book3s_hv.c 48.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
/*
 * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
 * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
 *
 * Authors:
 *    Paul Mackerras <paulus@au1.ibm.com>
 *    Alexander Graf <agraf@suse.de>
 *    Kevin Wolf <mail@kevin-wolf.de>
 *
 * Description: KVM functions specific to running on Book 3S
 * processors in hypervisor mode (specifically POWER7 and later).
 *
 * This file is derived from arch/powerpc/kvm/book3s.c,
 * by Alexander Graf <agraf@suse.de>.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License, version 2, as
 * published by the Free Software Foundation.
 */

#include <linux/kvm_host.h>
#include <linux/err.h>
#include <linux/slab.h>
#include <linux/preempt.h>
#include <linux/sched.h>
#include <linux/delay.h>
27
#include <linux/export.h>
28 29 30
#include <linux/fs.h>
#include <linux/anon_inodes.h>
#include <linux/cpumask.h>
31 32
#include <linux/spinlock.h>
#include <linux/page-flags.h>
33
#include <linux/srcu.h>
34 35 36 37 38 39 40 41 42 43 44 45

#include <asm/reg.h>
#include <asm/cputable.h>
#include <asm/cacheflush.h>
#include <asm/tlbflush.h>
#include <asm/uaccess.h>
#include <asm/io.h>
#include <asm/kvm_ppc.h>
#include <asm/kvm_book3s.h>
#include <asm/mmu_context.h>
#include <asm/lppaca.h>
#include <asm/processor.h>
46
#include <asm/cputhreads.h>
47
#include <asm/page.h>
48
#include <asm/hvcall.h>
49
#include <asm/switch_to.h>
50
#include <asm/smp.h>
51 52 53
#include <linux/gfp.h>
#include <linux/vmalloc.h>
#include <linux/highmem.h>
54
#include <linux/hugetlb.h>
55 56 57 58 59

/* #define EXIT_DEBUG */
/* #define EXIT_DEBUG_SIMPLE */
/* #define EXIT_DEBUG_INT */

60 61 62
/* Used to indicate that a guest page fault needs to be handled */
#define RESUME_PAGE_FAULT	(RESUME_GUEST | RESUME_FLAG_ARCH1)

63 64 65
/* Used as a "null" value for timebase values */
#define TB_NIL	(~(u64)0)

66
static void kvmppc_end_cede(struct kvm_vcpu *vcpu);
67
static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu);
68

69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
/*
 * We use the vcpu_load/put functions to measure stolen time.
 * Stolen time is counted as time when either the vcpu is able to
 * run as part of a virtual core, but the task running the vcore
 * is preempted or sleeping, or when the vcpu needs something done
 * in the kernel by the task running the vcpu, but that task is
 * preempted or sleeping.  Those two things have to be counted
 * separately, since one of the vcpu tasks will take on the job
 * of running the core, and the other vcpu tasks in the vcore will
 * sleep waiting for it to do that, but that sleep shouldn't count
 * as stolen time.
 *
 * Hence we accumulate stolen time when the vcpu can run as part of
 * a vcore using vc->stolen_tb, and the stolen time when the vcpu
 * needs its task to do other things in the kernel (for example,
 * service a page fault) in busy_stolen.  We don't accumulate
 * stolen time for a vcore when it is inactive, or for a vcpu
 * when it is in state RUNNING or NOTREADY.  NOTREADY is a bit of
 * a misnomer; it means that the vcpu task is not executing in
 * the KVM_VCPU_RUN ioctl, i.e. it is in userspace or elsewhere in
 * the kernel.  We don't have any way of dividing up that time
 * between time that the vcpu is genuinely stopped, time that
 * the task is actively working on behalf of the vcpu, and time
 * that the task is preempted, so we don't count any of it as
 * stolen.
 *
 * Updates to busy_stolen are protected by arch.tbacct_lock;
 * updates to vc->stolen_tb are protected by the arch.tbacct_lock
 * of the vcpu that has taken responsibility for running the vcore
 * (i.e. vc->runner).  The stolen times are measured in units of
 * timebase ticks.  (Note that the != TB_NIL checks below are
 * purely defensive; they should never fail.)
 */

103 104
void kvmppc_core_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
{
105 106
	struct kvmppc_vcore *vc = vcpu->arch.vcore;

107 108 109
	spin_lock(&vcpu->arch.tbacct_lock);
	if (vc->runner == vcpu && vc->vcore_state != VCORE_INACTIVE &&
	    vc->preempt_tb != TB_NIL) {
110
		vc->stolen_tb += mftb() - vc->preempt_tb;
111 112 113 114 115 116 117 118
		vc->preempt_tb = TB_NIL;
	}
	if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST &&
	    vcpu->arch.busy_preempt != TB_NIL) {
		vcpu->arch.busy_stolen += mftb() - vcpu->arch.busy_preempt;
		vcpu->arch.busy_preempt = TB_NIL;
	}
	spin_unlock(&vcpu->arch.tbacct_lock);
119 120 121 122
}

void kvmppc_core_vcpu_put(struct kvm_vcpu *vcpu)
{
123 124
	struct kvmppc_vcore *vc = vcpu->arch.vcore;

125
	spin_lock(&vcpu->arch.tbacct_lock);
126 127
	if (vc->runner == vcpu && vc->vcore_state != VCORE_INACTIVE)
		vc->preempt_tb = mftb();
128 129 130
	if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST)
		vcpu->arch.busy_preempt = mftb();
	spin_unlock(&vcpu->arch.tbacct_lock);
131 132 133 134 135
}

void kvmppc_set_msr(struct kvm_vcpu *vcpu, u64 msr)
{
	vcpu->arch.shregs.msr = msr;
136
	kvmppc_end_cede(vcpu);
137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
}

void kvmppc_set_pvr(struct kvm_vcpu *vcpu, u32 pvr)
{
	vcpu->arch.pvr = pvr;
}

void kvmppc_dump_regs(struct kvm_vcpu *vcpu)
{
	int r;

	pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id);
	pr_err("pc  = %.16lx  msr = %.16llx  trap = %x\n",
	       vcpu->arch.pc, vcpu->arch.shregs.msr, vcpu->arch.trap);
	for (r = 0; r < 16; ++r)
		pr_err("r%2d = %.16lx  r%d = %.16lx\n",
		       r, kvmppc_get_gpr(vcpu, r),
		       r+16, kvmppc_get_gpr(vcpu, r+16));
	pr_err("ctr = %.16lx  lr  = %.16lx\n",
	       vcpu->arch.ctr, vcpu->arch.lr);
	pr_err("srr0 = %.16llx srr1 = %.16llx\n",
	       vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1);
	pr_err("sprg0 = %.16llx sprg1 = %.16llx\n",
	       vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1);
	pr_err("sprg2 = %.16llx sprg3 = %.16llx\n",
	       vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3);
	pr_err("cr = %.8x  xer = %.16lx  dsisr = %.8x\n",
	       vcpu->arch.cr, vcpu->arch.xer, vcpu->arch.shregs.dsisr);
	pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar);
	pr_err("fault dar = %.16lx dsisr = %.8x\n",
	       vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
	pr_err("SLB (%d entries):\n", vcpu->arch.slb_max);
	for (r = 0; r < vcpu->arch.slb_max; ++r)
		pr_err("  ESID = %.16llx VSID = %.16llx\n",
		       vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv);
	pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n",
173
	       vcpu->kvm->arch.lpcr, vcpu->kvm->arch.sdr1,
174 175 176
	       vcpu->arch.last_inst);
}

177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id)
{
	int r;
	struct kvm_vcpu *v, *ret = NULL;

	mutex_lock(&kvm->lock);
	kvm_for_each_vcpu(r, v, kvm) {
		if (v->vcpu_id == id) {
			ret = v;
			break;
		}
	}
	mutex_unlock(&kvm->lock);
	return ret;
}

static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa)
{
	vpa->shared_proc = 1;
	vpa->yield_count = 1;
}

199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v,
		   unsigned long addr, unsigned long len)
{
	/* check address is cacheline aligned */
	if (addr & (L1_CACHE_BYTES - 1))
		return -EINVAL;
	spin_lock(&vcpu->arch.vpa_update_lock);
	if (v->next_gpa != addr || v->len != len) {
		v->next_gpa = addr;
		v->len = addr ? len : 0;
		v->update_pending = 1;
	}
	spin_unlock(&vcpu->arch.vpa_update_lock);
	return 0;
}

215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
/* Length for a per-processor buffer is passed in at offset 4 in the buffer */
struct reg_vpa {
	u32 dummy;
	union {
		u16 hword;
		u32 word;
	} length;
};

static int vpa_is_registered(struct kvmppc_vpa *vpap)
{
	if (vpap->update_pending)
		return vpap->next_gpa != 0;
	return vpap->pinned_addr != NULL;
}

