book3s_hv.c 114.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
/*
 * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
 * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
 *
 * Authors:
 *    Paul Mackerras <paulus@au1.ibm.com>
 *    Alexander Graf <agraf@suse.de>
 *    Kevin Wolf <mail@kevin-wolf.de>
 *
 * Description: KVM functions specific to running on Book 3S
 * processors in hypervisor mode (specifically POWER7 and later).
 *
 * This file is derived from arch/powerpc/kvm/book3s.c,
 * by Alexander Graf <agraf@suse.de>.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License, version 2, as
 * published by the Free Software Foundation.
 */

#include <linux/kvm_host.h>
22
#include <linux/kernel.h>
23 24 25
#include <linux/err.h>
#include <linux/slab.h>
#include <linux/preempt.h>
26
#include <linux/sched/signal.h>
27
#include <linux/sched/stat.h>
28
#include <linux/delay.h>
29
#include <linux/export.h>
30 31
#include <linux/fs.h>
#include <linux/anon_inodes.h>
32
#include <linux/cpu.h>
33
#include <linux/cpumask.h>
34 35
#include <linux/spinlock.h>
#include <linux/page-flags.h>
36
#include <linux/srcu.h>
37
#include <linux/miscdevice.h>
38
#include <linux/debugfs.h>
39 40 41 42 43 44 45 46 47
#include <linux/gfp.h>
#include <linux/vmalloc.h>
#include <linux/highmem.h>
#include <linux/hugetlb.h>
#include <linux/kvm_irqfd.h>
#include <linux/irqbypass.h>
#include <linux/module.h>
#include <linux/compiler.h>
#include <linux/of.h>
48 49

#include <asm/reg.h>
50
#include <asm/ppc-opcode.h>
51
#include <asm/asm-prototypes.h>
52
#include <asm/disassemble.h>
53 54 55
#include <asm/cputable.h>
#include <asm/cacheflush.h>
#include <asm/tlbflush.h>
56
#include <linux/uaccess.h>
57 58 59 60 61 62
#include <asm/io.h>
#include <asm/kvm_ppc.h>
#include <asm/kvm_book3s.h>
#include <asm/mmu_context.h>
#include <asm/lppaca.h>
#include <asm/processor.h>
63
#include <asm/cputhreads.h>
64
#include <asm/page.h>
65
#include <asm/hvcall.h>
66
#include <asm/switch_to.h>
67
#include <asm/smp.h>
68
#include <asm/dbell.h>
69
#include <asm/hmi.h>
70
#include <asm/pnv-pci.h>
71
#include <asm/mmu.h>
72 73
#include <asm/opal.h>
#include <asm/xics.h>
74
#include <asm/xive.h>
75

76 77
#include "book3s.h"

78 79 80
#define CREATE_TRACE_POINTS
#include "trace_hv.h"

81 82 83 84
/* #define EXIT_DEBUG */
/* #define EXIT_DEBUG_SIMPLE */
/* #define EXIT_DEBUG_INT */

85 86
/* Used to indicate that a guest page fault needs to be handled */
#define RESUME_PAGE_FAULT	(RESUME_GUEST | RESUME_FLAG_ARCH1)
87 88
/* Used to indicate that a guest passthrough interrupt needs to be handled */
#define RESUME_PASSTHROUGH	(RESUME_GUEST | RESUME_FLAG_ARCH2)
89

90 91 92
/* Used as a "null" value for timebase values */
#define TB_NIL	(~(u64)0)

93 94
static DECLARE_BITMAP(default_enabled_hcalls, MAX_HCALL_OPCODE/4 + 1);

95 96 97
static int dynamic_mt_modes = 6;
module_param(dynamic_mt_modes, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(dynamic_mt_modes, "Set of allowed dynamic micro-threading modes: 0 (= none), 2, 4, or 6 (= 2 or 4)");
98 99 100
static int target_smt_mode;
module_param(target_smt_mode, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(target_smt_mode, "Target threads per core (0 = max)");
101

102 103 104 105
static bool indep_threads_mode = true;
module_param(indep_threads_mode, bool, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(indep_threads_mode, "Independent-threads mode (only on POWER9)");

106 107 108 109 110 111
#ifdef CONFIG_KVM_XICS
static struct kernel_param_ops module_param_ops = {
	.set = param_set_int,
	.get = param_get_int,
};

112 113 114 115
module_param_cb(kvm_irq_bypass, &module_param_ops, &kvm_irq_bypass,
							S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(kvm_irq_bypass, "Bypass passthrough interrupt optimization");

116 117 118 119 120
module_param_cb(h_ipi_redirect, &module_param_ops, &h_ipi_redirect,
							S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(h_ipi_redirect, "Redirect H_IPI wakeup to a free host core");
#endif

121
static void kvmppc_end_cede(struct kvm_vcpu *vcpu);
122
static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu);
123

124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
static inline struct kvm_vcpu *next_runnable_thread(struct kvmppc_vcore *vc,
		int *ip)
{
	int i = *ip;
	struct kvm_vcpu *vcpu;

	while (++i < MAX_SMT_THREADS) {
		vcpu = READ_ONCE(vc->runnable_threads[i]);
		if (vcpu) {
			*ip = i;
			return vcpu;
		}
	}
	return NULL;
}

/* Used to traverse the list of runnable threads for a given vcore */
#define for_each_runnable_thread(i, vcpu, vc) \
	for (i = -1; (vcpu = next_runnable_thread(vc, &i)); )

144 145
static bool kvmppc_ipi_thread(int cpu)
{
146 147 148 149 150 151 152 153 154 155
	unsigned long msg = PPC_DBELL_TYPE(PPC_DBELL_SERVER);

	/* On POWER9 we can use msgsnd to IPI any cpu */
	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
		msg |= get_hard_smp_processor_id(cpu);
		smp_mb();
		__asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
		return true;
	}

156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
	/* On POWER8 for IPIs to threads in the same core, use msgsnd */
	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
		preempt_disable();
		if (cpu_first_thread_sibling(cpu) ==
		    cpu_first_thread_sibling(smp_processor_id())) {
			msg |= cpu_thread_in_core(cpu);
			smp_mb();
			__asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
			preempt_enable();
			return true;
		}
		preempt_enable();
	}

#if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP)
171 172 173 174 175 176
	if (cpu >= 0 && cpu < nr_cpu_ids) {
		if (paca[cpu].kvm_hstate.xics_phys) {
			xics_wake_cpu(cpu);
			return true;
		}
		opal_int_set_mfrr(get_hard_smp_processor_id(cpu), IPI_PRIORITY);
177 178 179 180 181 182 183
		return true;
	}
#endif

	return false;
}

184
static void kvmppc_fast_vcpu_kick_hv(struct kvm_vcpu *vcpu)
185
{
186
	int cpu;
187
	struct swait_queue_head *wqp;
188 189

	wqp = kvm_arch_vcpu_wq(vcpu);
190
	if (swq_has_sleeper(wqp)) {
191
		swake_up(wqp);
192 193 194
		++vcpu->stat.halt_wakeup;
	}

195 196
	cpu = READ_ONCE(vcpu->arch.thread_cpu);
	if (cpu >= 0 && kvmppc_ipi_thread(cpu))
197
		return;
198 199

	/* CPU points to the first thread of the core */
200
	cpu = vcpu->cpu;
201 202
	if (cpu >= 0 && cpu < nr_cpu_ids && cpu_online(cpu))
		smp_send_reschedule(cpu);
203 204
}

205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
/*
 * We use the vcpu_load/put functions to measure stolen time.
 * Stolen time is counted as time when either the vcpu is able to
 * run as part of a virtual core, but the task running the vcore
 * is preempted or sleeping, or when the vcpu needs something done
 * in the kernel by the task running the vcpu, but that task is
 * preempted or sleeping.  Those two things have to be counted
 * separately, since one of the vcpu tasks will take on the job
 * of running the core, and the other vcpu tasks in the vcore will
 * sleep waiting for it to do that, but that sleep shouldn't count
 * as stolen time.
 *
 * Hence we accumulate stolen time when the vcpu can run as part of
 * a vcore using vc->stolen_tb, and the stolen time when the vcpu
 * needs its task to do other things in the kernel (for example,
 * service a page fault) in busy_stolen.  We don't accumulate
 * stolen time for a vcore when it is inactive, or for a vcpu
 * when it is in state RUNNING or NOTREADY.  NOTREADY is a bit of
 * a misnomer; it means that the vcpu task is not executing in
 * the KVM_VCPU_RUN ioctl, i.e. it is in userspace or elsewhere in
 * the kernel.  We don't have any way of dividing up that time
 * between time that the vcpu is genuinely stopped, time that
 * the task is actively working on behalf of the vcpu, and time
 * that the task is preempted, so we don't count any of it as
 * stolen.
 *
 * Updates to busy_stolen are protected by arch.tbacct_lock;
232 233 234 235
 * updates to vc->stolen_tb are protected by the vcore->stoltb_lock
 * lock.  The stolen times are measured in units of timebase ticks.
 * (Note that the != TB_NIL checks below are purely defensive;
 * they should never fail.)
236 237
 */

238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
static void kvmppc_core_start_stolen(struct kvmppc_vcore *vc)
{
	unsigned long flags;

	spin_lock_irqsave(&vc->stoltb_lock, flags);
	vc->preempt_tb = mftb();
	spin_unlock_irqrestore(&vc->stoltb_lock, flags);
}

static void kvmppc_core_end_stolen(struct kvmppc_vcore *vc)
{
	unsigned long flags;

	spin_lock_irqsave(&vc->stoltb_lock, flags);
	if (vc->preempt_tb != TB_NIL) {
		vc->stolen_tb += mftb() - vc->preempt_tb;
		vc->preempt_tb = TB_NIL;
	}
	spin_unlock_irqrestore(&vc->stoltb_lock, flags);
}

259
static void kvmppc_core_vcpu_load_hv(struct kvm_vcpu *vcpu, int cpu)
260
{
261
	struct kvmppc_vcore *vc = vcpu->arch.vcore;
262
	unsigned long flags;
263

264 265 266 267 268 269
	/*
	 * We can test vc->runner without taking the vcore lock,
	 * because only this task ever sets vc->runner to this
	 * vcpu, and once it is set to this vcpu, only this task
	 * ever sets it to NULL.
	 */
270 271 272
	if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
		kvmppc_core_end_stolen(vc);

273
	spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
274 275 276 277 278
	if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST &&
	    vcpu->arch.busy_preempt != TB_NIL) {
		vcpu->arch.busy_stolen += mftb() - vcpu->arch.busy_preempt;
		vcpu->arch.busy_preempt = TB_NIL;
	}
279
	spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
280 281
}

282
static void kvmppc_core_vcpu_put_hv(struct kvm_vcpu *vcpu)
283
{
284
	struct kvmppc_vcore *vc = vcpu->arch.vcore;
285
	unsigned long flags;
286

287 288 289
	if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
		kvmppc_core_start_stolen(vc);

290
	spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
291 292
	if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST)
		vcpu->arch.busy_preempt = mftb();
293
	spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
294 295
}

296
static void kvmppc_set_msr_hv(struct kvm_vcpu *vcpu, u64 msr)
297
{
298 299 300 301 302 303
	/*
	 * Check for illegal transactional state bit combination
	 * and if we find it, force the TS field to a safe state.
	 */
	if ((msr & MSR_TS_MASK) == MSR_TS_MASK)
		msr &= ~MSR_TS_MASK;
304
	vcpu->arch.shregs.msr = msr;
305
	kvmppc_end_cede(vcpu);
306 307
}

T
Thomas Huth 已提交
308
static void kvmppc_set_pvr_hv(struct kvm_vcpu *vcpu, u32 pvr)
309 310 311 312
{
	vcpu->arch.pvr = pvr;
}

313 314 315
/* Dummy value used in computing PCR value below */
#define PCR_ARCH_300	(PCR_ARCH_207 << 1)

T
Thomas Huth 已提交
316
static int kvmppc_set_arch_compat(struct kvm_vcpu *vcpu, u32 arch_compat)
317
{
318
	unsigned long host_pcr_bit = 0, guest_pcr_bit = 0;
319 320
	struct kvmppc_vcore *vc = vcpu->arch.vcore;

321 322 323 324 325 326 327 328 329 330 331 332
	/* We can (emulate) our own architecture version and anything older */
	if (cpu_has_feature(CPU_FTR_ARCH_300))
		host_pcr_bit = PCR_ARCH_300;
	else if (cpu_has_feature(CPU_FTR_ARCH_207S))
		host_pcr_bit = PCR_ARCH_207;
	else if (cpu_has_feature(CPU_FTR_ARCH_206))
		host_pcr_bit = PCR_ARCH_206;
	else
		host_pcr_bit = PCR_ARCH_205;

	/* Determine lowest PCR bit needed to run guest in given PVR level */
	guest_pcr_bit = host_pcr_bit;
333 334 335
	if (arch_compat) {
		switch (arch_compat) {
		case PVR_ARCH_205:
336
			guest_pcr_bit = PCR_ARCH_205;
337 338 339
			break;
		case PVR_ARCH_206:
		case PVR_ARCH_206p:
340
			guest_pcr_bit = PCR_ARCH_206;
341 342
			break;
		case PVR_ARCH_207:
343 344 345 346
			guest_pcr_bit = PCR_ARCH_207;
			break;
		case PVR_ARCH_300:
			guest_pcr_bit = PCR_ARCH_300;
347 348 349 350 351 352
			break;
		default:
			return -EINVAL;
		}
	}

353 354 355 356
	/* Check requested PCR bits don't exceed our capabilities */
	if (guest_pcr_bit > host_pcr_bit)
		return -EINVAL;

357 358
	spin_lock(&vc->lock);
	vc->arch_compat = arch_compat;
359 360
	/* Set all PCR bits for which guest_pcr_bit <= bit < host_pcr_bit */
	vc->pcr = host_pcr_bit - guest_pcr_bit;
361 362 363 364 365
	spin_unlock(&vc->lock);

	return 0;
}

T
Thomas Huth 已提交
366
static void kvmppc_dump_regs(struct kvm_vcpu *vcpu)
367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394
{
	int r;

	pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id);
	pr_err("pc  = %.16lx  msr = %.16llx  trap = %x\n",
	       vcpu->arch.pc, vcpu->arch.shregs.msr, vcpu->arch.trap);
	for (r = 0; r < 16; ++r)
		pr_err("r%2d = %.16lx  r%d = %.16lx\n",
		       r, kvmppc_get_gpr(vcpu, r),
		       r+16, kvmppc_get_gpr(vcpu, r+16));
	pr_err("ctr = %.16lx  lr  = %.16lx\n",
	       vcpu->arch.ctr, vcpu->arch.lr);
	pr_err("srr0 = %.16llx srr1 = %.16llx\n",
	       vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1);
	pr_err("sprg0 = %.16llx sprg1 = %.16llx\n",
	       vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1);
	pr_err("sprg2 = %.16llx sprg3 = %.16llx\n",
	       vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3);
	pr_err("cr = %.8x  xer = %.16lx  dsisr = %.8x\n",
	       vcpu->arch.cr, vcpu->arch.xer, vcpu->arch.shregs.dsisr);
	pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar);
	pr_err("fault dar = %.16lx dsisr = %.8x\n",
	       vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
	pr_err("SLB (%d entries):\n", vcpu->arch.slb_max);
	for (r = 0; r < vcpu->arch.slb_max; ++r)
		pr_err("  ESID = %.16llx VSID = %.16llx\n",
		       vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv);
	pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n",
395
	       vcpu->arch.vcore->lpcr, vcpu->kvm->arch.sdr1,
396 397 398
	       vcpu->arch.last_inst);
}

T
Thomas Huth 已提交
399
static struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id)
400
{
401
	struct kvm_vcpu *ret;
402 403

	mutex_lock(&kvm->lock);
404
	ret = kvm_get_vcpu_by_id(kvm, id);
405 406 407 408 409 410
	mutex_unlock(&kvm->lock);
	return ret;
}

static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa)
{
411
	vpa->__old_status |= LPPACA_OLD_SHARED_PROC;
412
	vpa->yield_count = cpu_to_be32(1);
413 414
}

415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430
static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v,
		   unsigned long addr, unsigned long len)
{
	/* check address is cacheline aligned */
	if (addr & (L1_CACHE_BYTES - 1))
		return -EINVAL;
	spin_lock(&vcpu->arch.vpa_update_lock);
	if (v->next_gpa != addr || v->len != len) {
		v->next_gpa = addr;
		v->len = addr ? len : 0;
		v->update_pending = 1;
	}
	spin_unlock(&vcpu->arch.vpa_update_lock);
	return 0;
}

431 432 433 434
/* Length for a per-processor buffer is passed in at offset 4 in the buffer */
struct reg_vpa {
	u32 dummy;
	union {
435 436
		__be16 hword;
		__be32 word;
437 438 439 440 441 442 443 444 445 446
	} length;
};

static int vpa_is_registered(struct kvmppc_vpa *vpap)
{
	if (vpap->update_pending)
		return vpap->next_gpa != 0;
	return vpap->pinned_addr != NULL;
}

447 448 449 450 451
static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu,
				       unsigned long flags,
				       unsigned long vcpuid, unsigned long vpa)
{
	struct kvm *kvm = vcpu->kvm;
452
	unsigned long len, nb;
453 454
	void *va;
	struct kvm_vcpu *tvcpu;
455 456 457
	int err;
	int subfunc;
	struct kvmppc_vpa *vpap;
458 459 460 461 462

	tvcpu = kvmppc_find_vcpu(kvm, vcpuid);
	if (!tvcpu)
		return H_PARAMETER;

463 464 465 466 467
	subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK;
	if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL ||
	    subfunc == H_VPA_REG_SLB) {
		/* Registering new area - address must be cache-line aligned */
		if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa)
468
			return H_PARAMETER;
469 470

		/* convert logical addr to kernel addr and read length */
471 472
		va = kvmppc_pin_guest_page(kvm, vpa, &nb);
		if (va == NULL)
473
			return H_PARAMETER;
474
		if (subfunc == H_VPA_REG_VPA)
475
			len = be16_to_cpu(((struct reg_vpa *)va)->length.hword);
476
		else
477
			len = be32_to_cpu(((struct reg_vpa *)va)->length.word);
478
		kvmppc_unpin_guest_page(kvm, va, vpa, false);
479 480 481 482 483 484 485 486 487 488 489 490 491 492 493

		/* Check length */
		if (len > nb || len < sizeof(struct reg_vpa))
			return H_PARAMETER;
	} else {
		vpa = 0;
		len = 0;
	}

	err = H_PARAMETER;
	vpap = NULL;
	spin_lock(&tvcpu->arch.vpa_update_lock);

	switch (subfunc) {
	case H_VPA_REG_VPA:		/* register VPA */
494 495 496 497 498 499 500
		/*
		 * The size of our lppaca is 1kB because of the way we align
		 * it for the guest to avoid crossing a 4kB boundary. We only
		 * use 640 bytes of the structure though, so we should accept
		 * clients that set a size of 640.
		 */
		if (len < 640)
501
			break;
502 503 504 505 506 507
		vpap = &tvcpu->arch.vpa;
		err = 0;
		break;

	case H_VPA_REG_DTL:		/* register DTL */
		if (len < sizeof(struct dtl_entry))
508
			break;
509 510 511 512 513
		len -= len % sizeof(struct dtl_entry);

		/* Check that they have previously registered a VPA */
		err = H_RESOURCE;
		if (!vpa_is_registered(&tvcpu->arch.vpa))
514
			break;
515 516 517 518 519 520 521 522 523

		vpap = &tvcpu->arch.dtl;
		err = 0;
		break;

	case H_VPA_REG_SLB:		/* register SLB shadow buffer */
		/* Check that they have previously registered a VPA */
		err = H_RESOURCE;
		if (!vpa_is_registered(&tvcpu->arch.vpa))
524
			break;
525 526 527 528 529 530 531 532 533 534

		vpap = &tvcpu->arch.slb_shadow;
		err = 0;
		break;

	case H_VPA_DEREG_VPA:		/* deregister VPA */
		/* Check they don't still have a DTL or SLB buf registered */
		err = H_RESOURCE;
		if (vpa_is_registered(&tvcpu->arch.dtl) ||
		    vpa_is_registered(&tvcpu->arch.slb_shadow))
535
			break;
536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555

		vpap = &tvcpu->arch.vpa;
		err = 0;
		break;

	case H_VPA_DEREG_DTL:		/* deregister DTL */
		vpap = &tvcpu->arch.dtl;
		err = 0;
		break;

	case H_VPA_DEREG_SLB:		/* deregister SLB shadow buffer */
		vpap = &tvcpu->arch.slb_shadow;
		err = 0;
		break;
	}

	if (vpap) {
		vpap->next_gpa = vpa;
		vpap->len = len;
		vpap->update_pending = 1;
556
	}
557

558 559
	spin_unlock(&tvcpu->arch.vpa_update_lock);

560
	return err;
561 562
}

563
static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap)
564
{
565
	struct kvm *kvm = vcpu->kvm;
566 567
	void *va;
	unsigned long nb;
568
	unsigned long gpa;
569

