book3s_hv.c 31.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
/*
 * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
 * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
 *
 * Authors:
 *    Paul Mackerras <paulus@au1.ibm.com>
 *    Alexander Graf <agraf@suse.de>
 *    Kevin Wolf <mail@kevin-wolf.de>
 *
 * Description: KVM functions specific to running on Book 3S
 * processors in hypervisor mode (specifically POWER7 and later).
 *
 * This file is derived from arch/powerpc/kvm/book3s.c,
 * by Alexander Graf <agraf@suse.de>.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License, version 2, as
 * published by the Free Software Foundation.
 */

#include <linux/kvm_host.h>
#include <linux/err.h>
#include <linux/slab.h>
#include <linux/preempt.h>
#include <linux/sched.h>
#include <linux/delay.h>
27
#include <linux/export.h>
28 29 30
#include <linux/fs.h>
#include <linux/anon_inodes.h>
#include <linux/cpumask.h>
31 32
#include <linux/spinlock.h>
#include <linux/page-flags.h>
33 34 35 36 37 38 39 40 41 42 43 44

#include <asm/reg.h>
#include <asm/cputable.h>
#include <asm/cacheflush.h>
#include <asm/tlbflush.h>
#include <asm/uaccess.h>
#include <asm/io.h>
#include <asm/kvm_ppc.h>
#include <asm/kvm_book3s.h>
#include <asm/mmu_context.h>
#include <asm/lppaca.h>
#include <asm/processor.h>
45
#include <asm/cputhreads.h>
46
#include <asm/page.h>
47
#include <asm/hvcall.h>
48 49 50 51
#include <linux/gfp.h>
#include <linux/vmalloc.h>
#include <linux/highmem.h>

52 53 54 55 56 57 58 59 60 61
/*
 * For now, limit memory to 64GB and require it to be large pages.
 * This value is chosen because it makes the ram_pginfo array be
 * 64kB in size, which is about as large as we want to be trying
 * to allocate with kmalloc.
 */
#define MAX_MEM_ORDER		36

#define LARGE_PAGE_ORDER	24	/* 16MB pages */

62 63 64 65
/* #define EXIT_DEBUG */
/* #define EXIT_DEBUG_SIMPLE */
/* #define EXIT_DEBUG_INT */

66 67
static void kvmppc_end_cede(struct kvm_vcpu *vcpu);

68 69 70
void kvmppc_core_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
{
	local_paca->kvm_hstate.kvm_vcpu = vcpu;
71
	local_paca->kvm_hstate.kvm_vcore = vcpu->arch.vcore;
72 73 74 75 76 77 78 79 80
}

void kvmppc_core_vcpu_put(struct kvm_vcpu *vcpu)
{
}

void kvmppc_set_msr(struct kvm_vcpu *vcpu, u64 msr)
{
	vcpu->arch.shregs.msr = msr;
81
	kvmppc_end_cede(vcpu);
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
}

void kvmppc_set_pvr(struct kvm_vcpu *vcpu, u32 pvr)
{
	vcpu->arch.pvr = pvr;
}

void kvmppc_dump_regs(struct kvm_vcpu *vcpu)
{
	int r;

	pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id);
	pr_err("pc  = %.16lx  msr = %.16llx  trap = %x\n",
	       vcpu->arch.pc, vcpu->arch.shregs.msr, vcpu->arch.trap);
	for (r = 0; r < 16; ++r)
		pr_err("r%2d = %.16lx  r%d = %.16lx\n",
		       r, kvmppc_get_gpr(vcpu, r),
		       r+16, kvmppc_get_gpr(vcpu, r+16));
	pr_err("ctr = %.16lx  lr  = %.16lx\n",
	       vcpu->arch.ctr, vcpu->arch.lr);
	pr_err("srr0 = %.16llx srr1 = %.16llx\n",
	       vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1);
	pr_err("sprg0 = %.16llx sprg1 = %.16llx\n",
	       vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1);
	pr_err("sprg2 = %.16llx sprg3 = %.16llx\n",
	       vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3);
	pr_err("cr = %.8x  xer = %.16lx  dsisr = %.8x\n",
	       vcpu->arch.cr, vcpu->arch.xer, vcpu->arch.shregs.dsisr);
	pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar);
	pr_err("fault dar = %.16lx dsisr = %.8x\n",
	       vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
	pr_err("SLB (%d entries):\n", vcpu->arch.slb_max);
	for (r = 0; r < vcpu->arch.slb_max; ++r)
		pr_err("  ESID = %.16llx VSID = %.16llx\n",
		       vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv);
	pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n",
118
	       vcpu->kvm->arch.lpcr, vcpu->kvm->arch.sdr1,
119 120 121
	       vcpu->arch.last_inst);
}

122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id)
{
	int r;
	struct kvm_vcpu *v, *ret = NULL;

	mutex_lock(&kvm->lock);
	kvm_for_each_vcpu(r, v, kvm) {
		if (v->vcpu_id == id) {
			ret = v;
			break;
		}
	}
	mutex_unlock(&kvm->lock);
	return ret;
}

static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa)
{
	vpa->shared_proc = 1;
	vpa->yield_count = 1;
}

static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu,
				       unsigned long flags,
				       unsigned long vcpuid, unsigned long vpa)
{
	struct kvm *kvm = vcpu->kvm;
	unsigned long pg_index, ra, len;
	unsigned long pg_offset;
	void *va;
	struct kvm_vcpu *tvcpu;

	tvcpu = kvmppc_find_vcpu(kvm, vcpuid);
	if (!tvcpu)
		return H_PARAMETER;

