_idx;

	for (v_idx = 0; v_idx < adapter->num_q_vectors; v_idx++) {
		q_vector = kzalloc(sizeof(struct igb_q_vector), GFP_KERNEL);
		if (!q_vector)
			goto err_out;
		q_vector->adapter = adapter;
		q_vector->itr_register = hw->hw_addr + E1000_EITR(0);
		q_vector->itr_val = IGB_START_ITR;
		netif_napi_add(adapter->netdev, &q_vector->napi, igb_poll, 64);
		adapter->q_vector[v_idx] = q_vector;
	}
	return 0;

err_out:
1100
	igb_free_q_vectors(adapter);
1101 1102 1103 1104 1105 1106
	return -ENOMEM;
}

static void igb_map_rx_ring_to_vector(struct igb_adapter *adapter,
                                      int ring_idx, int v_idx)
{
1107
	struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1108

1109
	q_vector->rx_ring = adapter->rx_ring[ring_idx];
1110
	q_vector->rx_ring->q_vector = q_vector;
1111 1112 1113
	q_vector->itr_val = adapter->rx_itr_setting;
	if (q_vector->itr_val && q_vector->itr_val <= 3)
		q_vector->itr_val = IGB_START_ITR;
1114 1115 1116 1117 1118
}

static void igb_map_tx_ring_to_vector(struct igb_adapter *adapter,
                                      int ring_idx, int v_idx)
{
1119
	struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1120

1121
	q_vector->tx_ring = adapter->tx_ring[ring_idx];
1122
	q_vector->tx_ring->q_vector = q_vector;
1123 1124 1125
	q_vector->itr_val = adapter->tx_itr_setting;
	if (q_vector->itr_val && q_vector->itr_val <= 3)
		q_vector->itr_val = IGB_START_ITR;
1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169
}

/**
 * igb_map_ring_to_vector - maps allocated queues to vectors
 *
 * This function maps the recently allocated queues to vectors.
 **/
static int igb_map_ring_to_vector(struct igb_adapter *adapter)
{
	int i;
	int v_idx = 0;

	if ((adapter->num_q_vectors < adapter->num_rx_queues) ||
	    (adapter->num_q_vectors < adapter->num_tx_queues))
		return -ENOMEM;

	if (adapter->num_q_vectors >=
	    (adapter->num_rx_queues + adapter->num_tx_queues)) {
		for (i = 0; i < adapter->num_rx_queues; i++)
			igb_map_rx_ring_to_vector(adapter, i, v_idx++);
		for (i = 0; i < adapter->num_tx_queues; i++)
			igb_map_tx_ring_to_vector(adapter, i, v_idx++);
	} else {
		for (i = 0; i < adapter->num_rx_queues; i++) {
			if (i < adapter->num_tx_queues)
				igb_map_tx_ring_to_vector(adapter, i, v_idx);
			igb_map_rx_ring_to_vector(adapter, i, v_idx++);
		}
		for (; i < adapter->num_tx_queues; i++)
			igb_map_tx_ring_to_vector(adapter, i, v_idx++);
	}
	return 0;
}

/**
 * igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
 *
 * This function initializes the interrupts and allocates all of the queues.
 **/
static int igb_init_interrupt_scheme(struct igb_adapter *adapter)
{
	struct pci_dev *pdev = adapter->pdev;
	int err;

1170 1171 1172
	err = igb_set_interrupt_capability(adapter);
	if (err)
		return err;
1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202

	err = igb_alloc_q_vectors(adapter);
	if (err) {
		dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
		goto err_alloc_q_vectors;
	}

	err = igb_alloc_queues(adapter);
	if (err) {
		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
		goto err_alloc_queues;
	}

	err = igb_map_ring_to_vector(adapter);
	if (err) {
		dev_err(&pdev->dev, "Invalid q_vector to ring mapping\n");
		goto err_map_queues;
	}


	return 0;
err_map_queues:
	igb_free_queues(adapter);
err_alloc_queues:
	igb_free_q_vectors(adapter);
err_alloc_q_vectors:
	igb_reset_interrupt_capability(adapter);
	return err;
}

1203 1204 1205 1206 1207 1208 1209 1210 1211
/**
 * igb_request_irq - initialize interrupts
 *
 * Attempts to configure interrupts using the best available
 * capabilities of the hardware and kernel.
 **/
static int igb_request_irq(struct igb_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
1212
	struct pci_dev *pdev = adapter->pdev;
1213 1214 1215 1216
	int err = 0;

	if (adapter->msix_entries) {
		err = igb_request_msix(adapter);
P
PJ Waskiewicz 已提交
1217
		if (!err)
1218 1219
			goto request_done;
		/* fall back to MSI */
1220
		igb_clear_interrupt_scheme(adapter);
1221
		if (!pci_enable_msi(adapter->pdev))
1222
			adapter->flags |= IGB_FLAG_HAS_MSI;
1223 1224
		igb_free_all_tx_resources(adapter);
		igb_free_all_rx_resources(adapter);
1225
		adapter->num_tx_queues = 1;
1226
		adapter->num_rx_queues = 1;
1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242
		adapter->num_q_vectors = 1;
		err = igb_alloc_q_vectors(adapter);
		if (err) {
			dev_err(&pdev->dev,
			        "Unable to allocate memory for vectors\n");
			goto request_done;
		}
		err = igb_alloc_queues(adapter);
		if (err) {
			dev_err(&pdev->dev,
			        "Unable to allocate memory for queues\n");
			igb_free_q_vectors(adapter);
			goto request_done;
		}
		igb_setup_all_tx_resources(adapter);
		igb_setup_all_rx_resources(adapter);
P
PJ Waskiewicz 已提交
1243
	} else {
1244
		igb_assign_vector(adapter->q_vector[0], 0);
1245
	}
P
PJ Waskiewicz 已提交
1246

1247
	if (adapter->flags & IGB_FLAG_HAS_MSI) {
1248
		err = request_irq(adapter->pdev->irq, igb_intr_msi, 0,
1249
				  netdev->name, adapter);
1250 1251
		if (!err)
			goto request_done;
1252

1253 1254
		/* fall back to legacy interrupts */
		igb_reset_interrupt_capability(adapter);
1255
		adapter->flags &= ~IGB_FLAG_HAS_MSI;
1256 1257
	}

1258
	err = request_irq(adapter->pdev->irq, igb_intr, IRQF_SHARED,
1259
			  netdev->name, adapter);
1260

A
Andy Gospodarek 已提交
1261
	if (err)
1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273
		dev_err(&adapter->pdev->dev, "Error %d getting interrupt\n",
			err);

request_done:
	return err;
}

static void igb_free_irq(struct igb_adapter *adapter)
{
	if (adapter->msix_entries) {
		int vector = 0, i;

1274
		free_irq(adapter->msix_entries[vector++].vector, adapter);
1275

1276 1277 1278 1279 1280 1281 1282
		for (i = 0; i < adapter->num_q_vectors; i++) {
			struct igb_q_vector *q_vector = adapter->q_vector[i];
			free_irq(adapter->msix_entries[vector++].vector,
			         q_vector);
		}
	} else {
		free_irq(adapter->pdev->irq, adapter);
1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293
	}
}

/**
 * igb_irq_disable - Mask off interrupt generation on the NIC
 * @adapter: board private structure
 **/
static void igb_irq_disable(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;

1294 1295 1296 1297 1298
	/*
	 * we need to be careful when disabling interrupts.  The VFs are also
	 * mapped into these registers and so clearing the bits can cause
	 * issues on the VF drivers so we only need to clear what we set
	 */
1299
	if (adapter->msix_entries) {
1300 1301 1302 1303 1304
		u32 regval = rd32(E1000_EIAM);
		wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
		wr32(E1000_EIMC, adapter->eims_enable_mask);
		regval = rd32(E1000_EIAC);
		wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
1305
	}
P
PJ Waskiewicz 已提交
1306 1307

	wr32(E1000_IAM, 0);
1308 1309
	wr32(E1000_IMC, ~0);
	wrfl();
1310 1311 1312 1313 1314 1315 1316
	if (adapter->msix_entries) {
		int i;
		for (i = 0; i < adapter->num_q_vectors; i++)
			synchronize_irq(adapter->msix_entries[i].vector);
	} else {
		synchronize_irq(adapter->pdev->irq);
	}
1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327
}

/**
 * igb_irq_enable - Enable default interrupt generation settings
 * @adapter: board private structure
 **/
static void igb_irq_enable(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;

	if (adapter->msix_entries) {
1328
		u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC;
1329 1330 1331 1332
		u32 regval = rd32(E1000_EIAC);
		wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
		regval = rd32(E1000_EIAM);
		wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
P
PJ Waskiewicz 已提交
1333
		wr32(E1000_EIMS, adapter->eims_enable_mask);
1334
		if (adapter->vfs_allocated_count) {
1335
			wr32(E1000_MBVFIMR, 0xFF);
1336 1337
			ims |= E1000_IMS_VMMB;
		}
1338 1339 1340
		if (adapter->hw.mac.type == e1000_82580)
			ims |= E1000_IMS_DRSTA;

1341
		wr32(E1000_IMS, ims);
P
PJ Waskiewicz 已提交
1342
	} else {
1343 1344 1345 1346
		wr32(E1000_IMS, IMS_ENABLE_MASK |
				E1000_IMS_DRSTA);
		wr32(E1000_IAM, IMS_ENABLE_MASK |
				E1000_IMS_DRSTA);
P
PJ Waskiewicz 已提交
1347
	}
1348 1349 1350 1351
}

static void igb_update_mng_vlan(struct igb_adapter *adapter)
{
1352
	struct e1000_hw *hw = &adapter->hw;
1353 1354
	u16 vid = adapter->hw.mng_cookie.vlan_id;
	u16 old_vid = adapter->mng_vlan_id;
1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368

	if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
		/* add VID to filter table */
		igb_vfta_set(hw, vid, true);
		adapter->mng_vlan_id = vid;
	} else {
		adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
	}

	if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
	    (vid != old_vid) &&
	    !vlan_group_get_device(adapter->vlgrp, old_vid)) {
		/* remove VID from filter table */
		igb_vfta_set(hw, old_vid, false);
1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421
	}
}

/**
 * igb_release_hw_control - release control of the h/w to f/w
 * @adapter: address of board private structure
 *
 * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
 * For ASF and Pass Through versions of f/w this means that the
 * driver is no longer loaded.
 *
 **/
static void igb_release_hw_control(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 ctrl_ext;

	/* Let firmware take over control of h/w */
	ctrl_ext = rd32(E1000_CTRL_EXT);
	wr32(E1000_CTRL_EXT,
			ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
}

/**
 * igb_get_hw_control - get control of the h/w from f/w
 * @adapter: address of board private structure
 *
 * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
 * For ASF and Pass Through versions of f/w this means that
 * the driver is loaded.
 *
 **/
static void igb_get_hw_control(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 ctrl_ext;

	/* Let firmware know the driver has taken over */
	ctrl_ext = rd32(E1000_CTRL_EXT);
	wr32(E1000_CTRL_EXT,
			ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
}

/**
 * igb_configure - configure the hardware for RX and TX
 * @adapter: private board structure
 **/
static void igb_configure(struct igb_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
	int i;

	igb_get_hw_control(adapter);
1422
	igb_set_rx_mode(netdev);
1423 1424 1425

	igb_restore_vlan(adapter);

1426
	igb_setup_tctl(adapter);
1427
	igb_setup_mrqc(adapter);
1428
	igb_setup_rctl(adapter);
1429 1430

	igb_configure_tx(adapter);
1431
	igb_configure_rx(adapter);
1432 1433 1434

	igb_rx_fifo_flush_82575(&adapter->hw);

1435
	/* call igb_desc_unused which always leaves
1436 1437 1438
	 * at least 1 descriptor unused to make sure
	 * next_to_use != next_to_clean */
	for (i = 0; i < adapter->num_rx_queues; i++) {
1439
		struct igb_ring *ring = adapter->rx_ring[i];
1440
		igb_alloc_rx_buffers_adv(ring, igb_desc_unused(ring));
1441 1442 1443
	}
}

1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466
/**
 * igb_power_up_link - Power up the phy/serdes link
 * @adapter: address of board private structure
 **/
void igb_power_up_link(struct igb_adapter *adapter)
{
	if (adapter->hw.phy.media_type == e1000_media_type_copper)
		igb_power_up_phy_copper(&adapter->hw);
	else
		igb_power_up_serdes_link_82575(&adapter->hw);
}

/**
 * igb_power_down_link - Power down the phy/serdes link
 * @adapter: address of board private structure
 */
static void igb_power_down_link(struct igb_adapter *adapter)
{
	if (adapter->hw.phy.media_type == e1000_media_type_copper)
		igb_power_down_phy_copper_82575(&adapter->hw);
	else
		igb_shutdown_serdes_link_82575(&adapter->hw);
}
1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481

/**
 * igb_up - Open the interface and prepare it to handle traffic
 * @adapter: board private structure
 **/
int igb_up(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	int i;

	/* hardware has been reset, we need to reload some things */
	igb_configure(adapter);

	clear_bit(__IGB_DOWN, &adapter->state);

1482 1483 1484 1485
	for (i = 0; i < adapter->num_q_vectors; i++) {
		struct igb_q_vector *q_vector = adapter->q_vector[i];
		napi_enable(&q_vector->napi);
	}
P
PJ Waskiewicz 已提交
1486
	if (adapter->msix_entries)
1487
		igb_configure_msix(adapter);
1488 1489
	else
		igb_assign_vector(adapter->q_vector[0], 0);
1490 1491 1492 1493 1494

	/* Clear any pending interrupts. */
	rd32(E1000_ICR);
	igb_irq_enable(adapter);

1495 1496 1497 1498 1499 1500 1501
	/* notify VFs that reset has been completed */
	if (adapter->vfs_allocated_count) {
		u32 reg_data = rd32(E1000_CTRL_EXT);
		reg_data |= E1000_CTRL_EXT_PFRSTD;
		wr32(E1000_CTRL_EXT, reg_data);
	}

1502 1503
	netif_tx_start_all_queues(adapter->netdev);

1504 1505 1506 1507
	/* start the watchdog. */
	hw->mac.get_link_status = 1;
	schedule_work(&adapter->watchdog_task);

1508 1509 1510 1511 1512 1513
	return 0;
}

void igb_down(struct igb_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
1514
	struct e1000_hw *hw = &adapter->hw;
1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526
	u32 tctl, rctl;
	int i;

	/* signal that we're down so the interrupt handler does not
	 * reschedule our watchdog timer */
	set_bit(__IGB_DOWN, &adapter->state);

	/* disable receives in the hardware */
	rctl = rd32(E1000_RCTL);
	wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
	/* flush and sleep below */

1527
	netif_tx_stop_all_queues(netdev);
1528 1529 1530 1531 1532 1533 1534 1535 1536

	/* disable transmits in the hardware */
	tctl = rd32(E1000_TCTL);
	tctl &= ~E1000_TCTL_EN;
	wr32(E1000_TCTL, tctl);
	/* flush both disables and wait for them to finish */
	wrfl();
	msleep(10);

1537 1538 1539 1540
	for (i = 0; i < adapter->num_q_vectors; i++) {
		struct igb_q_vector *q_vector = adapter->q_vector[i];
		napi_disable(&q_vector->napi);
	}
1541 1542 1543 1544 1545 1546 1547

	igb_irq_disable(adapter);

	del_timer_sync(&adapter->watchdog_timer);
	del_timer_sync(&adapter->phy_info_timer);

	netif_carrier_off(netdev);
1548 1549

	/* record the stats before reset*/
E
Eric Dumazet 已提交
1550 1551 1552
	spin_lock(&adapter->stats64_lock);
	igb_update_stats(adapter, &adapter->stats64);
	spin_unlock(&adapter->stats64_lock);
1553

1554 1555 1556
	adapter->link_speed = 0;
	adapter->link_duplex = 0;

1557 1558
	if (!pci_channel_offline(adapter->pdev))
		igb_reset(adapter);
1559 1560
	igb_clean_all_tx_rings(adapter);
	igb_clean_all_rx_rings(adapter);
1561 1562 1563 1564 1565
#ifdef CONFIG_IGB_DCA

	/* since we reset the hardware DCA settings were cleared */
	igb_setup_dca(adapter);
#endif
1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579
}

void igb_reinit_locked(struct igb_adapter *adapter)
{
	WARN_ON(in_interrupt());
	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
		msleep(1);
	igb_down(adapter);
	igb_up(adapter);
	clear_bit(__IGB_RESETTING, &adapter->state);
}

void igb_reset(struct igb_adapter *adapter)
{
1580
	struct pci_dev *pdev = adapter->pdev;
1581
	struct e1000_hw *hw = &adapter->hw;
A
Alexander Duyck 已提交
1582 1583
	struct e1000_mac_info *mac = &hw->mac;
	struct e1000_fc_info *fc = &hw->fc;
1584 1585 1586 1587 1588 1589
	u32 pba = 0, tx_space, min_tx_space, min_rx_space;
	u16 hwm;

	/* Repartition Pba for greater than 9k mtu
	 * To take effect CTRL.RST is required.
	 */
1590
	switch (mac->type) {
1591
	case e1000_i350:
1592 1593 1594 1595
	case e1000_82580:
		pba = rd32(E1000_RXPBS);
		pba = igb_rxpbs_adjust_82580(pba);
		break;
1596
	case e1000_82576:
1597 1598
		pba = rd32(E1000_RXPBS);
		pba &= E1000_RXPBS_SIZE_MASK_82576;
1599 1600 1601 1602 1603
		break;
	case e1000_82575:
	default:
		pba = E1000_PBA_34K;
		break;
A
Alexander Duyck 已提交
1604
	}
1605

A
Alexander Duyck 已提交
1606 1607
	if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
	    (mac->type < e1000_82576)) {
1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624
		/* adjust PBA for jumbo frames */
		wr32(E1000_PBA, pba);

		/* To maintain wire speed transmits, the Tx FIFO should be
		 * large enough to accommodate two full transmit packets,
		 * rounded up to the next 1KB and expressed in KB.  Likewise,
		 * the Rx FIFO should be large enough to accommodate at least
		 * one full receive packet and is similarly rounded up and
		 * expressed in KB. */
		pba = rd32(E1000_PBA);
		/* upper 16 bits has Tx packet buffer allocation size in KB */
		tx_space = pba >> 16;
		/* lower 16 bits has Rx packet buffer allocation size in KB */
		pba &= 0xffff;
		/* the tx fifo also stores 16 bytes of information about the tx
		 * but don't include ethernet FCS because hardware appends it */
		min_tx_space = (adapter->max_frame_size +
1625
				sizeof(union e1000_adv_tx_desc) -
1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645
				ETH_FCS_LEN) * 2;
		min_tx_space = ALIGN(min_tx_space, 1024);
		min_tx_space >>= 10;
		/* software strips receive CRC, so leave room for it */
		min_rx_space = adapter->max_frame_size;
		min_rx_space = ALIGN(min_rx_space, 1024);
		min_rx_space >>= 10;

		/* If current Tx allocation is less than the min Tx FIFO size,
		 * and the min Tx FIFO size is less than the current Rx FIFO
		 * allocation, take space away from current Rx allocation */
		if (tx_space < min_tx_space &&
		    ((min_tx_space - tx_space) < pba)) {
			pba = pba - (min_tx_space - tx_space);

			/* if short on rx space, rx wins and must trump tx
			 * adjustment */
			if (pba < min_rx_space)
				pba = min_rx_space;
		}
A
Alexander Duyck 已提交
1646
		wr32(E1000_PBA, pba);
1647 1648 1649 1650 1651 1652 1653 1654 1655
	}

	/* flow control settings */
	/* The high water mark must be low enough to fit one full frame
	 * (or the size used for early receive) above it in the Rx FIFO.
	 * Set it to the lower of:
	 * - 90% of the Rx FIFO size, or
	 * - the full Rx FIFO size minus one full frame */
	hwm = min(((pba << 10) * 9 / 10),
A
Alexander Duyck 已提交
1656
			((pba << 10) - 2 * adapter->max_frame_size));
1657

1658 1659
	fc->high_water = hwm & 0xFFF0;	/* 16-byte granularity */
	fc->low_water = fc->high_water - 16;
1660 1661
	fc->pause_time = 0xFFFF;
	fc->send_xon = 1;
1662
	fc->current_mode = fc->requested_mode;
1663

1664 1665 1666 1667
	/* disable receive for all VFs and wait one second */
	if (adapter->vfs_allocated_count) {
		int i;
		for (i = 0 ; i < adapter->vfs_allocated_count; i++)
G
Greg Rose 已提交
1668
			adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
1669 1670

		/* ping all the active vfs to let them know we are going down */
1671
		igb_ping_all_vfs(adapter);
1672 1673 1674 1675 1676 1677

		/* disable transmits and receives */
		wr32(E1000_VFRE, 0);
		wr32(E1000_VFTE, 0);
	}

1678
	/* Allow time for pending master requests to run */
1679
	hw->mac.ops.reset_hw(hw);
1680 1681
	wr32(E1000_WUC, 0);

1682
	if (hw->mac.ops.init_hw(hw))
1683
		dev_err(&pdev->dev, "Hardware Error\n");
1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735
	if (hw->mac.type > e1000_82580) {
		if (adapter->flags & IGB_FLAG_DMAC) {
			u32 reg;

			/*
			 * DMA Coalescing high water mark needs to be higher
			 * than * the * Rx threshold.  The Rx threshold is
			 * currently * pba - 6, so we * should use a high water
			 * mark of pba * - 4. */
			hwm = (pba - 4) << 10;

			reg = (((pba-6) << E1000_DMACR_DMACTHR_SHIFT)
			       & E1000_DMACR_DMACTHR_MASK);

			/* transition to L0x or L1 if available..*/
			reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);

			/* watchdog timer= +-1000 usec in 32usec intervals */
			reg |= (1000 >> 5);
			wr32(E1000_DMACR, reg);

			/* no lower threshold to disable coalescing(smart fifb)
			 * -UTRESH=0*/
			wr32(E1000_DMCRTRH, 0);

			/* set hwm to PBA -  2 * max frame size */
			wr32(E1000_FCRTC, hwm);

			/*
			 * This sets the time to wait before requesting tran-
			 * sition to * low power state to number of usecs needed
			 * to receive 1 512 * byte frame at gigabit line rate
			 */
			reg = rd32(E1000_DMCTLX);
			reg |= IGB_DMCTLX_DCFLUSH_DIS;

			/* Delay 255 usec before entering Lx state. */
			reg |= 0xFF;
			wr32(E1000_DMCTLX, reg);

			/* free space in Tx packet buffer to wake from DMAC */
			wr32(E1000_DMCTXTH,
			     (IGB_MIN_TXPBSIZE -
			     (IGB_TX_BUF_4096 + adapter->max_frame_size))
			     >> 6);

			/* make low power state decision controlled by DMAC */
			reg = rd32(E1000_PCIEMISC);
			reg |= E1000_PCIEMISC_LX_DECISION;
			wr32(E1000_PCIEMISC, reg);
		} /* end if IGB_FLAG_DMAC set */
	}
1736 1737 1738 1739 1740
	if (hw->mac.type == e1000_82580) {
		u32 reg = rd32(E1000_PCIEMISC);
		wr32(E1000_PCIEMISC,
		                reg & ~E1000_PCIEMISC_LX_DECISION);
	}
1741 1742 1743
	if (!netif_running(adapter->netdev))
		igb_power_down_link(adapter);

1744 1745 1746 1747 1748
	igb_update_mng_vlan(adapter);

	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
	wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);

1749
	igb_get_phy_info(hw);
1750 1751
}

S
Stephen Hemminger 已提交
1752
static const struct net_device_ops igb_netdev_ops = {
1753
	.ndo_open		= igb_open,
S
Stephen Hemminger 已提交
1754
	.ndo_stop		= igb_close,
1755
	.ndo_start_xmit		= igb_xmit_frame_adv,
E
Eric Dumazet 已提交
1756
	.ndo_get_stats64	= igb_get_stats64,
1757 1758
	.ndo_set_rx_mode	= igb_set_rx_mode,
	.ndo_set_multicast_list	= igb_set_rx_mode,
S
Stephen Hemminger 已提交
1759 1760 1761 1762 1763 1764 1765 1766
	.ndo_set_mac_address	= igb_set_mac,
	.ndo_change_mtu		= igb_change_mtu,
	.ndo_do_ioctl		= igb_ioctl,
	.ndo_tx_timeout		= igb_tx_timeout,
	.ndo_validate_addr	= eth_validate_addr,
	.ndo_vlan_rx_register	= igb_vlan_rx_register,
	.ndo_vlan_rx_add_vid	= igb_vlan_rx_add_vid,
	.ndo_vlan_rx_kill_vid	= igb_vlan_rx_kill_vid,
1767 1768 1769 1770
	.ndo_set_vf_mac		= igb_ndo_set_vf_mac,
	.ndo_set_vf_vlan	= igb_ndo_set_vf_vlan,
	.ndo_set_vf_tx_rate	= igb_ndo_set_vf_bw,
	.ndo_get_vf_config	= igb_ndo_get_vf_config,
S
Stephen Hemminger 已提交
1771 1772 1773 1774 1775
#ifdef CONFIG_NET_POLL_CONTROLLER
	.ndo_poll_controller	= igb_netpoll,
#endif
};

1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792
/**
 * igb_probe - Device Initialization Routine
 * @pdev: PCI device information struct
 * @ent: entry in igb_pci_tbl
 *
 * Returns 0 on success, negative on failure
 *
 * igb_probe initializes an adapter identified by a pci_dev structure.
 * The OS initialization, configuring of the adapter private structure,
 * and a hardware reset occur.
 **/
static int __devinit igb_probe(struct pci_dev *pdev,
			       const struct pci_device_id *ent)
{
	struct net_device *netdev;
	struct igb_adapter *adapter;
	struct e1000_hw *hw;
1793
	u16 eeprom_data = 0;
1794
	s32 ret_val;
1795
	static int global_quad_port_a; /* global quad port a indication */
1796 1797
	const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
	unsigned long mmio_start, mmio_len;
1798
	int err, pci_using_dac;
1799
	u16 eeprom_apme_mask = IGB_EEPROM_APME;
1800
	u8 part_str[E1000_PBANUM_LENGTH];
1801

1802 1803 1804 1805 1806 1807 1808 1809 1810
	/* Catch broken hardware that put the wrong VF device ID in
	 * the PCIe SR-IOV capability.
	 */
	if (pdev->is_virtfn) {
		WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n",
		     pci_name(pdev), pdev->vendor, pdev->device);
		return -EINVAL;
	}

