book3s_hv.c 118.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
/*
 * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
 * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
 *
 * Authors:
 *    Paul Mackerras <paulus@au1.ibm.com>
 *    Alexander Graf <agraf@suse.de>
 *    Kevin Wolf <mail@kevin-wolf.de>
 *
 * Description: KVM functions specific to running on Book 3S
 * processors in hypervisor mode (specifically POWER7 and later).
 *
 * This file is derived from arch/powerpc/kvm/book3s.c,
 * by Alexander Graf <agraf@suse.de>.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License, version 2, as
 * published by the Free Software Foundation.
 */

#include <linux/kvm_host.h>
22
#include <linux/kernel.h>
23 24 25
#include <linux/err.h>
#include <linux/slab.h>
#include <linux/preempt.h>
26
#include <linux/sched/signal.h>
27
#include <linux/sched/stat.h>
28
#include <linux/delay.h>
29
#include <linux/export.h>
30 31
#include <linux/fs.h>
#include <linux/anon_inodes.h>
32
#include <linux/cpu.h>
33
#include <linux/cpumask.h>
34 35
#include <linux/spinlock.h>
#include <linux/page-flags.h>
36
#include <linux/srcu.h>
37
#include <linux/miscdevice.h>
38
#include <linux/debugfs.h>
39 40 41 42 43 44 45 46 47
#include <linux/gfp.h>
#include <linux/vmalloc.h>
#include <linux/highmem.h>
#include <linux/hugetlb.h>
#include <linux/kvm_irqfd.h>
#include <linux/irqbypass.h>
#include <linux/module.h>
#include <linux/compiler.h>
#include <linux/of.h>
48

49
#include <asm/ftrace.h>
50
#include <asm/reg.h>
51
#include <asm/ppc-opcode.h>
52
#include <asm/asm-prototypes.h>
53
#include <asm/debug.h>
54
#include <asm/disassemble.h>
55 56
#include <asm/cputable.h>
#include <asm/cacheflush.h>
57
#include <linux/uaccess.h>
58 59 60 61 62 63
#include <asm/io.h>
#include <asm/kvm_ppc.h>
#include <asm/kvm_book3s.h>
#include <asm/mmu_context.h>
#include <asm/lppaca.h>
#include <asm/processor.h>
64
#include <asm/cputhreads.h>
65
#include <asm/page.h>
66
#include <asm/hvcall.h>
67
#include <asm/switch_to.h>
68
#include <asm/smp.h>
69
#include <asm/dbell.h>
70
#include <asm/hmi.h>
71
#include <asm/pnv-pci.h>
72
#include <asm/mmu.h>
73 74
#include <asm/opal.h>
#include <asm/xics.h>
75
#include <asm/xive.h>
76

77 78
#include "book3s.h"

79 80 81
#define CREATE_TRACE_POINTS
#include "trace_hv.h"

82 83 84 85
/* #define EXIT_DEBUG */
/* #define EXIT_DEBUG_SIMPLE */
/* #define EXIT_DEBUG_INT */

86 87
/* Used to indicate that a guest page fault needs to be handled */
#define RESUME_PAGE_FAULT	(RESUME_GUEST | RESUME_FLAG_ARCH1)
88 89
/* Used to indicate that a guest passthrough interrupt needs to be handled */
#define RESUME_PASSTHROUGH	(RESUME_GUEST | RESUME_FLAG_ARCH2)
90

91 92 93
/* Used as a "null" value for timebase values */
#define TB_NIL	(~(u64)0)

94 95
static DECLARE_BITMAP(default_enabled_hcalls, MAX_HCALL_OPCODE/4 + 1);

96
static int dynamic_mt_modes = 6;
97
module_param(dynamic_mt_modes, int, 0644);
98
MODULE_PARM_DESC(dynamic_mt_modes, "Set of allowed dynamic micro-threading modes: 0 (= none), 2, 4, or 6 (= 2 or 4)");
99
static int target_smt_mode;
100
module_param(target_smt_mode, int, 0644);
101
MODULE_PARM_DESC(target_smt_mode, "Target threads per core (0 = max)");
102

103 104 105 106
static bool indep_threads_mode = true;
module_param(indep_threads_mode, bool, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(indep_threads_mode, "Independent-threads mode (only on POWER9)");

107 108 109 110 111 112
#ifdef CONFIG_KVM_XICS
static struct kernel_param_ops module_param_ops = {
	.set = param_set_int,
	.get = param_get_int,
};

113
module_param_cb(kvm_irq_bypass, &module_param_ops, &kvm_irq_bypass, 0644);
114 115
MODULE_PARM_DESC(kvm_irq_bypass, "Bypass passthrough interrupt optimization");

116
module_param_cb(h_ipi_redirect, &module_param_ops, &h_ipi_redirect, 0644);
117 118 119
MODULE_PARM_DESC(h_ipi_redirect, "Redirect H_IPI wakeup to a free host core");
#endif

120 121 122
/* If set, the threads on each CPU core have to be in the same MMU mode */
static bool no_mixing_hpt_and_radix;

123
static void kvmppc_end_cede(struct kvm_vcpu *vcpu);
124
static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu);
125

126 127 128 129 130
/*
 * RWMR values for POWER8.  These control the rate at which PURR
 * and SPURR count and should be set according to the number of
 * online threads in the vcore being run.
 */
131 132 133 134 135 136 137 138
#define RWMR_RPA_P8_1THREAD	0x164520C62609AECAUL
#define RWMR_RPA_P8_2THREAD	0x7FFF2908450D8DA9UL
#define RWMR_RPA_P8_3THREAD	0x164520C62609AECAUL
#define RWMR_RPA_P8_4THREAD	0x199A421245058DA9UL
#define RWMR_RPA_P8_5THREAD	0x164520C62609AECAUL
#define RWMR_RPA_P8_6THREAD	0x164520C62609AECAUL
#define RWMR_RPA_P8_7THREAD	0x164520C62609AECAUL
#define RWMR_RPA_P8_8THREAD	0x164520C62609AECAUL
139 140 141 142 143 144 145 146 147 148 149 150 151

static unsigned long p8_rwmr_values[MAX_SMT_THREADS + 1] = {
	RWMR_RPA_P8_1THREAD,
	RWMR_RPA_P8_1THREAD,
	RWMR_RPA_P8_2THREAD,
	RWMR_RPA_P8_3THREAD,
	RWMR_RPA_P8_4THREAD,
	RWMR_RPA_P8_5THREAD,
	RWMR_RPA_P8_6THREAD,
	RWMR_RPA_P8_7THREAD,
	RWMR_RPA_P8_8THREAD,
};

152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
static inline struct kvm_vcpu *next_runnable_thread(struct kvmppc_vcore *vc,
		int *ip)
{
	int i = *ip;
	struct kvm_vcpu *vcpu;

	while (++i < MAX_SMT_THREADS) {
		vcpu = READ_ONCE(vc->runnable_threads[i]);
		if (vcpu) {
			*ip = i;
			return vcpu;
		}
	}
	return NULL;
}

/* Used to traverse the list of runnable threads for a given vcore */
#define for_each_runnable_thread(i, vcpu, vc) \
	for (i = -1; (vcpu = next_runnable_thread(vc, &i)); )

172 173
static bool kvmppc_ipi_thread(int cpu)
{
174 175 176 177 178 179 180 181 182 183
	unsigned long msg = PPC_DBELL_TYPE(PPC_DBELL_SERVER);

	/* On POWER9 we can use msgsnd to IPI any cpu */
	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
		msg |= get_hard_smp_processor_id(cpu);
		smp_mb();
		__asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
		return true;
	}

184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
	/* On POWER8 for IPIs to threads in the same core, use msgsnd */
	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
		preempt_disable();
		if (cpu_first_thread_sibling(cpu) ==
		    cpu_first_thread_sibling(smp_processor_id())) {
			msg |= cpu_thread_in_core(cpu);
			smp_mb();
			__asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
			preempt_enable();
			return true;
		}
		preempt_enable();
	}

#if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP)
199
	if (cpu >= 0 && cpu < nr_cpu_ids) {
200
		if (paca_ptrs[cpu]->kvm_hstate.xics_phys) {
201 202 203 204
			xics_wake_cpu(cpu);
			return true;
		}
		opal_int_set_mfrr(get_hard_smp_processor_id(cpu), IPI_PRIORITY);
205 206 207 208 209 210 211
		return true;
	}
#endif

	return false;
}

212
static void kvmppc_fast_vcpu_kick_hv(struct kvm_vcpu *vcpu)
213
{
214
	int cpu;
215
	struct swait_queue_head *wqp;
216 217

	wqp = kvm_arch_vcpu_wq(vcpu);
218
	if (swq_has_sleeper(wqp)) {
219
		swake_up_one(wqp);
220 221 222
		++vcpu->stat.halt_wakeup;
	}

223 224
	cpu = READ_ONCE(vcpu->arch.thread_cpu);
	if (cpu >= 0 && kvmppc_ipi_thread(cpu))
225
		return;
226 227

	/* CPU points to the first thread of the core */
228
	cpu = vcpu->cpu;
229 230
	if (cpu >= 0 && cpu < nr_cpu_ids && cpu_online(cpu))
		smp_send_reschedule(cpu);
231 232
}

233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
/*
 * We use the vcpu_load/put functions to measure stolen time.
 * Stolen time is counted as time when either the vcpu is able to
 * run as part of a virtual core, but the task running the vcore
 * is preempted or sleeping, or when the vcpu needs something done
 * in the kernel by the task running the vcpu, but that task is
 * preempted or sleeping.  Those two things have to be counted
 * separately, since one of the vcpu tasks will take on the job
 * of running the core, and the other vcpu tasks in the vcore will
 * sleep waiting for it to do that, but that sleep shouldn't count
 * as stolen time.
 *
 * Hence we accumulate stolen time when the vcpu can run as part of
 * a vcore using vc->stolen_tb, and the stolen time when the vcpu
 * needs its task to do other things in the kernel (for example,
 * service a page fault) in busy_stolen.  We don't accumulate
 * stolen time for a vcore when it is inactive, or for a vcpu
 * when it is in state RUNNING or NOTREADY.  NOTREADY is a bit of
 * a misnomer; it means that the vcpu task is not executing in
 * the KVM_VCPU_RUN ioctl, i.e. it is in userspace or elsewhere in
 * the kernel.  We don't have any way of dividing up that time
 * between time that the vcpu is genuinely stopped, time that
 * the task is actively working on behalf of the vcpu, and time
 * that the task is preempted, so we don't count any of it as
 * stolen.
 *
 * Updates to busy_stolen are protected by arch.tbacct_lock;
260 261 262 263
 * updates to vc->stolen_tb are protected by the vcore->stoltb_lock
 * lock.  The stolen times are measured in units of timebase ticks.
 * (Note that the != TB_NIL checks below are purely defensive;
 * they should never fail.)
264 265
 */

266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
static void kvmppc_core_start_stolen(struct kvmppc_vcore *vc)
{
	unsigned long flags;

	spin_lock_irqsave(&vc->stoltb_lock, flags);
	vc->preempt_tb = mftb();
	spin_unlock_irqrestore(&vc->stoltb_lock, flags);
}

static void kvmppc_core_end_stolen(struct kvmppc_vcore *vc)
{
	unsigned long flags;

	spin_lock_irqsave(&vc->stoltb_lock, flags);
	if (vc->preempt_tb != TB_NIL) {
		vc->stolen_tb += mftb() - vc->preempt_tb;
		vc->preempt_tb = TB_NIL;
	}
	spin_unlock_irqrestore(&vc->stoltb_lock, flags);
}

287
static void kvmppc_core_vcpu_load_hv(struct kvm_vcpu *vcpu, int cpu)
288
{
289
	struct kvmppc_vcore *vc = vcpu->arch.vcore;
290
	unsigned long flags;
291

292 293 294 295 296 297
	/*
	 * We can test vc->runner without taking the vcore lock,
	 * because only this task ever sets vc->runner to this
	 * vcpu, and once it is set to this vcpu, only this task
	 * ever sets it to NULL.
	 */
298 299 300
	if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
		kvmppc_core_end_stolen(vc);

301
	spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
302 303 304 305 306
	if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST &&
	    vcpu->arch.busy_preempt != TB_NIL) {
		vcpu->arch.busy_stolen += mftb() - vcpu->arch.busy_preempt;
		vcpu->arch.busy_preempt = TB_NIL;
	}
307
	spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
308 309
}

310
static void kvmppc_core_vcpu_put_hv(struct kvm_vcpu *vcpu)
311
{
312
	struct kvmppc_vcore *vc = vcpu->arch.vcore;
313
	unsigned long flags;
314

315 316 317
	if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
		kvmppc_core_start_stolen(vc);

318
	spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
319 320
	if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST)
		vcpu->arch.busy_preempt = mftb();
321
	spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
322 323
}

324
static void kvmppc_set_msr_hv(struct kvm_vcpu *vcpu, u64 msr)
325
{
326 327 328 329 330 331
	/*
	 * Check for illegal transactional state bit combination
	 * and if we find it, force the TS field to a safe state.
	 */
	if ((msr & MSR_TS_MASK) == MSR_TS_MASK)
		msr &= ~MSR_TS_MASK;
332
	vcpu->arch.shregs.msr = msr;
333
	kvmppc_end_cede(vcpu);
334 335
}

T
Thomas Huth 已提交
336
static void kvmppc_set_pvr_hv(struct kvm_vcpu *vcpu, u32 pvr)
337 338 339 340
{
	vcpu->arch.pvr = pvr;
}

341 342 343
/* Dummy value used in computing PCR value below */
#define PCR_ARCH_300	(PCR_ARCH_207 << 1)

T
Thomas Huth 已提交
344
static int kvmppc_set_arch_compat(struct kvm_vcpu *vcpu, u32 arch_compat)
345
{
346
	unsigned long host_pcr_bit = 0, guest_pcr_bit = 0;
347 348
	struct kvmppc_vcore *vc = vcpu->arch.vcore;

349 350 351 352 353 354 355 356 357 358 359 360
	/* We can (emulate) our own architecture version and anything older */
	if (cpu_has_feature(CPU_FTR_ARCH_300))
		host_pcr_bit = PCR_ARCH_300;
	else if (cpu_has_feature(CPU_FTR_ARCH_207S))
		host_pcr_bit = PCR_ARCH_207;
	else if (cpu_has_feature(CPU_FTR_ARCH_206))
		host_pcr_bit = PCR_ARCH_206;
	else
		host_pcr_bit = PCR_ARCH_205;

	/* Determine lowest PCR bit needed to run guest in given PVR level */
	guest_pcr_bit = host_pcr_bit;
361 362 363
	if (arch_compat) {
		switch (arch_compat) {
		case PVR_ARCH_205:
364
			guest_pcr_bit = PCR_ARCH_205;
365 366 367
			break;
		case PVR_ARCH_206:
		case PVR_ARCH_206p:
368
			guest_pcr_bit = PCR_ARCH_206;
369 370
			break;
		case PVR_ARCH_207:
371 372 373 374
			guest_pcr_bit = PCR_ARCH_207;
			break;
		case PVR_ARCH_300:
			guest_pcr_bit = PCR_ARCH_300;
375 376 377 378 379 380
			break;
		default:
			return -EINVAL;
		}
	}

381 382 383 384
	/* Check requested PCR bits don't exceed our capabilities */
	if (guest_pcr_bit > host_pcr_bit)
		return -EINVAL;

385 386
	spin_lock(&vc->lock);
	vc->arch_compat = arch_compat;
387 388
	/* Set all PCR bits for which guest_pcr_bit <= bit < host_pcr_bit */
	vc->pcr = host_pcr_bit - guest_pcr_bit;
389 390 391 392 393
	spin_unlock(&vc->lock);

	return 0;
}

T
Thomas Huth 已提交
394
static void kvmppc_dump_regs(struct kvm_vcpu *vcpu)
395 396 397 398 399
{
	int r;

	pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id);
	pr_err("pc  = %.16lx  msr = %.16llx  trap = %x\n",
400
	       vcpu->arch.regs.nip, vcpu->arch.shregs.msr, vcpu->arch.trap);
401 402 403 404 405
	for (r = 0; r < 16; ++r)
		pr_err("r%2d = %.16lx  r%d = %.16lx\n",
		       r, kvmppc_get_gpr(vcpu, r),
		       r+16, kvmppc_get_gpr(vcpu, r+16));
	pr_err("ctr = %.16lx  lr  = %.16lx\n",
406
	       vcpu->arch.regs.ctr, vcpu->arch.regs.link);
407 408 409 410 411 412
	pr_err("srr0 = %.16llx srr1 = %.16llx\n",
	       vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1);
	pr_err("sprg0 = %.16llx sprg1 = %.16llx\n",
	       vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1);
	pr_err("sprg2 = %.16llx sprg3 = %.16llx\n",
	       vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3);
413 414
	pr_err("cr = %.8lx  xer = %.16lx  dsisr = %.8x\n",
	       vcpu->arch.regs.ccr, vcpu->arch.regs.xer, vcpu->arch.shregs.dsisr);
415 416 417 418 419 420 421 422
	pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar);
	pr_err("fault dar = %.16lx dsisr = %.8x\n",
	       vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
	pr_err("SLB (%d entries):\n", vcpu->arch.slb_max);
	for (r = 0; r < vcpu->arch.slb_max; ++r)
		pr_err("  ESID = %.16llx VSID = %.16llx\n",
		       vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv);
	pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n",
423
	       vcpu->arch.vcore->lpcr, vcpu->kvm->arch.sdr1,
424 425 426
	       vcpu->arch.last_inst);
}

T
Thomas Huth 已提交
427
static struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id)
428
{
429
	return kvm_get_vcpu_by_id(kvm, id);
430 431 432 433
}

static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa)
{
434
	vpa->__old_status |= LPPACA_OLD_SHARED_PROC;
435
	vpa->yield_count = cpu_to_be32(1);
436 437
}

438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453
static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v,
		   unsigned long addr, unsigned long len)
{
	/* check address is cacheline aligned */
	if (addr & (L1_CACHE_BYTES - 1))
		return -EINVAL;
	spin_lock(&vcpu->arch.vpa_update_lock);
	if (v->next_gpa != addr || v->len != len) {
		v->next_gpa = addr;
		v->len = addr ? len : 0;
		v->update_pending = 1;
	}
	spin_unlock(&vcpu->arch.vpa_update_lock);
	return 0;
}

454 455 456 457
/* Length for a per-processor buffer is passed in at offset 4 in the buffer */
struct reg_vpa {
	u32 dummy;
	union {
458 459
		__be16 hword;
		__be32 word;
460 461 462 463 464 465 466 467 468 469
	} length;
};

static int vpa_is_registered(struct kvmppc_vpa *vpap)
{
	if (vpap->update_pending)
		return vpap->next_gpa != 0;
	return vpap->pinned_addr != NULL;
}

470 471 472 473 474
static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu,
				       unsigned long flags,
				       unsigned long vcpuid, unsigned long vpa)
{
	struct kvm *kvm = vcpu->kvm;
475
	unsigned long len, nb;
476 477
	void *va;
	struct kvm_vcpu *tvcpu;
478 479 480
	int err;
	int subfunc;
	struct kvmppc_vpa *vpap;
481 482 483 484 485

	tvcpu = kvmppc_find_vcpu(kvm, vcpuid);
	if (!tvcpu)
		return H_PARAMETER;

486 487 488 489 490
	subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK;
	if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL ||
	    subfunc == H_VPA_REG_SLB) {
		/* Registering new area - address must be cache-line aligned */
		if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa)
491
			return H_PARAMETER;
492 493

		/* convert logical addr to kernel addr and read length */
494 495
		va = kvmppc_pin_guest_page(kvm, vpa, &nb);
		if (va == NULL)
496
			return H_PARAMETER;
497
		if (subfunc == H_VPA_REG_VPA)
498
			len = be16_to_cpu(((struct reg_vpa *)va)->length.hword);
499
		else
500
			len = be32_to_cpu(((struct reg_vpa *)va)->length.word);
501
		kvmppc_unpin_guest_page(kvm, va, vpa, false);
502 503 504 505 506 507 508 509 510 511 512 513 514 515 516

		/* Check length */
		if (len > nb || len < sizeof(struct reg_vpa))
			return H_PARAMETER;
	} else {
		vpa = 0;
		len = 0;
	}

	err = H_PARAMETER;
	vpap = NULL;
	spin_lock(&tvcpu->arch.vpa_update_lock);

	switch (subfunc) {
	case H_VPA_REG_VPA:		/* register VPA */
517 518 519 520 521 522
		/*
		 * The size of our lppaca is 1kB because of the way we align
		 * it for the guest to avoid crossing a 4kB boundary. We only
		 * use 640 bytes of the structure though, so we should accept
		 * clients that set a size of 640.
		 */
523 524
		BUILD_BUG_ON(sizeof(struct lppaca) != 640);
		if (len < sizeof(struct lppaca))
525
			break;
526 527 528 529 530 531
		vpap = &tvcpu->arch.vpa;
		err = 0;
		break;

	case H_VPA_REG_DTL:		/* register DTL */
		if (len < sizeof(struct dtl_entry))
532
			break;
533 534 535 536 537
		len -= len % sizeof(struct dtl_entry);

		/* Check that they have previously registered a VPA */
		err = H_RESOURCE;
		if (!vpa_is_registered(&tvcpu->arch.vpa))
538
			break;
539 540 541 542 543 544 545 546 547

		vpap = &tvcpu->arch.dtl;
		err = 0;
		break;

	case H_VPA_REG_SLB:		/* register SLB shadow buffer */
		/* Check that they have previously registered a VPA */
		err = H_RESOURCE;
		if (!vpa_is_registered(&tvcpu->arch.vpa))
548
			break;
549 550 551 552 553 554 555 556 557 558

		vpap = &tvcpu->arch.slb_shadow;
		err = 0;
		break;

	case H_VPA_DEREG_VPA:		/* deregister VPA */
		/* Check they don't still have a DTL or SLB buf registered */
		err = H_RESOURCE;
		if (vpa_is_registered(&tvcpu->arch.dtl) ||
		    vpa_is_registered(&tvcpu->arch.slb_shadow))
559
			break;
560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579

		vpap = &tvcpu->arch.vpa;
		err = 0;
		break;

	case H_VPA_DEREG_DTL:		/* deregister DTL */
		vpap = &tvcpu->arch.dtl;
		err = 0;
		break;

	case H_VPA_DEREG_SLB:		/* deregister SLB shadow buffer */
		vpap = &tvcpu->arch.slb_shadow;
		err = 0;
		break;
	}

	if (vpap) {
		vpap->next_gpa = vpa;
		vpap->len = len;
		vpap->update_pending = 1;
580
	}
581

