book3s_hv.c 111.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
/*
 * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
 * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
 *
 * Authors:
 *    Paul Mackerras <paulus@au1.ibm.com>
 *    Alexander Graf <agraf@suse.de>
 *    Kevin Wolf <mail@kevin-wolf.de>
 *
 * Description: KVM functions specific to running on Book 3S
 * processors in hypervisor mode (specifically POWER7 and later).
 *
 * This file is derived from arch/powerpc/kvm/book3s.c,
 * by Alexander Graf <agraf@suse.de>.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License, version 2, as
 * published by the Free Software Foundation.
 */

#include <linux/kvm_host.h>
22
#include <linux/kernel.h>
23 24 25
#include <linux/err.h>
#include <linux/slab.h>
#include <linux/preempt.h>
26
#include <linux/sched/signal.h>
27
#include <linux/sched/stat.h>
28
#include <linux/delay.h>
29
#include <linux/export.h>
30 31
#include <linux/fs.h>
#include <linux/anon_inodes.h>
32
#include <linux/cpu.h>
33
#include <linux/cpumask.h>
34 35
#include <linux/spinlock.h>
#include <linux/page-flags.h>
36
#include <linux/srcu.h>
37
#include <linux/miscdevice.h>
38
#include <linux/debugfs.h>
39 40 41 42 43 44 45 46 47
#include <linux/gfp.h>
#include <linux/vmalloc.h>
#include <linux/highmem.h>
#include <linux/hugetlb.h>
#include <linux/kvm_irqfd.h>
#include <linux/irqbypass.h>
#include <linux/module.h>
#include <linux/compiler.h>
#include <linux/of.h>
48 49

#include <asm/reg.h>
50 51
#include <asm/ppc-opcode.h>
#include <asm/disassemble.h>
52 53 54
#include <asm/cputable.h>
#include <asm/cacheflush.h>
#include <asm/tlbflush.h>
55
#include <linux/uaccess.h>
56 57 58 59 60 61
#include <asm/io.h>
#include <asm/kvm_ppc.h>
#include <asm/kvm_book3s.h>
#include <asm/mmu_context.h>
#include <asm/lppaca.h>
#include <asm/processor.h>
62
#include <asm/cputhreads.h>
63
#include <asm/page.h>
64
#include <asm/hvcall.h>
65
#include <asm/switch_to.h>
66
#include <asm/smp.h>
67
#include <asm/dbell.h>
68
#include <asm/hmi.h>
69
#include <asm/pnv-pci.h>
70
#include <asm/mmu.h>
71 72
#include <asm/opal.h>
#include <asm/xics.h>
73
#include <asm/xive.h>
74

75 76
#include "book3s.h"

77 78 79
#define CREATE_TRACE_POINTS
#include "trace_hv.h"

80 81 82 83
/* #define EXIT_DEBUG */
/* #define EXIT_DEBUG_SIMPLE */
/* #define EXIT_DEBUG_INT */

84 85
/* Used to indicate that a guest page fault needs to be handled */
#define RESUME_PAGE_FAULT	(RESUME_GUEST | RESUME_FLAG_ARCH1)
86 87
/* Used to indicate that a guest passthrough interrupt needs to be handled */
#define RESUME_PASSTHROUGH	(RESUME_GUEST | RESUME_FLAG_ARCH2)
88

89 90 91
/* Used as a "null" value for timebase values */
#define TB_NIL	(~(u64)0)

92 93
static DECLARE_BITMAP(default_enabled_hcalls, MAX_HCALL_OPCODE/4 + 1);

94 95 96
static int dynamic_mt_modes = 6;
module_param(dynamic_mt_modes, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(dynamic_mt_modes, "Set of allowed dynamic micro-threading modes: 0 (= none), 2, 4, or 6 (= 2 or 4)");
97 98 99
static int target_smt_mode;
module_param(target_smt_mode, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(target_smt_mode, "Target threads per core (0 = max)");
100

101 102 103 104 105 106
#ifdef CONFIG_KVM_XICS
static struct kernel_param_ops module_param_ops = {
	.set = param_set_int,
	.get = param_get_int,
};

107 108 109 110
module_param_cb(kvm_irq_bypass, &module_param_ops, &kvm_irq_bypass,
							S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(kvm_irq_bypass, "Bypass passthrough interrupt optimization");

111 112 113 114 115
module_param_cb(h_ipi_redirect, &module_param_ops, &h_ipi_redirect,
							S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(h_ipi_redirect, "Redirect H_IPI wakeup to a free host core");
#endif

116
static void kvmppc_end_cede(struct kvm_vcpu *vcpu);
117
static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu);
118
static void kvmppc_setup_partition_table(struct kvm *kvm);
119

120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
static inline struct kvm_vcpu *next_runnable_thread(struct kvmppc_vcore *vc,
		int *ip)
{
	int i = *ip;
	struct kvm_vcpu *vcpu;

	while (++i < MAX_SMT_THREADS) {
		vcpu = READ_ONCE(vc->runnable_threads[i]);
		if (vcpu) {
			*ip = i;
			return vcpu;
		}
	}
	return NULL;
}

/* Used to traverse the list of runnable threads for a given vcore */
#define for_each_runnable_thread(i, vcpu, vc) \
	for (i = -1; (vcpu = next_runnable_thread(vc, &i)); )

140 141
static bool kvmppc_ipi_thread(int cpu)
{
142 143 144 145 146 147 148 149 150 151
	unsigned long msg = PPC_DBELL_TYPE(PPC_DBELL_SERVER);

	/* On POWER9 we can use msgsnd to IPI any cpu */
	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
		msg |= get_hard_smp_processor_id(cpu);
		smp_mb();
		__asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
		return true;
	}

152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
	/* On POWER8 for IPIs to threads in the same core, use msgsnd */
	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
		preempt_disable();
		if (cpu_first_thread_sibling(cpu) ==
		    cpu_first_thread_sibling(smp_processor_id())) {
			msg |= cpu_thread_in_core(cpu);
			smp_mb();
			__asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
			preempt_enable();
			return true;
		}
		preempt_enable();
	}

#if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP)
167 168 169 170 171 172
	if (cpu >= 0 && cpu < nr_cpu_ids) {
		if (paca[cpu].kvm_hstate.xics_phys) {
			xics_wake_cpu(cpu);
			return true;
		}
		opal_int_set_mfrr(get_hard_smp_processor_id(cpu), IPI_PRIORITY);
173 174 175 176 177 178 179
		return true;
	}
#endif

	return false;
}

180
static void kvmppc_fast_vcpu_kick_hv(struct kvm_vcpu *vcpu)
181
{
182
	int cpu;
183
	struct swait_queue_head *wqp;
184 185

	wqp = kvm_arch_vcpu_wq(vcpu);
186
	if (swq_has_sleeper(wqp)) {
187
		swake_up(wqp);
188 189 190
		++vcpu->stat.halt_wakeup;
	}

191 192
	cpu = READ_ONCE(vcpu->arch.thread_cpu);
	if (cpu >= 0 && kvmppc_ipi_thread(cpu))
193
		return;
194 195

	/* CPU points to the first thread of the core */
196
	cpu = vcpu->cpu;
197 198
	if (cpu >= 0 && cpu < nr_cpu_ids && cpu_online(cpu))
		smp_send_reschedule(cpu);
199 200
}

201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
/*
 * We use the vcpu_load/put functions to measure stolen time.
 * Stolen time is counted as time when either the vcpu is able to
 * run as part of a virtual core, but the task running the vcore
 * is preempted or sleeping, or when the vcpu needs something done
 * in the kernel by the task running the vcpu, but that task is
 * preempted or sleeping.  Those two things have to be counted
 * separately, since one of the vcpu tasks will take on the job
 * of running the core, and the other vcpu tasks in the vcore will
 * sleep waiting for it to do that, but that sleep shouldn't count
 * as stolen time.
 *
 * Hence we accumulate stolen time when the vcpu can run as part of
 * a vcore using vc->stolen_tb, and the stolen time when the vcpu
 * needs its task to do other things in the kernel (for example,
 * service a page fault) in busy_stolen.  We don't accumulate
 * stolen time for a vcore when it is inactive, or for a vcpu
 * when it is in state RUNNING or NOTREADY.  NOTREADY is a bit of
 * a misnomer; it means that the vcpu task is not executing in
 * the KVM_VCPU_RUN ioctl, i.e. it is in userspace or elsewhere in
 * the kernel.  We don't have any way of dividing up that time
 * between time that the vcpu is genuinely stopped, time that
 * the task is actively working on behalf of the vcpu, and time
 * that the task is preempted, so we don't count any of it as
 * stolen.
 *
 * Updates to busy_stolen are protected by arch.tbacct_lock;
228 229 230 231
 * updates to vc->stolen_tb are protected by the vcore->stoltb_lock
 * lock.  The stolen times are measured in units of timebase ticks.
 * (Note that the != TB_NIL checks below are purely defensive;
 * they should never fail.)
232 233
 */

234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
static void kvmppc_core_start_stolen(struct kvmppc_vcore *vc)
{
	unsigned long flags;

	spin_lock_irqsave(&vc->stoltb_lock, flags);
	vc->preempt_tb = mftb();
	spin_unlock_irqrestore(&vc->stoltb_lock, flags);
}

static void kvmppc_core_end_stolen(struct kvmppc_vcore *vc)
{
	unsigned long flags;

	spin_lock_irqsave(&vc->stoltb_lock, flags);
	if (vc->preempt_tb != TB_NIL) {
		vc->stolen_tb += mftb() - vc->preempt_tb;
		vc->preempt_tb = TB_NIL;
	}
	spin_unlock_irqrestore(&vc->stoltb_lock, flags);
}

255
static void kvmppc_core_vcpu_load_hv(struct kvm_vcpu *vcpu, int cpu)
256
{
257
	struct kvmppc_vcore *vc = vcpu->arch.vcore;
258
	unsigned long flags;
259

260 261 262 263 264 265
	/*
	 * We can test vc->runner without taking the vcore lock,
	 * because only this task ever sets vc->runner to this
	 * vcpu, and once it is set to this vcpu, only this task
	 * ever sets it to NULL.
	 */
266 267 268
	if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
		kvmppc_core_end_stolen(vc);

269
	spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
270 271 272 273 274
	if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST &&
	    vcpu->arch.busy_preempt != TB_NIL) {
		vcpu->arch.busy_stolen += mftb() - vcpu->arch.busy_preempt;
		vcpu->arch.busy_preempt = TB_NIL;
	}
275
	spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
276 277
}

278
static void kvmppc_core_vcpu_put_hv(struct kvm_vcpu *vcpu)
279
{
280
	struct kvmppc_vcore *vc = vcpu->arch.vcore;
281
	unsigned long flags;
282

283 284 285
	if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
		kvmppc_core_start_stolen(vc);

286
	spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
287 288
	if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST)
		vcpu->arch.busy_preempt = mftb();
289
	spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
290 291
}

292
static void kvmppc_set_msr_hv(struct kvm_vcpu *vcpu, u64 msr)
293
{
294 295 296 297 298 299
	/*
	 * Check for illegal transactional state bit combination
	 * and if we find it, force the TS field to a safe state.
	 */
	if ((msr & MSR_TS_MASK) == MSR_TS_MASK)
		msr &= ~MSR_TS_MASK;
300
	vcpu->arch.shregs.msr = msr;
301
	kvmppc_end_cede(vcpu);
302 303
}

T
Thomas Huth 已提交
304
static void kvmppc_set_pvr_hv(struct kvm_vcpu *vcpu, u32 pvr)
305 306 307 308
{
	vcpu->arch.pvr = pvr;
}

309 310 311
/* Dummy value used in computing PCR value below */
#define PCR_ARCH_300	(PCR_ARCH_207 << 1)

T
Thomas Huth 已提交
312
static int kvmppc_set_arch_compat(struct kvm_vcpu *vcpu, u32 arch_compat)
313
{
314
	unsigned long host_pcr_bit = 0, guest_pcr_bit = 0;
315 316
	struct kvmppc_vcore *vc = vcpu->arch.vcore;

317 318 319 320 321 322 323 324 325 326 327 328
	/* We can (emulate) our own architecture version and anything older */
	if (cpu_has_feature(CPU_FTR_ARCH_300))
		host_pcr_bit = PCR_ARCH_300;
	else if (cpu_has_feature(CPU_FTR_ARCH_207S))
		host_pcr_bit = PCR_ARCH_207;
	else if (cpu_has_feature(CPU_FTR_ARCH_206))
		host_pcr_bit = PCR_ARCH_206;
	else
		host_pcr_bit = PCR_ARCH_205;

	/* Determine lowest PCR bit needed to run guest in given PVR level */
	guest_pcr_bit = host_pcr_bit;
329 330 331
	if (arch_compat) {
		switch (arch_compat) {
		case PVR_ARCH_205:
332
			guest_pcr_bit = PCR_ARCH_205;
333 334 335
			break;
		case PVR_ARCH_206:
		case PVR_ARCH_206p:
336
			guest_pcr_bit = PCR_ARCH_206;
337 338
			break;
		case PVR_ARCH_207:
339 340 341 342
			guest_pcr_bit = PCR_ARCH_207;
			break;
		case PVR_ARCH_300:
			guest_pcr_bit = PCR_ARCH_300;
343 344 345 346 347 348
			break;
		default:
			return -EINVAL;
		}
	}

349 350 351 352
	/* Check requested PCR bits don't exceed our capabilities */
	if (guest_pcr_bit > host_pcr_bit)
		return -EINVAL;

353 354
	spin_lock(&vc->lock);
	vc->arch_compat = arch_compat;
355 356
	/* Set all PCR bits for which guest_pcr_bit <= bit < host_pcr_bit */
	vc->pcr = host_pcr_bit - guest_pcr_bit;
357 358 359 360 361
	spin_unlock(&vc->lock);

	return 0;
}

T
Thomas Huth 已提交
362
static void kvmppc_dump_regs(struct kvm_vcpu *vcpu)
363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390
{
	int r;

	pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id);
	pr_err("pc  = %.16lx  msr = %.16llx  trap = %x\n",
	       vcpu->arch.pc, vcpu->arch.shregs.msr, vcpu->arch.trap);
	for (r = 0; r < 16; ++r)
		pr_err("r%2d = %.16lx  r%d = %.16lx\n",
		       r, kvmppc_get_gpr(vcpu, r),
		       r+16, kvmppc_get_gpr(vcpu, r+16));
	pr_err("ctr = %.16lx  lr  = %.16lx\n",
	       vcpu->arch.ctr, vcpu->arch.lr);
	pr_err("srr0 = %.16llx srr1 = %.16llx\n",
	       vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1);
	pr_err("sprg0 = %.16llx sprg1 = %.16llx\n",
	       vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1);
	pr_err("sprg2 = %.16llx sprg3 = %.16llx\n",
	       vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3);
	pr_err("cr = %.8x  xer = %.16lx  dsisr = %.8x\n",
	       vcpu->arch.cr, vcpu->arch.xer, vcpu->arch.shregs.dsisr);
	pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar);
	pr_err("fault dar = %.16lx dsisr = %.8x\n",
	       vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
	pr_err("SLB (%d entries):\n", vcpu->arch.slb_max);
	for (r = 0; r < vcpu->arch.slb_max; ++r)
		pr_err("  ESID = %.16llx VSID = %.16llx\n",
		       vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv);
	pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n",
391
	       vcpu->arch.vcore->lpcr, vcpu->kvm->arch.sdr1,
392 393 394
	       vcpu->arch.last_inst);
}

T
Thomas Huth 已提交
395
static struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id)
396
{
397
	struct kvm_vcpu *ret;
398 399

	mutex_lock(&kvm->lock);
400
	ret = kvm_get_vcpu_by_id(kvm, id);
401 402 403 404 405 406
	mutex_unlock(&kvm->lock);
	return ret;
}

static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa)
{
407
	vpa->__old_status |= LPPACA_OLD_SHARED_PROC;
408
	vpa->yield_count = cpu_to_be32(1);
409 410
}

411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426
static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v,
		   unsigned long addr, unsigned long len)
{
	/* check address is cacheline aligned */
	if (addr & (L1_CACHE_BYTES - 1))
		return -EINVAL;
	spin_lock(&vcpu->arch.vpa_update_lock);
	if (v->next_gpa != addr || v->len != len) {
		v->next_gpa = addr;
		v->len = addr ? len : 0;
		v->update_pending = 1;
	}
	spin_unlock(&vcpu->arch.vpa_update_lock);
	return 0;
}

427 428 429 430
/* Length for a per-processor buffer is passed in at offset 4 in the buffer */
struct reg_vpa {
	u32 dummy;
	union {
431 432
		__be16 hword;
		__be32 word;
433 434 435 436 437 438 439 440 441 442
	} length;
};

static int vpa_is_registered(struct kvmppc_vpa *vpap)
{
	if (vpap->update_pending)
		return vpap->next_gpa != 0;
	return vpap->pinned_addr != NULL;
}

443 444 445 446 447
static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu,
				       unsigned long flags,
				       unsigned long vcpuid, unsigned long vpa)
{
	struct kvm *kvm = vcpu->kvm;
448
	unsigned long len, nb;
449 450
	void *va;
	struct kvm_vcpu *tvcpu;
451 452 453
	int err;
	int subfunc;
	struct kvmppc_vpa *vpap;
454 455 456 457 458

	tvcpu = kvmppc_find_vcpu(kvm, vcpuid);
	if (!tvcpu)
		return H_PARAMETER;

459 460 461 462 463
	subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK;
	if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL ||
	    subfunc == H_VPA_REG_SLB) {
		/* Registering new area - address must be cache-line aligned */
		if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa)
464
			return H_PARAMETER;
465 466

		/* convert logical addr to kernel addr and read length */
467 468
		va = kvmppc_pin_guest_page(kvm, vpa, &nb);
		if (va == NULL)
469
			return H_PARAMETER;
470
		if (subfunc == H_VPA_REG_VPA)
471
			len = be16_to_cpu(((struct reg_vpa *)va)->length.hword);
472
		else
473
			len = be32_to_cpu(((struct reg_vpa *)va)->length.word);
474
		kvmppc_unpin_guest_page(kvm, va, vpa, false);
475 476 477 478 479 480 481 482 483 484 485 486 487 488 489

		/* Check length */
		if (len > nb || len < sizeof(struct reg_vpa))
			return H_PARAMETER;
	} else {
		vpa = 0;
		len = 0;
	}

	err = H_PARAMETER;
	vpap = NULL;
	spin_lock(&tvcpu->arch.vpa_update_lock);

	switch (subfunc) {
	case H_VPA_REG_VPA:		/* register VPA */
490 491 492 493 494 495 496
		/*
		 * The size of our lppaca is 1kB because of the way we align
		 * it for the guest to avoid crossing a 4kB boundary. We only
		 * use 640 bytes of the structure though, so we should accept
		 * clients that set a size of 640.
		 */
		if (len < 640)
497
			break;
498 499 500 501 502 503
		vpap = &tvcpu->arch.vpa;
		err = 0;
		break;

	case H_VPA_REG_DTL:		/* register DTL */
		if (len < sizeof(struct dtl_entry))
504
			break;
505 506 507 508 509
		len -= len % sizeof(struct dtl_entry);

		/* Check that they have previously registered a VPA */
		err = H_RESOURCE;
		if (!vpa_is_registered(&tvcpu->arch.vpa))
510
			break;
511 512 513 514 515 516 517 518 519

		vpap = &tvcpu->arch.dtl;
		err = 0;
		break;

	case H_VPA_REG_SLB:		/* register SLB shadow buffer */
		/* Check that they have previously registered a VPA */
		err = H_RESOURCE;
		if (!vpa_is_registered(&tvcpu->arch.vpa))
520
			break;
521 522 523 524 525 526 527 528 529 530

		vpap = &tvcpu->arch.slb_shadow;
		err = 0;
		break;

	case H_VPA_DEREG_VPA:		/* deregister VPA */
		/* Check they don't still have a DTL or SLB buf registered */
		err = H_RESOURCE;
		if (vpa_is_registered(&tvcpu->arch.dtl) ||
		    vpa_is_registered(&tvcpu->arch.slb_shadow))
531
			break;
532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551

		vpap = &tvcpu->arch.vpa;
		err = 0;
		break;

	case H_VPA_DEREG_DTL:		/* deregister DTL */
		vpap = &tvcpu->arch.dtl;
		err = 0;
		break;

	case H_VPA_DEREG_SLB:		/* deregister SLB shadow buffer */
		vpap = &tvcpu->arch.slb_shadow;
		err = 0;
		break;
	}

	if (vpap) {
		vpap->next_gpa = vpa;
		vpap->len = len;
		vpap->update_pending = 1;
552
	}
553