231 232 233 234 235
static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu,
				       unsigned long flags,
				       unsigned long vcpuid, unsigned long vpa)
{
	struct kvm *kvm = vcpu->kvm;
236
	unsigned long len, nb;
237 238
	void *va;
	struct kvm_vcpu *tvcpu;
239 240 241
	int err;
	int subfunc;
	struct kvmppc_vpa *vpap;
242 243 244 245 246

	tvcpu = kvmppc_find_vcpu(kvm, vcpuid);
	if (!tvcpu)
		return H_PARAMETER;

247 248 249 250 251
	subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK;
	if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL ||
	    subfunc == H_VPA_REG_SLB) {
		/* Registering new area - address must be cache-line aligned */
		if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa)
252
			return H_PARAMETER;
253 254

		/* convert logical addr to kernel addr and read length */
255 256
		va = kvmppc_pin_guest_page(kvm, vpa, &nb);
		if (va == NULL)
257
			return H_PARAMETER;
258 259
		if (subfunc == H_VPA_REG_VPA)
			len = ((struct reg_vpa *)va)->length.hword;
260
		else
261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
			len = ((struct reg_vpa *)va)->length.word;
		kvmppc_unpin_guest_page(kvm, va);

		/* Check length */
		if (len > nb || len < sizeof(struct reg_vpa))
			return H_PARAMETER;
	} else {
		vpa = 0;
		len = 0;
	}

	err = H_PARAMETER;
	vpap = NULL;
	spin_lock(&tvcpu->arch.vpa_update_lock);

	switch (subfunc) {
	case H_VPA_REG_VPA:		/* register VPA */
		if (len < sizeof(struct lppaca))
279
			break;
280 281 282 283 284 285
		vpap = &tvcpu->arch.vpa;
		err = 0;
		break;

	case H_VPA_REG_DTL:		/* register DTL */
		if (len < sizeof(struct dtl_entry))
286
			break;
287 288 289 290 291
		len -= len % sizeof(struct dtl_entry);

		/* Check that they have previously registered a VPA */
		err = H_RESOURCE;
		if (!vpa_is_registered(&tvcpu->arch.vpa))
292
			break;
293 294 295 296 297 298 299 300 301

		vpap = &tvcpu->arch.dtl;
		err = 0;
		break;

	case H_VPA_REG_SLB:		/* register SLB shadow buffer */
		/* Check that they have previously registered a VPA */
		err = H_RESOURCE;
		if (!vpa_is_registered(&tvcpu->arch.vpa))
302
			break;
303 304 305 306 307 308 309 310 311 312

		vpap = &tvcpu->arch.slb_shadow;
		err = 0;
		break;

	case H_VPA_DEREG_VPA:		/* deregister VPA */
		/* Check they don't still have a DTL or SLB buf registered */
		err = H_RESOURCE;
		if (vpa_is_registered(&tvcpu->arch.dtl) ||
		    vpa_is_registered(&tvcpu->arch.slb_shadow))
313
			break;
314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333

		vpap = &tvcpu->arch.vpa;
		err = 0;
		break;

	case H_VPA_DEREG_DTL:		/* deregister DTL */
		vpap = &tvcpu->arch.dtl;
		err = 0;
		break;

	case H_VPA_DEREG_SLB:		/* deregister SLB shadow buffer */
		vpap = &tvcpu->arch.slb_shadow;
		err = 0;
		break;
	}

	if (vpap) {
		vpap->next_gpa = vpa;
		vpap->len = len;
		vpap->update_pending = 1;
334
	}
335

336 337
	spin_unlock(&tvcpu->arch.vpa_update_lock);

338
	return err;
339 340
}

341
static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap)
342
{
343
	struct kvm *kvm = vcpu->kvm;
344 345
	void *va;
	unsigned long nb;
346
	unsigned long gpa;
347

348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367
	/*
	 * We need to pin the page pointed to by vpap->next_gpa,
	 * but we can't call kvmppc_pin_guest_page under the lock
	 * as it does get_user_pages() and down_read().  So we
	 * have to drop the lock, pin the page, then get the lock
	 * again and check that a new area didn't get registered
	 * in the meantime.
	 */
	for (;;) {
		gpa = vpap->next_gpa;
		spin_unlock(&vcpu->arch.vpa_update_lock);
		va = NULL;
		nb = 0;
		if (gpa)
			va = kvmppc_pin_guest_page(kvm, vpap->next_gpa, &nb);
		spin_lock(&vcpu->arch.vpa_update_lock);
		if (gpa == vpap->next_gpa)
			break;
		/* sigh... unpin that one and try again */
		if (va)
368
			kvmppc_unpin_guest_page(kvm, va);
369 370 371 372 373 374 375 376 377 378 379
	}

	vpap->update_pending = 0;
	if (va && nb < vpap->len) {
		/*
		 * If it's now too short, it must be that userspace
		 * has changed the mappings underlying guest memory,
		 * so unregister the region.
		 */
		kvmppc_unpin_guest_page(kvm, va);
		va = NULL;
380 381 382 383 384 385 386 387 388 389
	}
	if (vpap->pinned_addr)
		kvmppc_unpin_guest_page(kvm, vpap->pinned_addr);
	vpap->pinned_addr = va;
	if (va)
		vpap->pinned_end = va + vpap->len;
}

static void kvmppc_update_vpas(struct kvm_vcpu *vcpu)
{
390 391 392 393 394
	if (!(vcpu->arch.vpa.update_pending ||
	      vcpu->arch.slb_shadow.update_pending ||
	      vcpu->arch.dtl.update_pending))
		return;

395 396
	spin_lock(&vcpu->arch.vpa_update_lock);
	if (vcpu->arch.vpa.update_pending) {
397
		kvmppc_update_vpa(vcpu, &vcpu->arch.vpa);
398 399
		if (vcpu->arch.vpa.pinned_addr)
			init_vpa(vcpu, vcpu->arch.vpa.pinned_addr);
400 401
	}
	if (vcpu->arch.dtl.update_pending) {
402
		kvmppc_update_vpa(vcpu, &vcpu->arch.dtl);
403 404 405 406
		vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr;
		vcpu->arch.dtl_index = 0;
	}
	if (vcpu->arch.slb_shadow.update_pending)
407
		kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow);
408 409 410
	spin_unlock(&vcpu->arch.vpa_update_lock);
}

411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439
/*
 * Return the accumulated stolen time for the vcore up until `now'.
 * The caller should hold the vcore lock.
 */
static u64 vcore_stolen_time(struct kvmppc_vcore *vc, u64 now)
{
	u64 p;

	/*
	 * If we are the task running the vcore, then since we hold
	 * the vcore lock, we can't be preempted, so stolen_tb/preempt_tb
	 * can't be updated, so we don't need the tbacct_lock.
	 * If the vcore is inactive, it can't become active (since we
	 * hold the vcore lock), so the vcpu load/put functions won't
	 * update stolen_tb/preempt_tb, and we don't need tbacct_lock.
	 */
	if (vc->vcore_state != VCORE_INACTIVE &&
	    vc->runner->arch.run_task != current) {
		spin_lock(&vc->runner->arch.tbacct_lock);
		p = vc->stolen_tb;
		if (vc->preempt_tb != TB_NIL)
			p += now - vc->preempt_tb;
		spin_unlock(&vc->runner->arch.tbacct_lock);
	} else {
		p = vc->stolen_tb;
	}
	return p;
}

440 441 442 443 444
static void kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu,
				    struct kvmppc_vcore *vc)
{
	struct dtl_entry *dt;
	struct lppaca *vpa;
445 446 447
	unsigned long stolen;
	unsigned long core_stolen;
	u64 now;
448 449 450

	dt = vcpu->arch.dtl_ptr;
	vpa = vcpu->arch.vpa.pinned_addr;
451 452 453 454 455 456 457 458
	now = mftb();
	core_stolen = vcore_stolen_time(vc, now);
	stolen = core_stolen - vcpu->arch.stolen_logged;
	vcpu->arch.stolen_logged = core_stolen;
	spin_lock(&vcpu->arch.tbacct_lock);
	stolen += vcpu->arch.busy_stolen;
	vcpu->arch.busy_stolen = 0;
	spin_unlock(&vcpu->arch.tbacct_lock);
459 460 461 462 463
	if (!dt || !vpa)
		return;
	memset(dt, 0, sizeof(struct dtl_entry));
	dt->dispatch_reason = 7;
	dt->processor_id = vc->pcpu + vcpu->arch.ptid;
464 465
	dt->timebase = now;
	dt->enqueue_to_dispatch_time = stolen;
466 467 468 469 470 471 472 473 474 475 476
	dt->srr0 = kvmppc_get_pc(vcpu);
	dt->srr1 = vcpu->arch.shregs.msr;
	++dt;
	if (dt == vcpu->arch.dtl.pinned_end)
		dt = vcpu->arch.dtl.pinned_addr;
	vcpu->arch.dtl_ptr = dt;
	/* order writing *dt vs. writing vpa->dtl_idx */
	smp_wmb();
	vpa->dtl_idx = ++vcpu->arch.dtl_index;
}

