page_alloc.c 222.2 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
/*
 *  linux/mm/page_alloc.c
 *
 *  Manages the free list, the system allocates free pages here.
 *  Note that kmalloc() lives in slab.c
 *
 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 *  Swap reorganised 29.12.95, Stephen Tweedie
 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
 *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
 *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
 *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
 *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
 *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
 */

#include <linux/stddef.h>
#include <linux/mm.h>
#include <linux/swap.h>
#include <linux/interrupt.h>
#include <linux/pagemap.h>
22
#include <linux/jiffies.h>
L
Linus Torvalds 已提交
23
#include <linux/bootmem.h>
24
#include <linux/memblock.h>
L
Linus Torvalds 已提交
25
#include <linux/compiler.h>
26
#include <linux/kernel.h>
27
#include <linux/kasan.h>
L
Linus Torvalds 已提交
28 29 30 31 32
#include <linux/module.h>
#include <linux/suspend.h>
#include <linux/pagevec.h>
#include <linux/blkdev.h>
#include <linux/slab.h>
33
#include <linux/ratelimit.h>
34
#include <linux/oom.h>
L
Linus Torvalds 已提交
35 36 37 38
#include <linux/topology.h>
#include <linux/sysctl.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
39
#include <linux/memory_hotplug.h>
L
Linus Torvalds 已提交
40 41
#include <linux/nodemask.h>
#include <linux/vmalloc.h>
42
#include <linux/vmstat.h>
43
#include <linux/mempolicy.h>
44
#include <linux/memremap.h>
45
#include <linux/stop_machine.h>
46 47
#include <linux/sort.h>
#include <linux/pfn.h>
48
#include <linux/backing-dev.h>
49
#include <linux/fault-inject.h>
K
KAMEZAWA Hiroyuki 已提交
50
#include <linux/page-isolation.h>
51
#include <linux/page_ext.h>
52
#include <linux/debugobjects.h>
53
#include <linux/kmemleak.h>
54
#include <linux/compaction.h>
55
#include <trace/events/kmem.h>
56
#include <trace/events/oom.h>
57
#include <linux/prefetch.h>
58
#include <linux/mm_inline.h>
59
#include <linux/migrate.h>
60
#include <linux/hugetlb.h>
61
#include <linux/sched/rt.h>
62
#include <linux/sched/mm.h>
63
#include <linux/page_owner.h>
64
#include <linux/kthread.h>
65
#include <linux/memcontrol.h>
66
#include <linux/ftrace.h>
67
#include <linux/lockdep.h>
68
#include <linux/nmi.h>
L
Linus Torvalds 已提交
69

70
#include <asm/sections.h>
L
Linus Torvalds 已提交
71
#include <asm/tlbflush.h>
72
#include <asm/div64.h>
L
Linus Torvalds 已提交
73 74
#include "internal.h"

75 76
/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
static DEFINE_MUTEX(pcp_batch_high_lock);
77
#define MIN_PERCPU_PAGELIST_FRACTION	(8)
78

79 80 81 82 83
#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
DEFINE_PER_CPU(int, numa_node);
EXPORT_PER_CPU_SYMBOL(numa_node);
#endif

84 85
DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);

86 87 88 89 90 91 92 93 94
#ifdef CONFIG_HAVE_MEMORYLESS_NODES
/*
 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
 * defined in <linux/topology.h>.
 */
DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
EXPORT_PER_CPU_SYMBOL(_numa_mem_);
95
int _node_numa_mem_[MAX_NUMNODES];
96 97
#endif

98 99 100 101
/* work_structs for global per-cpu drains */
DEFINE_MUTEX(pcpu_drain_mutex);
DEFINE_PER_CPU(struct work_struct, pcpu_drain);

102
#ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
103
volatile unsigned long latent_entropy __latent_entropy;
104 105 106
EXPORT_SYMBOL(latent_entropy);
#endif

L
Linus Torvalds 已提交
107
/*
108
 * Array of node states.
L
Linus Torvalds 已提交
109
 */
110 111 112 113 114 115 116
nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
	[N_POSSIBLE] = NODE_MASK_ALL,
	[N_ONLINE] = { { [0] = 1UL } },
#ifndef CONFIG_NUMA
	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
#ifdef CONFIG_HIGHMEM
	[N_HIGH_MEMORY] = { { [0] = 1UL } },
117 118
#endif
	[N_MEMORY] = { { [0] = 1UL } },
119 120 121 122 123
	[N_CPU] = { { [0] = 1UL } },
#endif	/* NUMA */
};
EXPORT_SYMBOL(node_states);

124 125 126
/* Protect totalram_pages and zone->managed_pages */
static DEFINE_SPINLOCK(managed_page_count_lock);

127
unsigned long totalram_pages __read_mostly;
128
unsigned long totalreserve_pages __read_mostly;
129
unsigned long totalcma_pages __read_mostly;
130

131
int percpu_pagelist_fraction;
132
gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
L
Linus Torvalds 已提交
133

134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
/*
 * A cached value of the page's pageblock's migratetype, used when the page is
 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
 * Also the migratetype set in the page does not necessarily match the pcplist
 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
 * other index - this ensures that it will be put on the correct CMA freelist.
 */
static inline int get_pcppage_migratetype(struct page *page)
{
	return page->index;
}

static inline void set_pcppage_migratetype(struct page *page, int migratetype)
{
	page->index = migratetype;
}

152 153 154 155 156
#ifdef CONFIG_PM_SLEEP
/*
 * The following functions are used by the suspend/hibernate code to temporarily
 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
 * while devices are suspended.  To avoid races with the suspend/hibernate code,
157 158 159 160
 * they should always be called with system_transition_mutex held
 * (gfp_allowed_mask also should only be modified with system_transition_mutex
 * held, unless the suspend/hibernate code is guaranteed not to run in parallel
 * with that modification).
161
 */
162 163 164 165

static gfp_t saved_gfp_mask;

void pm_restore_gfp_mask(void)
166
{
167
	WARN_ON(!mutex_is_locked(&system_transition_mutex));
168 169 170 171
	if (saved_gfp_mask) {
		gfp_allowed_mask = saved_gfp_mask;
		saved_gfp_mask = 0;
	}
172 173
}

174
void pm_restrict_gfp_mask(void)
175
{
176
	WARN_ON(!mutex_is_locked(&system_transition_mutex));
177 178
	WARN_ON(saved_gfp_mask);
	saved_gfp_mask = gfp_allowed_mask;
179
	gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
180
}
181 182 183

bool pm_suspended_storage(void)
{
184
	if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
185 186 187
		return false;
	return true;
}
188 189
#endif /* CONFIG_PM_SLEEP */

190
#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
191
unsigned int pageblock_order __read_mostly;
192 193
#endif

194
static void __free_pages_ok(struct page *page, unsigned int order);
195

L
Linus Torvalds 已提交
196 197 198 199 200 201
/*
 * results with 256, 32 in the lowmem_reserve sysctl:
 *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
 *	1G machine -> (16M dma, 784M normal, 224M high)
 *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
 *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
Y
Yaowei Bai 已提交
202
 *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
A
Andi Kleen 已提交
203 204 205
 *
 * TBD: should special case ZONE_DMA32 machines here - in those we normally
 * don't need any ZONE_NORMAL reservation
L
Linus Torvalds 已提交
206
 */
207
int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
208
#ifdef CONFIG_ZONE_DMA
209
	[ZONE_DMA] = 256,
210
#endif
211
#ifdef CONFIG_ZONE_DMA32
212
	[ZONE_DMA32] = 256,
213
#endif
214
	[ZONE_NORMAL] = 32,
215
#ifdef CONFIG_HIGHMEM
216
	[ZONE_HIGHMEM] = 0,
217
#endif
218
	[ZONE_MOVABLE] = 0,
219
};
L
Linus Torvalds 已提交
220 221 222

EXPORT_SYMBOL(totalram_pages);

223
static char * const zone_names[MAX_NR_ZONES] = {
224
#ifdef CONFIG_ZONE_DMA
225
	 "DMA",
226
#endif
227
#ifdef CONFIG_ZONE_DMA32
228
	 "DMA32",
229
#endif
230
	 "Normal",
231
#ifdef CONFIG_HIGHMEM
M
Mel Gorman 已提交
232
	 "HighMem",
233
#endif
M
Mel Gorman 已提交
234
	 "Movable",
235 236 237
#ifdef CONFIG_ZONE_DEVICE
	 "Device",
#endif
238 239
};

240 241 242 243 244 245 246 247 248 249 250 251 252
char * const migratetype_names[MIGRATE_TYPES] = {
	"Unmovable",
	"Movable",
	"Reclaimable",
	"HighAtomic",
#ifdef CONFIG_CMA
	"CMA",
#endif
#ifdef CONFIG_MEMORY_ISOLATION
	"Isolate",
#endif
};

253 254 255 256 257 258
compound_page_dtor * const compound_page_dtors[] = {
	NULL,
	free_compound_page,
#ifdef CONFIG_HUGETLB_PAGE
	free_huge_page,
#endif
259 260 261
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
	free_transhuge_page,
#endif
262 263
};

L
Linus Torvalds 已提交
264
int min_free_kbytes = 1024;
265
int user_min_free_kbytes = -1;
266
int watermark_scale_factor = 10;
L
Linus Torvalds 已提交
267

268 269 270
static unsigned long nr_kernel_pages __meminitdata;
static unsigned long nr_all_pages __meminitdata;
static unsigned long dma_reserve __meminitdata;
L
Linus Torvalds 已提交
271

T
Tejun Heo 已提交
272
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
273 274 275
static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __meminitdata;
static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __meminitdata;
static unsigned long required_kernelcore __initdata;
276
static unsigned long required_kernelcore_percent __initdata;
277
static unsigned long required_movablecore __initdata;
278
static unsigned long required_movablecore_percent __initdata;
279 280
static unsigned long zone_movable_pfn[MAX_NUMNODES] __meminitdata;
static bool mirrored_kernelcore __meminitdata;
T
Tejun Heo 已提交
281 282 283 284 285

/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
int movable_zone;
EXPORT_SYMBOL(movable_zone);
#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
286

M
Miklos Szeredi 已提交
287 288
#if MAX_NUMNODES > 1
int nr_node_ids __read_mostly = MAX_NUMNODES;
289
int nr_online_nodes __read_mostly = 1;
M
Miklos Szeredi 已提交
290
EXPORT_SYMBOL(nr_node_ids);
291
EXPORT_SYMBOL(nr_online_nodes);
M
Miklos Szeredi 已提交
292 293
#endif

294 295
int page_group_by_mobility_disabled __read_mostly;

296 297
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
/* Returns true if the struct page for the pfn is uninitialised */
298
static inline bool __meminit early_page_uninitialised(unsigned long pfn)
299
{
300 301 302
	int nid = early_pfn_to_nid(pfn);

	if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
303 304 305 306 307 308 309 310 311 312 313 314 315
		return true;

	return false;
}

/*
 * Returns false when the remaining initialisation should be deferred until
 * later in the boot cycle when it can be parallelised.
 */
static inline bool update_defer_init(pg_data_t *pgdat,
				unsigned long pfn, unsigned long zone_end,
				unsigned long *nr_initialised)
{
316
	/* Always populate low zones for address-constrained allocations */
317 318 319
	if (zone_end < pgdat_end_pfn(pgdat))
		return true;
	(*nr_initialised)++;
320
	if ((*nr_initialised > pgdat->static_init_pgcnt) &&
321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341
	    (pfn & (PAGES_PER_SECTION - 1)) == 0) {
		pgdat->first_deferred_pfn = pfn;
		return false;
	}

	return true;
}
#else
static inline bool early_page_uninitialised(unsigned long pfn)
{
	return false;
}

static inline bool update_defer_init(pg_data_t *pgdat,
				unsigned long pfn, unsigned long zone_end,
				unsigned long *nr_initialised)
{
	return true;
}
#endif

342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441
/* Return a pointer to the bitmap storing bits affecting a block of pages */
static inline unsigned long *get_pageblock_bitmap(struct page *page,
							unsigned long pfn)
{
#ifdef CONFIG_SPARSEMEM
	return __pfn_to_section(pfn)->pageblock_flags;
#else
	return page_zone(page)->pageblock_flags;
#endif /* CONFIG_SPARSEMEM */
}

static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
{
#ifdef CONFIG_SPARSEMEM
	pfn &= (PAGES_PER_SECTION-1);
	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
#else
	pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
#endif /* CONFIG_SPARSEMEM */
}

/**
 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
 * @page: The page within the block of interest
 * @pfn: The target page frame number
 * @end_bitidx: The last bit of interest to retrieve
 * @mask: mask of bits that the caller is interested in
 *
 * Return: pageblock_bits flags
 */
static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
					unsigned long pfn,
					unsigned long end_bitidx,
					unsigned long mask)
{
	unsigned long *bitmap;
	unsigned long bitidx, word_bitidx;
	unsigned long word;

	bitmap = get_pageblock_bitmap(page, pfn);
	bitidx = pfn_to_bitidx(page, pfn);
	word_bitidx = bitidx / BITS_PER_LONG;
	bitidx &= (BITS_PER_LONG-1);

	word = bitmap[word_bitidx];
	bitidx += end_bitidx;
	return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
}

unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
					unsigned long end_bitidx,
					unsigned long mask)
{
	return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
}

static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
{
	return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
}

/**
 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
 * @page: The page within the block of interest
 * @flags: The flags to set
 * @pfn: The target page frame number
 * @end_bitidx: The last bit of interest
 * @mask: mask of bits that the caller is interested in
 */
void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
					unsigned long pfn,
					unsigned long end_bitidx,
					unsigned long mask)
{
	unsigned long *bitmap;
	unsigned long bitidx, word_bitidx;
	unsigned long old_word, word;

	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);

	bitmap = get_pageblock_bitmap(page, pfn);
	bitidx = pfn_to_bitidx(page, pfn);
	word_bitidx = bitidx / BITS_PER_LONG;
	bitidx &= (BITS_PER_LONG-1);

	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);

	bitidx += end_bitidx;
	mask <<= (BITS_PER_LONG - bitidx - 1);
	flags <<= (BITS_PER_LONG - bitidx - 1);

	word = READ_ONCE(bitmap[word_bitidx]);
	for (;;) {
		old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
		if (word == old_word)
			break;
		word = old_word;
	}
}
442

443
void set_pageblock_migratetype(struct page *page, int migratetype)
444
{
445 446
	if (unlikely(page_group_by_mobility_disabled &&
		     migratetype < MIGRATE_PCPTYPES))
447 448
		migratetype = MIGRATE_UNMOVABLE;

449 450 451 452
	set_pageblock_flags_group(page, (unsigned long)migratetype,
					PB_migrate, PB_migrate_end);
}

N
Nick Piggin 已提交
453
#ifdef CONFIG_DEBUG_VM
454
static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
L
Linus Torvalds 已提交
455
{
456 457 458
	int ret = 0;
	unsigned seq;
	unsigned long pfn = page_to_pfn(page);
459
	unsigned long sp, start_pfn;
460

461 462
	do {
		seq = zone_span_seqbegin(zone);
463 464
		start_pfn = zone->zone_start_pfn;
		sp = zone->spanned_pages;
465
		if (!zone_spans_pfn(zone, pfn))
466 467 468
			ret = 1;
	} while (zone_span_seqretry(zone, seq));

469
	if (ret)
470 471 472
		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
			pfn, zone_to_nid(zone), zone->name,
			start_pfn, start_pfn + sp);
473

474
	return ret;
475 476 477 478
}

static int page_is_consistent(struct zone *zone, struct page *page)
{
479
	if (!pfn_valid_within(page_to_pfn(page)))
480
		return 0;
L
Linus Torvalds 已提交
481
	if (zone != page_zone(page))
482 483 484 485 486 487 488
		return 0;

	return 1;
}
/*
 * Temporary debugging check for pages not lying within a given zone.
 */
489
static int __maybe_unused bad_range(struct zone *zone, struct page *page)
490 491
{
	if (page_outside_zone_boundaries(zone, page))
L
Linus Torvalds 已提交
492
		return 1;
493 494 495
	if (!page_is_consistent(zone, page))
		return 1;

L
Linus Torvalds 已提交
496 497
	return 0;
}
N
Nick Piggin 已提交
498
#else
499
static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
N
Nick Piggin 已提交
500 501 502 503 504
{
	return 0;
}
#endif

505 506
static void bad_page(struct page *page, const char *reason,
		unsigned long bad_flags)
L
Linus Torvalds 已提交
507
{
508 509 510 511 512 513 514 515 516 517 518 519 520 521
	static unsigned long resume;
	static unsigned long nr_shown;
	static unsigned long nr_unshown;

	/*
	 * Allow a burst of 60 reports, then keep quiet for that minute;
	 * or allow a steady drip of one report per second.
	 */
	if (nr_shown == 60) {
		if (time_before(jiffies, resume)) {
			nr_unshown++;
			goto out;
		}
		if (nr_unshown) {
522
			pr_alert(
523
			      "BUG: Bad page state: %lu messages suppressed\n",
524 525 526 527 528 529 530 531
				nr_unshown);
			nr_unshown = 0;
		}
		nr_shown = 0;
	}
	if (nr_shown++ == 0)
		resume = jiffies + 60 * HZ;

532
	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
533
		current->comm, page_to_pfn(page));
534 535 536 537 538
	__dump_page(page, reason);
	bad_flags &= page->flags;
	if (bad_flags)
		pr_alert("bad because of flags: %#lx(%pGp)\n",
						bad_flags, &bad_flags);
539
	dump_page_owner(page);
540

541
	print_modules();
L
Linus Torvalds 已提交
542
	dump_stack();
543
out:
544
	/* Leave bad fields for debug, except PageBuddy could make trouble */
545
	page_mapcount_reset(page); /* remove PageBuddy */
546
	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
L
Linus Torvalds 已提交
547 548 549 550 551
}

/*
 * Higher-order pages are called "compound pages".  They are structured thusly:
 *
552
 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
L
Linus Torvalds 已提交
553
 *
554 555
 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
L
Linus Torvalds 已提交
556
 *
557 558
 * The first tail page's ->compound_dtor holds the offset in array of compound
 * page destructors. See compound_page_dtors.
L
Linus Torvalds 已提交
559
 *
560
 * The first tail page's ->compound_order holds the order of allocation.
561
 * This usage means that zero-order pages may not be compound.
L
Linus Torvalds 已提交
562
 */
563

564
void free_compound_page(struct page *page)
565
{
566
	__free_pages_ok(page, compound_order(page));
567 568
}

569
void prep_compound_page(struct page *page, unsigned int order)
570 571 572 573
{
	int i;
	int nr_pages = 1 << order;

574
	set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
575 576 577 578
	set_compound_order(page, order);
	__SetPageHead(page);
	for (i = 1; i < nr_pages; i++) {
		struct page *p = page + i;
579
		set_page_count(p, 0);
580
		p->mapping = TAIL_MAPPING;
581
		set_compound_head(p, page);
582
	}
583
	atomic_set(compound_mapcount_ptr(page), -1);
584 585
}

586 587
#ifdef CONFIG_DEBUG_PAGEALLOC
unsigned int _debug_guardpage_minorder;
588 589
bool _debug_pagealloc_enabled __read_mostly
			= IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
590
EXPORT_SYMBOL(_debug_pagealloc_enabled);
591 592
bool _debug_guardpage_enabled __read_mostly;

593 594 595 596
static int __init early_debug_pagealloc(char *buf)
{
	if (!buf)
		return -EINVAL;
597
	return kstrtobool(buf, &_debug_pagealloc_enabled);
598 599 600
}
early_param("debug_pagealloc", early_debug_pagealloc);

601 602
static bool need_debug_guardpage(void)
{
603 604 605 606
	/* If we don't use debug_pagealloc, we don't need guard page */
	if (!debug_pagealloc_enabled())
		return false;

607 608 609
	if (!debug_guardpage_minorder())
		return false;

610 611 612 613 614
	return true;
}

static void init_debug_guardpage(void)
{
615 616 617
	if (!debug_pagealloc_enabled())
		return;

618 619 620
	if (!debug_guardpage_minorder())
		return;

621 622 623 624 625 626 627
	_debug_guardpage_enabled = true;
}

struct page_ext_operations debug_guardpage_ops = {
	.need = need_debug_guardpage,
	.init = init_debug_guardpage,
};
628 629 630 631 632 633

static int __init debug_guardpage_minorder_setup(char *buf)
{
	unsigned long res;

	if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) {
634
		pr_err("Bad debug_guardpage_minorder value\n");
635 636 637
		return 0;
	}
	_debug_guardpage_minorder = res;
638
	pr_info("Setting debug_guardpage_minorder to %lu\n", res);
639 640
	return 0;
}
641
early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
642

643
static inline bool set_page_guard(struct zone *zone, struct page *page,
644
				unsigned int order, int migratetype)
645
{
646 647 648
	struct page_ext *page_ext;

	if (!debug_guardpage_enabled())
649 650 651 652
		return false;

	if (order >= debug_guardpage_minorder())
		return false;
653 654

	page_ext = lookup_page_ext(page);
655
	if (unlikely(!page_ext))
656
		return false;
657

658 659
	__set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);

660 661 662 663
	INIT_LIST_HEAD(&page->lru);
	set_page_private(page, order);
	/* Guard pages are not available for any usage */
	__mod_zone_freepage_state(zone, -(1 << order), migratetype);
664 665

	return true;
666 667
}

668 669
static inline void clear_page_guard(struct zone *zone, struct page *page,
				unsigned int order, int migratetype)
670
{
671 672 673 674 675 676
	struct page_ext *page_ext;

	if (!debug_guardpage_enabled())
		return;

	page_ext = lookup_page_ext(page);
677 678 679
	if (unlikely(!page_ext))
		return;

680 681
	__clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);

682 683 684
	set_page_private(page, 0);
	if (!is_migrate_isolate(migratetype))
		__mod_zone_freepage_state(zone, (1 << order), migratetype);
685 686
}
#else
687
struct page_ext_operations debug_guardpage_ops;
688 689
static inline bool set_page_guard(struct zone *zone, struct page *page,
			unsigned int order, int migratetype) { return false; }
690 691
static inline void clear_page_guard(struct zone *zone, struct page *page,
				unsigned int order, int migratetype) {}
692 693
#endif

694
static inline void set_page_order(struct page *page, unsigned int order)
695
{
H
Hugh Dickins 已提交
696
	set_page_private(page, order);
697
	__SetPageBuddy(page);
L
Linus Torvalds 已提交
698 699 700 701
}

static inline void rmv_page_order(struct page *page)
{
702
	__ClearPageBuddy(page);
H
Hugh Dickins 已提交
703
	set_page_private(page, 0);
L
Linus Torvalds 已提交
704 705 706 707
}

/*
 * This function checks whether a page is free && is the buddy
708
 * we can coalesce a page and its buddy if
709
 * (a) the buddy is not in a hole (check before calling!) &&
710
 * (b) the buddy is in the buddy system &&
711 712
 * (c) a page and its buddy have the same order &&
 * (d) a page and its buddy are in the same zone.
713
 *
714 715
 * For recording whether a page is in the buddy system, we set PageBuddy.
 * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
L
Linus Torvalds 已提交
716
 *
717
 * For recording page's order, we use page_private(page).
L
Linus Torvalds 已提交
718
 */
719
static inline int page_is_buddy(struct page *page, struct page *buddy,
720
							unsigned int order)
L
Linus Torvalds 已提交
721
{
722
	if (page_is_guard(buddy) && page_order(buddy) == order) {
723 724 725
		if (page_zone_id(page) != page_zone_id(buddy))
			return 0;

726 727
		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);

728 729 730
		return 1;
	}

731
	if (PageBuddy(buddy) && page_order(buddy) == order) {
732 733 734 735 736 737 738 739
		/*
		 * zone check is done late to avoid uselessly
		 * calculating zone/node ids for pages that could
		 * never merge.
		 */
		if (page_zone_id(page) != page_zone_id(buddy))
			return 0;

740 741
		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);

742
		return 1;
743
	}
744
	return 0;
L
Linus Torvalds 已提交
745 746 747 748 749 750 751 752 753 754 755 756 757 758 759
}

/*
 * Freeing function for a buddy system allocator.
 *
 * The concept of a buddy system is to maintain direct-mapped table
 * (containing bit values) for memory blocks of various "orders".
 * The bottom level table contains the map for the smallest allocatable
 * units of memory (here, pages), and each level above it describes
 * pairs of units from the levels below, hence, "buddies".
 * At a high level, all that happens here is marking the table entry
 * at the bottom level available, and propagating the changes upward
 * as necessary, plus some accounting needed to play nicely with other
 * parts of the VM system.
 * At each level, we keep a list of pages, which are heads of continuous
760 761
 * free pages of length of (1 << order) and marked with PageBuddy.
 * Page's order is recorded in page_private(page) field.
L
Linus Torvalds 已提交
762
 * So when we are allocating or freeing one, we can derive the state of the
763 764
 * other.  That is, if we allocate a small block, and both were
 * free, the remainder of the region must be split into blocks.
L
Linus Torvalds 已提交
765
 * If a block is freed, and its buddy is also free, then this
766
 * triggers coalescing into a block of larger size.
L
Linus Torvalds 已提交
767
 *
768
 * -- nyc
L
Linus Torvalds 已提交
769 770
 */

N
Nick Piggin 已提交
771
static inline void __free_one_page(struct page *page,
772
		unsigned long pfn,
773 774
		struct zone *zone, unsigned int order,
		int migratetype)
L
Linus Torvalds 已提交
775
{
776 777
	unsigned long combined_pfn;
	unsigned long uninitialized_var(buddy_pfn);
778
	struct page *buddy;
779 780 781
	unsigned int max_order;

	max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
L
Linus Torvalds 已提交
782

783
	VM_BUG_ON(!zone_is_initialized(zone));
784
	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
L
Linus Torvalds 已提交
785

786
	VM_BUG_ON(migratetype == -1);
787
	if (likely(!is_migrate_isolate(migratetype)))
788
		__mod_zone_freepage_state(zone, 1 << order, migratetype);
789

790
	VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
791
	VM_BUG_ON_PAGE(bad_range(zone, page), page);
L
Linus Torvalds 已提交
792

793
continue_merging:
794
	while (order < max_order - 1) {
795 796
		buddy_pfn = __find_buddy_pfn(pfn, order);
		buddy = page + (buddy_pfn - pfn);
797 798 799

		if (!pfn_valid_within(buddy_pfn))
			goto done_merging;
800
		if (!page_is_buddy(page, buddy, order))
801
			goto done_merging;
802 803 804 805 806
		/*
		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
		 * merge with it and move up one order.
		 */
		if (page_is_guard(buddy)) {
807
			clear_page_guard(zone, buddy, order, migratetype);
808 809 810 811 812
		} else {
			list_del(&buddy->lru);
			zone->free_area[order].nr_free--;
			rmv_page_order(buddy);
		}
813 814 815
		combined_pfn = buddy_pfn & pfn;
		page = page + (combined_pfn - pfn);
		pfn = combined_pfn;
L
Linus Torvalds 已提交
816 817
		order++;
	}
818 819 820 821 822 823 824 825 826 827 828 829
	if (max_order < MAX_ORDER) {
		/* If we are here, it means order is >= pageblock_order.
		 * We want to prevent merge between freepages on isolate
		 * pageblock and normal pageblock. Without this, pageblock
		 * isolation could cause incorrect freepage or CMA accounting.
		 *
		 * We don't want to hit this code for the more frequent
		 * low-order merging.
		 */
		if (unlikely(has_isolate_pageblock(zone))) {
			int buddy_mt;

830 831
			buddy_pfn = __find_buddy_pfn(pfn, order);
			buddy = page + (buddy_pfn - pfn);
832 833 834 835 836 837 838 839 840 841 842 843
			buddy_mt = get_pageblock_migratetype(buddy);

			if (migratetype != buddy_mt
					&& (is_migrate_isolate(migratetype) ||
						is_migrate_isolate(buddy_mt)))
				goto done_merging;
		}
		max_order++;
		goto continue_merging;
	}

done_merging:
L
Linus Torvalds 已提交
844
	set_page_order(page, order);
845 846 847 848 849 850 851 852 853

	/*
	 * If this is not the largest possible page, check if the buddy
	 * of the next-highest order is free. If it is, it's possible
	 * that pages are being freed that will coalesce soon. In case,
	 * that is happening, add the free page to the tail of the list
	 * so it's less likely to be used soon and more likely to be merged
	 * as a higher order page
	 */
854
	if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)) {
855
		struct page *higher_page, *higher_buddy;
856 857 858 859
		combined_pfn = buddy_pfn & pfn;
		higher_page = page + (combined_pfn - pfn);
		buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
		higher_buddy = higher_page + (buddy_pfn - combined_pfn);
860 861
		if (pfn_valid_within(buddy_pfn) &&
		    page_is_buddy(higher_page, higher_buddy, order + 1)) {
862 863 864 865 866 867 868 869
			list_add_tail(&page->lru,
				&zone->free_area[order].free_list[migratetype]);
			goto out;
		}
	}

	list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
out:
L
Linus Torvalds 已提交
870 871 872
	zone->free_area[order].nr_free++;
}

873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894
/*
 * A bad page could be due to a number of fields. Instead of multiple branches,
 * try and check multiple fields with one check. The caller must do a detailed
 * check if necessary.
 */
static inline bool page_expected_state(struct page *page,
					unsigned long check_flags)
{
	if (unlikely(atomic_read(&page->_mapcount) != -1))
		return false;

	if (unlikely((unsigned long)page->mapping |
			page_ref_count(page) |
#ifdef CONFIG_MEMCG
			(unsigned long)page->mem_cgroup |
#endif
			(page->flags & check_flags)))
		return false;

	return true;
}

895
static void free_pages_check_bad(struct page *page)
L
Linus Torvalds 已提交
896
{
897 898 899 900 901
	const char *bad_reason;
	unsigned long bad_flags;

	bad_reason = NULL;
	bad_flags = 0;
902

903
	if (unlikely(atomic_read(&page->_mapcount) != -1))
904 905 906
		bad_reason = "nonzero mapcount";
	if (unlikely(page->mapping != NULL))
		bad_reason = "non-NULL mapping";
907
	if (unlikely(page_ref_count(page) != 0))
908
		bad_reason = "nonzero _refcount";
909 910 911 912
	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
		bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
		bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
	}
913 914 915 916
#ifdef CONFIG_MEMCG
	if (unlikely(page->mem_cgroup))
		bad_reason = "page still charged to cgroup";
#endif
917
	bad_page(page, bad_reason, bad_flags);
918 919 920 921
}

static inline int free_pages_check(struct page *page)
{
922
	if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
923 924 925 926
		return 0;

	/* Something has gone sideways, find it */
	free_pages_check_bad(page);
927
	return 1;
L
Linus Torvalds 已提交
928 929
}

930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945
static int free_tail_pages_check(struct page *head_page, struct page *page)
{
	int ret = 1;

	/*
	 * We rely page->lru.next never has bit 0 set, unless the page
	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
	 */
	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);

	if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
		ret = 0;
		goto out;
	}
	switch (page - head_page) {
	case 1:
946
		/* the first tail page: ->mapping may be compound_mapcount() */
947 948 949 950 951 952 953 954
		if (unlikely(compound_mapcount(page))) {
			bad_page(page, "nonzero compound_mapcount", 0);
			goto out;
		}
		break;
	case 2:
		/*
		 * the second tail page: ->mapping is
M
Matthew Wilcox 已提交
955
		 * deferred_list.next -- ignore value.
956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979
		 */
		break;
	default:
		if (page->mapping != TAIL_MAPPING) {
			bad_page(page, "corrupted mapping in tail page", 0);
			goto out;
		}
		break;
	}
	if (unlikely(!PageTail(page))) {
		bad_page(page, "PageTail not set", 0);
		goto out;
	}
	if (unlikely(compound_head(page) != head_page)) {
		bad_page(page, "compound_head not consistent", 0);
		goto out;
	}
	ret = 0;
out:
	page->mapping = NULL;
	clear_compound_head(page);
	return ret;
}

980 981
static __always_inline bool free_pages_prepare(struct page *page,
					unsigned int order, bool check_free)
982
{
983
	int bad = 0;
984 985 986

	VM_BUG_ON_PAGE(PageTail(page), page);

987 988 989 990 991 992 993 994 995 996 997
	trace_mm_page_free(page, order);

	/*
	 * Check tail pages before head page information is cleared to
	 * avoid checking PageCompound for order-0 pages.
	 */
	if (unlikely(order)) {
		bool compound = PageCompound(page);
		int i;

		VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
998

999 1000
		if (compound)
			ClearPageDoubleMap(page);
1001 1002 1003 1004 1005 1006 1007 1008 1009 1010
		for (i = 1; i < (1 << order); i++) {
			if (compound)
				bad += free_tail_pages_check(page, page + i);
			if (unlikely(free_pages_check(page + i))) {
				bad++;
				continue;
			}
			(page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
		}
	}
1011
	if (PageMappingFlags(page))
1012
		page->mapping = NULL;
1013
	if (memcg_kmem_enabled() && PageKmemcg(page))
1014
		memcg_kmem_uncharge(page, order);
1015 1016 1017 1018
	if (check_free)
		bad += free_pages_check(page);
	if (bad)
		return false;
1019

1020 1021 1022
	page_cpupid_reset_last(page);
	page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
	reset_page_owner(page, order);
1023 1024 1025

	if (!PageHighMem(page)) {
		debug_check_no_locks_freed(page_address(page),
1026
					   PAGE_SIZE << order);
1027
		debug_check_no_obj_freed(page_address(page),
1028
					   PAGE_SIZE << order);
1029
	}
1030 1031 1032
	arch_free_page(page, order);
	kernel_poison_pages(page, 1 << order, 0);
	kernel_map_pages(page, 1 << order, 0);
1033
	kasan_free_pages(page, order);
1034 1035 1036 1037

	return true;
}

1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053
#ifdef CONFIG_DEBUG_VM
static inline bool free_pcp_prepare(struct page *page)
{
	return free_pages_prepare(page, 0, true);
}

static inline bool bulkfree_pcp_prepare(struct page *page)
{
	return false;
}
#else
static bool free_pcp_prepare(struct page *page)
{
	return free_pages_prepare(page, 0, false);
}

1054 1055 1056 1057 1058 1059
static bool bulkfree_pcp_prepare(struct page *page)
{
	return free_pages_check(page);
}
#endif /* CONFIG_DEBUG_VM */

1060 1061 1062 1063 1064 1065 1066 1067 1068
static inline void prefetch_buddy(struct page *page)
{
	unsigned long pfn = page_to_pfn(page);
	unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0);
	struct page *buddy = page + (buddy_pfn - pfn);

	prefetch(buddy);
}

L
Linus Torvalds 已提交
1069
/*
1070
 * Frees a number of pages from the PCP lists
L
Linus Torvalds 已提交
1071
 * Assumes all pages on list are in same zone, and of same order.
1072
 * count is the number of pages to free.
L
Linus Torvalds 已提交
1073 1074 1075 1076 1077 1078 1079
 *
 * If the zone was previously in an "all pages pinned" state then look to
 * see if this freeing clears that state.
 *
 * And clear the zone's pages_scanned counter, to hold off the "all pages are
 * pinned" detection logic.
 */
1080 1081
static void free_pcppages_bulk(struct zone *zone, int count,
					struct per_cpu_pages *pcp)
L
Linus Torvalds 已提交
1082
{
1083
	int migratetype = 0;
1084
	int batch_free = 0;
1085
	int prefetch_nr = 0;
1086
	bool isolated_pageblocks;
1087 1088
	struct page *page, *tmp;
	LIST_HEAD(head);
1089

