book3s_hv.c 111.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
/*
 * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
 * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
 *
 * Authors:
 *    Paul Mackerras <paulus@au1.ibm.com>
 *    Alexander Graf <agraf@suse.de>
 *    Kevin Wolf <mail@kevin-wolf.de>
 *
 * Description: KVM functions specific to running on Book 3S
 * processors in hypervisor mode (specifically POWER7 and later).
 *
 * This file is derived from arch/powerpc/kvm/book3s.c,
 * by Alexander Graf <agraf@suse.de>.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License, version 2, as
 * published by the Free Software Foundation.
 */

#include <linux/kvm_host.h>
22
#include <linux/kernel.h>
23 24 25
#include <linux/err.h>
#include <linux/slab.h>
#include <linux/preempt.h>
26
#include <linux/sched/signal.h>
27
#include <linux/sched/stat.h>
28
#include <linux/delay.h>
29
#include <linux/export.h>
30 31
#include <linux/fs.h>
#include <linux/anon_inodes.h>
32
#include <linux/cpu.h>
33
#include <linux/cpumask.h>
34 35
#include <linux/spinlock.h>
#include <linux/page-flags.h>
36
#include <linux/srcu.h>
37
#include <linux/miscdevice.h>
38
#include <linux/debugfs.h>
39 40 41 42 43 44 45 46 47
#include <linux/gfp.h>
#include <linux/vmalloc.h>
#include <linux/highmem.h>
#include <linux/hugetlb.h>
#include <linux/kvm_irqfd.h>
#include <linux/irqbypass.h>
#include <linux/module.h>
#include <linux/compiler.h>
#include <linux/of.h>
48 49

#include <asm/reg.h>
50 51
#include <asm/ppc-opcode.h>
#include <asm/disassemble.h>
52 53 54
#include <asm/cputable.h>
#include <asm/cacheflush.h>
#include <asm/tlbflush.h>
55
#include <linux/uaccess.h>
56 57 58 59 60 61
#include <asm/io.h>
#include <asm/kvm_ppc.h>
#include <asm/kvm_book3s.h>
#include <asm/mmu_context.h>
#include <asm/lppaca.h>
#include <asm/processor.h>
62
#include <asm/cputhreads.h>
63
#include <asm/page.h>
64
#include <asm/hvcall.h>
65
#include <asm/switch_to.h>
66
#include <asm/smp.h>
67
#include <asm/dbell.h>
68
#include <asm/hmi.h>
69
#include <asm/pnv-pci.h>
70
#include <asm/mmu.h>
71 72
#include <asm/opal.h>
#include <asm/xics.h>
73
#include <asm/xive.h>
74

75 76
#include "book3s.h"

77 78 79
#define CREATE_TRACE_POINTS
#include "trace_hv.h"

80 81 82 83
/* #define EXIT_DEBUG */
/* #define EXIT_DEBUG_SIMPLE */
/* #define EXIT_DEBUG_INT */

84 85
/* Used to indicate that a guest page fault needs to be handled */
#define RESUME_PAGE_FAULT	(RESUME_GUEST | RESUME_FLAG_ARCH1)
86 87
/* Used to indicate that a guest passthrough interrupt needs to be handled */
#define RESUME_PASSTHROUGH	(RESUME_GUEST | RESUME_FLAG_ARCH2)
88

89 90 91
/* Used as a "null" value for timebase values */
#define TB_NIL	(~(u64)0)

92 93
static DECLARE_BITMAP(default_enabled_hcalls, MAX_HCALL_OPCODE/4 + 1);

94 95 96
static int dynamic_mt_modes = 6;
module_param(dynamic_mt_modes, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(dynamic_mt_modes, "Set of allowed dynamic micro-threading modes: 0 (= none), 2, 4, or 6 (= 2 or 4)");
97 98 99
static int target_smt_mode;
module_param(target_smt_mode, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(target_smt_mode, "Target threads per core (0 = max)");
100

101 102 103 104 105 106
#ifdef CONFIG_KVM_XICS
static struct kernel_param_ops module_param_ops = {
	.set = param_set_int,
	.get = param_get_int,
};

107 108 109 110
module_param_cb(kvm_irq_bypass, &module_param_ops, &kvm_irq_bypass,
							S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(kvm_irq_bypass, "Bypass passthrough interrupt optimization");

111 112 113 114 115
module_param_cb(h_ipi_redirect, &module_param_ops, &h_ipi_redirect,
							S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(h_ipi_redirect, "Redirect H_IPI wakeup to a free host core");
#endif

116
static void kvmppc_end_cede(struct kvm_vcpu *vcpu);
117
static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu);
118

119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
static inline struct kvm_vcpu *next_runnable_thread(struct kvmppc_vcore *vc,
		int *ip)
{
	int i = *ip;
	struct kvm_vcpu *vcpu;

	while (++i < MAX_SMT_THREADS) {
		vcpu = READ_ONCE(vc->runnable_threads[i]);
		if (vcpu) {
			*ip = i;
			return vcpu;
		}
	}
	return NULL;
}

/* Used to traverse the list of runnable threads for a given vcore */
#define for_each_runnable_thread(i, vcpu, vc) \
	for (i = -1; (vcpu = next_runnable_thread(vc, &i)); )

139 140
static bool kvmppc_ipi_thread(int cpu)
{
141 142 143 144 145 146 147 148 149 150
	unsigned long msg = PPC_DBELL_TYPE(PPC_DBELL_SERVER);

	/* On POWER9 we can use msgsnd to IPI any cpu */
	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
		msg |= get_hard_smp_processor_id(cpu);
		smp_mb();
		__asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
		return true;
	}

151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
	/* On POWER8 for IPIs to threads in the same core, use msgsnd */
	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
		preempt_disable();
		if (cpu_first_thread_sibling(cpu) ==
		    cpu_first_thread_sibling(smp_processor_id())) {
			msg |= cpu_thread_in_core(cpu);
			smp_mb();
			__asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
			preempt_enable();
			return true;
		}
		preempt_enable();
	}

#if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP)
166 167 168 169 170 171
	if (cpu >= 0 && cpu < nr_cpu_ids) {
		if (paca[cpu].kvm_hstate.xics_phys) {
			xics_wake_cpu(cpu);
			return true;
		}
		opal_int_set_mfrr(get_hard_smp_processor_id(cpu), IPI_PRIORITY);
172 173 174 175 176 177 178
		return true;
	}
#endif

	return false;
}

179
static void kvmppc_fast_vcpu_kick_hv(struct kvm_vcpu *vcpu)
180
{
181
	int cpu;
182
	struct swait_queue_head *wqp;
183 184

	wqp = kvm_arch_vcpu_wq(vcpu);
185
	if (swq_has_sleeper(wqp)) {
186
		swake_up(wqp);
187 188 189
		++vcpu->stat.halt_wakeup;
	}

190 191
	cpu = READ_ONCE(vcpu->arch.thread_cpu);
	if (cpu >= 0 && kvmppc_ipi_thread(cpu))
192
		return;
193 194

	/* CPU points to the first thread of the core */
195
	cpu = vcpu->cpu;
196 197
	if (cpu >= 0 && cpu < nr_cpu_ids && cpu_online(cpu))
		smp_send_reschedule(cpu);
198 199
}

200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
/*
 * We use the vcpu_load/put functions to measure stolen time.
 * Stolen time is counted as time when either the vcpu is able to
 * run as part of a virtual core, but the task running the vcore
 * is preempted or sleeping, or when the vcpu needs something done
 * in the kernel by the task running the vcpu, but that task is
 * preempted or sleeping.  Those two things have to be counted
 * separately, since one of the vcpu tasks will take on the job
 * of running the core, and the other vcpu tasks in the vcore will
 * sleep waiting for it to do that, but that sleep shouldn't count
 * as stolen time.
 *
 * Hence we accumulate stolen time when the vcpu can run as part of
 * a vcore using vc->stolen_tb, and the stolen time when the vcpu
 * needs its task to do other things in the kernel (for example,
 * service a page fault) in busy_stolen.  We don't accumulate
 * stolen time for a vcore when it is inactive, or for a vcpu
 * when it is in state RUNNING or NOTREADY.  NOTREADY is a bit of
 * a misnomer; it means that the vcpu task is not executing in
 * the KVM_VCPU_RUN ioctl, i.e. it is in userspace or elsewhere in
 * the kernel.  We don't have any way of dividing up that time
 * between time that the vcpu is genuinely stopped, time that
 * the task is actively working on behalf of the vcpu, and time
 * that the task is preempted, so we don't count any of it as
 * stolen.
 *
 * Updates to busy_stolen are protected by arch.tbacct_lock;
227 228 229 230
 * updates to vc->stolen_tb are protected by the vcore->stoltb_lock
 * lock.  The stolen times are measured in units of timebase ticks.
 * (Note that the != TB_NIL checks below are purely defensive;
 * they should never fail.)
231 232
 */

233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
static void kvmppc_core_start_stolen(struct kvmppc_vcore *vc)
{
	unsigned long flags;

	spin_lock_irqsave(&vc->stoltb_lock, flags);
	vc->preempt_tb = mftb();
	spin_unlock_irqrestore(&vc->stoltb_lock, flags);
}

static void kvmppc_core_end_stolen(struct kvmppc_vcore *vc)
{
	unsigned long flags;

	spin_lock_irqsave(&vc->stoltb_lock, flags);
	if (vc->preempt_tb != TB_NIL) {
		vc->stolen_tb += mftb() - vc->preempt_tb;
		vc->preempt_tb = TB_NIL;
	}
	spin_unlock_irqrestore(&vc->stoltb_lock, flags);
}

254
static void kvmppc_core_vcpu_load_hv(struct kvm_vcpu *vcpu, int cpu)
255
{
256
	struct kvmppc_vcore *vc = vcpu->arch.vcore;
257
	unsigned long flags;
258

259 260 261 262 263 264
	/*
	 * We can test vc->runner without taking the vcore lock,
	 * because only this task ever sets vc->runner to this
	 * vcpu, and once it is set to this vcpu, only this task
	 * ever sets it to NULL.
	 */
265 266 267
	if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
		kvmppc_core_end_stolen(vc);

268
	spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
269 270 271 272 273
	if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST &&
	    vcpu->arch.busy_preempt != TB_NIL) {
		vcpu->arch.busy_stolen += mftb() - vcpu->arch.busy_preempt;
		vcpu->arch.busy_preempt = TB_NIL;
	}
274
	spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
275 276
}

277
static void kvmppc_core_vcpu_put_hv(struct kvm_vcpu *vcpu)
278
{
279
	struct kvmppc_vcore *vc = vcpu->arch.vcore;
280
	unsigned long flags;
281

282 283 284
	if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
		kvmppc_core_start_stolen(vc);

285
	spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
286 287
	if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST)
		vcpu->arch.busy_preempt = mftb();
288
	spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
289 290
}

291
static void kvmppc_set_msr_hv(struct kvm_vcpu *vcpu, u64 msr)
292
{
293 294 295 296 297 298
	/*
	 * Check for illegal transactional state bit combination
	 * and if we find it, force the TS field to a safe state.
	 */
	if ((msr & MSR_TS_MASK) == MSR_TS_MASK)
		msr &= ~MSR_TS_MASK;
299
	vcpu->arch.shregs.msr = msr;
300
	kvmppc_end_cede(vcpu);
301 302
}

T
Thomas Huth 已提交
303
static void kvmppc_set_pvr_hv(struct kvm_vcpu *vcpu, u32 pvr)
304 305 306 307
{
	vcpu->arch.pvr = pvr;
}

308 309 310
/* Dummy value used in computing PCR value below */
#define PCR_ARCH_300	(PCR_ARCH_207 << 1)

T
Thomas Huth 已提交
311
static int kvmppc_set_arch_compat(struct kvm_vcpu *vcpu, u32 arch_compat)
312
{
313
	unsigned long host_pcr_bit = 0, guest_pcr_bit = 0;
314 315
	struct kvmppc_vcore *vc = vcpu->arch.vcore;

316 317 318 319 320 321 322 323 324 325 326 327
	/* We can (emulate) our own architecture version and anything older */
	if (cpu_has_feature(CPU_FTR_ARCH_300))
		host_pcr_bit = PCR_ARCH_300;
	else if (cpu_has_feature(CPU_FTR_ARCH_207S))
		host_pcr_bit = PCR_ARCH_207;
	else if (cpu_has_feature(CPU_FTR_ARCH_206))
		host_pcr_bit = PCR_ARCH_206;
	else
		host_pcr_bit = PCR_ARCH_205;

	/* Determine lowest PCR bit needed to run guest in given PVR level */
	guest_pcr_bit = host_pcr_bit;
328 329 330
	if (arch_compat) {
		switch (arch_compat) {
		case PVR_ARCH_205:
331
			guest_pcr_bit = PCR_ARCH_205;
332 333 334
			break;
		case PVR_ARCH_206:
		case PVR_ARCH_206p:
335
			guest_pcr_bit = PCR_ARCH_206;
336 337
			break;
		case PVR_ARCH_207:
338 339 340 341
			guest_pcr_bit = PCR_ARCH_207;
			break;
		case PVR_ARCH_300:
			guest_pcr_bit = PCR_ARCH_300;
342 343 344 345 346 347
			break;
		default:
			return -EINVAL;
		}
	}

348 349 350 351
	/* Check requested PCR bits don't exceed our capabilities */
	if (guest_pcr_bit > host_pcr_bit)
		return -EINVAL;

352 353
	spin_lock(&vc->lock);
	vc->arch_compat = arch_compat;
354 355
	/* Set all PCR bits for which guest_pcr_bit <= bit < host_pcr_bit */
	vc->pcr = host_pcr_bit - guest_pcr_bit;
356 357 358 359 360
	spin_unlock(&vc->lock);

	return 0;
}

T
Thomas Huth 已提交
361
static void kvmppc_dump_regs(struct kvm_vcpu *vcpu)
362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389
{
	int r;

	pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id);
	pr_err("pc  = %.16lx  msr = %.16llx  trap = %x\n",
	       vcpu->arch.pc, vcpu->arch.shregs.msr, vcpu->arch.trap);
	for (r = 0; r < 16; ++r)
		pr_err("r%2d = %.16lx  r%d = %.16lx\n",
		       r, kvmppc_get_gpr(vcpu, r),
		       r+16, kvmppc_get_gpr(vcpu, r+16));
	pr_err("ctr = %.16lx  lr  = %.16lx\n",
	       vcpu->arch.ctr, vcpu->arch.lr);
	pr_err("srr0 = %.16llx srr1 = %.16llx\n",
	       vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1);
	pr_err("sprg0 = %.16llx sprg1 = %.16llx\n",
	       vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1);
	pr_err("sprg2 = %.16llx sprg3 = %.16llx\n",
	       vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3);
	pr_err("cr = %.8x  xer = %.16lx  dsisr = %.8x\n",
	       vcpu->arch.cr, vcpu->arch.xer, vcpu->arch.shregs.dsisr);
	pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar);
	pr_err("fault dar = %.16lx dsisr = %.8x\n",
	       vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
	pr_err("SLB (%d entries):\n", vcpu->arch.slb_max);
	for (r = 0; r < vcpu->arch.slb_max; ++r)
		pr_err("  ESID = %.16llx VSID = %.16llx\n",
		       vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv);
	pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n",
390
	       vcpu->arch.vcore->lpcr, vcpu->kvm->arch.sdr1,
391 392 393
	       vcpu->arch.last_inst);
}

T
Thomas Huth 已提交
394
static struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id)
395
{
396
	struct kvm_vcpu *ret;
397 398

	mutex_lock(&kvm->lock);
399
	ret = kvm_get_vcpu_by_id(kvm, id);
400 401 402 403 404 405
	mutex_unlock(&kvm->lock);
	return ret;
}

static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa)
{
406
	vpa->__old_status |= LPPACA_OLD_SHARED_PROC;
407
	vpa->yield_count = cpu_to_be32(1);
408 409
}

410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425
static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v,
		   unsigned long addr, unsigned long len)
{
	/* check address is cacheline aligned */
	if (addr & (L1_CACHE_BYTES - 1))
		return -EINVAL;
	spin_lock(&vcpu->arch.vpa_update_lock);
	if (v->next_gpa != addr || v->len != len) {
		v->next_gpa = addr;
		v->len = addr ? len : 0;
		v->update_pending = 1;
	}
	spin_unlock(&vcpu->arch.vpa_update_lock);
	return 0;
}

426 427 428 429
/* Length for a per-processor buffer is passed in at offset 4 in the buffer */
struct reg_vpa {
	u32 dummy;
	union {
430 431
		__be16 hword;
		__be32 word;
432 433 434 435 436 437 438 439 440 441
	} length;
};

static int vpa_is_registered(struct kvmppc_vpa *vpap)
{
	if (vpap->update_pending)
		return vpap->next_gpa != 0;
	return vpap->pinned_addr != NULL;
}

442 443 444 445 446
static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu,
				       unsigned long flags,
				       unsigned long vcpuid, unsigned long vpa)
{
	struct kvm *kvm = vcpu->kvm;
447
	unsigned long len, nb;
448 449
	void *va;
	struct kvm_vcpu *tvcpu;
450 451 452
	int err;
	int subfunc;
	struct kvmppc_vpa *vpap;
453 454 455 456 457

	tvcpu = kvmppc_find_vcpu(kvm, vcpuid);
	if (!tvcpu)
		return H_PARAMETER;

458 459 460 461 462
	subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK;
	if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL ||
	    subfunc == H_VPA_REG_SLB) {
		/* Registering new area - address must be cache-line aligned */
		if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa)
463
			return H_PARAMETER;
464 465

		/* convert logical addr to kernel addr and read length */
466 467
		va = kvmppc_pin_guest_page(kvm, vpa, &nb);
		if (va == NULL)
468
			return H_PARAMETER;
469
		if (subfunc == H_VPA_REG_VPA)
470
			len = be16_to_cpu(((struct reg_vpa *)va)->length.hword);
471
		else
472
			len = be32_to_cpu(((struct reg_vpa *)va)->length.word);
473
		kvmppc_unpin_guest_page(kvm, va, vpa, false);
474 475 476 477 478 479 480 481 482 483 484 485 486 487 488

		/* Check length */
		if (len > nb || len < sizeof(struct reg_vpa))
			return H_PARAMETER;
	} else {
		vpa = 0;
		len = 0;
	}

	err = H_PARAMETER;
	vpap = NULL;
	spin_lock(&tvcpu->arch.vpa_update_lock);

	switch (subfunc) {
	case H_VPA_REG_VPA:		/* register VPA */
489 490 491 492 493 494 495
		/*
		 * The size of our lppaca is 1kB because of the way we align
		 * it for the guest to avoid crossing a 4kB boundary. We only
		 * use 640 bytes of the structure though, so we should accept
		 * clients that set a size of 640.
		 */
		if (len < 640)
496
			break;
497 498 499 500 501 502
		vpap = &tvcpu->arch.vpa;
		err = 0;
		break;

	case H_VPA_REG_DTL:		/* register DTL */
		if (len < sizeof(struct dtl_entry))
503
			break;
504 505 506 507 508
		len -= len % sizeof(struct dtl_entry);

		/* Check that they have previously registered a VPA */
		err = H_RESOURCE;
		if (!vpa_is_registered(&tvcpu->arch.vpa))
509
			break;
510 511 512 513 514 515 516 517 518

		vpap = &tvcpu->arch.dtl;
		err = 0;
		break;

	case H_VPA_REG_SLB:		/* register SLB shadow buffer */
		/* Check that they have previously registered a VPA */
		err = H_RESOURCE;
		if (!vpa_is_registered(&tvcpu->arch.vpa))
519
			break;
520 521 522 523 524 525 526 527 528 529

		vpap = &tvcpu->arch.slb_shadow;
		err = 0;
		break;

	case H_VPA_DEREG_VPA:		/* deregister VPA */
		/* Check they don't still have a DTL or SLB buf registered */
		err = H_RESOURCE;
		if (vpa_is_registered(&tvcpu->arch.dtl) ||
		    vpa_is_registered(&tvcpu->arch.slb_shadow))
530
			break;
531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550

		vpap = &tvcpu->arch.vpa;
		err = 0;
		break;

	case H_VPA_DEREG_DTL:		/* deregister DTL */
		vpap = &tvcpu->arch.dtl;
		err = 0;
		break;

	case H_VPA_DEREG_SLB:		/* deregister SLB shadow buffer */
		vpap = &tvcpu->arch.slb_shadow;
		err = 0;
		break;
	}

	if (vpap) {
		vpap->next_gpa = vpa;
		vpap->len = len;
		vpap->update_pending = 1;
551
	}
552

