book3s_hv.c 96.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
/*
 * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
 * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
 *
 * Authors:
 *    Paul Mackerras <paulus@au1.ibm.com>
 *    Alexander Graf <agraf@suse.de>
 *    Kevin Wolf <mail@kevin-wolf.de>
 *
 * Description: KVM functions specific to running on Book 3S
 * processors in hypervisor mode (specifically POWER7 and later).
 *
 * This file is derived from arch/powerpc/kvm/book3s.c,
 * by Alexander Graf <agraf@suse.de>.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License, version 2, as
 * published by the Free Software Foundation.
 */

#include <linux/kvm_host.h>
#include <linux/err.h>
#include <linux/slab.h>
#include <linux/preempt.h>
#include <linux/sched.h>
#include <linux/delay.h>
27
#include <linux/export.h>
28 29
#include <linux/fs.h>
#include <linux/anon_inodes.h>
30
#include <linux/cpu.h>
31
#include <linux/cpumask.h>
32 33
#include <linux/spinlock.h>
#include <linux/page-flags.h>
34
#include <linux/srcu.h>
35
#include <linux/miscdevice.h>
36
#include <linux/debugfs.h>
37 38 39 40 41 42 43 44 45 46 47 48

#include <asm/reg.h>
#include <asm/cputable.h>
#include <asm/cacheflush.h>
#include <asm/tlbflush.h>
#include <asm/uaccess.h>
#include <asm/io.h>
#include <asm/kvm_ppc.h>
#include <asm/kvm_book3s.h>
#include <asm/mmu_context.h>
#include <asm/lppaca.h>
#include <asm/processor.h>
49
#include <asm/cputhreads.h>
50
#include <asm/page.h>
51
#include <asm/hvcall.h>
52
#include <asm/switch_to.h>
53
#include <asm/smp.h>
54
#include <asm/dbell.h>
55
#include <asm/hmi.h>
56
#include <asm/pnv-pci.h>
57
#include <asm/mmu.h>
58 59
#include <asm/opal.h>
#include <asm/xics.h>
60 61 62
#include <linux/gfp.h>
#include <linux/vmalloc.h>
#include <linux/highmem.h>
63
#include <linux/hugetlb.h>
64 65
#include <linux/kvm_irqfd.h>
#include <linux/irqbypass.h>
66
#include <linux/module.h>
67
#include <linux/compiler.h>
68
#include <linux/of.h>
69

70 71
#include "book3s.h"

72 73 74
#define CREATE_TRACE_POINTS
#include "trace_hv.h"

75 76 77 78
/* #define EXIT_DEBUG */
/* #define EXIT_DEBUG_SIMPLE */
/* #define EXIT_DEBUG_INT */

79 80
/* Used to indicate that a guest page fault needs to be handled */
#define RESUME_PAGE_FAULT	(RESUME_GUEST | RESUME_FLAG_ARCH1)
81 82
/* Used to indicate that a guest passthrough interrupt needs to be handled */
#define RESUME_PASSTHROUGH	(RESUME_GUEST | RESUME_FLAG_ARCH2)
83

84 85 86
/* Used as a "null" value for timebase values */
#define TB_NIL	(~(u64)0)

87 88
static DECLARE_BITMAP(default_enabled_hcalls, MAX_HCALL_OPCODE/4 + 1);

89 90 91
static int dynamic_mt_modes = 6;
module_param(dynamic_mt_modes, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(dynamic_mt_modes, "Set of allowed dynamic micro-threading modes: 0 (= none), 2, 4, or 6 (= 2 or 4)");
92 93 94
static int target_smt_mode;
module_param(target_smt_mode, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(target_smt_mode, "Target threads per core (0 = max)");
95

96 97 98 99 100 101
#ifdef CONFIG_KVM_XICS
static struct kernel_param_ops module_param_ops = {
	.set = param_set_int,
	.get = param_get_int,
};

102 103 104 105
module_param_cb(kvm_irq_bypass, &module_param_ops, &kvm_irq_bypass,
							S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(kvm_irq_bypass, "Bypass passthrough interrupt optimization");

106 107 108 109 110
module_param_cb(h_ipi_redirect, &module_param_ops, &h_ipi_redirect,
							S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(h_ipi_redirect, "Redirect H_IPI wakeup to a free host core");
#endif

111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
/* Maximum halt poll interval defaults to KVM_HALT_POLL_NS_DEFAULT */
static unsigned int halt_poll_max_ns = KVM_HALT_POLL_NS_DEFAULT;
module_param(halt_poll_max_ns, uint, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(halt_poll_max_ns, "Maximum halt poll time in ns");

/* Factor by which the vcore halt poll interval is grown, default is to double
 */
static unsigned int halt_poll_ns_grow = 2;
module_param(halt_poll_ns_grow, int, S_IRUGO);
MODULE_PARM_DESC(halt_poll_ns_grow, "Factor halt poll time is grown by");

/* Factor by which the vcore halt poll interval is shrunk, default is to reset
 */
static unsigned int halt_poll_ns_shrink;
module_param(halt_poll_ns_shrink, int, S_IRUGO);
MODULE_PARM_DESC(halt_poll_ns_shrink, "Factor halt poll time is shrunk by");

128
static void kvmppc_end_cede(struct kvm_vcpu *vcpu);
129
static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu);
130

131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
static inline struct kvm_vcpu *next_runnable_thread(struct kvmppc_vcore *vc,
		int *ip)
{
	int i = *ip;
	struct kvm_vcpu *vcpu;

	while (++i < MAX_SMT_THREADS) {
		vcpu = READ_ONCE(vc->runnable_threads[i]);
		if (vcpu) {
			*ip = i;
			return vcpu;
		}
	}
	return NULL;
}

/* Used to traverse the list of runnable threads for a given vcore */
#define for_each_runnable_thread(i, vcpu, vc) \
	for (i = -1; (vcpu = next_runnable_thread(vc, &i)); )

151 152
static bool kvmppc_ipi_thread(int cpu)
{
153 154 155 156 157 158 159 160 161 162
	unsigned long msg = PPC_DBELL_TYPE(PPC_DBELL_SERVER);

	/* On POWER9 we can use msgsnd to IPI any cpu */
	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
		msg |= get_hard_smp_processor_id(cpu);
		smp_mb();
		__asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
		return true;
	}

163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
	/* On POWER8 for IPIs to threads in the same core, use msgsnd */
	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
		preempt_disable();
		if (cpu_first_thread_sibling(cpu) ==
		    cpu_first_thread_sibling(smp_processor_id())) {
			msg |= cpu_thread_in_core(cpu);
			smp_mb();
			__asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
			preempt_enable();
			return true;
		}
		preempt_enable();
	}

#if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP)
178 179 180 181 182 183
	if (cpu >= 0 && cpu < nr_cpu_ids) {
		if (paca[cpu].kvm_hstate.xics_phys) {
			xics_wake_cpu(cpu);
			return true;
		}
		opal_int_set_mfrr(get_hard_smp_processor_id(cpu), IPI_PRIORITY);
184 185 186 187 188 189 190
		return true;
	}
#endif

	return false;
}

191
static void kvmppc_fast_vcpu_kick_hv(struct kvm_vcpu *vcpu)
192
{
193
	int cpu;
194
	struct swait_queue_head *wqp;
195 196

	wqp = kvm_arch_vcpu_wq(vcpu);
197 198
	if (swait_active(wqp)) {
		swake_up(wqp);
199 200 201
		++vcpu->stat.halt_wakeup;
	}

202
	if (kvmppc_ipi_thread(vcpu->arch.thread_cpu))
203
		return;
204 205

	/* CPU points to the first thread of the core */
206
	cpu = vcpu->cpu;
207 208
	if (cpu >= 0 && cpu < nr_cpu_ids && cpu_online(cpu))
		smp_send_reschedule(cpu);
209 210
}