477 478 479 480 481
int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu)
{
	unsigned long req = kvmppc_get_gpr(vcpu, 3);
	unsigned long target, ret = H_SUCCESS;
	struct kvm_vcpu *tvcpu;
482
	int idx;
483 484

	switch (req) {
485
	case H_ENTER:
486
		idx = srcu_read_lock(&vcpu->kvm->srcu);
487 488 489 490
		ret = kvmppc_virtmode_h_enter(vcpu, kvmppc_get_gpr(vcpu, 4),
					      kvmppc_get_gpr(vcpu, 5),
					      kvmppc_get_gpr(vcpu, 6),
					      kvmppc_get_gpr(vcpu, 7));
491
		srcu_read_unlock(&vcpu->kvm->srcu, idx);
492
		break;
493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525
	case H_CEDE:
		break;
	case H_PROD:
		target = kvmppc_get_gpr(vcpu, 4);
		tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
		if (!tvcpu) {
			ret = H_PARAMETER;
			break;
		}
		tvcpu->arch.prodded = 1;
		smp_mb();
		if (vcpu->arch.ceded) {
			if (waitqueue_active(&vcpu->wq)) {
				wake_up_interruptible(&vcpu->wq);
				vcpu->stat.halt_wakeup++;
			}
		}
		break;
	case H_CONFER:
		break;
	case H_REGISTER_VPA:
		ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4),
					kvmppc_get_gpr(vcpu, 5),
					kvmppc_get_gpr(vcpu, 6));
		break;
	default:
		return RESUME_HOST;
	}
	kvmppc_set_gpr(vcpu, 3, ret);
	vcpu->arch.hcall_needed = 0;
	return RESUME_GUEST;
}

526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581
static int kvmppc_handle_exit(struct kvm_run *run, struct kvm_vcpu *vcpu,
			      struct task_struct *tsk)
{
	int r = RESUME_HOST;

	vcpu->stat.sum_exits++;

	run->exit_reason = KVM_EXIT_UNKNOWN;
	run->ready_for_interrupt_injection = 1;
	switch (vcpu->arch.trap) {
	/* We're good on these - the host merely wanted to get our attention */
	case BOOK3S_INTERRUPT_HV_DECREMENTER:
		vcpu->stat.dec_exits++;
		r = RESUME_GUEST;
		break;
	case BOOK3S_INTERRUPT_EXTERNAL:
		vcpu->stat.ext_intr_exits++;
		r = RESUME_GUEST;
		break;
	case BOOK3S_INTERRUPT_PERFMON:
		r = RESUME_GUEST;
		break;
	case BOOK3S_INTERRUPT_PROGRAM:
	{
		ulong flags;
		/*
		 * Normally program interrupts are delivered directly
		 * to the guest by the hardware, but we can get here
		 * as a result of a hypervisor emulation interrupt
		 * (e40) getting turned into a 700 by BML RTAS.
		 */
		flags = vcpu->arch.shregs.msr & 0x1f0000ull;
		kvmppc_core_queue_program(vcpu, flags);
		r = RESUME_GUEST;
		break;
	}
	case BOOK3S_INTERRUPT_SYSCALL:
	{
		/* hcall - punt to userspace */
		int i;

		if (vcpu->arch.shregs.msr & MSR_PR) {
			/* sc 1 from userspace - reflect to guest syscall */
			kvmppc_book3s_queue_irqprio(vcpu, BOOK3S_INTERRUPT_SYSCALL);
			r = RESUME_GUEST;
			break;
		}
		run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3);
		for (i = 0; i < 9; ++i)
			run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i);
		run->exit_reason = KVM_EXIT_PAPR_HCALL;
		vcpu->arch.hcall_needed = 1;
		r = RESUME_HOST;
		break;
	}
	/*
582 583 584 585 586
	 * We get these next two if the guest accesses a page which it thinks
	 * it has mapped but which is not actually present, either because
	 * it is for an emulated I/O device or because the corresonding
	 * host page has been paged out.  Any other HDSI/HISI interrupts
	 * have been handled already.
587 588
	 */
	case BOOK3S_INTERRUPT_H_DATA_STORAGE:
589
		r = RESUME_PAGE_FAULT;
590 591
		break;
	case BOOK3S_INTERRUPT_H_INST_STORAGE:
592 593 594
		vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
		vcpu->arch.fault_dsisr = 0;
		r = RESUME_PAGE_FAULT;
595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653
		break;
	/*
	 * This occurs if the guest executes an illegal instruction.
	 * We just generate a program interrupt to the guest, since
	 * we don't emulate any guest instructions at this stage.
	 */
	case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
		kvmppc_core_queue_program(vcpu, 0x80000);
		r = RESUME_GUEST;
		break;
	default:
		kvmppc_dump_regs(vcpu);
		printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
			vcpu->arch.trap, kvmppc_get_pc(vcpu),
			vcpu->arch.shregs.msr);
		r = RESUME_HOST;
		BUG();
		break;
	}

	return r;
}

int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
                                  struct kvm_sregs *sregs)
{
	int i;

	sregs->pvr = vcpu->arch.pvr;

	memset(sregs, 0, sizeof(struct kvm_sregs));
	for (i = 0; i < vcpu->arch.slb_max; i++) {
		sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige;
		sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
	}

	return 0;
}

int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
                                  struct kvm_sregs *sregs)
{
	int i, j;

	kvmppc_set_pvr(vcpu, sregs->pvr);

	j = 0;
	for (i = 0; i < vcpu->arch.slb_nr; i++) {
		if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) {
			vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe;
			vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv;
			++j;
		}
	}
	vcpu->arch.slb_max = j;

	return 0;
}

654
int kvmppc_get_one_reg(struct kvm_vcpu *vcpu, u64 id, union kvmppc_one_reg *val)
655
{
656 657
	int r = 0;
	long int i;
658

659
	switch (id) {
660
	case KVM_REG_PPC_HIOR:
661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687
		*val = get_reg_val(id, 0);
		break;
	case KVM_REG_PPC_DABR:
		*val = get_reg_val(id, vcpu->arch.dabr);
		break;
	case KVM_REG_PPC_DSCR:
		*val = get_reg_val(id, vcpu->arch.dscr);
		break;
	case KVM_REG_PPC_PURR:
		*val = get_reg_val(id, vcpu->arch.purr);
		break;
	case KVM_REG_PPC_SPURR:
		*val = get_reg_val(id, vcpu->arch.spurr);
		break;
	case KVM_REG_PPC_AMR:
		*val = get_reg_val(id, vcpu->arch.amr);
		break;
	case KVM_REG_PPC_UAMOR:
		*val = get_reg_val(id, vcpu->arch.uamor);
		break;
	case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRA:
		i = id - KVM_REG_PPC_MMCR0;
		*val = get_reg_val(id, vcpu->arch.mmcr[i]);
		break;
	case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
		i = id - KVM_REG_PPC_PMC1;
		*val = get_reg_val(id, vcpu->arch.pmc[i]);
688
		break;
689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709
#ifdef CONFIG_VSX
	case KVM_REG_PPC_FPR0 ... KVM_REG_PPC_FPR31:
		if (cpu_has_feature(CPU_FTR_VSX)) {
			/* VSX => FP reg i is stored in arch.vsr[2*i] */
			long int i = id - KVM_REG_PPC_FPR0;
			*val = get_reg_val(id, vcpu->arch.vsr[2 * i]);
		} else {
			/* let generic code handle it */
			r = -EINVAL;
		}
		break;
	case KVM_REG_PPC_VSR0 ... KVM_REG_PPC_VSR31:
		if (cpu_has_feature(CPU_FTR_VSX)) {
			long int i = id - KVM_REG_PPC_VSR0;
			val->vsxval[0] = vcpu->arch.vsr[2 * i];
			val->vsxval[1] = vcpu->arch.vsr[2 * i + 1];
		} else {
			r = -ENXIO;
		}
		break;
#endif /* CONFIG_VSX */
710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726
	case KVM_REG_PPC_VPA_ADDR:
		spin_lock(&vcpu->arch.vpa_update_lock);
		*val = get_reg_val(id, vcpu->arch.vpa.next_gpa);
		spin_unlock(&vcpu->arch.vpa_update_lock);
		break;
	case KVM_REG_PPC_VPA_SLB:
		spin_lock(&vcpu->arch.vpa_update_lock);
		val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa;
		val->vpaval.length = vcpu->arch.slb_shadow.len;
		spin_unlock(&vcpu->arch.vpa_update_lock);
		break;
	case KVM_REG_PPC_VPA_DTL:
		spin_lock(&vcpu->arch.vpa_update_lock);
		val->vpaval.addr = vcpu->arch.dtl.next_gpa;
		val->vpaval.length = vcpu->arch.dtl.len;
		spin_unlock(&vcpu->arch.vpa_update_lock);
		break;
727
	default:
728
		r = -EINVAL;
729 730 731 732 733 734
		break;
	}

	return r;
}

735
int kvmppc_set_one_reg(struct kvm_vcpu *vcpu, u64 id, union kvmppc_one_reg *val)
736
{
737 738
	int r = 0;
	long int i;
739
	unsigned long addr, len;
740