1090
	while (count) {
1091 1092 1093
		struct list_head *list;

		/*
1094 1095 1096 1097 1098
		 * Remove pages from lists in a round-robin fashion. A
		 * batch_free count is maintained that is incremented when an
		 * empty list is encountered.  This is so more pages are freed
		 * off fuller lists instead of spinning excessively around empty
		 * lists
1099 1100
		 */
		do {
1101
			batch_free++;
1102 1103 1104 1105
			if (++migratetype == MIGRATE_PCPTYPES)
				migratetype = 0;
			list = &pcp->lists[migratetype];
		} while (list_empty(list));
N
Nick Piggin 已提交
1106

1107 1108
		/* This is the only non-empty list. Free them all. */
		if (batch_free == MIGRATE_PCPTYPES)
1109
			batch_free = count;
1110

1111
		do {
1112
			page = list_last_entry(list, struct page, lru);
1113
			/* must delete to avoid corrupting pcp list */
1114
			list_del(&page->lru);
1115
			pcp->count--;
1116

1117 1118 1119
			if (bulkfree_pcp_prepare(page))
				continue;

1120
			list_add_tail(&page->lru, &head);
1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132

			/*
			 * We are going to put the page back to the global
			 * pool, prefetch its buddy to speed up later access
			 * under zone->lock. It is believed the overhead of
			 * an additional test and calculating buddy_pfn here
			 * can be offset by reduced memory latency later. To
			 * avoid excessive prefetching due to large count, only
			 * prefetch buddy for the first pcp->batch nr of pages.
			 */
			if (prefetch_nr++ < pcp->batch)
				prefetch_buddy(page);
1133
		} while (--count && --batch_free && !list_empty(list));
L
Linus Torvalds 已提交
1134
	}
1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153

	spin_lock(&zone->lock);
	isolated_pageblocks = has_isolate_pageblock(zone);

	/*
	 * Use safe version since after __free_one_page(),
	 * page->lru.next will not point to original list.
	 */
	list_for_each_entry_safe(page, tmp, &head, lru) {
		int mt = get_pcppage_migratetype(page);
		/* MIGRATE_ISOLATE page should not go to pcplists */
		VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
		/* Pageblock could have been isolated meanwhile */
		if (unlikely(isolated_pageblocks))
			mt = get_pageblock_migratetype(page);

		__free_one_page(page, page_to_pfn(page), zone, 0, mt);
		trace_mm_page_pcpu_drain(page, 0, mt);
	}
1154
	spin_unlock(&zone->lock);
L
Linus Torvalds 已提交
1155 1156
}

1157 1158
static void free_one_page(struct zone *zone,
				struct page *page, unsigned long pfn,
1159
				unsigned int order,
1160
				int migratetype)
L
Linus Torvalds 已提交
1161
{
1162
	spin_lock(&zone->lock);
1163 1164 1165 1166
	if (unlikely(has_isolate_pageblock(zone) ||
		is_migrate_isolate(migratetype))) {
		migratetype = get_pfnblock_migratetype(page, pfn);
	}
1167
	__free_one_page(page, pfn, zone, order, migratetype);
1168
	spin_unlock(&zone->lock);
N
Nick Piggin 已提交
1169 1170
}

1171
static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1172
				unsigned long zone, int nid)
1173
{
1174
	mm_zero_struct_page(page);
1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187
	set_page_links(page, zone, nid, pfn);
	init_page_count(page);
	page_mapcount_reset(page);
	page_cpupid_reset_last(page);

	INIT_LIST_HEAD(&page->lru);
#ifdef WANT_PAGE_VIRTUAL
	/* The shift won't overflow because ZONE_NORMAL is below 4G. */
	if (!is_highmem_idx(zone))
		set_page_address(page, __va(pfn << PAGE_SHIFT));
#endif
}

1188
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1189
static void __meminit init_reserved_page(unsigned long pfn)
1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205
{
	pg_data_t *pgdat;
	int nid, zid;

	if (!early_page_uninitialised(pfn))
		return;

	nid = early_pfn_to_nid(pfn);
	pgdat = NODE_DATA(nid);

	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
		struct zone *zone = &pgdat->node_zones[zid];

		if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
			break;
	}
1206
	__init_single_page(pfn_to_page(pfn), pfn, zid, nid);
1207 1208 1209 1210 1211 1212 1213
}
#else
static inline void init_reserved_page(unsigned long pfn)
{
}
#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */

1214 1215 1216 1217 1218 1219
/*
 * Initialised pages do not have PageReserved set. This function is
 * called for each range allocated by the bootmem allocator and
 * marks the pages PageReserved. The remaining valid pages are later
 * sent to the buddy page allocator.
 */
1220
void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1221 1222 1223 1224
{
	unsigned long start_pfn = PFN_DOWN(start);
	unsigned long end_pfn = PFN_UP(end);

1225 1226 1227 1228 1229
	for (; start_pfn < end_pfn; start_pfn++) {
		if (pfn_valid(start_pfn)) {
			struct page *page = pfn_to_page(start_pfn);

			init_reserved_page(start_pfn);
1230 1231 1232 1233

			/* Avoid false-positive PageTail() */
			INIT_LIST_HEAD(&page->lru);

1234 1235 1236
			SetPageReserved(page);
		}
	}
1237 1238
}

1239 1240
static void __free_pages_ok(struct page *page, unsigned int order)
{
1241
	unsigned long flags;
M
Minchan Kim 已提交
1242
	int migratetype;
1243
	unsigned long pfn = page_to_pfn(page);
1244

1245
	if (!free_pages_prepare(page, order, true))
1246 1247
		return;

1248
	migratetype = get_pfnblock_migratetype(page, pfn);
1249 1250
	local_irq_save(flags);
	__count_vm_events(PGFREE, 1 << order);
1251
	free_one_page(page_zone(page), page, pfn, order, migratetype);
1252
	local_irq_restore(flags);
L
Linus Torvalds 已提交
1253 1254
}

1255
static void __init __free_pages_boot_core(struct page *page, unsigned int order)
1256
{
1257
	unsigned int nr_pages = 1 << order;
1258
	struct page *p = page;
1259
	unsigned int loop;
1260

1261 1262 1263
	prefetchw(p);
	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
		prefetchw(p + 1);
1264 1265
		__ClearPageReserved(p);
		set_page_count(p, 0);
1266
	}
1267 1268
	__ClearPageReserved(p);
	set_page_count(p, 0);
1269

1270
	page_zone(page)->managed_pages += nr_pages;
1271 1272
	set_page_refcounted(page);
	__free_pages(page, order);
1273 1274
}

1275 1276
#if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
	defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1277

1278 1279 1280 1281
static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;

int __meminit early_pfn_to_nid(unsigned long pfn)
{
1282
	static DEFINE_SPINLOCK(early_pfn_lock);
1283 1284
	int nid;

1285
	spin_lock(&early_pfn_lock);
1286
	nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1287
	if (nid < 0)
1288
		nid = first_online_node;
1289 1290 1291
	spin_unlock(&early_pfn_lock);

	return nid;
1292 1293 1294 1295
}
#endif

#ifdef CONFIG_NODES_SPAN_OTHER_NODES
1296 1297 1298
static inline bool __meminit __maybe_unused
meminit_pfn_in_nid(unsigned long pfn, int node,
		   struct mminit_pfnnid_cache *state)
1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319
{
	int nid;

	nid = __early_pfn_to_nid(pfn, state);
	if (nid >= 0 && nid != node)
		return false;
	return true;
}

/* Only safe to use early in boot when initialisation is single-threaded */
static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
{
	return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
}

#else

static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
{
	return true;
}
1320 1321 1322
static inline bool __meminit  __maybe_unused
meminit_pfn_in_nid(unsigned long pfn, int node,
		   struct mminit_pfnnid_cache *state)
1323 1324 1325 1326 1327 1328
{
	return true;
}
#endif


1329
void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
1330 1331 1332 1333
							unsigned int order)
{
	if (early_page_uninitialised(pfn))
		return;
1334
	return __free_pages_boot_core(page, order);
1335 1336
}

1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365
/*
 * Check that the whole (or subset of) a pageblock given by the interval of
 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
 * with the migration of free compaction scanner. The scanners then need to
 * use only pfn_valid_within() check for arches that allow holes within
 * pageblocks.
 *
 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
 *
 * It's possible on some configurations to have a setup like node0 node1 node0
 * i.e. it's possible that all pages within a zones range of pages do not
 * belong to a single zone. We assume that a border between node0 and node1
 * can occur within a single pageblock, but not a node0 node1 node0
 * interleaving within a single pageblock. It is therefore sufficient to check
 * the first and last page of a pageblock and avoid checking each individual
 * page in a pageblock.
 */
struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
				     unsigned long end_pfn, struct zone *zone)
{
	struct page *start_page;
	struct page *end_page;

	/* end_pfn is one past the range we are checking */
	end_pfn--;

	if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
		return NULL;

1366 1367 1368
	start_page = pfn_to_online_page(start_pfn);
	if (!start_page)
		return NULL;
1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407

	if (page_zone(start_page) != zone)
		return NULL;

	end_page = pfn_to_page(end_pfn);

	/* This gives a shorter code than deriving page_zone(end_page) */
	if (page_zone_id(start_page) != page_zone_id(end_page))
		return NULL;

	return start_page;
}

void set_zone_contiguous(struct zone *zone)
{
	unsigned long block_start_pfn = zone->zone_start_pfn;
	unsigned long block_end_pfn;

	block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
	for (; block_start_pfn < zone_end_pfn(zone);
			block_start_pfn = block_end_pfn,
			 block_end_pfn += pageblock_nr_pages) {

		block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));

		if (!__pageblock_pfn_to_page(block_start_pfn,
					     block_end_pfn, zone))
			return;
	}

	/* We confirm that there is no hole */
	zone->contiguous = true;
}

void clear_zone_contiguous(struct zone *zone)
{
	zone->contiguous = false;
}

1408
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1409 1410
static void __init deferred_free_range(unsigned long pfn,
				       unsigned long nr_pages)
1411
{
1412 1413
	struct page *page;
	unsigned long i;
1414

1415
	if (!nr_pages)
1416 1417
		return;

1418 1419
	page = pfn_to_page(pfn);

1420
	/* Free a large naturally-aligned chunk if possible */
1421 1422
	if (nr_pages == pageblock_nr_pages &&
	    (pfn & (pageblock_nr_pages - 1)) == 0) {
1423
		set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1424
		__free_pages_boot_core(page, pageblock_order);
1425 1426 1427
		return;
	}

1428 1429 1430
	for (i = 0; i < nr_pages; i++, page++, pfn++) {
		if ((pfn & (pageblock_nr_pages - 1)) == 0)
			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1431
		__free_pages_boot_core(page, 0);
1432
	}
1433 1434
}

1435 1436 1437 1438 1439 1440 1441 1442 1443
/* Completion tracking for deferred_init_memmap() threads */
static atomic_t pgdat_init_n_undone __initdata;
static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);

static inline void __init pgdat_init_report_one_done(void)
{
	if (atomic_dec_and_test(&pgdat_init_n_undone))
		complete(&pgdat_init_all_done_comp);
}
1444

1445
/*
1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457
 * Returns true if page needs to be initialized or freed to buddy allocator.
 *
 * First we check if pfn is valid on architectures where it is possible to have
 * holes within pageblock_nr_pages. On systems where it is not possible, this
 * function is optimized out.
 *
 * Then, we check if a current large page is valid by only checking the validity
 * of the head pfn.
 *
 * Finally, meminit_pfn_in_nid is checked on systems where pfns can interleave
 * within a node: a pfn is between start and end of a node, but does not belong
 * to this memory node.
1458
 */
1459 1460 1461
static inline bool __init
deferred_pfn_valid(int nid, unsigned long pfn,
		   struct mminit_pfnnid_cache *nid_init_state)
1462
{
1463 1464 1465 1466 1467 1468 1469 1470
	if (!pfn_valid_within(pfn))
		return false;
	if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
		return false;
	if (!meminit_pfn_in_nid(pfn, nid, nid_init_state))
		return false;
	return true;
}
1471

1472 1473 1474 1475 1476 1477 1478 1479 1480 1481
/*
 * Free pages to buddy allocator. Try to free aligned pages in
 * pageblock_nr_pages sizes.
 */
static void __init deferred_free_pages(int nid, int zid, unsigned long pfn,
				       unsigned long end_pfn)
{
	struct mminit_pfnnid_cache nid_init_state = { };
	unsigned long nr_pgmask = pageblock_nr_pages - 1;
	unsigned long nr_free = 0;
1482

1483 1484 1485 1486 1487 1488 1489
	for (; pfn < end_pfn; pfn++) {
		if (!deferred_pfn_valid(nid, pfn, &nid_init_state)) {
			deferred_free_range(pfn - nr_free, nr_free);
			nr_free = 0;
		} else if (!(pfn & nr_pgmask)) {
			deferred_free_range(pfn - nr_free, nr_free);
			nr_free = 1;
1490
			touch_nmi_watchdog();
1491 1492 1493 1494 1495 1496
		} else {
			nr_free++;
		}
	}
	/* Free the last block of pages to allocator */
	deferred_free_range(pfn - nr_free, nr_free);
1497 1498
}

1499 1500 1501 1502 1503 1504 1505 1506
/*
 * Initialize struct pages.  We minimize pfn page lookups and scheduler checks
 * by performing it only once every pageblock_nr_pages.
 * Return number of pages initialized.
 */
static unsigned long  __init deferred_init_pages(int nid, int zid,
						 unsigned long pfn,
						 unsigned long end_pfn)
1507 1508 1509 1510 1511 1512
{
	struct mminit_pfnnid_cache nid_init_state = { };
	unsigned long nr_pgmask = pageblock_nr_pages - 1;
	unsigned long nr_pages = 0;
	struct page *page = NULL;

1513 1514 1515
	for (; pfn < end_pfn; pfn++) {
		if (!deferred_pfn_valid(nid, pfn, &nid_init_state)) {
			page = NULL;
1516
			continue;
1517
		} else if (!page || !(pfn & nr_pgmask)) {
1518
			page = pfn_to_page(pfn);
1519
			touch_nmi_watchdog();
1520 1521
		} else {
			page++;
1522
		}
1523
		__init_single_page(page, pfn, zid, nid);
1524
		nr_pages++;
1525
	}
1526
	return (nr_pages);
1527 1528
}

1529
/* Initialise remaining memory on a node */
1530
static int __init deferred_init_memmap(void *data)
1531
{
1532 1533
	pg_data_t *pgdat = data;
	int nid = pgdat->node_id;
1534 1535
	unsigned long start = jiffies;
	unsigned long nr_pages = 0;
1536
	unsigned long spfn, epfn, first_init_pfn, flags;
1537 1538
	phys_addr_t spa, epa;
	int zid;
1539
	struct zone *zone;
1540
	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1541
	u64 i;
1542

1543 1544 1545 1546 1547 1548
	/* Bind memory initialisation thread to a local node if possible */
	if (!cpumask_empty(cpumask))
		set_cpus_allowed_ptr(current, cpumask);

	pgdat_resize_lock(pgdat, &flags);
	first_init_pfn = pgdat->first_deferred_pfn;
1549
	if (first_init_pfn == ULONG_MAX) {
1550
		pgdat_resize_unlock(pgdat, &flags);
1551
		pgdat_init_report_one_done();
1552 1553 1554
		return 0;
	}

1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565
	/* Sanity check boundaries */
	BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
	BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
	pgdat->first_deferred_pfn = ULONG_MAX;

	/* Only the highest zone is deferred so find it */
	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
		zone = pgdat->node_zones + zid;
		if (first_init_pfn < zone_end_pfn(zone))
			break;
	}
1566
	first_init_pfn = max(zone->zone_start_pfn, first_init_pfn);
1567

1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578
	/*
	 * Initialize and free pages. We do it in two loops: first we initialize
	 * struct page, than free to buddy allocator, because while we are
	 * freeing pages we can access pages that are ahead (computing buddy
	 * page in __free_one_page()).
	 */
	for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
		spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
		epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));
		nr_pages += deferred_init_pages(nid, zid, spfn, epfn);
	}
1579 1580 1581
	for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
		spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
		epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));
1582
		deferred_free_pages(nid, zid, spfn, epfn);
1583
	}
1584
	pgdat_resize_unlock(pgdat, &flags);
1585 1586 1587 1588

	/* Sanity check that the next zone really is unpopulated */
	WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));

1589
	pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
1590
					jiffies_to_msecs(jiffies - start));
1591 1592

	pgdat_init_report_one_done();
1593 1594
	return 0;
}
1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705

/*
 * During boot we initialize deferred pages on-demand, as needed, but once
 * page_alloc_init_late() has finished, the deferred pages are all initialized,
 * and we can permanently disable that path.
 */
static DEFINE_STATIC_KEY_TRUE(deferred_pages);

/*
 * If this zone has deferred pages, try to grow it by initializing enough
 * deferred pages to satisfy the allocation specified by order, rounded up to
 * the nearest PAGES_PER_SECTION boundary.  So we're adding memory in increments
 * of SECTION_SIZE bytes by initializing struct pages in increments of
 * PAGES_PER_SECTION * sizeof(struct page) bytes.
 *
 * Return true when zone was grown, otherwise return false. We return true even
 * when we grow less than requested, to let the caller decide if there are
 * enough pages to satisfy the allocation.
 *
 * Note: We use noinline because this function is needed only during boot, and
 * it is called from a __ref function _deferred_grow_zone. This way we are
 * making sure that it is not inlined into permanent text section.
 */
static noinline bool __init
deferred_grow_zone(struct zone *zone, unsigned int order)
{
	int zid = zone_idx(zone);
	int nid = zone_to_nid(zone);
	pg_data_t *pgdat = NODE_DATA(nid);
	unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
	unsigned long nr_pages = 0;
	unsigned long first_init_pfn, spfn, epfn, t, flags;
	unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
	phys_addr_t spa, epa;
	u64 i;

	/* Only the last zone may have deferred pages */
	if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
		return false;

	pgdat_resize_lock(pgdat, &flags);

	/*
	 * If deferred pages have been initialized while we were waiting for
	 * the lock, return true, as the zone was grown.  The caller will retry
	 * this zone.  We won't return to this function since the caller also
	 * has this static branch.
	 */
	if (!static_branch_unlikely(&deferred_pages)) {
		pgdat_resize_unlock(pgdat, &flags);
		return true;
	}

	/*
	 * If someone grew this zone while we were waiting for spinlock, return
	 * true, as there might be enough pages already.
	 */
	if (first_deferred_pfn != pgdat->first_deferred_pfn) {
		pgdat_resize_unlock(pgdat, &flags);
		return true;
	}

	first_init_pfn = max(zone->zone_start_pfn, first_deferred_pfn);

	if (first_init_pfn >= pgdat_end_pfn(pgdat)) {
		pgdat_resize_unlock(pgdat, &flags);
		return false;
	}

	for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
		spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
		epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));

		while (spfn < epfn && nr_pages < nr_pages_needed) {
			t = ALIGN(spfn + PAGES_PER_SECTION, PAGES_PER_SECTION);
			first_deferred_pfn = min(t, epfn);
			nr_pages += deferred_init_pages(nid, zid, spfn,
							first_deferred_pfn);
			spfn = first_deferred_pfn;
		}

		if (nr_pages >= nr_pages_needed)
			break;
	}

	for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
		spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
		epfn = min_t(unsigned long, first_deferred_pfn, PFN_DOWN(epa));
		deferred_free_pages(nid, zid, spfn, epfn);

		if (first_deferred_pfn == epfn)
			break;
	}
	pgdat->first_deferred_pfn = first_deferred_pfn;
	pgdat_resize_unlock(pgdat, &flags);

	return nr_pages > 0;
}

/*
 * deferred_grow_zone() is __init, but it is called from
 * get_page_from_freelist() during early boot until deferred_pages permanently
 * disables this call. This is why we have refdata wrapper to avoid warning,
 * and to ensure that the function body gets unloaded.
 */
static bool __ref
_deferred_grow_zone(struct zone *zone, unsigned int order)
{
	return deferred_grow_zone(zone, order);
}

1706
#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1707 1708 1709

void __init page_alloc_init_late(void)
{
1710 1711 1712
	struct zone *zone;

#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1713 1714
	int nid;

1715 1716
	/* There will be num_node_state(N_MEMORY) threads */
	atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
1717 1718 1719 1720 1721
	for_each_node_state(nid, N_MEMORY) {
		kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
	}

	/* Block until all are initialised */
1722
	wait_for_completion(&pgdat_init_all_done_comp);
1723

1724 1725 1726 1727 1728 1729
	/*
	 * We initialized the rest of the deferred pages.  Permanently disable
	 * on-demand struct page initialization.
	 */
	static_branch_disable(&deferred_pages);

1730 1731
	/* Reinit limits that are based on free pages after the kernel is up */
	files_maxfiles_init();
1732
#endif
P
Pavel Tatashin 已提交
1733 1734 1735 1736
#ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
	/* Discard memblock private memory */
	memblock_discard();
#endif
1737 1738 1739

	for_each_populated_zone(zone)
		set_zone_contiguous(zone);
1740 1741
}

1742
#ifdef CONFIG_CMA
1743
/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1744 1745 1746 1747 1748 1749 1750 1751
void __init init_cma_reserved_pageblock(struct page *page)
{
	unsigned i = pageblock_nr_pages;
	struct page *p = page;

	do {
		__ClearPageReserved(p);
		set_page_count(p, 0);
1752
	} while (++p, --i);
1753 1754

	set_pageblock_migratetype(page, MIGRATE_CMA);
1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768

	if (pageblock_order >= MAX_ORDER) {
		i = pageblock_nr_pages;
		p = page;
		do {
			set_page_refcounted(p);
			__free_pages(p, MAX_ORDER - 1);
			p += MAX_ORDER_NR_PAGES;
		} while (i -= MAX_ORDER_NR_PAGES);
	} else {
		set_page_refcounted(page);
		__free_pages(page, pageblock_order);
	}

1769
	adjust_managed_page_count(page, pageblock_nr_pages);
1770 1771
}
#endif
L
Linus Torvalds 已提交
1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784

/*
 * The order of subdivision here is critical for the IO subsystem.
 * Please do not alter this order without good reasons and regression
 * testing. Specifically, as large blocks of memory are subdivided,
 * the order in which smaller blocks are delivered depends on the order
 * they're subdivided in this function. This is the primary factor
 * influencing the order in which pages are delivered to the IO
 * subsystem according to empirical testing, and this is also justified
 * by considering the behavior of a buddy system containing a single
 * large block of memory acted on by a series of small allocations.
 * This behavior is a critical factor in sglist merging's success.
 *
1785
 * -- nyc
L
Linus Torvalds 已提交
1786
 */
N
Nick Piggin 已提交
1787
static inline void expand(struct zone *zone, struct page *page,
1788 1789
	int low, int high, struct free_area *area,
	int migratetype)
L
Linus Torvalds 已提交
1790 1791 1792 1793 1794 1795 1796
{
	unsigned long size = 1 << high;

	while (high > low) {
		area--;
		high--;
		size >>= 1;
1797
		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1798

1799 1800 1801 1802 1803 1804 1805
		/*
		 * Mark as guard pages (or page), that will allow to
		 * merge back to allocator when buddy will be freed.
		 * Corresponding page table entries will not be touched,
		 * pages will stay not present in virtual address space
		 */
		if (set_page_guard(zone, &page[size], high, migratetype))
1806
			continue;
1807

1808
		list_add(&page[size].lru, &area->free_list[migratetype]);
L
Linus Torvalds 已提交
1809 1810 1811 1812 1813
		area->nr_free++;
		set_page_order(&page[size], high);
	}
}

1814
static void check_new_page_bad(struct page *page)
L
Linus Torvalds 已提交
1815
{
1816 1817
	const char *bad_reason = NULL;
	unsigned long bad_flags = 0;
1818

1819
	if (unlikely(atomic_read(&page->_mapcount) != -1))
1820 1821 1822
		bad_reason = "nonzero mapcount";
	if (unlikely(page->mapping != NULL))
		bad_reason = "non-NULL mapping";
1823
	if (unlikely(page_ref_count(page) != 0))
1824
		bad_reason = "nonzero _count";
1825 1826 1827
	if (unlikely(page->flags & __PG_HWPOISON)) {
		bad_reason = "HWPoisoned (hardware-corrupted)";
		bad_flags = __PG_HWPOISON;
1828 1829 1830
		/* Don't complain about hwpoisoned pages */
		page_mapcount_reset(page); /* remove PageBuddy */
		return;
1831
	}
1832 1833 1834 1835
	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
		bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
		bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
	}
1836 1837 1838 1839
#ifdef CONFIG_MEMCG
	if (unlikely(page->mem_cgroup))
		bad_reason = "page still charged to cgroup";
#endif
1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853
	bad_page(page, bad_reason, bad_flags);
}

/*
 * This page is about to be returned from the page allocator
 */
static inline int check_new_page(struct page *page)
{
	if (likely(page_expected_state(page,
				PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
		return 0;

	check_new_page_bad(page);
	return 1;
1854 1855
}

1856
static inline bool free_pages_prezeroed(void)
1857 1858
{
	return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
1859
		page_poisoning_enabled();
1860 1861
}

1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895
#ifdef CONFIG_DEBUG_VM
static bool check_pcp_refill(struct page *page)
{
	return false;
}

static bool check_new_pcp(struct page *page)
{
	return check_new_page(page);
}
#else
static bool check_pcp_refill(struct page *page)
{
	return check_new_page(page);
}
static bool check_new_pcp(struct page *page)
{
	return false;
}
#endif /* CONFIG_DEBUG_VM */

static bool check_new_pages(struct page *page, unsigned int order)
{
	int i;
	for (i = 0; i < (1 << order); i++) {
		struct page *p = page + i;

		if (unlikely(check_new_page(p)))
			return true;
	}

	return false;
}

1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908
inline void post_alloc_hook(struct page *page, unsigned int order,
				gfp_t gfp_flags)
{
	set_page_private(page, 0);
	set_page_refcounted(page);

	arch_alloc_page(page, order);
	kernel_map_pages(page, 1 << order, 1);
	kernel_poison_pages(page, 1 << order, 1);
	kasan_alloc_pages(page, order);
	set_page_owner(page, order, gfp_flags);
}

1909
static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1910
							unsigned int alloc_flags)
1911 1912
{
	int i;
1913

1914
	post_alloc_hook(page, order, gfp_flags);
N
Nick Piggin 已提交
1915

1916
	if (!free_pages_prezeroed() && (gfp_flags & __GFP_ZERO))
1917 1918
		for (i = 0; i < (1 << order); i++)
			clear_highpage(page + i);
N
Nick Piggin 已提交
1919 1920 1921 1922

	if (order && (gfp_flags & __GFP_COMP))
		prep_compound_page(page, order);

1923
	/*
1924
	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1925 1926 1927 1928
	 * allocate the page. The expectation is that the caller is taking
	 * steps that will free more memory. The caller should avoid the page
	 * being used for !PFMEMALLOC purposes.
	 */
1929 1930 1931 1932
	if (alloc_flags & ALLOC_NO_WATERMARKS)
		set_page_pfmemalloc(page);
	else
		clear_page_pfmemalloc(page);
L
Linus Torvalds 已提交
1933 1934
}

1935 1936 1937 1938
/*
 * Go through the free lists for the given migratetype and remove
 * the smallest available page from the freelists
 */
1939
static __always_inline
1940
struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1941 1942 1943
						int migratetype)
{
	unsigned int current_order;
1944
	struct free_area *area;
1945 1946 1947 1948 1949
	struct page *page;

	/* Find a page of the appropriate size in the preferred list */
	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
		area = &(zone->free_area[current_order]);
1950
		page = list_first_entry_or_null(&area->free_list[migratetype],
1951
							struct page, lru);
1952 1953
		if (!page)
			continue;
1954 1955 1956 1957
		list_del(&page->lru);
		rmv_page_order(page);
		area->nr_free--;
		expand(zone, page, order, current_order, area, migratetype);
1958
		set_pcppage_migratetype(page, migratetype);
1959 1960 1961 1962 1963 1964 1965
		return page;
	}

	return NULL;
}


1966 1967 1968 1969
/*
 * This array describes the order lists are fallen back to when
 * the free lists for the desirable migrate type are depleted
 */
1970
static int fallbacks[MIGRATE_TYPES][4] = {
1971 1972 1973
	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_TYPES },
	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_TYPES },
	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
1974
#ifdef CONFIG_CMA
1975
	[MIGRATE_CMA]         = { MIGRATE_TYPES }, /* Never used */
1976
#endif
1977
#ifdef CONFIG_MEMORY_ISOLATION
1978
	[MIGRATE_ISOLATE]     = { MIGRATE_TYPES }, /* Never used */
1979
#endif
1980 1981
};

1982
#ifdef CONFIG_CMA
1983
static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1984 1985 1986 1987 1988 1989 1990 1991 1992
					unsigned int order)
{
	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
}
#else
static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
					unsigned int order) { return NULL; }
#endif

1993 1994
/*
 * Move the free pages in a range to the free lists of the requested type.
1995
 * Note that start_page and end_pages are not aligned on a pageblock
1996 1997
 * boundary. If alignment is required, use move_freepages_block()
 */
1998
static int move_freepages(struct zone *zone,
A
Adrian Bunk 已提交
1999
			  struct page *start_page, struct page *end_page,
2000
			  int migratetype, int *num_movable)
2001 2002
{
	struct page *page;
2003
	unsigned int order;
2004
	int pages_moved = 0;
2005 2006 2007 2008 2009 2010 2011

#ifndef CONFIG_HOLES_IN_ZONE
	/*
	 * page_zone is not safe to call in this context when
	 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
	 * anyway as we check zone boundaries in move_freepages_block().
	 * Remove at a later date when no bug reports exist related to
M
Mel Gorman 已提交
2012
	 * grouping pages by mobility
2013
	 */
2014 2015 2016
	VM_BUG_ON(pfn_valid(page_to_pfn(start_page)) &&
	          pfn_valid(page_to_pfn(end_page)) &&
	          page_zone(start_page) != page_zone(end_page));
2017 2018
#endif

2019 2020 2021
	if (num_movable)
		*num_movable = 0;

2022 2023 2024 2025 2026 2027
	for (page = start_page; page <= end_page;) {
		if (!pfn_valid_within(page_to_pfn(page))) {
			page++;
			continue;
		}

2028 2029 2030
		/* Make sure we are not inadvertently changing nodes */
		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);

2031
		if (!PageBuddy(page)) {
2032 2033 2034 2035 2036 2037 2038 2039 2040
			/*
			 * We assume that pages that could be isolated for
			 * migration are movable. But we don't actually try
			 * isolating, as that would be expensive.
			 */
			if (num_movable &&
					(PageLRU(page) || __PageMovable(page)))
				(*num_movable)++;

2041 2042 2043 2044 2045
			page++;
			continue;
		}

		order = page_order(page);
2046 2047
		list_move(&page->lru,
			  &zone->free_area[order].free_list[migratetype]);
2048
		page += 1 << order;
2049
		pages_moved += 1 << order;
2050 2051
	}

2052
	return pages_moved;
2053 2054
}

2055
int move_freepages_block(struct zone *zone, struct page *page,
2056
				int migratetype, int *num_movable)
2057 2058 2059 2060 2061
{
	unsigned long start_pfn, end_pfn;
	struct page *start_page, *end_page;

	start_pfn = page_to_pfn(page);
2062
	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
2063
	start_page = pfn_to_page(start_pfn);
2064 2065
	end_page = start_page + pageblock_nr_pages - 1;
	end_pfn = start_pfn + pageblock_nr_pages - 1;
2066 2067

	/* Do not cross zone boundaries */
2068
	if (!zone_spans_pfn(zone, start_pfn))
2069
		start_page = page;
2070
	if (!zone_spans_pfn(zone, end_pfn))
2071 2072
		return 0;

2073 2074
	return move_freepages(zone, start_page, end_page, migratetype,
								num_movable);
2075 2076
}

2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087
static void change_pageblock_range(struct page *pageblock_page,
					int start_order, int migratetype)
{
	int nr_pageblocks = 1 << (start_order - pageblock_order);

	while (nr_pageblocks--) {
		set_pageblock_migratetype(pageblock_page, migratetype);
		pageblock_page += pageblock_nr_pages;
	}
}

2088
/*
2089 2090 2091 2092 2093 2094 2095 2096 2097 2098
 * When we are falling back to another migratetype during allocation, try to
 * steal extra free pages from the same pageblocks to satisfy further
 * allocations, instead of polluting multiple pageblocks.
 *
 * If we are stealing a relatively large buddy page, it is likely there will
 * be more free pages in the pageblock, so try to steal them all. For
 * reclaimable and unmovable allocations, we steal regardless of page size,
 * as fragmentation caused by those allocations polluting movable pageblocks
 * is worse than movable allocations stealing from unmovable and reclaimable
 * pageblocks.
2099
 */
2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123
static bool can_steal_fallback(unsigned int order, int start_mt)
{
	/*
	 * Leaving this order check is intended, although there is
	 * relaxed order check in next check. The reason is that
	 * we can actually steal whole pageblock if this condition met,
	 * but, below check doesn't guarantee it and that is just heuristic
	 * so could be changed anytime.
	 */
	if (order >= pageblock_order)
		return true;

	if (order >= pageblock_order / 2 ||
		start_mt == MIGRATE_RECLAIMABLE ||
		start_mt == MIGRATE_UNMOVABLE ||
		page_group_by_mobility_disabled)
		return true;

	return false;
}

/*
 * This function implements actual steal behaviour. If order is large enough,
 * we can steal whole pageblock. If not, we first move freepages in this
2124 2125 2126 2127
 * pageblock to our migratetype and determine how many already-allocated pages
 * are there in the pageblock with a compatible migratetype. If at least half
 * of pages are free or compatible, we can change migratetype of the pageblock
 * itself, so pages freed in the future will be put on the correct free list.
2128 2129
 */
static void steal_suitable_fallback(struct zone *zone, struct page *page,
2130
					int start_type, bool whole_block)
2131
{
2132
	unsigned int current_order = page_order(page);
2133
	struct free_area *area;
2134 2135 2136 2137
	int free_pages, movable_pages, alike_pages;
	int old_block_type;

	old_block_type = get_pageblock_migratetype(page);
2138

2139 2140 2141 2142
	/*
	 * This can happen due to races and we want to prevent broken
	 * highatomic accounting.
	 */
2143
	if (is_migrate_highatomic(old_block_type))
2144 2145
		goto single_page;