553 554
	spin_unlock(&tvcpu->arch.vpa_update_lock);

555
	return err;
556 557
}

558
static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap)
559
{
560
	struct kvm *kvm = vcpu->kvm;
561 562
	void *va;
	unsigned long nb;
563
	unsigned long gpa;
564

565 566 567 568 569 570 571 572 573 574 575 576 577 578
	/*
	 * We need to pin the page pointed to by vpap->next_gpa,
	 * but we can't call kvmppc_pin_guest_page under the lock
	 * as it does get_user_pages() and down_read().  So we
	 * have to drop the lock, pin the page, then get the lock
	 * again and check that a new area didn't get registered
	 * in the meantime.
	 */
	for (;;) {
		gpa = vpap->next_gpa;
		spin_unlock(&vcpu->arch.vpa_update_lock);
		va = NULL;
		nb = 0;
		if (gpa)
579
			va = kvmppc_pin_guest_page(kvm, gpa, &nb);
580 581 582 583 584
		spin_lock(&vcpu->arch.vpa_update_lock);
		if (gpa == vpap->next_gpa)
			break;
		/* sigh... unpin that one and try again */
		if (va)
585
			kvmppc_unpin_guest_page(kvm, va, gpa, false);
586 587 588 589 590 591 592 593 594
	}

	vpap->update_pending = 0;
	if (va && nb < vpap->len) {
		/*
		 * If it's now too short, it must be that userspace
		 * has changed the mappings underlying guest memory,
		 * so unregister the region.
		 */
595
		kvmppc_unpin_guest_page(kvm, va, gpa, false);
596
		va = NULL;
597 598
	}
	if (vpap->pinned_addr)
599 600 601
		kvmppc_unpin_guest_page(kvm, vpap->pinned_addr, vpap->gpa,
					vpap->dirty);
	vpap->gpa = gpa;
602
	vpap->pinned_addr = va;
603
	vpap->dirty = false;
604 605 606 607 608 609
	if (va)
		vpap->pinned_end = va + vpap->len;
}

static void kvmppc_update_vpas(struct kvm_vcpu *vcpu)
{
610 611 612 613 614
	if (!(vcpu->arch.vpa.update_pending ||
	      vcpu->arch.slb_shadow.update_pending ||
	      vcpu->arch.dtl.update_pending))
		return;

615 616
	spin_lock(&vcpu->arch.vpa_update_lock);
	if (vcpu->arch.vpa.update_pending) {
617
		kvmppc_update_vpa(vcpu, &vcpu->arch.vpa);
618 619
		if (vcpu->arch.vpa.pinned_addr)
			init_vpa(vcpu, vcpu->arch.vpa.pinned_addr);
620 621
	}
	if (vcpu->arch.dtl.update_pending) {
622
		kvmppc_update_vpa(vcpu, &vcpu->arch.dtl);
623 624 625 626
		vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr;
		vcpu->arch.dtl_index = 0;
	}
	if (vcpu->arch.slb_shadow.update_pending)
627
		kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow);
628 629 630
	spin_unlock(&vcpu->arch.vpa_update_lock);
}

631 632 633 634 635 636 637
/*
 * Return the accumulated stolen time for the vcore up until `now'.
 * The caller should hold the vcore lock.
 */
static u64 vcore_stolen_time(struct kvmppc_vcore *vc, u64 now)
{
	u64 p;
638
	unsigned long flags;
639

640 641
	spin_lock_irqsave(&vc->stoltb_lock, flags);
	p = vc->stolen_tb;
642
	if (vc->vcore_state != VCORE_INACTIVE &&
643 644 645
	    vc->preempt_tb != TB_NIL)
		p += now - vc->preempt_tb;
	spin_unlock_irqrestore(&vc->stoltb_lock, flags);
646 647 648
	return p;
}

649 650 651 652 653
static void kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu,
				    struct kvmppc_vcore *vc)
{
	struct dtl_entry *dt;
	struct lppaca *vpa;
654 655 656
	unsigned long stolen;
	unsigned long core_stolen;
	u64 now;
657
	unsigned long flags;
658 659 660

	dt = vcpu->arch.dtl_ptr;
	vpa = vcpu->arch.vpa.pinned_addr;
661 662 663 664
	now = mftb();
	core_stolen = vcore_stolen_time(vc, now);
	stolen = core_stolen - vcpu->arch.stolen_logged;
	vcpu->arch.stolen_logged = core_stolen;
665
	spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
666 667
	stolen += vcpu->arch.busy_stolen;
	vcpu->arch.busy_stolen = 0;
668
	spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
669 670 671 672
	if (!dt || !vpa)
		return;
	memset(dt, 0, sizeof(struct dtl_entry));
	dt->dispatch_reason = 7;
673 674 675 676 677
	dt->processor_id = cpu_to_be16(vc->pcpu + vcpu->arch.ptid);
	dt->timebase = cpu_to_be64(now + vc->tb_offset);
	dt->enqueue_to_dispatch_time = cpu_to_be32(stolen);
	dt->srr0 = cpu_to_be64(kvmppc_get_pc(vcpu));
	dt->srr1 = cpu_to_be64(vcpu->arch.shregs.msr);
678 679 680 681 682 683
	++dt;
	if (dt == vcpu->arch.dtl.pinned_end)
		dt = vcpu->arch.dtl.pinned_addr;
	vcpu->arch.dtl_ptr = dt;
	/* order writing *dt vs. writing vpa->dtl_idx */
	smp_wmb();
684
	vpa->dtl_idx = cpu_to_be64(++vcpu->arch.dtl_index);
685
	vcpu->arch.dtl.dirty = true;
686 687
}

688 689 690 691 692 693
/* See if there is a doorbell interrupt pending for a vcpu */
static bool kvmppc_doorbell_pending(struct kvm_vcpu *vcpu)
{
	int thr;
	struct kvmppc_vcore *vc;

694 695 696 697 698 699 700 701 702
	if (vcpu->arch.doorbell_request)
		return true;
	/*
	 * Ensure that the read of vcore->dpdes comes after the read
	 * of vcpu->doorbell_request.  This barrier matches the
	 * lwsync in book3s_hv_rmhandlers.S just before the
	 * fast_guest_return label.
	 */
	smp_rmb();
703 704 705 706 707
	vc = vcpu->arch.vcore;
	thr = vcpu->vcpu_id - vc->first_vcpuid;
	return !!(vc->dpdes & (1 << thr));
}

708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749
static bool kvmppc_power8_compatible(struct kvm_vcpu *vcpu)
{
	if (vcpu->arch.vcore->arch_compat >= PVR_ARCH_207)
		return true;
	if ((!vcpu->arch.vcore->arch_compat) &&
	    cpu_has_feature(CPU_FTR_ARCH_207S))
		return true;
	return false;
}

static int kvmppc_h_set_mode(struct kvm_vcpu *vcpu, unsigned long mflags,
			     unsigned long resource, unsigned long value1,
			     unsigned long value2)
{
	switch (resource) {
	case H_SET_MODE_RESOURCE_SET_CIABR:
		if (!kvmppc_power8_compatible(vcpu))
			return H_P2;
		if (value2)
			return H_P4;
		if (mflags)
			return H_UNSUPPORTED_FLAG_START;
		/* Guests can't breakpoint the hypervisor */
		if ((value1 & CIABR_PRIV) == CIABR_PRIV_HYPER)
			return H_P3;
		vcpu->arch.ciabr  = value1;
		return H_SUCCESS;
	case H_SET_MODE_RESOURCE_SET_DAWR:
		if (!kvmppc_power8_compatible(vcpu))
			return H_P2;
		if (mflags)
			return H_UNSUPPORTED_FLAG_START;
		if (value2 & DABRX_HYP)
			return H_P4;
		vcpu->arch.dawr  = value1;
		vcpu->arch.dawrx = value2;
		return H_SUCCESS;
	default:
		return H_TOO_HARD;
	}
}

750 751 752 753 754 755 756 757 758 759 760 761 762 763
static int kvm_arch_vcpu_yield_to(struct kvm_vcpu *target)
{
	struct kvmppc_vcore *vcore = target->arch.vcore;

	/*
	 * We expect to have been called by the real mode handler
	 * (kvmppc_rm_h_confer()) which would have directly returned
	 * H_SUCCESS if the source vcore wasn't idle (e.g. if it may
	 * have useful work to do and should not confer) so we don't
	 * recheck that here.
	 */

	spin_lock(&vcore->lock);
	if (target->arch.state == KVMPPC_VCPU_RUNNABLE &&
764 765
	    vcore->vcore_state != VCORE_INACTIVE &&
	    vcore->runner)
766 767 768 769 770 771 772 773 774 775 776 777 778 779
		target = vcore->runner;
	spin_unlock(&vcore->lock);

	return kvm_vcpu_yield_to(target);
}

static int kvmppc_get_yield_count(struct kvm_vcpu *vcpu)
{
	int yield_count = 0;
	struct lppaca *lppaca;

	spin_lock(&vcpu->arch.vpa_update_lock);
	lppaca = (struct lppaca *)vcpu->arch.vpa.pinned_addr;
	if (lppaca)
780
		yield_count = be32_to_cpu(lppaca->yield_count);
781 782 783 784
	spin_unlock(&vcpu->arch.vpa_update_lock);
	return yield_count;
}

785 786 787 788
int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu)
{
	unsigned long req = kvmppc_get_gpr(vcpu, 3);
	unsigned long target, ret = H_SUCCESS;
789
	int yield_count;
790
	struct kvm_vcpu *tvcpu;
791
	int idx, rc;
792

793 794 795 796
	if (req <= MAX_HCALL_OPCODE &&
	    !test_bit(req/4, vcpu->kvm->arch.enabled_hcalls))
		return RESUME_HOST;

797 798 799 800 801 802 803 804 805 806 807 808
	switch (req) {
	case H_CEDE:
		break;
	case H_PROD:
		target = kvmppc_get_gpr(vcpu, 4);
		tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
		if (!tvcpu) {
			ret = H_PARAMETER;
			break;
		}
		tvcpu->arch.prodded = 1;
		smp_mb();
809 810
		if (tvcpu->arch.ceded)
			kvmppc_fast_vcpu_kick_hv(tvcpu);
811 812
		break;
	case H_CONFER:
813 814 815 816 817 818 819 820
		target = kvmppc_get_gpr(vcpu, 4);
		if (target == -1)
			break;
		tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
		if (!tvcpu) {
			ret = H_PARAMETER;
			break;
		}
821 822 823 824
		yield_count = kvmppc_get_gpr(vcpu, 5);
		if (kvmppc_get_yield_count(tvcpu) != yield_count)
			break;
		kvm_arch_vcpu_yield_to(tvcpu);
825 826 827 828 829 830
		break;
	case H_REGISTER_VPA:
		ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4),
					kvmppc_get_gpr(vcpu, 5),
					kvmppc_get_gpr(vcpu, 6));
		break;
831 832 833 834
	case H_RTAS:
		if (list_empty(&vcpu->kvm->arch.rtas_tokens))
			return RESUME_HOST;

835
		idx = srcu_read_lock(&vcpu->kvm->srcu);
836
		rc = kvmppc_rtas_hcall(vcpu);
837
		srcu_read_unlock(&vcpu->kvm->srcu, idx);
838 839 840 841 842 843 844 845

		if (rc == -ENOENT)
			return RESUME_HOST;
		else if (rc == 0)
			break;

		/* Send the error out to userspace via KVM_RUN */
		return rc;
846 847 848 849 850 851 852 853 854 855
	case H_LOGICAL_CI_LOAD:
		ret = kvmppc_h_logical_ci_load(vcpu);
		if (ret == H_TOO_HARD)
			return RESUME_HOST;
		break;
	case H_LOGICAL_CI_STORE:
		ret = kvmppc_h_logical_ci_store(vcpu);
		if (ret == H_TOO_HARD)
			return RESUME_HOST;
		break;
856 857 858 859 860 861 862 863
	case H_SET_MODE:
		ret = kvmppc_h_set_mode(vcpu, kvmppc_get_gpr(vcpu, 4),
					kvmppc_get_gpr(vcpu, 5),
					kvmppc_get_gpr(vcpu, 6),
					kvmppc_get_gpr(vcpu, 7));
		if (ret == H_TOO_HARD)
			return RESUME_HOST;
		break;
864 865 866 867
	case H_XIRR:
	case H_CPPR:
	case H_EOI:
	case H_IPI:
868 869
	case H_IPOLL:
	case H_XIRR_X:
870
		if (kvmppc_xics_enabled(vcpu)) {
871 872 873 874
			if (xive_enabled()) {
				ret = H_NOT_AVAILABLE;
				return RESUME_GUEST;
			}
875 876
			ret = kvmppc_xics_hcall(vcpu, req);
			break;
877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901
		}
		return RESUME_HOST;
	case H_PUT_TCE:
		ret = kvmppc_h_put_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
						kvmppc_get_gpr(vcpu, 5),
						kvmppc_get_gpr(vcpu, 6));
		if (ret == H_TOO_HARD)
			return RESUME_HOST;
		break;
	case H_PUT_TCE_INDIRECT:
		ret = kvmppc_h_put_tce_indirect(vcpu, kvmppc_get_gpr(vcpu, 4),
						kvmppc_get_gpr(vcpu, 5),
						kvmppc_get_gpr(vcpu, 6),
						kvmppc_get_gpr(vcpu, 7));
		if (ret == H_TOO_HARD)
			return RESUME_HOST;
		break;
	case H_STUFF_TCE:
		ret = kvmppc_h_stuff_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
						kvmppc_get_gpr(vcpu, 5),
						kvmppc_get_gpr(vcpu, 6),
						kvmppc_get_gpr(vcpu, 7));
		if (ret == H_TOO_HARD)
			return RESUME_HOST;
		break;
902 903 904 905 906 907 908 909
	default:
		return RESUME_HOST;
	}
	kvmppc_set_gpr(vcpu, 3, ret);
	vcpu->arch.hcall_needed = 0;
	return RESUME_GUEST;
}

910 911 912 913 914 915 916
static int kvmppc_hcall_impl_hv(unsigned long cmd)
{
	switch (cmd) {
	case H_CEDE:
	case H_PROD:
	case H_CONFER:
	case H_REGISTER_VPA:
917
	case H_SET_MODE:
918 919
	case H_LOGICAL_CI_LOAD:
	case H_LOGICAL_CI_STORE:
920 921 922 923 924 925 926 927 928 929 930 931 932 933 934
#ifdef CONFIG_KVM_XICS
	case H_XIRR:
	case H_CPPR:
	case H_EOI:
	case H_IPI:
	case H_IPOLL:
	case H_XIRR_X:
#endif
		return 1;
	}

	/* See if it's in the real-mode table */
	return kvmppc_hcall_impl_hv_realmode(cmd);
}

935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958
static int kvmppc_emulate_debug_inst(struct kvm_run *run,
					struct kvm_vcpu *vcpu)
{
	u32 last_inst;

	if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) !=
					EMULATE_DONE) {
		/*
		 * Fetch failed, so return to guest and
		 * try executing it again.
		 */
		return RESUME_GUEST;
	}

	if (last_inst == KVMPPC_INST_SW_BREAKPOINT) {
		run->exit_reason = KVM_EXIT_DEBUG;
		run->debug.arch.address = kvmppc_get_pc(vcpu);
		return RESUME_HOST;
	} else {
		kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
		return RESUME_GUEST;
	}
}

959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053
static void do_nothing(void *x)
{
}

static unsigned long kvmppc_read_dpdes(struct kvm_vcpu *vcpu)
{
	int thr, cpu, pcpu, nthreads;
	struct kvm_vcpu *v;
	unsigned long dpdes;

	nthreads = vcpu->kvm->arch.emul_smt_mode;
	dpdes = 0;
	cpu = vcpu->vcpu_id & ~(nthreads - 1);
	for (thr = 0; thr < nthreads; ++thr, ++cpu) {
		v = kvmppc_find_vcpu(vcpu->kvm, cpu);
		if (!v)
			continue;
		/*
		 * If the vcpu is currently running on a physical cpu thread,
		 * interrupt it in order to pull it out of the guest briefly,
		 * which will update its vcore->dpdes value.
		 */
		pcpu = READ_ONCE(v->cpu);
		if (pcpu >= 0)
			smp_call_function_single(pcpu, do_nothing, NULL, 1);
		if (kvmppc_doorbell_pending(v))
			dpdes |= 1 << thr;
	}
	return dpdes;
}

/*
 * On POWER9, emulate doorbell-related instructions in order to
 * give the guest the illusion of running on a multi-threaded core.
 * The instructions emulated are msgsndp, msgclrp, mfspr TIR,
 * and mfspr DPDES.
 */
static int kvmppc_emulate_doorbell_instr(struct kvm_vcpu *vcpu)
{
	u32 inst, rb, thr;
	unsigned long arg;
	struct kvm *kvm = vcpu->kvm;
	struct kvm_vcpu *tvcpu;

	if (!cpu_has_feature(CPU_FTR_ARCH_300))
		return EMULATE_FAIL;
	if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &inst) != EMULATE_DONE)
		return RESUME_GUEST;
	if (get_op(inst) != 31)
		return EMULATE_FAIL;
	rb = get_rb(inst);
	thr = vcpu->vcpu_id & (kvm->arch.emul_smt_mode - 1);
	switch (get_xop(inst)) {
	case OP_31_XOP_MSGSNDP:
		arg = kvmppc_get_gpr(vcpu, rb);
		if (((arg >> 27) & 0xf) != PPC_DBELL_SERVER)
			break;
		arg &= 0x3f;
		if (arg >= kvm->arch.emul_smt_mode)
			break;
		tvcpu = kvmppc_find_vcpu(kvm, vcpu->vcpu_id - thr + arg);
		if (!tvcpu)
			break;
		if (!tvcpu->arch.doorbell_request) {
			tvcpu->arch.doorbell_request = 1;
			kvmppc_fast_vcpu_kick_hv(tvcpu);
		}
		break;
	case OP_31_XOP_MSGCLRP:
		arg = kvmppc_get_gpr(vcpu, rb);
		if (((arg >> 27) & 0xf) != PPC_DBELL_SERVER)
			break;
		vcpu->arch.vcore->dpdes = 0;
		vcpu->arch.doorbell_request = 0;
		break;
	case OP_31_XOP_MFSPR:
		switch (get_sprn(inst)) {
		case SPRN_TIR:
			arg = thr;
			break;
		case SPRN_DPDES:
			arg = kvmppc_read_dpdes(vcpu);
			break;
		default:
			return EMULATE_FAIL;
		}
		kvmppc_set_gpr(vcpu, get_rt(inst), arg);
		break;
	default:
		return EMULATE_FAIL;
	}
	kvmppc_set_pc(vcpu, kvmppc_get_pc(vcpu) + 4);
	return RESUME_GUEST;
}

1054 1055
static int kvmppc_handle_exit_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
				 struct task_struct *tsk)
1056 1057 1058 1059 1060
{
	int r = RESUME_HOST;

	vcpu->stat.sum_exits++;