554 555
	spin_unlock(&tvcpu->arch.vpa_update_lock);

556
	return err;
557 558
}

559
static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap)
560
{
561
	struct kvm *kvm = vcpu->kvm;
562 563
	void *va;
	unsigned long nb;
564
	unsigned long gpa;
565

566 567 568 569 570 571 572 573 574 575 576 577 578 579
	/*
	 * We need to pin the page pointed to by vpap->next_gpa,
	 * but we can't call kvmppc_pin_guest_page under the lock
	 * as it does get_user_pages() and down_read().  So we
	 * have to drop the lock, pin the page, then get the lock
	 * again and check that a new area didn't get registered
	 * in the meantime.
	 */
	for (;;) {
		gpa = vpap->next_gpa;
		spin_unlock(&vcpu->arch.vpa_update_lock);
		va = NULL;
		nb = 0;
		if (gpa)
580
			va = kvmppc_pin_guest_page(kvm, gpa, &nb);
581 582 583 584 585
		spin_lock(&vcpu->arch.vpa_update_lock);
		if (gpa == vpap->next_gpa)
			break;
		/* sigh... unpin that one and try again */
		if (va)
586
			kvmppc_unpin_guest_page(kvm, va, gpa, false);
587 588 589 590 591 592 593 594 595
	}

	vpap->update_pending = 0;
	if (va && nb < vpap->len) {
		/*
		 * If it's now too short, it must be that userspace
		 * has changed the mappings underlying guest memory,
		 * so unregister the region.
		 */
596
		kvmppc_unpin_guest_page(kvm, va, gpa, false);
597
		va = NULL;
598 599
	}
	if (vpap->pinned_addr)
600 601 602
		kvmppc_unpin_guest_page(kvm, vpap->pinned_addr, vpap->gpa,
					vpap->dirty);
	vpap->gpa = gpa;
603
	vpap->pinned_addr = va;
604
	vpap->dirty = false;
605 606 607 608 609 610
	if (va)
		vpap->pinned_end = va + vpap->len;
}

static void kvmppc_update_vpas(struct kvm_vcpu *vcpu)
{
611 612 613 614 615
	if (!(vcpu->arch.vpa.update_pending ||
	      vcpu->arch.slb_shadow.update_pending ||
	      vcpu->arch.dtl.update_pending))
		return;

616 617
	spin_lock(&vcpu->arch.vpa_update_lock);
	if (vcpu->arch.vpa.update_pending) {
618
		kvmppc_update_vpa(vcpu, &vcpu->arch.vpa);
619 620
		if (vcpu->arch.vpa.pinned_addr)
			init_vpa(vcpu, vcpu->arch.vpa.pinned_addr);
621 622
	}
	if (vcpu->arch.dtl.update_pending) {
623
		kvmppc_update_vpa(vcpu, &vcpu->arch.dtl);
624 625 626 627
		vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr;
		vcpu->arch.dtl_index = 0;
	}
	if (vcpu->arch.slb_shadow.update_pending)
628
		kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow);
629 630 631
	spin_unlock(&vcpu->arch.vpa_update_lock);
}

632 633 634 635 636 637 638
/*
 * Return the accumulated stolen time for the vcore up until `now'.
 * The caller should hold the vcore lock.
 */
static u64 vcore_stolen_time(struct kvmppc_vcore *vc, u64 now)
{
	u64 p;
639
	unsigned long flags;
640

641 642
	spin_lock_irqsave(&vc->stoltb_lock, flags);
	p = vc->stolen_tb;
643
	if (vc->vcore_state != VCORE_INACTIVE &&
644 645 646
	    vc->preempt_tb != TB_NIL)
		p += now - vc->preempt_tb;
	spin_unlock_irqrestore(&vc->stoltb_lock, flags);
647 648 649
	return p;
}

650 651 652 653 654
static void kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu,
				    struct kvmppc_vcore *vc)
{
	struct dtl_entry *dt;
	struct lppaca *vpa;
655 656 657
	unsigned long stolen;
	unsigned long core_stolen;
	u64 now;
658
	unsigned long flags;
659 660 661

	dt = vcpu->arch.dtl_ptr;
	vpa = vcpu->arch.vpa.pinned_addr;
662 663 664 665
	now = mftb();
	core_stolen = vcore_stolen_time(vc, now);
	stolen = core_stolen - vcpu->arch.stolen_logged;
	vcpu->arch.stolen_logged = core_stolen;
666
	spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
667 668
	stolen += vcpu->arch.busy_stolen;
	vcpu->arch.busy_stolen = 0;
669
	spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
670 671 672 673
	if (!dt || !vpa)
		return;
	memset(dt, 0, sizeof(struct dtl_entry));
	dt->dispatch_reason = 7;
674 675 676 677 678
	dt->processor_id = cpu_to_be16(vc->pcpu + vcpu->arch.ptid);
	dt->timebase = cpu_to_be64(now + vc->tb_offset);
	dt->enqueue_to_dispatch_time = cpu_to_be32(stolen);
	dt->srr0 = cpu_to_be64(kvmppc_get_pc(vcpu));
	dt->srr1 = cpu_to_be64(vcpu->arch.shregs.msr);
679 680 681 682 683 684
	++dt;
	if (dt == vcpu->arch.dtl.pinned_end)
		dt = vcpu->arch.dtl.pinned_addr;
	vcpu->arch.dtl_ptr = dt;
	/* order writing *dt vs. writing vpa->dtl_idx */
	smp_wmb();
685
	vpa->dtl_idx = cpu_to_be64(++vcpu->arch.dtl_index);
686
	vcpu->arch.dtl.dirty = true;
687 688
}

689 690 691 692 693 694
/* See if there is a doorbell interrupt pending for a vcpu */
static bool kvmppc_doorbell_pending(struct kvm_vcpu *vcpu)
{
	int thr;
	struct kvmppc_vcore *vc;

695 696 697 698 699 700 701 702 703
	if (vcpu->arch.doorbell_request)
		return true;
	/*
	 * Ensure that the read of vcore->dpdes comes after the read
	 * of vcpu->doorbell_request.  This barrier matches the
	 * lwsync in book3s_hv_rmhandlers.S just before the
	 * fast_guest_return label.
	 */
	smp_rmb();
704 705 706 707 708
	vc = vcpu->arch.vcore;
	thr = vcpu->vcpu_id - vc->first_vcpuid;
	return !!(vc->dpdes & (1 << thr));
}

709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750
static bool kvmppc_power8_compatible(struct kvm_vcpu *vcpu)
{
	if (vcpu->arch.vcore->arch_compat >= PVR_ARCH_207)
		return true;
	if ((!vcpu->arch.vcore->arch_compat) &&
	    cpu_has_feature(CPU_FTR_ARCH_207S))
		return true;
	return false;
}

static int kvmppc_h_set_mode(struct kvm_vcpu *vcpu, unsigned long mflags,
			     unsigned long resource, unsigned long value1,
			     unsigned long value2)
{
	switch (resource) {
	case H_SET_MODE_RESOURCE_SET_CIABR:
		if (!kvmppc_power8_compatible(vcpu))
			return H_P2;
		if (value2)
			return H_P4;
		if (mflags)
			return H_UNSUPPORTED_FLAG_START;
		/* Guests can't breakpoint the hypervisor */
		if ((value1 & CIABR_PRIV) == CIABR_PRIV_HYPER)
			return H_P3;
		vcpu->arch.ciabr  = value1;
		return H_SUCCESS;
	case H_SET_MODE_RESOURCE_SET_DAWR:
		if (!kvmppc_power8_compatible(vcpu))
			return H_P2;
		if (mflags)
			return H_UNSUPPORTED_FLAG_START;
		if (value2 & DABRX_HYP)
			return H_P4;
		vcpu->arch.dawr  = value1;
		vcpu->arch.dawrx = value2;
		return H_SUCCESS;
	default:
		return H_TOO_HARD;
	}
}

751 752 753 754 755 756 757 758 759 760 761 762 763 764
static int kvm_arch_vcpu_yield_to(struct kvm_vcpu *target)
{
	struct kvmppc_vcore *vcore = target->arch.vcore;

	/*
	 * We expect to have been called by the real mode handler
	 * (kvmppc_rm_h_confer()) which would have directly returned
	 * H_SUCCESS if the source vcore wasn't idle (e.g. if it may
	 * have useful work to do and should not confer) so we don't
	 * recheck that here.
	 */

	spin_lock(&vcore->lock);
	if (target->arch.state == KVMPPC_VCPU_RUNNABLE &&
765 766
	    vcore->vcore_state != VCORE_INACTIVE &&
	    vcore->runner)
767 768 769 770 771 772 773 774 775 776 777 778 779 780
		target = vcore->runner;
	spin_unlock(&vcore->lock);

	return kvm_vcpu_yield_to(target);
}

static int kvmppc_get_yield_count(struct kvm_vcpu *vcpu)
{
	int yield_count = 0;
	struct lppaca *lppaca;

	spin_lock(&vcpu->arch.vpa_update_lock);
	lppaca = (struct lppaca *)vcpu->arch.vpa.pinned_addr;
	if (lppaca)
781
		yield_count = be32_to_cpu(lppaca->yield_count);
782 783 784 785
	spin_unlock(&vcpu->arch.vpa_update_lock);
	return yield_count;
}

786 787 788 789
int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu)
{
	unsigned long req = kvmppc_get_gpr(vcpu, 3);
	unsigned long target, ret = H_SUCCESS;
790
	int yield_count;
791
	struct kvm_vcpu *tvcpu;
792
	int idx, rc;
793

794 795 796 797
	if (req <= MAX_HCALL_OPCODE &&
	    !test_bit(req/4, vcpu->kvm->arch.enabled_hcalls))
		return RESUME_HOST;

798 799 800 801 802 803 804 805 806 807 808 809
	switch (req) {
	case H_CEDE:
		break;
	case H_PROD:
		target = kvmppc_get_gpr(vcpu, 4);
		tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
		if (!tvcpu) {
			ret = H_PARAMETER;
			break;
		}
		tvcpu->arch.prodded = 1;
		smp_mb();
810 811
		if (tvcpu->arch.ceded)
			kvmppc_fast_vcpu_kick_hv(tvcpu);
812 813
		break;
	case H_CONFER:
814 815 816 817 818 819 820 821
		target = kvmppc_get_gpr(vcpu, 4);
		if (target == -1)
			break;
		tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
		if (!tvcpu) {
			ret = H_PARAMETER;
			break;
		}
822 823 824 825
		yield_count = kvmppc_get_gpr(vcpu, 5);
		if (kvmppc_get_yield_count(tvcpu) != yield_count)
			break;
		kvm_arch_vcpu_yield_to(tvcpu);
826 827 828 829 830 831
		break;
	case H_REGISTER_VPA:
		ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4),
					kvmppc_get_gpr(vcpu, 5),
					kvmppc_get_gpr(vcpu, 6));
		break;
832 833 834 835
	case H_RTAS:
		if (list_empty(&vcpu->kvm->arch.rtas_tokens))
			return RESUME_HOST;

836
		idx = srcu_read_lock(&vcpu->kvm->srcu);
837
		rc = kvmppc_rtas_hcall(vcpu);
838
		srcu_read_unlock(&vcpu->kvm->srcu, idx);
839 840 841 842 843 844 845 846

		if (rc == -ENOENT)
			return RESUME_HOST;
		else if (rc == 0)
			break;

		/* Send the error out to userspace via KVM_RUN */
		return rc;
847 848 849 850 851 852 853 854 855 856
	case H_LOGICAL_CI_LOAD:
		ret = kvmppc_h_logical_ci_load(vcpu);
		if (ret == H_TOO_HARD)
			return RESUME_HOST;
		break;
	case H_LOGICAL_CI_STORE:
		ret = kvmppc_h_logical_ci_store(vcpu);
		if (ret == H_TOO_HARD)
			return RESUME_HOST;
		break;
857 858 859 860 861 862 863 864
	case H_SET_MODE:
		ret = kvmppc_h_set_mode(vcpu, kvmppc_get_gpr(vcpu, 4),
					kvmppc_get_gpr(vcpu, 5),
					kvmppc_get_gpr(vcpu, 6),
					kvmppc_get_gpr(vcpu, 7));
		if (ret == H_TOO_HARD)
			return RESUME_HOST;
		break;
865 866 867 868
	case H_XIRR:
	case H_CPPR:
	case H_EOI:
	case H_IPI:
869 870
	case H_IPOLL:
	case H_XIRR_X:
871
		if (kvmppc_xics_enabled(vcpu)) {
872 873 874 875
			if (xive_enabled()) {
				ret = H_NOT_AVAILABLE;
				return RESUME_GUEST;
			}
876 877
			ret = kvmppc_xics_hcall(vcpu, req);
			break;
878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902
		}
		return RESUME_HOST;
	case H_PUT_TCE:
		ret = kvmppc_h_put_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
						kvmppc_get_gpr(vcpu, 5),
						kvmppc_get_gpr(vcpu, 6));
		if (ret == H_TOO_HARD)
			return RESUME_HOST;
		break;
	case H_PUT_TCE_INDIRECT:
		ret = kvmppc_h_put_tce_indirect(vcpu, kvmppc_get_gpr(vcpu, 4),
						kvmppc_get_gpr(vcpu, 5),
						kvmppc_get_gpr(vcpu, 6),
						kvmppc_get_gpr(vcpu, 7));
		if (ret == H_TOO_HARD)
			return RESUME_HOST;
		break;
	case H_STUFF_TCE:
		ret = kvmppc_h_stuff_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
						kvmppc_get_gpr(vcpu, 5),
						kvmppc_get_gpr(vcpu, 6),
						kvmppc_get_gpr(vcpu, 7));
		if (ret == H_TOO_HARD)
			return RESUME_HOST;
		break;
903 904 905 906 907 908 909 910
	default:
		return RESUME_HOST;
	}
	kvmppc_set_gpr(vcpu, 3, ret);
	vcpu->arch.hcall_needed = 0;
	return RESUME_GUEST;
}

911 912 913 914 915 916 917
static int kvmppc_hcall_impl_hv(unsigned long cmd)
{
	switch (cmd) {
	case H_CEDE:
	case H_PROD:
	case H_CONFER:
	case H_REGISTER_VPA:
918
	case H_SET_MODE:
919 920
	case H_LOGICAL_CI_LOAD:
	case H_LOGICAL_CI_STORE:
921 922 923 924 925 926 927 928 929 930 931 932 933 934 935
#ifdef CONFIG_KVM_XICS
	case H_XIRR:
	case H_CPPR:
	case H_EOI:
	case H_IPI:
	case H_IPOLL:
	case H_XIRR_X:
#endif
		return 1;
	}

	/* See if it's in the real-mode table */
	return kvmppc_hcall_impl_hv_realmode(cmd);
}

936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959
static int kvmppc_emulate_debug_inst(struct kvm_run *run,
					struct kvm_vcpu *vcpu)
{
	u32 last_inst;

	if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) !=
					EMULATE_DONE) {
		/*
		 * Fetch failed, so return to guest and
		 * try executing it again.
		 */
		return RESUME_GUEST;
	}

	if (last_inst == KVMPPC_INST_SW_BREAKPOINT) {
		run->exit_reason = KVM_EXIT_DEBUG;
		run->debug.arch.address = kvmppc_get_pc(vcpu);
		return RESUME_HOST;
	} else {
		kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
		return RESUME_GUEST;
	}
}

960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054
static void do_nothing(void *x)
{
}

static unsigned long kvmppc_read_dpdes(struct kvm_vcpu *vcpu)
{
	int thr, cpu, pcpu, nthreads;
	struct kvm_vcpu *v;
	unsigned long dpdes;

	nthreads = vcpu->kvm->arch.emul_smt_mode;
	dpdes = 0;
	cpu = vcpu->vcpu_id & ~(nthreads - 1);
	for (thr = 0; thr < nthreads; ++thr, ++cpu) {
		v = kvmppc_find_vcpu(vcpu->kvm, cpu);
		if (!v)
			continue;
		/*
		 * If the vcpu is currently running on a physical cpu thread,
		 * interrupt it in order to pull it out of the guest briefly,
		 * which will update its vcore->dpdes value.
		 */
		pcpu = READ_ONCE(v->cpu);
		if (pcpu >= 0)
			smp_call_function_single(pcpu, do_nothing, NULL, 1);
		if (kvmppc_doorbell_pending(v))
			dpdes |= 1 << thr;
	}
	return dpdes;
}

/*
 * On POWER9, emulate doorbell-related instructions in order to
 * give the guest the illusion of running on a multi-threaded core.
 * The instructions emulated are msgsndp, msgclrp, mfspr TIR,
 * and mfspr DPDES.
 */
static int kvmppc_emulate_doorbell_instr(struct kvm_vcpu *vcpu)
{
	u32 inst, rb, thr;
	unsigned long arg;
	struct kvm *kvm = vcpu->kvm;
	struct kvm_vcpu *tvcpu;

	if (!cpu_has_feature(CPU_FTR_ARCH_300))
		return EMULATE_FAIL;
	if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &inst) != EMULATE_DONE)
		return RESUME_GUEST;
	if (get_op(inst) != 31)
		return EMULATE_FAIL;
	rb = get_rb(inst);
	thr = vcpu->vcpu_id & (kvm->arch.emul_smt_mode - 1);
	switch (get_xop(inst)) {
	case OP_31_XOP_MSGSNDP:
		arg = kvmppc_get_gpr(vcpu, rb);
		if (((arg >> 27) & 0xf) != PPC_DBELL_SERVER)
			break;
		arg &= 0x3f;
		if (arg >= kvm->arch.emul_smt_mode)
			break;
		tvcpu = kvmppc_find_vcpu(kvm, vcpu->vcpu_id - thr + arg);
		if (!tvcpu)
			break;
		if (!tvcpu->arch.doorbell_request) {
			tvcpu->arch.doorbell_request = 1;
			kvmppc_fast_vcpu_kick_hv(tvcpu);
		}
		break;
	case OP_31_XOP_MSGCLRP:
		arg = kvmppc_get_gpr(vcpu, rb);
		if (((arg >> 27) & 0xf) != PPC_DBELL_SERVER)
			break;
		vcpu->arch.vcore->dpdes = 0;
		vcpu->arch.doorbell_request = 0;
		break;
	case OP_31_XOP_MFSPR:
		switch (get_sprn(inst)) {
		case SPRN_TIR:
			arg = thr;
			break;
		case SPRN_DPDES:
			arg = kvmppc_read_dpdes(vcpu);
			break;
		default:
			return EMULATE_FAIL;
		}
		kvmppc_set_gpr(vcpu, get_rt(inst), arg);
		break;
	default:
		return EMULATE_FAIL;
	}
	kvmppc_set_pc(vcpu, kvmppc_get_pc(vcpu) + 4);
	return RESUME_GUEST;
}

1055 1056
static int kvmppc_handle_exit_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
				 struct task_struct *tsk)
1057 1058 1059 1060 1061
{
	int r = RESUME_HOST;

	vcpu->stat.sum_exits++;

