book3s_hv.c 95.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
/*
 * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
 * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
 *
 * Authors:
 *    Paul Mackerras <paulus@au1.ibm.com>
 *    Alexander Graf <agraf@suse.de>
 *    Kevin Wolf <mail@kevin-wolf.de>
 *
 * Description: KVM functions specific to running on Book 3S
 * processors in hypervisor mode (specifically POWER7 and later).
 *
 * This file is derived from arch/powerpc/kvm/book3s.c,
 * by Alexander Graf <agraf@suse.de>.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License, version 2, as
 * published by the Free Software Foundation.
 */

#include <linux/kvm_host.h>
#include <linux/err.h>
#include <linux/slab.h>
#include <linux/preempt.h>
#include <linux/sched.h>
#include <linux/delay.h>
27
#include <linux/export.h>
28 29
#include <linux/fs.h>
#include <linux/anon_inodes.h>
30
#include <linux/cpu.h>
31
#include <linux/cpumask.h>
32 33
#include <linux/spinlock.h>
#include <linux/page-flags.h>
34
#include <linux/srcu.h>
35
#include <linux/miscdevice.h>
36
#include <linux/debugfs.h>
37 38 39 40 41 42 43 44 45 46 47 48

#include <asm/reg.h>
#include <asm/cputable.h>
#include <asm/cacheflush.h>
#include <asm/tlbflush.h>
#include <asm/uaccess.h>
#include <asm/io.h>
#include <asm/kvm_ppc.h>
#include <asm/kvm_book3s.h>
#include <asm/mmu_context.h>
#include <asm/lppaca.h>
#include <asm/processor.h>
49
#include <asm/cputhreads.h>
50
#include <asm/page.h>
51
#include <asm/hvcall.h>
52
#include <asm/switch_to.h>
53
#include <asm/smp.h>
54
#include <asm/dbell.h>
55
#include <asm/hmi.h>
56
#include <asm/pnv-pci.h>
57 58 59
#include <linux/gfp.h>
#include <linux/vmalloc.h>
#include <linux/highmem.h>
60
#include <linux/hugetlb.h>
61 62
#include <linux/kvm_irqfd.h>
#include <linux/irqbypass.h>
63
#include <linux/module.h>
64
#include <linux/compiler.h>
65

66 67
#include "book3s.h"

68 69 70
#define CREATE_TRACE_POINTS
#include "trace_hv.h"

71 72 73 74
/* #define EXIT_DEBUG */
/* #define EXIT_DEBUG_SIMPLE */
/* #define EXIT_DEBUG_INT */

75 76 77
/* Used to indicate that a guest page fault needs to be handled */
#define RESUME_PAGE_FAULT	(RESUME_GUEST | RESUME_FLAG_ARCH1)

78 79 80
/* Used as a "null" value for timebase values */
#define TB_NIL	(~(u64)0)

81 82
static DECLARE_BITMAP(default_enabled_hcalls, MAX_HCALL_OPCODE/4 + 1);

83 84 85
static int dynamic_mt_modes = 6;
module_param(dynamic_mt_modes, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(dynamic_mt_modes, "Set of allowed dynamic micro-threading modes: 0 (= none), 2, 4, or 6 (= 2 or 4)");
86 87 88
static int target_smt_mode;
module_param(target_smt_mode, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(target_smt_mode, "Target threads per core (0 = max)");
89

90 91 92 93 94 95 96 97 98 99 100
#ifdef CONFIG_KVM_XICS
static struct kernel_param_ops module_param_ops = {
	.set = param_set_int,
	.get = param_get_int,
};

module_param_cb(h_ipi_redirect, &module_param_ops, &h_ipi_redirect,
							S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(h_ipi_redirect, "Redirect H_IPI wakeup to a free host core");
#endif

101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
/* Maximum halt poll interval defaults to KVM_HALT_POLL_NS_DEFAULT */
static unsigned int halt_poll_max_ns = KVM_HALT_POLL_NS_DEFAULT;
module_param(halt_poll_max_ns, uint, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(halt_poll_max_ns, "Maximum halt poll time in ns");

/* Factor by which the vcore halt poll interval is grown, default is to double
 */
static unsigned int halt_poll_ns_grow = 2;
module_param(halt_poll_ns_grow, int, S_IRUGO);
MODULE_PARM_DESC(halt_poll_ns_grow, "Factor halt poll time is grown by");

/* Factor by which the vcore halt poll interval is shrunk, default is to reset
 */
static unsigned int halt_poll_ns_shrink;
module_param(halt_poll_ns_shrink, int, S_IRUGO);
MODULE_PARM_DESC(halt_poll_ns_shrink, "Factor halt poll time is shrunk by");

118
static void kvmppc_end_cede(struct kvm_vcpu *vcpu);
119
static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu);
120

121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
static inline struct kvm_vcpu *next_runnable_thread(struct kvmppc_vcore *vc,
		int *ip)
{
	int i = *ip;
	struct kvm_vcpu *vcpu;

	while (++i < MAX_SMT_THREADS) {
		vcpu = READ_ONCE(vc->runnable_threads[i]);
		if (vcpu) {
			*ip = i;
			return vcpu;
		}
	}
	return NULL;
}

/* Used to traverse the list of runnable threads for a given vcore */
#define for_each_runnable_thread(i, vcpu, vc) \
	for (i = -1; (vcpu = next_runnable_thread(vc, &i)); )

141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
static bool kvmppc_ipi_thread(int cpu)
{
	/* On POWER8 for IPIs to threads in the same core, use msgsnd */
	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
		preempt_disable();
		if (cpu_first_thread_sibling(cpu) ==
		    cpu_first_thread_sibling(smp_processor_id())) {
			unsigned long msg = PPC_DBELL_TYPE(PPC_DBELL_SERVER);
			msg |= cpu_thread_in_core(cpu);
			smp_mb();
			__asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
			preempt_enable();
			return true;
		}
		preempt_enable();
	}

#if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP)
	if (cpu >= 0 && cpu < nr_cpu_ids && paca[cpu].kvm_hstate.xics_phys) {
		xics_wake_cpu(cpu);
		return true;
	}
#endif

	return false;
}

168
static void kvmppc_fast_vcpu_kick_hv(struct kvm_vcpu *vcpu)
169
{
170
	int cpu;
171
	struct swait_queue_head *wqp;
172 173

	wqp = kvm_arch_vcpu_wq(vcpu);
174 175
	if (swait_active(wqp)) {
		swake_up(wqp);
176 177 178
		++vcpu->stat.halt_wakeup;
	}

179
	if (kvmppc_ipi_thread(vcpu->arch.thread_cpu))
180
		return;
181 182

	/* CPU points to the first thread of the core */
183
	cpu = vcpu->cpu;
184 185
	if (cpu >= 0 && cpu < nr_cpu_ids && cpu_online(cpu))
		smp_send_reschedule(cpu);
186 187
}

188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
/*
 * We use the vcpu_load/put functions to measure stolen time.
 * Stolen time is counted as time when either the vcpu is able to
 * run as part of a virtual core, but the task running the vcore
 * is preempted or sleeping, or when the vcpu needs something done
 * in the kernel by the task running the vcpu, but that task is
 * preempted or sleeping.  Those two things have to be counted
 * separately, since one of the vcpu tasks will take on the job
 * of running the core, and the other vcpu tasks in the vcore will
 * sleep waiting for it to do that, but that sleep shouldn't count
 * as stolen time.
 *
 * Hence we accumulate stolen time when the vcpu can run as part of
 * a vcore using vc->stolen_tb, and the stolen time when the vcpu
 * needs its task to do other things in the kernel (for example,
 * service a page fault) in busy_stolen.  We don't accumulate
 * stolen time for a vcore when it is inactive, or for a vcpu
 * when it is in state RUNNING or NOTREADY.  NOTREADY is a bit of
 * a misnomer; it means that the vcpu task is not executing in
 * the KVM_VCPU_RUN ioctl, i.e. it is in userspace or elsewhere in
 * the kernel.  We don't have any way of dividing up that time
 * between time that the vcpu is genuinely stopped, time that
 * the task is actively working on behalf of the vcpu, and time
 * that the task is preempted, so we don't count any of it as
 * stolen.
 *
 * Updates to busy_stolen are protected by arch.tbacct_lock;
215 216 217 218
 * updates to vc->stolen_tb are protected by the vcore->stoltb_lock
 * lock.  The stolen times are measured in units of timebase ticks.
 * (Note that the != TB_NIL checks below are purely defensive;
 * they should never fail.)
219 220
 */

221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
static void kvmppc_core_start_stolen(struct kvmppc_vcore *vc)
{
	unsigned long flags;

	spin_lock_irqsave(&vc->stoltb_lock, flags);
	vc->preempt_tb = mftb();
	spin_unlock_irqrestore(&vc->stoltb_lock, flags);
}

static void kvmppc_core_end_stolen(struct kvmppc_vcore *vc)
{
	unsigned long flags;

	spin_lock_irqsave(&vc->stoltb_lock, flags);
	if (vc->preempt_tb != TB_NIL) {
		vc->stolen_tb += mftb() - vc->preempt_tb;
		vc->preempt_tb = TB_NIL;
	}
	spin_unlock_irqrestore(&vc->stoltb_lock, flags);
}

242
static void kvmppc_core_vcpu_load_hv(struct kvm_vcpu *vcpu, int cpu)
243
{
244
	struct kvmppc_vcore *vc = vcpu->arch.vcore;
245
	unsigned long flags;
246

247 248 249 250 251 252
	/*
	 * We can test vc->runner without taking the vcore lock,
	 * because only this task ever sets vc->runner to this
	 * vcpu, and once it is set to this vcpu, only this task
	 * ever sets it to NULL.
	 */
253 254 255
	if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
		kvmppc_core_end_stolen(vc);

256
	spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
257 258 259 260 261
	if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST &&
	    vcpu->arch.busy_preempt != TB_NIL) {
		vcpu->arch.busy_stolen += mftb() - vcpu->arch.busy_preempt;
		vcpu->arch.busy_preempt = TB_NIL;
	}
262
	spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
263 264
}

265
static void kvmppc_core_vcpu_put_hv(struct kvm_vcpu *vcpu)
266
{
267
	struct kvmppc_vcore *vc = vcpu->arch.vcore;
268
	unsigned long flags;
269

270 271 272
	if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
		kvmppc_core_start_stolen(vc);

273
	spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
274 275
	if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST)
		vcpu->arch.busy_preempt = mftb();
276
	spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
277 278
}

279
static void kvmppc_set_msr_hv(struct kvm_vcpu *vcpu, u64 msr)
280
{
281 282 283 284 285 286
	/*
	 * Check for illegal transactional state bit combination
	 * and if we find it, force the TS field to a safe state.
	 */
	if ((msr & MSR_TS_MASK) == MSR_TS_MASK)
		msr &= ~MSR_TS_MASK;
287
	vcpu->arch.shregs.msr = msr;
288
	kvmppc_end_cede(vcpu);
289 290
}

T
Thomas Huth 已提交
291
static void kvmppc_set_pvr_hv(struct kvm_vcpu *vcpu, u32 pvr)
292 293 294 295
{
	vcpu->arch.pvr = pvr;
}

T
Thomas Huth 已提交
296
static int kvmppc_set_arch_compat(struct kvm_vcpu *vcpu, u32 arch_compat)
297 298 299 300 301 302 303
{
	unsigned long pcr = 0;
	struct kvmppc_vcore *vc = vcpu->arch.vcore;

	if (arch_compat) {
		switch (arch_compat) {
		case PVR_ARCH_205:
304 305 306 307 308
			/*
			 * If an arch bit is set in PCR, all the defined
			 * higher-order arch bits also have to be set.
			 */
			pcr = PCR_ARCH_206 | PCR_ARCH_205;
309 310 311
			break;
		case PVR_ARCH_206:
		case PVR_ARCH_206p:
312 313 314
			pcr = PCR_ARCH_206;
			break;
		case PVR_ARCH_207:
315 316 317 318
			break;
		default:
			return -EINVAL;
		}
319 320 321 322 323 324 325

		if (!cpu_has_feature(CPU_FTR_ARCH_207S)) {
			/* POWER7 can't emulate POWER8 */
			if (!(pcr & PCR_ARCH_206))
				return -EINVAL;
			pcr &= ~PCR_ARCH_206;
		}
326 327 328 329 330 331 332 333 334 335
	}

	spin_lock(&vc->lock);
	vc->arch_compat = arch_compat;
	vc->pcr = pcr;
	spin_unlock(&vc->lock);

	return 0;
}

T
Thomas Huth 已提交
336
static void kvmppc_dump_regs(struct kvm_vcpu *vcpu)
337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364
{
	int r;

	pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id);
	pr_err("pc  = %.16lx  msr = %.16llx  trap = %x\n",
	       vcpu->arch.pc, vcpu->arch.shregs.msr, vcpu->arch.trap);
	for (r = 0; r < 16; ++r)
		pr_err("r%2d = %.16lx  r%d = %.16lx\n",
		       r, kvmppc_get_gpr(vcpu, r),
		       r+16, kvmppc_get_gpr(vcpu, r+16));
	pr_err("ctr = %.16lx  lr  = %.16lx\n",
	       vcpu->arch.ctr, vcpu->arch.lr);
	pr_err("srr0 = %.16llx srr1 = %.16llx\n",
	       vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1);
	pr_err("sprg0 = %.16llx sprg1 = %.16llx\n",
	       vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1);
	pr_err("sprg2 = %.16llx sprg3 = %.16llx\n",
	       vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3);
	pr_err("cr = %.8x  xer = %.16lx  dsisr = %.8x\n",
	       vcpu->arch.cr, vcpu->arch.xer, vcpu->arch.shregs.dsisr);
	pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar);
	pr_err("fault dar = %.16lx dsisr = %.8x\n",
	       vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
	pr_err("SLB (%d entries):\n", vcpu->arch.slb_max);
	for (r = 0; r < vcpu->arch.slb_max; ++r)
		pr_err("  ESID = %.16llx VSID = %.16llx\n",
		       vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv);
	pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n",
365
	       vcpu->arch.vcore->lpcr, vcpu->kvm->arch.sdr1,
366 367 368
	       vcpu->arch.last_inst);
}

T
Thomas Huth 已提交
369
static struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id)
370
{
371
	struct kvm_vcpu *ret;
372 373

	mutex_lock(&kvm->lock);
374
	ret = kvm_get_vcpu_by_id(kvm, id);
375 376 377 378 379 380
	mutex_unlock(&kvm->lock);
	return ret;
}

static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa)
{
381
	vpa->__old_status |= LPPACA_OLD_SHARED_PROC;
382
	vpa->yield_count = cpu_to_be32(1);
383 384
}

385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400
static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v,
		   unsigned long addr, unsigned long len)
{
	/* check address is cacheline aligned */
	if (addr & (L1_CACHE_BYTES - 1))
		return -EINVAL;
	spin_lock(&vcpu->arch.vpa_update_lock);
	if (v->next_gpa != addr || v->len != len) {
		v->next_gpa = addr;
		v->len = addr ? len : 0;
		v->update_pending = 1;
	}
	spin_unlock(&vcpu->arch.vpa_update_lock);
	return 0;
}

401 402 403 404
/* Length for a per-processor buffer is passed in at offset 4 in the buffer */
struct reg_vpa {
	u32 dummy;
	union {
405 406
		__be16 hword;
		__be32 word;
407 408 409 410 411 412 413 414 415 416
	} length;
};

static int vpa_is_registered(struct kvmppc_vpa *vpap)
{
	if (vpap->update_pending)
		return vpap->next_gpa != 0;
	return vpap->pinned_addr != NULL;
}

417 418 419 420 421
static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu,
				       unsigned long flags,
				       unsigned long vcpuid, unsigned long vpa)
{
	struct kvm *kvm = vcpu->kvm;
422
	unsigned long len, nb;
423 424
	void *va;
	struct kvm_vcpu *tvcpu;
425 426 427
	int err;
	int subfunc;
	struct kvmppc_vpa *vpap;
428 429 430 431 432

	tvcpu = kvmppc_find_vcpu(kvm, vcpuid);
	if (!tvcpu)
		return H_PARAMETER;

433 434 435 436 437
	subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK;
	if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL ||
	    subfunc == H_VPA_REG_SLB) {
		/* Registering new area - address must be cache-line aligned */
		if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa)
438
			return H_PARAMETER;
439 440

		/* convert logical addr to kernel addr and read length */
441 442
		va = kvmppc_pin_guest_page(kvm, vpa, &nb);
		if (va == NULL)
443
			return H_PARAMETER;
444
		if (subfunc == H_VPA_REG_VPA)
445
			len = be16_to_cpu(((struct reg_vpa *)va)->length.hword);
446
		else
447
			len = be32_to_cpu(((struct reg_vpa *)va)->length.word);
448
		kvmppc_unpin_guest_page(kvm, va, vpa, false);
449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464

