book3s_hv.c 69.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
/*
 * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
 * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
 *
 * Authors:
 *    Paul Mackerras <paulus@au1.ibm.com>
 *    Alexander Graf <agraf@suse.de>
 *    Kevin Wolf <mail@kevin-wolf.de>
 *
 * Description: KVM functions specific to running on Book 3S
 * processors in hypervisor mode (specifically POWER7 and later).
 *
 * This file is derived from arch/powerpc/kvm/book3s.c,
 * by Alexander Graf <agraf@suse.de>.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License, version 2, as
 * published by the Free Software Foundation.
 */

#include <linux/kvm_host.h>
#include <linux/err.h>
#include <linux/slab.h>
#include <linux/preempt.h>
#include <linux/sched.h>
#include <linux/delay.h>
27
#include <linux/export.h>
28 29 30
#include <linux/fs.h>
#include <linux/anon_inodes.h>
#include <linux/cpumask.h>
31 32
#include <linux/spinlock.h>
#include <linux/page-flags.h>
33
#include <linux/srcu.h>
34
#include <linux/miscdevice.h>
35
#include <linux/debugfs.h>
36 37 38

#include <asm/reg.h>
#include <asm/cputable.h>
39
#include <asm/cache.h>
40 41 42 43 44 45 46 47 48
#include <asm/cacheflush.h>
#include <asm/tlbflush.h>
#include <asm/uaccess.h>
#include <asm/io.h>
#include <asm/kvm_ppc.h>
#include <asm/kvm_book3s.h>
#include <asm/mmu_context.h>
#include <asm/lppaca.h>
#include <asm/processor.h>
49
#include <asm/cputhreads.h>
50
#include <asm/page.h>
51
#include <asm/hvcall.h>
52
#include <asm/switch_to.h>
53
#include <asm/smp.h>
54 55 56
#include <linux/gfp.h>
#include <linux/vmalloc.h>
#include <linux/highmem.h>
57
#include <linux/hugetlb.h>
58
#include <linux/module.h>
59

60 61
#include "book3s.h"

62 63 64
#define CREATE_TRACE_POINTS
#include "trace_hv.h"

65 66 67 68
/* #define EXIT_DEBUG */
/* #define EXIT_DEBUG_SIMPLE */
/* #define EXIT_DEBUG_INT */

69 70 71
/* Used to indicate that a guest page fault needs to be handled */
#define RESUME_PAGE_FAULT	(RESUME_GUEST | RESUME_FLAG_ARCH1)

72 73 74
/* Used as a "null" value for timebase values */
#define TB_NIL	(~(u64)0)

75 76
static DECLARE_BITMAP(default_enabled_hcalls, MAX_HCALL_OPCODE/4 + 1);

77 78 79 80 81 82 83
#if defined(CONFIG_PPC_64K_PAGES)
#define MPP_BUFFER_ORDER	0
#elif defined(CONFIG_PPC_4K_PAGES)
#define MPP_BUFFER_ORDER	3
#endif


84
static void kvmppc_end_cede(struct kvm_vcpu *vcpu);
85
static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu);
86

87
static void kvmppc_fast_vcpu_kick_hv(struct kvm_vcpu *vcpu)
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
{
	int me;
	int cpu = vcpu->cpu;
	wait_queue_head_t *wqp;

	wqp = kvm_arch_vcpu_wq(vcpu);
	if (waitqueue_active(wqp)) {
		wake_up_interruptible(wqp);
		++vcpu->stat.halt_wakeup;
	}

	me = get_cpu();

	/* CPU points to the first thread of the core */
	if (cpu != me && cpu >= 0 && cpu < nr_cpu_ids) {
103
#ifdef CONFIG_PPC_ICP_NATIVE
104 105 106
		int real_cpu = cpu + vcpu->arch.ptid;
		if (paca[real_cpu].kvm_hstate.xics_phys)
			xics_wake_cpu(real_cpu);
107 108 109
		else
#endif
		if (cpu_online(cpu))
110 111 112 113 114
			smp_send_reschedule(cpu);
	}
	put_cpu();
}

115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
/*
 * We use the vcpu_load/put functions to measure stolen time.
 * Stolen time is counted as time when either the vcpu is able to
 * run as part of a virtual core, but the task running the vcore
 * is preempted or sleeping, or when the vcpu needs something done
 * in the kernel by the task running the vcpu, but that task is
 * preempted or sleeping.  Those two things have to be counted
 * separately, since one of the vcpu tasks will take on the job
 * of running the core, and the other vcpu tasks in the vcore will
 * sleep waiting for it to do that, but that sleep shouldn't count
 * as stolen time.
 *
 * Hence we accumulate stolen time when the vcpu can run as part of
 * a vcore using vc->stolen_tb, and the stolen time when the vcpu
 * needs its task to do other things in the kernel (for example,
 * service a page fault) in busy_stolen.  We don't accumulate
 * stolen time for a vcore when it is inactive, or for a vcpu
 * when it is in state RUNNING or NOTREADY.  NOTREADY is a bit of
 * a misnomer; it means that the vcpu task is not executing in
 * the KVM_VCPU_RUN ioctl, i.e. it is in userspace or elsewhere in
 * the kernel.  We don't have any way of dividing up that time
 * between time that the vcpu is genuinely stopped, time that
 * the task is actively working on behalf of the vcpu, and time
 * that the task is preempted, so we don't count any of it as
 * stolen.
 *
 * Updates to busy_stolen are protected by arch.tbacct_lock;
142 143 144 145
 * updates to vc->stolen_tb are protected by the vcore->stoltb_lock
 * lock.  The stolen times are measured in units of timebase ticks.
 * (Note that the != TB_NIL checks below are purely defensive;
 * they should never fail.)
146 147
 */

148
static void kvmppc_core_vcpu_load_hv(struct kvm_vcpu *vcpu, int cpu)
149
{
150
	struct kvmppc_vcore *vc = vcpu->arch.vcore;
151
	unsigned long flags;
152

153 154 155 156 157 158 159 160 161 162 163 164 165
	/*
	 * We can test vc->runner without taking the vcore lock,
	 * because only this task ever sets vc->runner to this
	 * vcpu, and once it is set to this vcpu, only this task
	 * ever sets it to NULL.
	 */
	if (vc->runner == vcpu && vc->vcore_state != VCORE_INACTIVE) {
		spin_lock_irqsave(&vc->stoltb_lock, flags);
		if (vc->preempt_tb != TB_NIL) {
			vc->stolen_tb += mftb() - vc->preempt_tb;
			vc->preempt_tb = TB_NIL;
		}
		spin_unlock_irqrestore(&vc->stoltb_lock, flags);
166
	}
167
	spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
168 169 170 171 172
	if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST &&
	    vcpu->arch.busy_preempt != TB_NIL) {
		vcpu->arch.busy_stolen += mftb() - vcpu->arch.busy_preempt;
		vcpu->arch.busy_preempt = TB_NIL;
	}
173
	spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
174 175
}

176
static void kvmppc_core_vcpu_put_hv(struct kvm_vcpu *vcpu)
177
{
178
	struct kvmppc_vcore *vc = vcpu->arch.vcore;
179
	unsigned long flags;
180

181 182
	if (vc->runner == vcpu && vc->vcore_state != VCORE_INACTIVE) {
		spin_lock_irqsave(&vc->stoltb_lock, flags);
183
		vc->preempt_tb = mftb();
184 185 186
		spin_unlock_irqrestore(&vc->stoltb_lock, flags);
	}
	spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
187 188
	if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST)
		vcpu->arch.busy_preempt = mftb();
189
	spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
190 191
}

192
static void kvmppc_set_msr_hv(struct kvm_vcpu *vcpu, u64 msr)
193 194
{
	vcpu->arch.shregs.msr = msr;
195
	kvmppc_end_cede(vcpu);
196 197
}

198
void kvmppc_set_pvr_hv(struct kvm_vcpu *vcpu, u32 pvr)
199 200 201 202
{
	vcpu->arch.pvr = pvr;
}

203 204 205 206 207 208 209 210
int kvmppc_set_arch_compat(struct kvm_vcpu *vcpu, u32 arch_compat)
{
	unsigned long pcr = 0;
	struct kvmppc_vcore *vc = vcpu->arch.vcore;

	if (arch_compat) {
		switch (arch_compat) {
		case PVR_ARCH_205:
211 212 213 214 215
			/*
			 * If an arch bit is set in PCR, all the defined
			 * higher-order arch bits also have to be set.
			 */
			pcr = PCR_ARCH_206 | PCR_ARCH_205;
216 217 218
			break;
		case PVR_ARCH_206:
		case PVR_ARCH_206p:
219 220 221
			pcr = PCR_ARCH_206;
			break;
		case PVR_ARCH_207:
222 223 224 225
			break;
		default:
			return -EINVAL;
		}
226 227 228 229 230 231 232

		if (!cpu_has_feature(CPU_FTR_ARCH_207S)) {
			/* POWER7 can't emulate POWER8 */
			if (!(pcr & PCR_ARCH_206))
				return -EINVAL;
			pcr &= ~PCR_ARCH_206;
		}
233 234 235 236 237 238 239 240 241 242
	}

	spin_lock(&vc->lock);
	vc->arch_compat = arch_compat;
	vc->pcr = pcr;
	spin_unlock(&vc->lock);

	return 0;
}

243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
void kvmppc_dump_regs(struct kvm_vcpu *vcpu)
{
	int r;

	pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id);
	pr_err("pc  = %.16lx  msr = %.16llx  trap = %x\n",
	       vcpu->arch.pc, vcpu->arch.shregs.msr, vcpu->arch.trap);
	for (r = 0; r < 16; ++r)
		pr_err("r%2d = %.16lx  r%d = %.16lx\n",
		       r, kvmppc_get_gpr(vcpu, r),
		       r+16, kvmppc_get_gpr(vcpu, r+16));
	pr_err("ctr = %.16lx  lr  = %.16lx\n",
	       vcpu->arch.ctr, vcpu->arch.lr);
	pr_err("srr0 = %.16llx srr1 = %.16llx\n",
	       vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1);
	pr_err("sprg0 = %.16llx sprg1 = %.16llx\n",
	       vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1);
	pr_err("sprg2 = %.16llx sprg3 = %.16llx\n",
	       vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3);
	pr_err("cr = %.8x  xer = %.16lx  dsisr = %.8x\n",
	       vcpu->arch.cr, vcpu->arch.xer, vcpu->arch.shregs.dsisr);
	pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar);
	pr_err("fault dar = %.16lx dsisr = %.8x\n",
	       vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
	pr_err("SLB (%d entries):\n", vcpu->arch.slb_max);
	for (r = 0; r < vcpu->arch.slb_max; ++r)
		pr_err("  ESID = %.16llx VSID = %.16llx\n",
		       vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv);
	pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n",
272
	       vcpu->arch.vcore->lpcr, vcpu->kvm->arch.sdr1,
273 274 275
	       vcpu->arch.last_inst);
}

276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293
struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id)
{
	int r;
	struct kvm_vcpu *v, *ret = NULL;

	mutex_lock(&kvm->lock);
	kvm_for_each_vcpu(r, v, kvm) {
		if (v->vcpu_id == id) {
			ret = v;
			break;
		}
	}
	mutex_unlock(&kvm->lock);
	return ret;
}

static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa)
{
294
	vpa->__old_status |= LPPACA_OLD_SHARED_PROC;
295
	vpa->yield_count = cpu_to_be32(1);
296 297
}

298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313
static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v,
		   unsigned long addr, unsigned long len)
{
	/* check address is cacheline aligned */
	if (addr & (L1_CACHE_BYTES - 1))
		return -EINVAL;
	spin_lock(&vcpu->arch.vpa_update_lock);
	if (v->next_gpa != addr || v->len != len) {
		v->next_gpa = addr;
		v->len = addr ? len : 0;
		v->update_pending = 1;
	}
	spin_unlock(&vcpu->arch.vpa_update_lock);
	return 0;
}

314 315 316 317
/* Length for a per-processor buffer is passed in at offset 4 in the buffer */
struct reg_vpa {
	u32 dummy;
	union {
318 319
		__be16 hword;
		__be32 word;
320 321 322 323 324 325 326 327 328 329
	} length;
};

static int vpa_is_registered(struct kvmppc_vpa *vpap)
{
	if (vpap->update_pending)
		return vpap->next_gpa != 0;
	return vpap->pinned_addr != NULL;
}

330 331 332 333 334
static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu,
				       unsigned long flags,
				       unsigned long vcpuid, unsigned long vpa)
{
	struct kvm *kvm = vcpu->kvm;
335
	unsigned long len, nb;
336 337
	void *va;
	struct kvm_vcpu *tvcpu;
338 339 340
	int err;
	int subfunc;
	struct kvmppc_vpa *vpap;
341 342 343 344 345

	tvcpu = kvmppc_find_vcpu(kvm, vcpuid);
	if (!tvcpu)
		return H_PARAMETER;