	flags >>= 63 - 18;
	flags &= 7;
	if (flags == 0 || flags == 4)
		return H_PARAMETER;
	if (flags < 4) {
		if (vpa & 0x7f)
			return H_PARAMETER;
		/* registering new area; convert logical addr to real */
		pg_index = vpa >> kvm->arch.ram_porder;
		pg_offset = vpa & (kvm->arch.ram_psize - 1);
		if (pg_index >= kvm->arch.ram_npages)
			return H_PARAMETER;
		if (kvm->arch.ram_pginfo[pg_index].pfn == 0)
			return H_PARAMETER;
		ra = kvm->arch.ram_pginfo[pg_index].pfn << PAGE_SHIFT;
		ra |= pg_offset;
		va = __va(ra);
		if (flags <= 1)
			len = *(unsigned short *)(va + 4);
		else
			len = *(unsigned int *)(va + 4);
		if (pg_offset + len > kvm->arch.ram_psize)
			return H_PARAMETER;
		switch (flags) {
		case 1:		/* register VPA */
			if (len < 640)
				return H_PARAMETER;
			tvcpu->arch.vpa = va;
			init_vpa(vcpu, va);
			break;
		case 2:		/* register DTL */
			if (len < 48)
				return H_PARAMETER;
			if (!tvcpu->arch.vpa)
				return H_RESOURCE;
			len -= len % 48;
			tvcpu->arch.dtl = va;
			tvcpu->arch.dtl_end = va + len;
			break;
		case 3:		/* register SLB shadow buffer */
			if (len < 8)
				return H_PARAMETER;
			if (!tvcpu->arch.vpa)
				return H_RESOURCE;
			tvcpu->arch.slb_shadow = va;
			len = (len - 16) / 16;
			tvcpu->arch.slb_shadow = va;
			break;
		}
	} else {
		switch (flags) {
		case 5:		/* unregister VPA */
			if (tvcpu->arch.slb_shadow || tvcpu->arch.dtl)
				return H_RESOURCE;
			tvcpu->arch.vpa = NULL;
			break;
		case 6:		/* unregister DTL */
			tvcpu->arch.dtl = NULL;
			break;
		case 7:		/* unregister SLB shadow buffer */
			tvcpu->arch.slb_shadow = NULL;
			break;
		}
	}
	return H_SUCCESS;
}

int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu)
{
	unsigned long req = kvmppc_get_gpr(vcpu, 3);
	unsigned long target, ret = H_SUCCESS;
	struct kvm_vcpu *tvcpu;

	switch (req) {
	case H_CEDE:
		break;
	case H_PROD:
		target = kvmppc_get_gpr(vcpu, 4);
		tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
		if (!tvcpu) {
			ret = H_PARAMETER;
			break;
		}
		tvcpu->arch.prodded = 1;
		smp_mb();
		if (vcpu->arch.ceded) {
			if (waitqueue_active(&vcpu->wq)) {
				wake_up_interruptible(&vcpu->wq);
				vcpu->stat.halt_wakeup++;
			}
		}
		break;
	case H_CONFER:
		break;
	case H_REGISTER_VPA:
		ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4),
					kvmppc_get_gpr(vcpu, 5),
					kvmppc_get_gpr(vcpu, 6));
		break;
	default:
		return RESUME_HOST;
	}
	kvmppc_set_gpr(vcpu, 3, ret);
	vcpu->arch.hcall_needed = 0;
	return RESUME_GUEST;
}

265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395
static int kvmppc_handle_exit(struct kvm_run *run, struct kvm_vcpu *vcpu,
			      struct task_struct *tsk)
{
	int r = RESUME_HOST;

	vcpu->stat.sum_exits++;

	run->exit_reason = KVM_EXIT_UNKNOWN;
	run->ready_for_interrupt_injection = 1;
	switch (vcpu->arch.trap) {
	/* We're good on these - the host merely wanted to get our attention */
	case BOOK3S_INTERRUPT_HV_DECREMENTER:
		vcpu->stat.dec_exits++;
		r = RESUME_GUEST;
		break;
	case BOOK3S_INTERRUPT_EXTERNAL:
		vcpu->stat.ext_intr_exits++;
		r = RESUME_GUEST;
		break;
	case BOOK3S_INTERRUPT_PERFMON:
		r = RESUME_GUEST;
		break;
	case BOOK3S_INTERRUPT_PROGRAM:
	{
		ulong flags;
		/*
		 * Normally program interrupts are delivered directly
		 * to the guest by the hardware, but we can get here
		 * as a result of a hypervisor emulation interrupt
		 * (e40) getting turned into a 700 by BML RTAS.
		 */
		flags = vcpu->arch.shregs.msr & 0x1f0000ull;
		kvmppc_core_queue_program(vcpu, flags);
		r = RESUME_GUEST;
		break;
	}
	case BOOK3S_INTERRUPT_SYSCALL:
	{
		/* hcall - punt to userspace */
		int i;