582 583
	spin_unlock(&tvcpu->arch.vpa_update_lock);

584
	return err;
585 586
}

587
static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap)
588
{
589
	struct kvm *kvm = vcpu->kvm;
590 591
	void *va;
	unsigned long nb;
592
	unsigned long gpa;
593

594 595 596 597 598 599 600 601 602 603 604 605 606 607
	/*
	 * We need to pin the page pointed to by vpap->next_gpa,
	 * but we can't call kvmppc_pin_guest_page under the lock
	 * as it does get_user_pages() and down_read().  So we
	 * have to drop the lock, pin the page, then get the lock
	 * again and check that a new area didn't get registered
	 * in the meantime.
	 */
	for (;;) {
		gpa = vpap->next_gpa;
		spin_unlock(&vcpu->arch.vpa_update_lock);
		va = NULL;
		nb = 0;
		if (gpa)
608
			va = kvmppc_pin_guest_page(kvm, gpa, &nb);
609 610 611 612 613
		spin_lock(&vcpu->arch.vpa_update_lock);
		if (gpa == vpap->next_gpa)
			break;
		/* sigh... unpin that one and try again */
		if (va)
614
			kvmppc_unpin_guest_page(kvm, va, gpa, false);
615 616 617 618 619 620 621 622 623
	}

	vpap->update_pending = 0;
	if (va && nb < vpap->len) {
		/*
		 * If it's now too short, it must be that userspace
		 * has changed the mappings underlying guest memory,
		 * so unregister the region.
		 */
624
		kvmppc_unpin_guest_page(kvm, va, gpa, false);
625
		va = NULL;
626 627
	}
	if (vpap->pinned_addr)
628 629 630
		kvmppc_unpin_guest_page(kvm, vpap->pinned_addr, vpap->gpa,
					vpap->dirty);
	vpap->gpa = gpa;
631
	vpap->pinned_addr = va;
632
	vpap->dirty = false;
633 634 635 636 637 638
	if (va)
		vpap->pinned_end = va + vpap->len;
}

static void kvmppc_update_vpas(struct kvm_vcpu *vcpu)
{
639 640 641 642 643
	if (!(vcpu->arch.vpa.update_pending ||
	      vcpu->arch.slb_shadow.update_pending ||
	      vcpu->arch.dtl.update_pending))
		return;

644 645
	spin_lock(&vcpu->arch.vpa_update_lock);
	if (vcpu->arch.vpa.update_pending) {
646
		kvmppc_update_vpa(vcpu, &vcpu->arch.vpa);
647 648
		if (vcpu->arch.vpa.pinned_addr)
			init_vpa(vcpu, vcpu->arch.vpa.pinned_addr);
649 650
	}
	if (vcpu->arch.dtl.update_pending) {
651
		kvmppc_update_vpa(vcpu, &vcpu->arch.dtl);
652 653 654 655
		vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr;
		vcpu->arch.dtl_index = 0;
	}
	if (vcpu->arch.slb_shadow.update_pending)
656
		kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow);
657 658 659
	spin_unlock(&vcpu->arch.vpa_update_lock);
}

660 661 662 663 664 665 666
/*
 * Return the accumulated stolen time for the vcore up until `now'.
 * The caller should hold the vcore lock.
 */
static u64 vcore_stolen_time(struct kvmppc_vcore *vc, u64 now)
{
	u64 p;
667
	unsigned long flags;
668

669 670
	spin_lock_irqsave(&vc->stoltb_lock, flags);
	p = vc->stolen_tb;
671
	if (vc->vcore_state != VCORE_INACTIVE &&
672 673 674
	    vc->preempt_tb != TB_NIL)
		p += now - vc->preempt_tb;
	spin_unlock_irqrestore(&vc->stoltb_lock, flags);
675 676 677
	return p;
}

678 679 680 681 682
static void kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu,
				    struct kvmppc_vcore *vc)
{
	struct dtl_entry *dt;
	struct lppaca *vpa;
683 684 685
	unsigned long stolen;
	unsigned long core_stolen;
	u64 now;
686
	unsigned long flags;
687 688 689

	dt = vcpu->arch.dtl_ptr;
	vpa = vcpu->arch.vpa.pinned_addr;
690 691 692 693
	now = mftb();
	core_stolen = vcore_stolen_time(vc, now);
	stolen = core_stolen - vcpu->arch.stolen_logged;
	vcpu->arch.stolen_logged = core_stolen;
694
	spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
695 696
	stolen += vcpu->arch.busy_stolen;
	vcpu->arch.busy_stolen = 0;
697
	spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
698 699 700 701
	if (!dt || !vpa)
		return;
	memset(dt, 0, sizeof(struct dtl_entry));
	dt->dispatch_reason = 7;
702 703 704 705 706
	dt->processor_id = cpu_to_be16(vc->pcpu + vcpu->arch.ptid);
	dt->timebase = cpu_to_be64(now + vc->tb_offset);
	dt->enqueue_to_dispatch_time = cpu_to_be32(stolen);
	dt->srr0 = cpu_to_be64(kvmppc_get_pc(vcpu));
	dt->srr1 = cpu_to_be64(vcpu->arch.shregs.msr);
707 708 709 710 711 712
	++dt;
	if (dt == vcpu->arch.dtl.pinned_end)
		dt = vcpu->arch.dtl.pinned_addr;
	vcpu->arch.dtl_ptr = dt;
	/* order writing *dt vs. writing vpa->dtl_idx */
	smp_wmb();
713
	vpa->dtl_idx = cpu_to_be64(++vcpu->arch.dtl_index);
714
	vcpu->arch.dtl.dirty = true;
715 716
}

717 718 719 720 721 722
/* See if there is a doorbell interrupt pending for a vcpu */
static bool kvmppc_doorbell_pending(struct kvm_vcpu *vcpu)
{
	int thr;
	struct kvmppc_vcore *vc;

723 724 725 726 727 728 729 730 731
	if (vcpu->arch.doorbell_request)
		return true;
	/*
	 * Ensure that the read of vcore->dpdes comes after the read
	 * of vcpu->doorbell_request.  This barrier matches the
	 * lwsync in book3s_hv_rmhandlers.S just before the
	 * fast_guest_return label.
	 */
	smp_rmb();
732 733 734 735 736
	vc = vcpu->arch.vcore;
	thr = vcpu->vcpu_id - vc->first_vcpuid;
	return !!(vc->dpdes & (1 << thr));
}

737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766
static bool kvmppc_power8_compatible(struct kvm_vcpu *vcpu)
{
	if (vcpu->arch.vcore->arch_compat >= PVR_ARCH_207)
		return true;
	if ((!vcpu->arch.vcore->arch_compat) &&
	    cpu_has_feature(CPU_FTR_ARCH_207S))
		return true;
	return false;
}

static int kvmppc_h_set_mode(struct kvm_vcpu *vcpu, unsigned long mflags,
			     unsigned long resource, unsigned long value1,
			     unsigned long value2)
{
	switch (resource) {
	case H_SET_MODE_RESOURCE_SET_CIABR:
		if (!kvmppc_power8_compatible(vcpu))
			return H_P2;
		if (value2)
			return H_P4;
		if (mflags)
			return H_UNSUPPORTED_FLAG_START;
		/* Guests can't breakpoint the hypervisor */
		if ((value1 & CIABR_PRIV) == CIABR_PRIV_HYPER)
			return H_P3;
		vcpu->arch.ciabr  = value1;
		return H_SUCCESS;
	case H_SET_MODE_RESOURCE_SET_DAWR:
		if (!kvmppc_power8_compatible(vcpu))
			return H_P2;
767 768
		if (!ppc_breakpoint_available())
			return H_P2;
769 770 771 772 773 774 775 776 777 778 779 780
		if (mflags)
			return H_UNSUPPORTED_FLAG_START;
		if (value2 & DABRX_HYP)
			return H_P4;
		vcpu->arch.dawr  = value1;
		vcpu->arch.dawrx = value2;
		return H_SUCCESS;
	default:
		return H_TOO_HARD;
	}
}

781 782 783 784 785 786 787 788 789 790 791 792 793 794
static int kvm_arch_vcpu_yield_to(struct kvm_vcpu *target)
{
	struct kvmppc_vcore *vcore = target->arch.vcore;

	/*
	 * We expect to have been called by the real mode handler
	 * (kvmppc_rm_h_confer()) which would have directly returned
	 * H_SUCCESS if the source vcore wasn't idle (e.g. if it may
	 * have useful work to do and should not confer) so we don't
	 * recheck that here.
	 */

	spin_lock(&vcore->lock);
	if (target->arch.state == KVMPPC_VCPU_RUNNABLE &&
795 796
	    vcore->vcore_state != VCORE_INACTIVE &&
	    vcore->runner)
797 798 799 800 801 802 803 804 805 806 807 808 809 810
		target = vcore->runner;
	spin_unlock(&vcore->lock);

	return kvm_vcpu_yield_to(target);
}

static int kvmppc_get_yield_count(struct kvm_vcpu *vcpu)
{
	int yield_count = 0;
	struct lppaca *lppaca;

	spin_lock(&vcpu->arch.vpa_update_lock);
	lppaca = (struct lppaca *)vcpu->arch.vpa.pinned_addr;
	if (lppaca)
811
		yield_count = be32_to_cpu(lppaca->yield_count);
812 813 814 815
	spin_unlock(&vcpu->arch.vpa_update_lock);
	return yield_count;
}

816 817 818 819
int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu)
{
	unsigned long req = kvmppc_get_gpr(vcpu, 3);
	unsigned long target, ret = H_SUCCESS;
820
	int yield_count;
821
	struct kvm_vcpu *tvcpu;
822
	int idx, rc;
823

824 825 826 827
	if (req <= MAX_HCALL_OPCODE &&
	    !test_bit(req/4, vcpu->kvm->arch.enabled_hcalls))
		return RESUME_HOST;

828 829 830 831 832 833 834 835 836 837 838 839
	switch (req) {
	case H_CEDE:
		break;
	case H_PROD:
		target = kvmppc_get_gpr(vcpu, 4);
		tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
		if (!tvcpu) {
			ret = H_PARAMETER;
			break;
		}
		tvcpu->arch.prodded = 1;
		smp_mb();
840 841
		if (tvcpu->arch.ceded)
			kvmppc_fast_vcpu_kick_hv(tvcpu);
842 843
		break;
	case H_CONFER:
844 845 846 847 848 849 850 851
		target = kvmppc_get_gpr(vcpu, 4);
		if (target == -1)
			break;
		tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
		if (!tvcpu) {
			ret = H_PARAMETER;
			break;
		}
852 853 854 855
		yield_count = kvmppc_get_gpr(vcpu, 5);
		if (kvmppc_get_yield_count(tvcpu) != yield_count)
			break;
		kvm_arch_vcpu_yield_to(tvcpu);
856 857 858 859 860 861
		break;
	case H_REGISTER_VPA:
		ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4),
					kvmppc_get_gpr(vcpu, 5),
					kvmppc_get_gpr(vcpu, 6));
		break;
862 863 864 865
	case H_RTAS:
		if (list_empty(&vcpu->kvm->arch.rtas_tokens))
			return RESUME_HOST;

866
		idx = srcu_read_lock(&vcpu->kvm->srcu);
867
		rc = kvmppc_rtas_hcall(vcpu);
868
		srcu_read_unlock(&vcpu->kvm->srcu, idx);
869 870 871 872 873 874 875 876

		if (rc == -ENOENT)
			return RESUME_HOST;
		else if (rc == 0)
			break;

		/* Send the error out to userspace via KVM_RUN */
		return rc;
877 878 879 880 881 882 883 884 885 886
	case H_LOGICAL_CI_LOAD:
		ret = kvmppc_h_logical_ci_load(vcpu);
		if (ret == H_TOO_HARD)
			return RESUME_HOST;
		break;
	case H_LOGICAL_CI_STORE:
		ret = kvmppc_h_logical_ci_store(vcpu);
		if (ret == H_TOO_HARD)
			return RESUME_HOST;
		break;
887 888 889 890 891 892 893 894
	case H_SET_MODE:
		ret = kvmppc_h_set_mode(vcpu, kvmppc_get_gpr(vcpu, 4),
					kvmppc_get_gpr(vcpu, 5),
					kvmppc_get_gpr(vcpu, 6),
					kvmppc_get_gpr(vcpu, 7));
		if (ret == H_TOO_HARD)
			return RESUME_HOST;
		break;
895 896 897 898
	case H_XIRR:
	case H_CPPR:
	case H_EOI:
	case H_IPI:
899 900
	case H_IPOLL:
	case H_XIRR_X:
901
		if (kvmppc_xics_enabled(vcpu)) {
902 903 904 905
			if (xive_enabled()) {
				ret = H_NOT_AVAILABLE;
				return RESUME_GUEST;
			}
906 907
			ret = kvmppc_xics_hcall(vcpu, req);
			break;
908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932
		}
		return RESUME_HOST;
	case H_PUT_TCE:
		ret = kvmppc_h_put_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
						kvmppc_get_gpr(vcpu, 5),
						kvmppc_get_gpr(vcpu, 6));
		if (ret == H_TOO_HARD)
			return RESUME_HOST;
		break;
	case H_PUT_TCE_INDIRECT:
		ret = kvmppc_h_put_tce_indirect(vcpu, kvmppc_get_gpr(vcpu, 4),
						kvmppc_get_gpr(vcpu, 5),
						kvmppc_get_gpr(vcpu, 6),
						kvmppc_get_gpr(vcpu, 7));
		if (ret == H_TOO_HARD)
			return RESUME_HOST;
		break;
	case H_STUFF_TCE:
		ret = kvmppc_h_stuff_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
						kvmppc_get_gpr(vcpu, 5),
						kvmppc_get_gpr(vcpu, 6),
						kvmppc_get_gpr(vcpu, 7));
		if (ret == H_TOO_HARD)
			return RESUME_HOST;
		break;
933 934 935 936 937 938 939 940
	default:
		return RESUME_HOST;
	}
	kvmppc_set_gpr(vcpu, 3, ret);
	vcpu->arch.hcall_needed = 0;
	return RESUME_GUEST;
}

941 942 943 944 945 946 947
static int kvmppc_hcall_impl_hv(unsigned long cmd)
{
	switch (cmd) {
	case H_CEDE:
	case H_PROD:
	case H_CONFER:
	case H_REGISTER_VPA:
948
	case H_SET_MODE:
949 950
	case H_LOGICAL_CI_LOAD:
	case H_LOGICAL_CI_STORE:
951 952 953 954 955 956 957 958 959 960 961 962 963 964 965
#ifdef CONFIG_KVM_XICS
	case H_XIRR:
	case H_CPPR:
	case H_EOI:
	case H_IPI:
	case H_IPOLL:
	case H_XIRR_X:
#endif
		return 1;
	}

	/* See if it's in the real-mode table */
	return kvmppc_hcall_impl_hv_realmode(cmd);
}

966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989
static int kvmppc_emulate_debug_inst(struct kvm_run *run,
					struct kvm_vcpu *vcpu)
{
	u32 last_inst;

	if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) !=
					EMULATE_DONE) {
		/*
		 * Fetch failed, so return to guest and
		 * try executing it again.
		 */
		return RESUME_GUEST;
	}

	if (last_inst == KVMPPC_INST_SW_BREAKPOINT) {
		run->exit_reason = KVM_EXIT_DEBUG;
		run->debug.arch.address = kvmppc_get_pc(vcpu);
		return RESUME_HOST;
	} else {
		kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
		return RESUME_GUEST;
	}
}

990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082
static void do_nothing(void *x)
{
}

static unsigned long kvmppc_read_dpdes(struct kvm_vcpu *vcpu)
{
	int thr, cpu, pcpu, nthreads;
	struct kvm_vcpu *v;
	unsigned long dpdes;

	nthreads = vcpu->kvm->arch.emul_smt_mode;
	dpdes = 0;
	cpu = vcpu->vcpu_id & ~(nthreads - 1);
	for (thr = 0; thr < nthreads; ++thr, ++cpu) {
		v = kvmppc_find_vcpu(vcpu->kvm, cpu);
		if (!v)
			continue;
		/*
		 * If the vcpu is currently running on a physical cpu thread,
		 * interrupt it in order to pull it out of the guest briefly,
		 * which will update its vcore->dpdes value.
		 */
		pcpu = READ_ONCE(v->cpu);
		if (pcpu >= 0)
			smp_call_function_single(pcpu, do_nothing, NULL, 1);
		if (kvmppc_doorbell_pending(v))
			dpdes |= 1 << thr;
	}
	return dpdes;
}

/*
 * On POWER9, emulate doorbell-related instructions in order to
 * give the guest the illusion of running on a multi-threaded core.
 * The instructions emulated are msgsndp, msgclrp, mfspr TIR,
 * and mfspr DPDES.
 */
static int kvmppc_emulate_doorbell_instr(struct kvm_vcpu *vcpu)
{
	u32 inst, rb, thr;
	unsigned long arg;
	struct kvm *kvm = vcpu->kvm;
	struct kvm_vcpu *tvcpu;

	if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &inst) != EMULATE_DONE)
		return RESUME_GUEST;
	if (get_op(inst) != 31)
		return EMULATE_FAIL;
	rb = get_rb(inst);
	thr = vcpu->vcpu_id & (kvm->arch.emul_smt_mode - 1);
	switch (get_xop(inst)) {
	case OP_31_XOP_MSGSNDP:
		arg = kvmppc_get_gpr(vcpu, rb);
		if (((arg >> 27) & 0xf) != PPC_DBELL_SERVER)
			break;
		arg &= 0x3f;
		if (arg >= kvm->arch.emul_smt_mode)
			break;
		tvcpu = kvmppc_find_vcpu(kvm, vcpu->vcpu_id - thr + arg);
		if (!tvcpu)
			break;
		if (!tvcpu->arch.doorbell_request) {
			tvcpu->arch.doorbell_request = 1;
			kvmppc_fast_vcpu_kick_hv(tvcpu);
		}
		break;
	case OP_31_XOP_MSGCLRP:
		arg = kvmppc_get_gpr(vcpu, rb);
		if (((arg >> 27) & 0xf) != PPC_DBELL_SERVER)
			break;
		vcpu->arch.vcore->dpdes = 0;
		vcpu->arch.doorbell_request = 0;
		break;
	case OP_31_XOP_MFSPR:
		switch (get_sprn(inst)) {
		case SPRN_TIR:
			arg = thr;
			break;
		case SPRN_DPDES:
			arg = kvmppc_read_dpdes(vcpu);
			break;
		default:
			return EMULATE_FAIL;
		}
		kvmppc_set_gpr(vcpu, get_rt(inst), arg);
		break;
	default:
		return EMULATE_FAIL;
	}
	kvmppc_set_pc(vcpu, kvmppc_get_pc(vcpu) + 4);
	return RESUME_GUEST;
}

1083
/* Called with vcpu->arch.vcore->lock held */
1084 1085
static int kvmppc_handle_exit_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
				 struct task_struct *tsk)
1086 1087 1088 1089 1090
{
	int r = RESUME_HOST;

	vcpu->stat.sum_exits++;

1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108
	/*
	 * This can happen if an interrupt occurs in the last stages
	 * of guest entry or the first stages of guest exit (i.e. after
	 * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV
	 * and before setting it to KVM_GUEST_MODE_HOST_HV).
	 * That can happen due to a bug, or due to a machine check
	 * occurring at just the wrong time.
	 */
	if (vcpu->arch.shregs.msr & MSR_HV) {
		printk(KERN_EMERG "KVM trap in HV mode!\n");
		printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
			vcpu->arch.trap, kvmppc_get_pc(vcpu),
			vcpu->arch.shregs.msr);
		kvmppc_dump_regs(vcpu);
		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
		run->hw.hardware_exit_reason = vcpu->arch.trap;
		return RESUME_HOST;
	}
1109 1110 1111 1112 1113 1114 1115 1116 1117
	run->exit_reason = KVM_EXIT_UNKNOWN;
	run->ready_for_interrupt_injection = 1;
	switch (vcpu->arch.trap) {
	/* We're good on these - the host merely wanted to get our attention */
	case BOOK3S_INTERRUPT_HV_DECREMENTER:
		vcpu->stat.dec_exits++;
		r = RESUME_GUEST;
		break;
	case BOOK3S_INTERRUPT_EXTERNAL:
1118
	case BOOK3S_INTERRUPT_H_DOORBELL:
1119
	case BOOK3S_INTERRUPT_H_VIRT:
1120 1121 1122
		vcpu->stat.ext_intr_exits++;
		r = RESUME_GUEST;
		break;
1123
	/* SR/HMI/PMI are HV interrupts that host has handled. Resume guest.*/
1124
	case BOOK3S_INTERRUPT_HMI:
1125
	case BOOK3S_INTERRUPT_PERFMON:
1126
	case BOOK3S_INTERRUPT_SYSTEM_RESET:
1127 1128
		r = RESUME_GUEST;
		break;
1129
	case BOOK3S_INTERRUPT_MACHINE_CHECK:
1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143
		/* Exit to guest with KVM_EXIT_NMI as exit reason */
		run->exit_reason = KVM_EXIT_NMI;
		run->hw.hardware_exit_reason = vcpu->arch.trap;
		/* Clear out the old NMI status from run->flags */
		run->flags &= ~KVM_RUN_PPC_NMI_DISP_MASK;
		/* Now set the NMI status */
		if (vcpu->arch.mce_evt.disposition == MCE_DISPOSITION_RECOVERED)
			run->flags |= KVM_RUN_PPC_NMI_DISP_FULLY_RECOV;
		else
			run->flags |= KVM_RUN_PPC_NMI_DISP_NOT_RECOV;

		r = RESUME_HOST;
		/* Print the MCE event to host console. */
		machine_check_print_event_info(&vcpu->arch.mce_evt, false);
1144
		break;
1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163
	case BOOK3S_INTERRUPT_PROGRAM:
	{
		ulong flags;
		/*
		 * Normally program interrupts are delivered directly
		 * to the guest by the hardware, but we can get here
		 * as a result of a hypervisor emulation interrupt
		 * (e40) getting turned into a 700 by BML RTAS.
		 */
		flags = vcpu->arch.shregs.msr & 0x1f0000ull;
		kvmppc_core_queue_program(vcpu, flags);
		r = RESUME_GUEST;
		break;
	}
	case BOOK3S_INTERRUPT_SYSCALL:
	{
		/* hcall - punt to userspace */
		int i;