346 347 348 349 350
	subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK;
	if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL ||
	    subfunc == H_VPA_REG_SLB) {
		/* Registering new area - address must be cache-line aligned */
		if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa)
351
			return H_PARAMETER;
352 353

		/* convert logical addr to kernel addr and read length */
354 355
		va = kvmppc_pin_guest_page(kvm, vpa, &nb);
		if (va == NULL)
356
			return H_PARAMETER;
357
		if (subfunc == H_VPA_REG_VPA)
358
			len = be16_to_cpu(((struct reg_vpa *)va)->length.hword);
359
		else
360
			len = be32_to_cpu(((struct reg_vpa *)va)->length.word);
361
		kvmppc_unpin_guest_page(kvm, va, vpa, false);
362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377

		/* Check length */
		if (len > nb || len < sizeof(struct reg_vpa))
			return H_PARAMETER;
	} else {
		vpa = 0;
		len = 0;
	}

	err = H_PARAMETER;
	vpap = NULL;
	spin_lock(&tvcpu->arch.vpa_update_lock);

	switch (subfunc) {
	case H_VPA_REG_VPA:		/* register VPA */
		if (len < sizeof(struct lppaca))
378
			break;
379 380 381 382 383 384
		vpap = &tvcpu->arch.vpa;
		err = 0;
		break;

	case H_VPA_REG_DTL:		/* register DTL */
		if (len < sizeof(struct dtl_entry))
385
			break;
386 387 388 389 390
		len -= len % sizeof(struct dtl_entry);

		/* Check that they have previously registered a VPA */
		err = H_RESOURCE;
		if (!vpa_is_registered(&tvcpu->arch.vpa))
391
			break;
392 393 394 395 396 397 398 399 400

		vpap = &tvcpu->arch.dtl;
		err = 0;
		break;

	case H_VPA_REG_SLB:		/* register SLB shadow buffer */
		/* Check that they have previously registered a VPA */
		err = H_RESOURCE;
		if (!vpa_is_registered(&tvcpu->arch.vpa))
401
			break;
402 403 404 405 406 407 408 409 410 411

		vpap = &tvcpu->arch.slb_shadow;
		err = 0;
		break;

	case H_VPA_DEREG_VPA:		/* deregister VPA */
		/* Check they don't still have a DTL or SLB buf registered */
		err = H_RESOURCE;
		if (vpa_is_registered(&tvcpu->arch.dtl) ||
		    vpa_is_registered(&tvcpu->arch.slb_shadow))
412
			break;
413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432

		vpap = &tvcpu->arch.vpa;
		err = 0;
		break;

	case H_VPA_DEREG_DTL:		/* deregister DTL */
		vpap = &tvcpu->arch.dtl;
		err = 0;
		break;

	case H_VPA_DEREG_SLB:		/* deregister SLB shadow buffer */
		vpap = &tvcpu->arch.slb_shadow;
		err = 0;
		break;
	}

	if (vpap) {
		vpap->next_gpa = vpa;
		vpap->len = len;
		vpap->update_pending = 1;
433
	}
434

435 436
	spin_unlock(&tvcpu->arch.vpa_update_lock);

437
	return err;
438 439
}

440
static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap)
441
{
442
	struct kvm *kvm = vcpu->kvm;
443 444
	void *va;
	unsigned long nb;
445
	unsigned long gpa;
446

447 448 449 450 451 452 453 454 455 456 457 458 459 460
	/*
	 * We need to pin the page pointed to by vpap->next_gpa,
	 * but we can't call kvmppc_pin_guest_page under the lock
	 * as it does get_user_pages() and down_read().  So we
	 * have to drop the lock, pin the page, then get the lock
	 * again and check that a new area didn't get registered
	 * in the meantime.
	 */
	for (;;) {
		gpa = vpap->next_gpa;
		spin_unlock(&vcpu->arch.vpa_update_lock);
		va = NULL;
		nb = 0;
		if (gpa)
461
			va = kvmppc_pin_guest_page(kvm, gpa, &nb);
462 463 464 465 466
		spin_lock(&vcpu->arch.vpa_update_lock);
		if (gpa == vpap->next_gpa)
			break;
		/* sigh... unpin that one and try again */
		if (va)
467
			kvmppc_unpin_guest_page(kvm, va, gpa, false);
468 469 470 471 472 473 474 475 476
	}

	vpap->update_pending = 0;
	if (va && nb < vpap->len) {
		/*
		 * If it's now too short, it must be that userspace
		 * has changed the mappings underlying guest memory,
		 * so unregister the region.
		 */
477
		kvmppc_unpin_guest_page(kvm, va, gpa, false);
478
		va = NULL;
479 480
	}
	if (vpap->pinned_addr)
481 482 483
		kvmppc_unpin_guest_page(kvm, vpap->pinned_addr, vpap->gpa,
					vpap->dirty);
	vpap->gpa = gpa;
484
	vpap->pinned_addr = va;
485
	vpap->dirty = false;
486 487 488 489 490 491
	if (va)
		vpap->pinned_end = va + vpap->len;
}

static void kvmppc_update_vpas(struct kvm_vcpu *vcpu)
{
492 493 494 495 496
	if (!(vcpu->arch.vpa.update_pending ||
	      vcpu->arch.slb_shadow.update_pending ||
	      vcpu->arch.dtl.update_pending))
		return;

497 498
	spin_lock(&vcpu->arch.vpa_update_lock);
	if (vcpu->arch.vpa.update_pending) {
499
		kvmppc_update_vpa(vcpu, &vcpu->arch.vpa);
500 501
		if (vcpu->arch.vpa.pinned_addr)
			init_vpa(vcpu, vcpu->arch.vpa.pinned_addr);
502 503
	}
	if (vcpu->arch.dtl.update_pending) {
504
		kvmppc_update_vpa(vcpu, &vcpu->arch.dtl);
505 506 507 508
		vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr;
		vcpu->arch.dtl_index = 0;
	}
	if (vcpu->arch.slb_shadow.update_pending)
509
		kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow);
510 511 512
	spin_unlock(&vcpu->arch.vpa_update_lock);
}

513 514 515 516 517 518 519
/*
 * Return the accumulated stolen time for the vcore up until `now'.
 * The caller should hold the vcore lock.
 */
static u64 vcore_stolen_time(struct kvmppc_vcore *vc, u64 now)
{
	u64 p;
520
	unsigned long flags;
521

522 523
	spin_lock_irqsave(&vc->stoltb_lock, flags);
	p = vc->stolen_tb;
524
	if (vc->vcore_state != VCORE_INACTIVE &&
525 526 527
	    vc->preempt_tb != TB_NIL)
		p += now - vc->preempt_tb;
	spin_unlock_irqrestore(&vc->stoltb_lock, flags);
528 529 530
	return p;
}

531 532 533 534 535
static void kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu,
				    struct kvmppc_vcore *vc)
{
	struct dtl_entry *dt;
	struct lppaca *vpa;
536 537 538
	unsigned long stolen;
	unsigned long core_stolen;
	u64 now;
539 540 541

	dt = vcpu->arch.dtl_ptr;
	vpa = vcpu->arch.vpa.pinned_addr;
542 543 544 545
	now = mftb();
	core_stolen = vcore_stolen_time(vc, now);
	stolen = core_stolen - vcpu->arch.stolen_logged;
	vcpu->arch.stolen_logged = core_stolen;
546
	spin_lock_irq(&vcpu->arch.tbacct_lock);
547 548
	stolen += vcpu->arch.busy_stolen;
	vcpu->arch.busy_stolen = 0;
549
	spin_unlock_irq(&vcpu->arch.tbacct_lock);
550 551 552 553
	if (!dt || !vpa)
		return;
	memset(dt, 0, sizeof(struct dtl_entry));
	dt->dispatch_reason = 7;
554 555 556 557 558
	dt->processor_id = cpu_to_be16(vc->pcpu + vcpu->arch.ptid);
	dt->timebase = cpu_to_be64(now + vc->tb_offset);
	dt->enqueue_to_dispatch_time = cpu_to_be32(stolen);
	dt->srr0 = cpu_to_be64(kvmppc_get_pc(vcpu));
	dt->srr1 = cpu_to_be64(vcpu->arch.shregs.msr);
559 560 561 562 563 564
	++dt;
	if (dt == vcpu->arch.dtl.pinned_end)
		dt = vcpu->arch.dtl.pinned_addr;
	vcpu->arch.dtl_ptr = dt;
	/* order writing *dt vs. writing vpa->dtl_idx */
	smp_wmb();
565
	vpa->dtl_idx = cpu_to_be64(++vcpu->arch.dtl_index);
566
	vcpu->arch.dtl.dirty = true;
567 568
}

569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610
static bool kvmppc_power8_compatible(struct kvm_vcpu *vcpu)
{
	if (vcpu->arch.vcore->arch_compat >= PVR_ARCH_207)
		return true;
	if ((!vcpu->arch.vcore->arch_compat) &&
	    cpu_has_feature(CPU_FTR_ARCH_207S))
		return true;
	return false;
}

static int kvmppc_h_set_mode(struct kvm_vcpu *vcpu, unsigned long mflags,
			     unsigned long resource, unsigned long value1,
			     unsigned long value2)
{
	switch (resource) {
	case H_SET_MODE_RESOURCE_SET_CIABR:
		if (!kvmppc_power8_compatible(vcpu))
			return H_P2;
		if (value2)
			return H_P4;
		if (mflags)
			return H_UNSUPPORTED_FLAG_START;
		/* Guests can't breakpoint the hypervisor */
		if ((value1 & CIABR_PRIV) == CIABR_PRIV_HYPER)
			return H_P3;
		vcpu->arch.ciabr  = value1;
		return H_SUCCESS;
	case H_SET_MODE_RESOURCE_SET_DAWR:
		if (!kvmppc_power8_compatible(vcpu))
			return H_P2;
		if (mflags)
			return H_UNSUPPORTED_FLAG_START;
		if (value2 & DABRX_HYP)
			return H_P4;
		vcpu->arch.dawr  = value1;
		vcpu->arch.dawrx = value2;
		return H_SUCCESS;
	default:
		return H_TOO_HARD;
	}
}

611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639
static int kvm_arch_vcpu_yield_to(struct kvm_vcpu *target)
{
	struct kvmppc_vcore *vcore = target->arch.vcore;

	/*
	 * We expect to have been called by the real mode handler
	 * (kvmppc_rm_h_confer()) which would have directly returned
	 * H_SUCCESS if the source vcore wasn't idle (e.g. if it may
	 * have useful work to do and should not confer) so we don't
	 * recheck that here.
	 */

	spin_lock(&vcore->lock);
	if (target->arch.state == KVMPPC_VCPU_RUNNABLE &&
	    vcore->vcore_state != VCORE_INACTIVE)
		target = vcore->runner;
	spin_unlock(&vcore->lock);

	return kvm_vcpu_yield_to(target);
}

static int kvmppc_get_yield_count(struct kvm_vcpu *vcpu)
{
	int yield_count = 0;
	struct lppaca *lppaca;

	spin_lock(&vcpu->arch.vpa_update_lock);
	lppaca = (struct lppaca *)vcpu->arch.vpa.pinned_addr;
	if (lppaca)
640
		yield_count = be32_to_cpu(lppaca->yield_count);
641 642 643 644
	spin_unlock(&vcpu->arch.vpa_update_lock);
	return yield_count;
}

645 646 647 648
int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu)
{
	unsigned long req = kvmppc_get_gpr(vcpu, 3);
	unsigned long target, ret = H_SUCCESS;
649
	int yield_count;
650
	struct kvm_vcpu *tvcpu;
651
	int idx, rc;
652

653 654 655 656
	if (req <= MAX_HCALL_OPCODE &&
	    !test_bit(req/4, vcpu->kvm->arch.enabled_hcalls))
		return RESUME_HOST;

657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676
	switch (req) {
	case H_CEDE:
		break;
	case H_PROD:
		target = kvmppc_get_gpr(vcpu, 4);
		tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
		if (!tvcpu) {
			ret = H_PARAMETER;
			break;
		}
		tvcpu->arch.prodded = 1;
		smp_mb();
		if (vcpu->arch.ceded) {
			if (waitqueue_active(&vcpu->wq)) {
				wake_up_interruptible(&vcpu->wq);
				vcpu->stat.halt_wakeup++;
			}
		}
		break;
	case H_CONFER:
677 678 679 680 681 682 683 684
		target = kvmppc_get_gpr(vcpu, 4);
		if (target == -1)
			break;
		tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
		if (!tvcpu) {
			ret = H_PARAMETER;
			break;
		}
685 686 687 688
		yield_count = kvmppc_get_gpr(vcpu, 5);
		if (kvmppc_get_yield_count(tvcpu) != yield_count)
			break;
		kvm_arch_vcpu_yield_to(tvcpu);
689 690 691 692 693 694
		break;
	case H_REGISTER_VPA:
		ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4),
					kvmppc_get_gpr(vcpu, 5),
					kvmppc_get_gpr(vcpu, 6));
		break;
695 696 697 698
	case H_RTAS:
		if (list_empty(&vcpu->kvm->arch.rtas_tokens))
			return RESUME_HOST;