2146 2147 2148
	/* Take ownership for orders >= pageblock_order */
	if (current_order >= pageblock_order) {
		change_pageblock_range(page, current_order, start_type);
2149
		goto single_page;
2150 2151
	}

2152 2153 2154 2155
	/* We are not allowed to try stealing from the whole block */
	if (!whole_block)
		goto single_page;

2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179
	free_pages = move_freepages_block(zone, page, start_type,
						&movable_pages);
	/*
	 * Determine how many pages are compatible with our allocation.
	 * For movable allocation, it's the number of movable pages which
	 * we just obtained. For other types it's a bit more tricky.
	 */
	if (start_type == MIGRATE_MOVABLE) {
		alike_pages = movable_pages;
	} else {
		/*
		 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
		 * to MOVABLE pageblock, consider all non-movable pages as
		 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
		 * vice versa, be conservative since we can't distinguish the
		 * exact migratetype of non-movable pages.
		 */
		if (old_block_type == MIGRATE_MOVABLE)
			alike_pages = pageblock_nr_pages
						- (free_pages + movable_pages);
		else
			alike_pages = 0;
	}

2180
	/* moving whole block can fail due to zone boundary conditions */
2181
	if (!free_pages)
2182
		goto single_page;
2183

2184 2185 2186 2187 2188
	/*
	 * If a sufficient number of pages in the block are either free or of
	 * comparable migratability as our allocation, claim the whole block.
	 */
	if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2189 2190
			page_group_by_mobility_disabled)
		set_pageblock_migratetype(page, start_type);
2191 2192 2193 2194 2195 2196

	return;

single_page:
	area = &zone->free_area[current_order];
	list_move(&page->lru, &area->free_list[start_type]);
2197 2198
}

2199 2200 2201 2202 2203 2204 2205 2206
/*
 * Check whether there is a suitable fallback freepage with requested order.
 * If only_stealable is true, this function returns fallback_mt only if
 * we can steal other freepages all together. This would help to reduce
 * fragmentation due to mixed migratetype pages in one pageblock.
 */
int find_suitable_fallback(struct free_area *area, unsigned int order,
			int migratetype, bool only_stealable, bool *can_steal)
2207 2208 2209 2210 2211 2212 2213 2214 2215 2216
{
	int i;
	int fallback_mt;

	if (area->nr_free == 0)
		return -1;

	*can_steal = false;
	for (i = 0;; i++) {
		fallback_mt = fallbacks[migratetype][i];
2217
		if (fallback_mt == MIGRATE_TYPES)
2218 2219 2220 2221
			break;

		if (list_empty(&area->free_list[fallback_mt]))
			continue;
2222

2223 2224 2225
		if (can_steal_fallback(order, migratetype))
			*can_steal = true;

2226 2227 2228 2229 2230
		if (!only_stealable)
			return fallback_mt;

		if (*can_steal)
			return fallback_mt;
2231
	}
2232 2233

	return -1;
2234 2235
}

2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261
/*
 * Reserve a pageblock for exclusive use of high-order atomic allocations if
 * there are no empty page blocks that contain a page with a suitable order
 */
static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
				unsigned int alloc_order)
{
	int mt;
	unsigned long max_managed, flags;

	/*
	 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
	 * Check is race-prone but harmless.
	 */
	max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
	if (zone->nr_reserved_highatomic >= max_managed)
		return;

	spin_lock_irqsave(&zone->lock, flags);

	/* Recheck the nr_reserved_highatomic limit under the lock */
	if (zone->nr_reserved_highatomic >= max_managed)
		goto out_unlock;

	/* Yoink! */
	mt = get_pageblock_migratetype(page);
2262 2263
	if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
	    && !is_migrate_cma(mt)) {
2264 2265
		zone->nr_reserved_highatomic += pageblock_nr_pages;
		set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2266
		move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277
	}

out_unlock:
	spin_unlock_irqrestore(&zone->lock, flags);
}

/*
 * Used when an allocation is about to fail under memory pressure. This
 * potentially hurts the reliability of high-order allocations when under
 * intense memory pressure but failed atomic allocations should be easier
 * to recover from than an OOM.
2278 2279 2280
 *
 * If @force is true, try to unreserve a pageblock even though highatomic
 * pageblock is exhausted.
2281
 */
2282 2283
static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
						bool force)
2284 2285 2286 2287 2288 2289 2290
{
	struct zonelist *zonelist = ac->zonelist;
	unsigned long flags;
	struct zoneref *z;
	struct zone *zone;
	struct page *page;
	int order;
2291
	bool ret;
2292 2293 2294

	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
								ac->nodemask) {
2295 2296 2297 2298 2299 2300
		/*
		 * Preserve at least one pageblock unless memory pressure
		 * is really high.
		 */
		if (!force && zone->nr_reserved_highatomic <=
					pageblock_nr_pages)
2301 2302 2303 2304 2305 2306
			continue;

		spin_lock_irqsave(&zone->lock, flags);
		for (order = 0; order < MAX_ORDER; order++) {
			struct free_area *area = &(zone->free_area[order]);

2307 2308 2309 2310
			page = list_first_entry_or_null(
					&area->free_list[MIGRATE_HIGHATOMIC],
					struct page, lru);
			if (!page)
2311 2312 2313
				continue;

			/*
2314 2315 2316 2317 2318
			 * In page freeing path, migratetype change is racy so
			 * we can counter several free pages in a pageblock
			 * in this loop althoug we changed the pageblock type
			 * from highatomic to ac->migratetype. So we should
			 * adjust the count once.
2319
			 */
2320
			if (is_migrate_highatomic_page(page)) {
2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331
				/*
				 * It should never happen but changes to
				 * locking could inadvertently allow a per-cpu
				 * drain to add pages to MIGRATE_HIGHATOMIC
				 * while unreserving so be safe and watch for
				 * underflows.
				 */
				zone->nr_reserved_highatomic -= min(
						pageblock_nr_pages,
						zone->nr_reserved_highatomic);
			}
2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342

			/*
			 * Convert to ac->migratetype and avoid the normal
			 * pageblock stealing heuristics. Minimally, the caller
			 * is doing the work and needs the pages. More
			 * importantly, if the block was always converted to
			 * MIGRATE_UNMOVABLE or another type then the number
			 * of pageblocks that cannot be completely freed
			 * may increase.
			 */
			set_pageblock_migratetype(page, ac->migratetype);
2343 2344
			ret = move_freepages_block(zone, page, ac->migratetype,
									NULL);
2345 2346 2347 2348
			if (ret) {
				spin_unlock_irqrestore(&zone->lock, flags);
				return ret;
			}
2349 2350 2351
		}
		spin_unlock_irqrestore(&zone->lock, flags);
	}
2352 2353

	return false;
2354 2355
}

2356 2357 2358 2359 2360
/*
 * Try finding a free buddy page on the fallback list and put it on the free
 * list of requested migratetype, possibly along with other pages from the same
 * block, depending on fragmentation avoidance heuristics. Returns true if
 * fallback was found so that __rmqueue_smallest() can grab it.
2361 2362 2363 2364
 *
 * The use of signed ints for order and current_order is a deliberate
 * deviation from the rest of this file, to make the for loop
 * condition simpler.
2365
 */
2366
static __always_inline bool
2367
__rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
2368
{
2369
	struct free_area *area;
2370
	int current_order;
2371
	struct page *page;
2372 2373
	int fallback_mt;
	bool can_steal;
2374

2375 2376 2377 2378 2379
	/*
	 * Find the largest available free page in the other list. This roughly
	 * approximates finding the pageblock with the most free pages, which
	 * would be too costly to do exactly.
	 */
2380
	for (current_order = MAX_ORDER - 1; current_order >= order;
2381
				--current_order) {
2382 2383
		area = &(zone->free_area[current_order]);
		fallback_mt = find_suitable_fallback(area, current_order,
2384
				start_migratetype, false, &can_steal);
2385 2386
		if (fallback_mt == -1)
			continue;
2387

2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398
		/*
		 * We cannot steal all free pages from the pageblock and the
		 * requested migratetype is movable. In that case it's better to
		 * steal and split the smallest available page instead of the
		 * largest available page, because even if the next movable
		 * allocation falls back into a different pageblock than this
		 * one, it won't cause permanent fragmentation.
		 */
		if (!can_steal && start_migratetype == MIGRATE_MOVABLE
					&& current_order > order)
			goto find_smallest;
2399

2400 2401
		goto do_steal;
	}
2402

2403
	return false;
2404

2405 2406 2407 2408 2409 2410 2411 2412
find_smallest:
	for (current_order = order; current_order < MAX_ORDER;
							current_order++) {
		area = &(zone->free_area[current_order]);
		fallback_mt = find_suitable_fallback(area, current_order,
				start_migratetype, false, &can_steal);
		if (fallback_mt != -1)
			break;
2413 2414
	}

2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431
	/*
	 * This should not happen - we already found a suitable fallback
	 * when looking for the largest page.
	 */
	VM_BUG_ON(current_order == MAX_ORDER);

do_steal:
	page = list_first_entry(&area->free_list[fallback_mt],
							struct page, lru);

	steal_suitable_fallback(zone, page, start_migratetype, can_steal);

	trace_mm_page_alloc_extfrag(page, order, current_order,
		start_migratetype, fallback_mt);

	return true;

2432 2433
}

2434
/*
L
Linus Torvalds 已提交
2435 2436 2437
 * Do the hard work of removing an element from the buddy allocator.
 * Call me with the zone->lock already held.
 */
2438 2439
static __always_inline struct page *
__rmqueue(struct zone *zone, unsigned int order, int migratetype)
L
Linus Torvalds 已提交
2440 2441 2442
{
	struct page *page;

2443
retry:
2444
	page = __rmqueue_smallest(zone, order, migratetype);
2445
	if (unlikely(!page)) {
2446 2447 2448
		if (migratetype == MIGRATE_MOVABLE)
			page = __rmqueue_cma_fallback(zone, order);

2449 2450
		if (!page && __rmqueue_fallback(zone, order, migratetype))
			goto retry;
2451 2452
	}

2453
	trace_mm_page_alloc_zone_locked(page, order, migratetype);
2454
	return page;
L
Linus Torvalds 已提交
2455 2456
}

2457
/*
L
Linus Torvalds 已提交
2458 2459 2460 2461
 * Obtain a specified number of elements from the buddy allocator, all under
 * a single hold of the lock, for efficiency.  Add them to the supplied list.
 * Returns the number of new pages which were placed at *list.
 */
2462
static int rmqueue_bulk(struct zone *zone, unsigned int order,
2463
			unsigned long count, struct list_head *list,
M
Mel Gorman 已提交
2464
			int migratetype)
L
Linus Torvalds 已提交
2465
{
2466
	int i, alloced = 0;
2467

2468
	spin_lock(&zone->lock);
L
Linus Torvalds 已提交
2469
	for (i = 0; i < count; ++i) {
2470
		struct page *page = __rmqueue(zone, order, migratetype);
N
Nick Piggin 已提交
2471
		if (unlikely(page == NULL))
L
Linus Torvalds 已提交
2472
			break;
2473

2474 2475 2476
		if (unlikely(check_pcp_refill(page)))
			continue;

2477
		/*
2478 2479 2480 2481 2482 2483 2484 2485
		 * Split buddy pages returned by expand() are received here in
		 * physical page order. The page is added to the tail of
		 * caller's list. From the callers perspective, the linked list
		 * is ordered by page number under some conditions. This is
		 * useful for IO devices that can forward direction from the
		 * head, thus also in the physical page order. This is useful
		 * for IO devices that can merge IO requests if the physical
		 * pages are ordered properly.
2486
		 */
2487
		list_add_tail(&page->lru, list);
2488
		alloced++;
2489
		if (is_migrate_cma(get_pcppage_migratetype(page)))
2490 2491
			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
					      -(1 << order));
L
Linus Torvalds 已提交
2492
	}
2493 2494 2495 2496 2497 2498 2499

	/*
	 * i pages were removed from the buddy list even if some leak due
	 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
	 * on i. Do not confuse with 'alloced' which is the number of
	 * pages added to the pcp list.
	 */
2500
	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2501
	spin_unlock(&zone->lock);
2502
	return alloced;
L
Linus Torvalds 已提交
2503 2504
}

2505
#ifdef CONFIG_NUMA
2506
/*
2507 2508 2509 2510
 * Called from the vmstat counter updater to drain pagesets of this
 * currently executing processor on remote nodes after they have
 * expired.
 *
2511 2512
 * Note that this function must be called with the thread pinned to
 * a single processor.
2513
 */
2514
void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2515 2516
{
	unsigned long flags;
2517
	int to_drain, batch;
2518

2519
	local_irq_save(flags);
2520
	batch = READ_ONCE(pcp->batch);
2521
	to_drain = min(pcp->count, batch);
2522
	if (to_drain > 0)
2523
		free_pcppages_bulk(zone, to_drain, pcp);
2524
	local_irq_restore(flags);
2525 2526 2527
}
#endif

2528
/*
2529
 * Drain pcplists of the indicated processor and zone.
2530 2531 2532 2533 2534
 *
 * The processor must either be the current processor and the
 * thread pinned to the current processor or a processor that
 * is not online.
 */
2535
static void drain_pages_zone(unsigned int cpu, struct zone *zone)
L
Linus Torvalds 已提交
2536
{
N
Nick Piggin 已提交
2537
	unsigned long flags;
2538 2539
	struct per_cpu_pageset *pset;
	struct per_cpu_pages *pcp;
L
Linus Torvalds 已提交
2540

2541 2542
	local_irq_save(flags);
	pset = per_cpu_ptr(zone->pageset, cpu);
L
Linus Torvalds 已提交
2543

2544
	pcp = &pset->pcp;
2545
	if (pcp->count)
2546 2547 2548
		free_pcppages_bulk(zone, pcp->count, pcp);
	local_irq_restore(flags);
}
2549

2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562
/*
 * Drain pcplists of all zones on the indicated processor.
 *
 * The processor must either be the current processor and the
 * thread pinned to the current processor or a processor that
 * is not online.
 */
static void drain_pages(unsigned int cpu)
{
	struct zone *zone;

	for_each_populated_zone(zone) {
		drain_pages_zone(cpu, zone);
L
Linus Torvalds 已提交
2563 2564 2565
	}
}

2566 2567
/*
 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2568 2569 2570
 *
 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
 * the single zone's pages.
2571
 */
2572
void drain_local_pages(struct zone *zone)
2573
{
2574 2575 2576 2577 2578 2579
	int cpu = smp_processor_id();

	if (zone)
		drain_pages_zone(cpu, zone);
	else
		drain_pages(cpu);
2580 2581
}

2582 2583
static void drain_local_pages_wq(struct work_struct *work)
{
2584 2585 2586 2587 2588 2589 2590 2591
	/*
	 * drain_all_pages doesn't use proper cpu hotplug protection so
	 * we can race with cpu offline when the WQ can move this from
	 * a cpu pinned worker to an unbound one. We can operate on a different
	 * cpu which is allright but we also have to make sure to not move to
	 * a different one.
	 */
	preempt_disable();
2592
	drain_local_pages(NULL);
2593
	preempt_enable();
2594 2595
}

2596
/*
2597 2598
 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
 *
2599 2600
 * When zone parameter is non-NULL, spill just the single zone's pages.
 *
2601
 * Note that this can be extremely slow as the draining happens in a workqueue.
2602
 */
2603
void drain_all_pages(struct zone *zone)
2604
{
2605 2606 2607 2608 2609 2610 2611 2612
	int cpu;

	/*
	 * Allocate in the BSS so we wont require allocation in
	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
	 */
	static cpumask_t cpus_with_pcps;

2613 2614 2615 2616 2617 2618 2619
	/*
	 * Make sure nobody triggers this path before mm_percpu_wq is fully
	 * initialized.
	 */
	if (WARN_ON_ONCE(!mm_percpu_wq))
		return;

2620 2621 2622 2623 2624 2625 2626 2627 2628 2629
	/*
	 * Do not drain if one is already in progress unless it's specific to
	 * a zone. Such callers are primarily CMA and memory hotplug and need
	 * the drain to be complete when the call returns.
	 */
	if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
		if (!zone)
			return;
		mutex_lock(&pcpu_drain_mutex);
	}
2630

2631 2632 2633 2634 2635 2636 2637
	/*
	 * We don't care about racing with CPU hotplug event
	 * as offline notification will cause the notified
	 * cpu to drain that CPU pcps and on_each_cpu_mask
	 * disables preemption as part of its processing
	 */
	for_each_online_cpu(cpu) {
2638 2639
		struct per_cpu_pageset *pcp;
		struct zone *z;
2640
		bool has_pcps = false;
2641 2642

		if (zone) {
2643
			pcp = per_cpu_ptr(zone->pageset, cpu);
2644
			if (pcp->pcp.count)
2645
				has_pcps = true;
2646 2647 2648 2649 2650 2651 2652
		} else {
			for_each_populated_zone(z) {
				pcp = per_cpu_ptr(z->pageset, cpu);
				if (pcp->pcp.count) {
					has_pcps = true;
					break;
				}
2653 2654
			}
		}
2655

2656 2657 2658 2659 2660
		if (has_pcps)
			cpumask_set_cpu(cpu, &cpus_with_pcps);
		else
			cpumask_clear_cpu(cpu, &cpus_with_pcps);
	}
2661

2662 2663 2664
	for_each_cpu(cpu, &cpus_with_pcps) {
		struct work_struct *work = per_cpu_ptr(&pcpu_drain, cpu);
		INIT_WORK(work, drain_local_pages_wq);
2665
		queue_work_on(cpu, mm_percpu_wq, work);
2666
	}
2667 2668 2669 2670
	for_each_cpu(cpu, &cpus_with_pcps)
		flush_work(per_cpu_ptr(&pcpu_drain, cpu));

	mutex_unlock(&pcpu_drain_mutex);
2671 2672
}

2673
#ifdef CONFIG_HIBERNATION
L
Linus Torvalds 已提交
2674

2675 2676 2677 2678 2679
/*
 * Touch the watchdog for every WD_PAGE_COUNT pages.
 */
#define WD_PAGE_COUNT	(128*1024)

L
Linus Torvalds 已提交
2680 2681
void mark_free_pages(struct zone *zone)
{
2682
	unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
2683
	unsigned long flags;
2684
	unsigned int order, t;
2685
	struct page *page;
L
Linus Torvalds 已提交
2686

2687
	if (zone_is_empty(zone))
L
Linus Torvalds 已提交
2688 2689 2690
		return;

	spin_lock_irqsave(&zone->lock, flags);
2691

2692
	max_zone_pfn = zone_end_pfn(zone);
2693 2694
	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
		if (pfn_valid(pfn)) {
2695
			page = pfn_to_page(pfn);
2696

2697 2698 2699 2700 2701
			if (!--page_count) {
				touch_nmi_watchdog();
				page_count = WD_PAGE_COUNT;
			}

2702 2703 2704
			if (page_zone(page) != zone)
				continue;

2705 2706
			if (!swsusp_page_is_forbidden(page))
				swsusp_unset_page_free(page);
2707
		}
L
Linus Torvalds 已提交
2708

2709
	for_each_migratetype_order(order, t) {
2710 2711
		list_for_each_entry(page,
				&zone->free_area[order].free_list[t], lru) {
2712
			unsigned long i;
L
Linus Torvalds 已提交
2713

2714
			pfn = page_to_pfn(page);
2715 2716 2717 2718 2719
			for (i = 0; i < (1UL << order); i++) {
				if (!--page_count) {
					touch_nmi_watchdog();
					page_count = WD_PAGE_COUNT;
				}
2720
				swsusp_set_page_free(pfn_to_page(pfn + i));
2721
			}
2722
		}
2723
	}
L
Linus Torvalds 已提交
2724 2725
	spin_unlock_irqrestore(&zone->lock, flags);
}
2726
#endif /* CONFIG_PM */
L
Linus Torvalds 已提交
2727

2728
static bool free_unref_page_prepare(struct page *page, unsigned long pfn)
L
Linus Torvalds 已提交
2729
{
2730
	int migratetype;
L
Linus Torvalds 已提交
2731

2732
	if (!free_pcp_prepare(page))
2733
		return false;
2734

2735
	migratetype = get_pfnblock_migratetype(page, pfn);
2736
	set_pcppage_migratetype(page, migratetype);
2737 2738 2739
	return true;
}

2740
static void free_unref_page_commit(struct page *page, unsigned long pfn)
2741 2742 2743 2744 2745 2746
{
	struct zone *zone = page_zone(page);
	struct per_cpu_pages *pcp;
	int migratetype;

	migratetype = get_pcppage_migratetype(page);
2747
	__count_vm_event(PGFREE);
2748

2749 2750 2751
	/*
	 * We only track unmovable, reclaimable and movable on pcp lists.
	 * Free ISOLATE pages back to the allocator because they are being
2752
	 * offlined but treat HIGHATOMIC as movable pages so we can get those
2753 2754 2755 2756
	 * areas back if necessary. Otherwise, we may have to free
	 * excessively into the page allocator
	 */
	if (migratetype >= MIGRATE_PCPTYPES) {
2757
		if (unlikely(is_migrate_isolate(migratetype))) {
2758
			free_one_page(zone, page, pfn, 0, migratetype);
2759
			return;
2760 2761 2762 2763
		}
		migratetype = MIGRATE_MOVABLE;
	}

2764
	pcp = &this_cpu_ptr(zone->pageset)->pcp;
2765
	list_add(&page->lru, &pcp->lists[migratetype]);
L
Linus Torvalds 已提交
2766
	pcp->count++;
N
Nick Piggin 已提交
2767
	if (pcp->count >= pcp->high) {
2768
		unsigned long batch = READ_ONCE(pcp->batch);
2769
		free_pcppages_bulk(zone, batch, pcp);
N
Nick Piggin 已提交
2770
	}
2771
}
2772

2773 2774 2775
/*
 * Free a 0-order page
 */
2776
void free_unref_page(struct page *page)
2777 2778 2779 2780
{
	unsigned long flags;
	unsigned long pfn = page_to_pfn(page);

2781
	if (!free_unref_page_prepare(page, pfn))
2782 2783 2784
		return;

	local_irq_save(flags);
2785
	free_unref_page_commit(page, pfn);
2786
	local_irq_restore(flags);
L
Linus Torvalds 已提交
2787 2788
}

2789 2790 2791
/*
 * Free a list of 0-order pages
 */
2792
void free_unref_page_list(struct list_head *list)
2793 2794
{
	struct page *page, *next;
2795
	unsigned long flags, pfn;
2796
	int batch_count = 0;
2797 2798 2799 2800

	/* Prepare pages for freeing */
	list_for_each_entry_safe(page, next, list, lru) {
		pfn = page_to_pfn(page);
2801
		if (!free_unref_page_prepare(page, pfn))
2802 2803 2804
			list_del(&page->lru);
		set_page_private(page, pfn);
	}
2805

2806
	local_irq_save(flags);
2807
	list_for_each_entry_safe(page, next, list, lru) {
2808 2809 2810
		unsigned long pfn = page_private(page);

		set_page_private(page, 0);
2811 2812
		trace_mm_page_free_batched(page);
		free_unref_page_commit(page, pfn);
2813 2814 2815 2816 2817 2818 2819 2820 2821 2822

		/*
		 * Guard against excessive IRQ disabled times when we get
		 * a large list of pages to free.
		 */
		if (++batch_count == SWAP_CLUSTER_MAX) {
			local_irq_restore(flags);
			batch_count = 0;
			local_irq_save(flags);
		}
2823
	}
2824
	local_irq_restore(flags);
2825 2826
}

N
Nick Piggin 已提交
2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838
/*
 * split_page takes a non-compound higher-order page, and splits it into
 * n (1<<order) sub-pages: page[0..n]
 * Each sub-page must be freed individually.
 *
 * Note: this is probably too low level an operation for use in drivers.
 * Please consult with lkml before using this in your driver.
 */
void split_page(struct page *page, unsigned int order)
{
	int i;

2839 2840
	VM_BUG_ON_PAGE(PageCompound(page), page);
	VM_BUG_ON_PAGE(!page_count(page), page);
2841

2842
	for (i = 1; i < (1 << order); i++)
2843
		set_page_refcounted(page + i);
2844
	split_page_owner(page, order);
N
Nick Piggin 已提交
2845
}
K
K. Y. Srinivasan 已提交
2846
EXPORT_SYMBOL_GPL(split_page);
N
Nick Piggin 已提交
2847

2848
int __isolate_free_page(struct page *page, unsigned int order)
2849 2850 2851
{
	unsigned long watermark;
	struct zone *zone;
2852
	int mt;
2853 2854 2855 2856

	BUG_ON(!PageBuddy(page));

	zone = page_zone(page);
2857
	mt = get_pageblock_migratetype(page);
2858

2859
	if (!is_migrate_isolate(mt)) {
2860 2861 2862 2863 2864 2865 2866
		/*
		 * Obey watermarks as if the page was being allocated. We can
		 * emulate a high-order watermark check with a raised order-0
		 * watermark, because we already know our high-order page
		 * exists.
		 */
		watermark = min_wmark_pages(zone) + (1UL << order);
2867
		if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2868 2869
			return 0;

2870
		__mod_zone_freepage_state(zone, -(1UL << order), mt);
2871
	}
2872 2873 2874 2875 2876

	/* Remove page from free list */
	list_del(&page->lru);
	zone->free_area[order].nr_free--;
	rmv_page_order(page);
2877

2878 2879 2880 2881
	/*
	 * Set the pageblock if the isolated page is at least half of a
	 * pageblock
	 */
2882 2883
	if (order >= pageblock_order - 1) {
		struct page *endpage = page + (1 << order) - 1;
2884 2885
		for (; page < endpage; page += pageblock_nr_pages) {
			int mt = get_pageblock_migratetype(page);
M
Minchan Kim 已提交
2886
			if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
2887
			    && !is_migrate_highatomic(mt))
2888 2889 2890
				set_pageblock_migratetype(page,
							  MIGRATE_MOVABLE);
		}
2891 2892
	}

2893

2894
	return 1UL << order;
2895 2896
}

2897 2898 2899 2900 2901
/*
 * Update NUMA hit/miss statistics
 *
 * Must be called with interrupts disabled.
 */
M
Michal Hocko 已提交
2902
static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
2903 2904
{
#ifdef CONFIG_NUMA
2905
	enum numa_stat_item local_stat = NUMA_LOCAL;
2906

2907 2908 2909 2910
	/* skip numa counters update if numa stats is disabled */
	if (!static_branch_likely(&vm_numa_stat_key))
		return;

2911
	if (zone_to_nid(z) != numa_node_id())
2912 2913
		local_stat = NUMA_OTHER;

2914
	if (zone_to_nid(z) == zone_to_nid(preferred_zone))
2915
		__inc_numa_state(z, NUMA_HIT);
2916
	else {
2917 2918
		__inc_numa_state(z, NUMA_MISS);
		__inc_numa_state(preferred_zone, NUMA_FOREIGN);
2919
	}
2920
	__inc_numa_state(z, local_stat);
2921 2922 2923
#endif
}

2924 2925
/* Remove page from the per-cpu list, caller must protect the list */
static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
M
Mel Gorman 已提交
2926
			struct per_cpu_pages *pcp,
2927 2928 2929 2930 2931 2932 2933 2934
			struct list_head *list)
{
	struct page *page;

	do {
		if (list_empty(list)) {
			pcp->count += rmqueue_bulk(zone, 0,
					pcp->batch, list,
M
Mel Gorman 已提交
2935
					migratetype);
2936 2937 2938 2939
			if (unlikely(list_empty(list)))
				return NULL;
		}

M
Mel Gorman 已提交
2940
		page = list_first_entry(list, struct page, lru);
2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955
		list_del(&page->lru);
		pcp->count--;
	} while (check_new_pcp(page));

	return page;
}

/* Lock and remove page from the per-cpu list */
static struct page *rmqueue_pcplist(struct zone *preferred_zone,
			struct zone *zone, unsigned int order,
			gfp_t gfp_flags, int migratetype)
{
	struct per_cpu_pages *pcp;
	struct list_head *list;
	struct page *page;
2956
	unsigned long flags;
2957

2958
	local_irq_save(flags);
2959 2960
	pcp = &this_cpu_ptr(zone->pageset)->pcp;
	list = &pcp->lists[migratetype];
M
Mel Gorman 已提交
2961
	page = __rmqueue_pcplist(zone,  migratetype, pcp, list);
2962 2963 2964 2965
	if (page) {
		__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
		zone_statistics(preferred_zone, zone);
	}
2966
	local_irq_restore(flags);
2967 2968 2969
	return page;
}

L
Linus Torvalds 已提交
2970
/*
2971
 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
L
Linus Torvalds 已提交
2972
 */
2973
static inline
2974
struct page *rmqueue(struct zone *preferred_zone,
2975
			struct zone *zone, unsigned int order,
2976 2977
			gfp_t gfp_flags, unsigned int alloc_flags,
			int migratetype)
L
Linus Torvalds 已提交
2978 2979
{
	unsigned long flags;
2980
	struct page *page;
L
Linus Torvalds 已提交
2981

2982
	if (likely(order == 0)) {
2983 2984 2985 2986
		page = rmqueue_pcplist(preferred_zone, zone, order,
				gfp_flags, migratetype);
		goto out;
	}
2987

2988 2989 2990 2991 2992 2993
	/*
	 * We most definitely don't want callers attempting to
	 * allocate greater than order-1 page units with __GFP_NOFAIL.
	 */
	WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
	spin_lock_irqsave(&zone->lock, flags);
2994

2995 2996 2997 2998 2999 3000 3001
	do {
		page = NULL;
		if (alloc_flags & ALLOC_HARDER) {
			page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
			if (page)
				trace_mm_page_alloc_zone_locked(page, order, migratetype);
		}
N
Nick Piggin 已提交
3002
		if (!page)
3003 3004 3005 3006 3007 3008 3009
			page = __rmqueue(zone, order, migratetype);
	} while (page && check_new_pages(page, order));
	spin_unlock(&zone->lock);
	if (!page)
		goto failed;
	__mod_zone_freepage_state(zone, -(1 << order),
				  get_pcppage_migratetype(page));
L
Linus Torvalds 已提交
3010

3011
	__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
M
Michal Hocko 已提交
3012
	zone_statistics(preferred_zone, zone);
N
Nick Piggin 已提交
3013
	local_irq_restore(flags);
L
Linus Torvalds 已提交
3014

3015 3016
out:
	VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
L
Linus Torvalds 已提交
3017
	return page;
N
Nick Piggin 已提交
3018 3019 3020 3021

failed:
	local_irq_restore(flags);
	return NULL;
L
Linus Torvalds 已提交
3022 3023
}

3024 3025
#ifdef CONFIG_FAIL_PAGE_ALLOC

3026
static struct {
3027 3028
	struct fault_attr attr;

3029
	bool ignore_gfp_highmem;
3030
	bool ignore_gfp_reclaim;
3031
	u32 min_order;
3032 3033
} fail_page_alloc = {
	.attr = FAULT_ATTR_INITIALIZER,
3034
	.ignore_gfp_reclaim = true,
3035
	.ignore_gfp_highmem = true,
3036
	.min_order = 1,
3037 3038 3039 3040 3041 3042 3043 3044
};

static int __init setup_fail_page_alloc(char *str)
{
	return setup_fault_attr(&fail_page_alloc.attr, str);
}
__setup("fail_page_alloc=", setup_fail_page_alloc);

3045
static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3046
{
3047
	if (order < fail_page_alloc.min_order)
3048
		return false;
3049
	if (gfp_mask & __GFP_NOFAIL)
3050
		return false;
3051
	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
3052
		return false;
3053 3054
	if (fail_page_alloc.ignore_gfp_reclaim &&
			(gfp_mask & __GFP_DIRECT_RECLAIM))
3055
		return false;
3056 3057 3058 3059 3060 3061 3062 3063

	return should_fail(&fail_page_alloc.attr, 1 << order);
}

#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS

static int __init fail_page_alloc_debugfs(void)
{
3064
	umode_t mode = S_IFREG | 0600;
3065 3066
	struct dentry *dir;

3067 3068 3069 3070
	dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
					&fail_page_alloc.attr);
	if (IS_ERR(dir))
		return PTR_ERR(dir);
3071

3072
	if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
3073
				&fail_page_alloc.ignore_gfp_reclaim))
3074 3075 3076 3077 3078 3079 3080 3081 3082 3083
		goto fail;
	if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
				&fail_page_alloc.ignore_gfp_highmem))
		goto fail;
	if (!debugfs_create_u32("min-order", mode, dir,
				&fail_page_alloc.min_order))
		goto fail;

	return 0;
fail:
3084
	debugfs_remove_recursive(dir);
3085

3086
	return -ENOMEM;
3087 3088 3089 3090 3091 3092 3093 3094
}

late_initcall(fail_page_alloc_debugfs);

#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */

#else /* CONFIG_FAIL_PAGE_ALLOC */

3095
static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3096
{
3097
	return false;
3098 3099 3100 3101
}

#endif /* CONFIG_FAIL_PAGE_ALLOC */

L
Linus Torvalds 已提交
3102
/*
3103 3104 3105 3106
 * Return true if free base pages are above 'mark'. For high-order checks it
 * will return true of the order-0 watermark is reached and there is at least
 * one free page of a suitable size. Checking now avoids taking the zone lock
 * to check in the allocation paths if no pages are free.
L
Linus Torvalds 已提交
3107
 */
3108 3109 3110
bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
			 int classzone_idx, unsigned int alloc_flags,
			 long free_pages)
L
Linus Torvalds 已提交
3111
{
3112
	long min = mark;
L
Linus Torvalds 已提交
3113
	int o;
3114
	const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
L
Linus Torvalds 已提交
3115

3116
	/* free_pages may go negative - that's OK */
3117
	free_pages -= (1 << order) - 1;
3118

R
Rohit Seth 已提交
3119
	if (alloc_flags & ALLOC_HIGH)
L
Linus Torvalds 已提交
3120
		min -= min / 2;
3121 3122 3123 3124 3125 3126

	/*
	 * If the caller does not have rights to ALLOC_HARDER then subtract
	 * the high-atomic reserves. This will over-estimate the size of the
	 * atomic reserve but it avoids a search.
	 */
3127
	if (likely(!alloc_harder)) {
3128
		free_pages -= z->nr_reserved_highatomic;
3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141
	} else {
		/*
		 * OOM victims can try even harder than normal ALLOC_HARDER
		 * users on the grounds that it's definitely going to be in
		 * the exit path shortly and free memory. Any allocation it
		 * makes during the free path will be small and short-lived.
		 */
		if (alloc_flags & ALLOC_OOM)
			min -= min / 2;
		else
			min -= min / 4;
	}

3142

3143 3144 3145 3146 3147 3148
#ifdef CONFIG_CMA
	/* If allocation can't use CMA areas don't use free CMA pages */
	if (!(alloc_flags & ALLOC_CMA))
		free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
#endif

