slab.c 117.2 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
/*
 * linux/mm/slab.c
 * Written by Mark Hemment, 1996/97.
 * (markhe@nextd.demon.co.uk)
 *
 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
 *
 * Major cleanup, different bufctl logic, per-cpu arrays
 *	(c) 2000 Manfred Spraul
 *
 * Cleanup, make the head arrays unconditional, preparation for NUMA
 * 	(c) 2002 Manfred Spraul
 *
 * An implementation of the Slab Allocator as described in outline in;
 *	UNIX Internals: The New Frontiers by Uresh Vahalia
 *	Pub: Prentice Hall	ISBN 0-13-101908-2
 * or with a little more detail in;
 *	The Slab Allocator: An Object-Caching Kernel Memory Allocator
 *	Jeff Bonwick (Sun Microsystems).
 *	Presented at: USENIX Summer 1994 Technical Conference
 *
 * The memory is organized in caches, one cache for each object type.
 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
 * Each cache consists out of many slabs (they are small (usually one
 * page long) and always contiguous), and each slab contains multiple
 * initialized objects.
 *
 * This means, that your constructor is used only for newly allocated
 * slabs and you must pass objects with the same intializations to
 * kmem_cache_free.
 *
 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
 * normal). If you need a special memory type, then must create a new
 * cache for that memory type.
 *
 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
 *   full slabs with 0 free objects
 *   partial slabs
 *   empty slabs with no allocated objects
 *
 * If partial slabs exist, then new allocations come from these slabs,
 * otherwise from empty slabs or new slabs are allocated.
 *
 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
 *
 * Each cache has a short per-cpu head array, most allocs
 * and frees go into that array, and if that array overflows, then 1/2
 * of the entries in the array are given back into the global cache.
 * The head array is strictly LIFO and should improve the cache hit rates.
 * On SMP, it additionally reduces the spinlock operations.
 *
A
Andrew Morton 已提交
53
 * The c_cpuarray may not be read with enabled local interrupts -
L
Linus Torvalds 已提交
54 55 56 57
 * it's changed with a smp_call_function().
 *
 * SMP synchronization:
 *  constructors and destructors are called without any locking.
58
 *  Several members in struct kmem_cache and struct slab never change, they
L
Linus Torvalds 已提交
59 60 61 62 63 64 65 66 67 68 69 70
 *	are accessed without any locking.
 *  The per-cpu arrays are never accessed from the wrong cpu, no locking,
 *  	and local interrupts are disabled so slab code is preempt-safe.
 *  The non-constant members are protected with a per-cache irq spinlock.
 *
 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
 * in 2000 - many ideas in the current implementation are derived from
 * his patch.
 *
 * Further notes from the original documentation:
 *
 * 11 April '97.  Started multi-threading - markhe
I
Ingo Molnar 已提交
71
 *	The global cache-chain is protected by the mutex 'cache_chain_mutex'.
L
Linus Torvalds 已提交
72 73 74 75 76 77
 *	The sem is only needed when accessing/extending the cache-chain, which
 *	can never happen inside an interrupt (kmem_cache_create(),
 *	kmem_cache_shrink() and kmem_cache_reap()).
 *
 *	At present, each engine can be growing a cache.  This should be blocked.
 *
78 79 80 81 82 83 84 85 86
 * 15 March 2005. NUMA slab allocator.
 *	Shai Fultheim <shai@scalex86.org>.
 *	Shobhit Dayal <shobhit@calsoftinc.com>
 *	Alok N Kataria <alokk@calsoftinc.com>
 *	Christoph Lameter <christoph@lameter.com>
 *
 *	Modified the slab allocator to be node aware on NUMA systems.
 *	Each node has its own list of partial, free and full slabs.
 *	All object allocations for a node occur from node specific slab lists.
L
Linus Torvalds 已提交
87 88 89 90
 */

#include	<linux/slab.h>
#include	<linux/mm.h>
91
#include	<linux/poison.h>
L
Linus Torvalds 已提交
92 93 94 95 96
#include	<linux/swap.h>
#include	<linux/cache.h>
#include	<linux/interrupt.h>
#include	<linux/init.h>
#include	<linux/compiler.h>
97
#include	<linux/cpuset.h>
L
Linus Torvalds 已提交
98 99 100 101 102 103 104
#include	<linux/seq_file.h>
#include	<linux/notifier.h>
#include	<linux/kallsyms.h>
#include	<linux/cpu.h>
#include	<linux/sysctl.h>
#include	<linux/module.h>
#include	<linux/rcupdate.h>
105
#include	<linux/string.h>
106
#include	<linux/uaccess.h>
107
#include	<linux/nodemask.h>
108
#include	<linux/mempolicy.h>
I
Ingo Molnar 已提交
109
#include	<linux/mutex.h>
110
#include	<linux/fault-inject.h>
I
Ingo Molnar 已提交
111
#include	<linux/rtmutex.h>
112
#include	<linux/reciprocal_div.h>
L
Linus Torvalds 已提交
113 114 115 116 117 118

#include	<asm/cacheflush.h>
#include	<asm/tlbflush.h>
#include	<asm/page.h>

/*
119
 * DEBUG	- 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
L
Linus Torvalds 已提交
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * STATS	- 1 to collect stats for /proc/slabinfo.
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * FORCED_DEBUG	- 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
 */

#ifdef CONFIG_DEBUG_SLAB
#define	DEBUG		1
#define	STATS		1
#define	FORCED_DEBUG	1
#else
#define	DEBUG		0
#define	STATS		0
#define	FORCED_DEBUG	0
#endif

/* Shouldn't this be in a header file somewhere? */
#define	BYTES_PER_WORD		sizeof(void *)

#ifndef cache_line_size
#define cache_line_size()	L1_CACHE_BYTES
#endif

#ifndef ARCH_KMALLOC_MINALIGN
/*
 * Enforce a minimum alignment for the kmalloc caches.
 * Usually, the kmalloc caches are cache_line_size() aligned, except when
 * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
151 152 153
 * alignment larger than the alignment of a 64-bit integer.
 * ARCH_KMALLOC_MINALIGN allows that.
 * Note that increasing this value may disable some debug features.
L
Linus Torvalds 已提交
154
 */
155
#define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
L
Linus Torvalds 已提交
156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
#endif

#ifndef ARCH_SLAB_MINALIGN
/*
 * Enforce a minimum alignment for all caches.
 * Intended for archs that get misalignment faults even for BYTES_PER_WORD
 * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
 * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
 * some debug features.
 */
#define ARCH_SLAB_MINALIGN 0
#endif

#ifndef ARCH_KMALLOC_FLAGS
#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
#endif

/* Legal flag mask for kmem_cache_create(). */
#if DEBUG
175
# define CREATE_MASK	(SLAB_RED_ZONE | \
L
Linus Torvalds 已提交
176
			 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
177
			 SLAB_CACHE_DMA | \
178
			 SLAB_STORE_USER | \
L
Linus Torvalds 已提交
179
			 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
180
			 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
L
Linus Torvalds 已提交
181
#else
182
# define CREATE_MASK	(SLAB_HWCACHE_ALIGN | \
183
			 SLAB_CACHE_DMA | \
L
Linus Torvalds 已提交
184
			 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
185
			 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
L
Linus Torvalds 已提交
186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
#endif

/*
 * kmem_bufctl_t:
 *
 * Bufctl's are used for linking objs within a slab
 * linked offsets.
 *
 * This implementation relies on "struct page" for locating the cache &
 * slab an object belongs to.
 * This allows the bufctl structure to be small (one int), but limits
 * the number of objects a slab (not a cache) can contain when off-slab
 * bufctls are used. The limit is the size of the largest general cache
 * that does not use off-slab slabs.
 * For 32bit archs with 4 kB pages, is this 56.
 * This is not serious, as it is only for large objects, when it is unwise
 * to have too many per slab.
 * Note: This limit can be raised by introducing a general cache whose size
 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
 */

207
typedef unsigned int kmem_bufctl_t;
L
Linus Torvalds 已提交
208 209
#define BUFCTL_END	(((kmem_bufctl_t)(~0U))-0)
#define BUFCTL_FREE	(((kmem_bufctl_t)(~0U))-1)
210 211
#define	BUFCTL_ACTIVE	(((kmem_bufctl_t)(~0U))-2)
#define	SLAB_LIMIT	(((kmem_bufctl_t)(~0U))-3)
L
Linus Torvalds 已提交
212 213 214 215 216 217 218 219 220

/*
 * struct slab
 *
 * Manages the objs in a slab. Placed either at the beginning of mem allocated
 * for a slab, or allocated from an general cache.
 * Slabs are chained into three list: fully used, partial, fully free slabs.
 */
struct slab {
P
Pekka Enberg 已提交
221 222 223 224 225 226
	struct list_head list;
	unsigned long colouroff;
	void *s_mem;		/* including colour offset */
	unsigned int inuse;	/* num of objs active in slab */
	kmem_bufctl_t free;
	unsigned short nodeid;
L
Linus Torvalds 已提交
227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
};

/*
 * struct slab_rcu
 *
 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
 * arrange for kmem_freepages to be called via RCU.  This is useful if
 * we need to approach a kernel structure obliquely, from its address
 * obtained without the usual locking.  We can lock the structure to
 * stabilize it and check it's still at the given address, only if we
 * can be sure that the memory has not been meanwhile reused for some
 * other kind of object (which our subsystem's lock might corrupt).
 *
 * rcu_read_lock before reading the address, then rcu_read_unlock after
 * taking the spinlock within the structure expected at that address.
 *
 * We assume struct slab_rcu can overlay struct slab when destroying.
 */
struct slab_rcu {
P
Pekka Enberg 已提交
246
	struct rcu_head head;
247
	struct kmem_cache *cachep;
P
Pekka Enberg 已提交
248
	void *addr;
L
Linus Torvalds 已提交
249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
};

/*
 * struct array_cache
 *
 * Purpose:
 * - LIFO ordering, to hand out cache-warm objects from _alloc
 * - reduce the number of linked list operations
 * - reduce spinlock operations
 *
 * The limit is stored in the per-cpu structure to reduce the data cache
 * footprint.
 *
 */
struct array_cache {
	unsigned int avail;
	unsigned int limit;
	unsigned int batchcount;
	unsigned int touched;
268
	spinlock_t lock;
A
Andrew Morton 已提交
269 270 271 272 273 274
	void *entry[0];	/*
			 * Must have this definition in here for the proper
			 * alignment of array_cache. Also simplifies accessing
			 * the entries.
			 * [0] is for gcc 2.95. It should really be [].
			 */
L
Linus Torvalds 已提交
275 276
};

A
Andrew Morton 已提交
277 278 279
/*
 * bootstrap: The caches do not work without cpuarrays anymore, but the
 * cpuarrays are allocated from the generic caches...
L
Linus Torvalds 已提交
280 281 282 283
 */
#define BOOT_CPUCACHE_ENTRIES	1
struct arraycache_init {
	struct array_cache cache;
P
Pekka Enberg 已提交
284
	void *entries[BOOT_CPUCACHE_ENTRIES];
L
Linus Torvalds 已提交
285 286 287
};

/*
288
 * The slab lists for all objects.
L
Linus Torvalds 已提交
289 290
 */
struct kmem_list3 {
P
Pekka Enberg 已提交
291 292 293 294 295
	struct list_head slabs_partial;	/* partial list first, better asm code */
	struct list_head slabs_full;
	struct list_head slabs_free;
	unsigned long free_objects;
	unsigned int free_limit;
296
	unsigned int colour_next;	/* Per-node cache coloring */
P
Pekka Enberg 已提交
297 298 299
	spinlock_t list_lock;
	struct array_cache *shared;	/* shared per node */
	struct array_cache **alien;	/* on other nodes */
300 301
	unsigned long next_reap;	/* updated without locking */
	int free_touched;		/* updated without locking */
L
Linus Torvalds 已提交
302 303
};

304 305 306 307 308 309 310 311 312
/*
 * Need this for bootstrapping a per node allocator.
 */
#define NUM_INIT_LISTS (2 * MAX_NUMNODES + 1)
struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
#define	CACHE_CACHE 0
#define	SIZE_AC 1
#define	SIZE_L3 (1 + MAX_NUMNODES)

313 314 315 316
static int drain_freelist(struct kmem_cache *cache,
			struct kmem_list3 *l3, int tofree);
static void free_block(struct kmem_cache *cachep, void **objpp, int len,
			int node);
317
static int enable_cpucache(struct kmem_cache *cachep);
318
static void cache_reap(struct work_struct *unused);
319

320
/*
A
Andrew Morton 已提交
321 322
 * This function must be completely optimized away if a constant is passed to
 * it.  Mostly the same as what is in linux/slab.h except it returns an index.
323
 */
324
static __always_inline int index_of(const size_t size)
325
{
326 327
	extern void __bad_size(void);

328 329 330 331 332 333 334 335 336 337
	if (__builtin_constant_p(size)) {
		int i = 0;

#define CACHE(x) \
	if (size <=x) \
		return i; \
	else \
		i++;
#include "linux/kmalloc_sizes.h"
#undef CACHE
338
		__bad_size();
339
	} else
340
		__bad_size();
341 342 343
	return 0;
}

344 345
static int slab_early_init = 1;

346 347
#define INDEX_AC index_of(sizeof(struct arraycache_init))
#define INDEX_L3 index_of(sizeof(struct kmem_list3))
L
Linus Torvalds 已提交
348

P
Pekka Enberg 已提交
349
static void kmem_list3_init(struct kmem_list3 *parent)
350 351 352 353 354 355
{
	INIT_LIST_HEAD(&parent->slabs_full);
	INIT_LIST_HEAD(&parent->slabs_partial);
	INIT_LIST_HEAD(&parent->slabs_free);
	parent->shared = NULL;
	parent->alien = NULL;
356
	parent->colour_next = 0;
357 358 359 360 361
	spin_lock_init(&parent->list_lock);
	parent->free_objects = 0;
	parent->free_touched = 0;
}

A
Andrew Morton 已提交
362 363 364 365
#define MAKE_LIST(cachep, listp, slab, nodeid)				\
	do {								\
		INIT_LIST_HEAD(listp);					\
		list_splice(&(cachep->nodelists[nodeid]->slab), listp);	\
366 367
	} while (0)

A
Andrew Morton 已提交
368 369
#define	MAKE_ALL_LISTS(cachep, ptr, nodeid)				\
	do {								\
370 371 372 373
	MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid);	\
	MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
	MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid);	\
	} while (0)
L
Linus Torvalds 已提交
374 375

/*
376
 * struct kmem_cache
L
Linus Torvalds 已提交
377 378 379
 *
 * manages a cache.
 */
P
Pekka Enberg 已提交
380

381
struct kmem_cache {
L
Linus Torvalds 已提交
382
/* 1) per-cpu data, touched during every alloc/free */
P
Pekka Enberg 已提交
383
	struct array_cache *array[NR_CPUS];
384
/* 2) Cache tunables. Protected by cache_chain_mutex */
P
Pekka Enberg 已提交
385 386 387
	unsigned int batchcount;
	unsigned int limit;
	unsigned int shared;
388

389
	unsigned int buffer_size;
390
	u32 reciprocal_buffer_size;
391 392
/* 3) touched by every alloc & free from the backend */

A
Andrew Morton 已提交
393 394
	unsigned int flags;		/* constant flags */
	unsigned int num;		/* # of objs per slab */
L
Linus Torvalds 已提交
395

396
/* 4) cache_grow/shrink */
L
Linus Torvalds 已提交
397
	/* order of pgs per slab (2^n) */
P
Pekka Enberg 已提交
398
	unsigned int gfporder;
L
Linus Torvalds 已提交
399 400

	/* force GFP flags, e.g. GFP_DMA */
P
Pekka Enberg 已提交
401
	gfp_t gfpflags;
L
Linus Torvalds 已提交
402

A
Andrew Morton 已提交
403
	size_t colour;			/* cache colouring range */
P
Pekka Enberg 已提交
404
	unsigned int colour_off;	/* colour offset */
405
	struct kmem_cache *slabp_cache;
P
Pekka Enberg 已提交
406
	unsigned int slab_size;
A
Andrew Morton 已提交
407
	unsigned int dflags;		/* dynamic flags */
L
Linus Torvalds 已提交
408 409

	/* constructor func */
410
	void (*ctor) (void *, struct kmem_cache *, unsigned long);
L
Linus Torvalds 已提交
411 412

	/* de-constructor func */
413
	void (*dtor) (void *, struct kmem_cache *, unsigned long);
L
Linus Torvalds 已提交
414

415
/* 5) cache creation/removal */
P
Pekka Enberg 已提交
416 417
	const char *name;
	struct list_head next;
L
Linus Torvalds 已提交
418

419
/* 6) statistics */
L
Linus Torvalds 已提交
420
#if STATS
P
Pekka Enberg 已提交
421 422 423 424 425 426 427 428 429
	unsigned long num_active;
	unsigned long num_allocations;
	unsigned long high_mark;
	unsigned long grown;
	unsigned long reaped;
	unsigned long errors;
	unsigned long max_freeable;
	unsigned long node_allocs;
	unsigned long node_frees;
430
	unsigned long node_overflow;
P
Pekka Enberg 已提交
431 432 433 434
	atomic_t allochit;
	atomic_t allocmiss;
	atomic_t freehit;
	atomic_t freemiss;
L
Linus Torvalds 已提交
435 436
#endif
#if DEBUG
437 438 439 440 441 442 443 444
	/*
	 * If debugging is enabled, then the allocator can add additional
	 * fields and/or padding to every object. buffer_size contains the total
	 * object size including these internal fields, the following two
	 * variables contain the offset to the user object and its size.
	 */
	int obj_offset;
	int obj_size;
L
Linus Torvalds 已提交
445
#endif
E
Eric Dumazet 已提交
446 447 448 449 450 451 452 453 454 455 456
	/*
	 * We put nodelists[] at the end of kmem_cache, because we want to size
	 * this array to nr_node_ids slots instead of MAX_NUMNODES
	 * (see kmem_cache_init())
	 * We still use [MAX_NUMNODES] and not [1] or [0] because cache_cache
	 * is statically defined, so we reserve the max number of nodes.
	 */
	struct kmem_list3 *nodelists[MAX_NUMNODES];
	/*
	 * Do not add fields after nodelists[]
	 */
L
Linus Torvalds 已提交
457 458 459 460 461 462
};

#define CFLGS_OFF_SLAB		(0x80000000UL)
#define	OFF_SLAB(x)	((x)->flags & CFLGS_OFF_SLAB)

#define BATCHREFILL_LIMIT	16
A
Andrew Morton 已提交
463 464 465
/*
 * Optimization question: fewer reaps means less probability for unnessary
 * cpucache drain/refill cycles.
L
Linus Torvalds 已提交
466
 *
A
Adrian Bunk 已提交
467
 * OTOH the cpuarrays can contain lots of objects,
L
Linus Torvalds 已提交
468 469 470 471 472 473 474 475 476 477
 * which could lock up otherwise freeable slabs.
 */
#define REAPTIMEOUT_CPUC	(2*HZ)
#define REAPTIMEOUT_LIST3	(4*HZ)

#if STATS
#define	STATS_INC_ACTIVE(x)	((x)->num_active++)
#define	STATS_DEC_ACTIVE(x)	((x)->num_active--)
#define	STATS_INC_ALLOCED(x)	((x)->num_allocations++)
#define	STATS_INC_GROWN(x)	((x)->grown++)
478
#define	STATS_ADD_REAPED(x,y)	((x)->reaped += (y))
A
Andrew Morton 已提交
479 480 481 482 483
#define	STATS_SET_HIGH(x)						\
	do {								\
		if ((x)->num_active > (x)->high_mark)			\
			(x)->high_mark = (x)->num_active;		\
	} while (0)
L
Linus Torvalds 已提交
484 485
#define	STATS_INC_ERR(x)	((x)->errors++)
#define	STATS_INC_NODEALLOCS(x)	((x)->node_allocs++)
486
#define	STATS_INC_NODEFREES(x)	((x)->node_frees++)
487
#define STATS_INC_ACOVERFLOW(x)   ((x)->node_overflow++)
A
Andrew Morton 已提交
488 489 490 491 492
#define	STATS_SET_FREEABLE(x, i)					\
	do {								\
		if ((x)->max_freeable < i)				\
			(x)->max_freeable = i;				\
	} while (0)
L
Linus Torvalds 已提交
493 494 495 496 497 498 499 500 501
#define STATS_INC_ALLOCHIT(x)	atomic_inc(&(x)->allochit)
#define STATS_INC_ALLOCMISS(x)	atomic_inc(&(x)->allocmiss)
#define STATS_INC_FREEHIT(x)	atomic_inc(&(x)->freehit)
#define STATS_INC_FREEMISS(x)	atomic_inc(&(x)->freemiss)
#else
#define	STATS_INC_ACTIVE(x)	do { } while (0)
#define	STATS_DEC_ACTIVE(x)	do { } while (0)
#define	STATS_INC_ALLOCED(x)	do { } while (0)
#define	STATS_INC_GROWN(x)	do { } while (0)
502
#define	STATS_ADD_REAPED(x,y)	do { } while (0)
L
Linus Torvalds 已提交
503 504 505
#define	STATS_SET_HIGH(x)	do { } while (0)
#define	STATS_INC_ERR(x)	do { } while (0)
#define	STATS_INC_NODEALLOCS(x)	do { } while (0)
506
#define	STATS_INC_NODEFREES(x)	do { } while (0)
507
#define STATS_INC_ACOVERFLOW(x)   do { } while (0)
A
Andrew Morton 已提交
508
#define	STATS_SET_FREEABLE(x, i) do { } while (0)
L
Linus Torvalds 已提交
509 510 511 512 513 514 515 516
#define STATS_INC_ALLOCHIT(x)	do { } while (0)
#define STATS_INC_ALLOCMISS(x)	do { } while (0)
#define STATS_INC_FREEHIT(x)	do { } while (0)
#define STATS_INC_FREEMISS(x)	do { } while (0)
#endif