		if (vcpu->arch.shregs.msr & MSR_PR) {
			/* sc 1 from userspace - reflect to guest syscall */
			kvmppc_book3s_queue_irqprio(vcpu, BOOK3S_INTERRUPT_SYSCALL);
			r = RESUME_GUEST;
			break;
		}
		run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3);
		for (i = 0; i < 9; ++i)
			run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i);
		run->exit_reason = KVM_EXIT_PAPR_HCALL;
		vcpu->arch.hcall_needed = 1;
		r = RESUME_HOST;
		break;
	}
	/*
	 * We get these next two if the guest does a bad real-mode access,
	 * as we have enabled VRMA (virtualized real mode area) mode in the
	 * LPCR.  We just generate an appropriate DSI/ISI to the guest.
	 */
	case BOOK3S_INTERRUPT_H_DATA_STORAGE:
		vcpu->arch.shregs.dsisr = vcpu->arch.fault_dsisr;
		vcpu->arch.shregs.dar = vcpu->arch.fault_dar;
		kvmppc_inject_interrupt(vcpu, BOOK3S_INTERRUPT_DATA_STORAGE, 0);
		r = RESUME_GUEST;
		break;
	case BOOK3S_INTERRUPT_H_INST_STORAGE:
		kvmppc_inject_interrupt(vcpu, BOOK3S_INTERRUPT_INST_STORAGE,
					0x08000000);
		r = RESUME_GUEST;
		break;
	/*
	 * This occurs if the guest executes an illegal instruction.
	 * We just generate a program interrupt to the guest, since
	 * we don't emulate any guest instructions at this stage.
	 */
	case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
		kvmppc_core_queue_program(vcpu, 0x80000);
		r = RESUME_GUEST;
		break;
	default:
		kvmppc_dump_regs(vcpu);
		printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
			vcpu->arch.trap, kvmppc_get_pc(vcpu),
			vcpu->arch.shregs.msr);
		r = RESUME_HOST;
		BUG();
		break;
	}

	return r;
}

int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
                                  struct kvm_sregs *sregs)
{
	int i;

	sregs->pvr = vcpu->arch.pvr;

	memset(sregs, 0, sizeof(struct kvm_sregs));
	for (i = 0; i < vcpu->arch.slb_max; i++) {
		sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige;
		sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
	}

	return 0;
}

int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
                                  struct kvm_sregs *sregs)
{
	int i, j;

	kvmppc_set_pvr(vcpu, sregs->pvr);

	j = 0;
	for (i = 0; i < vcpu->arch.slb_nr; i++) {
		if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) {
			vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe;
			vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv;
			++j;
		}
	}
	vcpu->arch.slb_max = j;

	return 0;
}

int kvmppc_core_check_processor_compat(void)
{
396
	if (cpu_has_feature(CPU_FTR_HVMODE))
397 398 399 400 401 402 403
		return 0;
	return -EIO;
}

struct kvm_vcpu *kvmppc_core_vcpu_create(struct kvm *kvm, unsigned int id)
{
	struct kvm_vcpu *vcpu;
404 405 406
	int err = -EINVAL;
	int core;
	struct kvmppc_vcore *vcore;
407

408 409 410 411 412
	core = id / threads_per_core;
	if (core >= KVM_MAX_VCORES)
		goto out;

	err = -ENOMEM;
413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430
	vcpu = kzalloc(sizeof(struct kvm_vcpu), GFP_KERNEL);
	if (!vcpu)
		goto out;

	err = kvm_vcpu_init(vcpu, kvm, id);
	if (err)
		goto free_vcpu;

	vcpu->arch.shared = &vcpu->arch.shregs;
	vcpu->arch.last_cpu = -1;
	vcpu->arch.mmcr[0] = MMCR0_FC;
	vcpu->arch.ctrl = CTRL_RUNLATCH;
	/* default to host PVR, since we can't spoof it */
	vcpu->arch.pvr = mfspr(SPRN_PVR);
	kvmppc_set_pvr(vcpu, vcpu->arch.pvr);

	kvmppc_mmu_book3s_hv_init(vcpu);

431
	/*
432
	 * We consider the vcpu stopped until we see the first run ioctl for it.
433
	 */
434
	vcpu->arch.state = KVMPPC_VCPU_STOPPED;
435 436 437 438 439 440 441 442 443 444

	init_waitqueue_head(&vcpu->arch.cpu_run);

	mutex_lock(&kvm->lock);
	vcore = kvm->arch.vcores[core];
	if (!vcore) {
		vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL);
		if (vcore) {
			INIT_LIST_HEAD(&vcore->runnable_threads);
			spin_lock_init(&vcore->lock);
445
			init_waitqueue_head(&vcore->wq);
446 447 448 449 450 451 452 453 454 455 456 457 458
		}
		kvm->arch.vcores[core] = vcore;
	}
	mutex_unlock(&kvm->lock);

	if (!vcore)
		goto free_vcpu;

	spin_lock(&vcore->lock);
	++vcore->num_threads;
	spin_unlock(&vcore->lock);
	vcpu->arch.vcore = vcore;

459 460 461
	vcpu->arch.cpu_type = KVM_CPU_3S_64;
	kvmppc_sanity_check(vcpu);

462 463 464 465 466 467 468 469 470 471 472 473 474 475
	return vcpu;

free_vcpu:
	kfree(vcpu);
out:
	return ERR_PTR(err);
}

void kvmppc_core_vcpu_free(struct kvm_vcpu *vcpu)
{
	kvm_vcpu_uninit(vcpu);
	kfree(vcpu);
}

476
static void kvmppc_set_timer(struct kvm_vcpu *vcpu)
477
{
478
	unsigned long dec_nsec, now;
479

480 481 482 483 484 485
	now = get_tb();
	if (now > vcpu->arch.dec_expires) {
		/* decrementer has already gone negative */
		kvmppc_core_queue_dec(vcpu);
		kvmppc_core_deliver_interrupts(vcpu);
		return;
486
	}
487 488 489 490 491
	dec_nsec = (vcpu->arch.dec_expires - now) * NSEC_PER_SEC
		   / tb_ticks_per_sec;
	hrtimer_start(&vcpu->arch.dec_timer, ktime_set(0, dec_nsec),
		      HRTIMER_MODE_REL);
	vcpu->arch.timer_running = 1;
492 493
}

494
static void kvmppc_end_cede(struct kvm_vcpu *vcpu)
495
{
496 497 498 499 500
	vcpu->arch.ceded = 0;
	if (vcpu->arch.timer_running) {
		hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
		vcpu->arch.timer_running = 0;
	}
501 502
}