570 571 572 573 574 575 576 577 578 579 580 581 582 583
	/*
	 * We need to pin the page pointed to by vpap->next_gpa,
	 * but we can't call kvmppc_pin_guest_page under the lock
	 * as it does get_user_pages() and down_read().  So we
	 * have to drop the lock, pin the page, then get the lock
	 * again and check that a new area didn't get registered
	 * in the meantime.
	 */
	for (;;) {
		gpa = vpap->next_gpa;
		spin_unlock(&vcpu->arch.vpa_update_lock);
		va = NULL;
		nb = 0;
		if (gpa)
584
			va = kvmppc_pin_guest_page(kvm, gpa, &nb);
585 586 587 588 589
		spin_lock(&vcpu->arch.vpa_update_lock);
		if (gpa == vpap->next_gpa)
			break;
		/* sigh... unpin that one and try again */
		if (va)
590
			kvmppc_unpin_guest_page(kvm, va, gpa, false);
591 592 593 594 595 596 597 598 599
	}

	vpap->update_pending = 0;
	if (va && nb < vpap->len) {
		/*
		 * If it's now too short, it must be that userspace
		 * has changed the mappings underlying guest memory,
		 * so unregister the region.
		 */
600
		kvmppc_unpin_guest_page(kvm, va, gpa, false);
601
		va = NULL;
602 603
	}
	if (vpap->pinned_addr)
604 605 606
		kvmppc_unpin_guest_page(kvm, vpap->pinned_addr, vpap->gpa,
					vpap->dirty);
	vpap->gpa = gpa;
607
	vpap->pinned_addr = va;
608
	vpap->dirty = false;
609 610 611 612 613 614
	if (va)
		vpap->pinned_end = va + vpap->len;
}

static void kvmppc_update_vpas(struct kvm_vcpu *vcpu)
{
615 616 617 618 619
	if (!(vcpu->arch.vpa.update_pending ||
	      vcpu->arch.slb_shadow.update_pending ||
	      vcpu->arch.dtl.update_pending))
		return;

620 621
	spin_lock(&vcpu->arch.vpa_update_lock);
	if (vcpu->arch.vpa.update_pending) {
622
		kvmppc_update_vpa(vcpu, &vcpu->arch.vpa);
623 624
		if (vcpu->arch.vpa.pinned_addr)
			init_vpa(vcpu, vcpu->arch.vpa.pinned_addr);
625 626
	}
	if (vcpu->arch.dtl.update_pending) {
627
		kvmppc_update_vpa(vcpu, &vcpu->arch.dtl);
628 629 630 631
		vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr;
		vcpu->arch.dtl_index = 0;
	}
	if (vcpu->arch.slb_shadow.update_pending)
632
		kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow);
633 634 635
	spin_unlock(&vcpu->arch.vpa_update_lock);
}

636 637 638 639 640 641 642
/*
 * Return the accumulated stolen time for the vcore up until `now'.
 * The caller should hold the vcore lock.
 */
static u64 vcore_stolen_time(struct kvmppc_vcore *vc, u64 now)
{
	u64 p;
643
	unsigned long flags;
644

645 646
	spin_lock_irqsave(&vc->stoltb_lock, flags);
	p = vc->stolen_tb;
647
	if (vc->vcore_state != VCORE_INACTIVE &&
648 649 650
	    vc->preempt_tb != TB_NIL)
		p += now - vc->preempt_tb;
	spin_unlock_irqrestore(&vc->stoltb_lock, flags);
651 652 653
	return p;
}

654 655 656 657 658
static void kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu,
				    struct kvmppc_vcore *vc)
{
	struct dtl_entry *dt;
	struct lppaca *vpa;
659 660 661
	unsigned long stolen;
	unsigned long core_stolen;
	u64 now;
662
	unsigned long flags;
663 664 665

	dt = vcpu->arch.dtl_ptr;
	vpa = vcpu->arch.vpa.pinned_addr;
666 667 668 669
	now = mftb();
	core_stolen = vcore_stolen_time(vc, now);
	stolen = core_stolen - vcpu->arch.stolen_logged;
	vcpu->arch.stolen_logged = core_stolen;
670
	spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
671 672
	stolen += vcpu->arch.busy_stolen;
	vcpu->arch.busy_stolen = 0;
673
	spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
674 675 676 677
	if (!dt || !vpa)
		return;
	memset(dt, 0, sizeof(struct dtl_entry));
	dt->dispatch_reason = 7;
678 679 680 681 682
	dt->processor_id = cpu_to_be16(vc->pcpu + vcpu->arch.ptid);
	dt->timebase = cpu_to_be64(now + vc->tb_offset);
	dt->enqueue_to_dispatch_time = cpu_to_be32(stolen);
	dt->srr0 = cpu_to_be64(kvmppc_get_pc(vcpu));
	dt->srr1 = cpu_to_be64(vcpu->arch.shregs.msr);
683 684 685 686 687 688
	++dt;
	if (dt == vcpu->arch.dtl.pinned_end)
		dt = vcpu->arch.dtl.pinned_addr;
	vcpu->arch.dtl_ptr = dt;
	/* order writing *dt vs. writing vpa->dtl_idx */
	smp_wmb();
689
	vpa->dtl_idx = cpu_to_be64(++vcpu->arch.dtl_index);
690
	vcpu->arch.dtl.dirty = true;
691 692
}

693 694 695 696 697 698
/* See if there is a doorbell interrupt pending for a vcpu */
static bool kvmppc_doorbell_pending(struct kvm_vcpu *vcpu)
{
	int thr;
	struct kvmppc_vcore *vc;

699 700 701 702 703 704 705 706 707
	if (vcpu->arch.doorbell_request)
		return true;
	/*
	 * Ensure that the read of vcore->dpdes comes after the read
	 * of vcpu->doorbell_request.  This barrier matches the
	 * lwsync in book3s_hv_rmhandlers.S just before the
	 * fast_guest_return label.
	 */
	smp_rmb();
708 709 710 711 712
	vc = vcpu->arch.vcore;
	thr = vcpu->vcpu_id - vc->first_vcpuid;
	return !!(vc->dpdes & (1 << thr));
}

713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754
static bool kvmppc_power8_compatible(struct kvm_vcpu *vcpu)
{
	if (vcpu->arch.vcore->arch_compat >= PVR_ARCH_207)
		return true;
	if ((!vcpu->arch.vcore->arch_compat) &&
	    cpu_has_feature(CPU_FTR_ARCH_207S))
		return true;
	return false;
}

static int kvmppc_h_set_mode(struct kvm_vcpu *vcpu, unsigned long mflags,
			     unsigned long resource, unsigned long value1,
			     unsigned long value2)
{
	switch (resource) {
	case H_SET_MODE_RESOURCE_SET_CIABR:
		if (!kvmppc_power8_compatible(vcpu))
			return H_P2;
		if (value2)
			return H_P4;
		if (mflags)
			return H_UNSUPPORTED_FLAG_START;
		/* Guests can't breakpoint the hypervisor */
		if ((value1 & CIABR_PRIV) == CIABR_PRIV_HYPER)
			return H_P3;
		vcpu->arch.ciabr  = value1;
		return H_SUCCESS;
	case H_SET_MODE_RESOURCE_SET_DAWR:
		if (!kvmppc_power8_compatible(vcpu))
			return H_P2;
		if (mflags)
			return H_UNSUPPORTED_FLAG_START;
		if (value2 & DABRX_HYP)
			return H_P4;
		vcpu->arch.dawr  = value1;
		vcpu->arch.dawrx = value2;
		return H_SUCCESS;
	default:
		return H_TOO_HARD;
	}
}

755 756 757 758 759 760 761 762 763 764 765 766 767 768
static int kvm_arch_vcpu_yield_to(struct kvm_vcpu *target)
{
	struct kvmppc_vcore *vcore = target->arch.vcore;

	/*
	 * We expect to have been called by the real mode handler
	 * (kvmppc_rm_h_confer()) which would have directly returned
	 * H_SUCCESS if the source vcore wasn't idle (e.g. if it may
	 * have useful work to do and should not confer) so we don't
	 * recheck that here.
	 */

	spin_lock(&vcore->lock);
	if (target->arch.state == KVMPPC_VCPU_RUNNABLE &&
769 770
	    vcore->vcore_state != VCORE_INACTIVE &&
	    vcore->runner)
771 772 773 774 775 776 777 778 779 780 781 782 783 784
		target = vcore->runner;
	spin_unlock(&vcore->lock);

	return kvm_vcpu_yield_to(target);
}

static int kvmppc_get_yield_count(struct kvm_vcpu *vcpu)
{
	int yield_count = 0;
	struct lppaca *lppaca;

	spin_lock(&vcpu->arch.vpa_update_lock);
	lppaca = (struct lppaca *)vcpu->arch.vpa.pinned_addr;
	if (lppaca)
785
		yield_count = be32_to_cpu(lppaca->yield_count);
786 787 788 789
	spin_unlock(&vcpu->arch.vpa_update_lock);
	return yield_count;
}

790 791 792 793
int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu)
{
	unsigned long req = kvmppc_get_gpr(vcpu, 3);
	unsigned long target, ret = H_SUCCESS;
794
	int yield_count;
795
	struct kvm_vcpu *tvcpu;
796
	int idx, rc;
797

798 799 800 801
	if (req <= MAX_HCALL_OPCODE &&
	    !test_bit(req/4, vcpu->kvm->arch.enabled_hcalls))
		return RESUME_HOST;

802 803 804 805 806 807 808 809 810 811 812 813
	switch (req) {
	case H_CEDE:
		break;
	case H_PROD:
		target = kvmppc_get_gpr(vcpu, 4);
		tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
		if (!tvcpu) {
			ret = H_PARAMETER;
			break;
		}
		tvcpu->arch.prodded = 1;
		smp_mb();
814 815
		if (tvcpu->arch.ceded)
			kvmppc_fast_vcpu_kick_hv(tvcpu);
816 817
		break;
	case H_CONFER:
818 819 820 821 822 823 824 825
		target = kvmppc_get_gpr(vcpu, 4);
		if (target == -1)
			break;
		tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
		if (!tvcpu) {
			ret = H_PARAMETER;
			break;
		}
826 827 828 829
		yield_count = kvmppc_get_gpr(vcpu, 5);
		if (kvmppc_get_yield_count(tvcpu) != yield_count)
			break;
		kvm_arch_vcpu_yield_to(tvcpu);
830 831 832 833 834 835
		break;
	case H_REGISTER_VPA:
		ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4),
					kvmppc_get_gpr(vcpu, 5),
					kvmppc_get_gpr(vcpu, 6));
		break;
836 837 838 839
	case H_RTAS:
		if (list_empty(&vcpu->kvm->arch.rtas_tokens))
			return RESUME_HOST;

840
		idx = srcu_read_lock(&vcpu->kvm->srcu);
841
		rc = kvmppc_rtas_hcall(vcpu);
842
		srcu_read_unlock(&vcpu->kvm->srcu, idx);
843 844 845 846 847 848 849 850

		if (rc == -ENOENT)
			return RESUME_HOST;
		else if (rc == 0)
			break;

		/* Send the error out to userspace via KVM_RUN */
		return rc;
851 852 853 854 855 856 857 858 859 860
	case H_LOGICAL_CI_LOAD:
		ret = kvmppc_h_logical_ci_load(vcpu);
		if (ret == H_TOO_HARD)
			return RESUME_HOST;
		break;
	case H_LOGICAL_CI_STORE:
		ret = kvmppc_h_logical_ci_store(vcpu);
		if (ret == H_TOO_HARD)
			return RESUME_HOST;
		break;
861 862 863 864 865 866 867 868
	case H_SET_MODE:
		ret = kvmppc_h_set_mode(vcpu, kvmppc_get_gpr(vcpu, 4),
					kvmppc_get_gpr(vcpu, 5),
					kvmppc_get_gpr(vcpu, 6),
					kvmppc_get_gpr(vcpu, 7));
		if (ret == H_TOO_HARD)
			return RESUME_HOST;
		break;
869 870 871 872
	case H_XIRR:
	case H_CPPR:
	case H_EOI:
	case H_IPI:
873 874
	case H_IPOLL:
	case H_XIRR_X:
875
		if (kvmppc_xics_enabled(vcpu)) {
876 877 878 879
			if (xive_enabled()) {
				ret = H_NOT_AVAILABLE;
				return RESUME_GUEST;
			}
880 881
			ret = kvmppc_xics_hcall(vcpu, req);
			break;
882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906
		}
		return RESUME_HOST;
	case H_PUT_TCE:
		ret = kvmppc_h_put_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
						kvmppc_get_gpr(vcpu, 5),
						kvmppc_get_gpr(vcpu, 6));
		if (ret == H_TOO_HARD)
			return RESUME_HOST;
		break;
	case H_PUT_TCE_INDIRECT:
		ret = kvmppc_h_put_tce_indirect(vcpu, kvmppc_get_gpr(vcpu, 4),
						kvmppc_get_gpr(vcpu, 5),
						kvmppc_get_gpr(vcpu, 6),
						kvmppc_get_gpr(vcpu, 7));
		if (ret == H_TOO_HARD)
			return RESUME_HOST;
		break;
	case H_STUFF_TCE:
		ret = kvmppc_h_stuff_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
						kvmppc_get_gpr(vcpu, 5),
						kvmppc_get_gpr(vcpu, 6),
						kvmppc_get_gpr(vcpu, 7));
		if (ret == H_TOO_HARD)
			return RESUME_HOST;
		break;
907 908 909 910 911 912 913 914
	default:
		return RESUME_HOST;
	}
	kvmppc_set_gpr(vcpu, 3, ret);
	vcpu->arch.hcall_needed = 0;
	return RESUME_GUEST;
}

915 916 917 918 919 920 921
static int kvmppc_hcall_impl_hv(unsigned long cmd)
{
	switch (cmd) {
	case H_CEDE:
	case H_PROD:
	case H_CONFER:
	case H_REGISTER_VPA:
922
	case H_SET_MODE:
923 924
	case H_LOGICAL_CI_LOAD:
	case H_LOGICAL_CI_STORE:
925 926 927 928 929 930 931 932 933 934 935 936 937 938 939
#ifdef CONFIG_KVM_XICS
	case H_XIRR:
	case H_CPPR:
	case H_EOI:
	case H_IPI:
	case H_IPOLL:
	case H_XIRR_X:
#endif
		return 1;
	}

	/* See if it's in the real-mode table */
	return kvmppc_hcall_impl_hv_realmode(cmd);
}

940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963
static int kvmppc_emulate_debug_inst(struct kvm_run *run,
					struct kvm_vcpu *vcpu)
{
	u32 last_inst;

	if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) !=
					EMULATE_DONE) {
		/*
		 * Fetch failed, so return to guest and
		 * try executing it again.
		 */
		return RESUME_GUEST;
	}

	if (last_inst == KVMPPC_INST_SW_BREAKPOINT) {
		run->exit_reason = KVM_EXIT_DEBUG;
		run->debug.arch.address = kvmppc_get_pc(vcpu);
		return RESUME_HOST;
	} else {
		kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
		return RESUME_GUEST;
	}
}

964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058
static void do_nothing(void *x)
{
}

static unsigned long kvmppc_read_dpdes(struct kvm_vcpu *vcpu)
{
	int thr, cpu, pcpu, nthreads;
	struct kvm_vcpu *v;
	unsigned long dpdes;

	nthreads = vcpu->kvm->arch.emul_smt_mode;
	dpdes = 0;
	cpu = vcpu->vcpu_id & ~(nthreads - 1);
	for (thr = 0; thr < nthreads; ++thr, ++cpu) {
		v = kvmppc_find_vcpu(vcpu->kvm, cpu);
		if (!v)
			continue;
		/*
		 * If the vcpu is currently running on a physical cpu thread,
		 * interrupt it in order to pull it out of the guest briefly,
		 * which will update its vcore->dpdes value.
		 */
		pcpu = READ_ONCE(v->cpu);
		if (pcpu >= 0)
			smp_call_function_single(pcpu, do_nothing, NULL, 1);
		if (kvmppc_doorbell_pending(v))
			dpdes |= 1 << thr;
	}
	return dpdes;
}

/*
 * On POWER9, emulate doorbell-related instructions in order to
 * give the guest the illusion of running on a multi-threaded core.
 * The instructions emulated are msgsndp, msgclrp, mfspr TIR,
 * and mfspr DPDES.
 */
static int kvmppc_emulate_doorbell_instr(struct kvm_vcpu *vcpu)
{
	u32 inst, rb, thr;
	unsigned long arg;
	struct kvm *kvm = vcpu->kvm;
	struct kvm_vcpu *tvcpu;

	if (!cpu_has_feature(CPU_FTR_ARCH_300))
		return EMULATE_FAIL;
	if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &inst) != EMULATE_DONE)
		return RESUME_GUEST;
	if (get_op(inst) != 31)
		return EMULATE_FAIL;
	rb = get_rb(inst);
	thr = vcpu->vcpu_id & (kvm->arch.emul_smt_mode - 1);
	switch (get_xop(inst)) {
	case OP_31_XOP_MSGSNDP:
		arg = kvmppc_get_gpr(vcpu, rb);
		if (((arg >> 27) & 0xf) != PPC_DBELL_SERVER)
			break;
		arg &= 0x3f;
		if (arg >= kvm->arch.emul_smt_mode)
			break;
		tvcpu = kvmppc_find_vcpu(kvm, vcpu->vcpu_id - thr + arg);
		if (!tvcpu)
			break;
		if (!tvcpu->arch.doorbell_request) {
			tvcpu->arch.doorbell_request = 1;
			kvmppc_fast_vcpu_kick_hv(tvcpu);
		}
		break;
	case OP_31_XOP_MSGCLRP:
		arg = kvmppc_get_gpr(vcpu, rb);
		if (((arg >> 27) & 0xf) != PPC_DBELL_SERVER)
			break;
		vcpu->arch.vcore->dpdes = 0;
		vcpu->arch.doorbell_request = 0;
		break;
	case OP_31_XOP_MFSPR:
		switch (get_sprn(inst)) {
		case SPRN_TIR:
			arg = thr;
			break;
		case SPRN_DPDES:
			arg = kvmppc_read_dpdes(vcpu);
			break;
		default:
			return EMULATE_FAIL;
		}
		kvmppc_set_gpr(vcpu, get_rt(inst), arg);
		break;
	default:
		return EMULATE_FAIL;
	}
	kvmppc_set_pc(vcpu, kvmppc_get_pc(vcpu) + 4);
	return RESUME_GUEST;
}

1059 1060
static int kvmppc_handle_exit_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
				 struct task_struct *tsk)
1061 1062 1063 1064 1065
{
	int r = RESUME_HOST;

	vcpu->stat.sum_exits++;

1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083
	/*
	 * This can happen if an interrupt occurs in the last stages
	 * of guest entry or the first stages of guest exit (i.e. after
	 * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV
	 * and before setting it to KVM_GUEST_MODE_HOST_HV).
	 * That can happen due to a bug, or due to a machine check
	 * occurring at just the wrong time.
	 */
	if (vcpu->arch.shregs.msr & MSR_HV) {
		printk(KERN_EMERG "KVM trap in HV mode!\n");
		printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
			vcpu->arch.trap, kvmppc_get_pc(vcpu),
			vcpu->arch.shregs.msr);
		kvmppc_dump_regs(vcpu);
		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
		run->hw.hardware_exit_reason = vcpu->arch.trap;
		return RESUME_HOST;
	}
1084 1085 1086 1087 1088 1089 1090 1091 1092
	run->exit_reason = KVM_EXIT_UNKNOWN;
	run->ready_for_interrupt_injection = 1;
	switch (vcpu->arch.trap) {
	/* We're good on these - the host merely wanted to get our attention */
	case BOOK3S_INTERRUPT_HV_DECREMENTER:
		vcpu->stat.dec_exits++;
		r = RESUME_GUEST;
		break;
	case BOOK3S_INTERRUPT_EXTERNAL:
1093
	case BOOK3S_INTERRUPT_H_DOORBELL:
1094
	case BOOK3S_INTERRUPT_H_VIRT:
1095 1096 1097
		vcpu->stat.ext_intr_exits++;
		r = RESUME_GUEST;
		break;
1098
	/* SR/HMI/PMI are HV interrupts that host has handled. Resume guest.*/
1099
	case BOOK3S_INTERRUPT_HMI:
1100
	case BOOK3S_INTERRUPT_PERFMON:
1101
	case BOOK3S_INTERRUPT_SYSTEM_RESET:
1102 1103
		r = RESUME_GUEST;
		break;
1104
	case BOOK3S_INTERRUPT_MACHINE_CHECK:
1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118
		/* Exit to guest with KVM_EXIT_NMI as exit reason */
		run->exit_reason = KVM_EXIT_NMI;
		run->hw.hardware_exit_reason = vcpu->arch.trap;
		/* Clear out the old NMI status from run->flags */
		run->flags &= ~KVM_RUN_PPC_NMI_DISP_MASK;
		/* Now set the NMI status */
		if (vcpu->arch.mce_evt.disposition == MCE_DISPOSITION_RECOVERED)
			run->flags |= KVM_RUN_PPC_NMI_DISP_FULLY_RECOV;
		else
			run->flags |= KVM_RUN_PPC_NMI_DISP_NOT_RECOV;

		r = RESUME_HOST;
		/* Print the MCE event to host console. */
		machine_check_print_event_info(&vcpu->arch.mce_evt, false);
1119
		break;
1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138
	case BOOK3S_INTERRUPT_PROGRAM:
	{
		ulong flags;
		/*
		 * Normally program interrupts are delivered directly
		 * to the guest by the hardware, but we can get here
		 * as a result of a hypervisor emulation interrupt
		 * (e40) getting turned into a 700 by BML RTAS.
		 */
		flags = vcpu->arch.shregs.msr & 0x1f0000ull;
		kvmppc_core_queue_program(vcpu, flags);
		r = RESUME_GUEST;
		break;
	}
	case BOOK3S_INTERRUPT_SYSCALL:
	{
		/* hcall - punt to userspace */
		int i;