3149 3150 3151 3152 3153 3154
	/*
	 * Check watermarks for an order-0 allocation request. If these
	 * are not met, then a high-order request also cannot go ahead
	 * even if a suitable page happened to be free.
	 */
	if (free_pages <= min + z->lowmem_reserve[classzone_idx])
3155
		return false;
L
Linus Torvalds 已提交
3156

3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174
	/* If this is an order-0 request then the watermark is fine */
	if (!order)
		return true;

	/* For a high-order request, check at least one suitable page is free */
	for (o = order; o < MAX_ORDER; o++) {
		struct free_area *area = &z->free_area[o];
		int mt;

		if (!area->nr_free)
			continue;

		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
			if (!list_empty(&area->free_list[mt]))
				return true;
		}

#ifdef CONFIG_CMA
3175 3176
		if ((alloc_flags & ALLOC_CMA) &&
		    !list_empty(&area->free_list[MIGRATE_CMA])) {
3177
			return true;
3178
		}
3179
#endif
3180 3181 3182
		if (alloc_harder &&
			!list_empty(&area->free_list[MIGRATE_HIGHATOMIC]))
			return true;
L
Linus Torvalds 已提交
3183
	}
3184
	return false;
3185 3186
}

3187
bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3188
		      int classzone_idx, unsigned int alloc_flags)
3189 3190 3191 3192 3193
{
	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
					zone_page_state(z, NR_FREE_PAGES));
}

3194 3195 3196 3197
static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
		unsigned long mark, int classzone_idx, unsigned int alloc_flags)
{
	long free_pages = zone_page_state(z, NR_FREE_PAGES);
3198 3199 3200 3201 3202 3203 3204
	long cma_pages = 0;

#ifdef CONFIG_CMA
	/* If allocation can't use CMA areas don't use free CMA pages */
	if (!(alloc_flags & ALLOC_CMA))
		cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
#endif
3205 3206 3207 3208 3209 3210 3211 3212

	/*
	 * Fast check for order-0 only. If this fails then the reserves
	 * need to be calculated. There is a corner case where the check
	 * passes but only the high-order atomic reserve are free. If
	 * the caller is !atomic then it'll uselessly search the free
	 * list. That corner case is then slower but it is harmless.
	 */
3213
	if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
3214 3215 3216 3217 3218 3219
		return true;

	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
					free_pages);
}

3220
bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3221
			unsigned long mark, int classzone_idx)
3222 3223 3224 3225 3226 3227
{
	long free_pages = zone_page_state(z, NR_FREE_PAGES);

	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);

3228
	return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
3229
								free_pages);
L
Linus Torvalds 已提交
3230 3231
}

3232
#ifdef CONFIG_NUMA
3233 3234
static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
{
3235
	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3236
				RECLAIM_DISTANCE;
3237
}
3238
#else	/* CONFIG_NUMA */
3239 3240 3241 3242
static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
{
	return true;
}
3243 3244
#endif	/* CONFIG_NUMA */

R
Rohit Seth 已提交
3245
/*
3246
 * get_page_from_freelist goes through the zonelist trying to allocate
R
Rohit Seth 已提交
3247 3248 3249
 * a page.
 */
static struct page *
3250 3251
get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
						const struct alloc_context *ac)
M
Martin Hicks 已提交
3252
{
3253
	struct zoneref *z = ac->preferred_zoneref;
3254
	struct zone *zone;
3255 3256
	struct pglist_data *last_pgdat_dirty_limit = NULL;

R
Rohit Seth 已提交
3257
	/*
3258
	 * Scan zonelist, looking for a zone with enough free.
3259
	 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
R
Rohit Seth 已提交
3260
	 */
3261
	for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3262
								ac->nodemask) {
3263
		struct page *page;
3264 3265
		unsigned long mark;

3266 3267
		if (cpusets_enabled() &&
			(alloc_flags & ALLOC_CPUSET) &&
3268
			!__cpuset_zone_allowed(zone, gfp_mask))
3269
				continue;
3270 3271
		/*
		 * When allocating a page cache page for writing, we
3272 3273
		 * want to get it from a node that is within its dirty
		 * limit, such that no single node holds more than its
3274
		 * proportional share of globally allowed dirty pages.
3275
		 * The dirty limits take into account the node's
3276 3277 3278 3279 3280
		 * lowmem reserves and high watermark so that kswapd
		 * should be able to balance it without having to
		 * write pages from its LRU list.
		 *
		 * XXX: For now, allow allocations to potentially
3281
		 * exceed the per-node dirty limit in the slowpath
3282
		 * (spread_dirty_pages unset) before going into reclaim,
3283
		 * which is important when on a NUMA setup the allowed
3284
		 * nodes are together not big enough to reach the
3285
		 * global limit.  The proper fix for these situations
3286
		 * will require awareness of nodes in the
3287 3288
		 * dirty-throttling and the flusher threads.
		 */
3289 3290 3291 3292 3293 3294 3295 3296 3297
		if (ac->spread_dirty_pages) {
			if (last_pgdat_dirty_limit == zone->zone_pgdat)
				continue;

			if (!node_dirty_ok(zone->zone_pgdat)) {
				last_pgdat_dirty_limit = zone->zone_pgdat;
				continue;
			}
		}
R
Rohit Seth 已提交
3298

3299
		mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
3300
		if (!zone_watermark_fast(zone, order, mark,
3301
				       ac_classzone_idx(ac), alloc_flags)) {
3302 3303
			int ret;

3304 3305 3306 3307 3308 3309 3310 3311 3312 3313
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
			/*
			 * Watermark failed for this zone, but see if we can
			 * grow this zone if it contains deferred pages.
			 */
			if (static_branch_unlikely(&deferred_pages)) {
				if (_deferred_grow_zone(zone, order))
					goto try_this_zone;
			}
#endif
3314 3315 3316 3317 3318
			/* Checked here to keep the fast path fast */
			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
			if (alloc_flags & ALLOC_NO_WATERMARKS)
				goto try_this_zone;

3319
			if (node_reclaim_mode == 0 ||
3320
			    !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3321 3322
				continue;

3323
			ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3324
			switch (ret) {
3325
			case NODE_RECLAIM_NOSCAN:
3326
				/* did not scan */
3327
				continue;
3328
			case NODE_RECLAIM_FULL:
3329
				/* scanned but unreclaimable */
3330
				continue;
3331 3332
			default:
				/* did we reclaim enough */
3333
				if (zone_watermark_ok(zone, order, mark,
3334
						ac_classzone_idx(ac), alloc_flags))
3335 3336 3337
					goto try_this_zone;

				continue;
3338
			}
R
Rohit Seth 已提交
3339 3340
		}

3341
try_this_zone:
3342
		page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3343
				gfp_mask, alloc_flags, ac->migratetype);
3344
		if (page) {
3345
			prep_new_page(page, order, gfp_mask, alloc_flags);
3346 3347 3348 3349 3350 3351 3352 3353

			/*
			 * If this is a high-order atomic allocation then check
			 * if the pageblock should be reserved for the future
			 */
			if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
				reserve_highatomic_pageblock(page, zone, order);

3354
			return page;
3355 3356 3357 3358 3359 3360 3361 3362
		} else {
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
			/* Try again if zone has deferred pages */
			if (static_branch_unlikely(&deferred_pages)) {
				if (_deferred_grow_zone(zone, order))
					goto try_this_zone;
			}
#endif
3363
		}
3364
	}
3365

3366
	return NULL;
M
Martin Hicks 已提交
3367 3368
}

3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382
/*
 * Large machines with many possible nodes should not always dump per-node
 * meminfo in irq context.
 */
static inline bool should_suppress_show_mem(void)
{
	bool ret = false;

#if NODES_SHIFT > 8
	ret = in_interrupt();
#endif
	return ret;
}

3383
static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3384 3385
{
	unsigned int filter = SHOW_MEM_FILTER_NODES;
3386
	static DEFINE_RATELIMIT_STATE(show_mem_rs, HZ, 1);
3387

3388
	if (should_suppress_show_mem() || !__ratelimit(&show_mem_rs))
3389 3390 3391 3392 3393 3394 3395 3396
		return;

	/*
	 * This documents exceptions given to allocations in certain
	 * contexts that are allowed to allocate outside current's set
	 * of allowed nodes.
	 */
	if (!(gfp_mask & __GFP_NOMEMALLOC))
3397
		if (tsk_is_oom_victim(current) ||
3398 3399
		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
			filter &= ~SHOW_MEM_FILTER_NODES;
3400
	if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3401 3402
		filter &= ~SHOW_MEM_FILTER_NODES;

3403
	show_mem(filter, nodemask);
3404 3405
}

3406
void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3407 3408 3409 3410 3411 3412
{
	struct va_format vaf;
	va_list args;
	static DEFINE_RATELIMIT_STATE(nopage_rs, DEFAULT_RATELIMIT_INTERVAL,
				      DEFAULT_RATELIMIT_BURST);

3413
	if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
3414 3415
		return;

3416 3417 3418
	va_start(args, fmt);
	vaf.fmt = fmt;
	vaf.va = &args;
M
Michal Hocko 已提交
3419 3420 3421
	pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl\n",
			current->comm, &vaf, gfp_mask, &gfp_mask,
			nodemask_pr_args(nodemask));
3422
	va_end(args);
J
Joe Perches 已提交
3423

3424
	cpuset_print_current_mems_allowed();
J
Joe Perches 已提交
3425

3426
	dump_stack();
3427
	warn_alloc_show_mem(gfp_mask, nodemask);
3428 3429
}

3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449
static inline struct page *
__alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
			      unsigned int alloc_flags,
			      const struct alloc_context *ac)
{
	struct page *page;

	page = get_page_from_freelist(gfp_mask, order,
			alloc_flags|ALLOC_CPUSET, ac);
	/*
	 * fallback to ignore cpuset restriction if our nodes
	 * are depleted
	 */
	if (!page)
		page = get_page_from_freelist(gfp_mask, order,
				alloc_flags, ac);

	return page;
}

3450 3451
static inline struct page *
__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3452
	const struct alloc_context *ac, unsigned long *did_some_progress)
3453
{
3454 3455 3456
	struct oom_control oc = {
		.zonelist = ac->zonelist,
		.nodemask = ac->nodemask,
3457
		.memcg = NULL,
3458 3459 3460
		.gfp_mask = gfp_mask,
		.order = order,
	};
3461 3462
	struct page *page;

3463 3464 3465
	*did_some_progress = 0;

	/*
3466 3467
	 * Acquire the oom lock.  If that fails, somebody else is
	 * making progress for us.
3468
	 */
3469
	if (!mutex_trylock(&oom_lock)) {
3470
		*did_some_progress = 1;
3471
		schedule_timeout_uninterruptible(1);
L
Linus Torvalds 已提交
3472 3473
		return NULL;
	}
3474

3475 3476 3477
	/*
	 * Go through the zonelist yet one more time, keep very high watermark
	 * here, this is only to catch a parallel oom killing, we must fail if
3478 3479 3480
	 * we're still under heavy pressure. But make sure that this reclaim
	 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
	 * allocation which will never fail due to oom_lock already held.
3481
	 */
3482 3483 3484
	page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
				      ~__GFP_DIRECT_RECLAIM, order,
				      ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
R
Rohit Seth 已提交
3485
	if (page)
3486 3487
		goto out;

3488 3489 3490 3491 3492 3493
	/* Coredumps can quickly deplete all memory reserves */
	if (current->flags & PF_DUMPCORE)
		goto out;
	/* The OOM killer will not help higher order allocs */
	if (order > PAGE_ALLOC_COSTLY_ORDER)
		goto out;
3494 3495 3496 3497 3498 3499 3500 3501
	/*
	 * We have already exhausted all our reclaim opportunities without any
	 * success so it is time to admit defeat. We will skip the OOM killer
	 * because it is very likely that the caller has a more reasonable
	 * fallback than shooting a random task.
	 */
	if (gfp_mask & __GFP_RETRY_MAYFAIL)
		goto out;
3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519
	/* The OOM killer does not needlessly kill tasks for lowmem */
	if (ac->high_zoneidx < ZONE_NORMAL)
		goto out;
	if (pm_suspended_storage())
		goto out;
	/*
	 * XXX: GFP_NOFS allocations should rather fail than rely on
	 * other request to make a forward progress.
	 * We are in an unfortunate situation where out_of_memory cannot
	 * do much for this context but let's try it to at least get
	 * access to memory reserved if the current task is killed (see
	 * out_of_memory). Once filesystems are ready to handle allocation
	 * failures more gracefully we should just bail out here.
	 */

	/* The OOM killer may not free memory on a specific node */
	if (gfp_mask & __GFP_THISNODE)
		goto out;
3520

3521
	/* Exhausted what can be done so it's blame time */
3522
	if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3523
		*did_some_progress = 1;
3524

3525 3526 3527 3528 3529 3530
		/*
		 * Help non-failing allocations by giving them access to memory
		 * reserves
		 */
		if (gfp_mask & __GFP_NOFAIL)
			page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3531 3532
					ALLOC_NO_WATERMARKS, ac);
	}
3533
out:
3534
	mutex_unlock(&oom_lock);
3535 3536 3537
	return page;
}

3538 3539 3540 3541 3542 3543
/*
 * Maximum number of compaction retries wit a progress before OOM
 * killer is consider as the only way to move forward.
 */
#define MAX_COMPACT_RETRIES 16

3544 3545 3546 3547
#ifdef CONFIG_COMPACTION
/* Try memory compaction for high-order allocations before reclaim */
static struct page *
__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3548
		unsigned int alloc_flags, const struct alloc_context *ac,
3549
		enum compact_priority prio, enum compact_result *compact_result)
3550
{
3551
	struct page *page;
3552
	unsigned int noreclaim_flag;
3553 3554

	if (!order)
3555 3556
		return NULL;

3557
	noreclaim_flag = memalloc_noreclaim_save();
3558
	*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3559
									prio);
3560
	memalloc_noreclaim_restore(noreclaim_flag);
3561

3562
	if (*compact_result <= COMPACT_INACTIVE)
3563
		return NULL;
3564

3565 3566 3567 3568 3569
	/*
	 * At least in one zone compaction wasn't deferred or skipped, so let's
	 * count a compaction stall
	 */
	count_vm_event(COMPACTSTALL);
3570

3571
	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3572

3573 3574
	if (page) {
		struct zone *zone = page_zone(page);
3575

3576 3577 3578 3579 3580
		zone->compact_blockskip_flush = false;
		compaction_defer_reset(zone, order, true);
		count_vm_event(COMPACTSUCCESS);
		return page;
	}
3581

3582 3583 3584 3585 3586
	/*
	 * It's bad if compaction run occurs and fails. The most likely reason
	 * is that pages exist, but not enough to satisfy watermarks.
	 */
	count_vm_event(COMPACTFAIL);
3587

3588
	cond_resched();
3589 3590 3591

	return NULL;
}
3592

3593 3594 3595 3596
static inline bool
should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
		     enum compact_result compact_result,
		     enum compact_priority *compact_priority,
3597
		     int *compaction_retries)
3598 3599
{
	int max_retries = MAX_COMPACT_RETRIES;
3600
	int min_priority;
3601 3602 3603
	bool ret = false;
	int retries = *compaction_retries;
	enum compact_priority priority = *compact_priority;
3604 3605 3606 3607

	if (!order)
		return false;

3608 3609 3610
	if (compaction_made_progress(compact_result))
		(*compaction_retries)++;

3611 3612 3613 3614 3615
	/*
	 * compaction considers all the zone as desperately out of memory
	 * so it doesn't really make much sense to retry except when the
	 * failure could be caused by insufficient priority
	 */
3616 3617
	if (compaction_failed(compact_result))
		goto check_priority;
3618 3619 3620 3621 3622 3623 3624

	/*
	 * make sure the compaction wasn't deferred or didn't bail out early
	 * due to locks contention before we declare that we should give up.
	 * But do not retry if the given zonelist is not suitable for
	 * compaction.
	 */
3625 3626 3627 3628
	if (compaction_withdrawn(compact_result)) {
		ret = compaction_zonelist_suitable(ac, order, alloc_flags);
		goto out;
	}
3629 3630

	/*
3631
	 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
3632 3633 3634 3635 3636 3637 3638 3639
	 * costly ones because they are de facto nofail and invoke OOM
	 * killer to move on while costly can fail and users are ready
	 * to cope with that. 1/4 retries is rather arbitrary but we
	 * would need much more detailed feedback from compaction to
	 * make a better decision.
	 */
	if (order > PAGE_ALLOC_COSTLY_ORDER)
		max_retries /= 4;
3640 3641 3642 3643
	if (*compaction_retries <= max_retries) {
		ret = true;
		goto out;
	}
3644

3645 3646 3647 3648 3649
	/*
	 * Make sure there are attempts at the highest priority if we exhausted
	 * all retries or failed at the lower priorities.
	 */
check_priority:
3650 3651
	min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
			MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3652

3653
	if (*compact_priority > min_priority) {
3654 3655
		(*compact_priority)--;
		*compaction_retries = 0;
3656
		ret = true;
3657
	}
3658 3659 3660
out:
	trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
	return ret;
3661
}
3662 3663 3664
#else
static inline struct page *
__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3665
		unsigned int alloc_flags, const struct alloc_context *ac,
3666
		enum compact_priority prio, enum compact_result *compact_result)
3667
{
3668
	*compact_result = COMPACT_SKIPPED;
3669 3670
	return NULL;
}
3671 3672

static inline bool
3673 3674
should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
		     enum compact_result compact_result,
3675
		     enum compact_priority *compact_priority,
3676
		     int *compaction_retries)
3677
{
3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695
	struct zone *zone;
	struct zoneref *z;

	if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
		return false;

	/*
	 * There are setups with compaction disabled which would prefer to loop
	 * inside the allocator rather than hit the oom killer prematurely.
	 * Let's give them a good hope and keep retrying while the order-0
	 * watermarks are OK.
	 */
	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
					ac->nodemask) {
		if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
					ac_classzone_idx(ac), alloc_flags))
			return true;
	}
3696 3697
	return false;
}
3698
#endif /* CONFIG_COMPACTION */
3699

3700
#ifdef CONFIG_LOCKDEP
3701
static struct lockdep_map __fs_reclaim_map =
3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712
	STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);

static bool __need_fs_reclaim(gfp_t gfp_mask)
{
	gfp_mask = current_gfp_context(gfp_mask);

	/* no reclaim without waiting on it */
	if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
		return false;

	/* this guy won't enter reclaim */
T
Tetsuo Handa 已提交
3713
	if (current->flags & PF_MEMALLOC)
3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725
		return false;

	/* We're only interested __GFP_FS allocations for now */
	if (!(gfp_mask & __GFP_FS))
		return false;

	if (gfp_mask & __GFP_NOLOCKDEP)
		return false;

	return true;
}

3726 3727 3728 3729 3730 3731 3732 3733 3734 3735
void __fs_reclaim_acquire(void)
{
	lock_map_acquire(&__fs_reclaim_map);
}

void __fs_reclaim_release(void)
{
	lock_map_release(&__fs_reclaim_map);
}

3736 3737 3738
void fs_reclaim_acquire(gfp_t gfp_mask)
{
	if (__need_fs_reclaim(gfp_mask))
3739
		__fs_reclaim_acquire();
3740 3741 3742 3743 3744 3745
}
EXPORT_SYMBOL_GPL(fs_reclaim_acquire);

void fs_reclaim_release(gfp_t gfp_mask)
{
	if (__need_fs_reclaim(gfp_mask))
3746
		__fs_reclaim_release();
3747 3748 3749 3750
}
EXPORT_SYMBOL_GPL(fs_reclaim_release);
#endif

3751 3752
/* Perform direct synchronous page reclaim */
static int
3753 3754
__perform_reclaim(gfp_t gfp_mask, unsigned int order,
					const struct alloc_context *ac)
3755 3756
{
	struct reclaim_state reclaim_state;
3757
	int progress;
3758
	unsigned int noreclaim_flag;
3759 3760 3761 3762 3763

	cond_resched();

	/* We now go into synchronous reclaim */
	cpuset_memory_pressure_bump();
3764
	fs_reclaim_acquire(gfp_mask);
3765
	noreclaim_flag = memalloc_noreclaim_save();
3766
	reclaim_state.reclaimed_slab = 0;
3767
	current->reclaim_state = &reclaim_state;
3768

3769 3770
	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
								ac->nodemask);
3771

3772
	current->reclaim_state = NULL;
3773
	memalloc_noreclaim_restore(noreclaim_flag);
3774
	fs_reclaim_release(gfp_mask);
3775 3776 3777

	cond_resched();

3778 3779 3780 3781 3782 3783
	return progress;
}

/* The really slow allocator path where we enter direct reclaim */
static inline struct page *
__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
3784
		unsigned int alloc_flags, const struct alloc_context *ac,
3785
		unsigned long *did_some_progress)
3786 3787 3788 3789
{
	struct page *page = NULL;
	bool drained = false;

3790
	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
3791 3792
	if (unlikely(!(*did_some_progress)))
		return NULL;
3793

3794
retry:
3795
	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3796 3797 3798

	/*
	 * If an allocation failed after direct reclaim, it could be because
3799 3800
	 * pages are pinned on the per-cpu lists or in high alloc reserves.
	 * Shrink them them and try again
3801 3802
	 */
	if (!page && !drained) {
3803
		unreserve_highatomic_pageblock(ac, false);
3804
		drain_all_pages(NULL);
3805 3806 3807 3808
		drained = true;
		goto retry;
	}

3809 3810 3811
	return page;
}

3812 3813
static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
			     const struct alloc_context *ac)
3814 3815 3816
{
	struct zoneref *z;
	struct zone *zone;
3817
	pg_data_t *last_pgdat = NULL;
3818
	enum zone_type high_zoneidx = ac->high_zoneidx;
3819

3820 3821
	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, high_zoneidx,
					ac->nodemask) {
3822
		if (last_pgdat != zone->zone_pgdat)
3823
			wakeup_kswapd(zone, gfp_mask, order, high_zoneidx);
3824 3825
		last_pgdat = zone->zone_pgdat;
	}
3826 3827
}

3828
static inline unsigned int
3829 3830
gfp_to_alloc_flags(gfp_t gfp_mask)
{
3831
	unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
L
Linus Torvalds 已提交
3832

3833
	/* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
3834
	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
3835

3836 3837 3838 3839
	/*
	 * The caller may dip into page reserves a bit more if the caller
	 * cannot run direct reclaim, or if the caller has realtime scheduling
	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
3840
	 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
3841
	 */
3842
	alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
L
Linus Torvalds 已提交
3843

3844
	if (gfp_mask & __GFP_ATOMIC) {
3845
		/*
3846 3847
		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
		 * if it can't schedule.
3848
		 */
3849
		if (!(gfp_mask & __GFP_NOMEMALLOC))
3850
			alloc_flags |= ALLOC_HARDER;
3851
		/*
3852
		 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
3853
		 * comment for __cpuset_node_allowed().
3854
		 */
3855
		alloc_flags &= ~ALLOC_CPUSET;
3856
	} else if (unlikely(rt_task(current)) && !in_interrupt())
3857 3858
		alloc_flags |= ALLOC_HARDER;

3859 3860 3861 3862
#ifdef CONFIG_CMA
	if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
		alloc_flags |= ALLOC_CMA;
#endif
3863 3864 3865
	return alloc_flags;
}

3866
static bool oom_reserves_allowed(struct task_struct *tsk)
3867
{
3868 3869 3870 3871 3872 3873 3874 3875
	if (!tsk_is_oom_victim(tsk))
		return false;

	/*
	 * !MMU doesn't have oom reaper so give access to memory reserves
	 * only to the thread with TIF_MEMDIE set
	 */
	if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
3876 3877
		return false;

3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888
	return true;
}

/*
 * Distinguish requests which really need access to full memory
 * reserves from oom victims which can live with a portion of it
 */
static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
{
	if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
		return 0;
3889
	if (gfp_mask & __GFP_MEMALLOC)
3890
		return ALLOC_NO_WATERMARKS;
3891
	if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3892 3893 3894 3895 3896 3897 3898
		return ALLOC_NO_WATERMARKS;
	if (!in_interrupt()) {
		if (current->flags & PF_MEMALLOC)
			return ALLOC_NO_WATERMARKS;
		else if (oom_reserves_allowed(current))
			return ALLOC_OOM;
	}
3899

3900 3901 3902 3903 3904 3905
	return 0;
}

bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
{
	return !!__gfp_pfmemalloc_flags(gfp_mask);
3906 3907
}

M
Michal Hocko 已提交
3908 3909 3910
/*
 * Checks whether it makes sense to retry the reclaim to make a forward progress
 * for the given allocation request.
3911 3912 3913 3914
 *
 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
 * without success, or when we couldn't even meet the watermark if we
 * reclaimed all remaining pages on the LRU lists.
M
Michal Hocko 已提交
3915 3916 3917 3918 3919 3920
 *
 * Returns true if a retry is viable or false to enter the oom path.
 */
static inline bool
should_reclaim_retry(gfp_t gfp_mask, unsigned order,
		     struct alloc_context *ac, int alloc_flags,
3921
		     bool did_some_progress, int *no_progress_loops)
M
Michal Hocko 已提交
3922 3923 3924 3925
{
	struct zone *zone;
	struct zoneref *z;

3926 3927 3928 3929 3930 3931 3932 3933 3934 3935
	/*
	 * Costly allocations might have made a progress but this doesn't mean
	 * their order will become available due to high fragmentation so
	 * always increment the no progress counter for them
	 */
	if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
		*no_progress_loops = 0;
	else
		(*no_progress_loops)++;

M
Michal Hocko 已提交
3936 3937 3938 3939
	/*
	 * Make sure we converge to OOM if we cannot make any progress
	 * several times in the row.
	 */
3940 3941
	if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
		/* Before OOM, exhaust highatomic_reserve */
3942
		return unreserve_highatomic_pageblock(ac, true);
3943
	}
M
Michal Hocko 已提交
3944

3945 3946 3947 3948 3949
	/*
	 * Keep reclaiming pages while there is a chance this will lead
	 * somewhere.  If none of the target zones can satisfy our allocation
	 * request even if all reclaimable pages are considered then we are
	 * screwed and have to go OOM.
M
Michal Hocko 已提交
3950 3951 3952 3953
	 */
	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
					ac->nodemask) {
		unsigned long available;
3954
		unsigned long reclaimable;
3955 3956
		unsigned long min_wmark = min_wmark_pages(zone);
		bool wmark;
M
Michal Hocko 已提交
3957

3958 3959
		available = reclaimable = zone_reclaimable_pages(zone);
		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
M
Michal Hocko 已提交
3960 3961

		/*
3962 3963
		 * Would the allocation succeed if we reclaimed all
		 * reclaimable pages?
M
Michal Hocko 已提交
3964
		 */
3965 3966 3967 3968 3969
		wmark = __zone_watermark_ok(zone, order, min_wmark,
				ac_classzone_idx(ac), alloc_flags, available);
		trace_reclaim_retry_zone(z, order, reclaimable,
				available, min_wmark, *no_progress_loops, wmark);
		if (wmark) {
3970 3971 3972 3973 3974 3975 3976
			/*
			 * If we didn't make any progress and have a lot of
			 * dirty + writeback pages then we should wait for
			 * an IO to complete to slow down the reclaim and
			 * prevent from pre mature OOM
			 */
			if (!did_some_progress) {
3977
				unsigned long write_pending;
3978

3979 3980
				write_pending = zone_page_state_snapshot(zone,
							NR_ZONE_WRITE_PENDING);
3981

3982
				if (2 * write_pending > reclaimable) {
3983 3984 3985 3986
					congestion_wait(BLK_RW_ASYNC, HZ/10);
					return true;
				}
			}
3987

3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001
			/*
			 * Memory allocation/reclaim might be called from a WQ
			 * context and the current implementation of the WQ
			 * concurrency control doesn't recognize that
			 * a particular WQ is congested if the worker thread is
			 * looping without ever sleeping. Therefore we have to
			 * do a short sleep here rather than calling
			 * cond_resched().
			 */
			if (current->flags & PF_WQ_WORKER)
				schedule_timeout_uninterruptible(1);
			else
				cond_resched();

M
Michal Hocko 已提交
4002 4003 4004 4005 4006 4007 4008
			return true;
		}
	}

	return false;
}

4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041
static inline bool
check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
{
	/*
	 * It's possible that cpuset's mems_allowed and the nodemask from
	 * mempolicy don't intersect. This should be normally dealt with by
	 * policy_nodemask(), but it's possible to race with cpuset update in
	 * such a way the check therein was true, and then it became false
	 * before we got our cpuset_mems_cookie here.
	 * This assumes that for all allocations, ac->nodemask can come only
	 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
	 * when it does not intersect with the cpuset restrictions) or the
	 * caller can deal with a violated nodemask.
	 */
	if (cpusets_enabled() && ac->nodemask &&
			!cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
		ac->nodemask = NULL;
		return true;
	}

	/*
	 * When updating a task's mems_allowed or mempolicy nodemask, it is
	 * possible to race with parallel threads in such a way that our
	 * allocation can fail while the mask is being updated. If we are about
	 * to fail, check if the cpuset changed during allocation and if so,
	 * retry.
	 */
	if (read_mems_allowed_retry(cpuset_mems_cookie))
		return true;

	return false;
}

4042 4043
static inline struct page *
__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4044
						struct alloc_context *ac)
4045
{
4046
	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4047
	const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4048
	struct page *page = NULL;
4049
	unsigned int alloc_flags;
4050
	unsigned long did_some_progress;
4051
	enum compact_priority compact_priority;
4052
	enum compact_result compact_result;
4053 4054 4055
	int compaction_retries;
	int no_progress_loops;
	unsigned int cpuset_mems_cookie;
4056
	int reserve_flags;
L
Linus Torvalds 已提交
4057

4058 4059 4060 4061 4062 4063
	/*
	 * In the slowpath, we sanity check order to avoid ever trying to
	 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
	 * be using allocators in order of preference for an area that is
	 * too large.
	 */
4064 4065
	if (order >= MAX_ORDER) {
		WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
4066
		return NULL;
4067
	}
L
Linus Torvalds 已提交
4068

4069 4070 4071 4072 4073 4074 4075 4076
	/*
	 * We also sanity check to catch abuse of atomic reserves being used by
	 * callers that are not in atomic context.
	 */
	if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
				(__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
		gfp_mask &= ~__GFP_ATOMIC;

4077 4078 4079 4080 4081
retry_cpuset:
	compaction_retries = 0;
	no_progress_loops = 0;
	compact_priority = DEF_COMPACT_PRIORITY;
	cpuset_mems_cookie = read_mems_allowed_begin();
4082 4083 4084 4085 4086 4087 4088 4089

	/*
	 * The fast path uses conservative alloc_flags to succeed only until
	 * kswapd needs to be woken up, and to avoid the cost of setting up
	 * alloc_flags precisely. So we do that now.
	 */
	alloc_flags = gfp_to_alloc_flags(gfp_mask);

4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100
	/*
	 * We need to recalculate the starting point for the zonelist iterator
	 * because we might have used different nodemask in the fast path, or
	 * there was a cpuset modification and we are retrying - otherwise we
	 * could end up iterating over non-eligible zones endlessly.
	 */
	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
					ac->high_zoneidx, ac->nodemask);
	if (!ac->preferred_zoneref->zone)
		goto nopage;

4101
	if (gfp_mask & __GFP_KSWAPD_RECLAIM)
4102
		wake_all_kswapds(order, gfp_mask, ac);
4103 4104 4105 4106 4107 4108 4109 4110 4111

	/*
	 * The adjusted alloc_flags might result in immediate success, so try
	 * that first
	 */
	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
	if (page)
		goto got_pg;

4112 4113
	/*
	 * For costly allocations, try direct compaction first, as it's likely
4114 4115 4116 4117 4118 4119
	 * that we have enough base pages and don't need to reclaim. For non-
	 * movable high-order allocations, do that as well, as compaction will
	 * try prevent permanent fragmentation by migrating from blocks of the
	 * same migratetype.
	 * Don't try this for allocations that are allowed to ignore
	 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4120
	 */
4121 4122 4123 4124
	if (can_direct_reclaim &&
			(costly_order ||
			   (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
			&& !gfp_pfmemalloc_allowed(gfp_mask)) {
4125 4126
		page = __alloc_pages_direct_compact(gfp_mask, order,
						alloc_flags, ac,
4127
						INIT_COMPACT_PRIORITY,
4128 4129 4130 4131
						&compact_result);
		if (page)
			goto got_pg;

4132 4133 4134 4135
		/*
		 * Checks for costly allocations with __GFP_NORETRY, which
		 * includes THP page fault allocations
		 */
4136
		if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148
			/*
			 * If compaction is deferred for high-order allocations,
			 * it is because sync compaction recently failed. If
			 * this is the case and the caller requested a THP
			 * allocation, we do not want to heavily disrupt the
			 * system, so we fail the allocation instead of entering
			 * direct reclaim.
			 */
			if (compact_result == COMPACT_DEFERRED)
				goto nopage;

			/*
4149 4150
			 * Looks like reclaim/compaction is worth trying, but
			 * sync compaction could be very expensive, so keep
4151
			 * using async compaction.
4152
			 */
4153
			compact_priority = INIT_COMPACT_PRIORITY;
4154 4155
		}
	}
4156

4157
retry:
4158
	/* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4159
	if (gfp_mask & __GFP_KSWAPD_RECLAIM)
4160
		wake_all_kswapds(order, gfp_mask, ac);
4161

4162 4163 4164
	reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
	if (reserve_flags)
		alloc_flags = reserve_flags;
4165

4166
	/*
4167 4168 4169
	 * Reset the nodemask and zonelist iterators if memory policies can be
	 * ignored. These allocations are high priority and system rather than
	 * user oriented.
4170
	 */
4171
	if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4172
		ac->nodemask = NULL;
4173 4174 4175 4176
		ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
					ac->high_zoneidx, ac->nodemask);
	}

4177
	/* Attempt with potentially adjusted zonelist and alloc_flags */
4178
	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
R
Rohit Seth 已提交
4179 4180
	if (page)
		goto got_pg;
L
Linus Torvalds 已提交
4181

4182
	/* Caller is not willing to reclaim, we can't balance anything */
4183
	if (!can_direct_reclaim)
L
Linus Torvalds 已提交
4184 4185
		goto nopage;

4186 4187
	/* Avoid recursion of direct reclaim */
	if (current->flags & PF_MEMALLOC)
4188 4189
		goto nopage;

4190 4191 4192 4193 4194 4195 4196
	/* Try direct reclaim and then allocating */
	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
							&did_some_progress);
	if (page)
		goto got_pg;

	/* Try direct compaction and then allocating */
4197
	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4198
					compact_priority, &compact_result);
4199 4200
	if (page)
		goto got_pg;
4201

4202 4203
	/* Do not loop if specifically requested */
	if (gfp_mask & __GFP_NORETRY)
4204
		goto nopage;
4205