699
		idx = srcu_read_lock(&vcpu->kvm->srcu);
700
		rc = kvmppc_rtas_hcall(vcpu);
701
		srcu_read_unlock(&vcpu->kvm->srcu, idx);
702 703 704 705 706 707 708 709

		if (rc == -ENOENT)
			return RESUME_HOST;
		else if (rc == 0)
			break;

		/* Send the error out to userspace via KVM_RUN */
		return rc;
710 711 712 713 714 715 716 717 718 719
	case H_LOGICAL_CI_LOAD:
		ret = kvmppc_h_logical_ci_load(vcpu);
		if (ret == H_TOO_HARD)
			return RESUME_HOST;
		break;
	case H_LOGICAL_CI_STORE:
		ret = kvmppc_h_logical_ci_store(vcpu);
		if (ret == H_TOO_HARD)
			return RESUME_HOST;
		break;
720 721 722 723 724 725 726 727
	case H_SET_MODE:
		ret = kvmppc_h_set_mode(vcpu, kvmppc_get_gpr(vcpu, 4),
					kvmppc_get_gpr(vcpu, 5),
					kvmppc_get_gpr(vcpu, 6),
					kvmppc_get_gpr(vcpu, 7));
		if (ret == H_TOO_HARD)
			return RESUME_HOST;
		break;
728 729 730 731
	case H_XIRR:
	case H_CPPR:
	case H_EOI:
	case H_IPI:
732 733
	case H_IPOLL:
	case H_XIRR_X:
734 735 736 737
		if (kvmppc_xics_enabled(vcpu)) {
			ret = kvmppc_xics_hcall(vcpu, req);
			break;
		} /* fallthrough */
738 739 740 741 742 743 744 745
	default:
		return RESUME_HOST;
	}
	kvmppc_set_gpr(vcpu, 3, ret);
	vcpu->arch.hcall_needed = 0;
	return RESUME_GUEST;
}

746 747 748 749 750 751 752
static int kvmppc_hcall_impl_hv(unsigned long cmd)
{
	switch (cmd) {
	case H_CEDE:
	case H_PROD:
	case H_CONFER:
	case H_REGISTER_VPA:
753
	case H_SET_MODE:
754 755
	case H_LOGICAL_CI_LOAD:
	case H_LOGICAL_CI_STORE:
756 757 758 759 760 761 762 763 764 765 766 767 768 769 770
#ifdef CONFIG_KVM_XICS
	case H_XIRR:
	case H_CPPR:
	case H_EOI:
	case H_IPI:
	case H_IPOLL:
	case H_XIRR_X:
#endif
		return 1;
	}

	/* See if it's in the real-mode table */
	return kvmppc_hcall_impl_hv_realmode(cmd);
}

771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794
static int kvmppc_emulate_debug_inst(struct kvm_run *run,
					struct kvm_vcpu *vcpu)
{
	u32 last_inst;

	if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) !=
					EMULATE_DONE) {
		/*
		 * Fetch failed, so return to guest and
		 * try executing it again.
		 */
		return RESUME_GUEST;
	}

	if (last_inst == KVMPPC_INST_SW_BREAKPOINT) {
		run->exit_reason = KVM_EXIT_DEBUG;
		run->debug.arch.address = kvmppc_get_pc(vcpu);
		return RESUME_HOST;
	} else {
		kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
		return RESUME_GUEST;
	}
}

795 796
static int kvmppc_handle_exit_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
				 struct task_struct *tsk)
797 798 799 800 801 802 803 804 805 806 807 808 809 810
{
	int r = RESUME_HOST;

	vcpu->stat.sum_exits++;

	run->exit_reason = KVM_EXIT_UNKNOWN;
	run->ready_for_interrupt_injection = 1;
	switch (vcpu->arch.trap) {
	/* We're good on these - the host merely wanted to get our attention */
	case BOOK3S_INTERRUPT_HV_DECREMENTER:
		vcpu->stat.dec_exits++;
		r = RESUME_GUEST;
		break;
	case BOOK3S_INTERRUPT_EXTERNAL:
811
	case BOOK3S_INTERRUPT_H_DOORBELL:
812 813 814
		vcpu->stat.ext_intr_exits++;
		r = RESUME_GUEST;
		break;
815 816
	/* HMI is hypervisor interrupt and host has handled it. Resume guest.*/
	case BOOK3S_INTERRUPT_HMI:
817 818 819
	case BOOK3S_INTERRUPT_PERFMON:
		r = RESUME_GUEST;
		break;
820 821 822 823 824 825 826 827 828 829 830
	case BOOK3S_INTERRUPT_MACHINE_CHECK:
		/*
		 * Deliver a machine check interrupt to the guest.
		 * We have to do this, even if the host has handled the
		 * machine check, because machine checks use SRR0/1 and
		 * the interrupt might have trashed guest state in them.
		 */
		kvmppc_book3s_queue_irqprio(vcpu,
					    BOOK3S_INTERRUPT_MACHINE_CHECK);
		r = RESUME_GUEST;
		break;
831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849
	case BOOK3S_INTERRUPT_PROGRAM:
	{
		ulong flags;
		/*
		 * Normally program interrupts are delivered directly
		 * to the guest by the hardware, but we can get here
		 * as a result of a hypervisor emulation interrupt
		 * (e40) getting turned into a 700 by BML RTAS.
		 */
		flags = vcpu->arch.shregs.msr & 0x1f0000ull;
		kvmppc_core_queue_program(vcpu, flags);
		r = RESUME_GUEST;
		break;
	}
	case BOOK3S_INTERRUPT_SYSCALL:
	{
		/* hcall - punt to userspace */
		int i;

850 851 852 853
		/* hypercall with MSR_PR has already been handled in rmode,
		 * and never reaches here.
		 */

854 855 856 857 858 859 860 861 862
		run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3);
		for (i = 0; i < 9; ++i)
			run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i);
		run->exit_reason = KVM_EXIT_PAPR_HCALL;
		vcpu->arch.hcall_needed = 1;
		r = RESUME_HOST;
		break;
	}
	/*
863 864 865 866 867
	 * We get these next two if the guest accesses a page which it thinks
	 * it has mapped but which is not actually present, either because
	 * it is for an emulated I/O device or because the corresonding
	 * host page has been paged out.  Any other HDSI/HISI interrupts
	 * have been handled already.
868 869
	 */
	case BOOK3S_INTERRUPT_H_DATA_STORAGE:
870
		r = RESUME_PAGE_FAULT;
871 872
		break;
	case BOOK3S_INTERRUPT_H_INST_STORAGE:
873 874 875
		vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
		vcpu->arch.fault_dsisr = 0;
		r = RESUME_PAGE_FAULT;
876 877 878
		break;
	/*
	 * This occurs if the guest executes an illegal instruction.
879 880 881 882
	 * If the guest debug is disabled, generate a program interrupt
	 * to the guest. If guest debug is enabled, we need to check
	 * whether the instruction is a software breakpoint instruction.
	 * Accordingly return to Guest or Host.
883 884
	 */
	case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
885 886 887 888
		if (vcpu->arch.emul_inst != KVM_INST_FETCH_FAILED)
			vcpu->arch.last_inst = kvmppc_need_byteswap(vcpu) ?
				swab32(vcpu->arch.emul_inst) :
				vcpu->arch.emul_inst;
889 890 891 892 893 894
		if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) {
			r = kvmppc_emulate_debug_inst(run, vcpu);
		} else {
			kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
			r = RESUME_GUEST;
		}
895 896 897 898 899 900 901 902
		break;
	/*
	 * This occurs if the guest (kernel or userspace), does something that
	 * is prohibited by HFSCR.  We just generate a program interrupt to
	 * the guest.
	 */
	case BOOK3S_INTERRUPT_H_FAC_UNAVAIL:
		kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
903 904 905 906 907 908 909
		r = RESUME_GUEST;
		break;
	default:
		kvmppc_dump_regs(vcpu);
		printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
			vcpu->arch.trap, kvmppc_get_pc(vcpu),
			vcpu->arch.shregs.msr);
910
		run->hw.hardware_exit_reason = vcpu->arch.trap;
911 912 913 914 915 916 917
		r = RESUME_HOST;
		break;
	}

	return r;
}

918 919
static int kvm_arch_vcpu_ioctl_get_sregs_hv(struct kvm_vcpu *vcpu,
					    struct kvm_sregs *sregs)
920 921 922 923
{
	int i;

	memset(sregs, 0, sizeof(struct kvm_sregs));
924
	sregs->pvr = vcpu->arch.pvr;
925 926 927 928 929 930 931 932
	for (i = 0; i < vcpu->arch.slb_max; i++) {
		sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige;
		sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
	}

	return 0;
}

933 934
static int kvm_arch_vcpu_ioctl_set_sregs_hv(struct kvm_vcpu *vcpu,
					    struct kvm_sregs *sregs)
935 936 937
{
	int i, j;

938 939 940
	/* Only accept the same PVR as the host's, since we can't spoof it */
	if (sregs->pvr != vcpu->arch.pvr)
		return -EINVAL;
941 942 943 944 945 946 947 948 949 950 951 952 953 954

	j = 0;
	for (i = 0; i < vcpu->arch.slb_nr; i++) {
		if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) {
			vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe;
			vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv;
			++j;
		}
	}
	vcpu->arch.slb_max = j;

	return 0;
}

955 956
static void kvmppc_set_lpcr(struct kvm_vcpu *vcpu, u64 new_lpcr,
		bool preserve_top32)
957
{
958
	struct kvm *kvm = vcpu->kvm;
959 960 961
	struct kvmppc_vcore *vc = vcpu->arch.vcore;
	u64 mask;

962
	mutex_lock(&kvm->lock);
963
	spin_lock(&vc->lock);
964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981
	/*
	 * If ILE (interrupt little-endian) has changed, update the
	 * MSR_LE bit in the intr_msr for each vcpu in this vcore.
	 */
	if ((new_lpcr & LPCR_ILE) != (vc->lpcr & LPCR_ILE)) {
		struct kvm_vcpu *vcpu;
		int i;

		kvm_for_each_vcpu(i, vcpu, kvm) {
			if (vcpu->arch.vcore != vc)
				continue;
			if (new_lpcr & LPCR_ILE)
				vcpu->arch.intr_msr |= MSR_LE;
			else
				vcpu->arch.intr_msr &= ~MSR_LE;
		}
	}

982 983 984
	/*
	 * Userspace can only modify DPFD (default prefetch depth),
	 * ILE (interrupt little-endian) and TC (translation control).
985
	 * On POWER8 userspace can also modify AIL (alt. interrupt loc.)
986 987
	 */
	mask = LPCR_DPFD | LPCR_ILE | LPCR_TC;
988 989
	if (cpu_has_feature(CPU_FTR_ARCH_207S))
		mask |= LPCR_AIL;
990 991 992 993

	/* Broken 32-bit version of LPCR must not clear top bits */
	if (preserve_top32)
		mask &= 0xFFFFFFFF;
994 995
	vc->lpcr = (vc->lpcr & ~mask) | (new_lpcr & mask);
	spin_unlock(&vc->lock);
996
	mutex_unlock(&kvm->lock);
997 998
}

999 1000
static int kvmppc_get_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
				 union kvmppc_one_reg *val)
1001
{
1002 1003
	int r = 0;
	long int i;
1004

