core.c 178.4 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
2
 *  kernel/sched/core.c
L
Linus Torvalds 已提交
3
 *
I
Ingo Molnar 已提交
4
 *  Core kernel scheduler code and related syscalls
L
Linus Torvalds 已提交
5 6 7
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 */
8
#include <linux/sched.h>
L
Linus Torvalds 已提交
9
#include <linux/cpuset.h>
10
#include <linux/delayacct.h>
11
#include <linux/init_task.h>
12
#include <linux/context_tracking.h>
13
#include <linux/rcupdate_wait.h>
14 15 16 17 18 19

#include <linux/blkdev.h>
#include <linux/kprobes.h>
#include <linux/mmu_context.h>
#include <linux/module.h>
#include <linux/nmi.h>
20
#include <linux/prefetch.h>
21 22 23
#include <linux/profile.h>
#include <linux/security.h>
#include <linux/syscalls.h>
L
Linus Torvalds 已提交
24

25
#include <asm/switch_to.h>
26
#include <asm/tlb.h>
27 28 29
#ifdef CONFIG_PARAVIRT
#include <asm/paravirt.h>
#endif
L
Linus Torvalds 已提交
30

31
#include "sched.h"
32
#include "../workqueue_internal.h"
33
#include "../smpboot.h"
34

35
#define CREATE_TRACE_POINTS
36
#include <trace/events/sched.h>
37

38
DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
39

I
Ingo Molnar 已提交
40 41 42
/*
 * Debugging: various feature bits
 */
P
Peter Zijlstra 已提交
43 44 45 46

#define SCHED_FEAT(name, enabled)	\
	(1UL << __SCHED_FEAT_##name) * enabled |

I
Ingo Molnar 已提交
47
const_debug unsigned int sysctl_sched_features =
48
#include "features.h"
P
Peter Zijlstra 已提交
49 50 51 52
	0;

#undef SCHED_FEAT

53 54 55 56 57 58
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

59 60 61 62 63 64 65 66
/*
 * period over which we average the RT time consumption, measured
 * in ms.
 *
 * default: 1s
 */
const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;

P
Peter Zijlstra 已提交
67
/*
I
Ingo Molnar 已提交
68
 * period over which we measure -rt task CPU usage in us.
P
Peter Zijlstra 已提交
69 70
 * default: 1s
 */
P
Peter Zijlstra 已提交
71
unsigned int sysctl_sched_rt_period = 1000000;
P
Peter Zijlstra 已提交
72

73
__read_mostly int scheduler_running;
74

P
Peter Zijlstra 已提交
75 76 77 78 79
/*
 * part of the period that we allow rt tasks to run in us.
 * default: 0.95s
 */
int sysctl_sched_rt_runtime = 950000;
P
Peter Zijlstra 已提交
80

I
Ingo Molnar 已提交
81
/* CPUs with isolated domains */
82 83
cpumask_var_t cpu_isolated_map;

L
Linus Torvalds 已提交
84
/*
85
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
86
 */
A
Alexey Dobriyan 已提交
87
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
88 89
	__acquires(rq->lock)
{
90
	struct rq *rq;
L
Linus Torvalds 已提交
91 92 93

	local_irq_disable();
	rq = this_rq();
94
	raw_spin_lock(&rq->lock);
L
Linus Torvalds 已提交
95 96 97 98

	return rq;
}

99 100 101
/*
 * __task_rq_lock - lock the rq @p resides on.
 */
102
struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
103 104 105 106 107 108 109 110 111 112
	__acquires(rq->lock)
{
	struct rq *rq;

	lockdep_assert_held(&p->pi_lock);

	for (;;) {
		rq = task_rq(p);
		raw_spin_lock(&rq->lock);
		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
113
			rq_pin_lock(rq, rf);
114 115 116 117 118 119 120 121 122 123 124 125
			return rq;
		}
		raw_spin_unlock(&rq->lock);

		while (unlikely(task_on_rq_migrating(p)))
			cpu_relax();
	}
}

/*
 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
 */
126
struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
127 128 129 130 131 132
	__acquires(p->pi_lock)
	__acquires(rq->lock)
{
	struct rq *rq;

	for (;;) {
133
		raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
		rq = task_rq(p);
		raw_spin_lock(&rq->lock);
		/*
		 *	move_queued_task()		task_rq_lock()
		 *
		 *	ACQUIRE (rq->lock)
		 *	[S] ->on_rq = MIGRATING		[L] rq = task_rq()
		 *	WMB (__set_task_cpu())		ACQUIRE (rq->lock);
		 *	[S] ->cpu = new_cpu		[L] task_rq()
		 *					[L] ->on_rq
		 *	RELEASE (rq->lock)
		 *
		 * If we observe the old cpu in task_rq_lock, the acquire of
		 * the old rq->lock will fully serialize against the stores.
		 *
I
Ingo Molnar 已提交
149
		 * If we observe the new CPU in task_rq_lock, the acquire will
150 151 152
		 * pair with the WMB to ensure we must then also see migrating.
		 */
		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
153
			rq_pin_lock(rq, rf);
154 155 156
			return rq;
		}
		raw_spin_unlock(&rq->lock);
157
		raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
158 159 160 161 162 163

		while (unlikely(task_on_rq_migrating(p)))
			cpu_relax();
	}
}

164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
/*
 * RQ-clock updating methods:
 */

static void update_rq_clock_task(struct rq *rq, s64 delta)
{
/*
 * In theory, the compile should just see 0 here, and optimize out the call
 * to sched_rt_avg_update. But I don't trust it...
 */
#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
	s64 steal = 0, irq_delta = 0;
#endif
#ifdef CONFIG_IRQ_TIME_ACCOUNTING
	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;

	/*
	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
	 * this case when a previous update_rq_clock() happened inside a
	 * {soft,}irq region.
	 *
	 * When this happens, we stop ->clock_task and only update the
	 * prev_irq_time stamp to account for the part that fit, so that a next
	 * update will consume the rest. This ensures ->clock_task is
	 * monotonic.
	 *
	 * It does however cause some slight miss-attribution of {soft,}irq
	 * time, a more accurate solution would be to update the irq_time using
	 * the current rq->clock timestamp, except that would require using
	 * atomic ops.
	 */
	if (irq_delta > delta)
		irq_delta = delta;

	rq->prev_irq_time += irq_delta;
	delta -= irq_delta;
#endif
#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
	if (static_key_false((&paravirt_steal_rq_enabled))) {
		steal = paravirt_steal_clock(cpu_of(rq));
		steal -= rq->prev_steal_time_rq;

		if (unlikely(steal > delta))
			steal = delta;

		rq->prev_steal_time_rq += steal;
		delta -= steal;
	}
#endif

	rq->clock_task += delta;

#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
	if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
		sched_rt_avg_update(rq, irq_delta + steal);
#endif
}

void update_rq_clock(struct rq *rq)
{
	s64 delta;

	lockdep_assert_held(&rq->lock);

	if (rq->clock_update_flags & RQCF_ACT_SKIP)
		return;

#ifdef CONFIG_SCHED_DEBUG
	rq->clock_update_flags |= RQCF_UPDATED;
#endif
	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
	if (delta < 0)
		return;
	rq->clock += delta;
	update_rq_clock_task(rq, delta);
}


P
Peter Zijlstra 已提交
242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
#ifdef CONFIG_SCHED_HRTICK
/*
 * Use HR-timers to deliver accurate preemption points.
 */

static void hrtick_clear(struct rq *rq)
{
	if (hrtimer_active(&rq->hrtick_timer))
		hrtimer_cancel(&rq->hrtick_timer);
}

/*
 * High-resolution timer tick.
 * Runs from hardirq context with interrupts disabled.
 */
static enum hrtimer_restart hrtick(struct hrtimer *timer)
{
	struct rq *rq = container_of(timer, struct rq, hrtick_timer);

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

263
	raw_spin_lock(&rq->lock);
264
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
265
	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
266
	raw_spin_unlock(&rq->lock);
P
Peter Zijlstra 已提交
267 268 269 270

	return HRTIMER_NORESTART;
}

271
#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
272

273
static void __hrtick_restart(struct rq *rq)
P
Peter Zijlstra 已提交
274 275 276
{
	struct hrtimer *timer = &rq->hrtick_timer;

277
	hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
P
Peter Zijlstra 已提交
278 279
}

280 281 282 283
/*
 * called from hardirq (IPI) context
 */
static void __hrtick_start(void *arg)
284
{
285
	struct rq *rq = arg;
286

287
	raw_spin_lock(&rq->lock);
P
Peter Zijlstra 已提交
288
	__hrtick_restart(rq);
289
	rq->hrtick_csd_pending = 0;
290
	raw_spin_unlock(&rq->lock);
291 292
}

293 294 295 296 297
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
298
void hrtick_start(struct rq *rq, u64 delay)
299
{
300
	struct hrtimer *timer = &rq->hrtick_timer;
301 302 303 304 305 306 307 308 309
	ktime_t time;
	s64 delta;

	/*
	 * Don't schedule slices shorter than 10000ns, that just
	 * doesn't make sense and can cause timer DoS.
	 */
	delta = max_t(s64, delay, 10000LL);
	time = ktime_add_ns(timer->base->get_time(), delta);
310

311
	hrtimer_set_expires(timer, time);
312 313

	if (rq == this_rq()) {
P
Peter Zijlstra 已提交
314
		__hrtick_restart(rq);
315
	} else if (!rq->hrtick_csd_pending) {
316
		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
317 318
		rq->hrtick_csd_pending = 1;
	}
319 320
}

321 322 323 324 325 326
#else
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
327
void hrtick_start(struct rq *rq, u64 delay)
328
{
W
Wanpeng Li 已提交
329 330 331 332 333
	/*
	 * Don't schedule slices shorter than 10000ns, that just
	 * doesn't make sense. Rely on vruntime for fairness.
	 */
	delay = max_t(u64, delay, 10000LL);
334 335
	hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
		      HRTIMER_MODE_REL_PINNED);
336 337
}
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
338

339
static void init_rq_hrtick(struct rq *rq)
P
Peter Zijlstra 已提交
340
{
341 342
#ifdef CONFIG_SMP
	rq->hrtick_csd_pending = 0;
P
Peter Zijlstra 已提交
343

344 345 346 347
	rq->hrtick_csd.flags = 0;
	rq->hrtick_csd.func = __hrtick_start;
	rq->hrtick_csd.info = rq;
#endif
P
Peter Zijlstra 已提交
348

349 350
	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rq->hrtick_timer.function = hrtick;
P
Peter Zijlstra 已提交
351
}
A
Andrew Morton 已提交
352
#else	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
353 354 355 356 357 358 359
static inline void hrtick_clear(struct rq *rq)
{
}

static inline void init_rq_hrtick(struct rq *rq)
{
}
A
Andrew Morton 已提交
360
#endif	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
361

362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379
/*
 * cmpxchg based fetch_or, macro so it works for different integer types
 */
#define fetch_or(ptr, mask)						\
	({								\
		typeof(ptr) _ptr = (ptr);				\
		typeof(mask) _mask = (mask);				\
		typeof(*_ptr) _old, _val = *_ptr;			\
									\
		for (;;) {						\
			_old = cmpxchg(_ptr, _val, _val | _mask);	\
			if (_old == _val)				\
				break;					\
			_val = _old;					\
		}							\
	_old;								\
})

380
#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
381 382 383 384 385 386 387 388 389 390
/*
 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
 * this avoids any races wrt polling state changes and thereby avoids
 * spurious IPIs.
 */
static bool set_nr_and_not_polling(struct task_struct *p)
{
	struct thread_info *ti = task_thread_info(p);
	return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
}
391 392 393 394 395 396 397 398 399 400

/*
 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
 *
 * If this returns true, then the idle task promises to call
 * sched_ttwu_pending() and reschedule soon.
 */
static bool set_nr_if_polling(struct task_struct *p)
{
	struct thread_info *ti = task_thread_info(p);
401
	typeof(ti->flags) old, val = READ_ONCE(ti->flags);
402 403 404 405 406 407 408 409 410 411 412 413 414 415

	for (;;) {
		if (!(val & _TIF_POLLING_NRFLAG))
			return false;
		if (val & _TIF_NEED_RESCHED)
			return true;
		old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
		if (old == val)
			break;
		val = old;
	}
	return true;
}

416 417 418 419 420 421
#else
static bool set_nr_and_not_polling(struct task_struct *p)
{
	set_tsk_need_resched(p);
	return true;
}
422 423 424 425 426 427 428

#ifdef CONFIG_SMP
static bool set_nr_if_polling(struct task_struct *p)
{
	return false;
}
#endif
429 430
#endif

431 432 433 434 435 436 437 438 439 440
void wake_q_add(struct wake_q_head *head, struct task_struct *task)
{
	struct wake_q_node *node = &task->wake_q;

	/*
	 * Atomically grab the task, if ->wake_q is !nil already it means
	 * its already queued (either by us or someone else) and will get the
	 * wakeup due to that.
	 *
	 * This cmpxchg() implies a full barrier, which pairs with the write
441
	 * barrier implied by the wakeup in wake_up_q().
442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463
	 */
	if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL))
		return;

	get_task_struct(task);

	/*
	 * The head is context local, there can be no concurrency.
	 */
	*head->lastp = node;
	head->lastp = &node->next;
}

void wake_up_q(struct wake_q_head *head)
{
	struct wake_q_node *node = head->first;

	while (node != WAKE_Q_TAIL) {
		struct task_struct *task;

		task = container_of(node, struct task_struct, wake_q);
		BUG_ON(!task);
I
Ingo Molnar 已提交
464
		/* Task can safely be re-inserted now: */
465 466 467 468 469 470 471 472 473 474 475 476
		node = node->next;
		task->wake_q.next = NULL;

		/*
		 * wake_up_process() implies a wmb() to pair with the queueing
		 * in wake_q_add() so as not to miss wakeups.
		 */
		wake_up_process(task);
		put_task_struct(task);
	}
}

I
Ingo Molnar 已提交
477
/*
478
 * resched_curr - mark rq's current task 'to be rescheduled now'.
I
Ingo Molnar 已提交
479 480 481 482 483
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
484
void resched_curr(struct rq *rq)
I
Ingo Molnar 已提交
485
{
486
	struct task_struct *curr = rq->curr;
I
Ingo Molnar 已提交
487 488
	int cpu;

489
	lockdep_assert_held(&rq->lock);
I
Ingo Molnar 已提交
490

491
	if (test_tsk_need_resched(curr))
I
Ingo Molnar 已提交
492 493
		return;

494
	cpu = cpu_of(rq);
495

496
	if (cpu == smp_processor_id()) {
497
		set_tsk_need_resched(curr);
498
		set_preempt_need_resched();
I
Ingo Molnar 已提交
499
		return;
500
	}
I
Ingo Molnar 已提交
501

502
	if (set_nr_and_not_polling(curr))
I
Ingo Molnar 已提交
503
		smp_send_reschedule(cpu);
504 505
	else
		trace_sched_wake_idle_without_ipi(cpu);
I
Ingo Molnar 已提交
506 507
}

508
void resched_cpu(int cpu)
I
Ingo Molnar 已提交
509 510 511 512
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

513
	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
I
Ingo Molnar 已提交
514
		return;
515
	resched_curr(rq);
516
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
517
}
518

519
#ifdef CONFIG_SMP
520
#ifdef CONFIG_NO_HZ_COMMON
521
/*
I
Ingo Molnar 已提交
522 523
 * In the semi idle case, use the nearest busy CPU for migrating timers
 * from an idle CPU.  This is good for power-savings.
524 525
 *
 * We don't do similar optimization for completely idle system, as
I
Ingo Molnar 已提交
526 527
 * selecting an idle CPU will add more delays to the timers than intended
 * (as that CPU's timer base may not be uptodate wrt jiffies etc).
528
 */
529
int get_nohz_timer_target(void)
530
{
531
	int i, cpu = smp_processor_id();
532 533
	struct sched_domain *sd;

534
	if (!idle_cpu(cpu) && is_housekeeping_cpu(cpu))
535 536
		return cpu;

537
	rcu_read_lock();
538
	for_each_domain(cpu, sd) {
539
		for_each_cpu(i, sched_domain_span(sd)) {
540 541 542 543
			if (cpu == i)
				continue;

			if (!idle_cpu(i) && is_housekeeping_cpu(i)) {
544 545 546 547
				cpu = i;
				goto unlock;
			}
		}
548
	}
549 550 551

	if (!is_housekeeping_cpu(cpu))
		cpu = housekeeping_any_cpu();
552 553
unlock:
	rcu_read_unlock();
554 555
	return cpu;
}
I
Ingo Molnar 已提交
556

557 558 559 560 561 562 563 564 565 566
/*
 * When add_timer_on() enqueues a timer into the timer wheel of an
 * idle CPU then this timer might expire before the next timer event
 * which is scheduled to wake up that CPU. In case of a completely
 * idle system the next event might even be infinite time into the
 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 * leaves the inner idle loop so the newly added timer is taken into
 * account when the CPU goes back to idle and evaluates the timer
 * wheel for the next timer event.
 */
567
static void wake_up_idle_cpu(int cpu)
568 569 570 571 572 573
{
	struct rq *rq = cpu_rq(cpu);

	if (cpu == smp_processor_id())
		return;

574
	if (set_nr_and_not_polling(rq->idle))
575
		smp_send_reschedule(cpu);
576 577
	else
		trace_sched_wake_idle_without_ipi(cpu);
578 579
}

580
static bool wake_up_full_nohz_cpu(int cpu)
581
{
582 583 584 585 586 587
	/*
	 * We just need the target to call irq_exit() and re-evaluate
	 * the next tick. The nohz full kick at least implies that.
	 * If needed we can still optimize that later with an
	 * empty IRQ.
	 */
588 589
	if (cpu_is_offline(cpu))
		return true;  /* Don't try to wake offline CPUs. */
590
	if (tick_nohz_full_cpu(cpu)) {
591 592
		if (cpu != smp_processor_id() ||
		    tick_nohz_tick_stopped())
593
			tick_nohz_full_kick_cpu(cpu);
594 595 596 597 598 599
		return true;
	}

	return false;
}

600 601 602 603 604
/*
 * Wake up the specified CPU.  If the CPU is going offline, it is the
 * caller's responsibility to deal with the lost wakeup, for example,
 * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
 */
605 606
void wake_up_nohz_cpu(int cpu)
{
607
	if (!wake_up_full_nohz_cpu(cpu))
608 609 610
		wake_up_idle_cpu(cpu);
}

611
static inline bool got_nohz_idle_kick(void)
612
{
613
	int cpu = smp_processor_id();
614 615 616 617 618 619 620 621 622 623 624 625 626

	if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
		return false;

	if (idle_cpu(cpu) && !need_resched())
		return true;

	/*
	 * We can't run Idle Load Balance on this CPU for this time so we
	 * cancel it and clear NOHZ_BALANCE_KICK
	 */
	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
	return false;
627 628
}

629
#else /* CONFIG_NO_HZ_COMMON */
630

631
static inline bool got_nohz_idle_kick(void)
P
Peter Zijlstra 已提交
632
{
633
	return false;
P
Peter Zijlstra 已提交
634 635
}

636
#endif /* CONFIG_NO_HZ_COMMON */
637

638
#ifdef CONFIG_NO_HZ_FULL
639
bool sched_can_stop_tick(struct rq *rq)
640
{
641 642 643 644 645 646
	int fifo_nr_running;

	/* Deadline tasks, even if single, need the tick */
	if (rq->dl.dl_nr_running)
		return false;

647
	/*
648 649
	 * If there are more than one RR tasks, we need the tick to effect the
	 * actual RR behaviour.
650
	 */
651 652 653 654 655
	if (rq->rt.rr_nr_running) {
		if (rq->rt.rr_nr_running == 1)
			return true;
		else
			return false;
656 657
	}

658 659 660 661 662 663 664 665 666 667 668 669 670 671
	/*
	 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
	 * forced preemption between FIFO tasks.
	 */
	fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
	if (fifo_nr_running)
		return true;

	/*
	 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
	 * if there's more than one we need the tick for involuntary
	 * preemption.
	 */
	if (rq->nr_running > 1)
672
		return false;
673

674
	return true;
675 676
}
#endif /* CONFIG_NO_HZ_FULL */
677

678
void sched_avg_update(struct rq *rq)
679
{
680 681
	s64 period = sched_avg_period();

682
	while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
683 684 685 686 687 688
		/*
		 * Inline assembly required to prevent the compiler
		 * optimising this loop into a divmod call.
		 * See __iter_div_u64_rem() for another example of this.
		 */
		asm("" : "+rm" (rq->age_stamp));
689 690 691
		rq->age_stamp += period;
		rq->rt_avg /= 2;
	}
692 693
}

694
#endif /* CONFIG_SMP */
695

696 697
#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
698
/*
699 700 701 702
 * Iterate task_group tree rooted at *from, calling @down when first entering a
 * node and @up when leaving it for the final time.
 *
 * Caller must hold rcu_lock or sufficient equivalent.
703
 */
704
int walk_tg_tree_from(struct task_group *from,
705
			     tg_visitor down, tg_visitor up, void *data)
706 707
{
	struct task_group *parent, *child;
P
Peter Zijlstra 已提交
708
	int ret;
709

710 711
	parent = from;

712
down:
P
Peter Zijlstra 已提交
713 714
	ret = (*down)(parent, data);
	if (ret)
715
		goto out;
716 717 718 719 720 721 722
	list_for_each_entry_rcu(child, &parent->children, siblings) {
		parent = child;
		goto down;

up:
		continue;
	}
P
Peter Zijlstra 已提交
723
	ret = (*up)(parent, data);
724 725
	if (ret || parent == from)
		goto out;
726 727 728 729 730

	child = parent;
	parent = parent->parent;
	if (parent)
		goto up;
731
out:
P
Peter Zijlstra 已提交
732
	return ret;
733 734
}

735
int tg_nop(struct task_group *tg, void *data)
P
Peter Zijlstra 已提交
736
{
737
	return 0;
P
Peter Zijlstra 已提交
738
}
739 740
#endif

741 742
static void set_load_weight(struct task_struct *p)
{
N
Nikhil Rao 已提交
743 744 745
	int prio = p->static_prio - MAX_RT_PRIO;
	struct load_weight *load = &p->se.load;

I
Ingo Molnar 已提交
746 747 748
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
749
	if (idle_policy(p->policy)) {
750
		load->weight = scale_load(WEIGHT_IDLEPRIO);
N
Nikhil Rao 已提交
751
		load->inv_weight = WMULT_IDLEPRIO;
I
Ingo Molnar 已提交
752 753
		return;
	}
754

755 756
	load->weight = scale_load(sched_prio_to_weight[prio]);
	load->inv_weight = sched_prio_to_wmult[prio];
757 758
}

759
static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
760
{
761
	update_rq_clock(rq);
762 763
	if (!(flags & ENQUEUE_RESTORE))
		sched_info_queued(rq, p);
764
	p->sched_class->enqueue_task(rq, p, flags);
765 766
}

767
static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
768
{
769
	update_rq_clock(rq);
770 771
	if (!(flags & DEQUEUE_SAVE))
		sched_info_dequeued(rq, p);
772
	p->sched_class->dequeue_task(rq, p, flags);
773 774
}

775
void activate_task(struct rq *rq, struct task_struct *p, int flags)
776 777 778 779
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible--;

780
	enqueue_task(rq, p, flags);
781 782
}

783
void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
784 785 786 787
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible++;

788
	dequeue_task(rq, p, flags);
789 790
}

791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820
void sched_set_stop_task(int cpu, struct task_struct *stop)
{
	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
	struct task_struct *old_stop = cpu_rq(cpu)->stop;

	if (stop) {
		/*
		 * Make it appear like a SCHED_FIFO task, its something
		 * userspace knows about and won't get confused about.
		 *
		 * Also, it will make PI more or less work without too
		 * much confusion -- but then, stop work should not
		 * rely on PI working anyway.
		 */
		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);

		stop->sched_class = &stop_sched_class;
	}

	cpu_rq(cpu)->stop = stop;

	if (old_stop) {
		/*
		 * Reset it back to a normal scheduling class so that
		 * it can die in pieces.
		 */
		old_stop->sched_class = &rt_sched_class;
	}
}

821
/*
I
Ingo Molnar 已提交
822
 * __normal_prio - return the priority that is based on the static prio
823 824 825
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
826
	return p->static_prio;
827 828
}

829 830 831 832 833 834 835
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
836
static inline int normal_prio(struct task_struct *p)
837 838 839
{
	int prio;

840 841 842
	if (task_has_dl_policy(p))
		prio = MAX_DL_PRIO-1;
	else if (task_has_rt_policy(p))
843 844 845 846 847 848 849 850 851 852 853 854 855
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
856
static int effective_prio(struct task_struct *p)
857 858 859 860 861 862 863 864 865 866 867 868
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
869 870 871
/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
872 873
 *
 * Return: 1 if the task is currently executing. 0 otherwise.
L
Linus Torvalds 已提交
874
 */
875
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
876 877 878 879
{
	return cpu_curr(task_cpu(p)) == p;
}

880
/*
881 882 883 884 885
 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
 * use the balance_callback list if you want balancing.
 *
 * this means any call to check_class_changed() must be followed by a call to
 * balance_callback().
886
 */
887 888
static inline void check_class_changed(struct rq *rq, struct task_struct *p,
				       const struct sched_class *prev_class,
P
Peter Zijlstra 已提交
889
				       int oldprio)
890 891 892
{
	if (prev_class != p->sched_class) {
		if (prev_class->switched_from)
P
Peter Zijlstra 已提交
893
			prev_class->switched_from(rq, p);
894

P
Peter Zijlstra 已提交
895
		p->sched_class->switched_to(rq, p);
896
	} else if (oldprio != p->prio || dl_task(p))
P
Peter Zijlstra 已提交
897
		p->sched_class->prio_changed(rq, p, oldprio);
898 899
}

900
void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
901 902 903 904 905 906 907 908 909 910
{
	const struct sched_class *class;

	if (p->sched_class == rq->curr->sched_class) {
		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
	} else {
		for_each_class(class) {
			if (class == rq->curr->sched_class)
				break;
			if (class == p->sched_class) {
911
				resched_curr(rq);
912 913 914 915 916 917 918 919 920
				break;
			}
		}
	}

	/*
	 * A queue event has occurred, and we're going to schedule.  In
	 * this case, we can save a useless back to back clock update.
	 */
921
	if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
922
		rq_clock_skip_update(rq, true);
923 924
}

L
Linus Torvalds 已提交
925
#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944
/*
 * This is how migration works:
 *
 * 1) we invoke migration_cpu_stop() on the target CPU using
 *    stop_one_cpu().
 * 2) stopper starts to run (implicitly forcing the migrated thread
 *    off the CPU)
 * 3) it checks whether the migrated task is still in the wrong runqueue.
 * 4) if it's in the wrong runqueue then the migration thread removes
 *    it and puts it into the right queue.
 * 5) stopper completes and stop_one_cpu() returns and the migration
 *    is done.
 */

/*
 * move_queued_task - move a queued task to new rq.
 *
 * Returns (locked) new rq. Old rq's lock is released.
 */
945
static struct rq *move_queued_task(struct rq *rq, struct task_struct *p, int new_cpu)
P
Peter Zijlstra 已提交
946 947 948 949
{
	lockdep_assert_held(&rq->lock);

	p->on_rq = TASK_ON_RQ_MIGRATING;
950
	dequeue_task(rq, p, 0);
P
Peter Zijlstra 已提交
951 952 953 954 955 956 957 958
	set_task_cpu(p, new_cpu);
	raw_spin_unlock(&rq->lock);

	rq = cpu_rq(new_cpu);

	raw_spin_lock(&rq->lock);
	BUG_ON(task_cpu(p) != new_cpu);
	enqueue_task(rq, p, 0);
959
	p->on_rq = TASK_ON_RQ_QUEUED;
P
Peter Zijlstra 已提交
960 961 962 963 964 965 966 967 968 969 970
	check_preempt_curr(rq, p, 0);

	return rq;
}

struct migration_arg {
	struct task_struct *task;
	int dest_cpu;
};

/*
I
Ingo Molnar 已提交
971
 * Move (not current) task off this CPU, onto the destination CPU. We're doing
P
Peter Zijlstra 已提交
972 973 974 975 976 977 978
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
 */
979
static struct rq *__migrate_task(struct rq *rq, struct task_struct *p, int dest_cpu)
P
Peter Zijlstra 已提交
980 981
{
	if (unlikely(!cpu_active(dest_cpu)))
982
		return rq;
P
Peter Zijlstra 已提交
983 984

	/* Affinity changed (again). */
985
	if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
986
		return rq;
P
Peter Zijlstra 已提交
987

988 989 990
	rq = move_queued_task(rq, p, dest_cpu);

	return rq;
P
Peter Zijlstra 已提交
991 992 993 994 995 996 997 998 999 1000
}

/*
 * migration_cpu_stop - this will be executed by a highprio stopper thread
 * and performs thread migration by bumping thread off CPU then
 * 'pushing' onto another runqueue.
 */
static int migration_cpu_stop(void *data)
{
	struct migration_arg *arg = data;
1001 1002
	struct task_struct *p = arg->task;
	struct rq *rq = this_rq();
P
Peter Zijlstra 已提交
1003 1004

	/*
I
Ingo Molnar 已提交
1005 1006
	 * The original target CPU might have gone down and we might
	 * be on another CPU but it doesn't matter.
P
Peter Zijlstra 已提交
1007 1008 1009 1010 1011 1012 1013 1014
	 */
	local_irq_disable();
	/*
	 * We need to explicitly wake pending tasks before running
	 * __migrate_task() such that we will not miss enforcing cpus_allowed
	 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
	 */
	sched_ttwu_pending();
1015 1016 1017 1018 1019 1020 1021 1022

	raw_spin_lock(&p->pi_lock);
	raw_spin_lock(&rq->lock);
	/*
	 * If task_rq(p) != rq, it cannot be migrated here, because we're
	 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
	 * we're holding p->pi_lock.
	 */
1023 1024 1025 1026 1027 1028
	if (task_rq(p) == rq) {
		if (task_on_rq_queued(p))
			rq = __migrate_task(rq, p, arg->dest_cpu);
		else
			p->wake_cpu = arg->dest_cpu;
	}
1029 1030 1031
	raw_spin_unlock(&rq->lock);
	raw_spin_unlock(&p->pi_lock);