503
extern int __kvmppc_vcore_entry(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu);
504
extern void xics_wake_cpu(int cpu);
505

506 507
static void kvmppc_remove_runnable(struct kvmppc_vcore *vc,
				   struct kvm_vcpu *vcpu)
508
{
509
	struct kvm_vcpu *v;
510

511 512 513 514
	if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
		return;
	vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
	--vc->n_runnable;
515
	++vc->n_busy;
516 517 518 519 520 521 522 523 524 525 526 527 528
	/* decrement the physical thread id of each following vcpu */
	v = vcpu;
	list_for_each_entry_continue(v, &vc->runnable_threads, arch.run_list)
		--v->arch.ptid;
	list_del(&vcpu->arch.run_list);
}

static void kvmppc_start_thread(struct kvm_vcpu *vcpu)
{
	int cpu;
	struct paca_struct *tpaca;
	struct kvmppc_vcore *vc = vcpu->arch.vcore;

529 530 531 532
	if (vcpu->arch.timer_running) {
		hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
		vcpu->arch.timer_running = 0;
	}
533 534 535 536
	cpu = vc->pcpu + vcpu->arch.ptid;
	tpaca = &paca[cpu];
	tpaca->kvm_hstate.kvm_vcpu = vcpu;
	tpaca->kvm_hstate.kvm_vcore = vc;
537 538
	tpaca->kvm_hstate.napping = 0;
	vcpu->cpu = vc->pcpu;
539
	smp_wmb();
540
#if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP)
541 542 543 544 545
	if (vcpu->arch.ptid) {
		tpaca->cpu_start = 0x80;
		wmb();
		xics_wake_cpu(cpu);
		++vc->n_woken;
546
	}
547 548
#endif
}
549

550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589
static void kvmppc_wait_for_nap(struct kvmppc_vcore *vc)
{
	int i;

	HMT_low();
	i = 0;
	while (vc->nap_count < vc->n_woken) {
		if (++i >= 1000000) {
			pr_err("kvmppc_wait_for_nap timeout %d %d\n",
			       vc->nap_count, vc->n_woken);
			break;
		}
		cpu_relax();
	}
	HMT_medium();
}

/*
 * Check that we are on thread 0 and that any other threads in
 * this core are off-line.
 */
static int on_primary_thread(void)
{
	int cpu = smp_processor_id();
	int thr = cpu_thread_in_core(cpu);

	if (thr)
		return 0;
	while (++thr < threads_per_core)
		if (cpu_online(cpu + thr))
			return 0;
	return 1;
}

/*
 * Run a set of guest threads on a physical core.
 * Called with vc->lock held.
 */
static int kvmppc_run_core(struct kvmppc_vcore *vc)
{
590
	struct kvm_vcpu *vcpu, *vcpu0, *vnext;
591 592
	long ret;
	u64 now;
593
	int ptid;
594 595 596 597 598

	/* don't start if any threads have a signal pending */
	list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
		if (signal_pending(vcpu->arch.run_task))
			return 0;
599 600 601 602 603 604 605

	/*
	 * Make sure we are running on thread 0, and that
	 * secondary threads are offline.
	 * XXX we should also block attempts to bring any
	 * secondary threads online.
	 */
606 607 608 609
	if (threads_per_core > 1 && !on_primary_thread()) {
		list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
			vcpu->arch.ret = -EBUSY;
		goto out;
610 611
	}

612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630
	/*
	 * Assign physical thread IDs, first to non-ceded vcpus
	 * and then to ceded ones.
	 */
	ptid = 0;
	vcpu0 = NULL;
	list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
		if (!vcpu->arch.ceded) {
			if (!ptid)
				vcpu0 = vcpu;
			vcpu->arch.ptid = ptid++;
		}
	}
	if (!vcpu0)
		return 0;		/* nothing to run */
	list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
		if (vcpu->arch.ceded)
			vcpu->arch.ptid = ptid++;

631 632 633
	vc->n_woken = 0;
	vc->nap_count = 0;
	vc->entry_exit_count = 0;
634
	vc->vcore_state = VCORE_RUNNING;
635 636
	vc->in_guest = 0;
	vc->pcpu = smp_processor_id();
637
	vc->napping_threads = 0;
638 639 640
	list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
		kvmppc_start_thread(vcpu);

641
	preempt_disable();
642
	spin_unlock(&vc->lock);
643

644
	kvm_guest_enter();
645
	__kvmppc_vcore_entry(NULL, vcpu0);
646

647
	spin_lock(&vc->lock);
648 649 650 651
	/* disable sending of IPIs on virtual external irqs */
	list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
		vcpu->cpu = -1;
	/* wait for secondary threads to finish writing their state to memory */
652 653 654
	if (vc->nap_count < vc->n_woken)
		kvmppc_wait_for_nap(vc);
	/* prevent other vcpu threads from doing kvmppc_start_thread() now */
655
	vc->vcore_state = VCORE_EXITING;
656 657 658 659
	spin_unlock(&vc->lock);

	/* make sure updates to secondary vcpu structs are visible now */
	smp_mb();
660 661 662 663 664 665
	kvm_guest_exit();

	preempt_enable();
	kvm_resched(vcpu);

	now = get_tb();
666 667 668 669 670
	list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
		/* cancel pending dec exception if dec is positive */
		if (now < vcpu->arch.dec_expires &&
		    kvmppc_core_pending_dec(vcpu))
			kvmppc_core_dequeue_dec(vcpu);
671 672 673 674 675 676

		ret = RESUME_GUEST;
		if (vcpu->arch.trap)
			ret = kvmppc_handle_exit(vcpu->arch.kvm_run, vcpu,
						 vcpu->arch.run_task);