		/* Check length */
		if (len > nb || len < sizeof(struct reg_vpa))
			return H_PARAMETER;
	} else {
		vpa = 0;
		len = 0;
	}

	err = H_PARAMETER;
	vpap = NULL;
	spin_lock(&tvcpu->arch.vpa_update_lock);

	switch (subfunc) {
	case H_VPA_REG_VPA:		/* register VPA */
		if (len < sizeof(struct lppaca))
465
			break;
466 467 468 469 470 471
		vpap = &tvcpu->arch.vpa;
		err = 0;
		break;

	case H_VPA_REG_DTL:		/* register DTL */
		if (len < sizeof(struct dtl_entry))
472
			break;
473 474 475 476 477
		len -= len % sizeof(struct dtl_entry);

		/* Check that they have previously registered a VPA */
		err = H_RESOURCE;
		if (!vpa_is_registered(&tvcpu->arch.vpa))
478
			break;
479 480 481 482 483 484 485 486 487

		vpap = &tvcpu->arch.dtl;
		err = 0;
		break;

	case H_VPA_REG_SLB:		/* register SLB shadow buffer */
		/* Check that they have previously registered a VPA */
		err = H_RESOURCE;
		if (!vpa_is_registered(&tvcpu->arch.vpa))
488
			break;
489 490 491 492 493 494 495 496 497 498

		vpap = &tvcpu->arch.slb_shadow;
		err = 0;
		break;

	case H_VPA_DEREG_VPA:		/* deregister VPA */
		/* Check they don't still have a DTL or SLB buf registered */
		err = H_RESOURCE;
		if (vpa_is_registered(&tvcpu->arch.dtl) ||
		    vpa_is_registered(&tvcpu->arch.slb_shadow))
499
			break;
500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519

		vpap = &tvcpu->arch.vpa;
		err = 0;
		break;

	case H_VPA_DEREG_DTL:		/* deregister DTL */
		vpap = &tvcpu->arch.dtl;
		err = 0;
		break;

	case H_VPA_DEREG_SLB:		/* deregister SLB shadow buffer */
		vpap = &tvcpu->arch.slb_shadow;
		err = 0;
		break;
	}

	if (vpap) {
		vpap->next_gpa = vpa;
		vpap->len = len;
		vpap->update_pending = 1;
520
	}
521

522 523
	spin_unlock(&tvcpu->arch.vpa_update_lock);

524
	return err;
525 526
}

527
static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap)
528
{
529
	struct kvm *kvm = vcpu->kvm;
530 531
	void *va;
	unsigned long nb;
532
	unsigned long gpa;
533

534 535 536 537 538 539 540 541 542 543 544 545 546 547
	/*
	 * We need to pin the page pointed to by vpap->next_gpa,
	 * but we can't call kvmppc_pin_guest_page under the lock
	 * as it does get_user_pages() and down_read().  So we
	 * have to drop the lock, pin the page, then get the lock
	 * again and check that a new area didn't get registered
	 * in the meantime.
	 */
	for (;;) {
		gpa = vpap->next_gpa;
		spin_unlock(&vcpu->arch.vpa_update_lock);
		va = NULL;
		nb = 0;
		if (gpa)
548
			va = kvmppc_pin_guest_page(kvm, gpa, &nb);
549 550 551 552 553
		spin_lock(&vcpu->arch.vpa_update_lock);
		if (gpa == vpap->next_gpa)
			break;
		/* sigh... unpin that one and try again */
		if (va)
554
			kvmppc_unpin_guest_page(kvm, va, gpa, false);
555 556 557 558 559 560 561 562 563
	}

	vpap->update_pending = 0;
	if (va && nb < vpap->len) {
		/*
		 * If it's now too short, it must be that userspace
		 * has changed the mappings underlying guest memory,
		 * so unregister the region.
		 */
564
		kvmppc_unpin_guest_page(kvm, va, gpa, false);
565
		va = NULL;
566 567
	}
	if (vpap->pinned_addr)
568 569 570
		kvmppc_unpin_guest_page(kvm, vpap->pinned_addr, vpap->gpa,
					vpap->dirty);
	vpap->gpa = gpa;
571
	vpap->pinned_addr = va;
572
	vpap->dirty = false;
573 574 575 576 577 578
	if (va)
		vpap->pinned_end = va + vpap->len;
}

static void kvmppc_update_vpas(struct kvm_vcpu *vcpu)
{
579 580 581 582 583
	if (!(vcpu->arch.vpa.update_pending ||
	      vcpu->arch.slb_shadow.update_pending ||
	      vcpu->arch.dtl.update_pending))
		return;

584 585
	spin_lock(&vcpu->arch.vpa_update_lock);
	if (vcpu->arch.vpa.update_pending) {
586
		kvmppc_update_vpa(vcpu, &vcpu->arch.vpa);
587 588
		if (vcpu->arch.vpa.pinned_addr)
			init_vpa(vcpu, vcpu->arch.vpa.pinned_addr);
589 590
	}
	if (vcpu->arch.dtl.update_pending) {
591
		kvmppc_update_vpa(vcpu, &vcpu->arch.dtl);
592 593 594 595
		vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr;
		vcpu->arch.dtl_index = 0;
	}
	if (vcpu->arch.slb_shadow.update_pending)
596
		kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow);
597 598 599
	spin_unlock(&vcpu->arch.vpa_update_lock);
}

600 601 602 603 604 605 606
/*
 * Return the accumulated stolen time for the vcore up until `now'.
 * The caller should hold the vcore lock.
 */
static u64 vcore_stolen_time(struct kvmppc_vcore *vc, u64 now)
{
	u64 p;
607
	unsigned long flags;
608

609 610
	spin_lock_irqsave(&vc->stoltb_lock, flags);
	p = vc->stolen_tb;
611
	if (vc->vcore_state != VCORE_INACTIVE &&
612 613 614
	    vc->preempt_tb != TB_NIL)
		p += now - vc->preempt_tb;
	spin_unlock_irqrestore(&vc->stoltb_lock, flags);
615 616 617
	return p;
}

618 619 620 621 622
static void kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu,
				    struct kvmppc_vcore *vc)
{
	struct dtl_entry *dt;
	struct lppaca *vpa;
623 624 625
	unsigned long stolen;
	unsigned long core_stolen;
	u64 now;
626 627 628

	dt = vcpu->arch.dtl_ptr;
	vpa = vcpu->arch.vpa.pinned_addr;
629 630 631 632
	now = mftb();
	core_stolen = vcore_stolen_time(vc, now);
	stolen = core_stolen - vcpu->arch.stolen_logged;
	vcpu->arch.stolen_logged = core_stolen;
633
	spin_lock_irq(&vcpu->arch.tbacct_lock);
634 635
	stolen += vcpu->arch.busy_stolen;
	vcpu->arch.busy_stolen = 0;
636
	spin_unlock_irq(&vcpu->arch.tbacct_lock);
637 638 639 640
	if (!dt || !vpa)
		return;
	memset(dt, 0, sizeof(struct dtl_entry));
	dt->dispatch_reason = 7;
641 642 643 644 645
	dt->processor_id = cpu_to_be16(vc->pcpu + vcpu->arch.ptid);
	dt->timebase = cpu_to_be64(now + vc->tb_offset);
	dt->enqueue_to_dispatch_time = cpu_to_be32(stolen);
	dt->srr0 = cpu_to_be64(kvmppc_get_pc(vcpu));
	dt->srr1 = cpu_to_be64(vcpu->arch.shregs.msr);
646 647 648 649 650 651
	++dt;
	if (dt == vcpu->arch.dtl.pinned_end)
		dt = vcpu->arch.dtl.pinned_addr;
	vcpu->arch.dtl_ptr = dt;
	/* order writing *dt vs. writing vpa->dtl_idx */
	smp_wmb();
652
	vpa->dtl_idx = cpu_to_be64(++vcpu->arch.dtl_index);
653
	vcpu->arch.dtl.dirty = true;
654 655
}

656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697
static bool kvmppc_power8_compatible(struct kvm_vcpu *vcpu)
{
	if (vcpu->arch.vcore->arch_compat >= PVR_ARCH_207)
		return true;
	if ((!vcpu->arch.vcore->arch_compat) &&
	    cpu_has_feature(CPU_FTR_ARCH_207S))
		return true;
	return false;
}

static int kvmppc_h_set_mode(struct kvm_vcpu *vcpu, unsigned long mflags,
			     unsigned long resource, unsigned long value1,
			     unsigned long value2)
{
	switch (resource) {
	case H_SET_MODE_RESOURCE_SET_CIABR:
		if (!kvmppc_power8_compatible(vcpu))
			return H_P2;
		if (value2)
			return H_P4;
		if (mflags)
			return H_UNSUPPORTED_FLAG_START;
		/* Guests can't breakpoint the hypervisor */
		if ((value1 & CIABR_PRIV) == CIABR_PRIV_HYPER)
			return H_P3;
		vcpu->arch.ciabr  = value1;
		return H_SUCCESS;
	case H_SET_MODE_RESOURCE_SET_DAWR:
		if (!kvmppc_power8_compatible(vcpu))
			return H_P2;
		if (mflags)
			return H_UNSUPPORTED_FLAG_START;
		if (value2 & DABRX_HYP)
			return H_P4;
		vcpu->arch.dawr  = value1;
		vcpu->arch.dawrx = value2;
		return H_SUCCESS;
	default:
		return H_TOO_HARD;
	}
}

698 699 700 701 702 703 704 705 706 707 708 709 710 711
static int kvm_arch_vcpu_yield_to(struct kvm_vcpu *target)
{
	struct kvmppc_vcore *vcore = target->arch.vcore;

	/*
	 * We expect to have been called by the real mode handler
	 * (kvmppc_rm_h_confer()) which would have directly returned
	 * H_SUCCESS if the source vcore wasn't idle (e.g. if it may
	 * have useful work to do and should not confer) so we don't
	 * recheck that here.
	 */

	spin_lock(&vcore->lock);
	if (target->arch.state == KVMPPC_VCPU_RUNNABLE &&
712 713
	    vcore->vcore_state != VCORE_INACTIVE &&
	    vcore->runner)
714 715 716 717 718 719 720 721 722 723 724 725 726 727
		target = vcore->runner;
	spin_unlock(&vcore->lock);

	return kvm_vcpu_yield_to(target);
}

static int kvmppc_get_yield_count(struct kvm_vcpu *vcpu)
{
	int yield_count = 0;
	struct lppaca *lppaca;

	spin_lock(&vcpu->arch.vpa_update_lock);
	lppaca = (struct lppaca *)vcpu->arch.vpa.pinned_addr;
	if (lppaca)
728
		yield_count = be32_to_cpu(lppaca->yield_count);
729 730 731 732
	spin_unlock(&vcpu->arch.vpa_update_lock);
	return yield_count;
}

733 734 735 736
int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu)
{
	unsigned long req = kvmppc_get_gpr(vcpu, 3);
	unsigned long target, ret = H_SUCCESS;
737
	int yield_count;
738
	struct kvm_vcpu *tvcpu;
739
	int idx, rc;
740

741 742 743 744
	if (req <= MAX_HCALL_OPCODE &&
	    !test_bit(req/4, vcpu->kvm->arch.enabled_hcalls))
		return RESUME_HOST;

745 746 747 748 749 750 751 752 753 754 755 756 757
	switch (req) {
	case H_CEDE:
		break;
	case H_PROD:
		target = kvmppc_get_gpr(vcpu, 4);
		tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
		if (!tvcpu) {
			ret = H_PARAMETER;
			break;
		}
		tvcpu->arch.prodded = 1;
		smp_mb();
		if (vcpu->arch.ceded) {
758 759
			if (swait_active(&vcpu->wq)) {
				swake_up(&vcpu->wq);
760 761 762 763 764
				vcpu->stat.halt_wakeup++;
			}
		}
		break;
	case H_CONFER:
765 766 767 768 769 770 771 772
		target = kvmppc_get_gpr(vcpu, 4);
		if (target == -1)
			break;
		tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
		if (!tvcpu) {
			ret = H_PARAMETER;
			break;
		}
773 774 775 776
		yield_count = kvmppc_get_gpr(vcpu, 5);
		if (kvmppc_get_yield_count(tvcpu) != yield_count)
			break;
		kvm_arch_vcpu_yield_to(tvcpu);
777 778 779 780 781 782
		break;
	case H_REGISTER_VPA:
		ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4),
					kvmppc_get_gpr(vcpu, 5),
					kvmppc_get_gpr(vcpu, 6));
		break;
783 784 785 786
	case H_RTAS:
		if (list_empty(&vcpu->kvm->arch.rtas_tokens))
			return RESUME_HOST;

787
		idx = srcu_read_lock(&vcpu->kvm->srcu);
788
		rc = kvmppc_rtas_hcall(vcpu);
789
		srcu_read_unlock(&vcpu->kvm->srcu, idx);
790 791 792 793 794 795 796 797

		if (rc == -ENOENT)
			return RESUME_HOST;
		else if (rc == 0)
			break;

		/* Send the error out to userspace via KVM_RUN */
		return rc;
798 799 800 801 802 803 804 805 806 807
	case H_LOGICAL_CI_LOAD:
		ret = kvmppc_h_logical_ci_load(vcpu);
		if (ret == H_TOO_HARD)
			return RESUME_HOST;
		break;
	case H_LOGICAL_CI_STORE:
		ret = kvmppc_h_logical_ci_store(vcpu);
		if (ret == H_TOO_HARD)
			return RESUME_HOST;
		break;
808 809 810 811 812 813 814 815
	case H_SET_MODE:
		ret = kvmppc_h_set_mode(vcpu, kvmppc_get_gpr(vcpu, 4),
					kvmppc_get_gpr(vcpu, 5),
					kvmppc_get_gpr(vcpu, 6),
					kvmppc_get_gpr(vcpu, 7));
		if (ret == H_TOO_HARD)
			return RESUME_HOST;
		break;
816 817 818 819
	case H_XIRR:
	case H_CPPR:
	case H_EOI:
	case H_IPI:
820 821
	case H_IPOLL:
	case H_XIRR_X:
822 823 824
		if (kvmppc_xics_enabled(vcpu)) {
			ret = kvmppc_xics_hcall(vcpu, req);
			break;
825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849
		}
		return RESUME_HOST;
	case H_PUT_TCE:
		ret = kvmppc_h_put_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
						kvmppc_get_gpr(vcpu, 5),
						kvmppc_get_gpr(vcpu, 6));
		if (ret == H_TOO_HARD)
			return RESUME_HOST;
		break;
	case H_PUT_TCE_INDIRECT:
		ret = kvmppc_h_put_tce_indirect(vcpu, kvmppc_get_gpr(vcpu, 4),
						kvmppc_get_gpr(vcpu, 5),
						kvmppc_get_gpr(vcpu, 6),
						kvmppc_get_gpr(vcpu, 7));
		if (ret == H_TOO_HARD)
			return RESUME_HOST;
		break;
	case H_STUFF_TCE:
		ret = kvmppc_h_stuff_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
						kvmppc_get_gpr(vcpu, 5),
						kvmppc_get_gpr(vcpu, 6),
						kvmppc_get_gpr(vcpu, 7));
		if (ret == H_TOO_HARD)
			return RESUME_HOST;
		break;
850 851 852 853 854 855 856 857
	default:
		return RESUME_HOST;
	}
	kvmppc_set_gpr(vcpu, 3, ret);
	vcpu->arch.hcall_needed = 0;
	return RESUME_GUEST;
}

858 859 860 861 862 863 864
static int kvmppc_hcall_impl_hv(unsigned long cmd)
{
	switch (cmd) {
	case H_CEDE:
	case H_PROD:
	case H_CONFER:
	case H_REGISTER_VPA:
865
	case H_SET_MODE:
866 867
	case H_LOGICAL_CI_LOAD:
	case H_LOGICAL_CI_STORE:
868 869 870 871 872 873 874 875 876 877 878 879 880 881 882
#ifdef CONFIG_KVM_XICS
	case H_XIRR:
	case H_CPPR:
	case H_EOI:
	case H_IPI:
	case H_IPOLL:
	case H_XIRR_X:
#endif
		return 1;
	}

	/* See if it's in the real-mode table */
	return kvmppc_hcall_impl_hv_realmode(cmd);
}

883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906
static int kvmppc_emulate_debug_inst(struct kvm_run *run,
					struct kvm_vcpu *vcpu)
{
	u32 last_inst;

	if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) !=
					EMULATE_DONE) {
		/*
		 * Fetch failed, so return to guest and
		 * try executing it again.
		 */
		return RESUME_GUEST;
	}

	if (last_inst == KVMPPC_INST_SW_BREAKPOINT) {
		run->exit_reason = KVM_EXIT_DEBUG;
		run->debug.arch.address = kvmppc_get_pc(vcpu);
		return RESUME_HOST;
	} else {
		kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
		return RESUME_GUEST;
	}
}

907 908
static int kvmppc_handle_exit_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
				 struct task_struct *tsk)
909 910 911 912 913
{
	int r = RESUME_HOST;

	vcpu->stat.sum_exits++;