P
Peter Zijlstra 已提交
1032 1033 1034 1035
	local_irq_enable();
	return 0;
}

1036 1037 1038 1039 1040
/*
 * sched_class::set_cpus_allowed must do the below, but is not required to
 * actually call this function.
 */
void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
P
Peter Zijlstra 已提交
1041 1042 1043 1044 1045
{
	cpumask_copy(&p->cpus_allowed, new_mask);
	p->nr_cpus_allowed = cpumask_weight(new_mask);
}

1046 1047
void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
{
1048 1049 1050
	struct rq *rq = task_rq(p);
	bool queued, running;

1051
	lockdep_assert_held(&p->pi_lock);
1052 1053 1054 1055 1056 1057 1058 1059 1060 1061

	queued = task_on_rq_queued(p);
	running = task_current(rq, p);

	if (queued) {
		/*
		 * Because __kthread_bind() calls this on blocked tasks without
		 * holding rq->lock.
		 */
		lockdep_assert_held(&rq->lock);
1062
		dequeue_task(rq, p, DEQUEUE_SAVE);
1063 1064 1065 1066
	}
	if (running)
		put_prev_task(rq, p);

1067
	p->sched_class->set_cpus_allowed(p, new_mask);
1068 1069

	if (queued)
1070
		enqueue_task(rq, p, ENQUEUE_RESTORE);
1071
	if (running)
1072
		set_curr_task(rq, p);
1073 1074
}

P
Peter Zijlstra 已提交
1075 1076 1077 1078 1079 1080 1081 1082 1083
/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
 * task must not exit() & deallocate itself prematurely. The
 * call is not atomic; no spinlocks may be held.
 */
1084 1085
static int __set_cpus_allowed_ptr(struct task_struct *p,
				  const struct cpumask *new_mask, bool check)
P
Peter Zijlstra 已提交
1086
{
1087
	const struct cpumask *cpu_valid_mask = cpu_active_mask;
P
Peter Zijlstra 已提交
1088
	unsigned int dest_cpu;
1089 1090
	struct rq_flags rf;
	struct rq *rq;
P
Peter Zijlstra 已提交
1091 1092
	int ret = 0;

1093
	rq = task_rq_lock(p, &rf);
1094
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
1095

1096 1097 1098 1099 1100 1101 1102
	if (p->flags & PF_KTHREAD) {
		/*
		 * Kernel threads are allowed on online && !active CPUs
		 */
		cpu_valid_mask = cpu_online_mask;
	}

1103 1104 1105 1106 1107 1108 1109 1110 1111
	/*
	 * Must re-check here, to close a race against __kthread_bind(),
	 * sched_setaffinity() is not guaranteed to observe the flag.
	 */
	if (check && (p->flags & PF_NO_SETAFFINITY)) {
		ret = -EINVAL;
		goto out;
	}

P
Peter Zijlstra 已提交
1112 1113 1114
	if (cpumask_equal(&p->cpus_allowed, new_mask))
		goto out;

1115
	if (!cpumask_intersects(new_mask, cpu_valid_mask)) {
P
Peter Zijlstra 已提交
1116 1117 1118 1119 1120 1121
		ret = -EINVAL;
		goto out;
	}

	do_set_cpus_allowed(p, new_mask);

1122 1123 1124
	if (p->flags & PF_KTHREAD) {
		/*
		 * For kernel threads that do indeed end up on online &&
I
Ingo Molnar 已提交
1125
		 * !active we want to ensure they are strict per-CPU threads.
1126 1127 1128 1129 1130 1131
		 */
		WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) &&
			!cpumask_intersects(new_mask, cpu_active_mask) &&
			p->nr_cpus_allowed != 1);
	}

P
Peter Zijlstra 已提交
1132 1133 1134 1135
	/* Can the task run on the task's current CPU? If so, we're done */
	if (cpumask_test_cpu(task_cpu(p), new_mask))
		goto out;

1136
	dest_cpu = cpumask_any_and(cpu_valid_mask, new_mask);
P
Peter Zijlstra 已提交
1137 1138 1139
	if (task_running(rq, p) || p->state == TASK_WAKING) {
		struct migration_arg arg = { p, dest_cpu };
		/* Need help from migration thread: drop lock and wait. */
1140
		task_rq_unlock(rq, p, &rf);
P
Peter Zijlstra 已提交
1141 1142 1143
		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
		tlb_migrate_finish(p->mm);
		return 0;
1144 1145 1146 1147 1148
	} else if (task_on_rq_queued(p)) {
		/*
		 * OK, since we're going to drop the lock immediately
		 * afterwards anyway.
		 */
1149
		rq_unpin_lock(rq, &rf);
1150
		rq = move_queued_task(rq, p, dest_cpu);
1151
		rq_repin_lock(rq, &rf);
1152
	}
P
Peter Zijlstra 已提交
1153
out:
1154
	task_rq_unlock(rq, p, &rf);
P
Peter Zijlstra 已提交
1155 1156 1157

	return ret;
}
1158 1159 1160 1161 1162

int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
{
	return __set_cpus_allowed_ptr(p, new_mask, false);
}
P
Peter Zijlstra 已提交
1163 1164
EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);

I
Ingo Molnar 已提交
1165
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
1166
{
1167 1168 1169 1170 1171
#ifdef CONFIG_SCHED_DEBUG
	/*
	 * We should never call set_task_cpu() on a blocked task,
	 * ttwu() will sort out the placement.
	 */
P
Peter Zijlstra 已提交
1172
	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
O
Oleg Nesterov 已提交
1173
			!p->on_rq);
1174

1175 1176 1177 1178 1179 1180 1181 1182 1183
	/*
	 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
	 * because schedstat_wait_{start,end} rebase migrating task's wait_start
	 * time relying on p->on_rq.
	 */
	WARN_ON_ONCE(p->state == TASK_RUNNING &&
		     p->sched_class == &fair_sched_class &&
		     (p->on_rq && !task_on_rq_migrating(p)));

1184
#ifdef CONFIG_LOCKDEP
1185 1186 1187 1188 1189
	/*
	 * The caller should hold either p->pi_lock or rq->lock, when changing
	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
	 *
	 * sched_move_task() holds both and thus holding either pins the cgroup,
P
Peter Zijlstra 已提交
1190
	 * see task_group().
1191 1192 1193 1194
	 *
	 * Furthermore, all task_rq users should acquire both locks, see
	 * task_rq_lock().
	 */
1195 1196 1197
	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
				      lockdep_is_held(&task_rq(p)->lock)));
#endif
1198 1199
#endif

1200
	trace_sched_migrate_task(p, new_cpu);
1201

1202
	if (task_cpu(p) != new_cpu) {
1203
		if (p->sched_class->migrate_task_rq)
1204
			p->sched_class->migrate_task_rq(p);
1205
		p->se.nr_migrations++;
1206
		perf_event_task_migrate(p);
1207
	}
I
Ingo Molnar 已提交
1208 1209

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
1210 1211
}

1212 1213
static void __migrate_swap_task(struct task_struct *p, int cpu)
{
1214
	if (task_on_rq_queued(p)) {
1215 1216 1217 1218 1219
		struct rq *src_rq, *dst_rq;

		src_rq = task_rq(p);
		dst_rq = cpu_rq(cpu);

1220
		p->on_rq = TASK_ON_RQ_MIGRATING;
1221 1222 1223
		deactivate_task(src_rq, p, 0);
		set_task_cpu(p, cpu);
		activate_task(dst_rq, p, 0);
1224
		p->on_rq = TASK_ON_RQ_QUEUED;
1225 1226 1227 1228 1229
		check_preempt_curr(dst_rq, p, 0);
	} else {
		/*
		 * Task isn't running anymore; make it appear like we migrated
		 * it before it went to sleep. This means on wakeup we make the
I
Ingo Molnar 已提交
1230
		 * previous CPU our target instead of where it really is.
1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246
		 */
		p->wake_cpu = cpu;
	}
}

struct migration_swap_arg {
	struct task_struct *src_task, *dst_task;
	int src_cpu, dst_cpu;
};

static int migrate_swap_stop(void *data)
{
	struct migration_swap_arg *arg = data;
	struct rq *src_rq, *dst_rq;
	int ret = -EAGAIN;

1247 1248 1249
	if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
		return -EAGAIN;

1250 1251 1252
	src_rq = cpu_rq(arg->src_cpu);
	dst_rq = cpu_rq(arg->dst_cpu);

1253 1254
	double_raw_lock(&arg->src_task->pi_lock,
			&arg->dst_task->pi_lock);
1255
	double_rq_lock(src_rq, dst_rq);
1256

1257 1258 1259 1260 1261 1262
	if (task_cpu(arg->dst_task) != arg->dst_cpu)
		goto unlock;

	if (task_cpu(arg->src_task) != arg->src_cpu)
		goto unlock;

1263
	if (!cpumask_test_cpu(arg->dst_cpu, &arg->src_task->cpus_allowed))
1264 1265
		goto unlock;

1266
	if (!cpumask_test_cpu(arg->src_cpu, &arg->dst_task->cpus_allowed))
1267 1268 1269 1270 1271 1272 1273 1274 1275
		goto unlock;

	__migrate_swap_task(arg->src_task, arg->dst_cpu);
	__migrate_swap_task(arg->dst_task, arg->src_cpu);

	ret = 0;

unlock:
	double_rq_unlock(src_rq, dst_rq);
1276 1277
	raw_spin_unlock(&arg->dst_task->pi_lock);
	raw_spin_unlock(&arg->src_task->pi_lock);
1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299

	return ret;
}

/*
 * Cross migrate two tasks
 */
int migrate_swap(struct task_struct *cur, struct task_struct *p)
{
	struct migration_swap_arg arg;
	int ret = -EINVAL;

	arg = (struct migration_swap_arg){
		.src_task = cur,
		.src_cpu = task_cpu(cur),
		.dst_task = p,
		.dst_cpu = task_cpu(p),
	};

	if (arg.src_cpu == arg.dst_cpu)
		goto out;

1300 1301 1302 1303
	/*
	 * These three tests are all lockless; this is OK since all of them
	 * will be re-checked with proper locks held further down the line.
	 */
1304 1305 1306
	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
		goto out;

1307
	if (!cpumask_test_cpu(arg.dst_cpu, &arg.src_task->cpus_allowed))
1308 1309
		goto out;

1310
	if (!cpumask_test_cpu(arg.src_cpu, &arg.dst_task->cpus_allowed))
1311 1312
		goto out;

1313
	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1314 1315 1316 1317 1318 1319
	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);

out:
	return ret;
}

L
Linus Torvalds 已提交
1320 1321 1322
/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
R
Roland McGrath 已提交
1323 1324 1325 1326 1327 1328 1329
 * If @match_state is nonzero, it's the @p->state value just checked and
 * not expected to change.  If it changes, i.e. @p might have woken up,
 * then return zero.  When we succeed in waiting for @p to be off its CPU,
 * we return a positive number (its total switch count).  If a second call
 * a short while later returns the same number, the caller can be sure that
 * @p has remained unscheduled the whole time.
 *
L
Linus Torvalds 已提交
1330 1331 1332 1333 1334 1335
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
R
Roland McGrath 已提交
1336
unsigned long wait_task_inactive(struct task_struct *p, long match_state)
L
Linus Torvalds 已提交
1337
{
1338
	int running, queued;
1339
	struct rq_flags rf;
R
Roland McGrath 已提交
1340
	unsigned long ncsw;
1341
	struct rq *rq;
L
Linus Torvalds 已提交
1342

1343 1344 1345 1346 1347 1348 1349 1350
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
1351

1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
R
Roland McGrath 已提交
1363 1364 1365
		while (task_running(rq, p)) {
			if (match_state && unlikely(p->state != match_state))
				return 0;
1366
			cpu_relax();
R
Roland McGrath 已提交
1367
		}
1368

1369 1370 1371 1372 1373
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
1374
		rq = task_rq_lock(p, &rf);
1375
		trace_sched_wait_task(p);
1376
		running = task_running(rq, p);
1377
		queued = task_on_rq_queued(p);
R
Roland McGrath 已提交
1378
		ncsw = 0;
1379
		if (!match_state || p->state == match_state)
1380
			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1381
		task_rq_unlock(rq, p, &rf);
1382

R
Roland McGrath 已提交
1383 1384 1385 1386 1387 1388
		/*
		 * If it changed from the expected state, bail out now.
		 */
		if (unlikely(!ncsw))
			break;

1389 1390 1391 1392 1393 1394 1395 1396 1397 1398
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
1399

1400 1401 1402 1403 1404
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
1405
		 * So if it was still runnable (but just not actively
1406 1407 1408
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
1409
		if (unlikely(queued)) {
T
Thomas Gleixner 已提交
1410
			ktime_t to = NSEC_PER_SEC / HZ;
1411 1412 1413

			set_current_state(TASK_UNINTERRUPTIBLE);
			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1414 1415
			continue;
		}
1416

1417 1418 1419 1420 1421 1422 1423
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
R
Roland McGrath 已提交
1424 1425

	return ncsw;
L
Linus Torvalds 已提交
1426 1427 1428 1429 1430 1431 1432 1433 1434
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
L
Lucas De Marchi 已提交
1435
 * NOTE: this function doesn't have to take the runqueue lock,
L
Linus Torvalds 已提交
1436 1437 1438 1439 1440
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
1441
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
1442 1443 1444 1445 1446 1447 1448 1449 1450
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}
R
Rusty Russell 已提交
1451
EXPORT_SYMBOL_GPL(kick_process);
L
Linus Torvalds 已提交
1452

1453
/*
1454
 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1455 1456 1457 1458 1459 1460 1461
 *
 * A few notes on cpu_active vs cpu_online:
 *
 *  - cpu_active must be a subset of cpu_online
 *
 *  - on cpu-up we allow per-cpu kthreads on the online && !active cpu,
 *    see __set_cpus_allowed_ptr(). At this point the newly online
I
Ingo Molnar 已提交
1462
 *    CPU isn't yet part of the sched domains, and balancing will not
1463 1464
 *    see it.
 *
I
Ingo Molnar 已提交
1465
 *  - on CPU-down we clear cpu_active() to mask the sched domains and
1466
 *    avoid the load balancer to place new tasks on the to be removed
I
Ingo Molnar 已提交
1467
 *    CPU. Existing tasks will remain running there and will be taken
1468 1469 1470 1471 1472 1473
 *    off.
 *
 * This means that fallback selection must not select !active CPUs.
 * And can assume that any active CPU must be online. Conversely
 * select_task_rq() below may allow selection of !active CPUs in order
 * to satisfy the above rules.
1474
 */
1475 1476
static int select_fallback_rq(int cpu, struct task_struct *p)
{
1477 1478
	int nid = cpu_to_node(cpu);
	const struct cpumask *nodemask = NULL;
1479 1480
	enum { cpuset, possible, fail } state = cpuset;
	int dest_cpu;
1481

1482
	/*
I
Ingo Molnar 已提交
1483 1484 1485
	 * If the node that the CPU is on has been offlined, cpu_to_node()
	 * will return -1. There is no CPU on the node, and we should
	 * select the CPU on the other node.
1486 1487 1488 1489 1490 1491 1492 1493
	 */
	if (nid != -1) {
		nodemask = cpumask_of_node(nid);

		/* Look for allowed, online CPU in same node. */
		for_each_cpu(dest_cpu, nodemask) {
			if (!cpu_active(dest_cpu))
				continue;
1494
			if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
1495 1496
				return dest_cpu;
		}
1497
	}
1498

1499 1500
	for (;;) {
		/* Any allowed, online CPU? */
1501
		for_each_cpu(dest_cpu, &p->cpus_allowed) {
1502 1503 1504
			if (!(p->flags & PF_KTHREAD) && !cpu_active(dest_cpu))
				continue;
			if (!cpu_online(dest_cpu))
1505 1506 1507
				continue;
			goto out;
		}
1508

1509
		/* No more Mr. Nice Guy. */
1510 1511
		switch (state) {
		case cpuset:
1512 1513 1514 1515 1516
			if (IS_ENABLED(CONFIG_CPUSETS)) {
				cpuset_cpus_allowed_fallback(p);
				state = possible;
				break;
			}
I
Ingo Molnar 已提交
1517
			/* Fall-through */
1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536
		case possible:
			do_set_cpus_allowed(p, cpu_possible_mask);
			state = fail;
			break;

		case fail:
			BUG();
			break;
		}
	}

out:
	if (state != cpuset) {
		/*
		 * Don't tell them about moving exiting tasks or
		 * kernel threads (both mm NULL), since they never
		 * leave kernel.
		 */
		if (p->mm && printk_ratelimit()) {
1537
			printk_deferred("process %d (%s) no longer affine to cpu%d\n",
1538 1539
					task_pid_nr(p), p->comm, cpu);
		}
1540 1541 1542 1543 1544
	}

	return dest_cpu;
}

1545
/*
1546
 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1547
 */
1548
static inline
1549
int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1550
{
1551 1552
	lockdep_assert_held(&p->pi_lock);

1553
	if (p->nr_cpus_allowed > 1)
1554
		cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1555
	else
1556
		cpu = cpumask_any(&p->cpus_allowed);
1557 1558 1559 1560

	/*
	 * In order not to call set_task_cpu() on a blocking task we need
	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
I
Ingo Molnar 已提交
1561
	 * CPU.
1562 1563 1564 1565 1566 1567
	 *
	 * Since this is common to all placement strategies, this lives here.
	 *
	 * [ this allows ->select_task() to simply return task_cpu(p) and
	 *   not worry about this generic constraint ]
	 */
1568
	if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
P
Peter Zijlstra 已提交
1569
		     !cpu_online(cpu)))
1570
		cpu = select_fallback_rq(task_cpu(p), p);
1571 1572

	return cpu;
1573
}
1574 1575 1576 1577 1578 1579

static void update_avg(u64 *avg, u64 sample)
{
	s64 diff = sample - *avg;
	*avg += diff >> 3;
}
1580 1581 1582 1583 1584 1585 1586 1587 1588

#else

static inline int __set_cpus_allowed_ptr(struct task_struct *p,
					 const struct cpumask *new_mask, bool check)
{
	return set_cpus_allowed_ptr(p, new_mask);
}

P
Peter Zijlstra 已提交
1589
#endif /* CONFIG_SMP */
1590

P
Peter Zijlstra 已提交
1591
static void
1592
ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
T
Tejun Heo 已提交
1593
{
1594
	struct rq *rq;
1595

1596 1597 1598 1599
	if (!schedstat_enabled())
		return;

	rq = this_rq();
P
Peter Zijlstra 已提交
1600

1601 1602
#ifdef CONFIG_SMP
	if (cpu == rq->cpu) {
1603 1604
		schedstat_inc(rq->ttwu_local);
		schedstat_inc(p->se.statistics.nr_wakeups_local);
P
Peter Zijlstra 已提交
1605 1606 1607
	} else {
		struct sched_domain *sd;

1608
		schedstat_inc(p->se.statistics.nr_wakeups_remote);
1609
		rcu_read_lock();
1610
		for_each_domain(rq->cpu, sd) {
P
Peter Zijlstra 已提交
1611
			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1612
				schedstat_inc(sd->ttwu_wake_remote);
P
Peter Zijlstra 已提交
1613 1614 1615
				break;
			}
		}
1616
		rcu_read_unlock();
P
Peter Zijlstra 已提交
1617
	}
1618 1619

	if (wake_flags & WF_MIGRATED)
1620
		schedstat_inc(p->se.statistics.nr_wakeups_migrate);
P
Peter Zijlstra 已提交
1621 1622
#endif /* CONFIG_SMP */

1623 1624
	schedstat_inc(rq->ttwu_count);
	schedstat_inc(p->se.statistics.nr_wakeups);
P
Peter Zijlstra 已提交
1625 1626

	if (wake_flags & WF_SYNC)
1627
		schedstat_inc(p->se.statistics.nr_wakeups_sync);
P
Peter Zijlstra 已提交
1628 1629
}

1630
static inline void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
P
Peter Zijlstra 已提交
1631
{
T
Tejun Heo 已提交
1632
	activate_task(rq, p, en_flags);
1633
	p->on_rq = TASK_ON_RQ_QUEUED;
1634

I
Ingo Molnar 已提交
1635
	/* If a worker is waking up, notify the workqueue: */
1636 1637
	if (p->flags & PF_WQ_WORKER)
		wq_worker_waking_up(p, cpu_of(rq));
T
Tejun Heo 已提交
1638 1639
}

1640 1641 1642
/*
 * Mark the task runnable and perform wakeup-preemption.
 */
1643
static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
1644
			   struct rq_flags *rf)
T
Tejun Heo 已提交
1645 1646 1647
{
	check_preempt_curr(rq, p, wake_flags);
	p->state = TASK_RUNNING;
1648 1649
	trace_sched_wakeup(p);

T
Tejun Heo 已提交
1650
#ifdef CONFIG_SMP
1651 1652
	if (p->sched_class->task_woken) {
		/*
1653 1654
		 * Our task @p is fully woken up and running; so its safe to
		 * drop the rq->lock, hereafter rq is only used for statistics.
1655
		 */
1656
		rq_unpin_lock(rq, rf);
T
Tejun Heo 已提交
1657
		p->sched_class->task_woken(rq, p);
1658
		rq_repin_lock(rq, rf);
1659
	}
T
Tejun Heo 已提交
1660

1661
	if (rq->idle_stamp) {
1662
		u64 delta = rq_clock(rq) - rq->idle_stamp;
1663
		u64 max = 2*rq->max_idle_balance_cost;
T
Tejun Heo 已提交
1664

1665 1666 1667
		update_avg(&rq->avg_idle, delta);

		if (rq->avg_idle > max)
T
Tejun Heo 已提交
1668
			rq->avg_idle = max;
1669

T
Tejun Heo 已提交
1670 1671 1672 1673 1674
		rq->idle_stamp = 0;
	}
#endif
}

1675
static void
1676
ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
1677
		 struct rq_flags *rf)
1678
{
1679 1680
	int en_flags = ENQUEUE_WAKEUP;

1681 1682
	lockdep_assert_held(&rq->lock);

1683 1684 1685
#ifdef CONFIG_SMP
	if (p->sched_contributes_to_load)
		rq->nr_uninterruptible--;
1686 1687

	if (wake_flags & WF_MIGRATED)
1688
		en_flags |= ENQUEUE_MIGRATED;
1689 1690
#endif

1691
	ttwu_activate(rq, p, en_flags);
1692
	ttwu_do_wakeup(rq, p, wake_flags, rf);
1693 1694 1695 1696 1697 1698 1699 1700 1701 1702
}

/*
 * Called in case the task @p isn't fully descheduled from its runqueue,
 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
 * since all we need to do is flip p->state to TASK_RUNNING, since
 * the task is still ->on_rq.
 */
static int ttwu_remote(struct task_struct *p, int wake_flags)
{
1703
	struct rq_flags rf;
1704 1705 1706
	struct rq *rq;
	int ret = 0;

1707
	rq = __task_rq_lock(p, &rf);
1708
	if (task_on_rq_queued(p)) {
1709 1710
		/* check_preempt_curr() may use rq clock */
		update_rq_clock(rq);
1711
		ttwu_do_wakeup(rq, p, wake_flags, &rf);
1712 1713
		ret = 1;
	}
1714
	__task_rq_unlock(rq, &rf);
1715 1716 1717 1718

	return ret;
}

1719
#ifdef CONFIG_SMP
1720
void sched_ttwu_pending(void)
1721 1722
{
	struct rq *rq = this_rq();
P
Peter Zijlstra 已提交
1723 1724
	struct llist_node *llist = llist_del_all(&rq->wake_list);
	struct task_struct *p;
1725
	unsigned long flags;
1726
	struct rq_flags rf;
1727

1728 1729 1730 1731
	if (!llist)
		return;

	raw_spin_lock_irqsave(&rq->lock, flags);
1732
	rq_pin_lock(rq, &rf);
1733

P
Peter Zijlstra 已提交
1734
	while (llist) {
P
Peter Zijlstra 已提交
1735 1736
		int wake_flags = 0;

P
Peter Zijlstra 已提交
1737 1738
		p = llist_entry(llist, struct task_struct, wake_entry);
		llist = llist_next(llist);
P
Peter Zijlstra 已提交
1739 1740 1741 1742

		if (p->sched_remote_wakeup)
			wake_flags = WF_MIGRATED;

1743
		ttwu_do_activate(rq, p, wake_flags, &rf);
1744 1745
	}

1746
	rq_unpin_lock(rq, &rf);
1747
	raw_spin_unlock_irqrestore(&rq->lock, flags);
1748 1749 1750 1751
}

void scheduler_ipi(void)
{
1752 1753 1754 1755 1756
	/*
	 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
	 * TIF_NEED_RESCHED remotely (for the first time) will also send
	 * this IPI.
	 */
1757
	preempt_fold_need_resched();
1758

1759
	if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775
		return;

	/*
	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
	 * traditionally all their work was done from the interrupt return
	 * path. Now that we actually do some work, we need to make sure
	 * we do call them.
	 *
	 * Some archs already do call them, luckily irq_enter/exit nest
	 * properly.
	 *
	 * Arguably we should visit all archs and update all handlers,
	 * however a fair share of IPIs are still resched only so this would
	 * somewhat pessimize the simple resched case.
	 */
	irq_enter();
P
Peter Zijlstra 已提交
1776
	sched_ttwu_pending();
1777 1778 1779 1780

	/*
	 * Check if someone kicked us for doing the nohz idle load balance.
	 */
1781
	if (unlikely(got_nohz_idle_kick())) {
1782
		this_rq()->idle_balance = 1;
1783
		raise_softirq_irqoff(SCHED_SOFTIRQ);
1784
	}
1785
	irq_exit();
1786 1787
}

P
Peter Zijlstra 已提交
1788
static void ttwu_queue_remote(struct task_struct *p, int cpu, int wake_flags)
1789
{
1790 1791
	struct rq *rq = cpu_rq(cpu);

P
Peter Zijlstra 已提交
1792 1793
	p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);

1794 1795 1796 1797 1798 1799
	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
		if (!set_nr_if_polling(rq->idle))
			smp_send_reschedule(cpu);
		else
			trace_sched_wake_idle_without_ipi(cpu);
	}
1800
}
1801

1802 1803 1804 1805 1806
void wake_up_if_idle(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

1807 1808 1809 1810
	rcu_read_lock();

	if (!is_idle_task(rcu_dereference(rq->curr)))
		goto out;
1811 1812 1813 1814 1815 1816 1817

	if (set_nr_if_polling(rq->idle)) {
		trace_sched_wake_idle_without_ipi(cpu);
	} else {
		raw_spin_lock_irqsave(&rq->lock, flags);
		if (is_idle_task(rq->curr))
			smp_send_reschedule(cpu);
I
Ingo Molnar 已提交
1818
		/* Else CPU is not idle, do nothing here: */
1819 1820
		raw_spin_unlock_irqrestore(&rq->lock, flags);
	}
1821 1822 1823

out:
	rcu_read_unlock();
1824 1825
}

1826
bool cpus_share_cache(int this_cpu, int that_cpu)
1827 1828 1829
{
	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
}
1830
#endif /* CONFIG_SMP */
1831

1832
static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
1833 1834
{
	struct rq *rq = cpu_rq(cpu);
1835
	struct rq_flags rf;
1836

1837
#if defined(CONFIG_SMP)
1838
	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
I
Ingo Molnar 已提交
1839
		sched_clock_cpu(cpu); /* Sync clocks across CPUs */
P
Peter Zijlstra 已提交
1840
		ttwu_queue_remote(p, cpu, wake_flags);
1841 1842 1843 1844
		return;
	}
#endif

1845
	raw_spin_lock(&rq->lock);
1846 1847 1848
	rq_pin_lock(rq, &rf);
	ttwu_do_activate(rq, p, wake_flags, &rf);
	rq_unpin_lock(rq, &rf);
1849
	raw_spin_unlock(&rq->lock);
T
Tejun Heo 已提交
1850 1851
}