211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
/*
 * We use the vcpu_load/put functions to measure stolen time.
 * Stolen time is counted as time when either the vcpu is able to
 * run as part of a virtual core, but the task running the vcore
 * is preempted or sleeping, or when the vcpu needs something done
 * in the kernel by the task running the vcpu, but that task is
 * preempted or sleeping.  Those two things have to be counted
 * separately, since one of the vcpu tasks will take on the job
 * of running the core, and the other vcpu tasks in the vcore will
 * sleep waiting for it to do that, but that sleep shouldn't count
 * as stolen time.
 *
 * Hence we accumulate stolen time when the vcpu can run as part of
 * a vcore using vc->stolen_tb, and the stolen time when the vcpu
 * needs its task to do other things in the kernel (for example,
 * service a page fault) in busy_stolen.  We don't accumulate
 * stolen time for a vcore when it is inactive, or for a vcpu
 * when it is in state RUNNING or NOTREADY.  NOTREADY is a bit of
 * a misnomer; it means that the vcpu task is not executing in
 * the KVM_VCPU_RUN ioctl, i.e. it is in userspace or elsewhere in
 * the kernel.  We don't have any way of dividing up that time
 * between time that the vcpu is genuinely stopped, time that
 * the task is actively working on behalf of the vcpu, and time
 * that the task is preempted, so we don't count any of it as
 * stolen.
 *
 * Updates to busy_stolen are protected by arch.tbacct_lock;
238 239 240 241
 * updates to vc->stolen_tb are protected by the vcore->stoltb_lock
 * lock.  The stolen times are measured in units of timebase ticks.
 * (Note that the != TB_NIL checks below are purely defensive;
 * they should never fail.)
242 243
 */

244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
static void kvmppc_core_start_stolen(struct kvmppc_vcore *vc)
{
	unsigned long flags;

	spin_lock_irqsave(&vc->stoltb_lock, flags);
	vc->preempt_tb = mftb();
	spin_unlock_irqrestore(&vc->stoltb_lock, flags);
}

static void kvmppc_core_end_stolen(struct kvmppc_vcore *vc)
{
	unsigned long flags;

	spin_lock_irqsave(&vc->stoltb_lock, flags);
	if (vc->preempt_tb != TB_NIL) {
		vc->stolen_tb += mftb() - vc->preempt_tb;
		vc->preempt_tb = TB_NIL;
	}
	spin_unlock_irqrestore(&vc->stoltb_lock, flags);
}

265
static void kvmppc_core_vcpu_load_hv(struct kvm_vcpu *vcpu, int cpu)
266
{
267
	struct kvmppc_vcore *vc = vcpu->arch.vcore;
268
	unsigned long flags;
269

270 271 272 273 274 275
	/*
	 * We can test vc->runner without taking the vcore lock,
	 * because only this task ever sets vc->runner to this
	 * vcpu, and once it is set to this vcpu, only this task
	 * ever sets it to NULL.
	 */
276 277 278
	if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
		kvmppc_core_end_stolen(vc);

279
	spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
280 281 282 283 284
	if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST &&
	    vcpu->arch.busy_preempt != TB_NIL) {
		vcpu->arch.busy_stolen += mftb() - vcpu->arch.busy_preempt;
		vcpu->arch.busy_preempt = TB_NIL;
	}
285
	spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
286 287
}

288
static void kvmppc_core_vcpu_put_hv(struct kvm_vcpu *vcpu)
289
{
290
	struct kvmppc_vcore *vc = vcpu->arch.vcore;
291
	unsigned long flags;
292

293 294 295
	if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
		kvmppc_core_start_stolen(vc);

296
	spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
297 298
	if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST)
		vcpu->arch.busy_preempt = mftb();
299
	spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
300 301
}

302
static void kvmppc_set_msr_hv(struct kvm_vcpu *vcpu, u64 msr)
303
{
304 305 306 307 308 309
	/*
	 * Check for illegal transactional state bit combination
	 * and if we find it, force the TS field to a safe state.
	 */
	if ((msr & MSR_TS_MASK) == MSR_TS_MASK)
		msr &= ~MSR_TS_MASK;
310
	vcpu->arch.shregs.msr = msr;
311
	kvmppc_end_cede(vcpu);
312 313
}

T
Thomas Huth 已提交
314
static void kvmppc_set_pvr_hv(struct kvm_vcpu *vcpu, u32 pvr)
315 316 317 318
{
	vcpu->arch.pvr = pvr;
}

319 320 321
/* Dummy value used in computing PCR value below */
#define PCR_ARCH_300	(PCR_ARCH_207 << 1)

T
Thomas Huth 已提交
322
static int kvmppc_set_arch_compat(struct kvm_vcpu *vcpu, u32 arch_compat)
323
{
324
	unsigned long host_pcr_bit = 0, guest_pcr_bit = 0;
325 326
	struct kvmppc_vcore *vc = vcpu->arch.vcore;

327 328 329 330 331 332 333 334 335 336 337 338
	/* We can (emulate) our own architecture version and anything older */
	if (cpu_has_feature(CPU_FTR_ARCH_300))
		host_pcr_bit = PCR_ARCH_300;
	else if (cpu_has_feature(CPU_FTR_ARCH_207S))
		host_pcr_bit = PCR_ARCH_207;
	else if (cpu_has_feature(CPU_FTR_ARCH_206))
		host_pcr_bit = PCR_ARCH_206;
	else
		host_pcr_bit = PCR_ARCH_205;

	/* Determine lowest PCR bit needed to run guest in given PVR level */
	guest_pcr_bit = host_pcr_bit;
339 340 341
	if (arch_compat) {
		switch (arch_compat) {
		case PVR_ARCH_205:
342
			guest_pcr_bit = PCR_ARCH_205;
343 344 345
			break;
		case PVR_ARCH_206:
		case PVR_ARCH_206p:
346
			guest_pcr_bit = PCR_ARCH_206;
347 348
			break;
		case PVR_ARCH_207:
349 350 351 352
			guest_pcr_bit = PCR_ARCH_207;
			break;
		case PVR_ARCH_300:
			guest_pcr_bit = PCR_ARCH_300;
353 354 355 356 357 358
			break;
		default:
			return -EINVAL;
		}
	}

359 360 361 362
	/* Check requested PCR bits don't exceed our capabilities */
	if (guest_pcr_bit > host_pcr_bit)
		return -EINVAL;

363 364
	spin_lock(&vc->lock);
	vc->arch_compat = arch_compat;
365 366
	/* Set all PCR bits for which guest_pcr_bit <= bit < host_pcr_bit */
	vc->pcr = host_pcr_bit - guest_pcr_bit;
367 368 369 370 371
	spin_unlock(&vc->lock);

	return 0;
}

T
Thomas Huth 已提交
372
static void kvmppc_dump_regs(struct kvm_vcpu *vcpu)
373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400
{
	int r;

	pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id);
	pr_err("pc  = %.16lx  msr = %.16llx  trap = %x\n",
	       vcpu->arch.pc, vcpu->arch.shregs.msr, vcpu->arch.trap);
	for (r = 0; r < 16; ++r)
		pr_err("r%2d = %.16lx  r%d = %.16lx\n",
		       r, kvmppc_get_gpr(vcpu, r),
		       r+16, kvmppc_get_gpr(vcpu, r+16));
	pr_err("ctr = %.16lx  lr  = %.16lx\n",
	       vcpu->arch.ctr, vcpu->arch.lr);
	pr_err("srr0 = %.16llx srr1 = %.16llx\n",
	       vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1);
	pr_err("sprg0 = %.16llx sprg1 = %.16llx\n",
	       vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1);
	pr_err("sprg2 = %.16llx sprg3 = %.16llx\n",
	       vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3);
	pr_err("cr = %.8x  xer = %.16lx  dsisr = %.8x\n",
	       vcpu->arch.cr, vcpu->arch.xer, vcpu->arch.shregs.dsisr);
	pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar);
	pr_err("fault dar = %.16lx dsisr = %.8x\n",
	       vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
	pr_err("SLB (%d entries):\n", vcpu->arch.slb_max);
	for (r = 0; r < vcpu->arch.slb_max; ++r)
		pr_err("  ESID = %.16llx VSID = %.16llx\n",
		       vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv);
	pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n",
401
	       vcpu->arch.vcore->lpcr, vcpu->kvm->arch.sdr1,
402 403 404
	       vcpu->arch.last_inst);
}