1139 1140 1141 1142
		/* hypercall with MSR_PR has already been handled in rmode,
		 * and never reaches here.
		 */

1143 1144 1145 1146 1147 1148 1149 1150 1151
		run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3);
		for (i = 0; i < 9; ++i)
			run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i);
		run->exit_reason = KVM_EXIT_PAPR_HCALL;
		vcpu->arch.hcall_needed = 1;
		r = RESUME_HOST;
		break;
	}
	/*
1152 1153 1154 1155 1156
	 * We get these next two if the guest accesses a page which it thinks
	 * it has mapped but which is not actually present, either because
	 * it is for an emulated I/O device or because the corresonding
	 * host page has been paged out.  Any other HDSI/HISI interrupts
	 * have been handled already.
1157 1158
	 */
	case BOOK3S_INTERRUPT_H_DATA_STORAGE:
1159
		r = RESUME_PAGE_FAULT;
1160 1161
		break;
	case BOOK3S_INTERRUPT_H_INST_STORAGE:
1162 1163 1164
		vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
		vcpu->arch.fault_dsisr = 0;
		r = RESUME_PAGE_FAULT;
1165 1166 1167
		break;
	/*
	 * This occurs if the guest executes an illegal instruction.
1168 1169 1170 1171
	 * If the guest debug is disabled, generate a program interrupt
	 * to the guest. If guest debug is enabled, we need to check
	 * whether the instruction is a software breakpoint instruction.
	 * Accordingly return to Guest or Host.
1172 1173
	 */
	case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
1174 1175 1176 1177
		if (vcpu->arch.emul_inst != KVM_INST_FETCH_FAILED)
			vcpu->arch.last_inst = kvmppc_need_byteswap(vcpu) ?
				swab32(vcpu->arch.emul_inst) :
				vcpu->arch.emul_inst;
1178 1179 1180 1181 1182 1183
		if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) {
			r = kvmppc_emulate_debug_inst(run, vcpu);
		} else {
			kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
			r = RESUME_GUEST;
		}
1184 1185 1186
		break;
	/*
	 * This occurs if the guest (kernel or userspace), does something that
1187 1188 1189 1190
	 * is prohibited by HFSCR.
	 * On POWER9, this could be a doorbell instruction that we need
	 * to emulate.
	 * Otherwise, we just generate a program interrupt to the guest.
1191 1192
	 */
	case BOOK3S_INTERRUPT_H_FAC_UNAVAIL:
1193 1194 1195 1196 1197 1198 1199
		r = EMULATE_FAIL;
		if ((vcpu->arch.hfscr >> 56) == FSCR_MSGP_LG)
			r = kvmppc_emulate_doorbell_instr(vcpu);
		if (r == EMULATE_FAIL) {
			kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
			r = RESUME_GUEST;
		}
1200
		break;
1201 1202 1203
	case BOOK3S_INTERRUPT_HV_RM_HARD:
		r = RESUME_PASSTHROUGH;
		break;
1204 1205 1206 1207 1208
	default:
		kvmppc_dump_regs(vcpu);
		printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
			vcpu->arch.trap, kvmppc_get_pc(vcpu),
			vcpu->arch.shregs.msr);
1209
		run->hw.hardware_exit_reason = vcpu->arch.trap;
1210 1211 1212 1213 1214 1215 1216
		r = RESUME_HOST;
		break;
	}

	return r;
}

1217 1218
static int kvm_arch_vcpu_ioctl_get_sregs_hv(struct kvm_vcpu *vcpu,
					    struct kvm_sregs *sregs)
1219 1220 1221 1222
{
	int i;

	memset(sregs, 0, sizeof(struct kvm_sregs));
1223
	sregs->pvr = vcpu->arch.pvr;
1224 1225 1226 1227 1228 1229 1230 1231
	for (i = 0; i < vcpu->arch.slb_max; i++) {
		sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige;
		sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
	}

	return 0;
}

1232 1233
static int kvm_arch_vcpu_ioctl_set_sregs_hv(struct kvm_vcpu *vcpu,
					    struct kvm_sregs *sregs)
1234 1235 1236
{
	int i, j;

1237 1238 1239
	/* Only accept the same PVR as the host's, since we can't spoof it */
	if (sregs->pvr != vcpu->arch.pvr)
		return -EINVAL;
1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253

	j = 0;
	for (i = 0; i < vcpu->arch.slb_nr; i++) {
		if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) {
			vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe;
			vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv;
			++j;
		}
	}
	vcpu->arch.slb_max = j;

	return 0;
}

1254 1255
static void kvmppc_set_lpcr(struct kvm_vcpu *vcpu, u64 new_lpcr,
		bool preserve_top32)
1256
{
1257
	struct kvm *kvm = vcpu->kvm;
1258 1259 1260
	struct kvmppc_vcore *vc = vcpu->arch.vcore;
	u64 mask;

1261
	mutex_lock(&kvm->lock);
1262
	spin_lock(&vc->lock);
1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280
	/*
	 * If ILE (interrupt little-endian) has changed, update the
	 * MSR_LE bit in the intr_msr for each vcpu in this vcore.
	 */
	if ((new_lpcr & LPCR_ILE) != (vc->lpcr & LPCR_ILE)) {
		struct kvm_vcpu *vcpu;
		int i;

		kvm_for_each_vcpu(i, vcpu, kvm) {
			if (vcpu->arch.vcore != vc)
				continue;
			if (new_lpcr & LPCR_ILE)
				vcpu->arch.intr_msr |= MSR_LE;
			else
				vcpu->arch.intr_msr &= ~MSR_LE;
		}
	}

1281 1282 1283
	/*
	 * Userspace can only modify DPFD (default prefetch depth),
	 * ILE (interrupt little-endian) and TC (translation control).
1284
	 * On POWER8 and POWER9 userspace can also modify AIL (alt. interrupt loc.).
1285 1286
	 */
	mask = LPCR_DPFD | LPCR_ILE | LPCR_TC;
1287 1288
	if (cpu_has_feature(CPU_FTR_ARCH_207S))
		mask |= LPCR_AIL;
1289 1290 1291 1292 1293 1294
	/*
	 * On POWER9, allow userspace to enable large decrementer for the
	 * guest, whether or not the host has it enabled.
	 */
	if (cpu_has_feature(CPU_FTR_ARCH_300))
		mask |= LPCR_LD;
1295 1296 1297 1298

	/* Broken 32-bit version of LPCR must not clear top bits */
	if (preserve_top32)
		mask &= 0xFFFFFFFF;
1299 1300
	vc->lpcr = (vc->lpcr & ~mask) | (new_lpcr & mask);
	spin_unlock(&vc->lock);
1301
	mutex_unlock(&kvm->lock);
1302 1303
}

1304 1305
static int kvmppc_get_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
				 union kvmppc_one_reg *val)
1306
{
1307 1308
	int r = 0;
	long int i;
1309

1310
	switch (id) {
1311 1312 1313
	case KVM_REG_PPC_DEBUG_INST:
		*val = get_reg_val(id, KVMPPC_INST_SW_BREAKPOINT);
		break;
1314
	case KVM_REG_PPC_HIOR:
1315 1316 1317 1318 1319
		*val = get_reg_val(id, 0);
		break;
	case KVM_REG_PPC_DABR:
		*val = get_reg_val(id, vcpu->arch.dabr);
		break;
1320 1321 1322
	case KVM_REG_PPC_DABRX:
		*val = get_reg_val(id, vcpu->arch.dabrx);
		break;
1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337
	case KVM_REG_PPC_DSCR:
		*val = get_reg_val(id, vcpu->arch.dscr);
		break;
	case KVM_REG_PPC_PURR:
		*val = get_reg_val(id, vcpu->arch.purr);
		break;
	case KVM_REG_PPC_SPURR:
		*val = get_reg_val(id, vcpu->arch.spurr);
		break;
	case KVM_REG_PPC_AMR:
		*val = get_reg_val(id, vcpu->arch.amr);
		break;
	case KVM_REG_PPC_UAMOR:
		*val = get_reg_val(id, vcpu->arch.uamor);
		break;
1338
	case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS:
1339 1340 1341 1342 1343 1344
		i = id - KVM_REG_PPC_MMCR0;
		*val = get_reg_val(id, vcpu->arch.mmcr[i]);
		break;
	case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
		i = id - KVM_REG_PPC_PMC1;
		*val = get_reg_val(id, vcpu->arch.pmc[i]);
1345
		break;
1346 1347 1348 1349
	case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
		i = id - KVM_REG_PPC_SPMC1;
		*val = get_reg_val(id, vcpu->arch.spmc[i]);
		break;
1350 1351 1352 1353 1354 1355
	case KVM_REG_PPC_SIAR:
		*val = get_reg_val(id, vcpu->arch.siar);
		break;
	case KVM_REG_PPC_SDAR:
		*val = get_reg_val(id, vcpu->arch.sdar);
		break;
1356 1357
	case KVM_REG_PPC_SIER:
		*val = get_reg_val(id, vcpu->arch.sier);
1358
		break;
1359 1360 1361 1362 1363 1364 1365 1366 1367
	case KVM_REG_PPC_IAMR:
		*val = get_reg_val(id, vcpu->arch.iamr);
		break;
	case KVM_REG_PPC_PSPB:
		*val = get_reg_val(id, vcpu->arch.pspb);
		break;
	case KVM_REG_PPC_DPDES:
		*val = get_reg_val(id, vcpu->arch.vcore->dpdes);
		break;
1368 1369 1370
	case KVM_REG_PPC_VTB:
		*val = get_reg_val(id, vcpu->arch.vcore->vtb);
		break;
1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396
	case KVM_REG_PPC_DAWR:
		*val = get_reg_val(id, vcpu->arch.dawr);
		break;
	case KVM_REG_PPC_DAWRX:
		*val = get_reg_val(id, vcpu->arch.dawrx);
		break;
	case KVM_REG_PPC_CIABR:
		*val = get_reg_val(id, vcpu->arch.ciabr);
		break;
	case KVM_REG_PPC_CSIGR:
		*val = get_reg_val(id, vcpu->arch.csigr);
		break;
	case KVM_REG_PPC_TACR:
		*val = get_reg_val(id, vcpu->arch.tacr);
		break;
	case KVM_REG_PPC_TCSCR:
		*val = get_reg_val(id, vcpu->arch.tcscr);
		break;
	case KVM_REG_PPC_PID:
		*val = get_reg_val(id, vcpu->arch.pid);
		break;
	case KVM_REG_PPC_ACOP:
		*val = get_reg_val(id, vcpu->arch.acop);
		break;
	case KVM_REG_PPC_WORT:
		*val = get_reg_val(id, vcpu->arch.wort);
1397
		break;
1398 1399 1400 1401 1402 1403
	case KVM_REG_PPC_TIDR:
		*val = get_reg_val(id, vcpu->arch.tid);
		break;
	case KVM_REG_PPC_PSSCR:
		*val = get_reg_val(id, vcpu->arch.psscr);
		break;
1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420
	case KVM_REG_PPC_VPA_ADDR:
		spin_lock(&vcpu->arch.vpa_update_lock);
		*val = get_reg_val(id, vcpu->arch.vpa.next_gpa);
		spin_unlock(&vcpu->arch.vpa_update_lock);
		break;
	case KVM_REG_PPC_VPA_SLB:
		spin_lock(&vcpu->arch.vpa_update_lock);
		val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa;
		val->vpaval.length = vcpu->arch.slb_shadow.len;
		spin_unlock(&vcpu->arch.vpa_update_lock);
		break;
	case KVM_REG_PPC_VPA_DTL:
		spin_lock(&vcpu->arch.vpa_update_lock);
		val->vpaval.addr = vcpu->arch.dtl.next_gpa;
		val->vpaval.length = vcpu->arch.dtl.len;
		spin_unlock(&vcpu->arch.vpa_update_lock);
		break;
1421 1422 1423
	case KVM_REG_PPC_TB_OFFSET:
		*val = get_reg_val(id, vcpu->arch.vcore->tb_offset);
		break;
1424
	case KVM_REG_PPC_LPCR:
1425
	case KVM_REG_PPC_LPCR_64:
1426 1427
		*val = get_reg_val(id, vcpu->arch.vcore->lpcr);
		break;
1428 1429 1430
	case KVM_REG_PPC_PPR:
		*val = get_reg_val(id, vcpu->arch.ppr);
		break;
1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
	case KVM_REG_PPC_TFHAR:
		*val = get_reg_val(id, vcpu->arch.tfhar);
		break;
	case KVM_REG_PPC_TFIAR:
		*val = get_reg_val(id, vcpu->arch.tfiar);
		break;
	case KVM_REG_PPC_TEXASR:
		*val = get_reg_val(id, vcpu->arch.texasr);
		break;
	case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
		i = id - KVM_REG_PPC_TM_GPR0;
		*val = get_reg_val(id, vcpu->arch.gpr_tm[i]);
		break;
	case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
	{
		int j;
		i = id - KVM_REG_PPC_TM_VSR0;
		if (i < 32)
			for (j = 0; j < TS_FPRWIDTH; j++)
				val->vsxval[j] = vcpu->arch.fp_tm.fpr[i][j];
		else {
			if (cpu_has_feature(CPU_FTR_ALTIVEC))
				val->vval = vcpu->arch.vr_tm.vr[i-32];
			else
				r = -ENXIO;
		}
		break;
	}
	case KVM_REG_PPC_TM_CR:
		*val = get_reg_val(id, vcpu->arch.cr_tm);
		break;
1463 1464 1465
	case KVM_REG_PPC_TM_XER:
		*val = get_reg_val(id, vcpu->arch.xer_tm);
		break;
1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496
	case KVM_REG_PPC_TM_LR:
		*val = get_reg_val(id, vcpu->arch.lr_tm);
		break;
	case KVM_REG_PPC_TM_CTR:
		*val = get_reg_val(id, vcpu->arch.ctr_tm);
		break;
	case KVM_REG_PPC_TM_FPSCR:
		*val = get_reg_val(id, vcpu->arch.fp_tm.fpscr);
		break;
	case KVM_REG_PPC_TM_AMR:
		*val = get_reg_val(id, vcpu->arch.amr_tm);
		break;
	case KVM_REG_PPC_TM_PPR:
		*val = get_reg_val(id, vcpu->arch.ppr_tm);
		break;
	case KVM_REG_PPC_TM_VRSAVE:
		*val = get_reg_val(id, vcpu->arch.vrsave_tm);
		break;
	case KVM_REG_PPC_TM_VSCR:
		if (cpu_has_feature(CPU_FTR_ALTIVEC))
			*val = get_reg_val(id, vcpu->arch.vr_tm.vscr.u[3]);
		else
			r = -ENXIO;
		break;
	case KVM_REG_PPC_TM_DSCR:
		*val = get_reg_val(id, vcpu->arch.dscr_tm);
		break;
	case KVM_REG_PPC_TM_TAR:
		*val = get_reg_val(id, vcpu->arch.tar_tm);
		break;
#endif
1497 1498 1499
	case KVM_REG_PPC_ARCH_COMPAT:
		*val = get_reg_val(id, vcpu->arch.vcore->arch_compat);
		break;
1500
	default:
1501
		r = -EINVAL;
1502 1503 1504 1505 1506 1507
		break;
	}

	return r;
}

1508 1509
static int kvmppc_set_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
				 union kvmppc_one_reg *val)
1510
{
1511 1512
	int r = 0;
	long int i;
1513
	unsigned long addr, len;
1514

1515
	switch (id) {
1516 1517
	case KVM_REG_PPC_HIOR:
		/* Only allow this to be set to zero */
1518
		if (set_reg_val(id, *val))
1519 1520
			r = -EINVAL;
		break;
1521 1522 1523
	case KVM_REG_PPC_DABR:
		vcpu->arch.dabr = set_reg_val(id, *val);
		break;
1524 1525 1526
	case KVM_REG_PPC_DABRX:
		vcpu->arch.dabrx = set_reg_val(id, *val) & ~DABRX_HYP;
		break;
1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541
	case KVM_REG_PPC_DSCR:
		vcpu->arch.dscr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_PURR:
		vcpu->arch.purr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_SPURR:
		vcpu->arch.spurr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_AMR:
		vcpu->arch.amr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_UAMOR:
		vcpu->arch.uamor = set_reg_val(id, *val);
		break;
1542
	case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS:
1543 1544 1545 1546 1547 1548 1549
		i = id - KVM_REG_PPC_MMCR0;
		vcpu->arch.mmcr[i] = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
		i = id - KVM_REG_PPC_PMC1;
		vcpu->arch.pmc[i] = set_reg_val(id, *val);
		break;
1550 1551 1552 1553
	case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
		i = id - KVM_REG_PPC_SPMC1;
		vcpu->arch.spmc[i] = set_reg_val(id, *val);
		break;
1554 1555 1556 1557 1558 1559
	case KVM_REG_PPC_SIAR:
		vcpu->arch.siar = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_SDAR:
		vcpu->arch.sdar = set_reg_val(id, *val);
		break;
1560 1561
	case KVM_REG_PPC_SIER:
		vcpu->arch.sier = set_reg_val(id, *val);
1562
		break;
1563 1564 1565 1566 1567 1568 1569 1570 1571
	case KVM_REG_PPC_IAMR:
		vcpu->arch.iamr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_PSPB:
		vcpu->arch.pspb = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_DPDES:
		vcpu->arch.vcore->dpdes = set_reg_val(id, *val);
		break;
1572 1573 1574
	case KVM_REG_PPC_VTB:
		vcpu->arch.vcore->vtb = set_reg_val(id, *val);
		break;
1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603
	case KVM_REG_PPC_DAWR:
		vcpu->arch.dawr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_DAWRX:
		vcpu->arch.dawrx = set_reg_val(id, *val) & ~DAWRX_HYP;
		break;
	case KVM_REG_PPC_CIABR:
		vcpu->arch.ciabr = set_reg_val(id, *val);
		/* Don't allow setting breakpoints in hypervisor code */
		if ((vcpu->arch.ciabr & CIABR_PRIV) == CIABR_PRIV_HYPER)
			vcpu->arch.ciabr &= ~CIABR_PRIV;	/* disable */
		break;
	case KVM_REG_PPC_CSIGR:
		vcpu->arch.csigr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TACR:
		vcpu->arch.tacr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TCSCR:
		vcpu->arch.tcscr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_PID:
		vcpu->arch.pid = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_ACOP:
		vcpu->arch.acop = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_WORT:
		vcpu->arch.wort = set_reg_val(id, *val);
1604
		break;
1605 1606 1607 1608 1609 1610
	case KVM_REG_PPC_TIDR:
		vcpu->arch.tid = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_PSSCR:
		vcpu->arch.psscr = set_reg_val(id, *val) & PSSCR_GUEST_VIS;
		break;
1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630
	case KVM_REG_PPC_VPA_ADDR:
		addr = set_reg_val(id, *val);
		r = -EINVAL;
		if (!addr && (vcpu->arch.slb_shadow.next_gpa ||
			      vcpu->arch.dtl.next_gpa))
			break;
		r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca));
		break;
	case KVM_REG_PPC_VPA_SLB:
		addr = val->vpaval.addr;
		len = val->vpaval.length;
		r = -EINVAL;
		if (addr && !vcpu->arch.vpa.next_gpa)
			break;
		r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len);
		break;
	case KVM_REG_PPC_VPA_DTL:
		addr = val->vpaval.addr;
		len = val->vpaval.length;
		r = -EINVAL;
1631 1632
		if (addr && (len < sizeof(struct dtl_entry) ||
			     !vcpu->arch.vpa.next_gpa))
1633 1634 1635 1636
			break;
		len -= len % sizeof(struct dtl_entry);
		r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len);
		break;
1637
	case KVM_REG_PPC_TB_OFFSET:
1638 1639 1640 1641 1642 1643 1644 1645
		/*
		 * POWER9 DD1 has an erratum where writing TBU40 causes
		 * the timebase to lose ticks.  So we don't let the
		 * timebase offset be changed on P9 DD1.  (It is
		 * initialized to zero.)
		 */
		if (cpu_has_feature(CPU_FTR_POWER9_DD1))
			break;
1646 1647 1648 1649
		/* round up to multiple of 2^24 */
		vcpu->arch.vcore->tb_offset =
			ALIGN(set_reg_val(id, *val), 1UL << 24);
		break;
1650
	case KVM_REG_PPC_LPCR:
1651 1652 1653 1654
		kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), true);
		break;
	case KVM_REG_PPC_LPCR_64:
		kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), false);
1655
		break;
1656 1657 1658
	case KVM_REG_PPC_PPR:
		vcpu->arch.ppr = set_reg_val(id, *val);
		break;
1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
	case KVM_REG_PPC_TFHAR:
		vcpu->arch.tfhar = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TFIAR:
		vcpu->arch.tfiar = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TEXASR:
		vcpu->arch.texasr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
		i = id - KVM_REG_PPC_TM_GPR0;
		vcpu->arch.gpr_tm[i] = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
	{
		int j;
		i = id - KVM_REG_PPC_TM_VSR0;
		if (i < 32)
			for (j = 0; j < TS_FPRWIDTH; j++)
				vcpu->arch.fp_tm.fpr[i][j] = val->vsxval[j];
		else
			if (cpu_has_feature(CPU_FTR_ALTIVEC))
				vcpu->arch.vr_tm.vr[i-32] = val->vval;
			else
				r = -ENXIO;
		break;
	}
	case KVM_REG_PPC_TM_CR:
		vcpu->arch.cr_tm = set_reg_val(id, *val);
		break;
1690 1691 1692
	case KVM_REG_PPC_TM_XER:
		vcpu->arch.xer_tm = set_reg_val(id, *val);
		break;
1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723
	case KVM_REG_PPC_TM_LR:
		vcpu->arch.lr_tm = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_CTR:
		vcpu->arch.ctr_tm = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_FPSCR:
		vcpu->arch.fp_tm.fpscr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_AMR:
		vcpu->arch.amr_tm = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_PPR:
		vcpu->arch.ppr_tm = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_VRSAVE:
		vcpu->arch.vrsave_tm = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_VSCR:
		if (cpu_has_feature(CPU_FTR_ALTIVEC))
			vcpu->arch.vr.vscr.u[3] = set_reg_val(id, *val);
		else
			r = - ENXIO;
		break;
	case KVM_REG_PPC_TM_DSCR:
		vcpu->arch.dscr_tm = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_TAR:
		vcpu->arch.tar_tm = set_reg_val(id, *val);
		break;
#endif
1724 1725 1726
	case KVM_REG_PPC_ARCH_COMPAT:
		r = kvmppc_set_arch_compat(vcpu, set_reg_val(id, *val));
		break;
1727
	default:
1728
		r = -EINVAL;
1729 1730 1731 1732 1733 1734
		break;
	}

	return r;
}

1735 1736 1737 1738 1739 1740 1741
/*
 * On POWER9, threads are independent and can be in different partitions.
 * Therefore we consider each thread to be a subcore.
 * There is a restriction that all threads have to be in the same
 * MMU mode (radix or HPT), unfortunately, but since we only support
 * HPT guests on a HPT host so far, that isn't an impediment yet.
 */
1742
static int threads_per_vcore(struct kvm *kvm)
1743
{
1744
	if (kvm->arch.threads_indep)
1745 1746 1747 1748
		return 1;
	return threads_per_subcore;
}