1852 1853 1854 1855 1856 1857
/*
 * Notes on Program-Order guarantees on SMP systems.
 *
 *  MIGRATION
 *
 * The basic program-order guarantee on SMP systems is that when a task [t]
I
Ingo Molnar 已提交
1858 1859
 * migrates, all its activity on its old CPU [c0] happens-before any subsequent
 * execution on its new CPU [c1].
1860 1861 1862 1863 1864 1865 1866 1867 1868 1869
 *
 * For migration (of runnable tasks) this is provided by the following means:
 *
 *  A) UNLOCK of the rq(c0)->lock scheduling out task t
 *  B) migration for t is required to synchronize *both* rq(c0)->lock and
 *     rq(c1)->lock (if not at the same time, then in that order).
 *  C) LOCK of the rq(c1)->lock scheduling in task
 *
 * Transitivity guarantees that B happens after A and C after B.
 * Note: we only require RCpc transitivity.
I
Ingo Molnar 已提交
1870
 * Note: the CPU doing B need not be c0 or c1
1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901
 *
 * Example:
 *
 *   CPU0            CPU1            CPU2
 *
 *   LOCK rq(0)->lock
 *   sched-out X
 *   sched-in Y
 *   UNLOCK rq(0)->lock
 *
 *                                   LOCK rq(0)->lock // orders against CPU0
 *                                   dequeue X
 *                                   UNLOCK rq(0)->lock
 *
 *                                   LOCK rq(1)->lock
 *                                   enqueue X
 *                                   UNLOCK rq(1)->lock
 *
 *                   LOCK rq(1)->lock // orders against CPU2
 *                   sched-out Z
 *                   sched-in X
 *                   UNLOCK rq(1)->lock
 *
 *
 *  BLOCKING -- aka. SLEEP + WAKEUP
 *
 * For blocking we (obviously) need to provide the same guarantee as for
 * migration. However the means are completely different as there is no lock
 * chain to provide order. Instead we do:
 *
 *   1) smp_store_release(X->on_cpu, 0)
1902
 *   2) smp_cond_load_acquire(!X->on_cpu)
1903 1904 1905 1906 1907 1908 1909 1910 1911 1912
 *
 * Example:
 *
 *   CPU0 (schedule)  CPU1 (try_to_wake_up) CPU2 (schedule)
 *
 *   LOCK rq(0)->lock LOCK X->pi_lock
 *   dequeue X
 *   sched-out X
 *   smp_store_release(X->on_cpu, 0);
 *
1913
 *                    smp_cond_load_acquire(&X->on_cpu, !VAL);
1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938
 *                    X->state = WAKING
 *                    set_task_cpu(X,2)
 *
 *                    LOCK rq(2)->lock
 *                    enqueue X
 *                    X->state = RUNNING
 *                    UNLOCK rq(2)->lock
 *
 *                                          LOCK rq(2)->lock // orders against CPU1
 *                                          sched-out Z
 *                                          sched-in X
 *                                          UNLOCK rq(2)->lock
 *
 *                    UNLOCK X->pi_lock
 *   UNLOCK rq(0)->lock
 *
 *
 * However; for wakeups there is a second guarantee we must provide, namely we
 * must observe the state that lead to our wakeup. That is, not only must our
 * task observe its own prior state, it must also observe the stores prior to
 * its wakeup.
 *
 * This means that any means of doing remote wakeups must order the CPU doing
 * the wakeup against the CPU the task is going to end up running on. This,
 * however, is already required for the regular Program-Order guarantee above,
1939
 * since the waking CPU is the one issueing the ACQUIRE (smp_cond_load_acquire).
1940 1941 1942
 *
 */

T
Tejun Heo 已提交
1943
/**
L
Linus Torvalds 已提交
1944
 * try_to_wake_up - wake up a thread
T
Tejun Heo 已提交
1945
 * @p: the thread to be awakened
L
Linus Torvalds 已提交
1946
 * @state: the mask of task states that can be woken
T
Tejun Heo 已提交
1947
 * @wake_flags: wake modifier flags (WF_*)
L
Linus Torvalds 已提交
1948
 *
1949
 * If (@state & @p->state) @p->state = TASK_RUNNING.
L
Linus Torvalds 已提交
1950
 *
1951 1952 1953 1954 1955 1956 1957
 * If the task was not queued/runnable, also place it back on a runqueue.
 *
 * Atomic against schedule() which would dequeue a task, also see
 * set_current_state().
 *
 * Return: %true if @p->state changes (an actual wakeup was done),
 *	   %false otherwise.
L
Linus Torvalds 已提交
1958
 */
1959 1960
static int
try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
L
Linus Torvalds 已提交
1961 1962
{
	unsigned long flags;
1963
	int cpu, success = 0;
P
Peter Zijlstra 已提交
1964

1965 1966 1967 1968 1969 1970 1971
	/*
	 * If we are going to wake up a thread waiting for CONDITION we
	 * need to ensure that CONDITION=1 done by the caller can not be
	 * reordered with p->state check below. This pairs with mb() in
	 * set_current_state() the waiting thread does.
	 */
	smp_mb__before_spinlock();
1972
	raw_spin_lock_irqsave(&p->pi_lock, flags);
P
Peter Zijlstra 已提交
1973
	if (!(p->state & state))
L
Linus Torvalds 已提交
1974 1975
		goto out;

1976 1977
	trace_sched_waking(p);

I
Ingo Molnar 已提交
1978 1979
	/* We're going to change ->state: */
	success = 1;
L
Linus Torvalds 已提交
1980 1981
	cpu = task_cpu(p);

1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003
	/*
	 * Ensure we load p->on_rq _after_ p->state, otherwise it would
	 * be possible to, falsely, observe p->on_rq == 0 and get stuck
	 * in smp_cond_load_acquire() below.
	 *
	 * sched_ttwu_pending()                 try_to_wake_up()
	 *   [S] p->on_rq = 1;                  [L] P->state
	 *       UNLOCK rq->lock  -----.
	 *                              \
	 *				 +---   RMB
	 * schedule()                   /
	 *       LOCK rq->lock    -----'
	 *       UNLOCK rq->lock
	 *
	 * [task p]
	 *   [S] p->state = UNINTERRUPTIBLE     [L] p->on_rq
	 *
	 * Pairs with the UNLOCK+LOCK on rq->lock from the
	 * last wakeup of our task and the schedule that got our task
	 * current.
	 */
	smp_rmb();
2004 2005
	if (p->on_rq && ttwu_remote(p, wake_flags))
		goto stat;
L
Linus Torvalds 已提交
2006 2007

#ifdef CONFIG_SMP
2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026
	/*
	 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
	 * possible to, falsely, observe p->on_cpu == 0.
	 *
	 * One must be running (->on_cpu == 1) in order to remove oneself
	 * from the runqueue.
	 *
	 *  [S] ->on_cpu = 1;	[L] ->on_rq
	 *      UNLOCK rq->lock
	 *			RMB
	 *      LOCK   rq->lock
	 *  [S] ->on_rq = 0;    [L] ->on_cpu
	 *
	 * Pairs with the full barrier implied in the UNLOCK+LOCK on rq->lock
	 * from the consecutive calls to schedule(); the first switching to our
	 * task, the second putting it to sleep.
	 */
	smp_rmb();

P
Peter Zijlstra 已提交
2027
	/*
I
Ingo Molnar 已提交
2028
	 * If the owning (remote) CPU is still in the middle of schedule() with
2029
	 * this task as prev, wait until its done referencing the task.
2030 2031 2032 2033 2034
	 *
	 * Pairs with the smp_store_release() in finish_lock_switch().
	 *
	 * This ensures that tasks getting woken will be fully ordered against
	 * their previous state and preserve Program Order.
2035
	 */
2036
	smp_cond_load_acquire(&p->on_cpu, !VAL);
L
Linus Torvalds 已提交
2037

2038
	p->sched_contributes_to_load = !!task_contributes_to_load(p);
P
Peter Zijlstra 已提交
2039
	p->state = TASK_WAKING;
2040

2041 2042 2043 2044 2045
	if (p->in_iowait) {
		delayacct_blkio_end();
		atomic_dec(&task_rq(p)->nr_iowait);
	}

2046
	cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
2047 2048
	if (task_cpu(p) != cpu) {
		wake_flags |= WF_MIGRATED;
2049
		set_task_cpu(p, cpu);
2050
	}
2051 2052 2053 2054 2055 2056 2057 2058

#else /* CONFIG_SMP */

	if (p->in_iowait) {
		delayacct_blkio_end();
		atomic_dec(&task_rq(p)->nr_iowait);
	}

L
Linus Torvalds 已提交
2059 2060
#endif /* CONFIG_SMP */

2061
	ttwu_queue(p, cpu, wake_flags);
2062
stat:
2063
	ttwu_stat(p, cpu, wake_flags);
L
Linus Torvalds 已提交
2064
out:
2065
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
2066 2067 2068 2069

	return success;
}

T
Tejun Heo 已提交
2070 2071 2072
/**
 * try_to_wake_up_local - try to wake up a local task with rq lock held
 * @p: the thread to be awakened
2073
 * @cookie: context's cookie for pinning
T
Tejun Heo 已提交
2074
 *
2075
 * Put @p on the run-queue if it's not already there. The caller must
T
Tejun Heo 已提交
2076
 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2077
 * the current task.
T
Tejun Heo 已提交
2078
 */
2079
static void try_to_wake_up_local(struct task_struct *p, struct rq_flags *rf)
T
Tejun Heo 已提交
2080 2081 2082
{
	struct rq *rq = task_rq(p);

2083 2084 2085 2086
	if (WARN_ON_ONCE(rq != this_rq()) ||
	    WARN_ON_ONCE(p == current))
		return;

T
Tejun Heo 已提交
2087 2088
	lockdep_assert_held(&rq->lock);

2089
	if (!raw_spin_trylock(&p->pi_lock)) {
2090 2091 2092 2093 2094 2095
		/*
		 * This is OK, because current is on_cpu, which avoids it being
		 * picked for load-balance and preemption/IRQs are still
		 * disabled avoiding further scheduler activity on it and we've
		 * not yet picked a replacement task.
		 */
2096
		rq_unpin_lock(rq, rf);
2097 2098 2099
		raw_spin_unlock(&rq->lock);
		raw_spin_lock(&p->pi_lock);
		raw_spin_lock(&rq->lock);
2100
		rq_repin_lock(rq, rf);
2101 2102
	}

T
Tejun Heo 已提交
2103
	if (!(p->state & TASK_NORMAL))
2104
		goto out;
T
Tejun Heo 已提交
2105

2106 2107
	trace_sched_waking(p);

2108 2109 2110 2111 2112
	if (!task_on_rq_queued(p)) {
		if (p->in_iowait) {
			delayacct_blkio_end();
			atomic_dec(&rq->nr_iowait);
		}
P
Peter Zijlstra 已提交
2113
		ttwu_activate(rq, p, ENQUEUE_WAKEUP);
2114
	}
P
Peter Zijlstra 已提交
2115

2116
	ttwu_do_wakeup(rq, p, 0, rf);
2117
	ttwu_stat(p, smp_processor_id(), 0);
2118 2119
out:
	raw_spin_unlock(&p->pi_lock);
T
Tejun Heo 已提交
2120 2121
}

2122 2123 2124 2125 2126
/**
 * wake_up_process - Wake up a specific process
 * @p: The process to be woken up.
 *
 * Attempt to wake up the nominated process and move it to the set of runnable
2127 2128 2129
 * processes.
 *
 * Return: 1 if the process was woken up, 0 if it was already running.
2130 2131 2132 2133
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
 */
2134
int wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
2135
{
2136
	return try_to_wake_up(p, TASK_NORMAL, 0);
L
Linus Torvalds 已提交
2137 2138 2139
}
EXPORT_SYMBOL(wake_up_process);

2140
int wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
2141 2142 2143 2144
{
	return try_to_wake_up(p, state, 0);
}

2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156
/*
 * This function clears the sched_dl_entity static params.
 */
void __dl_clear_params(struct task_struct *p)
{
	struct sched_dl_entity *dl_se = &p->dl;

	dl_se->dl_runtime = 0;
	dl_se->dl_deadline = 0;
	dl_se->dl_period = 0;
	dl_se->flags = 0;
	dl_se->dl_bw = 0;
2157 2158 2159

	dl_se->dl_throttled = 0;
	dl_se->dl_yielded = 0;
2160 2161
}

L
Linus Torvalds 已提交
2162 2163 2164
/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
2165 2166 2167
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
2168
static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
I
Ingo Molnar 已提交
2169
{
P
Peter Zijlstra 已提交
2170 2171 2172
	p->on_rq			= 0;

	p->se.on_rq			= 0;
I
Ingo Molnar 已提交
2173 2174
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
2175
	p->se.prev_sum_exec_runtime	= 0;
2176
	p->se.nr_migrations		= 0;
P
Peter Zijlstra 已提交
2177
	p->se.vruntime			= 0;
P
Peter Zijlstra 已提交
2178
	INIT_LIST_HEAD(&p->se.group_node);
I
Ingo Molnar 已提交
2179

2180 2181 2182 2183
#ifdef CONFIG_FAIR_GROUP_SCHED
	p->se.cfs_rq			= NULL;
#endif

I
Ingo Molnar 已提交
2184
#ifdef CONFIG_SCHEDSTATS
2185
	/* Even if schedstat is disabled, there should not be garbage */
2186
	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
I
Ingo Molnar 已提交
2187
#endif
N
Nick Piggin 已提交
2188

2189
	RB_CLEAR_NODE(&p->dl.rb_node);
2190
	init_dl_task_timer(&p->dl);
2191
	__dl_clear_params(p);
2192

P
Peter Zijlstra 已提交
2193
	INIT_LIST_HEAD(&p->rt.run_list);
2194 2195 2196 2197
	p->rt.timeout		= 0;
	p->rt.time_slice	= sched_rr_timeslice;
	p->rt.on_rq		= 0;
	p->rt.on_list		= 0;
N
Nick Piggin 已提交
2198

2199 2200 2201
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif
2202 2203 2204

#ifdef CONFIG_NUMA_BALANCING
	if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
2205
		p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2206 2207 2208
		p->mm->numa_scan_seq = 0;
	}

2209 2210 2211 2212 2213
	if (clone_flags & CLONE_VM)
		p->numa_preferred_nid = current->numa_preferred_nid;
	else
		p->numa_preferred_nid = -1;

2214 2215
	p->node_stamp = 0ULL;
	p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
2216
	p->numa_scan_period = sysctl_numa_balancing_scan_delay;
2217
	p->numa_work.next = &p->numa_work;
2218
	p->numa_faults = NULL;
2219 2220
	p->last_task_numa_placement = 0;
	p->last_sum_exec_runtime = 0;
2221 2222

	p->numa_group = NULL;
2223
#endif /* CONFIG_NUMA_BALANCING */
I
Ingo Molnar 已提交
2224 2225
}

2226 2227
DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);

2228
#ifdef CONFIG_NUMA_BALANCING
2229

2230 2231 2232
void set_numabalancing_state(bool enabled)
{
	if (enabled)
2233
		static_branch_enable(&sched_numa_balancing);
2234
	else
2235
		static_branch_disable(&sched_numa_balancing);
2236
}
2237 2238 2239 2240 2241 2242 2243

#ifdef CONFIG_PROC_SYSCTL
int sysctl_numa_balancing(struct ctl_table *table, int write,
			 void __user *buffer, size_t *lenp, loff_t *ppos)
{
	struct ctl_table t;
	int err;
2244
	int state = static_branch_likely(&sched_numa_balancing);
2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259

	if (write && !capable(CAP_SYS_ADMIN))
		return -EPERM;

	t = *table;
	t.data = &state;
	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
	if (err < 0)
		return err;
	if (write)
		set_numabalancing_state(state);
	return err;
}
#endif
#endif
I
Ingo Molnar 已提交
2260

2261 2262
#ifdef CONFIG_SCHEDSTATS

2263
DEFINE_STATIC_KEY_FALSE(sched_schedstats);
2264
static bool __initdata __sched_schedstats = false;
2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287

static void set_schedstats(bool enabled)
{
	if (enabled)
		static_branch_enable(&sched_schedstats);
	else
		static_branch_disable(&sched_schedstats);
}

void force_schedstat_enabled(void)
{
	if (!schedstat_enabled()) {
		pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
		static_branch_enable(&sched_schedstats);
	}
}

static int __init setup_schedstats(char *str)
{
	int ret = 0;
	if (!str)
		goto out;

2288 2289 2290 2291 2292
	/*
	 * This code is called before jump labels have been set up, so we can't
	 * change the static branch directly just yet.  Instead set a temporary
	 * variable so init_schedstats() can do it later.
	 */
2293
	if (!strcmp(str, "enable")) {
2294
		__sched_schedstats = true;
2295 2296
		ret = 1;
	} else if (!strcmp(str, "disable")) {
2297
		__sched_schedstats = false;
2298 2299 2300 2301 2302 2303 2304 2305 2306 2307
		ret = 1;
	}
out:
	if (!ret)
		pr_warn("Unable to parse schedstats=\n");

	return ret;
}
__setup("schedstats=", setup_schedstats);

2308 2309 2310 2311 2312
static void __init init_schedstats(void)
{
	set_schedstats(__sched_schedstats);
}

2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332
#ifdef CONFIG_PROC_SYSCTL
int sysctl_schedstats(struct ctl_table *table, int write,
			 void __user *buffer, size_t *lenp, loff_t *ppos)
{
	struct ctl_table t;
	int err;
	int state = static_branch_likely(&sched_schedstats);

	if (write && !capable(CAP_SYS_ADMIN))
		return -EPERM;

	t = *table;
	t.data = &state;
	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
	if (err < 0)
		return err;
	if (write)
		set_schedstats(state);
	return err;
}
2333 2334 2335 2336
#endif /* CONFIG_PROC_SYSCTL */
#else  /* !CONFIG_SCHEDSTATS */
static inline void init_schedstats(void) {}
#endif /* CONFIG_SCHEDSTATS */
I
Ingo Molnar 已提交
2337 2338 2339 2340

/*
 * fork()/clone()-time setup:
 */
2341
int sched_fork(unsigned long clone_flags, struct task_struct *p)
I
Ingo Molnar 已提交
2342
{
2343
	unsigned long flags;
I
Ingo Molnar 已提交
2344 2345
	int cpu = get_cpu();

2346
	__sched_fork(clone_flags, p);
2347
	/*
2348
	 * We mark the process as NEW here. This guarantees that
2349 2350 2351
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
2352
	p->state = TASK_NEW;
I
Ingo Molnar 已提交
2353

2354 2355 2356 2357 2358
	/*
	 * Make sure we do not leak PI boosting priority to the child.
	 */
	p->prio = current->normal_prio;

2359 2360 2361 2362
	/*
	 * Revert to default priority/policy on fork if requested.
	 */
	if (unlikely(p->sched_reset_on_fork)) {
2363
		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
2364
			p->policy = SCHED_NORMAL;
2365
			p->static_prio = NICE_TO_PRIO(0);
2366 2367 2368 2369 2370 2371
			p->rt_priority = 0;
		} else if (PRIO_TO_NICE(p->static_prio) < 0)
			p->static_prio = NICE_TO_PRIO(0);

		p->prio = p->normal_prio = __normal_prio(p);
		set_load_weight(p);
2372

2373 2374 2375 2376 2377 2378
		/*
		 * We don't need the reset flag anymore after the fork. It has
		 * fulfilled its duty:
		 */
		p->sched_reset_on_fork = 0;
	}
2379

2380 2381 2382 2383 2384 2385
	if (dl_prio(p->prio)) {
		put_cpu();
		return -EAGAIN;
	} else if (rt_prio(p->prio)) {
		p->sched_class = &rt_sched_class;
	} else {
H
Hiroshi Shimamoto 已提交
2386
		p->sched_class = &fair_sched_class;
2387
	}
2388

2389
	init_entity_runnable_average(&p->se);
P
Peter Zijlstra 已提交
2390

2391 2392 2393 2394 2395 2396 2397
	/*
	 * The child is not yet in the pid-hash so no cgroup attach races,
	 * and the cgroup is pinned to this child due to cgroup_fork()
	 * is ran before sched_fork().
	 *
	 * Silence PROVE_RCU.
	 */
2398
	raw_spin_lock_irqsave(&p->pi_lock, flags);
2399
	/*
I
Ingo Molnar 已提交
2400
	 * We're setting the CPU for the first time, we don't migrate,
2401 2402 2403 2404 2405
	 * so use __set_task_cpu().
	 */
	__set_task_cpu(p, cpu);
	if (p->sched_class->task_fork)
		p->sched_class->task_fork(p);
2406
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2407

2408
#ifdef CONFIG_SCHED_INFO
I
Ingo Molnar 已提交
2409
	if (likely(sched_info_on()))
2410
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
2411
#endif
P
Peter Zijlstra 已提交
2412 2413
#if defined(CONFIG_SMP)
	p->on_cpu = 0;
2414
#endif
2415
	init_task_preempt_count(p);
2416
#ifdef CONFIG_SMP
2417
	plist_node_init(&p->pushable_tasks, MAX_PRIO);
2418
	RB_CLEAR_NODE(&p->pushable_dl_tasks);
2419
#endif
2420

N
Nick Piggin 已提交
2421
	put_cpu();
2422
	return 0;
L
Linus Torvalds 已提交
2423 2424
}

2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443
unsigned long to_ratio(u64 period, u64 runtime)
{
	if (runtime == RUNTIME_INF)
		return 1ULL << 20;

	/*
	 * Doing this here saves a lot of checks in all
	 * the calling paths, and returning zero seems
	 * safe for them anyway.
	 */
	if (period == 0)
		return 0;

	return div64_u64(runtime << 20, period);
}

#ifdef CONFIG_SMP
inline struct dl_bw *dl_bw_of(int i)
{
2444 2445
	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
			 "sched RCU must be held");
2446 2447 2448
	return &cpu_rq(i)->rd->dl_bw;
}

2449
static inline int dl_bw_cpus(int i)
2450
{
2451 2452 2453
	struct root_domain *rd = cpu_rq(i)->rd;
	int cpus = 0;

2454 2455
	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
			 "sched RCU must be held");
2456 2457 2458 2459
	for_each_cpu_and(i, rd->span, cpu_active_mask)
		cpus++;

	return cpus;
2460 2461 2462 2463 2464 2465 2466
}
#else
inline struct dl_bw *dl_bw_of(int i)
{
	return &cpu_rq(i)->dl.dl_bw;
}

2467
static inline int dl_bw_cpus(int i)
2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479
{
	return 1;
}
#endif

/*
 * We must be sure that accepting a new task (or allowing changing the
 * parameters of an existing one) is consistent with the bandwidth
 * constraints. If yes, this function also accordingly updates the currently
 * allocated bandwidth to reflect the new situation.
 *
 * This function is called while holding p's rq->lock.
2480 2481 2482
 *
 * XXX we should delay bw change until the task's 0-lag point, see
 * __setparam_dl().
2483 2484 2485 2486 2487 2488
 */
static int dl_overflow(struct task_struct *p, int policy,
		       const struct sched_attr *attr)
{

	struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
2489
	u64 period = attr->sched_period ?: attr->sched_deadline;
2490 2491
	u64 runtime = attr->sched_runtime;
	u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
2492
	int cpus, err = -1;
2493

2494 2495
	/* !deadline task may carry old deadline bandwidth */
	if (new_bw == p->dl.dl_bw && task_has_dl_policy(p))
2496 2497 2498 2499 2500 2501 2502 2503
		return 0;

	/*
	 * Either if a task, enters, leave, or stays -deadline but changes
	 * its parameters, we may need to update accordingly the total
	 * allocated bandwidth of the container.
	 */
	raw_spin_lock(&dl_b->lock);
2504
	cpus = dl_bw_cpus(task_cpu(p));
2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524
	if (dl_policy(policy) && !task_has_dl_policy(p) &&
	    !__dl_overflow(dl_b, cpus, 0, new_bw)) {
		__dl_add(dl_b, new_bw);
		err = 0;
	} else if (dl_policy(policy) && task_has_dl_policy(p) &&
		   !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
		__dl_clear(dl_b, p->dl.dl_bw);
		__dl_add(dl_b, new_bw);
		err = 0;
	} else if (!dl_policy(policy) && task_has_dl_policy(p)) {
		__dl_clear(dl_b, p->dl.dl_bw);
		err = 0;
	}
	raw_spin_unlock(&dl_b->lock);

	return err;
}

extern void init_dl_bw(struct dl_bw *dl_b);

L
Linus Torvalds 已提交
2525 2526 2527 2528 2529 2530 2531
/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
2532
void wake_up_new_task(struct task_struct *p)
L
Linus Torvalds 已提交
2533
{
2534
	struct rq_flags rf;
I
Ingo Molnar 已提交
2535
	struct rq *rq;
2536

2537
	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
2538
	p->state = TASK_RUNNING;
2539 2540 2541 2542
#ifdef CONFIG_SMP
	/*
	 * Fork balancing, do it here and not earlier because:
	 *  - cpus_allowed can change in the fork path
I
Ingo Molnar 已提交
2543
	 *  - any previously selected CPU might disappear through hotplug
2544 2545 2546
	 *
	 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
	 * as we're not fully set-up yet.
2547
	 */
2548
	__set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2549
#endif
2550
	rq = __task_rq_lock(p, &rf);
2551
	update_rq_clock(rq);
2552
	post_init_entity_util_avg(&p->se);
2553

P
Peter Zijlstra 已提交
2554
	activate_task(rq, p, 0);
2555
	p->on_rq = TASK_ON_RQ_QUEUED;
2556
	trace_sched_wakeup_new(p);
P
Peter Zijlstra 已提交
2557
	check_preempt_curr(rq, p, WF_FORK);
2558
#ifdef CONFIG_SMP
2559 2560 2561 2562 2563
	if (p->sched_class->task_woken) {
		/*
		 * Nothing relies on rq->lock after this, so its fine to
		 * drop it.
		 */
2564
		rq_unpin_lock(rq, &rf);
2565
		p->sched_class->task_woken(rq, p);
2566
		rq_repin_lock(rq, &rf);
2567
	}
2568
#endif
2569
	task_rq_unlock(rq, p, &rf);
L
Linus Torvalds 已提交
2570 2571
}

2572 2573
#ifdef CONFIG_PREEMPT_NOTIFIERS

2574 2575
static struct static_key preempt_notifier_key = STATIC_KEY_INIT_FALSE;

2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587
void preempt_notifier_inc(void)
{
	static_key_slow_inc(&preempt_notifier_key);
}
EXPORT_SYMBOL_GPL(preempt_notifier_inc);

void preempt_notifier_dec(void)
{
	static_key_slow_dec(&preempt_notifier_key);
}
EXPORT_SYMBOL_GPL(preempt_notifier_dec);

2588
/**
2589
 * preempt_notifier_register - tell me when current is being preempted & rescheduled
R
Randy Dunlap 已提交
2590
 * @notifier: notifier struct to register
2591 2592 2593
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
2594 2595 2596
	if (!static_key_false(&preempt_notifier_key))
		WARN(1, "registering preempt_notifier while notifiers disabled\n");

2597 2598 2599 2600 2601 2602
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
2603
 * @notifier: notifier struct to unregister
2604
 *
2605
 * This is *not* safe to call from within a preemption notifier.
2606 2607 2608 2609 2610 2611 2612
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

2613
static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
2614 2615 2616
{
	struct preempt_notifier *notifier;

2617
	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2618 2619 2620
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

2621 2622 2623 2624 2625 2626
static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	if (static_key_false(&preempt_notifier_key))
		__fire_sched_in_preempt_notifiers(curr);
}

2627
static void
2628 2629
__fire_sched_out_preempt_notifiers(struct task_struct *curr,
				   struct task_struct *next)
2630 2631 2632
{
	struct preempt_notifier *notifier;

2633
	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2634 2635 2636
		notifier->ops->sched_out(notifier, next);
}

2637 2638 2639 2640 2641 2642 2643 2644
static __always_inline void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	if (static_key_false(&preempt_notifier_key))
		__fire_sched_out_preempt_notifiers(curr, next);
}

2645
#else /* !CONFIG_PREEMPT_NOTIFIERS */
2646

2647
static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2648 2649 2650
{
}

2651
static inline void
2652 2653 2654 2655 2656
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

2657
#endif /* CONFIG_PREEMPT_NOTIFIERS */
2658

2659 2660 2661
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
2662
 * @prev: the current task that is being switched out
2663 2664 2665 2666 2667 2668 2669 2670 2671
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
2672 2673 2674
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
2675
{
2676
	sched_info_switch(rq, prev, next);
2677
	perf_event_task_sched_out(prev, next);
2678
	fire_sched_out_preempt_notifiers(prev, next);
2679 2680 2681 2682
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
2683 2684 2685 2686
/**
 * finish_task_switch - clean up after a task-switch
 * @prev: the thread we just switched away from.
 *
2687 2688 2689 2690
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
2691 2692
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
2693
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
2694 2695
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
2696 2697 2698 2699 2700
 *
 * The context switch have flipped the stack from under us and restored the
 * local variables which were saved when this task called schedule() in the
 * past. prev == current is still correct but we need to recalculate this_rq
 * because prev may have moved to another CPU.
L
Linus Torvalds 已提交
2701
 */
2702
static struct rq *finish_task_switch(struct task_struct *prev)
L
Linus Torvalds 已提交
2703 2704
	__releases(rq->lock)
{
2705
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
2706
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
2707
	long prev_state;
L
Linus Torvalds 已提交
2708

2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719
	/*
	 * The previous task will have left us with a preempt_count of 2
	 * because it left us after:
	 *
	 *	schedule()
	 *	  preempt_disable();			// 1
	 *	  __schedule()
	 *	    raw_spin_lock_irq(&rq->lock)	// 2
	 *
	 * Also, see FORK_PREEMPT_COUNT.
	 */
2720 2721 2722 2723
	if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
		      "corrupted preempt_count: %s/%d/0x%x\n",
		      current->comm, current->pid, preempt_count()))
		preempt_count_set(FORK_PREEMPT_COUNT);
2724

L
Linus Torvalds 已提交
2725 2726 2727 2728
	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
2729
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
2730 2731
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
2732 2733 2734 2735 2736
	 *
	 * We must observe prev->state before clearing prev->on_cpu (in
	 * finish_lock_switch), otherwise a concurrent wakeup can get prev
	 * running on another CPU and we could rave with its RUNNING -> DEAD
	 * transition, resulting in a double drop.
L
Linus Torvalds 已提交
2737
	 */
O
Oleg Nesterov 已提交
2738
	prev_state = prev->state;
2739
	vtime_task_switch(prev);
2740
	perf_event_task_sched_in(prev, current);
2741
	finish_lock_switch(rq, prev);
2742
	finish_arch_post_lock_switch();
S
Steven Rostedt 已提交
2743

2744
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
2745 2746
	if (mm)
		mmdrop(mm);
2747
	if (unlikely(prev_state == TASK_DEAD)) {
2748 2749 2750
		if (prev->sched_class->task_dead)
			prev->sched_class->task_dead(prev);

2751 2752 2753
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
2754
		 */
2755
		kprobe_flush_task(prev);
2756 2757 2758 2759

		/* Task is done with its stack. */
		put_task_stack(prev);

L
Linus Torvalds 已提交
2760
		put_task_struct(prev);
2761
	}
2762

2763
	tick_nohz_task_switch();
2764
	return rq;
L
Linus Torvalds 已提交
2765 2766
}

2767 2768 2769
#ifdef CONFIG_SMP

/* rq->lock is NOT held, but preemption is disabled */
2770
static void __balance_callback(struct rq *rq)
2771
{
2772 2773 2774
	struct callback_head *head, *next;
	void (*func)(struct rq *rq);
	unsigned long flags;
2775