741
	switch (id) {
742 743
	case KVM_REG_PPC_HIOR:
		/* Only allow this to be set to zero */
744
		if (set_reg_val(id, *val))
745 746
			r = -EINVAL;
		break;
747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772
	case KVM_REG_PPC_DABR:
		vcpu->arch.dabr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_DSCR:
		vcpu->arch.dscr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_PURR:
		vcpu->arch.purr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_SPURR:
		vcpu->arch.spurr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_AMR:
		vcpu->arch.amr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_UAMOR:
		vcpu->arch.uamor = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRA:
		i = id - KVM_REG_PPC_MMCR0;
		vcpu->arch.mmcr[i] = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
		i = id - KVM_REG_PPC_PMC1;
		vcpu->arch.pmc[i] = set_reg_val(id, *val);
		break;
773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793
#ifdef CONFIG_VSX
	case KVM_REG_PPC_FPR0 ... KVM_REG_PPC_FPR31:
		if (cpu_has_feature(CPU_FTR_VSX)) {
			/* VSX => FP reg i is stored in arch.vsr[2*i] */
			long int i = id - KVM_REG_PPC_FPR0;
			vcpu->arch.vsr[2 * i] = set_reg_val(id, *val);
		} else {
			/* let generic code handle it */
			r = -EINVAL;
		}
		break;
	case KVM_REG_PPC_VSR0 ... KVM_REG_PPC_VSR31:
		if (cpu_has_feature(CPU_FTR_VSX)) {
			long int i = id - KVM_REG_PPC_VSR0;
			vcpu->arch.vsr[2 * i] = val->vsxval[0];
			vcpu->arch.vsr[2 * i + 1] = val->vsxval[1];
		} else {
			r = -ENXIO;
		}
		break;
#endif /* CONFIG_VSX */
794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820
	case KVM_REG_PPC_VPA_ADDR:
		addr = set_reg_val(id, *val);
		r = -EINVAL;
		if (!addr && (vcpu->arch.slb_shadow.next_gpa ||
			      vcpu->arch.dtl.next_gpa))
			break;
		r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca));
		break;
	case KVM_REG_PPC_VPA_SLB:
		addr = val->vpaval.addr;
		len = val->vpaval.length;
		r = -EINVAL;
		if (addr && !vcpu->arch.vpa.next_gpa)
			break;
		r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len);
		break;
	case KVM_REG_PPC_VPA_DTL:
		addr = val->vpaval.addr;
		len = val->vpaval.length;
		r = -EINVAL;
		if (len < sizeof(struct dtl_entry))
			break;
		if (addr && !vcpu->arch.vpa.next_gpa)
			break;
		len -= len % sizeof(struct dtl_entry);
		r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len);
		break;
821
	default:
822
		r = -EINVAL;
823 824 825 826 827 828
		break;
	}

	return r;
}

829 830
int kvmppc_core_check_processor_compat(void)
{
831
	if (cpu_has_feature(CPU_FTR_HVMODE))
832 833 834 835 836 837 838
		return 0;
	return -EIO;
}

struct kvm_vcpu *kvmppc_core_vcpu_create(struct kvm *kvm, unsigned int id)
{
	struct kvm_vcpu *vcpu;
839 840 841
	int err = -EINVAL;
	int core;
	struct kvmppc_vcore *vcore;
842

843 844 845 846 847
	core = id / threads_per_core;
	if (core >= KVM_MAX_VCORES)
		goto out;

	err = -ENOMEM;
848
	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
849 850 851 852 853 854 855 856 857 858 859 860 861 862
	if (!vcpu)
		goto out;

	err = kvm_vcpu_init(vcpu, kvm, id);
	if (err)
		goto free_vcpu;

	vcpu->arch.shared = &vcpu->arch.shregs;
	vcpu->arch.last_cpu = -1;
	vcpu->arch.mmcr[0] = MMCR0_FC;
	vcpu->arch.ctrl = CTRL_RUNLATCH;
	/* default to host PVR, since we can't spoof it */
	vcpu->arch.pvr = mfspr(SPRN_PVR);
	kvmppc_set_pvr(vcpu, vcpu->arch.pvr);
863
	spin_lock_init(&vcpu->arch.vpa_update_lock);
864 865
	spin_lock_init(&vcpu->arch.tbacct_lock);
	vcpu->arch.busy_preempt = TB_NIL;
866 867 868

	kvmppc_mmu_book3s_hv_init(vcpu);

869
	vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
870 871 872 873 874 875 876 877 878 879

	init_waitqueue_head(&vcpu->arch.cpu_run);

	mutex_lock(&kvm->lock);
	vcore = kvm->arch.vcores[core];
	if (!vcore) {
		vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL);
		if (vcore) {
			INIT_LIST_HEAD(&vcore->runnable_threads);
			spin_lock_init(&vcore->lock);
880
			init_waitqueue_head(&vcore->wq);
881
			vcore->preempt_tb = TB_NIL;
882 883 884 885 886 887 888 889 890 891 892 893 894
		}
		kvm->arch.vcores[core] = vcore;
	}
	mutex_unlock(&kvm->lock);

	if (!vcore)
		goto free_vcpu;

	spin_lock(&vcore->lock);
	++vcore->num_threads;
	spin_unlock(&vcore->lock);
	vcpu->arch.vcore = vcore;

895 896 897
	vcpu->arch.cpu_type = KVM_CPU_3S_64;
	kvmppc_sanity_check(vcpu);

898 899 900
	return vcpu;

free_vcpu:
901
	kmem_cache_free(kvm_vcpu_cache, vcpu);
902 903 904 905 906 907
out:
	return ERR_PTR(err);
}

void kvmppc_core_vcpu_free(struct kvm_vcpu *vcpu)
{
908 909 910 911 912 913 914 915
	spin_lock(&vcpu->arch.vpa_update_lock);
	if (vcpu->arch.dtl.pinned_addr)
		kvmppc_unpin_guest_page(vcpu->kvm, vcpu->arch.dtl.pinned_addr);
	if (vcpu->arch.slb_shadow.pinned_addr)
		kvmppc_unpin_guest_page(vcpu->kvm, vcpu->arch.slb_shadow.pinned_addr);
	if (vcpu->arch.vpa.pinned_addr)
		kvmppc_unpin_guest_page(vcpu->kvm, vcpu->arch.vpa.pinned_addr);
	spin_unlock(&vcpu->arch.vpa_update_lock);
916
	kvm_vcpu_uninit(vcpu);
917
	kmem_cache_free(kvm_vcpu_cache, vcpu);
918 919
}

920
static void kvmppc_set_timer(struct kvm_vcpu *vcpu)
921
{
922
	unsigned long dec_nsec, now;
923

924 925 926 927
	now = get_tb();
	if (now > vcpu->arch.dec_expires) {
		/* decrementer has already gone negative */
		kvmppc_core_queue_dec(vcpu);
928
		kvmppc_core_prepare_to_enter(vcpu);
929
		return;
930
	}
931 932 933 934 935
	dec_nsec = (vcpu->arch.dec_expires - now) * NSEC_PER_SEC
		   / tb_ticks_per_sec;
	hrtimer_start(&vcpu->arch.dec_timer, ktime_set(0, dec_nsec),
		      HRTIMER_MODE_REL);
	vcpu->arch.timer_running = 1;
936 937
}

938
static void kvmppc_end_cede(struct kvm_vcpu *vcpu)
939
{
940 941 942 943 944
	vcpu->arch.ceded = 0;
	if (vcpu->arch.timer_running) {
		hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
		vcpu->arch.timer_running = 0;
	}
945 946
}

947
extern int __kvmppc_vcore_entry(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu);
948
extern void xics_wake_cpu(int cpu);
949

950 951
static void kvmppc_remove_runnable(struct kvmppc_vcore *vc,
				   struct kvm_vcpu *vcpu)
952
{
953 954
	u64 now;