1749 1750 1751 1752 1753 1754 1755 1756 1757 1758
static struct kvmppc_vcore *kvmppc_vcore_create(struct kvm *kvm, int core)
{
	struct kvmppc_vcore *vcore;

	vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL);

	if (vcore == NULL)
		return NULL;

	spin_lock_init(&vcore->lock);
1759
	spin_lock_init(&vcore->stoltb_lock);
1760
	init_swait_queue_head(&vcore->wq);
1761 1762
	vcore->preempt_tb = TB_NIL;
	vcore->lpcr = kvm->arch.lpcr;
1763
	vcore->first_vcpuid = core * kvm->arch.smt_mode;
1764
	vcore->kvm = kvm;
1765
	INIT_LIST_HEAD(&vcore->preempt_list);
1766 1767 1768 1769

	return vcore;
}

1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781
#ifdef CONFIG_KVM_BOOK3S_HV_EXIT_TIMING
static struct debugfs_timings_element {
	const char *name;
	size_t offset;
} timings[] = {
	{"rm_entry",	offsetof(struct kvm_vcpu, arch.rm_entry)},
	{"rm_intr",	offsetof(struct kvm_vcpu, arch.rm_intr)},
	{"rm_exit",	offsetof(struct kvm_vcpu, arch.rm_exit)},
	{"guest",	offsetof(struct kvm_vcpu, arch.guest_time)},
	{"cede",	offsetof(struct kvm_vcpu, arch.cede_time)},
};

1782
#define N_TIMINGS	(ARRAY_SIZE(timings))
1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917

struct debugfs_timings_state {
	struct kvm_vcpu	*vcpu;
	unsigned int	buflen;
	char		buf[N_TIMINGS * 100];
};

static int debugfs_timings_open(struct inode *inode, struct file *file)
{
	struct kvm_vcpu *vcpu = inode->i_private;
	struct debugfs_timings_state *p;

	p = kzalloc(sizeof(*p), GFP_KERNEL);
	if (!p)
		return -ENOMEM;

	kvm_get_kvm(vcpu->kvm);
	p->vcpu = vcpu;
	file->private_data = p;

	return nonseekable_open(inode, file);
}

static int debugfs_timings_release(struct inode *inode, struct file *file)
{
	struct debugfs_timings_state *p = file->private_data;

	kvm_put_kvm(p->vcpu->kvm);
	kfree(p);
	return 0;
}

static ssize_t debugfs_timings_read(struct file *file, char __user *buf,
				    size_t len, loff_t *ppos)
{
	struct debugfs_timings_state *p = file->private_data;
	struct kvm_vcpu *vcpu = p->vcpu;
	char *s, *buf_end;
	struct kvmhv_tb_accumulator tb;
	u64 count;
	loff_t pos;
	ssize_t n;
	int i, loops;
	bool ok;

	if (!p->buflen) {
		s = p->buf;
		buf_end = s + sizeof(p->buf);
		for (i = 0; i < N_TIMINGS; ++i) {
			struct kvmhv_tb_accumulator *acc;

			acc = (struct kvmhv_tb_accumulator *)
				((unsigned long)vcpu + timings[i].offset);
			ok = false;
			for (loops = 0; loops < 1000; ++loops) {
				count = acc->seqcount;
				if (!(count & 1)) {
					smp_rmb();
					tb = *acc;
					smp_rmb();
					if (count == acc->seqcount) {
						ok = true;
						break;
					}
				}
				udelay(1);
			}
			if (!ok)
				snprintf(s, buf_end - s, "%s: stuck\n",
					timings[i].name);
			else
				snprintf(s, buf_end - s,
					"%s: %llu %llu %llu %llu\n",
					timings[i].name, count / 2,
					tb_to_ns(tb.tb_total),
					tb_to_ns(tb.tb_min),
					tb_to_ns(tb.tb_max));
			s += strlen(s);
		}
		p->buflen = s - p->buf;
	}

	pos = *ppos;
	if (pos >= p->buflen)
		return 0;
	if (len > p->buflen - pos)
		len = p->buflen - pos;
	n = copy_to_user(buf, p->buf + pos, len);
	if (n) {
		if (n == len)
			return -EFAULT;
		len -= n;
	}
	*ppos = pos + len;
	return len;
}

static ssize_t debugfs_timings_write(struct file *file, const char __user *buf,
				     size_t len, loff_t *ppos)
{
	return -EACCES;
}

static const struct file_operations debugfs_timings_ops = {
	.owner	 = THIS_MODULE,
	.open	 = debugfs_timings_open,
	.release = debugfs_timings_release,
	.read	 = debugfs_timings_read,
	.write	 = debugfs_timings_write,
	.llseek	 = generic_file_llseek,
};

/* Create a debugfs directory for the vcpu */
static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id)
{
	char buf[16];
	struct kvm *kvm = vcpu->kvm;

	snprintf(buf, sizeof(buf), "vcpu%u", id);
	if (IS_ERR_OR_NULL(kvm->arch.debugfs_dir))
		return;
	vcpu->arch.debugfs_dir = debugfs_create_dir(buf, kvm->arch.debugfs_dir);
	if (IS_ERR_OR_NULL(vcpu->arch.debugfs_dir))
		return;
	vcpu->arch.debugfs_timings =
		debugfs_create_file("timings", 0444, vcpu->arch.debugfs_dir,
				    vcpu, &debugfs_timings_ops);
}

#else /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id)
{
}
#endif /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */

1918 1919
static struct kvm_vcpu *kvmppc_core_vcpu_create_hv(struct kvm *kvm,
						   unsigned int id)
1920 1921
{
	struct kvm_vcpu *vcpu;
1922
	int err;
1923 1924
	int core;
	struct kvmppc_vcore *vcore;
1925

1926
	err = -ENOMEM;
1927
	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
1928 1929 1930 1931 1932 1933 1934 1935
	if (!vcpu)
		goto out;

	err = kvm_vcpu_init(vcpu, kvm, id);
	if (err)
		goto free_vcpu;

	vcpu->arch.shared = &vcpu->arch.shregs;
1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946
#ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
	/*
	 * The shared struct is never shared on HV,
	 * so we can always use host endianness
	 */
#ifdef __BIG_ENDIAN__
	vcpu->arch.shared_big_endian = true;
#else
	vcpu->arch.shared_big_endian = false;
#endif
#endif
1947 1948 1949
	vcpu->arch.mmcr[0] = MMCR0_FC;
	vcpu->arch.ctrl = CTRL_RUNLATCH;
	/* default to host PVR, since we can't spoof it */
1950
	kvmppc_set_pvr_hv(vcpu, mfspr(SPRN_PVR));
1951
	spin_lock_init(&vcpu->arch.vpa_update_lock);
1952 1953
	spin_lock_init(&vcpu->arch.tbacct_lock);
	vcpu->arch.busy_preempt = TB_NIL;
1954
	vcpu->arch.intr_msr = MSR_SF | MSR_ME;
1955

1956 1957 1958 1959 1960
	/*
	 * Set the default HFSCR for the guest from the host value.
	 * This value is only used on POWER9.
	 * On POWER9 DD1, TM doesn't work, so we make sure to
	 * prevent the guest from using it.
1961 1962
	 * On POWER9, we want to virtualize the doorbell facility, so we
	 * turn off the HFSCR bit, which causes those instructions to trap.
1963 1964 1965 1966
	 */
	vcpu->arch.hfscr = mfspr(SPRN_HFSCR);
	if (!cpu_has_feature(CPU_FTR_TM))
		vcpu->arch.hfscr &= ~HFSCR_TM;
1967 1968
	if (cpu_has_feature(CPU_FTR_ARCH_300))
		vcpu->arch.hfscr &= ~HFSCR_MSGP;
1969

1970 1971
	kvmppc_mmu_book3s_hv_init(vcpu);

1972
	vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
1973 1974 1975 1976

	init_waitqueue_head(&vcpu->arch.cpu_run);

	mutex_lock(&kvm->lock);
1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987
	vcore = NULL;
	err = -EINVAL;
	core = id / kvm->arch.smt_mode;
	if (core < KVM_MAX_VCORES) {
		vcore = kvm->arch.vcores[core];
		if (!vcore) {
			err = -ENOMEM;
			vcore = kvmppc_vcore_create(kvm, core);
			kvm->arch.vcores[core] = vcore;
			kvm->arch.online_vcores++;
		}
1988 1989 1990 1991 1992 1993 1994 1995 1996 1997
	}
	mutex_unlock(&kvm->lock);

	if (!vcore)
		goto free_vcpu;

	spin_lock(&vcore->lock);
	++vcore->num_threads;
	spin_unlock(&vcore->lock);
	vcpu->arch.vcore = vcore;
1998
	vcpu->arch.ptid = vcpu->vcpu_id - vcore->first_vcpuid;
1999
	vcpu->arch.thread_cpu = -1;
2000
	vcpu->arch.prev_cpu = -1;
2001

2002 2003 2004
	vcpu->arch.cpu_type = KVM_CPU_3S_64;
	kvmppc_sanity_check(vcpu);

2005 2006
	debugfs_vcpu_init(vcpu, id);

2007 2008 2009
	return vcpu;

free_vcpu:
2010
	kmem_cache_free(kvm_vcpu_cache, vcpu);
2011 2012 2013 2014
out:
	return ERR_PTR(err);
}

2015 2016 2017 2018
static int kvmhv_set_smt_mode(struct kvm *kvm, unsigned long smt_mode,
			      unsigned long flags)
{
	int err;
2019
	int esmt = 0;
2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036

	if (flags)
		return -EINVAL;
	if (smt_mode > MAX_SMT_THREADS || !is_power_of_2(smt_mode))
		return -EINVAL;
	if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
		/*
		 * On POWER8 (or POWER7), the threading mode is "strict",
		 * so we pack smt_mode vcpus per vcore.
		 */
		if (smt_mode > threads_per_subcore)
			return -EINVAL;
	} else {
		/*
		 * On POWER9, the threading mode is "loose",
		 * so each vcpu gets its own vcore.
		 */
2037
		esmt = smt_mode;
2038 2039 2040 2041 2042 2043
		smt_mode = 1;
	}
	mutex_lock(&kvm->lock);
	err = -EBUSY;
	if (!kvm->arch.online_vcores) {
		kvm->arch.smt_mode = smt_mode;
2044
		kvm->arch.emul_smt_mode = esmt;
2045 2046 2047 2048 2049 2050 2051
		err = 0;
	}
	mutex_unlock(&kvm->lock);

	return err;
}

2052 2053 2054 2055 2056 2057 2058
static void unpin_vpa(struct kvm *kvm, struct kvmppc_vpa *vpa)
{
	if (vpa->pinned_addr)
		kvmppc_unpin_guest_page(kvm, vpa->pinned_addr, vpa->gpa,
					vpa->dirty);
}

2059
static void kvmppc_core_vcpu_free_hv(struct kvm_vcpu *vcpu)
2060
{
2061
	spin_lock(&vcpu->arch.vpa_update_lock);
2062 2063 2064
	unpin_vpa(vcpu->kvm, &vcpu->arch.dtl);
	unpin_vpa(vcpu->kvm, &vcpu->arch.slb_shadow);
	unpin_vpa(vcpu->kvm, &vcpu->arch.vpa);
2065
	spin_unlock(&vcpu->arch.vpa_update_lock);
2066
	kvm_vcpu_uninit(vcpu);
2067
	kmem_cache_free(kvm_vcpu_cache, vcpu);
2068 2069
}

2070 2071 2072 2073 2074 2075
static int kvmppc_core_check_requests_hv(struct kvm_vcpu *vcpu)
{
	/* Indicate we want to get back into the guest */
	return 1;
}

2076
static void kvmppc_set_timer(struct kvm_vcpu *vcpu)
2077
{
2078
	unsigned long dec_nsec, now;
2079

2080 2081 2082 2083
	now = get_tb();
	if (now > vcpu->arch.dec_expires) {
		/* decrementer has already gone negative */
		kvmppc_core_queue_dec(vcpu);
2084
		kvmppc_core_prepare_to_enter(vcpu);
2085
		return;
2086
	}
2087 2088
	dec_nsec = (vcpu->arch.dec_expires - now) * NSEC_PER_SEC
		   / tb_ticks_per_sec;
T
Thomas Gleixner 已提交
2089
	hrtimer_start(&vcpu->arch.dec_timer, dec_nsec, HRTIMER_MODE_REL);
2090
	vcpu->arch.timer_running = 1;
2091 2092
}

2093
static void kvmppc_end_cede(struct kvm_vcpu *vcpu)
2094
{
2095 2096 2097 2098 2099
	vcpu->arch.ceded = 0;
	if (vcpu->arch.timer_running) {
		hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
		vcpu->arch.timer_running = 0;
	}
2100 2101
}

2102
extern int __kvmppc_vcore_entry(void);
2103

2104 2105
static void kvmppc_remove_runnable(struct kvmppc_vcore *vc,
				   struct kvm_vcpu *vcpu)
2106
{
2107 2108
	u64 now;

2109 2110
	if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
		return;
2111
	spin_lock_irq(&vcpu->arch.tbacct_lock);
2112 2113 2114 2115 2116
	now = mftb();
	vcpu->arch.busy_stolen += vcore_stolen_time(vc, now) -
		vcpu->arch.stolen_logged;
	vcpu->arch.busy_preempt = now;
	vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
2117
	spin_unlock_irq(&vcpu->arch.tbacct_lock);
2118
	--vc->n_runnable;
2119
	WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], NULL);
2120 2121
}

2122 2123 2124
static int kvmppc_grab_hwthread(int cpu)
{
	struct paca_struct *tpaca;
2125
	long timeout = 10000;
2126 2127 2128 2129

	tpaca = &paca[cpu];

	/* Ensure the thread won't go into the kernel if it wakes */
2130
	tpaca->kvm_hstate.kvm_vcpu = NULL;
2131
	tpaca->kvm_hstate.kvm_vcore = NULL;
2132 2133 2134
	tpaca->kvm_hstate.napping = 0;
	smp_wmb();
	tpaca->kvm_hstate.hwthread_req = 1;
2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160

	/*
	 * If the thread is already executing in the kernel (e.g. handling
	 * a stray interrupt), wait for it to get back to nap mode.
	 * The smp_mb() is to ensure that our setting of hwthread_req
	 * is visible before we look at hwthread_state, so if this
	 * races with the code at system_reset_pSeries and the thread
	 * misses our setting of hwthread_req, we are sure to see its
	 * setting of hwthread_state, and vice versa.
	 */
	smp_mb();
	while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) {
		if (--timeout <= 0) {
			pr_err("KVM: couldn't grab cpu %d\n", cpu);
			return -EBUSY;
		}
		udelay(1);
	}
	return 0;
}

static void kvmppc_release_hwthread(int cpu)
{
	struct paca_struct *tpaca;

	tpaca = &paca[cpu];
2161
	tpaca->kvm_hstate.hwthread_req = 0;
2162
	tpaca->kvm_hstate.kvm_vcpu = NULL;
2163 2164
	tpaca->kvm_hstate.kvm_vcore = NULL;
	tpaca->kvm_hstate.kvm_split_mode = NULL;
2165 2166
}

2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183
static void radix_flush_cpu(struct kvm *kvm, int cpu, struct kvm_vcpu *vcpu)
{
	int i;

	cpu = cpu_first_thread_sibling(cpu);
	cpumask_set_cpu(cpu, &kvm->arch.need_tlb_flush);
	/*
	 * Make sure setting of bit in need_tlb_flush precedes
	 * testing of cpu_in_guest bits.  The matching barrier on
	 * the other side is the first smp_mb() in kvmppc_run_core().
	 */
	smp_mb();
	for (i = 0; i < threads_per_core; ++i)
		if (cpumask_test_cpu(cpu + i, &kvm->arch.cpu_in_guest))
			smp_call_function_single(cpu + i, do_nothing, NULL, 1);
}

2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208
static void kvmppc_prepare_radix_vcpu(struct kvm_vcpu *vcpu, int pcpu)
{
	struct kvm *kvm = vcpu->kvm;

	/*
	 * With radix, the guest can do TLB invalidations itself,
	 * and it could choose to use the local form (tlbiel) if
	 * it is invalidating a translation that has only ever been
	 * used on one vcpu.  However, that doesn't mean it has
	 * only ever been used on one physical cpu, since vcpus
	 * can move around between pcpus.  To cope with this, when
	 * a vcpu moves from one pcpu to another, we need to tell
	 * any vcpus running on the same core as this vcpu previously
	 * ran to flush the TLB.  The TLB is shared between threads,
	 * so we use a single bit in .need_tlb_flush for all 4 threads.
	 */
	if (vcpu->arch.prev_cpu != pcpu) {
		if (vcpu->arch.prev_cpu >= 0 &&
		    cpu_first_thread_sibling(vcpu->arch.prev_cpu) !=
		    cpu_first_thread_sibling(pcpu))
			radix_flush_cpu(kvm, vcpu->arch.prev_cpu, vcpu);
		vcpu->arch.prev_cpu = pcpu;
	}
}

2209
static void kvmppc_start_thread(struct kvm_vcpu *vcpu, struct kvmppc_vcore *vc)
2210 2211 2212
{
	int cpu;
	struct paca_struct *tpaca;
2213
	struct kvm *kvm = vc->kvm;
2214

2215 2216 2217 2218 2219 2220 2221
	cpu = vc->pcpu;
	if (vcpu) {
		if (vcpu->arch.timer_running) {
			hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
			vcpu->arch.timer_running = 0;
		}
		cpu += vcpu->arch.ptid;
2222
		vcpu->cpu = vc->pcpu;
2223
		vcpu->arch.thread_cpu = cpu;
2224
		cpumask_set_cpu(cpu, &kvm->arch.cpu_in_guest);
2225
	}
2226
	tpaca = &paca[cpu];
2227
	tpaca->kvm_hstate.kvm_vcpu = vcpu;
2228
	tpaca->kvm_hstate.ptid = cpu - vc->pcpu;
2229
	/* Order stores to hstate.kvm_vcpu etc. before store to kvm_vcore */
2230
	smp_wmb();
2231
	tpaca->kvm_hstate.kvm_vcore = vc;
2232
	if (cpu != smp_processor_id())
2233
		kvmppc_ipi_thread(cpu);
2234
}
2235

2236
static void kvmppc_wait_for_nap(int n_threads)
2237
{
2238 2239
	int cpu = smp_processor_id();
	int i, loops;
2240