#if DEBUG

A
Andrew Morton 已提交
517 518
/*
 * memory layout of objects:
L
Linus Torvalds 已提交
519
 * 0		: objp
520
 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
L
Linus Torvalds 已提交
521 522
 * 		the end of an object is aligned with the end of the real
 * 		allocation. Catches writes behind the end of the allocation.
523
 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
L
Linus Torvalds 已提交
524
 * 		redzone word.
525 526
 * cachep->obj_offset: The real object.
 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
A
Andrew Morton 已提交
527 528
 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
 *					[BYTES_PER_WORD long]
L
Linus Torvalds 已提交
529
 */
530
static int obj_offset(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
531
{
532
	return cachep->obj_offset;
L
Linus Torvalds 已提交
533 534
}

535
static int obj_size(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
536
{
537
	return cachep->obj_size;
L
Linus Torvalds 已提交
538 539
}

540
static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
541 542
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
543 544
	return (unsigned long long*) (objp + obj_offset(cachep) -
				      sizeof(unsigned long long));
L
Linus Torvalds 已提交
545 546
}

547
static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
548 549 550
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
	if (cachep->flags & SLAB_STORE_USER)
551 552 553 554 555
		return (unsigned long long *)(objp + cachep->buffer_size -
					      sizeof(unsigned long long) -
					      BYTES_PER_WORD);
	return (unsigned long long *) (objp + cachep->buffer_size -
				       sizeof(unsigned long long));
L
Linus Torvalds 已提交
556 557
}

558
static void **dbg_userword(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
559 560
{
	BUG_ON(!(cachep->flags & SLAB_STORE_USER));
561
	return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
L
Linus Torvalds 已提交
562 563 564 565
}

#else

566 567
#define obj_offset(x)			0
#define obj_size(cachep)		(cachep->buffer_size)
568 569
#define dbg_redzone1(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
#define dbg_redzone2(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
L
Linus Torvalds 已提交
570 571 572 573 574
#define dbg_userword(cachep, objp)	({BUG(); (void **)NULL;})

#endif

/*
A
Andrew Morton 已提交
575 576
 * Maximum size of an obj (in 2^order pages) and absolute limit for the gfp
 * order.
L
Linus Torvalds 已提交
577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595
 */
#if defined(CONFIG_LARGE_ALLOCS)
#define	MAX_OBJ_ORDER	13	/* up to 32Mb */
#define	MAX_GFP_ORDER	13	/* up to 32Mb */
#elif defined(CONFIG_MMU)
#define	MAX_OBJ_ORDER	5	/* 32 pages */
#define	MAX_GFP_ORDER	5	/* 32 pages */
#else
#define	MAX_OBJ_ORDER	8	/* up to 1Mb */
#define	MAX_GFP_ORDER	8	/* up to 1Mb */
#endif

/*
 * Do not go above this order unless 0 objects fit into the slab.
 */
#define	BREAK_GFP_ORDER_HI	1
#define	BREAK_GFP_ORDER_LO	0
static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;

A
Andrew Morton 已提交
596 597 598 599
/*
 * Functions for storing/retrieving the cachep and or slab from the page
 * allocator.  These are used to find the slab an obj belongs to.  With kfree(),
 * these are used to find the cache which an obj belongs to.
L
Linus Torvalds 已提交
600
 */
601 602 603 604 605 606 607
static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
{
	page->lru.next = (struct list_head *)cache;
}

static inline struct kmem_cache *page_get_cache(struct page *page)
{
608
	page = compound_head(page);
609
	BUG_ON(!PageSlab(page));
610 611 612 613 614 615 616 617 618 619
	return (struct kmem_cache *)page->lru.next;
}

static inline void page_set_slab(struct page *page, struct slab *slab)
{
	page->lru.prev = (struct list_head *)slab;
}

static inline struct slab *page_get_slab(struct page *page)
{
620
	BUG_ON(!PageSlab(page));
621 622
	return (struct slab *)page->lru.prev;
}
L
Linus Torvalds 已提交
623

624 625
static inline struct kmem_cache *virt_to_cache(const void *obj)
{
626
	struct page *page = virt_to_head_page(obj);
627 628 629 630 631
	return page_get_cache(page);
}

static inline struct slab *virt_to_slab(const void *obj)
{
632
	struct page *page = virt_to_head_page(obj);
633 634 635
	return page_get_slab(page);
}

636 637 638 639 640 641
static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
				 unsigned int idx)
{
	return slab->s_mem + cache->buffer_size * idx;
}

642 643 644 645 646 647 648 649
/*
 * We want to avoid an expensive divide : (offset / cache->buffer_size)
 *   Using the fact that buffer_size is a constant for a particular cache,
 *   we can replace (offset / cache->buffer_size) by
 *   reciprocal_divide(offset, cache->reciprocal_buffer_size)
 */
static inline unsigned int obj_to_index(const struct kmem_cache *cache,
					const struct slab *slab, void *obj)
650
{
651 652
	u32 offset = (obj - slab->s_mem);
	return reciprocal_divide(offset, cache->reciprocal_buffer_size);
653 654
}

A
Andrew Morton 已提交
655 656 657
/*
 * These are the default caches for kmalloc. Custom caches can have other sizes.
 */
L
Linus Torvalds 已提交
658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674
struct cache_sizes malloc_sizes[] = {
#define CACHE(x) { .cs_size = (x) },
#include <linux/kmalloc_sizes.h>
	CACHE(ULONG_MAX)
#undef CACHE
};
EXPORT_SYMBOL(malloc_sizes);

/* Must match cache_sizes above. Out of line to keep cache footprint low. */
struct cache_names {
	char *name;
	char *name_dma;
};

static struct cache_names __initdata cache_names[] = {
#define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
#include <linux/kmalloc_sizes.h>
P
Pekka Enberg 已提交
675
	{NULL,}
L
Linus Torvalds 已提交
676 677 678 679
#undef CACHE
};

static struct arraycache_init initarray_cache __initdata =
P
Pekka Enberg 已提交
680
    { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
L
Linus Torvalds 已提交
681
static struct arraycache_init initarray_generic =
P
Pekka Enberg 已提交
682
    { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
L
Linus Torvalds 已提交
683 684

/* internal cache of cache description objs */
685
static struct kmem_cache cache_cache = {
P
Pekka Enberg 已提交
686 687 688
	.batchcount = 1,
	.limit = BOOT_CPUCACHE_ENTRIES,
	.shared = 1,
689
	.buffer_size = sizeof(struct kmem_cache),
P
Pekka Enberg 已提交
690
	.name = "kmem_cache",
L
Linus Torvalds 已提交
691 692
};

693 694
#define BAD_ALIEN_MAGIC 0x01020304ul

695 696 697 698 699 700 701 702
#ifdef CONFIG_LOCKDEP

/*
 * Slab sometimes uses the kmalloc slabs to store the slab headers
 * for other slabs "off slab".
 * The locking for this is tricky in that it nests within the locks
 * of all other slabs in a few places; to deal with this special
 * locking we put on-slab caches into a separate lock-class.
703 704 705 706
 *
 * We set lock class for alien array caches which are up during init.
 * The lock annotation will be lost if all cpus of a node goes down and
 * then comes back up during hotplug
707
 */
708 709 710 711
static struct lock_class_key on_slab_l3_key;
static struct lock_class_key on_slab_alc_key;

static inline void init_lock_keys(void)
712 713 714

{
	int q;
715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741
	struct cache_sizes *s = malloc_sizes;

	while (s->cs_size != ULONG_MAX) {
		for_each_node(q) {
			struct array_cache **alc;
			int r;
			struct kmem_list3 *l3 = s->cs_cachep->nodelists[q];
			if (!l3 || OFF_SLAB(s->cs_cachep))
				continue;
			lockdep_set_class(&l3->list_lock, &on_slab_l3_key);
			alc = l3->alien;
			/*
			 * FIXME: This check for BAD_ALIEN_MAGIC
			 * should go away when common slab code is taught to
			 * work even without alien caches.
			 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
			 * for alloc_alien_cache,
			 */
			if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
				continue;
			for_each_node(r) {
				if (alc[r])
					lockdep_set_class(&alc[r]->lock,
					     &on_slab_alc_key);
			}
		}
		s++;
742 743 744
	}
}
#else
745
static inline void init_lock_keys(void)
746 747 748 749
{
}
#endif

750 751 752 753
/*
 * 1. Guard access to the cache-chain.
 * 2. Protect sanity of cpu_online_map against cpu hotplug events
 */
I
Ingo Molnar 已提交
754
static DEFINE_MUTEX(cache_chain_mutex);
L
Linus Torvalds 已提交
755 756 757 758 759 760 761 762
static struct list_head cache_chain;

/*
 * chicken and egg problem: delay the per-cpu array allocation
 * until the general caches are up.
 */
static enum {
	NONE,
763 764
	PARTIAL_AC,
	PARTIAL_L3,
L
Linus Torvalds 已提交
765 766 767
	FULL
} g_cpucache_up;

768 769 770 771 772 773 774 775
/*
 * used by boot code to determine if it can use slab based allocator
 */
int slab_is_available(void)
{
	return g_cpucache_up == FULL;
}

776
static DEFINE_PER_CPU(struct delayed_work, reap_work);
L
Linus Torvalds 已提交
777

778
static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
779 780 781 782
{
	return cachep->array[smp_processor_id()];
}

A
Andrew Morton 已提交
783 784
static inline struct kmem_cache *__find_general_cachep(size_t size,
							gfp_t gfpflags)
L
Linus Torvalds 已提交
785 786 787 788 789
{
	struct cache_sizes *csizep = malloc_sizes;

#if DEBUG
	/* This happens if someone tries to call
P
Pekka Enberg 已提交
790 791 792
	 * kmem_cache_create(), or __kmalloc(), before
	 * the generic caches are initialized.
	 */
793
	BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
L
Linus Torvalds 已提交
794 795 796 797 798
#endif
	while (size > csizep->cs_size)
		csizep++;

	/*
799
	 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
L
Linus Torvalds 已提交
800 801 802
	 * has cs_{dma,}cachep==NULL. Thus no special case
	 * for large kmalloc calls required.
	 */
803
#ifdef CONFIG_ZONE_DMA
L
Linus Torvalds 已提交
804 805
	if (unlikely(gfpflags & GFP_DMA))
		return csizep->cs_dmacachep;
806
#endif
L
Linus Torvalds 已提交
807 808 809
	return csizep->cs_cachep;
}

A
Adrian Bunk 已提交
810
static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
811 812 813 814
{
	return __find_general_cachep(size, gfpflags);
}

815
static size_t slab_mgmt_size(size_t nr_objs, size_t align)
L
Linus Torvalds 已提交
816
{
817 818
	return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
}
L
Linus Torvalds 已提交
819

A
Andrew Morton 已提交
820 821 822
/*
 * Calculate the number of objects and left-over bytes for a given buffer size.
 */
823 824 825 826 827 828 829
static void cache_estimate(unsigned long gfporder, size_t buffer_size,
			   size_t align, int flags, size_t *left_over,
			   unsigned int *num)
{
	int nr_objs;
	size_t mgmt_size;
	size_t slab_size = PAGE_SIZE << gfporder;
L
Linus Torvalds 已提交
830

831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878
	/*
	 * The slab management structure can be either off the slab or
	 * on it. For the latter case, the memory allocated for a
	 * slab is used for:
	 *
	 * - The struct slab
	 * - One kmem_bufctl_t for each object
	 * - Padding to respect alignment of @align
	 * - @buffer_size bytes for each object
	 *
	 * If the slab management structure is off the slab, then the
	 * alignment will already be calculated into the size. Because
	 * the slabs are all pages aligned, the objects will be at the
	 * correct alignment when allocated.
	 */
	if (flags & CFLGS_OFF_SLAB) {
		mgmt_size = 0;
		nr_objs = slab_size / buffer_size;

		if (nr_objs > SLAB_LIMIT)
			nr_objs = SLAB_LIMIT;
	} else {
		/*
		 * Ignore padding for the initial guess. The padding
		 * is at most @align-1 bytes, and @buffer_size is at
		 * least @align. In the worst case, this result will
		 * be one greater than the number of objects that fit
		 * into the memory allocation when taking the padding
		 * into account.
		 */
		nr_objs = (slab_size - sizeof(struct slab)) /
			  (buffer_size + sizeof(kmem_bufctl_t));

		/*
		 * This calculated number will be either the right
		 * amount, or one greater than what we want.
		 */
		if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
		       > slab_size)
			nr_objs--;

		if (nr_objs > SLAB_LIMIT)
			nr_objs = SLAB_LIMIT;

		mgmt_size = slab_mgmt_size(nr_objs, align);
	}
	*num = nr_objs;
	*left_over = slab_size - nr_objs*buffer_size - mgmt_size;
L
Linus Torvalds 已提交
879 880 881 882
}

#define slab_error(cachep, msg) __slab_error(__FUNCTION__, cachep, msg)

A
Andrew Morton 已提交
883 884
static void __slab_error(const char *function, struct kmem_cache *cachep,
			char *msg)
L
Linus Torvalds 已提交
885 886
{
	printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
P
Pekka Enberg 已提交
887
	       function, cachep->name, msg);
L
Linus Torvalds 已提交
888 889 890
	dump_stack();
}

891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906
/*
 * By default on NUMA we use alien caches to stage the freeing of
 * objects allocated from other nodes. This causes massive memory
 * inefficiencies when using fake NUMA setup to split memory into a
 * large number of small nodes, so it can be disabled on the command
 * line
  */

static int use_alien_caches __read_mostly = 1;
static int __init noaliencache_setup(char *s)
{
	use_alien_caches = 0;
	return 1;
}
__setup("noaliencache", noaliencache_setup);

907 908 909 910 911 912 913 914 915 916 917 918 919 920 921
#ifdef CONFIG_NUMA
/*
 * Special reaping functions for NUMA systems called from cache_reap().
 * These take care of doing round robin flushing of alien caches (containing
 * objects freed on different nodes from which they were allocated) and the
 * flushing of remote pcps by calling drain_node_pages.
 */
static DEFINE_PER_CPU(unsigned long, reap_node);

static void init_reap_node(int cpu)
{
	int node;

	node = next_node(cpu_to_node(cpu), node_online_map);
	if (node == MAX_NUMNODES)
922
		node = first_node(node_online_map);
923

924
	per_cpu(reap_node, cpu) = node;
925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947
}

static void next_reap_node(void)
{
	int node = __get_cpu_var(reap_node);

	/*
	 * Also drain per cpu pages on remote zones
	 */
	if (node != numa_node_id())
		drain_node_pages(node);

	node = next_node(node, node_online_map);
	if (unlikely(node >= MAX_NUMNODES))
		node = first_node(node_online_map);
	__get_cpu_var(reap_node) = node;
}

#else
#define init_reap_node(cpu) do { } while (0)
#define next_reap_node(void) do { } while (0)
#endif

L
Linus Torvalds 已提交
948 949 950 951 952 953 954 955 956
/*
 * Initiate the reap timer running on the target CPU.  We run at around 1 to 2Hz
 * via the workqueue/eventd.
 * Add the CPU number into the expiration time to minimize the possibility of
 * the CPUs getting into lockstep and contending for the global cache chain
 * lock.
 */
static void __devinit start_cpu_timer(int cpu)
{
957
	struct delayed_work *reap_work = &per_cpu(reap_work, cpu);
L
Linus Torvalds 已提交
958 959 960 961 962 963

	/*
	 * When this gets called from do_initcalls via cpucache_init(),
	 * init_workqueues() has already run, so keventd will be setup
	 * at that time.
	 */
964
	if (keventd_up() && reap_work->work.func == NULL) {
965
		init_reap_node(cpu);
966
		INIT_DELAYED_WORK(reap_work, cache_reap);
967 968
		schedule_delayed_work_on(cpu, reap_work,
					__round_jiffies_relative(HZ, cpu));
L
Linus Torvalds 已提交
969 970 971
	}
}

972
static struct array_cache *alloc_arraycache(int node, int entries,
P
Pekka Enberg 已提交
973
					    int batchcount)
L
Linus Torvalds 已提交
974
{
P
Pekka Enberg 已提交
975
	int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
L
Linus Torvalds 已提交
976 977
	struct array_cache *nc = NULL;

978
	nc = kmalloc_node(memsize, GFP_KERNEL, node);
L
Linus Torvalds 已提交
979 980 981 982 983
	if (nc) {
		nc->avail = 0;
		nc->limit = entries;
		nc->batchcount = batchcount;
		nc->touched = 0;
984
		spin_lock_init(&nc->lock);
L
Linus Torvalds 已提交
985 986 987 988
	}
	return nc;
}

989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012
/*
 * Transfer objects in one arraycache to another.
 * Locking must be handled by the caller.
 *
 * Return the number of entries transferred.
 */
static int transfer_objects(struct array_cache *to,
		struct array_cache *from, unsigned int max)
{
	/* Figure out how many entries to transfer */
	int nr = min(min(from->avail, max), to->limit - to->avail);

	if (!nr)
		return 0;

	memcpy(to->entry + to->avail, from->entry + from->avail -nr,
			sizeof(void *) *nr);

	from->avail -= nr;
	to->avail += nr;
	to->touched = 1;
	return nr;
}

1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037
#ifndef CONFIG_NUMA

#define drain_alien_cache(cachep, alien) do { } while (0)
#define reap_alien(cachep, l3) do { } while (0)

static inline struct array_cache **alloc_alien_cache(int node, int limit)
{
	return (struct array_cache **)BAD_ALIEN_MAGIC;
}

static inline void free_alien_cache(struct array_cache **ac_ptr)
{
}

static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
{
	return 0;
}

static inline void *alternate_node_alloc(struct kmem_cache *cachep,
		gfp_t flags)
{
	return NULL;
}

1038
static inline void *____cache_alloc_node(struct kmem_cache *cachep,
1039 1040 1041 1042 1043 1044 1045
		 gfp_t flags, int nodeid)
{
	return NULL;
}

#else	/* CONFIG_NUMA */

1046
static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
1047
static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
1048

P
Pekka Enberg 已提交
1049
static struct array_cache **alloc_alien_cache(int node, int limit)
1050 1051
{
	struct array_cache **ac_ptr;
1052
	int memsize = sizeof(void *) * nr_node_ids;
1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065
	int i;

	if (limit > 1)
		limit = 12;
	ac_ptr = kmalloc_node(memsize, GFP_KERNEL, node);
	if (ac_ptr) {
		for_each_node(i) {
			if (i == node || !node_online(i)) {
				ac_ptr[i] = NULL;
				continue;
			}
			ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d);
			if (!ac_ptr[i]) {
P
Pekka Enberg 已提交
1066
				for (i--; i <= 0; i--)
1067 1068 1069 1070 1071 1072 1073 1074 1075
					kfree(ac_ptr[i]);
				kfree(ac_ptr);
				return NULL;
			}
		}
	}
	return ac_ptr;
}

P
Pekka Enberg 已提交
1076
static void free_alien_cache(struct array_cache **ac_ptr)
1077 1078 1079 1080 1081 1082
{
	int i;

	if (!ac_ptr)
		return;
	for_each_node(i)
P
Pekka Enberg 已提交
1083
	    kfree(ac_ptr[i]);
1084 1085 1086
	kfree(ac_ptr);
}

1087
static void __drain_alien_cache(struct kmem_cache *cachep,
P
Pekka Enberg 已提交
1088
				struct array_cache *ac, int node)
1089 1090 1091 1092 1093
{
	struct kmem_list3 *rl3 = cachep->nodelists[node];

	if (ac->avail) {
		spin_lock(&rl3->list_lock);
1094 1095 1096 1097 1098
		/*
		 * Stuff objects into the remote nodes shared array first.
		 * That way we could avoid the overhead of putting the objects
		 * into the free lists and getting them back later.
		 */
1099 1100
		if (rl3->shared)
			transfer_objects(rl3->shared, ac, ac->limit);
1101

1102
		free_block(cachep, ac->entry, ac->avail, node);
1103 1104 1105 1106 1107
		ac->avail = 0;
		spin_unlock(&rl3->list_lock);
	}
}

1108 1109 1110 1111 1112 1113 1114 1115 1116
/*
 * Called from cache_reap() to regularly drain alien caches round robin.
 */
static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
{
	int node = __get_cpu_var(reap_node);

	if (l3->alien) {
		struct array_cache *ac = l3->alien[node];
1117 1118

		if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
1119 1120 1121 1122 1123 1124
			__drain_alien_cache(cachep, ac, node);
			spin_unlock_irq(&ac->lock);
		}
	}
}

A
Andrew Morton 已提交
1125 1126
static void drain_alien_cache(struct kmem_cache *cachep,
				struct array_cache **alien)
1127
{
P
Pekka Enberg 已提交
1128
	int i = 0;
1129 1130 1131 1132
	struct array_cache *ac;
	unsigned long flags;

	for_each_online_node(i) {
1133
		ac = alien[i];
1134 1135 1136 1137 1138 1139 1140
		if (ac) {
			spin_lock_irqsave(&ac->lock, flags);
			__drain_alien_cache(cachep, ac, i);
			spin_unlock_irqrestore(&ac->lock, flags);
		}
	}
}
1141

1142
static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1143 1144 1145 1146 1147
{
	struct slab *slabp = virt_to_slab(objp);
	int nodeid = slabp->nodeid;
	struct kmem_list3 *l3;
	struct array_cache *alien = NULL;
P
Pekka Enberg 已提交
1148 1149 1150
	int node;

	node = numa_node_id();
1151 1152 1153 1154 1155

	/*
	 * Make sure we are not freeing a object from another node to the array
	 * cache on this cpu.
	 */
1156
	if (likely(slabp->nodeid == node))
1157 1158
		return 0;

P
Pekka Enberg 已提交
1159
	l3 = cachep->nodelists[node];
1160 1161 1162
	STATS_INC_NODEFREES(cachep);
	if (l3->alien && l3->alien[nodeid]) {
		alien = l3->alien[nodeid];
1163
		spin_lock(&alien->lock);
1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176
		if (unlikely(alien->avail == alien->limit)) {
			STATS_INC_ACOVERFLOW(cachep);
			__drain_alien_cache(cachep, alien, nodeid);
		}
		alien->entry[alien->avail++] = objp;
		spin_unlock(&alien->lock);
	} else {
		spin_lock(&(cachep->nodelists[nodeid])->list_lock);
		free_block(cachep, &objp, 1, nodeid);
		spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
	}
	return 1;
}
1177 1178
#endif