1811
	err = pci_enable_device_mem(pdev);
1812 1813 1814 1815
	if (err)
		return err;

	pci_using_dac = 0;
1816
	err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
1817
	if (!err) {
1818
		err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
1819 1820 1821
		if (!err)
			pci_using_dac = 1;
	} else {
1822
		err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
1823
		if (err) {
1824
			err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
1825 1826 1827 1828 1829 1830 1831 1832
			if (err) {
				dev_err(&pdev->dev, "No usable DMA "
					"configuration, aborting\n");
				goto err_dma;
			}
		}
	}

1833 1834 1835
	err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
	                                   IORESOURCE_MEM),
	                                   igb_driver_name);
1836 1837 1838
	if (err)
		goto err_pci_reg;

1839
	pci_enable_pcie_error_reporting(pdev);
1840

1841
	pci_set_master(pdev);
1842
	pci_save_state(pdev);
1843 1844

	err = -ENOMEM;
1845 1846
	netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
	                           IGB_ABS_MAX_TX_QUEUES);
1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863
	if (!netdev)
		goto err_alloc_etherdev;

	SET_NETDEV_DEV(netdev, &pdev->dev);

	pci_set_drvdata(pdev, netdev);
	adapter = netdev_priv(netdev);
	adapter->netdev = netdev;
	adapter->pdev = pdev;
	hw = &adapter->hw;
	hw->back = adapter;
	adapter->msg_enable = NETIF_MSG_DRV | NETIF_MSG_PROBE;

	mmio_start = pci_resource_start(pdev, 0);
	mmio_len = pci_resource_len(pdev, 0);

	err = -EIO;
1864 1865
	hw->hw_addr = ioremap(mmio_start, mmio_len);
	if (!hw->hw_addr)
1866 1867
		goto err_ioremap;

S
Stephen Hemminger 已提交
1868
	netdev->netdev_ops = &igb_netdev_ops;
1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890
	igb_set_ethtool_ops(netdev);
	netdev->watchdog_timeo = 5 * HZ;

	strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);

	netdev->mem_start = mmio_start;
	netdev->mem_end = mmio_start + mmio_len;

	/* PCI config space info */
	hw->vendor_id = pdev->vendor;
	hw->device_id = pdev->device;
	hw->revision_id = pdev->revision;
	hw->subsystem_vendor_id = pdev->subsystem_vendor;
	hw->subsystem_device_id = pdev->subsystem_device;

	/* Copy the default MAC, PHY and NVM function pointers */
	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
	memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
	/* Initialize skew-specific constants */
	err = ei->get_invariants(hw);
	if (err)
1891
		goto err_sw_init;
1892

1893
	/* setup the private structure */
1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913
	err = igb_sw_init(adapter);
	if (err)
		goto err_sw_init;

	igb_get_bus_info_pcie(hw);

	hw->phy.autoneg_wait_to_complete = false;

	/* Copper options */
	if (hw->phy.media_type == e1000_media_type_copper) {
		hw->phy.mdix = AUTO_ALL_MODES;
		hw->phy.disable_polarity_correction = false;
		hw->phy.ms_type = e1000_ms_hw_default;
	}

	if (igb_check_reset_block(hw))
		dev_info(&pdev->dev,
			"PHY reset is blocked due to SOL/IDER session.\n");

	netdev->features = NETIF_F_SG |
1914
			   NETIF_F_IP_CSUM |
1915 1916 1917 1918
			   NETIF_F_HW_VLAN_TX |
			   NETIF_F_HW_VLAN_RX |
			   NETIF_F_HW_VLAN_FILTER;

1919
	netdev->features |= NETIF_F_IPV6_CSUM;
1920 1921
	netdev->features |= NETIF_F_TSO;
	netdev->features |= NETIF_F_TSO6;
H
Herbert Xu 已提交
1922
	netdev->features |= NETIF_F_GRO;
1923

1924 1925
	netdev->vlan_features |= NETIF_F_TSO;
	netdev->vlan_features |= NETIF_F_TSO6;
1926
	netdev->vlan_features |= NETIF_F_IP_CSUM;
1927
	netdev->vlan_features |= NETIF_F_IPV6_CSUM;
1928 1929
	netdev->vlan_features |= NETIF_F_SG;

1930
	if (pci_using_dac) {
1931
		netdev->features |= NETIF_F_HIGHDMA;
1932 1933
		netdev->vlan_features |= NETIF_F_HIGHDMA;
	}
1934

1935
	if (hw->mac.type >= e1000_82576)
1936 1937
		netdev->features |= NETIF_F_SCTP_CSUM;

1938
	adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
1939 1940 1941 1942 1943 1944

	/* before reading the NVM, reset the controller to put the device in a
	 * known good starting state */
	hw->mac.ops.reset_hw(hw);

	/* make sure the NVM is good */
1945
	if (hw->nvm.ops.validate(hw) < 0) {
1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963
		dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
		err = -EIO;
		goto err_eeprom;
	}

	/* copy the MAC address out of the NVM */
	if (hw->mac.ops.read_mac_addr(hw))
		dev_err(&pdev->dev, "NVM Read Error\n");

	memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
	memcpy(netdev->perm_addr, hw->mac.addr, netdev->addr_len);

	if (!is_valid_ether_addr(netdev->perm_addr)) {
		dev_err(&pdev->dev, "Invalid MAC Address\n");
		err = -EIO;
		goto err_eeprom;
	}

1964
	setup_timer(&adapter->watchdog_timer, igb_watchdog,
1965
	            (unsigned long) adapter);
1966
	setup_timer(&adapter->phy_info_timer, igb_update_phy_info,
1967
	            (unsigned long) adapter);
1968 1969 1970 1971

	INIT_WORK(&adapter->reset_task, igb_reset_task);
	INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);

1972
	/* Initialize link properties that are user-changeable */
1973 1974 1975 1976
	adapter->fc_autoneg = true;
	hw->mac.autoneg = true;
	hw->phy.autoneg_advertised = 0x2f;

1977 1978
	hw->fc.requested_mode = e1000_fc_default;
	hw->fc.current_mode = e1000_fc_default;
1979 1980 1981 1982 1983 1984 1985

	igb_validate_mdi_setting(hw);

	/* Initial Wake on LAN setting If APM wake is enabled in the EEPROM,
	 * enable the ACPI Magic Packet filter
	 */

1986
	if (hw->bus.func == 0)
A
Alexander Duyck 已提交
1987
		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
1988 1989 1990 1991
	else if (hw->mac.type == e1000_82580)
		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
		                 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
		                 &eeprom_data);
1992 1993
	else if (hw->bus.func == 1)
		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005

	if (eeprom_data & eeprom_apme_mask)
		adapter->eeprom_wol |= E1000_WUFC_MAG;

	/* now that we have the eeprom settings, apply the special cases where
	 * the eeprom may be wrong or the board simply won't support wake on
	 * lan on a particular port */
	switch (pdev->device) {
	case E1000_DEV_ID_82575GB_QUAD_COPPER:
		adapter->eeprom_wol = 0;
		break;
	case E1000_DEV_ID_82575EB_FIBER_SERDES:
A
Alexander Duyck 已提交
2006 2007
	case E1000_DEV_ID_82576_FIBER:
	case E1000_DEV_ID_82576_SERDES:
2008 2009 2010 2011 2012
		/* Wake events only supported on port A for dual fiber
		 * regardless of eeprom setting */
		if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
			adapter->eeprom_wol = 0;
		break;
2013
	case E1000_DEV_ID_82576_QUAD_COPPER:
2014
	case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
2015 2016 2017 2018 2019 2020 2021 2022 2023
		/* if quad port adapter, disable WoL on all but port A */
		if (global_quad_port_a != 0)
			adapter->eeprom_wol = 0;
		else
			adapter->flags |= IGB_FLAG_QUAD_PORT_A;
		/* Reset for multiple quad port adapters */
		if (++global_quad_port_a == 4)
			global_quad_port_a = 0;
		break;
2024 2025 2026 2027
	}

	/* initialize the wol settings based on the eeprom settings */
	adapter->wol = adapter->eeprom_wol;
2028
	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041

	/* reset the hardware with the new settings */
	igb_reset(adapter);

	/* let the f/w know that the h/w is now under the control of the
	 * driver. */
	igb_get_hw_control(adapter);

	strcpy(netdev->name, "eth%d");
	err = register_netdev(netdev);
	if (err)
		goto err_register;

2042 2043 2044
	/* carrier off reporting is important to ethtool even BEFORE open */
	netif_carrier_off(netdev);

2045
#ifdef CONFIG_IGB_DCA
2046
	if (dca_add_requester(&pdev->dev) == 0) {
2047
		adapter->flags |= IGB_FLAG_DCA_ENABLED;
J
Jeb Cramer 已提交
2048 2049 2050 2051
		dev_info(&pdev->dev, "DCA enabled\n");
		igb_setup_dca(adapter);
	}

P
Patrick Ohly 已提交
2052
#endif
A
Anders Berggren 已提交
2053 2054 2055
	/* do hw tstamp init after resetting */
	igb_init_hw_timer(adapter);

2056 2057
	dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
	/* print bus type/speed/width info */
J
Johannes Berg 已提交
2058
	dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
2059
		 netdev->name,
2060
		 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
2061
		  (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
2062
		                                            "unknown"),
2063 2064 2065 2066
		 ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
		  (hw->bus.width == e1000_bus_width_pcie_x2) ? "Width x2" :
		  (hw->bus.width == e1000_bus_width_pcie_x1) ? "Width x1" :
		   "unknown"),
J
Johannes Berg 已提交
2067
		 netdev->dev_addr);
2068

2069 2070 2071 2072
	ret_val = igb_read_part_string(hw, part_str, E1000_PBANUM_LENGTH);
	if (ret_val)
		strcpy(part_str, "Unknown");
	dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
2073 2074 2075
	dev_info(&pdev->dev,
		"Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
		adapter->msix_entries ? "MSI-X" :
2076
		(adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
2077
		adapter->num_rx_queues, adapter->num_tx_queues);
2078 2079 2080 2081 2082 2083 2084
	switch (hw->mac.type) {
	case e1000_i350:
		igb_set_eee_i350(hw);
		break;
	default:
		break;
	}
2085 2086 2087 2088 2089 2090
	return 0;

err_register:
	igb_release_hw_control(adapter);
err_eeprom:
	if (!igb_check_reset_block(hw))
2091
		igb_reset_phy(hw);
2092 2093 2094 2095

	if (hw->flash_address)
		iounmap(hw->flash_address);
err_sw_init:
2096
	igb_clear_interrupt_scheme(adapter);
2097 2098 2099 2100
	iounmap(hw->hw_addr);
err_ioremap:
	free_netdev(netdev);
err_alloc_etherdev:
2101 2102
	pci_release_selected_regions(pdev,
	                             pci_select_bars(pdev, IORESOURCE_MEM));
2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121
err_pci_reg:
err_dma:
	pci_disable_device(pdev);
	return err;
}

/**
 * igb_remove - Device Removal Routine
 * @pdev: PCI device information struct
 *
 * igb_remove is called by the PCI subsystem to alert the driver
 * that it should release a PCI device.  The could be caused by a
 * Hot-Plug event, or because the driver is going to be removed from
 * memory.
 **/
static void __devexit igb_remove(struct pci_dev *pdev)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);
J
Jeb Cramer 已提交
2122
	struct e1000_hw *hw = &adapter->hw;
2123

2124 2125 2126 2127
	/*
	 * The watchdog timer may be rescheduled, so explicitly
	 * disable watchdog from being rescheduled.
	 */
2128 2129 2130 2131
	set_bit(__IGB_DOWN, &adapter->state);
	del_timer_sync(&adapter->watchdog_timer);
	del_timer_sync(&adapter->phy_info_timer);

2132 2133
	cancel_work_sync(&adapter->reset_task);
	cancel_work_sync(&adapter->watchdog_task);
2134

2135
#ifdef CONFIG_IGB_DCA
2136
	if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
J
Jeb Cramer 已提交
2137 2138
		dev_info(&pdev->dev, "DCA disabled\n");
		dca_remove_requester(&pdev->dev);
2139
		adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
A
Alexander Duyck 已提交
2140
		wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
J
Jeb Cramer 已提交
2141 2142 2143
	}
#endif

2144 2145 2146 2147 2148 2149
	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
	 * would have already happened in close and is redundant. */
	igb_release_hw_control(adapter);

	unregister_netdev(netdev);

2150
	igb_clear_interrupt_scheme(adapter);
2151

2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165
#ifdef CONFIG_PCI_IOV
	/* reclaim resources allocated to VFs */
	if (adapter->vf_data) {
		/* disable iov and allow time for transactions to clear */
		pci_disable_sriov(pdev);
		msleep(500);

		kfree(adapter->vf_data);
		adapter->vf_data = NULL;
		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
		msleep(100);
		dev_info(&pdev->dev, "IOV Disabled\n");
	}
#endif
2166

2167 2168 2169
	iounmap(hw->hw_addr);
	if (hw->flash_address)
		iounmap(hw->flash_address);
2170 2171
	pci_release_selected_regions(pdev,
	                             pci_select_bars(pdev, IORESOURCE_MEM));
2172 2173 2174

	free_netdev(netdev);

2175
	pci_disable_pcie_error_reporting(pdev);
2176

2177 2178 2179
	pci_disable_device(pdev);
}

2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220
/**
 * igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
 * @adapter: board private structure to initialize
 *
 * This function initializes the vf specific data storage and then attempts to
 * allocate the VFs.  The reason for ordering it this way is because it is much
 * mor expensive time wise to disable SR-IOV than it is to allocate and free
 * the memory for the VFs.
 **/
static void __devinit igb_probe_vfs(struct igb_adapter * adapter)
{
#ifdef CONFIG_PCI_IOV
	struct pci_dev *pdev = adapter->pdev;

	if (adapter->vfs_allocated_count) {
		adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
		                           sizeof(struct vf_data_storage),
		                           GFP_KERNEL);
		/* if allocation failed then we do not support SR-IOV */
		if (!adapter->vf_data) {
			adapter->vfs_allocated_count = 0;
			dev_err(&pdev->dev, "Unable to allocate memory for VF "
			        "Data Storage\n");
		}
	}

	if (pci_enable_sriov(pdev, adapter->vfs_allocated_count)) {
		kfree(adapter->vf_data);
		adapter->vf_data = NULL;
#endif /* CONFIG_PCI_IOV */
		adapter->vfs_allocated_count = 0;
#ifdef CONFIG_PCI_IOV
	} else {
		unsigned char mac_addr[ETH_ALEN];
		int i;
		dev_info(&pdev->dev, "%d vfs allocated\n",
		         adapter->vfs_allocated_count);
		for (i = 0; i < adapter->vfs_allocated_count; i++) {
			random_ether_addr(mac_addr);
			igb_set_vf_mac(adapter, i, mac_addr);
		}
2221 2222 2223
		/* DMA Coalescing is not supported in IOV mode. */
		if (adapter->flags & IGB_FLAG_DMAC)
			adapter->flags &= ~IGB_FLAG_DMAC;
2224 2225 2226 2227
	}
#endif /* CONFIG_PCI_IOV */
}

2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240

/**
 * igb_init_hw_timer - Initialize hardware timer used with IEEE 1588 timestamp
 * @adapter: board private structure to initialize
 *
 * igb_init_hw_timer initializes the function pointer and values for the hw
 * timer found in hardware.
 **/
static void igb_init_hw_timer(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;

	switch (hw->mac.type) {
2241
	case e1000_i350:
2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283
	case e1000_82580:
		memset(&adapter->cycles, 0, sizeof(adapter->cycles));
		adapter->cycles.read = igb_read_clock;
		adapter->cycles.mask = CLOCKSOURCE_MASK(64);
		adapter->cycles.mult = 1;
		/*
		 * The 82580 timesync updates the system timer every 8ns by 8ns
		 * and the value cannot be shifted.  Instead we need to shift
		 * the registers to generate a 64bit timer value.  As a result
		 * SYSTIMR/L/H, TXSTMPL/H, RXSTMPL/H all have to be shifted by
		 * 24 in order to generate a larger value for synchronization.
		 */
		adapter->cycles.shift = IGB_82580_TSYNC_SHIFT;
		/* disable system timer temporarily by setting bit 31 */
		wr32(E1000_TSAUXC, 0x80000000);
		wrfl();

		/* Set registers so that rollover occurs soon to test this. */
		wr32(E1000_SYSTIMR, 0x00000000);
		wr32(E1000_SYSTIML, 0x80000000);
		wr32(E1000_SYSTIMH, 0x000000FF);
		wrfl();

		/* enable system timer by clearing bit 31 */
		wr32(E1000_TSAUXC, 0x0);
		wrfl();

		timecounter_init(&adapter->clock,
				 &adapter->cycles,
				 ktime_to_ns(ktime_get_real()));
		/*
		 * Synchronize our NIC clock against system wall clock. NIC
		 * time stamp reading requires ~3us per sample, each sample
		 * was pretty stable even under load => only require 10
		 * samples for each offset comparison.
		 */
		memset(&adapter->compare, 0, sizeof(adapter->compare));
		adapter->compare.source = &adapter->clock;
		adapter->compare.target = ktime_get_real;
		adapter->compare.num_samples = 10;
		timecompare_update(&adapter->compare, 0);
		break;
2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295
	case e1000_82576:
		/*
		 * Initialize hardware timer: we keep it running just in case
		 * that some program needs it later on.
		 */
		memset(&adapter->cycles, 0, sizeof(adapter->cycles));
		adapter->cycles.read = igb_read_clock;
		adapter->cycles.mask = CLOCKSOURCE_MASK(64);
		adapter->cycles.mult = 1;
		/**
		 * Scale the NIC clock cycle by a large factor so that
		 * relatively small clock corrections can be added or
L
Lucas De Marchi 已提交
2296
		 * subtracted at each clock tick. The drawbacks of a large
2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334
		 * factor are a) that the clock register overflows more quickly
		 * (not such a big deal) and b) that the increment per tick has
		 * to fit into 24 bits.  As a result we need to use a shift of
		 * 19 so we can fit a value of 16 into the TIMINCA register.
		 */
		adapter->cycles.shift = IGB_82576_TSYNC_SHIFT;
		wr32(E1000_TIMINCA,
		                (1 << E1000_TIMINCA_16NS_SHIFT) |
		                (16 << IGB_82576_TSYNC_SHIFT));

		/* Set registers so that rollover occurs soon to test this. */
		wr32(E1000_SYSTIML, 0x00000000);
		wr32(E1000_SYSTIMH, 0xFF800000);
		wrfl();

		timecounter_init(&adapter->clock,
				 &adapter->cycles,
				 ktime_to_ns(ktime_get_real()));
		/*
		 * Synchronize our NIC clock against system wall clock. NIC
		 * time stamp reading requires ~3us per sample, each sample
		 * was pretty stable even under load => only require 10
		 * samples for each offset comparison.
		 */
		memset(&adapter->compare, 0, sizeof(adapter->compare));
		adapter->compare.source = &adapter->clock;
		adapter->compare.target = ktime_get_real;
		adapter->compare.num_samples = 10;
		timecompare_update(&adapter->compare, 0);
		break;
	case e1000_82575:
		/* 82575 does not support timesync */
	default:
		break;
	}

}

2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350
/**
 * igb_sw_init - Initialize general software structures (struct igb_adapter)
 * @adapter: board private structure to initialize
 *
 * igb_sw_init initializes the Adapter private data structure.
 * Fields are initialized based on PCI device information and
 * OS network device settings (MTU size).
 **/
static int __devinit igb_sw_init(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	struct net_device *netdev = adapter->netdev;
	struct pci_dev *pdev = adapter->pdev;

	pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);

2351 2352
	adapter->tx_ring_count = IGB_DEFAULT_TXD;
	adapter->rx_ring_count = IGB_DEFAULT_RXD;
2353 2354 2355
	adapter->rx_itr_setting = IGB_DEFAULT_ITR;
	adapter->tx_itr_setting = IGB_DEFAULT_ITR;

2356 2357 2358
	adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;

E
Eric Dumazet 已提交
2359
	spin_lock_init(&adapter->stats64_lock);
2360
#ifdef CONFIG_PCI_IOV
2361 2362 2363
	switch (hw->mac.type) {
	case e1000_82576:
	case e1000_i350:
2364 2365 2366 2367 2368 2369
		if (max_vfs > 7) {
			dev_warn(&pdev->dev,
				 "Maximum of 7 VFs per PF, using max\n");
			adapter->vfs_allocated_count = 7;
		} else
			adapter->vfs_allocated_count = max_vfs;
2370 2371 2372 2373
		break;
	default:
		break;
	}
2374
#endif /* CONFIG_PCI_IOV */
2375
	adapter->rss_queues = min_t(u32, IGB_MAX_RX_QUEUES, num_online_cpus());
2376 2377 2378
	/* i350 cannot do RSS and SR-IOV at the same time */
	if (hw->mac.type == e1000_i350 && adapter->vfs_allocated_count)
		adapter->rss_queues = 1;
2379 2380 2381 2382 2383 2384 2385 2386 2387 2388

	/*
	 * if rss_queues > 4 or vfs are going to be allocated with rss_queues
	 * then we should combine the queues into a queue pair in order to
	 * conserve interrupts due to limited supply
	 */
	if ((adapter->rss_queues > 4) ||
	    ((adapter->rss_queues > 1) && (adapter->vfs_allocated_count > 6)))
		adapter->flags |= IGB_FLAG_QUEUE_PAIRS;

2389
	/* This call may decrease the number of queues */
2390
	if (igb_init_interrupt_scheme(adapter)) {
2391 2392 2393 2394
		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
		return -ENOMEM;
	}

2395 2396
	igb_probe_vfs(adapter);

2397 2398 2399
	/* Explicitly disable IRQ since the NIC can be in any state. */
	igb_irq_disable(adapter);

2400 2401 2402
	if (hw->mac.type == e1000_i350)
		adapter->flags &= ~IGB_FLAG_DMAC;

2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429
	set_bit(__IGB_DOWN, &adapter->state);
	return 0;
}

/**
 * igb_open - Called when a network interface is made active
 * @netdev: network interface device structure
 *
 * Returns 0 on success, negative value on failure
 *
 * The open entry point is called when a network interface is made
 * active by the system (IFF_UP).  At this point all resources needed
 * for transmit and receive operations are allocated, the interrupt
 * handler is registered with the OS, the watchdog timer is started,
 * and the stack is notified that the interface is ready.
 **/
static int igb_open(struct net_device *netdev)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	int err;
	int i;

	/* disallow open during test */
	if (test_bit(__IGB_TESTING, &adapter->state))
		return -EBUSY;

2430 2431
	netif_carrier_off(netdev);

2432 2433 2434 2435 2436 2437 2438 2439 2440 2441
	/* allocate transmit descriptors */
	err = igb_setup_all_tx_resources(adapter);
	if (err)
		goto err_setup_tx;

	/* allocate receive descriptors */
	err = igb_setup_all_rx_resources(adapter);
	if (err)
		goto err_setup_rx;

2442
	igb_power_up_link(adapter);
2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456

	/* before we allocate an interrupt, we must be ready to handle it.
	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
	 * as soon as we call pci_request_irq, so we have to setup our
	 * clean_rx handler before we do so.  */
	igb_configure(adapter);

	err = igb_request_irq(adapter);
	if (err)
		goto err_req_irq;

	/* From here on the code is the same as igb_up() */
	clear_bit(__IGB_DOWN, &adapter->state);

2457 2458 2459 2460
	for (i = 0; i < adapter->num_q_vectors; i++) {
		struct igb_q_vector *q_vector = adapter->q_vector[i];
		napi_enable(&q_vector->napi);
	}
2461 2462 2463

	/* Clear any pending interrupts. */
	rd32(E1000_ICR);
P
PJ Waskiewicz 已提交
2464 2465 2466

	igb_irq_enable(adapter);

2467 2468 2469 2470 2471 2472 2473
	/* notify VFs that reset has been completed */
	if (adapter->vfs_allocated_count) {
		u32 reg_data = rd32(E1000_CTRL_EXT);
		reg_data |= E1000_CTRL_EXT_PFRSTD;
		wr32(E1000_CTRL_EXT, reg_data);
	}

2474 2475
	netif_tx_start_all_queues(netdev);

2476 2477 2478
	/* start the watchdog. */
	hw->mac.get_link_status = 1;
	schedule_work(&adapter->watchdog_task);
2479 2480 2481 2482 2483

	return 0;

err_req_irq:
	igb_release_hw_control(adapter);
2484
	igb_power_down_link(adapter);
2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525
	igb_free_all_rx_resources(adapter);
err_setup_rx:
	igb_free_all_tx_resources(adapter);
err_setup_tx:
	igb_reset(adapter);

	return err;
}

/**
 * igb_close - Disables a network interface
 * @netdev: network interface device structure
 *
 * Returns 0, this is not allowed to fail
 *
 * The close entry point is called when an interface is de-activated
 * by the OS.  The hardware is still under the driver's control, but
 * needs to be disabled.  A global MAC reset is issued to stop the
 * hardware, and all transmit and receive resources are freed.
 **/
static int igb_close(struct net_device *netdev)
{
	struct igb_adapter *adapter = netdev_priv(netdev);

	WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
	igb_down(adapter);

	igb_free_irq(adapter);

	igb_free_all_tx_resources(adapter);
	igb_free_all_rx_resources(adapter);

	return 0;
}

/**
 * igb_setup_tx_resources - allocate Tx resources (Descriptors)
 * @tx_ring: tx descriptor ring (for a specific queue) to setup
 *
 * Return 0 on success, negative on failure
 **/
2526
int igb_setup_tx_resources(struct igb_ring *tx_ring)
2527
{
2528
	struct device *dev = tx_ring->dev;
2529 2530 2531
	int size;

	size = sizeof(struct igb_buffer) * tx_ring->count;
E
Eric Dumazet 已提交
2532
	tx_ring->buffer_info = vzalloc(size);
2533 2534 2535 2536
	if (!tx_ring->buffer_info)
		goto err;

	/* round up to nearest 4K */
2537
	tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
2538 2539
	tx_ring->size = ALIGN(tx_ring->size, 4096);

2540 2541 2542 2543
	tx_ring->desc = dma_alloc_coherent(dev,
					   tx_ring->size,
					   &tx_ring->dma,
					   GFP_KERNEL);
2544 2545 2546 2547 2548 2549 2550 2551 2552 2553

	if (!tx_ring->desc)
		goto err;

	tx_ring->next_to_use = 0;
	tx_ring->next_to_clean = 0;
	return 0;

err:
	vfree(tx_ring->buffer_info);
2554
	dev_err(dev,
2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567
		"Unable to allocate memory for the transmit descriptor ring\n");
	return -ENOMEM;
}