1164 1165 1166 1167
		/* hypercall with MSR_PR has already been handled in rmode,
		 * and never reaches here.
		 */

1168 1169 1170 1171 1172 1173 1174 1175 1176
		run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3);
		for (i = 0; i < 9; ++i)
			run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i);
		run->exit_reason = KVM_EXIT_PAPR_HCALL;
		vcpu->arch.hcall_needed = 1;
		r = RESUME_HOST;
		break;
	}
	/*
1177 1178 1179 1180 1181
	 * We get these next two if the guest accesses a page which it thinks
	 * it has mapped but which is not actually present, either because
	 * it is for an emulated I/O device or because the corresonding
	 * host page has been paged out.  Any other HDSI/HISI interrupts
	 * have been handled already.
1182 1183
	 */
	case BOOK3S_INTERRUPT_H_DATA_STORAGE:
1184
		r = RESUME_PAGE_FAULT;
1185 1186
		break;
	case BOOK3S_INTERRUPT_H_INST_STORAGE:
1187 1188 1189
		vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
		vcpu->arch.fault_dsisr = 0;
		r = RESUME_PAGE_FAULT;
1190 1191 1192
		break;
	/*
	 * This occurs if the guest executes an illegal instruction.
1193 1194 1195 1196
	 * If the guest debug is disabled, generate a program interrupt
	 * to the guest. If guest debug is enabled, we need to check
	 * whether the instruction is a software breakpoint instruction.
	 * Accordingly return to Guest or Host.
1197 1198
	 */
	case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
1199 1200 1201 1202
		if (vcpu->arch.emul_inst != KVM_INST_FETCH_FAILED)
			vcpu->arch.last_inst = kvmppc_need_byteswap(vcpu) ?
				swab32(vcpu->arch.emul_inst) :
				vcpu->arch.emul_inst;
1203
		if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) {
1204 1205
			/* Need vcore unlocked to call kvmppc_get_last_inst */
			spin_unlock(&vcpu->arch.vcore->lock);
1206
			r = kvmppc_emulate_debug_inst(run, vcpu);
1207
			spin_lock(&vcpu->arch.vcore->lock);
1208 1209 1210 1211
		} else {
			kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
			r = RESUME_GUEST;
		}
1212 1213 1214
		break;
	/*
	 * This occurs if the guest (kernel or userspace), does something that
1215 1216 1217 1218
	 * is prohibited by HFSCR.
	 * On POWER9, this could be a doorbell instruction that we need
	 * to emulate.
	 * Otherwise, we just generate a program interrupt to the guest.
1219 1220
	 */
	case BOOK3S_INTERRUPT_H_FAC_UNAVAIL:
1221
		r = EMULATE_FAIL;
1222 1223 1224 1225
		if (((vcpu->arch.hfscr >> 56) == FSCR_MSGP_LG) &&
		    cpu_has_feature(CPU_FTR_ARCH_300)) {
			/* Need vcore unlocked to call kvmppc_get_last_inst */
			spin_unlock(&vcpu->arch.vcore->lock);
1226
			r = kvmppc_emulate_doorbell_instr(vcpu);
1227 1228
			spin_lock(&vcpu->arch.vcore->lock);
		}
1229 1230 1231 1232
		if (r == EMULATE_FAIL) {
			kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
			r = RESUME_GUEST;
		}
1233
		break;
1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246

#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
	case BOOK3S_INTERRUPT_HV_SOFTPATCH:
		/*
		 * This occurs for various TM-related instructions that
		 * we need to emulate on POWER9 DD2.2.  We have already
		 * handled the cases where the guest was in real-suspend
		 * mode and was transitioning to transactional state.
		 */
		r = kvmhv_p9_tm_emulation(vcpu);
		break;
#endif

1247 1248 1249
	case BOOK3S_INTERRUPT_HV_RM_HARD:
		r = RESUME_PASSTHROUGH;
		break;
1250 1251 1252 1253 1254
	default:
		kvmppc_dump_regs(vcpu);
		printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
			vcpu->arch.trap, kvmppc_get_pc(vcpu),
			vcpu->arch.shregs.msr);
1255
		run->hw.hardware_exit_reason = vcpu->arch.trap;
1256 1257 1258 1259 1260 1261 1262
		r = RESUME_HOST;
		break;
	}

	return r;
}

1263 1264
static int kvm_arch_vcpu_ioctl_get_sregs_hv(struct kvm_vcpu *vcpu,
					    struct kvm_sregs *sregs)
1265 1266 1267 1268
{
	int i;

	memset(sregs, 0, sizeof(struct kvm_sregs));
1269
	sregs->pvr = vcpu->arch.pvr;
1270 1271 1272 1273 1274 1275 1276 1277
	for (i = 0; i < vcpu->arch.slb_max; i++) {
		sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige;
		sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
	}

	return 0;
}

1278 1279
static int kvm_arch_vcpu_ioctl_set_sregs_hv(struct kvm_vcpu *vcpu,
					    struct kvm_sregs *sregs)
1280 1281 1282
{
	int i, j;

1283 1284 1285
	/* Only accept the same PVR as the host's, since we can't spoof it */
	if (sregs->pvr != vcpu->arch.pvr)
		return -EINVAL;
1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299

	j = 0;
	for (i = 0; i < vcpu->arch.slb_nr; i++) {
		if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) {
			vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe;
			vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv;
			++j;
		}
	}
	vcpu->arch.slb_max = j;

	return 0;
}

1300 1301
static void kvmppc_set_lpcr(struct kvm_vcpu *vcpu, u64 new_lpcr,
		bool preserve_top32)
1302
{
1303
	struct kvm *kvm = vcpu->kvm;
1304 1305 1306 1307
	struct kvmppc_vcore *vc = vcpu->arch.vcore;
	u64 mask;

	spin_lock(&vc->lock);
1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325
	/*
	 * If ILE (interrupt little-endian) has changed, update the
	 * MSR_LE bit in the intr_msr for each vcpu in this vcore.
	 */
	if ((new_lpcr & LPCR_ILE) != (vc->lpcr & LPCR_ILE)) {
		struct kvm_vcpu *vcpu;
		int i;

		kvm_for_each_vcpu(i, vcpu, kvm) {
			if (vcpu->arch.vcore != vc)
				continue;
			if (new_lpcr & LPCR_ILE)
				vcpu->arch.intr_msr |= MSR_LE;
			else
				vcpu->arch.intr_msr &= ~MSR_LE;
		}
	}

1326 1327 1328
	/*
	 * Userspace can only modify DPFD (default prefetch depth),
	 * ILE (interrupt little-endian) and TC (translation control).
1329
	 * On POWER8 and POWER9 userspace can also modify AIL (alt. interrupt loc.).
1330 1331
	 */
	mask = LPCR_DPFD | LPCR_ILE | LPCR_TC;
1332 1333
	if (cpu_has_feature(CPU_FTR_ARCH_207S))
		mask |= LPCR_AIL;
1334 1335 1336 1337 1338 1339
	/*
	 * On POWER9, allow userspace to enable large decrementer for the
	 * guest, whether or not the host has it enabled.
	 */
	if (cpu_has_feature(CPU_FTR_ARCH_300))
		mask |= LPCR_LD;
1340 1341 1342 1343

	/* Broken 32-bit version of LPCR must not clear top bits */
	if (preserve_top32)
		mask &= 0xFFFFFFFF;
1344 1345 1346 1347
	vc->lpcr = (vc->lpcr & ~mask) | (new_lpcr & mask);
	spin_unlock(&vc->lock);
}

1348 1349
static int kvmppc_get_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
				 union kvmppc_one_reg *val)
1350
{
1351 1352
	int r = 0;
	long int i;
1353

1354
	switch (id) {
1355 1356 1357
	case KVM_REG_PPC_DEBUG_INST:
		*val = get_reg_val(id, KVMPPC_INST_SW_BREAKPOINT);
		break;
1358
	case KVM_REG_PPC_HIOR:
1359 1360 1361 1362 1363
		*val = get_reg_val(id, 0);
		break;
	case KVM_REG_PPC_DABR:
		*val = get_reg_val(id, vcpu->arch.dabr);
		break;
1364 1365 1366
	case KVM_REG_PPC_DABRX:
		*val = get_reg_val(id, vcpu->arch.dabrx);
		break;
1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381
	case KVM_REG_PPC_DSCR:
		*val = get_reg_val(id, vcpu->arch.dscr);
		break;
	case KVM_REG_PPC_PURR:
		*val = get_reg_val(id, vcpu->arch.purr);
		break;
	case KVM_REG_PPC_SPURR:
		*val = get_reg_val(id, vcpu->arch.spurr);
		break;
	case KVM_REG_PPC_AMR:
		*val = get_reg_val(id, vcpu->arch.amr);
		break;
	case KVM_REG_PPC_UAMOR:
		*val = get_reg_val(id, vcpu->arch.uamor);
		break;
1382
	case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS:
1383 1384 1385 1386 1387 1388
		i = id - KVM_REG_PPC_MMCR0;
		*val = get_reg_val(id, vcpu->arch.mmcr[i]);
		break;
	case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
		i = id - KVM_REG_PPC_PMC1;
		*val = get_reg_val(id, vcpu->arch.pmc[i]);
1389
		break;
1390 1391 1392 1393
	case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
		i = id - KVM_REG_PPC_SPMC1;
		*val = get_reg_val(id, vcpu->arch.spmc[i]);
		break;
1394 1395 1396 1397 1398 1399
	case KVM_REG_PPC_SIAR:
		*val = get_reg_val(id, vcpu->arch.siar);
		break;
	case KVM_REG_PPC_SDAR:
		*val = get_reg_val(id, vcpu->arch.sdar);
		break;
1400 1401
	case KVM_REG_PPC_SIER:
		*val = get_reg_val(id, vcpu->arch.sier);
1402
		break;
1403 1404 1405 1406 1407 1408 1409 1410 1411
	case KVM_REG_PPC_IAMR:
		*val = get_reg_val(id, vcpu->arch.iamr);
		break;
	case KVM_REG_PPC_PSPB:
		*val = get_reg_val(id, vcpu->arch.pspb);
		break;
	case KVM_REG_PPC_DPDES:
		*val = get_reg_val(id, vcpu->arch.vcore->dpdes);
		break;
1412 1413 1414
	case KVM_REG_PPC_VTB:
		*val = get_reg_val(id, vcpu->arch.vcore->vtb);
		break;
1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440
	case KVM_REG_PPC_DAWR:
		*val = get_reg_val(id, vcpu->arch.dawr);
		break;
	case KVM_REG_PPC_DAWRX:
		*val = get_reg_val(id, vcpu->arch.dawrx);
		break;
	case KVM_REG_PPC_CIABR:
		*val = get_reg_val(id, vcpu->arch.ciabr);
		break;
	case KVM_REG_PPC_CSIGR:
		*val = get_reg_val(id, vcpu->arch.csigr);
		break;
	case KVM_REG_PPC_TACR:
		*val = get_reg_val(id, vcpu->arch.tacr);
		break;
	case KVM_REG_PPC_TCSCR:
		*val = get_reg_val(id, vcpu->arch.tcscr);
		break;
	case KVM_REG_PPC_PID:
		*val = get_reg_val(id, vcpu->arch.pid);
		break;
	case KVM_REG_PPC_ACOP:
		*val = get_reg_val(id, vcpu->arch.acop);
		break;
	case KVM_REG_PPC_WORT:
		*val = get_reg_val(id, vcpu->arch.wort);
1441
		break;
1442 1443 1444 1445 1446 1447
	case KVM_REG_PPC_TIDR:
		*val = get_reg_val(id, vcpu->arch.tid);
		break;
	case KVM_REG_PPC_PSSCR:
		*val = get_reg_val(id, vcpu->arch.psscr);
		break;
1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464
	case KVM_REG_PPC_VPA_ADDR:
		spin_lock(&vcpu->arch.vpa_update_lock);
		*val = get_reg_val(id, vcpu->arch.vpa.next_gpa);
		spin_unlock(&vcpu->arch.vpa_update_lock);
		break;
	case KVM_REG_PPC_VPA_SLB:
		spin_lock(&vcpu->arch.vpa_update_lock);
		val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa;
		val->vpaval.length = vcpu->arch.slb_shadow.len;
		spin_unlock(&vcpu->arch.vpa_update_lock);
		break;
	case KVM_REG_PPC_VPA_DTL:
		spin_lock(&vcpu->arch.vpa_update_lock);
		val->vpaval.addr = vcpu->arch.dtl.next_gpa;
		val->vpaval.length = vcpu->arch.dtl.len;
		spin_unlock(&vcpu->arch.vpa_update_lock);
		break;
1465 1466 1467
	case KVM_REG_PPC_TB_OFFSET:
		*val = get_reg_val(id, vcpu->arch.vcore->tb_offset);
		break;
1468
	case KVM_REG_PPC_LPCR:
1469
	case KVM_REG_PPC_LPCR_64:
1470 1471
		*val = get_reg_val(id, vcpu->arch.vcore->lpcr);
		break;
1472 1473 1474
	case KVM_REG_PPC_PPR:
		*val = get_reg_val(id, vcpu->arch.ppr);
		break;
1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
	case KVM_REG_PPC_TFHAR:
		*val = get_reg_val(id, vcpu->arch.tfhar);
		break;
	case KVM_REG_PPC_TFIAR:
		*val = get_reg_val(id, vcpu->arch.tfiar);
		break;
	case KVM_REG_PPC_TEXASR:
		*val = get_reg_val(id, vcpu->arch.texasr);
		break;
	case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
		i = id - KVM_REG_PPC_TM_GPR0;
		*val = get_reg_val(id, vcpu->arch.gpr_tm[i]);
		break;
	case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
	{
		int j;
		i = id - KVM_REG_PPC_TM_VSR0;
		if (i < 32)
			for (j = 0; j < TS_FPRWIDTH; j++)
				val->vsxval[j] = vcpu->arch.fp_tm.fpr[i][j];
		else {
			if (cpu_has_feature(CPU_FTR_ALTIVEC))
				val->vval = vcpu->arch.vr_tm.vr[i-32];
			else
				r = -ENXIO;
		}
		break;
	}
	case KVM_REG_PPC_TM_CR:
		*val = get_reg_val(id, vcpu->arch.cr_tm);
		break;
1507 1508 1509
	case KVM_REG_PPC_TM_XER:
		*val = get_reg_val(id, vcpu->arch.xer_tm);
		break;
1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540
	case KVM_REG_PPC_TM_LR:
		*val = get_reg_val(id, vcpu->arch.lr_tm);
		break;
	case KVM_REG_PPC_TM_CTR:
		*val = get_reg_val(id, vcpu->arch.ctr_tm);
		break;
	case KVM_REG_PPC_TM_FPSCR:
		*val = get_reg_val(id, vcpu->arch.fp_tm.fpscr);
		break;
	case KVM_REG_PPC_TM_AMR:
		*val = get_reg_val(id, vcpu->arch.amr_tm);
		break;
	case KVM_REG_PPC_TM_PPR:
		*val = get_reg_val(id, vcpu->arch.ppr_tm);
		break;
	case KVM_REG_PPC_TM_VRSAVE:
		*val = get_reg_val(id, vcpu->arch.vrsave_tm);
		break;
	case KVM_REG_PPC_TM_VSCR:
		if (cpu_has_feature(CPU_FTR_ALTIVEC))
			*val = get_reg_val(id, vcpu->arch.vr_tm.vscr.u[3]);
		else
			r = -ENXIO;
		break;
	case KVM_REG_PPC_TM_DSCR:
		*val = get_reg_val(id, vcpu->arch.dscr_tm);
		break;
	case KVM_REG_PPC_TM_TAR:
		*val = get_reg_val(id, vcpu->arch.tar_tm);
		break;
#endif
1541 1542 1543
	case KVM_REG_PPC_ARCH_COMPAT:
		*val = get_reg_val(id, vcpu->arch.vcore->arch_compat);
		break;
1544 1545 1546 1547
	case KVM_REG_PPC_DEC_EXPIRY:
		*val = get_reg_val(id, vcpu->arch.dec_expires +
				   vcpu->arch.vcore->tb_offset);
		break;
1548 1549 1550
	case KVM_REG_PPC_ONLINE:
		*val = get_reg_val(id, vcpu->arch.online);
		break;
1551
	default:
1552
		r = -EINVAL;
1553 1554 1555 1556 1557 1558
		break;
	}

	return r;
}

1559 1560
static int kvmppc_set_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
				 union kvmppc_one_reg *val)
1561
{
1562 1563
	int r = 0;
	long int i;
1564
	unsigned long addr, len;
1565

1566
	switch (id) {
1567 1568
	case KVM_REG_PPC_HIOR:
		/* Only allow this to be set to zero */
1569
		if (set_reg_val(id, *val))
1570 1571
			r = -EINVAL;
		break;
1572 1573 1574
	case KVM_REG_PPC_DABR:
		vcpu->arch.dabr = set_reg_val(id, *val);
		break;
1575 1576 1577
	case KVM_REG_PPC_DABRX:
		vcpu->arch.dabrx = set_reg_val(id, *val) & ~DABRX_HYP;
		break;
1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592
	case KVM_REG_PPC_DSCR:
		vcpu->arch.dscr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_PURR:
		vcpu->arch.purr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_SPURR:
		vcpu->arch.spurr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_AMR:
		vcpu->arch.amr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_UAMOR:
		vcpu->arch.uamor = set_reg_val(id, *val);
		break;
1593
	case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS:
1594 1595 1596 1597 1598 1599 1600
		i = id - KVM_REG_PPC_MMCR0;
		vcpu->arch.mmcr[i] = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
		i = id - KVM_REG_PPC_PMC1;
		vcpu->arch.pmc[i] = set_reg_val(id, *val);
		break;
1601 1602 1603 1604
	case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
		i = id - KVM_REG_PPC_SPMC1;
		vcpu->arch.spmc[i] = set_reg_val(id, *val);
		break;
1605 1606 1607 1608 1609 1610
	case KVM_REG_PPC_SIAR:
		vcpu->arch.siar = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_SDAR:
		vcpu->arch.sdar = set_reg_val(id, *val);
		break;
1611 1612
	case KVM_REG_PPC_SIER:
		vcpu->arch.sier = set_reg_val(id, *val);
1613
		break;
1614 1615 1616 1617 1618 1619 1620 1621 1622
	case KVM_REG_PPC_IAMR:
		vcpu->arch.iamr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_PSPB:
		vcpu->arch.pspb = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_DPDES:
		vcpu->arch.vcore->dpdes = set_reg_val(id, *val);
		break;
1623 1624 1625
	case KVM_REG_PPC_VTB:
		vcpu->arch.vcore->vtb = set_reg_val(id, *val);
		break;
1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654
	case KVM_REG_PPC_DAWR:
		vcpu->arch.dawr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_DAWRX:
		vcpu->arch.dawrx = set_reg_val(id, *val) & ~DAWRX_HYP;
		break;
	case KVM_REG_PPC_CIABR:
		vcpu->arch.ciabr = set_reg_val(id, *val);
		/* Don't allow setting breakpoints in hypervisor code */
		if ((vcpu->arch.ciabr & CIABR_PRIV) == CIABR_PRIV_HYPER)
			vcpu->arch.ciabr &= ~CIABR_PRIV;	/* disable */
		break;
	case KVM_REG_PPC_CSIGR:
		vcpu->arch.csigr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TACR:
		vcpu->arch.tacr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TCSCR:
		vcpu->arch.tcscr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_PID:
		vcpu->arch.pid = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_ACOP:
		vcpu->arch.acop = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_WORT:
		vcpu->arch.wort = set_reg_val(id, *val);
1655
		break;
1656 1657 1658 1659 1660 1661
	case KVM_REG_PPC_TIDR:
		vcpu->arch.tid = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_PSSCR:
		vcpu->arch.psscr = set_reg_val(id, *val) & PSSCR_GUEST_VIS;
		break;
1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681
	case KVM_REG_PPC_VPA_ADDR:
		addr = set_reg_val(id, *val);
		r = -EINVAL;
		if (!addr && (vcpu->arch.slb_shadow.next_gpa ||
			      vcpu->arch.dtl.next_gpa))
			break;
		r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca));
		break;
	case KVM_REG_PPC_VPA_SLB:
		addr = val->vpaval.addr;
		len = val->vpaval.length;
		r = -EINVAL;
		if (addr && !vcpu->arch.vpa.next_gpa)
			break;
		r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len);
		break;
	case KVM_REG_PPC_VPA_DTL:
		addr = val->vpaval.addr;
		len = val->vpaval.length;
		r = -EINVAL;
1682 1683
		if (addr && (len < sizeof(struct dtl_entry) ||
			     !vcpu->arch.vpa.next_gpa))
1684 1685 1686 1687
			break;
		len -= len % sizeof(struct dtl_entry);
		r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len);
		break;
1688 1689 1690 1691 1692
	case KVM_REG_PPC_TB_OFFSET:
		/* round up to multiple of 2^24 */
		vcpu->arch.vcore->tb_offset =
			ALIGN(set_reg_val(id, *val), 1UL << 24);
		break;
1693
	case KVM_REG_PPC_LPCR:
1694 1695 1696 1697
		kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), true);
		break;
	case KVM_REG_PPC_LPCR_64:
		kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), false);
1698
		break;
1699 1700 1701
	case KVM_REG_PPC_PPR:
		vcpu->arch.ppr = set_reg_val(id, *val);
		break;
1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
	case KVM_REG_PPC_TFHAR:
		vcpu->arch.tfhar = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TFIAR:
		vcpu->arch.tfiar = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TEXASR:
		vcpu->arch.texasr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
		i = id - KVM_REG_PPC_TM_GPR0;
		vcpu->arch.gpr_tm[i] = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
	{
		int j;
		i = id - KVM_REG_PPC_TM_VSR0;
		if (i < 32)
			for (j = 0; j < TS_FPRWIDTH; j++)
				vcpu->arch.fp_tm.fpr[i][j] = val->vsxval[j];
		else
			if (cpu_has_feature(CPU_FTR_ALTIVEC))
				vcpu->arch.vr_tm.vr[i-32] = val->vval;
			else
				r = -ENXIO;
		break;
	}
	case KVM_REG_PPC_TM_CR:
		vcpu->arch.cr_tm = set_reg_val(id, *val);
		break;
1733 1734 1735
	case KVM_REG_PPC_TM_XER:
		vcpu->arch.xer_tm = set_reg_val(id, *val);
		break;
1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766
	case KVM_REG_PPC_TM_LR:
		vcpu->arch.lr_tm = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_CTR:
		vcpu->arch.ctr_tm = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_FPSCR:
		vcpu->arch.fp_tm.fpscr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_AMR:
		vcpu->arch.amr_tm = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_PPR:
		vcpu->arch.ppr_tm = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_VRSAVE:
		vcpu->arch.vrsave_tm = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_VSCR:
		if (cpu_has_feature(CPU_FTR_ALTIVEC))
			vcpu->arch.vr.vscr.u[3] = set_reg_val(id, *val);
		else
			r = - ENXIO;
		break;
	case KVM_REG_PPC_TM_DSCR:
		vcpu->arch.dscr_tm = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_TAR:
		vcpu->arch.tar_tm = set_reg_val(id, *val);
		break;
#endif
1767 1768 1769
	case KVM_REG_PPC_ARCH_COMPAT:
		r = kvmppc_set_arch_compat(vcpu, set_reg_val(id, *val));
		break;
1770 1771 1772 1773
	case KVM_REG_PPC_DEC_EXPIRY:
		vcpu->arch.dec_expires = set_reg_val(id, *val) -
			vcpu->arch.vcore->tb_offset;
		break;
1774
	case KVM_REG_PPC_ONLINE:
1775 1776 1777 1778 1779 1780
		i = set_reg_val(id, *val);
		if (i && !vcpu->arch.online)
			atomic_inc(&vcpu->arch.vcore->online_count);
		else if (!i && vcpu->arch.online)
			atomic_dec(&vcpu->arch.vcore->online_count);
		vcpu->arch.online = i;
1781
		break;
1782
	default:
1783
		r = -EINVAL;
1784 1785 1786 1787 1788 1789
		break;
	}