677 678
		vcpu->arch.ret = ret;
		vcpu->arch.trap = 0;
679 680 681 682 683 684 685

		if (vcpu->arch.ceded) {
			if (ret != RESUME_GUEST)
				kvmppc_end_cede(vcpu);
			else
				kvmppc_set_timer(vcpu);
		}
686
	}
687

688
	spin_lock(&vc->lock);
689
 out:
690
	vc->vcore_state = VCORE_INACTIVE;
691 692 693 694 695 696 697 698 699 700 701
	list_for_each_entry_safe(vcpu, vnext, &vc->runnable_threads,
				 arch.run_list) {
		if (vcpu->arch.ret != RESUME_GUEST) {
			kvmppc_remove_runnable(vc, vcpu);
			wake_up(&vcpu->arch.cpu_run);
		}
	}

	return 1;
}

702 703 704 705 706
/*
 * Wait for some other vcpu thread to execute us, and
 * wake us up when we need to handle something in the host.
 */
static void kvmppc_wait_for_exec(struct kvm_vcpu *vcpu, int wait_state)
707 708 709
{
	DEFINE_WAIT(wait);

710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733
	prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state);
	if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE)
		schedule();
	finish_wait(&vcpu->arch.cpu_run, &wait);
}

/*
 * All the vcpus in this vcore are idle, so wait for a decrementer
 * or external interrupt to one of the vcpus.  vc->lock is held.
 */
static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc)
{
	DEFINE_WAIT(wait);
	struct kvm_vcpu *v;
	int all_idle = 1;

	prepare_to_wait(&vc->wq, &wait, TASK_INTERRUPTIBLE);
	vc->vcore_state = VCORE_SLEEPING;
	spin_unlock(&vc->lock);
	list_for_each_entry(v, &vc->runnable_threads, arch.run_list) {
		if (!v->arch.ceded || v->arch.pending_exceptions) {
			all_idle = 0;
			break;
		}
734
	}
735 736 737 738 739 740
	if (all_idle)
		schedule();
	finish_wait(&vc->wq, &wait);
	spin_lock(&vc->lock);
	vc->vcore_state = VCORE_INACTIVE;
}
741

742 743 744 745 746 747
static int kvmppc_run_vcpu(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
{
	int n_ceded;
	int prev_state;
	struct kvmppc_vcore *vc;
	struct kvm_vcpu *v, *vn;
748

749 750 751 752 753 754 755 756 757
	kvm_run->exit_reason = 0;
	vcpu->arch.ret = RESUME_GUEST;
	vcpu->arch.trap = 0;

	/*
	 * Synchronize with other threads in this virtual core
	 */
	vc = vcpu->arch.vcore;
	spin_lock(&vc->lock);
758
	vcpu->arch.ceded = 0;
759 760
	vcpu->arch.run_task = current;
	vcpu->arch.kvm_run = kvm_run;
761 762
	prev_state = vcpu->arch.state;
	vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
763 764 765
	list_add_tail(&vcpu->arch.run_list, &vc->runnable_threads);
	++vc->n_runnable;

766 767 768 769 770 771 772 773 774 775
	/*
	 * This happens the first time this is called for a vcpu.
	 * If the vcore is already running, we may be able to start
	 * this thread straight away and have it join in.
	 */
	if (prev_state == KVMPPC_VCPU_STOPPED) {
		if (vc->vcore_state == VCORE_RUNNING &&
		    VCORE_EXIT_COUNT(vc) == 0) {
			vcpu->arch.ptid = vc->n_runnable - 1;
			kvmppc_start_thread(vcpu);
776 777
		}

778 779
	} else if (prev_state == KVMPPC_VCPU_BUSY_IN_HOST)
		--vc->n_busy;
780

781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808
	while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
	       !signal_pending(current)) {
		if (vc->n_busy || vc->vcore_state != VCORE_INACTIVE) {
			spin_unlock(&vc->lock);
			kvmppc_wait_for_exec(vcpu, TASK_INTERRUPTIBLE);
			spin_lock(&vc->lock);
			continue;
		}
		n_ceded = 0;
		list_for_each_entry(v, &vc->runnable_threads, arch.run_list)
			n_ceded += v->arch.ceded;
		if (n_ceded == vc->n_runnable)
			kvmppc_vcore_blocked(vc);
		else
			kvmppc_run_core(vc);

		list_for_each_entry_safe(v, vn, &vc->runnable_threads,
					 arch.run_list) {
			kvmppc_core_deliver_interrupts(v);
			if (signal_pending(v->arch.run_task)) {
				kvmppc_remove_runnable(vc, v);
				v->stat.signal_exits++;
				v->arch.kvm_run->exit_reason = KVM_EXIT_INTR;
				v->arch.ret = -EINTR;
				wake_up(&v->arch.cpu_run);
			}
		}
	}
809

810 811 812 813 814 815 816 817 818 819 820 821 822
	if (signal_pending(current)) {
		if (vc->vcore_state == VCORE_RUNNING ||
		    vc->vcore_state == VCORE_EXITING) {
			spin_unlock(&vc->lock);
			kvmppc_wait_for_exec(vcpu, TASK_UNINTERRUPTIBLE);
			spin_lock(&vc->lock);
		}
		if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
			kvmppc_remove_runnable(vc, vcpu);
			vcpu->stat.signal_exits++;
			kvm_run->exit_reason = KVM_EXIT_INTR;
			vcpu->arch.ret = -EINTR;
		}
823 824 825 826
	}

	spin_unlock(&vc->lock);
	return vcpu->arch.ret;
827 828
}

829 830 831 832
int kvmppc_vcpu_run(struct kvm_run *run, struct kvm_vcpu *vcpu)
{
	int r;