/**
 * igb_setup_all_tx_resources - wrapper to allocate Tx resources
 *				  (Descriptors) for all queues
 * @adapter: board private structure
 *
 * Return 0 on success, negative on failure
 **/
static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
{
2568
	struct pci_dev *pdev = adapter->pdev;
2569 2570 2571
	int i, err = 0;

	for (i = 0; i < adapter->num_tx_queues; i++) {
2572
		err = igb_setup_tx_resources(adapter->tx_ring[i]);
2573
		if (err) {
2574
			dev_err(&pdev->dev,
2575 2576
				"Allocation for Tx Queue %u failed\n", i);
			for (i--; i >= 0; i--)
2577
				igb_free_tx_resources(adapter->tx_ring[i]);
2578 2579 2580 2581
			break;
		}
	}

2582
	for (i = 0; i < IGB_ABS_MAX_TX_QUEUES; i++) {
2583
		int r_idx = i % adapter->num_tx_queues;
2584
		adapter->multi_tx_table[i] = adapter->tx_ring[r_idx];
2585
	}
2586 2587 2588 2589
	return err;
}

/**
2590 2591
 * igb_setup_tctl - configure the transmit control registers
 * @adapter: Board private structure
2592
 **/
2593
void igb_setup_tctl(struct igb_adapter *adapter)
2594 2595 2596 2597
{
	struct e1000_hw *hw = &adapter->hw;
	u32 tctl;

2598 2599
	/* disable queue 0 which is enabled by default on 82575 and 82576 */
	wr32(E1000_TXDCTL(0), 0);
2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614

	/* Program the Transmit Control Register */
	tctl = rd32(E1000_TCTL);
	tctl &= ~E1000_TCTL_CT;
	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);

	igb_config_collision_dist(hw);

	/* Enable transmits */
	tctl |= E1000_TCTL_EN;

	wr32(E1000_TCTL, tctl);
}

2615 2616 2617 2618 2619 2620 2621
/**
 * igb_configure_tx_ring - Configure transmit ring after Reset
 * @adapter: board private structure
 * @ring: tx ring to configure
 *
 * Configure a transmit ring after a reset.
 **/
2622 2623
void igb_configure_tx_ring(struct igb_adapter *adapter,
                           struct igb_ring *ring)
2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642
{
	struct e1000_hw *hw = &adapter->hw;
	u32 txdctl;
	u64 tdba = ring->dma;
	int reg_idx = ring->reg_idx;

	/* disable the queue */
	txdctl = rd32(E1000_TXDCTL(reg_idx));
	wr32(E1000_TXDCTL(reg_idx),
	                txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
	wrfl();
	mdelay(10);

	wr32(E1000_TDLEN(reg_idx),
	                ring->count * sizeof(union e1000_adv_tx_desc));
	wr32(E1000_TDBAL(reg_idx),
	                tdba & 0x00000000ffffffffULL);
	wr32(E1000_TDBAH(reg_idx), tdba >> 32);

2643 2644 2645 2646
	ring->head = hw->hw_addr + E1000_TDH(reg_idx);
	ring->tail = hw->hw_addr + E1000_TDT(reg_idx);
	writel(0, ring->head);
	writel(0, ring->tail);
2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666

	txdctl |= IGB_TX_PTHRESH;
	txdctl |= IGB_TX_HTHRESH << 8;
	txdctl |= IGB_TX_WTHRESH << 16;

	txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
	wr32(E1000_TXDCTL(reg_idx), txdctl);
}

/**
 * igb_configure_tx - Configure transmit Unit after Reset
 * @adapter: board private structure
 *
 * Configure the Tx unit of the MAC after a reset.
 **/
static void igb_configure_tx(struct igb_adapter *adapter)
{
	int i;

	for (i = 0; i < adapter->num_tx_queues; i++)
2667
		igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
2668 2669
}

2670 2671 2672 2673 2674 2675
/**
 * igb_setup_rx_resources - allocate Rx resources (Descriptors)
 * @rx_ring:    rx descriptor ring (for a specific queue) to setup
 *
 * Returns 0 on success, negative on failure
 **/
2676
int igb_setup_rx_resources(struct igb_ring *rx_ring)
2677
{
2678
	struct device *dev = rx_ring->dev;
2679 2680 2681
	int size, desc_len;

	size = sizeof(struct igb_buffer) * rx_ring->count;
E
Eric Dumazet 已提交
2682
	rx_ring->buffer_info = vzalloc(size);
2683 2684 2685 2686 2687 2688 2689 2690 2691
	if (!rx_ring->buffer_info)
		goto err;

	desc_len = sizeof(union e1000_adv_rx_desc);

	/* Round up to nearest 4K */
	rx_ring->size = rx_ring->count * desc_len;
	rx_ring->size = ALIGN(rx_ring->size, 4096);

2692 2693 2694 2695
	rx_ring->desc = dma_alloc_coherent(dev,
					   rx_ring->size,
					   &rx_ring->dma,
					   GFP_KERNEL);
2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706

	if (!rx_ring->desc)
		goto err;

	rx_ring->next_to_clean = 0;
	rx_ring->next_to_use = 0;

	return 0;

err:
	vfree(rx_ring->buffer_info);
2707
	rx_ring->buffer_info = NULL;
2708 2709
	dev_err(dev, "Unable to allocate memory for the receive descriptor"
		" ring\n");
2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721
	return -ENOMEM;
}

/**
 * igb_setup_all_rx_resources - wrapper to allocate Rx resources
 *				  (Descriptors) for all queues
 * @adapter: board private structure
 *
 * Return 0 on success, negative on failure
 **/
static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
{
2722
	struct pci_dev *pdev = adapter->pdev;
2723 2724 2725
	int i, err = 0;

	for (i = 0; i < adapter->num_rx_queues; i++) {
2726
		err = igb_setup_rx_resources(adapter->rx_ring[i]);
2727
		if (err) {
2728
			dev_err(&pdev->dev,
2729 2730
				"Allocation for Rx Queue %u failed\n", i);
			for (i--; i >= 0; i--)
2731
				igb_free_rx_resources(adapter->rx_ring[i]);
2732 2733 2734 2735 2736 2737 2738
			break;
		}
	}

	return err;
}

2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766
/**
 * igb_setup_mrqc - configure the multiple receive queue control registers
 * @adapter: Board private structure
 **/
static void igb_setup_mrqc(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 mrqc, rxcsum;
	u32 j, num_rx_queues, shift = 0, shift2 = 0;
	union e1000_reta {
		u32 dword;
		u8  bytes[4];
	} reta;
	static const u8 rsshash[40] = {
		0x6d, 0x5a, 0x56, 0xda, 0x25, 0x5b, 0x0e, 0xc2, 0x41, 0x67,
		0x25, 0x3d, 0x43, 0xa3, 0x8f, 0xb0, 0xd0, 0xca, 0x2b, 0xcb,
		0xae, 0x7b, 0x30, 0xb4,	0x77, 0xcb, 0x2d, 0xa3, 0x80, 0x30,
		0xf2, 0x0c, 0x6a, 0x42, 0xb7, 0x3b, 0xbe, 0xac, 0x01, 0xfa };

	/* Fill out hash function seeds */
	for (j = 0; j < 10; j++) {
		u32 rsskey = rsshash[(j * 4)];
		rsskey |= rsshash[(j * 4) + 1] << 8;
		rsskey |= rsshash[(j * 4) + 2] << 16;
		rsskey |= rsshash[(j * 4) + 3] << 24;
		array_wr32(E1000_RSSRK(0), j, rsskey);
	}

2767
	num_rx_queues = adapter->rss_queues;
2768 2769 2770 2771

	if (adapter->vfs_allocated_count) {
		/* 82575 and 82576 supports 2 RSS queues for VMDq */
		switch (hw->mac.type) {
2772
		case e1000_i350:
2773 2774 2775 2776
		case e1000_82580:
			num_rx_queues = 1;
			shift = 0;
			break;
2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827
		case e1000_82576:
			shift = 3;
			num_rx_queues = 2;
			break;
		case e1000_82575:
			shift = 2;
			shift2 = 6;
		default:
			break;
		}
	} else {
		if (hw->mac.type == e1000_82575)
			shift = 6;
	}

	for (j = 0; j < (32 * 4); j++) {
		reta.bytes[j & 3] = (j % num_rx_queues) << shift;
		if (shift2)
			reta.bytes[j & 3] |= num_rx_queues << shift2;
		if ((j & 3) == 3)
			wr32(E1000_RETA(j >> 2), reta.dword);
	}

	/*
	 * Disable raw packet checksumming so that RSS hash is placed in
	 * descriptor on writeback.  No need to enable TCP/UDP/IP checksum
	 * offloads as they are enabled by default
	 */
	rxcsum = rd32(E1000_RXCSUM);
	rxcsum |= E1000_RXCSUM_PCSD;

	if (adapter->hw.mac.type >= e1000_82576)
		/* Enable Receive Checksum Offload for SCTP */
		rxcsum |= E1000_RXCSUM_CRCOFL;

	/* Don't need to set TUOFL or IPOFL, they default to 1 */
	wr32(E1000_RXCSUM, rxcsum);

	/* If VMDq is enabled then we set the appropriate mode for that, else
	 * we default to RSS so that an RSS hash is calculated per packet even
	 * if we are only using one queue */
	if (adapter->vfs_allocated_count) {
		if (hw->mac.type > e1000_82575) {
			/* Set the default pool for the PF's first queue */
			u32 vtctl = rd32(E1000_VT_CTL);
			vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
				   E1000_VT_CTL_DISABLE_DEF_POOL);
			vtctl |= adapter->vfs_allocated_count <<
				E1000_VT_CTL_DEFAULT_POOL_SHIFT;
			wr32(E1000_VT_CTL, vtctl);
		}
2828
		if (adapter->rss_queues > 1)
2829 2830 2831 2832 2833 2834 2835 2836
			mrqc = E1000_MRQC_ENABLE_VMDQ_RSS_2Q;
		else
			mrqc = E1000_MRQC_ENABLE_VMDQ;
	} else {
		mrqc = E1000_MRQC_ENABLE_RSS_4Q;
	}
	igb_vmm_control(adapter);

2837 2838 2839 2840 2841 2842 2843 2844 2845 2846
	/*
	 * Generate RSS hash based on TCP port numbers and/or
	 * IPv4/v6 src and dst addresses since UDP cannot be
	 * hashed reliably due to IP fragmentation
	 */
	mrqc |= E1000_MRQC_RSS_FIELD_IPV4 |
		E1000_MRQC_RSS_FIELD_IPV4_TCP |
		E1000_MRQC_RSS_FIELD_IPV6 |
		E1000_MRQC_RSS_FIELD_IPV6_TCP |
		E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
2847 2848 2849 2850

	wr32(E1000_MRQC, mrqc);
}

2851 2852 2853 2854
/**
 * igb_setup_rctl - configure the receive control registers
 * @adapter: Board private structure
 **/
2855
void igb_setup_rctl(struct igb_adapter *adapter)
2856 2857 2858 2859 2860 2861 2862
{
	struct e1000_hw *hw = &adapter->hw;
	u32 rctl;

	rctl = rd32(E1000_RCTL);

	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
2863
	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
2864

2865
	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
2866
		(hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
2867

2868 2869 2870 2871
	/*
	 * enable stripping of CRC. It's unlikely this will break BMC
	 * redirection as it did with e1000. Newer features require
	 * that the HW strips the CRC.
2872
	 */
2873
	rctl |= E1000_RCTL_SECRC;
2874

2875
	/* disable store bad packets and clear size bits. */
2876
	rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
2877

A
Alexander Duyck 已提交
2878 2879
	/* enable LPE to prevent packets larger than max_frame_size */
	rctl |= E1000_RCTL_LPE;
2880

2881 2882
	/* disable queue 0 to prevent tail write w/o re-config */
	wr32(E1000_RXDCTL(0), 0);
2883

2884 2885 2886 2887 2888 2889 2890 2891 2892
	/* Attention!!!  For SR-IOV PF driver operations you must enable
	 * queue drop for all VF and PF queues to prevent head of line blocking
	 * if an un-trusted VF does not provide descriptors to hardware.
	 */
	if (adapter->vfs_allocated_count) {
		/* set all queue drop enable bits */
		wr32(E1000_QDE, ALL_QUEUES);
	}

2893 2894 2895
	wr32(E1000_RCTL, rctl);
}

2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915
static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
                                   int vfn)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 vmolr;

	/* if it isn't the PF check to see if VFs are enabled and
	 * increase the size to support vlan tags */
	if (vfn < adapter->vfs_allocated_count &&
	    adapter->vf_data[vfn].vlans_enabled)
		size += VLAN_TAG_SIZE;

	vmolr = rd32(E1000_VMOLR(vfn));
	vmolr &= ~E1000_VMOLR_RLPML_MASK;
	vmolr |= size | E1000_VMOLR_LPE;
	wr32(E1000_VMOLR(vfn), vmolr);

	return 0;
}

2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934
/**
 * igb_rlpml_set - set maximum receive packet size
 * @adapter: board private structure
 *
 * Configure maximum receivable packet size.
 **/
static void igb_rlpml_set(struct igb_adapter *adapter)
{
	u32 max_frame_size = adapter->max_frame_size;
	struct e1000_hw *hw = &adapter->hw;
	u16 pf_id = adapter->vfs_allocated_count;

	if (adapter->vlgrp)
		max_frame_size += VLAN_TAG_SIZE;

	/* if vfs are enabled we set RLPML to the largest possible request
	 * size and set the VMOLR RLPML to the size we need */
	if (pf_id) {
		igb_set_vf_rlpml(adapter, max_frame_size, pf_id);
2935
		max_frame_size = MAX_JUMBO_FRAME_SIZE;
2936 2937 2938 2939 2940
	}

	wr32(E1000_RLPML, max_frame_size);
}

2941 2942
static inline void igb_set_vmolr(struct igb_adapter *adapter,
				 int vfn, bool aupe)
2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954
{
	struct e1000_hw *hw = &adapter->hw;
	u32 vmolr;

	/*
	 * This register exists only on 82576 and newer so if we are older then
	 * we should exit and do nothing
	 */
	if (hw->mac.type < e1000_82576)
		return;

	vmolr = rd32(E1000_VMOLR(vfn));
2955 2956 2957 2958 2959
	vmolr |= E1000_VMOLR_STRVLAN;      /* Strip vlan tags */
	if (aupe)
		vmolr |= E1000_VMOLR_AUPE;        /* Accept untagged packets */
	else
		vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
2960 2961 2962 2963

	/* clear all bits that might not be set */
	vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);

2964
	if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975
		vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
	/*
	 * for VMDq only allow the VFs and pool 0 to accept broadcast and
	 * multicast packets
	 */
	if (vfn <= adapter->vfs_allocated_count)
		vmolr |= E1000_VMOLR_BAM;	   /* Accept broadcast */

	wr32(E1000_VMOLR(vfn), vmolr);
}

2976 2977 2978 2979 2980 2981 2982
/**
 * igb_configure_rx_ring - Configure a receive ring after Reset
 * @adapter: board private structure
 * @ring: receive ring to be configured
 *
 * Configure the Rx unit of the MAC after a reset.
 **/
2983 2984
void igb_configure_rx_ring(struct igb_adapter *adapter,
                           struct igb_ring *ring)
2985 2986 2987 2988
{
	struct e1000_hw *hw = &adapter->hw;
	u64 rdba = ring->dma;
	int reg_idx = ring->reg_idx;
2989
	u32 srrctl, rxdctl;
2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003

	/* disable the queue */
	rxdctl = rd32(E1000_RXDCTL(reg_idx));
	wr32(E1000_RXDCTL(reg_idx),
	                rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);

	/* Set DMA base address registers */
	wr32(E1000_RDBAL(reg_idx),
	     rdba & 0x00000000ffffffffULL);
	wr32(E1000_RDBAH(reg_idx), rdba >> 32);
	wr32(E1000_RDLEN(reg_idx),
	               ring->count * sizeof(union e1000_adv_rx_desc));

	/* initialize head and tail */
3004 3005 3006 3007
	ring->head = hw->hw_addr + E1000_RDH(reg_idx);
	ring->tail = hw->hw_addr + E1000_RDT(reg_idx);
	writel(0, ring->head);
	writel(0, ring->tail);
3008

3009
	/* set descriptor configuration */
3010 3011
	if (ring->rx_buffer_len < IGB_RXBUFFER_1024) {
		srrctl = ALIGN(ring->rx_buffer_len, 64) <<
3012 3013 3014 3015 3016 3017 3018 3019 3020 3021
		         E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
#if (PAGE_SIZE / 2) > IGB_RXBUFFER_16384
		srrctl |= IGB_RXBUFFER_16384 >>
		          E1000_SRRCTL_BSIZEPKT_SHIFT;
#else
		srrctl |= (PAGE_SIZE / 2) >>
		          E1000_SRRCTL_BSIZEPKT_SHIFT;
#endif
		srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
	} else {
3022
		srrctl = ALIGN(ring->rx_buffer_len, 1024) >>
3023 3024 3025
		         E1000_SRRCTL_BSIZEPKT_SHIFT;
		srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
	}
N
Nick Nunley 已提交
3026 3027
	if (hw->mac.type == e1000_82580)
		srrctl |= E1000_SRRCTL_TIMESTAMP;
3028 3029 3030
	/* Only set Drop Enable if we are supporting multiple queues */
	if (adapter->vfs_allocated_count || adapter->num_rx_queues > 1)
		srrctl |= E1000_SRRCTL_DROP_EN;
3031 3032 3033

	wr32(E1000_SRRCTL(reg_idx), srrctl);

3034
	/* set filtering for VMDQ pools */
3035
	igb_set_vmolr(adapter, reg_idx & 0x7, true);
3036

3037 3038 3039 3040 3041 3042 3043 3044 3045 3046
	/* enable receive descriptor fetching */
	rxdctl = rd32(E1000_RXDCTL(reg_idx));
	rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
	rxdctl &= 0xFFF00000;
	rxdctl |= IGB_RX_PTHRESH;
	rxdctl |= IGB_RX_HTHRESH << 8;
	rxdctl |= IGB_RX_WTHRESH << 16;
	wr32(E1000_RXDCTL(reg_idx), rxdctl);
}

3047 3048 3049 3050 3051 3052 3053 3054
/**
 * igb_configure_rx - Configure receive Unit after Reset
 * @adapter: board private structure
 *
 * Configure the Rx unit of the MAC after a reset.
 **/
static void igb_configure_rx(struct igb_adapter *adapter)
{
3055
	int i;
3056

3057 3058 3059
	/* set UTA to appropriate mode */
	igb_set_uta(adapter);

3060 3061 3062 3063
	/* set the correct pool for the PF default MAC address in entry 0 */
	igb_rar_set_qsel(adapter, adapter->hw.mac.addr, 0,
	                 adapter->vfs_allocated_count);

3064 3065 3066
	/* Setup the HW Rx Head and Tail Descriptor Pointers and
	 * the Base and Length of the Rx Descriptor Ring */
	for (i = 0; i < adapter->num_rx_queues; i++)
3067
		igb_configure_rx_ring(adapter, adapter->rx_ring[i]);
3068 3069 3070 3071 3072 3073 3074 3075
}

/**
 * igb_free_tx_resources - Free Tx Resources per Queue
 * @tx_ring: Tx descriptor ring for a specific queue
 *
 * Free all transmit software resources
 **/
3076
void igb_free_tx_resources(struct igb_ring *tx_ring)
3077
{
3078
	igb_clean_tx_ring(tx_ring);
3079 3080 3081 3082

	vfree(tx_ring->buffer_info);
	tx_ring->buffer_info = NULL;

3083 3084 3085 3086
	/* if not set, then don't free */
	if (!tx_ring->desc)
		return;

3087 3088
	dma_free_coherent(tx_ring->dev, tx_ring->size,
			  tx_ring->desc, tx_ring->dma);
3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103

	tx_ring->desc = NULL;
}

/**
 * igb_free_all_tx_resources - Free Tx Resources for All Queues
 * @adapter: board private structure
 *
 * Free all transmit software resources
 **/
static void igb_free_all_tx_resources(struct igb_adapter *adapter)
{
	int i;

	for (i = 0; i < adapter->num_tx_queues; i++)
3104
		igb_free_tx_resources(adapter->tx_ring[i]);
3105 3106
}

3107 3108
void igb_unmap_and_free_tx_resource(struct igb_ring *tx_ring,
				    struct igb_buffer *buffer_info)
3109
{
3110 3111
	if (buffer_info->dma) {
		if (buffer_info->mapped_as_page)
3112
			dma_unmap_page(tx_ring->dev,
3113 3114
					buffer_info->dma,
					buffer_info->length,
3115
					DMA_TO_DEVICE);
3116
		else
3117
			dma_unmap_single(tx_ring->dev,
3118 3119
					buffer_info->dma,
					buffer_info->length,
3120
					DMA_TO_DEVICE);
3121 3122
		buffer_info->dma = 0;
	}
3123 3124 3125 3126 3127
	if (buffer_info->skb) {
		dev_kfree_skb_any(buffer_info->skb);
		buffer_info->skb = NULL;
	}
	buffer_info->time_stamp = 0;
3128 3129 3130
	buffer_info->length = 0;
	buffer_info->next_to_watch = 0;
	buffer_info->mapped_as_page = false;
3131 3132 3133 3134 3135 3136
}

/**
 * igb_clean_tx_ring - Free Tx Buffers
 * @tx_ring: ring to be cleaned
 **/
3137
static void igb_clean_tx_ring(struct igb_ring *tx_ring)
3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148
{
	struct igb_buffer *buffer_info;
	unsigned long size;
	unsigned int i;

	if (!tx_ring->buffer_info)
		return;
	/* Free all the Tx ring sk_buffs */

	for (i = 0; i < tx_ring->count; i++) {
		buffer_info = &tx_ring->buffer_info[i];
3149
		igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170
	}

	size = sizeof(struct igb_buffer) * tx_ring->count;
	memset(tx_ring->buffer_info, 0, size);

	/* Zero out the descriptor ring */
	memset(tx_ring->desc, 0, tx_ring->size);

	tx_ring->next_to_use = 0;
	tx_ring->next_to_clean = 0;
}

/**
 * igb_clean_all_tx_rings - Free Tx Buffers for all queues
 * @adapter: board private structure
 **/
static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
{
	int i;

	for (i = 0; i < adapter->num_tx_queues; i++)
3171
		igb_clean_tx_ring(adapter->tx_ring[i]);
3172 3173 3174 3175 3176 3177 3178 3179
}

/**
 * igb_free_rx_resources - Free Rx Resources
 * @rx_ring: ring to clean the resources from
 *
 * Free all receive software resources
 **/
3180
void igb_free_rx_resources(struct igb_ring *rx_ring)
3181
{
3182
	igb_clean_rx_ring(rx_ring);
3183 3184 3185 3186

	vfree(rx_ring->buffer_info);
	rx_ring->buffer_info = NULL;

3187 3188 3189 3190
	/* if not set, then don't free */
	if (!rx_ring->desc)
		return;

3191 3192
	dma_free_coherent(rx_ring->dev, rx_ring->size,
			  rx_ring->desc, rx_ring->dma);
3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207

	rx_ring->desc = NULL;
}

/**
 * igb_free_all_rx_resources - Free Rx Resources for All Queues
 * @adapter: board private structure
 *
 * Free all receive software resources
 **/
static void igb_free_all_rx_resources(struct igb_adapter *adapter)
{
	int i;

	for (i = 0; i < adapter->num_rx_queues; i++)
3208
		igb_free_rx_resources(adapter->rx_ring[i]);
3209 3210 3211 3212 3213 3214
}

/**
 * igb_clean_rx_ring - Free Rx Buffers per Queue
 * @rx_ring: ring to free buffers from
 **/
3215
static void igb_clean_rx_ring(struct igb_ring *rx_ring)
3216 3217 3218 3219 3220 3221 3222
{
	struct igb_buffer *buffer_info;
	unsigned long size;
	unsigned int i;

	if (!rx_ring->buffer_info)
		return;
3223

3224 3225 3226 3227
	/* Free all the Rx ring sk_buffs */
	for (i = 0; i < rx_ring->count; i++) {
		buffer_info = &rx_ring->buffer_info[i];
		if (buffer_info->dma) {
3228
			dma_unmap_single(rx_ring->dev,
3229
			                 buffer_info->dma,
3230
					 rx_ring->rx_buffer_len,
3231
					 DMA_FROM_DEVICE);
3232 3233 3234 3235 3236 3237 3238
			buffer_info->dma = 0;
		}

		if (buffer_info->skb) {
			dev_kfree_skb(buffer_info->skb);
			buffer_info->skb = NULL;
		}
A
Alexander Duyck 已提交
3239
		if (buffer_info->page_dma) {
3240
			dma_unmap_page(rx_ring->dev,
3241
			               buffer_info->page_dma,
A
Alexander Duyck 已提交
3242
				       PAGE_SIZE / 2,
3243
				       DMA_FROM_DEVICE);
A
Alexander Duyck 已提交
3244 3245
			buffer_info->page_dma = 0;
		}
3246 3247 3248
		if (buffer_info->page) {
			put_page(buffer_info->page);
			buffer_info->page = NULL;
3249
			buffer_info->page_offset = 0;
3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271
		}
	}

	size = sizeof(struct igb_buffer) * rx_ring->count;
	memset(rx_ring->buffer_info, 0, size);

	/* Zero out the descriptor ring */
	memset(rx_ring->desc, 0, rx_ring->size);

	rx_ring->next_to_clean = 0;
	rx_ring->next_to_use = 0;
}

/**
 * igb_clean_all_rx_rings - Free Rx Buffers for all queues
 * @adapter: board private structure
 **/
static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
{
	int i;

	for (i = 0; i < adapter->num_rx_queues; i++)
3272
		igb_clean_rx_ring(adapter->rx_ring[i]);
3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284
}

/**
 * igb_set_mac - Change the Ethernet Address of the NIC
 * @netdev: network interface device structure
 * @p: pointer to an address structure
 *
 * Returns 0 on success, negative on failure
 **/
static int igb_set_mac(struct net_device *netdev, void *p)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
3285
	struct e1000_hw *hw = &adapter->hw;
3286 3287 3288 3289 3290 3291
	struct sockaddr *addr = p;

	if (!is_valid_ether_addr(addr->sa_data))
		return -EADDRNOTAVAIL;

	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
3292
	memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
3293

3294 3295 3296
	/* set the correct pool for the new PF MAC address in entry 0 */
	igb_rar_set_qsel(adapter, hw->mac.addr, 0,
	                 adapter->vfs_allocated_count);
3297