	return r;
}

1790 1791 1792 1793 1794 1795 1796
/*
 * On POWER9, threads are independent and can be in different partitions.
 * Therefore we consider each thread to be a subcore.
 * There is a restriction that all threads have to be in the same
 * MMU mode (radix or HPT), unfortunately, but since we only support
 * HPT guests on a HPT host so far, that isn't an impediment yet.
 */
1797
static int threads_per_vcore(struct kvm *kvm)
1798
{
1799
	if (kvm->arch.threads_indep)
1800 1801 1802 1803
		return 1;
	return threads_per_subcore;
}

1804
static struct kvmppc_vcore *kvmppc_vcore_create(struct kvm *kvm, int id)
1805 1806 1807 1808 1809 1810 1811 1812 1813
{
	struct kvmppc_vcore *vcore;

	vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL);

	if (vcore == NULL)
		return NULL;

	spin_lock_init(&vcore->lock);
1814
	spin_lock_init(&vcore->stoltb_lock);
1815
	init_swait_queue_head(&vcore->wq);
1816 1817
	vcore->preempt_tb = TB_NIL;
	vcore->lpcr = kvm->arch.lpcr;
1818
	vcore->first_vcpuid = id;
1819
	vcore->kvm = kvm;
1820
	INIT_LIST_HEAD(&vcore->preempt_list);
1821 1822 1823 1824

	return vcore;
}

1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836
#ifdef CONFIG_KVM_BOOK3S_HV_EXIT_TIMING
static struct debugfs_timings_element {
	const char *name;
	size_t offset;
} timings[] = {
	{"rm_entry",	offsetof(struct kvm_vcpu, arch.rm_entry)},
	{"rm_intr",	offsetof(struct kvm_vcpu, arch.rm_intr)},
	{"rm_exit",	offsetof(struct kvm_vcpu, arch.rm_exit)},
	{"guest",	offsetof(struct kvm_vcpu, arch.guest_time)},
	{"cede",	offsetof(struct kvm_vcpu, arch.cede_time)},
};

1837
#define N_TIMINGS	(ARRAY_SIZE(timings))
1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972

struct debugfs_timings_state {
	struct kvm_vcpu	*vcpu;
	unsigned int	buflen;
	char		buf[N_TIMINGS * 100];
};

static int debugfs_timings_open(struct inode *inode, struct file *file)
{
	struct kvm_vcpu *vcpu = inode->i_private;
	struct debugfs_timings_state *p;

	p = kzalloc(sizeof(*p), GFP_KERNEL);
	if (!p)
		return -ENOMEM;

	kvm_get_kvm(vcpu->kvm);
	p->vcpu = vcpu;
	file->private_data = p;

	return nonseekable_open(inode, file);
}

static int debugfs_timings_release(struct inode *inode, struct file *file)
{
	struct debugfs_timings_state *p = file->private_data;

	kvm_put_kvm(p->vcpu->kvm);
	kfree(p);
	return 0;
}

static ssize_t debugfs_timings_read(struct file *file, char __user *buf,
				    size_t len, loff_t *ppos)
{
	struct debugfs_timings_state *p = file->private_data;
	struct kvm_vcpu *vcpu = p->vcpu;
	char *s, *buf_end;
	struct kvmhv_tb_accumulator tb;
	u64 count;
	loff_t pos;
	ssize_t n;
	int i, loops;
	bool ok;

	if (!p->buflen) {
		s = p->buf;
		buf_end = s + sizeof(p->buf);
		for (i = 0; i < N_TIMINGS; ++i) {
			struct kvmhv_tb_accumulator *acc;

			acc = (struct kvmhv_tb_accumulator *)
				((unsigned long)vcpu + timings[i].offset);
			ok = false;
			for (loops = 0; loops < 1000; ++loops) {
				count = acc->seqcount;
				if (!(count & 1)) {
					smp_rmb();
					tb = *acc;
					smp_rmb();
					if (count == acc->seqcount) {
						ok = true;
						break;
					}
				}
				udelay(1);
			}
			if (!ok)
				snprintf(s, buf_end - s, "%s: stuck\n",
					timings[i].name);
			else
				snprintf(s, buf_end - s,
					"%s: %llu %llu %llu %llu\n",
					timings[i].name, count / 2,
					tb_to_ns(tb.tb_total),
					tb_to_ns(tb.tb_min),
					tb_to_ns(tb.tb_max));
			s += strlen(s);
		}
		p->buflen = s - p->buf;
	}

	pos = *ppos;
	if (pos >= p->buflen)
		return 0;
	if (len > p->buflen - pos)
		len = p->buflen - pos;
	n = copy_to_user(buf, p->buf + pos, len);
	if (n) {
		if (n == len)
			return -EFAULT;
		len -= n;
	}
	*ppos = pos + len;
	return len;
}

static ssize_t debugfs_timings_write(struct file *file, const char __user *buf,
				     size_t len, loff_t *ppos)
{
	return -EACCES;
}

static const struct file_operations debugfs_timings_ops = {
	.owner	 = THIS_MODULE,
	.open	 = debugfs_timings_open,
	.release = debugfs_timings_release,
	.read	 = debugfs_timings_read,
	.write	 = debugfs_timings_write,
	.llseek	 = generic_file_llseek,
};

/* Create a debugfs directory for the vcpu */
static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id)
{
	char buf[16];
	struct kvm *kvm = vcpu->kvm;

	snprintf(buf, sizeof(buf), "vcpu%u", id);
	if (IS_ERR_OR_NULL(kvm->arch.debugfs_dir))
		return;
	vcpu->arch.debugfs_dir = debugfs_create_dir(buf, kvm->arch.debugfs_dir);
	if (IS_ERR_OR_NULL(vcpu->arch.debugfs_dir))
		return;
	vcpu->arch.debugfs_timings =
		debugfs_create_file("timings", 0444, vcpu->arch.debugfs_dir,
				    vcpu, &debugfs_timings_ops);
}

#else /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id)
{
}
#endif /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */

1973 1974
static struct kvm_vcpu *kvmppc_core_vcpu_create_hv(struct kvm *kvm,
						   unsigned int id)
1975 1976
{
	struct kvm_vcpu *vcpu;
1977
	int err;
1978 1979
	int core;
	struct kvmppc_vcore *vcore;
1980

1981
	err = -ENOMEM;
1982
	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
1983 1984 1985 1986 1987 1988 1989 1990
	if (!vcpu)
		goto out;

	err = kvm_vcpu_init(vcpu, kvm, id);
	if (err)
		goto free_vcpu;

	vcpu->arch.shared = &vcpu->arch.shregs;
1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001
#ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
	/*
	 * The shared struct is never shared on HV,
	 * so we can always use host endianness
	 */
#ifdef __BIG_ENDIAN__
	vcpu->arch.shared_big_endian = true;
#else
	vcpu->arch.shared_big_endian = false;
#endif
#endif
2002 2003 2004
	vcpu->arch.mmcr[0] = MMCR0_FC;
	vcpu->arch.ctrl = CTRL_RUNLATCH;
	/* default to host PVR, since we can't spoof it */
2005
	kvmppc_set_pvr_hv(vcpu, mfspr(SPRN_PVR));
2006
	spin_lock_init(&vcpu->arch.vpa_update_lock);
2007 2008
	spin_lock_init(&vcpu->arch.tbacct_lock);
	vcpu->arch.busy_preempt = TB_NIL;
2009
	vcpu->arch.intr_msr = MSR_SF | MSR_ME;
2010

2011 2012 2013
	/*
	 * Set the default HFSCR for the guest from the host value.
	 * This value is only used on POWER9.
2014 2015
	 * On POWER9, we want to virtualize the doorbell facility, so we
	 * turn off the HFSCR bit, which causes those instructions to trap.
2016 2017
	 */
	vcpu->arch.hfscr = mfspr(SPRN_HFSCR);
2018 2019 2020
	if (cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST))
		vcpu->arch.hfscr |= HFSCR_TM;
	else if (!cpu_has_feature(CPU_FTR_TM_COMP))
2021
		vcpu->arch.hfscr &= ~HFSCR_TM;
2022 2023
	if (cpu_has_feature(CPU_FTR_ARCH_300))
		vcpu->arch.hfscr &= ~HFSCR_MSGP;
2024

2025 2026
	kvmppc_mmu_book3s_hv_init(vcpu);

2027
	vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
2028 2029 2030 2031

	init_waitqueue_head(&vcpu->arch.cpu_run);

	mutex_lock(&kvm->lock);
2032 2033
	vcore = NULL;
	err = -EINVAL;
2034
	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
2035 2036 2037 2038 2039 2040 2041
		if (id >= (KVM_MAX_VCPUS * kvm->arch.emul_smt_mode)) {
			pr_devel("KVM: VCPU ID too high\n");
			core = KVM_MAX_VCORES;
		} else {
			BUG_ON(kvm->arch.smt_mode != 1);
			core = kvmppc_pack_vcpu_id(kvm, id);
		}
2042 2043 2044
	} else {
		core = id / kvm->arch.smt_mode;
	}
2045 2046
	if (core < KVM_MAX_VCORES) {
		vcore = kvm->arch.vcores[core];
2047 2048 2049 2050
		if (vcore && cpu_has_feature(CPU_FTR_ARCH_300)) {
			pr_devel("KVM: collision on id %u", id);
			vcore = NULL;
		} else if (!vcore) {
2051
			err = -ENOMEM;
2052 2053
			vcore = kvmppc_vcore_create(kvm,
					id & ~(kvm->arch.smt_mode - 1));
2054 2055 2056
			kvm->arch.vcores[core] = vcore;
			kvm->arch.online_vcores++;
		}
2057 2058 2059 2060 2061 2062 2063 2064 2065 2066
	}
	mutex_unlock(&kvm->lock);

	if (!vcore)
		goto free_vcpu;

	spin_lock(&vcore->lock);
	++vcore->num_threads;
	spin_unlock(&vcore->lock);
	vcpu->arch.vcore = vcore;
2067
	vcpu->arch.ptid = vcpu->vcpu_id - vcore->first_vcpuid;
2068
	vcpu->arch.thread_cpu = -1;
2069
	vcpu->arch.prev_cpu = -1;
2070

2071 2072 2073
	vcpu->arch.cpu_type = KVM_CPU_3S_64;
	kvmppc_sanity_check(vcpu);

2074 2075
	debugfs_vcpu_init(vcpu, id);

2076 2077 2078
	return vcpu;

free_vcpu:
2079
	kmem_cache_free(kvm_vcpu_cache, vcpu);
2080 2081 2082 2083
out:
	return ERR_PTR(err);
}

2084 2085 2086 2087
static int kvmhv_set_smt_mode(struct kvm *kvm, unsigned long smt_mode,
			      unsigned long flags)
{
	int err;
2088
	int esmt = 0;
2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105

	if (flags)
		return -EINVAL;
	if (smt_mode > MAX_SMT_THREADS || !is_power_of_2(smt_mode))
		return -EINVAL;
	if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
		/*
		 * On POWER8 (or POWER7), the threading mode is "strict",
		 * so we pack smt_mode vcpus per vcore.
		 */
		if (smt_mode > threads_per_subcore)
			return -EINVAL;
	} else {
		/*
		 * On POWER9, the threading mode is "loose",
		 * so each vcpu gets its own vcore.
		 */
2106
		esmt = smt_mode;
2107 2108 2109 2110 2111 2112
		smt_mode = 1;
	}
	mutex_lock(&kvm->lock);
	err = -EBUSY;
	if (!kvm->arch.online_vcores) {
		kvm->arch.smt_mode = smt_mode;
2113
		kvm->arch.emul_smt_mode = esmt;
2114 2115 2116 2117 2118 2119 2120
		err = 0;
	}
	mutex_unlock(&kvm->lock);

	return err;
}

2121 2122 2123 2124 2125 2126 2127
static void unpin_vpa(struct kvm *kvm, struct kvmppc_vpa *vpa)
{
	if (vpa->pinned_addr)
		kvmppc_unpin_guest_page(kvm, vpa->pinned_addr, vpa->gpa,
					vpa->dirty);
}

2128
static void kvmppc_core_vcpu_free_hv(struct kvm_vcpu *vcpu)
2129
{
2130
	spin_lock(&vcpu->arch.vpa_update_lock);
2131 2132 2133
	unpin_vpa(vcpu->kvm, &vcpu->arch.dtl);
	unpin_vpa(vcpu->kvm, &vcpu->arch.slb_shadow);
	unpin_vpa(vcpu->kvm, &vcpu->arch.vpa);
2134
	spin_unlock(&vcpu->arch.vpa_update_lock);
2135
	kvm_vcpu_uninit(vcpu);
2136
	kmem_cache_free(kvm_vcpu_cache, vcpu);
2137 2138
}

2139 2140 2141 2142 2143 2144
static int kvmppc_core_check_requests_hv(struct kvm_vcpu *vcpu)
{
	/* Indicate we want to get back into the guest */
	return 1;
}

2145
static void kvmppc_set_timer(struct kvm_vcpu *vcpu)
2146
{
2147
	unsigned long dec_nsec, now;
2148

2149 2150 2151 2152
	now = get_tb();
	if (now > vcpu->arch.dec_expires) {
		/* decrementer has already gone negative */
		kvmppc_core_queue_dec(vcpu);
2153
		kvmppc_core_prepare_to_enter(vcpu);
2154
		return;
2155
	}
2156 2157
	dec_nsec = (vcpu->arch.dec_expires - now) * NSEC_PER_SEC
		   / tb_ticks_per_sec;
T
Thomas Gleixner 已提交
2158
	hrtimer_start(&vcpu->arch.dec_timer, dec_nsec, HRTIMER_MODE_REL);
2159
	vcpu->arch.timer_running = 1;
2160 2161
}

2162
static void kvmppc_end_cede(struct kvm_vcpu *vcpu)
2163
{
2164 2165 2166 2167 2168
	vcpu->arch.ceded = 0;
	if (vcpu->arch.timer_running) {
		hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
		vcpu->arch.timer_running = 0;
	}
2169 2170
}

2171
extern int __kvmppc_vcore_entry(void);
2172

2173 2174
static void kvmppc_remove_runnable(struct kvmppc_vcore *vc,
				   struct kvm_vcpu *vcpu)
2175
{
2176 2177
	u64 now;

2178 2179
	if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
		return;
2180
	spin_lock_irq(&vcpu->arch.tbacct_lock);
2181 2182 2183 2184 2185
	now = mftb();
	vcpu->arch.busy_stolen += vcore_stolen_time(vc, now) -
		vcpu->arch.stolen_logged;
	vcpu->arch.busy_preempt = now;
	vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
2186
	spin_unlock_irq(&vcpu->arch.tbacct_lock);
2187
	--vc->n_runnable;
2188
	WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], NULL);
2189 2190
}

2191 2192 2193
static int kvmppc_grab_hwthread(int cpu)
{
	struct paca_struct *tpaca;
2194
	long timeout = 10000;
2195

2196
	tpaca = paca_ptrs[cpu];
2197 2198

	/* Ensure the thread won't go into the kernel if it wakes */
2199
	tpaca->kvm_hstate.kvm_vcpu = NULL;
2200
	tpaca->kvm_hstate.kvm_vcore = NULL;
2201 2202 2203
	tpaca->kvm_hstate.napping = 0;
	smp_wmb();
	tpaca->kvm_hstate.hwthread_req = 1;
2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228

	/*
	 * If the thread is already executing in the kernel (e.g. handling
	 * a stray interrupt), wait for it to get back to nap mode.
	 * The smp_mb() is to ensure that our setting of hwthread_req
	 * is visible before we look at hwthread_state, so if this
	 * races with the code at system_reset_pSeries and the thread
	 * misses our setting of hwthread_req, we are sure to see its
	 * setting of hwthread_state, and vice versa.
	 */
	smp_mb();
	while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) {
		if (--timeout <= 0) {
			pr_err("KVM: couldn't grab cpu %d\n", cpu);
			return -EBUSY;
		}
		udelay(1);
	}
	return 0;
}

static void kvmppc_release_hwthread(int cpu)
{
	struct paca_struct *tpaca;

2229
	tpaca = paca_ptrs[cpu];
2230
	tpaca->kvm_hstate.hwthread_req = 0;
2231
	tpaca->kvm_hstate.kvm_vcpu = NULL;
2232 2233
	tpaca->kvm_hstate.kvm_vcore = NULL;
	tpaca->kvm_hstate.kvm_split_mode = NULL;
2234 2235
}

2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252
static void radix_flush_cpu(struct kvm *kvm, int cpu, struct kvm_vcpu *vcpu)
{
	int i;

	cpu = cpu_first_thread_sibling(cpu);
	cpumask_set_cpu(cpu, &kvm->arch.need_tlb_flush);
	/*
	 * Make sure setting of bit in need_tlb_flush precedes
	 * testing of cpu_in_guest bits.  The matching barrier on
	 * the other side is the first smp_mb() in kvmppc_run_core().
	 */
	smp_mb();
	for (i = 0; i < threads_per_core; ++i)
		if (cpumask_test_cpu(cpu + i, &kvm->arch.cpu_in_guest))
			smp_call_function_single(cpu + i, do_nothing, NULL, 1);
}

2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277
static void kvmppc_prepare_radix_vcpu(struct kvm_vcpu *vcpu, int pcpu)
{
	struct kvm *kvm = vcpu->kvm;

	/*
	 * With radix, the guest can do TLB invalidations itself,
	 * and it could choose to use the local form (tlbiel) if
	 * it is invalidating a translation that has only ever been
	 * used on one vcpu.  However, that doesn't mean it has
	 * only ever been used on one physical cpu, since vcpus
	 * can move around between pcpus.  To cope with this, when
	 * a vcpu moves from one pcpu to another, we need to tell
	 * any vcpus running on the same core as this vcpu previously
	 * ran to flush the TLB.  The TLB is shared between threads,
	 * so we use a single bit in .need_tlb_flush for all 4 threads.
	 */
	if (vcpu->arch.prev_cpu != pcpu) {
		if (vcpu->arch.prev_cpu >= 0 &&
		    cpu_first_thread_sibling(vcpu->arch.prev_cpu) !=
		    cpu_first_thread_sibling(pcpu))
			radix_flush_cpu(kvm, vcpu->arch.prev_cpu, vcpu);
		vcpu->arch.prev_cpu = pcpu;
	}
}

2278
static void kvmppc_start_thread(struct kvm_vcpu *vcpu, struct kvmppc_vcore *vc)
2279 2280 2281
{
	int cpu;
	struct paca_struct *tpaca;
2282
	struct kvm *kvm = vc->kvm;
2283

2284 2285 2286 2287 2288 2289 2290
	cpu = vc->pcpu;
	if (vcpu) {
		if (vcpu->arch.timer_running) {
			hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
			vcpu->arch.timer_running = 0;
		}
		cpu += vcpu->arch.ptid;
2291
		vcpu->cpu = vc->pcpu;
2292
		vcpu->arch.thread_cpu = cpu;
2293
		cpumask_set_cpu(cpu, &kvm->arch.cpu_in_guest);
2294
	}
2295
	tpaca = paca_ptrs[cpu];
2296
	tpaca->kvm_hstate.kvm_vcpu = vcpu;
2297
	tpaca->kvm_hstate.ptid = cpu - vc->pcpu;
2298
	tpaca->kvm_hstate.fake_suspend = 0;
2299
	/* Order stores to hstate.kvm_vcpu etc. before store to kvm_vcore */
2300
	smp_wmb();
2301
	tpaca->kvm_hstate.kvm_vcore = vc;
2302
	if (cpu != smp_processor_id())
2303
		kvmppc_ipi_thread(cpu);
2304
}
2305