914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931
	/*
	 * This can happen if an interrupt occurs in the last stages
	 * of guest entry or the first stages of guest exit (i.e. after
	 * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV
	 * and before setting it to KVM_GUEST_MODE_HOST_HV).
	 * That can happen due to a bug, or due to a machine check
	 * occurring at just the wrong time.
	 */
	if (vcpu->arch.shregs.msr & MSR_HV) {
		printk(KERN_EMERG "KVM trap in HV mode!\n");
		printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
			vcpu->arch.trap, kvmppc_get_pc(vcpu),
			vcpu->arch.shregs.msr);
		kvmppc_dump_regs(vcpu);
		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
		run->hw.hardware_exit_reason = vcpu->arch.trap;
		return RESUME_HOST;
	}
932 933 934 935 936 937 938 939 940
	run->exit_reason = KVM_EXIT_UNKNOWN;
	run->ready_for_interrupt_injection = 1;
	switch (vcpu->arch.trap) {
	/* We're good on these - the host merely wanted to get our attention */
	case BOOK3S_INTERRUPT_HV_DECREMENTER:
		vcpu->stat.dec_exits++;
		r = RESUME_GUEST;
		break;
	case BOOK3S_INTERRUPT_EXTERNAL:
941
	case BOOK3S_INTERRUPT_H_DOORBELL:
942 943 944
		vcpu->stat.ext_intr_exits++;
		r = RESUME_GUEST;
		break;
945 946
	/* HMI is hypervisor interrupt and host has handled it. Resume guest.*/
	case BOOK3S_INTERRUPT_HMI:
947 948 949
	case BOOK3S_INTERRUPT_PERFMON:
		r = RESUME_GUEST;
		break;
950 951 952 953 954 955 956 957 958 959 960
	case BOOK3S_INTERRUPT_MACHINE_CHECK:
		/*
		 * Deliver a machine check interrupt to the guest.
		 * We have to do this, even if the host has handled the
		 * machine check, because machine checks use SRR0/1 and
		 * the interrupt might have trashed guest state in them.
		 */
		kvmppc_book3s_queue_irqprio(vcpu,
					    BOOK3S_INTERRUPT_MACHINE_CHECK);
		r = RESUME_GUEST;
		break;
961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979
	case BOOK3S_INTERRUPT_PROGRAM:
	{
		ulong flags;
		/*
		 * Normally program interrupts are delivered directly
		 * to the guest by the hardware, but we can get here
		 * as a result of a hypervisor emulation interrupt
		 * (e40) getting turned into a 700 by BML RTAS.
		 */
		flags = vcpu->arch.shregs.msr & 0x1f0000ull;
		kvmppc_core_queue_program(vcpu, flags);
		r = RESUME_GUEST;
		break;
	}
	case BOOK3S_INTERRUPT_SYSCALL:
	{
		/* hcall - punt to userspace */
		int i;

980 981 982 983
		/* hypercall with MSR_PR has already been handled in rmode,
		 * and never reaches here.
		 */

984 985 986 987 988 989 990 991 992
		run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3);
		for (i = 0; i < 9; ++i)
			run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i);
		run->exit_reason = KVM_EXIT_PAPR_HCALL;
		vcpu->arch.hcall_needed = 1;
		r = RESUME_HOST;
		break;
	}
	/*
993 994 995 996 997
	 * We get these next two if the guest accesses a page which it thinks
	 * it has mapped but which is not actually present, either because
	 * it is for an emulated I/O device or because the corresonding
	 * host page has been paged out.  Any other HDSI/HISI interrupts
	 * have been handled already.
998 999
	 */
	case BOOK3S_INTERRUPT_H_DATA_STORAGE:
1000
		r = RESUME_PAGE_FAULT;
1001 1002
		break;
	case BOOK3S_INTERRUPT_H_INST_STORAGE:
1003 1004 1005
		vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
		vcpu->arch.fault_dsisr = 0;
		r = RESUME_PAGE_FAULT;
1006 1007 1008
		break;
	/*
	 * This occurs if the guest executes an illegal instruction.
1009 1010 1011 1012
	 * If the guest debug is disabled, generate a program interrupt
	 * to the guest. If guest debug is enabled, we need to check
	 * whether the instruction is a software breakpoint instruction.
	 * Accordingly return to Guest or Host.
1013 1014
	 */
	case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
1015 1016 1017 1018
		if (vcpu->arch.emul_inst != KVM_INST_FETCH_FAILED)
			vcpu->arch.last_inst = kvmppc_need_byteswap(vcpu) ?
				swab32(vcpu->arch.emul_inst) :
				vcpu->arch.emul_inst;
1019 1020 1021 1022 1023 1024
		if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) {
			r = kvmppc_emulate_debug_inst(run, vcpu);
		} else {
			kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
			r = RESUME_GUEST;
		}
1025 1026 1027 1028 1029 1030 1031 1032
		break;
	/*
	 * This occurs if the guest (kernel or userspace), does something that
	 * is prohibited by HFSCR.  We just generate a program interrupt to
	 * the guest.
	 */
	case BOOK3S_INTERRUPT_H_FAC_UNAVAIL:
		kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
1033 1034 1035 1036 1037 1038 1039
		r = RESUME_GUEST;
		break;
	default:
		kvmppc_dump_regs(vcpu);
		printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
			vcpu->arch.trap, kvmppc_get_pc(vcpu),
			vcpu->arch.shregs.msr);
1040
		run->hw.hardware_exit_reason = vcpu->arch.trap;
1041 1042 1043 1044 1045 1046 1047
		r = RESUME_HOST;
		break;
	}

	return r;
}

1048 1049
static int kvm_arch_vcpu_ioctl_get_sregs_hv(struct kvm_vcpu *vcpu,
					    struct kvm_sregs *sregs)
1050 1051 1052 1053
{
	int i;

	memset(sregs, 0, sizeof(struct kvm_sregs));
1054
	sregs->pvr = vcpu->arch.pvr;
1055 1056 1057 1058 1059 1060 1061 1062
	for (i = 0; i < vcpu->arch.slb_max; i++) {
		sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige;
		sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
	}

	return 0;
}

1063 1064
static int kvm_arch_vcpu_ioctl_set_sregs_hv(struct kvm_vcpu *vcpu,
					    struct kvm_sregs *sregs)
1065 1066 1067
{
	int i, j;

1068 1069 1070
	/* Only accept the same PVR as the host's, since we can't spoof it */
	if (sregs->pvr != vcpu->arch.pvr)
		return -EINVAL;
1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084

	j = 0;
	for (i = 0; i < vcpu->arch.slb_nr; i++) {
		if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) {
			vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe;
			vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv;
			++j;
		}
	}
	vcpu->arch.slb_max = j;

	return 0;
}

1085 1086
static void kvmppc_set_lpcr(struct kvm_vcpu *vcpu, u64 new_lpcr,
		bool preserve_top32)
1087
{
1088
	struct kvm *kvm = vcpu->kvm;
1089 1090 1091
	struct kvmppc_vcore *vc = vcpu->arch.vcore;
	u64 mask;

1092
	mutex_lock(&kvm->lock);
1093
	spin_lock(&vc->lock);
1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111
	/*
	 * If ILE (interrupt little-endian) has changed, update the
	 * MSR_LE bit in the intr_msr for each vcpu in this vcore.
	 */
	if ((new_lpcr & LPCR_ILE) != (vc->lpcr & LPCR_ILE)) {
		struct kvm_vcpu *vcpu;
		int i;

		kvm_for_each_vcpu(i, vcpu, kvm) {
			if (vcpu->arch.vcore != vc)
				continue;
			if (new_lpcr & LPCR_ILE)
				vcpu->arch.intr_msr |= MSR_LE;
			else
				vcpu->arch.intr_msr &= ~MSR_LE;
		}
	}

1112 1113 1114
	/*
	 * Userspace can only modify DPFD (default prefetch depth),
	 * ILE (interrupt little-endian) and TC (translation control).
1115
	 * On POWER8 userspace can also modify AIL (alt. interrupt loc.)
1116 1117
	 */
	mask = LPCR_DPFD | LPCR_ILE | LPCR_TC;
1118 1119
	if (cpu_has_feature(CPU_FTR_ARCH_207S))
		mask |= LPCR_AIL;
1120 1121 1122 1123

	/* Broken 32-bit version of LPCR must not clear top bits */
	if (preserve_top32)
		mask &= 0xFFFFFFFF;
1124 1125
	vc->lpcr = (vc->lpcr & ~mask) | (new_lpcr & mask);
	spin_unlock(&vc->lock);
1126
	mutex_unlock(&kvm->lock);
1127 1128
}

1129 1130
static int kvmppc_get_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
				 union kvmppc_one_reg *val)
1131
{
1132 1133
	int r = 0;
	long int i;
1134

1135
	switch (id) {
1136 1137 1138
	case KVM_REG_PPC_DEBUG_INST:
		*val = get_reg_val(id, KVMPPC_INST_SW_BREAKPOINT);
		break;
1139
	case KVM_REG_PPC_HIOR:
1140 1141 1142 1143 1144
		*val = get_reg_val(id, 0);
		break;
	case KVM_REG_PPC_DABR:
		*val = get_reg_val(id, vcpu->arch.dabr);
		break;
1145 1146 1147
	case KVM_REG_PPC_DABRX:
		*val = get_reg_val(id, vcpu->arch.dabrx);
		break;
1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162
	case KVM_REG_PPC_DSCR:
		*val = get_reg_val(id, vcpu->arch.dscr);
		break;
	case KVM_REG_PPC_PURR:
		*val = get_reg_val(id, vcpu->arch.purr);
		break;
	case KVM_REG_PPC_SPURR:
		*val = get_reg_val(id, vcpu->arch.spurr);
		break;
	case KVM_REG_PPC_AMR:
		*val = get_reg_val(id, vcpu->arch.amr);
		break;
	case KVM_REG_PPC_UAMOR:
		*val = get_reg_val(id, vcpu->arch.uamor);
		break;
1163
	case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS:
1164 1165 1166 1167 1168 1169
		i = id - KVM_REG_PPC_MMCR0;
		*val = get_reg_val(id, vcpu->arch.mmcr[i]);
		break;
	case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
		i = id - KVM_REG_PPC_PMC1;
		*val = get_reg_val(id, vcpu->arch.pmc[i]);
1170
		break;
1171 1172 1173 1174
	case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
		i = id - KVM_REG_PPC_SPMC1;
		*val = get_reg_val(id, vcpu->arch.spmc[i]);
		break;
1175 1176 1177 1178 1179 1180
	case KVM_REG_PPC_SIAR:
		*val = get_reg_val(id, vcpu->arch.siar);
		break;
	case KVM_REG_PPC_SDAR:
		*val = get_reg_val(id, vcpu->arch.sdar);
		break;
1181 1182
	case KVM_REG_PPC_SIER:
		*val = get_reg_val(id, vcpu->arch.sier);
1183
		break;
1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218
	case KVM_REG_PPC_IAMR:
		*val = get_reg_val(id, vcpu->arch.iamr);
		break;
	case KVM_REG_PPC_PSPB:
		*val = get_reg_val(id, vcpu->arch.pspb);
		break;
	case KVM_REG_PPC_DPDES:
		*val = get_reg_val(id, vcpu->arch.vcore->dpdes);
		break;
	case KVM_REG_PPC_DAWR:
		*val = get_reg_val(id, vcpu->arch.dawr);
		break;
	case KVM_REG_PPC_DAWRX:
		*val = get_reg_val(id, vcpu->arch.dawrx);
		break;
	case KVM_REG_PPC_CIABR:
		*val = get_reg_val(id, vcpu->arch.ciabr);
		break;
	case KVM_REG_PPC_CSIGR:
		*val = get_reg_val(id, vcpu->arch.csigr);
		break;
	case KVM_REG_PPC_TACR:
		*val = get_reg_val(id, vcpu->arch.tacr);
		break;
	case KVM_REG_PPC_TCSCR:
		*val = get_reg_val(id, vcpu->arch.tcscr);
		break;
	case KVM_REG_PPC_PID:
		*val = get_reg_val(id, vcpu->arch.pid);
		break;
	case KVM_REG_PPC_ACOP:
		*val = get_reg_val(id, vcpu->arch.acop);
		break;
	case KVM_REG_PPC_WORT:
		*val = get_reg_val(id, vcpu->arch.wort);
1219
		break;
1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236
	case KVM_REG_PPC_VPA_ADDR:
		spin_lock(&vcpu->arch.vpa_update_lock);
		*val = get_reg_val(id, vcpu->arch.vpa.next_gpa);
		spin_unlock(&vcpu->arch.vpa_update_lock);
		break;
	case KVM_REG_PPC_VPA_SLB:
		spin_lock(&vcpu->arch.vpa_update_lock);
		val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa;
		val->vpaval.length = vcpu->arch.slb_shadow.len;
		spin_unlock(&vcpu->arch.vpa_update_lock);
		break;
	case KVM_REG_PPC_VPA_DTL:
		spin_lock(&vcpu->arch.vpa_update_lock);
		val->vpaval.addr = vcpu->arch.dtl.next_gpa;
		val->vpaval.length = vcpu->arch.dtl.len;
		spin_unlock(&vcpu->arch.vpa_update_lock);
		break;
1237 1238 1239
	case KVM_REG_PPC_TB_OFFSET:
		*val = get_reg_val(id, vcpu->arch.vcore->tb_offset);
		break;
1240
	case KVM_REG_PPC_LPCR:
1241
	case KVM_REG_PPC_LPCR_64:
1242 1243
		*val = get_reg_val(id, vcpu->arch.vcore->lpcr);
		break;
1244 1245 1246
	case KVM_REG_PPC_PPR:
		*val = get_reg_val(id, vcpu->arch.ppr);
		break;
1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
	case KVM_REG_PPC_TFHAR:
		*val = get_reg_val(id, vcpu->arch.tfhar);
		break;
	case KVM_REG_PPC_TFIAR:
		*val = get_reg_val(id, vcpu->arch.tfiar);
		break;
	case KVM_REG_PPC_TEXASR:
		*val = get_reg_val(id, vcpu->arch.texasr);
		break;
	case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
		i = id - KVM_REG_PPC_TM_GPR0;
		*val = get_reg_val(id, vcpu->arch.gpr_tm[i]);
		break;
	case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
	{
		int j;
		i = id - KVM_REG_PPC_TM_VSR0;
		if (i < 32)
			for (j = 0; j < TS_FPRWIDTH; j++)
				val->vsxval[j] = vcpu->arch.fp_tm.fpr[i][j];
		else {
			if (cpu_has_feature(CPU_FTR_ALTIVEC))
				val->vval = vcpu->arch.vr_tm.vr[i-32];
			else
				r = -ENXIO;
		}
		break;
	}
	case KVM_REG_PPC_TM_CR:
		*val = get_reg_val(id, vcpu->arch.cr_tm);
		break;
	case KVM_REG_PPC_TM_LR:
		*val = get_reg_val(id, vcpu->arch.lr_tm);
		break;
	case KVM_REG_PPC_TM_CTR:
		*val = get_reg_val(id, vcpu->arch.ctr_tm);
		break;
	case KVM_REG_PPC_TM_FPSCR:
		*val = get_reg_val(id, vcpu->arch.fp_tm.fpscr);
		break;
	case KVM_REG_PPC_TM_AMR:
		*val = get_reg_val(id, vcpu->arch.amr_tm);
		break;
	case KVM_REG_PPC_TM_PPR:
		*val = get_reg_val(id, vcpu->arch.ppr_tm);
		break;
	case KVM_REG_PPC_TM_VRSAVE:
		*val = get_reg_val(id, vcpu->arch.vrsave_tm);
		break;
	case KVM_REG_PPC_TM_VSCR:
		if (cpu_has_feature(CPU_FTR_ALTIVEC))
			*val = get_reg_val(id, vcpu->arch.vr_tm.vscr.u[3]);
		else
			r = -ENXIO;
		break;
	case KVM_REG_PPC_TM_DSCR:
		*val = get_reg_val(id, vcpu->arch.dscr_tm);
		break;
	case KVM_REG_PPC_TM_TAR:
		*val = get_reg_val(id, vcpu->arch.tar_tm);
		break;
#endif
1310 1311 1312
	case KVM_REG_PPC_ARCH_COMPAT:
		*val = get_reg_val(id, vcpu->arch.vcore->arch_compat);
		break;
1313
	default:
1314
		r = -EINVAL;
1315 1316 1317 1318 1319 1320
		break;
	}

	return r;
}

1321 1322
static int kvmppc_set_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
				 union kvmppc_one_reg *val)
1323
{
1324 1325
	int r = 0;
	long int i;
1326
	unsigned long addr, len;
1327