2776 2777 2778 2779 2780 2781 2782 2783
	raw_spin_lock_irqsave(&rq->lock, flags);
	head = rq->balance_callback;
	rq->balance_callback = NULL;
	while (head) {
		func = (void (*)(struct rq *))head->func;
		next = head->next;
		head->next = NULL;
		head = next;
2784

2785
		func(rq);
2786
	}
2787 2788 2789 2790 2791 2792 2793
	raw_spin_unlock_irqrestore(&rq->lock, flags);
}

static inline void balance_callback(struct rq *rq)
{
	if (unlikely(rq->balance_callback))
		__balance_callback(rq);
2794 2795 2796
}

#else
2797

2798
static inline void balance_callback(struct rq *rq)
2799
{
L
Linus Torvalds 已提交
2800 2801
}

2802 2803
#endif

L
Linus Torvalds 已提交
2804 2805 2806 2807
/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
2808
asmlinkage __visible void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
2809 2810
	__releases(rq->lock)
{
2811
	struct rq *rq;
2812

2813 2814 2815 2816 2817 2818 2819 2820 2821
	/*
	 * New tasks start with FORK_PREEMPT_COUNT, see there and
	 * finish_task_switch() for details.
	 *
	 * finish_task_switch() will drop rq->lock() and lower preempt_count
	 * and the preempt_enable() will end up enabling preemption (on
	 * PREEMPT_COUNT kernels).
	 */

2822
	rq = finish_task_switch(prev);
2823
	balance_callback(rq);
2824
	preempt_enable();
2825

L
Linus Torvalds 已提交
2826
	if (current->set_child_tid)
2827
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
2828 2829 2830
}

/*
2831
 * context_switch - switch to the new MM and the new thread's register state.
L
Linus Torvalds 已提交
2832
 */
2833
static __always_inline struct rq *
2834
context_switch(struct rq *rq, struct task_struct *prev,
2835
	       struct task_struct *next, struct rq_flags *rf)
L
Linus Torvalds 已提交
2836
{
I
Ingo Molnar 已提交
2837
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
2838

2839
	prepare_task_switch(rq, prev, next);
2840

I
Ingo Molnar 已提交
2841 2842
	mm = next->mm;
	oldmm = prev->active_mm;
2843 2844 2845 2846 2847
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
2848
	arch_start_context_switch(prev);
2849

2850
	if (!mm) {
L
Linus Torvalds 已提交
2851
		next->active_mm = oldmm;
V
Vegard Nossum 已提交
2852
		mmgrab(oldmm);
L
Linus Torvalds 已提交
2853 2854
		enter_lazy_tlb(oldmm, next);
	} else
2855
		switch_mm_irqs_off(oldmm, mm, next);
L
Linus Torvalds 已提交
2856

2857
	if (!prev->mm) {
L
Linus Torvalds 已提交
2858 2859 2860
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
2861

2862
	rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
2863

2864 2865 2866 2867 2868 2869
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
2870
	rq_unpin_lock(rq, rf);
2871
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
2872 2873 2874

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);
I
Ingo Molnar 已提交
2875
	barrier();
2876 2877

	return finish_task_switch(prev);
L
Linus Torvalds 已提交
2878 2879 2880
}

/*
2881
 * nr_running and nr_context_switches:
L
Linus Torvalds 已提交
2882 2883
 *
 * externally visible scheduler statistics: current number of runnable
2884
 * threads, total number of context switches performed since bootup.
L
Linus Torvalds 已提交
2885 2886 2887 2888 2889 2890 2891 2892 2893
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
2894
}
L
Linus Torvalds 已提交
2895

2896
/*
I
Ingo Molnar 已提交
2897
 * Check if only the current task is running on the CPU.
2898 2899 2900 2901 2902 2903 2904 2905 2906 2907
 *
 * Caution: this function does not check that the caller has disabled
 * preemption, thus the result might have a time-of-check-to-time-of-use
 * race.  The caller is responsible to use it correctly, for example:
 *
 * - from a non-preemptable section (of course)
 *
 * - from a thread that is bound to a single CPU
 *
 * - in a loop with very short iterations (e.g. a polling loop)
2908 2909 2910
 */
bool single_task_running(void)
{
2911
	return raw_rq()->nr_running == 1;
2912 2913 2914
}
EXPORT_SYMBOL(single_task_running);

L
Linus Torvalds 已提交
2915
unsigned long long nr_context_switches(void)
2916
{
2917 2918
	int i;
	unsigned long long sum = 0;
2919

2920
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2921
		sum += cpu_rq(i)->nr_switches;
2922

L
Linus Torvalds 已提交
2923 2924
	return sum;
}
2925

2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955
/*
 * IO-wait accounting, and how its mostly bollocks (on SMP).
 *
 * The idea behind IO-wait account is to account the idle time that we could
 * have spend running if it were not for IO. That is, if we were to improve the
 * storage performance, we'd have a proportional reduction in IO-wait time.
 *
 * This all works nicely on UP, where, when a task blocks on IO, we account
 * idle time as IO-wait, because if the storage were faster, it could've been
 * running and we'd not be idle.
 *
 * This has been extended to SMP, by doing the same for each CPU. This however
 * is broken.
 *
 * Imagine for instance the case where two tasks block on one CPU, only the one
 * CPU will have IO-wait accounted, while the other has regular idle. Even
 * though, if the storage were faster, both could've ran at the same time,
 * utilising both CPUs.
 *
 * This means, that when looking globally, the current IO-wait accounting on
 * SMP is a lower bound, by reason of under accounting.
 *
 * Worse, since the numbers are provided per CPU, they are sometimes
 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
 * associated with any one particular CPU, it can wake to another CPU than it
 * blocked on. This means the per CPU IO-wait number is meaningless.
 *
 * Task CPU affinities can make all that even more 'interesting'.
 */

L
Linus Torvalds 已提交
2956 2957 2958
unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;
2959

2960
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2961
		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2962

L
Linus Torvalds 已提交
2963 2964
	return sum;
}
2965

2966 2967 2968 2969 2970 2971 2972
/*
 * Consumers of these two interfaces, like for example the cpufreq menu
 * governor are using nonsensical data. Boosting frequency for a CPU that has
 * IO-wait which might not even end up running the task when it does become
 * runnable.
 */

2973
unsigned long nr_iowait_cpu(int cpu)
2974
{
2975
	struct rq *this = cpu_rq(cpu);
2976 2977
	return atomic_read(&this->nr_iowait);
}
2978

2979 2980
void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
{
2981 2982 2983
	struct rq *rq = this_rq();
	*nr_waiters = atomic_read(&rq->nr_iowait);
	*load = rq->load.weight;
2984 2985
}

I
Ingo Molnar 已提交
2986
#ifdef CONFIG_SMP
2987

2988
/*
P
Peter Zijlstra 已提交
2989 2990
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
2991
 */
P
Peter Zijlstra 已提交
2992
void sched_exec(void)
2993
{
P
Peter Zijlstra 已提交
2994
	struct task_struct *p = current;
L
Linus Torvalds 已提交
2995
	unsigned long flags;
2996
	int dest_cpu;
2997

2998
	raw_spin_lock_irqsave(&p->pi_lock, flags);
2999
	dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
3000 3001
	if (dest_cpu == smp_processor_id())
		goto unlock;
P
Peter Zijlstra 已提交
3002

3003
	if (likely(cpu_active(dest_cpu))) {
3004
		struct migration_arg arg = { p, dest_cpu };
3005

3006 3007
		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
L
Linus Torvalds 已提交
3008 3009
		return;
	}
3010
unlock:
3011
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
3012
}
I
Ingo Molnar 已提交
3013

L
Linus Torvalds 已提交
3014 3015 3016
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);
3017
DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
L
Linus Torvalds 已提交
3018 3019

EXPORT_PER_CPU_SYMBOL(kstat);
3020
EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
L
Linus Torvalds 已提交
3021

3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038
/*
 * The function fair_sched_class.update_curr accesses the struct curr
 * and its field curr->exec_start; when called from task_sched_runtime(),
 * we observe a high rate of cache misses in practice.
 * Prefetching this data results in improved performance.
 */
static inline void prefetch_curr_exec_start(struct task_struct *p)
{
#ifdef CONFIG_FAIR_GROUP_SCHED
	struct sched_entity *curr = (&p->se)->cfs_rq->curr;
#else
	struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
#endif
	prefetch(curr);
	prefetch(&curr->exec_start);
}

3039 3040 3041 3042 3043 3044 3045
/*
 * Return accounted runtime for the task.
 * In case the task is currently running, return the runtime plus current's
 * pending runtime that have not been accounted yet.
 */
unsigned long long task_sched_runtime(struct task_struct *p)
{
3046
	struct rq_flags rf;
3047
	struct rq *rq;
3048
	u64 ns;
3049

3050 3051 3052 3053 3054 3055
#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
	/*
	 * 64-bit doesn't need locks to atomically read a 64bit value.
	 * So we have a optimization chance when the task's delta_exec is 0.
	 * Reading ->on_cpu is racy, but this is ok.
	 *
I
Ingo Molnar 已提交
3056 3057
	 * If we race with it leaving CPU, we'll take a lock. So we're correct.
	 * If we race with it entering CPU, unaccounted time is 0. This is
3058
	 * indistinguishable from the read occurring a few cycles earlier.
3059 3060
	 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
	 * been accounted, so we're correct here as well.
3061
	 */
3062
	if (!p->on_cpu || !task_on_rq_queued(p))
3063 3064 3065
		return p->se.sum_exec_runtime;
#endif

3066
	rq = task_rq_lock(p, &rf);
3067 3068 3069 3070 3071 3072
	/*
	 * Must be ->curr _and_ ->on_rq.  If dequeued, we would
	 * project cycles that may never be accounted to this
	 * thread, breaking clock_gettime().
	 */
	if (task_current(rq, p) && task_on_rq_queued(p)) {
3073
		prefetch_curr_exec_start(p);
3074 3075 3076 3077
		update_rq_clock(rq);
		p->sched_class->update_curr(rq);
	}
	ns = p->se.sum_exec_runtime;
3078
	task_rq_unlock(rq, p, &rf);
3079 3080 3081

	return ns;
}
3082

3083 3084 3085 3086 3087 3088 3089 3090
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
3091
	struct task_struct *curr = rq->curr;
3092 3093

	sched_clock_tick();
I
Ingo Molnar 已提交
3094

3095
	raw_spin_lock(&rq->lock);
3096
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
3097
	curr->sched_class->task_tick(rq, curr, 0);
3098
	cpu_load_update_active(rq);
3099
	calc_global_load_tick(rq);
3100
	raw_spin_unlock(&rq->lock);
3101

3102
	perf_event_task_tick();
3103

3104
#ifdef CONFIG_SMP
3105
	rq->idle_balance = idle_cpu(cpu);
3106
	trigger_load_balance(rq);
3107
#endif
3108
	rq_last_tick_reset(rq);
L
Linus Torvalds 已提交
3109 3110
}

3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121
#ifdef CONFIG_NO_HZ_FULL
/**
 * scheduler_tick_max_deferment
 *
 * Keep at least one tick per second when a single
 * active task is running because the scheduler doesn't
 * yet completely support full dynticks environment.
 *
 * This makes sure that uptime, CFS vruntime, load
 * balancing, etc... continue to move forward, even
 * with a very low granularity.
3122 3123
 *
 * Return: Maximum deferment in nanoseconds.
3124 3125 3126 3127
 */
u64 scheduler_tick_max_deferment(void)
{
	struct rq *rq = this_rq();
3128
	unsigned long next, now = READ_ONCE(jiffies);
3129 3130 3131 3132 3133 3134

	next = rq->last_sched_tick + HZ;

	if (time_before_eq(next, now))
		return 0;

3135
	return jiffies_to_nsecs(next - now);
L
Linus Torvalds 已提交
3136
}
3137
#endif
L
Linus Torvalds 已提交
3138

3139 3140
#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
				defined(CONFIG_PREEMPT_TRACER))
3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154
/*
 * If the value passed in is equal to the current preempt count
 * then we just disabled preemption. Start timing the latency.
 */
static inline void preempt_latency_start(int val)
{
	if (preempt_count() == val) {
		unsigned long ip = get_lock_parent_ip();
#ifdef CONFIG_DEBUG_PREEMPT
		current->preempt_disable_ip = ip;
#endif
		trace_preempt_off(CALLER_ADDR0, ip);
	}
}
3155

3156
void preempt_count_add(int val)
L
Linus Torvalds 已提交
3157
{
3158
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
3159 3160 3161
	/*
	 * Underflow?
	 */
3162 3163
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
3164
#endif
3165
	__preempt_count_add(val);
3166
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
3167 3168 3169
	/*
	 * Spinlock count overflowing soon?
	 */
3170 3171
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
3172
#endif
3173
	preempt_latency_start(val);
L
Linus Torvalds 已提交
3174
}
3175
EXPORT_SYMBOL(preempt_count_add);
3176
NOKPROBE_SYMBOL(preempt_count_add);
L
Linus Torvalds 已提交
3177

3178 3179 3180 3181 3182 3183 3184 3185 3186 3187
/*
 * If the value passed in equals to the current preempt count
 * then we just enabled preemption. Stop timing the latency.
 */
static inline void preempt_latency_stop(int val)
{
	if (preempt_count() == val)
		trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
}

3188
void preempt_count_sub(int val)
L
Linus Torvalds 已提交
3189
{
3190
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
3191 3192 3193
	/*
	 * Underflow?
	 */
3194
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3195
		return;
L
Linus Torvalds 已提交
3196 3197 3198
	/*
	 * Is the spinlock portion underflowing?
	 */
3199 3200 3201
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;
3202
#endif
3203

3204
	preempt_latency_stop(val);
3205
	__preempt_count_sub(val);
L
Linus Torvalds 已提交
3206
}
3207
EXPORT_SYMBOL(preempt_count_sub);
3208
NOKPROBE_SYMBOL(preempt_count_sub);
L
Linus Torvalds 已提交
3209

3210 3211 3212
#else
static inline void preempt_latency_start(int val) { }
static inline void preempt_latency_stop(int val) { }
L
Linus Torvalds 已提交
3213 3214
#endif

3215 3216 3217 3218 3219 3220 3221 3222 3223
static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
{
#ifdef CONFIG_DEBUG_PREEMPT
	return p->preempt_disable_ip;
#else
	return 0;
#endif
}

L
Linus Torvalds 已提交
3224
/*
I
Ingo Molnar 已提交
3225
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
3226
 */
I
Ingo Molnar 已提交
3227
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
3228
{
3229 3230 3231
	/* Save this before calling printk(), since that will clobber it */
	unsigned long preempt_disable_ip = get_preempt_disable_ip(current);

3232 3233 3234
	if (oops_in_progress)
		return;

P
Peter Zijlstra 已提交
3235 3236
	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());
3237

I
Ingo Molnar 已提交
3238
	debug_show_held_locks(prev);
3239
	print_modules();
I
Ingo Molnar 已提交
3240 3241
	if (irqs_disabled())
		print_irqtrace_events(prev);
3242 3243
	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
	    && in_atomic_preempt_off()) {
3244
		pr_err("Preemption disabled at:");
3245
		print_ip_sym(preempt_disable_ip);
3246 3247
		pr_cont("\n");
	}
3248 3249 3250
	if (panic_on_warn)
		panic("scheduling while atomic\n");

3251
	dump_stack();
3252
	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
I
Ingo Molnar 已提交
3253
}
L
Linus Torvalds 已提交
3254

I
Ingo Molnar 已提交
3255 3256 3257 3258 3259
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
3260
#ifdef CONFIG_SCHED_STACK_END_CHECK
J
Jann Horn 已提交
3261 3262
	if (task_stack_end_corrupted(prev))
		panic("corrupted stack end detected inside scheduler\n");
3263
#endif
3264

3265
	if (unlikely(in_atomic_preempt_off())) {
I
Ingo Molnar 已提交
3266
		__schedule_bug(prev);
3267 3268
		preempt_count_set(PREEMPT_DISABLED);
	}
3269
	rcu_sleep_check();
I
Ingo Molnar 已提交
3270

L
Linus Torvalds 已提交
3271 3272
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

3273
	schedstat_inc(this_rq()->sched_count);
I
Ingo Molnar 已提交
3274 3275 3276 3277 3278 3279
}

/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
3280
pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
I
Ingo Molnar 已提交
3281
{
3282
	const struct sched_class *class;
I
Ingo Molnar 已提交
3283
	struct task_struct *p;
L
Linus Torvalds 已提交
3284 3285

	/*
I
Ingo Molnar 已提交
3286 3287
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
3288
	 */
3289
	if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
3290
		p = fair_sched_class.pick_next_task(rq, prev, rf);
3291 3292 3293
		if (unlikely(p == RETRY_TASK))
			goto again;

I
Ingo Molnar 已提交
3294
		/* Assumes fair_sched_class->next == idle_sched_class */
3295
		if (unlikely(!p))
3296
			p = idle_sched_class.pick_next_task(rq, prev, rf);
3297 3298

		return p;
L
Linus Torvalds 已提交
3299 3300
	}

3301
again:
3302
	for_each_class(class) {
3303
		p = class->pick_next_task(rq, prev, rf);
3304 3305 3306
		if (p) {
			if (unlikely(p == RETRY_TASK))
				goto again;
I
Ingo Molnar 已提交
3307
			return p;
3308
		}
I
Ingo Molnar 已提交
3309
	}
3310

I
Ingo Molnar 已提交
3311 3312
	/* The idle class should always have a runnable task: */
	BUG();
I
Ingo Molnar 已提交
3313
}
L
Linus Torvalds 已提交
3314

I
Ingo Molnar 已提交
3315
/*
3316
 * __schedule() is the main scheduler function.
3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350
 *
 * The main means of driving the scheduler and thus entering this function are:
 *
 *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
 *
 *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
 *      paths. For example, see arch/x86/entry_64.S.
 *
 *      To drive preemption between tasks, the scheduler sets the flag in timer
 *      interrupt handler scheduler_tick().
 *
 *   3. Wakeups don't really cause entry into schedule(). They add a
 *      task to the run-queue and that's it.
 *
 *      Now, if the new task added to the run-queue preempts the current
 *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
 *      called on the nearest possible occasion:
 *
 *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
 *
 *         - in syscall or exception context, at the next outmost
 *           preempt_enable(). (this might be as soon as the wake_up()'s
 *           spin_unlock()!)
 *
 *         - in IRQ context, return from interrupt-handler to
 *           preemptible context
 *
 *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
 *         then at the next:
 *
 *          - cond_resched() call
 *          - explicit schedule() call
 *          - return from syscall or exception to user-space
 *          - return from interrupt-handler to user-space
3351
 *
3352
 * WARNING: must be called with preemption disabled!
I
Ingo Molnar 已提交
3353
 */
3354
static void __sched notrace __schedule(bool preempt)
I
Ingo Molnar 已提交
3355 3356
{
	struct task_struct *prev, *next;
3357
	unsigned long *switch_count;
3358
	struct rq_flags rf;
I
Ingo Molnar 已提交
3359
	struct rq *rq;
3360
	int cpu;
I
Ingo Molnar 已提交
3361 3362 3363 3364 3365 3366

	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
	prev = rq->curr;

	schedule_debug(prev);
L
Linus Torvalds 已提交
3367

3368
	if (sched_feat(HRTICK))
M
Mike Galbraith 已提交
3369
		hrtick_clear(rq);
P
Peter Zijlstra 已提交
3370

3371 3372 3373
	local_irq_disable();
	rcu_note_context_switch();

3374 3375 3376 3377 3378 3379
	/*
	 * Make sure that signal_pending_state()->signal_pending() below
	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
	 * done by the caller to avoid the race with signal_wake_up().
	 */
	smp_mb__before_spinlock();
3380
	raw_spin_lock(&rq->lock);
3381
	rq_pin_lock(rq, &rf);
L
Linus Torvalds 已提交
3382

I
Ingo Molnar 已提交
3383 3384
	/* Promote REQ to ACT */
	rq->clock_update_flags <<= 1;
3385

3386
	switch_count = &prev->nivcsw;
3387
	if (!preempt && prev->state) {
T
Tejun Heo 已提交
3388
		if (unlikely(signal_pending_state(prev->state, prev))) {
L
Linus Torvalds 已提交
3389
			prev->state = TASK_RUNNING;
T
Tejun Heo 已提交
3390
		} else {
3391 3392 3393
			deactivate_task(rq, prev, DEQUEUE_SLEEP);
			prev->on_rq = 0;

3394 3395 3396 3397 3398
			if (prev->in_iowait) {
				atomic_inc(&rq->nr_iowait);
				delayacct_blkio_start();
			}

T
Tejun Heo 已提交
3399
			/*
3400 3401 3402
			 * If a worker went to sleep, notify and ask workqueue
			 * whether it wants to wake up a task to maintain
			 * concurrency.
T
Tejun Heo 已提交
3403 3404 3405 3406
			 */
			if (prev->flags & PF_WQ_WORKER) {
				struct task_struct *to_wakeup;

3407
				to_wakeup = wq_worker_sleeping(prev);
T
Tejun Heo 已提交
3408
				if (to_wakeup)
3409
					try_to_wake_up_local(to_wakeup, &rf);
T
Tejun Heo 已提交
3410 3411
			}
		}
I
Ingo Molnar 已提交
3412
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
3413 3414
	}

3415
	if (task_on_rq_queued(prev))
3416 3417
		update_rq_clock(rq);

3418
	next = pick_next_task(rq, prev, &rf);
3419
	clear_tsk_need_resched(prev);
3420
	clear_preempt_need_resched();
L
Linus Torvalds 已提交
3421 3422 3423 3424 3425 3426

	if (likely(prev != next)) {
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

3427
		trace_sched_switch(preempt, prev, next);
I
Ingo Molnar 已提交
3428 3429 3430

		/* Also unlocks the rq: */
		rq = context_switch(rq, prev, next, &rf);
3431
	} else {
3432
		rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
3433
		rq_unpin_lock(rq, &rf);
3434
		raw_spin_unlock_irq(&rq->lock);
3435
	}
L
Linus Torvalds 已提交
3436

3437
	balance_callback(rq);
L
Linus Torvalds 已提交
3438
}
3439

3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456
void __noreturn do_task_dead(void)
{
	/*
	 * The setting of TASK_RUNNING by try_to_wake_up() may be delayed
	 * when the following two conditions become true.
	 *   - There is race condition of mmap_sem (It is acquired by
	 *     exit_mm()), and
	 *   - SMI occurs before setting TASK_RUNINNG.
	 *     (or hypervisor of virtual machine switches to other guest)
	 *  As a result, we may become TASK_RUNNING after becoming TASK_DEAD
	 *
	 * To avoid it, we have to wait for releasing tsk->pi_lock which
	 * is held by try_to_wake_up()
	 */
	smp_mb();
	raw_spin_unlock_wait(&current->pi_lock);

I
Ingo Molnar 已提交
3457
	/* Causes final put_task_struct in finish_task_switch(): */
3458
	__set_current_state(TASK_DEAD);
I
Ingo Molnar 已提交
3459 3460 3461 3462

	/* Tell freezer to ignore us: */
	current->flags |= PF_NOFREEZE;

3463 3464
	__schedule(false);
	BUG();
I
Ingo Molnar 已提交
3465 3466

	/* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
3467
	for (;;)
I
Ingo Molnar 已提交
3468
		cpu_relax();
3469 3470
}

3471 3472
static inline void sched_submit_work(struct task_struct *tsk)
{
3473
	if (!tsk->state || tsk_is_pi_blocked(tsk))
3474 3475 3476 3477 3478 3479 3480 3481 3482
		return;
	/*
	 * If we are going to sleep and we have plugged IO queued,
	 * make sure to submit it to avoid deadlocks.
	 */
	if (blk_needs_flush_plug(tsk))
		blk_schedule_flush_plug(tsk);
}

3483
asmlinkage __visible void __sched schedule(void)
3484
{
3485 3486 3487
	struct task_struct *tsk = current;

	sched_submit_work(tsk);
3488
	do {
3489
		preempt_disable();
3490
		__schedule(false);
3491
		sched_preempt_enable_no_resched();
3492
	} while (need_resched());
3493
}
L
Linus Torvalds 已提交
3494 3495
EXPORT_SYMBOL(schedule);

3496
#ifdef CONFIG_CONTEXT_TRACKING
3497
asmlinkage __visible void __sched schedule_user(void)
3498 3499 3500 3501 3502 3503
{
	/*
	 * If we come here after a random call to set_need_resched(),
	 * or we have been woken up remotely but the IPI has not yet arrived,
	 * we haven't yet exited the RCU idle mode. Do it here manually until
	 * we find a better solution.
3504 3505
	 *
	 * NB: There are buggy callers of this function.  Ideally we
3506
	 * should warn if prev_state != CONTEXT_USER, but that will trigger
3507
	 * too frequently to make sense yet.
3508
	 */
3509
	enum ctx_state prev_state = exception_enter();
3510
	schedule();
3511
	exception_exit(prev_state);
3512 3513 3514
}
#endif

3515 3516 3517 3518 3519 3520 3521
/**
 * schedule_preempt_disabled - called with preemption disabled
 *
 * Returns with preemption disabled. Note: preempt_count must be 1
 */
void __sched schedule_preempt_disabled(void)
{
3522
	sched_preempt_enable_no_resched();
3523 3524 3525 3526
	schedule();
	preempt_disable();
}

3527
static void __sched notrace preempt_schedule_common(void)
3528 3529
{
	do {
3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542
		/*
		 * Because the function tracer can trace preempt_count_sub()
		 * and it also uses preempt_enable/disable_notrace(), if
		 * NEED_RESCHED is set, the preempt_enable_notrace() called
		 * by the function tracer will call this function again and
		 * cause infinite recursion.
		 *
		 * Preemption must be disabled here before the function
		 * tracer can trace. Break up preempt_disable() into two
		 * calls. One to disable preemption without fear of being
		 * traced. The other to still record the preemption latency,
		 * which can also be traced by the function tracer.
		 */
3543
		preempt_disable_notrace();
3544
		preempt_latency_start(1);
3545
		__schedule(true);
3546
		preempt_latency_stop(1);
3547
		preempt_enable_no_resched_notrace();
3548 3549 3550 3551 3552 3553 3554 3555

		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
	} while (need_resched());
}

L
Linus Torvalds 已提交
3556 3557
#ifdef CONFIG_PREEMPT
/*
3558
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
3559
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
3560 3561
 * occur there and call schedule directly.
 */
3562
asmlinkage __visible void __sched notrace preempt_schedule(void)
L
Linus Torvalds 已提交
3563 3564 3565
{
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
3566
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
3567
	 */
3568
	if (likely(!preemptible()))
L
Linus Torvalds 已提交
3569 3570
		return;

3571
	preempt_schedule_common();
L
Linus Torvalds 已提交
3572
}
3573
NOKPROBE_SYMBOL(preempt_schedule);
L
Linus Torvalds 已提交
3574
EXPORT_SYMBOL(preempt_schedule);
3575 3576

/**
3577
 * preempt_schedule_notrace - preempt_schedule called by tracing
3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589
 *
 * The tracing infrastructure uses preempt_enable_notrace to prevent
 * recursion and tracing preempt enabling caused by the tracing
 * infrastructure itself. But as tracing can happen in areas coming
 * from userspace or just about to enter userspace, a preempt enable
 * can occur before user_exit() is called. This will cause the scheduler
 * to be called when the system is still in usermode.
 *
 * To prevent this, the preempt_enable_notrace will use this function
 * instead of preempt_schedule() to exit user context if needed before
 * calling the scheduler.
 */
3590
asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
3591 3592 3593 3594 3595 3596 3597
{
	enum ctx_state prev_ctx;

	if (likely(!preemptible()))
		return;

	do {
3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610
		/*
		 * Because the function tracer can trace preempt_count_sub()
		 * and it also uses preempt_enable/disable_notrace(), if
		 * NEED_RESCHED is set, the preempt_enable_notrace() called
		 * by the function tracer will call this function again and
		 * cause infinite recursion.
		 *
		 * Preemption must be disabled here before the function
		 * tracer can trace. Break up preempt_disable() into two
		 * calls. One to disable preemption without fear of being
		 * traced. The other to still record the preemption latency,
		 * which can also be traced by the function tracer.
		 */
3611
		preempt_disable_notrace();
3612
		preempt_latency_start(1);
3613 3614 3615 3616 3617 3618
		/*
		 * Needs preempt disabled in case user_exit() is traced
		 * and the tracer calls preempt_enable_notrace() causing
		 * an infinite recursion.
		 */
		prev_ctx = exception_enter();
3619
		__schedule(true);
3620 3621
		exception_exit(prev_ctx);

3622
		preempt_latency_stop(1);
3623
		preempt_enable_no_resched_notrace();
3624 3625
	} while (need_resched());
}
3626
EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
3627

3628
#endif /* CONFIG_PREEMPT */
L
Linus Torvalds 已提交
3629 3630

/*
3631
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
3632 3633 3634 3635
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
3636
asmlinkage __visible void __sched preempt_schedule_irq(void)
L
Linus Torvalds 已提交
3637
{
3638
	enum ctx_state prev_state;
3639

3640
	/* Catch callers which need to be fixed */
3641
	BUG_ON(preempt_count() || !irqs_disabled());
L
Linus Torvalds 已提交
3642

3643 3644
	prev_state = exception_enter();

3645
	do {
3646
		preempt_disable();
3647
		local_irq_enable();
3648
		__schedule(true);
3649
		local_irq_disable();
3650
		sched_preempt_enable_no_resched();
3651
	} while (need_resched());
3652 3653

	exception_exit(prev_state);
L
Linus Torvalds 已提交
3654 3655
}

P
Peter Zijlstra 已提交
3656
int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
I
Ingo Molnar 已提交
3657
			  void *key)
L
Linus Torvalds 已提交
3658
{
P
Peter Zijlstra 已提交
3659
	return try_to_wake_up(curr->private, mode, wake_flags);
L
Linus Torvalds 已提交
3660 3661 3662
}
EXPORT_SYMBOL(default_wake_function);