833 834 835 836 837
	if (!vcpu->arch.sane) {
		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
		return -EINVAL;
	}

838 839 840 841 842 843 844 845 846 847 848 849 850 851 852
	/* No need to go into the guest when all we'll do is come back out */
	if (signal_pending(current)) {
		run->exit_reason = KVM_EXIT_INTR;
		return -EINTR;
	}

	/* On PPC970, check that we have an RMA region */
	if (!vcpu->kvm->arch.rma && cpu_has_feature(CPU_FTR_ARCH_201))
		return -EPERM;

	flush_fp_to_thread(current);
	flush_altivec_to_thread(current);
	flush_vsx_to_thread(current);
	vcpu->arch.wqp = &vcpu->arch.vcore->wq;

853 854 855 856 857 858 859 860 861 862 863 864
	do {
		r = kvmppc_run_vcpu(run, vcpu);

		if (run->exit_reason == KVM_EXIT_PAPR_HCALL &&
		    !(vcpu->arch.shregs.msr & MSR_PR)) {
			r = kvmppc_pseries_do_hcall(vcpu);
			kvmppc_core_deliver_interrupts(vcpu);
		}
	} while (r == RESUME_GUEST);
	return r;
}

865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974
static long kvmppc_stt_npages(unsigned long window_size)
{
	return ALIGN((window_size >> SPAPR_TCE_SHIFT)
		     * sizeof(u64), PAGE_SIZE) / PAGE_SIZE;
}

static void release_spapr_tce_table(struct kvmppc_spapr_tce_table *stt)
{
	struct kvm *kvm = stt->kvm;
	int i;

	mutex_lock(&kvm->lock);
	list_del(&stt->list);
	for (i = 0; i < kvmppc_stt_npages(stt->window_size); i++)
		__free_page(stt->pages[i]);
	kfree(stt);
	mutex_unlock(&kvm->lock);

	kvm_put_kvm(kvm);
}

static int kvm_spapr_tce_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct kvmppc_spapr_tce_table *stt = vma->vm_file->private_data;
	struct page *page;

	if (vmf->pgoff >= kvmppc_stt_npages(stt->window_size))
		return VM_FAULT_SIGBUS;

	page = stt->pages[vmf->pgoff];
	get_page(page);
	vmf->page = page;
	return 0;
}

static const struct vm_operations_struct kvm_spapr_tce_vm_ops = {
	.fault = kvm_spapr_tce_fault,
};

static int kvm_spapr_tce_mmap(struct file *file, struct vm_area_struct *vma)
{
	vma->vm_ops = &kvm_spapr_tce_vm_ops;
	return 0;
}

static int kvm_spapr_tce_release(struct inode *inode, struct file *filp)
{
	struct kvmppc_spapr_tce_table *stt = filp->private_data;

	release_spapr_tce_table(stt);
	return 0;
}

static struct file_operations kvm_spapr_tce_fops = {
	.mmap           = kvm_spapr_tce_mmap,
	.release	= kvm_spapr_tce_release,
};

long kvm_vm_ioctl_create_spapr_tce(struct kvm *kvm,
				   struct kvm_create_spapr_tce *args)
{
	struct kvmppc_spapr_tce_table *stt = NULL;
	long npages;
	int ret = -ENOMEM;
	int i;

	/* Check this LIOBN hasn't been previously allocated */
	list_for_each_entry(stt, &kvm->arch.spapr_tce_tables, list) {
		if (stt->liobn == args->liobn)
			return -EBUSY;
	}

	npages = kvmppc_stt_npages(args->window_size);

	stt = kzalloc(sizeof(*stt) + npages* sizeof(struct page *),
		      GFP_KERNEL);
	if (!stt)
		goto fail;

	stt->liobn = args->liobn;
	stt->window_size = args->window_size;
	stt->kvm = kvm;

	for (i = 0; i < npages; i++) {
		stt->pages[i] = alloc_page(GFP_KERNEL | __GFP_ZERO);
		if (!stt->pages[i])
			goto fail;
	}

	kvm_get_kvm(kvm);

	mutex_lock(&kvm->lock);
	list_add(&stt->list, &kvm->arch.spapr_tce_tables);

	mutex_unlock(&kvm->lock);

	return anon_inode_getfd("kvm-spapr-tce", &kvm_spapr_tce_fops,
				stt, O_RDWR);

fail:
	if (stt) {
		for (i = 0; i < npages; i++)
			if (stt->pages[i])
				__free_page(stt->pages[i]);

		kfree(stt);
	}
	return ret;
}

975
/* Work out RMLS (real mode limit selector) field value for a given RMA size.
976
   Assumes POWER7 or PPC970. */
977 978 979 980
static inline int lpcr_rmls(unsigned long rma_size)
{
	switch (rma_size) {
	case 32ul << 20:	/* 32 MB */
981 982 983
		if (cpu_has_feature(CPU_FTR_ARCH_206))
			return 8;	/* only supported on POWER7 */
		return -1;
984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070
	case 64ul << 20:	/* 64 MB */
		return 3;
	case 128ul << 20:	/* 128 MB */
		return 7;
	case 256ul << 20:	/* 256 MB */
		return 4;
	case 1ul << 30:		/* 1 GB */
		return 2;
	case 16ul << 30:	/* 16 GB */
		return 1;
	case 256ul << 30:	/* 256 GB */
		return 0;
	default:
		return -1;
	}
}

static int kvm_rma_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct kvmppc_rma_info *ri = vma->vm_file->private_data;
	struct page *page;