1328
	switch (id) {
1329 1330
	case KVM_REG_PPC_HIOR:
		/* Only allow this to be set to zero */
1331
		if (set_reg_val(id, *val))
1332 1333
			r = -EINVAL;
		break;
1334 1335 1336
	case KVM_REG_PPC_DABR:
		vcpu->arch.dabr = set_reg_val(id, *val);
		break;
1337 1338 1339
	case KVM_REG_PPC_DABRX:
		vcpu->arch.dabrx = set_reg_val(id, *val) & ~DABRX_HYP;
		break;
1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354
	case KVM_REG_PPC_DSCR:
		vcpu->arch.dscr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_PURR:
		vcpu->arch.purr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_SPURR:
		vcpu->arch.spurr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_AMR:
		vcpu->arch.amr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_UAMOR:
		vcpu->arch.uamor = set_reg_val(id, *val);
		break;
1355
	case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS:
1356 1357 1358 1359 1360 1361 1362
		i = id - KVM_REG_PPC_MMCR0;
		vcpu->arch.mmcr[i] = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
		i = id - KVM_REG_PPC_PMC1;
		vcpu->arch.pmc[i] = set_reg_val(id, *val);
		break;
1363 1364 1365 1366
	case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
		i = id - KVM_REG_PPC_SPMC1;
		vcpu->arch.spmc[i] = set_reg_val(id, *val);
		break;
1367 1368 1369 1370 1371 1372
	case KVM_REG_PPC_SIAR:
		vcpu->arch.siar = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_SDAR:
		vcpu->arch.sdar = set_reg_val(id, *val);
		break;
1373 1374
	case KVM_REG_PPC_SIER:
		vcpu->arch.sier = set_reg_val(id, *val);
1375
		break;
1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413
	case KVM_REG_PPC_IAMR:
		vcpu->arch.iamr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_PSPB:
		vcpu->arch.pspb = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_DPDES:
		vcpu->arch.vcore->dpdes = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_DAWR:
		vcpu->arch.dawr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_DAWRX:
		vcpu->arch.dawrx = set_reg_val(id, *val) & ~DAWRX_HYP;
		break;
	case KVM_REG_PPC_CIABR:
		vcpu->arch.ciabr = set_reg_val(id, *val);
		/* Don't allow setting breakpoints in hypervisor code */
		if ((vcpu->arch.ciabr & CIABR_PRIV) == CIABR_PRIV_HYPER)
			vcpu->arch.ciabr &= ~CIABR_PRIV;	/* disable */
		break;
	case KVM_REG_PPC_CSIGR:
		vcpu->arch.csigr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TACR:
		vcpu->arch.tacr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TCSCR:
		vcpu->arch.tcscr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_PID:
		vcpu->arch.pid = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_ACOP:
		vcpu->arch.acop = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_WORT:
		vcpu->arch.wort = set_reg_val(id, *val);
1414
		break;
1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434
	case KVM_REG_PPC_VPA_ADDR:
		addr = set_reg_val(id, *val);
		r = -EINVAL;
		if (!addr && (vcpu->arch.slb_shadow.next_gpa ||
			      vcpu->arch.dtl.next_gpa))
			break;
		r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca));
		break;
	case KVM_REG_PPC_VPA_SLB:
		addr = val->vpaval.addr;
		len = val->vpaval.length;
		r = -EINVAL;
		if (addr && !vcpu->arch.vpa.next_gpa)
			break;
		r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len);
		break;
	case KVM_REG_PPC_VPA_DTL:
		addr = val->vpaval.addr;
		len = val->vpaval.length;
		r = -EINVAL;
1435 1436
		if (addr && (len < sizeof(struct dtl_entry) ||
			     !vcpu->arch.vpa.next_gpa))
1437 1438 1439 1440
			break;
		len -= len % sizeof(struct dtl_entry);
		r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len);
		break;
1441 1442 1443 1444 1445
	case KVM_REG_PPC_TB_OFFSET:
		/* round up to multiple of 2^24 */
		vcpu->arch.vcore->tb_offset =
			ALIGN(set_reg_val(id, *val), 1UL << 24);
		break;
1446
	case KVM_REG_PPC_LPCR:
1447 1448 1449 1450
		kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), true);
		break;
	case KVM_REG_PPC_LPCR_64:
		kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), false);
1451
		break;
1452 1453 1454
	case KVM_REG_PPC_PPR:
		vcpu->arch.ppr = set_reg_val(id, *val);
		break;
1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
	case KVM_REG_PPC_TFHAR:
		vcpu->arch.tfhar = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TFIAR:
		vcpu->arch.tfiar = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TEXASR:
		vcpu->arch.texasr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
		i = id - KVM_REG_PPC_TM_GPR0;
		vcpu->arch.gpr_tm[i] = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
	{
		int j;
		i = id - KVM_REG_PPC_TM_VSR0;
		if (i < 32)
			for (j = 0; j < TS_FPRWIDTH; j++)
				vcpu->arch.fp_tm.fpr[i][j] = val->vsxval[j];
		else
			if (cpu_has_feature(CPU_FTR_ALTIVEC))
				vcpu->arch.vr_tm.vr[i-32] = val->vval;
			else
				r = -ENXIO;
		break;
	}
	case KVM_REG_PPC_TM_CR:
		vcpu->arch.cr_tm = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_LR:
		vcpu->arch.lr_tm = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_CTR:
		vcpu->arch.ctr_tm = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_FPSCR:
		vcpu->arch.fp_tm.fpscr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_AMR:
		vcpu->arch.amr_tm = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_PPR:
		vcpu->arch.ppr_tm = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_VRSAVE:
		vcpu->arch.vrsave_tm = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_VSCR:
		if (cpu_has_feature(CPU_FTR_ALTIVEC))
			vcpu->arch.vr.vscr.u[3] = set_reg_val(id, *val);
		else
			r = - ENXIO;
		break;
	case KVM_REG_PPC_TM_DSCR:
		vcpu->arch.dscr_tm = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_TAR:
		vcpu->arch.tar_tm = set_reg_val(id, *val);
		break;
#endif
1517 1518 1519
	case KVM_REG_PPC_ARCH_COMPAT:
		r = kvmppc_set_arch_compat(vcpu, set_reg_val(id, *val));
		break;
1520
	default:
1521
		r = -EINVAL;
1522 1523 1524 1525 1526 1527
		break;
	}

	return r;
}

1528 1529 1530 1531 1532 1533 1534 1535 1536 1537
static struct kvmppc_vcore *kvmppc_vcore_create(struct kvm *kvm, int core)
{
	struct kvmppc_vcore *vcore;

	vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL);

	if (vcore == NULL)
		return NULL;

	spin_lock_init(&vcore->lock);
1538
	spin_lock_init(&vcore->stoltb_lock);
1539
	init_swait_queue_head(&vcore->wq);
1540 1541 1542 1543
	vcore->preempt_tb = TB_NIL;
	vcore->lpcr = kvm->arch.lpcr;
	vcore->first_vcpuid = core * threads_per_subcore;
	vcore->kvm = kvm;
1544
	INIT_LIST_HEAD(&vcore->preempt_list);
1545 1546 1547 1548

	return vcore;
}

1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696
#ifdef CONFIG_KVM_BOOK3S_HV_EXIT_TIMING
static struct debugfs_timings_element {
	const char *name;
	size_t offset;
} timings[] = {
	{"rm_entry",	offsetof(struct kvm_vcpu, arch.rm_entry)},
	{"rm_intr",	offsetof(struct kvm_vcpu, arch.rm_intr)},
	{"rm_exit",	offsetof(struct kvm_vcpu, arch.rm_exit)},
	{"guest",	offsetof(struct kvm_vcpu, arch.guest_time)},
	{"cede",	offsetof(struct kvm_vcpu, arch.cede_time)},
};

#define N_TIMINGS	(sizeof(timings) / sizeof(timings[0]))

struct debugfs_timings_state {
	struct kvm_vcpu	*vcpu;
	unsigned int	buflen;
	char		buf[N_TIMINGS * 100];
};

static int debugfs_timings_open(struct inode *inode, struct file *file)
{
	struct kvm_vcpu *vcpu = inode->i_private;
	struct debugfs_timings_state *p;

	p = kzalloc(sizeof(*p), GFP_KERNEL);
	if (!p)
		return -ENOMEM;

	kvm_get_kvm(vcpu->kvm);
	p->vcpu = vcpu;
	file->private_data = p;

	return nonseekable_open(inode, file);
}

static int debugfs_timings_release(struct inode *inode, struct file *file)
{
	struct debugfs_timings_state *p = file->private_data;

	kvm_put_kvm(p->vcpu->kvm);
	kfree(p);
	return 0;
}

static ssize_t debugfs_timings_read(struct file *file, char __user *buf,
				    size_t len, loff_t *ppos)
{
	struct debugfs_timings_state *p = file->private_data;
	struct kvm_vcpu *vcpu = p->vcpu;
	char *s, *buf_end;
	struct kvmhv_tb_accumulator tb;
	u64 count;
	loff_t pos;
	ssize_t n;
	int i, loops;
	bool ok;

	if (!p->buflen) {
		s = p->buf;
		buf_end = s + sizeof(p->buf);
		for (i = 0; i < N_TIMINGS; ++i) {
			struct kvmhv_tb_accumulator *acc;

			acc = (struct kvmhv_tb_accumulator *)
				((unsigned long)vcpu + timings[i].offset);
			ok = false;
			for (loops = 0; loops < 1000; ++loops) {
				count = acc->seqcount;
				if (!(count & 1)) {
					smp_rmb();
					tb = *acc;
					smp_rmb();
					if (count == acc->seqcount) {
						ok = true;
						break;
					}
				}
				udelay(1);
			}
			if (!ok)
				snprintf(s, buf_end - s, "%s: stuck\n",
					timings[i].name);
			else
				snprintf(s, buf_end - s,
					"%s: %llu %llu %llu %llu\n",
					timings[i].name, count / 2,
					tb_to_ns(tb.tb_total),
					tb_to_ns(tb.tb_min),
					tb_to_ns(tb.tb_max));
			s += strlen(s);
		}
		p->buflen = s - p->buf;
	}

	pos = *ppos;
	if (pos >= p->buflen)
		return 0;
	if (len > p->buflen - pos)
		len = p->buflen - pos;
	n = copy_to_user(buf, p->buf + pos, len);
	if (n) {
		if (n == len)
			return -EFAULT;
		len -= n;
	}
	*ppos = pos + len;
	return len;
}

static ssize_t debugfs_timings_write(struct file *file, const char __user *buf,
				     size_t len, loff_t *ppos)
{
	return -EACCES;
}

static const struct file_operations debugfs_timings_ops = {
	.owner	 = THIS_MODULE,
	.open	 = debugfs_timings_open,
	.release = debugfs_timings_release,
	.read	 = debugfs_timings_read,
	.write	 = debugfs_timings_write,
	.llseek	 = generic_file_llseek,
};

/* Create a debugfs directory for the vcpu */
static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id)
{
	char buf[16];
	struct kvm *kvm = vcpu->kvm;

	snprintf(buf, sizeof(buf), "vcpu%u", id);
	if (IS_ERR_OR_NULL(kvm->arch.debugfs_dir))
		return;
	vcpu->arch.debugfs_dir = debugfs_create_dir(buf, kvm->arch.debugfs_dir);
	if (IS_ERR_OR_NULL(vcpu->arch.debugfs_dir))
		return;
	vcpu->arch.debugfs_timings =
		debugfs_create_file("timings", 0444, vcpu->arch.debugfs_dir,
				    vcpu, &debugfs_timings_ops);
}

#else /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id)
{
}
#endif /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */

1697 1698
static struct kvm_vcpu *kvmppc_core_vcpu_create_hv(struct kvm *kvm,
						   unsigned int id)
1699 1700
{
	struct kvm_vcpu *vcpu;
1701 1702 1703
	int err = -EINVAL;
	int core;
	struct kvmppc_vcore *vcore;
1704

1705
	core = id / threads_per_subcore;
1706 1707 1708 1709
	if (core >= KVM_MAX_VCORES)
		goto out;

	err = -ENOMEM;
1710
	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
1711 1712 1713 1714 1715 1716 1717 1718
	if (!vcpu)
		goto out;

	err = kvm_vcpu_init(vcpu, kvm, id);
	if (err)
		goto free_vcpu;

	vcpu->arch.shared = &vcpu->arch.shregs;
1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729
#ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
	/*
	 * The shared struct is never shared on HV,
	 * so we can always use host endianness
	 */
#ifdef __BIG_ENDIAN__
	vcpu->arch.shared_big_endian = true;
#else
	vcpu->arch.shared_big_endian = false;
#endif
#endif
1730 1731 1732
	vcpu->arch.mmcr[0] = MMCR0_FC;
	vcpu->arch.ctrl = CTRL_RUNLATCH;
	/* default to host PVR, since we can't spoof it */
1733
	kvmppc_set_pvr_hv(vcpu, mfspr(SPRN_PVR));
1734
	spin_lock_init(&vcpu->arch.vpa_update_lock);
1735 1736
	spin_lock_init(&vcpu->arch.tbacct_lock);
	vcpu->arch.busy_preempt = TB_NIL;
1737
	vcpu->arch.intr_msr = MSR_SF | MSR_ME;
1738 1739 1740

	kvmppc_mmu_book3s_hv_init(vcpu);

1741
	vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
1742 1743 1744 1745 1746 1747

	init_waitqueue_head(&vcpu->arch.cpu_run);

	mutex_lock(&kvm->lock);
	vcore = kvm->arch.vcores[core];
	if (!vcore) {
1748
		vcore = kvmppc_vcore_create(kvm, core);
1749
		kvm->arch.vcores[core] = vcore;
1750
		kvm->arch.online_vcores++;
1751 1752 1753 1754 1755 1756 1757 1758 1759 1760
	}
	mutex_unlock(&kvm->lock);

	if (!vcore)
		goto free_vcpu;

	spin_lock(&vcore->lock);
	++vcore->num_threads;
	spin_unlock(&vcore->lock);
	vcpu->arch.vcore = vcore;
1761
	vcpu->arch.ptid = vcpu->vcpu_id - vcore->first_vcpuid;
1762
	vcpu->arch.thread_cpu = -1;
1763

1764 1765 1766
	vcpu->arch.cpu_type = KVM_CPU_3S_64;
	kvmppc_sanity_check(vcpu);

1767 1768
	debugfs_vcpu_init(vcpu, id);

1769 1770 1771
	return vcpu;

free_vcpu:
1772
	kmem_cache_free(kvm_vcpu_cache, vcpu);
1773 1774 1775 1776
out:
	return ERR_PTR(err);
}

1777 1778 1779 1780 1781 1782 1783
static void unpin_vpa(struct kvm *kvm, struct kvmppc_vpa *vpa)
{
	if (vpa->pinned_addr)
		kvmppc_unpin_guest_page(kvm, vpa->pinned_addr, vpa->gpa,
					vpa->dirty);
}

1784
static void kvmppc_core_vcpu_free_hv(struct kvm_vcpu *vcpu)
1785
{
1786
	spin_lock(&vcpu->arch.vpa_update_lock);
1787 1788 1789
	unpin_vpa(vcpu->kvm, &vcpu->arch.dtl);
	unpin_vpa(vcpu->kvm, &vcpu->arch.slb_shadow);
	unpin_vpa(vcpu->kvm, &vcpu->arch.vpa);
1790
	spin_unlock(&vcpu->arch.vpa_update_lock);
1791
	kvm_vcpu_uninit(vcpu);
1792
	kmem_cache_free(kvm_vcpu_cache, vcpu);
1793 1794
}

1795 1796 1797 1798 1799 1800
static int kvmppc_core_check_requests_hv(struct kvm_vcpu *vcpu)
{
	/* Indicate we want to get back into the guest */
	return 1;
}

1801
static void kvmppc_set_timer(struct kvm_vcpu *vcpu)
1802
{
1803
	unsigned long dec_nsec, now;
1804

1805 1806 1807 1808
	now = get_tb();
	if (now > vcpu->arch.dec_expires) {
		/* decrementer has already gone negative */
		kvmppc_core_queue_dec(vcpu);
1809
		kvmppc_core_prepare_to_enter(vcpu);
1810
		return;
1811
	}
1812 1813 1814 1815 1816
	dec_nsec = (vcpu->arch.dec_expires - now) * NSEC_PER_SEC
		   / tb_ticks_per_sec;
	hrtimer_start(&vcpu->arch.dec_timer, ktime_set(0, dec_nsec),
		      HRTIMER_MODE_REL);
	vcpu->arch.timer_running = 1;
1817 1818
}

1819
static void kvmppc_end_cede(struct kvm_vcpu *vcpu)
1820
{
1821 1822 1823 1824 1825
	vcpu->arch.ceded = 0;
	if (vcpu->arch.timer_running) {
		hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
		vcpu->arch.timer_running = 0;
	}
1826 1827
}

1828
extern void __kvmppc_vcore_entry(void);
1829

1830 1831
static void kvmppc_remove_runnable(struct kvmppc_vcore *vc,
				   struct kvm_vcpu *vcpu)
1832
{
1833 1834
	u64 now;

1835 1836
	if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
		return;
1837
	spin_lock_irq(&vcpu->arch.tbacct_lock);
1838 1839 1840 1841 1842
	now = mftb();
	vcpu->arch.busy_stolen += vcore_stolen_time(vc, now) -
		vcpu->arch.stolen_logged;
	vcpu->arch.busy_preempt = now;
	vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
1843
	spin_unlock_irq(&vcpu->arch.tbacct_lock);
1844
	--vc->n_runnable;
1845
	WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], NULL);
1846 1847
}

1848 1849 1850
static int kvmppc_grab_hwthread(int cpu)
{
	struct paca_struct *tpaca;
1851
	long timeout = 10000;
1852 1853 1854 1855

	tpaca = &paca[cpu];

	/* Ensure the thread won't go into the kernel if it wakes */
1856
	tpaca->kvm_hstate.kvm_vcpu = NULL;
1857
	tpaca->kvm_hstate.kvm_vcore = NULL;
1858 1859 1860
	tpaca->kvm_hstate.napping = 0;
	smp_wmb();
	tpaca->kvm_hstate.hwthread_req = 1;
1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888