1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078
	/*
	 * This can happen if an interrupt occurs in the last stages
	 * of guest entry or the first stages of guest exit (i.e. after
	 * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV
	 * and before setting it to KVM_GUEST_MODE_HOST_HV).
	 * That can happen due to a bug, or due to a machine check
	 * occurring at just the wrong time.
	 */
	if (vcpu->arch.shregs.msr & MSR_HV) {
		printk(KERN_EMERG "KVM trap in HV mode!\n");
		printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
			vcpu->arch.trap, kvmppc_get_pc(vcpu),
			vcpu->arch.shregs.msr);
		kvmppc_dump_regs(vcpu);
		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
		run->hw.hardware_exit_reason = vcpu->arch.trap;
		return RESUME_HOST;
	}
1079 1080 1081 1082 1083 1084 1085 1086 1087
	run->exit_reason = KVM_EXIT_UNKNOWN;
	run->ready_for_interrupt_injection = 1;
	switch (vcpu->arch.trap) {
	/* We're good on these - the host merely wanted to get our attention */
	case BOOK3S_INTERRUPT_HV_DECREMENTER:
		vcpu->stat.dec_exits++;
		r = RESUME_GUEST;
		break;
	case BOOK3S_INTERRUPT_EXTERNAL:
1088
	case BOOK3S_INTERRUPT_H_DOORBELL:
1089
	case BOOK3S_INTERRUPT_H_VIRT:
1090 1091 1092
		vcpu->stat.ext_intr_exits++;
		r = RESUME_GUEST;
		break;
1093 1094
	/* HMI is hypervisor interrupt and host has handled it. Resume guest.*/
	case BOOK3S_INTERRUPT_HMI:
1095 1096 1097
	case BOOK3S_INTERRUPT_PERFMON:
		r = RESUME_GUEST;
		break;
1098
	case BOOK3S_INTERRUPT_MACHINE_CHECK:
1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112
		/* Exit to guest with KVM_EXIT_NMI as exit reason */
		run->exit_reason = KVM_EXIT_NMI;
		run->hw.hardware_exit_reason = vcpu->arch.trap;
		/* Clear out the old NMI status from run->flags */
		run->flags &= ~KVM_RUN_PPC_NMI_DISP_MASK;
		/* Now set the NMI status */
		if (vcpu->arch.mce_evt.disposition == MCE_DISPOSITION_RECOVERED)
			run->flags |= KVM_RUN_PPC_NMI_DISP_FULLY_RECOV;
		else
			run->flags |= KVM_RUN_PPC_NMI_DISP_NOT_RECOV;

		r = RESUME_HOST;
		/* Print the MCE event to host console. */
		machine_check_print_event_info(&vcpu->arch.mce_evt, false);
1113
		break;
1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132
	case BOOK3S_INTERRUPT_PROGRAM:
	{
		ulong flags;
		/*
		 * Normally program interrupts are delivered directly
		 * to the guest by the hardware, but we can get here
		 * as a result of a hypervisor emulation interrupt
		 * (e40) getting turned into a 700 by BML RTAS.
		 */
		flags = vcpu->arch.shregs.msr & 0x1f0000ull;
		kvmppc_core_queue_program(vcpu, flags);
		r = RESUME_GUEST;
		break;
	}
	case BOOK3S_INTERRUPT_SYSCALL:
	{
		/* hcall - punt to userspace */
		int i;

1133 1134 1135 1136
		/* hypercall with MSR_PR has already been handled in rmode,
		 * and never reaches here.
		 */

1137 1138 1139 1140 1141 1142 1143 1144 1145
		run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3);
		for (i = 0; i < 9; ++i)
			run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i);
		run->exit_reason = KVM_EXIT_PAPR_HCALL;
		vcpu->arch.hcall_needed = 1;
		r = RESUME_HOST;
		break;
	}
	/*
1146 1147 1148 1149 1150
	 * We get these next two if the guest accesses a page which it thinks
	 * it has mapped but which is not actually present, either because
	 * it is for an emulated I/O device or because the corresonding
	 * host page has been paged out.  Any other HDSI/HISI interrupts
	 * have been handled already.
1151 1152
	 */
	case BOOK3S_INTERRUPT_H_DATA_STORAGE:
1153
		r = RESUME_PAGE_FAULT;
1154 1155
		break;
	case BOOK3S_INTERRUPT_H_INST_STORAGE:
1156 1157 1158
		vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
		vcpu->arch.fault_dsisr = 0;
		r = RESUME_PAGE_FAULT;
1159 1160 1161
		break;
	/*
	 * This occurs if the guest executes an illegal instruction.
1162 1163 1164 1165
	 * If the guest debug is disabled, generate a program interrupt
	 * to the guest. If guest debug is enabled, we need to check
	 * whether the instruction is a software breakpoint instruction.
	 * Accordingly return to Guest or Host.
1166 1167
	 */
	case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
1168 1169 1170 1171
		if (vcpu->arch.emul_inst != KVM_INST_FETCH_FAILED)
			vcpu->arch.last_inst = kvmppc_need_byteswap(vcpu) ?
				swab32(vcpu->arch.emul_inst) :
				vcpu->arch.emul_inst;
1172 1173 1174 1175 1176 1177
		if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) {
			r = kvmppc_emulate_debug_inst(run, vcpu);
		} else {
			kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
			r = RESUME_GUEST;
		}
1178 1179 1180
		break;
	/*
	 * This occurs if the guest (kernel or userspace), does something that
1181 1182 1183 1184
	 * is prohibited by HFSCR.
	 * On POWER9, this could be a doorbell instruction that we need
	 * to emulate.
	 * Otherwise, we just generate a program interrupt to the guest.
1185 1186
	 */
	case BOOK3S_INTERRUPT_H_FAC_UNAVAIL:
1187 1188 1189 1190 1191 1192 1193
		r = EMULATE_FAIL;
		if ((vcpu->arch.hfscr >> 56) == FSCR_MSGP_LG)
			r = kvmppc_emulate_doorbell_instr(vcpu);
		if (r == EMULATE_FAIL) {
			kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
			r = RESUME_GUEST;
		}
1194
		break;
1195 1196 1197
	case BOOK3S_INTERRUPT_HV_RM_HARD:
		r = RESUME_PASSTHROUGH;
		break;
1198 1199 1200 1201 1202
	default:
		kvmppc_dump_regs(vcpu);
		printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
			vcpu->arch.trap, kvmppc_get_pc(vcpu),
			vcpu->arch.shregs.msr);
1203
		run->hw.hardware_exit_reason = vcpu->arch.trap;
1204 1205 1206 1207 1208 1209 1210
		r = RESUME_HOST;
		break;
	}

	return r;
}

1211 1212
static int kvm_arch_vcpu_ioctl_get_sregs_hv(struct kvm_vcpu *vcpu,
					    struct kvm_sregs *sregs)
1213 1214 1215 1216
{
	int i;

	memset(sregs, 0, sizeof(struct kvm_sregs));
1217
	sregs->pvr = vcpu->arch.pvr;
1218 1219 1220 1221 1222 1223 1224 1225
	for (i = 0; i < vcpu->arch.slb_max; i++) {
		sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige;
		sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
	}

	return 0;
}

1226 1227
static int kvm_arch_vcpu_ioctl_set_sregs_hv(struct kvm_vcpu *vcpu,
					    struct kvm_sregs *sregs)
1228 1229 1230
{
	int i, j;

1231 1232 1233
	/* Only accept the same PVR as the host's, since we can't spoof it */
	if (sregs->pvr != vcpu->arch.pvr)
		return -EINVAL;
1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247

	j = 0;
	for (i = 0; i < vcpu->arch.slb_nr; i++) {
		if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) {
			vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe;
			vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv;
			++j;
		}
	}
	vcpu->arch.slb_max = j;

	return 0;
}

1248 1249
static void kvmppc_set_lpcr(struct kvm_vcpu *vcpu, u64 new_lpcr,
		bool preserve_top32)
1250
{
1251
	struct kvm *kvm = vcpu->kvm;
1252 1253 1254
	struct kvmppc_vcore *vc = vcpu->arch.vcore;
	u64 mask;

1255
	mutex_lock(&kvm->lock);
1256
	spin_lock(&vc->lock);
1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274
	/*
	 * If ILE (interrupt little-endian) has changed, update the
	 * MSR_LE bit in the intr_msr for each vcpu in this vcore.
	 */
	if ((new_lpcr & LPCR_ILE) != (vc->lpcr & LPCR_ILE)) {
		struct kvm_vcpu *vcpu;
		int i;

		kvm_for_each_vcpu(i, vcpu, kvm) {
			if (vcpu->arch.vcore != vc)
				continue;
			if (new_lpcr & LPCR_ILE)
				vcpu->arch.intr_msr |= MSR_LE;
			else
				vcpu->arch.intr_msr &= ~MSR_LE;
		}
	}

1275 1276 1277
	/*
	 * Userspace can only modify DPFD (default prefetch depth),
	 * ILE (interrupt little-endian) and TC (translation control).
1278
	 * On POWER8 and POWER9 userspace can also modify AIL (alt. interrupt loc.).
1279 1280
	 */
	mask = LPCR_DPFD | LPCR_ILE | LPCR_TC;
1281 1282
	if (cpu_has_feature(CPU_FTR_ARCH_207S))
		mask |= LPCR_AIL;
1283 1284 1285 1286 1287 1288
	/*
	 * On POWER9, allow userspace to enable large decrementer for the
	 * guest, whether or not the host has it enabled.
	 */
	if (cpu_has_feature(CPU_FTR_ARCH_300))
		mask |= LPCR_LD;
1289 1290 1291 1292

	/* Broken 32-bit version of LPCR must not clear top bits */
	if (preserve_top32)
		mask &= 0xFFFFFFFF;
1293 1294
	vc->lpcr = (vc->lpcr & ~mask) | (new_lpcr & mask);
	spin_unlock(&vc->lock);
1295
	mutex_unlock(&kvm->lock);
1296 1297
}

1298 1299
static int kvmppc_get_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
				 union kvmppc_one_reg *val)
1300
{
1301 1302
	int r = 0;
	long int i;
1303

1304
	switch (id) {
1305 1306 1307
	case KVM_REG_PPC_DEBUG_INST:
		*val = get_reg_val(id, KVMPPC_INST_SW_BREAKPOINT);
		break;
1308
	case KVM_REG_PPC_HIOR:
1309 1310 1311 1312 1313
		*val = get_reg_val(id, 0);
		break;
	case KVM_REG_PPC_DABR:
		*val = get_reg_val(id, vcpu->arch.dabr);
		break;
1314 1315 1316
	case KVM_REG_PPC_DABRX:
		*val = get_reg_val(id, vcpu->arch.dabrx);
		break;
1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331
	case KVM_REG_PPC_DSCR:
		*val = get_reg_val(id, vcpu->arch.dscr);
		break;
	case KVM_REG_PPC_PURR:
		*val = get_reg_val(id, vcpu->arch.purr);
		break;
	case KVM_REG_PPC_SPURR:
		*val = get_reg_val(id, vcpu->arch.spurr);
		break;
	case KVM_REG_PPC_AMR:
		*val = get_reg_val(id, vcpu->arch.amr);
		break;
	case KVM_REG_PPC_UAMOR:
		*val = get_reg_val(id, vcpu->arch.uamor);
		break;
1332
	case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS:
1333 1334 1335 1336 1337 1338
		i = id - KVM_REG_PPC_MMCR0;
		*val = get_reg_val(id, vcpu->arch.mmcr[i]);
		break;
	case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
		i = id - KVM_REG_PPC_PMC1;
		*val = get_reg_val(id, vcpu->arch.pmc[i]);
1339
		break;
1340 1341 1342 1343
	case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
		i = id - KVM_REG_PPC_SPMC1;
		*val = get_reg_val(id, vcpu->arch.spmc[i]);
		break;
1344 1345 1346 1347 1348 1349
	case KVM_REG_PPC_SIAR:
		*val = get_reg_val(id, vcpu->arch.siar);
		break;
	case KVM_REG_PPC_SDAR:
		*val = get_reg_val(id, vcpu->arch.sdar);
		break;
1350 1351
	case KVM_REG_PPC_SIER:
		*val = get_reg_val(id, vcpu->arch.sier);
1352
		break;
1353 1354 1355 1356 1357 1358 1359 1360 1361
	case KVM_REG_PPC_IAMR:
		*val = get_reg_val(id, vcpu->arch.iamr);
		break;
	case KVM_REG_PPC_PSPB:
		*val = get_reg_val(id, vcpu->arch.pspb);
		break;
	case KVM_REG_PPC_DPDES:
		*val = get_reg_val(id, vcpu->arch.vcore->dpdes);
		break;
1362 1363 1364
	case KVM_REG_PPC_VTB:
		*val = get_reg_val(id, vcpu->arch.vcore->vtb);
		break;
1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390
	case KVM_REG_PPC_DAWR:
		*val = get_reg_val(id, vcpu->arch.dawr);
		break;
	case KVM_REG_PPC_DAWRX:
		*val = get_reg_val(id, vcpu->arch.dawrx);
		break;
	case KVM_REG_PPC_CIABR:
		*val = get_reg_val(id, vcpu->arch.ciabr);
		break;
	case KVM_REG_PPC_CSIGR:
		*val = get_reg_val(id, vcpu->arch.csigr);
		break;
	case KVM_REG_PPC_TACR:
		*val = get_reg_val(id, vcpu->arch.tacr);
		break;
	case KVM_REG_PPC_TCSCR:
		*val = get_reg_val(id, vcpu->arch.tcscr);
		break;
	case KVM_REG_PPC_PID:
		*val = get_reg_val(id, vcpu->arch.pid);
		break;
	case KVM_REG_PPC_ACOP:
		*val = get_reg_val(id, vcpu->arch.acop);
		break;
	case KVM_REG_PPC_WORT:
		*val = get_reg_val(id, vcpu->arch.wort);
1391
		break;
1392 1393 1394 1395 1396 1397
	case KVM_REG_PPC_TIDR:
		*val = get_reg_val(id, vcpu->arch.tid);
		break;
	case KVM_REG_PPC_PSSCR:
		*val = get_reg_val(id, vcpu->arch.psscr);
		break;
1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414
	case KVM_REG_PPC_VPA_ADDR:
		spin_lock(&vcpu->arch.vpa_update_lock);
		*val = get_reg_val(id, vcpu->arch.vpa.next_gpa);
		spin_unlock(&vcpu->arch.vpa_update_lock);
		break;
	case KVM_REG_PPC_VPA_SLB:
		spin_lock(&vcpu->arch.vpa_update_lock);
		val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa;
		val->vpaval.length = vcpu->arch.slb_shadow.len;
		spin_unlock(&vcpu->arch.vpa_update_lock);
		break;
	case KVM_REG_PPC_VPA_DTL:
		spin_lock(&vcpu->arch.vpa_update_lock);
		val->vpaval.addr = vcpu->arch.dtl.next_gpa;
		val->vpaval.length = vcpu->arch.dtl.len;
		spin_unlock(&vcpu->arch.vpa_update_lock);
		break;
1415 1416 1417
	case KVM_REG_PPC_TB_OFFSET:
		*val = get_reg_val(id, vcpu->arch.vcore->tb_offset);
		break;
1418
	case KVM_REG_PPC_LPCR:
1419
	case KVM_REG_PPC_LPCR_64:
1420 1421
		*val = get_reg_val(id, vcpu->arch.vcore->lpcr);
		break;
1422 1423 1424
	case KVM_REG_PPC_PPR:
		*val = get_reg_val(id, vcpu->arch.ppr);
		break;
1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
	case KVM_REG_PPC_TFHAR:
		*val = get_reg_val(id, vcpu->arch.tfhar);
		break;
	case KVM_REG_PPC_TFIAR:
		*val = get_reg_val(id, vcpu->arch.tfiar);
		break;
	case KVM_REG_PPC_TEXASR:
		*val = get_reg_val(id, vcpu->arch.texasr);
		break;
	case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
		i = id - KVM_REG_PPC_TM_GPR0;
		*val = get_reg_val(id, vcpu->arch.gpr_tm[i]);
		break;
	case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
	{
		int j;
		i = id - KVM_REG_PPC_TM_VSR0;
		if (i < 32)
			for (j = 0; j < TS_FPRWIDTH; j++)
				val->vsxval[j] = vcpu->arch.fp_tm.fpr[i][j];
		else {
			if (cpu_has_feature(CPU_FTR_ALTIVEC))
				val->vval = vcpu->arch.vr_tm.vr[i-32];
			else
				r = -ENXIO;
		}
		break;
	}
	case KVM_REG_PPC_TM_CR:
		*val = get_reg_val(id, vcpu->arch.cr_tm);
		break;
1457 1458 1459
	case KVM_REG_PPC_TM_XER:
		*val = get_reg_val(id, vcpu->arch.xer_tm);
		break;
1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490
	case KVM_REG_PPC_TM_LR:
		*val = get_reg_val(id, vcpu->arch.lr_tm);
		break;
	case KVM_REG_PPC_TM_CTR:
		*val = get_reg_val(id, vcpu->arch.ctr_tm);
		break;
	case KVM_REG_PPC_TM_FPSCR:
		*val = get_reg_val(id, vcpu->arch.fp_tm.fpscr);
		break;
	case KVM_REG_PPC_TM_AMR:
		*val = get_reg_val(id, vcpu->arch.amr_tm);
		break;
	case KVM_REG_PPC_TM_PPR:
		*val = get_reg_val(id, vcpu->arch.ppr_tm);
		break;
	case KVM_REG_PPC_TM_VRSAVE:
		*val = get_reg_val(id, vcpu->arch.vrsave_tm);
		break;
	case KVM_REG_PPC_TM_VSCR:
		if (cpu_has_feature(CPU_FTR_ALTIVEC))
			*val = get_reg_val(id, vcpu->arch.vr_tm.vscr.u[3]);
		else
			r = -ENXIO;
		break;
	case KVM_REG_PPC_TM_DSCR:
		*val = get_reg_val(id, vcpu->arch.dscr_tm);
		break;
	case KVM_REG_PPC_TM_TAR:
		*val = get_reg_val(id, vcpu->arch.tar_tm);
		break;
#endif
1491 1492 1493
	case KVM_REG_PPC_ARCH_COMPAT:
		*val = get_reg_val(id, vcpu->arch.vcore->arch_compat);
		break;
1494
	default:
1495
		r = -EINVAL;
1496 1497 1498 1499 1500 1501
		break;
	}

	return r;
}

1502 1503
static int kvmppc_set_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
				 union kvmppc_one_reg *val)
1504
{
1505 1506
	int r = 0;
	long int i;
1507
	unsigned long addr, len;
1508