2241 2242
	if (n_threads <= 1)
		return;
2243 2244 2245
	for (loops = 0; loops < 1000000; ++loops) {
		/*
		 * Check if all threads are finished.
2246
		 * We set the vcore pointer when starting a thread
2247
		 * and the thread clears it when finished, so we look
2248
		 * for any threads that still have a non-NULL vcore ptr.
2249
		 */
2250
		for (i = 1; i < n_threads; ++i)
2251
			if (paca[cpu + i].kvm_hstate.kvm_vcore)
2252
				break;
2253
		if (i == n_threads) {
2254 2255
			HMT_medium();
			return;
2256
		}
2257
		HMT_low();
2258 2259
	}
	HMT_medium();
2260
	for (i = 1; i < n_threads; ++i)
2261
		if (paca[cpu + i].kvm_hstate.kvm_vcore)
2262
			pr_err("KVM: CPU %d seems to be stuck\n", cpu + i);
2263 2264 2265 2266
}

/*
 * Check that we are on thread 0 and that any other threads in
2267 2268
 * this core are off-line.  Then grab the threads so they can't
 * enter the kernel.
2269 2270 2271 2272
 */
static int on_primary_thread(void)
{
	int cpu = smp_processor_id();
2273
	int thr;
2274

2275 2276
	/* Are we on a primary subcore? */
	if (cpu_thread_in_subcore(cpu))
2277
		return 0;
2278 2279 2280

	thr = 0;
	while (++thr < threads_per_subcore)
2281 2282
		if (cpu_online(cpu + thr))
			return 0;
2283 2284

	/* Grab all hw threads so they can't go into the kernel */
2285
	for (thr = 1; thr < threads_per_subcore; ++thr) {
2286 2287 2288 2289 2290 2291 2292 2293
		if (kvmppc_grab_hwthread(cpu + thr)) {
			/* Couldn't grab one; let the others go */
			do {
				kvmppc_release_hwthread(cpu + thr);
			} while (--thr > 0);
			return 0;
		}
	}
2294 2295 2296
	return 1;
}

2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325
/*
 * A list of virtual cores for each physical CPU.
 * These are vcores that could run but their runner VCPU tasks are
 * (or may be) preempted.
 */
struct preempted_vcore_list {
	struct list_head	list;
	spinlock_t		lock;
};

static DEFINE_PER_CPU(struct preempted_vcore_list, preempted_vcores);

static void init_vcore_lists(void)
{
	int cpu;

	for_each_possible_cpu(cpu) {
		struct preempted_vcore_list *lp = &per_cpu(preempted_vcores, cpu);
		spin_lock_init(&lp->lock);
		INIT_LIST_HEAD(&lp->list);
	}
}

static void kvmppc_vcore_preempt(struct kvmppc_vcore *vc)
{
	struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);

	vc->vcore_state = VCORE_PREEMPT;
	vc->pcpu = smp_processor_id();
2326
	if (vc->num_threads < threads_per_vcore(vc->kvm)) {
2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337
		spin_lock(&lp->lock);
		list_add_tail(&vc->preempt_list, &lp->list);
		spin_unlock(&lp->lock);
	}

	/* Start accumulating stolen time */
	kvmppc_core_start_stolen(vc);
}

static void kvmppc_vcore_end_preempt(struct kvmppc_vcore *vc)
{
2338
	struct preempted_vcore_list *lp;
2339 2340 2341

	kvmppc_core_end_stolen(vc);
	if (!list_empty(&vc->preempt_list)) {
2342
		lp = &per_cpu(preempted_vcores, vc->pcpu);
2343 2344 2345 2346 2347 2348 2349
		spin_lock(&lp->lock);
		list_del_init(&vc->preempt_list);
		spin_unlock(&lp->lock);
	}
	vc->vcore_state = VCORE_INACTIVE;
}

2350 2351 2352 2353
/*
 * This stores information about the virtual cores currently
 * assigned to a physical core.
 */
2354
struct core_info {
2355 2356
	int		n_subcores;
	int		max_subcore_threads;
2357
	int		total_threads;
2358
	int		subcore_threads[MAX_SUBCORES];
2359
	struct kvmppc_vcore *vc[MAX_SUBCORES];
2360 2361
};

2362 2363
/*
 * This mapping means subcores 0 and 1 can use threads 0-3 and 4-7
2364
 * respectively in 2-way micro-threading (split-core) mode on POWER8.
2365 2366 2367
 */
static int subcore_thread_map[MAX_SUBCORES] = { 0, 4, 2, 6 };

2368 2369 2370
static void init_core_info(struct core_info *cip, struct kvmppc_vcore *vc)
{
	memset(cip, 0, sizeof(*cip));
2371 2372
	cip->n_subcores = 1;
	cip->max_subcore_threads = vc->num_threads;
2373
	cip->total_threads = vc->num_threads;
2374
	cip->subcore_threads[0] = vc->num_threads;
2375
	cip->vc[0] = vc;
2376 2377 2378 2379
}

static bool subcore_config_ok(int n_subcores, int n_threads)
{
2380 2381 2382 2383 2384 2385 2386 2387
	/*
	 * POWER9 "SMT4" cores are permanently in what is effectively a 4-way split-core
	 * mode, with one thread per subcore.
	 */
	if (cpu_has_feature(CPU_FTR_ARCH_300))
		return n_subcores <= 4 && n_threads == 1;

	/* On POWER8, can only dynamically split if unsplit to begin with */
2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399
	if (n_subcores > 1 && threads_per_subcore < MAX_SMT_THREADS)
		return false;
	if (n_subcores > MAX_SUBCORES)
		return false;
	if (n_subcores > 1) {
		if (!(dynamic_mt_modes & 2))
			n_subcores = 4;
		if (n_subcores > 2 && !(dynamic_mt_modes & 4))
			return false;
	}

	return n_subcores * roundup_pow_of_two(n_threads) <= MAX_SMT_THREADS;
2400 2401
}

2402
static void init_vcore_to_run(struct kvmppc_vcore *vc)
2403 2404 2405 2406 2407 2408 2409
{
	vc->entry_exit_map = 0;
	vc->in_guest = 0;
	vc->napping_threads = 0;
	vc->conferring_threads = 0;
}

2410 2411 2412 2413 2414 2415 2416 2417
static bool can_dynamic_split(struct kvmppc_vcore *vc, struct core_info *cip)
{
	int n_threads = vc->num_threads;
	int sub;

	if (!cpu_has_feature(CPU_FTR_ARCH_207S))
		return false;

2418 2419 2420 2421 2422
	/* POWER9 currently requires all threads to be in the same MMU mode */
	if (cpu_has_feature(CPU_FTR_ARCH_300) &&
	    kvm_is_radix(vc->kvm) != kvm_is_radix(cip->vc[0]->kvm))
		return false;

2423 2424
	if (n_threads < cip->max_subcore_threads)
		n_threads = cip->max_subcore_threads;
2425
	if (!subcore_config_ok(cip->n_subcores + 1, n_threads))
2426
		return false;
2427
	cip->max_subcore_threads = n_threads;
2428 2429 2430 2431 2432

	sub = cip->n_subcores;
	++cip->n_subcores;
	cip->total_threads += vc->num_threads;
	cip->subcore_threads[sub] = vc->num_threads;
2433 2434 2435
	cip->vc[sub] = vc;
	init_vcore_to_run(vc);
	list_del_init(&vc->preempt_list);
2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449

	return true;
}

/*
 * Work out whether it is possible to piggyback the execution of
 * vcore *pvc onto the execution of the other vcores described in *cip.
 */
static bool can_piggyback(struct kvmppc_vcore *pvc, struct core_info *cip,
			  int target_threads)
{
	if (cip->total_threads + pvc->num_threads > target_threads)
		return false;

2450
	return can_dynamic_split(pvc, cip);
2451 2452
}

2453 2454
static void prepare_threads(struct kvmppc_vcore *vc)
{
2455 2456
	int i;
	struct kvm_vcpu *vcpu;
2457

2458
	for_each_runnable_thread(i, vcpu, vc) {
2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471
		if (signal_pending(vcpu->arch.run_task))
			vcpu->arch.ret = -EINTR;
		else if (vcpu->arch.vpa.update_pending ||
			 vcpu->arch.slb_shadow.update_pending ||
			 vcpu->arch.dtl.update_pending)
			vcpu->arch.ret = RESUME_GUEST;
		else
			continue;
		kvmppc_remove_runnable(vc, vcpu);
		wake_up(&vcpu->arch.cpu_run);
	}
}

2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502
static void collect_piggybacks(struct core_info *cip, int target_threads)
{
	struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
	struct kvmppc_vcore *pvc, *vcnext;

	spin_lock(&lp->lock);
	list_for_each_entry_safe(pvc, vcnext, &lp->list, preempt_list) {
		if (!spin_trylock(&pvc->lock))
			continue;
		prepare_threads(pvc);
		if (!pvc->n_runnable) {
			list_del_init(&pvc->preempt_list);
			if (pvc->runner == NULL) {
				pvc->vcore_state = VCORE_INACTIVE;
				kvmppc_core_end_stolen(pvc);
			}
			spin_unlock(&pvc->lock);
			continue;
		}
		if (!can_piggyback(pvc, cip, target_threads)) {
			spin_unlock(&pvc->lock);
			continue;
		}
		kvmppc_core_end_stolen(pvc);
		pvc->vcore_state = VCORE_PIGGYBACK;
		if (cip->total_threads >= target_threads)
			break;
	}
	spin_unlock(&lp->lock);
}

2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514
static bool recheck_signals(struct core_info *cip)
{
	int sub, i;
	struct kvm_vcpu *vcpu;

	for (sub = 0; sub < cip->n_subcores; ++sub)
		for_each_runnable_thread(i, vcpu, cip->vc[sub])
			if (signal_pending(vcpu->arch.run_task))
				return true;
	return false;
}

2515
static void post_guest_process(struct kvmppc_vcore *vc, bool is_master)
2516
{
2517
	int still_running = 0, i;
2518 2519
	u64 now;
	long ret;
2520
	struct kvm_vcpu *vcpu;
2521

2522
	spin_lock(&vc->lock);
2523
	now = get_tb();
2524
	for_each_runnable_thread(i, vcpu, vc) {
2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539
		/* cancel pending dec exception if dec is positive */
		if (now < vcpu->arch.dec_expires &&
		    kvmppc_core_pending_dec(vcpu))
			kvmppc_core_dequeue_dec(vcpu);

		trace_kvm_guest_exit(vcpu);

		ret = RESUME_GUEST;
		if (vcpu->arch.trap)
			ret = kvmppc_handle_exit_hv(vcpu->arch.kvm_run, vcpu,
						    vcpu->arch.run_task);

		vcpu->arch.ret = ret;
		vcpu->arch.trap = 0;

2540 2541 2542 2543
		if (is_kvmppc_resume_guest(vcpu->arch.ret)) {
			if (vcpu->arch.pending_exceptions)
				kvmppc_core_prepare_to_enter(vcpu);
			if (vcpu->arch.ceded)
2544
				kvmppc_set_timer(vcpu);
2545 2546 2547
			else
				++still_running;
		} else {
2548 2549 2550 2551
			kvmppc_remove_runnable(vc, vcpu);
			wake_up(&vcpu->arch.cpu_run);
		}
	}
2552
	if (!is_master) {
2553
		if (still_running > 0) {
2554
			kvmppc_vcore_preempt(vc);
2555 2556 2557 2558 2559 2560
		} else if (vc->runner) {
			vc->vcore_state = VCORE_PREEMPT;
			kvmppc_core_start_stolen(vc);
		} else {
			vc->vcore_state = VCORE_INACTIVE;
		}
2561 2562
		if (vc->n_runnable > 0 && vc->runner == NULL) {
			/* make sure there's a candidate runner awake */
2563 2564
			i = -1;
			vcpu = next_runnable_thread(vc, &i);
2565 2566 2567 2568
			wake_up(&vcpu->arch.cpu_run);
		}
	}
	spin_unlock(&vc->lock);
2569 2570
}

2571 2572 2573 2574 2575
/*
 * Clear core from the list of active host cores as we are about to
 * enter the guest. Only do this if it is the primary thread of the
 * core (not if a subcore) that is entering the guest.
 */
2576
static inline int kvmppc_clear_host_core(unsigned int cpu)
2577 2578 2579 2580
{
	int core;

	if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
2581
		return 0;
2582 2583 2584 2585 2586 2587 2588
	/*
	 * Memory barrier can be omitted here as we will do a smp_wmb()
	 * later in kvmppc_start_thread and we need ensure that state is
	 * visible to other CPUs only after we enter guest.
	 */
	core = cpu >> threads_shift;
	kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 0;
2589
	return 0;
2590 2591 2592 2593 2594 2595 2596
}

/*
 * Advertise this core as an active host core since we exited the guest
 * Only need to do this if it is the primary thread of the core that is
 * exiting.
 */
2597
static inline int kvmppc_set_host_core(unsigned int cpu)
2598 2599 2600 2601
{
	int core;

	if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
2602
		return 0;
2603 2604 2605 2606 2607 2608 2609

	/*
	 * Memory barrier can be omitted here because we do a spin_unlock
	 * immediately after this which provides the memory barrier.
	 */
	core = cpu >> threads_shift;
	kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 1;
2610
	return 0;
2611 2612
}

2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624
static void set_irq_happened(int trap)
{
	switch (trap) {
	case BOOK3S_INTERRUPT_EXTERNAL:
		local_paca->irq_happened |= PACA_IRQ_EE;
		break;
	case BOOK3S_INTERRUPT_H_DOORBELL:
		local_paca->irq_happened |= PACA_IRQ_DBELL;
		break;
	case BOOK3S_INTERRUPT_HMI:
		local_paca->irq_happened |= PACA_IRQ_HMI;
		break;
2625 2626 2627
	case BOOK3S_INTERRUPT_SYSTEM_RESET:
		replay_system_reset();
		break;
2628 2629 2630
	}
}

2631 2632 2633 2634
/*
 * Run a set of guest threads on a physical core.
 * Called with vc->lock held.
 */
2635
static noinline void kvmppc_run_core(struct kvmppc_vcore *vc)
2636
{
2637
	struct kvm_vcpu *vcpu;
2638
	int i;
2639
	int srcu_idx;
2640
	struct core_info core_info;
2641
	struct kvmppc_vcore *pvc;
2642 2643 2644 2645 2646
	struct kvm_split_mode split_info, *sip;
	int split, subcore_size, active;
	int sub;
	bool thr0_done;
	unsigned long cmd_bit, stat_bit;
2647 2648
	int pcpu, thr;
	int target_threads;
2649
	int controlled_threads;
2650
	int trap;
2651
	bool is_power8;
2652
	bool hpt_on_radix;
2653

2654 2655 2656 2657 2658 2659 2660 2661 2662
	/*
	 * Remove from the list any threads that have a signal pending
	 * or need a VPA update done
	 */
	prepare_threads(vc);

	/* if the runner is no longer runnable, let the caller pick a new one */
	if (vc->runner->arch.state != KVMPPC_VCPU_RUNNABLE)
		return;
2663 2664

	/*
2665
	 * Initialize *vc.
2666
	 */
2667
	init_vcore_to_run(vc);
2668
	vc->preempt_tb = TB_NIL;
2669

2670 2671 2672 2673 2674
	/*
	 * Number of threads that we will be controlling: the same as
	 * the number of threads per subcore, except on POWER9,
	 * where it's 1 because the threads are (mostly) independent.
	 */
2675
	controlled_threads = threads_per_vcore(vc->kvm);
2676

2677
	/*
2678 2679 2680
	 * Make sure we are running on primary threads, and that secondary
	 * threads are offline.  Also check if the number of threads in this
	 * guest are greater than the current system threads per guest.
2681 2682
	 * On POWER9, we need to be not in independent-threads mode if
	 * this is a HPT guest on a radix host.
2683
	 */
2684 2685 2686 2687
	hpt_on_radix = radix_enabled() && !kvm_is_radix(vc->kvm);
	if (((controlled_threads > 1) &&
	     ((vc->num_threads > threads_per_subcore) || !on_primary_thread())) ||
	    (hpt_on_radix && vc->kvm->arch.threads_indep)) {
2688
		for_each_runnable_thread(i, vcpu, vc) {
2689
			vcpu->arch.ret = -EBUSY;
2690 2691 2692
			kvmppc_remove_runnable(vc, vcpu);
			wake_up(&vcpu->arch.cpu_run);
		}
2693 2694 2695
		goto out;
	}

2696 2697 2698 2699 2700 2701
	/*
	 * See if we could run any other vcores on the physical core
	 * along with this one.
	 */
	init_core_info(&core_info, vc);
	pcpu = smp_processor_id();
2702
	target_threads = controlled_threads;
2703 2704 2705 2706
	if (target_smt_mode && target_smt_mode < target_threads)
		target_threads = target_smt_mode;
	if (vc->num_threads < target_threads)
		collect_piggybacks(&core_info, target_threads);
2707

2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723
	/*
	 * On radix, arrange for TLB flushing if necessary.
	 * This has to be done before disabling interrupts since
	 * it uses smp_call_function().
	 */
	pcpu = smp_processor_id();
	if (kvm_is_radix(vc->kvm)) {
		for (sub = 0; sub < core_info.n_subcores; ++sub)
			for_each_runnable_thread(i, vcpu, core_info.vc[sub])
				kvmppc_prepare_radix_vcpu(vcpu, pcpu);
	}

	/*
	 * Hard-disable interrupts, and check resched flag and signals.
	 * If we need to reschedule or deliver a signal, clean up
	 * and return without going into the guest(s).
2724
	 * If the mmu_ready flag has been cleared, don't go into the
2725
	 * guest because that means a HPT resize operation is in progress.
2726 2727 2728 2729
	 */
	local_irq_disable();
	hard_irq_disable();
	if (lazy_irq_pending() || need_resched() ||
2730
	    recheck_signals(&core_info) || !vc->kvm->arch.mmu_ready) {
2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746
		local_irq_enable();
		vc->vcore_state = VCORE_INACTIVE;
		/* Unlock all except the primary vcore */
		for (sub = 1; sub < core_info.n_subcores; ++sub) {
			pvc = core_info.vc[sub];
			/* Put back on to the preempted vcores list */
			kvmppc_vcore_preempt(pvc);
			spin_unlock(&pvc->lock);
		}
		for (i = 0; i < controlled_threads; ++i)
			kvmppc_release_hwthread(pcpu + i);
		return;
	}

	kvmppc_clear_host_core(pcpu);

2747 2748 2749 2750 2751
	/* Decide on micro-threading (split-core) mode */
	subcore_size = threads_per_subcore;
	cmd_bit = stat_bit = 0;
	split = core_info.n_subcores;
	sip = NULL;
2752 2753 2754
	is_power8 = cpu_has_feature(CPU_FTR_ARCH_207S)
		&& !cpu_has_feature(CPU_FTR_ARCH_300);

2755
	if (split > 1 || hpt_on_radix) {
2756 2757 2758
		sip = &split_info;
		memset(&split_info, 0, sizeof(split_info));
		for (sub = 0; sub < core_info.n_subcores; ++sub)
2759
			split_info.vc[sub] = core_info.vc[sub];
2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776

		if (is_power8) {
			if (split == 2 && (dynamic_mt_modes & 2)) {
				cmd_bit = HID0_POWER8_1TO2LPAR;
				stat_bit = HID0_POWER8_2LPARMODE;
			} else {
				split = 4;
				cmd_bit = HID0_POWER8_1TO4LPAR;
				stat_bit = HID0_POWER8_4LPARMODE;
			}
			subcore_size = MAX_SMT_THREADS / split;
			split_info.rpr = mfspr(SPRN_RPR);
			split_info.pmmar = mfspr(SPRN_PMMAR);
			split_info.ldbar = mfspr(SPRN_LDBAR);
			split_info.subcore_size = subcore_size;
		} else {
			split_info.subcore_size = 1;
2777 2778 2779 2780 2781 2782 2783
			if (hpt_on_radix) {
				/* Use the split_info for LPCR/LPIDR changes */
				split_info.lpcr_req = vc->lpcr;
				split_info.lpidr_req = vc->kvm->arch.lpid;
				split_info.host_lpcr = vc->kvm->arch.host_lpcr;
				split_info.do_set = 1;
			}
2784 2785
		}

2786 2787 2788
		/* order writes to split_info before kvm_split_mode pointer */
		smp_wmb();
	}
2789 2790 2791 2792

	for (thr = 0; thr < controlled_threads; ++thr) {
		paca[pcpu + thr].kvm_hstate.tid = thr;
		paca[pcpu + thr].kvm_hstate.napping = 0;
2793
		paca[pcpu + thr].kvm_hstate.kvm_split_mode = sip;
2794
	}
2795

2796
	/* Initiate micro-threading (split-core) on POWER8 if required */
2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808
	if (cmd_bit) {
		unsigned long hid0 = mfspr(SPRN_HID0);

		hid0 |= cmd_bit | HID0_POWER8_DYNLPARDIS;
		mb();
		mtspr(SPRN_HID0, hid0);
		isync();
		for (;;) {
			hid0 = mfspr(SPRN_HID0);
			if (hid0 & stat_bit)
				break;
			cpu_relax();
2809
		}
2810
	}
2811