1179
static int __cpuinit cpuup_callback(struct notifier_block *nfb,
P
Pekka Enberg 已提交
1180
				    unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
1181 1182
{
	long cpu = (long)hcpu;
1183
	struct kmem_cache *cachep;
1184 1185 1186
	struct kmem_list3 *l3 = NULL;
	int node = cpu_to_node(cpu);
	int memsize = sizeof(struct kmem_list3);
L
Linus Torvalds 已提交
1187 1188

	switch (action) {
1189
	case CPU_LOCK_ACQUIRE:
I
Ingo Molnar 已提交
1190
		mutex_lock(&cache_chain_mutex);
1191 1192
		break;
	case CPU_UP_PREPARE:
A
Andrew Morton 已提交
1193 1194
		/*
		 * We need to do this right in the beginning since
1195 1196 1197 1198 1199
		 * alloc_arraycache's are going to use this list.
		 * kmalloc_node allows us to add the slab to the right
		 * kmem_list3 and not this cpu's kmem_list3
		 */

L
Linus Torvalds 已提交
1200
		list_for_each_entry(cachep, &cache_chain, next) {
A
Andrew Morton 已提交
1201 1202
			/*
			 * Set up the size64 kmemlist for cpu before we can
1203 1204 1205 1206
			 * begin anything. Make sure some other cpu on this
			 * node has not already allocated this
			 */
			if (!cachep->nodelists[node]) {
A
Andrew Morton 已提交
1207 1208
				l3 = kmalloc_node(memsize, GFP_KERNEL, node);
				if (!l3)
1209 1210 1211
					goto bad;
				kmem_list3_init(l3);
				l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
P
Pekka Enberg 已提交
1212
				    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1213

1214 1215 1216 1217 1218
				/*
				 * The l3s don't come and go as CPUs come and
				 * go.  cache_chain_mutex is sufficient
				 * protection here.
				 */
1219 1220
				cachep->nodelists[node] = l3;
			}
L
Linus Torvalds 已提交
1221

1222 1223
			spin_lock_irq(&cachep->nodelists[node]->list_lock);
			cachep->nodelists[node]->free_limit =
A
Andrew Morton 已提交
1224 1225
				(1 + nr_cpus_node(node)) *
				cachep->batchcount + cachep->num;
1226 1227 1228
			spin_unlock_irq(&cachep->nodelists[node]->list_lock);
		}

A
Andrew Morton 已提交
1229 1230 1231 1232
		/*
		 * Now we can go ahead with allocating the shared arrays and
		 * array caches
		 */
1233
		list_for_each_entry(cachep, &cache_chain, next) {
1234
			struct array_cache *nc;
1235
			struct array_cache *shared = NULL;
1236
			struct array_cache **alien = NULL;
1237

1238
			nc = alloc_arraycache(node, cachep->limit,
1239
						cachep->batchcount);
L
Linus Torvalds 已提交
1240 1241
			if (!nc)
				goto bad;
1242 1243
			if (cachep->shared) {
				shared = alloc_arraycache(node,
1244 1245
					cachep->shared * cachep->batchcount,
					0xbaadf00d);
1246 1247 1248
				if (!shared)
					goto bad;
			}
1249 1250 1251 1252 1253
			if (use_alien_caches) {
                                alien = alloc_alien_cache(node, cachep->limit);
                                if (!alien)
                                        goto bad;
                        }
L
Linus Torvalds 已提交
1254
			cachep->array[cpu] = nc;
1255 1256 1257
			l3 = cachep->nodelists[node];
			BUG_ON(!l3);

1258 1259 1260 1261 1262 1263 1264 1265
			spin_lock_irq(&l3->list_lock);
			if (!l3->shared) {
				/*
				 * We are serialised from CPU_DEAD or
				 * CPU_UP_CANCELLED by the cpucontrol lock
				 */
				l3->shared = shared;
				shared = NULL;
1266
			}
1267 1268 1269 1270 1271 1272 1273 1274 1275
#ifdef CONFIG_NUMA
			if (!l3->alien) {
				l3->alien = alien;
				alien = NULL;
			}
#endif
			spin_unlock_irq(&l3->list_lock);
			kfree(shared);
			free_alien_cache(alien);
L
Linus Torvalds 已提交
1276 1277 1278 1279 1280 1281
		}
		break;
	case CPU_ONLINE:
		start_cpu_timer(cpu);
		break;
#ifdef CONFIG_HOTPLUG_CPU
1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295
  	case CPU_DOWN_PREPARE:
		/*
		 * Shutdown cache reaper. Note that the cache_chain_mutex is
		 * held so that if cache_reap() is invoked it cannot do
		 * anything expensive but will only modify reap_work
		 * and reschedule the timer.
		*/
		cancel_rearming_delayed_work(&per_cpu(reap_work, cpu));
		/* Now the cache_reaper is guaranteed to be not running. */
		per_cpu(reap_work, cpu).work.func = NULL;
  		break;
  	case CPU_DOWN_FAILED:
		start_cpu_timer(cpu);
  		break;
L
Linus Torvalds 已提交
1296
	case CPU_DEAD:
1297 1298 1299 1300 1301 1302 1303 1304
		/*
		 * Even if all the cpus of a node are down, we don't free the
		 * kmem_list3 of any cache. This to avoid a race between
		 * cpu_down, and a kmalloc allocation from another cpu for
		 * memory from the node of the cpu going down.  The list3
		 * structure is usually allocated from kmem_cache_create() and
		 * gets destroyed at kmem_cache_destroy().
		 */
L
Linus Torvalds 已提交
1305
		/* fall thru */
1306
#endif
L
Linus Torvalds 已提交
1307 1308 1309
	case CPU_UP_CANCELED:
		list_for_each_entry(cachep, &cache_chain, next) {
			struct array_cache *nc;
1310 1311
			struct array_cache *shared;
			struct array_cache **alien;
1312
			cpumask_t mask;
L
Linus Torvalds 已提交
1313

1314
			mask = node_to_cpumask(node);
L
Linus Torvalds 已提交
1315 1316 1317
			/* cpu is dead; no one can alloc from it. */
			nc = cachep->array[cpu];
			cachep->array[cpu] = NULL;
1318 1319 1320
			l3 = cachep->nodelists[node];

			if (!l3)
1321
				goto free_array_cache;
1322

1323
			spin_lock_irq(&l3->list_lock);
1324 1325 1326 1327

			/* Free limit for this kmem_list3 */
			l3->free_limit -= cachep->batchcount;
			if (nc)
1328
				free_block(cachep, nc->entry, nc->avail, node);
1329 1330

			if (!cpus_empty(mask)) {
1331
				spin_unlock_irq(&l3->list_lock);
1332
				goto free_array_cache;
P
Pekka Enberg 已提交
1333
			}
1334

1335 1336
			shared = l3->shared;
			if (shared) {
1337 1338
				free_block(cachep, shared->entry,
					   shared->avail, node);
1339 1340 1341
				l3->shared = NULL;
			}

1342 1343 1344 1345 1346 1347 1348 1349 1350
			alien = l3->alien;
			l3->alien = NULL;

			spin_unlock_irq(&l3->list_lock);

			kfree(shared);
			if (alien) {
				drain_alien_cache(cachep, alien);
				free_alien_cache(alien);
1351
			}
1352
free_array_cache:
L
Linus Torvalds 已提交
1353 1354
			kfree(nc);
		}
1355 1356 1357 1358 1359 1360 1361 1362 1363
		/*
		 * In the previous loop, all the objects were freed to
		 * the respective cache's slabs,  now we can go ahead and
		 * shrink each nodelist to its limit.
		 */
		list_for_each_entry(cachep, &cache_chain, next) {
			l3 = cachep->nodelists[node];
			if (!l3)
				continue;
1364
			drain_freelist(cachep, l3, l3->free_objects);
1365
		}
1366 1367
		break;
	case CPU_LOCK_RELEASE:
I
Ingo Molnar 已提交
1368
		mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
1369 1370 1371
		break;
	}
	return NOTIFY_OK;
A
Andrew Morton 已提交
1372
bad:
L
Linus Torvalds 已提交
1373 1374 1375
	return NOTIFY_BAD;
}

1376 1377 1378
static struct notifier_block __cpuinitdata cpucache_notifier = {
	&cpuup_callback, NULL, 0
};
L
Linus Torvalds 已提交
1379

1380 1381 1382
/*
 * swap the static kmem_list3 with kmalloced memory
 */
A
Andrew Morton 已提交
1383 1384
static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
			int nodeid)
1385 1386 1387 1388 1389 1390 1391 1392
{
	struct kmem_list3 *ptr;

	ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, nodeid);
	BUG_ON(!ptr);

	local_irq_disable();
	memcpy(ptr, list, sizeof(struct kmem_list3));
1393 1394 1395 1396 1397
	/*
	 * Do not assume that spinlocks can be initialized via memcpy:
	 */
	spin_lock_init(&ptr->list_lock);

1398 1399 1400 1401 1402
	MAKE_ALL_LISTS(cachep, ptr, nodeid);
	cachep->nodelists[nodeid] = ptr;
	local_irq_enable();
}

A
Andrew Morton 已提交
1403 1404 1405
/*
 * Initialisation.  Called after the page allocator have been initialised and
 * before smp_init().
L
Linus Torvalds 已提交
1406 1407 1408 1409 1410 1411
 */
void __init kmem_cache_init(void)
{
	size_t left_over;
	struct cache_sizes *sizes;
	struct cache_names *names;
1412
	int i;
1413
	int order;
P
Pekka Enberg 已提交
1414
	int node;
1415

1416 1417 1418
	if (num_possible_nodes() == 1)
		use_alien_caches = 0;

1419 1420 1421 1422 1423
	for (i = 0; i < NUM_INIT_LISTS; i++) {
		kmem_list3_init(&initkmem_list3[i]);
		if (i < MAX_NUMNODES)
			cache_cache.nodelists[i] = NULL;
	}
L
Linus Torvalds 已提交
1424 1425 1426 1427 1428 1429 1430 1431 1432 1433

	/*
	 * Fragmentation resistance on low memory - only use bigger
	 * page orders on machines with more than 32MB of memory.
	 */
	if (num_physpages > (32 << 20) >> PAGE_SHIFT)
		slab_break_gfp_order = BREAK_GFP_ORDER_HI;

	/* Bootstrap is tricky, because several objects are allocated
	 * from caches that do not exist yet:
A
Andrew Morton 已提交
1434 1435 1436
	 * 1) initialize the cache_cache cache: it contains the struct
	 *    kmem_cache structures of all caches, except cache_cache itself:
	 *    cache_cache is statically allocated.
1437 1438 1439
	 *    Initially an __init data area is used for the head array and the
	 *    kmem_list3 structures, it's replaced with a kmalloc allocated
	 *    array at the end of the bootstrap.
L
Linus Torvalds 已提交
1440
	 * 2) Create the first kmalloc cache.
1441
	 *    The struct kmem_cache for the new cache is allocated normally.
1442 1443 1444
	 *    An __init data area is used for the head array.
	 * 3) Create the remaining kmalloc caches, with minimally sized
	 *    head arrays.
L
Linus Torvalds 已提交
1445 1446
	 * 4) Replace the __init data head arrays for cache_cache and the first
	 *    kmalloc cache with kmalloc allocated arrays.
1447 1448 1449
	 * 5) Replace the __init data for kmem_list3 for cache_cache and
	 *    the other cache's with kmalloc allocated memory.
	 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
L
Linus Torvalds 已提交
1450 1451
	 */

P
Pekka Enberg 已提交
1452 1453
	node = numa_node_id();

L
Linus Torvalds 已提交
1454 1455 1456 1457 1458
	/* 1) create the cache_cache */
	INIT_LIST_HEAD(&cache_chain);
	list_add(&cache_cache.next, &cache_chain);
	cache_cache.colour_off = cache_line_size();
	cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
P
Pekka Enberg 已提交
1459
	cache_cache.nodelists[node] = &initkmem_list3[CACHE_CACHE];
L
Linus Torvalds 已提交
1460

E
Eric Dumazet 已提交
1461 1462 1463 1464 1465 1466 1467 1468 1469
	/*
	 * struct kmem_cache size depends on nr_node_ids, which
	 * can be less than MAX_NUMNODES.
	 */
	cache_cache.buffer_size = offsetof(struct kmem_cache, nodelists) +
				 nr_node_ids * sizeof(struct kmem_list3 *);
#if DEBUG
	cache_cache.obj_size = cache_cache.buffer_size;
#endif
A
Andrew Morton 已提交
1470 1471
	cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
					cache_line_size());
1472 1473
	cache_cache.reciprocal_buffer_size =
		reciprocal_value(cache_cache.buffer_size);
L
Linus Torvalds 已提交
1474

1475 1476 1477 1478 1479 1480
	for (order = 0; order < MAX_ORDER; order++) {
		cache_estimate(order, cache_cache.buffer_size,
			cache_line_size(), 0, &left_over, &cache_cache.num);
		if (cache_cache.num)
			break;
	}
1481
	BUG_ON(!cache_cache.num);
1482
	cache_cache.gfporder = order;
P
Pekka Enberg 已提交
1483 1484 1485
	cache_cache.colour = left_over / cache_cache.colour_off;
	cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
				      sizeof(struct slab), cache_line_size());
L
Linus Torvalds 已提交
1486 1487 1488 1489 1490

	/* 2+3) create the kmalloc caches */
	sizes = malloc_sizes;
	names = cache_names;

A
Andrew Morton 已提交
1491 1492 1493 1494
	/*
	 * Initialize the caches that provide memory for the array cache and the
	 * kmem_list3 structures first.  Without this, further allocations will
	 * bug.
1495 1496 1497
	 */

	sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
A
Andrew Morton 已提交
1498 1499 1500 1501
					sizes[INDEX_AC].cs_size,
					ARCH_KMALLOC_MINALIGN,
					ARCH_KMALLOC_FLAGS|SLAB_PANIC,
					NULL, NULL);
1502

A
Andrew Morton 已提交
1503
	if (INDEX_AC != INDEX_L3) {
1504
		sizes[INDEX_L3].cs_cachep =
A
Andrew Morton 已提交
1505 1506 1507 1508 1509 1510
			kmem_cache_create(names[INDEX_L3].name,
				sizes[INDEX_L3].cs_size,
				ARCH_KMALLOC_MINALIGN,
				ARCH_KMALLOC_FLAGS|SLAB_PANIC,
				NULL, NULL);
	}
1511

1512 1513
	slab_early_init = 0;

L
Linus Torvalds 已提交
1514
	while (sizes->cs_size != ULONG_MAX) {
1515 1516
		/*
		 * For performance, all the general caches are L1 aligned.
L
Linus Torvalds 已提交
1517 1518 1519
		 * This should be particularly beneficial on SMP boxes, as it
		 * eliminates "false sharing".
		 * Note for systems short on memory removing the alignment will
1520 1521
		 * allow tighter packing of the smaller caches.
		 */
A
Andrew Morton 已提交
1522
		if (!sizes->cs_cachep) {
1523
			sizes->cs_cachep = kmem_cache_create(names->name,
A
Andrew Morton 已提交
1524 1525 1526 1527 1528
					sizes->cs_size,
					ARCH_KMALLOC_MINALIGN,
					ARCH_KMALLOC_FLAGS|SLAB_PANIC,
					NULL, NULL);
		}
1529 1530 1531
#ifdef CONFIG_ZONE_DMA
		sizes->cs_dmacachep = kmem_cache_create(
					names->name_dma,
A
Andrew Morton 已提交
1532 1533 1534 1535 1536
					sizes->cs_size,
					ARCH_KMALLOC_MINALIGN,
					ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
						SLAB_PANIC,
					NULL, NULL);
1537
#endif
L
Linus Torvalds 已提交
1538 1539 1540 1541 1542
		sizes++;
		names++;
	}
	/* 4) Replace the bootstrap head arrays */
	{
1543
		struct array_cache *ptr;
1544

L
Linus Torvalds 已提交
1545
		ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1546

L
Linus Torvalds 已提交
1547
		local_irq_disable();
1548 1549
		BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
		memcpy(ptr, cpu_cache_get(&cache_cache),
P
Pekka Enberg 已提交
1550
		       sizeof(struct arraycache_init));
1551 1552 1553 1554 1555
		/*
		 * Do not assume that spinlocks can be initialized via memcpy:
		 */
		spin_lock_init(&ptr->lock);

L
Linus Torvalds 已提交
1556 1557
		cache_cache.array[smp_processor_id()] = ptr;
		local_irq_enable();
1558

L
Linus Torvalds 已提交
1559
		ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1560

L
Linus Torvalds 已提交
1561
		local_irq_disable();
1562
		BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
P
Pekka Enberg 已提交
1563
		       != &initarray_generic.cache);
1564
		memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
P
Pekka Enberg 已提交
1565
		       sizeof(struct arraycache_init));
1566 1567 1568 1569 1570
		/*
		 * Do not assume that spinlocks can be initialized via memcpy:
		 */
		spin_lock_init(&ptr->lock);

1571
		malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
P
Pekka Enberg 已提交
1572
		    ptr;
L
Linus Torvalds 已提交
1573 1574
		local_irq_enable();
	}
1575 1576
	/* 5) Replace the bootstrap kmem_list3's */
	{
P
Pekka Enberg 已提交
1577 1578
		int nid;

1579
		/* Replace the static kmem_list3 structures for the boot cpu */
P
Pekka Enberg 已提交
1580
		init_list(&cache_cache, &initkmem_list3[CACHE_CACHE], node);
1581

P
Pekka Enberg 已提交
1582
		for_each_online_node(nid) {
1583
			init_list(malloc_sizes[INDEX_AC].cs_cachep,
P
Pekka Enberg 已提交
1584
				  &initkmem_list3[SIZE_AC + nid], nid);
1585 1586 1587

			if (INDEX_AC != INDEX_L3) {
				init_list(malloc_sizes[INDEX_L3].cs_cachep,
P
Pekka Enberg 已提交
1588
					  &initkmem_list3[SIZE_L3 + nid], nid);
1589 1590 1591
			}
		}
	}
L
Linus Torvalds 已提交
1592

1593
	/* 6) resize the head arrays to their final sizes */
L
Linus Torvalds 已提交
1594
	{
1595
		struct kmem_cache *cachep;
I
Ingo Molnar 已提交
1596
		mutex_lock(&cache_chain_mutex);
L
Linus Torvalds 已提交
1597
		list_for_each_entry(cachep, &cache_chain, next)
1598 1599
			if (enable_cpucache(cachep))
				BUG();
I
Ingo Molnar 已提交
1600
		mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
1601 1602
	}

1603 1604 1605 1606
	/* Annotate slab for lockdep -- annotate the malloc caches */
	init_lock_keys();


L
Linus Torvalds 已提交
1607 1608 1609
	/* Done! */
	g_cpucache_up = FULL;

A
Andrew Morton 已提交
1610 1611 1612
	/*
	 * Register a cpu startup notifier callback that initializes
	 * cpu_cache_get for all new cpus
L
Linus Torvalds 已提交
1613 1614 1615
	 */
	register_cpu_notifier(&cpucache_notifier);

A
Andrew Morton 已提交
1616 1617 1618
	/*
	 * The reap timers are started later, with a module init call: That part
	 * of the kernel is not yet operational.
L
Linus Torvalds 已提交
1619 1620 1621 1622 1623 1624 1625
	 */
}

static int __init cpucache_init(void)
{
	int cpu;

A
Andrew Morton 已提交
1626 1627
	/*
	 * Register the timers that return unneeded pages to the page allocator
L
Linus Torvalds 已提交
1628
	 */
1629
	for_each_online_cpu(cpu)
A
Andrew Morton 已提交
1630
		start_cpu_timer(cpu);
L
Linus Torvalds 已提交
1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641
	return 0;
}
__initcall(cpucache_init);

/*
 * Interface to system's page allocator. No need to hold the cache-lock.
 *
 * If we requested dmaable memory, we will get it. Even if we
 * did not request dmaable memory, we might get it, but that
 * would be relatively rare and ignorable.
 */
1642
static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
L
Linus Torvalds 已提交
1643 1644
{
	struct page *page;
1645
	int nr_pages;
L
Linus Torvalds 已提交
1646 1647
	int i;

1648
#ifndef CONFIG_MMU
1649 1650 1651
	/*
	 * Nommu uses slab's for process anonymous memory allocations, and thus
	 * requires __GFP_COMP to properly refcount higher order allocations
1652
	 */
1653
	flags |= __GFP_COMP;
1654
#endif
1655

1656
	flags |= cachep->gfpflags;
1657 1658

	page = alloc_pages_node(nodeid, flags, cachep->gfporder);
L
Linus Torvalds 已提交
1659 1660 1661
	if (!page)
		return NULL;

1662
	nr_pages = (1 << cachep->gfporder);
L
Linus Torvalds 已提交
1663
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1664 1665 1666 1667 1668
		add_zone_page_state(page_zone(page),
			NR_SLAB_RECLAIMABLE, nr_pages);
	else
		add_zone_page_state(page_zone(page),
			NR_SLAB_UNRECLAIMABLE, nr_pages);
1669 1670 1671
	for (i = 0; i < nr_pages; i++)
		__SetPageSlab(page + i);
	return page_address(page);
L
Linus Torvalds 已提交
1672 1673 1674 1675 1676
}

/*
 * Interface to system's page release.
 */
1677
static void kmem_freepages(struct kmem_cache *cachep, void *addr)
L
Linus Torvalds 已提交
1678
{
P
Pekka Enberg 已提交
1679
	unsigned long i = (1 << cachep->gfporder);
L
Linus Torvalds 已提交
1680 1681 1682
	struct page *page = virt_to_page(addr);
	const unsigned long nr_freed = i;