1005
	switch (id) {
1006 1007 1008
	case KVM_REG_PPC_DEBUG_INST:
		*val = get_reg_val(id, KVMPPC_INST_SW_BREAKPOINT);
		break;
1009
	case KVM_REG_PPC_HIOR:
1010 1011 1012 1013 1014
		*val = get_reg_val(id, 0);
		break;
	case KVM_REG_PPC_DABR:
		*val = get_reg_val(id, vcpu->arch.dabr);
		break;
1015 1016 1017
	case KVM_REG_PPC_DABRX:
		*val = get_reg_val(id, vcpu->arch.dabrx);
		break;
1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032
	case KVM_REG_PPC_DSCR:
		*val = get_reg_val(id, vcpu->arch.dscr);
		break;
	case KVM_REG_PPC_PURR:
		*val = get_reg_val(id, vcpu->arch.purr);
		break;
	case KVM_REG_PPC_SPURR:
		*val = get_reg_val(id, vcpu->arch.spurr);
		break;
	case KVM_REG_PPC_AMR:
		*val = get_reg_val(id, vcpu->arch.amr);
		break;
	case KVM_REG_PPC_UAMOR:
		*val = get_reg_val(id, vcpu->arch.uamor);
		break;
1033
	case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS:
1034 1035 1036 1037 1038 1039
		i = id - KVM_REG_PPC_MMCR0;
		*val = get_reg_val(id, vcpu->arch.mmcr[i]);
		break;
	case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
		i = id - KVM_REG_PPC_PMC1;
		*val = get_reg_val(id, vcpu->arch.pmc[i]);
1040
		break;
1041 1042 1043 1044
	case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
		i = id - KVM_REG_PPC_SPMC1;
		*val = get_reg_val(id, vcpu->arch.spmc[i]);
		break;
1045 1046 1047 1048 1049 1050
	case KVM_REG_PPC_SIAR:
		*val = get_reg_val(id, vcpu->arch.siar);
		break;
	case KVM_REG_PPC_SDAR:
		*val = get_reg_val(id, vcpu->arch.sdar);
		break;
1051 1052
	case KVM_REG_PPC_SIER:
		*val = get_reg_val(id, vcpu->arch.sier);
1053
		break;
1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088
	case KVM_REG_PPC_IAMR:
		*val = get_reg_val(id, vcpu->arch.iamr);
		break;
	case KVM_REG_PPC_PSPB:
		*val = get_reg_val(id, vcpu->arch.pspb);
		break;
	case KVM_REG_PPC_DPDES:
		*val = get_reg_val(id, vcpu->arch.vcore->dpdes);
		break;
	case KVM_REG_PPC_DAWR:
		*val = get_reg_val(id, vcpu->arch.dawr);
		break;
	case KVM_REG_PPC_DAWRX:
		*val = get_reg_val(id, vcpu->arch.dawrx);
		break;
	case KVM_REG_PPC_CIABR:
		*val = get_reg_val(id, vcpu->arch.ciabr);
		break;
	case KVM_REG_PPC_CSIGR:
		*val = get_reg_val(id, vcpu->arch.csigr);
		break;
	case KVM_REG_PPC_TACR:
		*val = get_reg_val(id, vcpu->arch.tacr);
		break;
	case KVM_REG_PPC_TCSCR:
		*val = get_reg_val(id, vcpu->arch.tcscr);
		break;
	case KVM_REG_PPC_PID:
		*val = get_reg_val(id, vcpu->arch.pid);
		break;
	case KVM_REG_PPC_ACOP:
		*val = get_reg_val(id, vcpu->arch.acop);
		break;
	case KVM_REG_PPC_WORT:
		*val = get_reg_val(id, vcpu->arch.wort);
1089
		break;
1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106
	case KVM_REG_PPC_VPA_ADDR:
		spin_lock(&vcpu->arch.vpa_update_lock);
		*val = get_reg_val(id, vcpu->arch.vpa.next_gpa);
		spin_unlock(&vcpu->arch.vpa_update_lock);
		break;
	case KVM_REG_PPC_VPA_SLB:
		spin_lock(&vcpu->arch.vpa_update_lock);
		val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa;
		val->vpaval.length = vcpu->arch.slb_shadow.len;
		spin_unlock(&vcpu->arch.vpa_update_lock);
		break;
	case KVM_REG_PPC_VPA_DTL:
		spin_lock(&vcpu->arch.vpa_update_lock);
		val->vpaval.addr = vcpu->arch.dtl.next_gpa;
		val->vpaval.length = vcpu->arch.dtl.len;
		spin_unlock(&vcpu->arch.vpa_update_lock);
		break;
1107 1108 1109
	case KVM_REG_PPC_TB_OFFSET:
		*val = get_reg_val(id, vcpu->arch.vcore->tb_offset);
		break;
1110
	case KVM_REG_PPC_LPCR:
1111
	case KVM_REG_PPC_LPCR_64:
1112 1113
		*val = get_reg_val(id, vcpu->arch.vcore->lpcr);
		break;
1114 1115 1116
	case KVM_REG_PPC_PPR:
		*val = get_reg_val(id, vcpu->arch.ppr);
		break;
1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
	case KVM_REG_PPC_TFHAR:
		*val = get_reg_val(id, vcpu->arch.tfhar);
		break;
	case KVM_REG_PPC_TFIAR:
		*val = get_reg_val(id, vcpu->arch.tfiar);
		break;
	case KVM_REG_PPC_TEXASR:
		*val = get_reg_val(id, vcpu->arch.texasr);
		break;
	case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
		i = id - KVM_REG_PPC_TM_GPR0;
		*val = get_reg_val(id, vcpu->arch.gpr_tm[i]);
		break;
	case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
	{
		int j;
		i = id - KVM_REG_PPC_TM_VSR0;
		if (i < 32)
			for (j = 0; j < TS_FPRWIDTH; j++)
				val->vsxval[j] = vcpu->arch.fp_tm.fpr[i][j];
		else {
			if (cpu_has_feature(CPU_FTR_ALTIVEC))
				val->vval = vcpu->arch.vr_tm.vr[i-32];
			else
				r = -ENXIO;
		}
		break;
	}
	case KVM_REG_PPC_TM_CR:
		*val = get_reg_val(id, vcpu->arch.cr_tm);
		break;
	case KVM_REG_PPC_TM_LR:
		*val = get_reg_val(id, vcpu->arch.lr_tm);
		break;
	case KVM_REG_PPC_TM_CTR:
		*val = get_reg_val(id, vcpu->arch.ctr_tm);
		break;
	case KVM_REG_PPC_TM_FPSCR:
		*val = get_reg_val(id, vcpu->arch.fp_tm.fpscr);
		break;
	case KVM_REG_PPC_TM_AMR:
		*val = get_reg_val(id, vcpu->arch.amr_tm);
		break;
	case KVM_REG_PPC_TM_PPR:
		*val = get_reg_val(id, vcpu->arch.ppr_tm);
		break;
	case KVM_REG_PPC_TM_VRSAVE:
		*val = get_reg_val(id, vcpu->arch.vrsave_tm);
		break;
	case KVM_REG_PPC_TM_VSCR:
		if (cpu_has_feature(CPU_FTR_ALTIVEC))
			*val = get_reg_val(id, vcpu->arch.vr_tm.vscr.u[3]);
		else
			r = -ENXIO;
		break;
	case KVM_REG_PPC_TM_DSCR:
		*val = get_reg_val(id, vcpu->arch.dscr_tm);
		break;
	case KVM_REG_PPC_TM_TAR:
		*val = get_reg_val(id, vcpu->arch.tar_tm);
		break;
#endif
1180 1181 1182
	case KVM_REG_PPC_ARCH_COMPAT:
		*val = get_reg_val(id, vcpu->arch.vcore->arch_compat);
		break;
1183
	default:
1184
		r = -EINVAL;
1185 1186 1187 1188 1189 1190
		break;
	}

	return r;
}

1191 1192
static int kvmppc_set_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
				 union kvmppc_one_reg *val)
1193
{
1194 1195
	int r = 0;
	long int i;
1196
	unsigned long addr, len;
1197

1198
	switch (id) {
1199 1200
	case KVM_REG_PPC_HIOR:
		/* Only allow this to be set to zero */
1201
		if (set_reg_val(id, *val))
1202 1203
			r = -EINVAL;
		break;
1204 1205 1206
	case KVM_REG_PPC_DABR:
		vcpu->arch.dabr = set_reg_val(id, *val);
		break;
1207 1208 1209
	case KVM_REG_PPC_DABRX:
		vcpu->arch.dabrx = set_reg_val(id, *val) & ~DABRX_HYP;
		break;
1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224
	case KVM_REG_PPC_DSCR:
		vcpu->arch.dscr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_PURR:
		vcpu->arch.purr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_SPURR:
		vcpu->arch.spurr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_AMR:
		vcpu->arch.amr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_UAMOR:
		vcpu->arch.uamor = set_reg_val(id, *val);
		break;
1225
	case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS:
1226 1227 1228 1229 1230 1231 1232
		i = id - KVM_REG_PPC_MMCR0;
		vcpu->arch.mmcr[i] = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
		i = id - KVM_REG_PPC_PMC1;
		vcpu->arch.pmc[i] = set_reg_val(id, *val);
		break;
1233 1234 1235 1236
	case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
		i = id - KVM_REG_PPC_SPMC1;
		vcpu->arch.spmc[i] = set_reg_val(id, *val);
		break;
1237 1238 1239 1240 1241 1242
	case KVM_REG_PPC_SIAR:
		vcpu->arch.siar = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_SDAR:
		vcpu->arch.sdar = set_reg_val(id, *val);
		break;
1243 1244
	case KVM_REG_PPC_SIER:
		vcpu->arch.sier = set_reg_val(id, *val);
1245
		break;
1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283
	case KVM_REG_PPC_IAMR:
		vcpu->arch.iamr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_PSPB:
		vcpu->arch.pspb = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_DPDES:
		vcpu->arch.vcore->dpdes = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_DAWR:
		vcpu->arch.dawr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_DAWRX:
		vcpu->arch.dawrx = set_reg_val(id, *val) & ~DAWRX_HYP;
		break;
	case KVM_REG_PPC_CIABR:
		vcpu->arch.ciabr = set_reg_val(id, *val);
		/* Don't allow setting breakpoints in hypervisor code */
		if ((vcpu->arch.ciabr & CIABR_PRIV) == CIABR_PRIV_HYPER)
			vcpu->arch.ciabr &= ~CIABR_PRIV;	/* disable */
		break;
	case KVM_REG_PPC_CSIGR:
		vcpu->arch.csigr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TACR:
		vcpu->arch.tacr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TCSCR:
		vcpu->arch.tcscr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_PID:
		vcpu->arch.pid = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_ACOP:
		vcpu->arch.acop = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_WORT:
		vcpu->arch.wort = set_reg_val(id, *val);
1284
		break;
1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304
	case KVM_REG_PPC_VPA_ADDR:
		addr = set_reg_val(id, *val);
		r = -EINVAL;
		if (!addr && (vcpu->arch.slb_shadow.next_gpa ||
			      vcpu->arch.dtl.next_gpa))
			break;
		r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca));
		break;
	case KVM_REG_PPC_VPA_SLB:
		addr = val->vpaval.addr;
		len = val->vpaval.length;
		r = -EINVAL;
		if (addr && !vcpu->arch.vpa.next_gpa)
			break;
		r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len);
		break;
	case KVM_REG_PPC_VPA_DTL:
		addr = val->vpaval.addr;
		len = val->vpaval.length;
		r = -EINVAL;
1305 1306
		if (addr && (len < sizeof(struct dtl_entry) ||
			     !vcpu->arch.vpa.next_gpa))
1307 1308 1309 1310
			break;
		len -= len % sizeof(struct dtl_entry);
		r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len);
		break;
1311 1312 1313 1314 1315
	case KVM_REG_PPC_TB_OFFSET:
		/* round up to multiple of 2^24 */
		vcpu->arch.vcore->tb_offset =
			ALIGN(set_reg_val(id, *val), 1UL << 24);
		break;
1316
	case KVM_REG_PPC_LPCR:
1317 1318 1319 1320
		kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), true);
		break;
	case KVM_REG_PPC_LPCR_64:
		kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), false);
1321
		break;
1322 1323 1324
	case KVM_REG_PPC_PPR:
		vcpu->arch.ppr = set_reg_val(id, *val);
		break;
1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
	case KVM_REG_PPC_TFHAR:
		vcpu->arch.tfhar = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TFIAR:
		vcpu->arch.tfiar = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TEXASR:
		vcpu->arch.texasr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
		i = id - KVM_REG_PPC_TM_GPR0;
		vcpu->arch.gpr_tm[i] = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
	{
		int j;
		i = id - KVM_REG_PPC_TM_VSR0;
		if (i < 32)
			for (j = 0; j < TS_FPRWIDTH; j++)
				vcpu->arch.fp_tm.fpr[i][j] = val->vsxval[j];
		else
			if (cpu_has_feature(CPU_FTR_ALTIVEC))
				vcpu->arch.vr_tm.vr[i-32] = val->vval;
			else
				r = -ENXIO;
		break;
	}
	case KVM_REG_PPC_TM_CR:
		vcpu->arch.cr_tm = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_LR:
		vcpu->arch.lr_tm = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_CTR:
		vcpu->arch.ctr_tm = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_FPSCR:
		vcpu->arch.fp_tm.fpscr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_AMR:
		vcpu->arch.amr_tm = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_PPR:
		vcpu->arch.ppr_tm = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_VRSAVE:
		vcpu->arch.vrsave_tm = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_VSCR:
		if (cpu_has_feature(CPU_FTR_ALTIVEC))
			vcpu->arch.vr.vscr.u[3] = set_reg_val(id, *val);
		else
			r = - ENXIO;
		break;
	case KVM_REG_PPC_TM_DSCR:
		vcpu->arch.dscr_tm = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_TAR:
		vcpu->arch.tar_tm = set_reg_val(id, *val);
		break;
#endif
1387 1388 1389
	case KVM_REG_PPC_ARCH_COMPAT:
		r = kvmppc_set_arch_compat(vcpu, set_reg_val(id, *val));
		break;
1390
	default:
1391
		r = -EINVAL;
1392 1393 1394 1395 1396 1397
		break;
	}

	return r;
}

1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408
static struct kvmppc_vcore *kvmppc_vcore_create(struct kvm *kvm, int core)
{
	struct kvmppc_vcore *vcore;

	vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL);

	if (vcore == NULL)
		return NULL;