2812 2813 2814
	/* Start all the threads */
	active = 0;
	for (sub = 0; sub < core_info.n_subcores; ++sub) {
2815
		thr = is_power8 ? subcore_thread_map[sub] : sub;
2816 2817
		thr0_done = false;
		active |= 1 << thr;
2818 2819 2820 2821 2822 2823 2824 2825 2826
		pvc = core_info.vc[sub];
		pvc->pcpu = pcpu + thr;
		for_each_runnable_thread(i, vcpu, pvc) {
			kvmppc_start_thread(vcpu, pvc);
			kvmppc_create_dtl_entry(vcpu, pvc);
			trace_kvm_guest_enter(vcpu);
			if (!vcpu->arch.ptid)
				thr0_done = true;
			active |= 1 << (thr + vcpu->arch.ptid);
2827
		}
2828 2829 2830 2831 2832 2833
		/*
		 * We need to start the first thread of each subcore
		 * even if it doesn't have a vcpu.
		 */
		if (!thr0_done)
			kvmppc_start_thread(NULL, pvc);
2834
	}
2835

2836 2837 2838 2839 2840 2841
	/*
	 * Ensure that split_info.do_nap is set after setting
	 * the vcore pointer in the PACA of the secondaries.
	 */
	smp_mb();

2842 2843 2844 2845
	/*
	 * When doing micro-threading, poke the inactive threads as well.
	 * This gets them to the nap instruction after kvm_do_nap,
	 * which reduces the time taken to unsplit later.
2846 2847
	 * For POWER9 HPT guest on radix host, we need all the secondary
	 * threads woken up so they can do the LPCR/LPIDR change.
2848
	 */
2849
	if (cmd_bit || hpt_on_radix) {
2850
		split_info.do_nap = 1;	/* ask secondaries to nap when done */
2851 2852 2853
		for (thr = 1; thr < threads_per_subcore; ++thr)
			if (!(active & (1 << thr)))
				kvmppc_ipi_thread(pcpu + thr);
2854
	}
2855

2856
	vc->vcore_state = VCORE_RUNNING;
2857
	preempt_disable();
2858 2859 2860

	trace_kvmppc_run_core(vc, 0);

2861
	for (sub = 0; sub < core_info.n_subcores; ++sub)
2862
		spin_unlock(&core_info.vc[sub]->lock);
2863

2864 2865 2866 2867 2868
	/*
	 * Interrupts will be enabled once we get into the guest,
	 * so tell lockdep that we're about to enable interrupts.
	 */
	trace_hardirqs_on();
2869

2870
	guest_enter();
2871

2872
	srcu_idx = srcu_read_lock(&vc->kvm->srcu);
2873

2874
	trap = __kvmppc_vcore_entry();
2875

2876 2877
	srcu_read_unlock(&vc->kvm->srcu, srcu_idx);

2878 2879 2880 2881 2882
	guest_exit();

	trace_hardirqs_off();
	set_irq_happened(trap);

2883
	spin_lock(&vc->lock);
2884
	/* prevent other vcpu threads from doing kvmppc_start_thread() now */
2885
	vc->vcore_state = VCORE_EXITING;
2886

2887
	/* wait for secondary threads to finish writing their state to memory */
2888
	kvmppc_wait_for_nap(controlled_threads);
2889 2890

	/* Return to whole-core mode if we split the core earlier */
2891
	if (cmd_bit) {
2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906
		unsigned long hid0 = mfspr(SPRN_HID0);
		unsigned long loops = 0;

		hid0 &= ~HID0_POWER8_DYNLPARDIS;
		stat_bit = HID0_POWER8_2LPARMODE | HID0_POWER8_4LPARMODE;
		mb();
		mtspr(SPRN_HID0, hid0);
		isync();
		for (;;) {
			hid0 = mfspr(SPRN_HID0);
			if (!(hid0 & stat_bit))
				break;
			cpu_relax();
			++loops;
		}
2907 2908 2909 2910 2911 2912 2913 2914 2915
	} else if (hpt_on_radix) {
		/* Wait for all threads to have seen final sync */
		for (thr = 1; thr < controlled_threads; ++thr) {
			while (paca[pcpu + thr].kvm_hstate.kvm_split_mode) {
				HMT_low();
				barrier();
			}
			HMT_medium();
		}
2916
	}
2917
	split_info.do_nap = 0;
2918

2919 2920 2921 2922
	kvmppc_set_host_core(pcpu);

	local_irq_enable();

2923
	/* Let secondaries go back to the offline loop */
2924
	for (i = 0; i < controlled_threads; ++i) {
2925 2926 2927
		kvmppc_release_hwthread(pcpu + i);
		if (sip && sip->napped[i])
			kvmppc_ipi_thread(pcpu + i);
2928
		cpumask_clear_cpu(pcpu + i, &vc->kvm->arch.cpu_in_guest);
2929 2930
	}

2931
	spin_unlock(&vc->lock);
2932

2933 2934
	/* make sure updates to secondary vcpu structs are visible now */
	smp_mb();
2935

2936 2937 2938 2939
	for (sub = 0; sub < core_info.n_subcores; ++sub) {
		pvc = core_info.vc[sub];
		post_guest_process(pvc, pvc == vc);
	}
2940

2941
	spin_lock(&vc->lock);
2942
	preempt_enable();
2943 2944

 out:
2945
	vc->vcore_state = VCORE_INACTIVE;
2946
	trace_kvmppc_run_core(vc, 1);
2947 2948
}

2949 2950 2951 2952
/*
 * Wait for some other vcpu thread to execute us, and
 * wake us up when we need to handle something in the host.
 */
2953 2954
static void kvmppc_wait_for_exec(struct kvmppc_vcore *vc,
				 struct kvm_vcpu *vcpu, int wait_state)
2955 2956 2957
{
	DEFINE_WAIT(wait);

2958
	prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state);
2959 2960
	if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
		spin_unlock(&vc->lock);
2961
		schedule();
2962 2963
		spin_lock(&vc->lock);
	}
2964 2965 2966
	finish_wait(&vcpu->arch.cpu_run, &wait);
}

2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983
static void grow_halt_poll_ns(struct kvmppc_vcore *vc)
{
	/* 10us base */
	if (vc->halt_poll_ns == 0 && halt_poll_ns_grow)
		vc->halt_poll_ns = 10000;
	else
		vc->halt_poll_ns *= halt_poll_ns_grow;
}

static void shrink_halt_poll_ns(struct kvmppc_vcore *vc)
{
	if (halt_poll_ns_shrink == 0)
		vc->halt_poll_ns = 0;
	else
		vc->halt_poll_ns /= halt_poll_ns_shrink;
}

2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998
#ifdef CONFIG_KVM_XICS
static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu)
{
	if (!xive_enabled())
		return false;
	return vcpu->arch.xive_saved_state.pipr <
		vcpu->arch.xive_saved_state.cppr;
}
#else
static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu)
{
	return false;
}
#endif /* CONFIG_KVM_XICS */

2999 3000 3001
static bool kvmppc_vcpu_woken(struct kvm_vcpu *vcpu)
{
	if (vcpu->arch.pending_exceptions || vcpu->arch.prodded ||
3002
	    kvmppc_doorbell_pending(vcpu) || xive_interrupt_pending(vcpu))
3003 3004 3005 3006 3007
		return true;

	return false;
}

3008 3009
/*
 * Check to see if any of the runnable vcpus on the vcore have pending
3010 3011 3012 3013 3014 3015 3016 3017
 * exceptions or are no longer ceded
 */
static int kvmppc_vcore_check_block(struct kvmppc_vcore *vc)
{
	struct kvm_vcpu *vcpu;
	int i;

	for_each_runnable_thread(i, vcpu, vc) {
3018
		if (!vcpu->arch.ceded || kvmppc_vcpu_woken(vcpu))
3019 3020 3021 3022 3023 3024
			return 1;
	}

	return 0;
}

3025 3026 3027 3028 3029 3030
/*
 * All the vcpus in this vcore are idle, so wait for a decrementer
 * or external interrupt to one of the vcpus.  vc->lock is held.
 */
static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc)
{
3031
	ktime_t cur, start_poll, start_wait;
3032 3033
	int do_sleep = 1;
	u64 block_ns;
3034
	DECLARE_SWAITQUEUE(wait);
3035

3036
	/* Poll for pending exceptions and ceded state */
3037
	cur = start_poll = ktime_get();
3038
	if (vc->halt_poll_ns) {
3039 3040
		ktime_t stop = ktime_add_ns(start_poll, vc->halt_poll_ns);
		++vc->runner->stat.halt_attempted_poll;
3041

3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055
		vc->vcore_state = VCORE_POLLING;
		spin_unlock(&vc->lock);

		do {
			if (kvmppc_vcore_check_block(vc)) {
				do_sleep = 0;
				break;
			}
			cur = ktime_get();
		} while (single_task_running() && ktime_before(cur, stop));

		spin_lock(&vc->lock);
		vc->vcore_state = VCORE_INACTIVE;

3056 3057
		if (!do_sleep) {
			++vc->runner->stat.halt_successful_poll;
3058
			goto out;
3059
		}
3060 3061
	}

3062 3063 3064
	prepare_to_swait(&vc->wq, &wait, TASK_INTERRUPTIBLE);

	if (kvmppc_vcore_check_block(vc)) {
3065
		finish_swait(&vc->wq, &wait);
3066
		do_sleep = 0;
3067 3068 3069
		/* If we polled, count this as a successful poll */
		if (vc->halt_poll_ns)
			++vc->runner->stat.halt_successful_poll;
3070
		goto out;
3071 3072
	}

3073 3074
	start_wait = ktime_get();

3075
	vc->vcore_state = VCORE_SLEEPING;
3076
	trace_kvmppc_vcore_blocked(vc, 0);
3077
	spin_unlock(&vc->lock);
3078
	schedule();
3079
	finish_swait(&vc->wq, &wait);
3080 3081
	spin_lock(&vc->lock);
	vc->vcore_state = VCORE_INACTIVE;
3082
	trace_kvmppc_vcore_blocked(vc, 1);
3083
	++vc->runner->stat.halt_successful_wait;
3084 3085 3086 3087

	cur = ktime_get();

out:
3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105
	block_ns = ktime_to_ns(cur) - ktime_to_ns(start_poll);

	/* Attribute wait time */
	if (do_sleep) {
		vc->runner->stat.halt_wait_ns +=
			ktime_to_ns(cur) - ktime_to_ns(start_wait);
		/* Attribute failed poll time */
		if (vc->halt_poll_ns)
			vc->runner->stat.halt_poll_fail_ns +=
				ktime_to_ns(start_wait) -
				ktime_to_ns(start_poll);
	} else {
		/* Attribute successful poll time */
		if (vc->halt_poll_ns)
			vc->runner->stat.halt_poll_success_ns +=
				ktime_to_ns(cur) -
				ktime_to_ns(start_poll);
	}
3106 3107

	/* Adjust poll time */
3108
	if (halt_poll_ns) {
3109 3110 3111
		if (block_ns <= vc->halt_poll_ns)
			;
		/* We slept and blocked for longer than the max halt time */
3112
		else if (vc->halt_poll_ns && block_ns > halt_poll_ns)
3113 3114
			shrink_halt_poll_ns(vc);
		/* We slept and our poll time is too small */
3115 3116
		else if (vc->halt_poll_ns < halt_poll_ns &&
				block_ns < halt_poll_ns)
3117
			grow_halt_poll_ns(vc);
3118 3119
		if (vc->halt_poll_ns > halt_poll_ns)
			vc->halt_poll_ns = halt_poll_ns;
3120 3121 3122 3123
	} else
		vc->halt_poll_ns = 0;

	trace_kvmppc_vcore_wakeup(do_sleep, block_ns);
3124
}
3125

3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144
static int kvmhv_setup_mmu(struct kvm_vcpu *vcpu)
{
	int r = 0;
	struct kvm *kvm = vcpu->kvm;

	mutex_lock(&kvm->lock);
	if (!kvm->arch.mmu_ready) {
		if (!kvm_is_radix(kvm))
			r = kvmppc_hv_setup_htab_rma(vcpu);
		if (!r) {
			if (cpu_has_feature(CPU_FTR_ARCH_300))
				kvmppc_setup_partition_table(kvm);
			kvm->arch.mmu_ready = 1;
		}
	}
	mutex_unlock(&kvm->lock);
	return r;
}

3145 3146
static int kvmppc_run_vcpu(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
{
3147
	int n_ceded, i, r;
3148
	struct kvmppc_vcore *vc;
3149
	struct kvm_vcpu *v;
3150

3151 3152
	trace_kvmppc_run_vcpu_enter(vcpu);

3153 3154 3155
	kvm_run->exit_reason = 0;
	vcpu->arch.ret = RESUME_GUEST;
	vcpu->arch.trap = 0;
3156
	kvmppc_update_vpas(vcpu);
3157 3158 3159 3160 3161 3162

	/*
	 * Synchronize with other threads in this virtual core
	 */
	vc = vcpu->arch.vcore;
	spin_lock(&vc->lock);
3163
	vcpu->arch.ceded = 0;
3164 3165
	vcpu->arch.run_task = current;
	vcpu->arch.kvm_run = kvm_run;
3166
	vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb());
3167
	vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
3168
	vcpu->arch.busy_preempt = TB_NIL;
3169
	WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], vcpu);
3170 3171
	++vc->n_runnable;

3172 3173 3174 3175 3176
	/*
	 * This happens the first time this is called for a vcpu.
	 * If the vcore is already running, we may be able to start
	 * this thread straight away and have it join in.
	 */
3177
	if (!signal_pending(current)) {
3178
		if (vc->vcore_state == VCORE_PIGGYBACK) {
3179 3180 3181
			if (spin_trylock(&vc->lock)) {
				if (vc->vcore_state == VCORE_RUNNING &&
				    !VCORE_IS_EXITING(vc)) {
3182
					kvmppc_create_dtl_entry(vcpu, vc);
3183
					kvmppc_start_thread(vcpu, vc);
3184 3185
					trace_kvm_guest_enter(vcpu);
				}
3186
				spin_unlock(&vc->lock);
3187 3188 3189
			}
		} else if (vc->vcore_state == VCORE_RUNNING &&
			   !VCORE_IS_EXITING(vc)) {
3190
			kvmppc_create_dtl_entry(vcpu, vc);
3191
			kvmppc_start_thread(vcpu, vc);
3192
			trace_kvm_guest_enter(vcpu);
3193
		} else if (vc->vcore_state == VCORE_SLEEPING) {
3194
			swake_up(&vc->wq);
3195 3196
		}

3197
	}
3198

3199 3200
	while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
	       !signal_pending(current)) {
3201 3202
		/* See if the MMU is ready to go */
		if (!vcpu->kvm->arch.mmu_ready) {
3203
			spin_unlock(&vc->lock);
3204
			r = kvmhv_setup_mmu(vcpu);
3205 3206 3207
			spin_lock(&vc->lock);
			if (r) {
				kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3208 3209
				kvm_run->fail_entry.
					hardware_entry_failure_reason = 0;
3210 3211 3212 3213 3214
				vcpu->arch.ret = r;
				break;
			}
		}

3215 3216 3217
		if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
			kvmppc_vcore_end_preempt(vc);

3218
		if (vc->vcore_state != VCORE_INACTIVE) {
3219
			kvmppc_wait_for_exec(vc, vcpu, TASK_INTERRUPTIBLE);
3220 3221
			continue;
		}
3222
		for_each_runnable_thread(i, v, vc) {
3223
			kvmppc_core_prepare_to_enter(v);
3224 3225 3226 3227 3228 3229 3230 3231
			if (signal_pending(v->arch.run_task)) {
				kvmppc_remove_runnable(vc, v);
				v->stat.signal_exits++;
				v->arch.kvm_run->exit_reason = KVM_EXIT_INTR;
				v->arch.ret = -EINTR;
				wake_up(&v->arch.cpu_run);
			}
		}
3232 3233 3234
		if (!vc->n_runnable || vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
			break;
		n_ceded = 0;
3235
		for_each_runnable_thread(i, v, vc) {
3236
			if (!kvmppc_vcpu_woken(v))
3237
				n_ceded += v->arch.ceded;
3238 3239 3240
			else
				v->arch.ceded = 0;
		}
3241 3242
		vc->runner = vcpu;
		if (n_ceded == vc->n_runnable) {
3243
			kvmppc_vcore_blocked(vc);
3244
		} else if (need_resched()) {
3245
			kvmppc_vcore_preempt(vc);
3246 3247
			/* Let something else run */
			cond_resched_lock(&vc->lock);
3248 3249
			if (vc->vcore_state == VCORE_PREEMPT)
				kvmppc_vcore_end_preempt(vc);
3250
		} else {
3251
			kvmppc_run_core(vc);
3252
		}
3253
		vc->runner = NULL;
3254
	}
3255

3256 3257
	while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
	       (vc->vcore_state == VCORE_RUNNING ||
3258 3259
		vc->vcore_state == VCORE_EXITING ||
		vc->vcore_state == VCORE_PIGGYBACK))
3260
		kvmppc_wait_for_exec(vc, vcpu, TASK_UNINTERRUPTIBLE);
3261

3262 3263 3264
	if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
		kvmppc_vcore_end_preempt(vc);

3265 3266 3267 3268 3269 3270 3271 3272 3273
	if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
		kvmppc_remove_runnable(vc, vcpu);
		vcpu->stat.signal_exits++;
		kvm_run->exit_reason = KVM_EXIT_INTR;
		vcpu->arch.ret = -EINTR;
	}

	if (vc->n_runnable && vc->vcore_state == VCORE_INACTIVE) {
		/* Wake up some vcpu to run the core */
3274 3275
		i = -1;
		v = next_runnable_thread(vc, &i);
3276
		wake_up(&v->arch.cpu_run);
3277 3278
	}

3279
	trace_kvmppc_run_vcpu_exit(vcpu, kvm_run);
3280 3281
	spin_unlock(&vc->lock);
	return vcpu->arch.ret;
3282 3283
}

3284
static int kvmppc_vcpu_run_hv(struct kvm_run *run, struct kvm_vcpu *vcpu)
3285 3286
{
	int r;
3287
	int srcu_idx;
3288
	unsigned long ebb_regs[3] = {};	/* shut up GCC */
3289 3290
	unsigned long user_tar = 0;
	unsigned int user_vrsave;
3291
	struct kvm *kvm;
3292

3293 3294 3295 3296 3297
	if (!vcpu->arch.sane) {
		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
		return -EINVAL;
	}

3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311
	/*
	 * Don't allow entry with a suspended transaction, because
	 * the guest entry/exit code will lose it.
	 * If the guest has TM enabled, save away their TM-related SPRs
	 * (they will get restored by the TM unavailable interrupt).
	 */
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
	if (cpu_has_feature(CPU_FTR_TM) && current->thread.regs &&
	    (current->thread.regs->msr & MSR_TM)) {
		if (MSR_TM_ACTIVE(current->thread.regs->msr)) {
			run->exit_reason = KVM_EXIT_FAIL_ENTRY;
			run->fail_entry.hardware_entry_failure_reason = 0;
			return -EINVAL;
		}
3312 3313
		/* Enable TM so we can read the TM SPRs */
		mtmsr(mfmsr() | MSR_TM);
3314 3315 3316 3317 3318 3319 3320
		current->thread.tm_tfhar = mfspr(SPRN_TFHAR);
		current->thread.tm_tfiar = mfspr(SPRN_TFIAR);
		current->thread.tm_texasr = mfspr(SPRN_TEXASR);
		current->thread.regs->msr &= ~MSR_TM;
	}
#endif

3321 3322
	kvmppc_core_prepare_to_enter(vcpu);

3323 3324 3325 3326 3327 3328
	/* No need to go into the guest when all we'll do is come back out */
	if (signal_pending(current)) {
		run->exit_reason = KVM_EXIT_INTR;
		return -EINTR;
	}

3329 3330 3331
	kvm = vcpu->kvm;
	atomic_inc(&kvm->arch.vcpus_running);
	/* Order vcpus_running vs. mmu_ready, see kvmppc_alloc_reset_hpt */
3332 3333
	smp_mb();

3334 3335
	flush_all_to_thread(current);

3336
	/* Save userspace EBB and other register values */
3337 3338 3339 3340
	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
		ebb_regs[0] = mfspr(SPRN_EBBHR);
		ebb_regs[1] = mfspr(SPRN_EBBRR);
		ebb_regs[2] = mfspr(SPRN_BESCR);
3341
		user_tar = mfspr(SPRN_TAR);
3342
	}
3343
	user_vrsave = mfspr(SPRN_VRSAVE);
3344

3345
	vcpu->arch.wqp = &vcpu->arch.vcore->wq;
3346
	vcpu->arch.pgdir = current->mm->pgd;
3347
	vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
3348