1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079
	/*
	 * This can happen if an interrupt occurs in the last stages
	 * of guest entry or the first stages of guest exit (i.e. after
	 * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV
	 * and before setting it to KVM_GUEST_MODE_HOST_HV).
	 * That can happen due to a bug, or due to a machine check
	 * occurring at just the wrong time.
	 */
	if (vcpu->arch.shregs.msr & MSR_HV) {
		printk(KERN_EMERG "KVM trap in HV mode!\n");
		printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
			vcpu->arch.trap, kvmppc_get_pc(vcpu),
			vcpu->arch.shregs.msr);
		kvmppc_dump_regs(vcpu);
		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
		run->hw.hardware_exit_reason = vcpu->arch.trap;
		return RESUME_HOST;
	}
1080 1081 1082 1083 1084 1085 1086 1087 1088
	run->exit_reason = KVM_EXIT_UNKNOWN;
	run->ready_for_interrupt_injection = 1;
	switch (vcpu->arch.trap) {
	/* We're good on these - the host merely wanted to get our attention */
	case BOOK3S_INTERRUPT_HV_DECREMENTER:
		vcpu->stat.dec_exits++;
		r = RESUME_GUEST;
		break;
	case BOOK3S_INTERRUPT_EXTERNAL:
1089
	case BOOK3S_INTERRUPT_H_DOORBELL:
1090
	case BOOK3S_INTERRUPT_H_VIRT:
1091 1092 1093
		vcpu->stat.ext_intr_exits++;
		r = RESUME_GUEST;
		break;
1094 1095
	/* HMI is hypervisor interrupt and host has handled it. Resume guest.*/
	case BOOK3S_INTERRUPT_HMI:
1096 1097 1098
	case BOOK3S_INTERRUPT_PERFMON:
		r = RESUME_GUEST;
		break;
1099
	case BOOK3S_INTERRUPT_MACHINE_CHECK:
1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113
		/* Exit to guest with KVM_EXIT_NMI as exit reason */
		run->exit_reason = KVM_EXIT_NMI;
		run->hw.hardware_exit_reason = vcpu->arch.trap;
		/* Clear out the old NMI status from run->flags */
		run->flags &= ~KVM_RUN_PPC_NMI_DISP_MASK;
		/* Now set the NMI status */
		if (vcpu->arch.mce_evt.disposition == MCE_DISPOSITION_RECOVERED)
			run->flags |= KVM_RUN_PPC_NMI_DISP_FULLY_RECOV;
		else
			run->flags |= KVM_RUN_PPC_NMI_DISP_NOT_RECOV;

		r = RESUME_HOST;
		/* Print the MCE event to host console. */
		machine_check_print_event_info(&vcpu->arch.mce_evt, false);
1114
		break;
1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133
	case BOOK3S_INTERRUPT_PROGRAM:
	{
		ulong flags;
		/*
		 * Normally program interrupts are delivered directly
		 * to the guest by the hardware, but we can get here
		 * as a result of a hypervisor emulation interrupt
		 * (e40) getting turned into a 700 by BML RTAS.
		 */
		flags = vcpu->arch.shregs.msr & 0x1f0000ull;
		kvmppc_core_queue_program(vcpu, flags);
		r = RESUME_GUEST;
		break;
	}
	case BOOK3S_INTERRUPT_SYSCALL:
	{
		/* hcall - punt to userspace */
		int i;

1134 1135 1136 1137
		/* hypercall with MSR_PR has already been handled in rmode,
		 * and never reaches here.
		 */

1138 1139 1140 1141 1142 1143 1144 1145 1146
		run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3);
		for (i = 0; i < 9; ++i)
			run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i);
		run->exit_reason = KVM_EXIT_PAPR_HCALL;
		vcpu->arch.hcall_needed = 1;
		r = RESUME_HOST;
		break;
	}
	/*
1147 1148 1149 1150 1151
	 * We get these next two if the guest accesses a page which it thinks
	 * it has mapped but which is not actually present, either because
	 * it is for an emulated I/O device or because the corresonding
	 * host page has been paged out.  Any other HDSI/HISI interrupts
	 * have been handled already.
1152 1153
	 */
	case BOOK3S_INTERRUPT_H_DATA_STORAGE:
1154
		r = RESUME_PAGE_FAULT;
1155 1156
		break;
	case BOOK3S_INTERRUPT_H_INST_STORAGE:
1157 1158 1159
		vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
		vcpu->arch.fault_dsisr = 0;
		r = RESUME_PAGE_FAULT;
1160 1161 1162
		break;
	/*
	 * This occurs if the guest executes an illegal instruction.
1163 1164 1165 1166
	 * If the guest debug is disabled, generate a program interrupt
	 * to the guest. If guest debug is enabled, we need to check
	 * whether the instruction is a software breakpoint instruction.
	 * Accordingly return to Guest or Host.
1167 1168
	 */
	case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
1169 1170 1171 1172
		if (vcpu->arch.emul_inst != KVM_INST_FETCH_FAILED)
			vcpu->arch.last_inst = kvmppc_need_byteswap(vcpu) ?
				swab32(vcpu->arch.emul_inst) :
				vcpu->arch.emul_inst;
1173 1174 1175 1176 1177 1178
		if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) {
			r = kvmppc_emulate_debug_inst(run, vcpu);
		} else {
			kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
			r = RESUME_GUEST;
		}
1179 1180 1181
		break;
	/*
	 * This occurs if the guest (kernel or userspace), does something that
1182 1183 1184 1185
	 * is prohibited by HFSCR.
	 * On POWER9, this could be a doorbell instruction that we need
	 * to emulate.
	 * Otherwise, we just generate a program interrupt to the guest.
1186 1187
	 */
	case BOOK3S_INTERRUPT_H_FAC_UNAVAIL:
1188 1189 1190 1191 1192 1193 1194
		r = EMULATE_FAIL;
		if ((vcpu->arch.hfscr >> 56) == FSCR_MSGP_LG)
			r = kvmppc_emulate_doorbell_instr(vcpu);
		if (r == EMULATE_FAIL) {
			kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
			r = RESUME_GUEST;
		}
1195
		break;
1196 1197 1198
	case BOOK3S_INTERRUPT_HV_RM_HARD:
		r = RESUME_PASSTHROUGH;
		break;
1199 1200 1201 1202 1203
	default:
		kvmppc_dump_regs(vcpu);
		printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
			vcpu->arch.trap, kvmppc_get_pc(vcpu),
			vcpu->arch.shregs.msr);
1204
		run->hw.hardware_exit_reason = vcpu->arch.trap;
1205 1206 1207 1208 1209 1210 1211
		r = RESUME_HOST;
		break;
	}

	return r;
}

1212 1213
static int kvm_arch_vcpu_ioctl_get_sregs_hv(struct kvm_vcpu *vcpu,
					    struct kvm_sregs *sregs)
1214 1215 1216 1217
{
	int i;

	memset(sregs, 0, sizeof(struct kvm_sregs));
1218
	sregs->pvr = vcpu->arch.pvr;
1219 1220 1221 1222 1223 1224 1225 1226
	for (i = 0; i < vcpu->arch.slb_max; i++) {
		sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige;
		sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
	}

	return 0;
}

1227 1228
static int kvm_arch_vcpu_ioctl_set_sregs_hv(struct kvm_vcpu *vcpu,
					    struct kvm_sregs *sregs)
1229 1230 1231
{
	int i, j;

1232 1233 1234
	/* Only accept the same PVR as the host's, since we can't spoof it */
	if (sregs->pvr != vcpu->arch.pvr)
		return -EINVAL;
1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248

	j = 0;
	for (i = 0; i < vcpu->arch.slb_nr; i++) {
		if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) {
			vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe;
			vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv;
			++j;
		}
	}
	vcpu->arch.slb_max = j;

	return 0;
}

1249 1250
static void kvmppc_set_lpcr(struct kvm_vcpu *vcpu, u64 new_lpcr,
		bool preserve_top32)
1251
{
1252
	struct kvm *kvm = vcpu->kvm;
1253 1254 1255
	struct kvmppc_vcore *vc = vcpu->arch.vcore;
	u64 mask;

1256
	mutex_lock(&kvm->lock);
1257
	spin_lock(&vc->lock);
1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275
	/*
	 * If ILE (interrupt little-endian) has changed, update the
	 * MSR_LE bit in the intr_msr for each vcpu in this vcore.
	 */
	if ((new_lpcr & LPCR_ILE) != (vc->lpcr & LPCR_ILE)) {
		struct kvm_vcpu *vcpu;
		int i;

		kvm_for_each_vcpu(i, vcpu, kvm) {
			if (vcpu->arch.vcore != vc)
				continue;
			if (new_lpcr & LPCR_ILE)
				vcpu->arch.intr_msr |= MSR_LE;
			else
				vcpu->arch.intr_msr &= ~MSR_LE;
		}
	}

1276 1277 1278
	/*
	 * Userspace can only modify DPFD (default prefetch depth),
	 * ILE (interrupt little-endian) and TC (translation control).
1279
	 * On POWER8 and POWER9 userspace can also modify AIL (alt. interrupt loc.).
1280 1281
	 */
	mask = LPCR_DPFD | LPCR_ILE | LPCR_TC;
1282 1283
	if (cpu_has_feature(CPU_FTR_ARCH_207S))
		mask |= LPCR_AIL;
1284 1285 1286 1287 1288 1289
	/*
	 * On POWER9, allow userspace to enable large decrementer for the
	 * guest, whether or not the host has it enabled.
	 */
	if (cpu_has_feature(CPU_FTR_ARCH_300))
		mask |= LPCR_LD;
1290 1291 1292 1293

	/* Broken 32-bit version of LPCR must not clear top bits */
	if (preserve_top32)
		mask &= 0xFFFFFFFF;
1294 1295
	vc->lpcr = (vc->lpcr & ~mask) | (new_lpcr & mask);
	spin_unlock(&vc->lock);
1296
	mutex_unlock(&kvm->lock);
1297 1298
}

1299 1300
static int kvmppc_get_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
				 union kvmppc_one_reg *val)
1301
{
1302 1303
	int r = 0;
	long int i;
1304

1305
	switch (id) {
1306 1307 1308
	case KVM_REG_PPC_DEBUG_INST:
		*val = get_reg_val(id, KVMPPC_INST_SW_BREAKPOINT);
		break;
1309
	case KVM_REG_PPC_HIOR:
1310 1311 1312 1313 1314
		*val = get_reg_val(id, 0);
		break;
	case KVM_REG_PPC_DABR:
		*val = get_reg_val(id, vcpu->arch.dabr);
		break;
1315 1316 1317
	case KVM_REG_PPC_DABRX:
		*val = get_reg_val(id, vcpu->arch.dabrx);
		break;
1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332
	case KVM_REG_PPC_DSCR:
		*val = get_reg_val(id, vcpu->arch.dscr);
		break;
	case KVM_REG_PPC_PURR:
		*val = get_reg_val(id, vcpu->arch.purr);
		break;
	case KVM_REG_PPC_SPURR:
		*val = get_reg_val(id, vcpu->arch.spurr);
		break;
	case KVM_REG_PPC_AMR:
		*val = get_reg_val(id, vcpu->arch.amr);
		break;
	case KVM_REG_PPC_UAMOR:
		*val = get_reg_val(id, vcpu->arch.uamor);
		break;
1333
	case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS:
1334 1335 1336 1337 1338 1339
		i = id - KVM_REG_PPC_MMCR0;
		*val = get_reg_val(id, vcpu->arch.mmcr[i]);
		break;
	case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
		i = id - KVM_REG_PPC_PMC1;
		*val = get_reg_val(id, vcpu->arch.pmc[i]);
1340
		break;
1341 1342 1343 1344
	case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
		i = id - KVM_REG_PPC_SPMC1;
		*val = get_reg_val(id, vcpu->arch.spmc[i]);
		break;
1345 1346 1347 1348 1349 1350
	case KVM_REG_PPC_SIAR:
		*val = get_reg_val(id, vcpu->arch.siar);
		break;
	case KVM_REG_PPC_SDAR:
		*val = get_reg_val(id, vcpu->arch.sdar);
		break;
1351 1352
	case KVM_REG_PPC_SIER:
		*val = get_reg_val(id, vcpu->arch.sier);
1353
		break;
1354 1355 1356 1357 1358 1359 1360 1361 1362
	case KVM_REG_PPC_IAMR:
		*val = get_reg_val(id, vcpu->arch.iamr);
		break;
	case KVM_REG_PPC_PSPB:
		*val = get_reg_val(id, vcpu->arch.pspb);
		break;
	case KVM_REG_PPC_DPDES:
		*val = get_reg_val(id, vcpu->arch.vcore->dpdes);
		break;
1363 1364 1365
	case KVM_REG_PPC_VTB:
		*val = get_reg_val(id, vcpu->arch.vcore->vtb);
		break;
1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391
	case KVM_REG_PPC_DAWR:
		*val = get_reg_val(id, vcpu->arch.dawr);
		break;
	case KVM_REG_PPC_DAWRX:
		*val = get_reg_val(id, vcpu->arch.dawrx);
		break;
	case KVM_REG_PPC_CIABR:
		*val = get_reg_val(id, vcpu->arch.ciabr);
		break;
	case KVM_REG_PPC_CSIGR:
		*val = get_reg_val(id, vcpu->arch.csigr);
		break;
	case KVM_REG_PPC_TACR:
		*val = get_reg_val(id, vcpu->arch.tacr);
		break;
	case KVM_REG_PPC_TCSCR:
		*val = get_reg_val(id, vcpu->arch.tcscr);
		break;
	case KVM_REG_PPC_PID:
		*val = get_reg_val(id, vcpu->arch.pid);
		break;
	case KVM_REG_PPC_ACOP:
		*val = get_reg_val(id, vcpu->arch.acop);
		break;
	case KVM_REG_PPC_WORT:
		*val = get_reg_val(id, vcpu->arch.wort);
1392
		break;
1393 1394 1395 1396 1397 1398
	case KVM_REG_PPC_TIDR:
		*val = get_reg_val(id, vcpu->arch.tid);
		break;
	case KVM_REG_PPC_PSSCR:
		*val = get_reg_val(id, vcpu->arch.psscr);
		break;
1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415
	case KVM_REG_PPC_VPA_ADDR:
		spin_lock(&vcpu->arch.vpa_update_lock);
		*val = get_reg_val(id, vcpu->arch.vpa.next_gpa);
		spin_unlock(&vcpu->arch.vpa_update_lock);
		break;
	case KVM_REG_PPC_VPA_SLB:
		spin_lock(&vcpu->arch.vpa_update_lock);
		val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa;
		val->vpaval.length = vcpu->arch.slb_shadow.len;
		spin_unlock(&vcpu->arch.vpa_update_lock);
		break;
	case KVM_REG_PPC_VPA_DTL:
		spin_lock(&vcpu->arch.vpa_update_lock);
		val->vpaval.addr = vcpu->arch.dtl.next_gpa;
		val->vpaval.length = vcpu->arch.dtl.len;
		spin_unlock(&vcpu->arch.vpa_update_lock);
		break;
1416 1417 1418
	case KVM_REG_PPC_TB_OFFSET:
		*val = get_reg_val(id, vcpu->arch.vcore->tb_offset);
		break;
1419
	case KVM_REG_PPC_LPCR:
1420
	case KVM_REG_PPC_LPCR_64:
1421 1422
		*val = get_reg_val(id, vcpu->arch.vcore->lpcr);
		break;
1423 1424 1425
	case KVM_REG_PPC_PPR:
		*val = get_reg_val(id, vcpu->arch.ppr);
		break;
1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
	case KVM_REG_PPC_TFHAR:
		*val = get_reg_val(id, vcpu->arch.tfhar);
		break;
	case KVM_REG_PPC_TFIAR:
		*val = get_reg_val(id, vcpu->arch.tfiar);
		break;
	case KVM_REG_PPC_TEXASR:
		*val = get_reg_val(id, vcpu->arch.texasr);
		break;
	case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
		i = id - KVM_REG_PPC_TM_GPR0;
		*val = get_reg_val(id, vcpu->arch.gpr_tm[i]);
		break;
	case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
	{
		int j;
		i = id - KVM_REG_PPC_TM_VSR0;
		if (i < 32)
			for (j = 0; j < TS_FPRWIDTH; j++)
				val->vsxval[j] = vcpu->arch.fp_tm.fpr[i][j];
		else {
			if (cpu_has_feature(CPU_FTR_ALTIVEC))
				val->vval = vcpu->arch.vr_tm.vr[i-32];
			else
				r = -ENXIO;
		}
		break;
	}
	case KVM_REG_PPC_TM_CR:
		*val = get_reg_val(id, vcpu->arch.cr_tm);
		break;
1458 1459 1460
	case KVM_REG_PPC_TM_XER:
		*val = get_reg_val(id, vcpu->arch.xer_tm);
		break;
1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491
	case KVM_REG_PPC_TM_LR:
		*val = get_reg_val(id, vcpu->arch.lr_tm);
		break;
	case KVM_REG_PPC_TM_CTR:
		*val = get_reg_val(id, vcpu->arch.ctr_tm);
		break;
	case KVM_REG_PPC_TM_FPSCR:
		*val = get_reg_val(id, vcpu->arch.fp_tm.fpscr);
		break;
	case KVM_REG_PPC_TM_AMR:
		*val = get_reg_val(id, vcpu->arch.amr_tm);
		break;
	case KVM_REG_PPC_TM_PPR:
		*val = get_reg_val(id, vcpu->arch.ppr_tm);
		break;
	case KVM_REG_PPC_TM_VRSAVE:
		*val = get_reg_val(id, vcpu->arch.vrsave_tm);
		break;
	case KVM_REG_PPC_TM_VSCR:
		if (cpu_has_feature(CPU_FTR_ALTIVEC))
			*val = get_reg_val(id, vcpu->arch.vr_tm.vscr.u[3]);
		else
			r = -ENXIO;
		break;
	case KVM_REG_PPC_TM_DSCR:
		*val = get_reg_val(id, vcpu->arch.dscr_tm);
		break;
	case KVM_REG_PPC_TM_TAR:
		*val = get_reg_val(id, vcpu->arch.tar_tm);
		break;
#endif
1492 1493 1494
	case KVM_REG_PPC_ARCH_COMPAT:
		*val = get_reg_val(id, vcpu->arch.vcore->arch_compat);
		break;
1495
	default:
1496
		r = -EINVAL;
1497 1498 1499 1500 1501 1502
		break;
	}

	return r;
}

1503 1504
static int kvmppc_set_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
				 union kvmppc_one_reg *val)
1505
{
1506 1507
	int r = 0;
	long int i;
1508
	unsigned long addr, len;
1509