955 956
	if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
		return;
957 958 959 960 961 962 963
	spin_lock(&vcpu->arch.tbacct_lock);
	now = mftb();
	vcpu->arch.busy_stolen += vcore_stolen_time(vc, now) -
		vcpu->arch.stolen_logged;
	vcpu->arch.busy_preempt = now;
	vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
	spin_unlock(&vcpu->arch.tbacct_lock);
964 965 966 967
	--vc->n_runnable;
	list_del(&vcpu->arch.run_list);
}

968 969 970 971 972 973 974 975 976
static int kvmppc_grab_hwthread(int cpu)
{
	struct paca_struct *tpaca;
	long timeout = 1000;

	tpaca = &paca[cpu];

	/* Ensure the thread won't go into the kernel if it wakes */
	tpaca->kvm_hstate.hwthread_req = 1;
977
	tpaca->kvm_hstate.kvm_vcpu = NULL;
978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007

	/*
	 * If the thread is already executing in the kernel (e.g. handling
	 * a stray interrupt), wait for it to get back to nap mode.
	 * The smp_mb() is to ensure that our setting of hwthread_req
	 * is visible before we look at hwthread_state, so if this
	 * races with the code at system_reset_pSeries and the thread
	 * misses our setting of hwthread_req, we are sure to see its
	 * setting of hwthread_state, and vice versa.
	 */
	smp_mb();
	while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) {
		if (--timeout <= 0) {
			pr_err("KVM: couldn't grab cpu %d\n", cpu);
			return -EBUSY;
		}
		udelay(1);
	}
	return 0;
}

static void kvmppc_release_hwthread(int cpu)
{
	struct paca_struct *tpaca;

	tpaca = &paca[cpu];
	tpaca->kvm_hstate.hwthread_req = 0;
	tpaca->kvm_hstate.kvm_vcpu = NULL;
}

1008 1009 1010 1011 1012 1013
static void kvmppc_start_thread(struct kvm_vcpu *vcpu)
{
	int cpu;
	struct paca_struct *tpaca;
	struct kvmppc_vcore *vc = vcpu->arch.vcore;

1014 1015 1016 1017
	if (vcpu->arch.timer_running) {
		hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
		vcpu->arch.timer_running = 0;
	}
1018 1019 1020 1021
	cpu = vc->pcpu + vcpu->arch.ptid;
	tpaca = &paca[cpu];
	tpaca->kvm_hstate.kvm_vcpu = vcpu;
	tpaca->kvm_hstate.kvm_vcore = vc;
1022 1023
	tpaca->kvm_hstate.napping = 0;
	vcpu->cpu = vc->pcpu;
1024
	smp_wmb();
1025
#if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP)
1026 1027 1028
	if (vcpu->arch.ptid) {
		xics_wake_cpu(cpu);
		++vc->n_woken;
1029
	}
1030 1031
#endif
}
1032

1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051
static void kvmppc_wait_for_nap(struct kvmppc_vcore *vc)
{
	int i;

	HMT_low();
	i = 0;
	while (vc->nap_count < vc->n_woken) {
		if (++i >= 1000000) {
			pr_err("kvmppc_wait_for_nap timeout %d %d\n",
			       vc->nap_count, vc->n_woken);
			break;
		}
		cpu_relax();
	}
	HMT_medium();
}

/*
 * Check that we are on thread 0 and that any other threads in
1052 1053
 * this core are off-line.  Then grab the threads so they can't
 * enter the kernel.
1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064
 */
static int on_primary_thread(void)
{
	int cpu = smp_processor_id();
	int thr = cpu_thread_in_core(cpu);

	if (thr)
		return 0;
	while (++thr < threads_per_core)
		if (cpu_online(cpu + thr))
			return 0;
1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075

	/* Grab all hw threads so they can't go into the kernel */
	for (thr = 1; thr < threads_per_core; ++thr) {
		if (kvmppc_grab_hwthread(cpu + thr)) {
			/* Couldn't grab one; let the others go */
			do {
				kvmppc_release_hwthread(cpu + thr);
			} while (--thr > 0);
			return 0;
		}
	}
1076 1077 1078 1079 1080 1081 1082
	return 1;
}

/*
 * Run a set of guest threads on a physical core.
 * Called with vc->lock held.
 */
1083
static void kvmppc_run_core(struct kvmppc_vcore *vc)
1084
{
1085
	struct kvm_vcpu *vcpu, *vcpu0, *vnext;
1086 1087
	long ret;
	u64 now;
1088
	int ptid, i, need_vpa_update;
1089
	int srcu_idx;
1090
	struct kvm_vcpu *vcpus_to_update[threads_per_core];
1091 1092

	/* don't start if any threads have a signal pending */
1093 1094
	need_vpa_update = 0;
	list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
1095
		if (signal_pending(vcpu->arch.run_task))
1096 1097 1098 1099 1100
			return;
		if (vcpu->arch.vpa.update_pending ||
		    vcpu->arch.slb_shadow.update_pending ||
		    vcpu->arch.dtl.update_pending)
			vcpus_to_update[need_vpa_update++] = vcpu;
1101 1102 1103 1104 1105 1106 1107 1108 1109
	}

	/*
	 * Initialize *vc, in particular vc->vcore_state, so we can
	 * drop the vcore lock if necessary.
	 */
	vc->n_woken = 0;
	vc->nap_count = 0;
	vc->entry_exit_count = 0;
1110
	vc->vcore_state = VCORE_STARTING;
1111 1112 1113 1114 1115 1116 1117 1118 1119
	vc->in_guest = 0;
	vc->napping_threads = 0;

	/*
	 * Updating any of the vpas requires calling kvmppc_pin_guest_page,
	 * which can't be called with any spinlocks held.
	 */
	if (need_vpa_update) {
		spin_unlock(&vc->lock);
1120 1121
		for (i = 0; i < need_vpa_update; ++i)
			kvmppc_update_vpas(vcpus_to_update[i]);
1122 1123
		spin_lock(&vc->lock);
	}
1124

1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137
	/*
	 * Assign physical thread IDs, first to non-ceded vcpus
	 * and then to ceded ones.
	 */
	ptid = 0;
	vcpu0 = NULL;
	list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
		if (!vcpu->arch.ceded) {
			if (!ptid)
				vcpu0 = vcpu;
			vcpu->arch.ptid = ptid++;
		}
	}
1138 1139
	if (!vcpu0)
		goto out;	/* nothing to run; should never happen */
1140 1141 1142 1143
	list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
		if (vcpu->arch.ceded)
			vcpu->arch.ptid = ptid++;

1144 1145 1146 1147 1148 1149 1150 1151 1152 1153
	/*
	 * Make sure we are running on thread 0, and that
	 * secondary threads are offline.
	 */
	if (threads_per_core > 1 && !on_primary_thread()) {
		list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
			vcpu->arch.ret = -EBUSY;
		goto out;
	}

1154
	vc->pcpu = smp_processor_id();
1155
	list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
1156
		kvmppc_start_thread(vcpu);
1157
		kvmppc_create_dtl_entry(vcpu, vc);
1158
	}
1159

1160
	vc->vcore_state = VCORE_RUNNING;
1161
	preempt_disable();
1162
	spin_unlock(&vc->lock);
1163

1164
	kvm_guest_enter();
1165 1166 1167

	srcu_idx = srcu_read_lock(&vcpu0->kvm->srcu);

1168
	__kvmppc_vcore_entry(NULL, vcpu0);
1169

1170
	spin_lock(&vc->lock);
1171 1172 1173 1174
	/* disable sending of IPIs on virtual external irqs */
	list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
		vcpu->cpu = -1;
	/* wait for secondary threads to finish writing their state to memory */
1175 1176
	if (vc->nap_count < vc->n_woken)
		kvmppc_wait_for_nap(vc);
1177 1178
	for (i = 0; i < threads_per_core; ++i)
		kvmppc_release_hwthread(vc->pcpu + i);
1179
	/* prevent other vcpu threads from doing kvmppc_start_thread() now */
1180
	vc->vcore_state = VCORE_EXITING;
1181 1182
	spin_unlock(&vc->lock);

1183 1184
	srcu_read_unlock(&vcpu0->kvm->srcu, srcu_idx);

1185 1186
	/* make sure updates to secondary vcpu structs are visible now */
	smp_mb();
1187 1188 1189 1190 1191
	kvm_guest_exit();

	preempt_enable();
	kvm_resched(vcpu);

1192
	spin_lock(&vc->lock);
1193
	now = get_tb();
1194 1195 1196 1197 1198
	list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
		/* cancel pending dec exception if dec is positive */
		if (now < vcpu->arch.dec_expires &&
		    kvmppc_core_pending_dec(vcpu))
			kvmppc_core_dequeue_dec(vcpu);
1199 1200 1201 1202 1203 1204

		ret = RESUME_GUEST;
		if (vcpu->arch.trap)
			ret = kvmppc_handle_exit(vcpu->arch.kvm_run, vcpu,
						 vcpu->arch.run_task);