M
Michal Hocko 已提交
4206 4207
	/*
	 * Do not retry costly high order allocations unless they are
4208
	 * __GFP_RETRY_MAYFAIL
M
Michal Hocko 已提交
4209
	 */
4210
	if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
4211
		goto nopage;
M
Michal Hocko 已提交
4212 4213

	if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4214
				 did_some_progress > 0, &no_progress_loops))
M
Michal Hocko 已提交
4215 4216
		goto retry;

4217 4218 4219 4220 4221 4222 4223
	/*
	 * It doesn't make any sense to retry for the compaction if the order-0
	 * reclaim is not able to make any progress because the current
	 * implementation of the compaction depends on the sufficient amount
	 * of free memory (see __compaction_suitable)
	 */
	if (did_some_progress > 0 &&
4224
			should_compact_retry(ac, order, alloc_flags,
4225
				compact_result, &compact_priority,
4226
				&compaction_retries))
4227 4228
		goto retry;

4229 4230 4231

	/* Deal with possible cpuset update races before we start OOM killing */
	if (check_retry_cpuset(cpuset_mems_cookie, ac))
4232 4233
		goto retry_cpuset;

4234 4235 4236 4237 4238
	/* Reclaim has failed us, start killing things */
	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
	if (page)
		goto got_pg;

4239
	/* Avoid allocations with no watermarks from looping endlessly */
4240 4241
	if (tsk_is_oom_victim(current) &&
	    (alloc_flags == ALLOC_OOM ||
4242
	     (gfp_mask & __GFP_NOMEMALLOC)))
4243 4244
		goto nopage;

4245
	/* Retry as long as the OOM killer is making progress */
M
Michal Hocko 已提交
4246 4247
	if (did_some_progress) {
		no_progress_loops = 0;
4248
		goto retry;
M
Michal Hocko 已提交
4249
	}
4250

L
Linus Torvalds 已提交
4251
nopage:
4252 4253
	/* Deal with possible cpuset update races before we fail */
	if (check_retry_cpuset(cpuset_mems_cookie, ac))
4254 4255
		goto retry_cpuset;

4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282
	/*
	 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
	 * we always retry
	 */
	if (gfp_mask & __GFP_NOFAIL) {
		/*
		 * All existing users of the __GFP_NOFAIL are blockable, so warn
		 * of any new users that actually require GFP_NOWAIT
		 */
		if (WARN_ON_ONCE(!can_direct_reclaim))
			goto fail;

		/*
		 * PF_MEMALLOC request from this context is rather bizarre
		 * because we cannot reclaim anything and only can loop waiting
		 * for somebody to do a work for us
		 */
		WARN_ON_ONCE(current->flags & PF_MEMALLOC);

		/*
		 * non failing costly orders are a hard requirement which we
		 * are not prepared for much so let's warn about these users
		 * so that we can identify them and convert them to something
		 * else.
		 */
		WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);

4283 4284 4285 4286 4287 4288 4289 4290 4291 4292
		/*
		 * Help non-failing allocations by giving them access to memory
		 * reserves but do not use ALLOC_NO_WATERMARKS because this
		 * could deplete whole memory reserves which would just make
		 * the situation worse
		 */
		page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
		if (page)
			goto got_pg;

4293 4294 4295 4296
		cond_resched();
		goto retry;
	}
fail:
4297
	warn_alloc(gfp_mask, ac->nodemask,
4298
			"page allocation failure: order:%u", order);
L
Linus Torvalds 已提交
4299
got_pg:
4300
	return page;
L
Linus Torvalds 已提交
4301
}
4302

4303
static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4304
		int preferred_nid, nodemask_t *nodemask,
4305 4306
		struct alloc_context *ac, gfp_t *alloc_mask,
		unsigned int *alloc_flags)
4307
{
4308
	ac->high_zoneidx = gfp_zone(gfp_mask);
4309
	ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4310 4311
	ac->nodemask = nodemask;
	ac->migratetype = gfpflags_to_migratetype(gfp_mask);
4312

4313
	if (cpusets_enabled()) {
4314 4315 4316
		*alloc_mask |= __GFP_HARDWALL;
		if (!ac->nodemask)
			ac->nodemask = &cpuset_current_mems_allowed;
4317 4318
		else
			*alloc_flags |= ALLOC_CPUSET;
4319 4320
	}

4321 4322
	fs_reclaim_acquire(gfp_mask);
	fs_reclaim_release(gfp_mask);
4323

4324
	might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
4325 4326

	if (should_fail_alloc_page(gfp_mask, order))
4327
		return false;
4328

4329 4330 4331
	if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE)
		*alloc_flags |= ALLOC_CMA;

4332 4333
	return true;
}
4334

4335
/* Determine whether to spread dirty pages and what the first usable zone */
4336
static inline void finalise_ac(gfp_t gfp_mask, struct alloc_context *ac)
4337
{
4338
	/* Dirty zone balancing only done in the fast path */
4339
	ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4340

4341 4342 4343 4344 4345
	/*
	 * The preferred zone is used for statistics but crucially it is
	 * also used as the starting point for the zonelist iterator. It
	 * may get reset for allocations that ignore memory policies.
	 */
4346 4347 4348 4349 4350 4351 4352 4353
	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
					ac->high_zoneidx, ac->nodemask);
}

/*
 * This is the 'heart' of the zoned buddy allocator.
 */
struct page *
4354 4355
__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
							nodemask_t *nodemask)
4356 4357 4358
{
	struct page *page;
	unsigned int alloc_flags = ALLOC_WMARK_LOW;
4359
	gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
4360 4361 4362
	struct alloc_context ac = { };

	gfp_mask &= gfp_allowed_mask;
4363
	alloc_mask = gfp_mask;
4364
	if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
4365 4366
		return NULL;

4367
	finalise_ac(gfp_mask, &ac);
4368

4369
	/* First allocation attempt */
4370
	page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4371 4372
	if (likely(page))
		goto out;
4373

4374
	/*
4375 4376 4377 4378
	 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
	 * resp. GFP_NOIO which has to be inherited for all allocation requests
	 * from a particular context which has been marked by
	 * memalloc_no{fs,io}_{save,restore}.
4379
	 */
4380
	alloc_mask = current_gfp_context(gfp_mask);
4381
	ac.spread_dirty_pages = false;
4382

4383 4384 4385 4386
	/*
	 * Restore the original nodemask if it was potentially replaced with
	 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
	 */
4387
	if (unlikely(ac.nodemask != nodemask))
4388
		ac.nodemask = nodemask;
4389

4390
	page = __alloc_pages_slowpath(alloc_mask, order, &ac);
4391

4392
out:
4393 4394 4395 4396
	if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
	    unlikely(memcg_kmem_charge(page, gfp_mask, order) != 0)) {
		__free_pages(page, order);
		page = NULL;
4397 4398
	}

4399 4400
	trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);

4401
	return page;
L
Linus Torvalds 已提交
4402
}
4403
EXPORT_SYMBOL(__alloc_pages_nodemask);
L
Linus Torvalds 已提交
4404 4405

/*
4406 4407 4408
 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
 * address cannot represent highmem pages. Use alloc_pages and then kmap if
 * you need to access high mem.
L
Linus Torvalds 已提交
4409
 */
H
Harvey Harrison 已提交
4410
unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
L
Linus Torvalds 已提交
4411
{
4412 4413
	struct page *page;

4414
	page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
L
Linus Torvalds 已提交
4415 4416 4417 4418 4419 4420
	if (!page)
		return 0;
	return (unsigned long) page_address(page);
}
EXPORT_SYMBOL(__get_free_pages);

H
Harvey Harrison 已提交
4421
unsigned long get_zeroed_page(gfp_t gfp_mask)
L
Linus Torvalds 已提交
4422
{
4423
	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
L
Linus Torvalds 已提交
4424 4425 4426
}
EXPORT_SYMBOL(get_zeroed_page);

H
Harvey Harrison 已提交
4427
void __free_pages(struct page *page, unsigned int order)
L
Linus Torvalds 已提交
4428
{
N
Nick Piggin 已提交
4429
	if (put_page_testzero(page)) {
L
Linus Torvalds 已提交
4430
		if (order == 0)
4431
			free_unref_page(page);
L
Linus Torvalds 已提交
4432 4433 4434 4435 4436 4437 4438
		else
			__free_pages_ok(page, order);
	}
}

EXPORT_SYMBOL(__free_pages);

H
Harvey Harrison 已提交
4439
void free_pages(unsigned long addr, unsigned int order)
L
Linus Torvalds 已提交
4440 4441
{
	if (addr != 0) {
N
Nick Piggin 已提交
4442
		VM_BUG_ON(!virt_addr_valid((void *)addr));
L
Linus Torvalds 已提交
4443 4444 4445 4446 4447 4448
		__free_pages(virt_to_page((void *)addr), order);
	}
}

EXPORT_SYMBOL(free_pages);

4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459
/*
 * Page Fragment:
 *  An arbitrary-length arbitrary-offset area of memory which resides
 *  within a 0 or higher order page.  Multiple fragments within that page
 *  are individually refcounted, in the page's reference counter.
 *
 * The page_frag functions below provide a simple allocation framework for
 * page fragments.  This is used by the network stack and network device
 * drivers to provide a backing region of memory for use as either an
 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
 */
4460 4461
static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
					     gfp_t gfp_mask)
4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480
{
	struct page *page = NULL;
	gfp_t gfp = gfp_mask;

#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
	gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
		    __GFP_NOMEMALLOC;
	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
				PAGE_FRAG_CACHE_MAX_ORDER);
	nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
#endif
	if (unlikely(!page))
		page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);

	nc->va = page ? page_address(page) : NULL;

	return page;
}

4481
void __page_frag_cache_drain(struct page *page, unsigned int count)
4482 4483 4484 4485
{
	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);

	if (page_ref_sub_and_test(page, count)) {
4486 4487
		unsigned int order = compound_order(page);

4488
		if (order == 0)
4489
			free_unref_page(page);
4490 4491 4492 4493
		else
			__free_pages_ok(page, order);
	}
}
4494
EXPORT_SYMBOL(__page_frag_cache_drain);
4495

4496 4497
void *page_frag_alloc(struct page_frag_cache *nc,
		      unsigned int fragsz, gfp_t gfp_mask)
4498 4499 4500 4501 4502 4503 4504
{
	unsigned int size = PAGE_SIZE;
	struct page *page;
	int offset;

	if (unlikely(!nc->va)) {
refill:
4505
		page = __page_frag_cache_refill(nc, gfp_mask);
4506 4507 4508 4509 4510 4511 4512 4513 4514 4515
		if (!page)
			return NULL;

#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
		/* if size can vary use size else just use PAGE_SIZE */
		size = nc->size;
#endif
		/* Even if we own the page, we do not use atomic_set().
		 * This would break get_page_unless_zero() users.
		 */
4516
		page_ref_add(page, size - 1);
4517 4518

		/* reset page count bias and offset to start of new frag */
4519
		nc->pfmemalloc = page_is_pfmemalloc(page);
4520 4521 4522 4523 4524 4525 4526 4527
		nc->pagecnt_bias = size;
		nc->offset = size;
	}

	offset = nc->offset - fragsz;
	if (unlikely(offset < 0)) {
		page = virt_to_page(nc->va);

4528
		if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
4529 4530 4531 4532 4533 4534 4535
			goto refill;

#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
		/* if size can vary use size else just use PAGE_SIZE */
		size = nc->size;
#endif
		/* OK, page count is 0, we can safely set it */
4536
		set_page_count(page, size);
4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547

		/* reset page count bias and offset to start of new frag */
		nc->pagecnt_bias = size;
		offset = size - fragsz;
	}

	nc->pagecnt_bias--;
	nc->offset = offset;

	return nc->va + offset;
}
4548
EXPORT_SYMBOL(page_frag_alloc);
4549 4550 4551 4552

/*
 * Frees a page fragment allocated out of either a compound or order 0 page.
 */
4553
void page_frag_free(void *addr)
4554 4555 4556 4557 4558 4559
{
	struct page *page = virt_to_head_page(addr);

	if (unlikely(put_page_testzero(page)))
		__free_pages_ok(page, compound_order(page));
}
4560
EXPORT_SYMBOL(page_frag_free);
4561

4562 4563
static void *make_alloc_exact(unsigned long addr, unsigned int order,
		size_t size)
A
Andi Kleen 已提交
4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577
{
	if (addr) {
		unsigned long alloc_end = addr + (PAGE_SIZE << order);
		unsigned long used = addr + PAGE_ALIGN(size);

		split_page(virt_to_page((void *)addr), order);
		while (used < alloc_end) {
			free_page(used);
			used += PAGE_SIZE;
		}
	}
	return (void *)addr;
}

4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596
/**
 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
 * @size: the number of bytes to allocate
 * @gfp_mask: GFP flags for the allocation
 *
 * This function is similar to alloc_pages(), except that it allocates the
 * minimum number of pages to satisfy the request.  alloc_pages() can only
 * allocate memory in power-of-two pages.
 *
 * This function is also limited by MAX_ORDER.
 *
 * Memory allocated by this function must be released by free_pages_exact().
 */
void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
{
	unsigned int order = get_order(size);
	unsigned long addr;

	addr = __get_free_pages(gfp_mask, order);
A
Andi Kleen 已提交
4597
	return make_alloc_exact(addr, order, size);
4598 4599 4600
}
EXPORT_SYMBOL(alloc_pages_exact);

A
Andi Kleen 已提交
4601 4602 4603
/**
 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
 *			   pages on a node.
4604
 * @nid: the preferred node ID where memory should be allocated
A
Andi Kleen 已提交
4605 4606 4607 4608 4609 4610
 * @size: the number of bytes to allocate
 * @gfp_mask: GFP flags for the allocation
 *
 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
 * back.
 */
4611
void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
A
Andi Kleen 已提交
4612
{
4613
	unsigned int order = get_order(size);
A
Andi Kleen 已提交
4614 4615 4616 4617 4618 4619
	struct page *p = alloc_pages_node(nid, gfp_mask, order);
	if (!p)
		return NULL;
	return make_alloc_exact((unsigned long)page_address(p), order, size);
}

4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638
/**
 * free_pages_exact - release memory allocated via alloc_pages_exact()
 * @virt: the value returned by alloc_pages_exact.
 * @size: size of allocation, same value as passed to alloc_pages_exact().
 *
 * Release the memory allocated by a previous call to alloc_pages_exact.
 */
void free_pages_exact(void *virt, size_t size)
{
	unsigned long addr = (unsigned long)virt;
	unsigned long end = addr + PAGE_ALIGN(size);

	while (addr < end) {
		free_page(addr);
		addr += PAGE_SIZE;
	}
}
EXPORT_SYMBOL(free_pages_exact);

4639 4640 4641 4642 4643 4644 4645
/**
 * nr_free_zone_pages - count number of pages beyond high watermark
 * @offset: The zone index of the highest zone
 *
 * nr_free_zone_pages() counts the number of counts pages which are beyond the
 * high watermark within all zones at or below a given zone index.  For each
 * zone, the number of pages is calculated as:
4646 4647
 *
 *     nr_free_zone_pages = managed_pages - high_pages
4648
 */
4649
static unsigned long nr_free_zone_pages(int offset)
L
Linus Torvalds 已提交
4650
{
4651
	struct zoneref *z;
4652 4653
	struct zone *zone;

4654
	/* Just pick one node, since fallback list is circular */
4655
	unsigned long sum = 0;
L
Linus Torvalds 已提交
4656

4657
	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
L
Linus Torvalds 已提交
4658

4659
	for_each_zone_zonelist(zone, z, zonelist, offset) {
4660
		unsigned long size = zone->managed_pages;
4661
		unsigned long high = high_wmark_pages(zone);
4662 4663
		if (size > high)
			sum += size - high;
L
Linus Torvalds 已提交
4664 4665 4666 4667 4668
	}

	return sum;
}

4669 4670 4671 4672 4673
/**
 * nr_free_buffer_pages - count number of pages beyond high watermark
 *
 * nr_free_buffer_pages() counts the number of pages which are beyond the high
 * watermark within ZONE_DMA and ZONE_NORMAL.
L
Linus Torvalds 已提交
4674
 */
4675
unsigned long nr_free_buffer_pages(void)
L
Linus Torvalds 已提交
4676
{
A
Al Viro 已提交
4677
	return nr_free_zone_pages(gfp_zone(GFP_USER));
L
Linus Torvalds 已提交
4678
}
4679
EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
L
Linus Torvalds 已提交
4680

4681 4682 4683 4684 4685
/**
 * nr_free_pagecache_pages - count number of pages beyond high watermark
 *
 * nr_free_pagecache_pages() counts the number of pages which are beyond the
 * high watermark within all zones.
L
Linus Torvalds 已提交
4686
 */
4687
unsigned long nr_free_pagecache_pages(void)
L
Linus Torvalds 已提交
4688
{
M
Mel Gorman 已提交
4689
	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
L
Linus Torvalds 已提交
4690
}
4691 4692

static inline void show_node(struct zone *zone)
L
Linus Torvalds 已提交
4693
{
4694
	if (IS_ENABLED(CONFIG_NUMA))
4695
		printk("Node %d ", zone_to_nid(zone));
L
Linus Torvalds 已提交
4696 4697
}

4698 4699 4700 4701 4702 4703 4704 4705 4706 4707
long si_mem_available(void)
{
	long available;
	unsigned long pagecache;
	unsigned long wmark_low = 0;
	unsigned long pages[NR_LRU_LISTS];
	struct zone *zone;
	int lru;

	for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
4708
		pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
4709 4710 4711 4712 4713 4714 4715 4716

	for_each_zone(zone)
		wmark_low += zone->watermark[WMARK_LOW];

	/*
	 * Estimate the amount of memory available for userspace allocations,
	 * without causing swapping.
	 */
4717
	available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731

	/*
	 * Not all the page cache can be freed, otherwise the system will
	 * start swapping. Assume at least half of the page cache, or the
	 * low watermark worth of cache, needs to stay.
	 */
	pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
	pagecache -= min(pagecache / 2, wmark_low);
	available += pagecache;

	/*
	 * Part of the reclaimable slab consists of items that are in use,
	 * and cannot be freed. Cap this estimate at the low watermark.
	 */
4732 4733 4734
	available += global_node_page_state(NR_SLAB_RECLAIMABLE) -
		     min(global_node_page_state(NR_SLAB_RECLAIMABLE) / 2,
			 wmark_low);
4735

4736 4737 4738 4739 4740 4741 4742
	/*
	 * Part of the kernel memory, which can be released under memory
	 * pressure.
	 */
	available += global_node_page_state(NR_INDIRECTLY_RECLAIMABLE_BYTES) >>
		PAGE_SHIFT;

4743 4744 4745 4746 4747 4748
	if (available < 0)
		available = 0;
	return available;
}
EXPORT_SYMBOL_GPL(si_mem_available);

L
Linus Torvalds 已提交
4749 4750 4751
void si_meminfo(struct sysinfo *val)
{
	val->totalram = totalram_pages;
4752
	val->sharedram = global_node_page_state(NR_SHMEM);
4753
	val->freeram = global_zone_page_state(NR_FREE_PAGES);
L
Linus Torvalds 已提交
4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764
	val->bufferram = nr_blockdev_pages();
	val->totalhigh = totalhigh_pages;
	val->freehigh = nr_free_highpages();
	val->mem_unit = PAGE_SIZE;
}

EXPORT_SYMBOL(si_meminfo);

#ifdef CONFIG_NUMA
void si_meminfo_node(struct sysinfo *val, int nid)
{
4765 4766
	int zone_type;		/* needs to be signed */
	unsigned long managed_pages = 0;
4767 4768
	unsigned long managed_highpages = 0;
	unsigned long free_highpages = 0;
L
Linus Torvalds 已提交
4769 4770
	pg_data_t *pgdat = NODE_DATA(nid);

4771 4772 4773
	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
		managed_pages += pgdat->node_zones[zone_type].managed_pages;
	val->totalram = managed_pages;
4774
	val->sharedram = node_page_state(pgdat, NR_SHMEM);
4775
	val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
4776
#ifdef CONFIG_HIGHMEM
4777 4778 4779 4780 4781 4782 4783 4784 4785 4786
	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
		struct zone *zone = &pgdat->node_zones[zone_type];

		if (is_highmem(zone)) {
			managed_highpages += zone->managed_pages;
			free_highpages += zone_page_state(zone, NR_FREE_PAGES);
		}
	}
	val->totalhigh = managed_highpages;
	val->freehigh = free_highpages;
4787
#else
4788 4789
	val->totalhigh = managed_highpages;
	val->freehigh = free_highpages;
4790
#endif
L
Linus Torvalds 已提交
4791 4792 4793 4794
	val->mem_unit = PAGE_SIZE;
}
#endif

4795
/*
4796 4797
 * Determine whether the node should be displayed or not, depending on whether
 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
4798
 */
4799
static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
4800 4801
{
	if (!(flags & SHOW_MEM_FILTER_NODES))
4802
		return false;
4803

4804 4805 4806 4807 4808 4809 4810 4811 4812
	/*
	 * no node mask - aka implicit memory numa policy. Do not bother with
	 * the synchronization - read_mems_allowed_begin - because we do not
	 * have to be precise here.
	 */
	if (!nodemask)
		nodemask = &cpuset_current_mems_allowed;

	return !node_isset(nid, *nodemask);
4813 4814
}

L
Linus Torvalds 已提交
4815 4816
#define K(x) ((x) << (PAGE_SHIFT-10))

4817 4818 4819 4820 4821
static void show_migration_types(unsigned char type)
{
	static const char types[MIGRATE_TYPES] = {
		[MIGRATE_UNMOVABLE]	= 'U',
		[MIGRATE_MOVABLE]	= 'M',
4822 4823
		[MIGRATE_RECLAIMABLE]	= 'E',
		[MIGRATE_HIGHATOMIC]	= 'H',
4824 4825 4826
#ifdef CONFIG_CMA
		[MIGRATE_CMA]		= 'C',
#endif
4827
#ifdef CONFIG_MEMORY_ISOLATION
4828
		[MIGRATE_ISOLATE]	= 'I',
4829
#endif
4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840
	};
	char tmp[MIGRATE_TYPES + 1];
	char *p = tmp;
	int i;

	for (i = 0; i < MIGRATE_TYPES; i++) {
		if (type & (1 << i))
			*p++ = types[i];
	}

	*p = '\0';
4841
	printk(KERN_CONT "(%s) ", tmp);
4842 4843
}

L
Linus Torvalds 已提交
4844 4845 4846 4847
/*
 * Show free area list (used inside shift_scroll-lock stuff)
 * We also calculate the percentage fragmentation. We do this by counting the
 * memory on each free list with the exception of the first item on the list.
4848 4849 4850 4851
 *
 * Bits in @filter:
 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
 *   cpuset.
L
Linus Torvalds 已提交
4852
 */
4853
void show_free_areas(unsigned int filter, nodemask_t *nodemask)
L
Linus Torvalds 已提交
4854
{
4855
	unsigned long free_pcp = 0;
4856
	int cpu;
L
Linus Torvalds 已提交
4857
	struct zone *zone;
M
Mel Gorman 已提交
4858
	pg_data_t *pgdat;
L
Linus Torvalds 已提交
4859

4860
	for_each_populated_zone(zone) {
4861
		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4862
			continue;
4863

4864 4865
		for_each_online_cpu(cpu)
			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
L
Linus Torvalds 已提交
4866 4867
	}

K
KOSAKI Motohiro 已提交
4868 4869
	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
4870 4871
		" unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
		" slab_reclaimable:%lu slab_unreclaimable:%lu\n"
4872
		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
4873
		" free:%lu free_pcp:%lu free_cma:%lu\n",
M
Mel Gorman 已提交
4874 4875 4876 4877 4878 4879 4880
		global_node_page_state(NR_ACTIVE_ANON),
		global_node_page_state(NR_INACTIVE_ANON),
		global_node_page_state(NR_ISOLATED_ANON),
		global_node_page_state(NR_ACTIVE_FILE),
		global_node_page_state(NR_INACTIVE_FILE),
		global_node_page_state(NR_ISOLATED_FILE),
		global_node_page_state(NR_UNEVICTABLE),
4881 4882 4883
		global_node_page_state(NR_FILE_DIRTY),
		global_node_page_state(NR_WRITEBACK),
		global_node_page_state(NR_UNSTABLE_NFS),
4884 4885
		global_node_page_state(NR_SLAB_RECLAIMABLE),
		global_node_page_state(NR_SLAB_UNRECLAIMABLE),
4886
		global_node_page_state(NR_FILE_MAPPED),
4887
		global_node_page_state(NR_SHMEM),
4888 4889 4890
		global_zone_page_state(NR_PAGETABLE),
		global_zone_page_state(NR_BOUNCE),
		global_zone_page_state(NR_FREE_PAGES),
4891
		free_pcp,
4892
		global_zone_page_state(NR_FREE_CMA_PAGES));
L
Linus Torvalds 已提交
4893

M
Mel Gorman 已提交
4894
	for_each_online_pgdat(pgdat) {
4895
		if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
4896 4897
			continue;

M
Mel Gorman 已提交
4898 4899 4900 4901 4902 4903 4904 4905
		printk("Node %d"
			" active_anon:%lukB"
			" inactive_anon:%lukB"
			" active_file:%lukB"
			" inactive_file:%lukB"
			" unevictable:%lukB"
			" isolated(anon):%lukB"
			" isolated(file):%lukB"
4906
			" mapped:%lukB"
4907 4908 4909 4910 4911 4912 4913 4914 4915 4916
			" dirty:%lukB"
			" writeback:%lukB"
			" shmem:%lukB"
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
			" shmem_thp: %lukB"
			" shmem_pmdmapped: %lukB"
			" anon_thp: %lukB"
#endif
			" writeback_tmp:%lukB"
			" unstable:%lukB"
M
Mel Gorman 已提交
4917 4918 4919 4920 4921 4922 4923 4924 4925 4926
			" all_unreclaimable? %s"
			"\n",
			pgdat->node_id,
			K(node_page_state(pgdat, NR_ACTIVE_ANON)),
			K(node_page_state(pgdat, NR_INACTIVE_ANON)),
			K(node_page_state(pgdat, NR_ACTIVE_FILE)),
			K(node_page_state(pgdat, NR_INACTIVE_FILE)),
			K(node_page_state(pgdat, NR_UNEVICTABLE)),
			K(node_page_state(pgdat, NR_ISOLATED_ANON)),
			K(node_page_state(pgdat, NR_ISOLATED_FILE)),
4927
			K(node_page_state(pgdat, NR_FILE_MAPPED)),
4928 4929
			K(node_page_state(pgdat, NR_FILE_DIRTY)),
			K(node_page_state(pgdat, NR_WRITEBACK)),
4930
			K(node_page_state(pgdat, NR_SHMEM)),
4931 4932 4933 4934 4935 4936 4937 4938
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
			K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
			K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
					* HPAGE_PMD_NR),
			K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
#endif
			K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
			K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
4939 4940
			pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
				"yes" : "no");
M
Mel Gorman 已提交
4941 4942
	}

4943
	for_each_populated_zone(zone) {
L
Linus Torvalds 已提交
4944 4945
		int i;

4946
		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4947
			continue;
4948 4949 4950 4951 4952

		free_pcp = 0;
		for_each_online_cpu(cpu)
			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;

L
Linus Torvalds 已提交
4953
		show_node(zone);
4954 4955
		printk(KERN_CONT
			"%s"
L
Linus Torvalds 已提交
4956 4957 4958 4959
			" free:%lukB"
			" min:%lukB"
			" low:%lukB"
			" high:%lukB"
M
Minchan Kim 已提交
4960 4961 4962 4963 4964
			" active_anon:%lukB"
			" inactive_anon:%lukB"
			" active_file:%lukB"
			" inactive_file:%lukB"
			" unevictable:%lukB"
4965
			" writepending:%lukB"
L
Linus Torvalds 已提交
4966
			" present:%lukB"
4967
			" managed:%lukB"
4968
			" mlocked:%lukB"
4969
			" kernel_stack:%lukB"
4970 4971
			" pagetables:%lukB"
			" bounce:%lukB"
4972 4973
			" free_pcp:%lukB"
			" local_pcp:%ukB"
4974
			" free_cma:%lukB"
L
Linus Torvalds 已提交
4975 4976
			"\n",
			zone->name,
4977
			K(zone_page_state(zone, NR_FREE_PAGES)),
4978 4979 4980
			K(min_wmark_pages(zone)),
			K(low_wmark_pages(zone)),
			K(high_wmark_pages(zone)),
M
Minchan Kim 已提交
4981 4982 4983 4984 4985
			K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
			K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
			K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
			K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
			K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
4986
			K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
L
Linus Torvalds 已提交
4987
			K(zone->present_pages),
4988
			K(zone->managed_pages),
4989
			K(zone_page_state(zone, NR_MLOCK)),
4990
			zone_page_state(zone, NR_KERNEL_STACK_KB),
4991 4992
			K(zone_page_state(zone, NR_PAGETABLE)),
			K(zone_page_state(zone, NR_BOUNCE)),
4993 4994
			K(free_pcp),
			K(this_cpu_read(zone->pageset->pcp.count)),
4995
			K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
L
Linus Torvalds 已提交
4996 4997
		printk("lowmem_reserve[]:");
		for (i = 0; i < MAX_NR_ZONES; i++)
4998 4999
			printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
		printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
5000 5001
	}

5002
	for_each_populated_zone(zone) {
5003 5004
		unsigned int order;
		unsigned long nr[MAX_ORDER], flags, total = 0;
5005
		unsigned char types[MAX_ORDER];
L
Linus Torvalds 已提交
5006

5007
		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5008
			continue;
L
Linus Torvalds 已提交
5009
		show_node(zone);
5010
		printk(KERN_CONT "%s: ", zone->name);
L
Linus Torvalds 已提交
5011 5012 5013

		spin_lock_irqsave(&zone->lock, flags);
		for (order = 0; order < MAX_ORDER; order++) {
5014 5015 5016 5017
			struct free_area *area = &zone->free_area[order];
			int type;

			nr[order] = area->nr_free;
5018
			total += nr[order] << order;
5019 5020 5021 5022 5023 5024

			types[order] = 0;
			for (type = 0; type < MIGRATE_TYPES; type++) {
				if (!list_empty(&area->free_list[type]))
					types[order] |= 1 << type;
			}
L
Linus Torvalds 已提交
5025 5026
		}
		spin_unlock_irqrestore(&zone->lock, flags);
5027
		for (order = 0; order < MAX_ORDER; order++) {
5028 5029
			printk(KERN_CONT "%lu*%lukB ",
			       nr[order], K(1UL) << order);
5030 5031 5032
			if (nr[order])
				show_migration_types(types[order]);
		}
5033
		printk(KERN_CONT "= %lukB\n", K(total));
L
Linus Torvalds 已提交
5034 5035
	}

5036 5037
	hugetlb_show_meminfo();

5038
	printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
5039

L
Linus Torvalds 已提交
5040 5041 5042
	show_swap_cache_info();
}

5043 5044 5045 5046 5047 5048
static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
{
	zoneref->zone = zone;
	zoneref->zone_idx = zone_idx(zone);
}

L
Linus Torvalds 已提交
5049 5050
/*
 * Builds allocation fallback zone lists.
5051 5052
 *
 * Add all populated zones of a node to the zonelist.
L
Linus Torvalds 已提交
5053
 */
5054
static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
L
Linus Torvalds 已提交
5055
{
5056
	struct zone *zone;
5057
	enum zone_type zone_type = MAX_NR_ZONES;
5058
	int nr_zones = 0;
5059 5060

	do {
5061
		zone_type--;
5062
		zone = pgdat->node_zones + zone_type;
5063
		if (managed_zone(zone)) {
5064
			zoneref_set_zone(zone, &zonerefs[nr_zones++]);
5065
			check_highest_zone(zone_type);
L
Linus Torvalds 已提交
5066
		}
5067
	} while (zone_type);
5068

5069
	return nr_zones;
L
Linus Torvalds 已提交
5070 5071 5072
}

#ifdef CONFIG_NUMA
5073 5074 5075

static int __parse_numa_zonelist_order(char *s)
{
5076 5077 5078 5079 5080 5081 5082 5083
	/*
	 * We used to support different zonlists modes but they turned
	 * out to be just not useful. Let's keep the warning in place
	 * if somebody still use the cmd line parameter so that we do
	 * not fail it silently
	 */
	if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
		pr_warn("Ignoring unsupported numa_zonelist_order value:  %s\n", s);
5084 5085 5086 5087 5088 5089 5090
		return -EINVAL;
	}
	return 0;
}

static __init int setup_numa_zonelist_order(char *s)
{
5091 5092 5093
	if (!s)
		return 0;

5094
	return __parse_numa_zonelist_order(s);
5095 5096 5097
}
early_param("numa_zonelist_order", setup_numa_zonelist_order);

5098 5099
char numa_zonelist_order[] = "Node";

5100 5101 5102
/*
 * sysctl handler for numa_zonelist_order
 */
5103
int numa_zonelist_order_handler(struct ctl_table *table, int write,
5104
		void __user *buffer, size_t *length,
5105 5106
		loff_t *ppos)
{
5107
	char *str;
5108 5109
	int ret;

5110 5111 5112 5113 5114
	if (!write)
		return proc_dostring(table, write, buffer, length, ppos);
	str = memdup_user_nul(buffer, 16);
	if (IS_ERR(str))
		return PTR_ERR(str);
5115

5116 5117
	ret = __parse_numa_zonelist_order(str);
	kfree(str);
5118
	return ret;
5119 5120 5121
}


5122
#define MAX_NODE_LOAD (nr_online_nodes)
5123 5124
static int node_load[MAX_NUMNODES];

L
Linus Torvalds 已提交
5125
/**
5126
 * find_next_best_node - find the next node that should appear in a given node's fallback list
L
Linus Torvalds 已提交
5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138
 * @node: node whose fallback list we're appending
 * @used_node_mask: nodemask_t of already used nodes
 *
 * We use a number of factors to determine which is the next node that should
 * appear on a given node's fallback list.  The node should not have appeared
 * already in @node's fallback list, and it should be the next closest node
 * according to the distance array (which contains arbitrary distance values
 * from each node to each node in the system), and should also prefer nodes
 * with no CPUs, since presumably they'll have very little allocation pressure
 * on them otherwise.
 * It returns -1 if no node is found.
 */
5139
static int find_next_best_node(int node, nodemask_t *used_node_mask)
L
Linus Torvalds 已提交
5140
{
5141
	int n, val;
L
Linus Torvalds 已提交
5142
	int min_val = INT_MAX;
D
David Rientjes 已提交
5143
	int best_node = NUMA_NO_NODE;
5144
	const struct cpumask *tmp = cpumask_of_node(0);
L
Linus Torvalds 已提交
5145

5146 5147 5148 5149 5150
	/* Use the local node if we haven't already */
	if (!node_isset(node, *used_node_mask)) {
		node_set(node, *used_node_mask);
		return node;
	}
L
Linus Torvalds 已提交
5151

5152
	for_each_node_state(n, N_MEMORY) {
L
Linus Torvalds 已提交
5153 5154 5155 5156 5157 5158 5159 5160

		/* Don't want a node to appear more than once */
		if (node_isset(n, *used_node_mask))
			continue;