1510
	switch (id) {
1511 1512
	case KVM_REG_PPC_HIOR:
		/* Only allow this to be set to zero */
1513
		if (set_reg_val(id, *val))
1514 1515
			r = -EINVAL;
		break;
1516 1517 1518
	case KVM_REG_PPC_DABR:
		vcpu->arch.dabr = set_reg_val(id, *val);
		break;
1519 1520 1521
	case KVM_REG_PPC_DABRX:
		vcpu->arch.dabrx = set_reg_val(id, *val) & ~DABRX_HYP;
		break;
1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536
	case KVM_REG_PPC_DSCR:
		vcpu->arch.dscr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_PURR:
		vcpu->arch.purr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_SPURR:
		vcpu->arch.spurr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_AMR:
		vcpu->arch.amr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_UAMOR:
		vcpu->arch.uamor = set_reg_val(id, *val);
		break;
1537
	case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS:
1538 1539 1540 1541 1542 1543 1544
		i = id - KVM_REG_PPC_MMCR0;
		vcpu->arch.mmcr[i] = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
		i = id - KVM_REG_PPC_PMC1;
		vcpu->arch.pmc[i] = set_reg_val(id, *val);
		break;
1545 1546 1547 1548
	case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
		i = id - KVM_REG_PPC_SPMC1;
		vcpu->arch.spmc[i] = set_reg_val(id, *val);
		break;
1549 1550 1551 1552 1553 1554
	case KVM_REG_PPC_SIAR:
		vcpu->arch.siar = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_SDAR:
		vcpu->arch.sdar = set_reg_val(id, *val);
		break;
1555 1556
	case KVM_REG_PPC_SIER:
		vcpu->arch.sier = set_reg_val(id, *val);
1557
		break;
1558 1559 1560 1561 1562 1563 1564 1565 1566
	case KVM_REG_PPC_IAMR:
		vcpu->arch.iamr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_PSPB:
		vcpu->arch.pspb = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_DPDES:
		vcpu->arch.vcore->dpdes = set_reg_val(id, *val);
		break;
1567 1568 1569
	case KVM_REG_PPC_VTB:
		vcpu->arch.vcore->vtb = set_reg_val(id, *val);
		break;
1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598
	case KVM_REG_PPC_DAWR:
		vcpu->arch.dawr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_DAWRX:
		vcpu->arch.dawrx = set_reg_val(id, *val) & ~DAWRX_HYP;
		break;
	case KVM_REG_PPC_CIABR:
		vcpu->arch.ciabr = set_reg_val(id, *val);
		/* Don't allow setting breakpoints in hypervisor code */
		if ((vcpu->arch.ciabr & CIABR_PRIV) == CIABR_PRIV_HYPER)
			vcpu->arch.ciabr &= ~CIABR_PRIV;	/* disable */
		break;
	case KVM_REG_PPC_CSIGR:
		vcpu->arch.csigr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TACR:
		vcpu->arch.tacr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TCSCR:
		vcpu->arch.tcscr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_PID:
		vcpu->arch.pid = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_ACOP:
		vcpu->arch.acop = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_WORT:
		vcpu->arch.wort = set_reg_val(id, *val);
1599
		break;
1600 1601 1602 1603 1604 1605
	case KVM_REG_PPC_TIDR:
		vcpu->arch.tid = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_PSSCR:
		vcpu->arch.psscr = set_reg_val(id, *val) & PSSCR_GUEST_VIS;
		break;
1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625
	case KVM_REG_PPC_VPA_ADDR:
		addr = set_reg_val(id, *val);
		r = -EINVAL;
		if (!addr && (vcpu->arch.slb_shadow.next_gpa ||
			      vcpu->arch.dtl.next_gpa))
			break;
		r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca));
		break;
	case KVM_REG_PPC_VPA_SLB:
		addr = val->vpaval.addr;
		len = val->vpaval.length;
		r = -EINVAL;
		if (addr && !vcpu->arch.vpa.next_gpa)
			break;
		r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len);
		break;
	case KVM_REG_PPC_VPA_DTL:
		addr = val->vpaval.addr;
		len = val->vpaval.length;
		r = -EINVAL;
1626 1627
		if (addr && (len < sizeof(struct dtl_entry) ||
			     !vcpu->arch.vpa.next_gpa))
1628 1629 1630 1631
			break;
		len -= len % sizeof(struct dtl_entry);
		r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len);
		break;
1632
	case KVM_REG_PPC_TB_OFFSET:
1633 1634 1635 1636 1637 1638 1639 1640
		/*
		 * POWER9 DD1 has an erratum where writing TBU40 causes
		 * the timebase to lose ticks.  So we don't let the
		 * timebase offset be changed on P9 DD1.  (It is
		 * initialized to zero.)
		 */
		if (cpu_has_feature(CPU_FTR_POWER9_DD1))
			break;
1641 1642 1643 1644
		/* round up to multiple of 2^24 */
		vcpu->arch.vcore->tb_offset =
			ALIGN(set_reg_val(id, *val), 1UL << 24);
		break;
1645
	case KVM_REG_PPC_LPCR:
1646 1647 1648 1649
		kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), true);
		break;
	case KVM_REG_PPC_LPCR_64:
		kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), false);
1650
		break;
1651 1652 1653
	case KVM_REG_PPC_PPR:
		vcpu->arch.ppr = set_reg_val(id, *val);
		break;
1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
	case KVM_REG_PPC_TFHAR:
		vcpu->arch.tfhar = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TFIAR:
		vcpu->arch.tfiar = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TEXASR:
		vcpu->arch.texasr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
		i = id - KVM_REG_PPC_TM_GPR0;
		vcpu->arch.gpr_tm[i] = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
	{
		int j;
		i = id - KVM_REG_PPC_TM_VSR0;
		if (i < 32)
			for (j = 0; j < TS_FPRWIDTH; j++)
				vcpu->arch.fp_tm.fpr[i][j] = val->vsxval[j];
		else
			if (cpu_has_feature(CPU_FTR_ALTIVEC))
				vcpu->arch.vr_tm.vr[i-32] = val->vval;
			else
				r = -ENXIO;
		break;
	}
	case KVM_REG_PPC_TM_CR:
		vcpu->arch.cr_tm = set_reg_val(id, *val);
		break;
1685 1686 1687
	case KVM_REG_PPC_TM_XER:
		vcpu->arch.xer_tm = set_reg_val(id, *val);
		break;
1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718
	case KVM_REG_PPC_TM_LR:
		vcpu->arch.lr_tm = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_CTR:
		vcpu->arch.ctr_tm = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_FPSCR:
		vcpu->arch.fp_tm.fpscr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_AMR:
		vcpu->arch.amr_tm = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_PPR:
		vcpu->arch.ppr_tm = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_VRSAVE:
		vcpu->arch.vrsave_tm = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_VSCR:
		if (cpu_has_feature(CPU_FTR_ALTIVEC))
			vcpu->arch.vr.vscr.u[3] = set_reg_val(id, *val);
		else
			r = - ENXIO;
		break;
	case KVM_REG_PPC_TM_DSCR:
		vcpu->arch.dscr_tm = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_TAR:
		vcpu->arch.tar_tm = set_reg_val(id, *val);
		break;
#endif
1719 1720 1721
	case KVM_REG_PPC_ARCH_COMPAT:
		r = kvmppc_set_arch_compat(vcpu, set_reg_val(id, *val));
		break;
1722
	default:
1723
		r = -EINVAL;
1724 1725 1726 1727 1728 1729
		break;
	}

	return r;
}

1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743
/*
 * On POWER9, threads are independent and can be in different partitions.
 * Therefore we consider each thread to be a subcore.
 * There is a restriction that all threads have to be in the same
 * MMU mode (radix or HPT), unfortunately, but since we only support
 * HPT guests on a HPT host so far, that isn't an impediment yet.
 */
static int threads_per_vcore(void)
{
	if (cpu_has_feature(CPU_FTR_ARCH_300))
		return 1;
	return threads_per_subcore;
}

1744 1745 1746 1747 1748 1749 1750 1751 1752 1753
static struct kvmppc_vcore *kvmppc_vcore_create(struct kvm *kvm, int core)
{
	struct kvmppc_vcore *vcore;

	vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL);

	if (vcore == NULL)
		return NULL;

	spin_lock_init(&vcore->lock);
1754
	spin_lock_init(&vcore->stoltb_lock);
1755
	init_swait_queue_head(&vcore->wq);
1756 1757
	vcore->preempt_tb = TB_NIL;
	vcore->lpcr = kvm->arch.lpcr;
1758
	vcore->first_vcpuid = core * kvm->arch.smt_mode;
1759
	vcore->kvm = kvm;
1760
	INIT_LIST_HEAD(&vcore->preempt_list);
1761 1762 1763 1764

	return vcore;
}

1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776
#ifdef CONFIG_KVM_BOOK3S_HV_EXIT_TIMING
static struct debugfs_timings_element {
	const char *name;
	size_t offset;
} timings[] = {
	{"rm_entry",	offsetof(struct kvm_vcpu, arch.rm_entry)},
	{"rm_intr",	offsetof(struct kvm_vcpu, arch.rm_intr)},
	{"rm_exit",	offsetof(struct kvm_vcpu, arch.rm_exit)},
	{"guest",	offsetof(struct kvm_vcpu, arch.guest_time)},
	{"cede",	offsetof(struct kvm_vcpu, arch.cede_time)},
};

1777
#define N_TIMINGS	(ARRAY_SIZE(timings))
1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912

struct debugfs_timings_state {
	struct kvm_vcpu	*vcpu;
	unsigned int	buflen;
	char		buf[N_TIMINGS * 100];
};

static int debugfs_timings_open(struct inode *inode, struct file *file)
{
	struct kvm_vcpu *vcpu = inode->i_private;
	struct debugfs_timings_state *p;

	p = kzalloc(sizeof(*p), GFP_KERNEL);
	if (!p)
		return -ENOMEM;

	kvm_get_kvm(vcpu->kvm);
	p->vcpu = vcpu;
	file->private_data = p;

	return nonseekable_open(inode, file);
}

static int debugfs_timings_release(struct inode *inode, struct file *file)
{
	struct debugfs_timings_state *p = file->private_data;

	kvm_put_kvm(p->vcpu->kvm);
	kfree(p);
	return 0;
}

static ssize_t debugfs_timings_read(struct file *file, char __user *buf,
				    size_t len, loff_t *ppos)
{
	struct debugfs_timings_state *p = file->private_data;
	struct kvm_vcpu *vcpu = p->vcpu;
	char *s, *buf_end;
	struct kvmhv_tb_accumulator tb;
	u64 count;
	loff_t pos;
	ssize_t n;
	int i, loops;
	bool ok;

	if (!p->buflen) {
		s = p->buf;
		buf_end = s + sizeof(p->buf);
		for (i = 0; i < N_TIMINGS; ++i) {
			struct kvmhv_tb_accumulator *acc;

			acc = (struct kvmhv_tb_accumulator *)
				((unsigned long)vcpu + timings[i].offset);
			ok = false;
			for (loops = 0; loops < 1000; ++loops) {
				count = acc->seqcount;
				if (!(count & 1)) {
					smp_rmb();
					tb = *acc;
					smp_rmb();
					if (count == acc->seqcount) {
						ok = true;
						break;
					}
				}
				udelay(1);
			}
			if (!ok)
				snprintf(s, buf_end - s, "%s: stuck\n",
					timings[i].name);
			else
				snprintf(s, buf_end - s,
					"%s: %llu %llu %llu %llu\n",
					timings[i].name, count / 2,
					tb_to_ns(tb.tb_total),
					tb_to_ns(tb.tb_min),
					tb_to_ns(tb.tb_max));
			s += strlen(s);
		}
		p->buflen = s - p->buf;
	}

	pos = *ppos;
	if (pos >= p->buflen)
		return 0;
	if (len > p->buflen - pos)
		len = p->buflen - pos;
	n = copy_to_user(buf, p->buf + pos, len);
	if (n) {
		if (n == len)
			return -EFAULT;
		len -= n;
	}
	*ppos = pos + len;
	return len;
}

static ssize_t debugfs_timings_write(struct file *file, const char __user *buf,
				     size_t len, loff_t *ppos)
{
	return -EACCES;
}

static const struct file_operations debugfs_timings_ops = {
	.owner	 = THIS_MODULE,
	.open	 = debugfs_timings_open,
	.release = debugfs_timings_release,
	.read	 = debugfs_timings_read,
	.write	 = debugfs_timings_write,
	.llseek	 = generic_file_llseek,
};

/* Create a debugfs directory for the vcpu */
static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id)
{
	char buf[16];
	struct kvm *kvm = vcpu->kvm;

	snprintf(buf, sizeof(buf), "vcpu%u", id);
	if (IS_ERR_OR_NULL(kvm->arch.debugfs_dir))
		return;
	vcpu->arch.debugfs_dir = debugfs_create_dir(buf, kvm->arch.debugfs_dir);
	if (IS_ERR_OR_NULL(vcpu->arch.debugfs_dir))
		return;
	vcpu->arch.debugfs_timings =
		debugfs_create_file("timings", 0444, vcpu->arch.debugfs_dir,
				    vcpu, &debugfs_timings_ops);
}

#else /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id)
{
}
#endif /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */

1913 1914
static struct kvm_vcpu *kvmppc_core_vcpu_create_hv(struct kvm *kvm,
						   unsigned int id)
1915 1916
{
	struct kvm_vcpu *vcpu;
1917
	int err;
1918 1919
	int core;
	struct kvmppc_vcore *vcore;
1920

1921
	err = -ENOMEM;
1922
	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
1923 1924 1925 1926 1927 1928 1929 1930
	if (!vcpu)
		goto out;

	err = kvm_vcpu_init(vcpu, kvm, id);
	if (err)
		goto free_vcpu;

	vcpu->arch.shared = &vcpu->arch.shregs;
1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941
#ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
	/*
	 * The shared struct is never shared on HV,
	 * so we can always use host endianness
	 */
#ifdef __BIG_ENDIAN__
	vcpu->arch.shared_big_endian = true;
#else
	vcpu->arch.shared_big_endian = false;
#endif
#endif
1942 1943 1944
	vcpu->arch.mmcr[0] = MMCR0_FC;
	vcpu->arch.ctrl = CTRL_RUNLATCH;
	/* default to host PVR, since we can't spoof it */
1945
	kvmppc_set_pvr_hv(vcpu, mfspr(SPRN_PVR));
1946
	spin_lock_init(&vcpu->arch.vpa_update_lock);
1947 1948
	spin_lock_init(&vcpu->arch.tbacct_lock);
	vcpu->arch.busy_preempt = TB_NIL;
1949
	vcpu->arch.intr_msr = MSR_SF | MSR_ME;
1950

1951 1952 1953 1954 1955
	/*
	 * Set the default HFSCR for the guest from the host value.
	 * This value is only used on POWER9.
	 * On POWER9 DD1, TM doesn't work, so we make sure to
	 * prevent the guest from using it.
1956 1957
	 * On POWER9, we want to virtualize the doorbell facility, so we
	 * turn off the HFSCR bit, which causes those instructions to trap.
1958 1959 1960 1961
	 */
	vcpu->arch.hfscr = mfspr(SPRN_HFSCR);
	if (!cpu_has_feature(CPU_FTR_TM))
		vcpu->arch.hfscr &= ~HFSCR_TM;
1962 1963
	if (cpu_has_feature(CPU_FTR_ARCH_300))
		vcpu->arch.hfscr &= ~HFSCR_MSGP;
1964

1965 1966
	kvmppc_mmu_book3s_hv_init(vcpu);

1967
	vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
1968 1969 1970 1971

	init_waitqueue_head(&vcpu->arch.cpu_run);

	mutex_lock(&kvm->lock);
1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982
	vcore = NULL;
	err = -EINVAL;
	core = id / kvm->arch.smt_mode;
	if (core < KVM_MAX_VCORES) {
		vcore = kvm->arch.vcores[core];
		if (!vcore) {
			err = -ENOMEM;
			vcore = kvmppc_vcore_create(kvm, core);
			kvm->arch.vcores[core] = vcore;
			kvm->arch.online_vcores++;
		}
1983 1984 1985 1986 1987 1988 1989 1990 1991 1992
	}
	mutex_unlock(&kvm->lock);

	if (!vcore)
		goto free_vcpu;

	spin_lock(&vcore->lock);
	++vcore->num_threads;
	spin_unlock(&vcore->lock);
	vcpu->arch.vcore = vcore;
1993
	vcpu->arch.ptid = vcpu->vcpu_id - vcore->first_vcpuid;
1994
	vcpu->arch.thread_cpu = -1;
1995
	vcpu->arch.prev_cpu = -1;
1996

1997 1998 1999
	vcpu->arch.cpu_type = KVM_CPU_3S_64;
	kvmppc_sanity_check(vcpu);

2000 2001
	debugfs_vcpu_init(vcpu, id);

2002 2003 2004
	return vcpu;

free_vcpu:
2005
	kmem_cache_free(kvm_vcpu_cache, vcpu);
2006 2007 2008 2009
out:
	return ERR_PTR(err);
}

2010 2011 2012 2013
static int kvmhv_set_smt_mode(struct kvm *kvm, unsigned long smt_mode,
			      unsigned long flags)
{
	int err;
2014
	int esmt = 0;
2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031

	if (flags)
		return -EINVAL;
	if (smt_mode > MAX_SMT_THREADS || !is_power_of_2(smt_mode))
		return -EINVAL;
	if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
		/*
		 * On POWER8 (or POWER7), the threading mode is "strict",
		 * so we pack smt_mode vcpus per vcore.
		 */
		if (smt_mode > threads_per_subcore)
			return -EINVAL;
	} else {
		/*
		 * On POWER9, the threading mode is "loose",
		 * so each vcpu gets its own vcore.
		 */
2032
		esmt = smt_mode;
2033 2034 2035 2036 2037 2038
		smt_mode = 1;
	}
	mutex_lock(&kvm->lock);
	err = -EBUSY;
	if (!kvm->arch.online_vcores) {
		kvm->arch.smt_mode = smt_mode;
2039
		kvm->arch.emul_smt_mode = esmt;
2040 2041 2042 2043 2044 2045 2046
		err = 0;
	}
	mutex_unlock(&kvm->lock);

	return err;
}

2047 2048 2049 2050 2051 2052 2053
static void unpin_vpa(struct kvm *kvm, struct kvmppc_vpa *vpa)
{
	if (vpa->pinned_addr)
		kvmppc_unpin_guest_page(kvm, vpa->pinned_addr, vpa->gpa,
					vpa->dirty);
}

2054
static void kvmppc_core_vcpu_free_hv(struct kvm_vcpu *vcpu)
2055
{
2056
	spin_lock(&vcpu->arch.vpa_update_lock);
2057 2058 2059
	unpin_vpa(vcpu->kvm, &vcpu->arch.dtl);
	unpin_vpa(vcpu->kvm, &vcpu->arch.slb_shadow);
	unpin_vpa(vcpu->kvm, &vcpu->arch.vpa);
2060
	spin_unlock(&vcpu->arch.vpa_update_lock);
2061
	kvm_vcpu_uninit(vcpu);
2062
	kmem_cache_free(kvm_vcpu_cache, vcpu);
2063 2064
}

2065 2066 2067 2068 2069 2070
static int kvmppc_core_check_requests_hv(struct kvm_vcpu *vcpu)
{
	/* Indicate we want to get back into the guest */
	return 1;
}

2071
static void kvmppc_set_timer(struct kvm_vcpu *vcpu)
2072
{
2073
	unsigned long dec_nsec, now;
2074

2075 2076 2077 2078
	now = get_tb();
	if (now > vcpu->arch.dec_expires) {
		/* decrementer has already gone negative */
		kvmppc_core_queue_dec(vcpu);
2079
		kvmppc_core_prepare_to_enter(vcpu);
2080
		return;
2081
	}
2082 2083
	dec_nsec = (vcpu->arch.dec_expires - now) * NSEC_PER_SEC
		   / tb_ticks_per_sec;
T
Thomas Gleixner 已提交
2084
	hrtimer_start(&vcpu->arch.dec_timer, dec_nsec, HRTIMER_MODE_REL);
2085
	vcpu->arch.timer_running = 1;
2086 2087
}

2088
static void kvmppc_end_cede(struct kvm_vcpu *vcpu)
2089
{
2090 2091 2092 2093 2094
	vcpu->arch.ceded = 0;
	if (vcpu->arch.timer_running) {
		hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
		vcpu->arch.timer_running = 0;
	}
2095 2096
}

2097
extern int __kvmppc_vcore_entry(void);
2098

2099 2100
static void kvmppc_remove_runnable(struct kvmppc_vcore *vc,
				   struct kvm_vcpu *vcpu)
2101
{
2102 2103
	u64 now;

2104 2105
	if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
		return;
2106
	spin_lock_irq(&vcpu->arch.tbacct_lock);
2107 2108 2109 2110 2111
	now = mftb();
	vcpu->arch.busy_stolen += vcore_stolen_time(vc, now) -
		vcpu->arch.stolen_logged;
	vcpu->arch.busy_preempt = now;
	vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
2112
	spin_unlock_irq(&vcpu->arch.tbacct_lock);
2113
	--vc->n_runnable;
2114
	WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], NULL);
2115 2116
}

2117 2118 2119
static int kvmppc_grab_hwthread(int cpu)
{
	struct paca_struct *tpaca;
2120
	long timeout = 10000;
2121 2122 2123 2124

	tpaca = &paca[cpu];

	/* Ensure the thread won't go into the kernel if it wakes */
2125
	tpaca->kvm_hstate.kvm_vcpu = NULL;
2126
	tpaca->kvm_hstate.kvm_vcore = NULL;
2127 2128 2129
	tpaca->kvm_hstate.napping = 0;
	smp_wmb();
	tpaca->kvm_hstate.hwthread_req = 1;
2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155

	/*
	 * If the thread is already executing in the kernel (e.g. handling
	 * a stray interrupt), wait for it to get back to nap mode.
	 * The smp_mb() is to ensure that our setting of hwthread_req
	 * is visible before we look at hwthread_state, so if this
	 * races with the code at system_reset_pSeries and the thread
	 * misses our setting of hwthread_req, we are sure to see its
	 * setting of hwthread_state, and vice versa.
	 */
	smp_mb();
	while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) {
		if (--timeout <= 0) {
			pr_err("KVM: couldn't grab cpu %d\n", cpu);
			return -EBUSY;
		}
		udelay(1);
	}
	return 0;
}

static void kvmppc_release_hwthread(int cpu)
{
	struct paca_struct *tpaca;

	tpaca = &paca[cpu];
2156
	tpaca->kvm_hstate.hwthread_req = 0;
2157
	tpaca->kvm_hstate.kvm_vcpu = NULL;
2158 2159
	tpaca->kvm_hstate.kvm_vcore = NULL;
	tpaca->kvm_hstate.kvm_split_mode = NULL;
2160 2161
}

2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178
static void radix_flush_cpu(struct kvm *kvm, int cpu, struct kvm_vcpu *vcpu)
{
	int i;

	cpu = cpu_first_thread_sibling(cpu);
	cpumask_set_cpu(cpu, &kvm->arch.need_tlb_flush);
	/*
	 * Make sure setting of bit in need_tlb_flush precedes
	 * testing of cpu_in_guest bits.  The matching barrier on
	 * the other side is the first smp_mb() in kvmppc_run_core().
	 */
	smp_mb();
	for (i = 0; i < threads_per_core; ++i)
		if (cpumask_test_cpu(cpu + i, &kvm->arch.cpu_in_guest))
			smp_call_function_single(cpu + i, do_nothing, NULL, 1);
}

2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203
static void kvmppc_prepare_radix_vcpu(struct kvm_vcpu *vcpu, int pcpu)
{
	struct kvm *kvm = vcpu->kvm;