1683 1684 1685 1686 1687 1688
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
		sub_zone_page_state(page_zone(page),
				NR_SLAB_RECLAIMABLE, nr_freed);
	else
		sub_zone_page_state(page_zone(page),
				NR_SLAB_UNRECLAIMABLE, nr_freed);
L
Linus Torvalds 已提交
1689
	while (i--) {
N
Nick Piggin 已提交
1690 1691
		BUG_ON(!PageSlab(page));
		__ClearPageSlab(page);
L
Linus Torvalds 已提交
1692 1693 1694 1695 1696 1697 1698 1699 1700
		page++;
	}
	if (current->reclaim_state)
		current->reclaim_state->reclaimed_slab += nr_freed;
	free_pages((unsigned long)addr, cachep->gfporder);
}

static void kmem_rcu_free(struct rcu_head *head)
{
P
Pekka Enberg 已提交
1701
	struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
1702
	struct kmem_cache *cachep = slab_rcu->cachep;
L
Linus Torvalds 已提交
1703 1704 1705 1706 1707 1708 1709 1710 1711

	kmem_freepages(cachep, slab_rcu->addr);
	if (OFF_SLAB(cachep))
		kmem_cache_free(cachep->slabp_cache, slab_rcu);
}

#if DEBUG

#ifdef CONFIG_DEBUG_PAGEALLOC
1712
static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
P
Pekka Enberg 已提交
1713
			    unsigned long caller)
L
Linus Torvalds 已提交
1714
{
1715
	int size = obj_size(cachep);
L
Linus Torvalds 已提交
1716

1717
	addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
L
Linus Torvalds 已提交
1718

P
Pekka Enberg 已提交
1719
	if (size < 5 * sizeof(unsigned long))
L
Linus Torvalds 已提交
1720 1721
		return;

P
Pekka Enberg 已提交
1722 1723 1724 1725
	*addr++ = 0x12345678;
	*addr++ = caller;
	*addr++ = smp_processor_id();
	size -= 3 * sizeof(unsigned long);
L
Linus Torvalds 已提交
1726 1727 1728 1729 1730 1731 1732
	{
		unsigned long *sptr = &caller;
		unsigned long svalue;

		while (!kstack_end(sptr)) {
			svalue = *sptr++;
			if (kernel_text_address(svalue)) {
P
Pekka Enberg 已提交
1733
				*addr++ = svalue;
L
Linus Torvalds 已提交
1734 1735 1736 1737 1738 1739 1740
				size -= sizeof(unsigned long);
				if (size <= sizeof(unsigned long))
					break;
			}
		}

	}
P
Pekka Enberg 已提交
1741
	*addr++ = 0x87654321;
L
Linus Torvalds 已提交
1742 1743 1744
}
#endif

1745
static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
L
Linus Torvalds 已提交
1746
{
1747 1748
	int size = obj_size(cachep);
	addr = &((char *)addr)[obj_offset(cachep)];
L
Linus Torvalds 已提交
1749 1750

	memset(addr, val, size);
P
Pekka Enberg 已提交
1751
	*(unsigned char *)(addr + size - 1) = POISON_END;
L
Linus Torvalds 已提交
1752 1753 1754 1755 1756
}

static void dump_line(char *data, int offset, int limit)
{
	int i;
D
Dave Jones 已提交
1757 1758 1759
	unsigned char error = 0;
	int bad_count = 0;

L
Linus Torvalds 已提交
1760
	printk(KERN_ERR "%03x:", offset);
D
Dave Jones 已提交
1761 1762 1763 1764 1765
	for (i = 0; i < limit; i++) {
		if (data[offset + i] != POISON_FREE) {
			error = data[offset + i];
			bad_count++;
		}
P
Pekka Enberg 已提交
1766
		printk(" %02x", (unsigned char)data[offset + i]);
D
Dave Jones 已提交
1767
	}
L
Linus Torvalds 已提交
1768
	printk("\n");
D
Dave Jones 已提交
1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782

	if (bad_count == 1) {
		error ^= POISON_FREE;
		if (!(error & (error - 1))) {
			printk(KERN_ERR "Single bit error detected. Probably "
					"bad RAM.\n");
#ifdef CONFIG_X86
			printk(KERN_ERR "Run memtest86+ or a similar memory "
					"test tool.\n");
#else
			printk(KERN_ERR "Run a memory test tool.\n");
#endif
		}
	}
L
Linus Torvalds 已提交
1783 1784 1785 1786 1787
}
#endif

#if DEBUG

1788
static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
L
Linus Torvalds 已提交
1789 1790 1791 1792 1793
{
	int i, size;
	char *realobj;

	if (cachep->flags & SLAB_RED_ZONE) {
1794
		printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
A
Andrew Morton 已提交
1795 1796
			*dbg_redzone1(cachep, objp),
			*dbg_redzone2(cachep, objp));
L
Linus Torvalds 已提交
1797 1798 1799 1800
	}

	if (cachep->flags & SLAB_STORE_USER) {
		printk(KERN_ERR "Last user: [<%p>]",
A
Andrew Morton 已提交
1801
			*dbg_userword(cachep, objp));
L
Linus Torvalds 已提交
1802
		print_symbol("(%s)",
A
Andrew Morton 已提交
1803
				(unsigned long)*dbg_userword(cachep, objp));
L
Linus Torvalds 已提交
1804 1805
		printk("\n");
	}
1806 1807
	realobj = (char *)objp + obj_offset(cachep);
	size = obj_size(cachep);
P
Pekka Enberg 已提交
1808
	for (i = 0; i < size && lines; i += 16, lines--) {
L
Linus Torvalds 已提交
1809 1810
		int limit;
		limit = 16;
P
Pekka Enberg 已提交
1811 1812
		if (i + limit > size)
			limit = size - i;
L
Linus Torvalds 已提交
1813 1814 1815 1816
		dump_line(realobj, i, limit);
	}
}

1817
static void check_poison_obj(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
1818 1819 1820 1821 1822
{
	char *realobj;
	int size, i;
	int lines = 0;

1823 1824
	realobj = (char *)objp + obj_offset(cachep);
	size = obj_size(cachep);
L
Linus Torvalds 已提交
1825

P
Pekka Enberg 已提交
1826
	for (i = 0; i < size; i++) {
L
Linus Torvalds 已提交
1827
		char exp = POISON_FREE;
P
Pekka Enberg 已提交
1828
		if (i == size - 1)
L
Linus Torvalds 已提交
1829 1830 1831 1832 1833 1834
			exp = POISON_END;
		if (realobj[i] != exp) {
			int limit;
			/* Mismatch ! */
			/* Print header */
			if (lines == 0) {
P
Pekka Enberg 已提交
1835
				printk(KERN_ERR
1836 1837
					"Slab corruption: %s start=%p, len=%d\n",
					cachep->name, realobj, size);
L
Linus Torvalds 已提交
1838 1839 1840
				print_objinfo(cachep, objp, 0);
			}
			/* Hexdump the affected line */
P
Pekka Enberg 已提交
1841
			i = (i / 16) * 16;
L
Linus Torvalds 已提交
1842
			limit = 16;
P
Pekka Enberg 已提交
1843 1844
			if (i + limit > size)
				limit = size - i;
L
Linus Torvalds 已提交
1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856
			dump_line(realobj, i, limit);
			i += 16;
			lines++;
			/* Limit to 5 lines */
			if (lines > 5)
				break;
		}
	}
	if (lines != 0) {
		/* Print some data about the neighboring objects, if they
		 * exist:
		 */
1857
		struct slab *slabp = virt_to_slab(objp);
1858
		unsigned int objnr;
L
Linus Torvalds 已提交
1859

1860
		objnr = obj_to_index(cachep, slabp, objp);
L
Linus Torvalds 已提交
1861
		if (objnr) {
1862
			objp = index_to_obj(cachep, slabp, objnr - 1);
1863
			realobj = (char *)objp + obj_offset(cachep);
L
Linus Torvalds 已提交
1864
			printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
P
Pekka Enberg 已提交
1865
			       realobj, size);
L
Linus Torvalds 已提交
1866 1867
			print_objinfo(cachep, objp, 2);
		}
P
Pekka Enberg 已提交
1868
		if (objnr + 1 < cachep->num) {
1869
			objp = index_to_obj(cachep, slabp, objnr + 1);
1870
			realobj = (char *)objp + obj_offset(cachep);
L
Linus Torvalds 已提交
1871
			printk(KERN_ERR "Next obj: start=%p, len=%d\n",
P
Pekka Enberg 已提交
1872
			       realobj, size);
L
Linus Torvalds 已提交
1873 1874 1875 1876 1877 1878
			print_objinfo(cachep, objp, 2);
		}
	}
}
#endif

1879 1880
#if DEBUG
/**
1881 1882 1883 1884 1885 1886
 * slab_destroy_objs - destroy a slab and its objects
 * @cachep: cache pointer being destroyed
 * @slabp: slab pointer being destroyed
 *
 * Call the registered destructor for each object in a slab that is being
 * destroyed.
L
Linus Torvalds 已提交
1887
 */
1888
static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
L
Linus Torvalds 已提交
1889 1890 1891
{
	int i;
	for (i = 0; i < cachep->num; i++) {
1892
		void *objp = index_to_obj(cachep, slabp, i);
L
Linus Torvalds 已提交
1893 1894 1895

		if (cachep->flags & SLAB_POISON) {
#ifdef CONFIG_DEBUG_PAGEALLOC
A
Andrew Morton 已提交
1896 1897
			if (cachep->buffer_size % PAGE_SIZE == 0 &&
					OFF_SLAB(cachep))
P
Pekka Enberg 已提交
1898
				kernel_map_pages(virt_to_page(objp),
A
Andrew Morton 已提交
1899
					cachep->buffer_size / PAGE_SIZE, 1);
L
Linus Torvalds 已提交
1900 1901 1902 1903 1904 1905 1906 1907 1908
			else
				check_poison_obj(cachep, objp);
#else
			check_poison_obj(cachep, objp);
#endif
		}
		if (cachep->flags & SLAB_RED_ZONE) {
			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "start of a freed object "
P
Pekka Enberg 已提交
1909
					   "was overwritten");
L
Linus Torvalds 已提交
1910 1911
			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "end of a freed object "
P
Pekka Enberg 已提交
1912
					   "was overwritten");
L
Linus Torvalds 已提交
1913 1914
		}
		if (cachep->dtor && !(cachep->flags & SLAB_POISON))
1915
			(cachep->dtor) (objp + obj_offset(cachep), cachep, 0);
L
Linus Torvalds 已提交
1916
	}
1917
}
L
Linus Torvalds 已提交
1918
#else
1919
static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
1920
{
L
Linus Torvalds 已提交
1921 1922 1923
	if (cachep->dtor) {
		int i;
		for (i = 0; i < cachep->num; i++) {
1924
			void *objp = index_to_obj(cachep, slabp, i);
P
Pekka Enberg 已提交
1925
			(cachep->dtor) (objp, cachep, 0);
L
Linus Torvalds 已提交
1926 1927
		}
	}
1928
}
L
Linus Torvalds 已提交
1929 1930
#endif

1931 1932 1933 1934 1935
/**
 * slab_destroy - destroy and release all objects in a slab
 * @cachep: cache pointer being destroyed
 * @slabp: slab pointer being destroyed
 *
1936
 * Destroy all the objs in a slab, and release the mem back to the system.
A
Andrew Morton 已提交
1937 1938
 * Before calling the slab must have been unlinked from the cache.  The
 * cache-lock is not held/needed.
1939
 */
1940
static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
1941 1942 1943 1944
{
	void *addr = slabp->s_mem - slabp->colouroff;

	slab_destroy_objs(cachep, slabp);
L
Linus Torvalds 已提交
1945 1946 1947
	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
		struct slab_rcu *slab_rcu;

P
Pekka Enberg 已提交
1948
		slab_rcu = (struct slab_rcu *)slabp;
L
Linus Torvalds 已提交
1949 1950 1951 1952 1953
		slab_rcu->cachep = cachep;
		slab_rcu->addr = addr;
		call_rcu(&slab_rcu->head, kmem_rcu_free);
	} else {
		kmem_freepages(cachep, addr);
1954 1955
		if (OFF_SLAB(cachep))
			kmem_cache_free(cachep->slabp_cache, slabp);
L
Linus Torvalds 已提交
1956 1957 1958
	}
}

A
Andrew Morton 已提交
1959 1960 1961 1962
/*
 * For setting up all the kmem_list3s for cache whose buffer_size is same as
 * size of kmem_list3.
 */
1963
static void __init set_up_list3s(struct kmem_cache *cachep, int index)
1964 1965 1966 1967
{
	int node;

	for_each_online_node(node) {
P
Pekka Enberg 已提交
1968
		cachep->nodelists[node] = &initkmem_list3[index + node];
1969
		cachep->nodelists[node]->next_reap = jiffies +
P
Pekka Enberg 已提交
1970 1971
		    REAPTIMEOUT_LIST3 +
		    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1972 1973 1974
	}
}

1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995
static void __kmem_cache_destroy(struct kmem_cache *cachep)
{
	int i;
	struct kmem_list3 *l3;

	for_each_online_cpu(i)
	    kfree(cachep->array[i]);

	/* NUMA: free the list3 structures */
	for_each_online_node(i) {
		l3 = cachep->nodelists[i];
		if (l3) {
			kfree(l3->shared);
			free_alien_cache(l3->alien);
			kfree(l3);
		}
	}
	kmem_cache_free(&cache_cache, cachep);
}


1996
/**
1997 1998 1999 2000 2001 2002 2003
 * calculate_slab_order - calculate size (page order) of slabs
 * @cachep: pointer to the cache that is being created
 * @size: size of objects to be created in this cache.
 * @align: required alignment for the objects.
 * @flags: slab allocation flags
 *
 * Also calculates the number of objects per slab.
2004 2005 2006 2007 2008
 *
 * This could be made much more intelligent.  For now, try to avoid using
 * high order pages for slabs.  When the gfp() functions are more friendly
 * towards high-order requests, this should be changed.
 */
A
Andrew Morton 已提交
2009
static size_t calculate_slab_order(struct kmem_cache *cachep,
R
Randy Dunlap 已提交
2010
			size_t size, size_t align, unsigned long flags)
2011
{
2012
	unsigned long offslab_limit;
2013
	size_t left_over = 0;
2014
	int gfporder;
2015

A
Andrew Morton 已提交
2016
	for (gfporder = 0; gfporder <= MAX_GFP_ORDER; gfporder++) {
2017 2018 2019
		unsigned int num;
		size_t remainder;

2020
		cache_estimate(gfporder, size, align, flags, &remainder, &num);
2021 2022
		if (!num)
			continue;
2023

2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035
		if (flags & CFLGS_OFF_SLAB) {
			/*
			 * Max number of objs-per-slab for caches which
			 * use off-slab slabs. Needed to avoid a possible
			 * looping condition in cache_grow().
			 */
			offslab_limit = size - sizeof(struct slab);
			offslab_limit /= sizeof(kmem_bufctl_t);

 			if (num > offslab_limit)
				break;
		}
2036

2037
		/* Found something acceptable - save it away */
2038
		cachep->num = num;
2039
		cachep->gfporder = gfporder;
2040 2041
		left_over = remainder;

2042 2043 2044 2045 2046 2047 2048 2049
		/*
		 * A VFS-reclaimable slab tends to have most allocations
		 * as GFP_NOFS and we really don't want to have to be allocating
		 * higher-order pages when we are unable to shrink dcache.
		 */
		if (flags & SLAB_RECLAIM_ACCOUNT)
			break;

2050 2051 2052 2053
		/*
		 * Large number of objects is good, but very large slabs are
		 * currently bad for the gfp()s.
		 */
2054
		if (gfporder >= slab_break_gfp_order)
2055 2056
			break;

2057 2058 2059
		/*
		 * Acceptable internal fragmentation?
		 */
A
Andrew Morton 已提交
2060
		if (left_over * 8 <= (PAGE_SIZE << gfporder))
2061 2062 2063 2064 2065
			break;
	}
	return left_over;
}

2066
static int setup_cpu_cache(struct kmem_cache *cachep)
2067
{
2068 2069 2070
	if (g_cpucache_up == FULL)
		return enable_cpucache(cachep);

2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116
	if (g_cpucache_up == NONE) {
		/*
		 * Note: the first kmem_cache_create must create the cache
		 * that's used by kmalloc(24), otherwise the creation of
		 * further caches will BUG().
		 */
		cachep->array[smp_processor_id()] = &initarray_generic.cache;

		/*
		 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
		 * the first cache, then we need to set up all its list3s,
		 * otherwise the creation of further caches will BUG().
		 */
		set_up_list3s(cachep, SIZE_AC);
		if (INDEX_AC == INDEX_L3)
			g_cpucache_up = PARTIAL_L3;
		else
			g_cpucache_up = PARTIAL_AC;
	} else {
		cachep->array[smp_processor_id()] =
			kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);

		if (g_cpucache_up == PARTIAL_AC) {
			set_up_list3s(cachep, SIZE_L3);
			g_cpucache_up = PARTIAL_L3;
		} else {
			int node;
			for_each_online_node(node) {
				cachep->nodelists[node] =
				    kmalloc_node(sizeof(struct kmem_list3),
						GFP_KERNEL, node);
				BUG_ON(!cachep->nodelists[node]);
				kmem_list3_init(cachep->nodelists[node]);
			}
		}
	}
	cachep->nodelists[numa_node_id()]->next_reap =
			jiffies + REAPTIMEOUT_LIST3 +
			((unsigned long)cachep) % REAPTIMEOUT_LIST3;

	cpu_cache_get(cachep)->avail = 0;
	cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
	cpu_cache_get(cachep)->batchcount = 1;
	cpu_cache_get(cachep)->touched = 0;
	cachep->batchcount = 1;
	cachep->limit = BOOT_CPUCACHE_ENTRIES;
2117
	return 0;
2118 2119
}

L
Linus Torvalds 已提交
2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134
/**
 * kmem_cache_create - Create a cache.
 * @name: A string which is used in /proc/slabinfo to identify this cache.
 * @size: The size of objects to be created in this cache.
 * @align: The required alignment for the objects.
 * @flags: SLAB flags
 * @ctor: A constructor for the objects.
 * @dtor: A destructor for the objects.
 *
 * Returns a ptr to the cache on success, NULL on failure.
 * Cannot be called within a int, but can be interrupted.
 * The @ctor is run when new pages are allocated by the cache
 * and the @dtor is run before the pages are handed back.
 *
 * @name must be valid until the cache is destroyed. This implies that
A
Andrew Morton 已提交
2135 2136
 * the module calling this has to destroy the cache before getting unloaded.
 *
L
Linus Torvalds 已提交
2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148
 * The flags are
 *
 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
 * to catch references to uninitialised memory.
 *
 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
 * for buffer overruns.
 *
 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
 * cacheline.  This can be beneficial if you're counting cycles as closely
 * as davem.
 */
2149
struct kmem_cache *
L
Linus Torvalds 已提交
2150
kmem_cache_create (const char *name, size_t size, size_t align,
A
Andrew Morton 已提交
2151 2152
	unsigned long flags,
	void (*ctor)(void*, struct kmem_cache *, unsigned long),
2153
	void (*dtor)(void*, struct kmem_cache *, unsigned long))
L
Linus Torvalds 已提交
2154 2155
{
	size_t left_over, slab_size, ralign;
2156
	struct kmem_cache *cachep = NULL, *pc;
L
Linus Torvalds 已提交
2157 2158 2159 2160

	/*
	 * Sanity checks... these are all serious usage bugs.
	 */
A
Andrew Morton 已提交
2161
	if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
P
Pekka Enberg 已提交
2162
	    (size > (1 << MAX_OBJ_ORDER) * PAGE_SIZE) || (dtor && !ctor)) {
A
Andrew Morton 已提交
2163 2164
		printk(KERN_ERR "%s: Early error in slab %s\n", __FUNCTION__,
				name);
P
Pekka Enberg 已提交
2165 2166
		BUG();
	}
L
Linus Torvalds 已提交
2167

2168
	/*
2169 2170
	 * We use cache_chain_mutex to ensure a consistent view of
	 * cpu_online_map as well.  Please see cpuup_callback
2171
	 */
I
Ingo Molnar 已提交
2172
	mutex_lock(&cache_chain_mutex);
2173

2174
	list_for_each_entry(pc, &cache_chain, next) {
2175 2176 2177 2178 2179 2180 2181 2182
		char tmp;
		int res;

		/*
		 * This happens when the module gets unloaded and doesn't
		 * destroy its slab cache and no-one else reuses the vmalloc
		 * area of the module.  Print a warning.
		 */
2183
		res = probe_kernel_address(pc->name, tmp);
2184
		if (res) {
2185 2186
			printk(KERN_ERR
			       "SLAB: cache with size %d has lost its name\n",
2187
			       pc->buffer_size);
2188 2189 2190
			continue;
		}

P
Pekka Enberg 已提交
2191
		if (!strcmp(pc->name, name)) {
2192 2193
			printk(KERN_ERR
			       "kmem_cache_create: duplicate cache %s\n", name);
2194 2195 2196 2197 2198
			dump_stack();
			goto oops;
		}
	}

L
Linus Torvalds 已提交
2199 2200 2201 2202 2203 2204 2205 2206 2207
#if DEBUG
	WARN_ON(strchr(name, ' '));	/* It confuses parsers */
#if FORCED_DEBUG
	/*
	 * Enable redzoning and last user accounting, except for caches with
	 * large objects, if the increased size would increase the object size
	 * above the next power of two: caches with object sizes just above a
	 * power of two have a significant amount of internal fragmentation.
	 */
A
Andrew Morton 已提交
2208
	if (size < 4096 || fls(size - 1) == fls(size-1 + 3 * BYTES_PER_WORD))
P
Pekka Enberg 已提交
2209
		flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
L
Linus Torvalds 已提交
2210 2211 2212 2213 2214 2215 2216 2217 2218 2219
	if (!(flags & SLAB_DESTROY_BY_RCU))
		flags |= SLAB_POISON;
#endif
	if (flags & SLAB_DESTROY_BY_RCU)
		BUG_ON(flags & SLAB_POISON);
#endif
	if (flags & SLAB_DESTROY_BY_RCU)
		BUG_ON(dtor);

	/*
A
Andrew Morton 已提交
2220 2221
	 * Always checks flags, a caller might be expecting debug support which
	 * isn't available.
L
Linus Torvalds 已提交
2222
	 */
2223
	BUG_ON(flags & ~CREATE_MASK);
L
Linus Torvalds 已提交
2224