2306
static void kvmppc_wait_for_nap(int n_threads)
2307
{
2308 2309
	int cpu = smp_processor_id();
	int i, loops;
2310

2311 2312
	if (n_threads <= 1)
		return;
2313 2314 2315
	for (loops = 0; loops < 1000000; ++loops) {
		/*
		 * Check if all threads are finished.
2316
		 * We set the vcore pointer when starting a thread
2317
		 * and the thread clears it when finished, so we look
2318
		 * for any threads that still have a non-NULL vcore ptr.
2319
		 */
2320
		for (i = 1; i < n_threads; ++i)
2321
			if (paca_ptrs[cpu + i]->kvm_hstate.kvm_vcore)
2322
				break;
2323
		if (i == n_threads) {
2324 2325
			HMT_medium();
			return;
2326
		}
2327
		HMT_low();
2328 2329
	}
	HMT_medium();
2330
	for (i = 1; i < n_threads; ++i)
2331
		if (paca_ptrs[cpu + i]->kvm_hstate.kvm_vcore)
2332
			pr_err("KVM: CPU %d seems to be stuck\n", cpu + i);
2333 2334 2335 2336
}

/*
 * Check that we are on thread 0 and that any other threads in
2337 2338
 * this core are off-line.  Then grab the threads so they can't
 * enter the kernel.
2339 2340 2341 2342
 */
static int on_primary_thread(void)
{
	int cpu = smp_processor_id();
2343
	int thr;
2344

2345 2346
	/* Are we on a primary subcore? */
	if (cpu_thread_in_subcore(cpu))
2347
		return 0;
2348 2349 2350

	thr = 0;
	while (++thr < threads_per_subcore)
2351 2352
		if (cpu_online(cpu + thr))
			return 0;
2353 2354

	/* Grab all hw threads so they can't go into the kernel */
2355
	for (thr = 1; thr < threads_per_subcore; ++thr) {
2356 2357 2358 2359 2360 2361 2362 2363
		if (kvmppc_grab_hwthread(cpu + thr)) {
			/* Couldn't grab one; let the others go */
			do {
				kvmppc_release_hwthread(cpu + thr);
			} while (--thr > 0);
			return 0;
		}
	}
2364 2365 2366
	return 1;
}

2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395
/*
 * A list of virtual cores for each physical CPU.
 * These are vcores that could run but their runner VCPU tasks are
 * (or may be) preempted.
 */
struct preempted_vcore_list {
	struct list_head	list;
	spinlock_t		lock;
};

static DEFINE_PER_CPU(struct preempted_vcore_list, preempted_vcores);

static void init_vcore_lists(void)
{
	int cpu;

	for_each_possible_cpu(cpu) {
		struct preempted_vcore_list *lp = &per_cpu(preempted_vcores, cpu);
		spin_lock_init(&lp->lock);
		INIT_LIST_HEAD(&lp->list);
	}
}

static void kvmppc_vcore_preempt(struct kvmppc_vcore *vc)
{
	struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);

	vc->vcore_state = VCORE_PREEMPT;
	vc->pcpu = smp_processor_id();
2396
	if (vc->num_threads < threads_per_vcore(vc->kvm)) {
2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407
		spin_lock(&lp->lock);
		list_add_tail(&vc->preempt_list, &lp->list);
		spin_unlock(&lp->lock);
	}

	/* Start accumulating stolen time */
	kvmppc_core_start_stolen(vc);
}

static void kvmppc_vcore_end_preempt(struct kvmppc_vcore *vc)
{
2408
	struct preempted_vcore_list *lp;
2409 2410 2411

	kvmppc_core_end_stolen(vc);
	if (!list_empty(&vc->preempt_list)) {
2412
		lp = &per_cpu(preempted_vcores, vc->pcpu);
2413 2414 2415 2416 2417 2418 2419
		spin_lock(&lp->lock);
		list_del_init(&vc->preempt_list);
		spin_unlock(&lp->lock);
	}
	vc->vcore_state = VCORE_INACTIVE;
}

2420 2421 2422 2423
/*
 * This stores information about the virtual cores currently
 * assigned to a physical core.
 */
2424
struct core_info {
2425 2426
	int		n_subcores;
	int		max_subcore_threads;
2427
	int		total_threads;
2428
	int		subcore_threads[MAX_SUBCORES];
2429
	struct kvmppc_vcore *vc[MAX_SUBCORES];
2430 2431
};

2432 2433
/*
 * This mapping means subcores 0 and 1 can use threads 0-3 and 4-7
2434
 * respectively in 2-way micro-threading (split-core) mode on POWER8.
2435 2436 2437
 */
static int subcore_thread_map[MAX_SUBCORES] = { 0, 4, 2, 6 };

2438 2439 2440
static void init_core_info(struct core_info *cip, struct kvmppc_vcore *vc)
{
	memset(cip, 0, sizeof(*cip));
2441 2442
	cip->n_subcores = 1;
	cip->max_subcore_threads = vc->num_threads;
2443
	cip->total_threads = vc->num_threads;
2444
	cip->subcore_threads[0] = vc->num_threads;
2445
	cip->vc[0] = vc;
2446 2447 2448 2449
}

static bool subcore_config_ok(int n_subcores, int n_threads)
{
2450
	/*
2451 2452
	 * POWER9 "SMT4" cores are permanently in what is effectively a 4-way
	 * split-core mode, with one thread per subcore.
2453 2454 2455 2456 2457
	 */
	if (cpu_has_feature(CPU_FTR_ARCH_300))
		return n_subcores <= 4 && n_threads == 1;

	/* On POWER8, can only dynamically split if unsplit to begin with */
2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469
	if (n_subcores > 1 && threads_per_subcore < MAX_SMT_THREADS)
		return false;
	if (n_subcores > MAX_SUBCORES)
		return false;
	if (n_subcores > 1) {
		if (!(dynamic_mt_modes & 2))
			n_subcores = 4;
		if (n_subcores > 2 && !(dynamic_mt_modes & 4))
			return false;
	}

	return n_subcores * roundup_pow_of_two(n_threads) <= MAX_SMT_THREADS;
2470 2471
}

2472
static void init_vcore_to_run(struct kvmppc_vcore *vc)
2473 2474 2475 2476 2477
{
	vc->entry_exit_map = 0;
	vc->in_guest = 0;
	vc->napping_threads = 0;
	vc->conferring_threads = 0;
2478
	vc->tb_offset_applied = 0;
2479 2480
}

2481 2482 2483 2484 2485 2486 2487 2488
static bool can_dynamic_split(struct kvmppc_vcore *vc, struct core_info *cip)
{
	int n_threads = vc->num_threads;
	int sub;

	if (!cpu_has_feature(CPU_FTR_ARCH_207S))
		return false;

2489 2490
	/* Some POWER9 chips require all threads to be in the same MMU mode */
	if (no_mixing_hpt_and_radix &&
2491 2492 2493
	    kvm_is_radix(vc->kvm) != kvm_is_radix(cip->vc[0]->kvm))
		return false;

2494 2495
	if (n_threads < cip->max_subcore_threads)
		n_threads = cip->max_subcore_threads;
2496
	if (!subcore_config_ok(cip->n_subcores + 1, n_threads))
2497
		return false;
2498
	cip->max_subcore_threads = n_threads;
2499 2500 2501 2502 2503

	sub = cip->n_subcores;
	++cip->n_subcores;
	cip->total_threads += vc->num_threads;
	cip->subcore_threads[sub] = vc->num_threads;
2504 2505 2506
	cip->vc[sub] = vc;
	init_vcore_to_run(vc);
	list_del_init(&vc->preempt_list);
2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520

	return true;
}

/*
 * Work out whether it is possible to piggyback the execution of
 * vcore *pvc onto the execution of the other vcores described in *cip.
 */
static bool can_piggyback(struct kvmppc_vcore *pvc, struct core_info *cip,
			  int target_threads)
{
	if (cip->total_threads + pvc->num_threads > target_threads)
		return false;

2521
	return can_dynamic_split(pvc, cip);
2522 2523
}

2524 2525
static void prepare_threads(struct kvmppc_vcore *vc)
{
2526 2527
	int i;
	struct kvm_vcpu *vcpu;
2528

2529
	for_each_runnable_thread(i, vcpu, vc) {
2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542
		if (signal_pending(vcpu->arch.run_task))
			vcpu->arch.ret = -EINTR;
		else if (vcpu->arch.vpa.update_pending ||
			 vcpu->arch.slb_shadow.update_pending ||
			 vcpu->arch.dtl.update_pending)
			vcpu->arch.ret = RESUME_GUEST;
		else
			continue;
		kvmppc_remove_runnable(vc, vcpu);
		wake_up(&vcpu->arch.cpu_run);
	}
}

2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573
static void collect_piggybacks(struct core_info *cip, int target_threads)
{
	struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
	struct kvmppc_vcore *pvc, *vcnext;

	spin_lock(&lp->lock);
	list_for_each_entry_safe(pvc, vcnext, &lp->list, preempt_list) {
		if (!spin_trylock(&pvc->lock))
			continue;
		prepare_threads(pvc);
		if (!pvc->n_runnable) {
			list_del_init(&pvc->preempt_list);
			if (pvc->runner == NULL) {
				pvc->vcore_state = VCORE_INACTIVE;
				kvmppc_core_end_stolen(pvc);
			}
			spin_unlock(&pvc->lock);
			continue;
		}
		if (!can_piggyback(pvc, cip, target_threads)) {
			spin_unlock(&pvc->lock);
			continue;
		}
		kvmppc_core_end_stolen(pvc);
		pvc->vcore_state = VCORE_PIGGYBACK;
		if (cip->total_threads >= target_threads)
			break;
	}
	spin_unlock(&lp->lock);
}

2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585
static bool recheck_signals(struct core_info *cip)
{
	int sub, i;
	struct kvm_vcpu *vcpu;

	for (sub = 0; sub < cip->n_subcores; ++sub)
		for_each_runnable_thread(i, vcpu, cip->vc[sub])
			if (signal_pending(vcpu->arch.run_task))
				return true;
	return false;
}

2586
static void post_guest_process(struct kvmppc_vcore *vc, bool is_master)
2587
{
2588
	int still_running = 0, i;
2589 2590
	u64 now;
	long ret;
2591
	struct kvm_vcpu *vcpu;
2592

2593
	spin_lock(&vc->lock);
2594
	now = get_tb();
2595
	for_each_runnable_thread(i, vcpu, vc) {
2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610
		/* cancel pending dec exception if dec is positive */
		if (now < vcpu->arch.dec_expires &&
		    kvmppc_core_pending_dec(vcpu))
			kvmppc_core_dequeue_dec(vcpu);

		trace_kvm_guest_exit(vcpu);

		ret = RESUME_GUEST;
		if (vcpu->arch.trap)
			ret = kvmppc_handle_exit_hv(vcpu->arch.kvm_run, vcpu,
						    vcpu->arch.run_task);

		vcpu->arch.ret = ret;
		vcpu->arch.trap = 0;

2611 2612 2613 2614
		if (is_kvmppc_resume_guest(vcpu->arch.ret)) {
			if (vcpu->arch.pending_exceptions)
				kvmppc_core_prepare_to_enter(vcpu);
			if (vcpu->arch.ceded)
2615
				kvmppc_set_timer(vcpu);
2616 2617 2618
			else
				++still_running;
		} else {
2619 2620 2621 2622
			kvmppc_remove_runnable(vc, vcpu);
			wake_up(&vcpu->arch.cpu_run);
		}
	}
2623
	if (!is_master) {
2624
		if (still_running > 0) {
2625
			kvmppc_vcore_preempt(vc);
2626 2627 2628 2629 2630 2631
		} else if (vc->runner) {
			vc->vcore_state = VCORE_PREEMPT;
			kvmppc_core_start_stolen(vc);
		} else {
			vc->vcore_state = VCORE_INACTIVE;
		}
2632 2633
		if (vc->n_runnable > 0 && vc->runner == NULL) {
			/* make sure there's a candidate runner awake */
2634 2635
			i = -1;
			vcpu = next_runnable_thread(vc, &i);
2636 2637 2638 2639
			wake_up(&vcpu->arch.cpu_run);
		}
	}
	spin_unlock(&vc->lock);
2640 2641
}

2642 2643 2644 2645 2646
/*
 * Clear core from the list of active host cores as we are about to
 * enter the guest. Only do this if it is the primary thread of the
 * core (not if a subcore) that is entering the guest.
 */
2647
static inline int kvmppc_clear_host_core(unsigned int cpu)
2648 2649 2650 2651
{
	int core;

	if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
2652
		return 0;
2653 2654 2655 2656 2657 2658 2659
	/*
	 * Memory barrier can be omitted here as we will do a smp_wmb()
	 * later in kvmppc_start_thread and we need ensure that state is
	 * visible to other CPUs only after we enter guest.
	 */
	core = cpu >> threads_shift;
	kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 0;
2660
	return 0;
2661 2662 2663 2664 2665 2666 2667
}

/*
 * Advertise this core as an active host core since we exited the guest
 * Only need to do this if it is the primary thread of the core that is
 * exiting.
 */
2668
static inline int kvmppc_set_host_core(unsigned int cpu)
2669 2670 2671 2672
{
	int core;

	if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
2673
		return 0;
2674 2675 2676 2677 2678 2679 2680

	/*
	 * Memory barrier can be omitted here because we do a spin_unlock
	 * immediately after this which provides the memory barrier.
	 */
	core = cpu >> threads_shift;
	kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 1;
2681
	return 0;
2682 2683
}

2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695
static void set_irq_happened(int trap)
{
	switch (trap) {
	case BOOK3S_INTERRUPT_EXTERNAL:
		local_paca->irq_happened |= PACA_IRQ_EE;
		break;
	case BOOK3S_INTERRUPT_H_DOORBELL:
		local_paca->irq_happened |= PACA_IRQ_DBELL;
		break;
	case BOOK3S_INTERRUPT_HMI:
		local_paca->irq_happened |= PACA_IRQ_HMI;
		break;
2696 2697 2698
	case BOOK3S_INTERRUPT_SYSTEM_RESET:
		replay_system_reset();
		break;
2699 2700 2701
	}
}

2702 2703 2704 2705
/*
 * Run a set of guest threads on a physical core.
 * Called with vc->lock held.
 */
2706
static noinline void kvmppc_run_core(struct kvmppc_vcore *vc)
2707
{
2708
	struct kvm_vcpu *vcpu;
2709
	int i;
2710
	int srcu_idx;
2711
	struct core_info core_info;
2712
	struct kvmppc_vcore *pvc;
2713 2714 2715 2716 2717
	struct kvm_split_mode split_info, *sip;
	int split, subcore_size, active;
	int sub;
	bool thr0_done;
	unsigned long cmd_bit, stat_bit;
2718 2719
	int pcpu, thr;
	int target_threads;
2720
	int controlled_threads;
2721
	int trap;
2722
	bool is_power8;
2723
	bool hpt_on_radix;
2724

2725 2726 2727 2728 2729 2730 2731 2732 2733
	/*
	 * Remove from the list any threads that have a signal pending
	 * or need a VPA update done
	 */
	prepare_threads(vc);

	/* if the runner is no longer runnable, let the caller pick a new one */
	if (vc->runner->arch.state != KVMPPC_VCPU_RUNNABLE)
		return;
2734 2735

	/*
2736
	 * Initialize *vc.
2737
	 */
2738
	init_vcore_to_run(vc);
2739
	vc->preempt_tb = TB_NIL;
2740

2741 2742 2743 2744 2745
	/*
	 * Number of threads that we will be controlling: the same as
	 * the number of threads per subcore, except on POWER9,
	 * where it's 1 because the threads are (mostly) independent.
	 */
2746
	controlled_threads = threads_per_vcore(vc->kvm);
2747

2748
	/*
2749 2750 2751
	 * Make sure we are running on primary threads, and that secondary
	 * threads are offline.  Also check if the number of threads in this
	 * guest are greater than the current system threads per guest.
2752
	 * On POWER9, we need to be not in independent-threads mode if
2753 2754
	 * this is a HPT guest on a radix host machine where the
	 * CPU threads may not be in different MMU modes.
2755
	 */
2756 2757
	hpt_on_radix = no_mixing_hpt_and_radix && radix_enabled() &&
		!kvm_is_radix(vc->kvm);
2758 2759 2760
	if (((controlled_threads > 1) &&
	     ((vc->num_threads > threads_per_subcore) || !on_primary_thread())) ||
	    (hpt_on_radix && vc->kvm->arch.threads_indep)) {
2761
		for_each_runnable_thread(i, vcpu, vc) {
2762
			vcpu->arch.ret = -EBUSY;
2763 2764 2765
			kvmppc_remove_runnable(vc, vcpu);
			wake_up(&vcpu->arch.cpu_run);
		}
2766 2767 2768
		goto out;
	}

2769 2770 2771 2772 2773 2774
	/*
	 * See if we could run any other vcores on the physical core
	 * along with this one.
	 */
	init_core_info(&core_info, vc);
	pcpu = smp_processor_id();
2775
	target_threads = controlled_threads;
2776 2777 2778 2779
	if (target_smt_mode && target_smt_mode < target_threads)
		target_threads = target_smt_mode;
	if (vc->num_threads < target_threads)
		collect_piggybacks(&core_info, target_threads);
2780

2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796
	/*
	 * On radix, arrange for TLB flushing if necessary.
	 * This has to be done before disabling interrupts since
	 * it uses smp_call_function().
	 */
	pcpu = smp_processor_id();
	if (kvm_is_radix(vc->kvm)) {
		for (sub = 0; sub < core_info.n_subcores; ++sub)
			for_each_runnable_thread(i, vcpu, core_info.vc[sub])
				kvmppc_prepare_radix_vcpu(vcpu, pcpu);
	}

	/*
	 * Hard-disable interrupts, and check resched flag and signals.
	 * If we need to reschedule or deliver a signal, clean up
	 * and return without going into the guest(s).
2797
	 * If the mmu_ready flag has been cleared, don't go into the
2798
	 * guest because that means a HPT resize operation is in progress.
2799 2800 2801 2802
	 */
	local_irq_disable();
	hard_irq_disable();
	if (lazy_irq_pending() || need_resched() ||
2803
	    recheck_signals(&core_info) || !vc->kvm->arch.mmu_ready) {
2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819
		local_irq_enable();
		vc->vcore_state = VCORE_INACTIVE;
		/* Unlock all except the primary vcore */
		for (sub = 1; sub < core_info.n_subcores; ++sub) {
			pvc = core_info.vc[sub];
			/* Put back on to the preempted vcores list */
			kvmppc_vcore_preempt(pvc);
			spin_unlock(&pvc->lock);
		}
		for (i = 0; i < controlled_threads; ++i)
			kvmppc_release_hwthread(pcpu + i);
		return;
	}

	kvmppc_clear_host_core(pcpu);

2820 2821 2822 2823 2824
	/* Decide on micro-threading (split-core) mode */
	subcore_size = threads_per_subcore;
	cmd_bit = stat_bit = 0;
	split = core_info.n_subcores;
	sip = NULL;
2825 2826 2827
	is_power8 = cpu_has_feature(CPU_FTR_ARCH_207S)
		&& !cpu_has_feature(CPU_FTR_ARCH_300);

2828
	if (split > 1 || hpt_on_radix) {
2829 2830 2831
		sip = &split_info;
		memset(&split_info, 0, sizeof(split_info));
		for (sub = 0; sub < core_info.n_subcores; ++sub)
2832
			split_info.vc[sub] = core_info.vc[sub];
2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849

		if (is_power8) {
			if (split == 2 && (dynamic_mt_modes & 2)) {
				cmd_bit = HID0_POWER8_1TO2LPAR;
				stat_bit = HID0_POWER8_2LPARMODE;
			} else {
				split = 4;
				cmd_bit = HID0_POWER8_1TO4LPAR;
				stat_bit = HID0_POWER8_4LPARMODE;
			}
			subcore_size = MAX_SMT_THREADS / split;
			split_info.rpr = mfspr(SPRN_RPR);
			split_info.pmmar = mfspr(SPRN_PMMAR);
			split_info.ldbar = mfspr(SPRN_LDBAR);
			split_info.subcore_size = subcore_size;
		} else {
			split_info.subcore_size = 1;
2850 2851 2852 2853 2854 2855 2856
			if (hpt_on_radix) {
				/* Use the split_info for LPCR/LPIDR changes */
				split_info.lpcr_req = vc->lpcr;
				split_info.lpidr_req = vc->kvm->arch.lpid;
				split_info.host_lpcr = vc->kvm->arch.host_lpcr;
				split_info.do_set = 1;
			}
2857 2858
		}

2859 2860 2861
		/* order writes to split_info before kvm_split_mode pointer */
		smp_wmb();
	}
2862 2863

	for (thr = 0; thr < controlled_threads; ++thr) {
2864 2865 2866 2867 2868
		struct paca_struct *paca = paca_ptrs[pcpu + thr];

		paca->kvm_hstate.tid = thr;
		paca->kvm_hstate.napping = 0;
		paca->kvm_hstate.kvm_split_mode = sip;
2869
	}
2870

2871
	/* Initiate micro-threading (split-core) on POWER8 if required */
2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883
	if (cmd_bit) {
		unsigned long hid0 = mfspr(SPRN_HID0);

		hid0 |= cmd_bit | HID0_POWER8_DYNLPARDIS;
		mb();
		mtspr(SPRN_HID0, hid0);
		isync();
		for (;;) {
			hid0 = mfspr(SPRN_HID0);
			if (hid0 & stat_bit)
				break;
			cpu_relax();
2884
		}
2885
	}
2886

2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905
	/*
	 * On POWER8, set RWMR register.
	 * Since it only affects PURR and SPURR, it doesn't affect
	 * the host, so we don't save/restore the host value.
	 */
	if (is_power8) {
		unsigned long rwmr_val = RWMR_RPA_P8_8THREAD;
		int n_online = atomic_read(&vc->online_count);