	/*
	 * With radix, the guest can do TLB invalidations itself,
	 * and it could choose to use the local form (tlbiel) if
	 * it is invalidating a translation that has only ever been
	 * used on one vcpu.  However, that doesn't mean it has
	 * only ever been used on one physical cpu, since vcpus
	 * can move around between pcpus.  To cope with this, when
	 * a vcpu moves from one pcpu to another, we need to tell
	 * any vcpus running on the same core as this vcpu previously
	 * ran to flush the TLB.  The TLB is shared between threads,
	 * so we use a single bit in .need_tlb_flush for all 4 threads.
	 */
	if (vcpu->arch.prev_cpu != pcpu) {
		if (vcpu->arch.prev_cpu >= 0 &&
		    cpu_first_thread_sibling(vcpu->arch.prev_cpu) !=
		    cpu_first_thread_sibling(pcpu))
			radix_flush_cpu(kvm, vcpu->arch.prev_cpu, vcpu);
		vcpu->arch.prev_cpu = pcpu;
	}
}

2204
static void kvmppc_start_thread(struct kvm_vcpu *vcpu, struct kvmppc_vcore *vc)
2205 2206 2207
{
	int cpu;
	struct paca_struct *tpaca;
2208
	struct kvm *kvm = vc->kvm;
2209

2210 2211 2212 2213 2214 2215 2216
	cpu = vc->pcpu;
	if (vcpu) {
		if (vcpu->arch.timer_running) {
			hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
			vcpu->arch.timer_running = 0;
		}
		cpu += vcpu->arch.ptid;
2217
		vcpu->cpu = vc->pcpu;
2218
		vcpu->arch.thread_cpu = cpu;
2219
		cpumask_set_cpu(cpu, &kvm->arch.cpu_in_guest);
2220
	}
2221
	tpaca = &paca[cpu];
2222
	tpaca->kvm_hstate.kvm_vcpu = vcpu;
2223
	tpaca->kvm_hstate.ptid = cpu - vc->pcpu;
2224
	/* Order stores to hstate.kvm_vcpu etc. before store to kvm_vcore */
2225
	smp_wmb();
2226
	tpaca->kvm_hstate.kvm_vcore = vc;
2227
	if (cpu != smp_processor_id())
2228
		kvmppc_ipi_thread(cpu);
2229
}
2230

2231
static void kvmppc_wait_for_nap(void)
2232
{
2233 2234
	int cpu = smp_processor_id();
	int i, loops;
2235
	int n_threads = threads_per_vcore();
2236

2237 2238
	if (n_threads <= 1)
		return;
2239 2240 2241
	for (loops = 0; loops < 1000000; ++loops) {
		/*
		 * Check if all threads are finished.
2242
		 * We set the vcore pointer when starting a thread
2243
		 * and the thread clears it when finished, so we look
2244
		 * for any threads that still have a non-NULL vcore ptr.
2245
		 */
2246
		for (i = 1; i < n_threads; ++i)
2247
			if (paca[cpu + i].kvm_hstate.kvm_vcore)
2248
				break;
2249
		if (i == n_threads) {
2250 2251
			HMT_medium();
			return;
2252
		}
2253
		HMT_low();
2254 2255
	}
	HMT_medium();
2256
	for (i = 1; i < n_threads; ++i)
2257
		if (paca[cpu + i].kvm_hstate.kvm_vcore)
2258
			pr_err("KVM: CPU %d seems to be stuck\n", cpu + i);
2259 2260 2261 2262
}

/*
 * Check that we are on thread 0 and that any other threads in
2263 2264
 * this core are off-line.  Then grab the threads so they can't
 * enter the kernel.
2265 2266 2267 2268
 */
static int on_primary_thread(void)
{
	int cpu = smp_processor_id();
2269
	int thr;
2270

2271 2272
	/* Are we on a primary subcore? */
	if (cpu_thread_in_subcore(cpu))
2273
		return 0;
2274 2275 2276

	thr = 0;
	while (++thr < threads_per_subcore)
2277 2278
		if (cpu_online(cpu + thr))
			return 0;
2279 2280

	/* Grab all hw threads so they can't go into the kernel */
2281
	for (thr = 1; thr < threads_per_subcore; ++thr) {
2282 2283 2284 2285 2286 2287 2288 2289
		if (kvmppc_grab_hwthread(cpu + thr)) {
			/* Couldn't grab one; let the others go */
			do {
				kvmppc_release_hwthread(cpu + thr);
			} while (--thr > 0);
			return 0;
		}
	}
2290 2291 2292
	return 1;
}

2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321
/*
 * A list of virtual cores for each physical CPU.
 * These are vcores that could run but their runner VCPU tasks are
 * (or may be) preempted.
 */
struct preempted_vcore_list {
	struct list_head	list;
	spinlock_t		lock;
};

static DEFINE_PER_CPU(struct preempted_vcore_list, preempted_vcores);

static void init_vcore_lists(void)
{
	int cpu;

	for_each_possible_cpu(cpu) {
		struct preempted_vcore_list *lp = &per_cpu(preempted_vcores, cpu);
		spin_lock_init(&lp->lock);
		INIT_LIST_HEAD(&lp->list);
	}
}

static void kvmppc_vcore_preempt(struct kvmppc_vcore *vc)
{
	struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);

	vc->vcore_state = VCORE_PREEMPT;
	vc->pcpu = smp_processor_id();
2322
	if (vc->num_threads < threads_per_vcore()) {
2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333
		spin_lock(&lp->lock);
		list_add_tail(&vc->preempt_list, &lp->list);
		spin_unlock(&lp->lock);
	}

	/* Start accumulating stolen time */
	kvmppc_core_start_stolen(vc);
}

static void kvmppc_vcore_end_preempt(struct kvmppc_vcore *vc)
{
2334
	struct preempted_vcore_list *lp;
2335 2336 2337

	kvmppc_core_end_stolen(vc);
	if (!list_empty(&vc->preempt_list)) {
2338
		lp = &per_cpu(preempted_vcores, vc->pcpu);
2339 2340 2341 2342 2343 2344 2345
		spin_lock(&lp->lock);
		list_del_init(&vc->preempt_list);
		spin_unlock(&lp->lock);
	}
	vc->vcore_state = VCORE_INACTIVE;
}

2346 2347 2348 2349
/*
 * This stores information about the virtual cores currently
 * assigned to a physical core.
 */
2350
struct core_info {
2351 2352
	int		n_subcores;
	int		max_subcore_threads;
2353
	int		total_threads;
2354
	int		subcore_threads[MAX_SUBCORES];
2355
	struct kvmppc_vcore *vc[MAX_SUBCORES];
2356 2357
};

2358 2359 2360 2361 2362 2363
/*
 * This mapping means subcores 0 and 1 can use threads 0-3 and 4-7
 * respectively in 2-way micro-threading (split-core) mode.
 */
static int subcore_thread_map[MAX_SUBCORES] = { 0, 4, 2, 6 };

2364 2365 2366
static void init_core_info(struct core_info *cip, struct kvmppc_vcore *vc)
{
	memset(cip, 0, sizeof(*cip));
2367 2368
	cip->n_subcores = 1;
	cip->max_subcore_threads = vc->num_threads;
2369
	cip->total_threads = vc->num_threads;
2370
	cip->subcore_threads[0] = vc->num_threads;
2371
	cip->vc[0] = vc;
2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388
}

static bool subcore_config_ok(int n_subcores, int n_threads)
{
	/* Can only dynamically split if unsplit to begin with */
	if (n_subcores > 1 && threads_per_subcore < MAX_SMT_THREADS)
		return false;
	if (n_subcores > MAX_SUBCORES)
		return false;
	if (n_subcores > 1) {
		if (!(dynamic_mt_modes & 2))
			n_subcores = 4;
		if (n_subcores > 2 && !(dynamic_mt_modes & 4))
			return false;
	}

	return n_subcores * roundup_pow_of_two(n_threads) <= MAX_SMT_THREADS;
2389 2390
}

2391
static void init_vcore_to_run(struct kvmppc_vcore *vc)
2392 2393 2394 2395 2396 2397 2398
{
	vc->entry_exit_map = 0;
	vc->in_guest = 0;
	vc->napping_threads = 0;
	vc->conferring_threads = 0;
}

2399 2400 2401 2402 2403 2404 2405 2406 2407 2408
static bool can_dynamic_split(struct kvmppc_vcore *vc, struct core_info *cip)
{
	int n_threads = vc->num_threads;
	int sub;

	if (!cpu_has_feature(CPU_FTR_ARCH_207S))
		return false;

	if (n_threads < cip->max_subcore_threads)
		n_threads = cip->max_subcore_threads;
2409
	if (!subcore_config_ok(cip->n_subcores + 1, n_threads))
2410
		return false;
2411
	cip->max_subcore_threads = n_threads;
2412 2413 2414 2415 2416

	sub = cip->n_subcores;
	++cip->n_subcores;
	cip->total_threads += vc->num_threads;
	cip->subcore_threads[sub] = vc->num_threads;
2417 2418 2419
	cip->vc[sub] = vc;
	init_vcore_to_run(vc);
	list_del_init(&vc->preempt_list);
2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433

	return true;
}

/*
 * Work out whether it is possible to piggyback the execution of
 * vcore *pvc onto the execution of the other vcores described in *cip.
 */
static bool can_piggyback(struct kvmppc_vcore *pvc, struct core_info *cip,
			  int target_threads)
{
	if (cip->total_threads + pvc->num_threads > target_threads)
		return false;

2434
	return can_dynamic_split(pvc, cip);
2435 2436
}

2437 2438
static void prepare_threads(struct kvmppc_vcore *vc)
{
2439 2440
	int i;
	struct kvm_vcpu *vcpu;
2441

2442
	for_each_runnable_thread(i, vcpu, vc) {
2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455
		if (signal_pending(vcpu->arch.run_task))
			vcpu->arch.ret = -EINTR;
		else if (vcpu->arch.vpa.update_pending ||
			 vcpu->arch.slb_shadow.update_pending ||
			 vcpu->arch.dtl.update_pending)
			vcpu->arch.ret = RESUME_GUEST;
		else
			continue;
		kvmppc_remove_runnable(vc, vcpu);
		wake_up(&vcpu->arch.cpu_run);
	}
}

2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486
static void collect_piggybacks(struct core_info *cip, int target_threads)
{
	struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
	struct kvmppc_vcore *pvc, *vcnext;

	spin_lock(&lp->lock);
	list_for_each_entry_safe(pvc, vcnext, &lp->list, preempt_list) {
		if (!spin_trylock(&pvc->lock))
			continue;
		prepare_threads(pvc);
		if (!pvc->n_runnable) {
			list_del_init(&pvc->preempt_list);
			if (pvc->runner == NULL) {
				pvc->vcore_state = VCORE_INACTIVE;
				kvmppc_core_end_stolen(pvc);
			}
			spin_unlock(&pvc->lock);
			continue;
		}
		if (!can_piggyback(pvc, cip, target_threads)) {
			spin_unlock(&pvc->lock);
			continue;
		}
		kvmppc_core_end_stolen(pvc);
		pvc->vcore_state = VCORE_PIGGYBACK;
		if (cip->total_threads >= target_threads)
			break;
	}
	spin_unlock(&lp->lock);
}

2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498
static bool recheck_signals(struct core_info *cip)
{
	int sub, i;
	struct kvm_vcpu *vcpu;

	for (sub = 0; sub < cip->n_subcores; ++sub)
		for_each_runnable_thread(i, vcpu, cip->vc[sub])
			if (signal_pending(vcpu->arch.run_task))
				return true;
	return false;
}

2499
static void post_guest_process(struct kvmppc_vcore *vc, bool is_master)
2500
{
2501
	int still_running = 0, i;
2502 2503
	u64 now;
	long ret;
2504
	struct kvm_vcpu *vcpu;
2505

2506
	spin_lock(&vc->lock);
2507
	now = get_tb();
2508
	for_each_runnable_thread(i, vcpu, vc) {
2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523
		/* cancel pending dec exception if dec is positive */
		if (now < vcpu->arch.dec_expires &&
		    kvmppc_core_pending_dec(vcpu))
			kvmppc_core_dequeue_dec(vcpu);

		trace_kvm_guest_exit(vcpu);

		ret = RESUME_GUEST;
		if (vcpu->arch.trap)
			ret = kvmppc_handle_exit_hv(vcpu->arch.kvm_run, vcpu,
						    vcpu->arch.run_task);

		vcpu->arch.ret = ret;
		vcpu->arch.trap = 0;

2524 2525 2526 2527
		if (is_kvmppc_resume_guest(vcpu->arch.ret)) {
			if (vcpu->arch.pending_exceptions)
				kvmppc_core_prepare_to_enter(vcpu);
			if (vcpu->arch.ceded)
2528
				kvmppc_set_timer(vcpu);
2529 2530 2531
			else
				++still_running;
		} else {
2532 2533 2534 2535
			kvmppc_remove_runnable(vc, vcpu);
			wake_up(&vcpu->arch.cpu_run);
		}
	}
2536
	if (!is_master) {
2537
		if (still_running > 0) {
2538
			kvmppc_vcore_preempt(vc);
2539 2540 2541 2542 2543 2544
		} else if (vc->runner) {
			vc->vcore_state = VCORE_PREEMPT;
			kvmppc_core_start_stolen(vc);
		} else {
			vc->vcore_state = VCORE_INACTIVE;
		}
2545 2546
		if (vc->n_runnable > 0 && vc->runner == NULL) {
			/* make sure there's a candidate runner awake */
2547 2548
			i = -1;
			vcpu = next_runnable_thread(vc, &i);
2549 2550 2551 2552
			wake_up(&vcpu->arch.cpu_run);
		}
	}
	spin_unlock(&vc->lock);
2553 2554
}

2555 2556 2557 2558 2559
/*
 * Clear core from the list of active host cores as we are about to
 * enter the guest. Only do this if it is the primary thread of the
 * core (not if a subcore) that is entering the guest.
 */
2560
static inline int kvmppc_clear_host_core(unsigned int cpu)
2561 2562 2563 2564
{
	int core;

	if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
2565
		return 0;
2566 2567 2568 2569 2570 2571 2572
	/*
	 * Memory barrier can be omitted here as we will do a smp_wmb()
	 * later in kvmppc_start_thread and we need ensure that state is
	 * visible to other CPUs only after we enter guest.
	 */
	core = cpu >> threads_shift;
	kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 0;
2573
	return 0;
2574 2575 2576 2577 2578 2579 2580
}

/*
 * Advertise this core as an active host core since we exited the guest
 * Only need to do this if it is the primary thread of the core that is
 * exiting.
 */
2581
static inline int kvmppc_set_host_core(unsigned int cpu)
2582 2583 2584 2585
{
	int core;

	if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
2586
		return 0;
2587 2588 2589 2590 2591 2592 2593

	/*
	 * Memory barrier can be omitted here because we do a spin_unlock
	 * immediately after this which provides the memory barrier.
	 */
	core = cpu >> threads_shift;
	kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 1;
2594
	return 0;
2595 2596
}

2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611
static void set_irq_happened(int trap)
{
	switch (trap) {
	case BOOK3S_INTERRUPT_EXTERNAL:
		local_paca->irq_happened |= PACA_IRQ_EE;
		break;
	case BOOK3S_INTERRUPT_H_DOORBELL:
		local_paca->irq_happened |= PACA_IRQ_DBELL;
		break;
	case BOOK3S_INTERRUPT_HMI:
		local_paca->irq_happened |= PACA_IRQ_HMI;
		break;
	}
}

2612 2613 2614 2615
/*
 * Run a set of guest threads on a physical core.
 * Called with vc->lock held.
 */
2616
static noinline void kvmppc_run_core(struct kvmppc_vcore *vc)
2617
{
2618
	struct kvm_vcpu *vcpu;
2619
	int i;
2620
	int srcu_idx;
2621
	struct core_info core_info;
2622
	struct kvmppc_vcore *pvc;
2623 2624 2625 2626 2627
	struct kvm_split_mode split_info, *sip;
	int split, subcore_size, active;
	int sub;
	bool thr0_done;
	unsigned long cmd_bit, stat_bit;
2628 2629
	int pcpu, thr;
	int target_threads;
2630
	int controlled_threads;
2631
	int trap;
2632

2633 2634 2635 2636 2637 2638 2639 2640 2641
	/*
	 * Remove from the list any threads that have a signal pending
	 * or need a VPA update done
	 */
	prepare_threads(vc);

	/* if the runner is no longer runnable, let the caller pick a new one */
	if (vc->runner->arch.state != KVMPPC_VCPU_RUNNABLE)
		return;
2642 2643

	/*
2644
	 * Initialize *vc.
2645
	 */
2646
	init_vcore_to_run(vc);
2647
	vc->preempt_tb = TB_NIL;
2648

2649 2650 2651 2652 2653 2654 2655
	/*
	 * Number of threads that we will be controlling: the same as
	 * the number of threads per subcore, except on POWER9,
	 * where it's 1 because the threads are (mostly) independent.
	 */
	controlled_threads = threads_per_vcore();

2656
	/*
2657 2658 2659
	 * Make sure we are running on primary threads, and that secondary
	 * threads are offline.  Also check if the number of threads in this
	 * guest are greater than the current system threads per guest.
2660
	 */
2661
	if ((controlled_threads > 1) &&
2662
	    ((vc->num_threads > threads_per_subcore) || !on_primary_thread())) {
2663
		for_each_runnable_thread(i, vcpu, vc) {
2664
			vcpu->arch.ret = -EBUSY;
2665 2666 2667
			kvmppc_remove_runnable(vc, vcpu);
			wake_up(&vcpu->arch.cpu_run);
		}
2668 2669 2670
		goto out;
	}

2671 2672 2673 2674 2675 2676
	/*
	 * See if we could run any other vcores on the physical core
	 * along with this one.
	 */
	init_core_info(&core_info, vc);
	pcpu = smp_processor_id();
2677
	target_threads = controlled_threads;
2678 2679 2680 2681
	if (target_smt_mode && target_smt_mode < target_threads)
		target_threads = target_smt_mode;
	if (vc->num_threads < target_threads)
		collect_piggybacks(&core_info, target_threads);
2682

2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719
	/*
	 * On radix, arrange for TLB flushing if necessary.
	 * This has to be done before disabling interrupts since
	 * it uses smp_call_function().
	 */
	pcpu = smp_processor_id();
	if (kvm_is_radix(vc->kvm)) {
		for (sub = 0; sub < core_info.n_subcores; ++sub)
			for_each_runnable_thread(i, vcpu, core_info.vc[sub])
				kvmppc_prepare_radix_vcpu(vcpu, pcpu);
	}

	/*
	 * Hard-disable interrupts, and check resched flag and signals.
	 * If we need to reschedule or deliver a signal, clean up
	 * and return without going into the guest(s).
	 */
	local_irq_disable();
	hard_irq_disable();
	if (lazy_irq_pending() || need_resched() ||
	    recheck_signals(&core_info)) {
		local_irq_enable();
		vc->vcore_state = VCORE_INACTIVE;
		/* Unlock all except the primary vcore */
		for (sub = 1; sub < core_info.n_subcores; ++sub) {
			pvc = core_info.vc[sub];
			/* Put back on to the preempted vcores list */
			kvmppc_vcore_preempt(pvc);
			spin_unlock(&pvc->lock);
		}
		for (i = 0; i < controlled_threads; ++i)
			kvmppc_release_hwthread(pcpu + i);
		return;
	}

	kvmppc_clear_host_core(pcpu);

2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742
	/* Decide on micro-threading (split-core) mode */
	subcore_size = threads_per_subcore;
	cmd_bit = stat_bit = 0;
	split = core_info.n_subcores;
	sip = NULL;
	if (split > 1) {
		/* threads_per_subcore must be MAX_SMT_THREADS (8) here */
		if (split == 2 && (dynamic_mt_modes & 2)) {
			cmd_bit = HID0_POWER8_1TO2LPAR;
			stat_bit = HID0_POWER8_2LPARMODE;
		} else {
			split = 4;
			cmd_bit = HID0_POWER8_1TO4LPAR;
			stat_bit = HID0_POWER8_4LPARMODE;
		}
		subcore_size = MAX_SMT_THREADS / split;
		sip = &split_info;
		memset(&split_info, 0, sizeof(split_info));
		split_info.rpr = mfspr(SPRN_RPR);
		split_info.pmmar = mfspr(SPRN_PMMAR);
		split_info.ldbar = mfspr(SPRN_LDBAR);
		split_info.subcore_size = subcore_size;
		for (sub = 0; sub < core_info.n_subcores; ++sub)
2743
			split_info.vc[sub] = core_info.vc[sub];
2744 2745 2746
		/* order writes to split_info before kvm_split_mode pointer */
		smp_wmb();
	}
2747
	for (thr = 0; thr < controlled_threads; ++thr)
2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762
		paca[pcpu + thr].kvm_hstate.kvm_split_mode = sip;