1205 1206
		vcpu->arch.ret = ret;
		vcpu->arch.trap = 0;
1207 1208 1209 1210 1211 1212 1213

		if (vcpu->arch.ceded) {
			if (ret != RESUME_GUEST)
				kvmppc_end_cede(vcpu);
			else
				kvmppc_set_timer(vcpu);
		}
1214
	}
1215 1216

 out:
1217
	vc->vcore_state = VCORE_INACTIVE;
1218 1219 1220 1221 1222 1223 1224 1225 1226
	list_for_each_entry_safe(vcpu, vnext, &vc->runnable_threads,
				 arch.run_list) {
		if (vcpu->arch.ret != RESUME_GUEST) {
			kvmppc_remove_runnable(vc, vcpu);
			wake_up(&vcpu->arch.cpu_run);
		}
	}
}

1227 1228 1229 1230 1231
/*
 * Wait for some other vcpu thread to execute us, and
 * wake us up when we need to handle something in the host.
 */
static void kvmppc_wait_for_exec(struct kvm_vcpu *vcpu, int wait_state)
1232 1233 1234
{
	DEFINE_WAIT(wait);

1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251
	prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state);
	if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE)
		schedule();
	finish_wait(&vcpu->arch.cpu_run, &wait);
}

/*
 * All the vcpus in this vcore are idle, so wait for a decrementer
 * or external interrupt to one of the vcpus.  vc->lock is held.
 */
static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc)
{
	DEFINE_WAIT(wait);

	prepare_to_wait(&vc->wq, &wait, TASK_INTERRUPTIBLE);
	vc->vcore_state = VCORE_SLEEPING;
	spin_unlock(&vc->lock);
1252
	schedule();
1253 1254 1255 1256
	finish_wait(&vc->wq, &wait);
	spin_lock(&vc->lock);
	vc->vcore_state = VCORE_INACTIVE;
}
1257

1258 1259 1260 1261 1262
static int kvmppc_run_vcpu(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
{
	int n_ceded;
	struct kvmppc_vcore *vc;
	struct kvm_vcpu *v, *vn;
1263

1264 1265 1266
	kvm_run->exit_reason = 0;
	vcpu->arch.ret = RESUME_GUEST;
	vcpu->arch.trap = 0;
1267
	kvmppc_update_vpas(vcpu);
1268 1269 1270 1271 1272 1273

	/*
	 * Synchronize with other threads in this virtual core
	 */
	vc = vcpu->arch.vcore;
	spin_lock(&vc->lock);
1274
	vcpu->arch.ceded = 0;
1275 1276
	vcpu->arch.run_task = current;
	vcpu->arch.kvm_run = kvm_run;
1277
	vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb());
1278
	vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
1279
	vcpu->arch.busy_preempt = TB_NIL;
1280 1281 1282
	list_add_tail(&vcpu->arch.run_list, &vc->runnable_threads);
	++vc->n_runnable;

1283 1284 1285 1286 1287
	/*
	 * This happens the first time this is called for a vcpu.
	 * If the vcore is already running, we may be able to start
	 * this thread straight away and have it join in.
	 */
1288
	if (!signal_pending(current)) {
1289 1290 1291
		if (vc->vcore_state == VCORE_RUNNING &&
		    VCORE_EXIT_COUNT(vc) == 0) {
			vcpu->arch.ptid = vc->n_runnable - 1;
1292
			kvmppc_create_dtl_entry(vcpu, vc);
1293
			kvmppc_start_thread(vcpu);
1294 1295
		} else if (vc->vcore_state == VCORE_SLEEPING) {
			wake_up(&vc->wq);
1296 1297
		}

1298
	}
1299

1300 1301
	while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
	       !signal_pending(current)) {
1302
		if (vc->vcore_state != VCORE_INACTIVE) {
1303 1304 1305 1306 1307 1308 1309
			spin_unlock(&vc->lock);
			kvmppc_wait_for_exec(vcpu, TASK_INTERRUPTIBLE);
			spin_lock(&vc->lock);
			continue;
		}
		list_for_each_entry_safe(v, vn, &vc->runnable_threads,
					 arch.run_list) {
1310
			kvmppc_core_prepare_to_enter(v);
1311 1312 1313 1314 1315 1316 1317 1318
			if (signal_pending(v->arch.run_task)) {
				kvmppc_remove_runnable(vc, v);
				v->stat.signal_exits++;
				v->arch.kvm_run->exit_reason = KVM_EXIT_INTR;
				v->arch.ret = -EINTR;
				wake_up(&v->arch.cpu_run);
			}
		}
1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329
		if (!vc->n_runnable || vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
			break;
		vc->runner = vcpu;
		n_ceded = 0;
		list_for_each_entry(v, &vc->runnable_threads, arch.run_list)
			if (!v->arch.pending_exceptions)
				n_ceded += v->arch.ceded;
		if (n_ceded == vc->n_runnable)
			kvmppc_vcore_blocked(vc);
		else
			kvmppc_run_core(vc);
1330
		vc->runner = NULL;
1331
	}
1332

1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352
	while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
	       (vc->vcore_state == VCORE_RUNNING ||
		vc->vcore_state == VCORE_EXITING)) {
		spin_unlock(&vc->lock);
		kvmppc_wait_for_exec(vcpu, TASK_UNINTERRUPTIBLE);
		spin_lock(&vc->lock);
	}

	if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
		kvmppc_remove_runnable(vc, vcpu);
		vcpu->stat.signal_exits++;
		kvm_run->exit_reason = KVM_EXIT_INTR;
		vcpu->arch.ret = -EINTR;
	}

	if (vc->n_runnable && vc->vcore_state == VCORE_INACTIVE) {
		/* Wake up some vcpu to run the core */
		v = list_first_entry(&vc->runnable_threads,
				     struct kvm_vcpu, arch.run_list);
		wake_up(&v->arch.cpu_run);
1353 1354 1355 1356
	}

	spin_unlock(&vc->lock);
	return vcpu->arch.ret;
1357 1358
}

1359 1360 1361
int kvmppc_vcpu_run(struct kvm_run *run, struct kvm_vcpu *vcpu)
{
	int r;
1362
	int srcu_idx;
1363

1364 1365 1366 1367 1368
	if (!vcpu->arch.sane) {
		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
		return -EINVAL;
	}

1369 1370
	kvmppc_core_prepare_to_enter(vcpu);

1371 1372 1373 1374 1375 1376
	/* No need to go into the guest when all we'll do is come back out */
	if (signal_pending(current)) {
		run->exit_reason = KVM_EXIT_INTR;
		return -EINTR;
	}

1377 1378 1379 1380 1381
	atomic_inc(&vcpu->kvm->arch.vcpus_running);
	/* Order vcpus_running vs. rma_setup_done, see kvmppc_alloc_reset_hpt */
	smp_mb();

	/* On the first time here, set up HTAB and VRMA or RMA */
1382
	if (!vcpu->kvm->arch.rma_setup_done) {
1383
		r = kvmppc_hv_setup_htab_rma(vcpu);
1384
		if (r)
1385
			goto out;
1386
	}
1387 1388 1389 1390 1391

	flush_fp_to_thread(current);
	flush_altivec_to_thread(current);
	flush_vsx_to_thread(current);
	vcpu->arch.wqp = &vcpu->arch.vcore->wq;
1392
	vcpu->arch.pgdir = current->mm->pgd;
1393
	vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
1394

1395 1396 1397 1398 1399 1400
	do {
		r = kvmppc_run_vcpu(run, vcpu);

		if (run->exit_reason == KVM_EXIT_PAPR_HCALL &&
		    !(vcpu->arch.shregs.msr & MSR_PR)) {
			r = kvmppc_pseries_do_hcall(vcpu);
1401
			kvmppc_core_prepare_to_enter(vcpu);
1402 1403 1404 1405 1406
		} else if (r == RESUME_PAGE_FAULT) {
			srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
			r = kvmppc_book3s_hv_page_fault(run, vcpu,
				vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
			srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
1407 1408
		}
	} while (r == RESUME_GUEST);
1409 1410

 out:
1411
	vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
1412
	atomic_dec(&vcpu->kvm->arch.vcpus_running);
1413 1414 1415
	return r;
}