T
Thomas Huth 已提交
405
static struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id)
406
{
407
	struct kvm_vcpu *ret;
408 409

	mutex_lock(&kvm->lock);
410
	ret = kvm_get_vcpu_by_id(kvm, id);
411 412 413 414 415 416
	mutex_unlock(&kvm->lock);
	return ret;
}

static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa)
{
417
	vpa->__old_status |= LPPACA_OLD_SHARED_PROC;
418
	vpa->yield_count = cpu_to_be32(1);
419 420
}

421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436
static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v,
		   unsigned long addr, unsigned long len)
{
	/* check address is cacheline aligned */
	if (addr & (L1_CACHE_BYTES - 1))
		return -EINVAL;
	spin_lock(&vcpu->arch.vpa_update_lock);
	if (v->next_gpa != addr || v->len != len) {
		v->next_gpa = addr;
		v->len = addr ? len : 0;
		v->update_pending = 1;
	}
	spin_unlock(&vcpu->arch.vpa_update_lock);
	return 0;
}

437 438 439 440
/* Length for a per-processor buffer is passed in at offset 4 in the buffer */
struct reg_vpa {
	u32 dummy;
	union {
441 442
		__be16 hword;
		__be32 word;
443 444 445 446 447 448 449 450 451 452
	} length;
};

static int vpa_is_registered(struct kvmppc_vpa *vpap)
{
	if (vpap->update_pending)
		return vpap->next_gpa != 0;
	return vpap->pinned_addr != NULL;
}

453 454 455 456 457
static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu,
				       unsigned long flags,
				       unsigned long vcpuid, unsigned long vpa)
{
	struct kvm *kvm = vcpu->kvm;
458
	unsigned long len, nb;
459 460
	void *va;
	struct kvm_vcpu *tvcpu;
461 462 463
	int err;
	int subfunc;
	struct kvmppc_vpa *vpap;
464 465 466 467 468

	tvcpu = kvmppc_find_vcpu(kvm, vcpuid);
	if (!tvcpu)
		return H_PARAMETER;

469 470 471 472 473
	subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK;
	if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL ||
	    subfunc == H_VPA_REG_SLB) {
		/* Registering new area - address must be cache-line aligned */
		if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa)
474
			return H_PARAMETER;
475 476

		/* convert logical addr to kernel addr and read length */
477 478
		va = kvmppc_pin_guest_page(kvm, vpa, &nb);
		if (va == NULL)
479
			return H_PARAMETER;
480
		if (subfunc == H_VPA_REG_VPA)
481
			len = be16_to_cpu(((struct reg_vpa *)va)->length.hword);
482
		else
483
			len = be32_to_cpu(((struct reg_vpa *)va)->length.word);
484
		kvmppc_unpin_guest_page(kvm, va, vpa, false);
485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500

		/* Check length */
		if (len > nb || len < sizeof(struct reg_vpa))
			return H_PARAMETER;
	} else {
		vpa = 0;
		len = 0;
	}

	err = H_PARAMETER;
	vpap = NULL;
	spin_lock(&tvcpu->arch.vpa_update_lock);

	switch (subfunc) {
	case H_VPA_REG_VPA:		/* register VPA */
		if (len < sizeof(struct lppaca))
501
			break;
502 503 504 505 506 507
		vpap = &tvcpu->arch.vpa;
		err = 0;
		break;

	case H_VPA_REG_DTL:		/* register DTL */
		if (len < sizeof(struct dtl_entry))
508
			break;
509 510 511 512 513
		len -= len % sizeof(struct dtl_entry);

		/* Check that they have previously registered a VPA */
		err = H_RESOURCE;
		if (!vpa_is_registered(&tvcpu->arch.vpa))
514
			break;
515 516 517 518 519 520 521 522 523

		vpap = &tvcpu->arch.dtl;
		err = 0;
		break;

	case H_VPA_REG_SLB:		/* register SLB shadow buffer */
		/* Check that they have previously registered a VPA */
		err = H_RESOURCE;
		if (!vpa_is_registered(&tvcpu->arch.vpa))
524
			break;
525 526 527 528 529 530 531 532 533 534

		vpap = &tvcpu->arch.slb_shadow;
		err = 0;
		break;

	case H_VPA_DEREG_VPA:		/* deregister VPA */
		/* Check they don't still have a DTL or SLB buf registered */
		err = H_RESOURCE;
		if (vpa_is_registered(&tvcpu->arch.dtl) ||
		    vpa_is_registered(&tvcpu->arch.slb_shadow))
535
			break;
536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555

		vpap = &tvcpu->arch.vpa;
		err = 0;
		break;

	case H_VPA_DEREG_DTL:		/* deregister DTL */
		vpap = &tvcpu->arch.dtl;
		err = 0;
		break;

	case H_VPA_DEREG_SLB:		/* deregister SLB shadow buffer */
		vpap = &tvcpu->arch.slb_shadow;
		err = 0;
		break;
	}

	if (vpap) {
		vpap->next_gpa = vpa;
		vpap->len = len;
		vpap->update_pending = 1;
556
	}
557

558 559
	spin_unlock(&tvcpu->arch.vpa_update_lock);

560
	return err;
561 562
}

563
static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap)
564
{
565
	struct kvm *kvm = vcpu->kvm;
566 567
	void *va;
	unsigned long nb;
568
	unsigned long gpa;
569

570 571 572 573 574 575 576 577 578 579 580 581 582 583
	/*
	 * We need to pin the page pointed to by vpap->next_gpa,
	 * but we can't call kvmppc_pin_guest_page under the lock
	 * as it does get_user_pages() and down_read().  So we
	 * have to drop the lock, pin the page, then get the lock
	 * again and check that a new area didn't get registered
	 * in the meantime.
	 */
	for (;;) {
		gpa = vpap->next_gpa;
		spin_unlock(&vcpu->arch.vpa_update_lock);
		va = NULL;
		nb = 0;
		if (gpa)
584
			va = kvmppc_pin_guest_page(kvm, gpa, &nb);
585 586 587 588 589
		spin_lock(&vcpu->arch.vpa_update_lock);
		if (gpa == vpap->next_gpa)
			break;
		/* sigh... unpin that one and try again */
		if (va)
590
			kvmppc_unpin_guest_page(kvm, va, gpa, false);
591 592 593 594 595 596 597 598 599
	}

	vpap->update_pending = 0;
	if (va && nb < vpap->len) {
		/*
		 * If it's now too short, it must be that userspace
		 * has changed the mappings underlying guest memory,
		 * so unregister the region.
		 */
600
		kvmppc_unpin_guest_page(kvm, va, gpa, false);
601
		va = NULL;
602 603
	}
	if (vpap->pinned_addr)
604 605 606
		kvmppc_unpin_guest_page(kvm, vpap->pinned_addr, vpap->gpa,
					vpap->dirty);
	vpap->gpa = gpa;
607
	vpap->pinned_addr = va;
608
	vpap->dirty = false;
609 610 611 612 613 614
	if (va)
		vpap->pinned_end = va + vpap->len;
}

static void kvmppc_update_vpas(struct kvm_vcpu *vcpu)
{
615 616 617 618 619
	if (!(vcpu->arch.vpa.update_pending ||
	      vcpu->arch.slb_shadow.update_pending ||
	      vcpu->arch.dtl.update_pending))
		return;