3349 3350 3351 3352 3353
	do {
		r = kvmppc_run_vcpu(run, vcpu);

		if (run->exit_reason == KVM_EXIT_PAPR_HCALL &&
		    !(vcpu->arch.shregs.msr & MSR_PR)) {
3354
			trace_kvm_hcall_enter(vcpu);
3355
			r = kvmppc_pseries_do_hcall(vcpu);
3356
			trace_kvm_hcall_exit(vcpu, r);
3357
			kvmppc_core_prepare_to_enter(vcpu);
3358
		} else if (r == RESUME_PAGE_FAULT) {
3359
			srcu_idx = srcu_read_lock(&kvm->srcu);
3360 3361
			r = kvmppc_book3s_hv_page_fault(run, vcpu,
				vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
3362
			srcu_read_unlock(&kvm->srcu, srcu_idx);
3363 3364 3365 3366 3367 3368
		} else if (r == RESUME_PASSTHROUGH) {
			if (WARN_ON(xive_enabled()))
				r = H_SUCCESS;
			else
				r = kvmppc_xics_rm_complete(vcpu, 0);
		}
3369
	} while (is_kvmppc_resume_guest(r));
3370

3371
	/* Restore userspace EBB and other register values */
3372 3373 3374 3375
	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
		mtspr(SPRN_EBBHR, ebb_regs[0]);
		mtspr(SPRN_EBBRR, ebb_regs[1]);
		mtspr(SPRN_BESCR, ebb_regs[2]);
3376 3377
		mtspr(SPRN_TAR, user_tar);
		mtspr(SPRN_FSCR, current->thread.fscr);
3378
	}
3379
	mtspr(SPRN_VRSAVE, user_vrsave);
3380

3381
	vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
3382
	atomic_dec(&kvm->arch.vcpus_running);
3383 3384 3385
	return r;
}

3386
static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps,
3387
				     int shift, int sllp)
3388
{
3389 3390 3391 3392
	(*sps)->page_shift = shift;
	(*sps)->slb_enc = sllp;
	(*sps)->enc[0].page_shift = shift;
	(*sps)->enc[0].pte_enc = kvmppc_pgsize_lp_encoding(shift, shift);
3393
	/*
3394
	 * Add 16MB MPSS support (may get filtered out by userspace)
3395
	 */
3396 3397 3398 3399 3400 3401
	if (shift != 24) {
		int penc = kvmppc_pgsize_lp_encoding(shift, 24);
		if (penc != -1) {
			(*sps)->enc[1].page_shift = 24;
			(*sps)->enc[1].pte_enc = penc;
		}
3402
	}
3403 3404 3405
	(*sps)++;
}

3406 3407
static int kvm_vm_ioctl_get_smmu_info_hv(struct kvm *kvm,
					 struct kvm_ppc_smmu_info *info)
3408 3409 3410
{
	struct kvm_ppc_one_seg_page_size *sps;

3411 3412 3413 3414 3415 3416 3417 3418
	/*
	 * POWER7, POWER8 and POWER9 all support 32 storage keys for data.
	 * POWER7 doesn't support keys for instruction accesses,
	 * POWER8 and POWER9 do.
	 */
	info->data_keys = 32;
	info->instr_keys = cpu_has_feature(CPU_FTR_ARCH_207S) ? 32 : 0;

3419 3420 3421
	/* POWER7, 8 and 9 all have 1T segments and 32-entry SLB */
	info->flags = KVM_PPC_PAGE_SIZES_REAL | KVM_PPC_1T_SEGMENTS;
	info->slb_size = 32;
3422 3423 3424

	/* We only support these sizes for now, and no muti-size segments */
	sps = &info->sps[0];
3425 3426 3427
	kvmppc_add_seg_page_size(&sps, 12, 0);
	kvmppc_add_seg_page_size(&sps, 16, SLB_VSID_L | SLB_VSID_LP_01);
	kvmppc_add_seg_page_size(&sps, 24, SLB_VSID_L);
3428 3429 3430 3431

	return 0;
}

3432 3433 3434
/*
 * Get (and clear) the dirty memory log for a memory slot.
 */
3435 3436
static int kvm_vm_ioctl_get_dirty_log_hv(struct kvm *kvm,
					 struct kvm_dirty_log *log)
3437
{
3438
	struct kvm_memslots *slots;
3439
	struct kvm_memory_slot *memslot;
3440
	int i, r;
3441
	unsigned long n;
3442
	unsigned long *buf, *p;
3443
	struct kvm_vcpu *vcpu;
3444 3445 3446 3447

	mutex_lock(&kvm->slots_lock);

	r = -EINVAL;
3448
	if (log->slot >= KVM_USER_MEM_SLOTS)
3449 3450
		goto out;

3451 3452
	slots = kvm_memslots(kvm);
	memslot = id_to_memslot(slots, log->slot);
3453 3454 3455 3456
	r = -ENOENT;
	if (!memslot->dirty_bitmap)
		goto out;

3457
	/*
3458 3459
	 * Use second half of bitmap area because both HPT and radix
	 * accumulate bits in the first half.
3460
	 */
3461
	n = kvm_dirty_bitmap_bytes(memslot);
3462 3463
	buf = memslot->dirty_bitmap + n / sizeof(long);
	memset(buf, 0, n);
3464

3465 3466 3467 3468
	if (kvm_is_radix(kvm))
		r = kvmppc_hv_get_dirty_log_radix(kvm, memslot, buf);
	else
		r = kvmppc_hv_get_dirty_log_hpt(kvm, memslot, buf);
3469 3470 3471
	if (r)
		goto out;

3472 3473 3474 3475 3476 3477 3478 3479 3480 3481
	/*
	 * We accumulate dirty bits in the first half of the
	 * memslot's dirty_bitmap area, for when pages are paged
	 * out or modified by the host directly.  Pick up these
	 * bits and add them to the map.
	 */
	p = memslot->dirty_bitmap;
	for (i = 0; i < n / sizeof(long); ++i)
		buf[i] |= xchg(&p[i], 0);

3482 3483 3484 3485 3486 3487 3488 3489 3490
	/* Harvest dirty bits from VPA and DTL updates */
	/* Note: we never modify the SLB shadow buffer areas */
	kvm_for_each_vcpu(i, vcpu, kvm) {
		spin_lock(&vcpu->arch.vpa_update_lock);
		kvmppc_harvest_vpa_dirty(&vcpu->arch.vpa, memslot, buf);
		kvmppc_harvest_vpa_dirty(&vcpu->arch.dtl, memslot, buf);
		spin_unlock(&vcpu->arch.vpa_update_lock);
	}

3491
	r = -EFAULT;
3492
	if (copy_to_user(log->dirty_bitmap, buf, n))
3493 3494 3495 3496 3497 3498 3499 3500
		goto out;

	r = 0;
out:
	mutex_unlock(&kvm->slots_lock);
	return r;
}

3501 3502
static void kvmppc_core_free_memslot_hv(struct kvm_memory_slot *free,
					struct kvm_memory_slot *dont)
3503 3504 3505 3506
{
	if (!dont || free->arch.rmap != dont->arch.rmap) {
		vfree(free->arch.rmap);
		free->arch.rmap = NULL;
3507
	}
3508 3509
}

3510 3511
static int kvmppc_core_create_memslot_hv(struct kvm_memory_slot *slot,
					 unsigned long npages)
3512 3513 3514 3515
{
	slot->arch.rmap = vzalloc(npages * sizeof(*slot->arch.rmap));
	if (!slot->arch.rmap)
		return -ENOMEM;
3516

3517 3518
	return 0;
}
3519

3520 3521
static int kvmppc_core_prepare_memory_region_hv(struct kvm *kvm,
					struct kvm_memory_slot *memslot,
3522
					const struct kvm_userspace_memory_region *mem)
3523
{
3524
	return 0;
3525 3526
}

3527
static void kvmppc_core_commit_memory_region_hv(struct kvm *kvm,
3528
				const struct kvm_userspace_memory_region *mem,
3529 3530
				const struct kvm_memory_slot *old,
				const struct kvm_memory_slot *new)
3531
{
3532 3533
	unsigned long npages = mem->memory_size >> PAGE_SHIFT;

3534 3535 3536 3537 3538 3539 3540 3541
	/*
	 * If we are making a new memslot, it might make
	 * some address that was previously cached as emulated
	 * MMIO be no longer emulated MMIO, so invalidate
	 * all the caches of emulated MMIO translations.
	 */
	if (npages)
		atomic64_inc(&kvm->arch.mmio_update);
3542 3543
}

3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569
/*
 * Update LPCR values in kvm->arch and in vcores.
 * Caller must hold kvm->lock.
 */
void kvmppc_update_lpcr(struct kvm *kvm, unsigned long lpcr, unsigned long mask)
{
	long int i;
	u32 cores_done = 0;

	if ((kvm->arch.lpcr & mask) == lpcr)
		return;

	kvm->arch.lpcr = (kvm->arch.lpcr & ~mask) | lpcr;

	for (i = 0; i < KVM_MAX_VCORES; ++i) {
		struct kvmppc_vcore *vc = kvm->arch.vcores[i];
		if (!vc)
			continue;
		spin_lock(&vc->lock);
		vc->lpcr = (vc->lpcr & ~mask) | lpcr;
		spin_unlock(&vc->lock);
		if (++cores_done >= kvm->arch.online_vcores)
			break;
	}
}

3570 3571 3572 3573 3574
static void kvmppc_mmu_destroy_hv(struct kvm_vcpu *vcpu)
{
	return;
}

3575
void kvmppc_setup_partition_table(struct kvm *kvm)
3576 3577 3578
{
	unsigned long dw0, dw1;

3579 3580 3581 3582 3583 3584
	if (!kvm_is_radix(kvm)) {
		/* PS field - page size for VRMA */
		dw0 = ((kvm->arch.vrma_slb_v & SLB_VSID_L) >> 1) |
			((kvm->arch.vrma_slb_v & SLB_VSID_LP) << 1);
		/* HTABSIZE and HTABORG fields */
		dw0 |= kvm->arch.sdr1;
3585

3586 3587 3588 3589 3590 3591 3592
		/* Second dword as set by userspace */
		dw1 = kvm->arch.process_table;
	} else {
		dw0 = PATB_HR | radix__get_tree_size() |
			__pa(kvm->arch.pgtable) | RADIX_PGD_INDEX_SIZE;
		dw1 = PATB_GR | kvm->arch.process_table;
	}
3593 3594 3595 3596

	mmu_partition_table_set_entry(kvm->arch.lpid, dw0, dw1);
}

3597 3598 3599 3600
/*
 * Set up HPT (hashed page table) and RMA (real-mode area).
 * Must be called with kvm->lock held.
 */
3601
static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu)
3602 3603 3604 3605 3606 3607
{
	int err = 0;
	struct kvm *kvm = vcpu->kvm;
	unsigned long hva;
	struct kvm_memory_slot *memslot;
	struct vm_area_struct *vma;
3608
	unsigned long lpcr = 0, senc;
3609
	unsigned long psize, porder;
3610
	int srcu_idx;
3611

3612
	/* Allocate hashed page table (if not done already) and reset it */
3613
	if (!kvm->arch.hpt.virt) {
3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624
		int order = KVM_DEFAULT_HPT_ORDER;
		struct kvm_hpt_info info;

		err = kvmppc_allocate_hpt(&info, order);
		/* If we get here, it means userspace didn't specify a
		 * size explicitly.  So, try successively smaller
		 * sizes if the default failed. */
		while ((err == -ENOMEM) && --order >= PPC_MIN_HPT_ORDER)
			err  = kvmppc_allocate_hpt(&info, order);

		if (err < 0) {
3625 3626 3627
			pr_err("KVM: Couldn't alloc HPT\n");
			goto out;
		}
3628 3629

		kvmppc_set_hpt(kvm, &info);
3630 3631
	}

3632
	/* Look up the memslot for guest physical address 0 */
3633
	srcu_idx = srcu_read_lock(&kvm->srcu);
3634
	memslot = gfn_to_memslot(kvm, 0);
3635

3636 3637 3638
	/* We must have some memory at 0 by now */
	err = -EINVAL;
	if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
3639
		goto out_srcu;
3640 3641 3642 3643 3644 3645 3646 3647 3648

	/* Look up the VMA for the start of this memory slot */
	hva = memslot->userspace_addr;
	down_read(&current->mm->mmap_sem);
	vma = find_vma(current->mm, hva);
	if (!vma || vma->vm_start > hva || (vma->vm_flags & VM_IO))
		goto up_out;

	psize = vma_kernel_pagesize(vma);
3649
	porder = __ilog2(psize);
3650 3651 3652

	up_read(&current->mm->mmap_sem);

3653 3654 3655 3656 3657
	/* We can handle 4k, 64k or 16M pages in the VRMA */
	err = -EINVAL;
	if (!(psize == 0x1000 || psize == 0x10000 ||
	      psize == 0x1000000))
		goto out_srcu;
3658

3659 3660 3661 3662 3663
	senc = slb_pgsize_encoding(psize);
	kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
		(VRMA_VSID << SLB_VSID_SHIFT_1T);
	/* Create HPTEs in the hash page table for the VRMA */
	kvmppc_map_vrma(vcpu, memslot, porder);
3664

3665 3666 3667 3668 3669 3670
	/* Update VRMASD field in the LPCR */
	if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
		/* the -4 is to account for senc values starting at 0x10 */
		lpcr = senc << (LPCR_VRMASD_SH - 4);
		kvmppc_update_lpcr(kvm, lpcr, LPCR_VRMASD);
	}
3671

3672
	/* Order updates to kvm->arch.lpcr etc. vs. mmu_ready */
3673 3674
	smp_wmb();
	err = 0;
3675 3676
 out_srcu:
	srcu_read_unlock(&kvm->srcu, srcu_idx);
3677 3678
 out:
	return err;
3679

3680 3681
 up_out:
	up_read(&current->mm->mmap_sem);
3682
	goto out_srcu;
3683 3684
}

3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712
/* Must be called with kvm->lock held and mmu_ready = 0 and no vcpus running */
int kvmppc_switch_mmu_to_hpt(struct kvm *kvm)
{
	kvmppc_free_radix(kvm);
	kvmppc_update_lpcr(kvm, LPCR_VPM1,
			   LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR);
	kvmppc_rmap_reset(kvm);
	kvm->arch.radix = 0;
	kvm->arch.process_table = 0;
	return 0;
}

/* Must be called with kvm->lock held and mmu_ready = 0 and no vcpus running */
int kvmppc_switch_mmu_to_radix(struct kvm *kvm)
{
	int err;

	err = kvmppc_init_vm_radix(kvm);
	if (err)
		return err;

	kvmppc_free_hpt(&kvm->arch.hpt);
	kvmppc_update_lpcr(kvm, LPCR_UPRT | LPCR_GTSE | LPCR_HR,
			   LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR);
	kvm->arch.radix = 1;
	return 0;
}

3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746
#ifdef CONFIG_KVM_XICS
/*
 * Allocate a per-core structure for managing state about which cores are
 * running in the host versus the guest and for exchanging data between
 * real mode KVM and CPU running in the host.
 * This is only done for the first VM.
 * The allocated structure stays even if all VMs have stopped.
 * It is only freed when the kvm-hv module is unloaded.
 * It's OK for this routine to fail, we just don't support host
 * core operations like redirecting H_IPI wakeups.
 */
void kvmppc_alloc_host_rm_ops(void)
{
	struct kvmppc_host_rm_ops *ops;
	unsigned long l_ops;
	int cpu, core;
	int size;

	/* Not the first time here ? */
	if (kvmppc_host_rm_ops_hv != NULL)
		return;

	ops = kzalloc(sizeof(struct kvmppc_host_rm_ops), GFP_KERNEL);
	if (!ops)
		return;

	size = cpu_nr_cores() * sizeof(struct kvmppc_host_rm_core);
	ops->rm_core = kzalloc(size, GFP_KERNEL);

	if (!ops->rm_core) {
		kfree(ops);
		return;
	}

3747
	cpus_read_lock();
3748

3749 3750 3751 3752 3753 3754 3755 3756
	for (cpu = 0; cpu < nr_cpu_ids; cpu += threads_per_core) {
		if (!cpu_online(cpu))
			continue;

		core = cpu >> threads_shift;
		ops->rm_core[core].rm_state.in_host = 1;
	}

3757 3758
	ops->vcpu_kick = kvmppc_fast_vcpu_kick_hv;

3759 3760 3761 3762 3763 3764 3765 3766 3767 3768
	/*
	 * Make the contents of the kvmppc_host_rm_ops structure visible
	 * to other CPUs before we assign it to the global variable.
	 * Do an atomic assignment (no locks used here), but if someone
	 * beats us to it, just free our copy and return.
	 */
	smp_wmb();
	l_ops = (unsigned long) ops;

	if (cmpxchg64((unsigned long *)&kvmppc_host_rm_ops_hv, 0, l_ops)) {
3769
		cpus_read_unlock();
3770 3771
		kfree(ops->rm_core);
		kfree(ops);
3772
		return;
3773
	}
3774

3775 3776 3777 3778 3779
	cpuhp_setup_state_nocalls_cpuslocked(CPUHP_KVM_PPC_BOOK3S_PREPARE,
					     "ppc/kvm_book3s:prepare",
					     kvmppc_set_host_core,
					     kvmppc_clear_host_core);
	cpus_read_unlock();
3780 3781 3782 3783 3784
}

void kvmppc_free_host_rm_ops(void)
{
	if (kvmppc_host_rm_ops_hv) {
3785
		cpuhp_remove_state_nocalls(CPUHP_KVM_PPC_BOOK3S_PREPARE);
3786 3787 3788 3789 3790 3791 3792
		kfree(kvmppc_host_rm_ops_hv->rm_core);
		kfree(kvmppc_host_rm_ops_hv);
		kvmppc_host_rm_ops_hv = NULL;
	}
}
#endif

3793
static int kvmppc_core_init_vm_hv(struct kvm *kvm)
3794
{
3795
	unsigned long lpcr, lpid;
3796
	char buf[32];
3797
	int ret;
3798

3799 3800 3801
	/* Allocate the guest's logical partition ID */

	lpid = kvmppc_alloc_lpid();
3802
	if ((long)lpid < 0)
3803 3804
		return -ENOMEM;
	kvm->arch.lpid = lpid;
3805

3806 3807
	kvmppc_alloc_host_rm_ops();

3808 3809 3810 3811
	/*
	 * Since we don't flush the TLB when tearing down a VM,
	 * and this lpid might have previously been used,
	 * make sure we flush on each core before running the new VM.
3812 3813
	 * On POWER9, the tlbie in mmu_partition_table_set_entry()
	 * does this flush for us.
3814
	 */
3815 3816
	if (!cpu_has_feature(CPU_FTR_ARCH_300))
		cpumask_setall(&kvm->arch.need_tlb_flush);
3817

3818 3819 3820 3821
	/* Start out with the default set of hcalls enabled */
	memcpy(kvm->arch.enabled_hcalls, default_enabled_hcalls,
	       sizeof(kvm->arch.enabled_hcalls));

3822 3823
	if (!cpu_has_feature(CPU_FTR_ARCH_300))
		kvm->arch.host_sdr1 = mfspr(SPRN_SDR1);
3824

3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835
	/* Init LPCR for virtual RMA mode */
	kvm->arch.host_lpid = mfspr(SPRN_LPID);
	kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR);
	lpcr &= LPCR_PECE | LPCR_LPES;
	lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE |
		LPCR_VPM0 | LPCR_VPM1;
	kvm->arch.vrma_slb_v = SLB_VSID_B_1T |
		(VRMA_VSID << SLB_VSID_SHIFT_1T);
	/* On POWER8 turn on online bit to enable PURR/SPURR */
	if (cpu_has_feature(CPU_FTR_ARCH_207S))
		lpcr |= LPCR_ONL;
3836 3837 3838
	/*
	 * On POWER9, VPM0 bit is reserved (VPM0=1 behaviour is assumed)
	 * Set HVICE bit to enable hypervisor virtualization interrupts.
3839 3840 3841
	 * Set HEIC to prevent OS interrupts to go to hypervisor (should
	 * be unnecessary but better safe than sorry in case we re-enable
	 * EE in HV mode with this LPCR still set)
3842 3843
	 */
	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
3844
		lpcr &= ~LPCR_VPM0;
3845 3846 3847 3848 3849 3850 3851 3852
		lpcr |= LPCR_HVICE | LPCR_HEIC;

		/*
		 * If xive is enabled, we route 0x500 interrupts directly
		 * to the guest.
		 */
		if (xive_enabled())
			lpcr |= LPCR_LPES;
3853 3854
	}

3855
	/*
3856
	 * If the host uses radix, the guest starts out as radix.
3857 3858 3859
	 */
	if (radix_enabled()) {
		kvm->arch.radix = 1;
3860
		kvm->arch.mmu_ready = 1;
3861 3862 3863 3864 3865 3866 3867 3868 3869 3870
		lpcr &= ~LPCR_VPM1;
		lpcr |= LPCR_UPRT | LPCR_GTSE | LPCR_HR;
		ret = kvmppc_init_vm_radix(kvm);
		if (ret) {
			kvmppc_free_lpid(kvm->arch.lpid);
			return ret;
		}
		kvmppc_setup_partition_table(kvm);
	}

3871
	kvm->arch.lpcr = lpcr;
3872

3873 3874 3875
	/* Initialization for future HPT resizes */
	kvm->arch.resize_hpt = NULL;