	/*
	 * If the thread is already executing in the kernel (e.g. handling
	 * a stray interrupt), wait for it to get back to nap mode.
	 * The smp_mb() is to ensure that our setting of hwthread_req
	 * is visible before we look at hwthread_state, so if this
	 * races with the code at system_reset_pSeries and the thread
	 * misses our setting of hwthread_req, we are sure to see its
	 * setting of hwthread_state, and vice versa.
	 */
	smp_mb();
	while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) {
		if (--timeout <= 0) {
			pr_err("KVM: couldn't grab cpu %d\n", cpu);
			return -EBUSY;
		}
		udelay(1);
	}
	return 0;
}

static void kvmppc_release_hwthread(int cpu)
{
	struct paca_struct *tpaca;

	tpaca = &paca[cpu];
	tpaca->kvm_hstate.hwthread_req = 0;
	tpaca->kvm_hstate.kvm_vcpu = NULL;
1889 1890
	tpaca->kvm_hstate.kvm_vcore = NULL;
	tpaca->kvm_hstate.kvm_split_mode = NULL;
1891 1892
}

1893
static void kvmppc_start_thread(struct kvm_vcpu *vcpu, struct kvmppc_vcore *vc)
1894 1895 1896
{
	int cpu;
	struct paca_struct *tpaca;
1897
	struct kvmppc_vcore *mvc = vc->master_vcore;
1898

1899 1900 1901 1902 1903 1904 1905 1906 1907
	cpu = vc->pcpu;
	if (vcpu) {
		if (vcpu->arch.timer_running) {
			hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
			vcpu->arch.timer_running = 0;
		}
		cpu += vcpu->arch.ptid;
		vcpu->cpu = mvc->pcpu;
		vcpu->arch.thread_cpu = cpu;
1908
	}
1909
	tpaca = &paca[cpu];
1910
	tpaca->kvm_hstate.kvm_vcpu = vcpu;
1911 1912
	tpaca->kvm_hstate.ptid = cpu - mvc->pcpu;
	/* Order stores to hstate.kvm_vcpu etc. before store to kvm_vcore */
1913
	smp_wmb();
1914
	tpaca->kvm_hstate.kvm_vcore = mvc;
1915
	if (cpu != smp_processor_id())
1916
		kvmppc_ipi_thread(cpu);
1917
}
1918

1919
static void kvmppc_wait_for_nap(void)
1920
{
1921 1922
	int cpu = smp_processor_id();
	int i, loops;
1923

1924 1925 1926
	for (loops = 0; loops < 1000000; ++loops) {
		/*
		 * Check if all threads are finished.
1927
		 * We set the vcore pointer when starting a thread
1928
		 * and the thread clears it when finished, so we look
1929
		 * for any threads that still have a non-NULL vcore ptr.
1930 1931
		 */
		for (i = 1; i < threads_per_subcore; ++i)
1932
			if (paca[cpu + i].kvm_hstate.kvm_vcore)
1933 1934 1935 1936
				break;
		if (i == threads_per_subcore) {
			HMT_medium();
			return;
1937
		}
1938
		HMT_low();
1939 1940
	}
	HMT_medium();
1941
	for (i = 1; i < threads_per_subcore; ++i)
1942
		if (paca[cpu + i].kvm_hstate.kvm_vcore)
1943
			pr_err("KVM: CPU %d seems to be stuck\n", cpu + i);
1944 1945 1946 1947
}

/*
 * Check that we are on thread 0 and that any other threads in
1948 1949
 * this core are off-line.  Then grab the threads so they can't
 * enter the kernel.
1950 1951 1952 1953
 */
static int on_primary_thread(void)
{
	int cpu = smp_processor_id();
1954
	int thr;
1955

1956 1957
	/* Are we on a primary subcore? */
	if (cpu_thread_in_subcore(cpu))
1958
		return 0;
1959 1960 1961

	thr = 0;
	while (++thr < threads_per_subcore)
1962 1963
		if (cpu_online(cpu + thr))
			return 0;
1964 1965

	/* Grab all hw threads so they can't go into the kernel */
1966
	for (thr = 1; thr < threads_per_subcore; ++thr) {
1967 1968 1969 1970 1971 1972 1973 1974
		if (kvmppc_grab_hwthread(cpu + thr)) {
			/* Couldn't grab one; let the others go */
			do {
				kvmppc_release_hwthread(cpu + thr);
			} while (--thr > 0);
			return 0;
		}
	}
1975 1976 1977
	return 1;
}

1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018
/*
 * A list of virtual cores for each physical CPU.
 * These are vcores that could run but their runner VCPU tasks are
 * (or may be) preempted.
 */
struct preempted_vcore_list {
	struct list_head	list;
	spinlock_t		lock;
};

static DEFINE_PER_CPU(struct preempted_vcore_list, preempted_vcores);

static void init_vcore_lists(void)
{
	int cpu;

	for_each_possible_cpu(cpu) {
		struct preempted_vcore_list *lp = &per_cpu(preempted_vcores, cpu);
		spin_lock_init(&lp->lock);
		INIT_LIST_HEAD(&lp->list);
	}
}

static void kvmppc_vcore_preempt(struct kvmppc_vcore *vc)
{
	struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);

	vc->vcore_state = VCORE_PREEMPT;
	vc->pcpu = smp_processor_id();
	if (vc->num_threads < threads_per_subcore) {
		spin_lock(&lp->lock);
		list_add_tail(&vc->preempt_list, &lp->list);
		spin_unlock(&lp->lock);
	}

	/* Start accumulating stolen time */
	kvmppc_core_start_stolen(vc);
}

static void kvmppc_vcore_end_preempt(struct kvmppc_vcore *vc)
{
2019
	struct preempted_vcore_list *lp;
2020 2021 2022

	kvmppc_core_end_stolen(vc);
	if (!list_empty(&vc->preempt_list)) {
2023
		lp = &per_cpu(preempted_vcores, vc->pcpu);
2024 2025 2026 2027 2028 2029 2030
		spin_lock(&lp->lock);
		list_del_init(&vc->preempt_list);
		spin_unlock(&lp->lock);
	}
	vc->vcore_state = VCORE_INACTIVE;
}

2031 2032 2033 2034
/*
 * This stores information about the virtual cores currently
 * assigned to a physical core.
 */
2035
struct core_info {
2036 2037
	int		n_subcores;
	int		max_subcore_threads;
2038
	int		total_threads;
2039 2040 2041
	int		subcore_threads[MAX_SUBCORES];
	struct kvm	*subcore_vm[MAX_SUBCORES];
	struct list_head vcs[MAX_SUBCORES];
2042 2043
};

2044 2045 2046 2047 2048 2049
/*
 * This mapping means subcores 0 and 1 can use threads 0-3 and 4-7
 * respectively in 2-way micro-threading (split-core) mode.
 */
static int subcore_thread_map[MAX_SUBCORES] = { 0, 4, 2, 6 };

2050 2051
static void init_core_info(struct core_info *cip, struct kvmppc_vcore *vc)
{
2052 2053
	int sub;

2054
	memset(cip, 0, sizeof(*cip));
2055 2056
	cip->n_subcores = 1;
	cip->max_subcore_threads = vc->num_threads;
2057
	cip->total_threads = vc->num_threads;
2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079
	cip->subcore_threads[0] = vc->num_threads;
	cip->subcore_vm[0] = vc->kvm;
	for (sub = 0; sub < MAX_SUBCORES; ++sub)
		INIT_LIST_HEAD(&cip->vcs[sub]);
	list_add_tail(&vc->preempt_list, &cip->vcs[0]);
}

static bool subcore_config_ok(int n_subcores, int n_threads)
{
	/* Can only dynamically split if unsplit to begin with */
	if (n_subcores > 1 && threads_per_subcore < MAX_SMT_THREADS)
		return false;
	if (n_subcores > MAX_SUBCORES)
		return false;
	if (n_subcores > 1) {
		if (!(dynamic_mt_modes & 2))
			n_subcores = 4;
		if (n_subcores > 2 && !(dynamic_mt_modes & 4))
			return false;
	}

	return n_subcores * roundup_pow_of_two(n_threads) <= MAX_SMT_THREADS;
2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091
}

static void init_master_vcore(struct kvmppc_vcore *vc)
{
	vc->master_vcore = vc;
	vc->entry_exit_map = 0;
	vc->in_guest = 0;
	vc->napping_threads = 0;
	vc->conferring_threads = 0;
}

/*
2092 2093 2094
 * See if the existing subcores can be split into 3 (or fewer) subcores
 * of at most two threads each, so we can fit in another vcore.  This
 * assumes there are at most two subcores and at most 6 threads in total.
2095
 */
2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116
static bool can_split_piggybacked_subcores(struct core_info *cip)
{
	int sub, new_sub;
	int large_sub = -1;
	int thr;
	int n_subcores = cip->n_subcores;
	struct kvmppc_vcore *vc, *vcnext;
	struct kvmppc_vcore *master_vc = NULL;

	for (sub = 0; sub < cip->n_subcores; ++sub) {
		if (cip->subcore_threads[sub] <= 2)
			continue;
		if (large_sub >= 0)
			return false;
		large_sub = sub;
		vc = list_first_entry(&cip->vcs[sub], struct kvmppc_vcore,
				      preempt_list);
		if (vc->num_threads > 2)
			return false;
		n_subcores += (cip->subcore_threads[sub] - 1) >> 1;
	}
2117
	if (large_sub < 0 || !subcore_config_ok(n_subcores + 1, 2))
2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192
		return false;

	/*
	 * Seems feasible, so go through and move vcores to new subcores.
	 * Note that when we have two or more vcores in one subcore,
	 * all those vcores must have only one thread each.
	 */
	new_sub = cip->n_subcores;
	thr = 0;
	sub = large_sub;
	list_for_each_entry_safe(vc, vcnext, &cip->vcs[sub], preempt_list) {
		if (thr >= 2) {
			list_del(&vc->preempt_list);
			list_add_tail(&vc->preempt_list, &cip->vcs[new_sub]);
			/* vc->num_threads must be 1 */
			if (++cip->subcore_threads[new_sub] == 1) {
				cip->subcore_vm[new_sub] = vc->kvm;
				init_master_vcore(vc);
				master_vc = vc;
				++cip->n_subcores;
			} else {
				vc->master_vcore = master_vc;
				++new_sub;
			}
		}
		thr += vc->num_threads;
	}
	cip->subcore_threads[large_sub] = 2;
	cip->max_subcore_threads = 2;

	return true;
}

static bool can_dynamic_split(struct kvmppc_vcore *vc, struct core_info *cip)
{
	int n_threads = vc->num_threads;
	int sub;

	if (!cpu_has_feature(CPU_FTR_ARCH_207S))
		return false;

	if (n_threads < cip->max_subcore_threads)
		n_threads = cip->max_subcore_threads;
	if (subcore_config_ok(cip->n_subcores + 1, n_threads)) {
		cip->max_subcore_threads = n_threads;
	} else if (cip->n_subcores <= 2 && cip->total_threads <= 6 &&
		   vc->num_threads <= 2) {
		/*
		 * We may be able to fit another subcore in by
		 * splitting an existing subcore with 3 or 4
		 * threads into two 2-thread subcores, or one
		 * with 5 or 6 threads into three subcores.
		 * We can only do this if those subcores have
		 * piggybacked virtual cores.
		 */
		if (!can_split_piggybacked_subcores(cip))
			return false;
	} else {
		return false;
	}

	sub = cip->n_subcores;
	++cip->n_subcores;
	cip->total_threads += vc->num_threads;
	cip->subcore_threads[sub] = vc->num_threads;
	cip->subcore_vm[sub] = vc->kvm;
	init_master_vcore(vc);
	list_del(&vc->preempt_list);
	list_add_tail(&vc->preempt_list, &cip->vcs[sub]);

	return true;
}

static bool can_piggyback_subcore(struct kvmppc_vcore *pvc,
				  struct core_info *cip, int sub)
2193 2194
{
	struct kvmppc_vcore *vc;
2195
	int n_thr;
2196

2197 2198
	vc = list_first_entry(&cip->vcs[sub], struct kvmppc_vcore,
			      preempt_list);
2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211

	/* require same VM and same per-core reg values */
	if (pvc->kvm != vc->kvm ||
	    pvc->tb_offset != vc->tb_offset ||
	    pvc->pcr != vc->pcr ||
	    pvc->lpcr != vc->lpcr)
		return false;

	/* P8 guest with > 1 thread per core would see wrong TIR value */
	if (cpu_has_feature(CPU_FTR_ARCH_207S) &&
	    (vc->num_threads > 1 || pvc->num_threads > 1))
		return false;

2212 2213 2214 2215 2216 2217
	n_thr = cip->subcore_threads[sub] + pvc->num_threads;
	if (n_thr > cip->max_subcore_threads) {
		if (!subcore_config_ok(cip->n_subcores, n_thr))
			return false;
		cip->max_subcore_threads = n_thr;
	}
2218 2219

	cip->total_threads += pvc->num_threads;
2220
	cip->subcore_threads[sub] = n_thr;
2221 2222
	pvc->master_vcore = vc;
	list_del(&pvc->preempt_list);
2223
	list_add_tail(&pvc->preempt_list, &cip->vcs[sub]);
2224 2225 2226 2227

	return true;
}

2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249
/*
 * Work out whether it is possible to piggyback the execution of
 * vcore *pvc onto the execution of the other vcores described in *cip.
 */
static bool can_piggyback(struct kvmppc_vcore *pvc, struct core_info *cip,
			  int target_threads)
{
	int sub;

	if (cip->total_threads + pvc->num_threads > target_threads)
		return false;
	for (sub = 0; sub < cip->n_subcores; ++sub)
		if (cip->subcore_threads[sub] &&
		    can_piggyback_subcore(pvc, cip, sub))
			return true;

	if (can_dynamic_split(pvc, cip))
		return true;

	return false;
}

2250 2251
static void prepare_threads(struct kvmppc_vcore *vc)
{
2252 2253
	int i;
	struct kvm_vcpu *vcpu;
2254

2255
	for_each_runnable_thread(i, vcpu, vc) {
2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268
		if (signal_pending(vcpu->arch.run_task))
			vcpu->arch.ret = -EINTR;
		else if (vcpu->arch.vpa.update_pending ||
			 vcpu->arch.slb_shadow.update_pending ||
			 vcpu->arch.dtl.update_pending)
			vcpu->arch.ret = RESUME_GUEST;
		else
			continue;
		kvmppc_remove_runnable(vc, vcpu);
		wake_up(&vcpu->arch.cpu_run);
	}
}

2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300
static void collect_piggybacks(struct core_info *cip, int target_threads)
{
	struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
	struct kvmppc_vcore *pvc, *vcnext;

	spin_lock(&lp->lock);
	list_for_each_entry_safe(pvc, vcnext, &lp->list, preempt_list) {
		if (!spin_trylock(&pvc->lock))
			continue;
		prepare_threads(pvc);
		if (!pvc->n_runnable) {
			list_del_init(&pvc->preempt_list);
			if (pvc->runner == NULL) {
				pvc->vcore_state = VCORE_INACTIVE;
				kvmppc_core_end_stolen(pvc);
			}
			spin_unlock(&pvc->lock);
			continue;
		}
		if (!can_piggyback(pvc, cip, target_threads)) {
			spin_unlock(&pvc->lock);
			continue;
		}
		kvmppc_core_end_stolen(pvc);
		pvc->vcore_state = VCORE_PIGGYBACK;
		if (cip->total_threads >= target_threads)
			break;
	}
	spin_unlock(&lp->lock);
}

static void post_guest_process(struct kvmppc_vcore *vc, bool is_master)
2301
{
2302
	int still_running = 0, i;
2303 2304
	u64 now;
	long ret;
2305
	struct kvm_vcpu *vcpu;
2306

2307
	spin_lock(&vc->lock);
2308
	now = get_tb();
2309
	for_each_runnable_thread(i, vcpu, vc) {
2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324
		/* cancel pending dec exception if dec is positive */
		if (now < vcpu->arch.dec_expires &&
		    kvmppc_core_pending_dec(vcpu))
			kvmppc_core_dequeue_dec(vcpu);

		trace_kvm_guest_exit(vcpu);

		ret = RESUME_GUEST;
		if (vcpu->arch.trap)
			ret = kvmppc_handle_exit_hv(vcpu->arch.kvm_run, vcpu,
						    vcpu->arch.run_task);

		vcpu->arch.ret = ret;
		vcpu->arch.trap = 0;

2325 2326 2327 2328
		if (is_kvmppc_resume_guest(vcpu->arch.ret)) {
			if (vcpu->arch.pending_exceptions)
				kvmppc_core_prepare_to_enter(vcpu);
			if (vcpu->arch.ceded)
2329
				kvmppc_set_timer(vcpu);
2330 2331 2332
			else
				++still_running;
		} else {
2333 2334 2335 2336
			kvmppc_remove_runnable(vc, vcpu);
			wake_up(&vcpu->arch.cpu_run);
		}
	}
2337 2338
	list_del_init(&vc->preempt_list);
	if (!is_master) {
2339
		if (still_running > 0) {
2340
			kvmppc_vcore_preempt(vc);
2341 2342 2343 2344 2345 2346
		} else if (vc->runner) {
			vc->vcore_state = VCORE_PREEMPT;
			kvmppc_core_start_stolen(vc);
		} else {
			vc->vcore_state = VCORE_INACTIVE;
		}
2347 2348
		if (vc->n_runnable > 0 && vc->runner == NULL) {
			/* make sure there's a candidate runner awake */
2349 2350
			i = -1;
			vcpu = next_runnable_thread(vc, &i);
2351 2352 2353 2354
			wake_up(&vcpu->arch.cpu_run);
		}
	}
	spin_unlock(&vc->lock);
2355 2356
}