3663 3664 3665 3666 3667 3668 3669 3670 3671 3672
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
3673 3674
 * Used by the rt_mutex code to implement priority inheritance
 * logic. Call site only calls if the priority of the task changed.
3675
 */
3676
void rt_mutex_setprio(struct task_struct *p, int prio)
3677
{
3678
	int oldprio, queued, running, queue_flag = DEQUEUE_SAVE | DEQUEUE_MOVE;
3679
	const struct sched_class *prev_class;
3680 3681
	struct rq_flags rf;
	struct rq *rq;
3682

3683
	BUG_ON(prio > MAX_PRIO);
3684

3685
	rq = __task_rq_lock(p, &rf);
3686
	update_rq_clock(rq);
3687

3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705
	/*
	 * Idle task boosting is a nono in general. There is one
	 * exception, when PREEMPT_RT and NOHZ is active:
	 *
	 * The idle task calls get_next_timer_interrupt() and holds
	 * the timer wheel base->lock on the CPU and another CPU wants
	 * to access the timer (probably to cancel it). We can safely
	 * ignore the boosting request, as the idle CPU runs this code
	 * with interrupts disabled and will complete the lock
	 * protected section without being interrupted. So there is no
	 * real need to boost.
	 */
	if (unlikely(p == rq->idle)) {
		WARN_ON(p != rq->curr);
		WARN_ON(p->pi_blocked_on);
		goto out_unlock;
	}

3706
	trace_sched_pi_setprio(p, prio);
3707
	oldprio = p->prio;
3708 3709 3710 3711

	if (oldprio == prio)
		queue_flag &= ~DEQUEUE_MOVE;

3712
	prev_class = p->sched_class;
3713
	queued = task_on_rq_queued(p);
3714
	running = task_current(rq, p);
3715
	if (queued)
3716
		dequeue_task(rq, p, queue_flag);
3717
	if (running)
3718
		put_prev_task(rq, p);
I
Ingo Molnar 已提交
3719

3720 3721 3722 3723 3724 3725 3726 3727 3728 3729
	/*
	 * Boosting condition are:
	 * 1. -rt task is running and holds mutex A
	 *      --> -dl task blocks on mutex A
	 *
	 * 2. -dl task is running and holds mutex A
	 *      --> -dl task blocks on mutex A and could preempt the
	 *          running task
	 */
	if (dl_prio(prio)) {
3730 3731 3732
		struct task_struct *pi_task = rt_mutex_get_top_task(p);
		if (!dl_prio(p->normal_prio) ||
		    (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
3733
			p->dl.dl_boosted = 1;
3734
			queue_flag |= ENQUEUE_REPLENISH;
3735 3736
		} else
			p->dl.dl_boosted = 0;
3737
		p->sched_class = &dl_sched_class;
3738 3739 3740 3741
	} else if (rt_prio(prio)) {
		if (dl_prio(oldprio))
			p->dl.dl_boosted = 0;
		if (oldprio < prio)
3742
			queue_flag |= ENQUEUE_HEAD;
I
Ingo Molnar 已提交
3743
		p->sched_class = &rt_sched_class;
3744 3745 3746
	} else {
		if (dl_prio(oldprio))
			p->dl.dl_boosted = 0;
3747 3748
		if (rt_prio(oldprio))
			p->rt.timeout = 0;
I
Ingo Molnar 已提交
3749
		p->sched_class = &fair_sched_class;
3750
	}
I
Ingo Molnar 已提交
3751

3752 3753
	p->prio = prio;

3754
	if (queued)
3755
		enqueue_task(rq, p, queue_flag);
3756
	if (running)
3757
		set_curr_task(rq, p);
3758

P
Peter Zijlstra 已提交
3759
	check_class_changed(rq, p, prev_class, oldprio);
3760
out_unlock:
I
Ingo Molnar 已提交
3761 3762
	/* Avoid rq from going away on us: */
	preempt_disable();
3763
	__task_rq_unlock(rq, &rf);
3764 3765 3766

	balance_callback(rq);
	preempt_enable();
3767 3768
}
#endif
3769

3770
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
3771
{
P
Peter Zijlstra 已提交
3772 3773
	bool queued, running;
	int old_prio, delta;
3774
	struct rq_flags rf;
3775
	struct rq *rq;
L
Linus Torvalds 已提交
3776

3777
	if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
L
Linus Torvalds 已提交
3778 3779 3780 3781 3782
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
3783
	rq = task_rq_lock(p, &rf);
3784 3785
	update_rq_clock(rq);

L
Linus Torvalds 已提交
3786 3787 3788 3789
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
3790
	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
L
Linus Torvalds 已提交
3791
	 */
3792
	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
3793 3794 3795
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
3796
	queued = task_on_rq_queued(p);
P
Peter Zijlstra 已提交
3797
	running = task_current(rq, p);
3798
	if (queued)
3799
		dequeue_task(rq, p, DEQUEUE_SAVE);
P
Peter Zijlstra 已提交
3800 3801
	if (running)
		put_prev_task(rq, p);
L
Linus Torvalds 已提交
3802 3803

	p->static_prio = NICE_TO_PRIO(nice);
3804
	set_load_weight(p);
3805 3806 3807
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
3808

3809
	if (queued) {
3810
		enqueue_task(rq, p, ENQUEUE_RESTORE);
L
Linus Torvalds 已提交
3811
		/*
3812 3813
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
3814
		 */
3815
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
3816
			resched_curr(rq);
L
Linus Torvalds 已提交
3817
	}
P
Peter Zijlstra 已提交
3818 3819
	if (running)
		set_curr_task(rq, p);
L
Linus Torvalds 已提交
3820
out_unlock:
3821
	task_rq_unlock(rq, p, &rf);
L
Linus Torvalds 已提交
3822 3823 3824
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
3825 3826 3827 3828 3829
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
3830
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
3831
{
I
Ingo Molnar 已提交
3832
	/* Convert nice value [19,-20] to rlimit style value [1,40]: */
3833
	int nice_rlim = nice_to_rlimit(nice);
3834

3835
	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
M
Matt Mackall 已提交
3836 3837 3838
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
3839 3840 3841 3842 3843 3844 3845 3846 3847
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
3848
SYSCALL_DEFINE1(nice, int, increment)
L
Linus Torvalds 已提交
3849
{
3850
	long nice, retval;
L
Linus Torvalds 已提交
3851 3852 3853 3854 3855 3856

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
3857
	increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
3858
	nice = task_nice(current) + increment;
L
Linus Torvalds 已提交
3859

3860
	nice = clamp_val(nice, MIN_NICE, MAX_NICE);
M
Matt Mackall 已提交
3861 3862 3863
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
3878
 * Return: The priority value as seen by users in /proc.
L
Linus Torvalds 已提交
3879 3880 3881
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
3882
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
3883 3884 3885 3886 3887
{
	return p->prio - MAX_RT_PRIO;
}

/**
I
Ingo Molnar 已提交
3888
 * idle_cpu - is a given CPU idle currently?
L
Linus Torvalds 已提交
3889
 * @cpu: the processor in question.
3890 3891
 *
 * Return: 1 if the CPU is currently idle. 0 otherwise.
L
Linus Torvalds 已提交
3892 3893 3894
 */
int idle_cpu(int cpu)
{
T
Thomas Gleixner 已提交
3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908
	struct rq *rq = cpu_rq(cpu);

	if (rq->curr != rq->idle)
		return 0;

	if (rq->nr_running)
		return 0;

#ifdef CONFIG_SMP
	if (!llist_empty(&rq->wake_list))
		return 0;
#endif

	return 1;
L
Linus Torvalds 已提交
3909 3910 3911
}

/**
I
Ingo Molnar 已提交
3912
 * idle_task - return the idle task for a given CPU.
L
Linus Torvalds 已提交
3913
 * @cpu: the processor in question.
3914
 *
I
Ingo Molnar 已提交
3915
 * Return: The idle task for the CPU @cpu.
L
Linus Torvalds 已提交
3916
 */
3917
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
3918 3919 3920 3921 3922 3923 3924
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
3925 3926
 *
 * The task of @pid, if found. %NULL otherwise.
L
Linus Torvalds 已提交
3927
 */
A
Alexey Dobriyan 已提交
3928
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
3929
{
3930
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
3931 3932
}

3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947
/*
 * This function initializes the sched_dl_entity of a newly becoming
 * SCHED_DEADLINE task.
 *
 * Only the static values are considered here, the actual runtime and the
 * absolute deadline will be properly calculated when the task is enqueued
 * for the first time with its new policy.
 */
static void
__setparam_dl(struct task_struct *p, const struct sched_attr *attr)
{
	struct sched_dl_entity *dl_se = &p->dl;

	dl_se->dl_runtime = attr->sched_runtime;
	dl_se->dl_deadline = attr->sched_deadline;
3948
	dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
3949
	dl_se->flags = attr->sched_flags;
3950
	dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970

	/*
	 * Changing the parameters of a task is 'tricky' and we're not doing
	 * the correct thing -- also see task_dead_dl() and switched_from_dl().
	 *
	 * What we SHOULD do is delay the bandwidth release until the 0-lag
	 * point. This would include retaining the task_struct until that time
	 * and change dl_overflow() to not immediately decrement the current
	 * amount.
	 *
	 * Instead we retain the current runtime/deadline and let the new
	 * parameters take effect after the current reservation period lapses.
	 * This is safe (albeit pessimistic) because the 0-lag point is always
	 * before the current scheduling deadline.
	 *
	 * We can still have temporary overloads because we do not delay the
	 * change in bandwidth until that time; so admission control is
	 * not on the safe side. It does however guarantee tasks will never
	 * consume more than promised.
	 */
3971 3972
}

3973 3974 3975 3976 3977 3978
/*
 * sched_setparam() passes in -1 for its policy, to let the functions
 * it calls know not to change it.
 */
#define SETPARAM_POLICY	-1

3979 3980
static void __setscheduler_params(struct task_struct *p,
		const struct sched_attr *attr)
L
Linus Torvalds 已提交
3981
{
3982 3983
	int policy = attr->sched_policy;

3984
	if (policy == SETPARAM_POLICY)
3985 3986
		policy = p->policy;

L
Linus Torvalds 已提交
3987
	p->policy = policy;
3988

3989 3990
	if (dl_policy(policy))
		__setparam_dl(p, attr);
3991
	else if (fair_policy(policy))
3992 3993
		p->static_prio = NICE_TO_PRIO(attr->sched_nice);

3994 3995 3996 3997 3998 3999
	/*
	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
	 * !rt_policy. Always setting this ensures that things like
	 * getparam()/getattr() don't report silly values for !rt tasks.
	 */
	p->rt_priority = attr->sched_priority;
4000
	p->normal_prio = normal_prio(p);
4001 4002
	set_load_weight(p);
}
4003

4004 4005
/* Actually do priority change: must hold pi & rq lock. */
static void __setscheduler(struct rq *rq, struct task_struct *p,
4006
			   const struct sched_attr *attr, bool keep_boost)
4007 4008
{
	__setscheduler_params(p, attr);
4009

4010
	/*
4011 4012
	 * Keep a potential priority boosting if called from
	 * sched_setscheduler().
4013
	 */
4014 4015 4016 4017
	if (keep_boost)
		p->prio = rt_mutex_get_effective_prio(p, normal_prio(p));
	else
		p->prio = normal_prio(p);
4018

4019 4020 4021
	if (dl_prio(p->prio))
		p->sched_class = &dl_sched_class;
	else if (rt_prio(p->prio))
4022 4023 4024
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;
L
Linus Torvalds 已提交
4025
}
4026 4027 4028 4029 4030 4031 4032 4033 4034

static void
__getparam_dl(struct task_struct *p, struct sched_attr *attr)
{
	struct sched_dl_entity *dl_se = &p->dl;

	attr->sched_priority = p->rt_priority;
	attr->sched_runtime = dl_se->dl_runtime;
	attr->sched_deadline = dl_se->dl_deadline;
4035
	attr->sched_period = dl_se->dl_period;
4036 4037 4038 4039 4040 4041
	attr->sched_flags = dl_se->flags;
}

/*
 * This function validates the new parameters of a -deadline task.
 * We ask for the deadline not being zero, and greater or equal
4042
 * than the runtime, as well as the period of being zero or
4043
 * greater than deadline. Furthermore, we have to be sure that
4044 4045 4046 4047
 * user parameters are above the internal resolution of 1us (we
 * check sched_runtime only since it is always the smaller one) and
 * below 2^63 ns (we have to check both sched_deadline and
 * sched_period, as the latter can be zero).
4048 4049 4050 4051
 */
static bool
__checkparam_dl(const struct sched_attr *attr)
{
4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077
	/* deadline != 0 */
	if (attr->sched_deadline == 0)
		return false;

	/*
	 * Since we truncate DL_SCALE bits, make sure we're at least
	 * that big.
	 */
	if (attr->sched_runtime < (1ULL << DL_SCALE))
		return false;

	/*
	 * Since we use the MSB for wrap-around and sign issues, make
	 * sure it's not set (mind that period can be equal to zero).
	 */
	if (attr->sched_deadline & (1ULL << 63) ||
	    attr->sched_period & (1ULL << 63))
		return false;

	/* runtime <= deadline <= period (if period != 0) */
	if ((attr->sched_period != 0 &&
	     attr->sched_period < attr->sched_deadline) ||
	    attr->sched_deadline < attr->sched_runtime)
		return false;

	return true;
4078 4079
}

4080
/*
I
Ingo Molnar 已提交
4081
 * Check the target process has a UID that matches the current process's:
4082 4083 4084 4085 4086 4087 4088 4089
 */
static bool check_same_owner(struct task_struct *p)
{
	const struct cred *cred = current_cred(), *pcred;
	bool match;

	rcu_read_lock();
	pcred = __task_cred(p);
4090 4091
	match = (uid_eq(cred->euid, pcred->euid) ||
		 uid_eq(cred->euid, pcred->uid));
4092 4093 4094 4095
	rcu_read_unlock();
	return match;
}

I
Ingo Molnar 已提交
4096
static bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr)
4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108
{
	struct sched_dl_entity *dl_se = &p->dl;

	if (dl_se->dl_runtime != attr->sched_runtime ||
		dl_se->dl_deadline != attr->sched_deadline ||
		dl_se->dl_period != attr->sched_period ||
		dl_se->flags != attr->sched_flags)
		return true;

	return false;
}

4109 4110
static int __sched_setscheduler(struct task_struct *p,
				const struct sched_attr *attr,
4111
				bool user, bool pi)
L
Linus Torvalds 已提交
4112
{
4113 4114
	int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
		      MAX_RT_PRIO - 1 - attr->sched_priority;
4115
	int retval, oldprio, oldpolicy = -1, queued, running;
4116
	int new_effective_prio, policy = attr->sched_policy;
4117
	const struct sched_class *prev_class;
4118
	struct rq_flags rf;
4119
	int reset_on_fork;
4120
	int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE;
4121
	struct rq *rq;
L
Linus Torvalds 已提交
4122

I
Ingo Molnar 已提交
4123
	/* May grab non-irq protected spin_locks: */
4124
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
4125
recheck:
I
Ingo Molnar 已提交
4126
	/* Double check policy once rq lock held: */
4127 4128
	if (policy < 0) {
		reset_on_fork = p->sched_reset_on_fork;
L
Linus Torvalds 已提交
4129
		policy = oldpolicy = p->policy;
4130
	} else {
4131
		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
4132

4133
		if (!valid_policy(policy))
4134 4135 4136
			return -EINVAL;
	}

4137 4138 4139
	if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
		return -EINVAL;

L
Linus Torvalds 已提交
4140 4141
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
4142 4143
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
4144
	 */
4145
	if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
4146
	    (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
4147
		return -EINVAL;
4148 4149
	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
	    (rt_policy(policy) != (attr->sched_priority != 0)))
L
Linus Torvalds 已提交
4150 4151
		return -EINVAL;

4152 4153 4154
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
4155
	if (user && !capable(CAP_SYS_NICE)) {
4156
		if (fair_policy(policy)) {
4157
			if (attr->sched_nice < task_nice(p) &&
4158
			    !can_nice(p, attr->sched_nice))
4159 4160 4161
				return -EPERM;
		}

4162
		if (rt_policy(policy)) {
4163 4164
			unsigned long rlim_rtprio =
					task_rlimit(p, RLIMIT_RTPRIO);
4165

I
Ingo Molnar 已提交
4166
			/* Can't set/change the rt policy: */
4167 4168 4169
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

I
Ingo Molnar 已提交
4170
			/* Can't increase priority: */
4171 4172
			if (attr->sched_priority > p->rt_priority &&
			    attr->sched_priority > rlim_rtprio)
4173 4174
				return -EPERM;
		}
4175

4176 4177 4178 4179 4180 4181 4182 4183 4184
		 /*
		  * Can't set/change SCHED_DEADLINE policy at all for now
		  * (safest behavior); in the future we would like to allow
		  * unprivileged DL tasks to increase their relative deadline
		  * or reduce their runtime (both ways reducing utilization)
		  */
		if (dl_policy(policy))
			return -EPERM;

I
Ingo Molnar 已提交
4185
		/*
4186 4187
		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
I
Ingo Molnar 已提交
4188
		 */
4189
		if (idle_policy(p->policy) && !idle_policy(policy)) {
4190
			if (!can_nice(p, task_nice(p)))
4191 4192
				return -EPERM;
		}
4193

I
Ingo Molnar 已提交
4194
		/* Can't change other user's priorities: */
4195
		if (!check_same_owner(p))
4196
			return -EPERM;
4197

I
Ingo Molnar 已提交
4198
		/* Normal users shall not reset the sched_reset_on_fork flag: */
4199 4200
		if (p->sched_reset_on_fork && !reset_on_fork)
			return -EPERM;
4201
	}
L
Linus Torvalds 已提交
4202

4203
	if (user) {
4204
		retval = security_task_setscheduler(p);
4205 4206 4207 4208
		if (retval)
			return retval;
	}

4209
	/*
I
Ingo Molnar 已提交
4210
	 * Make sure no PI-waiters arrive (or leave) while we are
4211
	 * changing the priority of the task:
4212
	 *
L
Lucas De Marchi 已提交
4213
	 * To be able to change p->policy safely, the appropriate
L
Linus Torvalds 已提交
4214 4215
	 * runqueue lock must be held.
	 */
4216
	rq = task_rq_lock(p, &rf);
4217
	update_rq_clock(rq);
4218

4219
	/*
I
Ingo Molnar 已提交
4220
	 * Changing the policy of the stop threads its a very bad idea:
4221 4222
	 */
	if (p == rq->stop) {
4223
		task_rq_unlock(rq, p, &rf);
4224 4225 4226
		return -EINVAL;
	}

4227
	/*
4228 4229
	 * If not changing anything there's no need to proceed further,
	 * but store a possible modification of reset_on_fork.
4230
	 */
4231
	if (unlikely(policy == p->policy)) {
4232
		if (fair_policy(policy) && attr->sched_nice != task_nice(p))
4233 4234 4235
			goto change;
		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
			goto change;
4236
		if (dl_policy(policy) && dl_param_changed(p, attr))
4237
			goto change;
4238

4239
		p->sched_reset_on_fork = reset_on_fork;
4240
		task_rq_unlock(rq, p, &rf);
4241 4242
		return 0;
	}
4243
change:
4244

4245
	if (user) {
4246
#ifdef CONFIG_RT_GROUP_SCHED
4247 4248 4249 4250 4251
		/*
		 * Do not allow realtime tasks into groups that have no runtime
		 * assigned.
		 */
		if (rt_bandwidth_enabled() && rt_policy(policy) &&
4252 4253
				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
				!task_group_is_autogroup(task_group(p))) {
4254
			task_rq_unlock(rq, p, &rf);
4255 4256 4257
			return -EPERM;
		}
#endif
4258 4259 4260 4261 4262 4263 4264 4265 4266
#ifdef CONFIG_SMP
		if (dl_bandwidth_enabled() && dl_policy(policy)) {
			cpumask_t *span = rq->rd->span;

			/*
			 * Don't allow tasks with an affinity mask smaller than
			 * the entire root_domain to become SCHED_DEADLINE. We
			 * will also fail if there's no bandwidth available.
			 */
4267 4268
			if (!cpumask_subset(span, &p->cpus_allowed) ||
			    rq->rd->dl_bw.bw == 0) {
4269
				task_rq_unlock(rq, p, &rf);
4270 4271 4272 4273 4274
				return -EPERM;
			}
		}
#endif
	}
4275

I
Ingo Molnar 已提交
4276
	/* Re-check policy now with rq lock held: */
L
Linus Torvalds 已提交
4277 4278
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
4279
		task_rq_unlock(rq, p, &rf);
L
Linus Torvalds 已提交
4280 4281
		goto recheck;
	}
4282 4283 4284 4285 4286 4287

	/*
	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
	 * is available.
	 */
4288
	if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
4289
		task_rq_unlock(rq, p, &rf);
4290 4291 4292
		return -EBUSY;
	}

4293 4294 4295
	p->sched_reset_on_fork = reset_on_fork;
	oldprio = p->prio;

4296 4297 4298 4299 4300 4301 4302 4303 4304
	if (pi) {
		/*
		 * Take priority boosted tasks into account. If the new
		 * effective priority is unchanged, we just store the new
		 * normal parameters and do not touch the scheduler class and
		 * the runqueue. This will be done when the task deboost
		 * itself.
		 */
		new_effective_prio = rt_mutex_get_effective_prio(p, newprio);
4305 4306
		if (new_effective_prio == oldprio)
			queue_flags &= ~DEQUEUE_MOVE;
4307 4308
	}

4309
	queued = task_on_rq_queued(p);
4310
	running = task_current(rq, p);
4311
	if (queued)
4312
		dequeue_task(rq, p, queue_flags);
4313
	if (running)
4314
		put_prev_task(rq, p);
4315

4316
	prev_class = p->sched_class;
4317
	__setscheduler(rq, p, attr, pi);
4318

4319
	if (queued) {
4320 4321 4322 4323
		/*
		 * We enqueue to tail when the priority of a task is
		 * increased (user space view).
		 */
4324 4325
		if (oldprio < p->prio)
			queue_flags |= ENQUEUE_HEAD;
4326

4327
		enqueue_task(rq, p, queue_flags);
4328
	}
4329
	if (running)
4330
		set_curr_task(rq, p);
4331

P
Peter Zijlstra 已提交
4332
	check_class_changed(rq, p, prev_class, oldprio);
I
Ingo Molnar 已提交
4333 4334 4335

	/* Avoid rq from going away on us: */
	preempt_disable();
4336
	task_rq_unlock(rq, p, &rf);
4337

4338 4339
	if (pi)
		rt_mutex_adjust_pi(p);
4340

I
Ingo Molnar 已提交
4341
	/* Run balance callbacks after we've adjusted the PI chain: */
4342 4343
	balance_callback(rq);
	preempt_enable();
4344

L
Linus Torvalds 已提交
4345 4346
	return 0;
}
4347

4348 4349 4350 4351 4352 4353 4354 4355 4356
static int _sched_setscheduler(struct task_struct *p, int policy,
			       const struct sched_param *param, bool check)
{
	struct sched_attr attr = {
		.sched_policy   = policy,
		.sched_priority = param->sched_priority,
		.sched_nice	= PRIO_TO_NICE(p->static_prio),
	};

4357 4358
	/* Fixup the legacy SCHED_RESET_ON_FORK hack. */
	if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
4359 4360 4361 4362 4363
		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
		policy &= ~SCHED_RESET_ON_FORK;
		attr.sched_policy = policy;
	}

4364
	return __sched_setscheduler(p, &attr, check, true);
4365
}
4366 4367 4368 4369 4370 4371
/**
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
4372 4373
 * Return: 0 on success. An error code otherwise.
 *
4374 4375 4376
 * NOTE that the task may be already dead.
 */
int sched_setscheduler(struct task_struct *p, int policy,
4377
		       const struct sched_param *param)
4378
{
4379
	return _sched_setscheduler(p, policy, param, true);
4380
}
L
Linus Torvalds 已提交
4381 4382
EXPORT_SYMBOL_GPL(sched_setscheduler);

4383 4384
int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
{
4385
	return __sched_setscheduler(p, attr, true, true);
4386 4387 4388
}
EXPORT_SYMBOL_GPL(sched_setattr);

4389 4390 4391 4392 4393 4394 4395 4396 4397 4398
/**
 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * Just like sched_setscheduler, only don't bother checking if the
 * current context has permission.  For example, this is needed in
 * stop_machine(): we create temporary high priority worker threads,
 * but our caller might not have that capability.
4399 4400
 *
 * Return: 0 on success. An error code otherwise.
4401 4402
 */
int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4403
			       const struct sched_param *param)
4404
{
4405
	return _sched_setscheduler(p, policy, param, false);
4406
}
4407
EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
4408

I
Ingo Molnar 已提交
4409 4410
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
4411 4412 4413
{
	struct sched_param lparam;
	struct task_struct *p;
4414
	int retval;
L
Linus Torvalds 已提交
4415 4416 4417 4418 4419

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
4420 4421 4422

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
4423
	p = find_process_by_pid(pid);
4424 4425 4426
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
4427

L
Linus Torvalds 已提交
4428 4429 4430
	return retval;
}

4431 4432 4433
/*
 * Mimics kernel/events/core.c perf_copy_attr().
 */
I
Ingo Molnar 已提交
4434
static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
4435 4436 4437 4438 4439 4440 4441
{
	u32 size;
	int ret;

	if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
		return -EFAULT;

I
Ingo Molnar 已提交
4442
	/* Zero the full structure, so that a short copy will be nice: */
4443 4444 4445 4446 4447 4448
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

I
Ingo Molnar 已提交
4449 4450
	/* Bail out on silly large: */
	if (size > PAGE_SIZE)
4451 4452
		goto err_size;

I
Ingo Molnar 已提交
4453 4454
	/* ABI compatibility quirk: */
	if (!size)
4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488
		size = SCHED_ATTR_SIZE_VER0;

	if (size < SCHED_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
	 * ensure all the unknown bits are 0 - i.e. new
	 * user-space does not rely on any kernel feature
	 * extensions we dont know about yet.
	 */
	if (size > sizeof(*attr)) {
		unsigned char __user *addr;
		unsigned char __user *end;
		unsigned char val;

		addr = (void __user *)uattr + sizeof(*attr);
		end  = (void __user *)uattr + size;

		for (; addr < end; addr++) {
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
		size = sizeof(*attr);
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

	/*
I
Ingo Molnar 已提交
4489
	 * XXX: Do we want to be lenient like existing syscalls; or do we want
4490 4491
	 * to be strict and return an error on out-of-bounds values?
	 */
4492
	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
4493

4494
	return 0;
4495 4496 4497

err_size:
	put_user(sizeof(*attr), &uattr->size);
4498
	return -E2BIG;
4499 4500
}

L
Linus Torvalds 已提交
4501 4502 4503 4504 4505
/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
4506 4507
 *
 * Return: 0 on success. An error code otherwise.
L
Linus Torvalds 已提交
4508
 */
I
Ingo Molnar 已提交
4509
SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
L
Linus Torvalds 已提交
4510
{
4511 4512 4513
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
4514 4515 4516 4517 4518 4519 4520
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
4521 4522
 *
 * Return: 0 on success. An error code otherwise.
L
Linus Torvalds 已提交
4523
 */
4524
SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
4525
{
4526
	return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
L
Linus Torvalds 已提交
4527 4528
}

4529 4530 4531
/**
 * sys_sched_setattr - same as above, but with extended sched_attr
 * @pid: the pid in question.
J
Juri Lelli 已提交
4532
 * @uattr: structure containing the extended parameters.
4533
 * @flags: for future extension.
4534
 */
4535 4536
SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
			       unsigned int, flags)
4537 4538 4539 4540 4541
{
	struct sched_attr attr;
	struct task_struct *p;
	int retval;

4542
	if (!uattr || pid < 0 || flags)
4543 4544
		return -EINVAL;

4545 4546 4547
	retval = sched_copy_attr(uattr, &attr);
	if (retval)
		return retval;
4548

4549
	if ((int)attr.sched_policy < 0)
4550
		return -EINVAL;
4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561

	rcu_read_lock();
	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (p != NULL)
		retval = sched_setattr(p, &attr);
	rcu_read_unlock();

	return retval;
}

L
Linus Torvalds 已提交
4562 4563 4564
/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
4565 4566 4567
 *
 * Return: On success, the policy of the thread. Otherwise, a negative error
 * code.
L
Linus Torvalds 已提交
4568
 */
4569
SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
L
Linus Torvalds 已提交
4570
{
4571
	struct task_struct *p;
4572
	int retval;
L
Linus Torvalds 已提交
4573 4574

	if (pid < 0)
4575
		return -EINVAL;
L
Linus Torvalds 已提交
4576 4577

	retval = -ESRCH;
4578
	rcu_read_lock();
L
Linus Torvalds 已提交
4579 4580 4581 4582
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
4583 4584
			retval = p->policy
				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
L
Linus Torvalds 已提交
4585
	}
4586
	rcu_read_unlock();
L
Linus Torvalds 已提交
4587 4588 4589 4590
	return retval;
}

/**
4591
 * sys_sched_getparam - get the RT priority of a thread
L
Linus Torvalds 已提交
4592 4593
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
4594 4595 4596
 *
 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
 * code.
L
Linus Torvalds 已提交
4597
 */
4598
SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
4599
{
4600
	struct sched_param lp = { .sched_priority = 0 };
4601
	struct task_struct *p;
4602
	int retval;
L
Linus Torvalds 已提交
4603 4604

	if (!param || pid < 0)
4605
		return -EINVAL;
L
Linus Torvalds 已提交
4606

4607
	rcu_read_lock();
L
Linus Torvalds 已提交
4608 4609 4610 4611 4612 4613 4614 4615 4616
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4617 4618
	if (task_has_rt_policy(p))
		lp.sched_priority = p->rt_priority;
4619
	rcu_read_unlock();
L
Linus Torvalds 已提交
4620 4621 4622 4623 4624 4625 4626 4627 4628