1509
	switch (id) {
1510 1511
	case KVM_REG_PPC_HIOR:
		/* Only allow this to be set to zero */
1512
		if (set_reg_val(id, *val))
1513 1514
			r = -EINVAL;
		break;
1515 1516 1517
	case KVM_REG_PPC_DABR:
		vcpu->arch.dabr = set_reg_val(id, *val);
		break;
1518 1519 1520
	case KVM_REG_PPC_DABRX:
		vcpu->arch.dabrx = set_reg_val(id, *val) & ~DABRX_HYP;
		break;
1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535
	case KVM_REG_PPC_DSCR:
		vcpu->arch.dscr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_PURR:
		vcpu->arch.purr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_SPURR:
		vcpu->arch.spurr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_AMR:
		vcpu->arch.amr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_UAMOR:
		vcpu->arch.uamor = set_reg_val(id, *val);
		break;
1536
	case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS:
1537 1538 1539 1540 1541 1542 1543
		i = id - KVM_REG_PPC_MMCR0;
		vcpu->arch.mmcr[i] = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
		i = id - KVM_REG_PPC_PMC1;
		vcpu->arch.pmc[i] = set_reg_val(id, *val);
		break;
1544 1545 1546 1547
	case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
		i = id - KVM_REG_PPC_SPMC1;
		vcpu->arch.spmc[i] = set_reg_val(id, *val);
		break;
1548 1549 1550 1551 1552 1553
	case KVM_REG_PPC_SIAR:
		vcpu->arch.siar = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_SDAR:
		vcpu->arch.sdar = set_reg_val(id, *val);
		break;
1554 1555
	case KVM_REG_PPC_SIER:
		vcpu->arch.sier = set_reg_val(id, *val);
1556
		break;
1557 1558 1559 1560 1561 1562 1563 1564 1565
	case KVM_REG_PPC_IAMR:
		vcpu->arch.iamr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_PSPB:
		vcpu->arch.pspb = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_DPDES:
		vcpu->arch.vcore->dpdes = set_reg_val(id, *val);
		break;
1566 1567 1568
	case KVM_REG_PPC_VTB:
		vcpu->arch.vcore->vtb = set_reg_val(id, *val);
		break;
1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597
	case KVM_REG_PPC_DAWR:
		vcpu->arch.dawr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_DAWRX:
		vcpu->arch.dawrx = set_reg_val(id, *val) & ~DAWRX_HYP;
		break;
	case KVM_REG_PPC_CIABR:
		vcpu->arch.ciabr = set_reg_val(id, *val);
		/* Don't allow setting breakpoints in hypervisor code */
		if ((vcpu->arch.ciabr & CIABR_PRIV) == CIABR_PRIV_HYPER)
			vcpu->arch.ciabr &= ~CIABR_PRIV;	/* disable */
		break;
	case KVM_REG_PPC_CSIGR:
		vcpu->arch.csigr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TACR:
		vcpu->arch.tacr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TCSCR:
		vcpu->arch.tcscr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_PID:
		vcpu->arch.pid = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_ACOP:
		vcpu->arch.acop = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_WORT:
		vcpu->arch.wort = set_reg_val(id, *val);
1598
		break;
1599 1600 1601 1602 1603 1604
	case KVM_REG_PPC_TIDR:
		vcpu->arch.tid = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_PSSCR:
		vcpu->arch.psscr = set_reg_val(id, *val) & PSSCR_GUEST_VIS;
		break;
1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624
	case KVM_REG_PPC_VPA_ADDR:
		addr = set_reg_val(id, *val);
		r = -EINVAL;
		if (!addr && (vcpu->arch.slb_shadow.next_gpa ||
			      vcpu->arch.dtl.next_gpa))
			break;
		r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca));
		break;
	case KVM_REG_PPC_VPA_SLB:
		addr = val->vpaval.addr;
		len = val->vpaval.length;
		r = -EINVAL;
		if (addr && !vcpu->arch.vpa.next_gpa)
			break;
		r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len);
		break;
	case KVM_REG_PPC_VPA_DTL:
		addr = val->vpaval.addr;
		len = val->vpaval.length;
		r = -EINVAL;
1625 1626
		if (addr && (len < sizeof(struct dtl_entry) ||
			     !vcpu->arch.vpa.next_gpa))
1627 1628 1629 1630
			break;
		len -= len % sizeof(struct dtl_entry);
		r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len);
		break;
1631
	case KVM_REG_PPC_TB_OFFSET:
1632 1633 1634 1635 1636 1637 1638 1639
		/*
		 * POWER9 DD1 has an erratum where writing TBU40 causes
		 * the timebase to lose ticks.  So we don't let the
		 * timebase offset be changed on P9 DD1.  (It is
		 * initialized to zero.)
		 */
		if (cpu_has_feature(CPU_FTR_POWER9_DD1))
			break;
1640 1641 1642 1643
		/* round up to multiple of 2^24 */
		vcpu->arch.vcore->tb_offset =
			ALIGN(set_reg_val(id, *val), 1UL << 24);
		break;
1644
	case KVM_REG_PPC_LPCR:
1645 1646 1647 1648
		kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), true);
		break;
	case KVM_REG_PPC_LPCR_64:
		kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), false);
1649
		break;
1650 1651 1652
	case KVM_REG_PPC_PPR:
		vcpu->arch.ppr = set_reg_val(id, *val);
		break;
1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
	case KVM_REG_PPC_TFHAR:
		vcpu->arch.tfhar = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TFIAR:
		vcpu->arch.tfiar = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TEXASR:
		vcpu->arch.texasr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
		i = id - KVM_REG_PPC_TM_GPR0;
		vcpu->arch.gpr_tm[i] = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
	{
		int j;
		i = id - KVM_REG_PPC_TM_VSR0;
		if (i < 32)
			for (j = 0; j < TS_FPRWIDTH; j++)
				vcpu->arch.fp_tm.fpr[i][j] = val->vsxval[j];
		else
			if (cpu_has_feature(CPU_FTR_ALTIVEC))
				vcpu->arch.vr_tm.vr[i-32] = val->vval;
			else
				r = -ENXIO;
		break;
	}
	case KVM_REG_PPC_TM_CR:
		vcpu->arch.cr_tm = set_reg_val(id, *val);
		break;
1684 1685 1686
	case KVM_REG_PPC_TM_XER:
		vcpu->arch.xer_tm = set_reg_val(id, *val);
		break;
1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717
	case KVM_REG_PPC_TM_LR:
		vcpu->arch.lr_tm = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_CTR:
		vcpu->arch.ctr_tm = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_FPSCR:
		vcpu->arch.fp_tm.fpscr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_AMR:
		vcpu->arch.amr_tm = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_PPR:
		vcpu->arch.ppr_tm = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_VRSAVE:
		vcpu->arch.vrsave_tm = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_VSCR:
		if (cpu_has_feature(CPU_FTR_ALTIVEC))
			vcpu->arch.vr.vscr.u[3] = set_reg_val(id, *val);
		else
			r = - ENXIO;
		break;
	case KVM_REG_PPC_TM_DSCR:
		vcpu->arch.dscr_tm = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_TAR:
		vcpu->arch.tar_tm = set_reg_val(id, *val);
		break;
#endif
1718 1719 1720
	case KVM_REG_PPC_ARCH_COMPAT:
		r = kvmppc_set_arch_compat(vcpu, set_reg_val(id, *val));
		break;
1721
	default:
1722
		r = -EINVAL;
1723 1724 1725 1726 1727 1728
		break;
	}

	return r;
}

1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742
/*
 * On POWER9, threads are independent and can be in different partitions.
 * Therefore we consider each thread to be a subcore.
 * There is a restriction that all threads have to be in the same
 * MMU mode (radix or HPT), unfortunately, but since we only support
 * HPT guests on a HPT host so far, that isn't an impediment yet.
 */
static int threads_per_vcore(void)
{
	if (cpu_has_feature(CPU_FTR_ARCH_300))
		return 1;
	return threads_per_subcore;
}

1743 1744 1745 1746 1747 1748 1749 1750 1751 1752
static struct kvmppc_vcore *kvmppc_vcore_create(struct kvm *kvm, int core)
{
	struct kvmppc_vcore *vcore;

	vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL);

	if (vcore == NULL)
		return NULL;

	spin_lock_init(&vcore->lock);
1753
	spin_lock_init(&vcore->stoltb_lock);
1754
	init_swait_queue_head(&vcore->wq);
1755 1756
	vcore->preempt_tb = TB_NIL;
	vcore->lpcr = kvm->arch.lpcr;
1757
	vcore->first_vcpuid = core * kvm->arch.smt_mode;
1758
	vcore->kvm = kvm;
1759
	INIT_LIST_HEAD(&vcore->preempt_list);
1760 1761 1762 1763

	return vcore;
}

1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775
#ifdef CONFIG_KVM_BOOK3S_HV_EXIT_TIMING
static struct debugfs_timings_element {
	const char *name;
	size_t offset;
} timings[] = {
	{"rm_entry",	offsetof(struct kvm_vcpu, arch.rm_entry)},
	{"rm_intr",	offsetof(struct kvm_vcpu, arch.rm_intr)},
	{"rm_exit",	offsetof(struct kvm_vcpu, arch.rm_exit)},
	{"guest",	offsetof(struct kvm_vcpu, arch.guest_time)},
	{"cede",	offsetof(struct kvm_vcpu, arch.cede_time)},
};

1776
#define N_TIMINGS	(ARRAY_SIZE(timings))
1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911

struct debugfs_timings_state {
	struct kvm_vcpu	*vcpu;
	unsigned int	buflen;
	char		buf[N_TIMINGS * 100];
};

static int debugfs_timings_open(struct inode *inode, struct file *file)
{
	struct kvm_vcpu *vcpu = inode->i_private;
	struct debugfs_timings_state *p;

	p = kzalloc(sizeof(*p), GFP_KERNEL);
	if (!p)
		return -ENOMEM;

	kvm_get_kvm(vcpu->kvm);
	p->vcpu = vcpu;
	file->private_data = p;

	return nonseekable_open(inode, file);
}

static int debugfs_timings_release(struct inode *inode, struct file *file)
{
	struct debugfs_timings_state *p = file->private_data;

	kvm_put_kvm(p->vcpu->kvm);
	kfree(p);
	return 0;
}

static ssize_t debugfs_timings_read(struct file *file, char __user *buf,
				    size_t len, loff_t *ppos)
{
	struct debugfs_timings_state *p = file->private_data;
	struct kvm_vcpu *vcpu = p->vcpu;
	char *s, *buf_end;
	struct kvmhv_tb_accumulator tb;
	u64 count;
	loff_t pos;
	ssize_t n;
	int i, loops;
	bool ok;

	if (!p->buflen) {
		s = p->buf;
		buf_end = s + sizeof(p->buf);
		for (i = 0; i < N_TIMINGS; ++i) {
			struct kvmhv_tb_accumulator *acc;

			acc = (struct kvmhv_tb_accumulator *)
				((unsigned long)vcpu + timings[i].offset);
			ok = false;
			for (loops = 0; loops < 1000; ++loops) {
				count = acc->seqcount;
				if (!(count & 1)) {
					smp_rmb();
					tb = *acc;
					smp_rmb();
					if (count == acc->seqcount) {
						ok = true;
						break;
					}
				}
				udelay(1);
			}
			if (!ok)
				snprintf(s, buf_end - s, "%s: stuck\n",
					timings[i].name);
			else
				snprintf(s, buf_end - s,
					"%s: %llu %llu %llu %llu\n",
					timings[i].name, count / 2,
					tb_to_ns(tb.tb_total),
					tb_to_ns(tb.tb_min),
					tb_to_ns(tb.tb_max));
			s += strlen(s);
		}
		p->buflen = s - p->buf;
	}

	pos = *ppos;
	if (pos >= p->buflen)
		return 0;
	if (len > p->buflen - pos)
		len = p->buflen - pos;
	n = copy_to_user(buf, p->buf + pos, len);
	if (n) {
		if (n == len)
			return -EFAULT;
		len -= n;
	}
	*ppos = pos + len;
	return len;
}

static ssize_t debugfs_timings_write(struct file *file, const char __user *buf,
				     size_t len, loff_t *ppos)
{
	return -EACCES;
}

static const struct file_operations debugfs_timings_ops = {
	.owner	 = THIS_MODULE,
	.open	 = debugfs_timings_open,
	.release = debugfs_timings_release,
	.read	 = debugfs_timings_read,
	.write	 = debugfs_timings_write,
	.llseek	 = generic_file_llseek,
};

/* Create a debugfs directory for the vcpu */
static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id)
{
	char buf[16];
	struct kvm *kvm = vcpu->kvm;

	snprintf(buf, sizeof(buf), "vcpu%u", id);
	if (IS_ERR_OR_NULL(kvm->arch.debugfs_dir))
		return;
	vcpu->arch.debugfs_dir = debugfs_create_dir(buf, kvm->arch.debugfs_dir);
	if (IS_ERR_OR_NULL(vcpu->arch.debugfs_dir))
		return;
	vcpu->arch.debugfs_timings =
		debugfs_create_file("timings", 0444, vcpu->arch.debugfs_dir,
				    vcpu, &debugfs_timings_ops);
}

#else /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id)
{
}
#endif /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */

1912 1913
static struct kvm_vcpu *kvmppc_core_vcpu_create_hv(struct kvm *kvm,
						   unsigned int id)
1914 1915
{
	struct kvm_vcpu *vcpu;
1916
	int err;
1917 1918
	int core;
	struct kvmppc_vcore *vcore;
1919

1920
	err = -ENOMEM;
1921
	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
1922 1923 1924 1925 1926 1927 1928 1929
	if (!vcpu)
		goto out;

	err = kvm_vcpu_init(vcpu, kvm, id);
	if (err)
		goto free_vcpu;

	vcpu->arch.shared = &vcpu->arch.shregs;
1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940
#ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
	/*
	 * The shared struct is never shared on HV,
	 * so we can always use host endianness
	 */
#ifdef __BIG_ENDIAN__
	vcpu->arch.shared_big_endian = true;
#else
	vcpu->arch.shared_big_endian = false;
#endif
#endif
1941 1942 1943
	vcpu->arch.mmcr[0] = MMCR0_FC;
	vcpu->arch.ctrl = CTRL_RUNLATCH;
	/* default to host PVR, since we can't spoof it */
1944
	kvmppc_set_pvr_hv(vcpu, mfspr(SPRN_PVR));
1945
	spin_lock_init(&vcpu->arch.vpa_update_lock);
1946 1947
	spin_lock_init(&vcpu->arch.tbacct_lock);
	vcpu->arch.busy_preempt = TB_NIL;
1948
	vcpu->arch.intr_msr = MSR_SF | MSR_ME;
1949

1950 1951 1952 1953 1954
	/*
	 * Set the default HFSCR for the guest from the host value.
	 * This value is only used on POWER9.
	 * On POWER9 DD1, TM doesn't work, so we make sure to
	 * prevent the guest from using it.
1955 1956
	 * On POWER9, we want to virtualize the doorbell facility, so we
	 * turn off the HFSCR bit, which causes those instructions to trap.
1957 1958 1959 1960
	 */
	vcpu->arch.hfscr = mfspr(SPRN_HFSCR);
	if (!cpu_has_feature(CPU_FTR_TM))
		vcpu->arch.hfscr &= ~HFSCR_TM;
1961 1962
	if (cpu_has_feature(CPU_FTR_ARCH_300))
		vcpu->arch.hfscr &= ~HFSCR_MSGP;
1963

1964 1965
	kvmppc_mmu_book3s_hv_init(vcpu);

1966
	vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
1967 1968 1969 1970

	init_waitqueue_head(&vcpu->arch.cpu_run);

	mutex_lock(&kvm->lock);
1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981
	vcore = NULL;
	err = -EINVAL;
	core = id / kvm->arch.smt_mode;
	if (core < KVM_MAX_VCORES) {
		vcore = kvm->arch.vcores[core];
		if (!vcore) {
			err = -ENOMEM;
			vcore = kvmppc_vcore_create(kvm, core);
			kvm->arch.vcores[core] = vcore;
			kvm->arch.online_vcores++;
		}
1982 1983 1984 1985 1986 1987 1988 1989 1990 1991
	}
	mutex_unlock(&kvm->lock);

	if (!vcore)
		goto free_vcpu;

	spin_lock(&vcore->lock);
	++vcore->num_threads;
	spin_unlock(&vcore->lock);
	vcpu->arch.vcore = vcore;
1992
	vcpu->arch.ptid = vcpu->vcpu_id - vcore->first_vcpuid;
1993
	vcpu->arch.thread_cpu = -1;
1994
	vcpu->arch.prev_cpu = -1;
1995

1996 1997 1998
	vcpu->arch.cpu_type = KVM_CPU_3S_64;
	kvmppc_sanity_check(vcpu);

1999 2000
	debugfs_vcpu_init(vcpu, id);

2001 2002 2003
	return vcpu;

free_vcpu:
2004
	kmem_cache_free(kvm_vcpu_cache, vcpu);
2005 2006 2007 2008
out:
	return ERR_PTR(err);
}

2009 2010 2011 2012
static int kvmhv_set_smt_mode(struct kvm *kvm, unsigned long smt_mode,
			      unsigned long flags)
{
	int err;
2013
	int esmt = 0;
2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030

	if (flags)
		return -EINVAL;
	if (smt_mode > MAX_SMT_THREADS || !is_power_of_2(smt_mode))
		return -EINVAL;
	if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
		/*
		 * On POWER8 (or POWER7), the threading mode is "strict",
		 * so we pack smt_mode vcpus per vcore.
		 */
		if (smt_mode > threads_per_subcore)
			return -EINVAL;
	} else {
		/*
		 * On POWER9, the threading mode is "loose",
		 * so each vcpu gets its own vcore.
		 */
2031
		esmt = smt_mode;
2032 2033 2034 2035 2036 2037
		smt_mode = 1;
	}
	mutex_lock(&kvm->lock);
	err = -EBUSY;
	if (!kvm->arch.online_vcores) {
		kvm->arch.smt_mode = smt_mode;
2038
		kvm->arch.emul_smt_mode = esmt;
2039 2040 2041 2042 2043 2044 2045
		err = 0;
	}
	mutex_unlock(&kvm->lock);

	return err;
}

2046 2047 2048 2049 2050 2051 2052
static void unpin_vpa(struct kvm *kvm, struct kvmppc_vpa *vpa)
{
	if (vpa->pinned_addr)
		kvmppc_unpin_guest_page(kvm, vpa->pinned_addr, vpa->gpa,
					vpa->dirty);
}

2053
static void kvmppc_core_vcpu_free_hv(struct kvm_vcpu *vcpu)
2054
{
2055
	spin_lock(&vcpu->arch.vpa_update_lock);
2056 2057 2058
	unpin_vpa(vcpu->kvm, &vcpu->arch.dtl);
	unpin_vpa(vcpu->kvm, &vcpu->arch.slb_shadow);
	unpin_vpa(vcpu->kvm, &vcpu->arch.vpa);
2059
	spin_unlock(&vcpu->arch.vpa_update_lock);
2060
	kvm_vcpu_uninit(vcpu);
2061
	kmem_cache_free(kvm_vcpu_cache, vcpu);
2062 2063
}

2064 2065 2066 2067 2068 2069
static int kvmppc_core_check_requests_hv(struct kvm_vcpu *vcpu)
{
	/* Indicate we want to get back into the guest */
	return 1;
}

2070
static void kvmppc_set_timer(struct kvm_vcpu *vcpu)
2071
{
2072
	unsigned long dec_nsec, now;
2073

2074 2075 2076 2077
	now = get_tb();
	if (now > vcpu->arch.dec_expires) {
		/* decrementer has already gone negative */
		kvmppc_core_queue_dec(vcpu);
2078
		kvmppc_core_prepare_to_enter(vcpu);
2079
		return;
2080
	}
2081 2082
	dec_nsec = (vcpu->arch.dec_expires - now) * NSEC_PER_SEC
		   / tb_ticks_per_sec;
T
Thomas Gleixner 已提交
2083
	hrtimer_start(&vcpu->arch.dec_timer, dec_nsec, HRTIMER_MODE_REL);
2084
	vcpu->arch.timer_running = 1;
2085 2086
}

2087
static void kvmppc_end_cede(struct kvm_vcpu *vcpu)
2088
{
2089 2090 2091 2092 2093
	vcpu->arch.ceded = 0;
	if (vcpu->arch.timer_running) {
		hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
		vcpu->arch.timer_running = 0;
	}
2094 2095
}

2096
extern int __kvmppc_vcore_entry(void);
2097

2098 2099
static void kvmppc_remove_runnable(struct kvmppc_vcore *vc,
				   struct kvm_vcpu *vcpu)
2100
{
2101 2102
	u64 now;

2103 2104
	if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
		return;
2105
	spin_lock_irq(&vcpu->arch.tbacct_lock);
2106 2107 2108 2109 2110
	now = mftb();
	vcpu->arch.busy_stolen += vcore_stolen_time(vc, now) -
		vcpu->arch.stolen_logged;
	vcpu->arch.busy_preempt = now;
	vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
2111
	spin_unlock_irq(&vcpu->arch.tbacct_lock);
2112
	--vc->n_runnable;
2113
	WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], NULL);
2114 2115
}

2116 2117 2118
static int kvmppc_grab_hwthread(int cpu)
{
	struct paca_struct *tpaca;
2119
	long timeout = 10000;
2120 2121 2122 2123

	tpaca = &paca[cpu];

	/* Ensure the thread won't go into the kernel if it wakes */
2124
	tpaca->kvm_hstate.kvm_vcpu = NULL;
2125
	tpaca->kvm_hstate.kvm_vcore = NULL;
2126 2127 2128
	tpaca->kvm_hstate.napping = 0;
	smp_wmb();
	tpaca->kvm_hstate.hwthread_req = 1;
2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154

	/*
	 * If the thread is already executing in the kernel (e.g. handling
	 * a stray interrupt), wait for it to get back to nap mode.
	 * The smp_mb() is to ensure that our setting of hwthread_req
	 * is visible before we look at hwthread_state, so if this
	 * races with the code at system_reset_pSeries and the thread
	 * misses our setting of hwthread_req, we are sure to see its
	 * setting of hwthread_state, and vice versa.
	 */
	smp_mb();
	while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) {
		if (--timeout <= 0) {
			pr_err("KVM: couldn't grab cpu %d\n", cpu);
			return -EBUSY;
		}
		udelay(1);
	}
	return 0;
}

static void kvmppc_release_hwthread(int cpu)
{
	struct paca_struct *tpaca;

	tpaca = &paca[cpu];
2155
	tpaca->kvm_hstate.hwthread_req = 0;
2156
	tpaca->kvm_hstate.kvm_vcpu = NULL;
2157 2158
	tpaca->kvm_hstate.kvm_vcore = NULL;
	tpaca->kvm_hstate.kvm_split_mode = NULL;
2159 2160
}

2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177
static void radix_flush_cpu(struct kvm *kvm, int cpu, struct kvm_vcpu *vcpu)
{
	int i;

	cpu = cpu_first_thread_sibling(cpu);
	cpumask_set_cpu(cpu, &kvm->arch.need_tlb_flush);
	/*
	 * Make sure setting of bit in need_tlb_flush precedes
	 * testing of cpu_in_guest bits.  The matching barrier on
	 * the other side is the first smp_mb() in kvmppc_run_core().
	 */
	smp_mb();
	for (i = 0; i < threads_per_core; ++i)
		if (cpumask_test_cpu(cpu + i, &kvm->arch.cpu_in_guest))
			smp_call_function_single(cpu + i, do_nothing, NULL, 1);
}

2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202
static void kvmppc_prepare_radix_vcpu(struct kvm_vcpu *vcpu, int pcpu)
{
	struct kvm *kvm = vcpu->kvm;