620 621
	spin_lock(&vcpu->arch.vpa_update_lock);
	if (vcpu->arch.vpa.update_pending) {
622
		kvmppc_update_vpa(vcpu, &vcpu->arch.vpa);
623 624
		if (vcpu->arch.vpa.pinned_addr)
			init_vpa(vcpu, vcpu->arch.vpa.pinned_addr);
625 626
	}
	if (vcpu->arch.dtl.update_pending) {
627
		kvmppc_update_vpa(vcpu, &vcpu->arch.dtl);
628 629 630 631
		vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr;
		vcpu->arch.dtl_index = 0;
	}
	if (vcpu->arch.slb_shadow.update_pending)
632
		kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow);
633 634 635
	spin_unlock(&vcpu->arch.vpa_update_lock);
}

636 637 638 639 640 641 642
/*
 * Return the accumulated stolen time for the vcore up until `now'.
 * The caller should hold the vcore lock.
 */
static u64 vcore_stolen_time(struct kvmppc_vcore *vc, u64 now)
{
	u64 p;
643
	unsigned long flags;
644

645 646
	spin_lock_irqsave(&vc->stoltb_lock, flags);
	p = vc->stolen_tb;
647
	if (vc->vcore_state != VCORE_INACTIVE &&
648 649 650
	    vc->preempt_tb != TB_NIL)
		p += now - vc->preempt_tb;
	spin_unlock_irqrestore(&vc->stoltb_lock, flags);
651 652 653
	return p;
}

654 655 656 657 658
static void kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu,
				    struct kvmppc_vcore *vc)
{
	struct dtl_entry *dt;
	struct lppaca *vpa;
659 660 661
	unsigned long stolen;
	unsigned long core_stolen;
	u64 now;
662 663 664

	dt = vcpu->arch.dtl_ptr;
	vpa = vcpu->arch.vpa.pinned_addr;
665 666 667 668
	now = mftb();
	core_stolen = vcore_stolen_time(vc, now);
	stolen = core_stolen - vcpu->arch.stolen_logged;
	vcpu->arch.stolen_logged = core_stolen;
669
	spin_lock_irq(&vcpu->arch.tbacct_lock);
670 671
	stolen += vcpu->arch.busy_stolen;
	vcpu->arch.busy_stolen = 0;
672
	spin_unlock_irq(&vcpu->arch.tbacct_lock);
673 674 675 676
	if (!dt || !vpa)
		return;
	memset(dt, 0, sizeof(struct dtl_entry));
	dt->dispatch_reason = 7;
677 678 679 680 681
	dt->processor_id = cpu_to_be16(vc->pcpu + vcpu->arch.ptid);
	dt->timebase = cpu_to_be64(now + vc->tb_offset);
	dt->enqueue_to_dispatch_time = cpu_to_be32(stolen);
	dt->srr0 = cpu_to_be64(kvmppc_get_pc(vcpu));
	dt->srr1 = cpu_to_be64(vcpu->arch.shregs.msr);
682 683 684 685 686 687
	++dt;
	if (dt == vcpu->arch.dtl.pinned_end)
		dt = vcpu->arch.dtl.pinned_addr;
	vcpu->arch.dtl_ptr = dt;
	/* order writing *dt vs. writing vpa->dtl_idx */
	smp_wmb();
688
	vpa->dtl_idx = cpu_to_be64(++vcpu->arch.dtl_index);
689
	vcpu->arch.dtl.dirty = true;
690 691
}

692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733
static bool kvmppc_power8_compatible(struct kvm_vcpu *vcpu)
{
	if (vcpu->arch.vcore->arch_compat >= PVR_ARCH_207)
		return true;
	if ((!vcpu->arch.vcore->arch_compat) &&
	    cpu_has_feature(CPU_FTR_ARCH_207S))
		return true;
	return false;
}

static int kvmppc_h_set_mode(struct kvm_vcpu *vcpu, unsigned long mflags,
			     unsigned long resource, unsigned long value1,
			     unsigned long value2)
{
	switch (resource) {
	case H_SET_MODE_RESOURCE_SET_CIABR:
		if (!kvmppc_power8_compatible(vcpu))
			return H_P2;
		if (value2)
			return H_P4;
		if (mflags)
			return H_UNSUPPORTED_FLAG_START;
		/* Guests can't breakpoint the hypervisor */
		if ((value1 & CIABR_PRIV) == CIABR_PRIV_HYPER)
			return H_P3;
		vcpu->arch.ciabr  = value1;
		return H_SUCCESS;
	case H_SET_MODE_RESOURCE_SET_DAWR:
		if (!kvmppc_power8_compatible(vcpu))
			return H_P2;
		if (mflags)
			return H_UNSUPPORTED_FLAG_START;
		if (value2 & DABRX_HYP)
			return H_P4;
		vcpu->arch.dawr  = value1;
		vcpu->arch.dawrx = value2;
		return H_SUCCESS;
	default:
		return H_TOO_HARD;
	}
}

734 735 736 737 738 739 740 741 742 743 744 745 746 747
static int kvm_arch_vcpu_yield_to(struct kvm_vcpu *target)
{
	struct kvmppc_vcore *vcore = target->arch.vcore;

	/*
	 * We expect to have been called by the real mode handler
	 * (kvmppc_rm_h_confer()) which would have directly returned
	 * H_SUCCESS if the source vcore wasn't idle (e.g. if it may
	 * have useful work to do and should not confer) so we don't
	 * recheck that here.
	 */

	spin_lock(&vcore->lock);
	if (target->arch.state == KVMPPC_VCPU_RUNNABLE &&
748 749
	    vcore->vcore_state != VCORE_INACTIVE &&
	    vcore->runner)
750 751 752 753 754 755 756 757 758 759 760 761 762 763
		target = vcore->runner;
	spin_unlock(&vcore->lock);

	return kvm_vcpu_yield_to(target);
}

static int kvmppc_get_yield_count(struct kvm_vcpu *vcpu)
{
	int yield_count = 0;
	struct lppaca *lppaca;

	spin_lock(&vcpu->arch.vpa_update_lock);
	lppaca = (struct lppaca *)vcpu->arch.vpa.pinned_addr;
	if (lppaca)
764
		yield_count = be32_to_cpu(lppaca->yield_count);
765 766 767 768
	spin_unlock(&vcpu->arch.vpa_update_lock);
	return yield_count;
}

769 770 771 772
int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu)
{
	unsigned long req = kvmppc_get_gpr(vcpu, 3);
	unsigned long target, ret = H_SUCCESS;
773
	int yield_count;
774
	struct kvm_vcpu *tvcpu;
775
	int idx, rc;
776

777 778 779 780
	if (req <= MAX_HCALL_OPCODE &&
	    !test_bit(req/4, vcpu->kvm->arch.enabled_hcalls))
		return RESUME_HOST;