	/* Initiate micro-threading (split-core) if required */
	if (cmd_bit) {
		unsigned long hid0 = mfspr(SPRN_HID0);

		hid0 |= cmd_bit | HID0_POWER8_DYNLPARDIS;
		mb();
		mtspr(SPRN_HID0, hid0);
		isync();
		for (;;) {
			hid0 = mfspr(SPRN_HID0);
			if (hid0 & stat_bit)
				break;
			cpu_relax();
2763
		}
2764
	}
2765

2766 2767 2768 2769 2770 2771
	/* Start all the threads */
	active = 0;
	for (sub = 0; sub < core_info.n_subcores; ++sub) {
		thr = subcore_thread_map[sub];
		thr0_done = false;
		active |= 1 << thr;
2772 2773 2774 2775 2776 2777 2778 2779 2780
		pvc = core_info.vc[sub];
		pvc->pcpu = pcpu + thr;
		for_each_runnable_thread(i, vcpu, pvc) {
			kvmppc_start_thread(vcpu, pvc);
			kvmppc_create_dtl_entry(vcpu, pvc);
			trace_kvm_guest_enter(vcpu);
			if (!vcpu->arch.ptid)
				thr0_done = true;
			active |= 1 << (thr + vcpu->arch.ptid);
2781
		}
2782 2783 2784 2785 2786 2787 2788
		/*
		 * We need to start the first thread of each subcore
		 * even if it doesn't have a vcpu.
		 */
		if (!thr0_done)
			kvmppc_start_thread(NULL, pvc);
		thr += pvc->num_threads;
2789
	}
2790

2791 2792 2793 2794 2795 2796 2797 2798
	/*
	 * Ensure that split_info.do_nap is set after setting
	 * the vcore pointer in the PACA of the secondaries.
	 */
	smp_mb();
	if (cmd_bit)
		split_info.do_nap = 1;	/* ask secondaries to nap when done */

2799 2800 2801 2802 2803 2804 2805 2806 2807
	/*
	 * When doing micro-threading, poke the inactive threads as well.
	 * This gets them to the nap instruction after kvm_do_nap,
	 * which reduces the time taken to unsplit later.
	 */
	if (split > 1)
		for (thr = 1; thr < threads_per_subcore; ++thr)
			if (!(active & (1 << thr)))
				kvmppc_ipi_thread(pcpu + thr);
2808

2809
	vc->vcore_state = VCORE_RUNNING;
2810
	preempt_disable();
2811 2812 2813

	trace_kvmppc_run_core(vc, 0);

2814
	for (sub = 0; sub < core_info.n_subcores; ++sub)
2815
		spin_unlock(&core_info.vc[sub]->lock);
2816

2817 2818 2819 2820 2821
	/*
	 * Interrupts will be enabled once we get into the guest,
	 * so tell lockdep that we're about to enable interrupts.
	 */
	trace_hardirqs_on();
2822

2823
	guest_enter();
2824

2825
	srcu_idx = srcu_read_lock(&vc->kvm->srcu);
2826

2827
	trap = __kvmppc_vcore_entry();
2828

2829 2830
	srcu_read_unlock(&vc->kvm->srcu, srcu_idx);

2831 2832 2833 2834 2835
	guest_exit();

	trace_hardirqs_off();
	set_irq_happened(trap);

2836
	spin_lock(&vc->lock);
2837
	/* prevent other vcpu threads from doing kvmppc_start_thread() now */
2838
	vc->vcore_state = VCORE_EXITING;
2839

2840
	/* wait for secondary threads to finish writing their state to memory */
2841
	kvmppc_wait_for_nap();
2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862

	/* Return to whole-core mode if we split the core earlier */
	if (split > 1) {
		unsigned long hid0 = mfspr(SPRN_HID0);
		unsigned long loops = 0;

		hid0 &= ~HID0_POWER8_DYNLPARDIS;
		stat_bit = HID0_POWER8_2LPARMODE | HID0_POWER8_4LPARMODE;
		mb();
		mtspr(SPRN_HID0, hid0);
		isync();
		for (;;) {
			hid0 = mfspr(SPRN_HID0);
			if (!(hid0 & stat_bit))
				break;
			cpu_relax();
			++loops;
		}
		split_info.do_nap = 0;
	}

2863 2864 2865 2866
	kvmppc_set_host_core(pcpu);

	local_irq_enable();

2867
	/* Let secondaries go back to the offline loop */
2868
	for (i = 0; i < controlled_threads; ++i) {
2869 2870 2871
		kvmppc_release_hwthread(pcpu + i);
		if (sip && sip->napped[i])
			kvmppc_ipi_thread(pcpu + i);
2872
		cpumask_clear_cpu(pcpu + i, &vc->kvm->arch.cpu_in_guest);
2873 2874
	}

2875
	spin_unlock(&vc->lock);
2876

2877 2878
	/* make sure updates to secondary vcpu structs are visible now */
	smp_mb();
2879

2880 2881 2882 2883
	for (sub = 0; sub < core_info.n_subcores; ++sub) {
		pvc = core_info.vc[sub];
		post_guest_process(pvc, pvc == vc);
	}
2884

2885
	spin_lock(&vc->lock);
2886
	preempt_enable();
2887 2888

 out:
2889
	vc->vcore_state = VCORE_INACTIVE;
2890
	trace_kvmppc_run_core(vc, 1);
2891 2892
}

2893 2894 2895 2896
/*
 * Wait for some other vcpu thread to execute us, and
 * wake us up when we need to handle something in the host.
 */
2897 2898
static void kvmppc_wait_for_exec(struct kvmppc_vcore *vc,
				 struct kvm_vcpu *vcpu, int wait_state)
2899 2900 2901
{
	DEFINE_WAIT(wait);

2902
	prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state);
2903 2904
	if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
		spin_unlock(&vc->lock);
2905
		schedule();
2906 2907
		spin_lock(&vc->lock);
	}
2908 2909 2910
	finish_wait(&vcpu->arch.cpu_run, &wait);
}

2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927
static void grow_halt_poll_ns(struct kvmppc_vcore *vc)
{
	/* 10us base */
	if (vc->halt_poll_ns == 0 && halt_poll_ns_grow)
		vc->halt_poll_ns = 10000;
	else
		vc->halt_poll_ns *= halt_poll_ns_grow;
}

static void shrink_halt_poll_ns(struct kvmppc_vcore *vc)
{
	if (halt_poll_ns_shrink == 0)
		vc->halt_poll_ns = 0;
	else
		vc->halt_poll_ns /= halt_poll_ns_shrink;
}

2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942
#ifdef CONFIG_KVM_XICS
static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu)
{
	if (!xive_enabled())
		return false;
	return vcpu->arch.xive_saved_state.pipr <
		vcpu->arch.xive_saved_state.cppr;
}
#else
static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu)
{
	return false;
}
#endif /* CONFIG_KVM_XICS */

2943 2944 2945
static bool kvmppc_vcpu_woken(struct kvm_vcpu *vcpu)
{
	if (vcpu->arch.pending_exceptions || vcpu->arch.prodded ||
2946
	    kvmppc_doorbell_pending(vcpu) || xive_interrupt_pending(vcpu))
2947 2948 2949 2950 2951
		return true;

	return false;
}

2952 2953
/*
 * Check to see if any of the runnable vcpus on the vcore have pending
2954 2955 2956 2957 2958 2959 2960 2961
 * exceptions or are no longer ceded
 */
static int kvmppc_vcore_check_block(struct kvmppc_vcore *vc)
{
	struct kvm_vcpu *vcpu;
	int i;

	for_each_runnable_thread(i, vcpu, vc) {
2962
		if (!vcpu->arch.ceded || kvmppc_vcpu_woken(vcpu))
2963 2964 2965 2966 2967 2968
			return 1;
	}

	return 0;
}

2969 2970 2971 2972 2973 2974
/*
 * All the vcpus in this vcore are idle, so wait for a decrementer
 * or external interrupt to one of the vcpus.  vc->lock is held.
 */
static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc)
{
2975
	ktime_t cur, start_poll, start_wait;
2976 2977
	int do_sleep = 1;
	u64 block_ns;
2978
	DECLARE_SWAITQUEUE(wait);
2979

2980
	/* Poll for pending exceptions and ceded state */
2981
	cur = start_poll = ktime_get();
2982
	if (vc->halt_poll_ns) {
2983 2984
		ktime_t stop = ktime_add_ns(start_poll, vc->halt_poll_ns);
		++vc->runner->stat.halt_attempted_poll;
2985

2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999
		vc->vcore_state = VCORE_POLLING;
		spin_unlock(&vc->lock);

		do {
			if (kvmppc_vcore_check_block(vc)) {
				do_sleep = 0;
				break;
			}
			cur = ktime_get();
		} while (single_task_running() && ktime_before(cur, stop));

		spin_lock(&vc->lock);
		vc->vcore_state = VCORE_INACTIVE;

3000 3001
		if (!do_sleep) {
			++vc->runner->stat.halt_successful_poll;
3002
			goto out;
3003
		}
3004 3005
	}

3006 3007 3008
	prepare_to_swait(&vc->wq, &wait, TASK_INTERRUPTIBLE);

	if (kvmppc_vcore_check_block(vc)) {
3009
		finish_swait(&vc->wq, &wait);
3010
		do_sleep = 0;
3011 3012 3013
		/* If we polled, count this as a successful poll */
		if (vc->halt_poll_ns)
			++vc->runner->stat.halt_successful_poll;
3014
		goto out;
3015 3016
	}

3017 3018
	start_wait = ktime_get();

3019
	vc->vcore_state = VCORE_SLEEPING;
3020
	trace_kvmppc_vcore_blocked(vc, 0);
3021
	spin_unlock(&vc->lock);
3022
	schedule();
3023
	finish_swait(&vc->wq, &wait);
3024 3025
	spin_lock(&vc->lock);
	vc->vcore_state = VCORE_INACTIVE;
3026
	trace_kvmppc_vcore_blocked(vc, 1);
3027
	++vc->runner->stat.halt_successful_wait;
3028 3029 3030 3031

	cur = ktime_get();

out:
3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049
	block_ns = ktime_to_ns(cur) - ktime_to_ns(start_poll);

	/* Attribute wait time */
	if (do_sleep) {
		vc->runner->stat.halt_wait_ns +=
			ktime_to_ns(cur) - ktime_to_ns(start_wait);
		/* Attribute failed poll time */
		if (vc->halt_poll_ns)
			vc->runner->stat.halt_poll_fail_ns +=
				ktime_to_ns(start_wait) -
				ktime_to_ns(start_poll);
	} else {
		/* Attribute successful poll time */
		if (vc->halt_poll_ns)
			vc->runner->stat.halt_poll_success_ns +=
				ktime_to_ns(cur) -
				ktime_to_ns(start_poll);
	}
3050 3051

	/* Adjust poll time */
3052
	if (halt_poll_ns) {
3053 3054 3055
		if (block_ns <= vc->halt_poll_ns)
			;
		/* We slept and blocked for longer than the max halt time */
3056
		else if (vc->halt_poll_ns && block_ns > halt_poll_ns)
3057 3058
			shrink_halt_poll_ns(vc);
		/* We slept and our poll time is too small */
3059 3060
		else if (vc->halt_poll_ns < halt_poll_ns &&
				block_ns < halt_poll_ns)
3061
			grow_halt_poll_ns(vc);
3062 3063
		if (vc->halt_poll_ns > halt_poll_ns)
			vc->halt_poll_ns = halt_poll_ns;
3064 3065 3066 3067
	} else
		vc->halt_poll_ns = 0;

	trace_kvmppc_vcore_wakeup(do_sleep, block_ns);
3068
}
3069

3070 3071
static int kvmppc_run_vcpu(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
{
3072
	int n_ceded, i;
3073
	struct kvmppc_vcore *vc;
3074
	struct kvm_vcpu *v;
3075

3076 3077
	trace_kvmppc_run_vcpu_enter(vcpu);

3078 3079 3080
	kvm_run->exit_reason = 0;
	vcpu->arch.ret = RESUME_GUEST;
	vcpu->arch.trap = 0;
3081
	kvmppc_update_vpas(vcpu);
3082 3083 3084 3085 3086 3087

	/*
	 * Synchronize with other threads in this virtual core
	 */
	vc = vcpu->arch.vcore;
	spin_lock(&vc->lock);
3088
	vcpu->arch.ceded = 0;
3089 3090
	vcpu->arch.run_task = current;
	vcpu->arch.kvm_run = kvm_run;
3091
	vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb());
3092
	vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
3093
	vcpu->arch.busy_preempt = TB_NIL;
3094
	WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], vcpu);
3095 3096
	++vc->n_runnable;

3097 3098 3099 3100 3101
	/*
	 * This happens the first time this is called for a vcpu.
	 * If the vcore is already running, we may be able to start
	 * this thread straight away and have it join in.
	 */
3102
	if (!signal_pending(current)) {
3103
		if (vc->vcore_state == VCORE_PIGGYBACK) {
3104 3105 3106
			if (spin_trylock(&vc->lock)) {
				if (vc->vcore_state == VCORE_RUNNING &&
				    !VCORE_IS_EXITING(vc)) {
3107
					kvmppc_create_dtl_entry(vcpu, vc);
3108
					kvmppc_start_thread(vcpu, vc);
3109 3110
					trace_kvm_guest_enter(vcpu);
				}
3111
				spin_unlock(&vc->lock);
3112 3113 3114
			}
		} else if (vc->vcore_state == VCORE_RUNNING &&
			   !VCORE_IS_EXITING(vc)) {
3115
			kvmppc_create_dtl_entry(vcpu, vc);
3116
			kvmppc_start_thread(vcpu, vc);
3117
			trace_kvm_guest_enter(vcpu);
3118
		} else if (vc->vcore_state == VCORE_SLEEPING) {
3119
			swake_up(&vc->wq);
3120 3121
		}

3122
	}
3123

3124 3125
	while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
	       !signal_pending(current)) {
3126 3127 3128
		if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
			kvmppc_vcore_end_preempt(vc);

3129
		if (vc->vcore_state != VCORE_INACTIVE) {
3130
			kvmppc_wait_for_exec(vc, vcpu, TASK_INTERRUPTIBLE);
3131 3132
			continue;
		}
3133
		for_each_runnable_thread(i, v, vc) {
3134
			kvmppc_core_prepare_to_enter(v);
3135 3136 3137 3138 3139 3140 3141 3142
			if (signal_pending(v->arch.run_task)) {
				kvmppc_remove_runnable(vc, v);
				v->stat.signal_exits++;
				v->arch.kvm_run->exit_reason = KVM_EXIT_INTR;
				v->arch.ret = -EINTR;
				wake_up(&v->arch.cpu_run);
			}
		}
3143 3144 3145
		if (!vc->n_runnable || vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
			break;
		n_ceded = 0;
3146
		for_each_runnable_thread(i, v, vc) {
3147
			if (!kvmppc_vcpu_woken(v))
3148
				n_ceded += v->arch.ceded;
3149 3150 3151
			else
				v->arch.ceded = 0;
		}
3152 3153
		vc->runner = vcpu;
		if (n_ceded == vc->n_runnable) {
3154
			kvmppc_vcore_blocked(vc);
3155
		} else if (need_resched()) {
3156
			kvmppc_vcore_preempt(vc);
3157 3158
			/* Let something else run */
			cond_resched_lock(&vc->lock);
3159 3160
			if (vc->vcore_state == VCORE_PREEMPT)
				kvmppc_vcore_end_preempt(vc);
3161
		} else {
3162
			kvmppc_run_core(vc);
3163
		}
3164
		vc->runner = NULL;
3165
	}
3166

3167 3168
	while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
	       (vc->vcore_state == VCORE_RUNNING ||
3169 3170
		vc->vcore_state == VCORE_EXITING ||
		vc->vcore_state == VCORE_PIGGYBACK))
3171
		kvmppc_wait_for_exec(vc, vcpu, TASK_UNINTERRUPTIBLE);
3172

3173 3174 3175
	if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
		kvmppc_vcore_end_preempt(vc);

3176 3177 3178 3179 3180 3181 3182 3183 3184
	if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
		kvmppc_remove_runnable(vc, vcpu);
		vcpu->stat.signal_exits++;
		kvm_run->exit_reason = KVM_EXIT_INTR;
		vcpu->arch.ret = -EINTR;
	}

	if (vc->n_runnable && vc->vcore_state == VCORE_INACTIVE) {
		/* Wake up some vcpu to run the core */
3185 3186
		i = -1;
		v = next_runnable_thread(vc, &i);
3187
		wake_up(&v->arch.cpu_run);
3188 3189
	}

3190
	trace_kvmppc_run_vcpu_exit(vcpu, kvm_run);
3191 3192
	spin_unlock(&vc->lock);
	return vcpu->arch.ret;
3193 3194
}

3195
static int kvmppc_vcpu_run_hv(struct kvm_run *run, struct kvm_vcpu *vcpu)
3196 3197
{
	int r;
3198
	int srcu_idx;
3199
	unsigned long ebb_regs[3] = {};	/* shut up GCC */
3200 3201
	unsigned long user_tar = 0;
	unsigned int user_vrsave;
3202
	struct kvm *kvm;
3203

3204 3205 3206 3207 3208
	if (!vcpu->arch.sane) {
		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
		return -EINVAL;
	}

3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222
	/*
	 * Don't allow entry with a suspended transaction, because
	 * the guest entry/exit code will lose it.
	 * If the guest has TM enabled, save away their TM-related SPRs
	 * (they will get restored by the TM unavailable interrupt).
	 */
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
	if (cpu_has_feature(CPU_FTR_TM) && current->thread.regs &&
	    (current->thread.regs->msr & MSR_TM)) {
		if (MSR_TM_ACTIVE(current->thread.regs->msr)) {
			run->exit_reason = KVM_EXIT_FAIL_ENTRY;
			run->fail_entry.hardware_entry_failure_reason = 0;
			return -EINVAL;
		}
3223 3224
		/* Enable TM so we can read the TM SPRs */
		mtmsr(mfmsr() | MSR_TM);
3225 3226 3227 3228 3229 3230 3231
		current->thread.tm_tfhar = mfspr(SPRN_TFHAR);
		current->thread.tm_tfiar = mfspr(SPRN_TFIAR);
		current->thread.tm_texasr = mfspr(SPRN_TEXASR);
		current->thread.regs->msr &= ~MSR_TM;
	}
#endif

3232 3233
	kvmppc_core_prepare_to_enter(vcpu);

3234 3235 3236 3237 3238 3239
	/* No need to go into the guest when all we'll do is come back out */
	if (signal_pending(current)) {
		run->exit_reason = KVM_EXIT_INTR;
		return -EINTR;
	}

3240 3241 3242
	kvm = vcpu->kvm;
	atomic_inc(&kvm->arch.vcpus_running);
	/* Order vcpus_running vs. mmu_ready, see kvmppc_alloc_reset_hpt */
3243 3244
	smp_mb();

3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258
	/* On the first time here, set up MMU if necessary */
	if (!vcpu->kvm->arch.mmu_ready) {
		mutex_lock(&kvm->lock);
		r = 0;
		if (!kvm->arch.mmu_ready) {
			if (!kvm_is_radix(vcpu->kvm))
				r = kvmppc_hv_setup_htab_rma(vcpu);
			if (!r) {
				if (cpu_has_feature(CPU_FTR_ARCH_300))
					kvmppc_setup_partition_table(kvm);
				kvm->arch.mmu_ready = 1;
			}
		}
		mutex_unlock(&kvm->lock);
3259
		if (r)
3260
			goto out;
3261
	}
3262

3263 3264
	flush_all_to_thread(current);

3265
	/* Save userspace EBB and other register values */
3266 3267 3268 3269
	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
		ebb_regs[0] = mfspr(SPRN_EBBHR);
		ebb_regs[1] = mfspr(SPRN_EBBRR);
		ebb_regs[2] = mfspr(SPRN_BESCR);
3270
		user_tar = mfspr(SPRN_TAR);
3271
	}
3272
	user_vrsave = mfspr(SPRN_VRSAVE);
3273

3274
	vcpu->arch.wqp = &vcpu->arch.vcore->wq;
3275
	vcpu->arch.pgdir = current->mm->pgd;
3276
	vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
3277