		/* Use the distance array to find the distance */
		val = node_distance(node, n);

5161 5162 5163
		/* Penalize nodes under us ("prefer the next node") */
		val += (n < node);

L
Linus Torvalds 已提交
5164
		/* Give preference to headless and unused nodes */
5165 5166
		tmp = cpumask_of_node(n);
		if (!cpumask_empty(tmp))
L
Linus Torvalds 已提交
5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184
			val += PENALTY_FOR_NODE_WITH_CPUS;

		/* Slight preference for less loaded node */
		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
		val += node_load[n];

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

	if (best_node >= 0)
		node_set(best_node, *used_node_mask);

	return best_node;
}

5185 5186 5187 5188 5189 5190

/*
 * Build zonelists ordered by node and zones within node.
 * This results in maximum locality--normal zone overflows into local
 * DMA zone, if any--but risks exhausting DMA zone.
 */
5191 5192
static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
		unsigned nr_nodes)
L
Linus Torvalds 已提交
5193
{
5194 5195 5196 5197 5198 5199 5200 5201 5202
	struct zoneref *zonerefs;
	int i;

	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;

	for (i = 0; i < nr_nodes; i++) {
		int nr_zones;

		pg_data_t *node = NODE_DATA(node_order[i]);
5203

5204 5205 5206 5207 5208
		nr_zones = build_zonerefs_node(node, zonerefs);
		zonerefs += nr_zones;
	}
	zonerefs->zone = NULL;
	zonerefs->zone_idx = 0;
5209 5210
}

5211 5212 5213 5214 5215
/*
 * Build gfp_thisnode zonelists
 */
static void build_thisnode_zonelists(pg_data_t *pgdat)
{
5216 5217
	struct zoneref *zonerefs;
	int nr_zones;
5218

5219 5220 5221 5222 5223
	zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
	nr_zones = build_zonerefs_node(pgdat, zonerefs);
	zonerefs += nr_zones;
	zonerefs->zone = NULL;
	zonerefs->zone_idx = 0;
5224 5225
}

5226 5227 5228 5229 5230 5231 5232 5233 5234
/*
 * Build zonelists ordered by zone and nodes within zones.
 * This results in conserving DMA zone[s] until all Normal memory is
 * exhausted, but results in overflowing to remote node while memory
 * may still exist in local DMA zone.
 */

static void build_zonelists(pg_data_t *pgdat)
{
5235 5236
	static int node_order[MAX_NUMNODES];
	int node, load, nr_nodes = 0;
L
Linus Torvalds 已提交
5237
	nodemask_t used_mask;
5238
	int local_node, prev_node;
L
Linus Torvalds 已提交
5239 5240 5241

	/* NUMA-aware ordering of nodes */
	local_node = pgdat->node_id;
5242
	load = nr_online_nodes;
L
Linus Torvalds 已提交
5243 5244
	prev_node = local_node;
	nodes_clear(used_mask);
5245 5246

	memset(node_order, 0, sizeof(node_order));
L
Linus Torvalds 已提交
5247 5248 5249 5250 5251 5252
	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
		/*
		 * We don't want to pressure a particular node.
		 * So adding penalty to the first node in same
		 * distance group to make it round-robin.
		 */
5253 5254
		if (node_distance(local_node, node) !=
		    node_distance(local_node, prev_node))
5255 5256
			node_load[node] = load;

5257
		node_order[nr_nodes++] = node;
L
Linus Torvalds 已提交
5258 5259 5260
		prev_node = node;
		load--;
	}
5261

5262
	build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5263
	build_thisnode_zonelists(pgdat);
L
Linus Torvalds 已提交
5264 5265
}

5266 5267 5268 5269 5270 5271 5272 5273 5274
#ifdef CONFIG_HAVE_MEMORYLESS_NODES
/*
 * Return node id of node used for "local" allocations.
 * I.e., first node id of first zone in arg node's generic zonelist.
 * Used for initializing percpu 'numa_mem', which is used primarily
 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
 */
int local_memory_node(int node)
{
5275
	struct zoneref *z;
5276

5277
	z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5278
				   gfp_zone(GFP_KERNEL),
5279
				   NULL);
5280
	return zone_to_nid(z->zone);
5281 5282
}
#endif
5283

5284 5285
static void setup_min_unmapped_ratio(void);
static void setup_min_slab_ratio(void);
L
Linus Torvalds 已提交
5286 5287
#else	/* CONFIG_NUMA */

5288
static void build_zonelists(pg_data_t *pgdat)
L
Linus Torvalds 已提交
5289
{
5290
	int node, local_node;
5291 5292
	struct zoneref *zonerefs;
	int nr_zones;
L
Linus Torvalds 已提交
5293 5294 5295

	local_node = pgdat->node_id;

5296 5297 5298
	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
	nr_zones = build_zonerefs_node(pgdat, zonerefs);
	zonerefs += nr_zones;
L
Linus Torvalds 已提交
5299

5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310
	/*
	 * Now we build the zonelist so that it contains the zones
	 * of all the other nodes.
	 * We don't want to pressure a particular node, so when
	 * building the zones for node N, we make sure that the
	 * zones coming right after the local ones are those from
	 * node N+1 (modulo N)
	 */
	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
		if (!node_online(node))
			continue;
5311 5312
		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
		zonerefs += nr_zones;
L
Linus Torvalds 已提交
5313
	}
5314 5315 5316
	for (node = 0; node < local_node; node++) {
		if (!node_online(node))
			continue;
5317 5318
		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
		zonerefs += nr_zones;
5319 5320
	}

5321 5322
	zonerefs->zone = NULL;
	zonerefs->zone_idx = 0;
L
Linus Torvalds 已提交
5323 5324 5325 5326
}

#endif	/* CONFIG_NUMA */

5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343
/*
 * Boot pageset table. One per cpu which is going to be used for all
 * zones and all nodes. The parameters will be set in such a way
 * that an item put on a list will immediately be handed over to
 * the buddy list. This is safe since pageset manipulation is done
 * with interrupts disabled.
 *
 * The boot_pagesets must be kept even after bootup is complete for
 * unused processors and/or zones. They do play a role for bootstrapping
 * hotplugged processors.
 *
 * zoneinfo_show() and maybe other functions do
 * not check if the processor is online before following the pageset pointer.
 * Other parts of the kernel may not check if the zone is available.
 */
static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
5344
static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
5345

5346
static void __build_all_zonelists(void *data)
L
Linus Torvalds 已提交
5347
{
5348
	int nid;
5349
	int __maybe_unused cpu;
5350
	pg_data_t *self = data;
5351 5352 5353
	static DEFINE_SPINLOCK(lock);

	spin_lock(&lock);
5354

5355 5356 5357
#ifdef CONFIG_NUMA
	memset(node_load, 0, sizeof(node_load));
#endif
5358

5359 5360 5361 5362
	/*
	 * This node is hotadded and no memory is yet present.   So just
	 * building zonelists is fine - no need to touch other nodes.
	 */
5363 5364
	if (self && !node_online(self->node_id)) {
		build_zonelists(self);
5365 5366 5367
	} else {
		for_each_online_node(nid) {
			pg_data_t *pgdat = NODE_DATA(nid);
5368

5369 5370
			build_zonelists(pgdat);
		}
5371

5372 5373 5374 5375 5376 5377 5378 5379 5380
#ifdef CONFIG_HAVE_MEMORYLESS_NODES
		/*
		 * We now know the "local memory node" for each node--
		 * i.e., the node of the first zone in the generic zonelist.
		 * Set up numa_mem percpu variable for on-line cpus.  During
		 * boot, only the boot cpu should be on-line;  we'll init the
		 * secondary cpus' numa_mem as they come on-line.  During
		 * node/memory hotplug, we'll fixup all on-line cpus.
		 */
5381
		for_each_online_cpu(cpu)
5382
			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5383
#endif
5384
	}
5385 5386

	spin_unlock(&lock);
5387 5388
}

5389 5390 5391
static noinline void __init
build_all_zonelists_init(void)
{
5392 5393
	int cpu;

5394
	__build_all_zonelists(NULL);
5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411

	/*
	 * Initialize the boot_pagesets that are going to be used
	 * for bootstrapping processors. The real pagesets for
	 * each zone will be allocated later when the per cpu
	 * allocator is available.
	 *
	 * boot_pagesets are used also for bootstrapping offline
	 * cpus if the system is already booted because the pagesets
	 * are needed to initialize allocators on a specific cpu too.
	 * F.e. the percpu allocator needs the page allocator which
	 * needs the percpu allocator in order to allocate its pagesets
	 * (a chicken-egg dilemma).
	 */
	for_each_possible_cpu(cpu)
		setup_pageset(&per_cpu(boot_pageset, cpu), 0);

5412 5413 5414 5415
	mminit_verify_zonelist();
	cpuset_init_current_mems_allowed();
}

5416 5417
/*
 * unless system_state == SYSTEM_BOOTING.
5418
 *
5419
 * __ref due to call of __init annotated helper build_all_zonelists_init
5420
 * [protected by SYSTEM_BOOTING].
5421
 */
5422
void __ref build_all_zonelists(pg_data_t *pgdat)
5423 5424
{
	if (system_state == SYSTEM_BOOTING) {
5425
		build_all_zonelists_init();
5426
	} else {
5427
		__build_all_zonelists(pgdat);
5428 5429
		/* cpuset refresh routine should be here */
	}
5430
	vm_total_pages = nr_free_pagecache_pages();
5431 5432 5433 5434 5435 5436 5437
	/*
	 * Disable grouping by mobility if the number of pages in the
	 * system is too low to allow the mechanism to work. It would be
	 * more accurate, but expensive to check per-zone. This check is
	 * made on memory-hotadd so a system can start with mobility
	 * disabled and enable it later
	 */
5438
	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5439 5440 5441 5442
		page_group_by_mobility_disabled = 1;
	else
		page_group_by_mobility_disabled = 0;

5443
	pr_info("Built %i zonelists, mobility grouping %s.  Total pages: %ld\n",
J
Joe Perches 已提交
5444 5445 5446
		nr_online_nodes,
		page_group_by_mobility_disabled ? "off" : "on",
		vm_total_pages);
5447
#ifdef CONFIG_NUMA
5448
	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5449
#endif
L
Linus Torvalds 已提交
5450 5451 5452 5453 5454 5455 5456
}

/*
 * Initially all pages are reserved - free ones are freed
 * up by free_all_bootmem() once the early boot process is
 * done. Non-atomic initialization, single-pass.
 */
5457
void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
5458 5459
		unsigned long start_pfn, enum memmap_context context,
		struct vmem_altmap *altmap)
L
Linus Torvalds 已提交
5460
{
A
Andy Whitcroft 已提交
5461
	unsigned long end_pfn = start_pfn + size;
5462
	pg_data_t *pgdat = NODE_DATA(nid);
A
Andy Whitcroft 已提交
5463
	unsigned long pfn;
5464
	unsigned long nr_initialised = 0;
5465
	struct page *page;
5466 5467 5468
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
	struct memblock_region *r = NULL, *tmp;
#endif
L
Linus Torvalds 已提交
5469

5470 5471 5472
	if (highest_memmap_pfn < end_pfn - 1)
		highest_memmap_pfn = end_pfn - 1;

5473 5474 5475 5476 5477 5478 5479
	/*
	 * Honor reservation requested by the driver for this ZONE_DEVICE
	 * memory
	 */
	if (altmap && start_pfn == altmap->base_pfn)
		start_pfn += altmap->reserve;

5480
	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
D
Dave Hansen 已提交
5481
		/*
5482 5483
		 * There can be holes in boot-time mem_map[]s handed to this
		 * function.  They do not exist on hotplugged memory.
D
Dave Hansen 已提交
5484
		 */
5485 5486 5487
		if (context != MEMMAP_EARLY)
			goto not_early;

5488
		if (!early_pfn_valid(pfn))
5489 5490 5491 5492 5493
			continue;
		if (!early_pfn_in_nid(pfn, nid))
			continue;
		if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
			break;
5494 5495

#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512
		/*
		 * Check given memblock attribute by firmware which can affect
		 * kernel memory layout.  If zone==ZONE_MOVABLE but memory is
		 * mirrored, it's an overlapped memmap init. skip it.
		 */
		if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
			if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
				for_each_memblock(memory, tmp)
					if (pfn < memblock_region_memory_end_pfn(tmp))
						break;
				r = tmp;
			}
			if (pfn >= memblock_region_memory_base_pfn(r) &&
			    memblock_is_mirror(r)) {
				/* already initialized as NORMAL */
				pfn = memblock_region_memory_end_pfn(r);
				continue;
5513
			}
D
Dave Hansen 已提交
5514
		}
5515
#endif
5516

5517
not_early:
5518 5519 5520 5521 5522
		page = pfn_to_page(pfn);
		__init_single_page(page, pfn, zone, nid);
		if (context == MEMMAP_HOTPLUG)
			SetPageReserved(page);

5523 5524 5525 5526 5527
		/*
		 * Mark the block movable so that blocks are reserved for
		 * movable at startup. This will force kernel allocations
		 * to reserve their blocks rather than leaking throughout
		 * the address space during boot when many long-lived
5528
		 * kernel allocations are made.
5529 5530 5531 5532 5533
		 *
		 * bitmap is created for zone's valid pfn range. but memmap
		 * can be created for invalid pages (for alignment)
		 * check here not to call set_pageblock_migratetype() against
		 * pfn out of zone.
5534 5535 5536
		 *
		 * Please note that MEMMAP_HOTPLUG path doesn't clear memmap
		 * because this is done early in sparse_add_one_section
5537 5538 5539
		 */
		if (!(pfn & (pageblock_nr_pages - 1))) {
			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5540
			cond_resched();
5541
		}
L
Linus Torvalds 已提交
5542 5543 5544
	}
}

5545
static void __meminit zone_init_free_lists(struct zone *zone)
L
Linus Torvalds 已提交
5546
{
5547
	unsigned int order, t;
5548 5549
	for_each_migratetype_order(order, t) {
		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
L
Linus Torvalds 已提交
5550 5551 5552 5553 5554 5555
		zone->free_area[order].nr_free = 0;
	}
}

#ifndef __HAVE_ARCH_MEMMAP_INIT
#define memmap_init(size, nid, zone, start_pfn) \
5556
	memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY, NULL)
L
Linus Torvalds 已提交
5557 5558
#endif

5559
static int zone_batchsize(struct zone *zone)
5560
{
5561
#ifdef CONFIG_MMU
5562 5563 5564 5565
	int batch;

	/*
	 * The per-cpu-pages pools are set to around 1000th of the
5566
	 * size of the zone.
5567
	 */
5568
	batch = zone->managed_pages / 1024;
5569 5570 5571
	/* But no more than a meg. */
	if (batch * PAGE_SIZE > 1024 * 1024)
		batch = (1024 * 1024) / PAGE_SIZE;
5572 5573 5574 5575 5576
	batch /= 4;		/* We effectively *= 4 below */
	if (batch < 1)
		batch = 1;

	/*
5577 5578 5579
	 * Clamp the batch to a 2^n - 1 value. Having a power
	 * of 2 value was found to be more likely to have
	 * suboptimal cache aliasing properties in some cases.
5580
	 *
5581 5582 5583 5584
	 * For example if 2 tasks are alternately allocating
	 * batches of pages, one task can end up with a lot
	 * of pages of one half of the possible page colors
	 * and the other with pages of the other colors.
5585
	 */
5586
	batch = rounddown_pow_of_two(batch + batch/2) - 1;
5587

5588
	return batch;
5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605

#else
	/* The deferral and batching of frees should be suppressed under NOMMU
	 * conditions.
	 *
	 * The problem is that NOMMU needs to be able to allocate large chunks
	 * of contiguous memory as there's no hardware page translation to
	 * assemble apparent contiguous memory from discontiguous pages.
	 *
	 * Queueing large contiguous runs of pages for batching, however,
	 * causes the pages to actually be freed in smaller chunks.  As there
	 * can be a significant delay between the individual batches being
	 * recycled, this leads to the once large chunks of space being
	 * fragmented and becoming unavailable for high-order allocations.
	 */
	return 0;
#endif
5606 5607
}

5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634
/*
 * pcp->high and pcp->batch values are related and dependent on one another:
 * ->batch must never be higher then ->high.
 * The following function updates them in a safe manner without read side
 * locking.
 *
 * Any new users of pcp->batch and pcp->high should ensure they can cope with
 * those fields changing asynchronously (acording the the above rule).
 *
 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
 * outside of boot time (or some other assurance that no concurrent updaters
 * exist).
 */
static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
		unsigned long batch)
{
       /* start with a fail safe value for batch */
	pcp->batch = 1;
	smp_wmb();

       /* Update high, then batch, in order */
	pcp->high = high;
	smp_wmb();

	pcp->batch = batch;
}

5635
/* a companion to pageset_set_high() */
5636 5637
static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
{
5638
	pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
5639 5640
}

5641
static void pageset_init(struct per_cpu_pageset *p)
5642 5643
{
	struct per_cpu_pages *pcp;
5644
	int migratetype;
5645

5646 5647
	memset(p, 0, sizeof(*p));

5648
	pcp = &p->pcp;
5649
	pcp->count = 0;
5650 5651
	for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
		INIT_LIST_HEAD(&pcp->lists[migratetype]);
5652 5653
}

5654 5655 5656 5657 5658 5659
static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
{
	pageset_init(p);
	pageset_set_batch(p, batch);
}

5660
/*
5661
 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
5662 5663
 * to the value high for the pageset p.
 */
5664
static void pageset_set_high(struct per_cpu_pageset *p,
5665 5666
				unsigned long high)
{
5667 5668 5669
	unsigned long batch = max(1UL, high / 4);
	if ((high / 4) > (PAGE_SHIFT * 8))
		batch = PAGE_SHIFT * 8;
5670

5671
	pageset_update(&p->pcp, high, batch);
5672 5673
}

5674 5675
static void pageset_set_high_and_batch(struct zone *zone,
				       struct per_cpu_pageset *pcp)
5676 5677
{
	if (percpu_pagelist_fraction)
5678
		pageset_set_high(pcp,
5679 5680 5681 5682 5683 5684
			(zone->managed_pages /
				percpu_pagelist_fraction));
	else
		pageset_set_batch(pcp, zone_batchsize(zone));
}

5685 5686 5687 5688 5689 5690 5691 5692
static void __meminit zone_pageset_init(struct zone *zone, int cpu)
{
	struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);

	pageset_init(pcp);
	pageset_set_high_and_batch(zone, pcp);
}

5693
void __meminit setup_zone_pageset(struct zone *zone)
5694 5695 5696
{
	int cpu;
	zone->pageset = alloc_percpu(struct per_cpu_pageset);
5697 5698
	for_each_possible_cpu(cpu)
		zone_pageset_init(zone, cpu);
5699 5700
}

5701
/*
5702 5703
 * Allocate per cpu pagesets and initialize them.
 * Before this call only boot pagesets were available.
5704
 */
5705
void __init setup_per_cpu_pageset(void)
5706
{
5707
	struct pglist_data *pgdat;
5708
	struct zone *zone;
5709

5710 5711
	for_each_populated_zone(zone)
		setup_zone_pageset(zone);
5712 5713 5714 5715

	for_each_online_pgdat(pgdat)
		pgdat->per_cpu_nodestats =
			alloc_percpu(struct per_cpu_nodestat);
5716 5717
}

5718
static __meminit void zone_pcp_init(struct zone *zone)
5719
{
5720 5721 5722 5723 5724 5725
	/*
	 * per cpu subsystem is not up at this point. The following code
	 * relies on the ability of the linker to provide the
	 * offset of a (static) per cpu variable into the per cpu area.
	 */
	zone->pageset = &boot_pageset;
5726

5727
	if (populated_zone(zone))
5728 5729 5730
		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%u\n",
			zone->name, zone->present_pages,
					 zone_batchsize(zone));
5731 5732
}

5733
void __meminit init_currently_empty_zone(struct zone *zone,
5734
					unsigned long zone_start_pfn,
5735
					unsigned long size)
5736 5737
{
	struct pglist_data *pgdat = zone->zone_pgdat;
5738

5739 5740 5741 5742
	pgdat->nr_zones = zone_idx(zone) + 1;

	zone->zone_start_pfn = zone_start_pfn;

5743 5744 5745 5746 5747 5748
	mminit_dprintk(MMINIT_TRACE, "memmap_init",
			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
			pgdat->node_id,
			(unsigned long)zone_idx(zone),
			zone_start_pfn, (zone_start_pfn + size));

5749
	zone_init_free_lists(zone);
5750
	zone->initialized = 1;
5751 5752
}

T
Tejun Heo 已提交
5753
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5754
#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
5755

5756 5757 5758
/*
 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
 */
5759 5760
int __meminit __early_pfn_to_nid(unsigned long pfn,
					struct mminit_pfnnid_cache *state)
5761
{
5762
	unsigned long start_pfn, end_pfn;
5763
	int nid;
5764

5765 5766
	if (state->last_start <= pfn && pfn < state->last_end)
		return state->last_nid;
5767

5768 5769
	nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
	if (nid != -1) {
5770 5771 5772
		state->last_start = start_pfn;
		state->last_end = end_pfn;
		state->last_nid = nid;
5773 5774 5775
	}

	return nid;
5776 5777 5778 5779
}
#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */

/**
5780
 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
5781
 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
5782
 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
5783
 *
5784 5785 5786
 * If an architecture guarantees that all ranges registered contain no holes
 * and may be freed, this this function may be used instead of calling
 * memblock_free_early_nid() manually.
5787
 */
5788
void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
5789
{
5790 5791
	unsigned long start_pfn, end_pfn;
	int i, this_nid;
5792

5793 5794 5795
	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
		start_pfn = min(start_pfn, max_low_pfn);
		end_pfn = min(end_pfn, max_low_pfn);
5796

5797
		if (start_pfn < end_pfn)
5798 5799 5800
			memblock_free_early_nid(PFN_PHYS(start_pfn),
					(end_pfn - start_pfn) << PAGE_SHIFT,
					this_nid);
5801 5802 5803
	}
}

5804 5805
/**
 * sparse_memory_present_with_active_regions - Call memory_present for each active range
5806
 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
5807
 *
5808 5809
 * If an architecture guarantees that all ranges registered contain no holes and may
 * be freed, this function may be used instead of calling memory_present() manually.
5810 5811 5812
 */
void __init sparse_memory_present_with_active_regions(int nid)
{
5813 5814
	unsigned long start_pfn, end_pfn;
	int i, this_nid;
5815

5816 5817
	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
		memory_present(this_nid, start_pfn, end_pfn);
5818 5819 5820 5821
}

/**
 * get_pfn_range_for_nid - Return the start and end page frames for a node
5822 5823 5824
 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
5825 5826
 *
 * It returns the start and end page frame of a node based on information
5827
 * provided by memblock_set_node(). If called for a node
5828
 * with no available memory, a warning is printed and the start and end
5829
 * PFNs will be 0.
5830
 */
5831
void __meminit get_pfn_range_for_nid(unsigned int nid,
5832 5833
			unsigned long *start_pfn, unsigned long *end_pfn)
{
5834
	unsigned long this_start_pfn, this_end_pfn;
5835
	int i;
5836

5837 5838 5839
	*start_pfn = -1UL;
	*end_pfn = 0;

5840 5841 5842
	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
		*start_pfn = min(*start_pfn, this_start_pfn);
		*end_pfn = max(*end_pfn, this_end_pfn);
5843 5844
	}

5845
	if (*start_pfn == -1UL)
5846 5847 5848
		*start_pfn = 0;
}

M
Mel Gorman 已提交
5849 5850 5851 5852 5853
/*
 * This finds a zone that can be used for ZONE_MOVABLE pages. The
 * assumption is made that zones within a node are ordered in monotonic
 * increasing memory addresses so that the "highest" populated zone is used
 */
A
Adrian Bunk 已提交
5854
static void __init find_usable_zone_for_movable(void)
M
Mel Gorman 已提交
5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871
{
	int zone_index;
	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
		if (zone_index == ZONE_MOVABLE)
			continue;

		if (arch_zone_highest_possible_pfn[zone_index] >
				arch_zone_lowest_possible_pfn[zone_index])
			break;
	}

	VM_BUG_ON(zone_index == -1);
	movable_zone = zone_index;
}

/*
 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
L
Lucas De Marchi 已提交
5872
 * because it is sized independent of architecture. Unlike the other zones,
M
Mel Gorman 已提交
5873 5874 5875 5876 5877 5878 5879
 * the starting point for ZONE_MOVABLE is not fixed. It may be different
 * in each node depending on the size of each node and how evenly kernelcore
 * is distributed. This helper function adjusts the zone ranges
 * provided by the architecture for a given node by using the end of the
 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
 * zones within a node are in order of monotonic increases memory addresses
 */
A
Adrian Bunk 已提交
5880
static void __meminit adjust_zone_range_for_zone_movable(int nid,
M
Mel Gorman 已提交
5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894
					unsigned long zone_type,
					unsigned long node_start_pfn,
					unsigned long node_end_pfn,
					unsigned long *zone_start_pfn,
					unsigned long *zone_end_pfn)
{
	/* Only adjust if ZONE_MOVABLE is on this node */
	if (zone_movable_pfn[nid]) {
		/* Size ZONE_MOVABLE */
		if (zone_type == ZONE_MOVABLE) {
			*zone_start_pfn = zone_movable_pfn[nid];
			*zone_end_pfn = min(node_end_pfn,
				arch_zone_highest_possible_pfn[movable_zone]);

5895 5896 5897 5898 5899 5900
		/* Adjust for ZONE_MOVABLE starting within this range */
		} else if (!mirrored_kernelcore &&
			*zone_start_pfn < zone_movable_pfn[nid] &&
			*zone_end_pfn > zone_movable_pfn[nid]) {
			*zone_end_pfn = zone_movable_pfn[nid];

M
Mel Gorman 已提交
5901 5902 5903 5904 5905 5906
		/* Check if this whole range is within ZONE_MOVABLE */
		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
			*zone_start_pfn = *zone_end_pfn;
	}
}

5907 5908 5909 5910
/*
 * Return the number of pages a zone spans in a node, including holes
 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
 */
P
Paul Mundt 已提交
5911
static unsigned long __meminit zone_spanned_pages_in_node(int nid,
5912
					unsigned long zone_type,
5913 5914
					unsigned long node_start_pfn,
					unsigned long node_end_pfn,
5915 5916
					unsigned long *zone_start_pfn,
					unsigned long *zone_end_pfn,
5917 5918
					unsigned long *ignored)
{
5919
	/* When hotadd a new node from cpu_up(), the node should be empty */
5920 5921 5922
	if (!node_start_pfn && !node_end_pfn)
		return 0;

5923
	/* Get the start and end of the zone */
5924 5925
	*zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
	*zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
M
Mel Gorman 已提交
5926 5927
	adjust_zone_range_for_zone_movable(nid, zone_type,
				node_start_pfn, node_end_pfn,
5928
				zone_start_pfn, zone_end_pfn);
5929 5930

	/* Check that this node has pages within the zone's required range */
5931
	if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
5932 5933 5934
		return 0;

	/* Move the zone boundaries inside the node if necessary */
5935 5936
	*zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
	*zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
5937 5938

	/* Return the spanned pages */
5939
	return *zone_end_pfn - *zone_start_pfn;
5940 5941 5942 5943
}

/*
 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
5944
 * then all holes in the requested range will be accounted for.
5945
 */
5946
unsigned long __meminit __absent_pages_in_range(int nid,
5947 5948 5949
				unsigned long range_start_pfn,
				unsigned long range_end_pfn)
{
5950 5951 5952
	unsigned long nr_absent = range_end_pfn - range_start_pfn;
	unsigned long start_pfn, end_pfn;
	int i;
5953

5954 5955 5956 5957
	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
		nr_absent -= end_pfn - start_pfn;
5958
	}
5959
	return nr_absent;
5960 5961 5962 5963 5964 5965 5966
}

/**
 * absent_pages_in_range - Return number of page frames in holes within a range
 * @start_pfn: The start PFN to start searching for holes
 * @end_pfn: The end PFN to stop searching for holes
 *
5967
 * It returns the number of pages frames in memory holes within a range.
5968 5969 5970 5971 5972 5973 5974 5975
 */
unsigned long __init absent_pages_in_range(unsigned long start_pfn,
							unsigned long end_pfn)
{
	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
}

/* Return the number of page frames in holes in a zone on a node */
P
Paul Mundt 已提交
5976
static unsigned long __meminit zone_absent_pages_in_node(int nid,
5977
					unsigned long zone_type,
5978 5979
					unsigned long node_start_pfn,
					unsigned long node_end_pfn,
5980 5981
					unsigned long *ignored)
{
5982 5983
	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
5984
	unsigned long zone_start_pfn, zone_end_pfn;
5985
	unsigned long nr_absent;
5986

5987
	/* When hotadd a new node from cpu_up(), the node should be empty */
5988 5989 5990
	if (!node_start_pfn && !node_end_pfn)
		return 0;

5991 5992
	zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
	zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
5993

M
Mel Gorman 已提交
5994 5995 5996
	adjust_zone_range_for_zone_movable(nid, zone_type,
			node_start_pfn, node_end_pfn,
			&zone_start_pfn, &zone_end_pfn);
5997 5998 5999 6000 6001 6002 6003
	nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);

	/*
	 * ZONE_MOVABLE handling.
	 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
	 * and vice versa.
	 */
6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020
	if (mirrored_kernelcore && zone_movable_pfn[nid]) {
		unsigned long start_pfn, end_pfn;
		struct memblock_region *r;

		for_each_memblock(memory, r) {
			start_pfn = clamp(memblock_region_memory_base_pfn(r),
					  zone_start_pfn, zone_end_pfn);
			end_pfn = clamp(memblock_region_memory_end_pfn(r),
					zone_start_pfn, zone_end_pfn);

			if (zone_type == ZONE_MOVABLE &&
			    memblock_is_mirror(r))
				nr_absent += end_pfn - start_pfn;

			if (zone_type == ZONE_NORMAL &&
			    !memblock_is_mirror(r))
				nr_absent += end_pfn - start_pfn;
6021 6022 6023 6024
		}
	}

	return nr_absent;
6025
}
6026

T
Tejun Heo 已提交
6027
#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
P
Paul Mundt 已提交
6028
static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
6029
					unsigned long zone_type,
6030 6031
					unsigned long node_start_pfn,
					unsigned long node_end_pfn,
6032 6033
					unsigned long *zone_start_pfn,
					unsigned long *zone_end_pfn,
6034 6035
					unsigned long *zones_size)
{
6036 6037 6038 6039 6040 6041 6042 6043
	unsigned int zone;

	*zone_start_pfn = node_start_pfn;
	for (zone = 0; zone < zone_type; zone++)
		*zone_start_pfn += zones_size[zone];

	*zone_end_pfn = *zone_start_pfn + zones_size[zone_type];

6044 6045 6046
	return zones_size[zone_type];
}

P
Paul Mundt 已提交
6047
static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
6048
						unsigned long zone_type,
6049 6050
						unsigned long node_start_pfn,
						unsigned long node_end_pfn,
6051 6052 6053 6054 6055 6056 6057
						unsigned long *zholes_size)
{
	if (!zholes_size)
		return 0;

	return zholes_size[zone_type];
}
6058

T
Tejun Heo 已提交
6059
#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6060

6061
static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
6062 6063 6064 6065
						unsigned long node_start_pfn,
						unsigned long node_end_pfn,
						unsigned long *zones_size,
						unsigned long *zholes_size)
6066
{
6067
	unsigned long realtotalpages = 0, totalpages = 0;
6068 6069
	enum zone_type i;

6070 6071
	for (i = 0; i < MAX_NR_ZONES; i++) {
		struct zone *zone = pgdat->node_zones + i;
6072
		unsigned long zone_start_pfn, zone_end_pfn;
6073
		unsigned long size, real_size;
6074

6075 6076 6077
		size = zone_spanned_pages_in_node(pgdat->node_id, i,
						  node_start_pfn,
						  node_end_pfn,
6078 6079
						  &zone_start_pfn,
						  &zone_end_pfn,
6080 6081
						  zones_size);
		real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
6082 6083
						  node_start_pfn, node_end_pfn,
						  zholes_size);
6084 6085 6086 6087
		if (size)
			zone->zone_start_pfn = zone_start_pfn;
		else
			zone->zone_start_pfn = 0;
6088 6089 6090 6091 6092 6093 6094 6095
		zone->spanned_pages = size;
		zone->present_pages = real_size;

		totalpages += size;
		realtotalpages += real_size;
	}

	pgdat->node_spanned_pages = totalpages;
6096 6097 6098 6099 6100
	pgdat->node_present_pages = realtotalpages;
	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
							realtotalpages);
}

6101 6102 6103
#ifndef CONFIG_SPARSEMEM
/*
 * Calculate the size of the zone->blockflags rounded to an unsigned long
6104 6105
 * Start by making sure zonesize is a multiple of pageblock_order by rounding
 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
6106 6107 6108
 * round what is now in bits to nearest long in bits, then return it in
 * bytes.
 */
6109
static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
6110 6111 6112
{
	unsigned long usemapsize;

6113
	zonesize += zone_start_pfn & (pageblock_nr_pages-1);
6114 6115
	usemapsize = roundup(zonesize, pageblock_nr_pages);
	usemapsize = usemapsize >> pageblock_order;
6116 6117 6118 6119 6120 6121
	usemapsize *= NR_PAGEBLOCK_BITS;
	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));

	return usemapsize / 8;
}

P
Pavel Tatashin 已提交
6122
static void __ref setup_usemap(struct pglist_data *pgdat,
6123 6124 6125
				struct zone *zone,
				unsigned long zone_start_pfn,
				unsigned long zonesize)
6126
{
6127
	unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
6128
	zone->pageblock_flags = NULL;
6129
	if (usemapsize)
6130 6131 6132
		zone->pageblock_flags =
			memblock_virt_alloc_node_nopanic(usemapsize,
							 pgdat->node_id);
6133 6134
}
#else
6135 6136
static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
				unsigned long zone_start_pfn, unsigned long zonesize) {}
6137 6138
#endif /* CONFIG_SPARSEMEM */

6139
#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
6140

6141
/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
6142
void __init set_pageblock_order(void)
6143
{
6144 6145
	unsigned int order;

6146 6147 6148 6149
	/* Check that pageblock_nr_pages has not already been setup */
	if (pageblock_order)
		return;

6150 6151 6152 6153 6154
	if (HPAGE_SHIFT > PAGE_SHIFT)
		order = HUGETLB_PAGE_ORDER;
	else
		order = MAX_ORDER - 1;

6155 6156
	/*
	 * Assume the largest contiguous order of interest is a huge page.
6157 6158
	 * This value may be variable depending on boot parameters on IA64 and
	 * powerpc.
6159 6160 6161 6162 6163
	 */
	pageblock_order = order;
}
#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */

6164 6165
/*
 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
6166 6167 6168
 * is unused as pageblock_order is set at compile-time. See
 * include/linux/pageblock-flags.h for the values of pageblock_order based on
 * the kernel config
6169
 */
6170
void __init set_pageblock_order(void)
6171 6172
{
}
6173 6174 6175