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
4629
	rcu_read_unlock();
L
Linus Torvalds 已提交
4630 4631 4632
	return retval;
}

4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655
static int sched_read_attr(struct sched_attr __user *uattr,
			   struct sched_attr *attr,
			   unsigned int usize)
{
	int ret;

	if (!access_ok(VERIFY_WRITE, uattr, usize))
		return -EFAULT;

	/*
	 * If we're handed a smaller struct than we know of,
	 * ensure all the unknown bits are 0 - i.e. old
	 * user-space does not get uncomplete information.
	 */
	if (usize < sizeof(*attr)) {
		unsigned char *addr;
		unsigned char *end;

		addr = (void *)attr + usize;
		end  = (void *)attr + sizeof(*attr);

		for (; addr < end; addr++) {
			if (*addr)
4656
				return -EFBIG;
4657 4658 4659 4660 4661
		}

		attr->size = usize;
	}

4662
	ret = copy_to_user(uattr, attr, attr->size);
4663 4664 4665
	if (ret)
		return -EFAULT;

4666
	return 0;
4667 4668 4669
}

/**
4670
 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
4671
 * @pid: the pid in question.
J
Juri Lelli 已提交
4672
 * @uattr: structure containing the extended parameters.
4673
 * @size: sizeof(attr) for fwd/bwd comp.
4674
 * @flags: for future extension.
4675
 */
4676 4677
SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
		unsigned int, size, unsigned int, flags)
4678 4679 4680 4681 4682 4683 4684 4685
{
	struct sched_attr attr = {
		.size = sizeof(struct sched_attr),
	};
	struct task_struct *p;
	int retval;

	if (!uattr || pid < 0 || size > PAGE_SIZE ||
4686
	    size < SCHED_ATTR_SIZE_VER0 || flags)
4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699
		return -EINVAL;

	rcu_read_lock();
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	attr.sched_policy = p->policy;
4700 4701
	if (p->sched_reset_on_fork)
		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4702 4703 4704
	if (task_has_dl_policy(p))
		__getparam_dl(p, &attr);
	else if (task_has_rt_policy(p))
4705 4706
		attr.sched_priority = p->rt_priority;
	else
4707
		attr.sched_nice = task_nice(p);
4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718

	rcu_read_unlock();

	retval = sched_read_attr(uattr, &attr, size);
	return retval;

out_unlock:
	rcu_read_unlock();
	return retval;
}

4719
long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
L
Linus Torvalds 已提交
4720
{
4721
	cpumask_var_t cpus_allowed, new_mask;
4722 4723
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
4724

4725
	rcu_read_lock();
L
Linus Torvalds 已提交
4726 4727 4728

	p = find_process_by_pid(pid);
	if (!p) {
4729
		rcu_read_unlock();
L
Linus Torvalds 已提交
4730 4731 4732
		return -ESRCH;
	}

4733
	/* Prevent p going away */
L
Linus Torvalds 已提交
4734
	get_task_struct(p);
4735
	rcu_read_unlock();
L
Linus Torvalds 已提交
4736

4737 4738 4739 4740
	if (p->flags & PF_NO_SETAFFINITY) {
		retval = -EINVAL;
		goto out_put_task;
	}
4741 4742 4743 4744 4745 4746 4747 4748
	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_put_task;
	}
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_free_cpus_allowed;
	}
L
Linus Torvalds 已提交
4749
	retval = -EPERM;
E
Eric W. Biederman 已提交
4750 4751 4752 4753
	if (!check_same_owner(p)) {
		rcu_read_lock();
		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
			rcu_read_unlock();
4754
			goto out_free_new_mask;
E
Eric W. Biederman 已提交
4755 4756 4757
		}
		rcu_read_unlock();
	}
L
Linus Torvalds 已提交
4758

4759
	retval = security_task_setscheduler(p);
4760
	if (retval)
4761
		goto out_free_new_mask;
4762

4763 4764 4765 4766

	cpuset_cpus_allowed(p, cpus_allowed);
	cpumask_and(new_mask, in_mask, cpus_allowed);

4767 4768 4769 4770 4771 4772 4773
	/*
	 * Since bandwidth control happens on root_domain basis,
	 * if admission test is enabled, we only admit -deadline
	 * tasks allowed to run on all the CPUs in the task's
	 * root_domain.
	 */
#ifdef CONFIG_SMP
4774 4775 4776
	if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
		rcu_read_lock();
		if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
4777
			retval = -EBUSY;
4778
			rcu_read_unlock();
4779
			goto out_free_new_mask;
4780
		}
4781
		rcu_read_unlock();
4782 4783
	}
#endif
P
Peter Zijlstra 已提交
4784
again:
4785
	retval = __set_cpus_allowed_ptr(p, new_mask, true);
L
Linus Torvalds 已提交
4786

P
Paul Menage 已提交
4787
	if (!retval) {
4788 4789
		cpuset_cpus_allowed(p, cpus_allowed);
		if (!cpumask_subset(new_mask, cpus_allowed)) {
P
Paul Menage 已提交
4790 4791 4792 4793 4794
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
4795
			cpumask_copy(new_mask, cpus_allowed);
P
Paul Menage 已提交
4796 4797 4798
			goto again;
		}
	}
4799
out_free_new_mask:
4800 4801 4802 4803
	free_cpumask_var(new_mask);
out_free_cpus_allowed:
	free_cpumask_var(cpus_allowed);
out_put_task:
L
Linus Torvalds 已提交
4804 4805 4806 4807 4808
	put_task_struct(p);
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4809
			     struct cpumask *new_mask)
L
Linus Torvalds 已提交
4810
{
4811 4812 4813 4814 4815
	if (len < cpumask_size())
		cpumask_clear(new_mask);
	else if (len > cpumask_size())
		len = cpumask_size();

L
Linus Torvalds 已提交
4816 4817 4818 4819
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
I
Ingo Molnar 已提交
4820
 * sys_sched_setaffinity - set the CPU affinity of a process
L
Linus Torvalds 已提交
4821 4822
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
I
Ingo Molnar 已提交
4823
 * @user_mask_ptr: user-space pointer to the new CPU mask
4824 4825
 *
 * Return: 0 on success. An error code otherwise.
L
Linus Torvalds 已提交
4826
 */
4827 4828
SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
4829
{
4830
	cpumask_var_t new_mask;
L
Linus Torvalds 已提交
4831 4832
	int retval;

4833 4834
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
4835

4836 4837 4838 4839 4840
	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
	if (retval == 0)
		retval = sched_setaffinity(pid, new_mask);
	free_cpumask_var(new_mask);
	return retval;
L
Linus Torvalds 已提交
4841 4842
}

4843
long sched_getaffinity(pid_t pid, struct cpumask *mask)
L
Linus Torvalds 已提交
4844
{
4845
	struct task_struct *p;
4846
	unsigned long flags;
L
Linus Torvalds 已提交
4847 4848
	int retval;

4849
	rcu_read_lock();
L
Linus Torvalds 已提交
4850 4851 4852 4853 4854 4855

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

4856 4857 4858 4859
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4860
	raw_spin_lock_irqsave(&p->pi_lock, flags);
4861
	cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
4862
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4863 4864

out_unlock:
4865
	rcu_read_unlock();
L
Linus Torvalds 已提交
4866

4867
	return retval;
L
Linus Torvalds 已提交
4868 4869 4870
}

/**
I
Ingo Molnar 已提交
4871
 * sys_sched_getaffinity - get the CPU affinity of a process
L
Linus Torvalds 已提交
4872 4873
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
I
Ingo Molnar 已提交
4874
 * @user_mask_ptr: user-space pointer to hold the current CPU mask
4875
 *
4876 4877
 * Return: size of CPU mask copied to user_mask_ptr on success. An
 * error code otherwise.
L
Linus Torvalds 已提交
4878
 */
4879 4880
SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
4881 4882
{
	int ret;
4883
	cpumask_var_t mask;
L
Linus Torvalds 已提交
4884

A
Anton Blanchard 已提交
4885
	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4886 4887
		return -EINVAL;
	if (len & (sizeof(unsigned long)-1))
L
Linus Torvalds 已提交
4888 4889
		return -EINVAL;

4890 4891
	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
4892

4893 4894
	ret = sched_getaffinity(pid, mask);
	if (ret == 0) {
4895
		size_t retlen = min_t(size_t, len, cpumask_size());
4896 4897

		if (copy_to_user(user_mask_ptr, mask, retlen))
4898 4899
			ret = -EFAULT;
		else
4900
			ret = retlen;
4901 4902
	}
	free_cpumask_var(mask);
L
Linus Torvalds 已提交
4903

4904
	return ret;
L
Linus Torvalds 已提交
4905 4906 4907 4908 4909
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
4910 4911
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
4912 4913
 *
 * Return: 0.
L
Linus Torvalds 已提交
4914
 */
4915
SYSCALL_DEFINE0(sched_yield)
L
Linus Torvalds 已提交
4916
{
4917
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
4918

4919
	schedstat_inc(rq->yld_count);
4920
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
4921 4922 4923 4924 4925 4926

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
4927
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4928
	do_raw_spin_unlock(&rq->lock);
4929
	sched_preempt_enable_no_resched();
L
Linus Torvalds 已提交
4930 4931 4932 4933 4934 4935

	schedule();

	return 0;
}

4936
#ifndef CONFIG_PREEMPT
4937
int __sched _cond_resched(void)
L
Linus Torvalds 已提交
4938
{
4939
	if (should_resched(0)) {
4940
		preempt_schedule_common();
L
Linus Torvalds 已提交
4941 4942 4943 4944
		return 1;
	}
	return 0;
}
4945
EXPORT_SYMBOL(_cond_resched);
4946
#endif
L
Linus Torvalds 已提交
4947 4948

/*
4949
 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
L
Linus Torvalds 已提交
4950 4951
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
4952
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
4953 4954 4955
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
4956
int __cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
4957
{
4958
	int resched = should_resched(PREEMPT_LOCK_OFFSET);
J
Jan Kara 已提交
4959 4960
	int ret = 0;

4961 4962
	lockdep_assert_held(lock);

4963
	if (spin_needbreak(lock) || resched) {
L
Linus Torvalds 已提交
4964
		spin_unlock(lock);
P
Peter Zijlstra 已提交
4965
		if (resched)
4966
			preempt_schedule_common();
N
Nick Piggin 已提交
4967 4968
		else
			cpu_relax();
J
Jan Kara 已提交
4969
		ret = 1;
L
Linus Torvalds 已提交
4970 4971
		spin_lock(lock);
	}
J
Jan Kara 已提交
4972
	return ret;
L
Linus Torvalds 已提交
4973
}
4974
EXPORT_SYMBOL(__cond_resched_lock);
L
Linus Torvalds 已提交
4975

4976
int __sched __cond_resched_softirq(void)
L
Linus Torvalds 已提交
4977 4978 4979
{
	BUG_ON(!in_softirq());

4980
	if (should_resched(SOFTIRQ_DISABLE_OFFSET)) {
4981
		local_bh_enable();
4982
		preempt_schedule_common();
L
Linus Torvalds 已提交
4983 4984 4985 4986 4987
		local_bh_disable();
		return 1;
	}
	return 0;
}
4988
EXPORT_SYMBOL(__cond_resched_softirq);
L
Linus Torvalds 已提交
4989 4990 4991 4992

/**
 * yield - yield the current processor to other threads.
 *
P
Peter Zijlstra 已提交
4993 4994 4995 4996 4997 4998 4999 5000 5001
 * Do not ever use this function, there's a 99% chance you're doing it wrong.
 *
 * The scheduler is at all times free to pick the calling task as the most
 * eligible task to run, if removing the yield() call from your code breaks
 * it, its already broken.
 *
 * Typical broken usage is:
 *
 * while (!event)
I
Ingo Molnar 已提交
5002
 *	yield();
P
Peter Zijlstra 已提交
5003 5004 5005 5006 5007 5008 5009 5010
 *
 * where one assumes that yield() will let 'the other' process run that will
 * make event true. If the current task is a SCHED_FIFO task that will never
 * happen. Never use yield() as a progress guarantee!!
 *
 * If you want to use yield() to wait for something, use wait_event().
 * If you want to use yield() to be 'nice' for others, use cond_resched().
 * If you still want to use yield(), do not!
L
Linus Torvalds 已提交
5011 5012 5013 5014 5015 5016 5017 5018
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

5019 5020 5021 5022
/**
 * yield_to - yield the current processor to another thread in
 * your thread group, or accelerate that thread toward the
 * processor it's on.
R
Randy Dunlap 已提交
5023 5024
 * @p: target task
 * @preempt: whether task preemption is allowed or not
5025 5026 5027 5028
 *
 * It's the caller's job to ensure that the target task struct
 * can't go away on us before we can do any checks.
 *
5029
 * Return:
5030 5031 5032
 *	true (>0) if we indeed boosted the target task.
 *	false (0) if we failed to boost the target.
 *	-ESRCH if there's no task to yield to.
5033
 */
5034
int __sched yield_to(struct task_struct *p, bool preempt)
5035 5036 5037 5038
{
	struct task_struct *curr = current;
	struct rq *rq, *p_rq;
	unsigned long flags;
5039
	int yielded = 0;
5040 5041 5042 5043 5044 5045

	local_irq_save(flags);
	rq = this_rq();

again:
	p_rq = task_rq(p);
5046 5047 5048 5049 5050 5051 5052 5053 5054
	/*
	 * If we're the only runnable task on the rq and target rq also
	 * has only one task, there's absolutely no point in yielding.
	 */
	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
		yielded = -ESRCH;
		goto out_irq;
	}

5055
	double_rq_lock(rq, p_rq);
5056
	if (task_rq(p) != p_rq) {
5057 5058 5059 5060 5061
		double_rq_unlock(rq, p_rq);
		goto again;
	}

	if (!curr->sched_class->yield_to_task)
5062
		goto out_unlock;
5063 5064

	if (curr->sched_class != p->sched_class)
5065
		goto out_unlock;
5066 5067

	if (task_running(p_rq, p) || p->state)
5068
		goto out_unlock;
5069 5070

	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
5071
	if (yielded) {
5072
		schedstat_inc(rq->yld_count);
5073 5074 5075 5076 5077
		/*
		 * Make p's CPU reschedule; pick_next_entity takes care of
		 * fairness.
		 */
		if (preempt && rq != p_rq)
5078
			resched_curr(p_rq);
5079
	}
5080

5081
out_unlock:
5082
	double_rq_unlock(rq, p_rq);
5083
out_irq:
5084 5085
	local_irq_restore(flags);

5086
	if (yielded > 0)
5087 5088 5089 5090 5091 5092
		schedule();

	return yielded;
}
EXPORT_SYMBOL_GPL(yield_to);

5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107
int io_schedule_prepare(void)
{
	int old_iowait = current->in_iowait;

	current->in_iowait = 1;
	blk_schedule_flush_plug(current);

	return old_iowait;
}

void io_schedule_finish(int token)
{
	current->in_iowait = token;
}

L
Linus Torvalds 已提交
5108
/*
I
Ingo Molnar 已提交
5109
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
5110 5111 5112 5113
 * that process accounting knows that this is a task in IO wait state.
 */
long __sched io_schedule_timeout(long timeout)
{
5114
	int token;
L
Linus Torvalds 已提交
5115 5116
	long ret;

5117
	token = io_schedule_prepare();
L
Linus Torvalds 已提交
5118
	ret = schedule_timeout(timeout);
5119
	io_schedule_finish(token);
5120

L
Linus Torvalds 已提交
5121 5122
	return ret;
}
5123
EXPORT_SYMBOL(io_schedule_timeout);
L
Linus Torvalds 已提交
5124

5125 5126 5127 5128 5129 5130 5131 5132 5133 5134
void io_schedule(void)
{
	int token;

	token = io_schedule_prepare();
	schedule();
	io_schedule_finish(token);
}
EXPORT_SYMBOL(io_schedule);

L
Linus Torvalds 已提交
5135 5136 5137 5138
/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
5139 5140 5141
 * Return: On success, this syscall returns the maximum
 * rt_priority that can be used by a given scheduling class.
 * On failure, a negative error code is returned.
L
Linus Torvalds 已提交
5142
 */
5143
SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
L
Linus Torvalds 已提交
5144 5145 5146 5147 5148 5149 5150 5151
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
5152
	case SCHED_DEADLINE:
L
Linus Torvalds 已提交
5153
	case SCHED_NORMAL:
5154
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5155
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5156 5157 5158 5159 5160 5161 5162 5163 5164 5165
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
5166 5167 5168
 * Return: On success, this syscall returns the minimum
 * rt_priority that can be used by a given scheduling class.
 * On failure, a negative error code is returned.
L
Linus Torvalds 已提交
5169
 */
5170
SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
L
Linus Torvalds 已提交
5171 5172 5173 5174 5175 5176 5177 5178
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
5179
	case SCHED_DEADLINE:
L
Linus Torvalds 已提交
5180
	case SCHED_NORMAL:
5181
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5182
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
5195 5196 5197
 *
 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
 * an error code.
L
Linus Torvalds 已提交
5198
 */
5199
SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5200
		struct timespec __user *, interval)
L
Linus Torvalds 已提交
5201
{
5202
	struct task_struct *p;
D
Dmitry Adamushko 已提交
5203
	unsigned int time_slice;
5204 5205
	struct rq_flags rf;
	struct timespec t;
5206
	struct rq *rq;
5207
	int retval;
L
Linus Torvalds 已提交
5208 5209

	if (pid < 0)
5210
		return -EINVAL;
L
Linus Torvalds 已提交
5211 5212

	retval = -ESRCH;
5213
	rcu_read_lock();
L
Linus Torvalds 已提交
5214 5215 5216 5217 5218 5219 5220 5221
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

5222
	rq = task_rq_lock(p, &rf);
5223 5224 5225
	time_slice = 0;
	if (p->sched_class->get_rr_interval)
		time_slice = p->sched_class->get_rr_interval(rq, p);
5226
	task_rq_unlock(rq, p, &rf);
D
Dmitry Adamushko 已提交
5227

5228
	rcu_read_unlock();
D
Dmitry Adamushko 已提交
5229
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
5230 5231
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
5232

L
Linus Torvalds 已提交
5233
out_unlock:
5234
	rcu_read_unlock();
L
Linus Torvalds 已提交
5235 5236 5237
	return retval;
}

5238
static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5239

5240
void sched_show_task(struct task_struct *p)
L
Linus Torvalds 已提交
5241 5242
{
	unsigned long free = 0;
5243
	int ppid;
5244
	unsigned long state = p->state;
L
Linus Torvalds 已提交
5245

5246 5247 5248
	/* Make sure the string lines up properly with the number of task states: */
	BUILD_BUG_ON(sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1);

5249 5250
	if (!try_get_task_stack(p))
		return;
5251 5252
	if (state)
		state = __ffs(state) + 1;
5253
	printk(KERN_INFO "%-15.15s %c", p->comm,
5254
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
L
Linus Torvalds 已提交
5255
	if (state == TASK_RUNNING)
P
Peter Zijlstra 已提交
5256
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
5257
#ifdef CONFIG_DEBUG_STACK_USAGE
5258
	free = stack_not_used(p);
L
Linus Torvalds 已提交
5259
#endif
5260
	ppid = 0;
5261
	rcu_read_lock();
5262 5263
	if (pid_alive(p))
		ppid = task_pid_nr(rcu_dereference(p->real_parent));
5264
	rcu_read_unlock();
P
Peter Zijlstra 已提交
5265
	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5266
		task_pid_nr(p), ppid,
5267
		(unsigned long)task_thread_info(p)->flags);
L
Linus Torvalds 已提交
5268

5269
	print_worker_info(KERN_INFO, p);
5270
	show_stack(p, NULL);
5271
	put_task_stack(p);
L
Linus Torvalds 已提交
5272 5273
}

I
Ingo Molnar 已提交
5274
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
5275
{
5276
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
5277

5278
#if BITS_PER_LONG == 32
P
Peter Zijlstra 已提交
5279 5280
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
5281
#else
P
Peter Zijlstra 已提交
5282 5283
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
5284
#endif
5285
	rcu_read_lock();
5286
	for_each_process_thread(g, p) {
L
Linus Torvalds 已提交
5287 5288
		/*
		 * reset the NMI-timeout, listing all files on a slow
L
Lucas De Marchi 已提交
5289
		 * console might take a lot of time:
5290 5291 5292
		 * Also, reset softlockup watchdogs on all CPUs, because
		 * another CPU might be blocked waiting for us to process
		 * an IPI.
L
Linus Torvalds 已提交
5293 5294
		 */
		touch_nmi_watchdog();
5295
		touch_all_softlockup_watchdogs();
I
Ingo Molnar 已提交
5296
		if (!state_filter || (p->state & state_filter))
5297
			sched_show_task(p);
5298
	}
L
Linus Torvalds 已提交
5299

I
Ingo Molnar 已提交
5300
#ifdef CONFIG_SCHED_DEBUG
5301 5302
	if (!state_filter)
		sysrq_sched_debug_show();
I
Ingo Molnar 已提交
5303
#endif
5304
	rcu_read_unlock();
I
Ingo Molnar 已提交
5305 5306 5307
	/*
	 * Only show locks if all tasks are dumped:
	 */
5308
	if (!state_filter)
I
Ingo Molnar 已提交
5309
		debug_show_all_locks();
L
Linus Torvalds 已提交
5310 5311
}

5312
void init_idle_bootup_task(struct task_struct *idle)
I
Ingo Molnar 已提交
5313
{
I
Ingo Molnar 已提交
5314
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
5315 5316
}

5317 5318 5319
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
I
Ingo Molnar 已提交
5320
 * @cpu: CPU the idle task belongs to
5321 5322 5323 5324
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
5325
void init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
5326
{
5327
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5328 5329
	unsigned long flags;

5330 5331
	raw_spin_lock_irqsave(&idle->pi_lock, flags);
	raw_spin_lock(&rq->lock);
5332

5333
	__sched_fork(0, idle);
5334
	idle->state = TASK_RUNNING;
I
Ingo Molnar 已提交
5335
	idle->se.exec_start = sched_clock();
5336
	idle->flags |= PF_IDLE;
I
Ingo Molnar 已提交
5337

5338 5339
	kasan_unpoison_task_stack(idle);

5340 5341 5342 5343 5344 5345 5346 5347 5348
#ifdef CONFIG_SMP
	/*
	 * Its possible that init_idle() gets called multiple times on a task,
	 * in that case do_set_cpus_allowed() will not do the right thing.
	 *
	 * And since this is boot we can forgo the serialization.
	 */
	set_cpus_allowed_common(idle, cpumask_of(cpu));
#endif
5349 5350
	/*
	 * We're having a chicken and egg problem, even though we are
I
Ingo Molnar 已提交
5351
	 * holding rq->lock, the CPU isn't yet set to this CPU so the
5352 5353 5354 5355 5356 5357 5358 5359
	 * lockdep check in task_group() will fail.
	 *
	 * Similar case to sched_fork(). / Alternatively we could
	 * use task_rq_lock() here and obtain the other rq->lock.
	 *
	 * Silence PROVE_RCU
	 */
	rcu_read_lock();
I
Ingo Molnar 已提交
5360
	__set_task_cpu(idle, cpu);
5361
	rcu_read_unlock();
L
Linus Torvalds 已提交
5362 5363

	rq->curr = rq->idle = idle;
5364
	idle->on_rq = TASK_ON_RQ_QUEUED;
5365
#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
5366
	idle->on_cpu = 1;
5367
#endif
5368 5369
	raw_spin_unlock(&rq->lock);
	raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
L
Linus Torvalds 已提交
5370 5371

	/* Set the preempt count _outside_ the spinlocks! */
5372
	init_idle_preempt_count(idle, cpu);
5373

I
Ingo Molnar 已提交
5374 5375 5376 5377
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
5378
	ftrace_graph_init_idle_task(idle, cpu);
5379
	vtime_init_idle(idle, cpu);
5380
#ifdef CONFIG_SMP
5381 5382
	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
#endif
I
Ingo Molnar 已提交
5383 5384
}

5385 5386 5387 5388 5389 5390 5391
int cpuset_cpumask_can_shrink(const struct cpumask *cur,
			      const struct cpumask *trial)
{
	int ret = 1, trial_cpus;
	struct dl_bw *cur_dl_b;
	unsigned long flags;

5392 5393 5394
	if (!cpumask_weight(cur))
		return ret;

5395
	rcu_read_lock_sched();
5396 5397 5398 5399 5400 5401 5402 5403
	cur_dl_b = dl_bw_of(cpumask_any(cur));
	trial_cpus = cpumask_weight(trial);

	raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
	if (cur_dl_b->bw != -1 &&
	    cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
		ret = 0;
	raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
5404
	rcu_read_unlock_sched();
5405 5406 5407 5408

	return ret;
}

5409 5410 5411 5412 5413 5414 5415
int task_can_attach(struct task_struct *p,
		    const struct cpumask *cs_cpus_allowed)
{
	int ret = 0;

	/*
	 * Kthreads which disallow setaffinity shouldn't be moved
I
Ingo Molnar 已提交
5416
	 * to a new cpuset; we don't want to change their CPU
5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432
	 * affinity and isolating such threads by their set of
	 * allowed nodes is unnecessary.  Thus, cpusets are not
	 * applicable for such threads.  This prevents checking for
	 * success of set_cpus_allowed_ptr() on all attached tasks
	 * before cpus_allowed may be changed.
	 */
	if (p->flags & PF_NO_SETAFFINITY) {
		ret = -EINVAL;
		goto out;
	}

#ifdef CONFIG_SMP
	if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
					      cs_cpus_allowed)) {
		unsigned int dest_cpu = cpumask_any_and(cpu_active_mask,
							cs_cpus_allowed);
5433
		struct dl_bw *dl_b;
5434 5435 5436 5437
		bool overflow;
		int cpus;
		unsigned long flags;

5438 5439
		rcu_read_lock_sched();
		dl_b = dl_bw_of(dest_cpu);
5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454
		raw_spin_lock_irqsave(&dl_b->lock, flags);
		cpus = dl_bw_cpus(dest_cpu);
		overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
		if (overflow)
			ret = -EBUSY;
		else {
			/*
			 * We reserve space for this task in the destination
			 * root_domain, as we can't fail after this point.
			 * We will free resources in the source root_domain
			 * later on (see set_cpus_allowed_dl()).
			 */
			__dl_add(dl_b, p->dl.dl_bw);
		}
		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
5455
		rcu_read_unlock_sched();
5456 5457 5458 5459 5460 5461 5462

	}
#endif
out:
	return ret;
}

L
Linus Torvalds 已提交
5463 5464
#ifdef CONFIG_SMP

5465
bool sched_smp_initialized __read_mostly;
5466

5467 5468 5469 5470 5471 5472 5473 5474 5475 5476
#ifdef CONFIG_NUMA_BALANCING
/* Migrate current task p to target_cpu */
int migrate_task_to(struct task_struct *p, int target_cpu)
{
	struct migration_arg arg = { p, target_cpu };
	int curr_cpu = task_cpu(p);

	if (curr_cpu == target_cpu)
		return 0;

5477
	if (!cpumask_test_cpu(target_cpu, &p->cpus_allowed))
5478 5479 5480 5481
		return -EINVAL;

	/* TODO: This is not properly updating schedstats */

5482
	trace_sched_move_numa(p, curr_cpu, target_cpu);
5483 5484
	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
}
5485 5486 5487 5488 5489 5490 5491

/*
 * Requeue a task on a given node and accurately track the number of NUMA
 * tasks on the runqueues
 */
void sched_setnuma(struct task_struct *p, int nid)
{
5492
	bool queued, running;
5493 5494
	struct rq_flags rf;
	struct rq *rq;
5495

5496
	rq = task_rq_lock(p, &rf);
5497
	queued = task_on_rq_queued(p);
5498 5499
	running = task_current(rq, p);

5500
	if (queued)
5501
		dequeue_task(rq, p, DEQUEUE_SAVE);
5502
	if (running)
5503
		put_prev_task(rq, p);
5504 5505 5506

	p->numa_preferred_nid = nid;

5507
	if (queued)
5508
		enqueue_task(rq, p, ENQUEUE_RESTORE);
5509
	if (running)
5510
		set_curr_task(rq, p);
5511
	task_rq_unlock(rq, p, &rf);
5512
}
P
Peter Zijlstra 已提交
5513
#endif /* CONFIG_NUMA_BALANCING */
5514

L
Linus Torvalds 已提交
5515
#ifdef CONFIG_HOTPLUG_CPU
5516
/*
I
Ingo Molnar 已提交
5517
 * Ensure that the idle task is using init_mm right before its CPU goes
5518
 * offline.
5519
 */
5520
void idle_task_exit(void)
L
Linus Torvalds 已提交
5521
{
5522
	struct mm_struct *mm = current->active_mm;
5523

5524
	BUG_ON(cpu_online(smp_processor_id()));
5525

5526
	if (mm != &init_mm) {
5527
		switch_mm_irqs_off(mm, &init_mm, current);
5528 5529
		finish_arch_post_lock_switch();
	}
5530
	mmdrop(mm);
L
Linus Torvalds 已提交
5531 5532 5533
}

/*
5534 5535
 * Since this CPU is going 'away' for a while, fold any nr_active delta
 * we might have. Assumes we're called after migrate_tasks() so that the
5536 5537 5538
 * nr_active count is stable. We need to take the teardown thread which
 * is calling this into account, so we hand in adjust = 1 to the load
 * calculation.
5539 5540
 *
 * Also see the comment "Global load-average calculations".
L
Linus Torvalds 已提交
5541
 */
5542
static void calc_load_migrate(struct rq *rq)
L
Linus Torvalds 已提交
5543
{
5544
	long delta = calc_load_fold_active(rq, 1);
5545 5546
	if (delta)
		atomic_long_add(delta, &calc_load_tasks);
L
Linus Torvalds 已提交
5547 5548
}