3278 3279 3280 3281 3282
	do {
		r = kvmppc_run_vcpu(run, vcpu);

		if (run->exit_reason == KVM_EXIT_PAPR_HCALL &&
		    !(vcpu->arch.shregs.msr & MSR_PR)) {
3283
			trace_kvm_hcall_enter(vcpu);
3284
			r = kvmppc_pseries_do_hcall(vcpu);
3285
			trace_kvm_hcall_exit(vcpu, r);
3286
			kvmppc_core_prepare_to_enter(vcpu);
3287 3288 3289 3290 3291
		} else if (r == RESUME_PAGE_FAULT) {
			srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
			r = kvmppc_book3s_hv_page_fault(run, vcpu,
				vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
			srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
3292 3293 3294 3295 3296 3297
		} else if (r == RESUME_PASSTHROUGH) {
			if (WARN_ON(xive_enabled()))
				r = H_SUCCESS;
			else
				r = kvmppc_xics_rm_complete(vcpu, 0);
		}
3298
	} while (is_kvmppc_resume_guest(r));
3299

3300
	/* Restore userspace EBB and other register values */
3301 3302 3303 3304
	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
		mtspr(SPRN_EBBHR, ebb_regs[0]);
		mtspr(SPRN_EBBRR, ebb_regs[1]);
		mtspr(SPRN_BESCR, ebb_regs[2]);
3305 3306
		mtspr(SPRN_TAR, user_tar);
		mtspr(SPRN_FSCR, current->thread.fscr);
3307
	}
3308
	mtspr(SPRN_VRSAVE, user_vrsave);
3309

3310
 out:
3311
	vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
3312
	atomic_dec(&vcpu->kvm->arch.vcpus_running);
3313 3314 3315
	return r;
}

3316
static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps,
3317
				     int shift, int sllp)
3318
{
3319 3320 3321 3322
	(*sps)->page_shift = shift;
	(*sps)->slb_enc = sllp;
	(*sps)->enc[0].page_shift = shift;
	(*sps)->enc[0].pte_enc = kvmppc_pgsize_lp_encoding(shift, shift);
3323
	/*
3324
	 * Add 16MB MPSS support (may get filtered out by userspace)
3325
	 */
3326 3327 3328 3329 3330 3331
	if (shift != 24) {
		int penc = kvmppc_pgsize_lp_encoding(shift, 24);
		if (penc != -1) {
			(*sps)->enc[1].page_shift = 24;
			(*sps)->enc[1].pte_enc = penc;
		}
3332
	}
3333 3334 3335
	(*sps)++;
}

3336 3337
static int kvm_vm_ioctl_get_smmu_info_hv(struct kvm *kvm,
					 struct kvm_ppc_smmu_info *info)
3338 3339 3340
{
	struct kvm_ppc_one_seg_page_size *sps;

3341 3342 3343 3344 3345 3346 3347
	/*
	 * Since we don't yet support HPT guests on a radix host,
	 * return an error if the host uses radix.
	 */
	if (radix_enabled())
		return -EINVAL;

3348 3349 3350 3351 3352 3353 3354 3355
	/*
	 * POWER7, POWER8 and POWER9 all support 32 storage keys for data.
	 * POWER7 doesn't support keys for instruction accesses,
	 * POWER8 and POWER9 do.
	 */
	info->data_keys = 32;
	info->instr_keys = cpu_has_feature(CPU_FTR_ARCH_207S) ? 32 : 0;

3356 3357 3358
	/* POWER7, 8 and 9 all have 1T segments and 32-entry SLB */
	info->flags = KVM_PPC_PAGE_SIZES_REAL | KVM_PPC_1T_SEGMENTS;
	info->slb_size = 32;
3359 3360 3361

	/* We only support these sizes for now, and no muti-size segments */
	sps = &info->sps[0];
3362 3363 3364
	kvmppc_add_seg_page_size(&sps, 12, 0);
	kvmppc_add_seg_page_size(&sps, 16, SLB_VSID_L | SLB_VSID_LP_01);
	kvmppc_add_seg_page_size(&sps, 24, SLB_VSID_L);
3365 3366 3367 3368

	return 0;
}

3369 3370 3371
/*
 * Get (and clear) the dirty memory log for a memory slot.
 */
3372 3373
static int kvm_vm_ioctl_get_dirty_log_hv(struct kvm *kvm,
					 struct kvm_dirty_log *log)
3374
{
3375
	struct kvm_memslots *slots;
3376
	struct kvm_memory_slot *memslot;
3377
	int i, r;
3378
	unsigned long n;
3379
	unsigned long *buf, *p;
3380
	struct kvm_vcpu *vcpu;
3381 3382 3383 3384

	mutex_lock(&kvm->slots_lock);

	r = -EINVAL;
3385
	if (log->slot >= KVM_USER_MEM_SLOTS)
3386 3387
		goto out;

3388 3389
	slots = kvm_memslots(kvm);
	memslot = id_to_memslot(slots, log->slot);
3390 3391 3392 3393
	r = -ENOENT;
	if (!memslot->dirty_bitmap)
		goto out;

3394
	/*
3395 3396
	 * Use second half of bitmap area because both HPT and radix
	 * accumulate bits in the first half.
3397
	 */
3398
	n = kvm_dirty_bitmap_bytes(memslot);
3399 3400
	buf = memslot->dirty_bitmap + n / sizeof(long);
	memset(buf, 0, n);
3401

3402 3403 3404 3405
	if (kvm_is_radix(kvm))
		r = kvmppc_hv_get_dirty_log_radix(kvm, memslot, buf);
	else
		r = kvmppc_hv_get_dirty_log_hpt(kvm, memslot, buf);
3406 3407 3408
	if (r)
		goto out;

3409 3410 3411 3412 3413 3414 3415 3416 3417 3418
	/*
	 * We accumulate dirty bits in the first half of the
	 * memslot's dirty_bitmap area, for when pages are paged
	 * out or modified by the host directly.  Pick up these
	 * bits and add them to the map.
	 */
	p = memslot->dirty_bitmap;
	for (i = 0; i < n / sizeof(long); ++i)
		buf[i] |= xchg(&p[i], 0);

3419 3420 3421 3422 3423 3424 3425 3426 3427
	/* Harvest dirty bits from VPA and DTL updates */
	/* Note: we never modify the SLB shadow buffer areas */
	kvm_for_each_vcpu(i, vcpu, kvm) {
		spin_lock(&vcpu->arch.vpa_update_lock);
		kvmppc_harvest_vpa_dirty(&vcpu->arch.vpa, memslot, buf);
		kvmppc_harvest_vpa_dirty(&vcpu->arch.dtl, memslot, buf);
		spin_unlock(&vcpu->arch.vpa_update_lock);
	}

3428
	r = -EFAULT;
3429
	if (copy_to_user(log->dirty_bitmap, buf, n))
3430 3431 3432 3433 3434 3435 3436 3437
		goto out;

	r = 0;
out:
	mutex_unlock(&kvm->slots_lock);
	return r;
}

3438 3439
static void kvmppc_core_free_memslot_hv(struct kvm_memory_slot *free,
					struct kvm_memory_slot *dont)
3440 3441 3442 3443
{
	if (!dont || free->arch.rmap != dont->arch.rmap) {
		vfree(free->arch.rmap);
		free->arch.rmap = NULL;
3444
	}
3445 3446
}

3447 3448
static int kvmppc_core_create_memslot_hv(struct kvm_memory_slot *slot,
					 unsigned long npages)
3449
{
3450 3451 3452 3453 3454 3455 3456 3457 3458
	/*
	 * For now, if radix_enabled() then we only support radix guests,
	 * and in that case we don't need the rmap array.
	 */
	if (radix_enabled()) {
		slot->arch.rmap = NULL;
		return 0;
	}

3459 3460 3461
	slot->arch.rmap = vzalloc(npages * sizeof(*slot->arch.rmap));
	if (!slot->arch.rmap)
		return -ENOMEM;
3462

3463 3464
	return 0;
}
3465

3466 3467
static int kvmppc_core_prepare_memory_region_hv(struct kvm *kvm,
					struct kvm_memory_slot *memslot,
3468
					const struct kvm_userspace_memory_region *mem)
3469
{
3470
	return 0;
3471 3472
}

3473
static void kvmppc_core_commit_memory_region_hv(struct kvm *kvm,
3474
				const struct kvm_userspace_memory_region *mem,
3475 3476
				const struct kvm_memory_slot *old,
				const struct kvm_memory_slot *new)
3477
{
3478 3479
	unsigned long npages = mem->memory_size >> PAGE_SHIFT;

3480 3481 3482 3483 3484 3485 3486 3487
	/*
	 * If we are making a new memslot, it might make
	 * some address that was previously cached as emulated
	 * MMIO be no longer emulated MMIO, so invalidate
	 * all the caches of emulated MMIO translations.
	 */
	if (npages)
		atomic64_inc(&kvm->arch.mmio_update);
3488 3489
}

3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515
/*
 * Update LPCR values in kvm->arch and in vcores.
 * Caller must hold kvm->lock.
 */
void kvmppc_update_lpcr(struct kvm *kvm, unsigned long lpcr, unsigned long mask)
{
	long int i;
	u32 cores_done = 0;

	if ((kvm->arch.lpcr & mask) == lpcr)
		return;

	kvm->arch.lpcr = (kvm->arch.lpcr & ~mask) | lpcr;

	for (i = 0; i < KVM_MAX_VCORES; ++i) {
		struct kvmppc_vcore *vc = kvm->arch.vcores[i];
		if (!vc)
			continue;
		spin_lock(&vc->lock);
		vc->lpcr = (vc->lpcr & ~mask) | lpcr;
		spin_unlock(&vc->lock);
		if (++cores_done >= kvm->arch.online_vcores)
			break;
	}
}

3516 3517 3518 3519 3520
static void kvmppc_mmu_destroy_hv(struct kvm_vcpu *vcpu)
{
	return;
}

3521 3522 3523 3524
static void kvmppc_setup_partition_table(struct kvm *kvm)
{
	unsigned long dw0, dw1;

3525 3526 3527 3528 3529 3530
	if (!kvm_is_radix(kvm)) {
		/* PS field - page size for VRMA */
		dw0 = ((kvm->arch.vrma_slb_v & SLB_VSID_L) >> 1) |
			((kvm->arch.vrma_slb_v & SLB_VSID_LP) << 1);
		/* HTABSIZE and HTABORG fields */
		dw0 |= kvm->arch.sdr1;
3531

3532 3533 3534 3535 3536 3537 3538
		/* Second dword as set by userspace */
		dw1 = kvm->arch.process_table;
	} else {
		dw0 = PATB_HR | radix__get_tree_size() |
			__pa(kvm->arch.pgtable) | RADIX_PGD_INDEX_SIZE;
		dw1 = PATB_GR | kvm->arch.process_table;
	}
3539 3540 3541 3542

	mmu_partition_table_set_entry(kvm->arch.lpid, dw0, dw1);
}

3543 3544 3545 3546
/*
 * Set up HPT (hashed page table) and RMA (real-mode area).
 * Must be called with kvm->lock held.
 */
3547
static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu)
3548 3549 3550 3551 3552 3553
{
	int err = 0;
	struct kvm *kvm = vcpu->kvm;
	unsigned long hva;
	struct kvm_memory_slot *memslot;
	struct vm_area_struct *vma;
3554
	unsigned long lpcr = 0, senc;
3555
	unsigned long psize, porder;
3556
	int srcu_idx;
3557

3558
	/* Allocate hashed page table (if not done already) and reset it */
3559
	if (!kvm->arch.hpt.virt) {
3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570
		int order = KVM_DEFAULT_HPT_ORDER;
		struct kvm_hpt_info info;

		err = kvmppc_allocate_hpt(&info, order);
		/* If we get here, it means userspace didn't specify a
		 * size explicitly.  So, try successively smaller
		 * sizes if the default failed. */
		while ((err == -ENOMEM) && --order >= PPC_MIN_HPT_ORDER)
			err  = kvmppc_allocate_hpt(&info, order);

		if (err < 0) {
3571 3572 3573
			pr_err("KVM: Couldn't alloc HPT\n");
			goto out;
		}
3574 3575

		kvmppc_set_hpt(kvm, &info);
3576 3577
	}

3578
	/* Look up the memslot for guest physical address 0 */
3579
	srcu_idx = srcu_read_lock(&kvm->srcu);
3580
	memslot = gfn_to_memslot(kvm, 0);
3581

3582 3583 3584
	/* We must have some memory at 0 by now */
	err = -EINVAL;
	if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
3585
		goto out_srcu;
3586 3587 3588 3589 3590 3591 3592 3593 3594

	/* Look up the VMA for the start of this memory slot */
	hva = memslot->userspace_addr;
	down_read(&current->mm->mmap_sem);
	vma = find_vma(current->mm, hva);
	if (!vma || vma->vm_start > hva || (vma->vm_flags & VM_IO))
		goto up_out;

	psize = vma_kernel_pagesize(vma);
3595
	porder = __ilog2(psize);
3596 3597 3598

	up_read(&current->mm->mmap_sem);

3599 3600 3601 3602 3603
	/* We can handle 4k, 64k or 16M pages in the VRMA */
	err = -EINVAL;
	if (!(psize == 0x1000 || psize == 0x10000 ||
	      psize == 0x1000000))
		goto out_srcu;
3604

3605 3606 3607 3608 3609
	senc = slb_pgsize_encoding(psize);
	kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
		(VRMA_VSID << SLB_VSID_SHIFT_1T);
	/* Create HPTEs in the hash page table for the VRMA */
	kvmppc_map_vrma(vcpu, memslot, porder);
3610

3611 3612 3613 3614 3615 3616
	/* Update VRMASD field in the LPCR */
	if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
		/* the -4 is to account for senc values starting at 0x10 */
		lpcr = senc << (LPCR_VRMASD_SH - 4);
		kvmppc_update_lpcr(kvm, lpcr, LPCR_VRMASD);
	}
3617

3618
	/* Order updates to kvm->arch.lpcr etc. vs. mmu_ready */
3619 3620
	smp_wmb();
	err = 0;
3621 3622
 out_srcu:
	srcu_read_unlock(&kvm->srcu, srcu_idx);
3623 3624
 out:
	return err;
3625

3626 3627
 up_out:
	up_read(&current->mm->mmap_sem);
3628
	goto out_srcu;
3629 3630
}

3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664
#ifdef CONFIG_KVM_XICS
/*
 * Allocate a per-core structure for managing state about which cores are
 * running in the host versus the guest and for exchanging data between
 * real mode KVM and CPU running in the host.
 * This is only done for the first VM.
 * The allocated structure stays even if all VMs have stopped.
 * It is only freed when the kvm-hv module is unloaded.
 * It's OK for this routine to fail, we just don't support host
 * core operations like redirecting H_IPI wakeups.
 */
void kvmppc_alloc_host_rm_ops(void)
{
	struct kvmppc_host_rm_ops *ops;
	unsigned long l_ops;
	int cpu, core;
	int size;

	/* Not the first time here ? */
	if (kvmppc_host_rm_ops_hv != NULL)
		return;

	ops = kzalloc(sizeof(struct kvmppc_host_rm_ops), GFP_KERNEL);
	if (!ops)
		return;

	size = cpu_nr_cores() * sizeof(struct kvmppc_host_rm_core);
	ops->rm_core = kzalloc(size, GFP_KERNEL);

	if (!ops->rm_core) {
		kfree(ops);
		return;
	}

3665
	cpus_read_lock();
3666

3667 3668 3669 3670 3671 3672 3673 3674
	for (cpu = 0; cpu < nr_cpu_ids; cpu += threads_per_core) {
		if (!cpu_online(cpu))
			continue;

		core = cpu >> threads_shift;
		ops->rm_core[core].rm_state.in_host = 1;
	}

3675 3676
	ops->vcpu_kick = kvmppc_fast_vcpu_kick_hv;

3677 3678 3679 3680 3681 3682 3683 3684 3685 3686
	/*
	 * Make the contents of the kvmppc_host_rm_ops structure visible
	 * to other CPUs before we assign it to the global variable.
	 * Do an atomic assignment (no locks used here), but if someone
	 * beats us to it, just free our copy and return.
	 */
	smp_wmb();
	l_ops = (unsigned long) ops;

	if (cmpxchg64((unsigned long *)&kvmppc_host_rm_ops_hv, 0, l_ops)) {
3687
		cpus_read_unlock();
3688 3689
		kfree(ops->rm_core);
		kfree(ops);
3690
		return;
3691
	}
3692

3693 3694 3695 3696 3697
	cpuhp_setup_state_nocalls_cpuslocked(CPUHP_KVM_PPC_BOOK3S_PREPARE,
					     "ppc/kvm_book3s:prepare",
					     kvmppc_set_host_core,
					     kvmppc_clear_host_core);
	cpus_read_unlock();
3698 3699 3700 3701 3702
}

void kvmppc_free_host_rm_ops(void)
{
	if (kvmppc_host_rm_ops_hv) {
3703
		cpuhp_remove_state_nocalls(CPUHP_KVM_PPC_BOOK3S_PREPARE);
3704 3705 3706 3707 3708 3709 3710
		kfree(kvmppc_host_rm_ops_hv->rm_core);
		kfree(kvmppc_host_rm_ops_hv);
		kvmppc_host_rm_ops_hv = NULL;
	}
}
#endif

3711
static int kvmppc_core_init_vm_hv(struct kvm *kvm)
3712
{
3713
	unsigned long lpcr, lpid;
3714
	char buf[32];
3715
	int ret;
3716

3717 3718 3719
	/* Allocate the guest's logical partition ID */

	lpid = kvmppc_alloc_lpid();
3720
	if ((long)lpid < 0)
3721 3722
		return -ENOMEM;
	kvm->arch.lpid = lpid;
3723

3724 3725
	kvmppc_alloc_host_rm_ops();

3726 3727 3728 3729
	/*
	 * Since we don't flush the TLB when tearing down a VM,
	 * and this lpid might have previously been used,
	 * make sure we flush on each core before running the new VM.
3730 3731
	 * On POWER9, the tlbie in mmu_partition_table_set_entry()
	 * does this flush for us.
3732
	 */
3733 3734
	if (!cpu_has_feature(CPU_FTR_ARCH_300))
		cpumask_setall(&kvm->arch.need_tlb_flush);
3735

3736 3737 3738 3739
	/* Start out with the default set of hcalls enabled */
	memcpy(kvm->arch.enabled_hcalls, default_enabled_hcalls,
	       sizeof(kvm->arch.enabled_hcalls));

3740 3741
	if (!cpu_has_feature(CPU_FTR_ARCH_300))
		kvm->arch.host_sdr1 = mfspr(SPRN_SDR1);
3742

3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753
	/* Init LPCR for virtual RMA mode */
	kvm->arch.host_lpid = mfspr(SPRN_LPID);
	kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR);
	lpcr &= LPCR_PECE | LPCR_LPES;
	lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE |
		LPCR_VPM0 | LPCR_VPM1;
	kvm->arch.vrma_slb_v = SLB_VSID_B_1T |
		(VRMA_VSID << SLB_VSID_SHIFT_1T);
	/* On POWER8 turn on online bit to enable PURR/SPURR */
	if (cpu_has_feature(CPU_FTR_ARCH_207S))
		lpcr |= LPCR_ONL;
3754 3755 3756
	/*
	 * On POWER9, VPM0 bit is reserved (VPM0=1 behaviour is assumed)
	 * Set HVICE bit to enable hypervisor virtualization interrupts.
3757 3758 3759
	 * Set HEIC to prevent OS interrupts to go to hypervisor (should
	 * be unnecessary but better safe than sorry in case we re-enable
	 * EE in HV mode with this LPCR still set)
3760 3761
	 */
	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
3762
		lpcr &= ~LPCR_VPM0;
3763 3764 3765 3766 3767 3768 3769 3770
		lpcr |= LPCR_HVICE | LPCR_HEIC;

		/*
		 * If xive is enabled, we route 0x500 interrupts directly
		 * to the guest.
		 */
		if (xive_enabled())
			lpcr |= LPCR_LPES;
3771 3772
	}

3773 3774 3775 3776 3777
	/*
	 * For now, if the host uses radix, the guest must be radix.
	 */
	if (radix_enabled()) {
		kvm->arch.radix = 1;
3778
		kvm->arch.mmu_ready = 1;
3779 3780 3781 3782 3783 3784 3785 3786 3787 3788
		lpcr &= ~LPCR_VPM1;
		lpcr |= LPCR_UPRT | LPCR_GTSE | LPCR_HR;
		ret = kvmppc_init_vm_radix(kvm);
		if (ret) {
			kvmppc_free_lpid(kvm->arch.lpid);
			return ret;
		}
		kvmppc_setup_partition_table(kvm);
	}

3789
	kvm->arch.lpcr = lpcr;
3790

3791 3792 3793
	/* Initialization for future HPT resizes */
	kvm->arch.resize_hpt = NULL;