781 782 783 784 785 786 787 788 789 790 791 792 793
	switch (req) {
	case H_CEDE:
		break;
	case H_PROD:
		target = kvmppc_get_gpr(vcpu, 4);
		tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
		if (!tvcpu) {
			ret = H_PARAMETER;
			break;
		}
		tvcpu->arch.prodded = 1;
		smp_mb();
		if (vcpu->arch.ceded) {
794 795
			if (swait_active(&vcpu->wq)) {
				swake_up(&vcpu->wq);
796 797 798 799 800
				vcpu->stat.halt_wakeup++;
			}
		}
		break;
	case H_CONFER:
801 802 803 804 805 806 807 808
		target = kvmppc_get_gpr(vcpu, 4);
		if (target == -1)
			break;
		tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
		if (!tvcpu) {
			ret = H_PARAMETER;
			break;
		}
809 810 811 812
		yield_count = kvmppc_get_gpr(vcpu, 5);
		if (kvmppc_get_yield_count(tvcpu) != yield_count)
			break;
		kvm_arch_vcpu_yield_to(tvcpu);
813 814 815 816 817 818
		break;
	case H_REGISTER_VPA:
		ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4),
					kvmppc_get_gpr(vcpu, 5),
					kvmppc_get_gpr(vcpu, 6));
		break;
819 820 821 822
	case H_RTAS:
		if (list_empty(&vcpu->kvm->arch.rtas_tokens))
			return RESUME_HOST;

823
		idx = srcu_read_lock(&vcpu->kvm->srcu);
824
		rc = kvmppc_rtas_hcall(vcpu);
825
		srcu_read_unlock(&vcpu->kvm->srcu, idx);
826 827 828 829 830 831 832 833

		if (rc == -ENOENT)
			return RESUME_HOST;
		else if (rc == 0)
			break;

		/* Send the error out to userspace via KVM_RUN */
		return rc;
834 835 836 837 838 839 840 841 842 843
	case H_LOGICAL_CI_LOAD:
		ret = kvmppc_h_logical_ci_load(vcpu);
		if (ret == H_TOO_HARD)
			return RESUME_HOST;
		break;
	case H_LOGICAL_CI_STORE:
		ret = kvmppc_h_logical_ci_store(vcpu);
		if (ret == H_TOO_HARD)
			return RESUME_HOST;
		break;
844 845 846 847 848 849 850 851
	case H_SET_MODE:
		ret = kvmppc_h_set_mode(vcpu, kvmppc_get_gpr(vcpu, 4),
					kvmppc_get_gpr(vcpu, 5),
					kvmppc_get_gpr(vcpu, 6),
					kvmppc_get_gpr(vcpu, 7));
		if (ret == H_TOO_HARD)
			return RESUME_HOST;
		break;
852 853 854 855
	case H_XIRR:
	case H_CPPR:
	case H_EOI:
	case H_IPI:
856 857
	case H_IPOLL:
	case H_XIRR_X:
858 859 860
		if (kvmppc_xics_enabled(vcpu)) {
			ret = kvmppc_xics_hcall(vcpu, req);
			break;
861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885
		}
		return RESUME_HOST;
	case H_PUT_TCE:
		ret = kvmppc_h_put_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
						kvmppc_get_gpr(vcpu, 5),
						kvmppc_get_gpr(vcpu, 6));
		if (ret == H_TOO_HARD)
			return RESUME_HOST;
		break;
	case H_PUT_TCE_INDIRECT:
		ret = kvmppc_h_put_tce_indirect(vcpu, kvmppc_get_gpr(vcpu, 4),
						kvmppc_get_gpr(vcpu, 5),
						kvmppc_get_gpr(vcpu, 6),
						kvmppc_get_gpr(vcpu, 7));
		if (ret == H_TOO_HARD)
			return RESUME_HOST;
		break;
	case H_STUFF_TCE:
		ret = kvmppc_h_stuff_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
						kvmppc_get_gpr(vcpu, 5),
						kvmppc_get_gpr(vcpu, 6),
						kvmppc_get_gpr(vcpu, 7));
		if (ret == H_TOO_HARD)
			return RESUME_HOST;
		break;
886 887 888 889 890 891 892 893
	default:
		return RESUME_HOST;
	}
	kvmppc_set_gpr(vcpu, 3, ret);
	vcpu->arch.hcall_needed = 0;
	return RESUME_GUEST;
}

894 895 896 897 898 899 900
static int kvmppc_hcall_impl_hv(unsigned long cmd)
{
	switch (cmd) {
	case H_CEDE:
	case H_PROD:
	case H_CONFER:
	case H_REGISTER_VPA:
901
	case H_SET_MODE:
902 903
	case H_LOGICAL_CI_LOAD:
	case H_LOGICAL_CI_STORE:
904 905 906 907 908 909 910 911 912 913 914 915 916 917 918
#ifdef CONFIG_KVM_XICS
	case H_XIRR:
	case H_CPPR:
	case H_EOI:
	case H_IPI:
	case H_IPOLL:
	case H_XIRR_X:
#endif
		return 1;
	}

	/* See if it's in the real-mode table */
	return kvmppc_hcall_impl_hv_realmode(cmd);
}

919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942
static int kvmppc_emulate_debug_inst(struct kvm_run *run,
					struct kvm_vcpu *vcpu)
{
	u32 last_inst;

	if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) !=
					EMULATE_DONE) {
		/*
		 * Fetch failed, so return to guest and
		 * try executing it again.
		 */
		return RESUME_GUEST;
	}

	if (last_inst == KVMPPC_INST_SW_BREAKPOINT) {
		run->exit_reason = KVM_EXIT_DEBUG;
		run->debug.arch.address = kvmppc_get_pc(vcpu);
		return RESUME_HOST;
	} else {
		kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
		return RESUME_GUEST;
	}
}

943 944
static int kvmppc_handle_exit_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
				 struct task_struct *tsk)
945 946 947 948 949
{
	int r = RESUME_HOST;

	vcpu->stat.sum_exits++;

950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967
	/*
	 * This can happen if an interrupt occurs in the last stages
	 * of guest entry or the first stages of guest exit (i.e. after
	 * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV
	 * and before setting it to KVM_GUEST_MODE_HOST_HV).
	 * That can happen due to a bug, or due to a machine check
	 * occurring at just the wrong time.
	 */
	if (vcpu->arch.shregs.msr & MSR_HV) {
		printk(KERN_EMERG "KVM trap in HV mode!\n");
		printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
			vcpu->arch.trap, kvmppc_get_pc(vcpu),
			vcpu->arch.shregs.msr);
		kvmppc_dump_regs(vcpu);
		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
		run->hw.hardware_exit_reason = vcpu->arch.trap;
		return RESUME_HOST;
	}
968 969 970 971 972 973 974 975 976
	run->exit_reason = KVM_EXIT_UNKNOWN;
	run->ready_for_interrupt_injection = 1;
	switch (vcpu->arch.trap) {
	/* We're good on these - the host merely wanted to get our attention */
	case BOOK3S_INTERRUPT_HV_DECREMENTER:
		vcpu->stat.dec_exits++;
		r = RESUME_GUEST;
		break;
	case BOOK3S_INTERRUPT_EXTERNAL:
977
	case BOOK3S_INTERRUPT_H_DOORBELL:
978
	case BOOK3S_INTERRUPT_H_VIRT:
979 980 981
		vcpu->stat.ext_intr_exits++;
		r = RESUME_GUEST;
		break;
982 983
	/* HMI is hypervisor interrupt and host has handled it. Resume guest.*/
	case BOOK3S_INTERRUPT_HMI:
984 985 986
	case BOOK3S_INTERRUPT_PERFMON:
		r = RESUME_GUEST;
		break;
987 988 989 990 991 992 993 994 995 996 997
	case BOOK3S_INTERRUPT_MACHINE_CHECK:
		/*
		 * Deliver a machine check interrupt to the guest.
		 * We have to do this, even if the host has handled the
		 * machine check, because machine checks use SRR0/1 and
		 * the interrupt might have trashed guest state in them.
		 */
		kvmppc_book3s_queue_irqprio(vcpu,
					    BOOK3S_INTERRUPT_MACHINE_CHECK);
		r = RESUME_GUEST;
		break;
998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016
	case BOOK3S_INTERRUPT_PROGRAM:
	{
		ulong flags;
		/*
		 * Normally program interrupts are delivered directly
		 * to the guest by the hardware, but we can get here
		 * as a result of a hypervisor emulation interrupt
		 * (e40) getting turned into a 700 by BML RTAS.
		 */
		flags = vcpu->arch.shregs.msr & 0x1f0000ull;
		kvmppc_core_queue_program(vcpu, flags);
		r = RESUME_GUEST;
		break;
	}
	case BOOK3S_INTERRUPT_SYSCALL:
	{
		/* hcall - punt to userspace */
		int i;