A
Andrew Morton 已提交
2225 2226
	/*
	 * Check that size is in terms of words.  This is needed to avoid
L
Linus Torvalds 已提交
2227 2228 2229
	 * unaligned accesses for some archs when redzoning is used, and makes
	 * sure any on-slab bufctl's are also correctly aligned.
	 */
P
Pekka Enberg 已提交
2230 2231 2232
	if (size & (BYTES_PER_WORD - 1)) {
		size += (BYTES_PER_WORD - 1);
		size &= ~(BYTES_PER_WORD - 1);
L
Linus Torvalds 已提交
2233 2234
	}

A
Andrew Morton 已提交
2235 2236
	/* calculate the final buffer alignment: */

L
Linus Torvalds 已提交
2237 2238
	/* 1) arch recommendation: can be overridden for debug */
	if (flags & SLAB_HWCACHE_ALIGN) {
A
Andrew Morton 已提交
2239 2240 2241 2242
		/*
		 * Default alignment: as specified by the arch code.  Except if
		 * an object is really small, then squeeze multiple objects into
		 * one cacheline.
L
Linus Torvalds 已提交
2243 2244
		 */
		ralign = cache_line_size();
P
Pekka Enberg 已提交
2245
		while (size <= ralign / 2)
L
Linus Torvalds 已提交
2246 2247 2248 2249
			ralign /= 2;
	} else {
		ralign = BYTES_PER_WORD;
	}
2250 2251 2252 2253 2254 2255 2256

	/*
	 * Redzoning and user store require word alignment. Note this will be
	 * overridden by architecture or caller mandated alignment if either
	 * is greater than BYTES_PER_WORD.
	 */
	if (flags & SLAB_RED_ZONE || flags & SLAB_STORE_USER)
2257
		ralign = __alignof__(unsigned long long);
2258

2259
	/* 2) arch mandated alignment */
L
Linus Torvalds 已提交
2260 2261 2262
	if (ralign < ARCH_SLAB_MINALIGN) {
		ralign = ARCH_SLAB_MINALIGN;
	}
2263
	/* 3) caller mandated alignment */
L
Linus Torvalds 已提交
2264 2265 2266
	if (ralign < align) {
		ralign = align;
	}
2267
	/* disable debug if necessary */
2268
	if (ralign > __alignof__(unsigned long long))
2269
		flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
A
Andrew Morton 已提交
2270
	/*
2271
	 * 4) Store it.
L
Linus Torvalds 已提交
2272 2273 2274 2275
	 */
	align = ralign;

	/* Get cache's description obj. */
2276
	cachep = kmem_cache_zalloc(&cache_cache, GFP_KERNEL);
L
Linus Torvalds 已提交
2277
	if (!cachep)
2278
		goto oops;
L
Linus Torvalds 已提交
2279 2280

#if DEBUG
2281
	cachep->obj_size = size;
L
Linus Torvalds 已提交
2282

2283 2284 2285 2286
	/*
	 * Both debugging options require word-alignment which is calculated
	 * into align above.
	 */
L
Linus Torvalds 已提交
2287 2288
	if (flags & SLAB_RED_ZONE) {
		/* add space for red zone words */
2289 2290
		cachep->obj_offset += sizeof(unsigned long long);
		size += 2 * sizeof(unsigned long long);
L
Linus Torvalds 已提交
2291 2292
	}
	if (flags & SLAB_STORE_USER) {
2293 2294
		/* user store requires one word storage behind the end of
		 * the real object.
L
Linus Torvalds 已提交
2295 2296 2297 2298
		 */
		size += BYTES_PER_WORD;
	}
#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
P
Pekka Enberg 已提交
2299
	if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
2300 2301
	    && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) {
		cachep->obj_offset += PAGE_SIZE - size;
L
Linus Torvalds 已提交
2302 2303 2304 2305 2306
		size = PAGE_SIZE;
	}
#endif
#endif

2307 2308 2309 2310 2311 2312
	/*
	 * Determine if the slab management is 'on' or 'off' slab.
	 * (bootstrapping cannot cope with offslab caches so don't do
	 * it too early on.)
	 */
	if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init)
L
Linus Torvalds 已提交
2313 2314 2315 2316 2317 2318 2319 2320
		/*
		 * Size is large, assume best to place the slab management obj
		 * off-slab (should allow better packing of objs).
		 */
		flags |= CFLGS_OFF_SLAB;

	size = ALIGN(size, align);

2321
	left_over = calculate_slab_order(cachep, size, align, flags);
L
Linus Torvalds 已提交
2322 2323

	if (!cachep->num) {
2324 2325
		printk(KERN_ERR
		       "kmem_cache_create: couldn't create cache %s.\n", name);
L
Linus Torvalds 已提交
2326 2327
		kmem_cache_free(&cache_cache, cachep);
		cachep = NULL;
2328
		goto oops;
L
Linus Torvalds 已提交
2329
	}
P
Pekka Enberg 已提交
2330 2331
	slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
			  + sizeof(struct slab), align);
L
Linus Torvalds 已提交
2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343

	/*
	 * If the slab has been placed off-slab, and we have enough space then
	 * move it on-slab. This is at the expense of any extra colouring.
	 */
	if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
		flags &= ~CFLGS_OFF_SLAB;
		left_over -= slab_size;
	}

	if (flags & CFLGS_OFF_SLAB) {
		/* really off slab. No need for manual alignment */
P
Pekka Enberg 已提交
2344 2345
		slab_size =
		    cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
L
Linus Torvalds 已提交
2346 2347 2348 2349 2350 2351
	}

	cachep->colour_off = cache_line_size();
	/* Offset must be a multiple of the alignment. */
	if (cachep->colour_off < align)
		cachep->colour_off = align;
P
Pekka Enberg 已提交
2352
	cachep->colour = left_over / cachep->colour_off;
L
Linus Torvalds 已提交
2353 2354 2355
	cachep->slab_size = slab_size;
	cachep->flags = flags;
	cachep->gfpflags = 0;
2356
	if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
L
Linus Torvalds 已提交
2357
		cachep->gfpflags |= GFP_DMA;
2358
	cachep->buffer_size = size;
2359
	cachep->reciprocal_buffer_size = reciprocal_value(size);
L
Linus Torvalds 已提交
2360

2361
	if (flags & CFLGS_OFF_SLAB) {
2362
		cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
2363 2364 2365 2366 2367 2368 2369 2370 2371
		/*
		 * This is a possibility for one of the malloc_sizes caches.
		 * But since we go off slab only for object size greater than
		 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
		 * this should not happen at all.
		 * But leave a BUG_ON for some lucky dude.
		 */
		BUG_ON(!cachep->slabp_cache);
	}
L
Linus Torvalds 已提交
2372 2373 2374 2375
	cachep->ctor = ctor;
	cachep->dtor = dtor;
	cachep->name = name;

2376 2377 2378 2379 2380
	if (setup_cpu_cache(cachep)) {
		__kmem_cache_destroy(cachep);
		cachep = NULL;
		goto oops;
	}
L
Linus Torvalds 已提交
2381 2382 2383

	/* cache setup completed, link it into the list */
	list_add(&cachep->next, &cache_chain);
A
Andrew Morton 已提交
2384
oops:
L
Linus Torvalds 已提交
2385 2386
	if (!cachep && (flags & SLAB_PANIC))
		panic("kmem_cache_create(): failed to create slab `%s'\n",
P
Pekka Enberg 已提交
2387
		      name);
I
Ingo Molnar 已提交
2388
	mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403
	return cachep;
}
EXPORT_SYMBOL(kmem_cache_create);

#if DEBUG
static void check_irq_off(void)
{
	BUG_ON(!irqs_disabled());
}

static void check_irq_on(void)
{
	BUG_ON(irqs_disabled());
}

2404
static void check_spinlock_acquired(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2405 2406 2407
{
#ifdef CONFIG_SMP
	check_irq_off();
2408
	assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock);
L
Linus Torvalds 已提交
2409 2410
#endif
}
2411

2412
static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2413 2414 2415 2416 2417 2418 2419
{
#ifdef CONFIG_SMP
	check_irq_off();
	assert_spin_locked(&cachep->nodelists[node]->list_lock);
#endif
}

L
Linus Torvalds 已提交
2420 2421 2422 2423
#else
#define check_irq_off()	do { } while(0)
#define check_irq_on()	do { } while(0)
#define check_spinlock_acquired(x) do { } while(0)
2424
#define check_spinlock_acquired_node(x, y) do { } while(0)
L
Linus Torvalds 已提交
2425 2426
#endif

2427 2428 2429 2430
static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
			struct array_cache *ac,
			int force, int node);

L
Linus Torvalds 已提交
2431 2432
static void do_drain(void *arg)
{
A
Andrew Morton 已提交
2433
	struct kmem_cache *cachep = arg;
L
Linus Torvalds 已提交
2434
	struct array_cache *ac;
2435
	int node = numa_node_id();
L
Linus Torvalds 已提交
2436 2437

	check_irq_off();
2438
	ac = cpu_cache_get(cachep);
2439 2440 2441
	spin_lock(&cachep->nodelists[node]->list_lock);
	free_block(cachep, ac->entry, ac->avail, node);
	spin_unlock(&cachep->nodelists[node]->list_lock);
L
Linus Torvalds 已提交
2442 2443 2444
	ac->avail = 0;
}

2445
static void drain_cpu_caches(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2446
{
2447 2448 2449
	struct kmem_list3 *l3;
	int node;

A
Andrew Morton 已提交
2450
	on_each_cpu(do_drain, cachep, 1, 1);
L
Linus Torvalds 已提交
2451
	check_irq_on();
P
Pekka Enberg 已提交
2452
	for_each_online_node(node) {
2453
		l3 = cachep->nodelists[node];
2454 2455 2456 2457 2458 2459 2460
		if (l3 && l3->alien)
			drain_alien_cache(cachep, l3->alien);
	}

	for_each_online_node(node) {
		l3 = cachep->nodelists[node];
		if (l3)
2461
			drain_array(cachep, l3, l3->shared, 1, node);
2462
	}
L
Linus Torvalds 已提交
2463 2464
}

2465 2466 2467 2468 2469 2470 2471 2472
/*
 * Remove slabs from the list of free slabs.
 * Specify the number of slabs to drain in tofree.
 *
 * Returns the actual number of slabs released.
 */
static int drain_freelist(struct kmem_cache *cache,
			struct kmem_list3 *l3, int tofree)
L
Linus Torvalds 已提交
2473
{
2474 2475
	struct list_head *p;
	int nr_freed;
L
Linus Torvalds 已提交
2476 2477
	struct slab *slabp;

2478 2479
	nr_freed = 0;
	while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
L
Linus Torvalds 已提交
2480

2481
		spin_lock_irq(&l3->list_lock);
2482
		p = l3->slabs_free.prev;
2483 2484 2485 2486
		if (p == &l3->slabs_free) {
			spin_unlock_irq(&l3->list_lock);
			goto out;
		}
L
Linus Torvalds 已提交
2487

2488
		slabp = list_entry(p, struct slab, list);
L
Linus Torvalds 已提交
2489
#if DEBUG
2490
		BUG_ON(slabp->inuse);
L
Linus Torvalds 已提交
2491 2492
#endif
		list_del(&slabp->list);
2493 2494 2495 2496 2497
		/*
		 * Safe to drop the lock. The slab is no longer linked
		 * to the cache.
		 */
		l3->free_objects -= cache->num;
2498
		spin_unlock_irq(&l3->list_lock);
2499 2500
		slab_destroy(cache, slabp);
		nr_freed++;
L
Linus Torvalds 已提交
2501
	}
2502 2503
out:
	return nr_freed;
L
Linus Torvalds 已提交
2504 2505
}

2506
/* Called with cache_chain_mutex held to protect against cpu hotplug */
2507
static int __cache_shrink(struct kmem_cache *cachep)
2508 2509 2510 2511 2512 2513 2514 2515 2516
{
	int ret = 0, i = 0;
	struct kmem_list3 *l3;

	drain_cpu_caches(cachep);

	check_irq_on();
	for_each_online_node(i) {
		l3 = cachep->nodelists[i];
2517 2518 2519 2520 2521 2522 2523
		if (!l3)
			continue;

		drain_freelist(cachep, l3, l3->free_objects);

		ret += !list_empty(&l3->slabs_full) ||
			!list_empty(&l3->slabs_partial);
2524 2525 2526 2527
	}
	return (ret ? 1 : 0);
}

L
Linus Torvalds 已提交
2528 2529 2530 2531 2532 2533 2534
/**
 * kmem_cache_shrink - Shrink a cache.
 * @cachep: The cache to shrink.
 *
 * Releases as many slabs as possible for a cache.
 * To help debugging, a zero exit status indicates all slabs were released.
 */
2535
int kmem_cache_shrink(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2536
{
2537
	int ret;
2538
	BUG_ON(!cachep || in_interrupt());
L
Linus Torvalds 已提交
2539

2540 2541 2542 2543
	mutex_lock(&cache_chain_mutex);
	ret = __cache_shrink(cachep);
	mutex_unlock(&cache_chain_mutex);
	return ret;
L
Linus Torvalds 已提交
2544 2545 2546 2547 2548 2549 2550
}
EXPORT_SYMBOL(kmem_cache_shrink);

/**
 * kmem_cache_destroy - delete a cache
 * @cachep: the cache to destroy
 *
2551
 * Remove a &struct kmem_cache object from the slab cache.
L
Linus Torvalds 已提交
2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562
 *
 * It is expected this function will be called by a module when it is
 * unloaded.  This will remove the cache completely, and avoid a duplicate
 * cache being allocated each time a module is loaded and unloaded, if the
 * module doesn't have persistent in-kernel storage across loads and unloads.
 *
 * The cache must be empty before calling this function.
 *
 * The caller must guarantee that noone will allocate memory from the cache
 * during the kmem_cache_destroy().
 */
2563
void kmem_cache_destroy(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2564
{
2565
	BUG_ON(!cachep || in_interrupt());
L
Linus Torvalds 已提交
2566 2567

	/* Find the cache in the chain of caches. */
I
Ingo Molnar 已提交
2568
	mutex_lock(&cache_chain_mutex);
L
Linus Torvalds 已提交
2569 2570 2571 2572 2573 2574
	/*
	 * the chain is never empty, cache_cache is never destroyed
	 */
	list_del(&cachep->next);
	if (__cache_shrink(cachep)) {
		slab_error(cachep, "Can't free all objects");
P
Pekka Enberg 已提交
2575
		list_add(&cachep->next, &cache_chain);
I
Ingo Molnar 已提交
2576
		mutex_unlock(&cache_chain_mutex);
2577
		return;
L
Linus Torvalds 已提交
2578 2579 2580
	}

	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
2581
		synchronize_rcu();
L
Linus Torvalds 已提交
2582

2583
	__kmem_cache_destroy(cachep);
2584
	mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
2585 2586 2587
}
EXPORT_SYMBOL(kmem_cache_destroy);

2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598
/*
 * Get the memory for a slab management obj.
 * For a slab cache when the slab descriptor is off-slab, slab descriptors
 * always come from malloc_sizes caches.  The slab descriptor cannot
 * come from the same cache which is getting created because,
 * when we are searching for an appropriate cache for these
 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
 * If we are creating a malloc_sizes cache here it would not be visible to
 * kmem_find_general_cachep till the initialization is complete.
 * Hence we cannot have slabp_cache same as the original cache.
 */
2599
static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
2600 2601
				   int colour_off, gfp_t local_flags,
				   int nodeid)
L
Linus Torvalds 已提交
2602 2603
{
	struct slab *slabp;
P
Pekka Enberg 已提交
2604

L
Linus Torvalds 已提交
2605 2606
	if (OFF_SLAB(cachep)) {
		/* Slab management obj is off-slab. */
2607
		slabp = kmem_cache_alloc_node(cachep->slabp_cache,
2608
					      local_flags & ~GFP_THISNODE, nodeid);
L
Linus Torvalds 已提交
2609 2610 2611
		if (!slabp)
			return NULL;
	} else {
P
Pekka Enberg 已提交
2612
		slabp = objp + colour_off;
L
Linus Torvalds 已提交
2613 2614 2615 2616
		colour_off += cachep->slab_size;
	}
	slabp->inuse = 0;
	slabp->colouroff = colour_off;
P
Pekka Enberg 已提交
2617
	slabp->s_mem = objp + colour_off;
2618
	slabp->nodeid = nodeid;
L
Linus Torvalds 已提交
2619 2620 2621 2622 2623
	return slabp;
}

static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
{
P
Pekka Enberg 已提交
2624
	return (kmem_bufctl_t *) (slabp + 1);
L
Linus Torvalds 已提交
2625 2626
}

2627
static void cache_init_objs(struct kmem_cache *cachep,
P
Pekka Enberg 已提交
2628
			    struct slab *slabp, unsigned long ctor_flags)
L
Linus Torvalds 已提交
2629 2630 2631 2632
{
	int i;

	for (i = 0; i < cachep->num; i++) {
2633
		void *objp = index_to_obj(cachep, slabp, i);
L
Linus Torvalds 已提交
2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645
#if DEBUG
		/* need to poison the objs? */
		if (cachep->flags & SLAB_POISON)
			poison_obj(cachep, objp, POISON_FREE);
		if (cachep->flags & SLAB_STORE_USER)
			*dbg_userword(cachep, objp) = NULL;

		if (cachep->flags & SLAB_RED_ZONE) {
			*dbg_redzone1(cachep, objp) = RED_INACTIVE;
			*dbg_redzone2(cachep, objp) = RED_INACTIVE;
		}
		/*
A
Andrew Morton 已提交
2646 2647 2648
		 * Constructors are not allowed to allocate memory from the same
		 * cache which they are a constructor for.  Otherwise, deadlock.
		 * They must also be threaded.
L
Linus Torvalds 已提交
2649 2650
		 */
		if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2651
			cachep->ctor(objp + obj_offset(cachep), cachep,
P
Pekka Enberg 已提交
2652
				     ctor_flags);
L
Linus Torvalds 已提交
2653 2654 2655 2656

		if (cachep->flags & SLAB_RED_ZONE) {
			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "constructor overwrote the"
P
Pekka Enberg 已提交
2657
					   " end of an object");
L
Linus Torvalds 已提交
2658 2659
			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "constructor overwrote the"
P
Pekka Enberg 已提交
2660
					   " start of an object");
L
Linus Torvalds 已提交
2661
		}
A
Andrew Morton 已提交
2662 2663
		if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
			    OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
P
Pekka Enberg 已提交
2664
			kernel_map_pages(virt_to_page(objp),
2665
					 cachep->buffer_size / PAGE_SIZE, 0);
L
Linus Torvalds 已提交
2666 2667 2668 2669
#else
		if (cachep->ctor)
			cachep->ctor(objp, cachep, ctor_flags);
#endif
P
Pekka Enberg 已提交
2670
		slab_bufctl(slabp)[i] = i + 1;
L
Linus Torvalds 已提交
2671
	}
P
Pekka Enberg 已提交
2672
	slab_bufctl(slabp)[i - 1] = BUFCTL_END;
L
Linus Torvalds 已提交
2673 2674 2675
	slabp->free = 0;
}

2676
static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
2677
{
2678 2679 2680 2681 2682 2683
	if (CONFIG_ZONE_DMA_FLAG) {
		if (flags & GFP_DMA)
			BUG_ON(!(cachep->gfpflags & GFP_DMA));
		else
			BUG_ON(cachep->gfpflags & GFP_DMA);
	}
L
Linus Torvalds 已提交
2684 2685
}

A
Andrew Morton 已提交
2686 2687
static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
				int nodeid)
2688
{
2689
	void *objp = index_to_obj(cachep, slabp, slabp->free);
2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702
	kmem_bufctl_t next;

	slabp->inuse++;
	next = slab_bufctl(slabp)[slabp->free];
#if DEBUG
	slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
	WARN_ON(slabp->nodeid != nodeid);
#endif
	slabp->free = next;

	return objp;
}

A
Andrew Morton 已提交
2703 2704
static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
				void *objp, int nodeid)
2705
{
2706
	unsigned int objnr = obj_to_index(cachep, slabp, objp);
2707 2708 2709 2710 2711

#if DEBUG
	/* Verify that the slab belongs to the intended node */
	WARN_ON(slabp->nodeid != nodeid);

2712
	if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
2713
		printk(KERN_ERR "slab: double free detected in cache "
A
Andrew Morton 已提交
2714
				"'%s', objp %p\n", cachep->name, objp);
2715 2716 2717 2718 2719 2720 2721 2722
		BUG();
	}
#endif
	slab_bufctl(slabp)[objnr] = slabp->free;
	slabp->free = objnr;
	slabp->inuse--;
}

2723 2724 2725 2726 2727 2728 2729
/*
 * Map pages beginning at addr to the given cache and slab. This is required
 * for the slab allocator to be able to lookup the cache and slab of a
 * virtual address for kfree, ksize, kmem_ptr_validate, and slab debugging.
 */
static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
			   void *addr)
L
Linus Torvalds 已提交
2730
{
2731
	int nr_pages;
L
Linus Torvalds 已提交
2732 2733
	struct page *page;

2734
	page = virt_to_page(addr);
2735

2736
	nr_pages = 1;
2737
	if (likely(!PageCompound(page)))
2738 2739
		nr_pages <<= cache->gfporder;

L
Linus Torvalds 已提交
2740
	do {
2741 2742
		page_set_cache(page, cache);
		page_set_slab(page, slab);
L
Linus Torvalds 已提交
2743
		page++;
2744
	} while (--nr_pages);
L
Linus Torvalds 已提交
2745 2746 2747 2748 2749 2750
}

/*
 * Grow (by 1) the number of slabs within a cache.  This is called by
 * kmem_cache_alloc() when there are no active objs left in a cache.
 */
2751 2752
static int cache_grow(struct kmem_cache *cachep,
		gfp_t flags, int nodeid, void *objp)
L
Linus Torvalds 已提交
2753
{
P
Pekka Enberg 已提交
2754 2755 2756 2757
	struct slab *slabp;
	size_t offset;
	gfp_t local_flags;
	unsigned long ctor_flags;
2758
	struct kmem_list3 *l3;
L
Linus Torvalds 已提交
2759