		/*
		 * Use the 8-thread value if we're doing split-core
		 * or if the vcore's online count looks bogus.
		 */
		if (split == 1 && threads_per_subcore == MAX_SMT_THREADS &&
		    n_online >= 1 && n_online <= MAX_SMT_THREADS)
			rwmr_val = p8_rwmr_values[n_online];
		mtspr(SPRN_RWMR, rwmr_val);
	}

2906 2907 2908
	/* Start all the threads */
	active = 0;
	for (sub = 0; sub < core_info.n_subcores; ++sub) {
2909
		thr = is_power8 ? subcore_thread_map[sub] : sub;
2910 2911
		thr0_done = false;
		active |= 1 << thr;
2912 2913 2914 2915 2916 2917 2918 2919 2920
		pvc = core_info.vc[sub];
		pvc->pcpu = pcpu + thr;
		for_each_runnable_thread(i, vcpu, pvc) {
			kvmppc_start_thread(vcpu, pvc);
			kvmppc_create_dtl_entry(vcpu, pvc);
			trace_kvm_guest_enter(vcpu);
			if (!vcpu->arch.ptid)
				thr0_done = true;
			active |= 1 << (thr + vcpu->arch.ptid);
2921
		}
2922 2923 2924 2925 2926 2927
		/*
		 * We need to start the first thread of each subcore
		 * even if it doesn't have a vcpu.
		 */
		if (!thr0_done)
			kvmppc_start_thread(NULL, pvc);
2928
	}
2929

2930 2931 2932 2933 2934 2935
	/*
	 * Ensure that split_info.do_nap is set after setting
	 * the vcore pointer in the PACA of the secondaries.
	 */
	smp_mb();

2936 2937 2938 2939
	/*
	 * When doing micro-threading, poke the inactive threads as well.
	 * This gets them to the nap instruction after kvm_do_nap,
	 * which reduces the time taken to unsplit later.
2940 2941
	 * For POWER9 HPT guest on radix host, we need all the secondary
	 * threads woken up so they can do the LPCR/LPIDR change.
2942
	 */
2943
	if (cmd_bit || hpt_on_radix) {
2944
		split_info.do_nap = 1;	/* ask secondaries to nap when done */
2945 2946 2947
		for (thr = 1; thr < threads_per_subcore; ++thr)
			if (!(active & (1 << thr)))
				kvmppc_ipi_thread(pcpu + thr);
2948
	}
2949

2950
	vc->vcore_state = VCORE_RUNNING;
2951
	preempt_disable();
2952 2953 2954

	trace_kvmppc_run_core(vc, 0);

2955
	for (sub = 0; sub < core_info.n_subcores; ++sub)
2956
		spin_unlock(&core_info.vc[sub]->lock);
2957

2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983
	if (kvm_is_radix(vc->kvm)) {
		int tmp = pcpu;

		/*
		 * Do we need to flush the process scoped TLB for the LPAR?
		 *
		 * On POWER9, individual threads can come in here, but the
		 * TLB is shared between the 4 threads in a core, hence
		 * invalidating on one thread invalidates for all.
		 * Thus we make all 4 threads use the same bit here.
		 *
		 * Hash must be flushed in realmode in order to use tlbiel.
		 */
		mtspr(SPRN_LPID, vc->kvm->arch.lpid);
		isync();

		if (cpu_has_feature(CPU_FTR_ARCH_300))
			tmp &= ~0x3UL;

		if (cpumask_test_cpu(tmp, &vc->kvm->arch.need_tlb_flush)) {
			radix__local_flush_tlb_lpid_guest(vc->kvm->arch.lpid);
			/* Clear the bit after the TLB flush */
			cpumask_clear_cpu(tmp, &vc->kvm->arch.need_tlb_flush);
		}
	}

2984 2985 2986 2987 2988
	/*
	 * Interrupts will be enabled once we get into the guest,
	 * so tell lockdep that we're about to enable interrupts.
	 */
	trace_hardirqs_on();
2989

2990
	guest_enter_irqoff();
2991

2992
	srcu_idx = srcu_read_lock(&vc->kvm->srcu);
2993

2994 2995
	this_cpu_disable_ftrace();

2996
	trap = __kvmppc_vcore_entry();
2997

2998 2999
	this_cpu_enable_ftrace();

3000 3001
	srcu_read_unlock(&vc->kvm->srcu, srcu_idx);

3002 3003 3004
	trace_hardirqs_off();
	set_irq_happened(trap);

3005
	spin_lock(&vc->lock);
3006
	/* prevent other vcpu threads from doing kvmppc_start_thread() now */
3007
	vc->vcore_state = VCORE_EXITING;
3008

3009
	/* wait for secondary threads to finish writing their state to memory */
3010
	kvmppc_wait_for_nap(controlled_threads);
3011 3012

	/* Return to whole-core mode if we split the core earlier */
3013
	if (cmd_bit) {
3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028
		unsigned long hid0 = mfspr(SPRN_HID0);
		unsigned long loops = 0;

		hid0 &= ~HID0_POWER8_DYNLPARDIS;
		stat_bit = HID0_POWER8_2LPARMODE | HID0_POWER8_4LPARMODE;
		mb();
		mtspr(SPRN_HID0, hid0);
		isync();
		for (;;) {
			hid0 = mfspr(SPRN_HID0);
			if (!(hid0 & stat_bit))
				break;
			cpu_relax();
			++loops;
		}
3029 3030 3031
	} else if (hpt_on_radix) {
		/* Wait for all threads to have seen final sync */
		for (thr = 1; thr < controlled_threads; ++thr) {
3032 3033 3034
			struct paca_struct *paca = paca_ptrs[pcpu + thr];

			while (paca->kvm_hstate.kvm_split_mode) {
3035 3036 3037 3038 3039
				HMT_low();
				barrier();
			}
			HMT_medium();
		}
3040
	}
3041
	split_info.do_nap = 0;
3042

3043 3044 3045
	kvmppc_set_host_core(pcpu);

	local_irq_enable();
3046
	guest_exit();
3047

3048
	/* Let secondaries go back to the offline loop */
3049
	for (i = 0; i < controlled_threads; ++i) {
3050 3051 3052
		kvmppc_release_hwthread(pcpu + i);
		if (sip && sip->napped[i])
			kvmppc_ipi_thread(pcpu + i);
3053
		cpumask_clear_cpu(pcpu + i, &vc->kvm->arch.cpu_in_guest);
3054 3055
	}

3056
	spin_unlock(&vc->lock);
3057

3058 3059
	/* make sure updates to secondary vcpu structs are visible now */
	smp_mb();
3060

3061 3062
	preempt_enable();

3063 3064 3065 3066
	for (sub = 0; sub < core_info.n_subcores; ++sub) {
		pvc = core_info.vc[sub];
		post_guest_process(pvc, pvc == vc);
	}
3067

3068
	spin_lock(&vc->lock);
3069 3070

 out:
3071
	vc->vcore_state = VCORE_INACTIVE;
3072
	trace_kvmppc_run_core(vc, 1);
3073 3074
}

3075 3076 3077 3078
/*
 * Wait for some other vcpu thread to execute us, and
 * wake us up when we need to handle something in the host.
 */
3079 3080
static void kvmppc_wait_for_exec(struct kvmppc_vcore *vc,
				 struct kvm_vcpu *vcpu, int wait_state)
3081 3082 3083
{
	DEFINE_WAIT(wait);

3084
	prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state);
3085 3086
	if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
		spin_unlock(&vc->lock);
3087
		schedule();
3088 3089
		spin_lock(&vc->lock);
	}
3090 3091 3092
	finish_wait(&vcpu->arch.cpu_run, &wait);
}

3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109
static void grow_halt_poll_ns(struct kvmppc_vcore *vc)
{
	/* 10us base */
	if (vc->halt_poll_ns == 0 && halt_poll_ns_grow)
		vc->halt_poll_ns = 10000;
	else
		vc->halt_poll_ns *= halt_poll_ns_grow;
}

static void shrink_halt_poll_ns(struct kvmppc_vcore *vc)
{
	if (halt_poll_ns_shrink == 0)
		vc->halt_poll_ns = 0;
	else
		vc->halt_poll_ns /= halt_poll_ns_shrink;
}

3110 3111 3112 3113 3114
#ifdef CONFIG_KVM_XICS
static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu)
{
	if (!xive_enabled())
		return false;
3115
	return vcpu->arch.irq_pending || vcpu->arch.xive_saved_state.pipr <
3116 3117 3118 3119 3120 3121 3122 3123 3124
		vcpu->arch.xive_saved_state.cppr;
}
#else
static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu)
{
	return false;
}
#endif /* CONFIG_KVM_XICS */

3125 3126 3127
static bool kvmppc_vcpu_woken(struct kvm_vcpu *vcpu)
{
	if (vcpu->arch.pending_exceptions || vcpu->arch.prodded ||
3128
	    kvmppc_doorbell_pending(vcpu) || xive_interrupt_pending(vcpu))
3129 3130 3131 3132 3133
		return true;

	return false;
}

3134 3135
/*
 * Check to see if any of the runnable vcpus on the vcore have pending
3136 3137 3138 3139 3140 3141 3142 3143
 * exceptions or are no longer ceded
 */
static int kvmppc_vcore_check_block(struct kvmppc_vcore *vc)
{
	struct kvm_vcpu *vcpu;
	int i;

	for_each_runnable_thread(i, vcpu, vc) {
3144
		if (!vcpu->arch.ceded || kvmppc_vcpu_woken(vcpu))
3145 3146 3147 3148 3149 3150
			return 1;
	}

	return 0;
}

3151 3152 3153 3154 3155 3156
/*
 * All the vcpus in this vcore are idle, so wait for a decrementer
 * or external interrupt to one of the vcpus.  vc->lock is held.
 */
static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc)
{
3157
	ktime_t cur, start_poll, start_wait;
3158 3159
	int do_sleep = 1;
	u64 block_ns;
3160
	DECLARE_SWAITQUEUE(wait);
3161

3162
	/* Poll for pending exceptions and ceded state */
3163
	cur = start_poll = ktime_get();
3164
	if (vc->halt_poll_ns) {
3165 3166
		ktime_t stop = ktime_add_ns(start_poll, vc->halt_poll_ns);
		++vc->runner->stat.halt_attempted_poll;
3167

3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181
		vc->vcore_state = VCORE_POLLING;
		spin_unlock(&vc->lock);

		do {
			if (kvmppc_vcore_check_block(vc)) {
				do_sleep = 0;
				break;
			}
			cur = ktime_get();
		} while (single_task_running() && ktime_before(cur, stop));

		spin_lock(&vc->lock);
		vc->vcore_state = VCORE_INACTIVE;

3182 3183
		if (!do_sleep) {
			++vc->runner->stat.halt_successful_poll;
3184
			goto out;
3185
		}
3186 3187
	}

3188
	prepare_to_swait_exclusive(&vc->wq, &wait, TASK_INTERRUPTIBLE);
3189 3190

	if (kvmppc_vcore_check_block(vc)) {
3191
		finish_swait(&vc->wq, &wait);
3192
		do_sleep = 0;
3193 3194 3195
		/* If we polled, count this as a successful poll */
		if (vc->halt_poll_ns)
			++vc->runner->stat.halt_successful_poll;
3196
		goto out;
3197 3198
	}

3199 3200
	start_wait = ktime_get();

3201
	vc->vcore_state = VCORE_SLEEPING;
3202
	trace_kvmppc_vcore_blocked(vc, 0);
3203
	spin_unlock(&vc->lock);
3204
	schedule();
3205
	finish_swait(&vc->wq, &wait);
3206 3207
	spin_lock(&vc->lock);
	vc->vcore_state = VCORE_INACTIVE;
3208
	trace_kvmppc_vcore_blocked(vc, 1);
3209
	++vc->runner->stat.halt_successful_wait;
3210 3211 3212 3213

	cur = ktime_get();

out:
3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231
	block_ns = ktime_to_ns(cur) - ktime_to_ns(start_poll);

	/* Attribute wait time */
	if (do_sleep) {
		vc->runner->stat.halt_wait_ns +=
			ktime_to_ns(cur) - ktime_to_ns(start_wait);
		/* Attribute failed poll time */
		if (vc->halt_poll_ns)
			vc->runner->stat.halt_poll_fail_ns +=
				ktime_to_ns(start_wait) -
				ktime_to_ns(start_poll);
	} else {
		/* Attribute successful poll time */
		if (vc->halt_poll_ns)
			vc->runner->stat.halt_poll_success_ns +=
				ktime_to_ns(cur) -
				ktime_to_ns(start_poll);
	}
3232 3233

	/* Adjust poll time */
3234
	if (halt_poll_ns) {
3235 3236 3237
		if (block_ns <= vc->halt_poll_ns)
			;
		/* We slept and blocked for longer than the max halt time */
3238
		else if (vc->halt_poll_ns && block_ns > halt_poll_ns)
3239 3240
			shrink_halt_poll_ns(vc);
		/* We slept and our poll time is too small */
3241 3242
		else if (vc->halt_poll_ns < halt_poll_ns &&
				block_ns < halt_poll_ns)
3243
			grow_halt_poll_ns(vc);
3244 3245
		if (vc->halt_poll_ns > halt_poll_ns)
			vc->halt_poll_ns = halt_poll_ns;
3246 3247 3248 3249
	} else
		vc->halt_poll_ns = 0;

	trace_kvmppc_vcore_wakeup(do_sleep, block_ns);
3250
}
3251

3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270
static int kvmhv_setup_mmu(struct kvm_vcpu *vcpu)
{
	int r = 0;
	struct kvm *kvm = vcpu->kvm;

	mutex_lock(&kvm->lock);
	if (!kvm->arch.mmu_ready) {
		if (!kvm_is_radix(kvm))
			r = kvmppc_hv_setup_htab_rma(vcpu);
		if (!r) {
			if (cpu_has_feature(CPU_FTR_ARCH_300))
				kvmppc_setup_partition_table(kvm);
			kvm->arch.mmu_ready = 1;
		}
	}
	mutex_unlock(&kvm->lock);
	return r;
}

3271 3272
static int kvmppc_run_vcpu(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
{
3273
	int n_ceded, i, r;
3274
	struct kvmppc_vcore *vc;
3275
	struct kvm_vcpu *v;
3276

3277 3278
	trace_kvmppc_run_vcpu_enter(vcpu);

3279 3280 3281
	kvm_run->exit_reason = 0;
	vcpu->arch.ret = RESUME_GUEST;
	vcpu->arch.trap = 0;
3282
	kvmppc_update_vpas(vcpu);
3283 3284 3285 3286 3287 3288

	/*
	 * Synchronize with other threads in this virtual core
	 */
	vc = vcpu->arch.vcore;
	spin_lock(&vc->lock);
3289
	vcpu->arch.ceded = 0;
3290 3291
	vcpu->arch.run_task = current;
	vcpu->arch.kvm_run = kvm_run;
3292
	vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb());
3293
	vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
3294
	vcpu->arch.busy_preempt = TB_NIL;
3295
	WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], vcpu);
3296 3297
	++vc->n_runnable;

3298 3299 3300 3301 3302
	/*
	 * This happens the first time this is called for a vcpu.
	 * If the vcore is already running, we may be able to start
	 * this thread straight away and have it join in.
	 */
3303
	if (!signal_pending(current)) {
3304 3305
		if ((vc->vcore_state == VCORE_PIGGYBACK ||
		     vc->vcore_state == VCORE_RUNNING) &&
3306
			   !VCORE_IS_EXITING(vc)) {
3307
			kvmppc_create_dtl_entry(vcpu, vc);
3308
			kvmppc_start_thread(vcpu, vc);
3309
			trace_kvm_guest_enter(vcpu);
3310
		} else if (vc->vcore_state == VCORE_SLEEPING) {
3311
			swake_up_one(&vc->wq);
3312 3313
		}

3314
	}
3315

3316 3317
	while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
	       !signal_pending(current)) {
3318 3319
		/* See if the MMU is ready to go */
		if (!vcpu->kvm->arch.mmu_ready) {
3320
			spin_unlock(&vc->lock);
3321
			r = kvmhv_setup_mmu(vcpu);
3322 3323 3324
			spin_lock(&vc->lock);
			if (r) {
				kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3325 3326
				kvm_run->fail_entry.
					hardware_entry_failure_reason = 0;
3327 3328 3329 3330 3331
				vcpu->arch.ret = r;
				break;
			}
		}

3332 3333 3334
		if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
			kvmppc_vcore_end_preempt(vc);

3335
		if (vc->vcore_state != VCORE_INACTIVE) {
3336
			kvmppc_wait_for_exec(vc, vcpu, TASK_INTERRUPTIBLE);
3337 3338
			continue;
		}
3339
		for_each_runnable_thread(i, v, vc) {
3340
			kvmppc_core_prepare_to_enter(v);
3341 3342 3343 3344 3345 3346 3347 3348
			if (signal_pending(v->arch.run_task)) {
				kvmppc_remove_runnable(vc, v);
				v->stat.signal_exits++;
				v->arch.kvm_run->exit_reason = KVM_EXIT_INTR;
				v->arch.ret = -EINTR;
				wake_up(&v->arch.cpu_run);
			}
		}
3349 3350 3351
		if (!vc->n_runnable || vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
			break;
		n_ceded = 0;
3352
		for_each_runnable_thread(i, v, vc) {
3353
			if (!kvmppc_vcpu_woken(v))
3354
				n_ceded += v->arch.ceded;
3355 3356 3357
			else
				v->arch.ceded = 0;
		}
3358 3359
		vc->runner = vcpu;
		if (n_ceded == vc->n_runnable) {
3360
			kvmppc_vcore_blocked(vc);
3361
		} else if (need_resched()) {
3362
			kvmppc_vcore_preempt(vc);
3363 3364
			/* Let something else run */
			cond_resched_lock(&vc->lock);
3365 3366
			if (vc->vcore_state == VCORE_PREEMPT)
				kvmppc_vcore_end_preempt(vc);
3367
		} else {
3368
			kvmppc_run_core(vc);
3369
		}
3370
		vc->runner = NULL;
3371
	}
3372

3373 3374
	while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
	       (vc->vcore_state == VCORE_RUNNING ||
3375 3376
		vc->vcore_state == VCORE_EXITING ||
		vc->vcore_state == VCORE_PIGGYBACK))
3377
		kvmppc_wait_for_exec(vc, vcpu, TASK_UNINTERRUPTIBLE);
3378

3379 3380 3381
	if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
		kvmppc_vcore_end_preempt(vc);

3382 3383 3384 3385 3386 3387 3388 3389 3390
	if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
		kvmppc_remove_runnable(vc, vcpu);
		vcpu->stat.signal_exits++;
		kvm_run->exit_reason = KVM_EXIT_INTR;
		vcpu->arch.ret = -EINTR;
	}

	if (vc->n_runnable && vc->vcore_state == VCORE_INACTIVE) {
		/* Wake up some vcpu to run the core */
3391 3392
		i = -1;
		v = next_runnable_thread(vc, &i);
3393
		wake_up(&v->arch.cpu_run);
3394 3395
	}

3396
	trace_kvmppc_run_vcpu_exit(vcpu, kvm_run);
3397 3398
	spin_unlock(&vc->lock);
	return vcpu->arch.ret;
3399 3400
}

3401
static int kvmppc_vcpu_run_hv(struct kvm_run *run, struct kvm_vcpu *vcpu)
3402 3403
{
	int r;
3404
	int srcu_idx;
3405
	unsigned long ebb_regs[3] = {};	/* shut up GCC */
3406 3407
	unsigned long user_tar = 0;
	unsigned int user_vrsave;
3408
	struct kvm *kvm;
3409

3410 3411 3412 3413 3414
	if (!vcpu->arch.sane) {
		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
		return -EINVAL;
	}

3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428
	/*
	 * Don't allow entry with a suspended transaction, because
	 * the guest entry/exit code will lose it.
	 * If the guest has TM enabled, save away their TM-related SPRs
	 * (they will get restored by the TM unavailable interrupt).
	 */
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
	if (cpu_has_feature(CPU_FTR_TM) && current->thread.regs &&
	    (current->thread.regs->msr & MSR_TM)) {
		if (MSR_TM_ACTIVE(current->thread.regs->msr)) {
			run->exit_reason = KVM_EXIT_FAIL_ENTRY;
			run->fail_entry.hardware_entry_failure_reason = 0;
			return -EINVAL;
		}
3429 3430
		/* Enable TM so we can read the TM SPRs */
		mtmsr(mfmsr() | MSR_TM);
3431 3432 3433 3434 3435 3436 3437
		current->thread.tm_tfhar = mfspr(SPRN_TFHAR);
		current->thread.tm_tfiar = mfspr(SPRN_TFIAR);
		current->thread.tm_texasr = mfspr(SPRN_TEXASR);
		current->thread.regs->msr &= ~MSR_TM;
	}
#endif

3438 3439 3440 3441 3442 3443 3444 3445 3446
	/*
	 * Force online to 1 for the sake of old userspace which doesn't
	 * set it.
	 */
	if (!vcpu->arch.online) {
		atomic_inc(&vcpu->arch.vcore->online_count);
		vcpu->arch.online = 1;
	}

3447 3448
	kvmppc_core_prepare_to_enter(vcpu);

3449 3450 3451 3452 3453 3454
	/* No need to go into the guest when all we'll do is come back out */
	if (signal_pending(current)) {
		run->exit_reason = KVM_EXIT_INTR;
		return -EINTR;
	}

3455 3456 3457
	kvm = vcpu->kvm;
	atomic_inc(&kvm->arch.vcpus_running);
	/* Order vcpus_running vs. mmu_ready, see kvmppc_alloc_reset_hpt */
3458 3459
	smp_mb();

3460 3461
	flush_all_to_thread(current);

3462
	/* Save userspace EBB and other register values */
3463 3464 3465 3466
	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
		ebb_regs[0] = mfspr(SPRN_EBBHR);
		ebb_regs[1] = mfspr(SPRN_EBBRR);
		ebb_regs[2] = mfspr(SPRN_BESCR);
3467
		user_tar = mfspr(SPRN_TAR);
3468
	}
3469
	user_vrsave = mfspr(SPRN_VRSAVE);
3470