	if (vmf->pgoff >= ri->npages)
		return VM_FAULT_SIGBUS;

	page = pfn_to_page(ri->base_pfn + vmf->pgoff);
	get_page(page);
	vmf->page = page;
	return 0;
}

static const struct vm_operations_struct kvm_rma_vm_ops = {
	.fault = kvm_rma_fault,
};

static int kvm_rma_mmap(struct file *file, struct vm_area_struct *vma)
{
	vma->vm_flags |= VM_RESERVED;
	vma->vm_ops = &kvm_rma_vm_ops;
	return 0;
}

static int kvm_rma_release(struct inode *inode, struct file *filp)
{
	struct kvmppc_rma_info *ri = filp->private_data;

	kvm_release_rma(ri);
	return 0;
}

static struct file_operations kvm_rma_fops = {
	.mmap           = kvm_rma_mmap,
	.release	= kvm_rma_release,
};

long kvm_vm_ioctl_allocate_rma(struct kvm *kvm, struct kvm_allocate_rma *ret)
{
	struct kvmppc_rma_info *ri;
	long fd;

	ri = kvm_alloc_rma();
	if (!ri)
		return -ENOMEM;

	fd = anon_inode_getfd("kvm-rma", &kvm_rma_fops, ri, O_RDWR);
	if (fd < 0)
		kvm_release_rma(ri);

	ret->rma_size = ri->npages << PAGE_SHIFT;
	return fd;
}

static struct page *hva_to_page(unsigned long addr)
{
	struct page *page[1];
	int npages;

	might_sleep();

	npages = get_user_pages_fast(addr, 1, 1, page);

	if (unlikely(npages != 1))
		return 0;

	return page[0];
}

1071 1072 1073
int kvmppc_core_prepare_memory_region(struct kvm *kvm,
				struct kvm_userspace_memory_region *mem)
{
1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116
	unsigned long psize, porder;
	unsigned long i, npages, totalpages;
	unsigned long pg_ix;
	struct kvmppc_pginfo *pginfo;
	unsigned long hva;
	struct kvmppc_rma_info *ri = NULL;
	struct page *page;

	/* For now, only allow 16MB pages */
	porder = LARGE_PAGE_ORDER;
	psize = 1ul << porder;
	if ((mem->memory_size & (psize - 1)) ||
	    (mem->guest_phys_addr & (psize - 1))) {
		pr_err("bad memory_size=%llx @ %llx\n",
		       mem->memory_size, mem->guest_phys_addr);
		return -EINVAL;
	}

	npages = mem->memory_size >> porder;
	totalpages = (mem->guest_phys_addr + mem->memory_size) >> porder;

	/* More memory than we have space to track? */
	if (totalpages > (1ul << (MAX_MEM_ORDER - LARGE_PAGE_ORDER)))
		return -EINVAL;

	/* Do we already have an RMA registered? */
	if (mem->guest_phys_addr == 0 && kvm->arch.rma)
		return -EINVAL;

	if (totalpages > kvm->arch.ram_npages)
		kvm->arch.ram_npages = totalpages;

	/* Is this one of our preallocated RMAs? */
	if (mem->guest_phys_addr == 0) {
		struct vm_area_struct *vma;

		down_read(&current->mm->mmap_sem);
		vma = find_vma(current->mm, mem->userspace_addr);
		if (vma && vma->vm_file &&
		    vma->vm_file->f_op == &kvm_rma_fops &&
		    mem->userspace_addr == vma->vm_start)
			ri = vma->vm_file->private_data;
		up_read(&current->mm->mmap_sem);
1117 1118 1119 1120
		if (!ri && cpu_has_feature(CPU_FTR_ARCH_201)) {
			pr_err("CPU requires an RMO\n");
			return -EINVAL;
		}
1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138
	}

	if (ri) {
		unsigned long rma_size;
		unsigned long lpcr;
		long rmls;

		rma_size = ri->npages << PAGE_SHIFT;
		if (rma_size > mem->memory_size)
			rma_size = mem->memory_size;
		rmls = lpcr_rmls(rma_size);
		if (rmls < 0) {
			pr_err("Can't use RMA of 0x%lx bytes\n", rma_size);
			return -EINVAL;
		}
		atomic_inc(&ri->use_count);
		kvm->arch.rma = ri;
		kvm->arch.n_rma_pages = rma_size >> porder;
1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156

		/* Update LPCR and RMOR */
		lpcr = kvm->arch.lpcr;
		if (cpu_has_feature(CPU_FTR_ARCH_201)) {
			/* PPC970; insert RMLS value (split field) in HID4 */
			lpcr &= ~((1ul << HID4_RMLS0_SH) |
				  (3ul << HID4_RMLS2_SH));
			lpcr |= ((rmls >> 2) << HID4_RMLS0_SH) |
				((rmls & 3) << HID4_RMLS2_SH);
			/* RMOR is also in HID4 */
			lpcr |= ((ri->base_pfn >> (26 - PAGE_SHIFT)) & 0xffff)
				<< HID4_RMOR_SH;
		} else {
			/* POWER7 */
			lpcr &= ~(LPCR_VPM0 | LPCR_VRMA_L);
			lpcr |= rmls << LPCR_RMLS_SH;
			kvm->arch.rmor = kvm->arch.rma->base_pfn << PAGE_SHIFT;
		}
1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185
		kvm->arch.lpcr = lpcr;
		pr_info("Using RMO at %lx size %lx (LPCR = %lx)\n",
			ri->base_pfn << PAGE_SHIFT, rma_size, lpcr);
	}

	pg_ix = mem->guest_phys_addr >> porder;
	pginfo = kvm->arch.ram_pginfo + pg_ix;
	for (i = 0; i < npages; ++i, ++pg_ix) {
		if (ri && pg_ix < kvm->arch.n_rma_pages) {
			pginfo[i].pfn = ri->base_pfn +
				(pg_ix << (porder - PAGE_SHIFT));
			continue;
		}
		hva = mem->userspace_addr + (i << porder);
		page = hva_to_page(hva);
		if (!page) {
			pr_err("oops, no pfn for hva %lx\n", hva);
			goto err;
		}
		/* Check it's a 16MB page */
		if (!PageHead(page) ||
		    compound_order(page) != (LARGE_PAGE_ORDER - PAGE_SHIFT)) {
			pr_err("page at %lx isn't 16MB (o=%d)\n",
			       hva, compound_order(page));
			goto err;
		}
		pginfo[i].pfn = page_to_pfn(page);
	}