A
Andrew Morton 已提交
2760 2761 2762
	/*
	 * Be lazy and only check for valid flags here,  keeping it out of the
	 * critical path in kmem_cache_alloc().
L
Linus Torvalds 已提交
2763
	 */
2764
	BUG_ON(flags & ~(GFP_DMA | GFP_LEVEL_MASK));
L
Linus Torvalds 已提交
2765 2766

	ctor_flags = SLAB_CTOR_CONSTRUCTOR;
2767
	local_flags = (flags & GFP_LEVEL_MASK);
2768
	/* Take the l3 list lock to change the colour_next on this node */
L
Linus Torvalds 已提交
2769
	check_irq_off();
2770 2771
	l3 = cachep->nodelists[nodeid];
	spin_lock(&l3->list_lock);
L
Linus Torvalds 已提交
2772 2773

	/* Get colour for the slab, and cal the next value. */
2774 2775 2776 2777 2778
	offset = l3->colour_next;
	l3->colour_next++;
	if (l3->colour_next >= cachep->colour)
		l3->colour_next = 0;
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
2779

2780
	offset *= cachep->colour_off;
L
Linus Torvalds 已提交
2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792

	if (local_flags & __GFP_WAIT)
		local_irq_enable();

	/*
	 * The test for missing atomic flag is performed here, rather than
	 * the more obvious place, simply to reduce the critical path length
	 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
	 * will eventually be caught here (where it matters).
	 */
	kmem_flagcheck(cachep, flags);

A
Andrew Morton 已提交
2793 2794 2795
	/*
	 * Get mem for the objs.  Attempt to allocate a physical page from
	 * 'nodeid'.
2796
	 */
2797 2798
	if (!objp)
		objp = kmem_getpages(cachep, flags, nodeid);
A
Andrew Morton 已提交
2799
	if (!objp)
L
Linus Torvalds 已提交
2800 2801 2802
		goto failed;

	/* Get slab management. */
2803 2804
	slabp = alloc_slabmgmt(cachep, objp, offset,
			local_flags & ~GFP_THISNODE, nodeid);
A
Andrew Morton 已提交
2805
	if (!slabp)
L
Linus Torvalds 已提交
2806 2807
		goto opps1;

2808
	slabp->nodeid = nodeid;
2809
	slab_map_pages(cachep, slabp, objp);
L
Linus Torvalds 已提交
2810 2811 2812 2813 2814 2815

	cache_init_objs(cachep, slabp, ctor_flags);

	if (local_flags & __GFP_WAIT)
		local_irq_disable();
	check_irq_off();
2816
	spin_lock(&l3->list_lock);
L
Linus Torvalds 已提交
2817 2818

	/* Make slab active. */
2819
	list_add_tail(&slabp->list, &(l3->slabs_free));
L
Linus Torvalds 已提交
2820
	STATS_INC_GROWN(cachep);
2821 2822
	l3->free_objects += cachep->num;
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
2823
	return 1;
A
Andrew Morton 已提交
2824
opps1:
L
Linus Torvalds 已提交
2825
	kmem_freepages(cachep, objp);
A
Andrew Morton 已提交
2826
failed:
L
Linus Torvalds 已提交
2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843
	if (local_flags & __GFP_WAIT)
		local_irq_disable();
	return 0;
}

#if DEBUG

/*
 * Perform extra freeing checks:
 * - detect bad pointers.
 * - POISON/RED_ZONE checking
 * - destructor calls, for caches with POISON+dtor
 */
static void kfree_debugcheck(const void *objp)
{
	if (!virt_addr_valid(objp)) {
		printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
P
Pekka Enberg 已提交
2844 2845
		       (unsigned long)objp);
		BUG();
L
Linus Torvalds 已提交
2846 2847 2848
	}
}

2849 2850
static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
{
2851
	unsigned long long redzone1, redzone2;
2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866

	redzone1 = *dbg_redzone1(cache, obj);
	redzone2 = *dbg_redzone2(cache, obj);

	/*
	 * Redzone is ok.
	 */
	if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
		return;

	if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
		slab_error(cache, "double free detected");
	else
		slab_error(cache, "memory outside object was overwritten");

2867
	printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
2868 2869 2870
			obj, redzone1, redzone2);
}

2871
static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
P
Pekka Enberg 已提交
2872
				   void *caller)
L
Linus Torvalds 已提交
2873 2874 2875 2876 2877
{
	struct page *page;
	unsigned int objnr;
	struct slab *slabp;

2878
	objp -= obj_offset(cachep);
L
Linus Torvalds 已提交
2879
	kfree_debugcheck(objp);
2880
	page = virt_to_head_page(objp);
L
Linus Torvalds 已提交
2881

2882
	slabp = page_get_slab(page);
L
Linus Torvalds 已提交
2883 2884

	if (cachep->flags & SLAB_RED_ZONE) {
2885
		verify_redzone_free(cachep, objp);
L
Linus Torvalds 已提交
2886 2887 2888 2889 2890 2891
		*dbg_redzone1(cachep, objp) = RED_INACTIVE;
		*dbg_redzone2(cachep, objp) = RED_INACTIVE;
	}
	if (cachep->flags & SLAB_STORE_USER)
		*dbg_userword(cachep, objp) = caller;

2892
	objnr = obj_to_index(cachep, slabp, objp);
L
Linus Torvalds 已提交
2893 2894

	BUG_ON(objnr >= cachep->num);
2895
	BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
L
Linus Torvalds 已提交
2896 2897 2898 2899 2900

	if (cachep->flags & SLAB_POISON && cachep->dtor) {
		/* we want to cache poison the object,
		 * call the destruction callback
		 */
2901
		cachep->dtor(objp + obj_offset(cachep), cachep, 0);
L
Linus Torvalds 已提交
2902
	}
2903 2904 2905
#ifdef CONFIG_DEBUG_SLAB_LEAK
	slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
#endif
L
Linus Torvalds 已提交
2906 2907
	if (cachep->flags & SLAB_POISON) {
#ifdef CONFIG_DEBUG_PAGEALLOC
A
Andrew Morton 已提交
2908
		if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
L
Linus Torvalds 已提交
2909
			store_stackinfo(cachep, objp, (unsigned long)caller);
P
Pekka Enberg 已提交
2910
			kernel_map_pages(virt_to_page(objp),
2911
					 cachep->buffer_size / PAGE_SIZE, 0);
L
Linus Torvalds 已提交
2912 2913 2914 2915 2916 2917 2918 2919 2920 2921
		} else {
			poison_obj(cachep, objp, POISON_FREE);
		}
#else
		poison_obj(cachep, objp, POISON_FREE);
#endif
	}
	return objp;
}

2922
static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
L
Linus Torvalds 已提交
2923 2924 2925
{
	kmem_bufctl_t i;
	int entries = 0;
P
Pekka Enberg 已提交
2926

L
Linus Torvalds 已提交
2927 2928 2929 2930 2931 2932 2933
	/* Check slab's freelist to see if this obj is there. */
	for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
		entries++;
		if (entries > cachep->num || i >= cachep->num)
			goto bad;
	}
	if (entries != cachep->num - slabp->inuse) {
A
Andrew Morton 已提交
2934 2935 2936 2937
bad:
		printk(KERN_ERR "slab: Internal list corruption detected in "
				"cache '%s'(%d), slabp %p(%d). Hexdump:\n",
			cachep->name, cachep->num, slabp, slabp->inuse);
P
Pekka Enberg 已提交
2938
		for (i = 0;
2939
		     i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t);
P
Pekka Enberg 已提交
2940
		     i++) {
A
Andrew Morton 已提交
2941
			if (i % 16 == 0)
L
Linus Torvalds 已提交
2942
				printk("\n%03x:", i);
P
Pekka Enberg 已提交
2943
			printk(" %02x", ((unsigned char *)slabp)[i]);
L
Linus Torvalds 已提交
2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954
		}
		printk("\n");
		BUG();
	}
}
#else
#define kfree_debugcheck(x) do { } while(0)
#define cache_free_debugcheck(x,objp,z) (objp)
#define check_slabp(x,y) do { } while(0)
#endif

2955
static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
2956 2957 2958 2959
{
	int batchcount;
	struct kmem_list3 *l3;
	struct array_cache *ac;
P
Pekka Enberg 已提交
2960 2961 2962
	int node;

	node = numa_node_id();
L
Linus Torvalds 已提交
2963 2964

	check_irq_off();
2965
	ac = cpu_cache_get(cachep);
A
Andrew Morton 已提交
2966
retry:
L
Linus Torvalds 已提交
2967 2968
	batchcount = ac->batchcount;
	if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
A
Andrew Morton 已提交
2969 2970 2971 2972
		/*
		 * If there was little recent activity on this cache, then
		 * perform only a partial refill.  Otherwise we could generate
		 * refill bouncing.
L
Linus Torvalds 已提交
2973 2974 2975
		 */
		batchcount = BATCHREFILL_LIMIT;
	}
P
Pekka Enberg 已提交
2976
	l3 = cachep->nodelists[node];
2977 2978 2979

	BUG_ON(ac->avail > 0 || !l3);
	spin_lock(&l3->list_lock);
L
Linus Torvalds 已提交
2980

2981 2982 2983 2984
	/* See if we can refill from the shared array */
	if (l3->shared && transfer_objects(ac, l3->shared, batchcount))
		goto alloc_done;

L
Linus Torvalds 已提交
2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999
	while (batchcount > 0) {
		struct list_head *entry;
		struct slab *slabp;
		/* Get slab alloc is to come from. */
		entry = l3->slabs_partial.next;
		if (entry == &l3->slabs_partial) {
			l3->free_touched = 1;
			entry = l3->slabs_free.next;
			if (entry == &l3->slabs_free)
				goto must_grow;
		}

		slabp = list_entry(entry, struct slab, list);
		check_slabp(cachep, slabp);
		check_spinlock_acquired(cachep);
3000 3001 3002 3003 3004 3005 3006 3007

		/*
		 * The slab was either on partial or free list so
		 * there must be at least one object available for
		 * allocation.
		 */
		BUG_ON(slabp->inuse < 0 || slabp->inuse >= cachep->num);

L
Linus Torvalds 已提交
3008 3009 3010 3011 3012
		while (slabp->inuse < cachep->num && batchcount--) {
			STATS_INC_ALLOCED(cachep);
			STATS_INC_ACTIVE(cachep);
			STATS_SET_HIGH(cachep);

3013
			ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
P
Pekka Enberg 已提交
3014
							    node);
L
Linus Torvalds 已提交
3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025
		}
		check_slabp(cachep, slabp);

		/* move slabp to correct slabp list: */
		list_del(&slabp->list);
		if (slabp->free == BUFCTL_END)
			list_add(&slabp->list, &l3->slabs_full);
		else
			list_add(&slabp->list, &l3->slabs_partial);
	}

A
Andrew Morton 已提交
3026
must_grow:
L
Linus Torvalds 已提交
3027
	l3->free_objects -= ac->avail;
A
Andrew Morton 已提交
3028
alloc_done:
3029
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
3030 3031 3032

	if (unlikely(!ac->avail)) {
		int x;
3033
		x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
3034

A
Andrew Morton 已提交
3035
		/* cache_grow can reenable interrupts, then ac could change. */
3036
		ac = cpu_cache_get(cachep);
A
Andrew Morton 已提交
3037
		if (!x && ac->avail == 0)	/* no objects in sight? abort */
L
Linus Torvalds 已提交
3038 3039
			return NULL;

A
Andrew Morton 已提交
3040
		if (!ac->avail)		/* objects refilled by interrupt? */
L
Linus Torvalds 已提交
3041 3042 3043
			goto retry;
	}
	ac->touched = 1;
3044
	return ac->entry[--ac->avail];
L
Linus Torvalds 已提交
3045 3046
}

A
Andrew Morton 已提交
3047 3048
static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
						gfp_t flags)
L
Linus Torvalds 已提交
3049 3050 3051 3052 3053 3054 3055 3056
{
	might_sleep_if(flags & __GFP_WAIT);
#if DEBUG
	kmem_flagcheck(cachep, flags);
#endif
}

#if DEBUG
A
Andrew Morton 已提交
3057 3058
static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
				gfp_t flags, void *objp, void *caller)
L
Linus Torvalds 已提交
3059
{
P
Pekka Enberg 已提交
3060
	if (!objp)
L
Linus Torvalds 已提交
3061
		return objp;
P
Pekka Enberg 已提交
3062
	if (cachep->flags & SLAB_POISON) {
L
Linus Torvalds 已提交
3063
#ifdef CONFIG_DEBUG_PAGEALLOC
3064
		if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
P
Pekka Enberg 已提交
3065
			kernel_map_pages(virt_to_page(objp),
3066
					 cachep->buffer_size / PAGE_SIZE, 1);
L
Linus Torvalds 已提交
3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077
		else
			check_poison_obj(cachep, objp);
#else
		check_poison_obj(cachep, objp);
#endif
		poison_obj(cachep, objp, POISON_INUSE);
	}
	if (cachep->flags & SLAB_STORE_USER)
		*dbg_userword(cachep, objp) = caller;

	if (cachep->flags & SLAB_RED_ZONE) {
A
Andrew Morton 已提交
3078 3079 3080 3081
		if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
				*dbg_redzone2(cachep, objp) != RED_INACTIVE) {
			slab_error(cachep, "double free, or memory outside"
						" object was overwritten");
P
Pekka Enberg 已提交
3082
			printk(KERN_ERR
3083
				"%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
A
Andrew Morton 已提交
3084 3085
				objp, *dbg_redzone1(cachep, objp),
				*dbg_redzone2(cachep, objp));
L
Linus Torvalds 已提交
3086 3087 3088 3089
		}
		*dbg_redzone1(cachep, objp) = RED_ACTIVE;
		*dbg_redzone2(cachep, objp) = RED_ACTIVE;
	}
3090 3091 3092 3093 3094
#ifdef CONFIG_DEBUG_SLAB_LEAK
	{
		struct slab *slabp;
		unsigned objnr;

3095
		slabp = page_get_slab(virt_to_head_page(objp));
3096 3097 3098 3099
		objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
		slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
	}
#endif
3100
	objp += obj_offset(cachep);
3101 3102
	if (cachep->ctor && cachep->flags & SLAB_POISON)
		cachep->ctor(objp, cachep, SLAB_CTOR_CONSTRUCTOR);
3103 3104 3105 3106 3107 3108
#if ARCH_SLAB_MINALIGN
	if ((u32)objp & (ARCH_SLAB_MINALIGN-1)) {
		printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
		       objp, ARCH_SLAB_MINALIGN);
	}
#endif
L
Linus Torvalds 已提交
3109 3110 3111 3112 3113 3114
	return objp;
}
#else
#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
#endif

3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127
#ifdef CONFIG_FAILSLAB

static struct failslab_attr {

	struct fault_attr attr;

	u32 ignore_gfp_wait;
#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
	struct dentry *ignore_gfp_wait_file;
#endif

} failslab = {
	.attr = FAULT_ATTR_INITIALIZER,
3128
	.ignore_gfp_wait = 1,
3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156
};

static int __init setup_failslab(char *str)
{
	return setup_fault_attr(&failslab.attr, str);
}
__setup("failslab=", setup_failslab);

static int should_failslab(struct kmem_cache *cachep, gfp_t flags)
{
	if (cachep == &cache_cache)
		return 0;
	if (flags & __GFP_NOFAIL)
		return 0;
	if (failslab.ignore_gfp_wait && (flags & __GFP_WAIT))
		return 0;

	return should_fail(&failslab.attr, obj_size(cachep));
}

#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS

static int __init failslab_debugfs(void)
{
	mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
	struct dentry *dir;
	int err;

3157
	err = init_fault_attr_dentries(&failslab.attr, "failslab");
3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187
	if (err)
		return err;
	dir = failslab.attr.dentries.dir;

	failslab.ignore_gfp_wait_file =
		debugfs_create_bool("ignore-gfp-wait", mode, dir,
				      &failslab.ignore_gfp_wait);

	if (!failslab.ignore_gfp_wait_file) {
		err = -ENOMEM;
		debugfs_remove(failslab.ignore_gfp_wait_file);
		cleanup_fault_attr_dentries(&failslab.attr);
	}

	return err;
}

late_initcall(failslab_debugfs);

#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */

#else /* CONFIG_FAILSLAB */

static inline int should_failslab(struct kmem_cache *cachep, gfp_t flags)
{
	return 0;
}

#endif /* CONFIG_FAILSLAB */

3188
static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
3189
{
P
Pekka Enberg 已提交
3190
	void *objp;
L
Linus Torvalds 已提交
3191 3192
	struct array_cache *ac;

3193
	check_irq_off();
3194

3195
	ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
3196 3197 3198
	if (likely(ac->avail)) {
		STATS_INC_ALLOCHIT(cachep);
		ac->touched = 1;
3199
		objp = ac->entry[--ac->avail];
L
Linus Torvalds 已提交
3200 3201 3202 3203
	} else {
		STATS_INC_ALLOCMISS(cachep);
		objp = cache_alloc_refill(cachep, flags);
	}
3204 3205 3206
	return objp;
}

3207
#ifdef CONFIG_NUMA
3208
/*
3209
 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
3210 3211 3212 3213 3214 3215 3216 3217
 *
 * If we are in_interrupt, then process context, including cpusets and
 * mempolicy, may not apply and should not be used for allocation policy.
 */
static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
{
	int nid_alloc, nid_here;

3218
	if (in_interrupt() || (flags & __GFP_THISNODE))
3219 3220 3221 3222 3223 3224 3225
		return NULL;
	nid_alloc = nid_here = numa_node_id();
	if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
		nid_alloc = cpuset_mem_spread_node();
	else if (current->mempolicy)
		nid_alloc = slab_node(current->mempolicy);
	if (nid_alloc != nid_here)
3226
		return ____cache_alloc_node(cachep, flags, nid_alloc);
3227 3228 3229
	return NULL;
}

3230 3231
/*
 * Fallback function if there was no memory available and no objects on a
3232 3233 3234 3235 3236
 * certain node and fall back is permitted. First we scan all the
 * available nodelists for available objects. If that fails then we
 * perform an allocation without specifying a node. This allows the page
 * allocator to do its reclaim / fallback magic. We then insert the
 * slab into the proper nodelist and then allocate from it.
3237
 */
3238
static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3239
{
3240 3241
	struct zonelist *zonelist;
	gfp_t local_flags;
3242 3243
	struct zone **z;
	void *obj = NULL;
3244
	int nid;
3245 3246 3247 3248 3249 3250 3251

	if (flags & __GFP_THISNODE)
		return NULL;

	zonelist = &NODE_DATA(slab_node(current->mempolicy))
			->node_zonelists[gfp_zone(flags)];
	local_flags = (flags & GFP_LEVEL_MASK);
3252

3253 3254 3255 3256 3257
retry:
	/*
	 * Look through allowed nodes for objects available
	 * from existing per node queues.
	 */
3258
	for (z = zonelist->zones; *z && !obj; z++) {
3259
		nid = zone_to_nid(*z);
3260

3261
		if (cpuset_zone_allowed_hardwall(*z, flags) &&
3262 3263 3264 3265 3266 3267
			cache->nodelists[nid] &&
			cache->nodelists[nid]->free_objects)
				obj = ____cache_alloc_node(cache,
					flags | GFP_THISNODE, nid);
	}

3268
	if (!obj) {
3269 3270 3271 3272 3273 3274
		/*
		 * This allocation will be performed within the constraints
		 * of the current cpuset / memory policy requirements.
		 * We may trigger various forms of reclaim on the allowed
		 * set and go into memory reserves if necessary.
		 */
3275 3276 3277
		if (local_flags & __GFP_WAIT)
			local_irq_enable();
		kmem_flagcheck(cache, flags);
3278
		obj = kmem_getpages(cache, flags, -1);
3279 3280
		if (local_flags & __GFP_WAIT)
			local_irq_disable();
3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296
		if (obj) {
			/*
			 * Insert into the appropriate per node queues
			 */
			nid = page_to_nid(virt_to_page(obj));
			if (cache_grow(cache, flags, nid, obj)) {
				obj = ____cache_alloc_node(cache,
					flags | GFP_THISNODE, nid);
				if (!obj)
					/*
					 * Another processor may allocate the
					 * objects in the slab since we are
					 * not holding any locks.
					 */
					goto retry;
			} else {
3297
				/* cache_grow already freed obj */
3298 3299 3300
				obj = NULL;
			}
		}
3301
	}
3302 3303 3304
	return obj;
}

3305 3306
/*
 * A interface to enable slab creation on nodeid
L
Linus Torvalds 已提交
3307
 */
3308
static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
A
Andrew Morton 已提交
3309
				int nodeid)
3310 3311
{
	struct list_head *entry;
P
Pekka Enberg 已提交
3312 3313 3314 3315 3316 3317 3318 3319
	struct slab *slabp;
	struct kmem_list3 *l3;
	void *obj;
	int x;

	l3 = cachep->nodelists[nodeid];
	BUG_ON(!l3);

A
Andrew Morton 已提交
3320
retry:
3321
	check_irq_off();
P
Pekka Enberg 已提交
3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340
	spin_lock(&l3->list_lock);
	entry = l3->slabs_partial.next;
	if (entry == &l3->slabs_partial) {
		l3->free_touched = 1;
		entry = l3->slabs_free.next;
		if (entry == &l3->slabs_free)
			goto must_grow;
	}

	slabp = list_entry(entry, struct slab, list);
	check_spinlock_acquired_node(cachep, nodeid);
	check_slabp(cachep, slabp);

	STATS_INC_NODEALLOCS(cachep);
	STATS_INC_ACTIVE(cachep);
	STATS_SET_HIGH(cachep);

	BUG_ON(slabp->inuse == cachep->num);

3341
	obj = slab_get_obj(cachep, slabp, nodeid);
P
Pekka Enberg 已提交
3342 3343 3344 3345 3346
	check_slabp(cachep, slabp);
	l3->free_objects--;
	/* move slabp to correct slabp list: */
	list_del(&slabp->list);