3471
	vcpu->arch.wqp = &vcpu->arch.vcore->wq;
3472
	vcpu->arch.pgdir = current->mm->pgd;
3473
	vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
3474

3475 3476 3477 3478 3479
	do {
		r = kvmppc_run_vcpu(run, vcpu);

		if (run->exit_reason == KVM_EXIT_PAPR_HCALL &&
		    !(vcpu->arch.shregs.msr & MSR_PR)) {
3480
			trace_kvm_hcall_enter(vcpu);
3481
			r = kvmppc_pseries_do_hcall(vcpu);
3482
			trace_kvm_hcall_exit(vcpu, r);
3483
			kvmppc_core_prepare_to_enter(vcpu);
3484
		} else if (r == RESUME_PAGE_FAULT) {
3485
			srcu_idx = srcu_read_lock(&kvm->srcu);
3486 3487
			r = kvmppc_book3s_hv_page_fault(run, vcpu,
				vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
3488
			srcu_read_unlock(&kvm->srcu, srcu_idx);
3489 3490 3491 3492 3493 3494
		} else if (r == RESUME_PASSTHROUGH) {
			if (WARN_ON(xive_enabled()))
				r = H_SUCCESS;
			else
				r = kvmppc_xics_rm_complete(vcpu, 0);
		}
3495
	} while (is_kvmppc_resume_guest(r));
3496

3497
	/* Restore userspace EBB and other register values */
3498 3499 3500 3501
	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
		mtspr(SPRN_EBBHR, ebb_regs[0]);
		mtspr(SPRN_EBBRR, ebb_regs[1]);
		mtspr(SPRN_BESCR, ebb_regs[2]);
3502 3503
		mtspr(SPRN_TAR, user_tar);
		mtspr(SPRN_FSCR, current->thread.fscr);
3504
	}
3505
	mtspr(SPRN_VRSAVE, user_vrsave);
3506

3507
	vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
3508
	atomic_dec(&kvm->arch.vcpus_running);
3509 3510 3511
	return r;
}

3512
static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps,
3513
				     int shift, int sllp)
3514
{
3515 3516 3517 3518
	(*sps)->page_shift = shift;
	(*sps)->slb_enc = sllp;
	(*sps)->enc[0].page_shift = shift;
	(*sps)->enc[0].pte_enc = kvmppc_pgsize_lp_encoding(shift, shift);
3519
	/*
3520
	 * Add 16MB MPSS support (may get filtered out by userspace)
3521
	 */
3522 3523 3524 3525 3526 3527
	if (shift != 24) {
		int penc = kvmppc_pgsize_lp_encoding(shift, 24);
		if (penc != -1) {
			(*sps)->enc[1].page_shift = 24;
			(*sps)->enc[1].pte_enc = penc;
		}
3528
	}
3529 3530 3531
	(*sps)++;
}

3532 3533
static int kvm_vm_ioctl_get_smmu_info_hv(struct kvm *kvm,
					 struct kvm_ppc_smmu_info *info)
3534 3535 3536
{
	struct kvm_ppc_one_seg_page_size *sps;

3537 3538 3539 3540 3541 3542 3543 3544
	/*
	 * POWER7, POWER8 and POWER9 all support 32 storage keys for data.
	 * POWER7 doesn't support keys for instruction accesses,
	 * POWER8 and POWER9 do.
	 */
	info->data_keys = 32;
	info->instr_keys = cpu_has_feature(CPU_FTR_ARCH_207S) ? 32 : 0;

3545 3546 3547
	/* POWER7, 8 and 9 all have 1T segments and 32-entry SLB */
	info->flags = KVM_PPC_PAGE_SIZES_REAL | KVM_PPC_1T_SEGMENTS;
	info->slb_size = 32;
3548 3549 3550

	/* We only support these sizes for now, and no muti-size segments */
	sps = &info->sps[0];
3551 3552 3553
	kvmppc_add_seg_page_size(&sps, 12, 0);
	kvmppc_add_seg_page_size(&sps, 16, SLB_VSID_L | SLB_VSID_LP_01);
	kvmppc_add_seg_page_size(&sps, 24, SLB_VSID_L);
3554 3555 3556 3557

	return 0;
}

3558 3559 3560
/*
 * Get (and clear) the dirty memory log for a memory slot.
 */
3561 3562
static int kvm_vm_ioctl_get_dirty_log_hv(struct kvm *kvm,
					 struct kvm_dirty_log *log)
3563
{
3564
	struct kvm_memslots *slots;
3565
	struct kvm_memory_slot *memslot;
3566
	int i, r;
3567
	unsigned long n;
3568
	unsigned long *buf, *p;
3569
	struct kvm_vcpu *vcpu;
3570 3571 3572 3573

	mutex_lock(&kvm->slots_lock);

	r = -EINVAL;
3574
	if (log->slot >= KVM_USER_MEM_SLOTS)
3575 3576
		goto out;

3577 3578
	slots = kvm_memslots(kvm);
	memslot = id_to_memslot(slots, log->slot);
3579 3580 3581 3582
	r = -ENOENT;
	if (!memslot->dirty_bitmap)
		goto out;

3583
	/*
3584 3585
	 * Use second half of bitmap area because both HPT and radix
	 * accumulate bits in the first half.
3586
	 */
3587
	n = kvm_dirty_bitmap_bytes(memslot);
3588 3589
	buf = memslot->dirty_bitmap + n / sizeof(long);
	memset(buf, 0, n);
3590

3591 3592 3593 3594
	if (kvm_is_radix(kvm))
		r = kvmppc_hv_get_dirty_log_radix(kvm, memslot, buf);
	else
		r = kvmppc_hv_get_dirty_log_hpt(kvm, memslot, buf);
3595 3596 3597
	if (r)
		goto out;

3598 3599 3600 3601 3602 3603 3604 3605 3606 3607
	/*
	 * We accumulate dirty bits in the first half of the
	 * memslot's dirty_bitmap area, for when pages are paged
	 * out or modified by the host directly.  Pick up these
	 * bits and add them to the map.
	 */
	p = memslot->dirty_bitmap;
	for (i = 0; i < n / sizeof(long); ++i)
		buf[i] |= xchg(&p[i], 0);

3608 3609 3610 3611 3612 3613 3614 3615 3616
	/* Harvest dirty bits from VPA and DTL updates */
	/* Note: we never modify the SLB shadow buffer areas */
	kvm_for_each_vcpu(i, vcpu, kvm) {
		spin_lock(&vcpu->arch.vpa_update_lock);
		kvmppc_harvest_vpa_dirty(&vcpu->arch.vpa, memslot, buf);
		kvmppc_harvest_vpa_dirty(&vcpu->arch.dtl, memslot, buf);
		spin_unlock(&vcpu->arch.vpa_update_lock);
	}

3617
	r = -EFAULT;
3618
	if (copy_to_user(log->dirty_bitmap, buf, n))
3619 3620 3621 3622 3623 3624 3625 3626
		goto out;

	r = 0;
out:
	mutex_unlock(&kvm->slots_lock);
	return r;
}

3627 3628
static void kvmppc_core_free_memslot_hv(struct kvm_memory_slot *free,
					struct kvm_memory_slot *dont)
3629 3630 3631 3632
{
	if (!dont || free->arch.rmap != dont->arch.rmap) {
		vfree(free->arch.rmap);
		free->arch.rmap = NULL;
3633
	}
3634 3635
}

3636 3637
static int kvmppc_core_create_memslot_hv(struct kvm_memory_slot *slot,
					 unsigned long npages)
3638
{
3639
	slot->arch.rmap = vzalloc(array_size(npages, sizeof(*slot->arch.rmap)));
3640 3641
	if (!slot->arch.rmap)
		return -ENOMEM;
3642

3643 3644
	return 0;
}
3645

3646 3647
static int kvmppc_core_prepare_memory_region_hv(struct kvm *kvm,
					struct kvm_memory_slot *memslot,
3648
					const struct kvm_userspace_memory_region *mem)
3649
{
3650
	return 0;
3651 3652
}

3653
static void kvmppc_core_commit_memory_region_hv(struct kvm *kvm,
3654
				const struct kvm_userspace_memory_region *mem,
3655 3656
				const struct kvm_memory_slot *old,
				const struct kvm_memory_slot *new)
3657
{
3658 3659
	unsigned long npages = mem->memory_size >> PAGE_SHIFT;

3660 3661 3662 3663 3664 3665 3666 3667
	/*
	 * If we are making a new memslot, it might make
	 * some address that was previously cached as emulated
	 * MMIO be no longer emulated MMIO, so invalidate
	 * all the caches of emulated MMIO translations.
	 */
	if (npages)
		atomic64_inc(&kvm->arch.mmio_update);
3668 3669
}

3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695
/*
 * Update LPCR values in kvm->arch and in vcores.
 * Caller must hold kvm->lock.
 */
void kvmppc_update_lpcr(struct kvm *kvm, unsigned long lpcr, unsigned long mask)
{
	long int i;
	u32 cores_done = 0;

	if ((kvm->arch.lpcr & mask) == lpcr)
		return;

	kvm->arch.lpcr = (kvm->arch.lpcr & ~mask) | lpcr;

	for (i = 0; i < KVM_MAX_VCORES; ++i) {
		struct kvmppc_vcore *vc = kvm->arch.vcores[i];
		if (!vc)
			continue;
		spin_lock(&vc->lock);
		vc->lpcr = (vc->lpcr & ~mask) | lpcr;
		spin_unlock(&vc->lock);
		if (++cores_done >= kvm->arch.online_vcores)
			break;
	}
}

3696 3697 3698 3699 3700
static void kvmppc_mmu_destroy_hv(struct kvm_vcpu *vcpu)
{
	return;
}

3701
void kvmppc_setup_partition_table(struct kvm *kvm)
3702 3703 3704
{
	unsigned long dw0, dw1;

3705 3706 3707 3708 3709 3710
	if (!kvm_is_radix(kvm)) {
		/* PS field - page size for VRMA */
		dw0 = ((kvm->arch.vrma_slb_v & SLB_VSID_L) >> 1) |
			((kvm->arch.vrma_slb_v & SLB_VSID_LP) << 1);
		/* HTABSIZE and HTABORG fields */
		dw0 |= kvm->arch.sdr1;
3711

3712 3713 3714 3715 3716 3717 3718
		/* Second dword as set by userspace */
		dw1 = kvm->arch.process_table;
	} else {
		dw0 = PATB_HR | radix__get_tree_size() |
			__pa(kvm->arch.pgtable) | RADIX_PGD_INDEX_SIZE;
		dw1 = PATB_GR | kvm->arch.process_table;
	}
3719 3720 3721 3722

	mmu_partition_table_set_entry(kvm->arch.lpid, dw0, dw1);
}

3723 3724 3725 3726
/*
 * Set up HPT (hashed page table) and RMA (real-mode area).
 * Must be called with kvm->lock held.
 */
3727
static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu)
3728 3729 3730 3731 3732 3733
{
	int err = 0;
	struct kvm *kvm = vcpu->kvm;
	unsigned long hva;
	struct kvm_memory_slot *memslot;
	struct vm_area_struct *vma;
3734
	unsigned long lpcr = 0, senc;
3735
	unsigned long psize, porder;
3736
	int srcu_idx;
3737

3738
	/* Allocate hashed page table (if not done already) and reset it */
3739
	if (!kvm->arch.hpt.virt) {
3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750
		int order = KVM_DEFAULT_HPT_ORDER;
		struct kvm_hpt_info info;

		err = kvmppc_allocate_hpt(&info, order);
		/* If we get here, it means userspace didn't specify a
		 * size explicitly.  So, try successively smaller
		 * sizes if the default failed. */
		while ((err == -ENOMEM) && --order >= PPC_MIN_HPT_ORDER)
			err  = kvmppc_allocate_hpt(&info, order);

		if (err < 0) {
3751 3752 3753
			pr_err("KVM: Couldn't alloc HPT\n");
			goto out;
		}
3754 3755

		kvmppc_set_hpt(kvm, &info);
3756 3757
	}

3758
	/* Look up the memslot for guest physical address 0 */
3759
	srcu_idx = srcu_read_lock(&kvm->srcu);
3760
	memslot = gfn_to_memslot(kvm, 0);
3761

3762 3763 3764
	/* We must have some memory at 0 by now */
	err = -EINVAL;
	if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
3765
		goto out_srcu;
3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777

	/* Look up the VMA for the start of this memory slot */
	hva = memslot->userspace_addr;
	down_read(&current->mm->mmap_sem);
	vma = find_vma(current->mm, hva);
	if (!vma || vma->vm_start > hva || (vma->vm_flags & VM_IO))
		goto up_out;

	psize = vma_kernel_pagesize(vma);

	up_read(&current->mm->mmap_sem);

3778
	/* We can handle 4k, 64k or 16M pages in the VRMA */
3779 3780 3781 3782 3783 3784 3785
	if (psize >= 0x1000000)
		psize = 0x1000000;
	else if (psize >= 0x10000)
		psize = 0x10000;
	else
		psize = 0x1000;
	porder = __ilog2(psize);
3786

3787 3788 3789 3790 3791
	senc = slb_pgsize_encoding(psize);
	kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
		(VRMA_VSID << SLB_VSID_SHIFT_1T);
	/* Create HPTEs in the hash page table for the VRMA */
	kvmppc_map_vrma(vcpu, memslot, porder);
3792

3793 3794 3795 3796 3797 3798
	/* Update VRMASD field in the LPCR */
	if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
		/* the -4 is to account for senc values starting at 0x10 */
		lpcr = senc << (LPCR_VRMASD_SH - 4);
		kvmppc_update_lpcr(kvm, lpcr, LPCR_VRMASD);
	}
3799

3800
	/* Order updates to kvm->arch.lpcr etc. vs. mmu_ready */
3801 3802
	smp_wmb();
	err = 0;
3803 3804
 out_srcu:
	srcu_read_unlock(&kvm->srcu, srcu_idx);
3805 3806
 out:
	return err;
3807

3808 3809
 up_out:
	up_read(&current->mm->mmap_sem);
3810
	goto out_srcu;
3811 3812
}

3813 3814 3815
/* Must be called with kvm->lock held and mmu_ready = 0 and no vcpus running */
int kvmppc_switch_mmu_to_hpt(struct kvm *kvm)
{
3816 3817 3818 3819 3820 3821
	kvmppc_rmap_reset(kvm);
	kvm->arch.process_table = 0;
	/* Mutual exclusion with kvm_unmap_hva_range etc. */
	spin_lock(&kvm->mmu_lock);
	kvm->arch.radix = 0;
	spin_unlock(&kvm->mmu_lock);
3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836
	kvmppc_free_radix(kvm);
	kvmppc_update_lpcr(kvm, LPCR_VPM1,
			   LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR);
	return 0;
}

/* Must be called with kvm->lock held and mmu_ready = 0 and no vcpus running */
int kvmppc_switch_mmu_to_radix(struct kvm *kvm)
{
	int err;

	err = kvmppc_init_vm_radix(kvm);
	if (err)
		return err;

3837 3838 3839 3840 3841
	kvmppc_rmap_reset(kvm);
	/* Mutual exclusion with kvm_unmap_hva_range etc. */
	spin_lock(&kvm->mmu_lock);
	kvm->arch.radix = 1;
	spin_unlock(&kvm->mmu_lock);
3842 3843 3844 3845 3846 3847
	kvmppc_free_hpt(&kvm->arch.hpt);
	kvmppc_update_lpcr(kvm, LPCR_UPRT | LPCR_GTSE | LPCR_HR,
			   LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR);
	return 0;
}

3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881
#ifdef CONFIG_KVM_XICS
/*
 * Allocate a per-core structure for managing state about which cores are
 * running in the host versus the guest and for exchanging data between
 * real mode KVM and CPU running in the host.
 * This is only done for the first VM.
 * The allocated structure stays even if all VMs have stopped.
 * It is only freed when the kvm-hv module is unloaded.
 * It's OK for this routine to fail, we just don't support host
 * core operations like redirecting H_IPI wakeups.
 */
void kvmppc_alloc_host_rm_ops(void)
{
	struct kvmppc_host_rm_ops *ops;
	unsigned long l_ops;
	int cpu, core;
	int size;

	/* Not the first time here ? */
	if (kvmppc_host_rm_ops_hv != NULL)
		return;

	ops = kzalloc(sizeof(struct kvmppc_host_rm_ops), GFP_KERNEL);
	if (!ops)
		return;

	size = cpu_nr_cores() * sizeof(struct kvmppc_host_rm_core);
	ops->rm_core = kzalloc(size, GFP_KERNEL);

	if (!ops->rm_core) {
		kfree(ops);
		return;
	}

3882
	cpus_read_lock();
3883

3884 3885 3886 3887 3888 3889 3890 3891
	for (cpu = 0; cpu < nr_cpu_ids; cpu += threads_per_core) {
		if (!cpu_online(cpu))
			continue;

		core = cpu >> threads_shift;
		ops->rm_core[core].rm_state.in_host = 1;
	}

3892 3893
	ops->vcpu_kick = kvmppc_fast_vcpu_kick_hv;

3894 3895 3896 3897 3898 3899 3900 3901 3902 3903
	/*
	 * Make the contents of the kvmppc_host_rm_ops structure visible
	 * to other CPUs before we assign it to the global variable.
	 * Do an atomic assignment (no locks used here), but if someone
	 * beats us to it, just free our copy and return.
	 */
	smp_wmb();
	l_ops = (unsigned long) ops;

	if (cmpxchg64((unsigned long *)&kvmppc_host_rm_ops_hv, 0, l_ops)) {
3904
		cpus_read_unlock();
3905 3906
		kfree(ops->rm_core);
		kfree(ops);
3907
		return;
3908
	}
3909

3910 3911 3912 3913 3914
	cpuhp_setup_state_nocalls_cpuslocked(CPUHP_KVM_PPC_BOOK3S_PREPARE,
					     "ppc/kvm_book3s:prepare",
					     kvmppc_set_host_core,
					     kvmppc_clear_host_core);
	cpus_read_unlock();
3915 3916 3917 3918 3919
}

void kvmppc_free_host_rm_ops(void)
{
	if (kvmppc_host_rm_ops_hv) {
3920
		cpuhp_remove_state_nocalls(CPUHP_KVM_PPC_BOOK3S_PREPARE);
3921 3922 3923 3924 3925 3926 3927
		kfree(kvmppc_host_rm_ops_hv->rm_core);
		kfree(kvmppc_host_rm_ops_hv);
		kvmppc_host_rm_ops_hv = NULL;
	}
}
#endif

3928
static int kvmppc_core_init_vm_hv(struct kvm *kvm)
3929
{
3930
	unsigned long lpcr, lpid;
3931
	char buf[32];
3932
	int ret;
3933

3934 3935 3936
	/* Allocate the guest's logical partition ID */

	lpid = kvmppc_alloc_lpid();
3937
	if ((long)lpid < 0)
3938 3939
		return -ENOMEM;
	kvm->arch.lpid = lpid;
3940

3941 3942
	kvmppc_alloc_host_rm_ops();

3943 3944 3945 3946
	/*
	 * Since we don't flush the TLB when tearing down a VM,
	 * and this lpid might have previously been used,
	 * make sure we flush on each core before running the new VM.
3947 3948
	 * On POWER9, the tlbie in mmu_partition_table_set_entry()
	 * does this flush for us.
3949
	 */
3950 3951
	if (!cpu_has_feature(CPU_FTR_ARCH_300))
		cpumask_setall(&kvm->arch.need_tlb_flush);
3952

3953 3954 3955 3956
	/* Start out with the default set of hcalls enabled */
	memcpy(kvm->arch.enabled_hcalls, default_enabled_hcalls,
	       sizeof(kvm->arch.enabled_hcalls));

3957 3958
	if (!cpu_has_feature(CPU_FTR_ARCH_300))
		kvm->arch.host_sdr1 = mfspr(SPRN_SDR1);
3959

3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970
	/* Init LPCR for virtual RMA mode */
	kvm->arch.host_lpid = mfspr(SPRN_LPID);
	kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR);
	lpcr &= LPCR_PECE | LPCR_LPES;
	lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE |
		LPCR_VPM0 | LPCR_VPM1;
	kvm->arch.vrma_slb_v = SLB_VSID_B_1T |
		(VRMA_VSID << SLB_VSID_SHIFT_1T);
	/* On POWER8 turn on online bit to enable PURR/SPURR */
	if (cpu_has_feature(CPU_FTR_ARCH_207S))
		lpcr |= LPCR_ONL;
3971 3972 3973
	/*
	 * On POWER9, VPM0 bit is reserved (VPM0=1 behaviour is assumed)
	 * Set HVICE bit to enable hypervisor virtualization interrupts.
3974 3975 3976
	 * Set HEIC to prevent OS interrupts to go to hypervisor (should
	 * be unnecessary but better safe than sorry in case we re-enable
	 * EE in HV mode with this LPCR still set)
3977 3978
	 */
	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
3979
		lpcr &= ~LPCR_VPM0;
3980 3981 3982 3983 3984 3985 3986 3987
		lpcr |= LPCR_HVICE | LPCR_HEIC;

		/*
		 * If xive is enabled, we route 0x500 interrupts directly
		 * to the guest.
		 */
		if (xive_enabled())
			lpcr |= LPCR_LPES;
3988 3989
	}

3990
	/*
3991
	 * If the host uses radix, the guest starts out as radix.
3992 3993 3994
	 */
	if (radix_enabled()) {
		kvm->arch.radix = 1;
3995
		kvm->arch.mmu_ready = 1;
3996 3997 3998 3999 4000 4001 4002 4003 4004 4005
		lpcr &= ~LPCR_VPM1;
		lpcr |= LPCR_UPRT | LPCR_GTSE | LPCR_HR;
		ret = kvmppc_init_vm_radix(kvm);
		if (ret) {
			kvmppc_free_lpid(kvm->arch.lpid);
			return ret;
		}
		kvmppc_setup_partition_table(kvm);
	}