	/*
	 * With radix, the guest can do TLB invalidations itself,
	 * and it could choose to use the local form (tlbiel) if
	 * it is invalidating a translation that has only ever been
	 * used on one vcpu.  However, that doesn't mean it has
	 * only ever been used on one physical cpu, since vcpus
	 * can move around between pcpus.  To cope with this, when
	 * a vcpu moves from one pcpu to another, we need to tell
	 * any vcpus running on the same core as this vcpu previously
	 * ran to flush the TLB.  The TLB is shared between threads,
	 * so we use a single bit in .need_tlb_flush for all 4 threads.
	 */
	if (vcpu->arch.prev_cpu != pcpu) {
		if (vcpu->arch.prev_cpu >= 0 &&
		    cpu_first_thread_sibling(vcpu->arch.prev_cpu) !=
		    cpu_first_thread_sibling(pcpu))
			radix_flush_cpu(kvm, vcpu->arch.prev_cpu, vcpu);
		vcpu->arch.prev_cpu = pcpu;
	}
}

2203
static void kvmppc_start_thread(struct kvm_vcpu *vcpu, struct kvmppc_vcore *vc)
2204 2205 2206
{
	int cpu;
	struct paca_struct *tpaca;
2207
	struct kvm *kvm = vc->kvm;
2208

2209 2210 2211 2212 2213 2214 2215
	cpu = vc->pcpu;
	if (vcpu) {
		if (vcpu->arch.timer_running) {
			hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
			vcpu->arch.timer_running = 0;
		}
		cpu += vcpu->arch.ptid;
2216
		vcpu->cpu = vc->pcpu;
2217
		vcpu->arch.thread_cpu = cpu;
2218
		cpumask_set_cpu(cpu, &kvm->arch.cpu_in_guest);
2219
	}
2220
	tpaca = &paca[cpu];
2221
	tpaca->kvm_hstate.kvm_vcpu = vcpu;
2222
	tpaca->kvm_hstate.ptid = cpu - vc->pcpu;
2223
	/* Order stores to hstate.kvm_vcpu etc. before store to kvm_vcore */
2224
	smp_wmb();
2225
	tpaca->kvm_hstate.kvm_vcore = vc;
2226
	if (cpu != smp_processor_id())
2227
		kvmppc_ipi_thread(cpu);
2228
}
2229

2230
static void kvmppc_wait_for_nap(void)
2231
{
2232 2233
	int cpu = smp_processor_id();
	int i, loops;
2234
	int n_threads = threads_per_vcore();
2235

2236 2237
	if (n_threads <= 1)
		return;
2238 2239 2240
	for (loops = 0; loops < 1000000; ++loops) {
		/*
		 * Check if all threads are finished.
2241
		 * We set the vcore pointer when starting a thread
2242
		 * and the thread clears it when finished, so we look
2243
		 * for any threads that still have a non-NULL vcore ptr.
2244
		 */
2245
		for (i = 1; i < n_threads; ++i)
2246
			if (paca[cpu + i].kvm_hstate.kvm_vcore)
2247
				break;
2248
		if (i == n_threads) {
2249 2250
			HMT_medium();
			return;
2251
		}
2252
		HMT_low();
2253 2254
	}
	HMT_medium();
2255
	for (i = 1; i < n_threads; ++i)
2256
		if (paca[cpu + i].kvm_hstate.kvm_vcore)
2257
			pr_err("KVM: CPU %d seems to be stuck\n", cpu + i);
2258 2259 2260 2261
}

/*
 * Check that we are on thread 0 and that any other threads in
2262 2263
 * this core are off-line.  Then grab the threads so they can't
 * enter the kernel.
2264 2265 2266 2267
 */
static int on_primary_thread(void)
{
	int cpu = smp_processor_id();
2268
	int thr;
2269

2270 2271
	/* Are we on a primary subcore? */
	if (cpu_thread_in_subcore(cpu))
2272
		return 0;
2273 2274 2275

	thr = 0;
	while (++thr < threads_per_subcore)
2276 2277
		if (cpu_online(cpu + thr))
			return 0;
2278 2279

	/* Grab all hw threads so they can't go into the kernel */
2280
	for (thr = 1; thr < threads_per_subcore; ++thr) {
2281 2282 2283 2284 2285 2286 2287 2288
		if (kvmppc_grab_hwthread(cpu + thr)) {
			/* Couldn't grab one; let the others go */
			do {
				kvmppc_release_hwthread(cpu + thr);
			} while (--thr > 0);
			return 0;
		}
	}
2289 2290 2291
	return 1;
}

2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320
/*
 * A list of virtual cores for each physical CPU.
 * These are vcores that could run but their runner VCPU tasks are
 * (or may be) preempted.
 */
struct preempted_vcore_list {
	struct list_head	list;
	spinlock_t		lock;
};

static DEFINE_PER_CPU(struct preempted_vcore_list, preempted_vcores);

static void init_vcore_lists(void)
{
	int cpu;

	for_each_possible_cpu(cpu) {
		struct preempted_vcore_list *lp = &per_cpu(preempted_vcores, cpu);
		spin_lock_init(&lp->lock);
		INIT_LIST_HEAD(&lp->list);
	}
}

static void kvmppc_vcore_preempt(struct kvmppc_vcore *vc)
{
	struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);

	vc->vcore_state = VCORE_PREEMPT;
	vc->pcpu = smp_processor_id();
2321
	if (vc->num_threads < threads_per_vcore()) {
2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332
		spin_lock(&lp->lock);
		list_add_tail(&vc->preempt_list, &lp->list);
		spin_unlock(&lp->lock);
	}

	/* Start accumulating stolen time */
	kvmppc_core_start_stolen(vc);
}

static void kvmppc_vcore_end_preempt(struct kvmppc_vcore *vc)
{
2333
	struct preempted_vcore_list *lp;
2334 2335 2336

	kvmppc_core_end_stolen(vc);
	if (!list_empty(&vc->preempt_list)) {
2337
		lp = &per_cpu(preempted_vcores, vc->pcpu);
2338 2339 2340 2341 2342 2343 2344
		spin_lock(&lp->lock);
		list_del_init(&vc->preempt_list);
		spin_unlock(&lp->lock);
	}
	vc->vcore_state = VCORE_INACTIVE;
}

2345 2346 2347 2348
/*
 * This stores information about the virtual cores currently
 * assigned to a physical core.
 */
2349
struct core_info {
2350 2351
	int		n_subcores;
	int		max_subcore_threads;
2352
	int		total_threads;
2353
	int		subcore_threads[MAX_SUBCORES];
2354
	struct kvmppc_vcore *vc[MAX_SUBCORES];
2355 2356
};

2357 2358 2359 2360 2361 2362
/*
 * This mapping means subcores 0 and 1 can use threads 0-3 and 4-7
 * respectively in 2-way micro-threading (split-core) mode.
 */
static int subcore_thread_map[MAX_SUBCORES] = { 0, 4, 2, 6 };

2363 2364 2365
static void init_core_info(struct core_info *cip, struct kvmppc_vcore *vc)
{
	memset(cip, 0, sizeof(*cip));
2366 2367
	cip->n_subcores = 1;
	cip->max_subcore_threads = vc->num_threads;
2368
	cip->total_threads = vc->num_threads;
2369
	cip->subcore_threads[0] = vc->num_threads;
2370
	cip->vc[0] = vc;
2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387
}

static bool subcore_config_ok(int n_subcores, int n_threads)
{
	/* Can only dynamically split if unsplit to begin with */
	if (n_subcores > 1 && threads_per_subcore < MAX_SMT_THREADS)
		return false;
	if (n_subcores > MAX_SUBCORES)
		return false;
	if (n_subcores > 1) {
		if (!(dynamic_mt_modes & 2))
			n_subcores = 4;
		if (n_subcores > 2 && !(dynamic_mt_modes & 4))
			return false;
	}

	return n_subcores * roundup_pow_of_two(n_threads) <= MAX_SMT_THREADS;
2388 2389
}

2390
static void init_vcore_to_run(struct kvmppc_vcore *vc)
2391 2392 2393 2394 2395 2396 2397
{
	vc->entry_exit_map = 0;
	vc->in_guest = 0;
	vc->napping_threads = 0;
	vc->conferring_threads = 0;
}

2398 2399 2400 2401 2402 2403 2404 2405 2406 2407
static bool can_dynamic_split(struct kvmppc_vcore *vc, struct core_info *cip)
{
	int n_threads = vc->num_threads;
	int sub;

	if (!cpu_has_feature(CPU_FTR_ARCH_207S))
		return false;

	if (n_threads < cip->max_subcore_threads)
		n_threads = cip->max_subcore_threads;
2408
	if (!subcore_config_ok(cip->n_subcores + 1, n_threads))
2409
		return false;
2410
	cip->max_subcore_threads = n_threads;
2411 2412 2413 2414 2415

	sub = cip->n_subcores;
	++cip->n_subcores;
	cip->total_threads += vc->num_threads;
	cip->subcore_threads[sub] = vc->num_threads;
2416 2417 2418
	cip->vc[sub] = vc;
	init_vcore_to_run(vc);
	list_del_init(&vc->preempt_list);
2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432

	return true;
}

/*
 * Work out whether it is possible to piggyback the execution of
 * vcore *pvc onto the execution of the other vcores described in *cip.
 */
static bool can_piggyback(struct kvmppc_vcore *pvc, struct core_info *cip,
			  int target_threads)
{
	if (cip->total_threads + pvc->num_threads > target_threads)
		return false;

2433
	return can_dynamic_split(pvc, cip);
2434 2435
}

2436 2437
static void prepare_threads(struct kvmppc_vcore *vc)
{
2438 2439
	int i;
	struct kvm_vcpu *vcpu;
2440

2441
	for_each_runnable_thread(i, vcpu, vc) {
2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454
		if (signal_pending(vcpu->arch.run_task))
			vcpu->arch.ret = -EINTR;
		else if (vcpu->arch.vpa.update_pending ||
			 vcpu->arch.slb_shadow.update_pending ||
			 vcpu->arch.dtl.update_pending)
			vcpu->arch.ret = RESUME_GUEST;
		else
			continue;
		kvmppc_remove_runnable(vc, vcpu);
		wake_up(&vcpu->arch.cpu_run);
	}
}

2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485
static void collect_piggybacks(struct core_info *cip, int target_threads)
{
	struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
	struct kvmppc_vcore *pvc, *vcnext;

	spin_lock(&lp->lock);
	list_for_each_entry_safe(pvc, vcnext, &lp->list, preempt_list) {
		if (!spin_trylock(&pvc->lock))
			continue;
		prepare_threads(pvc);
		if (!pvc->n_runnable) {
			list_del_init(&pvc->preempt_list);
			if (pvc->runner == NULL) {
				pvc->vcore_state = VCORE_INACTIVE;
				kvmppc_core_end_stolen(pvc);
			}
			spin_unlock(&pvc->lock);
			continue;
		}
		if (!can_piggyback(pvc, cip, target_threads)) {
			spin_unlock(&pvc->lock);
			continue;
		}
		kvmppc_core_end_stolen(pvc);
		pvc->vcore_state = VCORE_PIGGYBACK;
		if (cip->total_threads >= target_threads)
			break;
	}
	spin_unlock(&lp->lock);
}

2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497
static bool recheck_signals(struct core_info *cip)
{
	int sub, i;
	struct kvm_vcpu *vcpu;

	for (sub = 0; sub < cip->n_subcores; ++sub)
		for_each_runnable_thread(i, vcpu, cip->vc[sub])
			if (signal_pending(vcpu->arch.run_task))
				return true;
	return false;
}

2498
static void post_guest_process(struct kvmppc_vcore *vc, bool is_master)
2499
{
2500
	int still_running = 0, i;
2501 2502
	u64 now;
	long ret;
2503
	struct kvm_vcpu *vcpu;
2504

2505
	spin_lock(&vc->lock);
2506
	now = get_tb();
2507
	for_each_runnable_thread(i, vcpu, vc) {
2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522
		/* cancel pending dec exception if dec is positive */
		if (now < vcpu->arch.dec_expires &&
		    kvmppc_core_pending_dec(vcpu))
			kvmppc_core_dequeue_dec(vcpu);

		trace_kvm_guest_exit(vcpu);

		ret = RESUME_GUEST;
		if (vcpu->arch.trap)
			ret = kvmppc_handle_exit_hv(vcpu->arch.kvm_run, vcpu,
						    vcpu->arch.run_task);

		vcpu->arch.ret = ret;
		vcpu->arch.trap = 0;

2523 2524 2525 2526
		if (is_kvmppc_resume_guest(vcpu->arch.ret)) {
			if (vcpu->arch.pending_exceptions)
				kvmppc_core_prepare_to_enter(vcpu);
			if (vcpu->arch.ceded)
2527
				kvmppc_set_timer(vcpu);
2528 2529 2530
			else
				++still_running;
		} else {
2531 2532 2533 2534
			kvmppc_remove_runnable(vc, vcpu);
			wake_up(&vcpu->arch.cpu_run);
		}
	}
2535
	if (!is_master) {
2536
		if (still_running > 0) {
2537
			kvmppc_vcore_preempt(vc);
2538 2539 2540 2541 2542 2543
		} else if (vc->runner) {
			vc->vcore_state = VCORE_PREEMPT;
			kvmppc_core_start_stolen(vc);
		} else {
			vc->vcore_state = VCORE_INACTIVE;
		}
2544 2545
		if (vc->n_runnable > 0 && vc->runner == NULL) {
			/* make sure there's a candidate runner awake */
2546 2547
			i = -1;
			vcpu = next_runnable_thread(vc, &i);
2548 2549 2550 2551
			wake_up(&vcpu->arch.cpu_run);
		}
	}
	spin_unlock(&vc->lock);
2552 2553
}

2554 2555 2556 2557 2558
/*
 * Clear core from the list of active host cores as we are about to
 * enter the guest. Only do this if it is the primary thread of the
 * core (not if a subcore) that is entering the guest.
 */
2559
static inline int kvmppc_clear_host_core(unsigned int cpu)
2560 2561 2562 2563
{
	int core;

	if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
2564
		return 0;
2565 2566 2567 2568 2569 2570 2571
	/*
	 * Memory barrier can be omitted here as we will do a smp_wmb()
	 * later in kvmppc_start_thread and we need ensure that state is
	 * visible to other CPUs only after we enter guest.
	 */
	core = cpu >> threads_shift;
	kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 0;
2572
	return 0;
2573 2574 2575 2576 2577 2578 2579
}

/*
 * Advertise this core as an active host core since we exited the guest
 * Only need to do this if it is the primary thread of the core that is
 * exiting.
 */
2580
static inline int kvmppc_set_host_core(unsigned int cpu)
2581 2582 2583 2584
{
	int core;

	if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
2585
		return 0;
2586 2587 2588 2589 2590 2591 2592

	/*
	 * Memory barrier can be omitted here because we do a spin_unlock
	 * immediately after this which provides the memory barrier.
	 */
	core = cpu >> threads_shift;
	kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 1;
2593
	return 0;
2594 2595
}

2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610
static void set_irq_happened(int trap)
{
	switch (trap) {
	case BOOK3S_INTERRUPT_EXTERNAL:
		local_paca->irq_happened |= PACA_IRQ_EE;
		break;
	case BOOK3S_INTERRUPT_H_DOORBELL:
		local_paca->irq_happened |= PACA_IRQ_DBELL;
		break;
	case BOOK3S_INTERRUPT_HMI:
		local_paca->irq_happened |= PACA_IRQ_HMI;
		break;
	}
}

2611 2612 2613 2614
/*
 * Run a set of guest threads on a physical core.
 * Called with vc->lock held.
 */
2615
static noinline void kvmppc_run_core(struct kvmppc_vcore *vc)
2616
{
2617
	struct kvm_vcpu *vcpu;
2618
	int i;
2619
	int srcu_idx;
2620
	struct core_info core_info;
2621
	struct kvmppc_vcore *pvc;
2622 2623 2624 2625 2626
	struct kvm_split_mode split_info, *sip;
	int split, subcore_size, active;
	int sub;
	bool thr0_done;
	unsigned long cmd_bit, stat_bit;
2627 2628
	int pcpu, thr;
	int target_threads;
2629
	int controlled_threads;
2630
	int trap;
2631

2632 2633 2634 2635 2636 2637 2638 2639 2640
	/*
	 * Remove from the list any threads that have a signal pending
	 * or need a VPA update done
	 */
	prepare_threads(vc);

	/* if the runner is no longer runnable, let the caller pick a new one */
	if (vc->runner->arch.state != KVMPPC_VCPU_RUNNABLE)
		return;
2641 2642

	/*
2643
	 * Initialize *vc.
2644
	 */
2645
	init_vcore_to_run(vc);
2646
	vc->preempt_tb = TB_NIL;
2647

2648 2649 2650 2651 2652 2653 2654
	/*
	 * Number of threads that we will be controlling: the same as
	 * the number of threads per subcore, except on POWER9,
	 * where it's 1 because the threads are (mostly) independent.
	 */
	controlled_threads = threads_per_vcore();

2655
	/*
2656 2657 2658
	 * Make sure we are running on primary threads, and that secondary
	 * threads are offline.  Also check if the number of threads in this
	 * guest are greater than the current system threads per guest.
2659
	 */
2660
	if ((controlled_threads > 1) &&
2661
	    ((vc->num_threads > threads_per_subcore) || !on_primary_thread())) {
2662
		for_each_runnable_thread(i, vcpu, vc) {
2663
			vcpu->arch.ret = -EBUSY;
2664 2665 2666
			kvmppc_remove_runnable(vc, vcpu);
			wake_up(&vcpu->arch.cpu_run);
		}
2667 2668 2669
		goto out;
	}

2670 2671 2672 2673 2674 2675
	/*
	 * See if we could run any other vcores on the physical core
	 * along with this one.
	 */
	init_core_info(&core_info, vc);
	pcpu = smp_processor_id();
2676
	target_threads = controlled_threads;
2677 2678 2679 2680
	if (target_smt_mode && target_smt_mode < target_threads)
		target_threads = target_smt_mode;
	if (vc->num_threads < target_threads)
		collect_piggybacks(&core_info, target_threads);
2681

2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718
	/*
	 * On radix, arrange for TLB flushing if necessary.
	 * This has to be done before disabling interrupts since
	 * it uses smp_call_function().
	 */
	pcpu = smp_processor_id();
	if (kvm_is_radix(vc->kvm)) {
		for (sub = 0; sub < core_info.n_subcores; ++sub)
			for_each_runnable_thread(i, vcpu, core_info.vc[sub])
				kvmppc_prepare_radix_vcpu(vcpu, pcpu);
	}

	/*
	 * Hard-disable interrupts, and check resched flag and signals.
	 * If we need to reschedule or deliver a signal, clean up
	 * and return without going into the guest(s).
	 */
	local_irq_disable();
	hard_irq_disable();
	if (lazy_irq_pending() || need_resched() ||
	    recheck_signals(&core_info)) {
		local_irq_enable();
		vc->vcore_state = VCORE_INACTIVE;
		/* Unlock all except the primary vcore */
		for (sub = 1; sub < core_info.n_subcores; ++sub) {
			pvc = core_info.vc[sub];
			/* Put back on to the preempted vcores list */
			kvmppc_vcore_preempt(pvc);
			spin_unlock(&pvc->lock);
		}
		for (i = 0; i < controlled_threads; ++i)
			kvmppc_release_hwthread(pcpu + i);
		return;
	}

	kvmppc_clear_host_core(pcpu);

2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741
	/* Decide on micro-threading (split-core) mode */
	subcore_size = threads_per_subcore;
	cmd_bit = stat_bit = 0;
	split = core_info.n_subcores;
	sip = NULL;
	if (split > 1) {
		/* threads_per_subcore must be MAX_SMT_THREADS (8) here */
		if (split == 2 && (dynamic_mt_modes & 2)) {
			cmd_bit = HID0_POWER8_1TO2LPAR;
			stat_bit = HID0_POWER8_2LPARMODE;
		} else {
			split = 4;
			cmd_bit = HID0_POWER8_1TO4LPAR;
			stat_bit = HID0_POWER8_4LPARMODE;
		}
		subcore_size = MAX_SMT_THREADS / split;
		sip = &split_info;
		memset(&split_info, 0, sizeof(split_info));
		split_info.rpr = mfspr(SPRN_RPR);
		split_info.pmmar = mfspr(SPRN_PMMAR);
		split_info.ldbar = mfspr(SPRN_LDBAR);
		split_info.subcore_size = subcore_size;
		for (sub = 0; sub < core_info.n_subcores; ++sub)
2742
			split_info.vc[sub] = core_info.vc[sub];
2743 2744 2745
		/* order writes to split_info before kvm_split_mode pointer */
		smp_wmb();
	}
2746
	for (thr = 0; thr < controlled_threads; ++thr)
2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761
		paca[pcpu + thr].kvm_hstate.kvm_split_mode = sip;