A
Andrew Morton 已提交
3347
	if (slabp->free == BUFCTL_END)
P
Pekka Enberg 已提交
3348
		list_add(&slabp->list, &l3->slabs_full);
A
Andrew Morton 已提交
3349
	else
P
Pekka Enberg 已提交
3350
		list_add(&slabp->list, &l3->slabs_partial);
3351

P
Pekka Enberg 已提交
3352 3353
	spin_unlock(&l3->list_lock);
	goto done;
3354

A
Andrew Morton 已提交
3355
must_grow:
P
Pekka Enberg 已提交
3356
	spin_unlock(&l3->list_lock);
3357
	x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
3358 3359
	if (x)
		goto retry;
L
Linus Torvalds 已提交
3360

3361
	return fallback_alloc(cachep, flags);
3362

A
Andrew Morton 已提交
3363
done:
P
Pekka Enberg 已提交
3364
	return obj;
3365
}
3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385

/**
 * kmem_cache_alloc_node - Allocate an object on the specified node
 * @cachep: The cache to allocate from.
 * @flags: See kmalloc().
 * @nodeid: node number of the target node.
 * @caller: return address of caller, used for debug information
 *
 * Identical to kmem_cache_alloc but it will allocate memory on the given
 * node, which can improve the performance for cpu bound structures.
 *
 * Fallback to other node is possible if __GFP_THISNODE is not set.
 */
static __always_inline void *
__cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
		   void *caller)
{
	unsigned long save_flags;
	void *ptr;

3386 3387 3388
	if (should_failslab(cachep, flags))
		return NULL;

3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458
	cache_alloc_debugcheck_before(cachep, flags);
	local_irq_save(save_flags);

	if (unlikely(nodeid == -1))
		nodeid = numa_node_id();

	if (unlikely(!cachep->nodelists[nodeid])) {
		/* Node not bootstrapped yet */
		ptr = fallback_alloc(cachep, flags);
		goto out;
	}

	if (nodeid == numa_node_id()) {
		/*
		 * Use the locally cached objects if possible.
		 * However ____cache_alloc does not allow fallback
		 * to other nodes. It may fail while we still have
		 * objects on other nodes available.
		 */
		ptr = ____cache_alloc(cachep, flags);
		if (ptr)
			goto out;
	}
	/* ___cache_alloc_node can fall back to other nodes */
	ptr = ____cache_alloc_node(cachep, flags, nodeid);
  out:
	local_irq_restore(save_flags);
	ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);

	return ptr;
}

static __always_inline void *
__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
{
	void *objp;

	if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
		objp = alternate_node_alloc(cache, flags);
		if (objp)
			goto out;
	}
	objp = ____cache_alloc(cache, flags);

	/*
	 * We may just have run out of memory on the local node.
	 * ____cache_alloc_node() knows how to locate memory on other nodes
	 */
 	if (!objp)
 		objp = ____cache_alloc_node(cache, flags, numa_node_id());

  out:
	return objp;
}
#else

static __always_inline void *
__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
{
	return ____cache_alloc(cachep, flags);
}

#endif /* CONFIG_NUMA */

static __always_inline void *
__cache_alloc(struct kmem_cache *cachep, gfp_t flags, void *caller)
{
	unsigned long save_flags;
	void *objp;

3459 3460 3461
	if (should_failslab(cachep, flags))
		return NULL;

3462 3463 3464 3465 3466 3467 3468 3469 3470
	cache_alloc_debugcheck_before(cachep, flags);
	local_irq_save(save_flags);
	objp = __do_cache_alloc(cachep, flags);
	local_irq_restore(save_flags);
	objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
	prefetchw(objp);

	return objp;
}
3471 3472 3473 3474

/*
 * Caller needs to acquire correct kmem_list's list_lock
 */
3475
static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
P
Pekka Enberg 已提交
3476
		       int node)
L
Linus Torvalds 已提交
3477 3478
{
	int i;
3479
	struct kmem_list3 *l3;
L
Linus Torvalds 已提交
3480 3481 3482 3483 3484

	for (i = 0; i < nr_objects; i++) {
		void *objp = objpp[i];
		struct slab *slabp;

3485
		slabp = virt_to_slab(objp);
3486
		l3 = cachep->nodelists[node];
L
Linus Torvalds 已提交
3487
		list_del(&slabp->list);
3488
		check_spinlock_acquired_node(cachep, node);
L
Linus Torvalds 已提交
3489
		check_slabp(cachep, slabp);
3490
		slab_put_obj(cachep, slabp, objp, node);
L
Linus Torvalds 已提交
3491
		STATS_DEC_ACTIVE(cachep);
3492
		l3->free_objects++;
L
Linus Torvalds 已提交
3493 3494 3495 3496
		check_slabp(cachep, slabp);

		/* fixup slab chains */
		if (slabp->inuse == 0) {
3497 3498
			if (l3->free_objects > l3->free_limit) {
				l3->free_objects -= cachep->num;
3499 3500 3501 3502 3503 3504
				/* No need to drop any previously held
				 * lock here, even if we have a off-slab slab
				 * descriptor it is guaranteed to come from
				 * a different cache, refer to comments before
				 * alloc_slabmgmt.
				 */
L
Linus Torvalds 已提交
3505 3506
				slab_destroy(cachep, slabp);
			} else {
3507
				list_add(&slabp->list, &l3->slabs_free);
L
Linus Torvalds 已提交
3508 3509 3510 3511 3512 3513
			}
		} else {
			/* Unconditionally move a slab to the end of the
			 * partial list on free - maximum time for the
			 * other objects to be freed, too.
			 */
3514
			list_add_tail(&slabp->list, &l3->slabs_partial);
L
Linus Torvalds 已提交
3515 3516 3517 3518
		}
	}
}

3519
static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
L
Linus Torvalds 已提交
3520 3521
{
	int batchcount;
3522
	struct kmem_list3 *l3;
3523
	int node = numa_node_id();
L
Linus Torvalds 已提交
3524 3525 3526 3527 3528 3529

	batchcount = ac->batchcount;
#if DEBUG
	BUG_ON(!batchcount || batchcount > ac->avail);
#endif
	check_irq_off();
3530
	l3 = cachep->nodelists[node];
3531
	spin_lock(&l3->list_lock);
3532 3533
	if (l3->shared) {
		struct array_cache *shared_array = l3->shared;
P
Pekka Enberg 已提交
3534
		int max = shared_array->limit - shared_array->avail;
L
Linus Torvalds 已提交
3535 3536 3537
		if (max) {
			if (batchcount > max)
				batchcount = max;
3538
			memcpy(&(shared_array->entry[shared_array->avail]),
P
Pekka Enberg 已提交
3539
			       ac->entry, sizeof(void *) * batchcount);
L
Linus Torvalds 已提交
3540 3541 3542 3543 3544
			shared_array->avail += batchcount;
			goto free_done;
		}
	}

3545
	free_block(cachep, ac->entry, batchcount, node);
A
Andrew Morton 已提交
3546
free_done:
L
Linus Torvalds 已提交
3547 3548 3549 3550 3551
#if STATS
	{
		int i = 0;
		struct list_head *p;

3552 3553
		p = l3->slabs_free.next;
		while (p != &(l3->slabs_free)) {
L
Linus Torvalds 已提交
3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564
			struct slab *slabp;

			slabp = list_entry(p, struct slab, list);
			BUG_ON(slabp->inuse);

			i++;
			p = p->next;
		}
		STATS_SET_FREEABLE(cachep, i);
	}
#endif
3565
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
3566
	ac->avail -= batchcount;
A
Andrew Morton 已提交
3567
	memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
L
Linus Torvalds 已提交
3568 3569 3570
}

/*
A
Andrew Morton 已提交
3571 3572
 * Release an obj back to its cache. If the obj has a constructed state, it must
 * be in this state _before_ it is released.  Called with disabled ints.
L
Linus Torvalds 已提交
3573
 */
3574
static inline void __cache_free(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
3575
{
3576
	struct array_cache *ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
3577 3578 3579 3580

	check_irq_off();
	objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));

3581
	if (use_alien_caches && cache_free_alien(cachep, objp))
3582 3583
		return;

L
Linus Torvalds 已提交
3584 3585
	if (likely(ac->avail < ac->limit)) {
		STATS_INC_FREEHIT(cachep);
3586
		ac->entry[ac->avail++] = objp;
L
Linus Torvalds 已提交
3587 3588 3589 3590
		return;
	} else {
		STATS_INC_FREEMISS(cachep);
		cache_flusharray(cachep, ac);
3591
		ac->entry[ac->avail++] = objp;
L
Linus Torvalds 已提交
3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602
	}
}

/**
 * kmem_cache_alloc - Allocate an object
 * @cachep: The cache to allocate from.
 * @flags: See kmalloc().
 *
 * Allocate an object from this cache.  The flags are only relevant
 * if the cache has no available objects.
 */
3603
void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
3604
{
3605
	return __cache_alloc(cachep, flags, __builtin_return_address(0));
L
Linus Torvalds 已提交
3606 3607 3608
}
EXPORT_SYMBOL(kmem_cache_alloc);

3609
/**
3610
 * kmem_cache_zalloc - Allocate an object. The memory is set to zero.
3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625
 * @cache: The cache to allocate from.
 * @flags: See kmalloc().
 *
 * Allocate an object from this cache and set the allocated memory to zero.
 * The flags are only relevant if the cache has no available objects.
 */
void *kmem_cache_zalloc(struct kmem_cache *cache, gfp_t flags)
{
	void *ret = __cache_alloc(cache, flags, __builtin_return_address(0));
	if (ret)
		memset(ret, 0, obj_size(cache));
	return ret;
}
EXPORT_SYMBOL(kmem_cache_zalloc);

L
Linus Torvalds 已提交
3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639
/**
 * kmem_ptr_validate - check if an untrusted pointer might
 *	be a slab entry.
 * @cachep: the cache we're checking against
 * @ptr: pointer to validate
 *
 * This verifies that the untrusted pointer looks sane:
 * it is _not_ a guarantee that the pointer is actually
 * part of the slab cache in question, but it at least
 * validates that the pointer can be dereferenced and
 * looks half-way sane.
 *
 * Currently only used for dentry validation.
 */
3640
int kmem_ptr_validate(struct kmem_cache *cachep, const void *ptr)
L
Linus Torvalds 已提交
3641
{
P
Pekka Enberg 已提交
3642
	unsigned long addr = (unsigned long)ptr;
L
Linus Torvalds 已提交
3643
	unsigned long min_addr = PAGE_OFFSET;
P
Pekka Enberg 已提交
3644
	unsigned long align_mask = BYTES_PER_WORD - 1;
3645
	unsigned long size = cachep->buffer_size;
L
Linus Torvalds 已提交
3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660
	struct page *page;

	if (unlikely(addr < min_addr))
		goto out;
	if (unlikely(addr > (unsigned long)high_memory - size))
		goto out;
	if (unlikely(addr & align_mask))
		goto out;
	if (unlikely(!kern_addr_valid(addr)))
		goto out;
	if (unlikely(!kern_addr_valid(addr + size - 1)))
		goto out;
	page = virt_to_page(ptr);
	if (unlikely(!PageSlab(page)))
		goto out;
3661
	if (unlikely(page_get_cache(page) != cachep))
L
Linus Torvalds 已提交
3662 3663
		goto out;
	return 1;
A
Andrew Morton 已提交
3664
out:
L
Linus Torvalds 已提交
3665 3666 3667 3668
	return 0;
}

#ifdef CONFIG_NUMA
3669 3670 3671 3672 3673
void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
{
	return __cache_alloc_node(cachep, flags, nodeid,
			__builtin_return_address(0));
}
L
Linus Torvalds 已提交
3674 3675
EXPORT_SYMBOL(kmem_cache_alloc_node);

3676 3677
static __always_inline void *
__do_kmalloc_node(size_t size, gfp_t flags, int node, void *caller)
3678
{
3679
	struct kmem_cache *cachep;
3680 3681 3682 3683 3684 3685

	cachep = kmem_find_general_cachep(size, flags);
	if (unlikely(cachep == NULL))
		return NULL;
	return kmem_cache_alloc_node(cachep, flags, node);
}
3686 3687 3688 3689 3690 3691 3692

#ifdef CONFIG_DEBUG_SLAB
void *__kmalloc_node(size_t size, gfp_t flags, int node)
{
	return __do_kmalloc_node(size, flags, node,
			__builtin_return_address(0));
}
3693
EXPORT_SYMBOL(__kmalloc_node);
3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708

void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
		int node, void *caller)
{
	return __do_kmalloc_node(size, flags, node, caller);
}
EXPORT_SYMBOL(__kmalloc_node_track_caller);
#else
void *__kmalloc_node(size_t size, gfp_t flags, int node)
{
	return __do_kmalloc_node(size, flags, node, NULL);
}
EXPORT_SYMBOL(__kmalloc_node);
#endif /* CONFIG_DEBUG_SLAB */
#endif /* CONFIG_NUMA */
L
Linus Torvalds 已提交
3709 3710

/**
3711
 * __do_kmalloc - allocate memory
L
Linus Torvalds 已提交
3712
 * @size: how many bytes of memory are required.
3713
 * @flags: the type of memory to allocate (see kmalloc).
3714
 * @caller: function caller for debug tracking of the caller
L
Linus Torvalds 已提交
3715
 */
3716 3717
static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
					  void *caller)
L
Linus Torvalds 已提交
3718
{
3719
	struct kmem_cache *cachep;
L
Linus Torvalds 已提交
3720

3721 3722 3723 3724 3725 3726
	/* If you want to save a few bytes .text space: replace
	 * __ with kmem_.
	 * Then kmalloc uses the uninlined functions instead of the inline
	 * functions.
	 */
	cachep = __find_general_cachep(size, flags);
3727 3728
	if (unlikely(cachep == NULL))
		return NULL;
3729 3730 3731 3732
	return __cache_alloc(cachep, flags, caller);
}


3733
#ifdef CONFIG_DEBUG_SLAB
3734 3735
void *__kmalloc(size_t size, gfp_t flags)
{
3736
	return __do_kmalloc(size, flags, __builtin_return_address(0));
L
Linus Torvalds 已提交
3737 3738 3739
}
EXPORT_SYMBOL(__kmalloc);

3740 3741 3742 3743 3744
void *__kmalloc_track_caller(size_t size, gfp_t flags, void *caller)
{
	return __do_kmalloc(size, flags, caller);
}
EXPORT_SYMBOL(__kmalloc_track_caller);
3745 3746 3747 3748 3749 3750 3751

#else
void *__kmalloc(size_t size, gfp_t flags)
{
	return __do_kmalloc(size, flags, NULL);
}
EXPORT_SYMBOL(__kmalloc);
3752 3753
#endif

P
Pekka Enberg 已提交
3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799
/**
 * krealloc - reallocate memory. The contents will remain unchanged.
 * @p: object to reallocate memory for.
 * @new_size: how many bytes of memory are required.
 * @flags: the type of memory to allocate.
 *
 * The contents of the object pointed to are preserved up to the
 * lesser of the new and old sizes.  If @p is %NULL, krealloc()
 * behaves exactly like kmalloc().  If @size is 0 and @p is not a
 * %NULL pointer, the object pointed to is freed.
 */
void *krealloc(const void *p, size_t new_size, gfp_t flags)
{
	struct kmem_cache *cache, *new_cache;
	void *ret;

	if (unlikely(!p))
		return kmalloc_track_caller(new_size, flags);

	if (unlikely(!new_size)) {
		kfree(p);
		return NULL;
	}

	cache = virt_to_cache(p);
	new_cache = __find_general_cachep(new_size, flags);

	/*
 	 * If new size fits in the current cache, bail out.
 	 */
	if (likely(cache == new_cache))
		return (void *)p;

	/*
 	 * We are on the slow-path here so do not use __cache_alloc
 	 * because it bloats kernel text.
 	 */
	ret = kmalloc_track_caller(new_size, flags);
	if (ret) {
		memcpy(ret, p, min(new_size, ksize(p)));
		kfree(p);
	}
	return ret;
}
EXPORT_SYMBOL(krealloc);

L
Linus Torvalds 已提交
3800 3801 3802 3803 3804 3805 3806 3807
/**
 * kmem_cache_free - Deallocate an object
 * @cachep: The cache the allocation was from.
 * @objp: The previously allocated object.
 *
 * Free an object which was previously allocated from this
 * cache.
 */
3808
void kmem_cache_free(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
3809 3810 3811
{
	unsigned long flags;

3812 3813
	BUG_ON(virt_to_cache(objp) != cachep);

L
Linus Torvalds 已提交
3814
	local_irq_save(flags);
3815
	debug_check_no_locks_freed(objp, obj_size(cachep));
3816
	__cache_free(cachep, objp);
L
Linus Torvalds 已提交
3817 3818 3819 3820 3821 3822 3823 3824
	local_irq_restore(flags);
}
EXPORT_SYMBOL(kmem_cache_free);

/**
 * kfree - free previously allocated memory
 * @objp: pointer returned by kmalloc.
 *
3825 3826
 * If @objp is NULL, no operation is performed.
 *
L
Linus Torvalds 已提交
3827 3828 3829 3830 3831
 * Don't free memory not originally allocated by kmalloc()
 * or you will run into trouble.
 */
void kfree(const void *objp)
{
3832
	struct kmem_cache *c;
L
Linus Torvalds 已提交
3833 3834 3835 3836 3837 3838
	unsigned long flags;

	if (unlikely(!objp))
		return;
	local_irq_save(flags);
	kfree_debugcheck(objp);
3839
	c = virt_to_cache(objp);
3840
	debug_check_no_locks_freed(objp, obj_size(c));
3841
	__cache_free(c, (void *)objp);
L
Linus Torvalds 已提交
3842 3843 3844 3845
	local_irq_restore(flags);
}
EXPORT_SYMBOL(kfree);

3846
unsigned int kmem_cache_size(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
3847
{
3848
	return obj_size(cachep);
L
Linus Torvalds 已提交
3849 3850 3851
}
EXPORT_SYMBOL(kmem_cache_size);

3852
const char *kmem_cache_name(struct kmem_cache *cachep)
3853 3854 3855 3856 3857
{
	return cachep->name;
}
EXPORT_SYMBOL_GPL(kmem_cache_name);

3858
/*
3859
 * This initializes kmem_list3 or resizes varioius caches for all nodes.
3860
 */
3861
static int alloc_kmemlist(struct kmem_cache *cachep)
3862 3863 3864
{
	int node;
	struct kmem_list3 *l3;
3865
	struct array_cache *new_shared;
3866
	struct array_cache **new_alien = NULL;
3867 3868

	for_each_online_node(node) {
3869

3870 3871 3872 3873 3874
                if (use_alien_caches) {
                        new_alien = alloc_alien_cache(node, cachep->limit);
                        if (!new_alien)
                                goto fail;
                }
3875

3876 3877 3878
		new_shared = NULL;
		if (cachep->shared) {
			new_shared = alloc_arraycache(node,
3879
				cachep->shared*cachep->batchcount,
A
Andrew Morton 已提交
3880
					0xbaadf00d);
3881 3882 3883 3884
			if (!new_shared) {
				free_alien_cache(new_alien);
				goto fail;
			}
3885
		}
3886

A
Andrew Morton 已提交
3887 3888
		l3 = cachep->nodelists[node];
		if (l3) {
3889 3890
			struct array_cache *shared = l3->shared;

3891 3892
			spin_lock_irq(&l3->list_lock);

3893
			if (shared)
3894 3895
				free_block(cachep, shared->entry,
						shared->avail, node);
3896

3897 3898
			l3->shared = new_shared;
			if (!l3->alien) {
3899 3900 3901
				l3->alien = new_alien;
				new_alien = NULL;
			}
P
Pekka Enberg 已提交
3902
			l3->free_limit = (1 + nr_cpus_node(node)) *
A
Andrew Morton 已提交
3903
					cachep->batchcount + cachep->num;
3904
			spin_unlock_irq(&l3->list_lock);
3905
			kfree(shared);
3906 3907 3908
			free_alien_cache(new_alien);
			continue;
		}
A
Andrew Morton 已提交
3909
		l3 = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, node);
3910 3911 3912
		if (!l3) {
			free_alien_cache(new_alien);
			kfree(new_shared);
3913
			goto fail;
3914
		}
3915 3916 3917

		kmem_list3_init(l3);
		l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
A
Andrew Morton 已提交
3918
				((unsigned long)cachep) % REAPTIMEOUT_LIST3;
3919
		l3->shared = new_shared;
3920
		l3->alien = new_alien;
P
Pekka Enberg 已提交
3921
		l3->free_limit = (1 + nr_cpus_node(node)) *
A
Andrew Morton 已提交
3922
					cachep->batchcount + cachep->num;
3923 3924
		cachep->nodelists[node] = l3;
	}
3925
	return 0;
3926

A
Andrew Morton 已提交
3927
fail:
3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942
	if (!cachep->next.next) {
		/* Cache is not active yet. Roll back what we did */
		node--;
		while (node >= 0) {
			if (cachep->nodelists[node]) {
				l3 = cachep->nodelists[node];

				kfree(l3->shared);
				free_alien_cache(l3->alien);
				kfree(l3);
				cachep->nodelists[node] = NULL;
			}
			node--;
		}
	}
3943
	return -ENOMEM;
3944 3945
}

L
Linus Torvalds 已提交
3946
struct ccupdate_struct {
3947
	struct kmem_cache *cachep;
L
Linus Torvalds 已提交
3948 3949 3950 3951 3952
	struct array_cache *new[NR_CPUS];
};

static void do_ccupdate_local(void *info)
{
A
Andrew Morton 已提交
3953
	struct ccupdate_struct *new = info;
L
Linus Torvalds 已提交
3954 3955 3956
	struct array_cache *old;

	check_irq_off();
3957
	old = cpu_cache_get(new->cachep);
3958

L
Linus Torvalds 已提交
3959 3960 3961 3962
	new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
	new->new[smp_processor_id()] = old;
}

3963
/* Always called with the cache_chain_mutex held */
A
Andrew Morton 已提交
3964 3965
static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
				int batchcount, int shared)
L
Linus Torvalds 已提交
3966
{
3967
	struct ccupdate_struct *new;
3968
	int i;
L
Linus Torvalds 已提交
3969