3298 3299 3300 3301
	return 0;
}

/**
3302
 * igb_write_mc_addr_list - write multicast addresses to MTA
3303 3304
 * @netdev: network interface device structure
 *
3305 3306 3307 3308
 * Writes multicast address list to the MTA hash table.
 * Returns: -ENOMEM on failure
 *                0 on no addresses written
 *                X on writing X addresses to MTA
3309
 **/
3310
static int igb_write_mc_addr_list(struct net_device *netdev)
3311 3312 3313
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
3314
	struct netdev_hw_addr *ha;
3315
	u8  *mta_list;
3316 3317
	int i;

3318
	if (netdev_mc_empty(netdev)) {
3319 3320 3321 3322 3323
		/* nothing to program, so clear mc list */
		igb_update_mc_addr_list(hw, NULL, 0);
		igb_restore_vf_multicasts(adapter);
		return 0;
	}
3324

3325
	mta_list = kzalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
3326 3327
	if (!mta_list)
		return -ENOMEM;
3328

3329
	/* The shared function expects a packed array of only addresses. */
3330
	i = 0;
3331 3332
	netdev_for_each_mc_addr(ha, netdev)
		memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3333 3334 3335 3336

	igb_update_mc_addr_list(hw, mta_list, i);
	kfree(mta_list);

3337
	return netdev_mc_count(netdev);
3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357
}

/**
 * igb_write_uc_addr_list - write unicast addresses to RAR table
 * @netdev: network interface device structure
 *
 * Writes unicast address list to the RAR table.
 * Returns: -ENOMEM on failure/insufficient address space
 *                0 on no addresses written
 *                X on writing X addresses to the RAR table
 **/
static int igb_write_uc_addr_list(struct net_device *netdev)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	unsigned int vfn = adapter->vfs_allocated_count;
	unsigned int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
	int count = 0;

	/* return ENOMEM indicating insufficient memory for addresses */
3358
	if (netdev_uc_count(netdev) > rar_entries)
3359
		return -ENOMEM;
3360

3361
	if (!netdev_uc_empty(netdev) && rar_entries) {
3362
		struct netdev_hw_addr *ha;
3363 3364

		netdev_for_each_uc_addr(ha, netdev) {
3365 3366
			if (!rar_entries)
				break;
3367 3368
			igb_rar_set_qsel(adapter, ha->addr,
			                 rar_entries--,
3369 3370
			                 vfn);
			count++;
3371 3372 3373 3374 3375 3376 3377 3378 3379
		}
	}
	/* write the addresses in reverse order to avoid write combining */
	for (; rar_entries > 0 ; rar_entries--) {
		wr32(E1000_RAH(rar_entries), 0);
		wr32(E1000_RAL(rar_entries), 0);
	}
	wrfl();

3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415
	return count;
}

/**
 * igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
 * @netdev: network interface device structure
 *
 * The set_rx_mode entry point is called whenever the unicast or multicast
 * address lists or the network interface flags are updated.  This routine is
 * responsible for configuring the hardware for proper unicast, multicast,
 * promiscuous mode, and all-multi behavior.
 **/
static void igb_set_rx_mode(struct net_device *netdev)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	unsigned int vfn = adapter->vfs_allocated_count;
	u32 rctl, vmolr = 0;
	int count;

	/* Check for Promiscuous and All Multicast modes */
	rctl = rd32(E1000_RCTL);

	/* clear the effected bits */
	rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_VFE);

	if (netdev->flags & IFF_PROMISC) {
		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
		vmolr |= (E1000_VMOLR_ROPE | E1000_VMOLR_MPME);
	} else {
		if (netdev->flags & IFF_ALLMULTI) {
			rctl |= E1000_RCTL_MPE;
			vmolr |= E1000_VMOLR_MPME;
		} else {
			/*
			 * Write addresses to the MTA, if the attempt fails
L
Lucas De Marchi 已提交
3416
			 * then we should just turn on promiscuous mode so
3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429
			 * that we can at least receive multicast traffic
			 */
			count = igb_write_mc_addr_list(netdev);
			if (count < 0) {
				rctl |= E1000_RCTL_MPE;
				vmolr |= E1000_VMOLR_MPME;
			} else if (count) {
				vmolr |= E1000_VMOLR_ROMPE;
			}
		}
		/*
		 * Write addresses to available RAR registers, if there is not
		 * sufficient space to store all the addresses then enable
L
Lucas De Marchi 已提交
3430
		 * unicast promiscuous mode
3431 3432 3433 3434 3435 3436 3437
		 */
		count = igb_write_uc_addr_list(netdev);
		if (count < 0) {
			rctl |= E1000_RCTL_UPE;
			vmolr |= E1000_VMOLR_ROPE;
		}
		rctl |= E1000_RCTL_VFE;
3438
	}
3439
	wr32(E1000_RCTL, rctl);
3440

3441 3442 3443 3444 3445 3446 3447
	/*
	 * In order to support SR-IOV and eventually VMDq it is necessary to set
	 * the VMOLR to enable the appropriate modes.  Without this workaround
	 * we will have issues with VLAN tag stripping not being done for frames
	 * that are only arriving because we are the default pool
	 */
	if (hw->mac.type < e1000_82576)
3448
		return;
3449

3450 3451 3452
	vmolr |= rd32(E1000_VMOLR(vfn)) &
	         ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
	wr32(E1000_VMOLR(vfn), vmolr);
3453
	igb_restore_vf_multicasts(adapter);
3454 3455
}

G
Greg Rose 已提交
3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494
static void igb_check_wvbr(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 wvbr = 0;

	switch (hw->mac.type) {
	case e1000_82576:
	case e1000_i350:
		if (!(wvbr = rd32(E1000_WVBR)))
			return;
		break;
	default:
		break;
	}

	adapter->wvbr |= wvbr;
}

#define IGB_STAGGERED_QUEUE_OFFSET 8

static void igb_spoof_check(struct igb_adapter *adapter)
{
	int j;

	if (!adapter->wvbr)
		return;

	for(j = 0; j < adapter->vfs_allocated_count; j++) {
		if (adapter->wvbr & (1 << j) ||
		    adapter->wvbr & (1 << (j + IGB_STAGGERED_QUEUE_OFFSET))) {
			dev_warn(&adapter->pdev->dev,
				"Spoof event(s) detected on VF %d\n", j);
			adapter->wvbr &=
				~((1 << j) |
				  (1 << (j + IGB_STAGGERED_QUEUE_OFFSET)));
		}
	}
}

3495 3496 3497 3498 3499
/* Need to wait a few seconds after link up to get diagnostic information from
 * the phy */
static void igb_update_phy_info(unsigned long data)
{
	struct igb_adapter *adapter = (struct igb_adapter *) data;
3500
	igb_get_phy_info(&adapter->hw);
3501 3502
}

A
Alexander Duyck 已提交
3503 3504 3505 3506
/**
 * igb_has_link - check shared code for link and determine up/down
 * @adapter: pointer to driver private info
 **/
3507
bool igb_has_link(struct igb_adapter *adapter)
A
Alexander Duyck 已提交
3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538
{
	struct e1000_hw *hw = &adapter->hw;
	bool link_active = false;
	s32 ret_val = 0;

	/* get_link_status is set on LSC (link status) interrupt or
	 * rx sequence error interrupt.  get_link_status will stay
	 * false until the e1000_check_for_link establishes link
	 * for copper adapters ONLY
	 */
	switch (hw->phy.media_type) {
	case e1000_media_type_copper:
		if (hw->mac.get_link_status) {
			ret_val = hw->mac.ops.check_for_link(hw);
			link_active = !hw->mac.get_link_status;
		} else {
			link_active = true;
		}
		break;
	case e1000_media_type_internal_serdes:
		ret_val = hw->mac.ops.check_for_link(hw);
		link_active = hw->mac.serdes_has_link;
		break;
	default:
	case e1000_media_type_unknown:
		break;
	}

	return link_active;
}

3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557
static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
{
	bool ret = false;
	u32 ctrl_ext, thstat;

	/* check for thermal sensor event on i350, copper only */
	if (hw->mac.type == e1000_i350) {
		thstat = rd32(E1000_THSTAT);
		ctrl_ext = rd32(E1000_CTRL_EXT);

		if ((hw->phy.media_type == e1000_media_type_copper) &&
		    !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII)) {
			ret = !!(thstat & event);
		}
	}

	return ret;
}

3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571
/**
 * igb_watchdog - Timer Call-back
 * @data: pointer to adapter cast into an unsigned long
 **/
static void igb_watchdog(unsigned long data)
{
	struct igb_adapter *adapter = (struct igb_adapter *)data;
	/* Do the rest outside of interrupt context */
	schedule_work(&adapter->watchdog_task);
}

static void igb_watchdog_task(struct work_struct *work)
{
	struct igb_adapter *adapter = container_of(work,
3572 3573
	                                           struct igb_adapter,
                                                   watchdog_task);
3574 3575
	struct e1000_hw *hw = &adapter->hw;
	struct net_device *netdev = adapter->netdev;
3576
	u32 link;
3577
	int i;
3578

A
Alexander Duyck 已提交
3579
	link = igb_has_link(adapter);
3580 3581 3582
	if (link) {
		if (!netif_carrier_ok(netdev)) {
			u32 ctrl;
3583 3584 3585
			hw->mac.ops.get_speed_and_duplex(hw,
			                                 &adapter->link_speed,
			                                 &adapter->link_duplex);
3586 3587

			ctrl = rd32(E1000_CTRL);
3588 3589
			/* Links status message must follow this format */
			printk(KERN_INFO "igb: %s NIC Link is Up %d Mbps %s, "
3590
				 "Flow Control: %s\n",
3591 3592 3593
			       netdev->name,
			       adapter->link_speed,
			       adapter->link_duplex == FULL_DUPLEX ?
3594
				 "Full Duplex" : "Half Duplex",
3595 3596 3597 3598
			       ((ctrl & E1000_CTRL_TFCE) &&
			        (ctrl & E1000_CTRL_RFCE)) ? "RX/TX" :
			       ((ctrl & E1000_CTRL_RFCE) ?  "RX" :
			       ((ctrl & E1000_CTRL_TFCE) ?  "TX" : "None")));
3599

3600 3601 3602 3603 3604 3605
			/* check for thermal sensor event */
			if (igb_thermal_sensor_event(hw, E1000_THSTAT_LINK_THROTTLE)) {
				printk(KERN_INFO "igb: %s The network adapter "
						 "link speed was downshifted "
						 "because it overheated.\n",
						 netdev->name);
3606
			}
3607

3608
			/* adjust timeout factor according to speed/duplex */
3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620
			adapter->tx_timeout_factor = 1;
			switch (adapter->link_speed) {
			case SPEED_10:
				adapter->tx_timeout_factor = 14;
				break;
			case SPEED_100:
				/* maybe add some timeout factor ? */
				break;
			}

			netif_carrier_on(netdev);

3621
			igb_ping_all_vfs(adapter);
3622
			igb_check_vf_rate_limit(adapter);
3623

3624
			/* link state has changed, schedule phy info update */
3625 3626 3627 3628 3629 3630 3631 3632
			if (!test_bit(__IGB_DOWN, &adapter->state))
				mod_timer(&adapter->phy_info_timer,
					  round_jiffies(jiffies + 2 * HZ));
		}
	} else {
		if (netif_carrier_ok(netdev)) {
			adapter->link_speed = 0;
			adapter->link_duplex = 0;
3633 3634 3635 3636 3637 3638

			/* check for thermal sensor event */
			if (igb_thermal_sensor_event(hw, E1000_THSTAT_PWR_DOWN)) {
				printk(KERN_ERR "igb: %s The network adapter "
						"was stopped because it "
						"overheated.\n",
3639 3640
						netdev->name);
			}
3641

3642 3643 3644
			/* Links status message must follow this format */
			printk(KERN_INFO "igb: %s NIC Link is Down\n",
			       netdev->name);
3645
			netif_carrier_off(netdev);
3646

3647 3648
			igb_ping_all_vfs(adapter);

3649
			/* link state has changed, schedule phy info update */
3650 3651 3652 3653 3654 3655
			if (!test_bit(__IGB_DOWN, &adapter->state))
				mod_timer(&adapter->phy_info_timer,
					  round_jiffies(jiffies + 2 * HZ));
		}
	}

E
Eric Dumazet 已提交
3656 3657 3658
	spin_lock(&adapter->stats64_lock);
	igb_update_stats(adapter, &adapter->stats64);
	spin_unlock(&adapter->stats64_lock);
3659

3660
	for (i = 0; i < adapter->num_tx_queues; i++) {
3661
		struct igb_ring *tx_ring = adapter->tx_ring[i];
3662
		if (!netif_carrier_ok(netdev)) {
3663 3664 3665 3666
			/* We've lost link, so the controller stops DMA,
			 * but we've got queued Tx work that's never going
			 * to get done, so reset controller to flush Tx.
			 * (Do the reset outside of interrupt context). */
3667 3668 3669 3670 3671 3672
			if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
				adapter->tx_timeout_count++;
				schedule_work(&adapter->reset_task);
				/* return immediately since reset is imminent */
				return;
			}
3673 3674
		}

3675 3676 3677
		/* Force detection of hung controller every watchdog period */
		tx_ring->detect_tx_hung = true;
	}
3678

3679
	/* Cause software interrupt to ensure rx ring is cleaned */
3680
	if (adapter->msix_entries) {
3681 3682 3683 3684 3685
		u32 eics = 0;
		for (i = 0; i < adapter->num_q_vectors; i++) {
			struct igb_q_vector *q_vector = adapter->q_vector[i];
			eics |= q_vector->eims_value;
		}
3686 3687 3688 3689
		wr32(E1000_EICS, eics);
	} else {
		wr32(E1000_ICS, E1000_ICS_RXDMT0);
	}
3690

G
Greg Rose 已提交
3691 3692
	igb_spoof_check(adapter);

3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705
	/* Reset the timer */
	if (!test_bit(__IGB_DOWN, &adapter->state))
		mod_timer(&adapter->watchdog_timer,
			  round_jiffies(jiffies + 2 * HZ));
}

enum latency_range {
	lowest_latency = 0,
	low_latency = 1,
	bulk_latency = 2,
	latency_invalid = 255
};

3706 3707 3708 3709 3710 3711
/**
 * igb_update_ring_itr - update the dynamic ITR value based on packet size
 *
 *      Stores a new ITR value based on strictly on packet size.  This
 *      algorithm is less sophisticated than that used in igb_update_itr,
 *      due to the difficulty of synchronizing statistics across multiple
3712
 *      receive rings.  The divisors and thresholds used by this function
3713 3714 3715 3716 3717 3718 3719
 *      were determined based on theoretical maximum wire speed and testing
 *      data, in order to minimize response time while increasing bulk
 *      throughput.
 *      This functionality is controlled by the InterruptThrottleRate module
 *      parameter (see igb_param.c)
 *      NOTE:  This function is called only when operating in a multiqueue
 *             receive environment.
3720
 * @q_vector: pointer to q_vector
3721
 **/
3722
static void igb_update_ring_itr(struct igb_q_vector *q_vector)
3723
{
3724
	int new_val = q_vector->itr_val;
3725
	int avg_wire_size = 0;
3726
	struct igb_adapter *adapter = q_vector->adapter;
E
Eric Dumazet 已提交
3727 3728
	struct igb_ring *ring;
	unsigned int packets;
3729

3730 3731 3732 3733
	/* For non-gigabit speeds, just fix the interrupt rate at 4000
	 * ints/sec - ITR timer value of 120 ticks.
	 */
	if (adapter->link_speed != SPEED_1000) {
3734
		new_val = 976;
3735
		goto set_itr_val;
3736
	}
3737

E
Eric Dumazet 已提交
3738 3739 3740 3741 3742 3743
	ring = q_vector->rx_ring;
	if (ring) {
		packets = ACCESS_ONCE(ring->total_packets);

		if (packets)
			avg_wire_size = ring->total_bytes / packets;
3744 3745
	}

E
Eric Dumazet 已提交
3746 3747 3748 3749 3750 3751 3752
	ring = q_vector->tx_ring;
	if (ring) {
		packets = ACCESS_ONCE(ring->total_packets);

		if (packets)
			avg_wire_size = max_t(u32, avg_wire_size,
			                      ring->total_bytes / packets);
3753 3754 3755 3756 3757
	}

	/* if avg_wire_size isn't set no work was done */
	if (!avg_wire_size)
		goto clear_counts;
3758

3759 3760 3761 3762 3763
	/* Add 24 bytes to size to account for CRC, preamble, and gap */
	avg_wire_size += 24;

	/* Don't starve jumbo frames */
	avg_wire_size = min(avg_wire_size, 3000);
3764

3765 3766 3767 3768 3769
	/* Give a little boost to mid-size frames */
	if ((avg_wire_size > 300) && (avg_wire_size < 1200))
		new_val = avg_wire_size / 3;
	else
		new_val = avg_wire_size / 2;
3770

3771 3772 3773 3774
	/* when in itr mode 3 do not exceed 20K ints/sec */
	if (adapter->rx_itr_setting == 3 && new_val < 196)
		new_val = 196;

3775
set_itr_val:
3776 3777 3778
	if (new_val != q_vector->itr_val) {
		q_vector->itr_val = new_val;
		q_vector->set_itr = 1;
3779
	}
3780
clear_counts:
3781 3782 3783 3784 3785 3786 3787 3788
	if (q_vector->rx_ring) {
		q_vector->rx_ring->total_bytes = 0;
		q_vector->rx_ring->total_packets = 0;
	}
	if (q_vector->tx_ring) {
		q_vector->tx_ring->total_bytes = 0;
		q_vector->tx_ring->total_packets = 0;
	}
3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804
}

/**
 * igb_update_itr - update the dynamic ITR value based on statistics
 *      Stores a new ITR value based on packets and byte
 *      counts during the last interrupt.  The advantage of per interrupt
 *      computation is faster updates and more accurate ITR for the current
 *      traffic pattern.  Constants in this function were computed
 *      based on theoretical maximum wire speed and thresholds were set based
 *      on testing data as well as attempting to minimize response time
 *      while increasing bulk throughput.
 *      this functionality is controlled by the InterruptThrottleRate module
 *      parameter (see igb_param.c)
 *      NOTE:  These calculations are only valid when operating in a single-
 *             queue environment.
 * @adapter: pointer to adapter
3805
 * @itr_setting: current q_vector->itr_val
3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844
 * @packets: the number of packets during this measurement interval
 * @bytes: the number of bytes during this measurement interval
 **/
static unsigned int igb_update_itr(struct igb_adapter *adapter, u16 itr_setting,
				   int packets, int bytes)
{
	unsigned int retval = itr_setting;

	if (packets == 0)
		goto update_itr_done;

	switch (itr_setting) {
	case lowest_latency:
		/* handle TSO and jumbo frames */
		if (bytes/packets > 8000)
			retval = bulk_latency;
		else if ((packets < 5) && (bytes > 512))
			retval = low_latency;
		break;
	case low_latency:  /* 50 usec aka 20000 ints/s */
		if (bytes > 10000) {
			/* this if handles the TSO accounting */
			if (bytes/packets > 8000) {
				retval = bulk_latency;
			} else if ((packets < 10) || ((bytes/packets) > 1200)) {
				retval = bulk_latency;
			} else if ((packets > 35)) {
				retval = lowest_latency;
			}
		} else if (bytes/packets > 2000) {
			retval = bulk_latency;
		} else if (packets <= 2 && bytes < 512) {
			retval = lowest_latency;
		}
		break;
	case bulk_latency: /* 250 usec aka 4000 ints/s */
		if (bytes > 25000) {
			if (packets > 35)
				retval = low_latency;
3845
		} else if (bytes < 1500) {
3846 3847 3848 3849 3850 3851 3852 3853 3854
			retval = low_latency;
		}
		break;
	}

update_itr_done:
	return retval;
}

3855
static void igb_set_itr(struct igb_adapter *adapter)
3856
{
3857
	struct igb_q_vector *q_vector = adapter->q_vector[0];
3858
	u16 current_itr;
3859
	u32 new_itr = q_vector->itr_val;
3860 3861 3862 3863 3864 3865 3866 3867 3868 3869

	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
	if (adapter->link_speed != SPEED_1000) {
		current_itr = 0;
		new_itr = 4000;
		goto set_itr_now;
	}

	adapter->rx_itr = igb_update_itr(adapter,
				    adapter->rx_itr,
3870 3871
				    q_vector->rx_ring->total_packets,
				    q_vector->rx_ring->total_bytes);
3872

3873 3874
	adapter->tx_itr = igb_update_itr(adapter,
				    adapter->tx_itr,
3875 3876
				    q_vector->tx_ring->total_packets,
				    q_vector->tx_ring->total_bytes);
3877
	current_itr = max(adapter->rx_itr, adapter->tx_itr);
3878

3879
	/* conservative mode (itr 3) eliminates the lowest_latency setting */
3880
	if (adapter->rx_itr_setting == 3 && current_itr == lowest_latency)
3881 3882
		current_itr = low_latency;

3883 3884 3885
	switch (current_itr) {
	/* counts and packets in update_itr are dependent on these numbers */
	case lowest_latency:
3886
		new_itr = 56;  /* aka 70,000 ints/sec */
3887 3888
		break;
	case low_latency:
3889
		new_itr = 196; /* aka 20,000 ints/sec */
3890 3891
		break;
	case bulk_latency:
3892
		new_itr = 980; /* aka 4,000 ints/sec */
3893 3894 3895 3896 3897 3898
		break;
	default:
		break;
	}

set_itr_now:
3899 3900 3901 3902
	q_vector->rx_ring->total_bytes = 0;
	q_vector->rx_ring->total_packets = 0;
	q_vector->tx_ring->total_bytes = 0;
	q_vector->tx_ring->total_packets = 0;
3903

3904
	if (new_itr != q_vector->itr_val) {
3905 3906 3907
		/* this attempts to bias the interrupt rate towards Bulk
		 * by adding intermediate steps when interrupt rate is
		 * increasing */
3908 3909 3910 3911
		new_itr = new_itr > q_vector->itr_val ?
		             max((new_itr * q_vector->itr_val) /
		                 (new_itr + (q_vector->itr_val >> 2)),
		                 new_itr) :
3912 3913 3914 3915 3916 3917 3918
			     new_itr;
		/* Don't write the value here; it resets the adapter's
		 * internal timer, and causes us to delay far longer than
		 * we should between interrupts.  Instead, we write the ITR
		 * value at the beginning of the next interrupt so the timing
		 * ends up being correct.
		 */
3919 3920
		q_vector->itr_val = new_itr;
		q_vector->set_itr = 1;
3921 3922 3923 3924 3925 3926 3927
	}
}

#define IGB_TX_FLAGS_CSUM		0x00000001
#define IGB_TX_FLAGS_VLAN		0x00000002
#define IGB_TX_FLAGS_TSO		0x00000004
#define IGB_TX_FLAGS_IPV4		0x00000008
A
Alexander Duyck 已提交
3928 3929 3930
#define IGB_TX_FLAGS_TSTAMP		0x00000010
#define IGB_TX_FLAGS_VLAN_MASK		0xffff0000
#define IGB_TX_FLAGS_VLAN_SHIFT		        16
3931

3932
static inline int igb_tso_adv(struct igb_ring *tx_ring,
3933 3934 3935 3936 3937 3938 3939
			      struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
{
	struct e1000_adv_tx_context_desc *context_desc;
	unsigned int i;
	int err;
	struct igb_buffer *buffer_info;
	u32 info = 0, tu_cmd = 0;
N
Nick Nunley 已提交
3940 3941
	u32 mss_l4len_idx;
	u8 l4len;
3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959

	if (skb_header_cloned(skb)) {
		err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
		if (err)
			return err;
	}

	l4len = tcp_hdrlen(skb);
	*hdr_len += l4len;

	if (skb->protocol == htons(ETH_P_IP)) {
		struct iphdr *iph = ip_hdr(skb);
		iph->tot_len = 0;
		iph->check = 0;
		tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
							 iph->daddr, 0,
							 IPPROTO_TCP,
							 0);
3960
	} else if (skb_is_gso_v6(skb)) {
3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992
		ipv6_hdr(skb)->payload_len = 0;
		tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
						       &ipv6_hdr(skb)->daddr,
						       0, IPPROTO_TCP, 0);
	}

	i = tx_ring->next_to_use;

	buffer_info = &tx_ring->buffer_info[i];
	context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);
	/* VLAN MACLEN IPLEN */
	if (tx_flags & IGB_TX_FLAGS_VLAN)
		info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
	info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
	*hdr_len += skb_network_offset(skb);
	info |= skb_network_header_len(skb);
	*hdr_len += skb_network_header_len(skb);
	context_desc->vlan_macip_lens = cpu_to_le32(info);

	/* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
	tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);

	if (skb->protocol == htons(ETH_P_IP))
		tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
	tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;

	context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);

	/* MSS L4LEN IDX */
	mss_l4len_idx = (skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT);
	mss_l4len_idx |= (l4len << E1000_ADVTXD_L4LEN_SHIFT);

3993
	/* For 82575, context index must be unique per ring. */
3994 3995
	if (tx_ring->flags & IGB_RING_FLAG_TX_CTX_IDX)
		mss_l4len_idx |= tx_ring->reg_idx << 4;
3996 3997 3998 3999 4000

	context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
	context_desc->seqnum_seed = 0;

	buffer_info->time_stamp = jiffies;
A
Alexander Duyck 已提交
4001
	buffer_info->next_to_watch = i;
4002 4003 4004 4005 4006 4007 4008 4009 4010 4011
	buffer_info->dma = 0;
	i++;
	if (i == tx_ring->count)
		i = 0;

	tx_ring->next_to_use = i;

	return true;
}

4012 4013
static inline bool igb_tx_csum_adv(struct igb_ring *tx_ring,
				   struct sk_buff *skb, u32 tx_flags)
4014 4015
{
	struct e1000_adv_tx_context_desc *context_desc;
4016
	struct device *dev = tx_ring->dev;
4017 4018
	struct igb_buffer *buffer_info;
	u32 info = 0, tu_cmd = 0;
4019
	unsigned int i;
4020 4021 4022 4023 4024 4025 4026 4027 4028

	if ((skb->ip_summed == CHECKSUM_PARTIAL) ||
	    (tx_flags & IGB_TX_FLAGS_VLAN)) {
		i = tx_ring->next_to_use;
		buffer_info = &tx_ring->buffer_info[i];
		context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);

		if (tx_flags & IGB_TX_FLAGS_VLAN)
			info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
A
Alexander Duyck 已提交
4029