3876 3877 3878 3879
	/*
	 * Work out how many sets the TLB has, for the use of
	 * the TLB invalidation loop in book3s_hv_rmhandlers.S.
	 */
3880
	if (radix_enabled())
3881 3882
		kvm->arch.tlb_sets = POWER9_TLB_SETS_RADIX;	/* 128 */
	else if (cpu_has_feature(CPU_FTR_ARCH_300))
3883 3884 3885 3886 3887 3888
		kvm->arch.tlb_sets = POWER9_TLB_SETS_HASH;	/* 256 */
	else if (cpu_has_feature(CPU_FTR_ARCH_207S))
		kvm->arch.tlb_sets = POWER8_TLB_SETS;		/* 512 */
	else
		kvm->arch.tlb_sets = POWER7_TLB_SETS;		/* 128 */

3889
	/*
3890 3891
	 * Track that we now have a HV mode VM active. This blocks secondary
	 * CPU threads from coming online.
3892 3893
	 * On POWER9, we only need to do this if the "indep_threads_mode"
	 * module parameter has been set to N.
3894
	 */
3895 3896 3897
	if (cpu_has_feature(CPU_FTR_ARCH_300))
		kvm->arch.threads_indep = indep_threads_mode;
	if (!kvm->arch.threads_indep)
3898
		kvm_hv_vm_activated();
3899

3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910
	/*
	 * Initialize smt_mode depending on processor.
	 * POWER8 and earlier have to use "strict" threading, where
	 * all vCPUs in a vcore have to run on the same (sub)core,
	 * whereas on POWER9 the threads can each run a different
	 * guest.
	 */
	if (!cpu_has_feature(CPU_FTR_ARCH_300))
		kvm->arch.smt_mode = threads_per_subcore;
	else
		kvm->arch.smt_mode = 1;
3911
	kvm->arch.emul_smt_mode = 1;
3912

3913 3914 3915 3916 3917 3918 3919 3920
	/*
	 * Create a debugfs directory for the VM
	 */
	snprintf(buf, sizeof(buf), "vm%d", current->pid);
	kvm->arch.debugfs_dir = debugfs_create_dir(buf, kvm_debugfs_dir);
	if (!IS_ERR_OR_NULL(kvm->arch.debugfs_dir))
		kvmppc_mmu_debugfs_init(kvm);

3921
	return 0;
3922 3923
}

3924 3925 3926 3927
static void kvmppc_free_vcores(struct kvm *kvm)
{
	long int i;

3928
	for (i = 0; i < KVM_MAX_VCORES; ++i)
3929 3930 3931 3932
		kfree(kvm->arch.vcores[i]);
	kvm->arch.online_vcores = 0;
}

3933
static void kvmppc_core_destroy_vm_hv(struct kvm *kvm)
3934
{
3935 3936
	debugfs_remove_recursive(kvm->arch.debugfs_dir);

3937
	if (!kvm->arch.threads_indep)
3938
		kvm_hv_vm_deactivated();
3939

3940
	kvmppc_free_vcores(kvm);
3941

3942 3943
	kvmppc_free_lpid(kvm->arch.lpid);

3944 3945 3946
	if (kvm_is_radix(kvm))
		kvmppc_free_radix(kvm);
	else
3947
		kvmppc_free_hpt(&kvm->arch.hpt);
3948 3949

	kvmppc_free_pimap(kvm);
3950 3951
}

3952 3953 3954
/* We don't need to emulate any privileged instructions or dcbz */
static int kvmppc_core_emulate_op_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
				     unsigned int inst, int *advance)
3955
{
3956
	return EMULATE_FAIL;
3957 3958
}

3959 3960
static int kvmppc_core_emulate_mtspr_hv(struct kvm_vcpu *vcpu, int sprn,
					ulong spr_val)
3961 3962 3963 3964
{
	return EMULATE_FAIL;
}

3965 3966
static int kvmppc_core_emulate_mfspr_hv(struct kvm_vcpu *vcpu, int sprn,
					ulong *spr_val)
3967 3968 3969 3970
{
	return EMULATE_FAIL;
}

3971
static int kvmppc_core_check_processor_compat_hv(void)
3972
{
3973 3974
	if (!cpu_has_feature(CPU_FTR_HVMODE) ||
	    !cpu_has_feature(CPU_FTR_ARCH_206))
3975
		return -EIO;
3976

3977
	return 0;
3978 3979
}

3980 3981 3982 3983 3984 3985 3986
#ifdef CONFIG_KVM_XICS

void kvmppc_free_pimap(struct kvm *kvm)
{
	kfree(kvm->arch.pimap);
}

3987
static struct kvmppc_passthru_irqmap *kvmppc_alloc_pimap(void)
3988 3989 3990
{
	return kzalloc(sizeof(struct kvmppc_passthru_irqmap), GFP_KERNEL);
}
3991 3992 3993 3994 3995 3996 3997

static int kvmppc_set_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
{
	struct irq_desc *desc;
	struct kvmppc_irq_map *irq_map;
	struct kvmppc_passthru_irqmap *pimap;
	struct irq_chip *chip;
3998
	int i, rc = 0;
3999

4000 4001 4002
	if (!kvm_irq_bypass)
		return 1;

4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022
	desc = irq_to_desc(host_irq);
	if (!desc)
		return -EIO;

	mutex_lock(&kvm->lock);

	pimap = kvm->arch.pimap;
	if (pimap == NULL) {
		/* First call, allocate structure to hold IRQ map */
		pimap = kvmppc_alloc_pimap();
		if (pimap == NULL) {
			mutex_unlock(&kvm->lock);
			return -ENOMEM;
		}
		kvm->arch.pimap = pimap;
	}

	/*
	 * For now, we only support interrupts for which the EOI operation
	 * is an OPAL call followed by a write to XIRR, since that's
4023
	 * what our real-mode EOI code does, or a XIVE interrupt
4024 4025
	 */
	chip = irq_data_get_irq_chip(&desc->irq_data);
4026
	if (!chip || !(is_pnv_opal_msi(chip) || is_xive_irq(chip))) {
4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057
		pr_warn("kvmppc_set_passthru_irq_hv: Could not assign IRQ map for (%d,%d)\n",
			host_irq, guest_gsi);
		mutex_unlock(&kvm->lock);
		return -ENOENT;
	}

	/*
	 * See if we already have an entry for this guest IRQ number.
	 * If it's mapped to a hardware IRQ number, that's an error,
	 * otherwise re-use this entry.
	 */
	for (i = 0; i < pimap->n_mapped; i++) {
		if (guest_gsi == pimap->mapped[i].v_hwirq) {
			if (pimap->mapped[i].r_hwirq) {
				mutex_unlock(&kvm->lock);
				return -EINVAL;
			}
			break;
		}
	}

	if (i == KVMPPC_PIRQ_MAPPED) {
		mutex_unlock(&kvm->lock);
		return -EAGAIN;		/* table is full */
	}

	irq_map = &pimap->mapped[i];

	irq_map->v_hwirq = guest_gsi;
	irq_map->desc = desc;

4058 4059 4060 4061 4062 4063 4064
	/*
	 * Order the above two stores before the next to serialize with
	 * the KVM real mode handler.
	 */
	smp_wmb();
	irq_map->r_hwirq = desc->irq_data.hwirq;

4065 4066 4067
	if (i == pimap->n_mapped)
		pimap->n_mapped++;

4068 4069 4070 4071 4072 4073
	if (xive_enabled())
		rc = kvmppc_xive_set_mapped(kvm, guest_gsi, desc);
	else
		kvmppc_xics_set_mapped(kvm, guest_gsi, desc->irq_data.hwirq);
	if (rc)
		irq_map->r_hwirq = 0;
4074

4075 4076 4077 4078 4079 4080 4081 4082 4083
	mutex_unlock(&kvm->lock);

	return 0;
}

static int kvmppc_clr_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
{
	struct irq_desc *desc;
	struct kvmppc_passthru_irqmap *pimap;
4084
	int i, rc = 0;
4085

4086 4087 4088
	if (!kvm_irq_bypass)
		return 0;

4089 4090 4091 4092 4093
	desc = irq_to_desc(host_irq);
	if (!desc)
		return -EIO;

	mutex_lock(&kvm->lock);
4094 4095
	if (!kvm->arch.pimap)
		goto unlock;
4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108

	pimap = kvm->arch.pimap;

	for (i = 0; i < pimap->n_mapped; i++) {
		if (guest_gsi == pimap->mapped[i].v_hwirq)
			break;
	}

	if (i == pimap->n_mapped) {
		mutex_unlock(&kvm->lock);
		return -ENODEV;
	}

4109 4110 4111 4112
	if (xive_enabled())
		rc = kvmppc_xive_clr_mapped(kvm, guest_gsi, pimap->mapped[i].desc);
	else
		kvmppc_xics_clr_mapped(kvm, guest_gsi, pimap->mapped[i].r_hwirq);
4113

4114
	/* invalidate the entry (what do do on error from the above ?) */
4115 4116 4117 4118 4119 4120
	pimap->mapped[i].r_hwirq = 0;

	/*
	 * We don't free this structure even when the count goes to
	 * zero. The structure is freed when we destroy the VM.
	 */
4121
 unlock:
4122
	mutex_unlock(&kvm->lock);
4123
	return rc;
4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161
}

static int kvmppc_irq_bypass_add_producer_hv(struct irq_bypass_consumer *cons,
					     struct irq_bypass_producer *prod)
{
	int ret = 0;
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

	irqfd->producer = prod;

	ret = kvmppc_set_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi);
	if (ret)
		pr_info("kvmppc_set_passthru_irq (irq %d, gsi %d) fails: %d\n",
			prod->irq, irqfd->gsi, ret);

	return ret;
}

static void kvmppc_irq_bypass_del_producer_hv(struct irq_bypass_consumer *cons,
					      struct irq_bypass_producer *prod)
{
	int ret;
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

	irqfd->producer = NULL;

	/*
	 * When producer of consumer is unregistered, we change back to
	 * default external interrupt handling mode - KVM real mode
	 * will switch back to host.
	 */
	ret = kvmppc_clr_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi);
	if (ret)
		pr_warn("kvmppc_clr_passthru_irq (irq %d, gsi %d) fails: %d\n",
			prod->irq, irqfd->gsi, ret);
}
4162 4163
#endif

4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178
static long kvm_arch_vm_ioctl_hv(struct file *filp,
				 unsigned int ioctl, unsigned long arg)
{
	struct kvm *kvm __maybe_unused = filp->private_data;
	void __user *argp = (void __user *)arg;
	long r;

	switch (ioctl) {

	case KVM_PPC_ALLOCATE_HTAB: {
		u32 htab_order;

		r = -EFAULT;
		if (get_user(htab_order, (u32 __user *)argp))
			break;
4179
		r = kvmppc_alloc_reset_hpt(kvm, htab_order);
4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195
		if (r)
			break;
		r = 0;
		break;
	}

	case KVM_PPC_GET_HTAB_FD: {
		struct kvm_get_htab_fd ghf;

		r = -EFAULT;
		if (copy_from_user(&ghf, argp, sizeof(ghf)))
			break;
		r = kvm_vm_ioctl_get_htab_fd(kvm, &ghf);
		break;
	}

4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217
	case KVM_PPC_RESIZE_HPT_PREPARE: {
		struct kvm_ppc_resize_hpt rhpt;

		r = -EFAULT;
		if (copy_from_user(&rhpt, argp, sizeof(rhpt)))
			break;

		r = kvm_vm_ioctl_resize_hpt_prepare(kvm, &rhpt);
		break;
	}

	case KVM_PPC_RESIZE_HPT_COMMIT: {
		struct kvm_ppc_resize_hpt rhpt;

		r = -EFAULT;
		if (copy_from_user(&rhpt, argp, sizeof(rhpt)))
			break;

		r = kvm_vm_ioctl_resize_hpt_commit(kvm, &rhpt);
		break;
	}

4218 4219 4220 4221 4222 4223 4224
	default:
		r = -ENOTTY;
	}

	return r;
}

4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258
/*
 * List of hcall numbers to enable by default.
 * For compatibility with old userspace, we enable by default
 * all hcalls that were implemented before the hcall-enabling
 * facility was added.  Note this list should not include H_RTAS.
 */
static unsigned int default_hcall_list[] = {
	H_REMOVE,
	H_ENTER,
	H_READ,
	H_PROTECT,
	H_BULK_REMOVE,
	H_GET_TCE,
	H_PUT_TCE,
	H_SET_DABR,
	H_SET_XDABR,
	H_CEDE,
	H_PROD,
	H_CONFER,
	H_REGISTER_VPA,
#ifdef CONFIG_KVM_XICS
	H_EOI,
	H_CPPR,
	H_IPI,
	H_IPOLL,
	H_XIRR,
	H_XIRR_X,
#endif
	0
};

static void init_default_hcalls(void)
{
	int i;
4259
	unsigned int hcall;
4260

4261 4262 4263 4264 4265
	for (i = 0; default_hcall_list[i]; ++i) {
		hcall = default_hcall_list[i];
		WARN_ON(!kvmppc_hcall_impl_hv(hcall));
		__set_bit(hcall / 4, default_enabled_hcalls);
	}
4266 4267
}

4268 4269
static int kvmhv_configure_mmu(struct kvm *kvm, struct kvm_ppc_mmuv3_cfg *cfg)
{
4270
	unsigned long lpcr;
4271
	int radix;
4272
	int err;
4273 4274 4275 4276 4277 4278 4279 4280 4281 4282

	/* If not on a POWER9, reject it */
	if (!cpu_has_feature(CPU_FTR_ARCH_300))
		return -ENODEV;

	/* If any unknown flags set, reject it */
	if (cfg->flags & ~(KVM_PPC_MMUV3_RADIX | KVM_PPC_MMUV3_GTSE))
		return -EINVAL;

	/* GR (guest radix) bit in process_table field must match */
4283
	radix = !!(cfg->flags & KVM_PPC_MMUV3_RADIX);
4284
	if (!!(cfg->process_table & PATB_GR) != radix)
4285 4286 4287 4288 4289 4290
		return -EINVAL;

	/* Process table size field must be reasonable, i.e. <= 24 */
	if ((cfg->process_table & PRTS_MASK) > 24)
		return -EINVAL;

4291 4292 4293 4294
	/* We can change a guest to/from radix now, if the host is radix */
	if (radix && !radix_enabled())
		return -EINVAL;

4295
	mutex_lock(&kvm->lock);
4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314
	if (radix != kvm_is_radix(kvm)) {
		if (kvm->arch.mmu_ready) {
			kvm->arch.mmu_ready = 0;
			/* order mmu_ready vs. vcpus_running */
			smp_mb();
			if (atomic_read(&kvm->arch.vcpus_running)) {
				kvm->arch.mmu_ready = 1;
				err = -EBUSY;
				goto out_unlock;
			}
		}
		if (radix)
			err = kvmppc_switch_mmu_to_radix(kvm);
		else
			err = kvmppc_switch_mmu_to_hpt(kvm);
		if (err)
			goto out_unlock;
	}

4315 4316 4317 4318 4319
	kvm->arch.process_table = cfg->process_table;
	kvmppc_setup_partition_table(kvm);

	lpcr = (cfg->flags & KVM_PPC_MMUV3_GTSE) ? LPCR_GTSE : 0;
	kvmppc_update_lpcr(kvm, lpcr, LPCR_GTSE);
4320
	err = 0;
4321

4322 4323 4324
 out_unlock:
	mutex_unlock(&kvm->lock);
	return err;
4325 4326
}

4327
static struct kvmppc_ops kvm_ops_hv = {
4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358
	.get_sregs = kvm_arch_vcpu_ioctl_get_sregs_hv,
	.set_sregs = kvm_arch_vcpu_ioctl_set_sregs_hv,
	.get_one_reg = kvmppc_get_one_reg_hv,
	.set_one_reg = kvmppc_set_one_reg_hv,
	.vcpu_load   = kvmppc_core_vcpu_load_hv,
	.vcpu_put    = kvmppc_core_vcpu_put_hv,
	.set_msr     = kvmppc_set_msr_hv,
	.vcpu_run    = kvmppc_vcpu_run_hv,
	.vcpu_create = kvmppc_core_vcpu_create_hv,
	.vcpu_free   = kvmppc_core_vcpu_free_hv,
	.check_requests = kvmppc_core_check_requests_hv,
	.get_dirty_log  = kvm_vm_ioctl_get_dirty_log_hv,
	.flush_memslot  = kvmppc_core_flush_memslot_hv,
	.prepare_memory_region = kvmppc_core_prepare_memory_region_hv,
	.commit_memory_region  = kvmppc_core_commit_memory_region_hv,
	.unmap_hva = kvm_unmap_hva_hv,
	.unmap_hva_range = kvm_unmap_hva_range_hv,
	.age_hva  = kvm_age_hva_hv,
	.test_age_hva = kvm_test_age_hva_hv,
	.set_spte_hva = kvm_set_spte_hva_hv,
	.mmu_destroy  = kvmppc_mmu_destroy_hv,
	.free_memslot = kvmppc_core_free_memslot_hv,
	.create_memslot = kvmppc_core_create_memslot_hv,
	.init_vm =  kvmppc_core_init_vm_hv,
	.destroy_vm = kvmppc_core_destroy_vm_hv,
	.get_smmu_info = kvm_vm_ioctl_get_smmu_info_hv,
	.emulate_op = kvmppc_core_emulate_op_hv,
	.emulate_mtspr = kvmppc_core_emulate_mtspr_hv,
	.emulate_mfspr = kvmppc_core_emulate_mfspr_hv,
	.fast_vcpu_kick = kvmppc_fast_vcpu_kick_hv,
	.arch_vm_ioctl  = kvm_arch_vm_ioctl_hv,
4359
	.hcall_implemented = kvmppc_hcall_impl_hv,
4360 4361 4362 4363
#ifdef CONFIG_KVM_XICS
	.irq_bypass_add_producer = kvmppc_irq_bypass_add_producer_hv,
	.irq_bypass_del_producer = kvmppc_irq_bypass_del_producer_hv,
#endif
4364 4365
	.configure_mmu = kvmhv_configure_mmu,
	.get_rmmu_info = kvmhv_get_rmmu_info,
4366
	.set_smt_mode = kvmhv_set_smt_mode,
4367 4368
};

4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400
static int kvm_init_subcore_bitmap(void)
{
	int i, j;
	int nr_cores = cpu_nr_cores();
	struct sibling_subcore_state *sibling_subcore_state;

	for (i = 0; i < nr_cores; i++) {
		int first_cpu = i * threads_per_core;
		int node = cpu_to_node(first_cpu);

		/* Ignore if it is already allocated. */
		if (paca[first_cpu].sibling_subcore_state)
			continue;

		sibling_subcore_state =
			kmalloc_node(sizeof(struct sibling_subcore_state),
							GFP_KERNEL, node);
		if (!sibling_subcore_state)
			return -ENOMEM;

		memset(sibling_subcore_state, 0,
				sizeof(struct sibling_subcore_state));

		for (j = 0; j < threads_per_core; j++) {
			int cpu = first_cpu + j;

			paca[cpu].sibling_subcore_state = sibling_subcore_state;
		}
	}
	return 0;
}

4401 4402 4403 4404 4405
static int kvmppc_radix_possible(void)
{
	return cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled();
}

4406
static int kvmppc_book3s_init_hv(void)
4407 4408
{
	int r;
4409 4410 4411 4412 4413
	/*
	 * FIXME!! Do we need to check on all cpus ?
	 */
	r = kvmppc_core_check_processor_compat_hv();
	if (r < 0)
4414
		return -ENODEV;
4415

4416 4417 4418 4419
	r = kvm_init_subcore_bitmap();
	if (r)
		return r;

4420 4421 4422 4423 4424 4425
	/*
	 * We need a way of accessing the XICS interrupt controller,
	 * either directly, via paca[cpu].kvm_hstate.xics_phys, or
	 * indirectly, via OPAL.
	 */
#ifdef CONFIG_SMP
4426
	if (!xive_enabled() && !local_paca->kvm_hstate.xics_phys) {
4427 4428 4429 4430 4431 4432 4433 4434 4435 4436
		struct device_node *np;

		np = of_find_compatible_node(NULL, NULL, "ibm,opal-intc");
		if (!np) {
			pr_err("KVM-HV: Cannot determine method for accessing XICS\n");
			return -ENODEV;
		}
	}
#endif

4437 4438
	kvm_ops_hv.owner = THIS_MODULE;
	kvmppc_hv_ops = &kvm_ops_hv;
4439

4440 4441
	init_default_hcalls();

4442 4443
	init_vcore_lists();

4444
	r = kvmppc_mmu_hv_init();
4445 4446 4447 4448 4449
	if (r)
		return r;

	if (kvmppc_radix_possible())
		r = kvmppc_radix_init();
4450 4451 4452
	return r;
}

4453
static void kvmppc_book3s_exit_hv(void)
4454
{
4455
	kvmppc_free_host_rm_ops();
4456 4457
	if (kvmppc_radix_possible())
		kvmppc_radix_exit();
4458
	kvmppc_hv_ops = NULL;
4459 4460
}

4461 4462
module_init(kvmppc_book3s_init_hv);
module_exit(kvmppc_book3s_exit_hv);
4463
MODULE_LICENSE("GPL");
4464 4465
MODULE_ALIAS_MISCDEV(KVM_MINOR);
MODULE_ALIAS("devname:kvm");