1017 1018 1019 1020
		/* hypercall with MSR_PR has already been handled in rmode,
		 * and never reaches here.
		 */

1021 1022 1023 1024 1025 1026 1027 1028 1029
		run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3);
		for (i = 0; i < 9; ++i)
			run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i);
		run->exit_reason = KVM_EXIT_PAPR_HCALL;
		vcpu->arch.hcall_needed = 1;
		r = RESUME_HOST;
		break;
	}
	/*
1030 1031 1032 1033 1034
	 * We get these next two if the guest accesses a page which it thinks
	 * it has mapped but which is not actually present, either because
	 * it is for an emulated I/O device or because the corresonding
	 * host page has been paged out.  Any other HDSI/HISI interrupts
	 * have been handled already.
1035 1036
	 */
	case BOOK3S_INTERRUPT_H_DATA_STORAGE:
1037
		r = RESUME_PAGE_FAULT;
1038 1039
		break;
	case BOOK3S_INTERRUPT_H_INST_STORAGE:
1040 1041 1042
		vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
		vcpu->arch.fault_dsisr = 0;
		r = RESUME_PAGE_FAULT;
1043 1044 1045
		break;
	/*
	 * This occurs if the guest executes an illegal instruction.
1046 1047 1048 1049
	 * If the guest debug is disabled, generate a program interrupt
	 * to the guest. If guest debug is enabled, we need to check
	 * whether the instruction is a software breakpoint instruction.
	 * Accordingly return to Guest or Host.
1050 1051
	 */
	case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
1052 1053 1054 1055
		if (vcpu->arch.emul_inst != KVM_INST_FETCH_FAILED)
			vcpu->arch.last_inst = kvmppc_need_byteswap(vcpu) ?
				swab32(vcpu->arch.emul_inst) :
				vcpu->arch.emul_inst;
1056 1057 1058 1059 1060 1061
		if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) {
			r = kvmppc_emulate_debug_inst(run, vcpu);
		} else {
			kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
			r = RESUME_GUEST;
		}
1062 1063 1064 1065 1066 1067 1068 1069
		break;
	/*
	 * This occurs if the guest (kernel or userspace), does something that
	 * is prohibited by HFSCR.  We just generate a program interrupt to
	 * the guest.
	 */
	case BOOK3S_INTERRUPT_H_FAC_UNAVAIL:
		kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
1070 1071
		r = RESUME_GUEST;
		break;
1072 1073 1074
	case BOOK3S_INTERRUPT_HV_RM_HARD:
		r = RESUME_PASSTHROUGH;
		break;
1075 1076 1077 1078 1079
	default:
		kvmppc_dump_regs(vcpu);
		printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
			vcpu->arch.trap, kvmppc_get_pc(vcpu),
			vcpu->arch.shregs.msr);
1080
		run->hw.hardware_exit_reason = vcpu->arch.trap;
1081 1082 1083 1084 1085 1086 1087
		r = RESUME_HOST;
		break;
	}

	return r;
}

1088 1089
static int kvm_arch_vcpu_ioctl_get_sregs_hv(struct kvm_vcpu *vcpu,
					    struct kvm_sregs *sregs)
1090 1091 1092 1093
{
	int i;

	memset(sregs, 0, sizeof(struct kvm_sregs));
1094
	sregs->pvr = vcpu->arch.pvr;
1095 1096 1097 1098 1099 1100 1101 1102
	for (i = 0; i < vcpu->arch.slb_max; i++) {
		sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige;
		sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
	}

	return 0;
}

1103 1104
static int kvm_arch_vcpu_ioctl_set_sregs_hv(struct kvm_vcpu *vcpu,
					    struct kvm_sregs *sregs)
1105 1106 1107
{
	int i, j;

1108 1109 1110
	/* Only accept the same PVR as the host's, since we can't spoof it */
	if (sregs->pvr != vcpu->arch.pvr)
		return -EINVAL;
1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124

	j = 0;
	for (i = 0; i < vcpu->arch.slb_nr; i++) {
		if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) {
			vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe;
			vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv;
			++j;
		}
	}
	vcpu->arch.slb_max = j;

	return 0;
}

1125 1126
static void kvmppc_set_lpcr(struct kvm_vcpu *vcpu, u64 new_lpcr,
		bool preserve_top32)
1127
{
1128
	struct kvm *kvm = vcpu->kvm;
1129 1130 1131
	struct kvmppc_vcore *vc = vcpu->arch.vcore;
	u64 mask;

1132
	mutex_lock(&kvm->lock);
1133
	spin_lock(&vc->lock);
1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151
	/*
	 * If ILE (interrupt little-endian) has changed, update the
	 * MSR_LE bit in the intr_msr for each vcpu in this vcore.
	 */
	if ((new_lpcr & LPCR_ILE) != (vc->lpcr & LPCR_ILE)) {
		struct kvm_vcpu *vcpu;
		int i;

		kvm_for_each_vcpu(i, vcpu, kvm) {
			if (vcpu->arch.vcore != vc)
				continue;
			if (new_lpcr & LPCR_ILE)
				vcpu->arch.intr_msr |= MSR_LE;
			else
				vcpu->arch.intr_msr &= ~MSR_LE;
		}
	}

1152 1153 1154
	/*
	 * Userspace can only modify DPFD (default prefetch depth),
	 * ILE (interrupt little-endian) and TC (translation control).
1155
	 * On POWER8 userspace can also modify AIL (alt. interrupt loc.)
1156 1157
	 */
	mask = LPCR_DPFD | LPCR_ILE | LPCR_TC;
1158 1159
	if (cpu_has_feature(CPU_FTR_ARCH_207S))
		mask |= LPCR_AIL;
1160 1161 1162 1163

	/* Broken 32-bit version of LPCR must not clear top bits */
	if (preserve_top32)
		mask &= 0xFFFFFFFF;
1164 1165
	vc->lpcr = (vc->lpcr & ~mask) | (new_lpcr & mask);
	spin_unlock(&vc->lock);
1166
	mutex_unlock(&kvm->lock);
1167 1168
}

1169 1170
static int kvmppc_get_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
				 union kvmppc_one_reg *val)
1171
{
1172 1173
	int r = 0;
	long int i;
1174