4030 4031 4032 4033 4034 4035 4036 4037 4038
		info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
		if (skb->ip_summed == CHECKSUM_PARTIAL)
			info |= skb_network_header_len(skb);

		context_desc->vlan_macip_lens = cpu_to_le32(info);

		tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);

		if (skb->ip_summed == CHECKSUM_PARTIAL) {
4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050
			__be16 protocol;

			if (skb->protocol == cpu_to_be16(ETH_P_8021Q)) {
				const struct vlan_ethhdr *vhdr =
				          (const struct vlan_ethhdr*)skb->data;

				protocol = vhdr->h_vlan_encapsulated_proto;
			} else {
				protocol = skb->protocol;
			}

			switch (protocol) {
4051
			case cpu_to_be16(ETH_P_IP):
4052
				tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
4053 4054
				if (ip_hdr(skb)->protocol == IPPROTO_TCP)
					tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
4055 4056
				else if (ip_hdr(skb)->protocol == IPPROTO_SCTP)
					tu_cmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
4057
				break;
4058
			case cpu_to_be16(ETH_P_IPV6):
4059 4060 4061
				/* XXX what about other V6 headers?? */
				if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
					tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
4062 4063
				else if (ipv6_hdr(skb)->nexthdr == IPPROTO_SCTP)
					tu_cmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
4064 4065 4066
				break;
			default:
				if (unlikely(net_ratelimit()))
4067
					dev_warn(dev,
4068 4069 4070 4071
					    "partial checksum but proto=%x!\n",
					    skb->protocol);
				break;
			}
4072 4073 4074 4075
		}

		context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
		context_desc->seqnum_seed = 0;
4076
		if (tx_ring->flags & IGB_RING_FLAG_TX_CTX_IDX)
4077
			context_desc->mss_l4len_idx =
4078
				cpu_to_le32(tx_ring->reg_idx << 4);
4079 4080

		buffer_info->time_stamp = jiffies;
A
Alexander Duyck 已提交
4081
		buffer_info->next_to_watch = i;
4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096
		buffer_info->dma = 0;

		i++;
		if (i == tx_ring->count)
			i = 0;
		tx_ring->next_to_use = i;

		return true;
	}
	return false;
}

#define IGB_MAX_TXD_PWR	16
#define IGB_MAX_DATA_PER_TXD	(1<<IGB_MAX_TXD_PWR)

4097
static inline int igb_tx_map_adv(struct igb_ring *tx_ring, struct sk_buff *skb,
A
Alexander Duyck 已提交
4098
				 unsigned int first)
4099 4100
{
	struct igb_buffer *buffer_info;
4101
	struct device *dev = tx_ring->dev;
4102
	unsigned int hlen = skb_headlen(skb);
4103 4104
	unsigned int count = 0, i;
	unsigned int f;
4105
	u16 gso_segs = skb_shinfo(skb)->gso_segs ?: 1;
4106 4107 4108 4109

	i = tx_ring->next_to_use;

	buffer_info = &tx_ring->buffer_info[i];
4110 4111
	BUG_ON(hlen >= IGB_MAX_DATA_PER_TXD);
	buffer_info->length = hlen;
4112 4113
	/* set time_stamp *before* dma to help avoid a possible race */
	buffer_info->time_stamp = jiffies;
A
Alexander Duyck 已提交
4114
	buffer_info->next_to_watch = i;
4115
	buffer_info->dma = dma_map_single(dev, skb->data, hlen,
4116 4117
					  DMA_TO_DEVICE);
	if (dma_mapping_error(dev, buffer_info->dma))
4118
		goto dma_error;
4119 4120

	for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
4121 4122
		struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[f];
		unsigned int len = frag->size;
4123

4124
		count++;
4125 4126 4127 4128
		i++;
		if (i == tx_ring->count)
			i = 0;

4129 4130 4131 4132
		buffer_info = &tx_ring->buffer_info[i];
		BUG_ON(len >= IGB_MAX_DATA_PER_TXD);
		buffer_info->length = len;
		buffer_info->time_stamp = jiffies;
A
Alexander Duyck 已提交
4133
		buffer_info->next_to_watch = i;
4134
		buffer_info->mapped_as_page = true;
4135
		buffer_info->dma = dma_map_page(dev,
4136 4137 4138
						frag->page,
						frag->page_offset,
						len,
4139 4140
						DMA_TO_DEVICE);
		if (dma_mapping_error(dev, buffer_info->dma))
4141 4142
			goto dma_error;

4143 4144 4145
	}

	tx_ring->buffer_info[i].skb = skb;
4146
	tx_ring->buffer_info[i].tx_flags = skb_shinfo(skb)->tx_flags;
4147 4148 4149
	/* multiply data chunks by size of headers */
	tx_ring->buffer_info[i].bytecount = ((gso_segs - 1) * hlen) + skb->len;
	tx_ring->buffer_info[i].gso_segs = gso_segs;
A
Alexander Duyck 已提交
4150
	tx_ring->buffer_info[first].next_to_watch = i;
4151

A
Alexander Duyck 已提交
4152
	return ++count;
4153 4154

dma_error:
4155
	dev_err(dev, "TX DMA map failed\n");
4156 4157 4158 4159 4160 4161 4162 4163 4164

	/* clear timestamp and dma mappings for failed buffer_info mapping */
	buffer_info->dma = 0;
	buffer_info->time_stamp = 0;
	buffer_info->length = 0;
	buffer_info->next_to_watch = 0;
	buffer_info->mapped_as_page = false;

	/* clear timestamp and dma mappings for remaining portion of packet */
4165 4166 4167
	while (count--) {
		if (i == 0)
			i = tx_ring->count;
4168 4169 4170 4171 4172 4173
		i--;
		buffer_info = &tx_ring->buffer_info[i];
		igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
	}

	return 0;
4174 4175
}

4176
static inline void igb_tx_queue_adv(struct igb_ring *tx_ring,
N
Nick Nunley 已提交
4177
				    u32 tx_flags, int count, u32 paylen,
4178 4179
				    u8 hdr_len)
{
A
Alexander Duyck 已提交
4180
	union e1000_adv_tx_desc *tx_desc;
4181 4182
	struct igb_buffer *buffer_info;
	u32 olinfo_status = 0, cmd_type_len;
A
Alexander Duyck 已提交
4183
	unsigned int i = tx_ring->next_to_use;
4184 4185 4186 4187 4188 4189 4190

	cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS |
			E1000_ADVTXD_DCMD_DEXT);

	if (tx_flags & IGB_TX_FLAGS_VLAN)
		cmd_type_len |= E1000_ADVTXD_DCMD_VLE;

4191 4192 4193
	if (tx_flags & IGB_TX_FLAGS_TSTAMP)
		cmd_type_len |= E1000_ADVTXD_MAC_TSTAMP;

4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207
	if (tx_flags & IGB_TX_FLAGS_TSO) {
		cmd_type_len |= E1000_ADVTXD_DCMD_TSE;

		/* insert tcp checksum */
		olinfo_status |= E1000_TXD_POPTS_TXSM << 8;

		/* insert ip checksum */
		if (tx_flags & IGB_TX_FLAGS_IPV4)
			olinfo_status |= E1000_TXD_POPTS_IXSM << 8;

	} else if (tx_flags & IGB_TX_FLAGS_CSUM) {
		olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
	}

4208 4209 4210
	if ((tx_ring->flags & IGB_RING_FLAG_TX_CTX_IDX) &&
	    (tx_flags & (IGB_TX_FLAGS_CSUM |
	                 IGB_TX_FLAGS_TSO |
4211
			 IGB_TX_FLAGS_VLAN)))
4212
		olinfo_status |= tx_ring->reg_idx << 4;
4213 4214 4215

	olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT);

A
Alexander Duyck 已提交
4216
	do {
4217 4218 4219 4220 4221 4222
		buffer_info = &tx_ring->buffer_info[i];
		tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
		tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
		tx_desc->read.cmd_type_len =
			cpu_to_le32(cmd_type_len | buffer_info->length);
		tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
A
Alexander Duyck 已提交
4223
		count--;
4224 4225 4226
		i++;
		if (i == tx_ring->count)
			i = 0;
A
Alexander Duyck 已提交
4227
	} while (count > 0);
4228

4229
	tx_desc->read.cmd_type_len |= cpu_to_le32(IGB_ADVTXD_DCMD);
4230 4231 4232 4233 4234 4235 4236
	/* Force memory writes to complete before letting h/w
	 * know there are new descriptors to fetch.  (Only
	 * applicable for weak-ordered memory model archs,
	 * such as IA-64). */
	wmb();

	tx_ring->next_to_use = i;
4237
	writel(i, tx_ring->tail);
4238 4239 4240 4241 4242
	/* we need this if more than one processor can write to our tail
	 * at a time, it syncronizes IO on IA64/Altix systems */
	mmiowb();
}

4243
static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, int size)
4244
{
4245 4246
	struct net_device *netdev = tx_ring->netdev;

4247 4248
	netif_stop_subqueue(netdev, tx_ring->queue_index);

4249 4250 4251 4252 4253 4254 4255
	/* Herbert's original patch had:
	 *  smp_mb__after_netif_stop_queue();
	 * but since that doesn't exist yet, just open code it. */
	smp_mb();

	/* We need to check again in a case another CPU has just
	 * made room available. */
4256
	if (igb_desc_unused(tx_ring) < size)
4257 4258 4259
		return -EBUSY;

	/* A reprieve! */
4260
	netif_wake_subqueue(netdev, tx_ring->queue_index);
E
Eric Dumazet 已提交
4261 4262 4263 4264 4265

	u64_stats_update_begin(&tx_ring->tx_syncp2);
	tx_ring->tx_stats.restart_queue2++;
	u64_stats_update_end(&tx_ring->tx_syncp2);

4266 4267 4268
	return 0;
}

N
Nick Nunley 已提交
4269
static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, int size)
4270
{
4271
	if (igb_desc_unused(tx_ring) >= size)
4272
		return 0;
4273
	return __igb_maybe_stop_tx(tx_ring, size);
4274 4275
}

4276 4277
netdev_tx_t igb_xmit_frame_ring_adv(struct sk_buff *skb,
				    struct igb_ring *tx_ring)
4278
{
A
Alexander Duyck 已提交
4279
	int tso = 0, count;
N
Nick Nunley 已提交
4280 4281 4282
	u32 tx_flags = 0;
	u16 first;
	u8 hdr_len = 0;
4283 4284 4285 4286 4287 4288

	/* need: 1 descriptor per page,
	 *       + 2 desc gap to keep tail from touching head,
	 *       + 1 desc for skb->data,
	 *       + 1 desc for context descriptor,
	 * otherwise try next time */
4289
	if (igb_maybe_stop_tx(tx_ring, skb_shinfo(skb)->nr_frags + 4)) {
4290 4291 4292
		/* this is a hard error */
		return NETDEV_TX_BUSY;
	}
4293

4294 4295
	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
4296 4297
		tx_flags |= IGB_TX_FLAGS_TSTAMP;
	}
4298

4299
	if (vlan_tx_tag_present(skb)) {
4300 4301 4302 4303
		tx_flags |= IGB_TX_FLAGS_VLAN;
		tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
	}

4304 4305 4306
	if (skb->protocol == htons(ETH_P_IP))
		tx_flags |= IGB_TX_FLAGS_IPV4;

A
Alexander Duyck 已提交
4307
	first = tx_ring->next_to_use;
4308 4309
	if (skb_is_gso(skb)) {
		tso = igb_tso_adv(tx_ring, skb, tx_flags, &hdr_len);
A
Alexander Duyck 已提交
4310

4311 4312 4313 4314
		if (tso < 0) {
			dev_kfree_skb_any(skb);
			return NETDEV_TX_OK;
		}
4315 4316 4317 4318
	}

	if (tso)
		tx_flags |= IGB_TX_FLAGS_TSO;
4319
	else if (igb_tx_csum_adv(tx_ring, skb, tx_flags) &&
4320 4321
	         (skb->ip_summed == CHECKSUM_PARTIAL))
		tx_flags |= IGB_TX_FLAGS_CSUM;
4322

4323
	/*
A
Alexander Duyck 已提交
4324
	 * count reflects descriptors mapped, if 0 or less then mapping error
L
Lucas De Marchi 已提交
4325
	 * has occurred and we need to rewind the descriptor queue
4326
	 */
4327
	count = igb_tx_map_adv(tx_ring, skb, first);
4328
	if (!count) {
4329 4330 4331
		dev_kfree_skb_any(skb);
		tx_ring->buffer_info[first].time_stamp = 0;
		tx_ring->next_to_use = first;
4332
		return NETDEV_TX_OK;
4333
	}
4334

4335 4336 4337
	igb_tx_queue_adv(tx_ring, tx_flags, count, skb->len, hdr_len);

	/* Make sure there is space in the ring for the next send. */
4338
	igb_maybe_stop_tx(tx_ring, MAX_SKB_FRAGS + 4);
4339

4340 4341 4342
	return NETDEV_TX_OK;
}

4343 4344
static netdev_tx_t igb_xmit_frame_adv(struct sk_buff *skb,
				      struct net_device *netdev)
4345 4346
{
	struct igb_adapter *adapter = netdev_priv(netdev);
4347 4348
	struct igb_ring *tx_ring;
	int r_idx = 0;
4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359

	if (test_bit(__IGB_DOWN, &adapter->state)) {
		dev_kfree_skb_any(skb);
		return NETDEV_TX_OK;
	}

	if (skb->len <= 0) {
		dev_kfree_skb_any(skb);
		return NETDEV_TX_OK;
	}

4360
	r_idx = skb->queue_mapping & (IGB_ABS_MAX_TX_QUEUES - 1);
4361
	tx_ring = adapter->multi_tx_table[r_idx];
4362 4363 4364 4365 4366

	/* This goes back to the question of how to logically map a tx queue
	 * to a flow.  Right now, performance is impacted slightly negatively
	 * if using multiple tx queues.  If the stack breaks away from a
	 * single qdisc implementation, we can look at this again. */
4367
	return igb_xmit_frame_ring_adv(skb, tx_ring);
4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380
}

/**
 * igb_tx_timeout - Respond to a Tx Hang
 * @netdev: network interface device structure
 **/
static void igb_tx_timeout(struct net_device *netdev)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;

	/* Do the reset outside of interrupt context */
	adapter->tx_timeout_count++;
4381

4382 4383 4384
	if (hw->mac.type == e1000_82580)
		hw->dev_spec._82575.global_device_reset = true;

4385
	schedule_work(&adapter->reset_task);
4386 4387
	wr32(E1000_EICS,
	     (adapter->eims_enable_mask & ~adapter->eims_other));
4388 4389 4390 4391 4392 4393 4394
}

static void igb_reset_task(struct work_struct *work)
{
	struct igb_adapter *adapter;
	adapter = container_of(work, struct igb_adapter, reset_task);

4395 4396
	igb_dump(adapter);
	netdev_err(adapter->netdev, "Reset adapter\n");
4397 4398 4399 4400
	igb_reinit_locked(adapter);
}

/**
E
Eric Dumazet 已提交
4401
 * igb_get_stats64 - Get System Network Statistics
4402
 * @netdev: network interface device structure
E
Eric Dumazet 已提交
4403
 * @stats: rtnl_link_stats64 pointer
4404 4405
 *
 **/
E
Eric Dumazet 已提交
4406 4407
static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *netdev,
						 struct rtnl_link_stats64 *stats)
4408
{
E
Eric Dumazet 已提交
4409 4410 4411 4412 4413 4414 4415 4416
	struct igb_adapter *adapter = netdev_priv(netdev);

	spin_lock(&adapter->stats64_lock);
	igb_update_stats(adapter, &adapter->stats64);
	memcpy(stats, &adapter->stats64, sizeof(*stats));
	spin_unlock(&adapter->stats64_lock);

	return stats;
4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428
}

/**
 * igb_change_mtu - Change the Maximum Transfer Unit
 * @netdev: network interface device structure
 * @new_mtu: new value for maximum frame size
 *
 * Returns 0 on success, negative on failure
 **/
static int igb_change_mtu(struct net_device *netdev, int new_mtu)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
4429
	struct pci_dev *pdev = adapter->pdev;
4430
	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
4431
	u32 rx_buffer_len, i;
4432

4433
	if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
4434
		dev_err(&pdev->dev, "Invalid MTU setting\n");
4435 4436 4437 4438
		return -EINVAL;
	}

	if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
4439
		dev_err(&pdev->dev, "MTU > 9216 not supported.\n");
4440 4441 4442 4443 4444
		return -EINVAL;
	}

	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
		msleep(1);
4445

4446 4447
	/* igb_down has a dependency on max_frame_size */
	adapter->max_frame_size = max_frame;
4448

4449 4450 4451 4452 4453 4454
	/* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
	 * means we reserve 2 more, this pushes us to allocate from the next
	 * larger slab size.
	 * i.e. RXBUFFER_2048 --> size-4096 slab
	 */

N
Nick Nunley 已提交
4455 4456 4457
	if (adapter->hw.mac.type == e1000_82580)
		max_frame += IGB_TS_HDR_LEN;

4458
	if (max_frame <= IGB_RXBUFFER_1024)
4459
		rx_buffer_len = IGB_RXBUFFER_1024;
A
Alexander Duyck 已提交
4460
	else if (max_frame <= MAXIMUM_ETHERNET_VLAN_SIZE)
4461
		rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
A
Alexander Duyck 已提交
4462
	else
4463 4464
		rx_buffer_len = IGB_RXBUFFER_128;

N
Nick Nunley 已提交
4465 4466 4467 4468 4469 4470 4471 4472
	if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN + IGB_TS_HDR_LEN) ||
	     (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE + IGB_TS_HDR_LEN))
		rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE + IGB_TS_HDR_LEN;

	if ((adapter->hw.mac.type == e1000_82580) &&
	    (rx_buffer_len == IGB_RXBUFFER_128))
		rx_buffer_len += IGB_RXBUFFER_64;

4473 4474
	if (netif_running(netdev))
		igb_down(adapter);
4475

4476
	dev_info(&pdev->dev, "changing MTU from %d to %d\n",
4477 4478 4479
		 netdev->mtu, new_mtu);
	netdev->mtu = new_mtu;

4480
	for (i = 0; i < adapter->num_rx_queues; i++)
4481
		adapter->rx_ring[i]->rx_buffer_len = rx_buffer_len;
4482

4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497
	if (netif_running(netdev))
		igb_up(adapter);
	else
		igb_reset(adapter);

	clear_bit(__IGB_RESETTING, &adapter->state);

	return 0;
}

/**
 * igb_update_stats - Update the board statistics counters
 * @adapter: board private structure
 **/

E
Eric Dumazet 已提交
4498 4499
void igb_update_stats(struct igb_adapter *adapter,
		      struct rtnl_link_stats64 *net_stats)
4500 4501 4502
{
	struct e1000_hw *hw = &adapter->hw;
	struct pci_dev *pdev = adapter->pdev;
4503
	u32 reg, mpc;
4504
	u16 phy_tmp;
4505 4506
	int i;
	u64 bytes, packets;
E
Eric Dumazet 已提交
4507 4508
	unsigned int start;
	u64 _bytes, _packets;
4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520

#define PHY_IDLE_ERROR_COUNT_MASK 0x00FF

	/*
	 * Prevent stats update while adapter is being reset, or if the pci
	 * connection is down.
	 */
	if (adapter->link_speed == 0)
		return;
	if (pci_channel_offline(pdev))
		return;

4521 4522 4523 4524
	bytes = 0;
	packets = 0;
	for (i = 0; i < adapter->num_rx_queues; i++) {
		u32 rqdpc_tmp = rd32(E1000_RQDPC(i)) & 0x0FFF;
4525
		struct igb_ring *ring = adapter->rx_ring[i];
E
Eric Dumazet 已提交
4526

4527
		ring->rx_stats.drops += rqdpc_tmp;
4528
		net_stats->rx_fifo_errors += rqdpc_tmp;
E
Eric Dumazet 已提交
4529 4530 4531 4532 4533 4534 4535 4536

		do {
			start = u64_stats_fetch_begin_bh(&ring->rx_syncp);
			_bytes = ring->rx_stats.bytes;
			_packets = ring->rx_stats.packets;
		} while (u64_stats_fetch_retry_bh(&ring->rx_syncp, start));
		bytes += _bytes;
		packets += _packets;
4537 4538
	}

4539 4540
	net_stats->rx_bytes = bytes;
	net_stats->rx_packets = packets;
4541 4542 4543 4544

	bytes = 0;
	packets = 0;
	for (i = 0; i < adapter->num_tx_queues; i++) {
4545
		struct igb_ring *ring = adapter->tx_ring[i];
E
Eric Dumazet 已提交
4546 4547 4548 4549 4550 4551 4552
		do {
			start = u64_stats_fetch_begin_bh(&ring->tx_syncp);
			_bytes = ring->tx_stats.bytes;
			_packets = ring->tx_stats.packets;
		} while (u64_stats_fetch_retry_bh(&ring->tx_syncp, start));
		bytes += _bytes;
		packets += _packets;
4553
	}
4554 4555
	net_stats->tx_bytes = bytes;
	net_stats->tx_packets = packets;
4556 4557

	/* read stats registers */
4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574
	adapter->stats.crcerrs += rd32(E1000_CRCERRS);
	adapter->stats.gprc += rd32(E1000_GPRC);
	adapter->stats.gorc += rd32(E1000_GORCL);
	rd32(E1000_GORCH); /* clear GORCL */
	adapter->stats.bprc += rd32(E1000_BPRC);
	adapter->stats.mprc += rd32(E1000_MPRC);
	adapter->stats.roc += rd32(E1000_ROC);

	adapter->stats.prc64 += rd32(E1000_PRC64);
	adapter->stats.prc127 += rd32(E1000_PRC127);
	adapter->stats.prc255 += rd32(E1000_PRC255);
	adapter->stats.prc511 += rd32(E1000_PRC511);
	adapter->stats.prc1023 += rd32(E1000_PRC1023);
	adapter->stats.prc1522 += rd32(E1000_PRC1522);
	adapter->stats.symerrs += rd32(E1000_SYMERRS);
	adapter->stats.sec += rd32(E1000_SEC);

4575 4576 4577
	mpc = rd32(E1000_MPC);
	adapter->stats.mpc += mpc;
	net_stats->rx_fifo_errors += mpc;
4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591
	adapter->stats.scc += rd32(E1000_SCC);
	adapter->stats.ecol += rd32(E1000_ECOL);
	adapter->stats.mcc += rd32(E1000_MCC);
	adapter->stats.latecol += rd32(E1000_LATECOL);
	adapter->stats.dc += rd32(E1000_DC);
	adapter->stats.rlec += rd32(E1000_RLEC);
	adapter->stats.xonrxc += rd32(E1000_XONRXC);
	adapter->stats.xontxc += rd32(E1000_XONTXC);
	adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
	adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
	adapter->stats.fcruc += rd32(E1000_FCRUC);
	adapter->stats.gptc += rd32(E1000_GPTC);
	adapter->stats.gotc += rd32(E1000_GOTCL);
	rd32(E1000_GOTCH); /* clear GOTCL */
4592
	adapter->stats.rnbc += rd32(E1000_RNBC);
4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609
	adapter->stats.ruc += rd32(E1000_RUC);
	adapter->stats.rfc += rd32(E1000_RFC);
	adapter->stats.rjc += rd32(E1000_RJC);
	adapter->stats.tor += rd32(E1000_TORH);
	adapter->stats.tot += rd32(E1000_TOTH);
	adapter->stats.tpr += rd32(E1000_TPR);

	adapter->stats.ptc64 += rd32(E1000_PTC64);
	adapter->stats.ptc127 += rd32(E1000_PTC127);
	adapter->stats.ptc255 += rd32(E1000_PTC255);
	adapter->stats.ptc511 += rd32(E1000_PTC511);
	adapter->stats.ptc1023 += rd32(E1000_PTC1023);
	adapter->stats.ptc1522 += rd32(E1000_PTC1522);

	adapter->stats.mptc += rd32(E1000_MPTC);
	adapter->stats.bptc += rd32(E1000_BPTC);

4610 4611
	adapter->stats.tpt += rd32(E1000_TPT);
	adapter->stats.colc += rd32(E1000_COLC);
4612 4613

	adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
4614 4615 4616 4617 4618 4619 4620
	/* read internal phy specific stats */
	reg = rd32(E1000_CTRL_EXT);
	if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
		adapter->stats.rxerrc += rd32(E1000_RXERRC);
		adapter->stats.tncrs += rd32(E1000_TNCRS);
	}

4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634
	adapter->stats.tsctc += rd32(E1000_TSCTC);
	adapter->stats.tsctfc += rd32(E1000_TSCTFC);

	adapter->stats.iac += rd32(E1000_IAC);
	adapter->stats.icrxoc += rd32(E1000_ICRXOC);
	adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
	adapter->stats.icrxatc += rd32(E1000_ICRXATC);
	adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
	adapter->stats.ictxatc += rd32(E1000_ICTXATC);
	adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
	adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
	adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);

	/* Fill out the OS statistics structure */
4635 4636
	net_stats->multicast = adapter->stats.mprc;
	net_stats->collisions = adapter->stats.colc;
4637 4638 4639 4640

	/* Rx Errors */

	/* RLEC on some newer hardware can be incorrect so build
4641
	 * our own version based on RUC and ROC */
4642
	net_stats->rx_errors = adapter->stats.rxerrc +
4643 4644 4645
		adapter->stats.crcerrs + adapter->stats.algnerrc +
		adapter->stats.ruc + adapter->stats.roc +
		adapter->stats.cexterr;
4646 4647 4648 4649 4650
	net_stats->rx_length_errors = adapter->stats.ruc +
				      adapter->stats.roc;
	net_stats->rx_crc_errors = adapter->stats.crcerrs;
	net_stats->rx_frame_errors = adapter->stats.algnerrc;
	net_stats->rx_missed_errors = adapter->stats.mpc;
4651 4652

	/* Tx Errors */
4653 4654 4655 4656 4657
	net_stats->tx_errors = adapter->stats.ecol +
			       adapter->stats.latecol;
	net_stats->tx_aborted_errors = adapter->stats.ecol;
	net_stats->tx_window_errors = adapter->stats.latecol;
	net_stats->tx_carrier_errors = adapter->stats.tncrs;
4658 4659 4660 4661 4662 4663

	/* Tx Dropped needs to be maintained elsewhere */

	/* Phy Stats */
	if (hw->phy.media_type == e1000_media_type_copper) {
		if ((adapter->link_speed == SPEED_1000) &&
4664
		   (!igb_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
4665 4666 4667 4668 4669 4670 4671 4672 4673
			phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
			adapter->phy_stats.idle_errors += phy_tmp;
		}
	}