	/* Initiate micro-threading (split-core) if required */
	if (cmd_bit) {
		unsigned long hid0 = mfspr(SPRN_HID0);

		hid0 |= cmd_bit | HID0_POWER8_DYNLPARDIS;
		mb();
		mtspr(SPRN_HID0, hid0);
		isync();
		for (;;) {
			hid0 = mfspr(SPRN_HID0);
			if (hid0 & stat_bit)
				break;
			cpu_relax();
2762
		}
2763
	}
2764

2765 2766 2767 2768 2769 2770
	/* Start all the threads */
	active = 0;
	for (sub = 0; sub < core_info.n_subcores; ++sub) {
		thr = subcore_thread_map[sub];
		thr0_done = false;
		active |= 1 << thr;
2771 2772 2773 2774 2775 2776 2777 2778 2779
		pvc = core_info.vc[sub];
		pvc->pcpu = pcpu + thr;
		for_each_runnable_thread(i, vcpu, pvc) {
			kvmppc_start_thread(vcpu, pvc);
			kvmppc_create_dtl_entry(vcpu, pvc);
			trace_kvm_guest_enter(vcpu);
			if (!vcpu->arch.ptid)
				thr0_done = true;
			active |= 1 << (thr + vcpu->arch.ptid);
2780
		}
2781 2782 2783 2784 2785 2786 2787
		/*
		 * We need to start the first thread of each subcore
		 * even if it doesn't have a vcpu.
		 */
		if (!thr0_done)
			kvmppc_start_thread(NULL, pvc);
		thr += pvc->num_threads;
2788
	}
2789

2790 2791 2792 2793 2794 2795 2796 2797
	/*
	 * Ensure that split_info.do_nap is set after setting
	 * the vcore pointer in the PACA of the secondaries.
	 */
	smp_mb();
	if (cmd_bit)
		split_info.do_nap = 1;	/* ask secondaries to nap when done */

2798 2799 2800 2801 2802 2803 2804 2805 2806
	/*
	 * When doing micro-threading, poke the inactive threads as well.
	 * This gets them to the nap instruction after kvm_do_nap,
	 * which reduces the time taken to unsplit later.
	 */
	if (split > 1)
		for (thr = 1; thr < threads_per_subcore; ++thr)
			if (!(active & (1 << thr)))
				kvmppc_ipi_thread(pcpu + thr);
2807

2808
	vc->vcore_state = VCORE_RUNNING;
2809
	preempt_disable();
2810 2811 2812

	trace_kvmppc_run_core(vc, 0);

2813
	for (sub = 0; sub < core_info.n_subcores; ++sub)
2814
		spin_unlock(&core_info.vc[sub]->lock);
2815

2816 2817 2818 2819 2820
	/*
	 * Interrupts will be enabled once we get into the guest,
	 * so tell lockdep that we're about to enable interrupts.
	 */
	trace_hardirqs_on();
2821

2822
	guest_enter();
2823

2824
	srcu_idx = srcu_read_lock(&vc->kvm->srcu);
2825

2826
	trap = __kvmppc_vcore_entry();
2827

2828 2829
	srcu_read_unlock(&vc->kvm->srcu, srcu_idx);

2830 2831 2832 2833 2834
	guest_exit();

	trace_hardirqs_off();
	set_irq_happened(trap);

2835
	spin_lock(&vc->lock);
2836
	/* prevent other vcpu threads from doing kvmppc_start_thread() now */
2837
	vc->vcore_state = VCORE_EXITING;
2838

2839
	/* wait for secondary threads to finish writing their state to memory */
2840
	kvmppc_wait_for_nap();
2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861

	/* Return to whole-core mode if we split the core earlier */
	if (split > 1) {
		unsigned long hid0 = mfspr(SPRN_HID0);
		unsigned long loops = 0;

		hid0 &= ~HID0_POWER8_DYNLPARDIS;
		stat_bit = HID0_POWER8_2LPARMODE | HID0_POWER8_4LPARMODE;
		mb();
		mtspr(SPRN_HID0, hid0);
		isync();
		for (;;) {
			hid0 = mfspr(SPRN_HID0);
			if (!(hid0 & stat_bit))
				break;
			cpu_relax();
			++loops;
		}
		split_info.do_nap = 0;
	}

2862 2863 2864 2865
	kvmppc_set_host_core(pcpu);

	local_irq_enable();

2866
	/* Let secondaries go back to the offline loop */
2867
	for (i = 0; i < controlled_threads; ++i) {
2868 2869 2870
		kvmppc_release_hwthread(pcpu + i);
		if (sip && sip->napped[i])
			kvmppc_ipi_thread(pcpu + i);
2871
		cpumask_clear_cpu(pcpu + i, &vc->kvm->arch.cpu_in_guest);
2872 2873
	}

2874
	spin_unlock(&vc->lock);
2875

2876 2877
	/* make sure updates to secondary vcpu structs are visible now */
	smp_mb();
2878

2879 2880 2881 2882
	for (sub = 0; sub < core_info.n_subcores; ++sub) {
		pvc = core_info.vc[sub];
		post_guest_process(pvc, pvc == vc);
	}
2883

2884
	spin_lock(&vc->lock);
2885
	preempt_enable();
2886 2887

 out:
2888
	vc->vcore_state = VCORE_INACTIVE;
2889
	trace_kvmppc_run_core(vc, 1);
2890 2891
}

2892 2893 2894 2895
/*
 * Wait for some other vcpu thread to execute us, and
 * wake us up when we need to handle something in the host.
 */
2896 2897
static void kvmppc_wait_for_exec(struct kvmppc_vcore *vc,
				 struct kvm_vcpu *vcpu, int wait_state)
2898 2899 2900
{
	DEFINE_WAIT(wait);

2901
	prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state);
2902 2903
	if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
		spin_unlock(&vc->lock);
2904
		schedule();
2905 2906
		spin_lock(&vc->lock);
	}
2907 2908 2909
	finish_wait(&vcpu->arch.cpu_run, &wait);
}

2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926
static void grow_halt_poll_ns(struct kvmppc_vcore *vc)
{
	/* 10us base */
	if (vc->halt_poll_ns == 0 && halt_poll_ns_grow)
		vc->halt_poll_ns = 10000;
	else
		vc->halt_poll_ns *= halt_poll_ns_grow;
}

static void shrink_halt_poll_ns(struct kvmppc_vcore *vc)
{
	if (halt_poll_ns_shrink == 0)
		vc->halt_poll_ns = 0;
	else
		vc->halt_poll_ns /= halt_poll_ns_shrink;
}

2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941
#ifdef CONFIG_KVM_XICS
static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu)
{
	if (!xive_enabled())
		return false;
	return vcpu->arch.xive_saved_state.pipr <
		vcpu->arch.xive_saved_state.cppr;
}
#else
static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu)
{
	return false;
}
#endif /* CONFIG_KVM_XICS */

2942 2943 2944
static bool kvmppc_vcpu_woken(struct kvm_vcpu *vcpu)
{
	if (vcpu->arch.pending_exceptions || vcpu->arch.prodded ||
2945
	    kvmppc_doorbell_pending(vcpu) || xive_interrupt_pending(vcpu))
2946 2947 2948 2949 2950
		return true;

	return false;
}

2951 2952
/*
 * Check to see if any of the runnable vcpus on the vcore have pending
2953 2954 2955 2956 2957 2958 2959 2960
 * exceptions or are no longer ceded
 */
static int kvmppc_vcore_check_block(struct kvmppc_vcore *vc)
{
	struct kvm_vcpu *vcpu;
	int i;

	for_each_runnable_thread(i, vcpu, vc) {
2961
		if (!vcpu->arch.ceded || kvmppc_vcpu_woken(vcpu))
2962 2963 2964 2965 2966 2967
			return 1;
	}

	return 0;
}

2968 2969 2970 2971 2972 2973
/*
 * All the vcpus in this vcore are idle, so wait for a decrementer
 * or external interrupt to one of the vcpus.  vc->lock is held.
 */
static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc)
{
2974
	ktime_t cur, start_poll, start_wait;
2975 2976
	int do_sleep = 1;
	u64 block_ns;
2977
	DECLARE_SWAITQUEUE(wait);
2978

2979
	/* Poll for pending exceptions and ceded state */
2980
	cur = start_poll = ktime_get();
2981
	if (vc->halt_poll_ns) {
2982 2983
		ktime_t stop = ktime_add_ns(start_poll, vc->halt_poll_ns);
		++vc->runner->stat.halt_attempted_poll;
2984

2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998
		vc->vcore_state = VCORE_POLLING;
		spin_unlock(&vc->lock);

		do {
			if (kvmppc_vcore_check_block(vc)) {
				do_sleep = 0;
				break;
			}
			cur = ktime_get();
		} while (single_task_running() && ktime_before(cur, stop));

		spin_lock(&vc->lock);
		vc->vcore_state = VCORE_INACTIVE;

2999 3000
		if (!do_sleep) {
			++vc->runner->stat.halt_successful_poll;
3001
			goto out;
3002
		}
3003 3004
	}

3005 3006 3007
	prepare_to_swait(&vc->wq, &wait, TASK_INTERRUPTIBLE);

	if (kvmppc_vcore_check_block(vc)) {
3008
		finish_swait(&vc->wq, &wait);
3009
		do_sleep = 0;
3010 3011 3012
		/* If we polled, count this as a successful poll */
		if (vc->halt_poll_ns)
			++vc->runner->stat.halt_successful_poll;
3013
		goto out;
3014 3015
	}

3016 3017
	start_wait = ktime_get();

3018
	vc->vcore_state = VCORE_SLEEPING;
3019
	trace_kvmppc_vcore_blocked(vc, 0);
3020
	spin_unlock(&vc->lock);
3021
	schedule();
3022
	finish_swait(&vc->wq, &wait);
3023 3024
	spin_lock(&vc->lock);
	vc->vcore_state = VCORE_INACTIVE;
3025
	trace_kvmppc_vcore_blocked(vc, 1);
3026
	++vc->runner->stat.halt_successful_wait;
3027 3028 3029 3030

	cur = ktime_get();

out:
3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048
	block_ns = ktime_to_ns(cur) - ktime_to_ns(start_poll);

	/* Attribute wait time */
	if (do_sleep) {
		vc->runner->stat.halt_wait_ns +=
			ktime_to_ns(cur) - ktime_to_ns(start_wait);
		/* Attribute failed poll time */
		if (vc->halt_poll_ns)
			vc->runner->stat.halt_poll_fail_ns +=
				ktime_to_ns(start_wait) -
				ktime_to_ns(start_poll);
	} else {
		/* Attribute successful poll time */
		if (vc->halt_poll_ns)
			vc->runner->stat.halt_poll_success_ns +=
				ktime_to_ns(cur) -
				ktime_to_ns(start_poll);
	}
3049 3050

	/* Adjust poll time */
3051
	if (halt_poll_ns) {
3052 3053 3054
		if (block_ns <= vc->halt_poll_ns)
			;
		/* We slept and blocked for longer than the max halt time */
3055
		else if (vc->halt_poll_ns && block_ns > halt_poll_ns)
3056 3057
			shrink_halt_poll_ns(vc);
		/* We slept and our poll time is too small */
3058 3059
		else if (vc->halt_poll_ns < halt_poll_ns &&
				block_ns < halt_poll_ns)
3060
			grow_halt_poll_ns(vc);
3061 3062
		if (vc->halt_poll_ns > halt_poll_ns)
			vc->halt_poll_ns = halt_poll_ns;
3063 3064 3065 3066
	} else
		vc->halt_poll_ns = 0;

	trace_kvmppc_vcore_wakeup(do_sleep, block_ns);
3067
}
3068

3069 3070
static int kvmppc_run_vcpu(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
{
3071
	int n_ceded, i;
3072
	struct kvmppc_vcore *vc;
3073
	struct kvm_vcpu *v;
3074

3075 3076
	trace_kvmppc_run_vcpu_enter(vcpu);

3077 3078 3079
	kvm_run->exit_reason = 0;
	vcpu->arch.ret = RESUME_GUEST;
	vcpu->arch.trap = 0;
3080
	kvmppc_update_vpas(vcpu);
3081 3082 3083 3084 3085 3086

	/*
	 * Synchronize with other threads in this virtual core
	 */
	vc = vcpu->arch.vcore;
	spin_lock(&vc->lock);
3087
	vcpu->arch.ceded = 0;
3088 3089
	vcpu->arch.run_task = current;
	vcpu->arch.kvm_run = kvm_run;
3090
	vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb());
3091
	vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
3092
	vcpu->arch.busy_preempt = TB_NIL;
3093
	WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], vcpu);
3094 3095
	++vc->n_runnable;

3096 3097 3098 3099 3100
	/*
	 * This happens the first time this is called for a vcpu.
	 * If the vcore is already running, we may be able to start
	 * this thread straight away and have it join in.
	 */
3101
	if (!signal_pending(current)) {
3102
		if (vc->vcore_state == VCORE_PIGGYBACK) {
3103 3104 3105
			if (spin_trylock(&vc->lock)) {
				if (vc->vcore_state == VCORE_RUNNING &&
				    !VCORE_IS_EXITING(vc)) {
3106
					kvmppc_create_dtl_entry(vcpu, vc);
3107
					kvmppc_start_thread(vcpu, vc);
3108 3109
					trace_kvm_guest_enter(vcpu);
				}
3110
				spin_unlock(&vc->lock);
3111 3112 3113
			}
		} else if (vc->vcore_state == VCORE_RUNNING &&
			   !VCORE_IS_EXITING(vc)) {
3114
			kvmppc_create_dtl_entry(vcpu, vc);
3115
			kvmppc_start_thread(vcpu, vc);
3116
			trace_kvm_guest_enter(vcpu);
3117
		} else if (vc->vcore_state == VCORE_SLEEPING) {
3118
			swake_up(&vc->wq);
3119 3120
		}

3121
	}
3122

3123 3124
	while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
	       !signal_pending(current)) {
3125 3126 3127
		if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
			kvmppc_vcore_end_preempt(vc);

3128
		if (vc->vcore_state != VCORE_INACTIVE) {
3129
			kvmppc_wait_for_exec(vc, vcpu, TASK_INTERRUPTIBLE);
3130 3131
			continue;
		}
3132
		for_each_runnable_thread(i, v, vc) {
3133
			kvmppc_core_prepare_to_enter(v);
3134 3135 3136 3137 3138 3139 3140 3141
			if (signal_pending(v->arch.run_task)) {
				kvmppc_remove_runnable(vc, v);
				v->stat.signal_exits++;
				v->arch.kvm_run->exit_reason = KVM_EXIT_INTR;
				v->arch.ret = -EINTR;
				wake_up(&v->arch.cpu_run);
			}
		}
3142 3143 3144
		if (!vc->n_runnable || vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
			break;
		n_ceded = 0;
3145
		for_each_runnable_thread(i, v, vc) {
3146
			if (!kvmppc_vcpu_woken(v))
3147
				n_ceded += v->arch.ceded;
3148 3149 3150
			else
				v->arch.ceded = 0;
		}
3151 3152
		vc->runner = vcpu;
		if (n_ceded == vc->n_runnable) {
3153
			kvmppc_vcore_blocked(vc);
3154
		} else if (need_resched()) {
3155
			kvmppc_vcore_preempt(vc);
3156 3157
			/* Let something else run */
			cond_resched_lock(&vc->lock);
3158 3159
			if (vc->vcore_state == VCORE_PREEMPT)
				kvmppc_vcore_end_preempt(vc);
3160
		} else {
3161
			kvmppc_run_core(vc);
3162
		}
3163
		vc->runner = NULL;
3164
	}
3165

3166 3167
	while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
	       (vc->vcore_state == VCORE_RUNNING ||
3168 3169
		vc->vcore_state == VCORE_EXITING ||
		vc->vcore_state == VCORE_PIGGYBACK))
3170
		kvmppc_wait_for_exec(vc, vcpu, TASK_UNINTERRUPTIBLE);
3171

3172 3173 3174
	if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
		kvmppc_vcore_end_preempt(vc);

3175 3176 3177 3178 3179 3180 3181 3182 3183
	if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
		kvmppc_remove_runnable(vc, vcpu);
		vcpu->stat.signal_exits++;
		kvm_run->exit_reason = KVM_EXIT_INTR;
		vcpu->arch.ret = -EINTR;
	}

	if (vc->n_runnable && vc->vcore_state == VCORE_INACTIVE) {
		/* Wake up some vcpu to run the core */
3184 3185
		i = -1;
		v = next_runnable_thread(vc, &i);
3186
		wake_up(&v->arch.cpu_run);
3187 3188
	}

3189
	trace_kvmppc_run_vcpu_exit(vcpu, kvm_run);
3190 3191
	spin_unlock(&vc->lock);
	return vcpu->arch.ret;
3192 3193
}

3194
static int kvmppc_vcpu_run_hv(struct kvm_run *run, struct kvm_vcpu *vcpu)
3195 3196
{
	int r;
3197
	int srcu_idx;
3198
	unsigned long ebb_regs[3] = {};	/* shut up GCC */
3199 3200
	unsigned long user_tar = 0;
	unsigned int user_vrsave;
3201

3202 3203 3204 3205 3206
	if (!vcpu->arch.sane) {
		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
		return -EINVAL;
	}

3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220
	/*
	 * Don't allow entry with a suspended transaction, because
	 * the guest entry/exit code will lose it.
	 * If the guest has TM enabled, save away their TM-related SPRs
	 * (they will get restored by the TM unavailable interrupt).
	 */
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
	if (cpu_has_feature(CPU_FTR_TM) && current->thread.regs &&
	    (current->thread.regs->msr & MSR_TM)) {
		if (MSR_TM_ACTIVE(current->thread.regs->msr)) {
			run->exit_reason = KVM_EXIT_FAIL_ENTRY;
			run->fail_entry.hardware_entry_failure_reason = 0;
			return -EINVAL;
		}
3221 3222
		/* Enable TM so we can read the TM SPRs */
		mtmsr(mfmsr() | MSR_TM);
3223 3224 3225 3226 3227 3228 3229
		current->thread.tm_tfhar = mfspr(SPRN_TFHAR);
		current->thread.tm_tfiar = mfspr(SPRN_TFIAR);
		current->thread.tm_texasr = mfspr(SPRN_TEXASR);
		current->thread.regs->msr &= ~MSR_TM;
	}
#endif

3230 3231
	kvmppc_core_prepare_to_enter(vcpu);

3232 3233 3234 3235 3236 3237
	/* No need to go into the guest when all we'll do is come back out */
	if (signal_pending(current)) {
		run->exit_reason = KVM_EXIT_INTR;
		return -EINTR;
	}

3238
	atomic_inc(&vcpu->kvm->arch.vcpus_running);
3239
	/* Order vcpus_running vs. hpte_setup_done, see kvmppc_alloc_reset_hpt */
3240 3241
	smp_mb();

3242
	/* On the first time here, set up HTAB and VRMA */
3243
	if (!kvm_is_radix(vcpu->kvm) && !vcpu->kvm->arch.hpte_setup_done) {
3244
		r = kvmppc_hv_setup_htab_rma(vcpu);
3245
		if (r)
3246
			goto out;
3247
	}
3248

3249 3250
	flush_all_to_thread(current);

3251
	/* Save userspace EBB and other register values */
3252 3253 3254 3255
	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
		ebb_regs[0] = mfspr(SPRN_EBBHR);
		ebb_regs[1] = mfspr(SPRN_EBBRR);
		ebb_regs[2] = mfspr(SPRN_BESCR);
3256
		user_tar = mfspr(SPRN_TAR);
3257
	}
3258
	user_vrsave = mfspr(SPRN_VRSAVE);
3259

3260
	vcpu->arch.wqp = &vcpu->arch.vcore->wq;
3261
	vcpu->arch.pgdir = current->mm->pgd;
3262
	vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
3263

3264 3265 3266 3267 3268
	do {
		r = kvmppc_run_vcpu(run, vcpu);

		if (run->exit_reason == KVM_EXIT_PAPR_HCALL &&
		    !(vcpu->arch.shregs.msr & MSR_PR)) {
3269
			trace_kvm_hcall_enter(vcpu);
3270
			r = kvmppc_pseries_do_hcall(vcpu);
3271
			trace_kvm_hcall_exit(vcpu, r);
3272
			kvmppc_core_prepare_to_enter(vcpu);
3273 3274 3275 3276 3277
		} else if (r == RESUME_PAGE_FAULT) {
			srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
			r = kvmppc_book3s_hv_page_fault(run, vcpu,
				vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
			srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
3278 3279 3280 3281 3282 3283
		} else if (r == RESUME_PASSTHROUGH) {
			if (WARN_ON(xive_enabled()))
				r = H_SUCCESS;
			else
				r = kvmppc_xics_rm_complete(vcpu, 0);
		}
3284
	} while (is_kvmppc_resume_guest(r));
3285