1416

1417
/* Work out RMLS (real mode limit selector) field value for a given RMA size.
1418
   Assumes POWER7 or PPC970. */
1419 1420 1421 1422
static inline int lpcr_rmls(unsigned long rma_size)
{
	switch (rma_size) {
	case 32ul << 20:	/* 32 MB */
1423 1424 1425
		if (cpu_has_feature(CPU_FTR_ARCH_206))
			return 8;	/* only supported on POWER7 */
		return -1;
1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444
	case 64ul << 20:	/* 64 MB */
		return 3;
	case 128ul << 20:	/* 128 MB */
		return 7;
	case 256ul << 20:	/* 256 MB */
		return 4;
	case 1ul << 30:		/* 1 GB */
		return 2;
	case 16ul << 30:	/* 16 GB */
		return 1;
	case 256ul << 30:	/* 256 GB */
		return 0;
	default:
		return -1;
	}
}

static int kvm_rma_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
1445
	struct kvmppc_linear_info *ri = vma->vm_file->private_data;
1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469
	struct page *page;

	if (vmf->pgoff >= ri->npages)
		return VM_FAULT_SIGBUS;

	page = pfn_to_page(ri->base_pfn + vmf->pgoff);
	get_page(page);
	vmf->page = page;
	return 0;
}

static const struct vm_operations_struct kvm_rma_vm_ops = {
	.fault = kvm_rma_fault,
};

static int kvm_rma_mmap(struct file *file, struct vm_area_struct *vma)
{
	vma->vm_flags |= VM_RESERVED;
	vma->vm_ops = &kvm_rma_vm_ops;
	return 0;
}

static int kvm_rma_release(struct inode *inode, struct file *filp)
{
1470
	struct kvmppc_linear_info *ri = filp->private_data;
1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482

	kvm_release_rma(ri);
	return 0;
}

static struct file_operations kvm_rma_fops = {
	.mmap           = kvm_rma_mmap,
	.release	= kvm_rma_release,
};

long kvm_vm_ioctl_allocate_rma(struct kvm *kvm, struct kvm_allocate_rma *ret)
{
1483
	struct kvmppc_linear_info *ri;
1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497
	long fd;

	ri = kvm_alloc_rma();
	if (!ri)
		return -ENOMEM;

	fd = anon_inode_getfd("kvm-rma", &kvm_rma_fops, ri, O_RDWR);
	if (fd < 0)
		kvm_release_rma(ri);

	ret->rma_size = ri->npages << PAGE_SHIFT;
	return fd;
}

1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529
static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps,
				     int linux_psize)
{
	struct mmu_psize_def *def = &mmu_psize_defs[linux_psize];

	if (!def->shift)
		return;
	(*sps)->page_shift = def->shift;
	(*sps)->slb_enc = def->sllp;
	(*sps)->enc[0].page_shift = def->shift;
	(*sps)->enc[0].pte_enc = def->penc;
	(*sps)++;
}

int kvm_vm_ioctl_get_smmu_info(struct kvm *kvm, struct kvm_ppc_smmu_info *info)
{
	struct kvm_ppc_one_seg_page_size *sps;

	info->flags = KVM_PPC_PAGE_SIZES_REAL;
	if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
		info->flags |= KVM_PPC_1T_SEGMENTS;
	info->slb_size = mmu_slb_size;

	/* We only support these sizes for now, and no muti-size segments */
	sps = &info->sps[0];
	kvmppc_add_seg_page_size(&sps, MMU_PAGE_4K);
	kvmppc_add_seg_page_size(&sps, MMU_PAGE_64K);
	kvmppc_add_seg_page_size(&sps, MMU_PAGE_16M);

	return 0;
}

1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552
/*
 * Get (and clear) the dirty memory log for a memory slot.
 */
int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
{
	struct kvm_memory_slot *memslot;
	int r;
	unsigned long n;

	mutex_lock(&kvm->slots_lock);

	r = -EINVAL;
	if (log->slot >= KVM_MEMORY_SLOTS)
		goto out;

	memslot = id_to_memslot(kvm->memslots, log->slot);
	r = -ENOENT;
	if (!memslot->dirty_bitmap)
		goto out;

	n = kvm_dirty_bitmap_bytes(memslot);
	memset(memslot->dirty_bitmap, 0, n);

1553
	r = kvmppc_hv_get_dirty_log(kvm, memslot, memslot->dirty_bitmap);
1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566
	if (r)
		goto out;

	r = -EFAULT;
	if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
		goto out;

	r = 0;
out:
	mutex_unlock(&kvm->slots_lock);
	return r;
}

1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578
static unsigned long slb_pgsize_encoding(unsigned long psize)
{
	unsigned long senc = 0;

	if (psize > 0x1000) {
		senc = SLB_VSID_L;
		if (psize == 0x10000)
			senc |= SLB_VSID_LP_01;
	}
	return senc;
}

1579
static void unpin_slot(struct kvm_memory_slot *memslot)
1580
{
1581 1582 1583
	unsigned long *physp;
	unsigned long j, npages, pfn;
	struct page *page;
1584

1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604
	physp = memslot->arch.slot_phys;
	npages = memslot->npages;
	if (!physp)
		return;
	for (j = 0; j < npages; j++) {
		if (!(physp[j] & KVMPPC_GOT_PAGE))
			continue;
		pfn = physp[j] >> PAGE_SHIFT;
		page = pfn_to_page(pfn);
		SetPageDirty(page);
		put_page(page);
	}
}

void kvmppc_core_free_memslot(struct kvm_memory_slot *free,
			      struct kvm_memory_slot *dont)
{
	if (!dont || free->arch.rmap != dont->arch.rmap) {
		vfree(free->arch.rmap);
		free->arch.rmap = NULL;
1605
	}
1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619
	if (!dont || free->arch.slot_phys != dont->arch.slot_phys) {
		unpin_slot(free);
		vfree(free->arch.slot_phys);
		free->arch.slot_phys = NULL;
	}
}

int kvmppc_core_create_memslot(struct kvm_memory_slot *slot,
			       unsigned long npages)
{
	slot->arch.rmap = vzalloc(npages * sizeof(*slot->arch.rmap));
	if (!slot->arch.rmap)
		return -ENOMEM;
	slot->arch.slot_phys = NULL;
1620

1621 1622
	return 0;
}
1623

1624 1625 1626
int kvmppc_core_prepare_memory_region(struct kvm *kvm,
				      struct kvm_memory_slot *memslot,
				      struct kvm_userspace_memory_region *mem)
1627
{
1628
	unsigned long *phys;
1629

1630 1631 1632 1633 1634 1635 1636
	/* Allocate a slot_phys array if needed */
	phys = memslot->arch.slot_phys;
	if (!kvm->arch.using_mmu_notifiers && !phys && memslot->npages) {
		phys = vzalloc(memslot->npages * sizeof(unsigned long));
		if (!phys)
			return -ENOMEM;
		memslot->arch.slot_phys = phys;
1637
	}
1638 1639

	return 0;
1640 1641 1642
}

void kvmppc_core_commit_memory_region(struct kvm *kvm,
1643 1644
				      struct kvm_userspace_memory_region *mem,
				      struct kvm_memory_slot old)
1645
{
1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658
	unsigned long npages = mem->memory_size >> PAGE_SHIFT;
	struct kvm_memory_slot *memslot;

	if (npages && old.npages) {
		/*
		 * If modifying a memslot, reset all the rmap dirty bits.
		 * If this is a new memslot, we don't need to do anything
		 * since the rmap array starts out as all zeroes,
		 * i.e. no pages are dirty.
		 */
		memslot = id_to_memslot(kvm->memslots, mem->slot);
		kvmppc_hv_get_dirty_log(kvm, memslot, NULL);
	}
1659 1660
}

1661
static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu)
1662 1663 1664
{
	int err = 0;
	struct kvm *kvm = vcpu->kvm;
1665
	struct kvmppc_linear_info *ri = NULL;
1666 1667 1668
	unsigned long hva;
	struct kvm_memory_slot *memslot;
	struct vm_area_struct *vma;
1669
	unsigned long lpcr, senc;
1670 1671 1672 1673
	unsigned long psize, porder;
	unsigned long rma_size;
	unsigned long rmls;
	unsigned long *physp;
1674
	unsigned long i, npages;
1675
	int srcu_idx;
1676 1677 1678 1679

	mutex_lock(&kvm->lock);
	if (kvm->arch.rma_setup_done)
		goto out;	/* another vcpu beat us to it */
1680

1681 1682 1683 1684 1685 1686 1687 1688 1689
	/* Allocate hashed page table (if not done already) and reset it */
	if (!kvm->arch.hpt_virt) {
		err = kvmppc_alloc_hpt(kvm, NULL);
		if (err) {
			pr_err("KVM: Couldn't alloc HPT\n");
			goto out;
		}
	}

1690
	/* Look up the memslot for guest physical address 0 */
1691
	srcu_idx = srcu_read_lock(&kvm->srcu);
1692
	memslot = gfn_to_memslot(kvm, 0);
1693