	INIT_LIST_HEAD(&vcore->runnable_threads);
	spin_lock_init(&vcore->lock);
1409
	spin_lock_init(&vcore->stoltb_lock);
1410 1411 1412 1413 1414 1415
	init_waitqueue_head(&vcore->wq);
	vcore->preempt_tb = TB_NIL;
	vcore->lpcr = kvm->arch.lpcr;
	vcore->first_vcpuid = core * threads_per_subcore;
	vcore->kvm = kvm;

1416 1417 1418 1419 1420 1421 1422
	vcore->mpp_buffer_is_valid = false;

	if (cpu_has_feature(CPU_FTR_ARCH_207S))
		vcore->mpp_buffer = (void *)__get_free_pages(
			GFP_KERNEL|__GFP_ZERO,
			MPP_BUFFER_ORDER);

1423 1424 1425
	return vcore;
}

1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573
#ifdef CONFIG_KVM_BOOK3S_HV_EXIT_TIMING
static struct debugfs_timings_element {
	const char *name;
	size_t offset;
} timings[] = {
	{"rm_entry",	offsetof(struct kvm_vcpu, arch.rm_entry)},
	{"rm_intr",	offsetof(struct kvm_vcpu, arch.rm_intr)},
	{"rm_exit",	offsetof(struct kvm_vcpu, arch.rm_exit)},
	{"guest",	offsetof(struct kvm_vcpu, arch.guest_time)},
	{"cede",	offsetof(struct kvm_vcpu, arch.cede_time)},
};

#define N_TIMINGS	(sizeof(timings) / sizeof(timings[0]))

struct debugfs_timings_state {
	struct kvm_vcpu	*vcpu;
	unsigned int	buflen;
	char		buf[N_TIMINGS * 100];
};

static int debugfs_timings_open(struct inode *inode, struct file *file)
{
	struct kvm_vcpu *vcpu = inode->i_private;
	struct debugfs_timings_state *p;

	p = kzalloc(sizeof(*p), GFP_KERNEL);
	if (!p)
		return -ENOMEM;

	kvm_get_kvm(vcpu->kvm);
	p->vcpu = vcpu;
	file->private_data = p;

	return nonseekable_open(inode, file);
}

static int debugfs_timings_release(struct inode *inode, struct file *file)
{
	struct debugfs_timings_state *p = file->private_data;

	kvm_put_kvm(p->vcpu->kvm);
	kfree(p);
	return 0;
}

static ssize_t debugfs_timings_read(struct file *file, char __user *buf,
				    size_t len, loff_t *ppos)
{
	struct debugfs_timings_state *p = file->private_data;
	struct kvm_vcpu *vcpu = p->vcpu;
	char *s, *buf_end;
	struct kvmhv_tb_accumulator tb;
	u64 count;
	loff_t pos;
	ssize_t n;
	int i, loops;
	bool ok;

	if (!p->buflen) {
		s = p->buf;
		buf_end = s + sizeof(p->buf);
		for (i = 0; i < N_TIMINGS; ++i) {
			struct kvmhv_tb_accumulator *acc;

			acc = (struct kvmhv_tb_accumulator *)
				((unsigned long)vcpu + timings[i].offset);
			ok = false;
			for (loops = 0; loops < 1000; ++loops) {
				count = acc->seqcount;
				if (!(count & 1)) {
					smp_rmb();
					tb = *acc;
					smp_rmb();
					if (count == acc->seqcount) {
						ok = true;
						break;
					}
				}
				udelay(1);
			}
			if (!ok)
				snprintf(s, buf_end - s, "%s: stuck\n",
					timings[i].name);
			else
				snprintf(s, buf_end - s,
					"%s: %llu %llu %llu %llu\n",
					timings[i].name, count / 2,
					tb_to_ns(tb.tb_total),
					tb_to_ns(tb.tb_min),
					tb_to_ns(tb.tb_max));
			s += strlen(s);
		}
		p->buflen = s - p->buf;
	}

	pos = *ppos;
	if (pos >= p->buflen)
		return 0;
	if (len > p->buflen - pos)
		len = p->buflen - pos;
	n = copy_to_user(buf, p->buf + pos, len);
	if (n) {
		if (n == len)
			return -EFAULT;
		len -= n;
	}
	*ppos = pos + len;
	return len;
}

static ssize_t debugfs_timings_write(struct file *file, const char __user *buf,
				     size_t len, loff_t *ppos)
{
	return -EACCES;
}

static const struct file_operations debugfs_timings_ops = {
	.owner	 = THIS_MODULE,
	.open	 = debugfs_timings_open,
	.release = debugfs_timings_release,
	.read	 = debugfs_timings_read,
	.write	 = debugfs_timings_write,
	.llseek	 = generic_file_llseek,
};

/* Create a debugfs directory for the vcpu */
static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id)
{
	char buf[16];
	struct kvm *kvm = vcpu->kvm;

	snprintf(buf, sizeof(buf), "vcpu%u", id);
	if (IS_ERR_OR_NULL(kvm->arch.debugfs_dir))
		return;
	vcpu->arch.debugfs_dir = debugfs_create_dir(buf, kvm->arch.debugfs_dir);
	if (IS_ERR_OR_NULL(vcpu->arch.debugfs_dir))
		return;
	vcpu->arch.debugfs_timings =
		debugfs_create_file("timings", 0444, vcpu->arch.debugfs_dir,
				    vcpu, &debugfs_timings_ops);
}

#else /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id)
{
}
#endif /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */

1574 1575
static struct kvm_vcpu *kvmppc_core_vcpu_create_hv(struct kvm *kvm,
						   unsigned int id)
1576 1577
{
	struct kvm_vcpu *vcpu;
1578 1579 1580
	int err = -EINVAL;
	int core;
	struct kvmppc_vcore *vcore;
1581

1582
	core = id / threads_per_subcore;
1583 1584 1585 1586
	if (core >= KVM_MAX_VCORES)
		goto out;

	err = -ENOMEM;
1587
	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
1588 1589 1590 1591 1592 1593 1594 1595
	if (!vcpu)
		goto out;

	err = kvm_vcpu_init(vcpu, kvm, id);
	if (err)
		goto free_vcpu;

	vcpu->arch.shared = &vcpu->arch.shregs;
1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606
#ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
	/*
	 * The shared struct is never shared on HV,
	 * so we can always use host endianness
	 */
#ifdef __BIG_ENDIAN__
	vcpu->arch.shared_big_endian = true;
#else
	vcpu->arch.shared_big_endian = false;
#endif
#endif
1607 1608 1609
	vcpu->arch.mmcr[0] = MMCR0_FC;
	vcpu->arch.ctrl = CTRL_RUNLATCH;
	/* default to host PVR, since we can't spoof it */
1610
	kvmppc_set_pvr_hv(vcpu, mfspr(SPRN_PVR));
1611
	spin_lock_init(&vcpu->arch.vpa_update_lock);
1612 1613
	spin_lock_init(&vcpu->arch.tbacct_lock);
	vcpu->arch.busy_preempt = TB_NIL;
1614
	vcpu->arch.intr_msr = MSR_SF | MSR_ME;
1615 1616 1617

	kvmppc_mmu_book3s_hv_init(vcpu);

1618
	vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
1619 1620 1621 1622 1623 1624

	init_waitqueue_head(&vcpu->arch.cpu_run);

	mutex_lock(&kvm->lock);
	vcore = kvm->arch.vcores[core];
	if (!vcore) {
1625
		vcore = kvmppc_vcore_create(kvm, core);
1626
		kvm->arch.vcores[core] = vcore;
1627
		kvm->arch.online_vcores++;
1628 1629 1630 1631 1632 1633 1634 1635 1636 1637
	}
	mutex_unlock(&kvm->lock);

	if (!vcore)
		goto free_vcpu;

	spin_lock(&vcore->lock);
	++vcore->num_threads;
	spin_unlock(&vcore->lock);
	vcpu->arch.vcore = vcore;
1638
	vcpu->arch.ptid = vcpu->vcpu_id - vcore->first_vcpuid;
1639

1640 1641 1642
	vcpu->arch.cpu_type = KVM_CPU_3S_64;
	kvmppc_sanity_check(vcpu);

1643 1644
	debugfs_vcpu_init(vcpu, id);

1645 1646 1647
	return vcpu;

free_vcpu:
1648
	kmem_cache_free(kvm_vcpu_cache, vcpu);
1649 1650 1651 1652
out:
	return ERR_PTR(err);
}

1653 1654 1655 1656 1657 1658 1659
static void unpin_vpa(struct kvm *kvm, struct kvmppc_vpa *vpa)
{
	if (vpa->pinned_addr)
		kvmppc_unpin_guest_page(kvm, vpa->pinned_addr, vpa->gpa,
					vpa->dirty);
}

1660
static void kvmppc_core_vcpu_free_hv(struct kvm_vcpu *vcpu)
1661
{
1662
	spin_lock(&vcpu->arch.vpa_update_lock);
1663 1664 1665
	unpin_vpa(vcpu->kvm, &vcpu->arch.dtl);
	unpin_vpa(vcpu->kvm, &vcpu->arch.slb_shadow);
	unpin_vpa(vcpu->kvm, &vcpu->arch.vpa);
1666
	spin_unlock(&vcpu->arch.vpa_update_lock);
1667
	kvm_vcpu_uninit(vcpu);
1668
	kmem_cache_free(kvm_vcpu_cache, vcpu);
1669 1670
}

1671 1672 1673 1674 1675 1676
static int kvmppc_core_check_requests_hv(struct kvm_vcpu *vcpu)
{
	/* Indicate we want to get back into the guest */
	return 1;
}

1677
static void kvmppc_set_timer(struct kvm_vcpu *vcpu)
1678
{
1679
	unsigned long dec_nsec, now;
1680

1681 1682 1683 1684
	now = get_tb();
	if (now > vcpu->arch.dec_expires) {
		/* decrementer has already gone negative */
		kvmppc_core_queue_dec(vcpu);
1685
		kvmppc_core_prepare_to_enter(vcpu);
1686
		return;
1687
	}
1688 1689 1690 1691 1692
	dec_nsec = (vcpu->arch.dec_expires - now) * NSEC_PER_SEC
		   / tb_ticks_per_sec;
	hrtimer_start(&vcpu->arch.dec_timer, ktime_set(0, dec_nsec),
		      HRTIMER_MODE_REL);
	vcpu->arch.timer_running = 1;
1693 1694
}

1695
static void kvmppc_end_cede(struct kvm_vcpu *vcpu)
1696
{
1697 1698 1699 1700 1701
	vcpu->arch.ceded = 0;
	if (vcpu->arch.timer_running) {
		hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
		vcpu->arch.timer_running = 0;
	}
1702 1703
}

1704
extern void __kvmppc_vcore_entry(void);
1705

1706 1707
static void kvmppc_remove_runnable(struct kvmppc_vcore *vc,
				   struct kvm_vcpu *vcpu)
1708
{
1709 1710
	u64 now;

1711 1712
	if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
		return;
1713
	spin_lock_irq(&vcpu->arch.tbacct_lock);
1714 1715 1716 1717 1718
	now = mftb();
	vcpu->arch.busy_stolen += vcore_stolen_time(vc, now) -
		vcpu->arch.stolen_logged;
	vcpu->arch.busy_preempt = now;
	vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
1719
	spin_unlock_irq(&vcpu->arch.tbacct_lock);
1720 1721 1722 1723
	--vc->n_runnable;
	list_del(&vcpu->arch.run_list);
}

1724 1725 1726
static int kvmppc_grab_hwthread(int cpu)
{
	struct paca_struct *tpaca;
1727
	long timeout = 10000;
1728 1729 1730 1731

	tpaca = &paca[cpu];

	/* Ensure the thread won't go into the kernel if it wakes */
1732
	tpaca->kvm_hstate.kvm_vcpu = NULL;
1733 1734 1735
	tpaca->kvm_hstate.napping = 0;
	smp_wmb();
	tpaca->kvm_hstate.hwthread_req = 1;
1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765