5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564
static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
{
}

static const struct sched_class fake_sched_class = {
	.put_prev_task = put_prev_task_fake,
};

static struct task_struct fake_task = {
	/*
	 * Avoid pull_{rt,dl}_task()
	 */
	.prio = MAX_PRIO + 1,
	.sched_class = &fake_sched_class,
};

5565
/*
5566 5567 5568 5569 5570 5571
 * Migrate all tasks from the rq, sleeping tasks will be migrated by
 * try_to_wake_up()->select_task_rq().
 *
 * Called with rq->lock held even though we'er in stop_machine() and
 * there's no concurrency possible, we hold the required locks anyway
 * because of lock validation efforts.
L
Linus Torvalds 已提交
5572
 */
5573
static void migrate_tasks(struct rq *dead_rq)
L
Linus Torvalds 已提交
5574
{
5575
	struct rq *rq = dead_rq;
5576
	struct task_struct *next, *stop = rq->stop;
5577
	struct rq_flags rf;
5578
	int dest_cpu;
L
Linus Torvalds 已提交
5579 5580

	/*
5581 5582 5583 5584 5585 5586 5587
	 * Fudge the rq selection such that the below task selection loop
	 * doesn't get stuck on the currently eligible stop task.
	 *
	 * We're currently inside stop_machine() and the rq is either stuck
	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
	 * either way we should never end up calling schedule() until we're
	 * done here.
L
Linus Torvalds 已提交
5588
	 */
5589
	rq->stop = NULL;
5590

5591 5592 5593 5594 5595
	/*
	 * put_prev_task() and pick_next_task() sched
	 * class method both need to have an up-to-date
	 * value of rq->clock[_task]
	 */
5596
	rq_pin_lock(rq, &rf);
5597
	update_rq_clock(rq);
5598
	rq_unpin_lock(rq, &rf);
5599

5600
	for (;;) {
5601 5602
		/*
		 * There's this thread running, bail when that's the only
I
Ingo Molnar 已提交
5603
		 * remaining thread:
5604 5605
		 */
		if (rq->nr_running == 1)
I
Ingo Molnar 已提交
5606
			break;
5607

5608
		/*
I
Ingo Molnar 已提交
5609
		 * pick_next_task() assumes pinned rq->lock:
5610
		 */
5611
		rq_repin_lock(rq, &rf);
5612
		next = pick_next_task(rq, &fake_task, &rf);
5613
		BUG_ON(!next);
D
Dmitry Adamushko 已提交
5614
		next->sched_class->put_prev_task(rq, next);
5615

W
Wanpeng Li 已提交
5616 5617 5618 5619 5620 5621 5622 5623 5624
		/*
		 * Rules for changing task_struct::cpus_allowed are holding
		 * both pi_lock and rq->lock, such that holding either
		 * stabilizes the mask.
		 *
		 * Drop rq->lock is not quite as disastrous as it usually is
		 * because !cpu_active at this point, which means load-balance
		 * will not interfere. Also, stop-machine.
		 */
5625
		rq_unpin_lock(rq, &rf);
W
Wanpeng Li 已提交
5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639
		raw_spin_unlock(&rq->lock);
		raw_spin_lock(&next->pi_lock);
		raw_spin_lock(&rq->lock);

		/*
		 * Since we're inside stop-machine, _nothing_ should have
		 * changed the task, WARN if weird stuff happened, because in
		 * that case the above rq->lock drop is a fail too.
		 */
		if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
			raw_spin_unlock(&next->pi_lock);
			continue;
		}

5640
		/* Find suitable destination for @next, with force if needed. */
5641
		dest_cpu = select_fallback_rq(dead_rq->cpu, next);
5642

5643 5644 5645 5646 5647 5648
		rq = __migrate_task(rq, next, dest_cpu);
		if (rq != dead_rq) {
			raw_spin_unlock(&rq->lock);
			rq = dead_rq;
			raw_spin_lock(&rq->lock);
		}
W
Wanpeng Li 已提交
5649
		raw_spin_unlock(&next->pi_lock);
L
Linus Torvalds 已提交
5650
	}
5651

5652
	rq->stop = stop;
5653
}
L
Linus Torvalds 已提交
5654 5655
#endif /* CONFIG_HOTPLUG_CPU */

5656
void set_rq_online(struct rq *rq)
5657 5658 5659 5660
{
	if (!rq->online) {
		const struct sched_class *class;

5661
		cpumask_set_cpu(rq->cpu, rq->rd->online);
5662 5663 5664 5665 5666 5667 5668 5669 5670
		rq->online = 1;

		for_each_class(class) {
			if (class->rq_online)
				class->rq_online(rq);
		}
	}
}

5671
void set_rq_offline(struct rq *rq)
5672 5673 5674 5675 5676 5677 5678 5679 5680
{
	if (rq->online) {
		const struct sched_class *class;

		for_each_class(class) {
			if (class->rq_offline)
				class->rq_offline(rq);
		}

5681
		cpumask_clear_cpu(rq->cpu, rq->rd->online);
5682 5683 5684 5685
		rq->online = 0;
	}
}

5686
static void set_cpu_rq_start_time(unsigned int cpu)
L
Linus Torvalds 已提交
5687
{
5688
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5689

5690 5691 5692
	rq->age_stamp = sched_clock_cpu(cpu);
}

I
Ingo Molnar 已提交
5693 5694 5695 5696
/*
 * used to mark begin/end of suspend/resume:
 */
static int num_cpus_frozen;
5697

L
Linus Torvalds 已提交
5698
/*
5699 5700 5701
 * Update cpusets according to cpu_active mask.  If cpusets are
 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
 * around partition_sched_domains().
5702 5703 5704
 *
 * If we come here as part of a suspend/resume, don't touch cpusets because we
 * want to restore it back to its original state upon resume anyway.
L
Linus Torvalds 已提交
5705
 */
5706
static void cpuset_cpu_active(void)
5707
{
5708
	if (cpuhp_tasks_frozen) {
5709 5710 5711 5712 5713 5714 5715 5716 5717
		/*
		 * num_cpus_frozen tracks how many CPUs are involved in suspend
		 * resume sequence. As long as this is not the last online
		 * operation in the resume sequence, just build a single sched
		 * domain, ignoring cpusets.
		 */
		num_cpus_frozen--;
		if (likely(num_cpus_frozen)) {
			partition_sched_domains(1, NULL, NULL);
5718
			return;
5719 5720 5721 5722 5723 5724
		}
		/*
		 * This is the last CPU online operation. So fall through and
		 * restore the original sched domains by considering the
		 * cpuset configurations.
		 */
5725
	}
5726
	cpuset_update_active_cpus(true);
5727
}
5728

5729
static int cpuset_cpu_inactive(unsigned int cpu)
5730
{
5731 5732
	unsigned long flags;
	struct dl_bw *dl_b;
5733 5734
	bool overflow;
	int cpus;
5735

5736
	if (!cpuhp_tasks_frozen) {
5737 5738
		rcu_read_lock_sched();
		dl_b = dl_bw_of(cpu);
5739

5740 5741 5742 5743
		raw_spin_lock_irqsave(&dl_b->lock, flags);
		cpus = dl_bw_cpus(cpu);
		overflow = __dl_overflow(dl_b, cpus, 0, 0);
		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
5744

5745
		rcu_read_unlock_sched();
5746

5747
		if (overflow)
5748
			return -EBUSY;
5749
		cpuset_update_active_cpus(false);
5750
	} else {
5751 5752
		num_cpus_frozen++;
		partition_sched_domains(1, NULL, NULL);
5753
	}
5754
	return 0;
5755 5756
}

5757
int sched_cpu_activate(unsigned int cpu)
5758
{
5759 5760 5761
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

5762
	set_cpu_active(cpu, true);
5763

5764
	if (sched_smp_initialized) {
5765
		sched_domains_numa_masks_set(cpu);
5766
		cpuset_cpu_active();
5767
	}
5768 5769 5770 5771 5772

	/*
	 * Put the rq online, if not already. This happens:
	 *
	 * 1) In the early boot process, because we build the real domains
I
Ingo Molnar 已提交
5773
	 *    after all CPUs have been brought up.
5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786
	 *
	 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
	 *    domains.
	 */
	raw_spin_lock_irqsave(&rq->lock, flags);
	if (rq->rd) {
		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
		set_rq_online(rq);
	}
	raw_spin_unlock_irqrestore(&rq->lock, flags);

	update_max_interval();

5787
	return 0;
5788 5789
}

5790
int sched_cpu_deactivate(unsigned int cpu)
5791 5792 5793
{
	int ret;

5794
	set_cpu_active(cpu, false);
5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808
	/*
	 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU
	 * users of this state to go away such that all new such users will
	 * observe it.
	 *
	 * For CONFIG_PREEMPT we have preemptible RCU and its sync_rcu() might
	 * not imply sync_sched(), so wait for both.
	 *
	 * Do sync before park smpboot threads to take care the rcu boost case.
	 */
	if (IS_ENABLED(CONFIG_PREEMPT))
		synchronize_rcu_mult(call_rcu, call_rcu_sched);
	else
		synchronize_rcu();
5809 5810 5811 5812 5813 5814 5815 5816

	if (!sched_smp_initialized)
		return 0;

	ret = cpuset_cpu_inactive(cpu);
	if (ret) {
		set_cpu_active(cpu, true);
		return ret;
5817
	}
5818 5819
	sched_domains_numa_masks_clear(cpu);
	return 0;
5820 5821
}

5822 5823 5824 5825 5826 5827 5828 5829
static void sched_rq_cpu_starting(unsigned int cpu)
{
	struct rq *rq = cpu_rq(cpu);

	rq->calc_load_update = calc_load_update;
	update_max_interval();
}

5830 5831 5832
int sched_cpu_starting(unsigned int cpu)
{
	set_cpu_rq_start_time(cpu);
5833
	sched_rq_cpu_starting(cpu);
5834
	return 0;
5835 5836
}

5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854
#ifdef CONFIG_HOTPLUG_CPU
int sched_cpu_dying(unsigned int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	/* Handle pending wakeups and then migrate everything off */
	sched_ttwu_pending();
	raw_spin_lock_irqsave(&rq->lock, flags);
	if (rq->rd) {
		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
		set_rq_offline(rq);
	}
	migrate_tasks(rq);
	BUG_ON(rq->nr_running != 1);
	raw_spin_unlock_irqrestore(&rq->lock, flags);
	calc_load_migrate(rq);
	update_max_interval();
5855
	nohz_balance_exit_idle(cpu);
5856
	hrtick_clear(rq);
5857 5858 5859 5860
	return 0;
}
#endif

P
Peter Zijlstra 已提交
5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876
#ifdef CONFIG_SCHED_SMT
DEFINE_STATIC_KEY_FALSE(sched_smt_present);

static void sched_init_smt(void)
{
	/*
	 * We've enumerated all CPUs and will assume that if any CPU
	 * has SMT siblings, CPU0 will too.
	 */
	if (cpumask_weight(cpu_smt_mask(0)) > 1)
		static_branch_enable(&sched_smt_present);
}
#else
static inline void sched_init_smt(void) { }
#endif

L
Linus Torvalds 已提交
5877 5878
void __init sched_init_smp(void)
{
5879 5880 5881
	cpumask_var_t non_isolated_cpus;

	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
5882
	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5883

5884 5885
	sched_init_numa();

5886 5887
	/*
	 * There's no userspace yet to cause hotplug operations; hence all the
I
Ingo Molnar 已提交
5888
	 * CPU masks are stable and all blatant races in the below code cannot
5889 5890
	 * happen.
	 */
5891
	mutex_lock(&sched_domains_mutex);
5892
	init_sched_domains(cpu_active_mask);
5893 5894 5895
	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
	if (cpumask_empty(non_isolated_cpus))
		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
5896
	mutex_unlock(&sched_domains_mutex);
5897

5898
	/* Move init over to a non-isolated CPU */
5899
	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5900
		BUG();
I
Ingo Molnar 已提交
5901
	sched_init_granularity();
5902
	free_cpumask_var(non_isolated_cpus);
5903

5904
	init_sched_rt_class();
5905
	init_sched_dl_class();
P
Peter Zijlstra 已提交
5906 5907

	sched_init_smt();
5908
	sched_clock_init_late();
P
Peter Zijlstra 已提交
5909

5910
	sched_smp_initialized = true;
L
Linus Torvalds 已提交
5911
}
5912 5913 5914

static int __init migration_init(void)
{
5915
	sched_rq_cpu_starting(smp_processor_id());
5916
	return 0;
L
Linus Torvalds 已提交
5917
}
5918 5919
early_initcall(migration_init);

L
Linus Torvalds 已提交
5920 5921 5922
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
5923
	sched_init_granularity();
5924
	sched_clock_init_late();
L
Linus Torvalds 已提交
5925 5926 5927 5928 5929 5930 5931 5932 5933 5934
}
#endif /* CONFIG_SMP */

int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

5935
#ifdef CONFIG_CGROUP_SCHED
5936 5937 5938 5939
/*
 * Default task group.
 * Every task in system belongs to this group at bootup.
 */
5940
struct task_group root_task_group;
5941
LIST_HEAD(task_groups);
5942 5943 5944

/* Cacheline aligned slab cache for task_group */
static struct kmem_cache *task_group_cache __read_mostly;
5945
#endif
P
Peter Zijlstra 已提交
5946

5947
DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
5948
DECLARE_PER_CPU(cpumask_var_t, select_idle_mask);
P
Peter Zijlstra 已提交
5949

5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962
#define WAIT_TABLE_BITS 8
#define WAIT_TABLE_SIZE (1 << WAIT_TABLE_BITS)
static wait_queue_head_t bit_wait_table[WAIT_TABLE_SIZE] __cacheline_aligned;

wait_queue_head_t *bit_waitqueue(void *word, int bit)
{
	const int shift = BITS_PER_LONG == 32 ? 5 : 6;
	unsigned long val = (unsigned long)word << shift | bit;

	return bit_wait_table + hash_long(val, WAIT_TABLE_BITS);
}
EXPORT_SYMBOL(bit_waitqueue);

L
Linus Torvalds 已提交
5963 5964
void __init sched_init(void)
{
I
Ingo Molnar 已提交
5965
	int i, j;
5966 5967
	unsigned long alloc_size = 0, ptr;

5968 5969
	sched_clock_init();

5970 5971 5972
	for (i = 0; i < WAIT_TABLE_SIZE; i++)
		init_waitqueue_head(bit_wait_table + i);

5973 5974 5975 5976 5977 5978 5979
#ifdef CONFIG_FAIR_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
#ifdef CONFIG_RT_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
	if (alloc_size) {
5980
		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
5981 5982

#ifdef CONFIG_FAIR_GROUP_SCHED
5983
		root_task_group.se = (struct sched_entity **)ptr;
5984 5985
		ptr += nr_cpu_ids * sizeof(void **);

5986
		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
5987
		ptr += nr_cpu_ids * sizeof(void **);
5988

5989
#endif /* CONFIG_FAIR_GROUP_SCHED */
5990
#ifdef CONFIG_RT_GROUP_SCHED
5991
		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
5992 5993
		ptr += nr_cpu_ids * sizeof(void **);

5994
		root_task_group.rt_rq = (struct rt_rq **)ptr;
5995 5996
		ptr += nr_cpu_ids * sizeof(void **);

5997
#endif /* CONFIG_RT_GROUP_SCHED */
5998
	}
5999
#ifdef CONFIG_CPUMASK_OFFSTACK
6000 6001 6002
	for_each_possible_cpu(i) {
		per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
6003 6004
		per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node(
			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
6005
	}
6006
#endif /* CONFIG_CPUMASK_OFFSTACK */
I
Ingo Molnar 已提交
6007

I
Ingo Molnar 已提交
6008 6009
	init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
	init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime());
6010

G
Gregory Haskins 已提交
6011 6012 6013 6014
#ifdef CONFIG_SMP
	init_defrootdomain();
#endif

6015
#ifdef CONFIG_RT_GROUP_SCHED
6016
	init_rt_bandwidth(&root_task_group.rt_bandwidth,
6017
			global_rt_period(), global_rt_runtime());
6018
#endif /* CONFIG_RT_GROUP_SCHED */
6019

D
Dhaval Giani 已提交
6020
#ifdef CONFIG_CGROUP_SCHED
6021 6022
	task_group_cache = KMEM_CACHE(task_group, 0);

6023 6024
	list_add(&root_task_group.list, &task_groups);
	INIT_LIST_HEAD(&root_task_group.children);
6025
	INIT_LIST_HEAD(&root_task_group.siblings);
6026
	autogroup_init(&init_task);
D
Dhaval Giani 已提交
6027
#endif /* CONFIG_CGROUP_SCHED */
P
Peter Zijlstra 已提交
6028

6029
	for_each_possible_cpu(i) {
6030
		struct rq *rq;
L
Linus Torvalds 已提交
6031 6032

		rq = cpu_rq(i);
6033
		raw_spin_lock_init(&rq->lock);
N
Nick Piggin 已提交
6034
		rq->nr_running = 0;
6035 6036
		rq->calc_load_active = 0;
		rq->calc_load_update = jiffies + LOAD_FREQ;
6037
		init_cfs_rq(&rq->cfs);
6038 6039
		init_rt_rq(&rq->rt);
		init_dl_rq(&rq->dl);
I
Ingo Molnar 已提交
6040
#ifdef CONFIG_FAIR_GROUP_SCHED
6041
		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
P
Peter Zijlstra 已提交
6042
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6043
		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
D
Dhaval Giani 已提交
6044
		/*
I
Ingo Molnar 已提交
6045
		 * How much CPU bandwidth does root_task_group get?
D
Dhaval Giani 已提交
6046 6047
		 *
		 * In case of task-groups formed thr' the cgroup filesystem, it
I
Ingo Molnar 已提交
6048 6049
		 * gets 100% of the CPU resources in the system. This overall
		 * system CPU resource is divided among the tasks of
6050
		 * root_task_group and its child task-groups in a fair manner,
D
Dhaval Giani 已提交
6051 6052 6053
		 * based on each entity's (task or task-group's) weight
		 * (se->load.weight).
		 *
6054
		 * In other words, if root_task_group has 10 tasks of weight
D
Dhaval Giani 已提交
6055
		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
I
Ingo Molnar 已提交
6056
		 * then A0's share of the CPU resource is:
D
Dhaval Giani 已提交
6057
		 *
6058
		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
D
Dhaval Giani 已提交
6059
		 *
6060 6061
		 * We achieve this by letting root_task_group's tasks sit
		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
D
Dhaval Giani 已提交
6062
		 */
6063
		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6064
		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
D
Dhaval Giani 已提交
6065 6066 6067
#endif /* CONFIG_FAIR_GROUP_SCHED */

		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6068
#ifdef CONFIG_RT_GROUP_SCHED
6069
		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
I
Ingo Molnar 已提交
6070
#endif
L
Linus Torvalds 已提交
6071

I
Ingo Molnar 已提交
6072 6073
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
6074

L
Linus Torvalds 已提交
6075
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
6076
		rq->sd = NULL;
G
Gregory Haskins 已提交
6077
		rq->rd = NULL;
6078
		rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
6079
		rq->balance_callback = NULL;
L
Linus Torvalds 已提交
6080
		rq->active_balance = 0;
I
Ingo Molnar 已提交
6081
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
6082
		rq->push_cpu = 0;
6083
		rq->cpu = i;
6084
		rq->online = 0;
6085 6086
		rq->idle_stamp = 0;
		rq->avg_idle = 2*sysctl_sched_migration_cost;
6087
		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
6088 6089 6090

		INIT_LIST_HEAD(&rq->cfs_tasks);

6091
		rq_attach_root(rq, &def_root_domain);
6092
#ifdef CONFIG_NO_HZ_COMMON
6093
		rq->last_load_update_tick = jiffies;
6094
		rq->nohz_flags = 0;
6095
#endif
6096 6097 6098
#ifdef CONFIG_NO_HZ_FULL
		rq->last_sched_tick = 0;
#endif
6099
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
6100
		init_rq_hrtick(rq);
L
Linus Torvalds 已提交
6101 6102 6103
		atomic_set(&rq->nr_iowait, 0);
	}

6104
	set_load_weight(&init_task);
6105

L
Linus Torvalds 已提交
6106 6107 6108
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
V
Vegard Nossum 已提交
6109
	mmgrab(&init_mm);
L
Linus Torvalds 已提交
6110 6111 6112 6113 6114 6115 6116 6117 6118
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
6119 6120 6121

	calc_load_update = jiffies + LOAD_FREQ;

6122
#ifdef CONFIG_SMP
6123
	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
R
Rusty Russell 已提交
6124 6125 6126
	/* May be allocated at isolcpus cmdline parse time */
	if (cpu_isolated_map == NULL)
		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
6127
	idle_thread_set_boot_cpu();
6128
	set_cpu_rq_start_time(smp_processor_id());
6129 6130
#endif
	init_sched_fair_class();
6131

6132 6133
	init_schedstats();

6134
	scheduler_running = 1;
L
Linus Torvalds 已提交
6135 6136
}

6137
#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
6138 6139
static inline int preempt_count_equals(int preempt_offset)
{
6140
	int nested = preempt_count() + rcu_preempt_depth();
6141

A
Arnd Bergmann 已提交
6142
	return (nested == preempt_offset);
6143 6144
}

6145
void __might_sleep(const char *file, int line, int preempt_offset)
L
Linus Torvalds 已提交
6146
{
P
Peter Zijlstra 已提交
6147 6148 6149 6150 6151
	/*
	 * Blocking primitives will set (and therefore destroy) current->state,
	 * since we will exit with TASK_RUNNING make sure we enter with it,
	 * otherwise we will destroy state.
	 */
6152
	WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
P
Peter Zijlstra 已提交
6153 6154 6155 6156
			"do not call blocking ops when !TASK_RUNNING; "
			"state=%lx set at [<%p>] %pS\n",
			current->state,
			(void *)current->task_state_change,
6157
			(void *)current->task_state_change);
P
Peter Zijlstra 已提交
6158

6159 6160 6161 6162 6163
	___might_sleep(file, line, preempt_offset);
}
EXPORT_SYMBOL(__might_sleep);

void ___might_sleep(const char *file, int line, int preempt_offset)
L
Linus Torvalds 已提交
6164
{
I
Ingo Molnar 已提交
6165 6166 6167
	/* Ratelimiting timestamp: */
	static unsigned long prev_jiffy;

6168
	unsigned long preempt_disable_ip;
L
Linus Torvalds 已提交
6169

I
Ingo Molnar 已提交
6170 6171 6172
	/* WARN_ON_ONCE() by default, no rate limit required: */
	rcu_sleep_check();

6173 6174
	if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
	     !is_idle_task(current)) ||
6175
	    system_state != SYSTEM_RUNNING || oops_in_progress)
I
Ingo Molnar 已提交
6176 6177 6178 6179 6180
		return;
	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
		return;
	prev_jiffy = jiffies;

I
Ingo Molnar 已提交
6181
	/* Save this before calling printk(), since that will clobber it: */
6182 6183
	preempt_disable_ip = get_preempt_disable_ip(current);

P
Peter Zijlstra 已提交
6184 6185 6186 6187 6188 6189 6190
	printk(KERN_ERR
		"BUG: sleeping function called from invalid context at %s:%d\n",
			file, line);
	printk(KERN_ERR
		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
			in_atomic(), irqs_disabled(),
			current->pid, current->comm);
I
Ingo Molnar 已提交
6191

6192 6193 6194
	if (task_stack_end_corrupted(current))
		printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");

I
Ingo Molnar 已提交
6195 6196 6197
	debug_show_held_locks(current);
	if (irqs_disabled())
		print_irqtrace_events(current);
6198 6199
	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
	    && !preempt_count_equals(preempt_offset)) {
6200
		pr_err("Preemption disabled at:");
6201
		print_ip_sym(preempt_disable_ip);
6202 6203
		pr_cont("\n");
	}
I
Ingo Molnar 已提交
6204
	dump_stack();
6205
	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
L
Linus Torvalds 已提交
6206
}
6207
EXPORT_SYMBOL(___might_sleep);
L
Linus Torvalds 已提交
6208 6209 6210
#endif

#ifdef CONFIG_MAGIC_SYSRQ
6211
void normalize_rt_tasks(void)
6212
{
6213
	struct task_struct *g, *p;
6214 6215 6216
	struct sched_attr attr = {
		.sched_policy = SCHED_NORMAL,
	};
L
Linus Torvalds 已提交
6217

6218
	read_lock(&tasklist_lock);
6219
	for_each_process_thread(g, p) {
6220 6221 6222
		/*
		 * Only normalize user tasks:
		 */
6223
		if (p->flags & PF_KTHREAD)
6224 6225
			continue;

6226 6227 6228 6229
		p->se.exec_start = 0;
		schedstat_set(p->se.statistics.wait_start,  0);
		schedstat_set(p->se.statistics.sleep_start, 0);
		schedstat_set(p->se.statistics.block_start, 0);
I
Ingo Molnar 已提交
6230

6231
		if (!dl_task(p) && !rt_task(p)) {
I
Ingo Molnar 已提交
6232 6233 6234 6235
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
6236
			if (task_nice(p) < 0)
I
Ingo Molnar 已提交
6237
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
6238
			continue;
I
Ingo Molnar 已提交
6239
		}
L
Linus Torvalds 已提交
6240

6241
		__sched_setscheduler(p, &attr, false, false);
6242
	}
6243
	read_unlock(&tasklist_lock);
L
Linus Torvalds 已提交
6244 6245 6246
}

#endif /* CONFIG_MAGIC_SYSRQ */
6247

6248
#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
6249
/*
6250
 * These functions are only useful for the IA64 MCA handling, or kdb.
6251 6252 6253 6254 6255 6256 6257 6258 6259
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
I
Ingo Molnar 已提交
6260
 * curr_task - return the current task for a given CPU.
6261 6262 6263
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6264 6265
 *
 * Return: The current task for @cpu.
6266
 */
6267
struct task_struct *curr_task(int cpu)
6268 6269 6270 6271
{
	return cpu_curr(cpu);
}

6272 6273 6274
#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */

#ifdef CONFIG_IA64
6275
/**
I
Ingo Molnar 已提交
6276
 * set_curr_task - set the current task for a given CPU.
6277 6278 6279 6280
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
6281
 * are serviced on a separate stack. It allows the architecture to switch the
I
Ingo Molnar 已提交
6282
 * notion of the current task on a CPU in a non-blocking manner. This function
6283 6284 6285 6286 6287 6288 6289
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
6290
void ia64_set_curr_task(int cpu, struct task_struct *p)
6291 6292 6293 6294 6295
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
6296

D
Dhaval Giani 已提交
6297
#ifdef CONFIG_CGROUP_SCHED
6298 6299 6300
/* task_group_lock serializes the addition/removal of task groups */
static DEFINE_SPINLOCK(task_group_lock);

6301
static void sched_free_group(struct task_group *tg)
6302 6303 6304
{
	free_fair_sched_group(tg);
	free_rt_sched_group(tg);
6305
	autogroup_free(tg);
6306
	kmem_cache_free(task_group_cache, tg);
6307 6308 6309
}

/* allocate runqueue etc for a new task group */
6310
struct task_group *sched_create_group(struct task_group *parent)
6311 6312 6313
{
	struct task_group *tg;

6314
	tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
6315 6316 6317
	if (!tg)
		return ERR_PTR(-ENOMEM);

6318
	if (!alloc_fair_sched_group(tg, parent))
6319 6320
		goto err;

6321
	if (!alloc_rt_sched_group(tg, parent))
6322 6323
		goto err;

6324 6325 6326
	return tg;

err:
6327
	sched_free_group(tg);
6328 6329 6330 6331 6332 6333 6334
	return ERR_PTR(-ENOMEM);
}

void sched_online_group(struct task_group *tg, struct task_group *parent)
{
	unsigned long flags;

6335
	spin_lock_irqsave(&task_group_lock, flags);
P
Peter Zijlstra 已提交
6336
	list_add_rcu(&tg->list, &task_groups);
P
Peter Zijlstra 已提交
6337

I
Ingo Molnar 已提交
6338 6339
	/* Root should already exist: */
	WARN_ON(!parent);
P
Peter Zijlstra 已提交
6340 6341 6342

	tg->parent = parent;
	INIT_LIST_HEAD(&tg->children);
6343
	list_add_rcu(&tg->siblings, &parent->children);
6344
	spin_unlock_irqrestore(&task_group_lock, flags);
6345 6346

	online_fair_sched_group(tg);
S
Srivatsa Vaddagiri 已提交
6347 6348
}

6349
/* rcu callback to free various structures associated with a task group */
6350
static void sched_free_group_rcu(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
6351
{
I
Ingo Molnar 已提交
6352
	/* Now it should be safe to free those cfs_rqs: */
6353
	sched_free_group(container_of(rhp, struct task_group, rcu));
S
Srivatsa Vaddagiri 已提交
6354 6355
}

6356
void sched_destroy_group(struct task_group *tg)
6357
{
I
Ingo Molnar 已提交
6358
	/* Wait for possible concurrent references to cfs_rqs complete: */
6359
	call_rcu(&tg->rcu, sched_free_group_rcu);
6360 6361 6362
}

void sched_offline_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
6363
{
6364
	unsigned long flags;
S
Srivatsa Vaddagiri 已提交
6365

I
Ingo Molnar 已提交
6366
	/* End participation in shares distribution: */
6367
	unregister_fair_sched_group(tg);
6368 6369

	spin_lock_irqsave(&task_group_lock, flags);
P
Peter Zijlstra 已提交
6370
	list_del_rcu(&tg->list);
P
Peter Zijlstra 已提交
6371
	list_del_rcu(&tg->siblings);
6372
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
6373 6374
}