1186
	return 0;
1187 1188 1189

 err:
	return -EINVAL;
1190 1191 1192 1193 1194
}

void kvmppc_core_commit_memory_region(struct kvm *kvm,
				struct kvm_userspace_memory_region *mem)
{
1195 1196
	if (mem->guest_phys_addr == 0 && mem->memory_size != 0 &&
	    !kvm->arch.rma)
1197 1198 1199 1200 1201 1202
		kvmppc_map_vrma(kvm, mem);
}

int kvmppc_core_init_vm(struct kvm *kvm)
{
	long r;
1203 1204 1205
	unsigned long npages = 1ul << (MAX_MEM_ORDER - LARGE_PAGE_ORDER);
	long err = -ENOMEM;
	unsigned long lpcr;
1206 1207 1208

	/* Allocate hashed page table */
	r = kvmppc_alloc_hpt(kvm);
1209 1210
	if (r)
		return r;
1211

1212
	INIT_LIST_HEAD(&kvm->arch.spapr_tce_tables);
1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227

	kvm->arch.ram_pginfo = kzalloc(npages * sizeof(struct kvmppc_pginfo),
				       GFP_KERNEL);
	if (!kvm->arch.ram_pginfo) {
		pr_err("kvmppc_core_init_vm: couldn't alloc %lu bytes\n",
		       npages * sizeof(struct kvmppc_pginfo));
		goto out_free;
	}

	kvm->arch.ram_npages = 0;
	kvm->arch.ram_psize = 1ul << LARGE_PAGE_ORDER;
	kvm->arch.ram_porder = LARGE_PAGE_ORDER;
	kvm->arch.rma = NULL;
	kvm->arch.n_rma_pages = 0;

1228
	kvm->arch.host_sdr1 = mfspr(SPRN_SDR1);
1229

1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246
	if (cpu_has_feature(CPU_FTR_ARCH_201)) {
		/* PPC970; HID4 is effectively the LPCR */
		unsigned long lpid = kvm->arch.lpid;
		kvm->arch.host_lpid = 0;
		kvm->arch.host_lpcr = lpcr = mfspr(SPRN_HID4);
		lpcr &= ~((3 << HID4_LPID1_SH) | (0xful << HID4_LPID5_SH));
		lpcr |= ((lpid >> 4) << HID4_LPID1_SH) |
			((lpid & 0xf) << HID4_LPID5_SH);
	} else {
		/* POWER7; init LPCR for virtual RMA mode */
		kvm->arch.host_lpid = mfspr(SPRN_LPID);
		kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR);
		lpcr &= LPCR_PECE | LPCR_LPES;
		lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE |
			LPCR_VPM0 | LPCR_VRMA_L;
	}
	kvm->arch.lpcr = lpcr;
1247

1248
	return 0;
1249 1250 1251 1252

 out_free:
	kvmppc_free_hpt(kvm);
	return err;
1253 1254 1255 1256
}

void kvmppc_core_destroy_vm(struct kvm *kvm)
{
1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272
	struct kvmppc_pginfo *pginfo;
	unsigned long i;

	if (kvm->arch.ram_pginfo) {
		pginfo = kvm->arch.ram_pginfo;
		kvm->arch.ram_pginfo = NULL;
		for (i = kvm->arch.n_rma_pages; i < kvm->arch.ram_npages; ++i)
			if (pginfo[i].pfn)
				put_page(pfn_to_page(pginfo[i].pfn));
		kfree(pginfo);
	}
	if (kvm->arch.rma) {
		kvm_release_rma(kvm->arch.rma);
		kvm->arch.rma = NULL;
	}

1273
	kvmppc_free_hpt(kvm);
1274
	WARN_ON(!list_empty(&kvm->arch.spapr_tce_tables));
1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319
}

/* These are stubs for now */
void kvmppc_mmu_pte_pflush(struct kvm_vcpu *vcpu, ulong pa_start, ulong pa_end)
{
}

/* We don't need to emulate any privileged instructions or dcbz */
int kvmppc_core_emulate_op(struct kvm_run *run, struct kvm_vcpu *vcpu,
                           unsigned int inst, int *advance)
{
	return EMULATE_FAIL;
}

int kvmppc_core_emulate_mtspr(struct kvm_vcpu *vcpu, int sprn, int rs)
{
	return EMULATE_FAIL;
}

int kvmppc_core_emulate_mfspr(struct kvm_vcpu *vcpu, int sprn, int rt)
{
	return EMULATE_FAIL;
}

static int kvmppc_book3s_hv_init(void)
{
	int r;

	r = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);

	if (r)
		return r;

	r = kvmppc_mmu_hv_init();

	return r;
}

static void kvmppc_book3s_hv_exit(void)
{
	kvm_exit();
}

module_init(kvmppc_book3s_hv_init);
module_exit(kvmppc_book3s_hv_exit);