3286
	/* Restore userspace EBB and other register values */
3287 3288 3289 3290
	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
		mtspr(SPRN_EBBHR, ebb_regs[0]);
		mtspr(SPRN_EBBRR, ebb_regs[1]);
		mtspr(SPRN_BESCR, ebb_regs[2]);
3291 3292
		mtspr(SPRN_TAR, user_tar);
		mtspr(SPRN_FSCR, current->thread.fscr);
3293
	}
3294
	mtspr(SPRN_VRSAVE, user_vrsave);
3295

3296
 out:
3297
	vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
3298
	atomic_dec(&vcpu->kvm->arch.vcpus_running);
3299 3300 3301
	return r;
}

3302
static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps,
3303
				     int shift, int sllp)
3304
{
3305 3306 3307 3308
	(*sps)->page_shift = shift;
	(*sps)->slb_enc = sllp;
	(*sps)->enc[0].page_shift = shift;
	(*sps)->enc[0].pte_enc = kvmppc_pgsize_lp_encoding(shift, shift);
3309
	/*
3310
	 * Add 16MB MPSS support (may get filtered out by userspace)
3311
	 */
3312 3313 3314 3315 3316 3317
	if (shift != 24) {
		int penc = kvmppc_pgsize_lp_encoding(shift, 24);
		if (penc != -1) {
			(*sps)->enc[1].page_shift = 24;
			(*sps)->enc[1].pte_enc = penc;
		}
3318
	}
3319 3320 3321
	(*sps)++;
}

3322 3323
static int kvm_vm_ioctl_get_smmu_info_hv(struct kvm *kvm,
					 struct kvm_ppc_smmu_info *info)
3324 3325 3326
{
	struct kvm_ppc_one_seg_page_size *sps;

3327 3328 3329 3330 3331 3332 3333
	/*
	 * Since we don't yet support HPT guests on a radix host,
	 * return an error if the host uses radix.
	 */
	if (radix_enabled())
		return -EINVAL;

3334 3335 3336 3337 3338 3339 3340 3341
	/*
	 * POWER7, POWER8 and POWER9 all support 32 storage keys for data.
	 * POWER7 doesn't support keys for instruction accesses,
	 * POWER8 and POWER9 do.
	 */
	info->data_keys = 32;
	info->instr_keys = cpu_has_feature(CPU_FTR_ARCH_207S) ? 32 : 0;

3342 3343 3344
	/* POWER7, 8 and 9 all have 1T segments and 32-entry SLB */
	info->flags = KVM_PPC_PAGE_SIZES_REAL | KVM_PPC_1T_SEGMENTS;
	info->slb_size = 32;
3345 3346 3347

	/* We only support these sizes for now, and no muti-size segments */
	sps = &info->sps[0];
3348 3349 3350
	kvmppc_add_seg_page_size(&sps, 12, 0);
	kvmppc_add_seg_page_size(&sps, 16, SLB_VSID_L | SLB_VSID_LP_01);
	kvmppc_add_seg_page_size(&sps, 24, SLB_VSID_L);
3351 3352 3353 3354

	return 0;
}

3355 3356 3357
/*
 * Get (and clear) the dirty memory log for a memory slot.
 */
3358 3359
static int kvm_vm_ioctl_get_dirty_log_hv(struct kvm *kvm,
					 struct kvm_dirty_log *log)
3360
{
3361
	struct kvm_memslots *slots;
3362
	struct kvm_memory_slot *memslot;
3363
	int i, r;
3364
	unsigned long n;
3365 3366
	unsigned long *buf;
	struct kvm_vcpu *vcpu;
3367 3368 3369 3370

	mutex_lock(&kvm->slots_lock);

	r = -EINVAL;
3371
	if (log->slot >= KVM_USER_MEM_SLOTS)
3372 3373
		goto out;

3374 3375
	slots = kvm_memslots(kvm);
	memslot = id_to_memslot(slots, log->slot);
3376 3377 3378 3379
	r = -ENOENT;
	if (!memslot->dirty_bitmap)
		goto out;

3380 3381 3382 3383
	/*
	 * Use second half of bitmap area because radix accumulates
	 * bits in the first half.
	 */
3384
	n = kvm_dirty_bitmap_bytes(memslot);
3385 3386
	buf = memslot->dirty_bitmap + n / sizeof(long);
	memset(buf, 0, n);
3387

3388 3389 3390 3391
	if (kvm_is_radix(kvm))
		r = kvmppc_hv_get_dirty_log_radix(kvm, memslot, buf);
	else
		r = kvmppc_hv_get_dirty_log_hpt(kvm, memslot, buf);
3392 3393 3394
	if (r)
		goto out;

3395 3396 3397 3398 3399 3400 3401 3402 3403
	/* Harvest dirty bits from VPA and DTL updates */
	/* Note: we never modify the SLB shadow buffer areas */
	kvm_for_each_vcpu(i, vcpu, kvm) {
		spin_lock(&vcpu->arch.vpa_update_lock);
		kvmppc_harvest_vpa_dirty(&vcpu->arch.vpa, memslot, buf);
		kvmppc_harvest_vpa_dirty(&vcpu->arch.dtl, memslot, buf);
		spin_unlock(&vcpu->arch.vpa_update_lock);
	}

3404
	r = -EFAULT;
3405
	if (copy_to_user(log->dirty_bitmap, buf, n))
3406 3407 3408 3409 3410 3411 3412 3413
		goto out;

	r = 0;
out:
	mutex_unlock(&kvm->slots_lock);
	return r;
}

3414 3415
static void kvmppc_core_free_memslot_hv(struct kvm_memory_slot *free,
					struct kvm_memory_slot *dont)
3416 3417 3418 3419
{
	if (!dont || free->arch.rmap != dont->arch.rmap) {
		vfree(free->arch.rmap);
		free->arch.rmap = NULL;
3420
	}
3421 3422
}

3423 3424
static int kvmppc_core_create_memslot_hv(struct kvm_memory_slot *slot,
					 unsigned long npages)
3425
{
3426 3427 3428 3429 3430 3431 3432 3433 3434
	/*
	 * For now, if radix_enabled() then we only support radix guests,
	 * and in that case we don't need the rmap array.
	 */
	if (radix_enabled()) {
		slot->arch.rmap = NULL;
		return 0;
	}

3435 3436 3437
	slot->arch.rmap = vzalloc(npages * sizeof(*slot->arch.rmap));
	if (!slot->arch.rmap)
		return -ENOMEM;
3438

3439 3440
	return 0;
}
3441

3442 3443
static int kvmppc_core_prepare_memory_region_hv(struct kvm *kvm,
					struct kvm_memory_slot *memslot,
3444
					const struct kvm_userspace_memory_region *mem)
3445
{
3446
	return 0;
3447 3448
}

3449
static void kvmppc_core_commit_memory_region_hv(struct kvm *kvm,
3450
				const struct kvm_userspace_memory_region *mem,
3451 3452
				const struct kvm_memory_slot *old,
				const struct kvm_memory_slot *new)
3453
{
3454
	unsigned long npages = mem->memory_size >> PAGE_SHIFT;
3455
	struct kvm_memslots *slots;
3456 3457
	struct kvm_memory_slot *memslot;

3458 3459 3460 3461 3462 3463 3464 3465 3466
	/*
	 * If we are making a new memslot, it might make
	 * some address that was previously cached as emulated
	 * MMIO be no longer emulated MMIO, so invalidate
	 * all the caches of emulated MMIO translations.
	 */
	if (npages)
		atomic64_inc(&kvm->arch.mmio_update);

3467
	if (npages && old->npages && !kvm_is_radix(kvm)) {
3468 3469 3470 3471 3472 3473
		/*
		 * If modifying a memslot, reset all the rmap dirty bits.
		 * If this is a new memslot, we don't need to do anything
		 * since the rmap array starts out as all zeroes,
		 * i.e. no pages are dirty.
		 */
3474 3475
		slots = kvm_memslots(kvm);
		memslot = id_to_memslot(slots, mem->slot);
3476
		kvmppc_hv_get_dirty_log_hpt(kvm, memslot, NULL);
3477
	}
3478 3479
}

3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505
/*
 * Update LPCR values in kvm->arch and in vcores.
 * Caller must hold kvm->lock.
 */
void kvmppc_update_lpcr(struct kvm *kvm, unsigned long lpcr, unsigned long mask)
{
	long int i;
	u32 cores_done = 0;

	if ((kvm->arch.lpcr & mask) == lpcr)
		return;

	kvm->arch.lpcr = (kvm->arch.lpcr & ~mask) | lpcr;

	for (i = 0; i < KVM_MAX_VCORES; ++i) {
		struct kvmppc_vcore *vc = kvm->arch.vcores[i];
		if (!vc)
			continue;
		spin_lock(&vc->lock);
		vc->lpcr = (vc->lpcr & ~mask) | lpcr;
		spin_unlock(&vc->lock);
		if (++cores_done >= kvm->arch.online_vcores)
			break;
	}
}

3506 3507 3508 3509 3510
static void kvmppc_mmu_destroy_hv(struct kvm_vcpu *vcpu)
{
	return;
}

3511 3512 3513 3514
static void kvmppc_setup_partition_table(struct kvm *kvm)
{
	unsigned long dw0, dw1;

3515 3516 3517 3518 3519 3520
	if (!kvm_is_radix(kvm)) {
		/* PS field - page size for VRMA */
		dw0 = ((kvm->arch.vrma_slb_v & SLB_VSID_L) >> 1) |
			((kvm->arch.vrma_slb_v & SLB_VSID_LP) << 1);
		/* HTABSIZE and HTABORG fields */
		dw0 |= kvm->arch.sdr1;
3521

3522 3523 3524 3525 3526 3527 3528
		/* Second dword as set by userspace */
		dw1 = kvm->arch.process_table;
	} else {
		dw0 = PATB_HR | radix__get_tree_size() |
			__pa(kvm->arch.pgtable) | RADIX_PGD_INDEX_SIZE;
		dw1 = PATB_GR | kvm->arch.process_table;
	}
3529 3530 3531 3532

	mmu_partition_table_set_entry(kvm->arch.lpid, dw0, dw1);
}

3533
static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu)
3534 3535 3536 3537 3538 3539
{
	int err = 0;
	struct kvm *kvm = vcpu->kvm;
	unsigned long hva;
	struct kvm_memory_slot *memslot;
	struct vm_area_struct *vma;
3540
	unsigned long lpcr = 0, senc;
3541
	unsigned long psize, porder;
3542
	int srcu_idx;
3543 3544

	mutex_lock(&kvm->lock);
3545
	if (kvm->arch.hpte_setup_done)
3546
		goto out;	/* another vcpu beat us to it */
3547

3548
	/* Allocate hashed page table (if not done already) and reset it */
3549
	if (!kvm->arch.hpt.virt) {
3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560
		int order = KVM_DEFAULT_HPT_ORDER;
		struct kvm_hpt_info info;

		err = kvmppc_allocate_hpt(&info, order);
		/* If we get here, it means userspace didn't specify a
		 * size explicitly.  So, try successively smaller
		 * sizes if the default failed. */
		while ((err == -ENOMEM) && --order >= PPC_MIN_HPT_ORDER)
			err  = kvmppc_allocate_hpt(&info, order);

		if (err < 0) {
3561 3562 3563
			pr_err("KVM: Couldn't alloc HPT\n");
			goto out;
		}
3564 3565

		kvmppc_set_hpt(kvm, &info);
3566 3567
	}

3568
	/* Look up the memslot for guest physical address 0 */
3569
	srcu_idx = srcu_read_lock(&kvm->srcu);
3570
	memslot = gfn_to_memslot(kvm, 0);
3571

3572 3573 3574
	/* We must have some memory at 0 by now */
	err = -EINVAL;
	if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
3575
		goto out_srcu;
3576 3577 3578 3579 3580 3581 3582 3583 3584

	/* Look up the VMA for the start of this memory slot */
	hva = memslot->userspace_addr;
	down_read(&current->mm->mmap_sem);
	vma = find_vma(current->mm, hva);
	if (!vma || vma->vm_start > hva || (vma->vm_flags & VM_IO))
		goto up_out;

	psize = vma_kernel_pagesize(vma);
3585
	porder = __ilog2(psize);
3586 3587 3588

	up_read(&current->mm->mmap_sem);

3589 3590 3591 3592 3593
	/* We can handle 4k, 64k or 16M pages in the VRMA */
	err = -EINVAL;
	if (!(psize == 0x1000 || psize == 0x10000 ||
	      psize == 0x1000000))
		goto out_srcu;
3594

3595 3596 3597 3598 3599
	senc = slb_pgsize_encoding(psize);
	kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
		(VRMA_VSID << SLB_VSID_SHIFT_1T);
	/* Create HPTEs in the hash page table for the VRMA */
	kvmppc_map_vrma(vcpu, memslot, porder);
3600

3601 3602 3603 3604 3605 3606 3607 3608
	/* Update VRMASD field in the LPCR */
	if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
		/* the -4 is to account for senc values starting at 0x10 */
		lpcr = senc << (LPCR_VRMASD_SH - 4);
		kvmppc_update_lpcr(kvm, lpcr, LPCR_VRMASD);
	} else {
		kvmppc_setup_partition_table(kvm);
	}
3609

3610
	/* Order updates to kvm->arch.lpcr etc. vs. hpte_setup_done */
3611
	smp_wmb();
3612
	kvm->arch.hpte_setup_done = 1;
3613
	err = 0;
3614 3615
 out_srcu:
	srcu_read_unlock(&kvm->srcu, srcu_idx);
3616 3617 3618
 out:
	mutex_unlock(&kvm->lock);
	return err;
3619

3620 3621
 up_out:
	up_read(&current->mm->mmap_sem);
3622
	goto out_srcu;
3623 3624
}

3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658
#ifdef CONFIG_KVM_XICS
/*
 * Allocate a per-core structure for managing state about which cores are
 * running in the host versus the guest and for exchanging data between
 * real mode KVM and CPU running in the host.
 * This is only done for the first VM.
 * The allocated structure stays even if all VMs have stopped.
 * It is only freed when the kvm-hv module is unloaded.
 * It's OK for this routine to fail, we just don't support host
 * core operations like redirecting H_IPI wakeups.
 */
void kvmppc_alloc_host_rm_ops(void)
{
	struct kvmppc_host_rm_ops *ops;
	unsigned long l_ops;
	int cpu, core;
	int size;

	/* Not the first time here ? */
	if (kvmppc_host_rm_ops_hv != NULL)
		return;

	ops = kzalloc(sizeof(struct kvmppc_host_rm_ops), GFP_KERNEL);
	if (!ops)
		return;

	size = cpu_nr_cores() * sizeof(struct kvmppc_host_rm_core);
	ops->rm_core = kzalloc(size, GFP_KERNEL);

	if (!ops->rm_core) {
		kfree(ops);
		return;
	}

3659
	cpus_read_lock();
3660

3661 3662 3663 3664 3665 3666 3667 3668
	for (cpu = 0; cpu < nr_cpu_ids; cpu += threads_per_core) {
		if (!cpu_online(cpu))
			continue;

		core = cpu >> threads_shift;
		ops->rm_core[core].rm_state.in_host = 1;
	}

3669 3670
	ops->vcpu_kick = kvmppc_fast_vcpu_kick_hv;

3671 3672 3673 3674 3675 3676 3677 3678 3679 3680
	/*
	 * Make the contents of the kvmppc_host_rm_ops structure visible
	 * to other CPUs before we assign it to the global variable.
	 * Do an atomic assignment (no locks used here), but if someone
	 * beats us to it, just free our copy and return.
	 */
	smp_wmb();
	l_ops = (unsigned long) ops;

	if (cmpxchg64((unsigned long *)&kvmppc_host_rm_ops_hv, 0, l_ops)) {
3681
		cpus_read_unlock();
3682 3683
		kfree(ops->rm_core);
		kfree(ops);
3684
		return;
3685
	}
3686

3687 3688 3689 3690 3691
	cpuhp_setup_state_nocalls_cpuslocked(CPUHP_KVM_PPC_BOOK3S_PREPARE,
					     "ppc/kvm_book3s:prepare",
					     kvmppc_set_host_core,
					     kvmppc_clear_host_core);
	cpus_read_unlock();
3692 3693 3694 3695 3696
}

void kvmppc_free_host_rm_ops(void)
{
	if (kvmppc_host_rm_ops_hv) {
3697
		cpuhp_remove_state_nocalls(CPUHP_KVM_PPC_BOOK3S_PREPARE);
3698 3699 3700 3701 3702 3703 3704
		kfree(kvmppc_host_rm_ops_hv->rm_core);
		kfree(kvmppc_host_rm_ops_hv);
		kvmppc_host_rm_ops_hv = NULL;
	}
}
#endif

3705
static int kvmppc_core_init_vm_hv(struct kvm *kvm)
3706
{
3707
	unsigned long lpcr, lpid;
3708
	char buf[32];
3709
	int ret;
3710

3711 3712 3713
	/* Allocate the guest's logical partition ID */

	lpid = kvmppc_alloc_lpid();
3714
	if ((long)lpid < 0)
3715 3716
		return -ENOMEM;
	kvm->arch.lpid = lpid;
3717

3718 3719
	kvmppc_alloc_host_rm_ops();

3720 3721 3722 3723
	/*
	 * Since we don't flush the TLB when tearing down a VM,
	 * and this lpid might have previously been used,
	 * make sure we flush on each core before running the new VM.
3724 3725
	 * On POWER9, the tlbie in mmu_partition_table_set_entry()
	 * does this flush for us.
3726
	 */
3727 3728
	if (!cpu_has_feature(CPU_FTR_ARCH_300))
		cpumask_setall(&kvm->arch.need_tlb_flush);
3729

3730 3731 3732 3733
	/* Start out with the default set of hcalls enabled */
	memcpy(kvm->arch.enabled_hcalls, default_enabled_hcalls,
	       sizeof(kvm->arch.enabled_hcalls));

3734 3735
	if (!cpu_has_feature(CPU_FTR_ARCH_300))
		kvm->arch.host_sdr1 = mfspr(SPRN_SDR1);
3736

3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747
	/* Init LPCR for virtual RMA mode */
	kvm->arch.host_lpid = mfspr(SPRN_LPID);
	kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR);
	lpcr &= LPCR_PECE | LPCR_LPES;
	lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE |
		LPCR_VPM0 | LPCR_VPM1;
	kvm->arch.vrma_slb_v = SLB_VSID_B_1T |
		(VRMA_VSID << SLB_VSID_SHIFT_1T);
	/* On POWER8 turn on online bit to enable PURR/SPURR */
	if (cpu_has_feature(CPU_FTR_ARCH_207S))
		lpcr |= LPCR_ONL;
3748 3749 3750
	/*
	 * On POWER9, VPM0 bit is reserved (VPM0=1 behaviour is assumed)
	 * Set HVICE bit to enable hypervisor virtualization interrupts.
3751 3752 3753
	 * Set HEIC to prevent OS interrupts to go to hypervisor (should
	 * be unnecessary but better safe than sorry in case we re-enable
	 * EE in HV mode with this LPCR still set)
3754 3755
	 */
	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
3756
		lpcr &= ~LPCR_VPM0;
3757 3758 3759 3760 3761 3762 3763 3764
		lpcr |= LPCR_HVICE | LPCR_HEIC;

		/*
		 * If xive is enabled, we route 0x500 interrupts directly
		 * to the guest.
		 */
		if (xive_enabled())
			lpcr |= LPCR_LPES;
3765 3766
	}

3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781
	/*
	 * For now, if the host uses radix, the guest must be radix.
	 */
	if (radix_enabled()) {
		kvm->arch.radix = 1;
		lpcr &= ~LPCR_VPM1;
		lpcr |= LPCR_UPRT | LPCR_GTSE | LPCR_HR;
		ret = kvmppc_init_vm_radix(kvm);
		if (ret) {
			kvmppc_free_lpid(kvm->arch.lpid);
			return ret;
		}
		kvmppc_setup_partition_table(kvm);
	}

3782
	kvm->arch.lpcr = lpcr;
3783

3784 3785 3786
	/* Initialization for future HPT resizes */
	kvm->arch.resize_hpt = NULL;