#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */

6176
static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
P
Pavel Tatashin 已提交
6177
						unsigned long present_pages)
6178 6179 6180 6181 6182 6183 6184 6185
{
	unsigned long pages = spanned_pages;

	/*
	 * Provide a more accurate estimation if there are holes within
	 * the zone and SPARSEMEM is in use. If there are holes within the
	 * zone, each populated memory region may cost us one or two extra
	 * memmap pages due to alignment because memmap pages for each
6186
	 * populated regions may not be naturally aligned on page boundary.
6187 6188 6189 6190 6191 6192 6193 6194 6195
	 * So the (present_pages >> 4) heuristic is a tradeoff for that.
	 */
	if (spanned_pages > present_pages + (present_pages >> 4) &&
	    IS_ENABLED(CONFIG_SPARSEMEM))
		pages = present_pages;

	return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
}

6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226
#ifdef CONFIG_NUMA_BALANCING
static void pgdat_init_numabalancing(struct pglist_data *pgdat)
{
	spin_lock_init(&pgdat->numabalancing_migrate_lock);
	pgdat->numabalancing_migrate_nr_pages = 0;
	pgdat->numabalancing_migrate_next_window = jiffies;
}
#else
static void pgdat_init_numabalancing(struct pglist_data *pgdat) {}
#endif

#ifdef CONFIG_TRANSPARENT_HUGEPAGE
static void pgdat_init_split_queue(struct pglist_data *pgdat)
{
	spin_lock_init(&pgdat->split_queue_lock);
	INIT_LIST_HEAD(&pgdat->split_queue);
	pgdat->split_queue_len = 0;
}
#else
static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
#endif

#ifdef CONFIG_COMPACTION
static void pgdat_init_kcompactd(struct pglist_data *pgdat)
{
	init_waitqueue_head(&pgdat->kcompactd_wait);
}
#else
static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
#endif

6227
static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
L
Linus Torvalds 已提交
6228
{
6229
	pgdat_resize_init(pgdat);
6230 6231 6232 6233 6234

	pgdat_init_numabalancing(pgdat);
	pgdat_init_split_queue(pgdat);
	pgdat_init_kcompactd(pgdat);

L
Linus Torvalds 已提交
6235
	init_waitqueue_head(&pgdat->kswapd_wait);
6236
	init_waitqueue_head(&pgdat->pfmemalloc_wait);
6237

6238
	pgdat_page_ext_init(pgdat);
6239
	spin_lock_init(&pgdat->lru_lock);
6240
	lruvec_init(node_lruvec(pgdat));
6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286
}

static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
							unsigned long remaining_pages)
{
	zone->managed_pages = remaining_pages;
	zone_set_nid(zone, nid);
	zone->name = zone_names[idx];
	zone->zone_pgdat = NODE_DATA(nid);
	spin_lock_init(&zone->lock);
	zone_seqlock_init(zone);
	zone_pcp_init(zone);
}

/*
 * Set up the zone data structures
 * - init pgdat internals
 * - init all zones belonging to this node
 *
 * NOTE: this function is only called during memory hotplug
 */
#ifdef CONFIG_MEMORY_HOTPLUG
void __ref free_area_init_core_hotplug(int nid)
{
	enum zone_type z;
	pg_data_t *pgdat = NODE_DATA(nid);

	pgdat_init_internals(pgdat);
	for (z = 0; z < MAX_NR_ZONES; z++)
		zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
}
#endif

/*
 * Set up the zone data structures:
 *   - mark all pages reserved
 *   - mark all memory queues empty
 *   - clear the memory bitmaps
 *
 * NOTE: pgdat should get zeroed by caller.
 * NOTE: this function is only called during early init.
 */
static void __init free_area_init_core(struct pglist_data *pgdat)
{
	enum zone_type j;
	int nid = pgdat->node_id;
6287

6288
	pgdat_init_internals(pgdat);
6289 6290
	pgdat->per_cpu_nodestats = &boot_nodestats;

L
Linus Torvalds 已提交
6291 6292
	for (j = 0; j < MAX_NR_ZONES; j++) {
		struct zone *zone = pgdat->node_zones + j;
6293
		unsigned long size, freesize, memmap_pages;
6294
		unsigned long zone_start_pfn = zone->zone_start_pfn;
L
Linus Torvalds 已提交
6295

6296
		size = zone->spanned_pages;
6297
		freesize = zone->present_pages;
L
Linus Torvalds 已提交
6298

6299
		/*
6300
		 * Adjust freesize so that it accounts for how much memory
6301 6302 6303
		 * is used by this zone for memmap. This affects the watermark
		 * and per-cpu initialisations
		 */
6304
		memmap_pages = calc_memmap_size(size, freesize);
6305 6306 6307 6308 6309 6310 6311 6312
		if (!is_highmem_idx(j)) {
			if (freesize >= memmap_pages) {
				freesize -= memmap_pages;
				if (memmap_pages)
					printk(KERN_DEBUG
					       "  %s zone: %lu pages used for memmap\n",
					       zone_names[j], memmap_pages);
			} else
6313
				pr_warn("  %s zone: %lu pages exceeds freesize %lu\n",
6314 6315
					zone_names[j], memmap_pages, freesize);
		}
6316

6317
		/* Account for reserved pages */
6318 6319
		if (j == 0 && freesize > dma_reserve) {
			freesize -= dma_reserve;
Y
Yinghai Lu 已提交
6320
			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
6321
					zone_names[0], dma_reserve);
6322 6323
		}

6324
		if (!is_highmem_idx(j))
6325
			nr_kernel_pages += freesize;
6326 6327 6328
		/* Charge for highmem memmap if there are enough kernel pages */
		else if (nr_kernel_pages > memmap_pages * 2)
			nr_kernel_pages -= memmap_pages;
6329
		nr_all_pages += freesize;
L
Linus Torvalds 已提交
6330

6331 6332 6333 6334 6335
		/*
		 * Set an approximate value for lowmem here, it will be adjusted
		 * when the bootmem allocator frees pages into the buddy system.
		 * And all highmem pages will be managed by the buddy system.
		 */
6336
		zone_init_internals(zone, j, nid, freesize);
6337

6338
		if (!size)
L
Linus Torvalds 已提交
6339 6340
			continue;

6341
		set_pageblock_order();
6342 6343
		setup_usemap(pgdat, zone, zone_start_pfn, size);
		init_currently_empty_zone(zone, zone_start_pfn, size);
6344
		memmap_init(size, nid, j, zone_start_pfn);
L
Linus Torvalds 已提交
6345 6346 6347
	}
}

6348
#ifdef CONFIG_FLAT_NODE_MEM_MAP
6349
static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
L
Linus Torvalds 已提交
6350
{
6351
	unsigned long __maybe_unused start = 0;
L
Laura Abbott 已提交
6352 6353
	unsigned long __maybe_unused offset = 0;

L
Linus Torvalds 已提交
6354 6355 6356 6357
	/* Skip empty nodes */
	if (!pgdat->node_spanned_pages)
		return;

6358 6359
	start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
	offset = pgdat->node_start_pfn - start;
L
Linus Torvalds 已提交
6360 6361
	/* ia64 gets its own node_mem_map, before this, without bootmem */
	if (!pgdat->node_mem_map) {
6362
		unsigned long size, end;
A
Andy Whitcroft 已提交
6363 6364
		struct page *map;

6365 6366 6367 6368 6369
		/*
		 * The zone's endpoints aren't required to be MAX_ORDER
		 * aligned but the node_mem_map endpoints must be in order
		 * for the buddy allocator to function correctly.
		 */
6370
		end = pgdat_end_pfn(pgdat);
6371 6372
		end = ALIGN(end, MAX_ORDER_NR_PAGES);
		size =  (end - start) * sizeof(struct page);
6373
		map = memblock_virt_alloc_node_nopanic(size, pgdat->node_id);
L
Laura Abbott 已提交
6374
		pgdat->node_mem_map = map + offset;
L
Linus Torvalds 已提交
6375
	}
6376 6377 6378
	pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
				__func__, pgdat->node_id, (unsigned long)pgdat,
				(unsigned long)pgdat->node_mem_map);
6379
#ifndef CONFIG_NEED_MULTIPLE_NODES
L
Linus Torvalds 已提交
6380 6381 6382
	/*
	 * With no DISCONTIG, the global mem_map is just set as node 0's
	 */
6383
	if (pgdat == NODE_DATA(0)) {
L
Linus Torvalds 已提交
6384
		mem_map = NODE_DATA(0)->node_mem_map;
L
Laura Abbott 已提交
6385
#if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
6386
		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
L
Laura Abbott 已提交
6387
			mem_map -= offset;
T
Tejun Heo 已提交
6388
#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6389
	}
L
Linus Torvalds 已提交
6390 6391
#endif
}
6392 6393 6394
#else
static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { }
#endif /* CONFIG_FLAT_NODE_MEM_MAP */
L
Linus Torvalds 已提交
6395

6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
{
	/*
	 * We start only with one section of pages, more pages are added as
	 * needed until the rest of deferred pages are initialized.
	 */
	pgdat->static_init_pgcnt = min_t(unsigned long, PAGES_PER_SECTION,
						pgdat->node_spanned_pages);
	pgdat->first_deferred_pfn = ULONG_MAX;
}
#else
static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
#endif

6411
void __init free_area_init_node(int nid, unsigned long *zones_size,
P
Pavel Tatashin 已提交
6412 6413
				   unsigned long node_start_pfn,
				   unsigned long *zholes_size)
L
Linus Torvalds 已提交
6414
{
6415
	pg_data_t *pgdat = NODE_DATA(nid);
6416 6417
	unsigned long start_pfn = 0;
	unsigned long end_pfn = 0;
6418

6419
	/* pg_data_t should be reset to zero when it's allocated */
6420
	WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
6421

L
Linus Torvalds 已提交
6422 6423
	pgdat->node_id = nid;
	pgdat->node_start_pfn = node_start_pfn;
6424
	pgdat->per_cpu_nodestats = NULL;
6425 6426
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
6427
	pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
6428 6429
		(u64)start_pfn << PAGE_SHIFT,
		end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
6430 6431
#else
	start_pfn = node_start_pfn;
6432 6433 6434
#endif
	calculate_node_totalpages(pgdat, start_pfn, end_pfn,
				  zones_size, zholes_size);
L
Linus Torvalds 已提交
6435 6436

	alloc_node_mem_map(pgdat);
6437
	pgdat_set_deferred_range(pgdat);
L
Linus Torvalds 已提交
6438

6439
	free_area_init_core(pgdat);
L
Linus Torvalds 已提交
6440 6441
}

6442
#if defined(CONFIG_HAVE_MEMBLOCK) && !defined(CONFIG_FLAT_NODE_MEM_MAP)
6443 6444 6445 6446 6447 6448 6449
/*
 * Only struct pages that are backed by physical memory are zeroed and
 * initialized by going through __init_single_page(). But, there are some
 * struct pages which are reserved in memblock allocator and their fields
 * may be accessed (for example page_to_pfn() on some configuration accesses
 * flags). We must explicitly zero those struct pages.
 */
6450
void __init zero_resv_unavail(void)
6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462
{
	phys_addr_t start, end;
	unsigned long pfn;
	u64 i, pgcnt;

	/*
	 * Loop through ranges that are reserved, but do not have reported
	 * physical memory backing.
	 */
	pgcnt = 0;
	for_each_resv_unavail_range(i, &start, &end) {
		for (pfn = PFN_DOWN(start); pfn < PFN_UP(end); pfn++) {
6463 6464 6465
			if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
				pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
					+ pageblock_nr_pages - 1;
6466
				continue;
6467
			}
6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482
			mm_zero_struct_page(pfn_to_page(pfn));
			pgcnt++;
		}
	}

	/*
	 * Struct pages that do not have backing memory. This could be because
	 * firmware is using some of this memory, or for some other reasons.
	 * Once memblock is changed so such behaviour is not allowed: i.e.
	 * list of "reserved" memory must be a subset of list of "memory", then
	 * this code can be removed.
	 */
	if (pgcnt)
		pr_info("Reserved but unavailable: %lld pages", pgcnt);
}
6483
#endif /* CONFIG_HAVE_MEMBLOCK && !CONFIG_FLAT_NODE_MEM_MAP */
6484

T
Tejun Heo 已提交
6485
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
M
Miklos Szeredi 已提交
6486 6487 6488 6489 6490

#if MAX_NUMNODES > 1
/*
 * Figure out the number of possible node ids.
 */
6491
void __init setup_nr_node_ids(void)
M
Miklos Szeredi 已提交
6492
{
6493
	unsigned int highest;
M
Miklos Szeredi 已提交
6494

6495
	highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
M
Miklos Szeredi 已提交
6496 6497 6498 6499
	nr_node_ids = highest + 1;
}
#endif

6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521
/**
 * node_map_pfn_alignment - determine the maximum internode alignment
 *
 * This function should be called after node map is populated and sorted.
 * It calculates the maximum power of two alignment which can distinguish
 * all the nodes.
 *
 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
 * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
 * shifted, 1GiB is enough and this function will indicate so.
 *
 * This is used to test whether pfn -> nid mapping of the chosen memory
 * model has fine enough granularity to avoid incorrect mapping for the
 * populated node map.
 *
 * Returns the determined alignment in pfn's.  0 if there is no alignment
 * requirement (single node).
 */
unsigned long __init node_map_pfn_alignment(void)
{
	unsigned long accl_mask = 0, last_end = 0;
6522
	unsigned long start, end, mask;
6523
	int last_nid = -1;
6524
	int i, nid;
6525

6526
	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549
		if (!start || last_nid < 0 || last_nid == nid) {
			last_nid = nid;
			last_end = end;
			continue;
		}

		/*
		 * Start with a mask granular enough to pin-point to the
		 * start pfn and tick off bits one-by-one until it becomes
		 * too coarse to separate the current node from the last.
		 */
		mask = ~((1 << __ffs(start)) - 1);
		while (mask && last_end <= (start & (mask << 1)))
			mask <<= 1;

		/* accumulate all internode masks */
		accl_mask |= mask;
	}

	/* convert mask to number of pages */
	return ~accl_mask + 1;
}

6550
/* Find the lowest pfn for a node */
A
Adrian Bunk 已提交
6551
static unsigned long __init find_min_pfn_for_node(int nid)
6552
{
6553
	unsigned long min_pfn = ULONG_MAX;
6554 6555
	unsigned long start_pfn;
	int i;
6556

6557 6558
	for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
		min_pfn = min(min_pfn, start_pfn);
6559

6560
	if (min_pfn == ULONG_MAX) {
6561
		pr_warn("Could not find start_pfn for node %d\n", nid);
6562 6563 6564 6565
		return 0;
	}

	return min_pfn;
6566 6567 6568 6569 6570 6571
}

/**
 * find_min_pfn_with_active_regions - Find the minimum PFN registered
 *
 * It returns the minimum PFN based on information provided via
6572
 * memblock_set_node().
6573 6574 6575 6576 6577 6578
 */
unsigned long __init find_min_pfn_with_active_regions(void)
{
	return find_min_pfn_for_node(MAX_NUMNODES);
}

6579 6580 6581
/*
 * early_calculate_totalpages()
 * Sum pages in active regions for movable zone.
6582
 * Populate N_MEMORY for calculating usable_nodes.
6583
 */
A
Adrian Bunk 已提交
6584
static unsigned long __init early_calculate_totalpages(void)
6585 6586
{
	unsigned long totalpages = 0;
6587 6588 6589 6590 6591
	unsigned long start_pfn, end_pfn;
	int i, nid;

	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
		unsigned long pages = end_pfn - start_pfn;
6592

6593 6594
		totalpages += pages;
		if (pages)
6595
			node_set_state(nid, N_MEMORY);
6596
	}
6597
	return totalpages;
6598 6599
}

M
Mel Gorman 已提交
6600 6601 6602 6603 6604 6605
/*
 * Find the PFN the Movable zone begins in each node. Kernel memory
 * is spread evenly between nodes as long as the nodes have enough
 * memory. When they don't, some nodes will have more kernelcore than
 * others
 */
6606
static void __init find_zone_movable_pfns_for_nodes(void)
M
Mel Gorman 已提交
6607 6608 6609 6610
{
	int i, nid;
	unsigned long usable_startpfn;
	unsigned long kernelcore_node, kernelcore_remaining;
6611
	/* save the state before borrow the nodemask */
6612
	nodemask_t saved_node_state = node_states[N_MEMORY];
6613
	unsigned long totalpages = early_calculate_totalpages();
6614
	int usable_nodes = nodes_weight(node_states[N_MEMORY]);
E
Emil Medve 已提交
6615
	struct memblock_region *r;
6616 6617 6618 6619 6620 6621 6622 6623 6624

	/* Need to find movable_zone earlier when movable_node is specified. */
	find_usable_zone_for_movable();

	/*
	 * If movable_node is specified, ignore kernelcore and movablecore
	 * options.
	 */
	if (movable_node_is_enabled()) {
E
Emil Medve 已提交
6625 6626
		for_each_memblock(memory, r) {
			if (!memblock_is_hotpluggable(r))
6627 6628
				continue;

E
Emil Medve 已提交
6629
			nid = r->nid;
6630

E
Emil Medve 已提交
6631
			usable_startpfn = PFN_DOWN(r->base);
6632 6633 6634 6635 6636 6637 6638
			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
				min(usable_startpfn, zone_movable_pfn[nid]) :
				usable_startpfn;
		}

		goto out2;
	}
M
Mel Gorman 已提交
6639

6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669
	/*
	 * If kernelcore=mirror is specified, ignore movablecore option
	 */
	if (mirrored_kernelcore) {
		bool mem_below_4gb_not_mirrored = false;

		for_each_memblock(memory, r) {
			if (memblock_is_mirror(r))
				continue;

			nid = r->nid;

			usable_startpfn = memblock_region_memory_base_pfn(r);

			if (usable_startpfn < 0x100000) {
				mem_below_4gb_not_mirrored = true;
				continue;
			}

			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
				min(usable_startpfn, zone_movable_pfn[nid]) :
				usable_startpfn;
		}

		if (mem_below_4gb_not_mirrored)
			pr_warn("This configuration results in unmirrored kernel memory.");

		goto out2;
	}

6670
	/*
6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682
	 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
	 * amount of necessary memory.
	 */
	if (required_kernelcore_percent)
		required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
				       10000UL;
	if (required_movablecore_percent)
		required_movablecore = (totalpages * 100 * required_movablecore_percent) /
					10000UL;

	/*
	 * If movablecore= was specified, calculate what size of
6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697
	 * kernelcore that corresponds so that memory usable for
	 * any allocation type is evenly spread. If both kernelcore
	 * and movablecore are specified, then the value of kernelcore
	 * will be used for required_kernelcore if it's greater than
	 * what movablecore would have allowed.
	 */
	if (required_movablecore) {
		unsigned long corepages;

		/*
		 * Round-up so that ZONE_MOVABLE is at least as large as what
		 * was requested by the user
		 */
		required_movablecore =
			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
6698
		required_movablecore = min(totalpages, required_movablecore);
6699 6700 6701 6702 6703
		corepages = totalpages - required_movablecore;

		required_kernelcore = max(required_kernelcore, corepages);
	}

6704 6705 6706 6707 6708
	/*
	 * If kernelcore was not specified or kernelcore size is larger
	 * than totalpages, there is no ZONE_MOVABLE.
	 */
	if (!required_kernelcore || required_kernelcore >= totalpages)
6709
		goto out;
M
Mel Gorman 已提交
6710 6711 6712 6713 6714 6715 6716

	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];

restart:
	/* Spread kernelcore memory as evenly as possible throughout nodes */
	kernelcore_node = required_kernelcore / usable_nodes;
6717
	for_each_node_state(nid, N_MEMORY) {
6718 6719
		unsigned long start_pfn, end_pfn;

M
Mel Gorman 已提交
6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735
		/*
		 * Recalculate kernelcore_node if the division per node
		 * now exceeds what is necessary to satisfy the requested
		 * amount of memory for the kernel
		 */
		if (required_kernelcore < kernelcore_node)
			kernelcore_node = required_kernelcore / usable_nodes;

		/*
		 * As the map is walked, we track how much memory is usable
		 * by the kernel using kernelcore_remaining. When it is
		 * 0, the rest of the node is usable by ZONE_MOVABLE
		 */
		kernelcore_remaining = kernelcore_node;

		/* Go through each range of PFNs within this node */
6736
		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
M
Mel Gorman 已提交
6737 6738
			unsigned long size_pages;

6739
			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
M
Mel Gorman 已提交
6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781
			if (start_pfn >= end_pfn)
				continue;

			/* Account for what is only usable for kernelcore */
			if (start_pfn < usable_startpfn) {
				unsigned long kernel_pages;
				kernel_pages = min(end_pfn, usable_startpfn)
								- start_pfn;

				kernelcore_remaining -= min(kernel_pages,
							kernelcore_remaining);
				required_kernelcore -= min(kernel_pages,
							required_kernelcore);

				/* Continue if range is now fully accounted */
				if (end_pfn <= usable_startpfn) {

					/*
					 * Push zone_movable_pfn to the end so
					 * that if we have to rebalance
					 * kernelcore across nodes, we will
					 * not double account here
					 */
					zone_movable_pfn[nid] = end_pfn;
					continue;
				}
				start_pfn = usable_startpfn;
			}

			/*
			 * The usable PFN range for ZONE_MOVABLE is from
			 * start_pfn->end_pfn. Calculate size_pages as the
			 * number of pages used as kernelcore
			 */
			size_pages = end_pfn - start_pfn;
			if (size_pages > kernelcore_remaining)
				size_pages = kernelcore_remaining;
			zone_movable_pfn[nid] = start_pfn + size_pages;

			/*
			 * Some kernelcore has been met, update counts and
			 * break if the kernelcore for this node has been
6782
			 * satisfied
M
Mel Gorman 已提交
6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795
			 */
			required_kernelcore -= min(required_kernelcore,
								size_pages);
			kernelcore_remaining -= size_pages;
			if (!kernelcore_remaining)
				break;
		}
	}

	/*
	 * If there is still required_kernelcore, we do another pass with one
	 * less node in the count. This will push zone_movable_pfn[nid] further
	 * along on the nodes that still have memory until kernelcore is
6796
	 * satisfied
M
Mel Gorman 已提交
6797 6798 6799 6800 6801
	 */
	usable_nodes--;
	if (usable_nodes && required_kernelcore > usable_nodes)
		goto restart;

6802
out2:
M
Mel Gorman 已提交
6803 6804 6805 6806
	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
	for (nid = 0; nid < MAX_NUMNODES; nid++)
		zone_movable_pfn[nid] =
			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
6807

6808
out:
6809
	/* restore the node_state */
6810
	node_states[N_MEMORY] = saved_node_state;
M
Mel Gorman 已提交
6811 6812
}

6813 6814
/* Any regular or high memory on that node ? */
static void check_for_memory(pg_data_t *pgdat, int nid)
6815 6816 6817
{
	enum zone_type zone_type;

6818 6819 6820 6821
	if (N_MEMORY == N_NORMAL_MEMORY)
		return;

	for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
6822
		struct zone *zone = &pgdat->node_zones[zone_type];
6823
		if (populated_zone(zone)) {
6824 6825 6826 6827
			node_set_state(nid, N_HIGH_MEMORY);
			if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
			    zone_type <= ZONE_NORMAL)
				node_set_state(nid, N_NORMAL_MEMORY);
6828 6829
			break;
		}
6830 6831 6832
	}
}

6833 6834
/**
 * free_area_init_nodes - Initialise all pg_data_t and zone data
6835
 * @max_zone_pfn: an array of max PFNs for each zone
6836 6837
 *
 * This will call free_area_init_node() for each active node in the system.
6838
 * Using the page ranges provided by memblock_set_node(), the size of each
6839 6840 6841 6842 6843 6844 6845 6846 6847
 * zone in each node and their holes is calculated. If the maximum PFN
 * between two adjacent zones match, it is assumed that the zone is empty.
 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
 * starts where the previous one ended. For example, ZONE_DMA32 starts
 * at arch_max_dma_pfn.
 */
void __init free_area_init_nodes(unsigned long *max_zone_pfn)
{
6848 6849
	unsigned long start_pfn, end_pfn;
	int i, nid;
6850

6851 6852 6853 6854 6855
	/* Record where the zone boundaries are */
	memset(arch_zone_lowest_possible_pfn, 0,
				sizeof(arch_zone_lowest_possible_pfn));
	memset(arch_zone_highest_possible_pfn, 0,
				sizeof(arch_zone_highest_possible_pfn));
6856 6857 6858 6859

	start_pfn = find_min_pfn_with_active_regions();

	for (i = 0; i < MAX_NR_ZONES; i++) {
M
Mel Gorman 已提交
6860 6861
		if (i == ZONE_MOVABLE)
			continue;
6862 6863 6864 6865 6866 6867

		end_pfn = max(max_zone_pfn[i], start_pfn);
		arch_zone_lowest_possible_pfn[i] = start_pfn;
		arch_zone_highest_possible_pfn[i] = end_pfn;

		start_pfn = end_pfn;
6868
	}
M
Mel Gorman 已提交
6869 6870 6871

	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
6872
	find_zone_movable_pfns_for_nodes();
6873 6874

	/* Print out the zone ranges */
6875
	pr_info("Zone ranges:\n");
M
Mel Gorman 已提交
6876 6877 6878
	for (i = 0; i < MAX_NR_ZONES; i++) {
		if (i == ZONE_MOVABLE)
			continue;
6879
		pr_info("  %-8s ", zone_names[i]);
6880 6881
		if (arch_zone_lowest_possible_pfn[i] ==
				arch_zone_highest_possible_pfn[i])
6882
			pr_cont("empty\n");
6883
		else
6884 6885 6886 6887
			pr_cont("[mem %#018Lx-%#018Lx]\n",
				(u64)arch_zone_lowest_possible_pfn[i]
					<< PAGE_SHIFT,
				((u64)arch_zone_highest_possible_pfn[i]
6888
					<< PAGE_SHIFT) - 1);
M
Mel Gorman 已提交
6889 6890 6891
	}

	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
6892
	pr_info("Movable zone start for each node\n");
M
Mel Gorman 已提交
6893 6894
	for (i = 0; i < MAX_NUMNODES; i++) {
		if (zone_movable_pfn[i])
6895 6896
			pr_info("  Node %d: %#018Lx\n", i,
			       (u64)zone_movable_pfn[i] << PAGE_SHIFT);
M
Mel Gorman 已提交
6897
	}
6898

6899
	/* Print out the early node map */
6900
	pr_info("Early memory node ranges\n");
6901
	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
6902 6903 6904
		pr_info("  node %3d: [mem %#018Lx-%#018Lx]\n", nid,
			(u64)start_pfn << PAGE_SHIFT,
			((u64)end_pfn << PAGE_SHIFT) - 1);
6905 6906

	/* Initialise every node */
6907
	mminit_verify_pageflags_layout();
6908
	setup_nr_node_ids();
6909
	zero_resv_unavail();
6910 6911
	for_each_online_node(nid) {
		pg_data_t *pgdat = NODE_DATA(nid);
6912
		free_area_init_node(nid, NULL,
6913
				find_min_pfn_for_node(nid), NULL);
6914 6915 6916

		/* Any memory on that node */
		if (pgdat->node_present_pages)
6917 6918
			node_set_state(nid, N_MEMORY);
		check_for_memory(pgdat, nid);
6919 6920
	}
}
M
Mel Gorman 已提交
6921

6922 6923
static int __init cmdline_parse_core(char *p, unsigned long *core,
				     unsigned long *percent)
M
Mel Gorman 已提交
6924 6925
{
	unsigned long long coremem;
6926 6927
	char *endptr;

M
Mel Gorman 已提交
6928 6929 6930
	if (!p)
		return -EINVAL;

6931 6932 6933 6934 6935
	/* Value may be a percentage of total memory, otherwise bytes */
	coremem = simple_strtoull(p, &endptr, 0);
	if (*endptr == '%') {
		/* Paranoid check for percent values greater than 100 */
		WARN_ON(coremem > 100);
M
Mel Gorman 已提交
6936

6937 6938 6939 6940 6941
		*percent = coremem;
	} else {
		coremem = memparse(p, &p);
		/* Paranoid check that UL is enough for the coremem value */
		WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
M
Mel Gorman 已提交
6942

6943 6944 6945
		*core = coremem >> PAGE_SHIFT;
		*percent = 0UL;
	}
M
Mel Gorman 已提交
6946 6947
	return 0;
}
M
Mel Gorman 已提交
6948

6949 6950 6951 6952 6953 6954
/*
 * kernelcore=size sets the amount of memory for use for allocations that
 * cannot be reclaimed or migrated.
 */
static int __init cmdline_parse_kernelcore(char *p)
{
6955 6956 6957 6958 6959 6960
	/* parse kernelcore=mirror */
	if (parse_option_str(p, "mirror")) {
		mirrored_kernelcore = true;
		return 0;
	}

6961 6962
	return cmdline_parse_core(p, &required_kernelcore,
				  &required_kernelcore_percent);
6963 6964 6965 6966 6967 6968 6969 6970
}

/*
 * movablecore=size sets the amount of memory for use for allocations that
 * can be reclaimed or migrated.
 */
static int __init cmdline_parse_movablecore(char *p)
{
6971 6972
	return cmdline_parse_core(p, &required_movablecore,
				  &required_movablecore_percent);
6973 6974
}

M
Mel Gorman 已提交
6975
early_param("kernelcore", cmdline_parse_kernelcore);
6976
early_param("movablecore", cmdline_parse_movablecore);
M
Mel Gorman 已提交
6977

T
Tejun Heo 已提交
6978
#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6979

6980 6981 6982 6983 6984
void adjust_managed_page_count(struct page *page, long count)
{
	spin_lock(&managed_page_count_lock);
	page_zone(page)->managed_pages += count;
	totalram_pages += count;
6985 6986 6987 6988
#ifdef CONFIG_HIGHMEM
	if (PageHighMem(page))
		totalhigh_pages += count;
#endif
6989 6990
	spin_unlock(&managed_page_count_lock);
}
6991
EXPORT_SYMBOL(adjust_managed_page_count);
6992

6993
unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
6994
{
6995 6996
	void *pos;
	unsigned long pages = 0;
6997

6998 6999 7000
	start = (void *)PAGE_ALIGN((unsigned long)start);
	end = (void *)((unsigned long)end & PAGE_MASK);
	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011
		struct page *page = virt_to_page(pos);
		void *direct_map_addr;

		/*
		 * 'direct_map_addr' might be different from 'pos'
		 * because some architectures' virt_to_page()
		 * work with aliases.  Getting the direct map
		 * address ensures that we get a _writeable_
		 * alias for the memset().
		 */
		direct_map_addr = page_address(page);
7012
		if ((unsigned int)poison <= 0xFF)
7013 7014 7015
			memset(direct_map_addr, poison, PAGE_SIZE);

		free_reserved_page(page);
7016 7017 7018
	}

	if (pages && s)
7019 7020
		pr_info("Freeing %s memory: %ldK\n",
			s, pages << (PAGE_SHIFT - 10));
7021 7022 7023

	return pages;
}
7024
EXPORT_SYMBOL(free_reserved_area);
7025

7026 7027 7028 7029 7030
#ifdef	CONFIG_HIGHMEM
void free_highmem_page(struct page *page)
{
	__free_reserved_page(page);
	totalram_pages++;
7031
	page_zone(page)->managed_pages++;
7032 7033 7034 7035
	totalhigh_pages++;
}
#endif

7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057

void __init mem_init_print_info(const char *str)
{
	unsigned long physpages, codesize, datasize, rosize, bss_size;
	unsigned long init_code_size, init_data_size;

	physpages = get_num_physpages();
	codesize = _etext - _stext;
	datasize = _edata - _sdata;
	rosize = __end_rodata - __start_rodata;
	bss_size = __bss_stop - __bss_start;
	init_data_size = __init_end - __init_begin;
	init_code_size = _einittext - _sinittext;

	/*
	 * Detect special cases and adjust section sizes accordingly:
	 * 1) .init.* may be embedded into .data sections
	 * 2) .init.text.* may be out of [__init_begin, __init_end],
	 *    please refer to arch/tile/kernel/vmlinux.lds.S.
	 * 3) .rodata.* may be embedded into .text or .data sections.
	 */
#define adj_init_size(start, end, size, pos, adj) \
7058 7059 7060 7061
	do { \
		if (start <= pos && pos < end && size > adj) \
			size -= adj; \
	} while (0)
7062 7063 7064 7065 7066 7067 7068 7069 7070 7071

	adj_init_size(__init_begin, __init_end, init_data_size,
		     _sinittext, init_code_size);
	adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
	adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
	adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
	adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);

#undef	adj_init_size

J
Joe Perches 已提交
7072
	pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7073
#ifdef	CONFIG_HIGHMEM
J
Joe Perches 已提交
7074
		", %luK highmem"
7075
#endif
J
Joe Perches 已提交
7076 7077 7078 7079 7080 7081 7082
		"%s%s)\n",
		nr_free_pages() << (PAGE_SHIFT - 10),
		physpages << (PAGE_SHIFT - 10),
		codesize >> 10, datasize >> 10, rosize >> 10,
		(init_data_size + init_code_size) >> 10, bss_size >> 10,
		(physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
		totalcma_pages << (PAGE_SHIFT - 10),
7083
#ifdef	CONFIG_HIGHMEM
J
Joe Perches 已提交
7084
		totalhigh_pages << (PAGE_SHIFT - 10),
7085
#endif
J
Joe Perches 已提交
7086
		str ? ", " : "", str ? str : "");
7087 7088
}

7089
/**
7090 7091
 * set_dma_reserve - set the specified number of pages reserved in the first zone
 * @new_dma_reserve: The number of pages to mark reserved
7092
 *
7093
 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
7094 7095
 * In the DMA zone, a significant percentage may be consumed by kernel image
 * and other unfreeable allocations which can skew the watermarks badly. This
7096 7097 7098
 * function may optionally be used to account for unfreeable pages in the
 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
 * smaller per-cpu batchsize.
7099 7100 7101 7102 7103 7104
 */
void __init set_dma_reserve(unsigned long new_dma_reserve)
{
	dma_reserve = new_dma_reserve;
}

L
Linus Torvalds 已提交
7105 7106
void __init free_area_init(unsigned long *zones_size)
{
7107
	zero_resv_unavail();
7108
	free_area_init_node(0, zones_size,
L
Linus Torvalds 已提交
7109 7110 7111
			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
}

7112
static int page_alloc_cpu_dead(unsigned int cpu)
L
Linus Torvalds 已提交
7113 7114
{

7115 7116
	lru_add_drain_cpu(cpu);
	drain_pages(cpu);
7117

7118 7119 7120 7121 7122 7123 7124
	/*
	 * Spill the event counters of the dead processor
	 * into the current processors event counters.
	 * This artificially elevates the count of the current
	 * processor.
	 */
	vm_events_fold_cpu(cpu);
7125