3794 3795 3796 3797
	/*
	 * Work out how many sets the TLB has, for the use of
	 * the TLB invalidation loop in book3s_hv_rmhandlers.S.
	 */
3798 3799 3800
	if (kvm_is_radix(kvm))
		kvm->arch.tlb_sets = POWER9_TLB_SETS_RADIX;	/* 128 */
	else if (cpu_has_feature(CPU_FTR_ARCH_300))
3801 3802 3803 3804 3805 3806
		kvm->arch.tlb_sets = POWER9_TLB_SETS_HASH;	/* 256 */
	else if (cpu_has_feature(CPU_FTR_ARCH_207S))
		kvm->arch.tlb_sets = POWER8_TLB_SETS;		/* 512 */
	else
		kvm->arch.tlb_sets = POWER7_TLB_SETS;		/* 128 */

3807
	/*
3808 3809
	 * Track that we now have a HV mode VM active. This blocks secondary
	 * CPU threads from coming online.
3810 3811
	 * On POWER9, we only need to do this for HPT guests on a radix
	 * host, which is not yet supported.
3812
	 */
3813 3814
	if (!cpu_has_feature(CPU_FTR_ARCH_300))
		kvm_hv_vm_activated();
3815

3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826
	/*
	 * Initialize smt_mode depending on processor.
	 * POWER8 and earlier have to use "strict" threading, where
	 * all vCPUs in a vcore have to run on the same (sub)core,
	 * whereas on POWER9 the threads can each run a different
	 * guest.
	 */
	if (!cpu_has_feature(CPU_FTR_ARCH_300))
		kvm->arch.smt_mode = threads_per_subcore;
	else
		kvm->arch.smt_mode = 1;
3827
	kvm->arch.emul_smt_mode = 1;
3828

3829 3830 3831 3832 3833 3834 3835 3836
	/*
	 * Create a debugfs directory for the VM
	 */
	snprintf(buf, sizeof(buf), "vm%d", current->pid);
	kvm->arch.debugfs_dir = debugfs_create_dir(buf, kvm_debugfs_dir);
	if (!IS_ERR_OR_NULL(kvm->arch.debugfs_dir))
		kvmppc_mmu_debugfs_init(kvm);

3837
	return 0;
3838 3839
}

3840 3841 3842 3843
static void kvmppc_free_vcores(struct kvm *kvm)
{
	long int i;

3844
	for (i = 0; i < KVM_MAX_VCORES; ++i)
3845 3846 3847 3848
		kfree(kvm->arch.vcores[i]);
	kvm->arch.online_vcores = 0;
}

3849
static void kvmppc_core_destroy_vm_hv(struct kvm *kvm)
3850
{
3851 3852
	debugfs_remove_recursive(kvm->arch.debugfs_dir);

3853 3854
	if (!cpu_has_feature(CPU_FTR_ARCH_300))
		kvm_hv_vm_deactivated();
3855

3856
	kvmppc_free_vcores(kvm);
3857

3858 3859
	kvmppc_free_lpid(kvm->arch.lpid);

3860 3861 3862
	if (kvm_is_radix(kvm))
		kvmppc_free_radix(kvm);
	else
3863
		kvmppc_free_hpt(&kvm->arch.hpt);
3864 3865

	kvmppc_free_pimap(kvm);
3866 3867
}

3868 3869 3870
/* We don't need to emulate any privileged instructions or dcbz */
static int kvmppc_core_emulate_op_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
				     unsigned int inst, int *advance)
3871
{
3872
	return EMULATE_FAIL;
3873 3874
}

3875 3876
static int kvmppc_core_emulate_mtspr_hv(struct kvm_vcpu *vcpu, int sprn,
					ulong spr_val)
3877 3878 3879 3880
{
	return EMULATE_FAIL;
}

3881 3882
static int kvmppc_core_emulate_mfspr_hv(struct kvm_vcpu *vcpu, int sprn,
					ulong *spr_val)
3883 3884 3885 3886
{
	return EMULATE_FAIL;
}

3887
static int kvmppc_core_check_processor_compat_hv(void)
3888
{
3889 3890
	if (!cpu_has_feature(CPU_FTR_HVMODE) ||
	    !cpu_has_feature(CPU_FTR_ARCH_206))
3891
		return -EIO;
3892

3893
	return 0;
3894 3895
}

3896 3897 3898 3899 3900 3901 3902
#ifdef CONFIG_KVM_XICS

void kvmppc_free_pimap(struct kvm *kvm)
{
	kfree(kvm->arch.pimap);
}

3903
static struct kvmppc_passthru_irqmap *kvmppc_alloc_pimap(void)
3904 3905 3906
{
	return kzalloc(sizeof(struct kvmppc_passthru_irqmap), GFP_KERNEL);
}
3907 3908 3909 3910 3911 3912 3913

static int kvmppc_set_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
{
	struct irq_desc *desc;
	struct kvmppc_irq_map *irq_map;
	struct kvmppc_passthru_irqmap *pimap;
	struct irq_chip *chip;
3914
	int i, rc = 0;
3915

3916 3917 3918
	if (!kvm_irq_bypass)
		return 1;

3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938
	desc = irq_to_desc(host_irq);
	if (!desc)
		return -EIO;

	mutex_lock(&kvm->lock);

	pimap = kvm->arch.pimap;
	if (pimap == NULL) {
		/* First call, allocate structure to hold IRQ map */
		pimap = kvmppc_alloc_pimap();
		if (pimap == NULL) {
			mutex_unlock(&kvm->lock);
			return -ENOMEM;
		}
		kvm->arch.pimap = pimap;
	}

	/*
	 * For now, we only support interrupts for which the EOI operation
	 * is an OPAL call followed by a write to XIRR, since that's
3939
	 * what our real-mode EOI code does, or a XIVE interrupt
3940 3941
	 */
	chip = irq_data_get_irq_chip(&desc->irq_data);
3942
	if (!chip || !(is_pnv_opal_msi(chip) || is_xive_irq(chip))) {
3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973
		pr_warn("kvmppc_set_passthru_irq_hv: Could not assign IRQ map for (%d,%d)\n",
			host_irq, guest_gsi);
		mutex_unlock(&kvm->lock);
		return -ENOENT;
	}

	/*
	 * See if we already have an entry for this guest IRQ number.
	 * If it's mapped to a hardware IRQ number, that's an error,
	 * otherwise re-use this entry.
	 */
	for (i = 0; i < pimap->n_mapped; i++) {
		if (guest_gsi == pimap->mapped[i].v_hwirq) {
			if (pimap->mapped[i].r_hwirq) {
				mutex_unlock(&kvm->lock);
				return -EINVAL;
			}
			break;
		}
	}

	if (i == KVMPPC_PIRQ_MAPPED) {
		mutex_unlock(&kvm->lock);
		return -EAGAIN;		/* table is full */
	}

	irq_map = &pimap->mapped[i];

	irq_map->v_hwirq = guest_gsi;
	irq_map->desc = desc;

3974 3975 3976 3977 3978 3979 3980
	/*
	 * Order the above two stores before the next to serialize with
	 * the KVM real mode handler.
	 */
	smp_wmb();
	irq_map->r_hwirq = desc->irq_data.hwirq;

3981 3982 3983
	if (i == pimap->n_mapped)
		pimap->n_mapped++;

3984 3985 3986 3987 3988 3989
	if (xive_enabled())
		rc = kvmppc_xive_set_mapped(kvm, guest_gsi, desc);
	else
		kvmppc_xics_set_mapped(kvm, guest_gsi, desc->irq_data.hwirq);
	if (rc)
		irq_map->r_hwirq = 0;
3990

3991 3992 3993 3994 3995 3996 3997 3998 3999
	mutex_unlock(&kvm->lock);

	return 0;
}

static int kvmppc_clr_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
{
	struct irq_desc *desc;
	struct kvmppc_passthru_irqmap *pimap;
4000
	int i, rc = 0;
4001

4002 4003 4004
	if (!kvm_irq_bypass)
		return 0;

4005 4006 4007 4008 4009
	desc = irq_to_desc(host_irq);
	if (!desc)
		return -EIO;

	mutex_lock(&kvm->lock);
4010 4011
	if (!kvm->arch.pimap)
		goto unlock;
4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024

	pimap = kvm->arch.pimap;

	for (i = 0; i < pimap->n_mapped; i++) {
		if (guest_gsi == pimap->mapped[i].v_hwirq)
			break;
	}

	if (i == pimap->n_mapped) {
		mutex_unlock(&kvm->lock);
		return -ENODEV;
	}

4025 4026 4027 4028
	if (xive_enabled())
		rc = kvmppc_xive_clr_mapped(kvm, guest_gsi, pimap->mapped[i].desc);
	else
		kvmppc_xics_clr_mapped(kvm, guest_gsi, pimap->mapped[i].r_hwirq);
4029

4030
	/* invalidate the entry (what do do on error from the above ?) */
4031 4032 4033 4034 4035 4036
	pimap->mapped[i].r_hwirq = 0;

	/*
	 * We don't free this structure even when the count goes to
	 * zero. The structure is freed when we destroy the VM.
	 */
4037
 unlock:
4038
	mutex_unlock(&kvm->lock);
4039
	return rc;
4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077
}

static int kvmppc_irq_bypass_add_producer_hv(struct irq_bypass_consumer *cons,
					     struct irq_bypass_producer *prod)
{
	int ret = 0;
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

	irqfd->producer = prod;

	ret = kvmppc_set_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi);
	if (ret)
		pr_info("kvmppc_set_passthru_irq (irq %d, gsi %d) fails: %d\n",
			prod->irq, irqfd->gsi, ret);

	return ret;
}

static void kvmppc_irq_bypass_del_producer_hv(struct irq_bypass_consumer *cons,
					      struct irq_bypass_producer *prod)
{
	int ret;
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

	irqfd->producer = NULL;

	/*
	 * When producer of consumer is unregistered, we change back to
	 * default external interrupt handling mode - KVM real mode
	 * will switch back to host.
	 */
	ret = kvmppc_clr_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi);
	if (ret)
		pr_warn("kvmppc_clr_passthru_irq (irq %d, gsi %d) fails: %d\n",
			prod->irq, irqfd->gsi, ret);
}
4078 4079
#endif

4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094
static long kvm_arch_vm_ioctl_hv(struct file *filp,
				 unsigned int ioctl, unsigned long arg)
{
	struct kvm *kvm __maybe_unused = filp->private_data;
	void __user *argp = (void __user *)arg;
	long r;

	switch (ioctl) {

	case KVM_PPC_ALLOCATE_HTAB: {
		u32 htab_order;

		r = -EFAULT;
		if (get_user(htab_order, (u32 __user *)argp))
			break;
4095
		r = kvmppc_alloc_reset_hpt(kvm, htab_order);
4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111
		if (r)
			break;
		r = 0;
		break;
	}

	case KVM_PPC_GET_HTAB_FD: {
		struct kvm_get_htab_fd ghf;

		r = -EFAULT;
		if (copy_from_user(&ghf, argp, sizeof(ghf)))
			break;
		r = kvm_vm_ioctl_get_htab_fd(kvm, &ghf);
		break;
	}

4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133
	case KVM_PPC_RESIZE_HPT_PREPARE: {
		struct kvm_ppc_resize_hpt rhpt;

		r = -EFAULT;
		if (copy_from_user(&rhpt, argp, sizeof(rhpt)))
			break;

		r = kvm_vm_ioctl_resize_hpt_prepare(kvm, &rhpt);
		break;
	}

	case KVM_PPC_RESIZE_HPT_COMMIT: {
		struct kvm_ppc_resize_hpt rhpt;

		r = -EFAULT;
		if (copy_from_user(&rhpt, argp, sizeof(rhpt)))
			break;

		r = kvm_vm_ioctl_resize_hpt_commit(kvm, &rhpt);
		break;
	}

4134 4135 4136 4137 4138 4139 4140
	default:
		r = -ENOTTY;
	}

	return r;
}

4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174
/*
 * List of hcall numbers to enable by default.
 * For compatibility with old userspace, we enable by default
 * all hcalls that were implemented before the hcall-enabling
 * facility was added.  Note this list should not include H_RTAS.
 */
static unsigned int default_hcall_list[] = {
	H_REMOVE,
	H_ENTER,
	H_READ,
	H_PROTECT,
	H_BULK_REMOVE,
	H_GET_TCE,
	H_PUT_TCE,
	H_SET_DABR,
	H_SET_XDABR,
	H_CEDE,
	H_PROD,
	H_CONFER,
	H_REGISTER_VPA,
#ifdef CONFIG_KVM_XICS
	H_EOI,
	H_CPPR,
	H_IPI,
	H_IPOLL,
	H_XIRR,
	H_XIRR_X,
#endif
	0
};

static void init_default_hcalls(void)
{
	int i;
4175
	unsigned int hcall;
4176

4177 4178 4179 4180 4181
	for (i = 0; default_hcall_list[i]; ++i) {
		hcall = default_hcall_list[i];
		WARN_ON(!kvmppc_hcall_impl_hv(hcall));
		__set_bit(hcall / 4, default_enabled_hcalls);
	}
4182 4183
}

4184 4185
static int kvmhv_configure_mmu(struct kvm *kvm, struct kvm_ppc_mmuv3_cfg *cfg)
{
4186
	unsigned long lpcr;
4187
	int radix;
4188 4189 4190 4191 4192 4193 4194 4195 4196

	/* If not on a POWER9, reject it */
	if (!cpu_has_feature(CPU_FTR_ARCH_300))
		return -ENODEV;

	/* If any unknown flags set, reject it */
	if (cfg->flags & ~(KVM_PPC_MMUV3_RADIX | KVM_PPC_MMUV3_GTSE))
		return -EINVAL;

4197 4198 4199
	/* We can't change a guest to/from radix yet */
	radix = !!(cfg->flags & KVM_PPC_MMUV3_RADIX);
	if (radix != kvm_is_radix(kvm))
4200 4201 4202
		return -EINVAL;

	/* GR (guest radix) bit in process_table field must match */
4203
	if (!!(cfg->process_table & PATB_GR) != radix)
4204 4205 4206 4207 4208 4209
		return -EINVAL;

	/* Process table size field must be reasonable, i.e. <= 24 */
	if ((cfg->process_table & PRTS_MASK) > 24)
		return -EINVAL;

4210
	mutex_lock(&kvm->lock);
4211 4212 4213 4214 4215
	kvm->arch.process_table = cfg->process_table;
	kvmppc_setup_partition_table(kvm);

	lpcr = (cfg->flags & KVM_PPC_MMUV3_GTSE) ? LPCR_GTSE : 0;
	kvmppc_update_lpcr(kvm, lpcr, LPCR_GTSE);
4216
	mutex_unlock(&kvm->lock);
4217 4218

	return 0;
4219 4220
}

4221
static struct kvmppc_ops kvm_ops_hv = {
4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252
	.get_sregs = kvm_arch_vcpu_ioctl_get_sregs_hv,
	.set_sregs = kvm_arch_vcpu_ioctl_set_sregs_hv,
	.get_one_reg = kvmppc_get_one_reg_hv,
	.set_one_reg = kvmppc_set_one_reg_hv,
	.vcpu_load   = kvmppc_core_vcpu_load_hv,
	.vcpu_put    = kvmppc_core_vcpu_put_hv,
	.set_msr     = kvmppc_set_msr_hv,
	.vcpu_run    = kvmppc_vcpu_run_hv,
	.vcpu_create = kvmppc_core_vcpu_create_hv,
	.vcpu_free   = kvmppc_core_vcpu_free_hv,
	.check_requests = kvmppc_core_check_requests_hv,
	.get_dirty_log  = kvm_vm_ioctl_get_dirty_log_hv,
	.flush_memslot  = kvmppc_core_flush_memslot_hv,
	.prepare_memory_region = kvmppc_core_prepare_memory_region_hv,
	.commit_memory_region  = kvmppc_core_commit_memory_region_hv,
	.unmap_hva = kvm_unmap_hva_hv,
	.unmap_hva_range = kvm_unmap_hva_range_hv,
	.age_hva  = kvm_age_hva_hv,
	.test_age_hva = kvm_test_age_hva_hv,
	.set_spte_hva = kvm_set_spte_hva_hv,
	.mmu_destroy  = kvmppc_mmu_destroy_hv,
	.free_memslot = kvmppc_core_free_memslot_hv,
	.create_memslot = kvmppc_core_create_memslot_hv,
	.init_vm =  kvmppc_core_init_vm_hv,
	.destroy_vm = kvmppc_core_destroy_vm_hv,
	.get_smmu_info = kvm_vm_ioctl_get_smmu_info_hv,
	.emulate_op = kvmppc_core_emulate_op_hv,
	.emulate_mtspr = kvmppc_core_emulate_mtspr_hv,
	.emulate_mfspr = kvmppc_core_emulate_mfspr_hv,
	.fast_vcpu_kick = kvmppc_fast_vcpu_kick_hv,
	.arch_vm_ioctl  = kvm_arch_vm_ioctl_hv,
4253
	.hcall_implemented = kvmppc_hcall_impl_hv,
4254 4255 4256 4257
#ifdef CONFIG_KVM_XICS
	.irq_bypass_add_producer = kvmppc_irq_bypass_add_producer_hv,
	.irq_bypass_del_producer = kvmppc_irq_bypass_del_producer_hv,
#endif
4258 4259
	.configure_mmu = kvmhv_configure_mmu,
	.get_rmmu_info = kvmhv_get_rmmu_info,
4260
	.set_smt_mode = kvmhv_set_smt_mode,
4261 4262
};

4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294
static int kvm_init_subcore_bitmap(void)
{
	int i, j;
	int nr_cores = cpu_nr_cores();
	struct sibling_subcore_state *sibling_subcore_state;

	for (i = 0; i < nr_cores; i++) {
		int first_cpu = i * threads_per_core;
		int node = cpu_to_node(first_cpu);

		/* Ignore if it is already allocated. */
		if (paca[first_cpu].sibling_subcore_state)
			continue;

		sibling_subcore_state =
			kmalloc_node(sizeof(struct sibling_subcore_state),
							GFP_KERNEL, node);
		if (!sibling_subcore_state)
			return -ENOMEM;

		memset(sibling_subcore_state, 0,
				sizeof(struct sibling_subcore_state));

		for (j = 0; j < threads_per_core; j++) {
			int cpu = first_cpu + j;

			paca[cpu].sibling_subcore_state = sibling_subcore_state;
		}
	}
	return 0;
}

4295 4296 4297 4298 4299
static int kvmppc_radix_possible(void)
{
	return cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled();
}

4300
static int kvmppc_book3s_init_hv(void)
4301 4302
{
	int r;
4303 4304 4305 4306 4307
	/*
	 * FIXME!! Do we need to check on all cpus ?
	 */
	r = kvmppc_core_check_processor_compat_hv();
	if (r < 0)
4308
		return -ENODEV;
4309

4310 4311 4312 4313
	r = kvm_init_subcore_bitmap();
	if (r)
		return r;

4314 4315 4316 4317 4318 4319
	/*
	 * We need a way of accessing the XICS interrupt controller,
	 * either directly, via paca[cpu].kvm_hstate.xics_phys, or
	 * indirectly, via OPAL.
	 */
#ifdef CONFIG_SMP
4320
	if (!xive_enabled() && !local_paca->kvm_hstate.xics_phys) {
4321 4322 4323 4324 4325 4326 4327 4328 4329 4330
		struct device_node *np;

		np = of_find_compatible_node(NULL, NULL, "ibm,opal-intc");
		if (!np) {
			pr_err("KVM-HV: Cannot determine method for accessing XICS\n");
			return -ENODEV;
		}
	}
#endif

4331 4332
	kvm_ops_hv.owner = THIS_MODULE;
	kvmppc_hv_ops = &kvm_ops_hv;
4333

4334 4335
	init_default_hcalls();

4336 4337
	init_vcore_lists();

4338
	r = kvmppc_mmu_hv_init();
4339 4340 4341 4342 4343
	if (r)
		return r;

	if (kvmppc_radix_possible())
		r = kvmppc_radix_init();
4344 4345 4346
	return r;
}

4347
static void kvmppc_book3s_exit_hv(void)
4348
{
4349
	kvmppc_free_host_rm_ops();
4350 4351
	if (kvmppc_radix_possible())
		kvmppc_radix_exit();
4352
	kvmppc_hv_ops = NULL;
4353 4354
}

4355 4356
module_init(kvmppc_book3s_init_hv);
module_exit(kvmppc_book3s_exit_hv);
4357
MODULE_LICENSE("GPL");
4358 4359
MODULE_ALIAS_MISCDEV(KVM_MINOR);
MODULE_ALIAS("devname:kvm");