1694 1695 1696
	/* We must have some memory at 0 by now */
	err = -EINVAL;
	if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
1697
		goto out_srcu;
1698 1699 1700 1701 1702 1703 1704 1705 1706

	/* Look up the VMA for the start of this memory slot */
	hva = memslot->userspace_addr;
	down_read(&current->mm->mmap_sem);
	vma = find_vma(current->mm, hva);
	if (!vma || vma->vm_start > hva || (vma->vm_flags & VM_IO))
		goto up_out;

	psize = vma_kernel_pagesize(vma);
1707
	porder = __ilog2(psize);
1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720

	/* Is this one of our preallocated RMAs? */
	if (vma->vm_file && vma->vm_file->f_op == &kvm_rma_fops &&
	    hva == vma->vm_start)
		ri = vma->vm_file->private_data;

	up_read(&current->mm->mmap_sem);

	if (!ri) {
		/* On POWER7, use VRMA; on PPC970, give up */
		err = -EPERM;
		if (cpu_has_feature(CPU_FTR_ARCH_201)) {
			pr_err("KVM: CPU requires an RMO\n");
1721
			goto out_srcu;
1722 1723
		}

1724 1725 1726 1727
		/* We can handle 4k, 64k or 16M pages in the VRMA */
		err = -EINVAL;
		if (!(psize == 0x1000 || psize == 0x10000 ||
		      psize == 0x1000000))
1728
			goto out_srcu;
1729

1730
		/* Update VRMASD field in the LPCR */
1731
		senc = slb_pgsize_encoding(psize);
1732 1733
		kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
			(VRMA_VSID << SLB_VSID_SHIFT_1T);
1734 1735
		lpcr = kvm->arch.lpcr & ~LPCR_VRMASD;
		lpcr |= senc << (LPCR_VRMASD_SH - 4);
1736 1737 1738
		kvm->arch.lpcr = lpcr;

		/* Create HPTEs in the hash page table for the VRMA */
1739
		kvmppc_map_vrma(vcpu, memslot, porder);
1740 1741 1742 1743 1744 1745 1746

	} else {
		/* Set up to use an RMO region */
		rma_size = ri->npages;
		if (rma_size > memslot->npages)
			rma_size = memslot->npages;
		rma_size <<= PAGE_SHIFT;
1747
		rmls = lpcr_rmls(rma_size);
1748
		err = -EINVAL;
1749
		if (rmls < 0) {
1750
			pr_err("KVM: Can't use RMA of 0x%lx bytes\n", rma_size);
1751
			goto out_srcu;
1752 1753 1754
		}
		atomic_inc(&ri->use_count);
		kvm->arch.rma = ri;
1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772

		/* Update LPCR and RMOR */
		lpcr = kvm->arch.lpcr;
		if (cpu_has_feature(CPU_FTR_ARCH_201)) {
			/* PPC970; insert RMLS value (split field) in HID4 */
			lpcr &= ~((1ul << HID4_RMLS0_SH) |
				  (3ul << HID4_RMLS2_SH));
			lpcr |= ((rmls >> 2) << HID4_RMLS0_SH) |
				((rmls & 3) << HID4_RMLS2_SH);
			/* RMOR is also in HID4 */
			lpcr |= ((ri->base_pfn >> (26 - PAGE_SHIFT)) & 0xffff)
				<< HID4_RMOR_SH;
		} else {
			/* POWER7 */
			lpcr &= ~(LPCR_VPM0 | LPCR_VRMA_L);
			lpcr |= rmls << LPCR_RMLS_SH;
			kvm->arch.rmor = kvm->arch.rma->base_pfn << PAGE_SHIFT;
		}
1773
		kvm->arch.lpcr = lpcr;
1774
		pr_info("KVM: Using RMO at %lx size %lx (LPCR = %lx)\n",
1775 1776
			ri->base_pfn << PAGE_SHIFT, rma_size, lpcr);

1777
		/* Initialize phys addrs of pages in RMO */
1778 1779
		npages = ri->npages;
		porder = __ilog2(npages);
1780 1781 1782 1783 1784 1785 1786 1787 1788 1789
		physp = memslot->arch.slot_phys;
		if (physp) {
			if (npages > memslot->npages)
				npages = memslot->npages;
			spin_lock(&kvm->arch.slot_phys_lock);
			for (i = 0; i < npages; ++i)
				physp[i] = ((ri->base_pfn + i) << PAGE_SHIFT) +
					porder;
			spin_unlock(&kvm->arch.slot_phys_lock);
		}
1790 1791
	}

1792 1793 1794 1795
	/* Order updates to kvm->arch.lpcr etc. vs. rma_setup_done */
	smp_wmb();
	kvm->arch.rma_setup_done = 1;
	err = 0;
1796 1797
 out_srcu:
	srcu_read_unlock(&kvm->srcu, srcu_idx);
1798 1799 1800
 out:
	mutex_unlock(&kvm->lock);
	return err;
1801

1802 1803 1804
 up_out:
	up_read(&current->mm->mmap_sem);
	goto out;
1805 1806 1807 1808
}

int kvmppc_core_init_vm(struct kvm *kvm)
{
1809
	unsigned long lpcr, lpid;
1810

1811 1812 1813 1814 1815 1816
	/* Allocate the guest's logical partition ID */

	lpid = kvmppc_alloc_lpid();
	if (lpid < 0)
		return -ENOMEM;
	kvm->arch.lpid = lpid;
1817

1818
	INIT_LIST_HEAD(&kvm->arch.spapr_tce_tables);
1819 1820 1821

	kvm->arch.rma = NULL;

1822
	kvm->arch.host_sdr1 = mfspr(SPRN_SDR1);
1823

1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836
	if (cpu_has_feature(CPU_FTR_ARCH_201)) {
		/* PPC970; HID4 is effectively the LPCR */
		kvm->arch.host_lpid = 0;
		kvm->arch.host_lpcr = lpcr = mfspr(SPRN_HID4);
		lpcr &= ~((3 << HID4_LPID1_SH) | (0xful << HID4_LPID5_SH));
		lpcr |= ((lpid >> 4) << HID4_LPID1_SH) |
			((lpid & 0xf) << HID4_LPID5_SH);
	} else {
		/* POWER7; init LPCR for virtual RMA mode */
		kvm->arch.host_lpid = mfspr(SPRN_LPID);
		kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR);
		lpcr &= LPCR_PECE | LPCR_LPES;
		lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE |
1837 1838 1839
			LPCR_VPM0 | LPCR_VPM1;
		kvm->arch.vrma_slb_v = SLB_VSID_B_1T |
			(VRMA_VSID << SLB_VSID_SHIFT_1T);
1840 1841
	}
	kvm->arch.lpcr = lpcr;
1842

1843
	kvm->arch.using_mmu_notifiers = !!cpu_has_feature(CPU_FTR_ARCH_206);
1844
	spin_lock_init(&kvm->arch.slot_phys_lock);
1845 1846 1847 1848 1849 1850 1851

	/*
	 * Don't allow secondary CPU threads to come online
	 * while any KVM VMs exist.
	 */
	inhibit_secondary_onlining();

1852
	return 0;
1853 1854 1855 1856
}

void kvmppc_core_destroy_vm(struct kvm *kvm)
{
1857 1858
	uninhibit_secondary_onlining();

1859 1860 1861 1862 1863
	if (kvm->arch.rma) {
		kvm_release_rma(kvm->arch.rma);
		kvm->arch.rma = NULL;
	}

1864
	kvmppc_free_hpt(kvm);
1865
	WARN_ON(!list_empty(&kvm->arch.spapr_tce_tables));
1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879
}

/* These are stubs for now */
void kvmppc_mmu_pte_pflush(struct kvm_vcpu *vcpu, ulong pa_start, ulong pa_end)
{
}

/* We don't need to emulate any privileged instructions or dcbz */
int kvmppc_core_emulate_op(struct kvm_run *run, struct kvm_vcpu *vcpu,
                           unsigned int inst, int *advance)
{
	return EMULATE_FAIL;
}

1880
int kvmppc_core_emulate_mtspr(struct kvm_vcpu *vcpu, int sprn, ulong spr_val)
1881 1882 1883 1884
{
	return EMULATE_FAIL;
}

1885
int kvmppc_core_emulate_mfspr(struct kvm_vcpu *vcpu, int sprn, ulong *spr_val)
1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910
{
	return EMULATE_FAIL;
}

static int kvmppc_book3s_hv_init(void)
{
	int r;

	r = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);

	if (r)
		return r;

	r = kvmppc_mmu_hv_init();

	return r;
}

static void kvmppc_book3s_hv_exit(void)
{
	kvm_exit();
}

module_init(kvmppc_book3s_hv_init);
module_exit(kvmppc_book3s_hv_exit);