7126 7127 7128 7129 7130 7131 7132 7133 7134
	/*
	 * Zero the differential counters of the dead processor
	 * so that the vm statistics are consistent.
	 *
	 * This is only okay since the processor is dead and cannot
	 * race with what we are doing.
	 */
	cpu_vm_stats_fold(cpu);
	return 0;
L
Linus Torvalds 已提交
7135 7136 7137 7138
}

void __init page_alloc_init(void)
{
7139 7140 7141 7142 7143 7144
	int ret;

	ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
					"mm/page_alloc:dead", NULL,
					page_alloc_cpu_dead);
	WARN_ON(ret < 0);
L
Linus Torvalds 已提交
7145 7146
}

7147
/*
7148
 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
7149 7150 7151 7152 7153 7154
 *	or min_free_kbytes changes.
 */
static void calculate_totalreserve_pages(void)
{
	struct pglist_data *pgdat;
	unsigned long reserve_pages = 0;
7155
	enum zone_type i, j;
7156 7157

	for_each_online_pgdat(pgdat) {
7158 7159 7160

		pgdat->totalreserve_pages = 0;

7161 7162
		for (i = 0; i < MAX_NR_ZONES; i++) {
			struct zone *zone = pgdat->node_zones + i;
7163
			long max = 0;
7164 7165 7166 7167 7168 7169 7170

			/* Find valid and maximum lowmem_reserve in the zone */
			for (j = i; j < MAX_NR_ZONES; j++) {
				if (zone->lowmem_reserve[j] > max)
					max = zone->lowmem_reserve[j];
			}

7171 7172
			/* we treat the high watermark as reserved pages. */
			max += high_wmark_pages(zone);
7173

7174 7175
			if (max > zone->managed_pages)
				max = zone->managed_pages;
7176

7177
			pgdat->totalreserve_pages += max;
7178

7179 7180 7181 7182 7183 7184
			reserve_pages += max;
		}
	}
	totalreserve_pages = reserve_pages;
}

L
Linus Torvalds 已提交
7185 7186
/*
 * setup_per_zone_lowmem_reserve - called whenever
7187
 *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
L
Linus Torvalds 已提交
7188 7189 7190 7191 7192 7193
 *	has a correct pages reserved value, so an adequate number of
 *	pages are left in the zone after a successful __alloc_pages().
 */
static void setup_per_zone_lowmem_reserve(void)
{
	struct pglist_data *pgdat;
7194
	enum zone_type j, idx;
L
Linus Torvalds 已提交
7195

7196
	for_each_online_pgdat(pgdat) {
L
Linus Torvalds 已提交
7197 7198
		for (j = 0; j < MAX_NR_ZONES; j++) {
			struct zone *zone = pgdat->node_zones + j;
7199
			unsigned long managed_pages = zone->managed_pages;
L
Linus Torvalds 已提交
7200 7201 7202

			zone->lowmem_reserve[j] = 0;

7203 7204
			idx = j;
			while (idx) {
L
Linus Torvalds 已提交
7205 7206
				struct zone *lower_zone;

7207
				idx--;
L
Linus Torvalds 已提交
7208
				lower_zone = pgdat->node_zones + idx;
7209 7210 7211 7212 7213 7214 7215 7216

				if (sysctl_lowmem_reserve_ratio[idx] < 1) {
					sysctl_lowmem_reserve_ratio[idx] = 0;
					lower_zone->lowmem_reserve[j] = 0;
				} else {
					lower_zone->lowmem_reserve[j] =
						managed_pages / sysctl_lowmem_reserve_ratio[idx];
				}
7217
				managed_pages += lower_zone->managed_pages;
L
Linus Torvalds 已提交
7218 7219 7220
			}
		}
	}
7221 7222 7223

	/* update totalreserve_pages */
	calculate_totalreserve_pages();
L
Linus Torvalds 已提交
7224 7225
}

7226
static void __setup_per_zone_wmarks(void)
L
Linus Torvalds 已提交
7227 7228 7229 7230 7231 7232 7233 7234 7235
{
	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
	unsigned long lowmem_pages = 0;
	struct zone *zone;
	unsigned long flags;

	/* Calculate total number of !ZONE_HIGHMEM pages */
	for_each_zone(zone) {
		if (!is_highmem(zone))
7236
			lowmem_pages += zone->managed_pages;
L
Linus Torvalds 已提交
7237 7238 7239
	}

	for_each_zone(zone) {
7240 7241
		u64 tmp;

7242
		spin_lock_irqsave(&zone->lock, flags);
7243
		tmp = (u64)pages_min * zone->managed_pages;
7244
		do_div(tmp, lowmem_pages);
L
Linus Torvalds 已提交
7245 7246
		if (is_highmem(zone)) {
			/*
N
Nick Piggin 已提交
7247 7248 7249 7250
			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
			 * need highmem pages, so cap pages_min to a small
			 * value here.
			 *
7251
			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
Y
Yaowei Bai 已提交
7252
			 * deltas control asynch page reclaim, and so should
N
Nick Piggin 已提交
7253
			 * not be capped for highmem.
L
Linus Torvalds 已提交
7254
			 */
7255
			unsigned long min_pages;
L
Linus Torvalds 已提交
7256

7257
			min_pages = zone->managed_pages / 1024;
7258
			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
7259
			zone->watermark[WMARK_MIN] = min_pages;
L
Linus Torvalds 已提交
7260
		} else {
N
Nick Piggin 已提交
7261 7262
			/*
			 * If it's a lowmem zone, reserve a number of pages
L
Linus Torvalds 已提交
7263 7264
			 * proportionate to the zone's size.
			 */
7265
			zone->watermark[WMARK_MIN] = tmp;
L
Linus Torvalds 已提交
7266 7267
		}

7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278
		/*
		 * Set the kswapd watermarks distance according to the
		 * scale factor in proportion to available memory, but
		 * ensure a minimum size on small systems.
		 */
		tmp = max_t(u64, tmp >> 2,
			    mult_frac(zone->managed_pages,
				      watermark_scale_factor, 10000));

		zone->watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
		zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
7279

7280
		spin_unlock_irqrestore(&zone->lock, flags);
L
Linus Torvalds 已提交
7281
	}
7282 7283 7284

	/* update totalreserve_pages */
	calculate_totalreserve_pages();
L
Linus Torvalds 已提交
7285 7286
}

7287 7288 7289 7290 7291 7292 7293 7294 7295
/**
 * setup_per_zone_wmarks - called when min_free_kbytes changes
 * or when memory is hot-{added|removed}
 *
 * Ensures that the watermark[min,low,high] values for each zone are set
 * correctly with respect to min_free_kbytes.
 */
void setup_per_zone_wmarks(void)
{
7296 7297 7298
	static DEFINE_SPINLOCK(lock);

	spin_lock(&lock);
7299
	__setup_per_zone_wmarks();
7300
	spin_unlock(&lock);
7301 7302
}

L
Linus Torvalds 已提交
7303 7304 7305 7306 7307 7308 7309
/*
 * Initialise min_free_kbytes.
 *
 * For small machines we want it small (128k min).  For large machines
 * we want it large (64MB max).  But it is not linear, because network
 * bandwidth does not increase linearly with machine size.  We use
 *
7310
 *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
L
Linus Torvalds 已提交
7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326
 *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
 *
 * which yields
 *
 * 16MB:	512k
 * 32MB:	724k
 * 64MB:	1024k
 * 128MB:	1448k
 * 256MB:	2048k
 * 512MB:	2896k
 * 1024MB:	4096k
 * 2048MB:	5792k
 * 4096MB:	8192k
 * 8192MB:	11584k
 * 16384MB:	16384k
 */
7327
int __meminit init_per_zone_wmark_min(void)
L
Linus Torvalds 已提交
7328 7329
{
	unsigned long lowmem_kbytes;
7330
	int new_min_free_kbytes;
L
Linus Torvalds 已提交
7331 7332

	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344
	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);

	if (new_min_free_kbytes > user_min_free_kbytes) {
		min_free_kbytes = new_min_free_kbytes;
		if (min_free_kbytes < 128)
			min_free_kbytes = 128;
		if (min_free_kbytes > 65536)
			min_free_kbytes = 65536;
	} else {
		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
				new_min_free_kbytes, user_min_free_kbytes);
	}
7345
	setup_per_zone_wmarks();
7346
	refresh_zone_stat_thresholds();
L
Linus Torvalds 已提交
7347
	setup_per_zone_lowmem_reserve();
7348 7349 7350 7351 7352 7353

#ifdef CONFIG_NUMA
	setup_min_unmapped_ratio();
	setup_min_slab_ratio();
#endif

L
Linus Torvalds 已提交
7354 7355
	return 0;
}
7356
core_initcall(init_per_zone_wmark_min)
L
Linus Torvalds 已提交
7357 7358

/*
7359
 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
L
Linus Torvalds 已提交
7360 7361 7362
 *	that we can call two helper functions whenever min_free_kbytes
 *	changes.
 */
7363
int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
7364
	void __user *buffer, size_t *length, loff_t *ppos)
L
Linus Torvalds 已提交
7365
{
7366 7367 7368 7369 7370 7371
	int rc;

	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
	if (rc)
		return rc;

7372 7373
	if (write) {
		user_min_free_kbytes = min_free_kbytes;
7374
		setup_per_zone_wmarks();
7375
	}
L
Linus Torvalds 已提交
7376 7377 7378
	return 0;
}

7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393
int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
	void __user *buffer, size_t *length, loff_t *ppos)
{
	int rc;

	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
	if (rc)
		return rc;

	if (write)
		setup_per_zone_wmarks();

	return 0;
}

7394
#ifdef CONFIG_NUMA
7395
static void setup_min_unmapped_ratio(void)
7396
{
7397
	pg_data_t *pgdat;
7398 7399
	struct zone *zone;

7400
	for_each_online_pgdat(pgdat)
7401
		pgdat->min_unmapped_pages = 0;
7402

7403
	for_each_zone(zone)
7404
		zone->zone_pgdat->min_unmapped_pages += (zone->managed_pages *
7405 7406
				sysctl_min_unmapped_ratio) / 100;
}
7407

7408 7409

int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
7410
	void __user *buffer, size_t *length, loff_t *ppos)
7411 7412 7413
{
	int rc;

7414
	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7415 7416 7417
	if (rc)
		return rc;

7418 7419 7420 7421 7422 7423 7424 7425 7426 7427
	setup_min_unmapped_ratio();

	return 0;
}

static void setup_min_slab_ratio(void)
{
	pg_data_t *pgdat;
	struct zone *zone;

7428 7429 7430
	for_each_online_pgdat(pgdat)
		pgdat->min_slab_pages = 0;

7431
	for_each_zone(zone)
7432
		zone->zone_pgdat->min_slab_pages += (zone->managed_pages *
7433
				sysctl_min_slab_ratio) / 100;
7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446
}

int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
	void __user *buffer, size_t *length, loff_t *ppos)
{
	int rc;

	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
	if (rc)
		return rc;

	setup_min_slab_ratio();

7447 7448
	return 0;
}
7449 7450
#endif

L
Linus Torvalds 已提交
7451 7452 7453 7454 7455 7456
/*
 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
 *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
 *	whenever sysctl_lowmem_reserve_ratio changes.
 *
 * The reserve ratio obviously has absolutely no relation with the
7457
 * minimum watermarks. The lowmem reserve ratio can only make sense
L
Linus Torvalds 已提交
7458 7459
 * if in function of the boot time zone sizes.
 */
7460
int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
7461
	void __user *buffer, size_t *length, loff_t *ppos)
L
Linus Torvalds 已提交
7462
{
7463
	proc_dointvec_minmax(table, write, buffer, length, ppos);
L
Linus Torvalds 已提交
7464 7465 7466 7467
	setup_per_zone_lowmem_reserve();
	return 0;
}

7468 7469
/*
 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
7470 7471
 * cpu.  It is the fraction of total pages in each zone that a hot per cpu
 * pagelist can have before it gets flushed back to buddy allocator.
7472
 */
7473
int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
7474
	void __user *buffer, size_t *length, loff_t *ppos)
7475 7476
{
	struct zone *zone;
7477
	int old_percpu_pagelist_fraction;
7478 7479
	int ret;

7480 7481 7482
	mutex_lock(&pcp_batch_high_lock);
	old_percpu_pagelist_fraction = percpu_pagelist_fraction;

7483
	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497
	if (!write || ret < 0)
		goto out;

	/* Sanity checking to avoid pcp imbalance */
	if (percpu_pagelist_fraction &&
	    percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
		percpu_pagelist_fraction = old_percpu_pagelist_fraction;
		ret = -EINVAL;
		goto out;
	}

	/* No change? */
	if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
		goto out;
7498

7499
	for_each_populated_zone(zone) {
7500 7501
		unsigned int cpu;

7502
		for_each_possible_cpu(cpu)
7503 7504
			pageset_set_high_and_batch(zone,
					per_cpu_ptr(zone->pageset, cpu));
7505
	}
7506
out:
7507
	mutex_unlock(&pcp_batch_high_lock);
7508
	return ret;
7509 7510
}

7511
#ifdef CONFIG_NUMA
7512
int hashdist = HASHDIST_DEFAULT;
L
Linus Torvalds 已提交
7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523

static int __init set_hashdist(char *str)
{
	if (!str)
		return 0;
	hashdist = simple_strtoul(str, &str, 0);
	return 1;
}
__setup("hashdist=", set_hashdist);
#endif

7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534
#ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
/*
 * Returns the number of pages that arch has reserved but
 * is not known to alloc_large_system_hash().
 */
static unsigned long __init arch_reserved_kernel_pages(void)
{
	return 0;
}
#endif

P
Pavel Tatashin 已提交
7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549
/*
 * Adaptive scale is meant to reduce sizes of hash tables on large memory
 * machines. As memory size is increased the scale is also increased but at
 * slower pace.  Starting from ADAPT_SCALE_BASE (64G), every time memory
 * quadruples the scale is increased by one, which means the size of hash table
 * only doubles, instead of quadrupling as well.
 * Because 32-bit systems cannot have large physical memory, where this scaling
 * makes sense, it is disabled on such platforms.
 */
#if __BITS_PER_LONG > 32
#define ADAPT_SCALE_BASE	(64ul << 30)
#define ADAPT_SCALE_SHIFT	2
#define ADAPT_SCALE_NPAGES	(ADAPT_SCALE_BASE >> PAGE_SHIFT)
#endif

L
Linus Torvalds 已提交
7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562
/*
 * allocate a large system hash table from bootmem
 * - it is assumed that the hash table must contain an exact power-of-2
 *   quantity of entries
 * - limit is the number of hash buckets, not the total allocation size
 */
void *__init alloc_large_system_hash(const char *tablename,
				     unsigned long bucketsize,
				     unsigned long numentries,
				     int scale,
				     int flags,
				     unsigned int *_hash_shift,
				     unsigned int *_hash_mask,
7563 7564
				     unsigned long low_limit,
				     unsigned long high_limit)
L
Linus Torvalds 已提交
7565
{
7566
	unsigned long long max = high_limit;
L
Linus Torvalds 已提交
7567 7568
	unsigned long log2qty, size;
	void *table = NULL;
7569
	gfp_t gfp_flags;
L
Linus Torvalds 已提交
7570 7571 7572 7573

	/* allow the kernel cmdline to have a say */
	if (!numentries) {
		/* round applicable memory size up to nearest megabyte */
A
Andrew Morton 已提交
7574
		numentries = nr_kernel_pages;
7575
		numentries -= arch_reserved_kernel_pages();
7576 7577 7578 7579

		/* It isn't necessary when PAGE_SIZE >= 1MB */
		if (PAGE_SHIFT < 20)
			numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
L
Linus Torvalds 已提交
7580

P
Pavel Tatashin 已提交
7581 7582 7583 7584 7585 7586 7587 7588 7589 7590
#if __BITS_PER_LONG > 32
		if (!high_limit) {
			unsigned long adapt;

			for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
			     adapt <<= ADAPT_SCALE_SHIFT)
				scale++;
		}
#endif

L
Linus Torvalds 已提交
7591 7592 7593 7594 7595
		/* limit to 1 bucket per 2^scale bytes of low memory */
		if (scale > PAGE_SHIFT)
			numentries >>= (scale - PAGE_SHIFT);
		else
			numentries <<= (PAGE_SHIFT - scale);
7596 7597

		/* Make sure we've got at least a 0-order allocation.. */
7598 7599 7600 7601 7602 7603 7604 7605
		if (unlikely(flags & HASH_SMALL)) {
			/* Makes no sense without HASH_EARLY */
			WARN_ON(!(flags & HASH_EARLY));
			if (!(numentries >> *_hash_shift)) {
				numentries = 1UL << *_hash_shift;
				BUG_ON(!numentries);
			}
		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
7606
			numentries = PAGE_SIZE / bucketsize;
L
Linus Torvalds 已提交
7607
	}
7608
	numentries = roundup_pow_of_two(numentries);
L
Linus Torvalds 已提交
7609 7610 7611 7612 7613 7614

	/* limit allocation size to 1/16 total memory by default */
	if (max == 0) {
		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
		do_div(max, bucketsize);
	}
7615
	max = min(max, 0x80000000ULL);
L
Linus Torvalds 已提交
7616

7617 7618
	if (numentries < low_limit)
		numentries = low_limit;
L
Linus Torvalds 已提交
7619 7620 7621
	if (numentries > max)
		numentries = max;

7622
	log2qty = ilog2(numentries);
L
Linus Torvalds 已提交
7623

7624
	gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
L
Linus Torvalds 已提交
7625 7626
	do {
		size = bucketsize << log2qty;
7627 7628 7629 7630 7631 7632
		if (flags & HASH_EARLY) {
			if (flags & HASH_ZERO)
				table = memblock_virt_alloc_nopanic(size, 0);
			else
				table = memblock_virt_alloc_raw(size, 0);
		} else if (hashdist) {
7633
			table = __vmalloc(size, gfp_flags, PAGE_KERNEL);
7634
		} else {
7635 7636
			/*
			 * If bucketsize is not a power-of-two, we may free
7637 7638
			 * some pages at the end of hash table which
			 * alloc_pages_exact() automatically does
7639
			 */
7640
			if (get_order(size) < MAX_ORDER) {
7641 7642
				table = alloc_pages_exact(size, gfp_flags);
				kmemleak_alloc(table, size, 1, gfp_flags);
7643
			}
L
Linus Torvalds 已提交
7644 7645 7646 7647 7648 7649
		}
	} while (!table && size > PAGE_SIZE && --log2qty);

	if (!table)
		panic("Failed to allocate %s hash table\n", tablename);

7650 7651
	pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
		tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
L
Linus Torvalds 已提交
7652 7653 7654 7655 7656 7657 7658 7659

	if (_hash_shift)
		*_hash_shift = log2qty;
	if (_hash_mask)
		*_hash_mask = (1 << log2qty) - 1;

	return table;
}
7660

K
KAMEZAWA Hiroyuki 已提交
7661
/*
7662 7663 7664
 * This function checks whether pageblock includes unmovable pages or not.
 * If @count is not zero, it is okay to include less @count unmovable pages
 *
7665
 * PageLRU check without isolation or lru_lock could race so that
7666 7667 7668
 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
 * check without lock_page also may miss some movable non-lru pages at
 * race condition. So you can't expect this function should be exact.
K
KAMEZAWA Hiroyuki 已提交
7669
 */
7670
bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
7671
			 int migratetype,
7672
			 bool skip_hwpoisoned_pages)
7673 7674
{
	unsigned long pfn, iter, found;
7675

7676
	/*
7677 7678 7679 7680 7681
	 * TODO we could make this much more efficient by not checking every
	 * page in the range if we know all of them are in MOVABLE_ZONE and
	 * that the movable zone guarantees that pages are migratable but
	 * the later is not the case right now unfortunatelly. E.g. movablecore
	 * can still lead to having bootmem allocations in zone_movable.
7682 7683
	 */

7684 7685 7686 7687 7688 7689 7690 7691 7692
	/*
	 * CMA allocations (alloc_contig_range) really need to mark isolate
	 * CMA pageblocks even when they are not movable in fact so consider
	 * them movable here.
	 */
	if (is_migrate_cma(migratetype) &&
			is_migrate_cma(get_pageblock_migratetype(page)))
		return false;

7693 7694 7695 7696
	pfn = page_to_pfn(page);
	for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
		unsigned long check = pfn + iter;

7697
		if (!pfn_valid_within(check))
7698
			continue;
7699

7700
		page = pfn_to_page(check);
7701

7702
		if (PageReserved(page))
7703
			goto unmovable;
7704

7705 7706 7707 7708 7709 7710 7711 7712 7713 7714
		/*
		 * Hugepages are not in LRU lists, but they're movable.
		 * We need not scan over tail pages bacause we don't
		 * handle each tail page individually in migration.
		 */
		if (PageHuge(page)) {
			iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
			continue;
		}

7715 7716 7717 7718
		/*
		 * We can't use page_count without pin a page
		 * because another CPU can free compound page.
		 * This check already skips compound tails of THP
7719
		 * because their page->_refcount is zero at all time.
7720
		 */
7721
		if (!page_ref_count(page)) {
7722 7723 7724 7725
			if (PageBuddy(page))
				iter += (1 << page_order(page)) - 1;
			continue;
		}
7726

7727 7728 7729 7730 7731 7732 7733
		/*
		 * The HWPoisoned page may be not in buddy system, and
		 * page_count() is not 0.
		 */
		if (skip_hwpoisoned_pages && PageHWPoison(page))
			continue;

7734 7735 7736
		if (__PageMovable(page))
			continue;

7737 7738 7739
		if (!PageLRU(page))
			found++;
		/*
7740 7741 7742
		 * If there are RECLAIMABLE pages, we need to check
		 * it.  But now, memory offline itself doesn't call
		 * shrink_node_slabs() and it still to be fixed.
7743 7744 7745 7746 7747 7748 7749 7750 7751 7752
		 */
		/*
		 * If the page is not RAM, page_count()should be 0.
		 * we don't need more check. This is an _used_ not-movable page.
		 *
		 * The problematic thing here is PG_reserved pages. PG_reserved
		 * is set to both of a memory hole page and a _used_ kernel
		 * page at boot.
		 */
		if (found > count)
7753
			goto unmovable;
7754
	}
7755
	return false;
7756 7757 7758
unmovable:
	WARN_ON_ONCE(zone_idx(zone) == ZONE_MOVABLE);
	return true;
7759 7760
}

7761
#if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775

static unsigned long pfn_max_align_down(unsigned long pfn)
{
	return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
			     pageblock_nr_pages) - 1);
}

static unsigned long pfn_max_align_up(unsigned long pfn)
{
	return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
				pageblock_nr_pages));
}

/* [start, end) must belong to a single zone. */
7776 7777
static int __alloc_contig_migrate_range(struct compact_control *cc,
					unsigned long start, unsigned long end)
7778 7779
{
	/* This function is based on compact_zone() from compaction.c. */
7780
	unsigned long nr_reclaimed;
7781 7782 7783 7784
	unsigned long pfn = start;
	unsigned int tries = 0;
	int ret = 0;

7785
	migrate_prep();
7786

7787
	while (pfn < end || !list_empty(&cc->migratepages)) {
7788 7789 7790 7791 7792
		if (fatal_signal_pending(current)) {
			ret = -EINTR;
			break;
		}

7793 7794
		if (list_empty(&cc->migratepages)) {
			cc->nr_migratepages = 0;
7795
			pfn = isolate_migratepages_range(cc, pfn, end);
7796 7797 7798 7799 7800 7801 7802 7803 7804 7805
			if (!pfn) {
				ret = -EINTR;
				break;
			}
			tries = 0;
		} else if (++tries == 5) {
			ret = ret < 0 ? ret : -EBUSY;
			break;
		}

7806 7807 7808
		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
							&cc->migratepages);
		cc->nr_migratepages -= nr_reclaimed;
7809

7810
		ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
7811
				    NULL, 0, cc->mode, MR_CONTIG_RANGE);
7812
	}
7813 7814 7815 7816 7817
	if (ret < 0) {
		putback_movable_pages(&cc->migratepages);
		return ret;
	}
	return 0;
7818 7819 7820 7821 7822 7823
}

/**
 * alloc_contig_range() -- tries to allocate given range of pages
 * @start:	start PFN to allocate
 * @end:	one-past-the-last PFN to allocate
7824 7825 7826 7827
 * @migratetype:	migratetype of the underlaying pageblocks (either
 *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
 *			in range must have the same migratetype and it must
 *			be either of the two.
7828
 * @gfp_mask:	GFP mask to use during compaction
7829 7830
 *
 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
7831
 * aligned.  The PFN range must belong to a single zone.
7832
 *
7833 7834 7835
 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
 * pageblocks in the range.  Once isolated, the pageblocks should not
 * be modified by others.
7836 7837 7838 7839 7840
 *
 * Returns zero on success or negative error code.  On success all
 * pages which PFN is in [start, end) are allocated for the caller and
 * need to be freed with free_contig_range().
 */
7841
int alloc_contig_range(unsigned long start, unsigned long end,
7842
		       unsigned migratetype, gfp_t gfp_mask)
7843 7844
{
	unsigned long outer_start, outer_end;
7845 7846
	unsigned int order;
	int ret = 0;
7847

7848 7849 7850 7851
	struct compact_control cc = {
		.nr_migratepages = 0,
		.order = -1,
		.zone = page_zone(pfn_to_page(start)),
7852
		.mode = MIGRATE_SYNC,
7853
		.ignore_skip_hint = true,
7854
		.no_set_skip_hint = true,
7855
		.gfp_mask = current_gfp_context(gfp_mask),
7856 7857 7858
	};
	INIT_LIST_HEAD(&cc.migratepages);

7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883
	/*
	 * What we do here is we mark all pageblocks in range as
	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
	 * have different sizes, and due to the way page allocator
	 * work, we align the range to biggest of the two pages so
	 * that page allocator won't try to merge buddies from
	 * different pageblocks and change MIGRATE_ISOLATE to some
	 * other migration type.
	 *
	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
	 * migrate the pages from an unaligned range (ie. pages that
	 * we are interested in).  This will put all the pages in
	 * range back to page allocator as MIGRATE_ISOLATE.
	 *
	 * When this is done, we take the pages in range from page
	 * allocator removing them from the buddy system.  This way
	 * page allocator will never consider using them.
	 *
	 * This lets us mark the pageblocks back as
	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
	 * aligned range but not in the unaligned, original range are
	 * put back to page allocator so that buddy can use them.
	 */

	ret = start_isolate_page_range(pfn_max_align_down(start),
7884 7885
				       pfn_max_align_up(end), migratetype,
				       false);
7886
	if (ret)
7887
		return ret;
7888

7889 7890
	/*
	 * In case of -EBUSY, we'd like to know which page causes problem.
7891 7892 7893 7894 7895 7896 7897
	 * So, just fall through. test_pages_isolated() has a tracepoint
	 * which will report the busy page.
	 *
	 * It is possible that busy pages could become available before
	 * the call to test_pages_isolated, and the range will actually be
	 * allocated.  So, if we fall through be sure to clear ret so that
	 * -EBUSY is not accidentally used or returned to caller.
7898
	 */
7899
	ret = __alloc_contig_migrate_range(&cc, start, end);
7900
	if (ret && ret != -EBUSY)
7901
		goto done;
7902
	ret =0;
7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921

	/*
	 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
	 * more, all pages in [start, end) are free in page allocator.
	 * What we are going to do is to allocate all pages from
	 * [start, end) (that is remove them from page allocator).
	 *
	 * The only problem is that pages at the beginning and at the
	 * end of interesting range may be not aligned with pages that
	 * page allocator holds, ie. they can be part of higher order
	 * pages.  Because of this, we reserve the bigger range and
	 * once this is done free the pages we are not interested in.
	 *
	 * We don't have to hold zone->lock here because the pages are
	 * isolated thus they won't get removed from buddy.
	 */

	lru_add_drain_all();
7922
	drain_all_pages(cc.zone);
7923 7924 7925 7926 7927

	order = 0;
	outer_start = start;
	while (!PageBuddy(pfn_to_page(outer_start))) {
		if (++order >= MAX_ORDER) {
7928 7929
			outer_start = start;
			break;
7930 7931 7932 7933
		}
		outer_start &= ~0UL << order;
	}

7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946
	if (outer_start != start) {
		order = page_order(pfn_to_page(outer_start));

		/*
		 * outer_start page could be small order buddy page and
		 * it doesn't include start page. Adjust outer_start
		 * in this case to report failed page properly
		 * on tracepoint in test_pages_isolated()
		 */
		if (outer_start + (1UL << order) <= start)
			outer_start = start;
	}

7947
	/* Make sure the range is really isolated. */
7948
	if (test_pages_isolated(outer_start, end, false)) {
7949
		pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
7950
			__func__, outer_start, end);
7951 7952 7953 7954
		ret = -EBUSY;
		goto done;
	}

7955
	/* Grab isolated pages from freelists. */
7956
	outer_end = isolate_freepages_range(&cc, outer_start, end);
7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969
	if (!outer_end) {
		ret = -EBUSY;
		goto done;
	}

	/* Free head and tail (if any) */
	if (start != outer_start)
		free_contig_range(outer_start, start - outer_start);
	if (end != outer_end)
		free_contig_range(end, outer_end - end);

done:
	undo_isolate_page_range(pfn_max_align_down(start),
7970
				pfn_max_align_up(end), migratetype);
7971 7972 7973 7974 7975
	return ret;
}

void free_contig_range(unsigned long pfn, unsigned nr_pages)
{
7976 7977 7978 7979 7980 7981 7982 7983 7984
	unsigned int count = 0;

	for (; nr_pages--; pfn++) {
		struct page *page = pfn_to_page(pfn);

		count += page_count(page) != 1;
		__free_page(page);
	}
	WARN(count != 0, "%d pages are still in use!\n", count);
7985 7986 7987
}
#endif

7988
#ifdef CONFIG_MEMORY_HOTPLUG
7989 7990 7991 7992
/*
 * The zone indicated has a new number of managed_pages; batch sizes and percpu
 * page high values need to be recalulated.
 */
7993 7994
void __meminit zone_pcp_update(struct zone *zone)
{
7995
	unsigned cpu;
7996
	mutex_lock(&pcp_batch_high_lock);
7997
	for_each_possible_cpu(cpu)
7998 7999
		pageset_set_high_and_batch(zone,
				per_cpu_ptr(zone->pageset, cpu));
8000
	mutex_unlock(&pcp_batch_high_lock);
8001 8002 8003
}
#endif

8004 8005 8006
void zone_pcp_reset(struct zone *zone)
{
	unsigned long flags;
8007 8008
	int cpu;
	struct per_cpu_pageset *pset;
8009 8010 8011 8012

	/* avoid races with drain_pages()  */
	local_irq_save(flags);
	if (zone->pageset != &boot_pageset) {
8013 8014 8015 8016
		for_each_online_cpu(cpu) {
			pset = per_cpu_ptr(zone->pageset, cpu);
			drain_zonestat(zone, pset);
		}
8017 8018 8019 8020 8021 8022
		free_percpu(zone->pageset);
		zone->pageset = &boot_pageset;
	}
	local_irq_restore(flags);
}

8023
#ifdef CONFIG_MEMORY_HOTREMOVE
K
KAMEZAWA Hiroyuki 已提交
8024
/*
8025 8026
 * All pages in the range must be in a single zone and isolated
 * before calling this.
K
KAMEZAWA Hiroyuki 已提交
8027 8028 8029 8030 8031 8032
 */
void
__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
{
	struct page *page;
	struct zone *zone;
8033
	unsigned int order, i;
K
KAMEZAWA Hiroyuki 已提交
8034 8035 8036 8037 8038 8039 8040 8041
	unsigned long pfn;
	unsigned long flags;
	/* find the first valid pfn */
	for (pfn = start_pfn; pfn < end_pfn; pfn++)
		if (pfn_valid(pfn))
			break;
	if (pfn == end_pfn)
		return;
8042
	offline_mem_sections(pfn, end_pfn);
K
KAMEZAWA Hiroyuki 已提交
8043 8044 8045 8046 8047 8048 8049 8050 8051
	zone = page_zone(pfn_to_page(pfn));
	spin_lock_irqsave(&zone->lock, flags);
	pfn = start_pfn;
	while (pfn < end_pfn) {
		if (!pfn_valid(pfn)) {
			pfn++;
			continue;
		}
		page = pfn_to_page(pfn);
8052 8053 8054 8055 8056 8057 8058 8059 8060 8061
		/*
		 * The HWPoisoned page may be not in buddy system, and
		 * page_count() is not 0.
		 */
		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
			pfn++;
			SetPageReserved(page);
			continue;
		}

K
KAMEZAWA Hiroyuki 已提交
8062 8063 8064 8065
		BUG_ON(page_count(page));
		BUG_ON(!PageBuddy(page));
		order = page_order(page);
#ifdef CONFIG_DEBUG_VM
8066 8067
		pr_info("remove from free list %lx %d %lx\n",
			pfn, 1 << order, end_pfn);
K
KAMEZAWA Hiroyuki 已提交
8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078
#endif
		list_del(&page->lru);
		rmv_page_order(page);
		zone->free_area[order].nr_free--;
		for (i = 0; i < (1 << order); i++)
			SetPageReserved((page+i));
		pfn += (1 << order);
	}
	spin_unlock_irqrestore(&zone->lock, flags);
}
#endif
8079 8080 8081 8082 8083 8084

bool is_free_buddy_page(struct page *page)
{
	struct zone *zone = page_zone(page);
	unsigned long pfn = page_to_pfn(page);
	unsigned long flags;
8085
	unsigned int order;
8086 8087 8088 8089 8090 8091 8092 8093 8094 8095 8096 8097

	spin_lock_irqsave(&zone->lock, flags);
	for (order = 0; order < MAX_ORDER; order++) {
		struct page *page_head = page - (pfn & ((1 << order) - 1));

		if (PageBuddy(page_head) && page_order(page_head) >= order)
			break;
	}
	spin_unlock_irqrestore(&zone->lock, flags);

	return order < MAX_ORDER;
}
8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116 8117 8118 8119 8120 8121 8122 8123 8124 8125 8126 8127

#ifdef CONFIG_MEMORY_FAILURE
/*
 * Set PG_hwpoison flag if a given page is confirmed to be a free page.  This
 * test is performed under the zone lock to prevent a race against page
 * allocation.
 */
bool set_hwpoison_free_buddy_page(struct page *page)
{
	struct zone *zone = page_zone(page);
	unsigned long pfn = page_to_pfn(page);
	unsigned long flags;
	unsigned int order;
	bool hwpoisoned = false;

	spin_lock_irqsave(&zone->lock, flags);
	for (order = 0; order < MAX_ORDER; order++) {
		struct page *page_head = page - (pfn & ((1 << order) - 1));

		if (PageBuddy(page_head) && page_order(page_head) >= order) {
			if (!TestSetPageHWPoison(page))
				hwpoisoned = true;
			break;
		}
	}
	spin_unlock_irqrestore(&zone->lock, flags);

	return hwpoisoned;
}
#endif