4006
	kvm->arch.lpcr = lpcr;
4007

4008 4009 4010
	/* Initialization for future HPT resizes */
	kvm->arch.resize_hpt = NULL;

4011 4012 4013 4014
	/*
	 * Work out how many sets the TLB has, for the use of
	 * the TLB invalidation loop in book3s_hv_rmhandlers.S.
	 */
4015
	if (radix_enabled())
4016 4017
		kvm->arch.tlb_sets = POWER9_TLB_SETS_RADIX;	/* 128 */
	else if (cpu_has_feature(CPU_FTR_ARCH_300))
4018 4019 4020 4021 4022 4023
		kvm->arch.tlb_sets = POWER9_TLB_SETS_HASH;	/* 256 */
	else if (cpu_has_feature(CPU_FTR_ARCH_207S))
		kvm->arch.tlb_sets = POWER8_TLB_SETS;		/* 512 */
	else
		kvm->arch.tlb_sets = POWER7_TLB_SETS;		/* 128 */

4024
	/*
4025 4026
	 * Track that we now have a HV mode VM active. This blocks secondary
	 * CPU threads from coming online.
4027 4028
	 * On POWER9, we only need to do this if the "indep_threads_mode"
	 * module parameter has been set to N.
4029
	 */
4030 4031 4032
	if (cpu_has_feature(CPU_FTR_ARCH_300))
		kvm->arch.threads_indep = indep_threads_mode;
	if (!kvm->arch.threads_indep)
4033
		kvm_hv_vm_activated();
4034

4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045
	/*
	 * Initialize smt_mode depending on processor.
	 * POWER8 and earlier have to use "strict" threading, where
	 * all vCPUs in a vcore have to run on the same (sub)core,
	 * whereas on POWER9 the threads can each run a different
	 * guest.
	 */
	if (!cpu_has_feature(CPU_FTR_ARCH_300))
		kvm->arch.smt_mode = threads_per_subcore;
	else
		kvm->arch.smt_mode = 1;
4046
	kvm->arch.emul_smt_mode = 1;
4047

4048 4049 4050 4051 4052
	/*
	 * Create a debugfs directory for the VM
	 */
	snprintf(buf, sizeof(buf), "vm%d", current->pid);
	kvm->arch.debugfs_dir = debugfs_create_dir(buf, kvm_debugfs_dir);
4053
	kvmppc_mmu_debugfs_init(kvm);
4054

4055
	return 0;
4056 4057
}

4058 4059 4060 4061
static void kvmppc_free_vcores(struct kvm *kvm)
{
	long int i;

4062
	for (i = 0; i < KVM_MAX_VCORES; ++i)
4063 4064 4065 4066
		kfree(kvm->arch.vcores[i]);
	kvm->arch.online_vcores = 0;
}

4067
static void kvmppc_core_destroy_vm_hv(struct kvm *kvm)
4068
{
4069 4070
	debugfs_remove_recursive(kvm->arch.debugfs_dir);

4071
	if (!kvm->arch.threads_indep)
4072
		kvm_hv_vm_deactivated();
4073

4074
	kvmppc_free_vcores(kvm);
4075

4076 4077
	kvmppc_free_lpid(kvm->arch.lpid);

4078 4079 4080
	if (kvm_is_radix(kvm))
		kvmppc_free_radix(kvm);
	else
4081
		kvmppc_free_hpt(&kvm->arch.hpt);
4082 4083

	kvmppc_free_pimap(kvm);
4084 4085
}

4086 4087 4088
/* We don't need to emulate any privileged instructions or dcbz */
static int kvmppc_core_emulate_op_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
				     unsigned int inst, int *advance)
4089
{
4090
	return EMULATE_FAIL;
4091 4092
}

4093 4094
static int kvmppc_core_emulate_mtspr_hv(struct kvm_vcpu *vcpu, int sprn,
					ulong spr_val)
4095 4096 4097 4098
{
	return EMULATE_FAIL;
}

4099 4100
static int kvmppc_core_emulate_mfspr_hv(struct kvm_vcpu *vcpu, int sprn,
					ulong *spr_val)
4101 4102 4103 4104
{
	return EMULATE_FAIL;
}

4105
static int kvmppc_core_check_processor_compat_hv(void)
4106
{
4107 4108
	if (!cpu_has_feature(CPU_FTR_HVMODE) ||
	    !cpu_has_feature(CPU_FTR_ARCH_206))
4109
		return -EIO;
4110

4111
	return 0;
4112 4113
}

4114 4115 4116 4117 4118 4119 4120
#ifdef CONFIG_KVM_XICS

void kvmppc_free_pimap(struct kvm *kvm)
{
	kfree(kvm->arch.pimap);
}

4121
static struct kvmppc_passthru_irqmap *kvmppc_alloc_pimap(void)
4122 4123 4124
{
	return kzalloc(sizeof(struct kvmppc_passthru_irqmap), GFP_KERNEL);
}
4125 4126 4127 4128 4129 4130 4131

static int kvmppc_set_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
{
	struct irq_desc *desc;
	struct kvmppc_irq_map *irq_map;
	struct kvmppc_passthru_irqmap *pimap;
	struct irq_chip *chip;
4132
	int i, rc = 0;
4133

4134 4135 4136
	if (!kvm_irq_bypass)
		return 1;

4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156
	desc = irq_to_desc(host_irq);
	if (!desc)
		return -EIO;

	mutex_lock(&kvm->lock);

	pimap = kvm->arch.pimap;
	if (pimap == NULL) {
		/* First call, allocate structure to hold IRQ map */
		pimap = kvmppc_alloc_pimap();
		if (pimap == NULL) {
			mutex_unlock(&kvm->lock);
			return -ENOMEM;
		}
		kvm->arch.pimap = pimap;
	}

	/*
	 * For now, we only support interrupts for which the EOI operation
	 * is an OPAL call followed by a write to XIRR, since that's
4157
	 * what our real-mode EOI code does, or a XIVE interrupt
4158 4159
	 */
	chip = irq_data_get_irq_chip(&desc->irq_data);
4160
	if (!chip || !(is_pnv_opal_msi(chip) || is_xive_irq(chip))) {
4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191
		pr_warn("kvmppc_set_passthru_irq_hv: Could not assign IRQ map for (%d,%d)\n",
			host_irq, guest_gsi);
		mutex_unlock(&kvm->lock);
		return -ENOENT;
	}

	/*
	 * See if we already have an entry for this guest IRQ number.
	 * If it's mapped to a hardware IRQ number, that's an error,
	 * otherwise re-use this entry.
	 */
	for (i = 0; i < pimap->n_mapped; i++) {
		if (guest_gsi == pimap->mapped[i].v_hwirq) {
			if (pimap->mapped[i].r_hwirq) {
				mutex_unlock(&kvm->lock);
				return -EINVAL;
			}
			break;
		}
	}

	if (i == KVMPPC_PIRQ_MAPPED) {
		mutex_unlock(&kvm->lock);
		return -EAGAIN;		/* table is full */
	}

	irq_map = &pimap->mapped[i];

	irq_map->v_hwirq = guest_gsi;
	irq_map->desc = desc;

4192 4193 4194 4195 4196 4197 4198
	/*
	 * Order the above two stores before the next to serialize with
	 * the KVM real mode handler.
	 */
	smp_wmb();
	irq_map->r_hwirq = desc->irq_data.hwirq;

4199 4200 4201
	if (i == pimap->n_mapped)
		pimap->n_mapped++;

4202 4203 4204 4205 4206 4207
	if (xive_enabled())
		rc = kvmppc_xive_set_mapped(kvm, guest_gsi, desc);
	else
		kvmppc_xics_set_mapped(kvm, guest_gsi, desc->irq_data.hwirq);
	if (rc)
		irq_map->r_hwirq = 0;
4208

4209 4210 4211 4212 4213 4214 4215 4216 4217
	mutex_unlock(&kvm->lock);

	return 0;
}

static int kvmppc_clr_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
{
	struct irq_desc *desc;
	struct kvmppc_passthru_irqmap *pimap;
4218
	int i, rc = 0;
4219

4220 4221 4222
	if (!kvm_irq_bypass)
		return 0;

4223 4224 4225 4226 4227
	desc = irq_to_desc(host_irq);
	if (!desc)
		return -EIO;

	mutex_lock(&kvm->lock);
4228 4229
	if (!kvm->arch.pimap)
		goto unlock;
4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242

	pimap = kvm->arch.pimap;

	for (i = 0; i < pimap->n_mapped; i++) {
		if (guest_gsi == pimap->mapped[i].v_hwirq)
			break;
	}

	if (i == pimap->n_mapped) {
		mutex_unlock(&kvm->lock);
		return -ENODEV;
	}

4243 4244 4245 4246
	if (xive_enabled())
		rc = kvmppc_xive_clr_mapped(kvm, guest_gsi, pimap->mapped[i].desc);
	else
		kvmppc_xics_clr_mapped(kvm, guest_gsi, pimap->mapped[i].r_hwirq);
4247

4248
	/* invalidate the entry (what do do on error from the above ?) */
4249 4250 4251 4252 4253 4254
	pimap->mapped[i].r_hwirq = 0;

	/*
	 * We don't free this structure even when the count goes to
	 * zero. The structure is freed when we destroy the VM.
	 */
4255
 unlock:
4256
	mutex_unlock(&kvm->lock);
4257
	return rc;
4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295
}

static int kvmppc_irq_bypass_add_producer_hv(struct irq_bypass_consumer *cons,
					     struct irq_bypass_producer *prod)
{
	int ret = 0;
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

	irqfd->producer = prod;

	ret = kvmppc_set_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi);
	if (ret)
		pr_info("kvmppc_set_passthru_irq (irq %d, gsi %d) fails: %d\n",
			prod->irq, irqfd->gsi, ret);

	return ret;
}

static void kvmppc_irq_bypass_del_producer_hv(struct irq_bypass_consumer *cons,
					      struct irq_bypass_producer *prod)
{
	int ret;
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

	irqfd->producer = NULL;

	/*
	 * When producer of consumer is unregistered, we change back to
	 * default external interrupt handling mode - KVM real mode
	 * will switch back to host.
	 */
	ret = kvmppc_clr_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi);
	if (ret)
		pr_warn("kvmppc_clr_passthru_irq (irq %d, gsi %d) fails: %d\n",
			prod->irq, irqfd->gsi, ret);
}
4296 4297
#endif

4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312
static long kvm_arch_vm_ioctl_hv(struct file *filp,
				 unsigned int ioctl, unsigned long arg)
{
	struct kvm *kvm __maybe_unused = filp->private_data;
	void __user *argp = (void __user *)arg;
	long r;

	switch (ioctl) {

	case KVM_PPC_ALLOCATE_HTAB: {
		u32 htab_order;

		r = -EFAULT;
		if (get_user(htab_order, (u32 __user *)argp))
			break;
4313
		r = kvmppc_alloc_reset_hpt(kvm, htab_order);
4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329
		if (r)
			break;
		r = 0;
		break;
	}

	case KVM_PPC_GET_HTAB_FD: {
		struct kvm_get_htab_fd ghf;

		r = -EFAULT;
		if (copy_from_user(&ghf, argp, sizeof(ghf)))
			break;
		r = kvm_vm_ioctl_get_htab_fd(kvm, &ghf);
		break;
	}

4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351
	case KVM_PPC_RESIZE_HPT_PREPARE: {
		struct kvm_ppc_resize_hpt rhpt;

		r = -EFAULT;
		if (copy_from_user(&rhpt, argp, sizeof(rhpt)))
			break;

		r = kvm_vm_ioctl_resize_hpt_prepare(kvm, &rhpt);
		break;
	}

	case KVM_PPC_RESIZE_HPT_COMMIT: {
		struct kvm_ppc_resize_hpt rhpt;

		r = -EFAULT;
		if (copy_from_user(&rhpt, argp, sizeof(rhpt)))
			break;

		r = kvm_vm_ioctl_resize_hpt_commit(kvm, &rhpt);
		break;
	}

4352 4353 4354 4355 4356 4357 4358
	default:
		r = -ENOTTY;
	}

	return r;
}

4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392
/*
 * List of hcall numbers to enable by default.
 * For compatibility with old userspace, we enable by default
 * all hcalls that were implemented before the hcall-enabling
 * facility was added.  Note this list should not include H_RTAS.
 */
static unsigned int default_hcall_list[] = {
	H_REMOVE,
	H_ENTER,
	H_READ,
	H_PROTECT,
	H_BULK_REMOVE,
	H_GET_TCE,
	H_PUT_TCE,
	H_SET_DABR,
	H_SET_XDABR,
	H_CEDE,
	H_PROD,
	H_CONFER,
	H_REGISTER_VPA,
#ifdef CONFIG_KVM_XICS
	H_EOI,
	H_CPPR,
	H_IPI,
	H_IPOLL,
	H_XIRR,
	H_XIRR_X,
#endif
	0
};

static void init_default_hcalls(void)
{
	int i;
4393
	unsigned int hcall;
4394

4395 4396 4397 4398 4399
	for (i = 0; default_hcall_list[i]; ++i) {
		hcall = default_hcall_list[i];
		WARN_ON(!kvmppc_hcall_impl_hv(hcall));
		__set_bit(hcall / 4, default_enabled_hcalls);
	}
4400 4401
}

4402 4403
static int kvmhv_configure_mmu(struct kvm *kvm, struct kvm_ppc_mmuv3_cfg *cfg)
{
4404
	unsigned long lpcr;
4405
	int radix;
4406
	int err;
4407 4408 4409 4410 4411 4412 4413 4414 4415 4416

	/* If not on a POWER9, reject it */
	if (!cpu_has_feature(CPU_FTR_ARCH_300))
		return -ENODEV;

	/* If any unknown flags set, reject it */
	if (cfg->flags & ~(KVM_PPC_MMUV3_RADIX | KVM_PPC_MMUV3_GTSE))
		return -EINVAL;

	/* GR (guest radix) bit in process_table field must match */
4417
	radix = !!(cfg->flags & KVM_PPC_MMUV3_RADIX);
4418
	if (!!(cfg->process_table & PATB_GR) != radix)
4419 4420 4421 4422 4423 4424
		return -EINVAL;

	/* Process table size field must be reasonable, i.e. <= 24 */
	if ((cfg->process_table & PRTS_MASK) > 24)
		return -EINVAL;

4425 4426 4427 4428
	/* We can change a guest to/from radix now, if the host is radix */
	if (radix && !radix_enabled())
		return -EINVAL;

4429
	mutex_lock(&kvm->lock);
4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448
	if (radix != kvm_is_radix(kvm)) {
		if (kvm->arch.mmu_ready) {
			kvm->arch.mmu_ready = 0;
			/* order mmu_ready vs. vcpus_running */
			smp_mb();
			if (atomic_read(&kvm->arch.vcpus_running)) {
				kvm->arch.mmu_ready = 1;
				err = -EBUSY;
				goto out_unlock;
			}
		}
		if (radix)
			err = kvmppc_switch_mmu_to_radix(kvm);
		else
			err = kvmppc_switch_mmu_to_hpt(kvm);
		if (err)
			goto out_unlock;
	}

4449 4450 4451 4452 4453
	kvm->arch.process_table = cfg->process_table;
	kvmppc_setup_partition_table(kvm);

	lpcr = (cfg->flags & KVM_PPC_MMUV3_GTSE) ? LPCR_GTSE : 0;
	kvmppc_update_lpcr(kvm, lpcr, LPCR_GTSE);
4454
	err = 0;
4455

4456 4457 4458
 out_unlock:
	mutex_unlock(&kvm->lock);
	return err;
4459 4460
}

4461
static struct kvmppc_ops kvm_ops_hv = {
4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491
	.get_sregs = kvm_arch_vcpu_ioctl_get_sregs_hv,
	.set_sregs = kvm_arch_vcpu_ioctl_set_sregs_hv,
	.get_one_reg = kvmppc_get_one_reg_hv,
	.set_one_reg = kvmppc_set_one_reg_hv,
	.vcpu_load   = kvmppc_core_vcpu_load_hv,
	.vcpu_put    = kvmppc_core_vcpu_put_hv,
	.set_msr     = kvmppc_set_msr_hv,
	.vcpu_run    = kvmppc_vcpu_run_hv,
	.vcpu_create = kvmppc_core_vcpu_create_hv,
	.vcpu_free   = kvmppc_core_vcpu_free_hv,
	.check_requests = kvmppc_core_check_requests_hv,
	.get_dirty_log  = kvm_vm_ioctl_get_dirty_log_hv,
	.flush_memslot  = kvmppc_core_flush_memslot_hv,
	.prepare_memory_region = kvmppc_core_prepare_memory_region_hv,
	.commit_memory_region  = kvmppc_core_commit_memory_region_hv,
	.unmap_hva_range = kvm_unmap_hva_range_hv,
	.age_hva  = kvm_age_hva_hv,
	.test_age_hva = kvm_test_age_hva_hv,
	.set_spte_hva = kvm_set_spte_hva_hv,
	.mmu_destroy  = kvmppc_mmu_destroy_hv,
	.free_memslot = kvmppc_core_free_memslot_hv,
	.create_memslot = kvmppc_core_create_memslot_hv,
	.init_vm =  kvmppc_core_init_vm_hv,
	.destroy_vm = kvmppc_core_destroy_vm_hv,
	.get_smmu_info = kvm_vm_ioctl_get_smmu_info_hv,
	.emulate_op = kvmppc_core_emulate_op_hv,
	.emulate_mtspr = kvmppc_core_emulate_mtspr_hv,
	.emulate_mfspr = kvmppc_core_emulate_mfspr_hv,
	.fast_vcpu_kick = kvmppc_fast_vcpu_kick_hv,
	.arch_vm_ioctl  = kvm_arch_vm_ioctl_hv,
4492
	.hcall_implemented = kvmppc_hcall_impl_hv,
4493 4494 4495 4496
#ifdef CONFIG_KVM_XICS
	.irq_bypass_add_producer = kvmppc_irq_bypass_add_producer_hv,
	.irq_bypass_del_producer = kvmppc_irq_bypass_del_producer_hv,
#endif
4497 4498
	.configure_mmu = kvmhv_configure_mmu,
	.get_rmmu_info = kvmhv_get_rmmu_info,
4499
	.set_smt_mode = kvmhv_set_smt_mode,
4500 4501
};

4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512
static int kvm_init_subcore_bitmap(void)
{
	int i, j;
	int nr_cores = cpu_nr_cores();
	struct sibling_subcore_state *sibling_subcore_state;

	for (i = 0; i < nr_cores; i++) {
		int first_cpu = i * threads_per_core;
		int node = cpu_to_node(first_cpu);

		/* Ignore if it is already allocated. */
4513
		if (paca_ptrs[first_cpu]->sibling_subcore_state)
4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527
			continue;

		sibling_subcore_state =
			kmalloc_node(sizeof(struct sibling_subcore_state),
							GFP_KERNEL, node);
		if (!sibling_subcore_state)
			return -ENOMEM;

		memset(sibling_subcore_state, 0,
				sizeof(struct sibling_subcore_state));

		for (j = 0; j < threads_per_core; j++) {
			int cpu = first_cpu + j;

4528 4529
			paca_ptrs[cpu]->sibling_subcore_state =
						sibling_subcore_state;
4530 4531 4532 4533 4534
		}
	}
	return 0;
}

4535 4536 4537 4538 4539
static int kvmppc_radix_possible(void)
{
	return cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled();
}

4540
static int kvmppc_book3s_init_hv(void)
4541 4542
{
	int r;
4543 4544 4545 4546 4547
	/*
	 * FIXME!! Do we need to check on all cpus ?
	 */
	r = kvmppc_core_check_processor_compat_hv();
	if (r < 0)
4548
		return -ENODEV;
4549

4550 4551 4552 4553
	r = kvm_init_subcore_bitmap();
	if (r)
		return r;

4554 4555
	/*
	 * We need a way of accessing the XICS interrupt controller,
4556
	 * either directly, via paca_ptrs[cpu]->kvm_hstate.xics_phys, or
4557 4558 4559
	 * indirectly, via OPAL.
	 */
#ifdef CONFIG_SMP
4560
	if (!xive_enabled() && !local_paca->kvm_hstate.xics_phys) {
4561 4562 4563 4564 4565 4566 4567
		struct device_node *np;

		np = of_find_compatible_node(NULL, NULL, "ibm,opal-intc");
		if (!np) {
			pr_err("KVM-HV: Cannot determine method for accessing XICS\n");
			return -ENODEV;
		}
4568 4569
		/* presence of intc confirmed - node can be dropped again */
		of_node_put(np);
4570 4571 4572
	}
#endif

4573 4574
	kvm_ops_hv.owner = THIS_MODULE;
	kvmppc_hv_ops = &kvm_ops_hv;
4575

4576 4577
	init_default_hcalls();

4578 4579
	init_vcore_lists();

4580
	r = kvmppc_mmu_hv_init();
4581 4582 4583 4584 4585
	if (r)
		return r;

	if (kvmppc_radix_possible())
		r = kvmppc_radix_init();
4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598

	/*
	 * POWER9 chips before version 2.02 can't have some threads in
	 * HPT mode and some in radix mode on the same core.
	 */
	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
		unsigned int pvr = mfspr(SPRN_PVR);
		if ((pvr >> 16) == PVR_POWER9 &&
		    (((pvr & 0xe000) == 0 && (pvr & 0xfff) < 0x202) ||
		     ((pvr & 0xe000) == 0x2000 && (pvr & 0xfff) < 0x101)))
			no_mixing_hpt_and_radix = true;
	}

4599 4600 4601
	return r;
}

4602
static void kvmppc_book3s_exit_hv(void)
4603
{
4604
	kvmppc_free_host_rm_ops();
4605 4606
	if (kvmppc_radix_possible())
		kvmppc_radix_exit();
4607
	kvmppc_hv_ops = NULL;
4608 4609
}

4610 4611
module_init(kvmppc_book3s_init_hv);
module_exit(kvmppc_book3s_exit_hv);
4612
MODULE_LICENSE("GPL");
4613 4614
MODULE_ALIAS_MISCDEV(KVM_MINOR);
MODULE_ALIAS("devname:kvm");