	/* Management Stats */
	adapter->stats.mgptc += rd32(E1000_MGTPTC);
	adapter->stats.mgprc += rd32(E1000_MGTPRC);
	adapter->stats.mgpdc += rd32(E1000_MGTPDC);
4674 4675 4676 4677 4678 4679 4680 4681 4682

	/* OS2BMC Stats */
	reg = rd32(E1000_MANC);
	if (reg & E1000_MANC_EN_BMC2OS) {
		adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
		adapter->stats.o2bspc += rd32(E1000_O2BSPC);
		adapter->stats.b2ospc += rd32(E1000_B2OSPC);
		adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
	}
4683 4684 4685 4686
}

static irqreturn_t igb_msix_other(int irq, void *data)
{
4687
	struct igb_adapter *adapter = data;
4688
	struct e1000_hw *hw = &adapter->hw;
P
PJ Waskiewicz 已提交
4689 4690
	u32 icr = rd32(E1000_ICR);
	/* reading ICR causes bit 31 of EICR to be cleared */
4691

4692 4693 4694
	if (icr & E1000_ICR_DRSTA)
		schedule_work(&adapter->reset_task);

4695
	if (icr & E1000_ICR_DOUTSYNC) {
4696 4697
		/* HW is reporting DMA is out of sync */
		adapter->stats.doosync++;
G
Greg Rose 已提交
4698 4699 4700 4701
		/* The DMA Out of Sync is also indication of a spoof event
		 * in IOV mode. Check the Wrong VM Behavior register to
		 * see if it is really a spoof event. */
		igb_check_wvbr(adapter);
4702
	}
4703

4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714
	/* Check for a mailbox event */
	if (icr & E1000_ICR_VMMB)
		igb_msg_task(adapter);

	if (icr & E1000_ICR_LSC) {
		hw->mac.get_link_status = 1;
		/* guard against interrupt when we're going down */
		if (!test_bit(__IGB_DOWN, &adapter->state))
			mod_timer(&adapter->watchdog_timer, jiffies + 1);
	}

4715 4716 4717 4718 4719 4720
	if (adapter->vfs_allocated_count)
		wr32(E1000_IMS, E1000_IMS_LSC |
				E1000_IMS_VMMB |
				E1000_IMS_DOUTSYNC);
	else
		wr32(E1000_IMS, E1000_IMS_LSC | E1000_IMS_DOUTSYNC);
P
PJ Waskiewicz 已提交
4721
	wr32(E1000_EIMS, adapter->eims_other);
4722 4723 4724 4725

	return IRQ_HANDLED;
}

4726
static void igb_write_itr(struct igb_q_vector *q_vector)
4727
{
4728
	struct igb_adapter *adapter = q_vector->adapter;
4729
	u32 itr_val = q_vector->itr_val & 0x7FFC;
4730

4731 4732
	if (!q_vector->set_itr)
		return;
4733

4734 4735
	if (!itr_val)
		itr_val = 0x4;
4736

4737 4738
	if (adapter->hw.mac.type == e1000_82575)
		itr_val |= itr_val << 16;
4739
	else
4740
		itr_val |= 0x8000000;
4741

4742 4743
	writel(itr_val, q_vector->itr_register);
	q_vector->set_itr = 0;
4744 4745
}

4746
static irqreturn_t igb_msix_ring(int irq, void *data)
4747
{
4748
	struct igb_q_vector *q_vector = data;
4749

4750 4751
	/* Write the ITR value calculated from the previous interrupt. */
	igb_write_itr(q_vector);
4752

4753
	napi_schedule(&q_vector->napi);
P
PJ Waskiewicz 已提交
4754

4755
	return IRQ_HANDLED;
J
Jeb Cramer 已提交
4756 4757
}

4758
#ifdef CONFIG_IGB_DCA
4759
static void igb_update_dca(struct igb_q_vector *q_vector)
J
Jeb Cramer 已提交
4760
{
4761
	struct igb_adapter *adapter = q_vector->adapter;
J
Jeb Cramer 已提交
4762 4763 4764
	struct e1000_hw *hw = &adapter->hw;
	int cpu = get_cpu();

4765 4766 4767 4768 4769 4770 4771 4772 4773
	if (q_vector->cpu == cpu)
		goto out_no_update;

	if (q_vector->tx_ring) {
		int q = q_vector->tx_ring->reg_idx;
		u32 dca_txctrl = rd32(E1000_DCA_TXCTRL(q));
		if (hw->mac.type == e1000_82575) {
			dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK;
			dca_txctrl |= dca3_get_tag(&adapter->pdev->dev, cpu);
A
Alexander Duyck 已提交
4774
		} else {
4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785
			dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK_82576;
			dca_txctrl |= dca3_get_tag(&adapter->pdev->dev, cpu) <<
			              E1000_DCA_TXCTRL_CPUID_SHIFT;
		}
		dca_txctrl |= E1000_DCA_TXCTRL_DESC_DCA_EN;
		wr32(E1000_DCA_TXCTRL(q), dca_txctrl);
	}
	if (q_vector->rx_ring) {
		int q = q_vector->rx_ring->reg_idx;
		u32 dca_rxctrl = rd32(E1000_DCA_RXCTRL(q));
		if (hw->mac.type == e1000_82575) {
A
Alexander Duyck 已提交
4786
			dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK;
M
Maciej Sosnowski 已提交
4787
			dca_rxctrl |= dca3_get_tag(&adapter->pdev->dev, cpu);
4788 4789 4790 4791
		} else {
			dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK_82576;
			dca_rxctrl |= dca3_get_tag(&adapter->pdev->dev, cpu) <<
			              E1000_DCA_RXCTRL_CPUID_SHIFT;
A
Alexander Duyck 已提交
4792
		}
J
Jeb Cramer 已提交
4793 4794 4795 4796 4797
		dca_rxctrl |= E1000_DCA_RXCTRL_DESC_DCA_EN;
		dca_rxctrl |= E1000_DCA_RXCTRL_HEAD_DCA_EN;
		dca_rxctrl |= E1000_DCA_RXCTRL_DATA_DCA_EN;
		wr32(E1000_DCA_RXCTRL(q), dca_rxctrl);
	}
4798 4799
	q_vector->cpu = cpu;
out_no_update:
J
Jeb Cramer 已提交
4800 4801 4802 4803 4804
	put_cpu();
}

static void igb_setup_dca(struct igb_adapter *adapter)
{
4805
	struct e1000_hw *hw = &adapter->hw;
J
Jeb Cramer 已提交
4806 4807
	int i;

4808
	if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
J
Jeb Cramer 已提交
4809 4810
		return;

4811 4812 4813
	/* Always use CB2 mode, difference is masked in the CB driver. */
	wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);

4814
	for (i = 0; i < adapter->num_q_vectors; i++) {
4815 4816
		adapter->q_vector[i]->cpu = -1;
		igb_update_dca(adapter->q_vector[i]);
J
Jeb Cramer 已提交
4817 4818 4819 4820 4821 4822 4823
	}
}

static int __igb_notify_dca(struct device *dev, void *data)
{
	struct net_device *netdev = dev_get_drvdata(dev);
	struct igb_adapter *adapter = netdev_priv(netdev);
4824
	struct pci_dev *pdev = adapter->pdev;
J
Jeb Cramer 已提交
4825 4826 4827 4828 4829 4830
	struct e1000_hw *hw = &adapter->hw;
	unsigned long event = *(unsigned long *)data;

	switch (event) {
	case DCA_PROVIDER_ADD:
		/* if already enabled, don't do it again */
4831
		if (adapter->flags & IGB_FLAG_DCA_ENABLED)
J
Jeb Cramer 已提交
4832 4833
			break;
		if (dca_add_requester(dev) == 0) {
4834
			adapter->flags |= IGB_FLAG_DCA_ENABLED;
4835
			dev_info(&pdev->dev, "DCA enabled\n");
J
Jeb Cramer 已提交
4836 4837 4838 4839 4840
			igb_setup_dca(adapter);
			break;
		}
		/* Fall Through since DCA is disabled. */
	case DCA_PROVIDER_REMOVE:
4841
		if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
J
Jeb Cramer 已提交
4842
			/* without this a class_device is left
4843
			 * hanging around in the sysfs model */
J
Jeb Cramer 已提交
4844
			dca_remove_requester(dev);
4845
			dev_info(&pdev->dev, "DCA disabled\n");
4846
			adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
A
Alexander Duyck 已提交
4847
			wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
J
Jeb Cramer 已提交
4848 4849 4850
		}
		break;
	}
4851

J
Jeb Cramer 已提交
4852
	return 0;
4853 4854
}

J
Jeb Cramer 已提交
4855 4856 4857 4858 4859 4860 4861 4862 4863 4864
static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
                          void *p)
{
	int ret_val;

	ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
	                                 __igb_notify_dca);

	return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
}
4865
#endif /* CONFIG_IGB_DCA */
4866

4867 4868 4869 4870 4871 4872 4873 4874
static void igb_ping_all_vfs(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 ping;
	int i;

	for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
		ping = E1000_PF_CONTROL_MSG;
4875
		if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
4876 4877 4878 4879 4880
			ping |= E1000_VT_MSGTYPE_CTS;
		igb_write_mbx(hw, &ping, 1, i);
	}
}

4881 4882 4883 4884 4885 4886
static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 vmolr = rd32(E1000_VMOLR(vf));
	struct vf_data_storage *vf_data = &adapter->vf_data[vf];

4887
	vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
4888 4889 4890 4891 4892
	                    IGB_VF_FLAG_MULTI_PROMISC);
	vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);

	if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
		vmolr |= E1000_VMOLR_MPME;
4893
		vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920
		*msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
	} else {
		/*
		 * if we have hashes and we are clearing a multicast promisc
		 * flag we need to write the hashes to the MTA as this step
		 * was previously skipped
		 */
		if (vf_data->num_vf_mc_hashes > 30) {
			vmolr |= E1000_VMOLR_MPME;
		} else if (vf_data->num_vf_mc_hashes) {
			int j;
			vmolr |= E1000_VMOLR_ROMPE;
			for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
				igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
		}
	}

	wr32(E1000_VMOLR(vf), vmolr);

	/* there are flags left unprocessed, likely not supported */
	if (*msgbuf & E1000_VT_MSGINFO_MASK)
		return -EINVAL;

	return 0;

}

4921 4922 4923 4924 4925 4926 4927 4928
static int igb_set_vf_multicasts(struct igb_adapter *adapter,
				  u32 *msgbuf, u32 vf)
{
	int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
	u16 *hash_list = (u16 *)&msgbuf[1];
	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
	int i;

4929
	/* salt away the number of multicast addresses assigned
4930 4931 4932 4933 4934
	 * to this VF for later use to restore when the PF multi cast
	 * list changes
	 */
	vf_data->num_vf_mc_hashes = n;

4935 4936 4937 4938 4939
	/* only up to 30 hash values supported */
	if (n > 30)
		n = 30;

	/* store the hashes for later use */
4940
	for (i = 0; i < n; i++)
4941
		vf_data->vf_mc_hashes[i] = hash_list[i];
4942 4943

	/* Flush and reset the mta with the new values */
4944
	igb_set_rx_mode(adapter->netdev);
4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955

	return 0;
}

static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	struct vf_data_storage *vf_data;
	int i, j;

	for (i = 0; i < adapter->vfs_allocated_count; i++) {
4956 4957 4958
		u32 vmolr = rd32(E1000_VMOLR(i));
		vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);

4959
		vf_data = &adapter->vf_data[i];
4960 4961 4962 4963 4964 4965 4966 4967 4968 4969

		if ((vf_data->num_vf_mc_hashes > 30) ||
		    (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
			vmolr |= E1000_VMOLR_MPME;
		} else if (vf_data->num_vf_mc_hashes) {
			vmolr |= E1000_VMOLR_ROMPE;
			for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
				igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
		}
		wr32(E1000_VMOLR(i), vmolr);
4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997
	}
}

static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 pool_mask, reg, vid;
	int i;

	pool_mask = 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);

	/* Find the vlan filter for this id */
	for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
		reg = rd32(E1000_VLVF(i));

		/* remove the vf from the pool */
		reg &= ~pool_mask;

		/* if pool is empty then remove entry from vfta */
		if (!(reg & E1000_VLVF_POOLSEL_MASK) &&
		    (reg & E1000_VLVF_VLANID_ENABLE)) {
			reg = 0;
			vid = reg & E1000_VLVF_VLANID_MASK;
			igb_vfta_set(hw, vid, false);
		}

		wr32(E1000_VLVF(i), reg);
	}
4998 4999

	adapter->vf_data[vf].vlans_enabled = 0;
5000 5001 5002 5003 5004 5005 5006
}

static s32 igb_vlvf_set(struct igb_adapter *adapter, u32 vid, bool add, u32 vf)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 reg, i;

5007 5008 5009 5010 5011
	/* The vlvf table only exists on 82576 hardware and newer */
	if (hw->mac.type < e1000_82576)
		return -1;

	/* we only need to do this if VMDq is enabled */
5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040
	if (!adapter->vfs_allocated_count)
		return -1;

	/* Find the vlan filter for this id */
	for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
		reg = rd32(E1000_VLVF(i));
		if ((reg & E1000_VLVF_VLANID_ENABLE) &&
		    vid == (reg & E1000_VLVF_VLANID_MASK))
			break;
	}

	if (add) {
		if (i == E1000_VLVF_ARRAY_SIZE) {
			/* Did not find a matching VLAN ID entry that was
			 * enabled.  Search for a free filter entry, i.e.
			 * one without the enable bit set
			 */
			for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
				reg = rd32(E1000_VLVF(i));
				if (!(reg & E1000_VLVF_VLANID_ENABLE))
					break;
			}
		}
		if (i < E1000_VLVF_ARRAY_SIZE) {
			/* Found an enabled/available entry */
			reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);

			/* if !enabled we need to set this up in vfta */
			if (!(reg & E1000_VLVF_VLANID_ENABLE)) {
5041 5042
				/* add VID to filter table */
				igb_vfta_set(hw, vid, true);
5043 5044
				reg |= E1000_VLVF_VLANID_ENABLE;
			}
A
Alexander Duyck 已提交
5045 5046
			reg &= ~E1000_VLVF_VLANID_MASK;
			reg |= vid;
5047
			wr32(E1000_VLVF(i), reg);
5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062

			/* do not modify RLPML for PF devices */
			if (vf >= adapter->vfs_allocated_count)
				return 0;

			if (!adapter->vf_data[vf].vlans_enabled) {
				u32 size;
				reg = rd32(E1000_VMOLR(vf));
				size = reg & E1000_VMOLR_RLPML_MASK;
				size += 4;
				reg &= ~E1000_VMOLR_RLPML_MASK;
				reg |= size;
				wr32(E1000_VMOLR(vf), reg);
			}

5063
			adapter->vf_data[vf].vlans_enabled++;
5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075
			return 0;
		}
	} else {
		if (i < E1000_VLVF_ARRAY_SIZE) {
			/* remove vf from the pool */
			reg &= ~(1 << (E1000_VLVF_POOLSEL_SHIFT + vf));
			/* if pool is empty then remove entry from vfta */
			if (!(reg & E1000_VLVF_POOLSEL_MASK)) {
				reg = 0;
				igb_vfta_set(hw, vid, false);
			}
			wr32(E1000_VLVF(i), reg);
5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090

			/* do not modify RLPML for PF devices */
			if (vf >= adapter->vfs_allocated_count)
				return 0;

			adapter->vf_data[vf].vlans_enabled--;
			if (!adapter->vf_data[vf].vlans_enabled) {
				u32 size;
				reg = rd32(E1000_VMOLR(vf));
				size = reg & E1000_VMOLR_RLPML_MASK;
				size -= 4;
				reg &= ~E1000_VMOLR_RLPML_MASK;
				reg |= size;
				wr32(E1000_VMOLR(vf), reg);
			}
5091 5092
		}
	}
5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141
	return 0;
}

static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
{
	struct e1000_hw *hw = &adapter->hw;

	if (vid)
		wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
	else
		wr32(E1000_VMVIR(vf), 0);
}

static int igb_ndo_set_vf_vlan(struct net_device *netdev,
			       int vf, u16 vlan, u8 qos)
{
	int err = 0;
	struct igb_adapter *adapter = netdev_priv(netdev);

	if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
		return -EINVAL;
	if (vlan || qos) {
		err = igb_vlvf_set(adapter, vlan, !!vlan, vf);
		if (err)
			goto out;
		igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
		igb_set_vmolr(adapter, vf, !vlan);
		adapter->vf_data[vf].pf_vlan = vlan;
		adapter->vf_data[vf].pf_qos = qos;
		dev_info(&adapter->pdev->dev,
			 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
		if (test_bit(__IGB_DOWN, &adapter->state)) {
			dev_warn(&adapter->pdev->dev,
				 "The VF VLAN has been set,"
				 " but the PF device is not up.\n");
			dev_warn(&adapter->pdev->dev,
				 "Bring the PF device up before"
				 " attempting to use the VF device.\n");
		}
	} else {
		igb_vlvf_set(adapter, adapter->vf_data[vf].pf_vlan,
				   false, vf);
		igb_set_vmvir(adapter, vlan, vf);
		igb_set_vmolr(adapter, vf, true);
		adapter->vf_data[vf].pf_vlan = 0;
		adapter->vf_data[vf].pf_qos = 0;
       }
out:
       return err;
5142 5143 5144 5145 5146 5147 5148 5149 5150 5151
}

static int igb_set_vf_vlan(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
{
	int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
	int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);

	return igb_vlvf_set(adapter, vid, add, vf);
}

5152
static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
5153
{
G
Greg Rose 已提交
5154 5155
	/* clear flags - except flag that indicates PF has set the MAC */
	adapter->vf_data[vf].flags &= IGB_VF_FLAG_PF_SET_MAC;
5156
	adapter->vf_data[vf].last_nack = jiffies;
5157 5158

	/* reset offloads to defaults */
5159
	igb_set_vmolr(adapter, vf, true);
5160 5161 5162

	/* reset vlans for device */
	igb_clear_vf_vfta(adapter, vf);
5163 5164 5165 5166 5167 5168
	if (adapter->vf_data[vf].pf_vlan)
		igb_ndo_set_vf_vlan(adapter->netdev, vf,
				    adapter->vf_data[vf].pf_vlan,
				    adapter->vf_data[vf].pf_qos);
	else
		igb_clear_vf_vfta(adapter, vf);
5169 5170 5171 5172 5173

	/* reset multicast table array for vf */
	adapter->vf_data[vf].num_vf_mc_hashes = 0;

	/* Flush and reset the mta with the new values */
5174
	igb_set_rx_mode(adapter->netdev);
5175 5176
}

5177 5178 5179 5180 5181
static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
{
	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;

	/* generate a new mac address as we were hotplug removed/added */
5182 5183
	if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
		random_ether_addr(vf_mac);
5184 5185 5186 5187 5188 5189

	/* process remaining reset events */
	igb_vf_reset(adapter, vf);
}

static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
5190 5191 5192
{
	struct e1000_hw *hw = &adapter->hw;
	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
5193
	int rar_entry = hw->mac.rar_entry_count - (vf + 1);
5194 5195 5196 5197
	u32 reg, msgbuf[3];
	u8 *addr = (u8 *)(&msgbuf[1]);

	/* process all the same items cleared in a function level reset */
5198
	igb_vf_reset(adapter, vf);
5199 5200

	/* set vf mac address */
5201
	igb_rar_set_qsel(adapter, vf_mac, rar_entry, vf);
5202 5203 5204 5205 5206 5207 5208

	/* enable transmit and receive for vf */
	reg = rd32(E1000_VFTE);
	wr32(E1000_VFTE, reg | (1 << vf));
	reg = rd32(E1000_VFRE);
	wr32(E1000_VFRE, reg | (1 << vf));

G
Greg Rose 已提交
5209
	adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
5210 5211 5212 5213 5214 5215 5216 5217 5218

	/* reply to reset with ack and vf mac address */
	msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
	memcpy(addr, vf_mac, 6);
	igb_write_mbx(hw, msgbuf, 3, vf);
}

static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
{
G
Greg Rose 已提交
5219 5220 5221 5222
	/*
	 * The VF MAC Address is stored in a packed array of bytes
	 * starting at the second 32 bit word of the msg array
	 */
5223 5224
	unsigned char *addr = (char *)&msg[1];
	int err = -1;
5225

5226 5227
	if (is_valid_ether_addr(addr))
		err = igb_set_vf_mac(adapter, vf, addr);
5228

5229
	return err;
5230 5231 5232 5233 5234
}

static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
{
	struct e1000_hw *hw = &adapter->hw;
5235
	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5236 5237 5238
	u32 msg = E1000_VT_MSGTYPE_NACK;

	/* if device isn't clear to send it shouldn't be reading either */
5239 5240
	if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
	    time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
5241
		igb_write_mbx(hw, &msg, 1, vf);
5242
		vf_data->last_nack = jiffies;
5243 5244 5245
	}
}

5246
static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
5247
{
5248 5249
	struct pci_dev *pdev = adapter->pdev;
	u32 msgbuf[E1000_VFMAILBOX_SIZE];
5250
	struct e1000_hw *hw = &adapter->hw;
5251
	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5252 5253
	s32 retval;

5254
	retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf);
5255

5256 5257
	if (retval) {
		/* if receive failed revoke VF CTS stats and restart init */
5258
		dev_err(&pdev->dev, "Error receiving message from VF\n");
5259 5260 5261 5262 5263
		vf_data->flags &= ~IGB_VF_FLAG_CTS;
		if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
			return;
		goto out;
	}
5264 5265 5266

	/* this is a message we already processed, do nothing */
	if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
5267
		return;
5268 5269 5270 5271 5272 5273 5274 5275

	/*
	 * until the vf completes a reset it should not be
	 * allowed to start any configuration.
	 */

	if (msgbuf[0] == E1000_VF_RESET) {
		igb_vf_reset_msg(adapter, vf);
5276
		return;
5277 5278
	}

5279
	if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
5280 5281 5282 5283
		if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
			return;
		retval = -1;
		goto out;
5284 5285 5286 5287
	}

	switch ((msgbuf[0] & 0xFFFF)) {
	case E1000_VF_SET_MAC_ADDR:
5288 5289 5290 5291 5292 5293 5294 5295
		retval = -EINVAL;
		if (!(vf_data->flags & IGB_VF_FLAG_PF_SET_MAC))
			retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
		else
			dev_warn(&pdev->dev,
				 "VF %d attempted to override administratively "
				 "set MAC address\nReload the VF driver to "
				 "resume operations\n", vf);
5296
		break;
5297 5298 5299
	case E1000_VF_SET_PROMISC:
		retval = igb_set_vf_promisc(adapter, msgbuf, vf);
		break;
5300 5301 5302 5303 5304 5305 5306
	case E1000_VF_SET_MULTICAST:
		retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
		break;
	case E1000_VF_SET_LPE:
		retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
		break;
	case E1000_VF_SET_VLAN:
5307 5308 5309 5310 5311 5312
		retval = -1;
		if (vf_data->pf_vlan)
			dev_warn(&pdev->dev,
				 "VF %d attempted to override administratively "
				 "set VLAN tag\nReload the VF driver to "
				 "resume operations\n", vf);
5313 5314
		else
			retval = igb_set_vf_vlan(adapter, msgbuf, vf);
5315 5316
		break;
	default:
5317
		dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
5318 5319 5320 5321
		retval = -1;
		break;
	}

5322 5323
	msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
out:
5324 5325 5326 5327 5328 5329 5330
	/* notify the VF of the results of what it sent us */
	if (retval)
		msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
	else
		msgbuf[0] |= E1000_VT_MSGTYPE_ACK;

	igb_write_mbx(hw, msgbuf, 1, vf);
5331
}
5332

5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350
static void igb_msg_task(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 vf;

	for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
		/* process any reset requests */
		if (!igb_check_for_rst(hw, vf))
			igb_vf_reset_event(adapter, vf);

		/* process any messages pending */
		if (!igb_check_for_msg(hw, vf))
			igb_rcv_msg_from_vf(adapter, vf);

		/* process any acks */
		if (!igb_check_for_ack(hw, vf))
			igb_rcv_ack_from_vf(adapter, vf);
	}
5351 5352
}

5353 5354 5355 5356 5357 5358 5359
/**
 *  igb_set_uta - Set unicast filter table address
 *  @adapter: board private structure
 *
 *  The unicast table address is a register array of 32-bit registers.
 *  The table is meant to be used in a way similar to how the MTA is used
 *  however due to certain limitations in the hardware it is necessary to
L
Lucas De Marchi 已提交
5360 5361
 *  set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
 *  enable bit to allow vlan tag stripping when promiscuous mode is enabled
5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379
 **/
static void igb_set_uta(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	int i;

	/* The UTA table only exists on 82576 hardware and newer */
	if (hw->mac.type < e1000_82576)
		return;

	/* we only need to do this if VMDq is enabled */
	if (!adapter->vfs_allocated_count)
		return;

	for (i = 0; i < hw->mac.uta_reg_count; i++)
		array_wr32(E1000_UTA, i, ~0);
}

5380 5381 5382 5383 5384 5385 5386
/**
 * igb_intr_msi - Interrupt Handler
 * @irq: interrupt number
 * @data: pointer to a network interface device structure
 **/
static irqreturn_t igb_intr_msi(int irq, void *data)
{
5387 5388
	struct igb_adapter *adapter = data;
	struct igb_q_vector *q_vector = adapter->q_vector[0];
5389 5390 5391 5392
	struct e1000_hw *hw = &adapter->hw;
	/* read ICR disables interrupts using IAM */
	u32 icr = rd32(E1000_ICR);

5393
	igb_write_itr(q_vector);
5394

5395 5396 5397
	if (icr & E1000_ICR_DRSTA)
		schedule_work(&adapter->reset_task);

5398
	if (icr & E1000_ICR_DOUTSYNC) {
5399 5400 5401 5402
		/* HW is reporting DMA is out of sync */
		adapter->stats.doosync++;
	}

5403 5404 5405 5406 5407 5408
	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
		hw->mac.get_link_status = 1;
		if (!test_bit(__IGB_DOWN, &adapter->state))
			mod_timer(&adapter->watchdog_timer, jiffies + 1);
	}

5409
	napi_schedule(&q_vector->napi);
5410 5411 5412 5413 5414

	return IRQ_HANDLED;
}

/**
5415
 * igb_intr - Legacy Interrupt Handler
5416 5417 5418 5419 5420
 * @irq: interrupt number
 * @data: pointer to a network interface device structure
 **/
static irqreturn_t igb_intr(int irq, void *data)
{
5421 5422
	struct igb_adapter *adapter = data;
	struct igb_q_vector *q_vector = adapter->q_vector[0];
5423 5424 5425 5426 5427 5428 5429
	struct e1000_hw *hw = &adapter->hw;
	/* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
	 * need for the IMC write */
	u32 icr = rd32(E1000_ICR);
	if (!icr)
		return IRQ_NONE;  /* Not our interrupt */