2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396
/*
 * Clear core from the list of active host cores as we are about to
 * enter the guest. Only do this if it is the primary thread of the
 * core (not if a subcore) that is entering the guest.
 */
static inline void kvmppc_clear_host_core(int cpu)
{
	int core;

	if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
		return;
	/*
	 * Memory barrier can be omitted here as we will do a smp_wmb()
	 * later in kvmppc_start_thread and we need ensure that state is
	 * visible to other CPUs only after we enter guest.
	 */
	core = cpu >> threads_shift;
	kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 0;
}

/*
 * Advertise this core as an active host core since we exited the guest
 * Only need to do this if it is the primary thread of the core that is
 * exiting.
 */
static inline void kvmppc_set_host_core(int cpu)
{
	int core;

	if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
		return;

	/*
	 * Memory barrier can be omitted here because we do a spin_unlock
	 * immediately after this which provides the memory barrier.
	 */
	core = cpu >> threads_shift;
	kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 1;
}

2397 2398 2399 2400
/*
 * Run a set of guest threads on a physical core.
 * Called with vc->lock held.
 */
2401
static noinline void kvmppc_run_core(struct kvmppc_vcore *vc)
2402
{
2403
	struct kvm_vcpu *vcpu;
2404
	int i;
2405
	int srcu_idx;
2406 2407
	struct core_info core_info;
	struct kvmppc_vcore *pvc, *vcnext;
2408 2409 2410 2411 2412
	struct kvm_split_mode split_info, *sip;
	int split, subcore_size, active;
	int sub;
	bool thr0_done;
	unsigned long cmd_bit, stat_bit;
2413 2414
	int pcpu, thr;
	int target_threads;
2415

2416 2417 2418 2419 2420 2421 2422 2423 2424
	/*
	 * Remove from the list any threads that have a signal pending
	 * or need a VPA update done
	 */
	prepare_threads(vc);

	/* if the runner is no longer runnable, let the caller pick a new one */
	if (vc->runner->arch.state != KVMPPC_VCPU_RUNNABLE)
		return;
2425 2426

	/*
2427
	 * Initialize *vc.
2428
	 */
2429
	init_master_vcore(vc);
2430
	vc->preempt_tb = TB_NIL;
2431

2432
	/*
2433 2434 2435
	 * Make sure we are running on primary threads, and that secondary
	 * threads are offline.  Also check if the number of threads in this
	 * guest are greater than the current system threads per guest.
2436
	 */
2437 2438
	if ((threads_per_core > 1) &&
	    ((vc->num_threads > threads_per_subcore) || !on_primary_thread())) {
2439
		for_each_runnable_thread(i, vcpu, vc) {
2440
			vcpu->arch.ret = -EBUSY;
2441 2442 2443
			kvmppc_remove_runnable(vc, vcpu);
			wake_up(&vcpu->arch.cpu_run);
		}
2444 2445 2446
		goto out;
	}

2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457
	/*
	 * See if we could run any other vcores on the physical core
	 * along with this one.
	 */
	init_core_info(&core_info, vc);
	pcpu = smp_processor_id();
	target_threads = threads_per_subcore;
	if (target_smt_mode && target_smt_mode < target_threads)
		target_threads = target_smt_mode;
	if (vc->num_threads < target_threads)
		collect_piggybacks(&core_info, target_threads);
2458

2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504
	/* Decide on micro-threading (split-core) mode */
	subcore_size = threads_per_subcore;
	cmd_bit = stat_bit = 0;
	split = core_info.n_subcores;
	sip = NULL;
	if (split > 1) {
		/* threads_per_subcore must be MAX_SMT_THREADS (8) here */
		if (split == 2 && (dynamic_mt_modes & 2)) {
			cmd_bit = HID0_POWER8_1TO2LPAR;
			stat_bit = HID0_POWER8_2LPARMODE;
		} else {
			split = 4;
			cmd_bit = HID0_POWER8_1TO4LPAR;
			stat_bit = HID0_POWER8_4LPARMODE;
		}
		subcore_size = MAX_SMT_THREADS / split;
		sip = &split_info;
		memset(&split_info, 0, sizeof(split_info));
		split_info.rpr = mfspr(SPRN_RPR);
		split_info.pmmar = mfspr(SPRN_PMMAR);
		split_info.ldbar = mfspr(SPRN_LDBAR);
		split_info.subcore_size = subcore_size;
		for (sub = 0; sub < core_info.n_subcores; ++sub)
			split_info.master_vcs[sub] =
				list_first_entry(&core_info.vcs[sub],
					struct kvmppc_vcore, preempt_list);
		/* order writes to split_info before kvm_split_mode pointer */
		smp_wmb();
	}
	pcpu = smp_processor_id();
	for (thr = 0; thr < threads_per_subcore; ++thr)
		paca[pcpu + thr].kvm_hstate.kvm_split_mode = sip;

	/* Initiate micro-threading (split-core) if required */
	if (cmd_bit) {
		unsigned long hid0 = mfspr(SPRN_HID0);

		hid0 |= cmd_bit | HID0_POWER8_DYNLPARDIS;
		mb();
		mtspr(SPRN_HID0, hid0);
		isync();
		for (;;) {
			hid0 = mfspr(SPRN_HID0);
			if (hid0 & stat_bit)
				break;
			cpu_relax();
2505
		}
2506
	}
2507

2508 2509
	kvmppc_clear_host_core(pcpu);

2510 2511 2512 2513 2514 2515 2516 2517
	/* Start all the threads */
	active = 0;
	for (sub = 0; sub < core_info.n_subcores; ++sub) {
		thr = subcore_thread_map[sub];
		thr0_done = false;
		active |= 1 << thr;
		list_for_each_entry(pvc, &core_info.vcs[sub], preempt_list) {
			pvc->pcpu = pcpu + thr;
2518
			for_each_runnable_thread(i, vcpu, pvc) {
2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533
				kvmppc_start_thread(vcpu, pvc);
				kvmppc_create_dtl_entry(vcpu, pvc);
				trace_kvm_guest_enter(vcpu);
				if (!vcpu->arch.ptid)
					thr0_done = true;
				active |= 1 << (thr + vcpu->arch.ptid);
			}
			/*
			 * We need to start the first thread of each subcore
			 * even if it doesn't have a vcpu.
			 */
			if (pvc->master_vcore == pvc && !thr0_done)
				kvmppc_start_thread(NULL, pvc);
			thr += pvc->num_threads;
		}
2534
	}
2535

2536 2537 2538 2539 2540 2541 2542 2543
	/*
	 * Ensure that split_info.do_nap is set after setting
	 * the vcore pointer in the PACA of the secondaries.
	 */
	smp_mb();
	if (cmd_bit)
		split_info.do_nap = 1;	/* ask secondaries to nap when done */

2544 2545 2546 2547 2548 2549 2550 2551 2552
	/*
	 * When doing micro-threading, poke the inactive threads as well.
	 * This gets them to the nap instruction after kvm_do_nap,
	 * which reduces the time taken to unsplit later.
	 */
	if (split > 1)
		for (thr = 1; thr < threads_per_subcore; ++thr)
			if (!(active & (1 << thr)))
				kvmppc_ipi_thread(pcpu + thr);
2553

2554
	vc->vcore_state = VCORE_RUNNING;
2555
	preempt_disable();
2556 2557 2558

	trace_kvmppc_run_core(vc, 0);

2559 2560 2561
	for (sub = 0; sub < core_info.n_subcores; ++sub)
		list_for_each_entry(pvc, &core_info.vcs[sub], preempt_list)
			spin_unlock(&pvc->lock);
2562

2563
	guest_enter();
2564

2565
	srcu_idx = srcu_read_lock(&vc->kvm->srcu);
2566

2567
	__kvmppc_vcore_entry();
2568

2569 2570 2571
	srcu_read_unlock(&vc->kvm->srcu, srcu_idx);

	spin_lock(&vc->lock);
2572
	/* prevent other vcpu threads from doing kvmppc_start_thread() now */
2573
	vc->vcore_state = VCORE_EXITING;
2574

2575
	/* wait for secondary threads to finish writing their state to memory */
2576
	kvmppc_wait_for_nap();
2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604

	/* Return to whole-core mode if we split the core earlier */
	if (split > 1) {
		unsigned long hid0 = mfspr(SPRN_HID0);
		unsigned long loops = 0;

		hid0 &= ~HID0_POWER8_DYNLPARDIS;
		stat_bit = HID0_POWER8_2LPARMODE | HID0_POWER8_4LPARMODE;
		mb();
		mtspr(SPRN_HID0, hid0);
		isync();
		for (;;) {
			hid0 = mfspr(SPRN_HID0);
			if (!(hid0 & stat_bit))
				break;
			cpu_relax();
			++loops;
		}
		split_info.do_nap = 0;
	}

	/* Let secondaries go back to the offline loop */
	for (i = 0; i < threads_per_subcore; ++i) {
		kvmppc_release_hwthread(pcpu + i);
		if (sip && sip->napped[i])
			kvmppc_ipi_thread(pcpu + i);
	}

2605 2606
	kvmppc_set_host_core(pcpu);

2607
	spin_unlock(&vc->lock);
2608

2609 2610
	/* make sure updates to secondary vcpu structs are visible now */
	smp_mb();
2611
	guest_exit();
2612

2613 2614 2615 2616
	for (sub = 0; sub < core_info.n_subcores; ++sub)
		list_for_each_entry_safe(pvc, vcnext, &core_info.vcs[sub],
					 preempt_list)
			post_guest_process(pvc, pvc == vc);
2617

2618
	spin_lock(&vc->lock);
2619
	preempt_enable();
2620 2621

 out:
2622
	vc->vcore_state = VCORE_INACTIVE;
2623
	trace_kvmppc_run_core(vc, 1);
2624 2625
}

2626 2627 2628 2629
/*
 * Wait for some other vcpu thread to execute us, and
 * wake us up when we need to handle something in the host.
 */
2630 2631
static void kvmppc_wait_for_exec(struct kvmppc_vcore *vc,
				 struct kvm_vcpu *vcpu, int wait_state)
2632 2633 2634
{
	DEFINE_WAIT(wait);

2635
	prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state);
2636 2637
	if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
		spin_unlock(&vc->lock);
2638
		schedule();
2639 2640
		spin_lock(&vc->lock);
	}
2641 2642 2643
	finish_wait(&vcpu->arch.cpu_run, &wait);
}

2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679
static void grow_halt_poll_ns(struct kvmppc_vcore *vc)
{
	/* 10us base */
	if (vc->halt_poll_ns == 0 && halt_poll_ns_grow)
		vc->halt_poll_ns = 10000;
	else
		vc->halt_poll_ns *= halt_poll_ns_grow;

	if (vc->halt_poll_ns > halt_poll_max_ns)
		vc->halt_poll_ns = halt_poll_max_ns;
}

static void shrink_halt_poll_ns(struct kvmppc_vcore *vc)
{
	if (halt_poll_ns_shrink == 0)
		vc->halt_poll_ns = 0;
	else
		vc->halt_poll_ns /= halt_poll_ns_shrink;
}

/* Check to see if any of the runnable vcpus on the vcore have pending
 * exceptions or are no longer ceded
 */
static int kvmppc_vcore_check_block(struct kvmppc_vcore *vc)
{
	struct kvm_vcpu *vcpu;
	int i;

	for_each_runnable_thread(i, vcpu, vc) {
		if (vcpu->arch.pending_exceptions || !vcpu->arch.ceded)
			return 1;
	}

	return 0;
}

2680 2681 2682 2683 2684 2685
/*
 * All the vcpus in this vcore are idle, so wait for a decrementer
 * or external interrupt to one of the vcpus.  vc->lock is held.
 */
static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc)
{
2686
	ktime_t cur, start_poll, start_wait;
2687 2688
	int do_sleep = 1;
	u64 block_ns;
2689
	DECLARE_SWAITQUEUE(wait);
2690

2691
	/* Poll for pending exceptions and ceded state */
2692
	cur = start_poll = ktime_get();
2693
	if (vc->halt_poll_ns) {
2694 2695
		ktime_t stop = ktime_add_ns(start_poll, vc->halt_poll_ns);
		++vc->runner->stat.halt_attempted_poll;
2696

2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710
		vc->vcore_state = VCORE_POLLING;
		spin_unlock(&vc->lock);

		do {
			if (kvmppc_vcore_check_block(vc)) {
				do_sleep = 0;
				break;
			}
			cur = ktime_get();
		} while (single_task_running() && ktime_before(cur, stop));

		spin_lock(&vc->lock);
		vc->vcore_state = VCORE_INACTIVE;

2711 2712
		if (!do_sleep) {
			++vc->runner->stat.halt_successful_poll;
2713
			goto out;
2714
		}
2715 2716
	}

2717 2718 2719
	prepare_to_swait(&vc->wq, &wait, TASK_INTERRUPTIBLE);

	if (kvmppc_vcore_check_block(vc)) {
2720
		finish_swait(&vc->wq, &wait);
2721
		do_sleep = 0;
2722 2723 2724
		/* If we polled, count this as a successful poll */
		if (vc->halt_poll_ns)
			++vc->runner->stat.halt_successful_poll;
2725
		goto out;
2726 2727
	}

2728 2729
	start_wait = ktime_get();

2730
	vc->vcore_state = VCORE_SLEEPING;
2731
	trace_kvmppc_vcore_blocked(vc, 0);
2732
	spin_unlock(&vc->lock);
2733
	schedule();
2734
	finish_swait(&vc->wq, &wait);
2735 2736
	spin_lock(&vc->lock);
	vc->vcore_state = VCORE_INACTIVE;
2737
	trace_kvmppc_vcore_blocked(vc, 1);
2738
	++vc->runner->stat.halt_successful_wait;
2739 2740 2741 2742

	cur = ktime_get();

out:
2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760
	block_ns = ktime_to_ns(cur) - ktime_to_ns(start_poll);

	/* Attribute wait time */
	if (do_sleep) {
		vc->runner->stat.halt_wait_ns +=
			ktime_to_ns(cur) - ktime_to_ns(start_wait);
		/* Attribute failed poll time */
		if (vc->halt_poll_ns)
			vc->runner->stat.halt_poll_fail_ns +=
				ktime_to_ns(start_wait) -
				ktime_to_ns(start_poll);
	} else {
		/* Attribute successful poll time */
		if (vc->halt_poll_ns)
			vc->runner->stat.halt_poll_success_ns +=
				ktime_to_ns(cur) -
				ktime_to_ns(start_poll);
	}
2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776

	/* Adjust poll time */
	if (halt_poll_max_ns) {
		if (block_ns <= vc->halt_poll_ns)
			;
		/* We slept and blocked for longer than the max halt time */
		else if (vc->halt_poll_ns && block_ns > halt_poll_max_ns)
			shrink_halt_poll_ns(vc);
		/* We slept and our poll time is too small */
		else if (vc->halt_poll_ns < halt_poll_max_ns &&
				block_ns < halt_poll_max_ns)
			grow_halt_poll_ns(vc);
	} else
		vc->halt_poll_ns = 0;

	trace_kvmppc_vcore_wakeup(do_sleep, block_ns);
2777
}
2778

2779 2780
static int kvmppc_run_vcpu(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
{
2781
	int n_ceded, i;
2782
	struct kvmppc_vcore *vc;
2783
	struct kvm_vcpu *v;
2784

2785 2786
	trace_kvmppc_run_vcpu_enter(vcpu);

2787 2788 2789
	kvm_run->exit_reason = 0;
	vcpu->arch.ret = RESUME_GUEST;
	vcpu->arch.trap = 0;
2790
	kvmppc_update_vpas(vcpu);
2791 2792 2793 2794 2795 2796

	/*
	 * Synchronize with other threads in this virtual core
	 */
	vc = vcpu->arch.vcore;
	spin_lock(&vc->lock);
2797
	vcpu->arch.ceded = 0;
2798 2799
	vcpu->arch.run_task = current;
	vcpu->arch.kvm_run = kvm_run;
2800
	vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb());
2801
	vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
2802
	vcpu->arch.busy_preempt = TB_NIL;
2803
	WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], vcpu);
2804 2805
	++vc->n_runnable;