1175
	switch (id) {
1176 1177 1178
	case KVM_REG_PPC_DEBUG_INST:
		*val = get_reg_val(id, KVMPPC_INST_SW_BREAKPOINT);
		break;
1179
	case KVM_REG_PPC_HIOR:
1180 1181 1182 1183 1184
		*val = get_reg_val(id, 0);
		break;
	case KVM_REG_PPC_DABR:
		*val = get_reg_val(id, vcpu->arch.dabr);
		break;
1185 1186 1187
	case KVM_REG_PPC_DABRX:
		*val = get_reg_val(id, vcpu->arch.dabrx);
		break;
1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202
	case KVM_REG_PPC_DSCR:
		*val = get_reg_val(id, vcpu->arch.dscr);
		break;
	case KVM_REG_PPC_PURR:
		*val = get_reg_val(id, vcpu->arch.purr);
		break;
	case KVM_REG_PPC_SPURR:
		*val = get_reg_val(id, vcpu->arch.spurr);
		break;
	case KVM_REG_PPC_AMR:
		*val = get_reg_val(id, vcpu->arch.amr);
		break;
	case KVM_REG_PPC_UAMOR:
		*val = get_reg_val(id, vcpu->arch.uamor);
		break;
1203
	case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS:
1204 1205 1206 1207 1208 1209
		i = id - KVM_REG_PPC_MMCR0;
		*val = get_reg_val(id, vcpu->arch.mmcr[i]);
		break;
	case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
		i = id - KVM_REG_PPC_PMC1;
		*val = get_reg_val(id, vcpu->arch.pmc[i]);
1210
		break;
1211 1212 1213 1214
	case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
		i = id - KVM_REG_PPC_SPMC1;
		*val = get_reg_val(id, vcpu->arch.spmc[i]);
		break;
1215 1216 1217 1218 1219 1220
	case KVM_REG_PPC_SIAR:
		*val = get_reg_val(id, vcpu->arch.siar);
		break;
	case KVM_REG_PPC_SDAR:
		*val = get_reg_val(id, vcpu->arch.sdar);
		break;
1221 1222
	case KVM_REG_PPC_SIER:
		*val = get_reg_val(id, vcpu->arch.sier);
1223
		break;
1224 1225 1226 1227 1228 1229 1230 1231 1232
	case KVM_REG_PPC_IAMR:
		*val = get_reg_val(id, vcpu->arch.iamr);
		break;
	case KVM_REG_PPC_PSPB:
		*val = get_reg_val(id, vcpu->arch.pspb);
		break;
	case KVM_REG_PPC_DPDES:
		*val = get_reg_val(id, vcpu->arch.vcore->dpdes);
		break;
1233 1234 1235
	case KVM_REG_PPC_VTB:
		*val = get_reg_val(id, vcpu->arch.vcore->vtb);
		break;
1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261
	case KVM_REG_PPC_DAWR:
		*val = get_reg_val(id, vcpu->arch.dawr);
		break;
	case KVM_REG_PPC_DAWRX:
		*val = get_reg_val(id, vcpu->arch.dawrx);
		break;
	case KVM_REG_PPC_CIABR:
		*val = get_reg_val(id, vcpu->arch.ciabr);
		break;
	case KVM_REG_PPC_CSIGR:
		*val = get_reg_val(id, vcpu->arch.csigr);
		break;
	case KVM_REG_PPC_TACR:
		*val = get_reg_val(id, vcpu->arch.tacr);
		break;
	case KVM_REG_PPC_TCSCR:
		*val = get_reg_val(id, vcpu->arch.tcscr);
		break;
	case KVM_REG_PPC_PID:
		*val = get_reg_val(id, vcpu->arch.pid);
		break;
	case KVM_REG_PPC_ACOP:
		*val = get_reg_val(id, vcpu->arch.acop);
		break;
	case KVM_REG_PPC_WORT:
		*val = get_reg_val(id, vcpu->arch.wort);
1262
		break;
1263 1264 1265 1266 1267 1268
	case KVM_REG_PPC_TIDR:
		*val = get_reg_val(id, vcpu->arch.tid);
		break;
	case KVM_REG_PPC_PSSCR:
		*val = get_reg_val(id, vcpu->arch.psscr);
		break;
1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285
	case KVM_REG_PPC_VPA_ADDR:
		spin_lock(&vcpu->arch.vpa_update_lock);
		*val = get_reg_val(id, vcpu->arch.vpa.next_gpa);
		spin_unlock(&vcpu->arch.vpa_update_lock);
		break;
	case KVM_REG_PPC_VPA_SLB:
		spin_lock(&vcpu->arch.vpa_update_lock);
		val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa;
		val->vpaval.length = vcpu->arch.slb_shadow.len;
		spin_unlock(&vcpu->arch.vpa_update_lock);
		break;
	case KVM_REG_PPC_VPA_DTL:
		spin_lock(&vcpu->arch.vpa_update_lock);
		val->vpaval.addr = vcpu->arch.dtl.next_gpa;
		val->vpaval.length = vcpu->arch.dtl.len;
		spin_unlock(&vcpu->arch.vpa_update_lock);
		break;
1286 1287 1288
	case KVM_REG_PPC_TB_OFFSET:
		*val = get_reg_val(id, vcpu->arch.vcore->tb_offset);
		break;
1289
	case KVM_REG_PPC_LPCR:
1290
	case KVM_REG_PPC_LPCR_64:
1291 1292
		*val = get_reg_val(id, vcpu->arch.vcore->lpcr);
		break;
1293 1294 1295
	case KVM_REG_PPC_PPR:
		*val = get_reg_val(id, vcpu->arch.ppr);
		break;
1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
	case KVM_REG_PPC_TFHAR:
		*val = get_reg_val(id, vcpu->arch.tfhar);
		break;
	case KVM_REG_PPC_TFIAR:
		*val = get_reg_val(id, vcpu->arch.tfiar);
		break;
	case KVM_REG_PPC_TEXASR:
		*val = get_reg_val(id, vcpu->arch.texasr);
		break;
	case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
		i = id - KVM_REG_PPC_TM_GPR0;
		*val = get_reg_val(id, vcpu->arch.gpr_tm[i]);
		break;
	case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
	{
		int j;
		i = id - KVM_REG_PPC_TM_VSR0;
		if (i < 32)
			for (j = 0; j < TS_FPRWIDTH; j++)
				val->vsxval[j] = vcpu->arch.fp_tm.fpr[i][j];
		else {
			if (cpu_has_feature(CPU_FTR_ALTIVEC))
				val->vval = vcpu->arch.vr_tm.vr[i-32];
			else
				r = -ENXIO;
		}
		break;
	}
	case KVM_REG_PPC_TM_CR:
		*val = get_reg_val(id, vcpu->arch.cr_tm);
		break;
1328 1329 1330
	case KVM_REG_PPC_TM_XER:
		*val = get_reg_val(id, vcpu->arch.xer_tm);
		break;
1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361
	case KVM_REG_PPC_TM_LR:
		*val = get_reg_val(id, vcpu->arch.lr_tm);
		break;
	case KVM_REG_PPC_TM_CTR:
		*val = get_reg_val(id, vcpu->arch.ctr_tm);
		break;
	case KVM_REG_PPC_TM_FPSCR:
		*val = get_reg_val(id, vcpu->arch.fp_tm.fpscr);
		break;
	case KVM_REG_PPC_TM_AMR:
		*val = get_reg_val(id, vcpu->arch.amr_tm);
		break;
	case KVM_REG_PPC_TM_PPR:
		*val = get_reg_val(id, vcpu->arch.ppr_tm);
		break;
	case KVM_REG_PPC_TM_VRSAVE:
		*val = get_reg_val(id, vcpu->arch.vrsave_tm);
		break;
	case KVM_REG_PPC_TM_VSCR:
		if (cpu_has_feature(CPU_FTR_ALTIVEC))
			*val = get_reg_val(id, vcpu->arch.vr_tm.vscr.u[3]);
		else
			r = -ENXIO;
		break;
	case KVM_REG_PPC_TM_DSCR:
		*val = get_reg_val(id, vcpu->arch.dscr_tm);
		break;
	case KVM_REG_PPC_TM_TAR:
		*val = get_reg_val(id, vcpu->arch.tar_tm);
		break;
#endif
1362 1363 1364
	case KVM_REG_PPC_ARCH_COMPAT:
		*val = get_reg_val(id, vcpu->arch.vcore->arch_compat);
		break;
1365
	default:
1366
		r = -EINVAL;
1367 1368 1369 1370 1371 1372
		break;
	}

	return r;
}

1373 1374
static int kvmppc_set_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
				 union kvmppc_one_reg *val)
1375
{
1376 1377
	int r = 0;
	long int i;
1378
	unsigned long addr, len;
1379