5430
	igb_write_itr(q_vector);
5431 5432 5433 5434 5435 5436

	/* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
	 * not set, then the adapter didn't send an interrupt */
	if (!(icr & E1000_ICR_INT_ASSERTED))
		return IRQ_NONE;

5437 5438 5439
	if (icr & E1000_ICR_DRSTA)
		schedule_work(&adapter->reset_task);

5440
	if (icr & E1000_ICR_DOUTSYNC) {
5441 5442 5443 5444
		/* HW is reporting DMA is out of sync */
		adapter->stats.doosync++;
	}

5445 5446 5447 5448 5449 5450 5451
	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
		hw->mac.get_link_status = 1;
		/* guard against interrupt when we're going down */
		if (!test_bit(__IGB_DOWN, &adapter->state))
			mod_timer(&adapter->watchdog_timer, jiffies + 1);
	}

5452
	napi_schedule(&q_vector->napi);
5453 5454 5455 5456

	return IRQ_HANDLED;
}

5457
static inline void igb_ring_irq_enable(struct igb_q_vector *q_vector)
5458
{
5459
	struct igb_adapter *adapter = q_vector->adapter;
5460
	struct e1000_hw *hw = &adapter->hw;
5461

5462 5463
	if ((q_vector->rx_ring && (adapter->rx_itr_setting & 3)) ||
	    (!q_vector->rx_ring && (adapter->tx_itr_setting & 3))) {
5464
		if (!adapter->msix_entries)
5465
			igb_set_itr(adapter);
5466
		else
5467
			igb_update_ring_itr(q_vector);
5468 5469
	}

5470 5471
	if (!test_bit(__IGB_DOWN, &adapter->state)) {
		if (adapter->msix_entries)
5472
			wr32(E1000_EIMS, q_vector->eims_value);
5473 5474 5475
		else
			igb_irq_enable(adapter);
	}
5476 5477
}

5478 5479 5480 5481 5482 5483
/**
 * igb_poll - NAPI Rx polling callback
 * @napi: napi polling structure
 * @budget: count of how many packets we should handle
 **/
static int igb_poll(struct napi_struct *napi, int budget)
5484
{
5485 5486 5487 5488
	struct igb_q_vector *q_vector = container_of(napi,
	                                             struct igb_q_vector,
	                                             napi);
	int tx_clean_complete = 1, work_done = 0;
5489

5490
#ifdef CONFIG_IGB_DCA
5491 5492
	if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
		igb_update_dca(q_vector);
J
Jeb Cramer 已提交
5493
#endif
5494 5495
	if (q_vector->tx_ring)
		tx_clean_complete = igb_clean_tx_irq(q_vector);
5496

5497 5498 5499 5500 5501
	if (q_vector->rx_ring)
		igb_clean_rx_irq_adv(q_vector, &work_done, budget);

	if (!tx_clean_complete)
		work_done = budget;
5502

5503
	/* If not enough Rx work done, exit the polling mode */
5504
	if (work_done < budget) {
5505
		napi_complete(napi);
5506
		igb_ring_irq_enable(q_vector);
5507 5508
	}

5509
	return work_done;
5510
}
A
Al Viro 已提交
5511

5512
/**
5513
 * igb_systim_to_hwtstamp - convert system time value to hw timestamp
5514
 * @adapter: board private structure
5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526
 * @shhwtstamps: timestamp structure to update
 * @regval: unsigned 64bit system time value.
 *
 * We need to convert the system time value stored in the RX/TXSTMP registers
 * into a hwtstamp which can be used by the upper level timestamping functions
 */
static void igb_systim_to_hwtstamp(struct igb_adapter *adapter,
                                   struct skb_shared_hwtstamps *shhwtstamps,
                                   u64 regval)
{
	u64 ns;

5527 5528 5529 5530 5531 5532 5533
	/*
	 * The 82580 starts with 1ns at bit 0 in RX/TXSTMPL, shift this up to
	 * 24 to match clock shift we setup earlier.
	 */
	if (adapter->hw.mac.type == e1000_82580)
		regval <<= IGB_82580_TSYNC_SHIFT;

5534 5535 5536 5537 5538 5539 5540 5541 5542 5543
	ns = timecounter_cyc2time(&adapter->clock, regval);
	timecompare_update(&adapter->compare, ns);
	memset(shhwtstamps, 0, sizeof(struct skb_shared_hwtstamps));
	shhwtstamps->hwtstamp = ns_to_ktime(ns);
	shhwtstamps->syststamp = timecompare_transform(&adapter->compare, ns);
}

/**
 * igb_tx_hwtstamp - utility function which checks for TX time stamp
 * @q_vector: pointer to q_vector containing needed info
5544
 * @buffer: pointer to igb_buffer structure
5545 5546 5547 5548 5549
 *
 * If we were asked to do hardware stamping and such a time stamp is
 * available, then it must have been for this skb here because we only
 * allow only one such packet into the queue.
 */
5550
static void igb_tx_hwtstamp(struct igb_q_vector *q_vector, struct igb_buffer *buffer_info)
5551
{
5552
	struct igb_adapter *adapter = q_vector->adapter;
5553
	struct e1000_hw *hw = &adapter->hw;
5554 5555
	struct skb_shared_hwtstamps shhwtstamps;
	u64 regval;
5556

5557
	/* if skb does not support hw timestamp or TX stamp not valid exit */
5558
	if (likely(!(buffer_info->tx_flags & SKBTX_HW_TSTAMP)) ||
5559 5560 5561 5562 5563 5564 5565
	    !(rd32(E1000_TSYNCTXCTL) & E1000_TSYNCTXCTL_VALID))
		return;

	regval = rd32(E1000_TXSTMPL);
	regval |= (u64)rd32(E1000_TXSTMPH) << 32;

	igb_systim_to_hwtstamp(adapter, &shhwtstamps, regval);
5566
	skb_tstamp_tx(buffer_info->skb, &shhwtstamps);
5567 5568
}

5569 5570
/**
 * igb_clean_tx_irq - Reclaim resources after transmit completes
5571
 * @q_vector: pointer to q_vector containing needed info
5572 5573
 * returns true if ring is completely cleaned
 **/
5574
static bool igb_clean_tx_irq(struct igb_q_vector *q_vector)
5575
{
5576 5577
	struct igb_adapter *adapter = q_vector->adapter;
	struct igb_ring *tx_ring = q_vector->tx_ring;
5578
	struct net_device *netdev = tx_ring->netdev;
A
Alexander Duyck 已提交
5579
	struct e1000_hw *hw = &adapter->hw;
5580
	struct igb_buffer *buffer_info;
A
Alexander Duyck 已提交
5581
	union e1000_adv_tx_desc *tx_desc, *eop_desc;
5582
	unsigned int total_bytes = 0, total_packets = 0;
A
Alexander Duyck 已提交
5583 5584
	unsigned int i, eop, count = 0;
	bool cleaned = false;
5585 5586

	i = tx_ring->next_to_clean;
A
Alexander Duyck 已提交
5587 5588 5589 5590 5591
	eop = tx_ring->buffer_info[i].next_to_watch;
	eop_desc = E1000_TX_DESC_ADV(*tx_ring, eop);

	while ((eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)) &&
	       (count < tx_ring->count)) {
5592
		rmb();	/* read buffer_info after eop_desc status */
A
Alexander Duyck 已提交
5593 5594
		for (cleaned = false; !cleaned; count++) {
			tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
5595
			buffer_info = &tx_ring->buffer_info[i];
A
Alexander Duyck 已提交
5596
			cleaned = (i == eop);
5597

5598 5599
			if (buffer_info->skb) {
				total_bytes += buffer_info->bytecount;
5600
				/* gso_segs is currently only valid for tcp */
5601 5602
				total_packets += buffer_info->gso_segs;
				igb_tx_hwtstamp(q_vector, buffer_info);
5603 5604
			}

5605
			igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
A
Alexander Duyck 已提交
5606
			tx_desc->wb.status = 0;
5607 5608 5609 5610 5611

			i++;
			if (i == tx_ring->count)
				i = 0;
		}
A
Alexander Duyck 已提交
5612 5613 5614 5615
		eop = tx_ring->buffer_info[i].next_to_watch;
		eop_desc = E1000_TX_DESC_ADV(*tx_ring, eop);
	}

5616 5617
	tx_ring->next_to_clean = i;

5618
	if (unlikely(count &&
5619
		     netif_carrier_ok(netdev) &&
5620
		     igb_desc_unused(tx_ring) >= IGB_TX_QUEUE_WAKE)) {
5621 5622 5623 5624
		/* Make sure that anybody stopping the queue after this
		 * sees the new next_to_clean.
		 */
		smp_mb();
5625 5626 5627
		if (__netif_subqueue_stopped(netdev, tx_ring->queue_index) &&
		    !(test_bit(__IGB_DOWN, &adapter->state))) {
			netif_wake_subqueue(netdev, tx_ring->queue_index);
E
Eric Dumazet 已提交
5628 5629

			u64_stats_update_begin(&tx_ring->tx_syncp);
5630
			tx_ring->tx_stats.restart_queue++;
E
Eric Dumazet 已提交
5631
			u64_stats_update_end(&tx_ring->tx_syncp);
5632
		}
5633 5634 5635 5636 5637 5638 5639 5640
	}

	if (tx_ring->detect_tx_hung) {
		/* Detect a transmit hang in hardware, this serializes the
		 * check with the clearing of time_stamp and movement of i */
		tx_ring->detect_tx_hung = false;
		if (tx_ring->buffer_info[i].time_stamp &&
		    time_after(jiffies, tx_ring->buffer_info[i].time_stamp +
5641 5642
			       (adapter->tx_timeout_factor * HZ)) &&
		    !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
5643 5644

			/* detected Tx unit hang */
5645
			dev_err(tx_ring->dev,
5646
				"Detected Tx Unit Hang\n"
A
Alexander Duyck 已提交
5647
				"  Tx Queue             <%d>\n"
5648 5649 5650 5651 5652 5653
				"  TDH                  <%x>\n"
				"  TDT                  <%x>\n"
				"  next_to_use          <%x>\n"
				"  next_to_clean        <%x>\n"
				"buffer_info[next_to_clean]\n"
				"  time_stamp           <%lx>\n"
A
Alexander Duyck 已提交
5654
				"  next_to_watch        <%x>\n"
5655 5656
				"  jiffies              <%lx>\n"
				"  desc.status          <%x>\n",
A
Alexander Duyck 已提交
5657
				tx_ring->queue_index,
5658 5659
				readl(tx_ring->head),
				readl(tx_ring->tail),
5660 5661
				tx_ring->next_to_use,
				tx_ring->next_to_clean,
5662
				tx_ring->buffer_info[eop].time_stamp,
A
Alexander Duyck 已提交
5663
				eop,
5664
				jiffies,
A
Alexander Duyck 已提交
5665
				eop_desc->wb.status);
5666
			netif_stop_subqueue(netdev, tx_ring->queue_index);
5667 5668 5669 5670
		}
	}
	tx_ring->total_bytes += total_bytes;
	tx_ring->total_packets += total_packets;
E
Eric Dumazet 已提交
5671
	u64_stats_update_begin(&tx_ring->tx_syncp);
5672 5673
	tx_ring->tx_stats.bytes += total_bytes;
	tx_ring->tx_stats.packets += total_packets;
E
Eric Dumazet 已提交
5674
	u64_stats_update_end(&tx_ring->tx_syncp);
5675
	return count < tx_ring->count;
5676 5677 5678 5679
}

/**
 * igb_receive_skb - helper function to handle rx indications
5680 5681 5682
 * @q_vector: structure containing interrupt and ring information
 * @skb: packet to send up
 * @vlan_tag: vlan tag for packet
5683
 **/
5684 5685 5686 5687 5688 5689
static void igb_receive_skb(struct igb_q_vector *q_vector,
                            struct sk_buff *skb,
                            u16 vlan_tag)
{
	struct igb_adapter *adapter = q_vector->adapter;

5690
	if (vlan_tag && adapter->vlgrp)
5691 5692
		vlan_gro_receive(&q_vector->napi, adapter->vlgrp,
		                 vlan_tag, skb);
5693
	else
5694
		napi_gro_receive(&q_vector->napi, skb);
5695 5696
}

5697
static inline void igb_rx_checksum_adv(struct igb_ring *ring,
5698 5699
				       u32 status_err, struct sk_buff *skb)
{
5700
	skb_checksum_none_assert(skb);
5701 5702

	/* Ignore Checksum bit is set or checksum is disabled through ethtool */
5703 5704
	if (!(ring->flags & IGB_RING_FLAG_RX_CSUM) ||
	     (status_err & E1000_RXD_STAT_IXSM))
5705
		return;
5706

5707 5708 5709
	/* TCP/UDP checksum error bit is set */
	if (status_err &
	    (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) {
5710 5711 5712 5713 5714
		/*
		 * work around errata with sctp packets where the TCPE aka
		 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
		 * packets, (aka let the stack check the crc32c)
		 */
5715
		if ((skb->len == 60) &&
E
Eric Dumazet 已提交
5716 5717
		    (ring->flags & IGB_RING_FLAG_RX_SCTP_CSUM)) {
			u64_stats_update_begin(&ring->rx_syncp);
5718
			ring->rx_stats.csum_err++;
E
Eric Dumazet 已提交
5719 5720
			u64_stats_update_end(&ring->rx_syncp);
		}
5721 5722 5723 5724 5725 5726 5727
		/* let the stack verify checksum errors */
		return;
	}
	/* It must be a TCP or UDP packet with a valid checksum */
	if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))
		skb->ip_summed = CHECKSUM_UNNECESSARY;

5728
	dev_dbg(ring->dev, "cksum success: bits %08X\n", status_err);
5729 5730
}

N
Nick Nunley 已提交
5731
static void igb_rx_hwtstamp(struct igb_q_vector *q_vector, u32 staterr,
5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745
                                   struct sk_buff *skb)
{
	struct igb_adapter *adapter = q_vector->adapter;
	struct e1000_hw *hw = &adapter->hw;
	u64 regval;

	/*
	 * If this bit is set, then the RX registers contain the time stamp. No
	 * other packet will be time stamped until we read these registers, so
	 * read the registers to make them available again. Because only one
	 * packet can be time stamped at a time, we know that the register
	 * values must belong to this one here and therefore we don't need to
	 * compare any of the additional attributes stored for it.
	 *
5746
	 * If nothing went wrong, then it should have a shared tx_flags that we
5747 5748
	 * can turn into a skb_shared_hwtstamps.
	 */
N
Nick Nunley 已提交
5749 5750 5751 5752 5753 5754 5755 5756
	if (staterr & E1000_RXDADV_STAT_TSIP) {
		u32 *stamp = (u32 *)skb->data;
		regval = le32_to_cpu(*(stamp + 2));
		regval |= (u64)le32_to_cpu(*(stamp + 3)) << 32;
		skb_pull(skb, IGB_TS_HDR_LEN);
	} else {
		if(!(rd32(E1000_TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
			return;
5757

N
Nick Nunley 已提交
5758 5759 5760
		regval = rd32(E1000_RXSTMPL);
		regval |= (u64)rd32(E1000_RXSTMPH) << 32;
	}
5761 5762 5763

	igb_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), regval);
}
5764
static inline u16 igb_get_hlen(struct igb_ring *rx_ring,
5765 5766 5767 5768 5769 5770 5771 5772
                               union e1000_adv_rx_desc *rx_desc)
{
	/* HW will not DMA in data larger than the given buffer, even if it
	 * parses the (NFS, of course) header to be larger.  In that case, it
	 * fills the header buffer and spills the rest into the page.
	 */
	u16 hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hdr_info) &
	           E1000_RXDADV_HDRBUFLEN_MASK) >> E1000_RXDADV_HDRBUFLEN_SHIFT;
5773 5774
	if (hlen > rx_ring->rx_buffer_len)
		hlen = rx_ring->rx_buffer_len;
5775 5776 5777
	return hlen;
}

5778 5779
static bool igb_clean_rx_irq_adv(struct igb_q_vector *q_vector,
                                 int *work_done, int budget)
5780
{
5781
	struct igb_ring *rx_ring = q_vector->rx_ring;
5782
	struct net_device *netdev = rx_ring->netdev;
5783
	struct device *dev = rx_ring->dev;
5784 5785 5786 5787 5788
	union e1000_adv_rx_desc *rx_desc , *next_rxd;
	struct igb_buffer *buffer_info , *next_buffer;
	struct sk_buff *skb;
	bool cleaned = false;
	int cleaned_count = 0;
5789
	int current_node = numa_node_id();
5790
	unsigned int total_bytes = 0, total_packets = 0;
5791
	unsigned int i;
5792 5793
	u32 staterr;
	u16 length;
5794
	u16 vlan_tag;
5795 5796

	i = rx_ring->next_to_clean;
5797
	buffer_info = &rx_ring->buffer_info[i];
5798 5799 5800 5801 5802 5803 5804
	rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
	staterr = le32_to_cpu(rx_desc->wb.upper.status_error);

	while (staterr & E1000_RXD_STAT_DD) {
		if (*work_done >= budget)
			break;
		(*work_done)++;
5805
		rmb(); /* read descriptor and rx_buffer_info after status DD */
5806

5807 5808 5809 5810 5811 5812 5813
		skb = buffer_info->skb;
		prefetch(skb->data - NET_IP_ALIGN);
		buffer_info->skb = NULL;

		i++;
		if (i == rx_ring->count)
			i = 0;
5814

5815 5816 5817
		next_rxd = E1000_RX_DESC_ADV(*rx_ring, i);
		prefetch(next_rxd);
		next_buffer = &rx_ring->buffer_info[i];
5818 5819 5820 5821 5822

		length = le16_to_cpu(rx_desc->wb.upper.length);
		cleaned = true;
		cleaned_count++;

5823
		if (buffer_info->dma) {
5824
			dma_unmap_single(dev, buffer_info->dma,
5825
					 rx_ring->rx_buffer_len,
5826
					 DMA_FROM_DEVICE);
J
Jesse Brandeburg 已提交
5827
			buffer_info->dma = 0;
5828
			if (rx_ring->rx_buffer_len >= IGB_RXBUFFER_1024) {
A
Alexander Duyck 已提交
5829 5830 5831
				skb_put(skb, length);
				goto send_up;
			}
5832
			skb_put(skb, igb_get_hlen(rx_ring, rx_desc));
5833 5834 5835
		}

		if (length) {
5836 5837
			dma_unmap_page(dev, buffer_info->page_dma,
				       PAGE_SIZE / 2, DMA_FROM_DEVICE);
5838
			buffer_info->page_dma = 0;
5839

K
Koki Sanagi 已提交
5840
			skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
5841 5842 5843 5844
						buffer_info->page,
						buffer_info->page_offset,
						length);

5845 5846
			if ((page_count(buffer_info->page) != 1) ||
			    (page_to_nid(buffer_info->page) != current_node))
5847 5848 5849
				buffer_info->page = NULL;
			else
				get_page(buffer_info->page);
5850 5851 5852

			skb->len += length;
			skb->data_len += length;
5853
			skb->truesize += length;
5854 5855
		}

5856
		if (!(staterr & E1000_RXD_STAT_EOP)) {
5857 5858 5859 5860
			buffer_info->skb = next_buffer->skb;
			buffer_info->dma = next_buffer->dma;
			next_buffer->skb = skb;
			next_buffer->dma = 0;
5861 5862
			goto next_desc;
		}
5863
send_up:
5864 5865 5866 5867 5868
		if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
			dev_kfree_skb_irq(skb);
			goto next_desc;
		}

N
Nick Nunley 已提交
5869 5870
		if (staterr & (E1000_RXDADV_STAT_TSIP | E1000_RXDADV_STAT_TS))
			igb_rx_hwtstamp(q_vector, staterr, skb);
5871 5872 5873
		total_bytes += skb->len;
		total_packets++;

5874
		igb_rx_checksum_adv(rx_ring, staterr, skb);
5875 5876

		skb->protocol = eth_type_trans(skb, netdev);
5877 5878 5879 5880
		skb_record_rx_queue(skb, rx_ring->queue_index);

		vlan_tag = ((staterr & E1000_RXD_STAT_VP) ?
		            le16_to_cpu(rx_desc->wb.upper.vlan) : 0);
5881

5882
		igb_receive_skb(q_vector, skb, vlan_tag);
5883 5884 5885 5886 5887 5888

next_desc:
		rx_desc->wb.upper.status_error = 0;

		/* return some buffers to hardware, one at a time is too slow */
		if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
5889
			igb_alloc_rx_buffers_adv(rx_ring, cleaned_count);
5890 5891 5892 5893 5894 5895 5896 5897
			cleaned_count = 0;
		}

		/* use prefetched values */
		rx_desc = next_rxd;
		buffer_info = next_buffer;
		staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
	}
5898

5899
	rx_ring->next_to_clean = i;
5900
	cleaned_count = igb_desc_unused(rx_ring);
5901 5902

	if (cleaned_count)
5903
		igb_alloc_rx_buffers_adv(rx_ring, cleaned_count);
5904 5905 5906

	rx_ring->total_packets += total_packets;
	rx_ring->total_bytes += total_bytes;
E
Eric Dumazet 已提交
5907
	u64_stats_update_begin(&rx_ring->rx_syncp);
5908 5909
	rx_ring->rx_stats.packets += total_packets;
	rx_ring->rx_stats.bytes += total_bytes;
E
Eric Dumazet 已提交
5910
	u64_stats_update_end(&rx_ring->rx_syncp);
5911 5912 5913 5914 5915 5916 5917
	return cleaned;
}

/**
 * igb_alloc_rx_buffers_adv - Replace used receive buffers; packet split
 * @adapter: address of board private structure
 **/
5918
void igb_alloc_rx_buffers_adv(struct igb_ring *rx_ring, int cleaned_count)
5919
{
5920
	struct net_device *netdev = rx_ring->netdev;
5921 5922 5923 5924
	union e1000_adv_rx_desc *rx_desc;
	struct igb_buffer *buffer_info;
	struct sk_buff *skb;
	unsigned int i;
5925
	int bufsz;
5926 5927 5928 5929

	i = rx_ring->next_to_use;
	buffer_info = &rx_ring->buffer_info[i];

5930
	bufsz = rx_ring->rx_buffer_len;
5931

5932 5933 5934
	while (cleaned_count--) {
		rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);

A
Alexander Duyck 已提交
5935
		if ((bufsz < IGB_RXBUFFER_1024) && !buffer_info->page_dma) {
5936
			if (!buffer_info->page) {
5937
				buffer_info->page = netdev_alloc_page(netdev);
E
Eric Dumazet 已提交
5938 5939
				if (unlikely(!buffer_info->page)) {
					u64_stats_update_begin(&rx_ring->rx_syncp);
5940
					rx_ring->rx_stats.alloc_failed++;
E
Eric Dumazet 已提交
5941
					u64_stats_update_end(&rx_ring->rx_syncp);
5942 5943 5944 5945 5946
					goto no_buffers;
				}
				buffer_info->page_offset = 0;
			} else {
				buffer_info->page_offset ^= PAGE_SIZE / 2;
5947 5948
			}
			buffer_info->page_dma =
5949
				dma_map_page(rx_ring->dev, buffer_info->page,
5950 5951
					     buffer_info->page_offset,
					     PAGE_SIZE / 2,
5952 5953 5954
					     DMA_FROM_DEVICE);
			if (dma_mapping_error(rx_ring->dev,
					      buffer_info->page_dma)) {
5955
				buffer_info->page_dma = 0;
E
Eric Dumazet 已提交
5956
				u64_stats_update_begin(&rx_ring->rx_syncp);
5957
				rx_ring->rx_stats.alloc_failed++;
E
Eric Dumazet 已提交
5958
				u64_stats_update_end(&rx_ring->rx_syncp);
5959 5960
				goto no_buffers;
			}
5961 5962
		}

5963 5964
		skb = buffer_info->skb;
		if (!skb) {
5965
			skb = netdev_alloc_skb_ip_align(netdev, bufsz);
E
Eric Dumazet 已提交
5966 5967
			if (unlikely(!skb)) {
				u64_stats_update_begin(&rx_ring->rx_syncp);
5968
				rx_ring->rx_stats.alloc_failed++;
E
Eric Dumazet 已提交
5969
				u64_stats_update_end(&rx_ring->rx_syncp);
5970 5971 5972 5973
				goto no_buffers;
			}

			buffer_info->skb = skb;
5974 5975
		}
		if (!buffer_info->dma) {
5976
			buffer_info->dma = dma_map_single(rx_ring->dev,
5977
			                                  skb->data,
5978
							  bufsz,
5979 5980 5981
							  DMA_FROM_DEVICE);
			if (dma_mapping_error(rx_ring->dev,
					      buffer_info->dma)) {
5982
				buffer_info->dma = 0;
E
Eric Dumazet 已提交
5983
				u64_stats_update_begin(&rx_ring->rx_syncp);
5984
				rx_ring->rx_stats.alloc_failed++;
E
Eric Dumazet 已提交
5985
				u64_stats_update_end(&rx_ring->rx_syncp);
5986 5987
				goto no_buffers;
			}
5988 5989 5990
		}
		/* Refresh the desc even if buffer_addrs didn't change because
		 * each write-back erases this info. */
A
Alexander Duyck 已提交
5991
		if (bufsz < IGB_RXBUFFER_1024) {
5992 5993 5994 5995
			rx_desc->read.pkt_addr =
			     cpu_to_le64(buffer_info->page_dma);
			rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma);
		} else {
5996
			rx_desc->read.pkt_addr = cpu_to_le64(buffer_info->dma);
5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018
			rx_desc->read.hdr_addr = 0;
		}

		i++;
		if (i == rx_ring->count)
			i = 0;
		buffer_info = &rx_ring->buffer_info[i];
	}

no_buffers:
	if (rx_ring->next_to_use != i) {
		rx_ring->next_to_use = i;
		if (i == 0)
			i = (rx_ring->count - 1);
		else
			i--;

		/* Force memory writes to complete before letting h/w
		 * know there are new descriptors to fetch.  (Only
		 * applicable for weak-ordered memory model archs,
		 * such as IA-64). */
		wmb();
6019
		writel(i, rx_ring->tail);
6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041
	}
}