2806 2807 2808 2809 2810
	/*
	 * This happens the first time this is called for a vcpu.
	 * If the vcore is already running, we may be able to start
	 * this thread straight away and have it join in.
	 */
2811
	if (!signal_pending(current)) {
2812 2813 2814 2815 2816 2817
		if (vc->vcore_state == VCORE_PIGGYBACK) {
			struct kvmppc_vcore *mvc = vc->master_vcore;
			if (spin_trylock(&mvc->lock)) {
				if (mvc->vcore_state == VCORE_RUNNING &&
				    !VCORE_IS_EXITING(mvc)) {
					kvmppc_create_dtl_entry(vcpu, vc);
2818
					kvmppc_start_thread(vcpu, vc);
2819 2820 2821 2822 2823 2824
					trace_kvm_guest_enter(vcpu);
				}
				spin_unlock(&mvc->lock);
			}
		} else if (vc->vcore_state == VCORE_RUNNING &&
			   !VCORE_IS_EXITING(vc)) {
2825
			kvmppc_create_dtl_entry(vcpu, vc);
2826
			kvmppc_start_thread(vcpu, vc);
2827
			trace_kvm_guest_enter(vcpu);
2828
		} else if (vc->vcore_state == VCORE_SLEEPING) {
2829
			swake_up(&vc->wq);
2830 2831
		}

2832
	}
2833

2834 2835
	while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
	       !signal_pending(current)) {
2836 2837 2838
		if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
			kvmppc_vcore_end_preempt(vc);

2839
		if (vc->vcore_state != VCORE_INACTIVE) {
2840
			kvmppc_wait_for_exec(vc, vcpu, TASK_INTERRUPTIBLE);
2841 2842
			continue;
		}
2843
		for_each_runnable_thread(i, v, vc) {
2844
			kvmppc_core_prepare_to_enter(v);
2845 2846 2847 2848 2849 2850 2851 2852
			if (signal_pending(v->arch.run_task)) {
				kvmppc_remove_runnable(vc, v);
				v->stat.signal_exits++;
				v->arch.kvm_run->exit_reason = KVM_EXIT_INTR;
				v->arch.ret = -EINTR;
				wake_up(&v->arch.cpu_run);
			}
		}
2853 2854 2855
		if (!vc->n_runnable || vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
			break;
		n_ceded = 0;
2856
		for_each_runnable_thread(i, v, vc) {
2857 2858
			if (!v->arch.pending_exceptions)
				n_ceded += v->arch.ceded;
2859 2860 2861
			else
				v->arch.ceded = 0;
		}
2862 2863
		vc->runner = vcpu;
		if (n_ceded == vc->n_runnable) {
2864
			kvmppc_vcore_blocked(vc);
2865
		} else if (need_resched()) {
2866
			kvmppc_vcore_preempt(vc);
2867 2868
			/* Let something else run */
			cond_resched_lock(&vc->lock);
2869 2870
			if (vc->vcore_state == VCORE_PREEMPT)
				kvmppc_vcore_end_preempt(vc);
2871
		} else {
2872
			kvmppc_run_core(vc);
2873
		}
2874
		vc->runner = NULL;
2875
	}
2876

2877 2878
	while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
	       (vc->vcore_state == VCORE_RUNNING ||
2879 2880
		vc->vcore_state == VCORE_EXITING ||
		vc->vcore_state == VCORE_PIGGYBACK))
2881
		kvmppc_wait_for_exec(vc, vcpu, TASK_UNINTERRUPTIBLE);
2882

2883 2884 2885
	if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
		kvmppc_vcore_end_preempt(vc);

2886 2887 2888 2889 2890 2891 2892 2893 2894
	if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
		kvmppc_remove_runnable(vc, vcpu);
		vcpu->stat.signal_exits++;
		kvm_run->exit_reason = KVM_EXIT_INTR;
		vcpu->arch.ret = -EINTR;
	}

	if (vc->n_runnable && vc->vcore_state == VCORE_INACTIVE) {
		/* Wake up some vcpu to run the core */
2895 2896
		i = -1;
		v = next_runnable_thread(vc, &i);
2897
		wake_up(&v->arch.cpu_run);
2898 2899
	}

2900
	trace_kvmppc_run_vcpu_exit(vcpu, kvm_run);
2901 2902
	spin_unlock(&vc->lock);
	return vcpu->arch.ret;
2903 2904
}

2905
static int kvmppc_vcpu_run_hv(struct kvm_run *run, struct kvm_vcpu *vcpu)
2906 2907
{
	int r;
2908
	int srcu_idx;
2909

2910 2911 2912 2913 2914
	if (!vcpu->arch.sane) {
		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
		return -EINVAL;
	}

2915 2916
	kvmppc_core_prepare_to_enter(vcpu);

2917 2918 2919 2920 2921 2922
	/* No need to go into the guest when all we'll do is come back out */
	if (signal_pending(current)) {
		run->exit_reason = KVM_EXIT_INTR;
		return -EINTR;
	}

2923
	atomic_inc(&vcpu->kvm->arch.vcpus_running);
2924
	/* Order vcpus_running vs. hpte_setup_done, see kvmppc_alloc_reset_hpt */
2925 2926
	smp_mb();

2927
	/* On the first time here, set up HTAB and VRMA */
2928
	if (!vcpu->kvm->arch.hpte_setup_done) {
2929
		r = kvmppc_hv_setup_htab_rma(vcpu);
2930
		if (r)
2931
			goto out;
2932
	}
2933

2934 2935
	flush_all_to_thread(current);

2936
	vcpu->arch.wqp = &vcpu->arch.vcore->wq;
2937
	vcpu->arch.pgdir = current->mm->pgd;
2938
	vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
2939

2940 2941 2942 2943 2944
	do {
		r = kvmppc_run_vcpu(run, vcpu);

		if (run->exit_reason == KVM_EXIT_PAPR_HCALL &&
		    !(vcpu->arch.shregs.msr & MSR_PR)) {
2945
			trace_kvm_hcall_enter(vcpu);
2946
			r = kvmppc_pseries_do_hcall(vcpu);
2947
			trace_kvm_hcall_exit(vcpu, r);
2948
			kvmppc_core_prepare_to_enter(vcpu);
2949 2950 2951 2952 2953
		} else if (r == RESUME_PAGE_FAULT) {
			srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
			r = kvmppc_book3s_hv_page_fault(run, vcpu,
				vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
			srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
2954
		}
2955
	} while (is_kvmppc_resume_guest(r));
2956 2957

 out:
2958
	vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
2959
	atomic_dec(&vcpu->kvm->arch.vcpus_running);
2960 2961 2962
	return r;
}

2963 2964 2965 2966 2967 2968 2969 2970 2971 2972
static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps,
				     int linux_psize)
{
	struct mmu_psize_def *def = &mmu_psize_defs[linux_psize];

	if (!def->shift)
		return;
	(*sps)->page_shift = def->shift;
	(*sps)->slb_enc = def->sllp;
	(*sps)->enc[0].page_shift = def->shift;
2973
	(*sps)->enc[0].pte_enc = def->penc[linux_psize];
2974 2975 2976 2977 2978 2979 2980
	/*
	 * Add 16MB MPSS support if host supports it
	 */
	if (linux_psize != MMU_PAGE_16M && def->penc[MMU_PAGE_16M] != -1) {
		(*sps)->enc[1].page_shift = 24;
		(*sps)->enc[1].pte_enc = def->penc[MMU_PAGE_16M];
	}
2981 2982 2983
	(*sps)++;
}

2984 2985
static int kvm_vm_ioctl_get_smmu_info_hv(struct kvm *kvm,
					 struct kvm_ppc_smmu_info *info)
2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002
{
	struct kvm_ppc_one_seg_page_size *sps;

	info->flags = KVM_PPC_PAGE_SIZES_REAL;
	if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
		info->flags |= KVM_PPC_1T_SEGMENTS;
	info->slb_size = mmu_slb_size;

	/* We only support these sizes for now, and no muti-size segments */
	sps = &info->sps[0];
	kvmppc_add_seg_page_size(&sps, MMU_PAGE_4K);
	kvmppc_add_seg_page_size(&sps, MMU_PAGE_64K);
	kvmppc_add_seg_page_size(&sps, MMU_PAGE_16M);

	return 0;
}

3003 3004 3005
/*
 * Get (and clear) the dirty memory log for a memory slot.
 */
3006 3007
static int kvm_vm_ioctl_get_dirty_log_hv(struct kvm *kvm,
					 struct kvm_dirty_log *log)
3008
{
3009
	struct kvm_memslots *slots;
3010 3011 3012 3013 3014 3015 3016
	struct kvm_memory_slot *memslot;
	int r;
	unsigned long n;

	mutex_lock(&kvm->slots_lock);

	r = -EINVAL;
3017
	if (log->slot >= KVM_USER_MEM_SLOTS)
3018 3019
		goto out;

3020 3021
	slots = kvm_memslots(kvm);
	memslot = id_to_memslot(slots, log->slot);
3022 3023 3024 3025 3026 3027 3028
	r = -ENOENT;
	if (!memslot->dirty_bitmap)
		goto out;

	n = kvm_dirty_bitmap_bytes(memslot);
	memset(memslot->dirty_bitmap, 0, n);

3029
	r = kvmppc_hv_get_dirty_log(kvm, memslot, memslot->dirty_bitmap);
3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042
	if (r)
		goto out;

	r = -EFAULT;
	if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
		goto out;

	r = 0;
out:
	mutex_unlock(&kvm->slots_lock);
	return r;
}

3043 3044
static void kvmppc_core_free_memslot_hv(struct kvm_memory_slot *free,
					struct kvm_memory_slot *dont)
3045 3046 3047 3048
{
	if (!dont || free->arch.rmap != dont->arch.rmap) {
		vfree(free->arch.rmap);
		free->arch.rmap = NULL;
3049
	}
3050 3051
}

3052 3053
static int kvmppc_core_create_memslot_hv(struct kvm_memory_slot *slot,
					 unsigned long npages)
3054 3055 3056 3057
{
	slot->arch.rmap = vzalloc(npages * sizeof(*slot->arch.rmap));
	if (!slot->arch.rmap)
		return -ENOMEM;
3058

3059 3060
	return 0;
}
3061

3062 3063
static int kvmppc_core_prepare_memory_region_hv(struct kvm *kvm,
					struct kvm_memory_slot *memslot,
3064
					const struct kvm_userspace_memory_region *mem)
3065
{
3066
	return 0;
3067 3068
}

3069
static void kvmppc_core_commit_memory_region_hv(struct kvm *kvm,
3070
				const struct kvm_userspace_memory_region *mem,
3071 3072
				const struct kvm_memory_slot *old,
				const struct kvm_memory_slot *new)
3073
{
3074
	unsigned long npages = mem->memory_size >> PAGE_SHIFT;
3075
	struct kvm_memslots *slots;
3076 3077
	struct kvm_memory_slot *memslot;

3078
	if (npages && old->npages) {
3079 3080 3081 3082 3083 3084
		/*
		 * If modifying a memslot, reset all the rmap dirty bits.
		 * If this is a new memslot, we don't need to do anything
		 * since the rmap array starts out as all zeroes,
		 * i.e. no pages are dirty.
		 */
3085 3086
		slots = kvm_memslots(kvm);
		memslot = id_to_memslot(slots, mem->slot);
3087 3088
		kvmppc_hv_get_dirty_log(kvm, memslot, NULL);
	}
3089 3090
}

3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116
/*
 * Update LPCR values in kvm->arch and in vcores.
 * Caller must hold kvm->lock.
 */
void kvmppc_update_lpcr(struct kvm *kvm, unsigned long lpcr, unsigned long mask)
{
	long int i;
	u32 cores_done = 0;

	if ((kvm->arch.lpcr & mask) == lpcr)
		return;

	kvm->arch.lpcr = (kvm->arch.lpcr & ~mask) | lpcr;

	for (i = 0; i < KVM_MAX_VCORES; ++i) {
		struct kvmppc_vcore *vc = kvm->arch.vcores[i];
		if (!vc)
			continue;
		spin_lock(&vc->lock);
		vc->lpcr = (vc->lpcr & ~mask) | lpcr;
		spin_unlock(&vc->lock);
		if (++cores_done >= kvm->arch.online_vcores)
			break;
	}
}

3117 3118 3119 3120 3121
static void kvmppc_mmu_destroy_hv(struct kvm_vcpu *vcpu)
{
	return;
}

3122
static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu)
3123 3124 3125 3126 3127 3128
{
	int err = 0;
	struct kvm *kvm = vcpu->kvm;
	unsigned long hva;
	struct kvm_memory_slot *memslot;
	struct vm_area_struct *vma;
3129
	unsigned long lpcr = 0, senc;
3130
	unsigned long psize, porder;
3131
	int srcu_idx;
3132 3133

	mutex_lock(&kvm->lock);
3134
	if (kvm->arch.hpte_setup_done)
3135
		goto out;	/* another vcpu beat us to it */
3136

3137 3138 3139 3140 3141 3142 3143 3144 3145
	/* Allocate hashed page table (if not done already) and reset it */
	if (!kvm->arch.hpt_virt) {
		err = kvmppc_alloc_hpt(kvm, NULL);
		if (err) {
			pr_err("KVM: Couldn't alloc HPT\n");
			goto out;
		}
	}

3146
	/* Look up the memslot for guest physical address 0 */
3147
	srcu_idx = srcu_read_lock(&kvm->srcu);
3148
	memslot = gfn_to_memslot(kvm, 0);
3149

3150 3151 3152
	/* We must have some memory at 0 by now */
	err = -EINVAL;
	if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
3153
		goto out_srcu;
3154 3155 3156 3157 3158 3159 3160 3161 3162

	/* Look up the VMA for the start of this memory slot */
	hva = memslot->userspace_addr;
	down_read(&current->mm->mmap_sem);
	vma = find_vma(current->mm, hva);
	if (!vma || vma->vm_start > hva || (vma->vm_flags & VM_IO))
		goto up_out;

	psize = vma_kernel_pagesize(vma);
3163
	porder = __ilog2(psize);
3164 3165 3166

	up_read(&current->mm->mmap_sem);

3167 3168 3169 3170 3171
	/* We can handle 4k, 64k or 16M pages in the VRMA */
	err = -EINVAL;
	if (!(psize == 0x1000 || psize == 0x10000 ||
	      psize == 0x1000000))
		goto out_srcu;
3172

3173 3174 3175 3176 3177 3178
	/* Update VRMASD field in the LPCR */
	senc = slb_pgsize_encoding(psize);
	kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
		(VRMA_VSID << SLB_VSID_SHIFT_1T);
	/* the -4 is to account for senc values starting at 0x10 */
	lpcr = senc << (LPCR_VRMASD_SH - 4);
3179

3180 3181
	/* Create HPTEs in the hash page table for the VRMA */
	kvmppc_map_vrma(vcpu, memslot, porder);
3182

3183
	kvmppc_update_lpcr(kvm, lpcr, LPCR_VRMASD);
3184

3185
	/* Order updates to kvm->arch.lpcr etc. vs. hpte_setup_done */
3186
	smp_wmb();
3187
	kvm->arch.hpte_setup_done = 1;
3188
	err = 0;
3189 3190
 out_srcu:
	srcu_read_unlock(&kvm->srcu, srcu_idx);
3191 3192 3193
 out:
	mutex_unlock(&kvm->lock);
	return err;
3194

3195 3196
 up_out:
	up_read(&current->mm->mmap_sem);
3197
	goto out_srcu;
3198 3199
}

3200
#ifdef CONFIG_KVM_XICS
3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230
static int kvmppc_cpu_notify(struct notifier_block *self, unsigned long action,
			void *hcpu)
{
	unsigned long cpu = (long)hcpu;

	switch (action) {
	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
		kvmppc_set_host_core(cpu);
		break;

#ifdef CONFIG_HOTPLUG_CPU
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
		kvmppc_clear_host_core(cpu);
		break;
#endif
	default:
		break;
	}

	return NOTIFY_OK;
}

static struct notifier_block kvmppc_cpu_notifier = {
	    .notifier_call = kvmppc_cpu_notify,
};

3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263
/*
 * Allocate a per-core structure for managing state about which cores are
 * running in the host versus the guest and for exchanging data between
 * real mode KVM and CPU running in the host.
 * This is only done for the first VM.
 * The allocated structure stays even if all VMs have stopped.
 * It is only freed when the kvm-hv module is unloaded.
 * It's OK for this routine to fail, we just don't support host
 * core operations like redirecting H_IPI wakeups.
 */
void kvmppc_alloc_host_rm_ops(void)
{
	struct kvmppc_host_rm_ops *ops;
	unsigned long l_ops;
	int cpu, core;
	int size;

	/* Not the first time here ? */
	if (kvmppc_host_rm_ops_hv != NULL)
		return;

	ops = kzalloc(sizeof(struct kvmppc_host_rm_ops), GFP_KERNEL);
	if (!ops)
		return;

	size = cpu_nr_cores() * sizeof(struct kvmppc_host_rm_core);
	ops->rm_core = kzalloc(size, GFP_KERNEL);

	if (!ops->rm_core) {
		kfree(ops);
		return;
	}

3264 3265
	get_online_cpus();

3266 3267 3268 3269 3270 3271 3272 3273
	for (cpu = 0; cpu < nr_cpu_ids; cpu += threads_per_core) {
		if (!cpu_online(cpu))
			continue;

		core = cpu >> threads_shift;
		ops->rm_core[core].rm_state.in_host = 1;
	}

3274 3275
	ops->vcpu_kick = kvmppc_fast_vcpu_kick_hv;