3970 3971 3972 3973
	new = kzalloc(sizeof(*new), GFP_KERNEL);
	if (!new)
		return -ENOMEM;

3974
	for_each_online_cpu(i) {
3975
		new->new[i] = alloc_arraycache(cpu_to_node(i), limit,
A
Andrew Morton 已提交
3976
						batchcount);
3977
		if (!new->new[i]) {
P
Pekka Enberg 已提交
3978
			for (i--; i >= 0; i--)
3979 3980
				kfree(new->new[i]);
			kfree(new);
3981
			return -ENOMEM;
L
Linus Torvalds 已提交
3982 3983
		}
	}
3984
	new->cachep = cachep;
L
Linus Torvalds 已提交
3985

3986
	on_each_cpu(do_ccupdate_local, (void *)new, 1, 1);
3987

L
Linus Torvalds 已提交
3988 3989 3990
	check_irq_on();
	cachep->batchcount = batchcount;
	cachep->limit = limit;
3991
	cachep->shared = shared;
L
Linus Torvalds 已提交
3992

3993
	for_each_online_cpu(i) {
3994
		struct array_cache *ccold = new->new[i];
L
Linus Torvalds 已提交
3995 3996
		if (!ccold)
			continue;
3997
		spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
3998
		free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i));
3999
		spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
L
Linus Torvalds 已提交
4000 4001
		kfree(ccold);
	}
4002
	kfree(new);
4003
	return alloc_kmemlist(cachep);
L
Linus Torvalds 已提交
4004 4005
}

4006
/* Called with cache_chain_mutex held always */
4007
static int enable_cpucache(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
4008 4009 4010 4011
{
	int err;
	int limit, shared;

A
Andrew Morton 已提交
4012 4013
	/*
	 * The head array serves three purposes:
L
Linus Torvalds 已提交
4014 4015
	 * - create a LIFO ordering, i.e. return objects that are cache-warm
	 * - reduce the number of spinlock operations.
A
Andrew Morton 已提交
4016
	 * - reduce the number of linked list operations on the slab and
L
Linus Torvalds 已提交
4017 4018 4019 4020
	 *   bufctl chains: array operations are cheaper.
	 * The numbers are guessed, we should auto-tune as described by
	 * Bonwick.
	 */
4021
	if (cachep->buffer_size > 131072)
L
Linus Torvalds 已提交
4022
		limit = 1;
4023
	else if (cachep->buffer_size > PAGE_SIZE)
L
Linus Torvalds 已提交
4024
		limit = 8;
4025
	else if (cachep->buffer_size > 1024)
L
Linus Torvalds 已提交
4026
		limit = 24;
4027
	else if (cachep->buffer_size > 256)
L
Linus Torvalds 已提交
4028 4029 4030 4031
		limit = 54;
	else
		limit = 120;

A
Andrew Morton 已提交
4032 4033
	/*
	 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
L
Linus Torvalds 已提交
4034 4035 4036 4037 4038 4039 4040 4041
	 * allocation behaviour: Most allocs on one cpu, most free operations
	 * on another cpu. For these cases, an efficient object passing between
	 * cpus is necessary. This is provided by a shared array. The array
	 * replaces Bonwick's magazine layer.
	 * On uniprocessor, it's functionally equivalent (but less efficient)
	 * to a larger limit. Thus disabled by default.
	 */
	shared = 0;
4042
	if (cachep->buffer_size <= PAGE_SIZE && num_possible_cpus() > 1)
L
Linus Torvalds 已提交
4043 4044 4045
		shared = 8;

#if DEBUG
A
Andrew Morton 已提交
4046 4047 4048
	/*
	 * With debugging enabled, large batchcount lead to excessively long
	 * periods with disabled local interrupts. Limit the batchcount
L
Linus Torvalds 已提交
4049 4050 4051 4052
	 */
	if (limit > 32)
		limit = 32;
#endif
P
Pekka Enberg 已提交
4053
	err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared);
L
Linus Torvalds 已提交
4054 4055
	if (err)
		printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
P
Pekka Enberg 已提交
4056
		       cachep->name, -err);
4057
	return err;
L
Linus Torvalds 已提交
4058 4059
}

4060 4061
/*
 * Drain an array if it contains any elements taking the l3 lock only if
4062 4063
 * necessary. Note that the l3 listlock also protects the array_cache
 * if drain_array() is used on the shared array.
4064 4065 4066
 */
void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
			 struct array_cache *ac, int force, int node)
L
Linus Torvalds 已提交
4067 4068 4069
{
	int tofree;

4070 4071
	if (!ac || !ac->avail)
		return;
L
Linus Torvalds 已提交
4072 4073
	if (ac->touched && !force) {
		ac->touched = 0;
4074
	} else {
4075
		spin_lock_irq(&l3->list_lock);
4076 4077 4078 4079 4080 4081 4082 4083 4084
		if (ac->avail) {
			tofree = force ? ac->avail : (ac->limit + 4) / 5;
			if (tofree > ac->avail)
				tofree = (ac->avail + 1) / 2;
			free_block(cachep, ac->entry, tofree, node);
			ac->avail -= tofree;
			memmove(ac->entry, &(ac->entry[tofree]),
				sizeof(void *) * ac->avail);
		}
4085
		spin_unlock_irq(&l3->list_lock);
L
Linus Torvalds 已提交
4086 4087 4088 4089 4090
	}
}

/**
 * cache_reap - Reclaim memory from caches.
4091
 * @w: work descriptor
L
Linus Torvalds 已提交
4092 4093 4094 4095 4096 4097
 *
 * Called from workqueue/eventd every few seconds.
 * Purpose:
 * - clear the per-cpu caches for this CPU.
 * - return freeable pages to the main free memory pool.
 *
A
Andrew Morton 已提交
4098 4099
 * If we cannot acquire the cache chain mutex then just give up - we'll try
 * again on the next iteration.
L
Linus Torvalds 已提交
4100
 */
4101
static void cache_reap(struct work_struct *w)
L
Linus Torvalds 已提交
4102
{
4103
	struct kmem_cache *searchp;
4104
	struct kmem_list3 *l3;
4105
	int node = numa_node_id();
4106 4107
	struct delayed_work *work =
		container_of(w, struct delayed_work, work);
L
Linus Torvalds 已提交
4108

4109
	if (!mutex_trylock(&cache_chain_mutex))
L
Linus Torvalds 已提交
4110
		/* Give up. Setup the next iteration. */
4111
		goto out;
L
Linus Torvalds 已提交
4112

4113
	list_for_each_entry(searchp, &cache_chain, next) {
L
Linus Torvalds 已提交
4114 4115
		check_irq_on();

4116 4117 4118 4119 4120
		/*
		 * We only take the l3 lock if absolutely necessary and we
		 * have established with reasonable certainty that
		 * we can do some work if the lock was obtained.
		 */
4121
		l3 = searchp->nodelists[node];
4122

4123
		reap_alien(searchp, l3);
L
Linus Torvalds 已提交
4124

4125
		drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
L
Linus Torvalds 已提交
4126

4127 4128 4129 4130
		/*
		 * These are racy checks but it does not matter
		 * if we skip one check or scan twice.
		 */
4131
		if (time_after(l3->next_reap, jiffies))
4132
			goto next;
L
Linus Torvalds 已提交
4133

4134
		l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
L
Linus Torvalds 已提交
4135

4136
		drain_array(searchp, l3, l3->shared, 0, node);
L
Linus Torvalds 已提交
4137

4138
		if (l3->free_touched)
4139
			l3->free_touched = 0;
4140 4141
		else {
			int freed;
L
Linus Torvalds 已提交
4142

4143 4144 4145 4146
			freed = drain_freelist(searchp, l3, (l3->free_limit +
				5 * searchp->num - 1) / (5 * searchp->num));
			STATS_ADD_REAPED(searchp, freed);
		}
4147
next:
L
Linus Torvalds 已提交
4148 4149 4150
		cond_resched();
	}
	check_irq_on();
I
Ingo Molnar 已提交
4151
	mutex_unlock(&cache_chain_mutex);
4152
	next_reap_node();
4153
	refresh_cpu_vm_stats(smp_processor_id());
4154
out:
A
Andrew Morton 已提交
4155
	/* Set up the next iteration */
4156
	schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC));
L
Linus Torvalds 已提交
4157 4158 4159 4160
}

#ifdef CONFIG_PROC_FS

4161
static void print_slabinfo_header(struct seq_file *m)
L
Linus Torvalds 已提交
4162
{
4163 4164 4165 4166
	/*
	 * Output format version, so at least we can change it
	 * without _too_ many complaints.
	 */
L
Linus Torvalds 已提交
4167
#if STATS
4168
	seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
L
Linus Torvalds 已提交
4169
#else
4170
	seq_puts(m, "slabinfo - version: 2.1\n");
L
Linus Torvalds 已提交
4171
#endif
4172 4173 4174 4175
	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> "
		 "<objperslab> <pagesperslab>");
	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
L
Linus Torvalds 已提交
4176
#if STATS
4177
	seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
4178
		 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
4179
	seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
L
Linus Torvalds 已提交
4180
#endif
4181 4182 4183 4184 4185 4186 4187 4188
	seq_putc(m, '\n');
}

static void *s_start(struct seq_file *m, loff_t *pos)
{
	loff_t n = *pos;
	struct list_head *p;

I
Ingo Molnar 已提交
4189
	mutex_lock(&cache_chain_mutex);
4190 4191
	if (!n)
		print_slabinfo_header(m);
L
Linus Torvalds 已提交
4192 4193 4194 4195 4196 4197
	p = cache_chain.next;
	while (n--) {
		p = p->next;
		if (p == &cache_chain)
			return NULL;
	}
4198
	return list_entry(p, struct kmem_cache, next);
L
Linus Torvalds 已提交
4199 4200 4201 4202
}

static void *s_next(struct seq_file *m, void *p, loff_t *pos)
{
4203
	struct kmem_cache *cachep = p;
L
Linus Torvalds 已提交
4204
	++*pos;
A
Andrew Morton 已提交
4205 4206
	return cachep->next.next == &cache_chain ?
		NULL : list_entry(cachep->next.next, struct kmem_cache, next);
L
Linus Torvalds 已提交
4207 4208 4209 4210
}

static void s_stop(struct seq_file *m, void *p)
{
I
Ingo Molnar 已提交
4211
	mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
4212 4213 4214 4215
}

static int s_show(struct seq_file *m, void *p)
{
4216
	struct kmem_cache *cachep = p;
P
Pekka Enberg 已提交
4217 4218 4219 4220 4221
	struct slab *slabp;
	unsigned long active_objs;
	unsigned long num_objs;
	unsigned long active_slabs = 0;
	unsigned long num_slabs, free_objects = 0, shared_avail = 0;
4222
	const char *name;
L
Linus Torvalds 已提交
4223
	char *error = NULL;
4224 4225
	int node;
	struct kmem_list3 *l3;
L
Linus Torvalds 已提交
4226 4227 4228

	active_objs = 0;
	num_slabs = 0;
4229 4230 4231 4232 4233
	for_each_online_node(node) {
		l3 = cachep->nodelists[node];
		if (!l3)
			continue;

4234 4235
		check_irq_on();
		spin_lock_irq(&l3->list_lock);
4236

4237
		list_for_each_entry(slabp, &l3->slabs_full, list) {
4238 4239 4240 4241 4242
			if (slabp->inuse != cachep->num && !error)
				error = "slabs_full accounting error";
			active_objs += cachep->num;
			active_slabs++;
		}
4243
		list_for_each_entry(slabp, &l3->slabs_partial, list) {
4244 4245 4246 4247 4248 4249 4250
			if (slabp->inuse == cachep->num && !error)
				error = "slabs_partial inuse accounting error";
			if (!slabp->inuse && !error)
				error = "slabs_partial/inuse accounting error";
			active_objs += slabp->inuse;
			active_slabs++;
		}
4251
		list_for_each_entry(slabp, &l3->slabs_free, list) {
4252 4253 4254 4255 4256
			if (slabp->inuse && !error)
				error = "slabs_free/inuse accounting error";
			num_slabs++;
		}
		free_objects += l3->free_objects;
4257 4258
		if (l3->shared)
			shared_avail += l3->shared->avail;
4259

4260
		spin_unlock_irq(&l3->list_lock);
L
Linus Torvalds 已提交
4261
	}
P
Pekka Enberg 已提交
4262 4263
	num_slabs += active_slabs;
	num_objs = num_slabs * cachep->num;
4264
	if (num_objs - active_objs != free_objects && !error)
L
Linus Torvalds 已提交
4265 4266
		error = "free_objects accounting error";

P
Pekka Enberg 已提交
4267
	name = cachep->name;
L
Linus Torvalds 已提交
4268 4269 4270 4271
	if (error)
		printk(KERN_ERR "slab: cache %s error: %s\n", name, error);

	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
4272
		   name, active_objs, num_objs, cachep->buffer_size,
P
Pekka Enberg 已提交
4273
		   cachep->num, (1 << cachep->gfporder));
L
Linus Torvalds 已提交
4274
	seq_printf(m, " : tunables %4u %4u %4u",
P
Pekka Enberg 已提交
4275
		   cachep->limit, cachep->batchcount, cachep->shared);
4276
	seq_printf(m, " : slabdata %6lu %6lu %6lu",
P
Pekka Enberg 已提交
4277
		   active_slabs, num_slabs, shared_avail);
L
Linus Torvalds 已提交
4278
#if STATS
P
Pekka Enberg 已提交
4279
	{			/* list3 stats */
L
Linus Torvalds 已提交
4280 4281 4282 4283 4284 4285 4286
		unsigned long high = cachep->high_mark;
		unsigned long allocs = cachep->num_allocations;
		unsigned long grown = cachep->grown;
		unsigned long reaped = cachep->reaped;
		unsigned long errors = cachep->errors;
		unsigned long max_freeable = cachep->max_freeable;
		unsigned long node_allocs = cachep->node_allocs;
4287
		unsigned long node_frees = cachep->node_frees;
4288
		unsigned long overflows = cachep->node_overflow;
L
Linus Torvalds 已提交
4289

4290
		seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \
4291
				%4lu %4lu %4lu %4lu %4lu", allocs, high, grown,
A
Andrew Morton 已提交
4292
				reaped, errors, max_freeable, node_allocs,
4293
				node_frees, overflows);
L
Linus Torvalds 已提交
4294 4295 4296 4297 4298 4299 4300 4301 4302
	}
	/* cpu stats */
	{
		unsigned long allochit = atomic_read(&cachep->allochit);
		unsigned long allocmiss = atomic_read(&cachep->allocmiss);
		unsigned long freehit = atomic_read(&cachep->freehit);
		unsigned long freemiss = atomic_read(&cachep->freemiss);

		seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
P
Pekka Enberg 已提交
4303
			   allochit, allocmiss, freehit, freemiss);
L
Linus Torvalds 已提交
4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323
	}
#endif
	seq_putc(m, '\n');
	return 0;
}

/*
 * slabinfo_op - iterator that generates /proc/slabinfo
 *
 * Output layout:
 * cache-name
 * num-active-objs
 * total-objs
 * object size
 * num-active-slabs
 * total-slabs
 * num-pages-per-slab
 * + further values on SMP and with statistics enabled
 */

4324
const struct seq_operations slabinfo_op = {
P
Pekka Enberg 已提交
4325 4326 4327 4328
	.start = s_start,
	.next = s_next,
	.stop = s_stop,
	.show = s_show,
L
Linus Torvalds 已提交
4329 4330 4331 4332 4333 4334 4335 4336 4337 4338
};

#define MAX_SLABINFO_WRITE 128
/**
 * slabinfo_write - Tuning for the slab allocator
 * @file: unused
 * @buffer: user buffer
 * @count: data length
 * @ppos: unused
 */
P
Pekka Enberg 已提交
4339 4340
ssize_t slabinfo_write(struct file *file, const char __user * buffer,
		       size_t count, loff_t *ppos)
L
Linus Torvalds 已提交
4341
{
P
Pekka Enberg 已提交
4342
	char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
L
Linus Torvalds 已提交
4343
	int limit, batchcount, shared, res;
4344
	struct kmem_cache *cachep;
P
Pekka Enberg 已提交
4345

L
Linus Torvalds 已提交
4346 4347 4348 4349
	if (count > MAX_SLABINFO_WRITE)
		return -EINVAL;
	if (copy_from_user(&kbuf, buffer, count))
		return -EFAULT;
P
Pekka Enberg 已提交
4350
	kbuf[MAX_SLABINFO_WRITE] = '\0';
L
Linus Torvalds 已提交
4351 4352 4353 4354 4355 4356 4357 4358 4359 4360

	tmp = strchr(kbuf, ' ');
	if (!tmp)
		return -EINVAL;
	*tmp = '\0';
	tmp++;
	if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
		return -EINVAL;

	/* Find the cache in the chain of caches. */
I
Ingo Molnar 已提交
4361
	mutex_lock(&cache_chain_mutex);
L
Linus Torvalds 已提交
4362
	res = -EINVAL;
4363
	list_for_each_entry(cachep, &cache_chain, next) {
L
Linus Torvalds 已提交
4364
		if (!strcmp(cachep->name, kbuf)) {
A
Andrew Morton 已提交
4365 4366
			if (limit < 1 || batchcount < 1 ||
					batchcount > limit || shared < 0) {
4367
				res = 0;
L
Linus Torvalds 已提交
4368
			} else {
4369
				res = do_tune_cpucache(cachep, limit,
P
Pekka Enberg 已提交
4370
						       batchcount, shared);
L
Linus Torvalds 已提交
4371 4372 4373 4374
			}
			break;
		}
	}
I
Ingo Molnar 已提交
4375
	mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
4376 4377 4378 4379
	if (res >= 0)
		res = count;
	return res;
}
4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445

#ifdef CONFIG_DEBUG_SLAB_LEAK

static void *leaks_start(struct seq_file *m, loff_t *pos)
{
	loff_t n = *pos;
	struct list_head *p;

	mutex_lock(&cache_chain_mutex);
	p = cache_chain.next;
	while (n--) {
		p = p->next;
		if (p == &cache_chain)
			return NULL;
	}
	return list_entry(p, struct kmem_cache, next);
}

static inline int add_caller(unsigned long *n, unsigned long v)
{
	unsigned long *p;
	int l;
	if (!v)
		return 1;
	l = n[1];
	p = n + 2;
	while (l) {
		int i = l/2;
		unsigned long *q = p + 2 * i;
		if (*q == v) {
			q[1]++;
			return 1;
		}
		if (*q > v) {
			l = i;
		} else {
			p = q + 2;
			l -= i + 1;
		}
	}
	if (++n[1] == n[0])
		return 0;
	memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
	p[0] = v;
	p[1] = 1;
	return 1;
}

static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
{
	void *p;
	int i;
	if (n[0] == n[1])
		return;
	for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) {
		if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
			continue;
		if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
			return;
	}
}

static void show_symbol(struct seq_file *m, unsigned long address)
{
#ifdef CONFIG_KALLSYMS
	unsigned long offset, size;
4446
	char modname[MODULE_NAME_LEN + 1], name[KSYM_NAME_LEN + 1];
4447

4448
	if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4449
		seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4450
		if (modname[0])
4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484
			seq_printf(m, " [%s]", modname);
		return;
	}
#endif
	seq_printf(m, "%p", (void *)address);
}

static int leaks_show(struct seq_file *m, void *p)
{
	struct kmem_cache *cachep = p;
	struct slab *slabp;
	struct kmem_list3 *l3;
	const char *name;
	unsigned long *n = m->private;
	int node;
	int i;

	if (!(cachep->flags & SLAB_STORE_USER))
		return 0;
	if (!(cachep->flags & SLAB_RED_ZONE))
		return 0;

	/* OK, we can do it */

	n[1] = 0;

	for_each_online_node(node) {
		l3 = cachep->nodelists[node];
		if (!l3)
			continue;

		check_irq_on();
		spin_lock_irq(&l3->list_lock);

4485
		list_for_each_entry(slabp, &l3->slabs_full, list)
4486
			handle_slab(n, cachep, slabp);
4487
		list_for_each_entry(slabp, &l3->slabs_partial, list)
4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513
			handle_slab(n, cachep, slabp);
		spin_unlock_irq(&l3->list_lock);
	}
	name = cachep->name;
	if (n[0] == n[1]) {
		/* Increase the buffer size */
		mutex_unlock(&cache_chain_mutex);
		m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
		if (!m->private) {
			/* Too bad, we are really out */
			m->private = n;
			mutex_lock(&cache_chain_mutex);
			return -ENOMEM;
		}
		*(unsigned long *)m->private = n[0] * 2;
		kfree(n);
		mutex_lock(&cache_chain_mutex);
		/* Now make sure this entry will be retried */
		m->count = m->size;
		return 0;
	}
	for (i = 0; i < n[1]; i++) {
		seq_printf(m, "%s: %lu ", name, n[2*i+3]);
		show_symbol(m, n[2*i+2]);
		seq_putc(m, '\n');
	}
4514

4515 4516 4517
	return 0;
}

4518
const struct seq_operations slabstats_op = {
4519 4520 4521 4522 4523 4524
	.start = leaks_start,
	.next = s_next,
	.stop = s_stop,
	.show = leaks_show,
};
#endif
L
Linus Torvalds 已提交
4525 4526
#endif

4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538
/**
 * ksize - get the actual amount of memory allocated for a given object
 * @objp: Pointer to the object
 *
 * kmalloc may internally round up allocations and return more memory
 * than requested. ksize() can be used to determine the actual amount of
 * memory allocated. The caller may use this additional memory, even though
 * a smaller amount of memory was initially specified with the kmalloc call.
 * The caller must guarantee that objp points to a valid object previously
 * allocated with either kmalloc() or kmem_cache_alloc(). The object
 * must not be freed during the duration of the call.
 */
P
Pekka Enberg 已提交
4539
size_t ksize(const void *objp)
L
Linus Torvalds 已提交
4540
{
4541 4542
	if (unlikely(objp == NULL))
		return 0;
L
Linus Torvalds 已提交
4543

4544
	return obj_size(virt_to_cache(objp));
L
Linus Torvalds 已提交
4545
}