/**
 * igb_mii_ioctl -
 * @netdev:
 * @ifreq:
 * @cmd:
 **/
static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct mii_ioctl_data *data = if_mii(ifr);

	if (adapter->hw.phy.media_type != e1000_media_type_copper)
		return -EOPNOTSUPP;

	switch (cmd) {
	case SIOCGMIIPHY:
		data->phy_id = adapter->hw.phy.addr;
		break;
	case SIOCGMIIREG:
6042 6043
		if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
		                     &data->val_out))
6044 6045 6046 6047 6048 6049 6050 6051 6052
			return -EIO;
		break;
	case SIOCSMIIREG:
	default:
		return -EOPNOTSUPP;
	}
	return 0;
}

6053 6054 6055 6056 6057 6058
/**
 * igb_hwtstamp_ioctl - control hardware time stamping
 * @netdev:
 * @ifreq:
 * @cmd:
 *
6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070
 * Outgoing time stamping can be enabled and disabled. Play nice and
 * disable it when requested, although it shouldn't case any overhead
 * when no packet needs it. At most one packet in the queue may be
 * marked for time stamping, otherwise it would be impossible to tell
 * for sure to which packet the hardware time stamp belongs.
 *
 * Incoming time stamping has to be configured via the hardware
 * filters. Not all combinations are supported, in particular event
 * type has to be specified. Matching the kind of event packet is
 * not supported, with the exception of "all V2 events regardless of
 * level 2 or 4".
 *
6071 6072 6073 6074
 **/
static int igb_hwtstamp_ioctl(struct net_device *netdev,
			      struct ifreq *ifr, int cmd)
{
6075 6076
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
6077
	struct hwtstamp_config config;
6078 6079
	u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
	u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
6080
	u32 tsync_rx_cfg = 0;
6081 6082
	bool is_l4 = false;
	bool is_l2 = false;
6083
	u32 regval;
6084 6085 6086 6087 6088 6089 6090 6091

	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
		return -EFAULT;

	/* reserved for future extensions */
	if (config.flags)
		return -EINVAL;

6092 6093
	switch (config.tx_type) {
	case HWTSTAMP_TX_OFF:
6094
		tsync_tx_ctl = 0;
6095 6096 6097 6098 6099 6100 6101 6102
	case HWTSTAMP_TX_ON:
		break;
	default:
		return -ERANGE;
	}

	switch (config.rx_filter) {
	case HWTSTAMP_FILTER_NONE:
6103
		tsync_rx_ctl = 0;
6104 6105 6106 6107 6108 6109 6110 6111 6112 6113
		break;
	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
	case HWTSTAMP_FILTER_ALL:
		/*
		 * register TSYNCRXCFG must be set, therefore it is not
		 * possible to time stamp both Sync and Delay_Req messages
		 * => fall back to time stamping all packets
		 */
6114
		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
6115 6116 6117
		config.rx_filter = HWTSTAMP_FILTER_ALL;
		break;
	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
6118
		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
6119
		tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE;
6120
		is_l4 = true;
6121 6122
		break;
	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
6123
		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
6124
		tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE;
6125
		is_l4 = true;
6126 6127 6128
		break;
	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
6129
		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
6130
		tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V2_SYNC_MESSAGE;
6131 6132
		is_l2 = true;
		is_l4 = true;
6133 6134 6135 6136
		config.rx_filter = HWTSTAMP_FILTER_SOME;
		break;
	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
6137
		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
6138
		tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V2_DELAY_REQ_MESSAGE;
6139 6140
		is_l2 = true;
		is_l4 = true;
6141 6142 6143 6144 6145
		config.rx_filter = HWTSTAMP_FILTER_SOME;
		break;
	case HWTSTAMP_FILTER_PTP_V2_EVENT:
	case HWTSTAMP_FILTER_PTP_V2_SYNC:
	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
6146
		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
6147
		config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
6148
		is_l2 = true;
6149 6150 6151 6152 6153
		break;
	default:
		return -ERANGE;
	}

6154 6155 6156 6157 6158 6159
	if (hw->mac.type == e1000_82575) {
		if (tsync_rx_ctl | tsync_tx_ctl)
			return -EINVAL;
		return 0;
	}

N
Nick Nunley 已提交
6160 6161 6162 6163 6164 6165 6166 6167 6168 6169
	/*
	 * Per-packet timestamping only works if all packets are
	 * timestamped, so enable timestamping in all packets as
	 * long as one rx filter was configured.
	 */
	if ((hw->mac.type == e1000_82580) && tsync_rx_ctl) {
		tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
	}

6170 6171
	/* enable/disable TX */
	regval = rd32(E1000_TSYNCTXCTL);
6172 6173
	regval &= ~E1000_TSYNCTXCTL_ENABLED;
	regval |= tsync_tx_ctl;
6174 6175
	wr32(E1000_TSYNCTXCTL, regval);

6176
	/* enable/disable RX */
6177
	regval = rd32(E1000_TSYNCRXCTL);
6178 6179
	regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
	regval |= tsync_rx_ctl;
6180 6181
	wr32(E1000_TSYNCRXCTL, regval);

6182 6183
	/* define which PTP packets are time stamped */
	wr32(E1000_TSYNCRXCFG, tsync_rx_cfg);
6184

6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214
	/* define ethertype filter for timestamped packets */
	if (is_l2)
		wr32(E1000_ETQF(3),
		                (E1000_ETQF_FILTER_ENABLE | /* enable filter */
		                 E1000_ETQF_1588 | /* enable timestamping */
		                 ETH_P_1588));     /* 1588 eth protocol type */
	else
		wr32(E1000_ETQF(3), 0);

#define PTP_PORT 319
	/* L4 Queue Filter[3]: filter by destination port and protocol */
	if (is_l4) {
		u32 ftqf = (IPPROTO_UDP /* UDP */
			| E1000_FTQF_VF_BP /* VF not compared */
			| E1000_FTQF_1588_TIME_STAMP /* Enable Timestamping */
			| E1000_FTQF_MASK); /* mask all inputs */
		ftqf &= ~E1000_FTQF_MASK_PROTO_BP; /* enable protocol check */

		wr32(E1000_IMIR(3), htons(PTP_PORT));
		wr32(E1000_IMIREXT(3),
		     (E1000_IMIREXT_SIZE_BP | E1000_IMIREXT_CTRL_BP));
		if (hw->mac.type == e1000_82576) {
			/* enable source port check */
			wr32(E1000_SPQF(3), htons(PTP_PORT));
			ftqf &= ~E1000_FTQF_MASK_SOURCE_PORT_BP;
		}
		wr32(E1000_FTQF(3), ftqf);
	} else {
		wr32(E1000_FTQF(3), E1000_FTQF_MASK);
	}
6215 6216 6217 6218 6219 6220 6221
	wrfl();

	adapter->hwtstamp_config = config;

	/* clear TX/RX time stamp registers, just to be sure */
	regval = rd32(E1000_TXSTMPH);
	regval = rd32(E1000_RXSTMPH);
6222

6223 6224
	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
		-EFAULT : 0;
6225 6226
}

6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239
/**
 * igb_ioctl -
 * @netdev:
 * @ifreq:
 * @cmd:
 **/
static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
{
	switch (cmd) {
	case SIOCGMIIPHY:
	case SIOCGMIIREG:
	case SIOCSMIIREG:
		return igb_mii_ioctl(netdev, ifr, cmd);
6240 6241
	case SIOCSHWTSTAMP:
		return igb_hwtstamp_ioctl(netdev, ifr, cmd);
6242 6243 6244 6245 6246
	default:
		return -EOPNOTSUPP;
	}
}

6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274
s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
{
	struct igb_adapter *adapter = hw->back;
	u16 cap_offset;

	cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
	if (!cap_offset)
		return -E1000_ERR_CONFIG;

	pci_read_config_word(adapter->pdev, cap_offset + reg, value);

	return 0;
}

s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
{
	struct igb_adapter *adapter = hw->back;
	u16 cap_offset;

	cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
	if (!cap_offset)
		return -E1000_ERR_CONFIG;

	pci_write_config_word(adapter->pdev, cap_offset + reg, *value);

	return 0;
}

6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290
static void igb_vlan_rx_register(struct net_device *netdev,
				 struct vlan_group *grp)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 ctrl, rctl;

	igb_irq_disable(adapter);
	adapter->vlgrp = grp;

	if (grp) {
		/* enable VLAN tag insert/strip */
		ctrl = rd32(E1000_CTRL);
		ctrl |= E1000_CTRL_VME;
		wr32(E1000_CTRL, ctrl);

6291
		/* Disable CFI check */
6292 6293 6294 6295 6296 6297 6298 6299 6300 6301
		rctl = rd32(E1000_RCTL);
		rctl &= ~E1000_RCTL_CFIEN;
		wr32(E1000_RCTL, rctl);
	} else {
		/* disable VLAN tag insert/strip */
		ctrl = rd32(E1000_CTRL);
		ctrl &= ~E1000_CTRL_VME;
		wr32(E1000_CTRL, ctrl);
	}

6302 6303
	igb_rlpml_set(adapter);

6304 6305 6306 6307 6308 6309 6310 6311
	if (!test_bit(__IGB_DOWN, &adapter->state))
		igb_irq_enable(adapter);
}

static void igb_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
6312
	int pf_id = adapter->vfs_allocated_count;
6313

6314 6315
	/* attempt to add filter to vlvf array */
	igb_vlvf_set(adapter, vid, true, pf_id);
6316

6317 6318
	/* add the filter since PF can receive vlans w/o entry in vlvf */
	igb_vfta_set(hw, vid, true);
6319 6320 6321 6322 6323 6324
}

static void igb_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
6325
	int pf_id = adapter->vfs_allocated_count;
6326
	s32 err;
6327 6328 6329 6330 6331 6332 6333

	igb_irq_disable(adapter);
	vlan_group_set_device(adapter->vlgrp, vid, NULL);

	if (!test_bit(__IGB_DOWN, &adapter->state))
		igb_irq_enable(adapter);

6334 6335
	/* remove vlan from VLVF table array */
	err = igb_vlvf_set(adapter, vid, false, pf_id);
6336

6337 6338
	/* if vid was not present in VLVF just remove it from table */
	if (err)
6339
		igb_vfta_set(hw, vid, false);
6340 6341 6342 6343 6344 6345 6346 6347
}

static void igb_restore_vlan(struct igb_adapter *adapter)
{
	igb_vlan_rx_register(adapter->netdev, adapter->vlgrp);

	if (adapter->vlgrp) {
		u16 vid;
6348
		for (vid = 0; vid < VLAN_N_VID; vid++) {
6349 6350 6351 6352 6353 6354 6355
			if (!vlan_group_get_device(adapter->vlgrp, vid))
				continue;
			igb_vlan_rx_add_vid(adapter->netdev, vid);
		}
	}
}

6356
int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
6357
{
6358
	struct pci_dev *pdev = adapter->pdev;
6359 6360 6361 6362
	struct e1000_mac_info *mac = &adapter->hw.mac;

	mac->autoneg = 0;

6363 6364 6365 6366 6367
	/* Make sure dplx is at most 1 bit and lsb of speed is not set
	 * for the switch() below to work */
	if ((spd & 1) || (dplx & ~1))
		goto err_inval;

6368 6369
	/* Fiber NIC's only allow 1000 Gbps Full duplex */
	if ((adapter->hw.phy.media_type == e1000_media_type_internal_serdes) &&
6370 6371 6372
	    spd != SPEED_1000 &&
	    dplx != DUPLEX_FULL)
		goto err_inval;
6373

6374
	switch (spd + dplx) {
6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392
	case SPEED_10 + DUPLEX_HALF:
		mac->forced_speed_duplex = ADVERTISE_10_HALF;
		break;
	case SPEED_10 + DUPLEX_FULL:
		mac->forced_speed_duplex = ADVERTISE_10_FULL;
		break;
	case SPEED_100 + DUPLEX_HALF:
		mac->forced_speed_duplex = ADVERTISE_100_HALF;
		break;
	case SPEED_100 + DUPLEX_FULL:
		mac->forced_speed_duplex = ADVERTISE_100_FULL;
		break;
	case SPEED_1000 + DUPLEX_FULL:
		mac->autoneg = 1;
		adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
		break;
	case SPEED_1000 + DUPLEX_HALF: /* not supported */
	default:
6393
		goto err_inval;
6394 6395
	}
	return 0;
6396 6397 6398 6399

err_inval:
	dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
	return -EINVAL;
6400 6401
}

6402
static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake)
6403 6404 6405 6406
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
A
Alexander Duyck 已提交
6407
	u32 ctrl, rctl, status;
6408 6409 6410 6411 6412 6413 6414
	u32 wufc = adapter->wol;
#ifdef CONFIG_PM
	int retval = 0;
#endif

	netif_device_detach(netdev);

A
Alexander Duyck 已提交
6415 6416 6417
	if (netif_running(netdev))
		igb_close(netdev);

6418
	igb_clear_interrupt_scheme(adapter);
6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431

#ifdef CONFIG_PM
	retval = pci_save_state(pdev);
	if (retval)
		return retval;
#endif

	status = rd32(E1000_STATUS);
	if (status & E1000_STATUS_LU)
		wufc &= ~E1000_WUFC_LNKC;

	if (wufc) {
		igb_setup_rctl(adapter);
6432
		igb_set_rx_mode(netdev);
6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449

		/* turn on all-multi mode if wake on multicast is enabled */
		if (wufc & E1000_WUFC_MC) {
			rctl = rd32(E1000_RCTL);
			rctl |= E1000_RCTL_MPE;
			wr32(E1000_RCTL, rctl);
		}

		ctrl = rd32(E1000_CTRL);
		/* advertise wake from D3Cold */
		#define E1000_CTRL_ADVD3WUC 0x00100000
		/* phy power management enable */
		#define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
		ctrl |= E1000_CTRL_ADVD3WUC;
		wr32(E1000_CTRL, ctrl);

		/* Allow time for pending master requests to run */
6450
		igb_disable_pcie_master(hw);
6451 6452 6453 6454 6455 6456 6457 6458

		wr32(E1000_WUC, E1000_WUC_PME_EN);
		wr32(E1000_WUFC, wufc);
	} else {
		wr32(E1000_WUC, 0);
		wr32(E1000_WUFC, 0);
	}

6459 6460
	*enable_wake = wufc || adapter->en_mng_pt;
	if (!*enable_wake)
6461 6462 6463
		igb_power_down_link(adapter);
	else
		igb_power_up_link(adapter);
6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474

	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
	 * would have already happened in close and is redundant. */
	igb_release_hw_control(adapter);

	pci_disable_device(pdev);

	return 0;
}

#ifdef CONFIG_PM
6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493
static int igb_suspend(struct pci_dev *pdev, pm_message_t state)
{
	int retval;
	bool wake;

	retval = __igb_shutdown(pdev, &wake);
	if (retval)
		return retval;

	if (wake) {
		pci_prepare_to_sleep(pdev);
	} else {
		pci_wake_from_d3(pdev, false);
		pci_set_power_state(pdev, PCI_D3hot);
	}

	return 0;
}

6494 6495 6496 6497 6498 6499 6500 6501 6502
static int igb_resume(struct pci_dev *pdev)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 err;

	pci_set_power_state(pdev, PCI_D0);
	pci_restore_state(pdev);
6503
	pci_save_state(pdev);
T
Taku Izumi 已提交
6504

6505
	err = pci_enable_device_mem(pdev);
6506 6507 6508 6509 6510 6511 6512 6513 6514 6515
	if (err) {
		dev_err(&pdev->dev,
			"igb: Cannot enable PCI device from suspend\n");
		return err;
	}
	pci_set_master(pdev);

	pci_enable_wake(pdev, PCI_D3hot, 0);
	pci_enable_wake(pdev, PCI_D3cold, 0);

6516
	if (igb_init_interrupt_scheme(adapter)) {
A
Alexander Duyck 已提交
6517 6518
		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
		return -ENOMEM;
6519 6520 6521
	}

	igb_reset(adapter);
6522 6523 6524 6525 6526

	/* let the f/w know that the h/w is now under the control of the
	 * driver. */
	igb_get_hw_control(adapter);

6527 6528
	wr32(E1000_WUS, ~0);

A
Alexander Duyck 已提交
6529 6530 6531 6532 6533
	if (netif_running(netdev)) {
		err = igb_open(netdev);
		if (err)
			return err;
	}
6534 6535 6536 6537 6538 6539 6540 6541 6542

	netif_device_attach(netdev);

	return 0;
}
#endif

static void igb_shutdown(struct pci_dev *pdev)
{
6543 6544 6545 6546 6547 6548 6549 6550
	bool wake;

	__igb_shutdown(pdev, &wake);

	if (system_state == SYSTEM_POWER_OFF) {
		pci_wake_from_d3(pdev, wake);
		pci_set_power_state(pdev, PCI_D3hot);
	}
6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561
}

#ifdef CONFIG_NET_POLL_CONTROLLER
/*
 * Polling 'interrupt' - used by things like netconsole to send skbs
 * without having to re-enable interrupts. It's not called while
 * the interrupt routine is executing.
 */
static void igb_netpoll(struct net_device *netdev)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
6562
	struct e1000_hw *hw = &adapter->hw;
6563 6564
	int i;

6565
	if (!adapter->msix_entries) {
6566
		struct igb_q_vector *q_vector = adapter->q_vector[0];
6567
		igb_irq_disable(adapter);
6568
		napi_schedule(&q_vector->napi);
6569 6570
		return;
	}
6571

6572 6573 6574 6575
	for (i = 0; i < adapter->num_q_vectors; i++) {
		struct igb_q_vector *q_vector = adapter->q_vector[i];
		wr32(E1000_EIMC, q_vector->eims_value);
		napi_schedule(&q_vector->napi);
6576
	}
6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595
}
#endif /* CONFIG_NET_POLL_CONTROLLER */

/**
 * igb_io_error_detected - called when PCI error is detected
 * @pdev: Pointer to PCI device
 * @state: The current pci connection state
 *
 * This function is called after a PCI bus error affecting
 * this device has been detected.
 */
static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
					      pci_channel_state_t state)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);

	netif_device_detach(netdev);

6596 6597 6598
	if (state == pci_channel_io_perm_failure)
		return PCI_ERS_RESULT_DISCONNECT;

6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618
	if (netif_running(netdev))
		igb_down(adapter);
	pci_disable_device(pdev);

	/* Request a slot slot reset. */
	return PCI_ERS_RESULT_NEED_RESET;
}

/**
 * igb_io_slot_reset - called after the pci bus has been reset.
 * @pdev: Pointer to PCI device
 *
 * Restart the card from scratch, as if from a cold-boot. Implementation
 * resembles the first-half of the igb_resume routine.
 */
static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
6619
	pci_ers_result_t result;
T
Taku Izumi 已提交
6620
	int err;
6621

6622
	if (pci_enable_device_mem(pdev)) {
6623 6624
		dev_err(&pdev->dev,
			"Cannot re-enable PCI device after reset.\n");
6625 6626 6627 6628
		result = PCI_ERS_RESULT_DISCONNECT;
	} else {
		pci_set_master(pdev);
		pci_restore_state(pdev);
6629
		pci_save_state(pdev);
6630

6631 6632
		pci_enable_wake(pdev, PCI_D3hot, 0);
		pci_enable_wake(pdev, PCI_D3cold, 0);
6633

6634 6635 6636 6637
		igb_reset(adapter);
		wr32(E1000_WUS, ~0);
		result = PCI_ERS_RESULT_RECOVERED;
	}
6638

6639 6640 6641 6642 6643 6644
	err = pci_cleanup_aer_uncorrect_error_status(pdev);
	if (err) {
		dev_err(&pdev->dev, "pci_cleanup_aer_uncorrect_error_status "
		        "failed 0x%0x\n", err);
		/* non-fatal, continue */
	}
6645 6646

	return result;
6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675
}

/**
 * igb_io_resume - called when traffic can start flowing again.
 * @pdev: Pointer to PCI device
 *
 * This callback is called when the error recovery driver tells us that
 * its OK to resume normal operation. Implementation resembles the
 * second-half of the igb_resume routine.
 */
static void igb_io_resume(struct pci_dev *pdev)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);

	if (netif_running(netdev)) {
		if (igb_up(adapter)) {
			dev_err(&pdev->dev, "igb_up failed after reset\n");
			return;
		}
	}

	netif_device_attach(netdev);

	/* let the f/w know that the h/w is now under the control of the
	 * driver. */
	igb_get_hw_control(adapter);
}

6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702
static void igb_rar_set_qsel(struct igb_adapter *adapter, u8 *addr, u32 index,
                             u8 qsel)
{
	u32 rar_low, rar_high;
	struct e1000_hw *hw = &adapter->hw;

	/* HW expects these in little endian so we reverse the byte order
	 * from network order (big endian) to little endian
	 */
	rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
	          ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
	rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));

	/* Indicate to hardware the Address is Valid. */
	rar_high |= E1000_RAH_AV;

	if (hw->mac.type == e1000_82575)
		rar_high |= E1000_RAH_POOL_1 * qsel;
	else
		rar_high |= E1000_RAH_POOL_1 << qsel;

	wr32(E1000_RAL(index), rar_low);
	wrfl();
	wr32(E1000_RAH(index), rar_high);
	wrfl();
}

6703 6704 6705 6706
static int igb_set_vf_mac(struct igb_adapter *adapter,
                          int vf, unsigned char *mac_addr)
{
	struct e1000_hw *hw = &adapter->hw;
6707 6708 6709
	/* VF MAC addresses start at end of receive addresses and moves
	 * torwards the first, as a result a collision should not be possible */
	int rar_entry = hw->mac.rar_entry_count - (vf + 1);
6710

6711
	memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN);
6712

6713
	igb_rar_set_qsel(adapter, mac_addr, rar_entry, vf);
6714 6715 6716 6717

	return 0;
}

6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735
static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	if (!is_valid_ether_addr(mac) || (vf >= adapter->vfs_allocated_count))
		return -EINVAL;
	adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
	dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n", mac, vf);
	dev_info(&adapter->pdev->dev, "Reload the VF driver to make this"
				      " change effective.");
	if (test_bit(__IGB_DOWN, &adapter->state)) {
		dev_warn(&adapter->pdev->dev, "The VF MAC address has been set,"
			 " but the PF device is not up.\n");
		dev_warn(&adapter->pdev->dev, "Bring the PF device up before"
			 " attempting to use the VF device.\n");
	}
	return igb_set_vf_mac(adapter, vf, mac);
}

6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800
static int igb_link_mbps(int internal_link_speed)
{
	switch (internal_link_speed) {
	case SPEED_100:
		return 100;
	case SPEED_1000:
		return 1000;
	default:
		return 0;
	}
}

static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
				  int link_speed)
{
	int rf_dec, rf_int;
	u32 bcnrc_val;

	if (tx_rate != 0) {
		/* Calculate the rate factor values to set */
		rf_int = link_speed / tx_rate;
		rf_dec = (link_speed - (rf_int * tx_rate));
		rf_dec = (rf_dec * (1<<E1000_RTTBCNRC_RF_INT_SHIFT)) / tx_rate;

		bcnrc_val = E1000_RTTBCNRC_RS_ENA;
		bcnrc_val |= ((rf_int<<E1000_RTTBCNRC_RF_INT_SHIFT) &
		               E1000_RTTBCNRC_RF_INT_MASK);
		bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
	} else {
		bcnrc_val = 0;
	}

	wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
	wr32(E1000_RTTBCNRC, bcnrc_val);
}

static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
{
	int actual_link_speed, i;
	bool reset_rate = false;

	/* VF TX rate limit was not set or not supported */
	if ((adapter->vf_rate_link_speed == 0) ||
	    (adapter->hw.mac.type != e1000_82576))
		return;

	actual_link_speed = igb_link_mbps(adapter->link_speed);
	if (actual_link_speed != adapter->vf_rate_link_speed) {
		reset_rate = true;
		adapter->vf_rate_link_speed = 0;
		dev_info(&adapter->pdev->dev,
		         "Link speed has been changed. VF Transmit "
		         "rate is disabled\n");
	}

	for (i = 0; i < adapter->vfs_allocated_count; i++) {
		if (reset_rate)
			adapter->vf_data[i].tx_rate = 0;

		igb_set_vf_rate_limit(&adapter->hw, i,
		                      adapter->vf_data[i].tx_rate,
		                      actual_link_speed);
	}
}

6801 6802
static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate)
{
6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	int actual_link_speed;

	if (hw->mac.type != e1000_82576)
		return -EOPNOTSUPP;

	actual_link_speed = igb_link_mbps(adapter->link_speed);
	if ((vf >= adapter->vfs_allocated_count) ||
	    (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
	    (tx_rate < 0) || (tx_rate > actual_link_speed))
		return -EINVAL;

	adapter->vf_rate_link_speed = actual_link_speed;
	adapter->vf_data[vf].tx_rate = (u16)tx_rate;
	igb_set_vf_rate_limit(hw, vf, tx_rate, actual_link_speed);

	return 0;
6821 6822 6823 6824 6825 6826 6827 6828 6829 6830
}

static int igb_ndo_get_vf_config(struct net_device *netdev,
				 int vf, struct ifla_vf_info *ivi)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	if (vf >= adapter->vfs_allocated_count)
		return -EINVAL;
	ivi->vf = vf;
	memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
6831
	ivi->tx_rate = adapter->vf_data[vf].tx_rate;
6832 6833 6834 6835 6836
	ivi->vlan = adapter->vf_data[vf].pf_vlan;
	ivi->qos = adapter->vf_data[vf].pf_qos;
	return 0;
}

6837 6838 6839
static void igb_vmm_control(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
6840
	u32 reg;
6841

6842 6843 6844 6845
	switch (hw->mac.type) {
	case e1000_82575:
	default:
		/* replication is not supported for 82575 */
6846
		return;
6847 6848 6849 6850 6851 6852 6853 6854 6855 6856
	case e1000_82576:
		/* notify HW that the MAC is adding vlan tags */
		reg = rd32(E1000_DTXCTL);
		reg |= E1000_DTXCTL_VLAN_ADDED;
		wr32(E1000_DTXCTL, reg);
	case e1000_82580:
		/* enable replication vlan tag stripping */
		reg = rd32(E1000_RPLOLR);
		reg |= E1000_RPLOLR_STRVLAN;
		wr32(E1000_RPLOLR, reg);
6857 6858
	case e1000_i350:
		/* none of the above registers are supported by i350 */
6859 6860
		break;
	}
6861

6862 6863 6864
	if (adapter->vfs_allocated_count) {
		igb_vmdq_set_loopback_pf(hw, true);
		igb_vmdq_set_replication_pf(hw, true);
G
Greg Rose 已提交
6865 6866
		igb_vmdq_set_anti_spoofing_pf(hw, true,
						adapter->vfs_allocated_count);
6867 6868 6869 6870
	} else {
		igb_vmdq_set_loopback_pf(hw, false);
		igb_vmdq_set_replication_pf(hw, false);
	}
6871 6872
}

6873
/* igb_main.c */