3787 3788 3789 3790
	/*
	 * Work out how many sets the TLB has, for the use of
	 * the TLB invalidation loop in book3s_hv_rmhandlers.S.
	 */
3791 3792 3793
	if (kvm_is_radix(kvm))
		kvm->arch.tlb_sets = POWER9_TLB_SETS_RADIX;	/* 128 */
	else if (cpu_has_feature(CPU_FTR_ARCH_300))
3794 3795 3796 3797 3798 3799
		kvm->arch.tlb_sets = POWER9_TLB_SETS_HASH;	/* 256 */
	else if (cpu_has_feature(CPU_FTR_ARCH_207S))
		kvm->arch.tlb_sets = POWER8_TLB_SETS;		/* 512 */
	else
		kvm->arch.tlb_sets = POWER7_TLB_SETS;		/* 128 */

3800
	/*
3801 3802
	 * Track that we now have a HV mode VM active. This blocks secondary
	 * CPU threads from coming online.
3803 3804
	 * On POWER9, we only need to do this for HPT guests on a radix
	 * host, which is not yet supported.
3805
	 */
3806 3807
	if (!cpu_has_feature(CPU_FTR_ARCH_300))
		kvm_hv_vm_activated();
3808

3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819
	/*
	 * Initialize smt_mode depending on processor.
	 * POWER8 and earlier have to use "strict" threading, where
	 * all vCPUs in a vcore have to run on the same (sub)core,
	 * whereas on POWER9 the threads can each run a different
	 * guest.
	 */
	if (!cpu_has_feature(CPU_FTR_ARCH_300))
		kvm->arch.smt_mode = threads_per_subcore;
	else
		kvm->arch.smt_mode = 1;
3820
	kvm->arch.emul_smt_mode = 1;
3821

3822 3823 3824 3825 3826 3827 3828 3829
	/*
	 * Create a debugfs directory for the VM
	 */
	snprintf(buf, sizeof(buf), "vm%d", current->pid);
	kvm->arch.debugfs_dir = debugfs_create_dir(buf, kvm_debugfs_dir);
	if (!IS_ERR_OR_NULL(kvm->arch.debugfs_dir))
		kvmppc_mmu_debugfs_init(kvm);

3830
	return 0;
3831 3832
}

3833 3834 3835 3836
static void kvmppc_free_vcores(struct kvm *kvm)
{
	long int i;

3837
	for (i = 0; i < KVM_MAX_VCORES; ++i)
3838 3839 3840 3841
		kfree(kvm->arch.vcores[i]);
	kvm->arch.online_vcores = 0;
}

3842
static void kvmppc_core_destroy_vm_hv(struct kvm *kvm)
3843
{
3844 3845
	debugfs_remove_recursive(kvm->arch.debugfs_dir);

3846 3847
	if (!cpu_has_feature(CPU_FTR_ARCH_300))
		kvm_hv_vm_deactivated();
3848

3849
	kvmppc_free_vcores(kvm);
3850

3851 3852
	kvmppc_free_lpid(kvm->arch.lpid);

3853 3854 3855
	if (kvm_is_radix(kvm))
		kvmppc_free_radix(kvm);
	else
3856
		kvmppc_free_hpt(&kvm->arch.hpt);
3857 3858

	kvmppc_free_pimap(kvm);
3859 3860
}

3861 3862 3863
/* We don't need to emulate any privileged instructions or dcbz */
static int kvmppc_core_emulate_op_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
				     unsigned int inst, int *advance)
3864
{
3865
	return EMULATE_FAIL;
3866 3867
}

3868 3869
static int kvmppc_core_emulate_mtspr_hv(struct kvm_vcpu *vcpu, int sprn,
					ulong spr_val)
3870 3871 3872 3873
{
	return EMULATE_FAIL;
}

3874 3875
static int kvmppc_core_emulate_mfspr_hv(struct kvm_vcpu *vcpu, int sprn,
					ulong *spr_val)
3876 3877 3878 3879
{
	return EMULATE_FAIL;
}

3880
static int kvmppc_core_check_processor_compat_hv(void)
3881
{
3882 3883
	if (!cpu_has_feature(CPU_FTR_HVMODE) ||
	    !cpu_has_feature(CPU_FTR_ARCH_206))
3884
		return -EIO;
3885

3886
	return 0;
3887 3888
}

3889 3890 3891 3892 3893 3894 3895
#ifdef CONFIG_KVM_XICS

void kvmppc_free_pimap(struct kvm *kvm)
{
	kfree(kvm->arch.pimap);
}

3896
static struct kvmppc_passthru_irqmap *kvmppc_alloc_pimap(void)
3897 3898 3899
{
	return kzalloc(sizeof(struct kvmppc_passthru_irqmap), GFP_KERNEL);
}
3900 3901 3902 3903 3904 3905 3906

static int kvmppc_set_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
{
	struct irq_desc *desc;
	struct kvmppc_irq_map *irq_map;
	struct kvmppc_passthru_irqmap *pimap;
	struct irq_chip *chip;
3907
	int i, rc = 0;
3908

3909 3910 3911
	if (!kvm_irq_bypass)
		return 1;

3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931
	desc = irq_to_desc(host_irq);
	if (!desc)
		return -EIO;

	mutex_lock(&kvm->lock);

	pimap = kvm->arch.pimap;
	if (pimap == NULL) {
		/* First call, allocate structure to hold IRQ map */
		pimap = kvmppc_alloc_pimap();
		if (pimap == NULL) {
			mutex_unlock(&kvm->lock);
			return -ENOMEM;
		}
		kvm->arch.pimap = pimap;
	}

	/*
	 * For now, we only support interrupts for which the EOI operation
	 * is an OPAL call followed by a write to XIRR, since that's
3932
	 * what our real-mode EOI code does, or a XIVE interrupt
3933 3934
	 */
	chip = irq_data_get_irq_chip(&desc->irq_data);
3935
	if (!chip || !(is_pnv_opal_msi(chip) || is_xive_irq(chip))) {
3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966
		pr_warn("kvmppc_set_passthru_irq_hv: Could not assign IRQ map for (%d,%d)\n",
			host_irq, guest_gsi);
		mutex_unlock(&kvm->lock);
		return -ENOENT;
	}

	/*
	 * See if we already have an entry for this guest IRQ number.
	 * If it's mapped to a hardware IRQ number, that's an error,
	 * otherwise re-use this entry.
	 */
	for (i = 0; i < pimap->n_mapped; i++) {
		if (guest_gsi == pimap->mapped[i].v_hwirq) {
			if (pimap->mapped[i].r_hwirq) {
				mutex_unlock(&kvm->lock);
				return -EINVAL;
			}
			break;
		}
	}

	if (i == KVMPPC_PIRQ_MAPPED) {
		mutex_unlock(&kvm->lock);
		return -EAGAIN;		/* table is full */
	}

	irq_map = &pimap->mapped[i];

	irq_map->v_hwirq = guest_gsi;
	irq_map->desc = desc;

3967 3968 3969 3970 3971 3972 3973
	/*
	 * Order the above two stores before the next to serialize with
	 * the KVM real mode handler.
	 */
	smp_wmb();
	irq_map->r_hwirq = desc->irq_data.hwirq;

3974 3975 3976
	if (i == pimap->n_mapped)
		pimap->n_mapped++;

3977 3978 3979 3980 3981 3982
	if (xive_enabled())
		rc = kvmppc_xive_set_mapped(kvm, guest_gsi, desc);
	else
		kvmppc_xics_set_mapped(kvm, guest_gsi, desc->irq_data.hwirq);
	if (rc)
		irq_map->r_hwirq = 0;
3983

3984 3985 3986 3987 3988 3989 3990 3991 3992
	mutex_unlock(&kvm->lock);

	return 0;
}

static int kvmppc_clr_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
{
	struct irq_desc *desc;
	struct kvmppc_passthru_irqmap *pimap;
3993
	int i, rc = 0;
3994

3995 3996 3997
	if (!kvm_irq_bypass)
		return 0;

3998 3999 4000 4001 4002
	desc = irq_to_desc(host_irq);
	if (!desc)
		return -EIO;

	mutex_lock(&kvm->lock);
4003 4004
	if (!kvm->arch.pimap)
		goto unlock;
4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017

	pimap = kvm->arch.pimap;

	for (i = 0; i < pimap->n_mapped; i++) {
		if (guest_gsi == pimap->mapped[i].v_hwirq)
			break;
	}

	if (i == pimap->n_mapped) {
		mutex_unlock(&kvm->lock);
		return -ENODEV;
	}

4018 4019 4020 4021
	if (xive_enabled())
		rc = kvmppc_xive_clr_mapped(kvm, guest_gsi, pimap->mapped[i].desc);
	else
		kvmppc_xics_clr_mapped(kvm, guest_gsi, pimap->mapped[i].r_hwirq);
4022

4023
	/* invalidate the entry (what do do on error from the above ?) */
4024 4025 4026 4027 4028 4029
	pimap->mapped[i].r_hwirq = 0;

	/*
	 * We don't free this structure even when the count goes to
	 * zero. The structure is freed when we destroy the VM.
	 */
4030
 unlock:
4031
	mutex_unlock(&kvm->lock);
4032
	return rc;
4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070
}

static int kvmppc_irq_bypass_add_producer_hv(struct irq_bypass_consumer *cons,
					     struct irq_bypass_producer *prod)
{
	int ret = 0;
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

	irqfd->producer = prod;

	ret = kvmppc_set_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi);
	if (ret)
		pr_info("kvmppc_set_passthru_irq (irq %d, gsi %d) fails: %d\n",
			prod->irq, irqfd->gsi, ret);

	return ret;
}

static void kvmppc_irq_bypass_del_producer_hv(struct irq_bypass_consumer *cons,
					      struct irq_bypass_producer *prod)
{
	int ret;
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

	irqfd->producer = NULL;

	/*
	 * When producer of consumer is unregistered, we change back to
	 * default external interrupt handling mode - KVM real mode
	 * will switch back to host.
	 */
	ret = kvmppc_clr_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi);
	if (ret)
		pr_warn("kvmppc_clr_passthru_irq (irq %d, gsi %d) fails: %d\n",
			prod->irq, irqfd->gsi, ret);
}
4071 4072
#endif

4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087
static long kvm_arch_vm_ioctl_hv(struct file *filp,
				 unsigned int ioctl, unsigned long arg)
{
	struct kvm *kvm __maybe_unused = filp->private_data;
	void __user *argp = (void __user *)arg;
	long r;

	switch (ioctl) {

	case KVM_PPC_ALLOCATE_HTAB: {
		u32 htab_order;

		r = -EFAULT;
		if (get_user(htab_order, (u32 __user *)argp))
			break;
4088
		r = kvmppc_alloc_reset_hpt(kvm, htab_order);
4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104
		if (r)
			break;
		r = 0;
		break;
	}

	case KVM_PPC_GET_HTAB_FD: {
		struct kvm_get_htab_fd ghf;

		r = -EFAULT;
		if (copy_from_user(&ghf, argp, sizeof(ghf)))
			break;
		r = kvm_vm_ioctl_get_htab_fd(kvm, &ghf);
		break;
	}

4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126
	case KVM_PPC_RESIZE_HPT_PREPARE: {
		struct kvm_ppc_resize_hpt rhpt;

		r = -EFAULT;
		if (copy_from_user(&rhpt, argp, sizeof(rhpt)))
			break;

		r = kvm_vm_ioctl_resize_hpt_prepare(kvm, &rhpt);
		break;
	}

	case KVM_PPC_RESIZE_HPT_COMMIT: {
		struct kvm_ppc_resize_hpt rhpt;

		r = -EFAULT;
		if (copy_from_user(&rhpt, argp, sizeof(rhpt)))
			break;

		r = kvm_vm_ioctl_resize_hpt_commit(kvm, &rhpt);
		break;
	}

4127 4128 4129 4130 4131 4132 4133
	default:
		r = -ENOTTY;
	}

	return r;
}

4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167
/*
 * List of hcall numbers to enable by default.
 * For compatibility with old userspace, we enable by default
 * all hcalls that were implemented before the hcall-enabling
 * facility was added.  Note this list should not include H_RTAS.
 */
static unsigned int default_hcall_list[] = {
	H_REMOVE,
	H_ENTER,
	H_READ,
	H_PROTECT,
	H_BULK_REMOVE,
	H_GET_TCE,
	H_PUT_TCE,
	H_SET_DABR,
	H_SET_XDABR,
	H_CEDE,
	H_PROD,
	H_CONFER,
	H_REGISTER_VPA,
#ifdef CONFIG_KVM_XICS
	H_EOI,
	H_CPPR,
	H_IPI,
	H_IPOLL,
	H_XIRR,
	H_XIRR_X,
#endif
	0
};

static void init_default_hcalls(void)
{
	int i;
4168
	unsigned int hcall;
4169

4170 4171 4172 4173 4174
	for (i = 0; default_hcall_list[i]; ++i) {
		hcall = default_hcall_list[i];
		WARN_ON(!kvmppc_hcall_impl_hv(hcall));
		__set_bit(hcall / 4, default_enabled_hcalls);
	}
4175 4176
}

4177 4178
static int kvmhv_configure_mmu(struct kvm *kvm, struct kvm_ppc_mmuv3_cfg *cfg)
{
4179
	unsigned long lpcr;
4180
	int radix;
4181 4182 4183 4184 4185 4186 4187 4188 4189

	/* If not on a POWER9, reject it */
	if (!cpu_has_feature(CPU_FTR_ARCH_300))
		return -ENODEV;

	/* If any unknown flags set, reject it */
	if (cfg->flags & ~(KVM_PPC_MMUV3_RADIX | KVM_PPC_MMUV3_GTSE))
		return -EINVAL;

4190 4191 4192
	/* We can't change a guest to/from radix yet */
	radix = !!(cfg->flags & KVM_PPC_MMUV3_RADIX);
	if (radix != kvm_is_radix(kvm))
4193 4194 4195
		return -EINVAL;

	/* GR (guest radix) bit in process_table field must match */
4196
	if (!!(cfg->process_table & PATB_GR) != radix)
4197 4198 4199 4200 4201 4202
		return -EINVAL;

	/* Process table size field must be reasonable, i.e. <= 24 */
	if ((cfg->process_table & PRTS_MASK) > 24)
		return -EINVAL;

4203
	mutex_lock(&kvm->lock);
4204 4205 4206 4207 4208
	kvm->arch.process_table = cfg->process_table;
	kvmppc_setup_partition_table(kvm);

	lpcr = (cfg->flags & KVM_PPC_MMUV3_GTSE) ? LPCR_GTSE : 0;
	kvmppc_update_lpcr(kvm, lpcr, LPCR_GTSE);
4209
	mutex_unlock(&kvm->lock);
4210 4211

	return 0;
4212 4213
}

4214
static struct kvmppc_ops kvm_ops_hv = {
4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245
	.get_sregs = kvm_arch_vcpu_ioctl_get_sregs_hv,
	.set_sregs = kvm_arch_vcpu_ioctl_set_sregs_hv,
	.get_one_reg = kvmppc_get_one_reg_hv,
	.set_one_reg = kvmppc_set_one_reg_hv,
	.vcpu_load   = kvmppc_core_vcpu_load_hv,
	.vcpu_put    = kvmppc_core_vcpu_put_hv,
	.set_msr     = kvmppc_set_msr_hv,
	.vcpu_run    = kvmppc_vcpu_run_hv,
	.vcpu_create = kvmppc_core_vcpu_create_hv,
	.vcpu_free   = kvmppc_core_vcpu_free_hv,
	.check_requests = kvmppc_core_check_requests_hv,
	.get_dirty_log  = kvm_vm_ioctl_get_dirty_log_hv,
	.flush_memslot  = kvmppc_core_flush_memslot_hv,
	.prepare_memory_region = kvmppc_core_prepare_memory_region_hv,
	.commit_memory_region  = kvmppc_core_commit_memory_region_hv,
	.unmap_hva = kvm_unmap_hva_hv,
	.unmap_hva_range = kvm_unmap_hva_range_hv,
	.age_hva  = kvm_age_hva_hv,
	.test_age_hva = kvm_test_age_hva_hv,
	.set_spte_hva = kvm_set_spte_hva_hv,
	.mmu_destroy  = kvmppc_mmu_destroy_hv,
	.free_memslot = kvmppc_core_free_memslot_hv,
	.create_memslot = kvmppc_core_create_memslot_hv,
	.init_vm =  kvmppc_core_init_vm_hv,
	.destroy_vm = kvmppc_core_destroy_vm_hv,
	.get_smmu_info = kvm_vm_ioctl_get_smmu_info_hv,
	.emulate_op = kvmppc_core_emulate_op_hv,
	.emulate_mtspr = kvmppc_core_emulate_mtspr_hv,
	.emulate_mfspr = kvmppc_core_emulate_mfspr_hv,
	.fast_vcpu_kick = kvmppc_fast_vcpu_kick_hv,
	.arch_vm_ioctl  = kvm_arch_vm_ioctl_hv,
4246
	.hcall_implemented = kvmppc_hcall_impl_hv,
4247 4248 4249 4250
#ifdef CONFIG_KVM_XICS
	.irq_bypass_add_producer = kvmppc_irq_bypass_add_producer_hv,
	.irq_bypass_del_producer = kvmppc_irq_bypass_del_producer_hv,
#endif
4251 4252
	.configure_mmu = kvmhv_configure_mmu,
	.get_rmmu_info = kvmhv_get_rmmu_info,
4253
	.set_smt_mode = kvmhv_set_smt_mode,
4254 4255
};

4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287
static int kvm_init_subcore_bitmap(void)
{
	int i, j;
	int nr_cores = cpu_nr_cores();
	struct sibling_subcore_state *sibling_subcore_state;

	for (i = 0; i < nr_cores; i++) {
		int first_cpu = i * threads_per_core;
		int node = cpu_to_node(first_cpu);

		/* Ignore if it is already allocated. */
		if (paca[first_cpu].sibling_subcore_state)
			continue;

		sibling_subcore_state =
			kmalloc_node(sizeof(struct sibling_subcore_state),
							GFP_KERNEL, node);
		if (!sibling_subcore_state)
			return -ENOMEM;

		memset(sibling_subcore_state, 0,
				sizeof(struct sibling_subcore_state));

		for (j = 0; j < threads_per_core; j++) {
			int cpu = first_cpu + j;

			paca[cpu].sibling_subcore_state = sibling_subcore_state;
		}
	}
	return 0;
}

4288 4289 4290 4291 4292
static int kvmppc_radix_possible(void)
{
	return cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled();
}

4293
static int kvmppc_book3s_init_hv(void)
4294 4295
{
	int r;
4296 4297 4298 4299 4300
	/*
	 * FIXME!! Do we need to check on all cpus ?
	 */
	r = kvmppc_core_check_processor_compat_hv();
	if (r < 0)
4301
		return -ENODEV;
4302

4303 4304 4305 4306
	r = kvm_init_subcore_bitmap();
	if (r)
		return r;

4307 4308 4309 4310 4311 4312
	/*
	 * We need a way of accessing the XICS interrupt controller,
	 * either directly, via paca[cpu].kvm_hstate.xics_phys, or
	 * indirectly, via OPAL.
	 */
#ifdef CONFIG_SMP
4313
	if (!xive_enabled() && !local_paca->kvm_hstate.xics_phys) {
4314 4315 4316 4317 4318 4319 4320 4321 4322 4323
		struct device_node *np;

		np = of_find_compatible_node(NULL, NULL, "ibm,opal-intc");
		if (!np) {
			pr_err("KVM-HV: Cannot determine method for accessing XICS\n");
			return -ENODEV;
		}
	}
#endif

4324 4325
	kvm_ops_hv.owner = THIS_MODULE;
	kvmppc_hv_ops = &kvm_ops_hv;
4326

4327 4328
	init_default_hcalls();

4329 4330
	init_vcore_lists();

4331
	r = kvmppc_mmu_hv_init();
4332 4333 4334 4335 4336
	if (r)
		return r;

	if (kvmppc_radix_possible())
		r = kvmppc_radix_init();
4337 4338 4339
	return r;
}

4340
static void kvmppc_book3s_exit_hv(void)
4341
{
4342
	kvmppc_free_host_rm_ops();
4343 4344
	if (kvmppc_radix_possible())
		kvmppc_radix_exit();
4345
	kvmppc_hv_ops = NULL;
4346 4347
}

4348 4349
module_init(kvmppc_book3s_init_hv);
module_exit(kvmppc_book3s_exit_hv);
4350
MODULE_LICENSE("GPL");
4351 4352
MODULE_ALIAS_MISCDEV(KVM_MINOR);
MODULE_ALIAS("devname:kvm");