	/*
	 * If the thread is already executing in the kernel (e.g. handling
	 * a stray interrupt), wait for it to get back to nap mode.
	 * The smp_mb() is to ensure that our setting of hwthread_req
	 * is visible before we look at hwthread_state, so if this
	 * races with the code at system_reset_pSeries and the thread
	 * misses our setting of hwthread_req, we are sure to see its
	 * setting of hwthread_state, and vice versa.
	 */
	smp_mb();
	while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) {
		if (--timeout <= 0) {
			pr_err("KVM: couldn't grab cpu %d\n", cpu);
			return -EBUSY;
		}
		udelay(1);
	}
	return 0;
}

static void kvmppc_release_hwthread(int cpu)
{
	struct paca_struct *tpaca;

	tpaca = &paca[cpu];
	tpaca->kvm_hstate.hwthread_req = 0;
	tpaca->kvm_hstate.kvm_vcpu = NULL;
}

1766 1767 1768 1769 1770 1771
static void kvmppc_start_thread(struct kvm_vcpu *vcpu)
{
	int cpu;
	struct paca_struct *tpaca;
	struct kvmppc_vcore *vc = vcpu->arch.vcore;

1772 1773 1774 1775
	if (vcpu->arch.timer_running) {
		hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
		vcpu->arch.timer_running = 0;
	}
1776 1777 1778
	cpu = vc->pcpu + vcpu->arch.ptid;
	tpaca = &paca[cpu];
	tpaca->kvm_hstate.kvm_vcore = vc;
1779
	tpaca->kvm_hstate.ptid = vcpu->arch.ptid;
1780
	vcpu->cpu = vc->pcpu;
1781
	/* Order stores to hstate.kvm_vcore etc. before store to kvm_vcpu */
1782
	smp_wmb();
1783
	tpaca->kvm_hstate.kvm_vcpu = vcpu;
1784
#if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP)
1785
	if (cpu != smp_processor_id())
1786 1787 1788
		xics_wake_cpu(cpu);
#endif
}
1789

1790
static void kvmppc_wait_for_nap(void)
1791
{
1792 1793
	int cpu = smp_processor_id();
	int i, loops;
1794

1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807
	for (loops = 0; loops < 1000000; ++loops) {
		/*
		 * Check if all threads are finished.
		 * We set the vcpu pointer when starting a thread
		 * and the thread clears it when finished, so we look
		 * for any threads that still have a non-NULL vcpu ptr.
		 */
		for (i = 1; i < threads_per_subcore; ++i)
			if (paca[cpu + i].kvm_hstate.kvm_vcpu)
				break;
		if (i == threads_per_subcore) {
			HMT_medium();
			return;
1808
		}
1809
		HMT_low();
1810 1811
	}
	HMT_medium();
1812 1813 1814
	for (i = 1; i < threads_per_subcore; ++i)
		if (paca[cpu + i].kvm_hstate.kvm_vcpu)
			pr_err("KVM: CPU %d seems to be stuck\n", cpu + i);
1815 1816 1817 1818
}

/*
 * Check that we are on thread 0 and that any other threads in
1819 1820
 * this core are off-line.  Then grab the threads so they can't
 * enter the kernel.
1821 1822 1823 1824
 */
static int on_primary_thread(void)
{
	int cpu = smp_processor_id();
1825
	int thr;
1826

1827 1828
	/* Are we on a primary subcore? */
	if (cpu_thread_in_subcore(cpu))
1829
		return 0;
1830 1831 1832

	thr = 0;
	while (++thr < threads_per_subcore)
1833 1834
		if (cpu_online(cpu + thr))
			return 0;
1835 1836

	/* Grab all hw threads so they can't go into the kernel */
1837
	for (thr = 1; thr < threads_per_subcore; ++thr) {
1838 1839 1840 1841 1842 1843 1844 1845
		if (kvmppc_grab_hwthread(cpu + thr)) {
			/* Couldn't grab one; let the others go */
			do {
				kvmppc_release_hwthread(cpu + thr);
			} while (--thr > 0);
			return 0;
		}
	}
1846 1847 1848
	return 1;
}

1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875
static void kvmppc_start_saving_l2_cache(struct kvmppc_vcore *vc)
{
	phys_addr_t phy_addr, mpp_addr;

	phy_addr = (phys_addr_t)virt_to_phys(vc->mpp_buffer);
	mpp_addr = phy_addr & PPC_MPPE_ADDRESS_MASK;

	mtspr(SPRN_MPPR, mpp_addr | PPC_MPPR_FETCH_ABORT);
	logmpp(mpp_addr | PPC_LOGMPP_LOG_L2);

	vc->mpp_buffer_is_valid = true;
}

static void kvmppc_start_restoring_l2_cache(const struct kvmppc_vcore *vc)
{
	phys_addr_t phy_addr, mpp_addr;

	phy_addr = virt_to_phys(vc->mpp_buffer);
	mpp_addr = phy_addr & PPC_MPPE_ADDRESS_MASK;

	/* We must abort any in-progress save operations to ensure
	 * the table is valid so that prefetch engine knows when to
	 * stop prefetching. */
	logmpp(mpp_addr | PPC_LOGMPP_LOG_ABORT);
	mtspr(SPRN_MPPR, mpp_addr | PPC_MPPR_FETCH_WHOLE_TABLE);
}

1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894
static void prepare_threads(struct kvmppc_vcore *vc)
{
	struct kvm_vcpu *vcpu, *vnext;

	list_for_each_entry_safe(vcpu, vnext, &vc->runnable_threads,
				 arch.run_list) {
		if (signal_pending(vcpu->arch.run_task))
			vcpu->arch.ret = -EINTR;
		else if (vcpu->arch.vpa.update_pending ||
			 vcpu->arch.slb_shadow.update_pending ||
			 vcpu->arch.dtl.update_pending)
			vcpu->arch.ret = RESUME_GUEST;
		else
			continue;
		kvmppc_remove_runnable(vc, vcpu);
		wake_up(&vcpu->arch.cpu_run);
	}
}

1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931
static void post_guest_process(struct kvmppc_vcore *vc)
{
	u64 now;
	long ret;
	struct kvm_vcpu *vcpu, *vnext;

	now = get_tb();
	list_for_each_entry_safe(vcpu, vnext, &vc->runnable_threads,
				 arch.run_list) {
		/* cancel pending dec exception if dec is positive */
		if (now < vcpu->arch.dec_expires &&
		    kvmppc_core_pending_dec(vcpu))
			kvmppc_core_dequeue_dec(vcpu);

		trace_kvm_guest_exit(vcpu);

		ret = RESUME_GUEST;
		if (vcpu->arch.trap)
			ret = kvmppc_handle_exit_hv(vcpu->arch.kvm_run, vcpu,
						    vcpu->arch.run_task);

		vcpu->arch.ret = ret;
		vcpu->arch.trap = 0;

		if (vcpu->arch.ceded) {
			if (!is_kvmppc_resume_guest(ret))
				kvmppc_end_cede(vcpu);
			else
				kvmppc_set_timer(vcpu);
		}
		if (!is_kvmppc_resume_guest(vcpu->arch.ret)) {
			kvmppc_remove_runnable(vc, vcpu);
			wake_up(&vcpu->arch.cpu_run);
		}
	}
}

1932 1933 1934 1935
/*
 * Run a set of guest threads on a physical core.
 * Called with vc->lock held.
 */
1936
static void kvmppc_run_core(struct kvmppc_vcore *vc)
1937
{
1938
	struct kvm_vcpu *vcpu;
1939
	int i;
1940
	int srcu_idx;
1941

1942 1943 1944 1945 1946 1947 1948 1949 1950
	/*
	 * Remove from the list any threads that have a signal pending
	 * or need a VPA update done
	 */
	prepare_threads(vc);

	/* if the runner is no longer runnable, let the caller pick a new one */
	if (vc->runner->arch.state != KVMPPC_VCPU_RUNNABLE)
		return;
1951 1952

	/*
1953
	 * Initialize *vc.
1954
	 */
1955
	vc->entry_exit_map = 0;
1956
	vc->preempt_tb = TB_NIL;
1957 1958
	vc->in_guest = 0;
	vc->napping_threads = 0;
1959
	vc->conferring_threads = 0;
1960

1961
	/*
1962 1963 1964
	 * Make sure we are running on primary threads, and that secondary
	 * threads are offline.  Also check if the number of threads in this
	 * guest are greater than the current system threads per guest.
1965
	 */
1966 1967
	if ((threads_per_core > 1) &&
	    ((vc->num_threads > threads_per_subcore) || !on_primary_thread())) {
1968
		list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
1969
			vcpu->arch.ret = -EBUSY;
1970 1971 1972
			kvmppc_remove_runnable(vc, vcpu);
			wake_up(&vcpu->arch.cpu_run);
		}
1973 1974 1975
		goto out;
	}

1976

1977
	vc->pcpu = smp_processor_id();
1978
	list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
1979
		kvmppc_start_thread(vcpu);
1980
		kvmppc_create_dtl_entry(vcpu, vc);
1981
		trace_kvm_guest_enter(vcpu);
1982
	}
1983

1984 1985 1986 1987
	/* Set this explicitly in case thread 0 doesn't have a vcpu */
	get_paca()->kvm_hstate.kvm_vcore = vc;
	get_paca()->kvm_hstate.ptid = 0;

1988
	vc->vcore_state = VCORE_RUNNING;
1989
	preempt_disable();
1990 1991 1992

	trace_kvmppc_run_core(vc, 0);

1993
	spin_unlock(&vc->lock);
1994

1995
	kvm_guest_enter();
1996

1997
	srcu_idx = srcu_read_lock(&vc->kvm->srcu);
1998

1999 2000 2001
	if (vc->mpp_buffer_is_valid)
		kvmppc_start_restoring_l2_cache(vc);

2002
	__kvmppc_vcore_entry();
2003

2004
	spin_lock(&vc->lock);
2005 2006 2007 2008

	if (vc->mpp_buffer)
		kvmppc_start_saving_l2_cache(vc);

2009 2010 2011 2012
	/* disable sending of IPIs on virtual external irqs */
	list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
		vcpu->cpu = -1;
	/* wait for secondary threads to finish writing their state to memory */
2013
	kvmppc_wait_for_nap();
2014
	for (i = 0; i < threads_per_subcore; ++i)
2015
		kvmppc_release_hwthread(vc->pcpu + i);
2016
	/* prevent other vcpu threads from doing kvmppc_start_thread() now */
2017
	vc->vcore_state = VCORE_EXITING;
2018 2019
	spin_unlock(&vc->lock);

2020
	srcu_read_unlock(&vc->kvm->srcu, srcu_idx);
2021

2022 2023
	/* make sure updates to secondary vcpu structs are visible now */
	smp_mb();
2024 2025 2026 2027
	kvm_guest_exit();

	preempt_enable();

2028
	spin_lock(&vc->lock);
2029
	post_guest_process(vc);
2030 2031

 out:
2032
	vc->vcore_state = VCORE_INACTIVE;
2033
	trace_kvmppc_run_core(vc, 1);
2034 2035
}

2036 2037 2038 2039 2040
/*
 * Wait for some other vcpu thread to execute us, and
 * wake us up when we need to handle something in the host.
 */
static void kvmppc_wait_for_exec(struct kvm_vcpu *vcpu, int wait_state)
2041 2042 2043
{
	DEFINE_WAIT(wait);

2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055
	prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state);
	if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE)
		schedule();
	finish_wait(&vcpu->arch.cpu_run, &wait);
}

/*
 * All the vcpus in this vcore are idle, so wait for a decrementer
 * or external interrupt to one of the vcpus.  vc->lock is held.
 */
static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc)
{
2056 2057 2058
	struct kvm_vcpu *vcpu;
	int do_sleep = 1;

2059 2060 2061
	DEFINE_WAIT(wait);

	prepare_to_wait(&vc->wq, &wait, TASK_INTERRUPTIBLE);
2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078

	/*
	 * Check one last time for pending exceptions and ceded state after
	 * we put ourselves on the wait queue
	 */
	list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
		if (vcpu->arch.pending_exceptions || !vcpu->arch.ceded) {
			do_sleep = 0;
			break;
		}
	}

	if (!do_sleep) {
		finish_wait(&vc->wq, &wait);
		return;
	}

2079
	vc->vcore_state = VCORE_SLEEPING;
2080
	trace_kvmppc_vcore_blocked(vc, 0);
2081
	spin_unlock(&vc->lock);
2082
	schedule();
2083 2084 2085
	finish_wait(&vc->wq, &wait);
	spin_lock(&vc->lock);
	vc->vcore_state = VCORE_INACTIVE;
2086
	trace_kvmppc_vcore_blocked(vc, 1);
2087
}
2088

2089 2090 2091 2092 2093
static int kvmppc_run_vcpu(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
{
	int n_ceded;
	struct kvmppc_vcore *vc;
	struct kvm_vcpu *v, *vn;
2094