6375
static void sched_change_group(struct task_struct *tsk, int type)
S
Srivatsa Vaddagiri 已提交
6376
{
P
Peter Zijlstra 已提交
6377
	struct task_group *tg;
S
Srivatsa Vaddagiri 已提交
6378

6379 6380 6381 6382 6383 6384
	/*
	 * All callers are synchronized by task_rq_lock(); we do not use RCU
	 * which is pointless here. Thus, we pass "true" to task_css_check()
	 * to prevent lockdep warnings.
	 */
	tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
P
Peter Zijlstra 已提交
6385 6386 6387 6388
			  struct task_group, css);
	tg = autogroup_task_group(tsk, tg);
	tsk->sched_task_group = tg;

P
Peter Zijlstra 已提交
6389
#ifdef CONFIG_FAIR_GROUP_SCHED
6390 6391
	if (tsk->sched_class->task_change_group)
		tsk->sched_class->task_change_group(tsk, type);
6392
	else
P
Peter Zijlstra 已提交
6393
#endif
6394
		set_task_rq(tsk, task_cpu(tsk));
6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410
}

/*
 * Change task's runqueue when it moves between groups.
 *
 * The caller of this function should have put the task in its new group by
 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
 * its new group.
 */
void sched_move_task(struct task_struct *tsk)
{
	int queued, running;
	struct rq_flags rf;
	struct rq *rq;

	rq = task_rq_lock(tsk, &rf);
6411
	update_rq_clock(rq);
6412 6413 6414 6415 6416 6417

	running = task_current(rq, tsk);
	queued = task_on_rq_queued(tsk);

	if (queued)
		dequeue_task(rq, tsk, DEQUEUE_SAVE | DEQUEUE_MOVE);
6418
	if (running)
6419 6420 6421
		put_prev_task(rq, tsk);

	sched_change_group(tsk, TASK_MOVE_GROUP);
P
Peter Zijlstra 已提交
6422

6423
	if (queued)
6424
		enqueue_task(rq, tsk, ENQUEUE_RESTORE | ENQUEUE_MOVE);
6425
	if (running)
6426
		set_curr_task(rq, tsk);
S
Srivatsa Vaddagiri 已提交
6427

6428
	task_rq_unlock(rq, tsk, &rf);
S
Srivatsa Vaddagiri 已提交
6429
}
D
Dhaval Giani 已提交
6430
#endif /* CONFIG_CGROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
6431

6432 6433 6434 6435 6436
#ifdef CONFIG_RT_GROUP_SCHED
/*
 * Ensure that the real time constraints are schedulable.
 */
static DEFINE_MUTEX(rt_constraints_mutex);
P
Peter Zijlstra 已提交
6437

P
Peter Zijlstra 已提交
6438 6439
/* Must be called with tasklist_lock held */
static inline int tg_has_rt_tasks(struct task_group *tg)
6440
{
P
Peter Zijlstra 已提交
6441
	struct task_struct *g, *p;
6442

6443 6444 6445 6446 6447 6448
	/*
	 * Autogroups do not have RT tasks; see autogroup_create().
	 */
	if (task_group_is_autogroup(tg))
		return 0;

6449
	for_each_process_thread(g, p) {
6450
		if (rt_task(p) && task_group(p) == tg)
P
Peter Zijlstra 已提交
6451
			return 1;
6452
	}
6453

P
Peter Zijlstra 已提交
6454 6455
	return 0;
}
6456

P
Peter Zijlstra 已提交
6457 6458 6459 6460 6461
struct rt_schedulable_data {
	struct task_group *tg;
	u64 rt_period;
	u64 rt_runtime;
};
6462

6463
static int tg_rt_schedulable(struct task_group *tg, void *data)
P
Peter Zijlstra 已提交
6464 6465 6466 6467 6468
{
	struct rt_schedulable_data *d = data;
	struct task_group *child;
	unsigned long total, sum = 0;
	u64 period, runtime;
6469

P
Peter Zijlstra 已提交
6470 6471
	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	runtime = tg->rt_bandwidth.rt_runtime;
6472

P
Peter Zijlstra 已提交
6473 6474 6475
	if (tg == d->tg) {
		period = d->rt_period;
		runtime = d->rt_runtime;
6476 6477
	}

6478 6479 6480 6481 6482
	/*
	 * Cannot have more runtime than the period.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
P
Peter Zijlstra 已提交
6483

6484 6485 6486
	/*
	 * Ensure we don't starve existing RT tasks.
	 */
P
Peter Zijlstra 已提交
6487 6488
	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
		return -EBUSY;
P
Peter Zijlstra 已提交
6489

P
Peter Zijlstra 已提交
6490
	total = to_ratio(period, runtime);
P
Peter Zijlstra 已提交
6491

6492 6493 6494 6495 6496
	/*
	 * Nobody can have more than the global setting allows.
	 */
	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
		return -EINVAL;
P
Peter Zijlstra 已提交
6497

6498 6499 6500
	/*
	 * The sum of our children's runtime should not exceed our own.
	 */
P
Peter Zijlstra 已提交
6501 6502 6503
	list_for_each_entry_rcu(child, &tg->children, siblings) {
		period = ktime_to_ns(child->rt_bandwidth.rt_period);
		runtime = child->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
6504

P
Peter Zijlstra 已提交
6505 6506 6507 6508
		if (child == d->tg) {
			period = d->rt_period;
			runtime = d->rt_runtime;
		}
P
Peter Zijlstra 已提交
6509

P
Peter Zijlstra 已提交
6510
		sum += to_ratio(period, runtime);
P
Peter Zijlstra 已提交
6511
	}
P
Peter Zijlstra 已提交
6512

P
Peter Zijlstra 已提交
6513 6514 6515 6516
	if (sum > total)
		return -EINVAL;

	return 0;
P
Peter Zijlstra 已提交
6517 6518
}

P
Peter Zijlstra 已提交
6519
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
6520
{
6521 6522
	int ret;

P
Peter Zijlstra 已提交
6523 6524 6525 6526 6527 6528
	struct rt_schedulable_data data = {
		.tg = tg,
		.rt_period = period,
		.rt_runtime = runtime,
	};

6529 6530 6531 6532 6533
	rcu_read_lock();
	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
	rcu_read_unlock();

	return ret;
6534 6535
}

6536
static int tg_set_rt_bandwidth(struct task_group *tg,
6537
		u64 rt_period, u64 rt_runtime)
P
Peter Zijlstra 已提交
6538
{
P
Peter Zijlstra 已提交
6539
	int i, err = 0;
P
Peter Zijlstra 已提交
6540

6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551
	/*
	 * Disallowing the root group RT runtime is BAD, it would disallow the
	 * kernel creating (and or operating) RT threads.
	 */
	if (tg == &root_task_group && rt_runtime == 0)
		return -EINVAL;

	/* No period doesn't make any sense. */
	if (rt_period == 0)
		return -EINVAL;

P
Peter Zijlstra 已提交
6552
	mutex_lock(&rt_constraints_mutex);
6553
	read_lock(&tasklist_lock);
P
Peter Zijlstra 已提交
6554 6555
	err = __rt_schedulable(tg, rt_period, rt_runtime);
	if (err)
P
Peter Zijlstra 已提交
6556
		goto unlock;
P
Peter Zijlstra 已提交
6557

6558
	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
6559 6560
	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
	tg->rt_bandwidth.rt_runtime = rt_runtime;
P
Peter Zijlstra 已提交
6561 6562 6563 6564

	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = tg->rt_rq[i];

6565
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
6566
		rt_rq->rt_runtime = rt_runtime;
6567
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
6568
	}
6569
	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
P
Peter Zijlstra 已提交
6570
unlock:
6571
	read_unlock(&tasklist_lock);
P
Peter Zijlstra 已提交
6572 6573 6574
	mutex_unlock(&rt_constraints_mutex);

	return err;
P
Peter Zijlstra 已提交
6575 6576
}

6577
static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
6578 6579 6580 6581 6582 6583 6584 6585
{
	u64 rt_runtime, rt_period;

	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
	if (rt_runtime_us < 0)
		rt_runtime = RUNTIME_INF;

6586
	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
6587 6588
}

6589
static long sched_group_rt_runtime(struct task_group *tg)
P
Peter Zijlstra 已提交
6590 6591 6592
{
	u64 rt_runtime_us;

6593
	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
6594 6595
		return -1;

6596
	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
6597 6598 6599
	do_div(rt_runtime_us, NSEC_PER_USEC);
	return rt_runtime_us;
}
6600

6601
static int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
6602 6603 6604
{
	u64 rt_runtime, rt_period;

6605
	rt_period = rt_period_us * NSEC_PER_USEC;
6606 6607
	rt_runtime = tg->rt_bandwidth.rt_runtime;

6608
	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
6609 6610
}

6611
static long sched_group_rt_period(struct task_group *tg)
6612 6613 6614 6615 6616 6617 6618
{
	u64 rt_period_us;

	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
	do_div(rt_period_us, NSEC_PER_USEC);
	return rt_period_us;
}
6619
#endif /* CONFIG_RT_GROUP_SCHED */
6620

6621
#ifdef CONFIG_RT_GROUP_SCHED
6622 6623 6624 6625 6626
static int sched_rt_global_constraints(void)
{
	int ret = 0;

	mutex_lock(&rt_constraints_mutex);
P
Peter Zijlstra 已提交
6627
	read_lock(&tasklist_lock);
6628
	ret = __rt_schedulable(NULL, 0, 0);
P
Peter Zijlstra 已提交
6629
	read_unlock(&tasklist_lock);
6630 6631 6632 6633
	mutex_unlock(&rt_constraints_mutex);

	return ret;
}
6634

6635
static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
6636 6637 6638 6639 6640 6641 6642 6643
{
	/* Don't accept realtime tasks when there is no way for them to run */
	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
		return 0;

	return 1;
}

6644
#else /* !CONFIG_RT_GROUP_SCHED */
6645 6646
static int sched_rt_global_constraints(void)
{
P
Peter Zijlstra 已提交
6647
	unsigned long flags;
6648
	int i;
6649

6650
	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
6651 6652 6653
	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = &cpu_rq(i)->rt;

6654
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
6655
		rt_rq->rt_runtime = global_rt_runtime();
6656
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
6657
	}
6658
	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
6659

6660
	return 0;
6661
}
6662
#endif /* CONFIG_RT_GROUP_SCHED */
6663

6664
static int sched_dl_global_validate(void)
6665
{
6666 6667
	u64 runtime = global_rt_runtime();
	u64 period = global_rt_period();
6668
	u64 new_bw = to_ratio(period, runtime);
6669
	struct dl_bw *dl_b;
6670
	int cpu, ret = 0;
6671
	unsigned long flags;
6672 6673 6674 6675 6676 6677 6678 6679 6680 6681

	/*
	 * Here we want to check the bandwidth not being set to some
	 * value smaller than the currently allocated bandwidth in
	 * any of the root_domains.
	 *
	 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
	 * cycling on root_domains... Discussion on different/better
	 * solutions is welcome!
	 */
6682
	for_each_possible_cpu(cpu) {
6683 6684
		rcu_read_lock_sched();
		dl_b = dl_bw_of(cpu);
6685

6686
		raw_spin_lock_irqsave(&dl_b->lock, flags);
6687 6688
		if (new_bw < dl_b->total_bw)
			ret = -EBUSY;
6689
		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
6690

6691 6692
		rcu_read_unlock_sched();

6693 6694
		if (ret)
			break;
6695 6696
	}

6697
	return ret;
6698 6699
}

6700
static void sched_dl_do_global(void)
6701
{
6702
	u64 new_bw = -1;
6703
	struct dl_bw *dl_b;
6704
	int cpu;
6705
	unsigned long flags;
6706

6707 6708 6709 6710 6711 6712 6713 6714 6715 6716
	def_dl_bandwidth.dl_period = global_rt_period();
	def_dl_bandwidth.dl_runtime = global_rt_runtime();

	if (global_rt_runtime() != RUNTIME_INF)
		new_bw = to_ratio(global_rt_period(), global_rt_runtime());

	/*
	 * FIXME: As above...
	 */
	for_each_possible_cpu(cpu) {
6717 6718
		rcu_read_lock_sched();
		dl_b = dl_bw_of(cpu);
6719

6720
		raw_spin_lock_irqsave(&dl_b->lock, flags);
6721
		dl_b->bw = new_bw;
6722
		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
6723 6724

		rcu_read_unlock_sched();
6725
	}
6726 6727 6728 6729 6730 6731 6732
}

static int sched_rt_global_validate(void)
{
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

6733 6734
	if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
		(sysctl_sched_rt_runtime > sysctl_sched_rt_period))
6735 6736 6737 6738 6739 6740 6741 6742 6743
		return -EINVAL;

	return 0;
}

static void sched_rt_do_global(void)
{
	def_rt_bandwidth.rt_runtime = global_rt_runtime();
	def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
6744 6745
}

6746
int sched_rt_handler(struct ctl_table *table, int write,
6747
		void __user *buffer, size_t *lenp,
6748 6749 6750 6751
		loff_t *ppos)
{
	int old_period, old_runtime;
	static DEFINE_MUTEX(mutex);
6752
	int ret;
6753 6754 6755 6756 6757

	mutex_lock(&mutex);
	old_period = sysctl_sched_rt_period;
	old_runtime = sysctl_sched_rt_runtime;

6758
	ret = proc_dointvec(table, write, buffer, lenp, ppos);
6759 6760

	if (!ret && write) {
6761 6762 6763 6764
		ret = sched_rt_global_validate();
		if (ret)
			goto undo;

6765
		ret = sched_dl_global_validate();
6766 6767 6768
		if (ret)
			goto undo;

6769
		ret = sched_rt_global_constraints();
6770 6771 6772 6773 6774 6775 6776 6777 6778 6779
		if (ret)
			goto undo;

		sched_rt_do_global();
		sched_dl_do_global();
	}
	if (0) {
undo:
		sysctl_sched_rt_period = old_period;
		sysctl_sched_rt_runtime = old_runtime;
6780 6781 6782 6783 6784
	}
	mutex_unlock(&mutex);

	return ret;
}
6785

6786
int sched_rr_handler(struct ctl_table *table, int write,
6787 6788 6789 6790 6791 6792 6793 6794
		void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
	int ret;
	static DEFINE_MUTEX(mutex);

	mutex_lock(&mutex);
	ret = proc_dointvec(table, write, buffer, lenp, ppos);
I
Ingo Molnar 已提交
6795 6796 6797 6798
	/*
	 * Make sure that internally we keep jiffies.
	 * Also, writing zero resets the timeslice to default:
	 */
6799
	if (!ret && write) {
6800 6801 6802
		sched_rr_timeslice =
			sysctl_sched_rr_timeslice <= 0 ? RR_TIMESLICE :
			msecs_to_jiffies(sysctl_sched_rr_timeslice);
6803 6804 6805 6806 6807
	}
	mutex_unlock(&mutex);
	return ret;
}

6808
#ifdef CONFIG_CGROUP_SCHED
6809

6810
static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
6811
{
6812
	return css ? container_of(css, struct task_group, css) : NULL;
6813 6814
}

6815 6816
static struct cgroup_subsys_state *
cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
6817
{
6818 6819
	struct task_group *parent = css_tg(parent_css);
	struct task_group *tg;
6820

6821
	if (!parent) {
6822
		/* This is early initialization for the top cgroup */
6823
		return &root_task_group.css;
6824 6825
	}

6826
	tg = sched_create_group(parent);
6827 6828 6829 6830 6831 6832
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	return &tg->css;
}

6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843
/* Expose task group only after completing cgroup initialization */
static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
{
	struct task_group *tg = css_tg(css);
	struct task_group *parent = css_tg(css->parent);

	if (parent)
		sched_online_group(tg, parent);
	return 0;
}

6844
static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
6845
{
6846
	struct task_group *tg = css_tg(css);
6847

6848
	sched_offline_group(tg);
6849 6850
}

6851
static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
6852
{
6853
	struct task_group *tg = css_tg(css);
6854

6855 6856 6857 6858
	/*
	 * Relies on the RCU grace period between css_released() and this.
	 */
	sched_free_group(tg);
6859 6860
}

6861 6862 6863 6864
/*
 * This is called before wake_up_new_task(), therefore we really only
 * have to set its group bits, all the other stuff does not apply.
 */
6865
static void cpu_cgroup_fork(struct task_struct *task)
6866
{
6867 6868 6869 6870 6871
	struct rq_flags rf;
	struct rq *rq;

	rq = task_rq_lock(task, &rf);

6872
	update_rq_clock(rq);
6873 6874 6875
	sched_change_group(task, TASK_SET_GROUP);

	task_rq_unlock(rq, task, &rf);
6876 6877
}

6878
static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
6879
{
6880
	struct task_struct *task;
6881
	struct cgroup_subsys_state *css;
6882
	int ret = 0;
6883

6884
	cgroup_taskset_for_each(task, css, tset) {
6885
#ifdef CONFIG_RT_GROUP_SCHED
6886
		if (!sched_rt_can_attach(css_tg(css), task))
6887
			return -EINVAL;
6888
#else
6889 6890 6891
		/* We don't support RT-tasks being in separate groups */
		if (task->sched_class != &fair_sched_class)
			return -EINVAL;
6892
#endif
6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908
		/*
		 * Serialize against wake_up_new_task() such that if its
		 * running, we're sure to observe its full state.
		 */
		raw_spin_lock_irq(&task->pi_lock);
		/*
		 * Avoid calling sched_move_task() before wake_up_new_task()
		 * has happened. This would lead to problems with PELT, due to
		 * move wanting to detach+attach while we're not attached yet.
		 */
		if (task->state == TASK_NEW)
			ret = -EINVAL;
		raw_spin_unlock_irq(&task->pi_lock);

		if (ret)
			break;
6909
	}
6910
	return ret;
6911
}
6912

6913
static void cpu_cgroup_attach(struct cgroup_taskset *tset)
6914
{
6915
	struct task_struct *task;
6916
	struct cgroup_subsys_state *css;
6917

6918
	cgroup_taskset_for_each(task, css, tset)
6919
		sched_move_task(task);
6920 6921
}

6922
#ifdef CONFIG_FAIR_GROUP_SCHED
6923 6924
static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
				struct cftype *cftype, u64 shareval)
6925
{
6926
	return sched_group_set_shares(css_tg(css), scale_load(shareval));
6927 6928
}

6929 6930
static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
			       struct cftype *cft)
6931
{
6932
	struct task_group *tg = css_tg(css);
6933

6934
	return (u64) scale_load_down(tg->shares);
6935
}
6936 6937

#ifdef CONFIG_CFS_BANDWIDTH
6938 6939
static DEFINE_MUTEX(cfs_constraints_mutex);

6940 6941 6942
const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */

6943 6944
static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);

6945 6946
static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
{
6947
	int i, ret = 0, runtime_enabled, runtime_was_enabled;
6948
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968

	if (tg == &root_task_group)
		return -EINVAL;

	/*
	 * Ensure we have at some amount of bandwidth every period.  This is
	 * to prevent reaching a state of large arrears when throttled via
	 * entity_tick() resulting in prolonged exit starvation.
	 */
	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
		return -EINVAL;

	/*
	 * Likewise, bound things on the otherside by preventing insane quota
	 * periods.  This also allows us to normalize in computing quota
	 * feasibility.
	 */
	if (period > max_cfs_quota_period)
		return -EINVAL;

6969 6970 6971 6972 6973
	/*
	 * Prevent race between setting of cfs_rq->runtime_enabled and
	 * unthrottle_offline_cfs_rqs().
	 */
	get_online_cpus();
6974 6975 6976 6977 6978
	mutex_lock(&cfs_constraints_mutex);
	ret = __cfs_schedulable(tg, period, quota);
	if (ret)
		goto out_unlock;

6979
	runtime_enabled = quota != RUNTIME_INF;
6980
	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
6981 6982 6983 6984 6985 6986
	/*
	 * If we need to toggle cfs_bandwidth_used, off->on must occur
	 * before making related changes, and on->off must occur afterwards
	 */
	if (runtime_enabled && !runtime_was_enabled)
		cfs_bandwidth_usage_inc();
6987 6988 6989
	raw_spin_lock_irq(&cfs_b->lock);
	cfs_b->period = ns_to_ktime(period);
	cfs_b->quota = quota;
6990

P
Paul Turner 已提交
6991
	__refill_cfs_bandwidth_runtime(cfs_b);
I
Ingo Molnar 已提交
6992 6993

	/* Restart the period timer (if active) to handle new period expiry: */
P
Peter Zijlstra 已提交
6994 6995
	if (runtime_enabled)
		start_cfs_bandwidth(cfs_b);
I
Ingo Molnar 已提交
6996

6997 6998
	raw_spin_unlock_irq(&cfs_b->lock);

6999
	for_each_online_cpu(i) {
7000
		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7001
		struct rq *rq = cfs_rq->rq;
7002 7003

		raw_spin_lock_irq(&rq->lock);
7004
		cfs_rq->runtime_enabled = runtime_enabled;
7005
		cfs_rq->runtime_remaining = 0;
7006

7007
		if (cfs_rq->throttled)
7008
			unthrottle_cfs_rq(cfs_rq);
7009 7010
		raw_spin_unlock_irq(&rq->lock);
	}
7011 7012
	if (runtime_was_enabled && !runtime_enabled)
		cfs_bandwidth_usage_dec();
7013 7014
out_unlock:
	mutex_unlock(&cfs_constraints_mutex);
7015
	put_online_cpus();
7016

7017
	return ret;
7018 7019 7020 7021 7022 7023
}

int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
{
	u64 quota, period;

7024
	period = ktime_to_ns(tg->cfs_bandwidth.period);
7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036
	if (cfs_quota_us < 0)
		quota = RUNTIME_INF;
	else
		quota = (u64)cfs_quota_us * NSEC_PER_USEC;

	return tg_set_cfs_bandwidth(tg, period, quota);
}

long tg_get_cfs_quota(struct task_group *tg)
{
	u64 quota_us;

7037
	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7038 7039
		return -1;

7040
	quota_us = tg->cfs_bandwidth.quota;
7041 7042 7043 7044 7045 7046 7047 7048 7049 7050
	do_div(quota_us, NSEC_PER_USEC);

	return quota_us;
}

int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
{
	u64 quota, period;

	period = (u64)cfs_period_us * NSEC_PER_USEC;
7051
	quota = tg->cfs_bandwidth.quota;
7052 7053 7054 7055 7056 7057 7058 7059

	return tg_set_cfs_bandwidth(tg, period, quota);
}

long tg_get_cfs_period(struct task_group *tg)
{
	u64 cfs_period_us;

7060
	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7061 7062 7063 7064 7065
	do_div(cfs_period_us, NSEC_PER_USEC);

	return cfs_period_us;
}

7066 7067
static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
				  struct cftype *cft)
7068
{
7069
	return tg_get_cfs_quota(css_tg(css));
7070 7071
}

7072 7073
static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
				   struct cftype *cftype, s64 cfs_quota_us)
7074
{
7075
	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
7076 7077
}

7078 7079
static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
				   struct cftype *cft)
7080
{
7081
	return tg_get_cfs_period(css_tg(css));
7082 7083
}

7084 7085
static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
				    struct cftype *cftype, u64 cfs_period_us)
7086
{
7087
	return tg_set_cfs_period(css_tg(css), cfs_period_us);
7088 7089
}

7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121
struct cfs_schedulable_data {
	struct task_group *tg;
	u64 period, quota;
};

/*
 * normalize group quota/period to be quota/max_period
 * note: units are usecs
 */
static u64 normalize_cfs_quota(struct task_group *tg,
			       struct cfs_schedulable_data *d)
{
	u64 quota, period;

	if (tg == d->tg) {
		period = d->period;
		quota = d->quota;
	} else {
		period = tg_get_cfs_period(tg);
		quota = tg_get_cfs_quota(tg);
	}

	/* note: these should typically be equivalent */
	if (quota == RUNTIME_INF || quota == -1)
		return RUNTIME_INF;

	return to_ratio(period, quota);
}

static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
{
	struct cfs_schedulable_data *d = data;
7122
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7123 7124 7125 7126 7127
	s64 quota = 0, parent_quota = -1;

	if (!tg->parent) {
		quota = RUNTIME_INF;
	} else {
7128
		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7129 7130

		quota = normalize_cfs_quota(tg, d);
7131
		parent_quota = parent_b->hierarchical_quota;
7132 7133

		/*
I
Ingo Molnar 已提交
7134 7135
		 * Ensure max(child_quota) <= parent_quota, inherit when no
		 * limit is set:
7136 7137 7138 7139 7140 7141
		 */
		if (quota == RUNTIME_INF)
			quota = parent_quota;
		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
			return -EINVAL;
	}
7142
	cfs_b->hierarchical_quota = quota;
7143 7144 7145 7146 7147 7148

	return 0;
}

static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
{
7149
	int ret;
7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160
	struct cfs_schedulable_data data = {
		.tg = tg,
		.period = period,
		.quota = quota,
	};

	if (quota != RUNTIME_INF) {
		do_div(data.period, NSEC_PER_USEC);
		do_div(data.quota, NSEC_PER_USEC);
	}

7161 7162 7163 7164 7165
	rcu_read_lock();
	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
	rcu_read_unlock();

	return ret;
7166
}
7167

7168
static int cpu_stats_show(struct seq_file *sf, void *v)
7169
{
7170
	struct task_group *tg = css_tg(seq_css(sf));
7171
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7172

7173 7174 7175
	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
7176 7177 7178

	return 0;
}
7179
#endif /* CONFIG_CFS_BANDWIDTH */
7180
#endif /* CONFIG_FAIR_GROUP_SCHED */
7181

7182
#ifdef CONFIG_RT_GROUP_SCHED
7183 7184
static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
				struct cftype *cft, s64 val)
P
Peter Zijlstra 已提交
7185
{
7186
	return sched_group_set_rt_runtime(css_tg(css), val);
P
Peter Zijlstra 已提交
7187 7188
}

7189 7190
static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
			       struct cftype *cft)
P
Peter Zijlstra 已提交
7191
{
7192
	return sched_group_rt_runtime(css_tg(css));
P
Peter Zijlstra 已提交
7193
}
7194

7195 7196
static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
				    struct cftype *cftype, u64 rt_period_us)
7197
{
7198
	return sched_group_set_rt_period(css_tg(css), rt_period_us);
7199 7200
}

7201 7202
static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
				   struct cftype *cft)
7203
{
7204
	return sched_group_rt_period(css_tg(css));
7205
}
7206
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
7207

7208
static struct cftype cpu_files[] = {
7209
#ifdef CONFIG_FAIR_GROUP_SCHED
7210 7211
	{
		.name = "shares",
7212 7213
		.read_u64 = cpu_shares_read_u64,
		.write_u64 = cpu_shares_write_u64,
7214
	},
7215
#endif
7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226
#ifdef CONFIG_CFS_BANDWIDTH
	{
		.name = "cfs_quota_us",
		.read_s64 = cpu_cfs_quota_read_s64,
		.write_s64 = cpu_cfs_quota_write_s64,
	},
	{
		.name = "cfs_period_us",
		.read_u64 = cpu_cfs_period_read_u64,
		.write_u64 = cpu_cfs_period_write_u64,
	},
7227 7228
	{
		.name = "stat",
7229
		.seq_show = cpu_stats_show,
7230
	},
7231
#endif
7232
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
7233
	{
P
Peter Zijlstra 已提交
7234
		.name = "rt_runtime_us",
7235 7236
		.read_s64 = cpu_rt_runtime_read,
		.write_s64 = cpu_rt_runtime_write,
P
Peter Zijlstra 已提交
7237
	},
7238 7239
	{
		.name = "rt_period_us",
7240 7241
		.read_u64 = cpu_rt_period_read_uint,
		.write_u64 = cpu_rt_period_write_uint,
7242
	},
7243
#endif
I
Ingo Molnar 已提交
7244
	{ }	/* Terminate */
7245 7246
};

7247
struct cgroup_subsys cpu_cgrp_subsys = {
7248
	.css_alloc	= cpu_cgroup_css_alloc,
7249
	.css_online	= cpu_cgroup_css_online,
7250
	.css_released	= cpu_cgroup_css_released,
7251
	.css_free	= cpu_cgroup_css_free,
7252
	.fork		= cpu_cgroup_fork,
7253 7254
	.can_attach	= cpu_cgroup_can_attach,
	.attach		= cpu_cgroup_attach,
7255
	.legacy_cftypes	= cpu_files,
7256
	.early_init	= true,
7257 7258
};

7259
#endif	/* CONFIG_CGROUP_SCHED */
7260

7261 7262 7263 7264 7265
void dump_cpu_task(int cpu)
{
	pr_info("Task dump for CPU %d:\n", cpu);
	sched_show_task(cpu_curr(cpu));
}
7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306

/*
 * Nice levels are multiplicative, with a gentle 10% change for every
 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
 * nice 1, it will get ~10% less CPU time than another CPU-bound task
 * that remained on nice 0.
 *
 * The "10% effect" is relative and cumulative: from _any_ nice level,
 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
 * If a task goes up by ~10% and another task goes down by ~10% then
 * the relative distance between them is ~25%.)
 */
const int sched_prio_to_weight[40] = {
 /* -20 */     88761,     71755,     56483,     46273,     36291,
 /* -15 */     29154,     23254,     18705,     14949,     11916,
 /* -10 */      9548,      7620,      6100,      4904,      3906,
 /*  -5 */      3121,      2501,      1991,      1586,      1277,
 /*   0 */      1024,       820,       655,       526,       423,
 /*   5 */       335,       272,       215,       172,       137,
 /*  10 */       110,        87,        70,        56,        45,
 /*  15 */        36,        29,        23,        18,        15,
};

/*
 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
 *
 * In cases where the weight does not change often, we can use the
 * precalculated inverse to speed up arithmetics by turning divisions
 * into multiplications:
 */
const u32 sched_prio_to_wmult[40] = {
 /* -20 */     48388,     59856,     76040,     92818,    118348,
 /* -15 */    147320,    184698,    229616,    287308,    360437,
 /* -10 */    449829,    563644,    704093,    875809,   1099582,
 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
};