3276 3277 3278 3279 3280 3281 3282 3283 3284 3285
	/*
	 * Make the contents of the kvmppc_host_rm_ops structure visible
	 * to other CPUs before we assign it to the global variable.
	 * Do an atomic assignment (no locks used here), but if someone
	 * beats us to it, just free our copy and return.
	 */
	smp_wmb();
	l_ops = (unsigned long) ops;

	if (cmpxchg64((unsigned long *)&kvmppc_host_rm_ops_hv, 0, l_ops)) {
3286
		put_online_cpus();
3287 3288
		kfree(ops->rm_core);
		kfree(ops);
3289
		return;
3290
	}
3291 3292 3293 3294

	register_cpu_notifier(&kvmppc_cpu_notifier);

	put_online_cpus();
3295 3296 3297 3298 3299
}

void kvmppc_free_host_rm_ops(void)
{
	if (kvmppc_host_rm_ops_hv) {
3300
		unregister_cpu_notifier(&kvmppc_cpu_notifier);
3301 3302 3303 3304 3305 3306 3307
		kfree(kvmppc_host_rm_ops_hv->rm_core);
		kfree(kvmppc_host_rm_ops_hv);
		kvmppc_host_rm_ops_hv = NULL;
	}
}
#endif

3308
static int kvmppc_core_init_vm_hv(struct kvm *kvm)
3309
{
3310
	unsigned long lpcr, lpid;
3311
	char buf[32];
3312

3313 3314 3315
	/* Allocate the guest's logical partition ID */

	lpid = kvmppc_alloc_lpid();
3316
	if ((long)lpid < 0)
3317 3318
		return -ENOMEM;
	kvm->arch.lpid = lpid;
3319

3320 3321
	kvmppc_alloc_host_rm_ops();

3322 3323 3324 3325 3326 3327 3328
	/*
	 * Since we don't flush the TLB when tearing down a VM,
	 * and this lpid might have previously been used,
	 * make sure we flush on each core before running the new VM.
	 */
	cpumask_setall(&kvm->arch.need_tlb_flush);

3329 3330 3331 3332
	/* Start out with the default set of hcalls enabled */
	memcpy(kvm->arch.enabled_hcalls, default_enabled_hcalls,
	       sizeof(kvm->arch.enabled_hcalls));

3333
	kvm->arch.host_sdr1 = mfspr(SPRN_SDR1);
3334

3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345
	/* Init LPCR for virtual RMA mode */
	kvm->arch.host_lpid = mfspr(SPRN_LPID);
	kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR);
	lpcr &= LPCR_PECE | LPCR_LPES;
	lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE |
		LPCR_VPM0 | LPCR_VPM1;
	kvm->arch.vrma_slb_v = SLB_VSID_B_1T |
		(VRMA_VSID << SLB_VSID_SHIFT_1T);
	/* On POWER8 turn on online bit to enable PURR/SPURR */
	if (cpu_has_feature(CPU_FTR_ARCH_207S))
		lpcr |= LPCR_ONL;
3346
	kvm->arch.lpcr = lpcr;
3347

3348
	/*
3349 3350
	 * Track that we now have a HV mode VM active. This blocks secondary
	 * CPU threads from coming online.
3351
	 */
3352
	kvm_hv_vm_activated();
3353

3354 3355 3356 3357 3358 3359 3360 3361
	/*
	 * Create a debugfs directory for the VM
	 */
	snprintf(buf, sizeof(buf), "vm%d", current->pid);
	kvm->arch.debugfs_dir = debugfs_create_dir(buf, kvm_debugfs_dir);
	if (!IS_ERR_OR_NULL(kvm->arch.debugfs_dir))
		kvmppc_mmu_debugfs_init(kvm);

3362
	return 0;
3363 3364
}

3365 3366 3367 3368
static void kvmppc_free_vcores(struct kvm *kvm)
{
	long int i;

3369
	for (i = 0; i < KVM_MAX_VCORES; ++i)
3370 3371 3372 3373
		kfree(kvm->arch.vcores[i]);
	kvm->arch.online_vcores = 0;
}

3374
static void kvmppc_core_destroy_vm_hv(struct kvm *kvm)
3375
{
3376 3377
	debugfs_remove_recursive(kvm->arch.debugfs_dir);

3378
	kvm_hv_vm_deactivated();
3379

3380
	kvmppc_free_vcores(kvm);
3381

3382
	kvmppc_free_hpt(kvm);
3383 3384

	kvmppc_free_pimap(kvm);
3385 3386
}

3387 3388 3389
/* We don't need to emulate any privileged instructions or dcbz */
static int kvmppc_core_emulate_op_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
				     unsigned int inst, int *advance)
3390
{
3391
	return EMULATE_FAIL;
3392 3393
}

3394 3395
static int kvmppc_core_emulate_mtspr_hv(struct kvm_vcpu *vcpu, int sprn,
					ulong spr_val)
3396 3397 3398 3399
{
	return EMULATE_FAIL;
}

3400 3401
static int kvmppc_core_emulate_mfspr_hv(struct kvm_vcpu *vcpu, int sprn,
					ulong *spr_val)
3402 3403 3404 3405
{
	return EMULATE_FAIL;
}

3406
static int kvmppc_core_check_processor_compat_hv(void)
3407
{
3408 3409
	if (!cpu_has_feature(CPU_FTR_HVMODE) ||
	    !cpu_has_feature(CPU_FTR_ARCH_206))
3410
		return -EIO;
3411 3412 3413 3414 3415 3416
	/*
	 * Disable KVM for Power9, untill the required bits merged.
	 */
	if (cpu_has_feature(CPU_FTR_ARCH_300))
		return -EIO;

3417
	return 0;
3418 3419
}

3420 3421 3422 3423 3424 3425 3426
#ifdef CONFIG_KVM_XICS

void kvmppc_free_pimap(struct kvm *kvm)
{
	kfree(kvm->arch.pimap);
}

3427
static struct kvmppc_passthru_irqmap *kvmppc_alloc_pimap(void)
3428 3429 3430
{
	return kzalloc(sizeof(struct kvmppc_passthru_irqmap), GFP_KERNEL);
}
3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494

static int kvmppc_set_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
{
	struct irq_desc *desc;
	struct kvmppc_irq_map *irq_map;
	struct kvmppc_passthru_irqmap *pimap;
	struct irq_chip *chip;
	int i;

	desc = irq_to_desc(host_irq);
	if (!desc)
		return -EIO;

	mutex_lock(&kvm->lock);

	pimap = kvm->arch.pimap;
	if (pimap == NULL) {
		/* First call, allocate structure to hold IRQ map */
		pimap = kvmppc_alloc_pimap();
		if (pimap == NULL) {
			mutex_unlock(&kvm->lock);
			return -ENOMEM;
		}
		kvm->arch.pimap = pimap;
	}

	/*
	 * For now, we only support interrupts for which the EOI operation
	 * is an OPAL call followed by a write to XIRR, since that's
	 * what our real-mode EOI code does.
	 */
	chip = irq_data_get_irq_chip(&desc->irq_data);
	if (!chip || !is_pnv_opal_msi(chip)) {
		pr_warn("kvmppc_set_passthru_irq_hv: Could not assign IRQ map for (%d,%d)\n",
			host_irq, guest_gsi);
		mutex_unlock(&kvm->lock);
		return -ENOENT;
	}

	/*
	 * See if we already have an entry for this guest IRQ number.
	 * If it's mapped to a hardware IRQ number, that's an error,
	 * otherwise re-use this entry.
	 */
	for (i = 0; i < pimap->n_mapped; i++) {
		if (guest_gsi == pimap->mapped[i].v_hwirq) {
			if (pimap->mapped[i].r_hwirq) {
				mutex_unlock(&kvm->lock);
				return -EINVAL;
			}
			break;
		}
	}

	if (i == KVMPPC_PIRQ_MAPPED) {
		mutex_unlock(&kvm->lock);
		return -EAGAIN;		/* table is full */
	}

	irq_map = &pimap->mapped[i];

	irq_map->v_hwirq = guest_gsi;
	irq_map->desc = desc;

3495 3496 3497 3498 3499 3500 3501
	/*
	 * Order the above two stores before the next to serialize with
	 * the KVM real mode handler.
	 */
	smp_wmb();
	irq_map->r_hwirq = desc->irq_data.hwirq;

3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585
	if (i == pimap->n_mapped)
		pimap->n_mapped++;

	mutex_unlock(&kvm->lock);

	return 0;
}

static int kvmppc_clr_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
{
	struct irq_desc *desc;
	struct kvmppc_passthru_irqmap *pimap;
	int i;

	desc = irq_to_desc(host_irq);
	if (!desc)
		return -EIO;

	mutex_lock(&kvm->lock);

	if (kvm->arch.pimap == NULL) {
		mutex_unlock(&kvm->lock);
		return 0;
	}
	pimap = kvm->arch.pimap;

	for (i = 0; i < pimap->n_mapped; i++) {
		if (guest_gsi == pimap->mapped[i].v_hwirq)
			break;
	}

	if (i == pimap->n_mapped) {
		mutex_unlock(&kvm->lock);
		return -ENODEV;
	}

	/* invalidate the entry */
	pimap->mapped[i].r_hwirq = 0;

	/*
	 * We don't free this structure even when the count goes to
	 * zero. The structure is freed when we destroy the VM.
	 */

	mutex_unlock(&kvm->lock);
	return 0;
}

static int kvmppc_irq_bypass_add_producer_hv(struct irq_bypass_consumer *cons,
					     struct irq_bypass_producer *prod)
{
	int ret = 0;
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

	irqfd->producer = prod;

	ret = kvmppc_set_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi);
	if (ret)
		pr_info("kvmppc_set_passthru_irq (irq %d, gsi %d) fails: %d\n",
			prod->irq, irqfd->gsi, ret);

	return ret;
}

static void kvmppc_irq_bypass_del_producer_hv(struct irq_bypass_consumer *cons,
					      struct irq_bypass_producer *prod)
{
	int ret;
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

	irqfd->producer = NULL;

	/*
	 * When producer of consumer is unregistered, we change back to
	 * default external interrupt handling mode - KVM real mode
	 * will switch back to host.
	 */
	ret = kvmppc_clr_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi);
	if (ret)
		pr_warn("kvmppc_clr_passthru_irq (irq %d, gsi %d) fails: %d\n",
			prod->irq, irqfd->gsi, ret);
}
3586 3587
#endif

3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629
static long kvm_arch_vm_ioctl_hv(struct file *filp,
				 unsigned int ioctl, unsigned long arg)
{
	struct kvm *kvm __maybe_unused = filp->private_data;
	void __user *argp = (void __user *)arg;
	long r;

	switch (ioctl) {

	case KVM_PPC_ALLOCATE_HTAB: {
		u32 htab_order;

		r = -EFAULT;
		if (get_user(htab_order, (u32 __user *)argp))
			break;
		r = kvmppc_alloc_reset_hpt(kvm, &htab_order);
		if (r)
			break;
		r = -EFAULT;
		if (put_user(htab_order, (u32 __user *)argp))
			break;
		r = 0;
		break;
	}

	case KVM_PPC_GET_HTAB_FD: {
		struct kvm_get_htab_fd ghf;

		r = -EFAULT;
		if (copy_from_user(&ghf, argp, sizeof(ghf)))
			break;
		r = kvm_vm_ioctl_get_htab_fd(kvm, &ghf);
		break;
	}

	default:
		r = -ENOTTY;
	}

	return r;
}

3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663
/*
 * List of hcall numbers to enable by default.
 * For compatibility with old userspace, we enable by default
 * all hcalls that were implemented before the hcall-enabling
 * facility was added.  Note this list should not include H_RTAS.
 */
static unsigned int default_hcall_list[] = {
	H_REMOVE,
	H_ENTER,
	H_READ,
	H_PROTECT,
	H_BULK_REMOVE,
	H_GET_TCE,
	H_PUT_TCE,
	H_SET_DABR,
	H_SET_XDABR,
	H_CEDE,
	H_PROD,
	H_CONFER,
	H_REGISTER_VPA,
#ifdef CONFIG_KVM_XICS
	H_EOI,
	H_CPPR,
	H_IPI,
	H_IPOLL,
	H_XIRR,
	H_XIRR_X,
#endif
	0
};

static void init_default_hcalls(void)
{
	int i;
3664
	unsigned int hcall;
3665

3666 3667 3668 3669 3670
	for (i = 0; default_hcall_list[i]; ++i) {
		hcall = default_hcall_list[i];
		WARN_ON(!kvmppc_hcall_impl_hv(hcall));
		__set_bit(hcall / 4, default_enabled_hcalls);
	}
3671 3672
}

3673
static struct kvmppc_ops kvm_ops_hv = {
3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704
	.get_sregs = kvm_arch_vcpu_ioctl_get_sregs_hv,
	.set_sregs = kvm_arch_vcpu_ioctl_set_sregs_hv,
	.get_one_reg = kvmppc_get_one_reg_hv,
	.set_one_reg = kvmppc_set_one_reg_hv,
	.vcpu_load   = kvmppc_core_vcpu_load_hv,
	.vcpu_put    = kvmppc_core_vcpu_put_hv,
	.set_msr     = kvmppc_set_msr_hv,
	.vcpu_run    = kvmppc_vcpu_run_hv,
	.vcpu_create = kvmppc_core_vcpu_create_hv,
	.vcpu_free   = kvmppc_core_vcpu_free_hv,
	.check_requests = kvmppc_core_check_requests_hv,
	.get_dirty_log  = kvm_vm_ioctl_get_dirty_log_hv,
	.flush_memslot  = kvmppc_core_flush_memslot_hv,
	.prepare_memory_region = kvmppc_core_prepare_memory_region_hv,
	.commit_memory_region  = kvmppc_core_commit_memory_region_hv,
	.unmap_hva = kvm_unmap_hva_hv,
	.unmap_hva_range = kvm_unmap_hva_range_hv,
	.age_hva  = kvm_age_hva_hv,
	.test_age_hva = kvm_test_age_hva_hv,
	.set_spte_hva = kvm_set_spte_hva_hv,
	.mmu_destroy  = kvmppc_mmu_destroy_hv,
	.free_memslot = kvmppc_core_free_memslot_hv,
	.create_memslot = kvmppc_core_create_memslot_hv,
	.init_vm =  kvmppc_core_init_vm_hv,
	.destroy_vm = kvmppc_core_destroy_vm_hv,
	.get_smmu_info = kvm_vm_ioctl_get_smmu_info_hv,
	.emulate_op = kvmppc_core_emulate_op_hv,
	.emulate_mtspr = kvmppc_core_emulate_mtspr_hv,
	.emulate_mfspr = kvmppc_core_emulate_mfspr_hv,
	.fast_vcpu_kick = kvmppc_fast_vcpu_kick_hv,
	.arch_vm_ioctl  = kvm_arch_vm_ioctl_hv,
3705
	.hcall_implemented = kvmppc_hcall_impl_hv,
3706 3707 3708 3709
#ifdef CONFIG_KVM_XICS
	.irq_bypass_add_producer = kvmppc_irq_bypass_add_producer_hv,
	.irq_bypass_del_producer = kvmppc_irq_bypass_del_producer_hv,
#endif
3710 3711
};

3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743
static int kvm_init_subcore_bitmap(void)
{
	int i, j;
	int nr_cores = cpu_nr_cores();
	struct sibling_subcore_state *sibling_subcore_state;

	for (i = 0; i < nr_cores; i++) {
		int first_cpu = i * threads_per_core;
		int node = cpu_to_node(first_cpu);

		/* Ignore if it is already allocated. */
		if (paca[first_cpu].sibling_subcore_state)
			continue;

		sibling_subcore_state =
			kmalloc_node(sizeof(struct sibling_subcore_state),
							GFP_KERNEL, node);
		if (!sibling_subcore_state)
			return -ENOMEM;

		memset(sibling_subcore_state, 0,
				sizeof(struct sibling_subcore_state));

		for (j = 0; j < threads_per_core; j++) {
			int cpu = first_cpu + j;

			paca[cpu].sibling_subcore_state = sibling_subcore_state;
		}
	}
	return 0;
}

3744
static int kvmppc_book3s_init_hv(void)
3745 3746
{
	int r;
3747 3748 3749 3750 3751
	/*
	 * FIXME!! Do we need to check on all cpus ?
	 */
	r = kvmppc_core_check_processor_compat_hv();
	if (r < 0)
3752
		return -ENODEV;
3753

3754 3755 3756 3757
	r = kvm_init_subcore_bitmap();
	if (r)
		return r;

3758 3759
	kvm_ops_hv.owner = THIS_MODULE;
	kvmppc_hv_ops = &kvm_ops_hv;
3760

3761 3762
	init_default_hcalls();

3763 3764
	init_vcore_lists();

3765
	r = kvmppc_mmu_hv_init();
3766 3767 3768
	return r;
}

3769
static void kvmppc_book3s_exit_hv(void)
3770
{
3771
	kvmppc_free_host_rm_ops();
3772
	kvmppc_hv_ops = NULL;
3773 3774
}

3775 3776
module_init(kvmppc_book3s_init_hv);
module_exit(kvmppc_book3s_exit_hv);
3777
MODULE_LICENSE("GPL");
3778 3779
MODULE_ALIAS_MISCDEV(KVM_MINOR);
MODULE_ALIAS("devname:kvm");