2095 2096
	trace_kvmppc_run_vcpu_enter(vcpu);

2097 2098 2099
	kvm_run->exit_reason = 0;
	vcpu->arch.ret = RESUME_GUEST;
	vcpu->arch.trap = 0;
2100
	kvmppc_update_vpas(vcpu);
2101 2102 2103 2104 2105 2106

	/*
	 * Synchronize with other threads in this virtual core
	 */
	vc = vcpu->arch.vcore;
	spin_lock(&vc->lock);
2107
	vcpu->arch.ceded = 0;
2108 2109
	vcpu->arch.run_task = current;
	vcpu->arch.kvm_run = kvm_run;
2110
	vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb());
2111
	vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
2112
	vcpu->arch.busy_preempt = TB_NIL;
2113 2114 2115
	list_add_tail(&vcpu->arch.run_list, &vc->runnable_threads);
	++vc->n_runnable;

2116 2117 2118 2119 2120
	/*
	 * This happens the first time this is called for a vcpu.
	 * If the vcore is already running, we may be able to start
	 * this thread straight away and have it join in.
	 */
2121
	if (!signal_pending(current)) {
2122
		if (vc->vcore_state == VCORE_RUNNING && !VCORE_IS_EXITING(vc)) {
2123
			kvmppc_create_dtl_entry(vcpu, vc);
2124
			kvmppc_start_thread(vcpu);
2125
			trace_kvm_guest_enter(vcpu);
2126 2127
		} else if (vc->vcore_state == VCORE_SLEEPING) {
			wake_up(&vc->wq);
2128 2129
		}

2130
	}
2131

2132 2133
	while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
	       !signal_pending(current)) {
2134
		if (vc->vcore_state != VCORE_INACTIVE) {
2135 2136 2137 2138 2139 2140 2141
			spin_unlock(&vc->lock);
			kvmppc_wait_for_exec(vcpu, TASK_INTERRUPTIBLE);
			spin_lock(&vc->lock);
			continue;
		}
		list_for_each_entry_safe(v, vn, &vc->runnable_threads,
					 arch.run_list) {
2142
			kvmppc_core_prepare_to_enter(v);
2143 2144 2145 2146 2147 2148 2149 2150
			if (signal_pending(v->arch.run_task)) {
				kvmppc_remove_runnable(vc, v);
				v->stat.signal_exits++;
				v->arch.kvm_run->exit_reason = KVM_EXIT_INTR;
				v->arch.ret = -EINTR;
				wake_up(&v->arch.cpu_run);
			}
		}
2151 2152 2153
		if (!vc->n_runnable || vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
			break;
		n_ceded = 0;
2154
		list_for_each_entry(v, &vc->runnable_threads, arch.run_list) {
2155 2156
			if (!v->arch.pending_exceptions)
				n_ceded += v->arch.ceded;
2157 2158 2159
			else
				v->arch.ceded = 0;
		}
2160 2161
		vc->runner = vcpu;
		if (n_ceded == vc->n_runnable) {
2162
			kvmppc_vcore_blocked(vc);
2163 2164 2165 2166 2167 2168
		} else if (should_resched()) {
			vc->vcore_state = VCORE_PREEMPT;
			/* Let something else run */
			cond_resched_lock(&vc->lock);
			vc->vcore_state = VCORE_INACTIVE;
		} else {
2169
			kvmppc_run_core(vc);
2170
		}
2171
		vc->runner = NULL;
2172
	}
2173

2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193
	while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
	       (vc->vcore_state == VCORE_RUNNING ||
		vc->vcore_state == VCORE_EXITING)) {
		spin_unlock(&vc->lock);
		kvmppc_wait_for_exec(vcpu, TASK_UNINTERRUPTIBLE);
		spin_lock(&vc->lock);
	}

	if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
		kvmppc_remove_runnable(vc, vcpu);
		vcpu->stat.signal_exits++;
		kvm_run->exit_reason = KVM_EXIT_INTR;
		vcpu->arch.ret = -EINTR;
	}

	if (vc->n_runnable && vc->vcore_state == VCORE_INACTIVE) {
		/* Wake up some vcpu to run the core */
		v = list_first_entry(&vc->runnable_threads,
				     struct kvm_vcpu, arch.run_list);
		wake_up(&v->arch.cpu_run);
2194 2195
	}

2196
	trace_kvmppc_run_vcpu_exit(vcpu, kvm_run);
2197 2198
	spin_unlock(&vc->lock);
	return vcpu->arch.ret;
2199 2200
}

2201
static int kvmppc_vcpu_run_hv(struct kvm_run *run, struct kvm_vcpu *vcpu)
2202 2203
{
	int r;
2204
	int srcu_idx;
2205

2206 2207 2208 2209 2210
	if (!vcpu->arch.sane) {
		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
		return -EINVAL;
	}

2211 2212
	kvmppc_core_prepare_to_enter(vcpu);

2213 2214 2215 2216 2217 2218
	/* No need to go into the guest when all we'll do is come back out */
	if (signal_pending(current)) {
		run->exit_reason = KVM_EXIT_INTR;
		return -EINTR;
	}

2219
	atomic_inc(&vcpu->kvm->arch.vcpus_running);
2220
	/* Order vcpus_running vs. hpte_setup_done, see kvmppc_alloc_reset_hpt */
2221 2222
	smp_mb();

2223
	/* On the first time here, set up HTAB and VRMA */
2224
	if (!vcpu->kvm->arch.hpte_setup_done) {
2225
		r = kvmppc_hv_setup_htab_rma(vcpu);
2226
		if (r)
2227
			goto out;
2228
	}
2229 2230 2231 2232 2233

	flush_fp_to_thread(current);
	flush_altivec_to_thread(current);
	flush_vsx_to_thread(current);
	vcpu->arch.wqp = &vcpu->arch.vcore->wq;
2234
	vcpu->arch.pgdir = current->mm->pgd;
2235
	vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
2236

2237 2238 2239 2240 2241
	do {
		r = kvmppc_run_vcpu(run, vcpu);

		if (run->exit_reason == KVM_EXIT_PAPR_HCALL &&
		    !(vcpu->arch.shregs.msr & MSR_PR)) {
2242
			trace_kvm_hcall_enter(vcpu);
2243
			r = kvmppc_pseries_do_hcall(vcpu);
2244
			trace_kvm_hcall_exit(vcpu, r);
2245
			kvmppc_core_prepare_to_enter(vcpu);
2246 2247 2248 2249 2250
		} else if (r == RESUME_PAGE_FAULT) {
			srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
			r = kvmppc_book3s_hv_page_fault(run, vcpu,
				vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
			srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
2251
		}
2252
	} while (is_kvmppc_resume_guest(r));
2253 2254

 out:
2255
	vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
2256
	atomic_dec(&vcpu->kvm->arch.vcpus_running);
2257 2258 2259
	return r;
}

2260 2261 2262 2263 2264 2265 2266 2267 2268 2269
static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps,
				     int linux_psize)
{
	struct mmu_psize_def *def = &mmu_psize_defs[linux_psize];

	if (!def->shift)
		return;
	(*sps)->page_shift = def->shift;
	(*sps)->slb_enc = def->sllp;
	(*sps)->enc[0].page_shift = def->shift;
2270
	(*sps)->enc[0].pte_enc = def->penc[linux_psize];
2271 2272 2273 2274 2275 2276 2277
	/*
	 * Add 16MB MPSS support if host supports it
	 */
	if (linux_psize != MMU_PAGE_16M && def->penc[MMU_PAGE_16M] != -1) {
		(*sps)->enc[1].page_shift = 24;
		(*sps)->enc[1].pte_enc = def->penc[MMU_PAGE_16M];
	}
2278 2279 2280
	(*sps)++;
}

2281 2282
static int kvm_vm_ioctl_get_smmu_info_hv(struct kvm *kvm,
					 struct kvm_ppc_smmu_info *info)
2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299
{
	struct kvm_ppc_one_seg_page_size *sps;

	info->flags = KVM_PPC_PAGE_SIZES_REAL;
	if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
		info->flags |= KVM_PPC_1T_SEGMENTS;
	info->slb_size = mmu_slb_size;

	/* We only support these sizes for now, and no muti-size segments */
	sps = &info->sps[0];
	kvmppc_add_seg_page_size(&sps, MMU_PAGE_4K);
	kvmppc_add_seg_page_size(&sps, MMU_PAGE_64K);
	kvmppc_add_seg_page_size(&sps, MMU_PAGE_16M);

	return 0;
}

2300 2301 2302
/*
 * Get (and clear) the dirty memory log for a memory slot.
 */
2303 2304
static int kvm_vm_ioctl_get_dirty_log_hv(struct kvm *kvm,
					 struct kvm_dirty_log *log)
2305 2306 2307 2308 2309 2310 2311 2312
{
	struct kvm_memory_slot *memslot;
	int r;
	unsigned long n;

	mutex_lock(&kvm->slots_lock);

	r = -EINVAL;
2313
	if (log->slot >= KVM_USER_MEM_SLOTS)
2314 2315 2316 2317 2318 2319 2320 2321 2322 2323
		goto out;

	memslot = id_to_memslot(kvm->memslots, log->slot);
	r = -ENOENT;
	if (!memslot->dirty_bitmap)
		goto out;

	n = kvm_dirty_bitmap_bytes(memslot);
	memset(memslot->dirty_bitmap, 0, n);

2324
	r = kvmppc_hv_get_dirty_log(kvm, memslot, memslot->dirty_bitmap);
2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337
	if (r)
		goto out;

	r = -EFAULT;
	if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
		goto out;

	r = 0;
out:
	mutex_unlock(&kvm->slots_lock);
	return r;
}

2338 2339
static void kvmppc_core_free_memslot_hv(struct kvm_memory_slot *free,
					struct kvm_memory_slot *dont)
2340 2341 2342 2343
{
	if (!dont || free->arch.rmap != dont->arch.rmap) {
		vfree(free->arch.rmap);
		free->arch.rmap = NULL;
2344
	}
2345 2346
}

2347 2348
static int kvmppc_core_create_memslot_hv(struct kvm_memory_slot *slot,
					 unsigned long npages)
2349 2350 2351 2352
{
	slot->arch.rmap = vzalloc(npages * sizeof(*slot->arch.rmap));
	if (!slot->arch.rmap)
		return -ENOMEM;
2353

2354 2355
	return 0;
}
2356

2357 2358 2359
static int kvmppc_core_prepare_memory_region_hv(struct kvm *kvm,
					struct kvm_memory_slot *memslot,
					struct kvm_userspace_memory_region *mem)
2360
{
2361
	return 0;
2362 2363
}

2364 2365 2366
static void kvmppc_core_commit_memory_region_hv(struct kvm *kvm,
				struct kvm_userspace_memory_region *mem,
				const struct kvm_memory_slot *old)
2367
{
2368 2369 2370
	unsigned long npages = mem->memory_size >> PAGE_SHIFT;
	struct kvm_memory_slot *memslot;

2371
	if (npages && old->npages) {
2372 2373 2374 2375 2376 2377 2378 2379 2380
		/*
		 * If modifying a memslot, reset all the rmap dirty bits.
		 * If this is a new memslot, we don't need to do anything
		 * since the rmap array starts out as all zeroes,
		 * i.e. no pages are dirty.
		 */
		memslot = id_to_memslot(kvm->memslots, mem->slot);
		kvmppc_hv_get_dirty_log(kvm, memslot, NULL);
	}
2381 2382
}

2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408
/*
 * Update LPCR values in kvm->arch and in vcores.
 * Caller must hold kvm->lock.
 */
void kvmppc_update_lpcr(struct kvm *kvm, unsigned long lpcr, unsigned long mask)
{
	long int i;
	u32 cores_done = 0;

	if ((kvm->arch.lpcr & mask) == lpcr)
		return;

	kvm->arch.lpcr = (kvm->arch.lpcr & ~mask) | lpcr;

	for (i = 0; i < KVM_MAX_VCORES; ++i) {
		struct kvmppc_vcore *vc = kvm->arch.vcores[i];
		if (!vc)
			continue;
		spin_lock(&vc->lock);
		vc->lpcr = (vc->lpcr & ~mask) | lpcr;
		spin_unlock(&vc->lock);
		if (++cores_done >= kvm->arch.online_vcores)
			break;
	}
}

2409 2410 2411 2412 2413
static void kvmppc_mmu_destroy_hv(struct kvm_vcpu *vcpu)
{
	return;
}

2414
static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu)
2415 2416 2417 2418 2419 2420
{
	int err = 0;
	struct kvm *kvm = vcpu->kvm;
	unsigned long hva;
	struct kvm_memory_slot *memslot;
	struct vm_area_struct *vma;
2421
	unsigned long lpcr = 0, senc;
2422
	unsigned long psize, porder;
2423
	int srcu_idx;
2424 2425

	mutex_lock(&kvm->lock);
2426
	if (kvm->arch.hpte_setup_done)
2427
		goto out;	/* another vcpu beat us to it */
2428

2429 2430 2431 2432 2433 2434 2435 2436 2437
	/* Allocate hashed page table (if not done already) and reset it */
	if (!kvm->arch.hpt_virt) {
		err = kvmppc_alloc_hpt(kvm, NULL);
		if (err) {
			pr_err("KVM: Couldn't alloc HPT\n");
			goto out;
		}
	}

2438
	/* Look up the memslot for guest physical address 0 */
2439
	srcu_idx = srcu_read_lock(&kvm->srcu);
2440
	memslot = gfn_to_memslot(kvm, 0);
2441

2442 2443 2444
	/* We must have some memory at 0 by now */
	err = -EINVAL;
	if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
2445
		goto out_srcu;
2446 2447 2448 2449 2450 2451 2452 2453 2454

	/* Look up the VMA for the start of this memory slot */
	hva = memslot->userspace_addr;
	down_read(&current->mm->mmap_sem);
	vma = find_vma(current->mm, hva);
	if (!vma || vma->vm_start > hva || (vma->vm_flags & VM_IO))
		goto up_out;

	psize = vma_kernel_pagesize(vma);
2455
	porder = __ilog2(psize);
2456 2457 2458

	up_read(&current->mm->mmap_sem);

2459 2460 2461 2462 2463
	/* We can handle 4k, 64k or 16M pages in the VRMA */
	err = -EINVAL;
	if (!(psize == 0x1000 || psize == 0x10000 ||
	      psize == 0x1000000))
		goto out_srcu;
2464

2465 2466 2467 2468 2469 2470
	/* Update VRMASD field in the LPCR */
	senc = slb_pgsize_encoding(psize);
	kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
		(VRMA_VSID << SLB_VSID_SHIFT_1T);
	/* the -4 is to account for senc values starting at 0x10 */
	lpcr = senc << (LPCR_VRMASD_SH - 4);
2471

2472 2473
	/* Create HPTEs in the hash page table for the VRMA */
	kvmppc_map_vrma(vcpu, memslot, porder);
2474

2475
	kvmppc_update_lpcr(kvm, lpcr, LPCR_VRMASD);
2476

2477
	/* Order updates to kvm->arch.lpcr etc. vs. hpte_setup_done */
2478
	smp_wmb();
2479
	kvm->arch.hpte_setup_done = 1;
2480
	err = 0;
2481 2482
 out_srcu:
	srcu_read_unlock(&kvm->srcu, srcu_idx);
2483 2484 2485
 out:
	mutex_unlock(&kvm->lock);
	return err;
2486

2487 2488
 up_out:
	up_read(&current->mm->mmap_sem);
2489
	goto out_srcu;
2490 2491
}

2492
static int kvmppc_core_init_vm_hv(struct kvm *kvm)
2493
{
2494
	unsigned long lpcr, lpid;
2495
	char buf[32];
2496

2497 2498 2499
	/* Allocate the guest's logical partition ID */

	lpid = kvmppc_alloc_lpid();
2500
	if ((long)lpid < 0)
2501 2502
		return -ENOMEM;
	kvm->arch.lpid = lpid;
2503

2504 2505 2506 2507 2508 2509 2510
	/*
	 * Since we don't flush the TLB when tearing down a VM,
	 * and this lpid might have previously been used,
	 * make sure we flush on each core before running the new VM.
	 */
	cpumask_setall(&kvm->arch.need_tlb_flush);

2511 2512 2513 2514
	/* Start out with the default set of hcalls enabled */
	memcpy(kvm->arch.enabled_hcalls, default_enabled_hcalls,
	       sizeof(kvm->arch.enabled_hcalls));

2515
	kvm->arch.host_sdr1 = mfspr(SPRN_SDR1);
2516

2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527
	/* Init LPCR for virtual RMA mode */
	kvm->arch.host_lpid = mfspr(SPRN_LPID);
	kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR);
	lpcr &= LPCR_PECE | LPCR_LPES;
	lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE |
		LPCR_VPM0 | LPCR_VPM1;
	kvm->arch.vrma_slb_v = SLB_VSID_B_1T |
		(VRMA_VSID << SLB_VSID_SHIFT_1T);
	/* On POWER8 turn on online bit to enable PURR/SPURR */
	if (cpu_has_feature(CPU_FTR_ARCH_207S))
		lpcr |= LPCR_ONL;
2528
	kvm->arch.lpcr = lpcr;
2529

2530
	/*
2531 2532
	 * Track that we now have a HV mode VM active. This blocks secondary
	 * CPU threads from coming online.
2533
	 */
2534
	kvm_hv_vm_activated();
2535

2536 2537 2538 2539 2540 2541 2542 2543
	/*
	 * Create a debugfs directory for the VM
	 */
	snprintf(buf, sizeof(buf), "vm%d", current->pid);
	kvm->arch.debugfs_dir = debugfs_create_dir(buf, kvm_debugfs_dir);
	if (!IS_ERR_OR_NULL(kvm->arch.debugfs_dir))
		kvmppc_mmu_debugfs_init(kvm);

2544
	return 0;
2545 2546
}

2547 2548 2549 2550
static void kvmppc_free_vcores(struct kvm *kvm)
{
	long int i;

2551 2552 2553 2554 2555 2556
	for (i = 0; i < KVM_MAX_VCORES; ++i) {
		if (kvm->arch.vcores[i] && kvm->arch.vcores[i]->mpp_buffer) {
			struct kvmppc_vcore *vc = kvm->arch.vcores[i];
			free_pages((unsigned long)vc->mpp_buffer,
				   MPP_BUFFER_ORDER);
		}
2557
		kfree(kvm->arch.vcores[i]);
2558
	}
2559 2560 2561
	kvm->arch.online_vcores = 0;
}

2562
static void kvmppc_core_destroy_vm_hv(struct kvm *kvm)
2563
{
2564 2565
	debugfs_remove_recursive(kvm->arch.debugfs_dir);

2566
	kvm_hv_vm_deactivated();
2567

2568
	kvmppc_free_vcores(kvm);
2569

2570 2571 2572
	kvmppc_free_hpt(kvm);
}

2573 2574 2575
/* We don't need to emulate any privileged instructions or dcbz */
static int kvmppc_core_emulate_op_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
				     unsigned int inst, int *advance)
2576
{
2577
	return EMULATE_FAIL;
2578 2579
}

2580 2581
static int kvmppc_core_emulate_mtspr_hv(struct kvm_vcpu *vcpu, int sprn,
					ulong spr_val)
2582 2583 2584 2585
{
	return EMULATE_FAIL;
}

2586 2587
static int kvmppc_core_emulate_mfspr_hv(struct kvm_vcpu *vcpu, int sprn,
					ulong *spr_val)
2588 2589 2590 2591
{
	return EMULATE_FAIL;
}

2592
static int kvmppc_core_check_processor_compat_hv(void)
2593
{
2594 2595
	if (!cpu_has_feature(CPU_FTR_HVMODE) ||
	    !cpu_has_feature(CPU_FTR_ARCH_206))
2596 2597
		return -EIO;
	return 0;
2598 2599
}

2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641
static long kvm_arch_vm_ioctl_hv(struct file *filp,
				 unsigned int ioctl, unsigned long arg)
{
	struct kvm *kvm __maybe_unused = filp->private_data;
	void __user *argp = (void __user *)arg;
	long r;

	switch (ioctl) {

	case KVM_PPC_ALLOCATE_HTAB: {
		u32 htab_order;

		r = -EFAULT;
		if (get_user(htab_order, (u32 __user *)argp))
			break;
		r = kvmppc_alloc_reset_hpt(kvm, &htab_order);
		if (r)
			break;
		r = -EFAULT;
		if (put_user(htab_order, (u32 __user *)argp))
			break;
		r = 0;
		break;
	}

	case KVM_PPC_GET_HTAB_FD: {
		struct kvm_get_htab_fd ghf;

		r = -EFAULT;
		if (copy_from_user(&ghf, argp, sizeof(ghf)))
			break;
		r = kvm_vm_ioctl_get_htab_fd(kvm, &ghf);
		break;
	}

	default:
		r = -ENOTTY;
	}

	return r;
}

2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675
/*
 * List of hcall numbers to enable by default.
 * For compatibility with old userspace, we enable by default
 * all hcalls that were implemented before the hcall-enabling
 * facility was added.  Note this list should not include H_RTAS.
 */
static unsigned int default_hcall_list[] = {
	H_REMOVE,
	H_ENTER,
	H_READ,
	H_PROTECT,
	H_BULK_REMOVE,
	H_GET_TCE,
	H_PUT_TCE,
	H_SET_DABR,
	H_SET_XDABR,
	H_CEDE,
	H_PROD,
	H_CONFER,
	H_REGISTER_VPA,
#ifdef CONFIG_KVM_XICS
	H_EOI,
	H_CPPR,
	H_IPI,
	H_IPOLL,
	H_XIRR,
	H_XIRR_X,
#endif
	0
};

static void init_default_hcalls(void)
{
	int i;
2676
	unsigned int hcall;
2677

2678 2679 2680 2681 2682
	for (i = 0; default_hcall_list[i]; ++i) {
		hcall = default_hcall_list[i];
		WARN_ON(!kvmppc_hcall_impl_hv(hcall));
		__set_bit(hcall / 4, default_enabled_hcalls);
	}
2683 2684
}

2685
static struct kvmppc_ops kvm_ops_hv = {
2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716
	.get_sregs = kvm_arch_vcpu_ioctl_get_sregs_hv,
	.set_sregs = kvm_arch_vcpu_ioctl_set_sregs_hv,
	.get_one_reg = kvmppc_get_one_reg_hv,
	.set_one_reg = kvmppc_set_one_reg_hv,
	.vcpu_load   = kvmppc_core_vcpu_load_hv,
	.vcpu_put    = kvmppc_core_vcpu_put_hv,
	.set_msr     = kvmppc_set_msr_hv,
	.vcpu_run    = kvmppc_vcpu_run_hv,
	.vcpu_create = kvmppc_core_vcpu_create_hv,
	.vcpu_free   = kvmppc_core_vcpu_free_hv,
	.check_requests = kvmppc_core_check_requests_hv,
	.get_dirty_log  = kvm_vm_ioctl_get_dirty_log_hv,
	.flush_memslot  = kvmppc_core_flush_memslot_hv,
	.prepare_memory_region = kvmppc_core_prepare_memory_region_hv,
	.commit_memory_region  = kvmppc_core_commit_memory_region_hv,
	.unmap_hva = kvm_unmap_hva_hv,
	.unmap_hva_range = kvm_unmap_hva_range_hv,
	.age_hva  = kvm_age_hva_hv,
	.test_age_hva = kvm_test_age_hva_hv,
	.set_spte_hva = kvm_set_spte_hva_hv,
	.mmu_destroy  = kvmppc_mmu_destroy_hv,
	.free_memslot = kvmppc_core_free_memslot_hv,
	.create_memslot = kvmppc_core_create_memslot_hv,
	.init_vm =  kvmppc_core_init_vm_hv,
	.destroy_vm = kvmppc_core_destroy_vm_hv,
	.get_smmu_info = kvm_vm_ioctl_get_smmu_info_hv,
	.emulate_op = kvmppc_core_emulate_op_hv,
	.emulate_mtspr = kvmppc_core_emulate_mtspr_hv,
	.emulate_mfspr = kvmppc_core_emulate_mfspr_hv,
	.fast_vcpu_kick = kvmppc_fast_vcpu_kick_hv,
	.arch_vm_ioctl  = kvm_arch_vm_ioctl_hv,
2717
	.hcall_implemented = kvmppc_hcall_impl_hv,
2718 2719 2720
};

static int kvmppc_book3s_init_hv(void)
2721 2722
{
	int r;
2723 2724 2725 2726 2727
	/*
	 * FIXME!! Do we need to check on all cpus ?
	 */
	r = kvmppc_core_check_processor_compat_hv();
	if (r < 0)
2728
		return -ENODEV;
2729

2730 2731
	kvm_ops_hv.owner = THIS_MODULE;
	kvmppc_hv_ops = &kvm_ops_hv;
2732

2733 2734
	init_default_hcalls();

2735
	r = kvmppc_mmu_hv_init();
2736 2737 2738
	return r;
}

2739
static void kvmppc_book3s_exit_hv(void)
2740
{
2741
	kvmppc_hv_ops = NULL;
2742 2743
}

2744 2745
module_init(kvmppc_book3s_init_hv);
module_exit(kvmppc_book3s_exit_hv);
2746
MODULE_LICENSE("GPL");
2747 2748
MODULE_ALIAS_MISCDEV(KVM_MINOR);
MODULE_ALIAS("devname:kvm");