1380
	switch (id) {
1381 1382
	case KVM_REG_PPC_HIOR:
		/* Only allow this to be set to zero */
1383
		if (set_reg_val(id, *val))
1384 1385
			r = -EINVAL;
		break;
1386 1387 1388
	case KVM_REG_PPC_DABR:
		vcpu->arch.dabr = set_reg_val(id, *val);
		break;
1389 1390 1391
	case KVM_REG_PPC_DABRX:
		vcpu->arch.dabrx = set_reg_val(id, *val) & ~DABRX_HYP;
		break;
1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406
	case KVM_REG_PPC_DSCR:
		vcpu->arch.dscr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_PURR:
		vcpu->arch.purr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_SPURR:
		vcpu->arch.spurr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_AMR:
		vcpu->arch.amr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_UAMOR:
		vcpu->arch.uamor = set_reg_val(id, *val);
		break;
1407
	case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS:
1408 1409 1410 1411 1412 1413 1414
		i = id - KVM_REG_PPC_MMCR0;
		vcpu->arch.mmcr[i] = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
		i = id - KVM_REG_PPC_PMC1;
		vcpu->arch.pmc[i] = set_reg_val(id, *val);
		break;
1415 1416 1417 1418
	case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
		i = id - KVM_REG_PPC_SPMC1;
		vcpu->arch.spmc[i] = set_reg_val(id, *val);
		break;
1419 1420 1421 1422 1423 1424
	case KVM_REG_PPC_SIAR:
		vcpu->arch.siar = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_SDAR:
		vcpu->arch.sdar = set_reg_val(id, *val);
		break;
1425 1426
	case KVM_REG_PPC_SIER:
		vcpu->arch.sier = set_reg_val(id, *val);
1427
		break;
1428 1429 1430 1431 1432 1433 1434 1435 1436
	case KVM_REG_PPC_IAMR:
		vcpu->arch.iamr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_PSPB:
		vcpu->arch.pspb = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_DPDES:
		vcpu->arch.vcore->dpdes = set_reg_val(id, *val);
		break;
1437 1438 1439
	case KVM_REG_PPC_VTB:
		vcpu->arch.vcore->vtb = set_reg_val(id, *val);
		break;
1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468
	case KVM_REG_PPC_DAWR:
		vcpu->arch.dawr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_DAWRX:
		vcpu->arch.dawrx = set_reg_val(id, *val) & ~DAWRX_HYP;
		break;
	case KVM_REG_PPC_CIABR:
		vcpu->arch.ciabr = set_reg_val(id, *val);
		/* Don't allow setting breakpoints in hypervisor code */
		if ((vcpu->arch.ciabr & CIABR_PRIV) == CIABR_PRIV_HYPER)
			vcpu->arch.ciabr &= ~CIABR_PRIV;	/* disable */
		break;
	case KVM_REG_PPC_CSIGR:
		vcpu->arch.csigr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TACR:
		vcpu->arch.tacr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TCSCR:
		vcpu->arch.tcscr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_PID:
		vcpu->arch.pid = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_ACOP:
		vcpu->arch.acop = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_WORT:
		vcpu->arch.wort = set_reg_val(id, *val);
1469
		break;
1470 1471 1472 1473 1474 1475
	case KVM_REG_PPC_TIDR:
		vcpu->arch.tid = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_PSSCR:
		vcpu->arch.psscr = set_reg_val(id, *val) & PSSCR_GUEST_VIS;
		break;
1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495
	case KVM_REG_PPC_VPA_ADDR:
		addr = set_reg_val(id, *val);
		r = -EINVAL;
		if (!addr && (vcpu->arch.slb_shadow.next_gpa ||
			      vcpu->arch.dtl.next_gpa))
			break;
		r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca));
		break;
	case KVM_REG_PPC_VPA_SLB:
		addr = val->vpaval.addr;
		len = val->vpaval.length;
		r = -EINVAL;
		if (addr && !vcpu->arch.vpa.next_gpa)
			break;
		r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len);
		break;
	case KVM_REG_PPC_VPA_DTL:
		addr = val->vpaval.addr;
		len = val->vpaval.length;
		r = -EINVAL;
1496 1497
		if (addr && (len < sizeof(struct dtl_entry) ||
			     !vcpu->arch.vpa.next_gpa))
1498 1499 1500 1501
			break;
		len -= len % sizeof(struct dtl_entry);
		r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len);
		break;
1502 1503 1504 1505 1506
	case KVM_REG_PPC_TB_OFFSET:
		/* round up to multiple of 2^24 */
		vcpu->arch.vcore->tb_offset =
			ALIGN(set_reg_val(id, *val), 1UL << 24);
		break;
1507
	case KVM_REG_PPC_LPCR:
1508 1509 1510 1511
		kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), true);
		break;
	case KVM_REG_PPC_LPCR_64:
		kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), false);
1512
		break;
1513 1514 1515
	case KVM_REG_PPC_PPR:
		vcpu->arch.ppr = set_reg_val(id, *val);
		break;
1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
	case KVM_REG_PPC_TFHAR:
		vcpu->arch.tfhar = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TFIAR:
		vcpu->arch.tfiar = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TEXASR:
		vcpu->arch.texasr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
		i = id - KVM_REG_PPC_TM_GPR0;
		vcpu->arch.gpr_tm[i] = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
	{
		int j;
		i = id - KVM_REG_PPC_TM_VSR0;
		if (i < 32)
			for (j = 0; j < TS_FPRWIDTH; j++)
				vcpu->arch.fp_tm.fpr[i][j] = val->vsxval[j];
		else
			if (cpu_has_feature(CPU_FTR_ALTIVEC))
				vcpu->arch.vr_tm.vr[i-32] = val->vval;
			else
				r = -ENXIO;
		break;
	}
	case KVM_REG_PPC_TM_CR:
		vcpu->arch.cr_tm = set_reg_val(id, *val);
		break;
1547 1548 1549
	case KVM_REG_PPC_TM_XER:
		vcpu->arch.xer_tm = set_reg_val(id, *val);
		break;
1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580
	case KVM_REG_PPC_TM_LR:
		vcpu->arch.lr_tm = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_CTR:
		vcpu->arch.ctr_tm = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_FPSCR:
		vcpu->arch.fp_tm.fpscr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_AMR:
		vcpu->arch.amr_tm = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_PPR:
		vcpu->arch.ppr_tm = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_VRSAVE:
		vcpu->arch.vrsave_tm = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_VSCR:
		if (cpu_has_feature(CPU_FTR_ALTIVEC))
			vcpu->arch.vr.vscr.u[3] = set_reg_val(id, *val);
		else
			r = - ENXIO;
		break;
	case KVM_REG_PPC_TM_DSCR:
		vcpu->arch.dscr_tm = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_TAR:
		vcpu->arch.tar_tm = set_reg_val(id, *val);
		break;
#endif
1581 1582 1583
	case KVM_REG_PPC_ARCH_COMPAT:
		r = kvmppc_set_arch_compat(vcpu, set_reg_val(id, *val));
		break;
1584
	default:
1585
		r = -EINVAL;
1586 1587 1588 1589 1590 1591
		break;
	}

	return r;
}

1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605
/*
 * On POWER9, threads are independent and can be in different partitions.
 * Therefore we consider each thread to be a subcore.
 * There is a restriction that all threads have to be in the same
 * MMU mode (radix or HPT), unfortunately, but since we only support
 * HPT guests on a HPT host so far, that isn't an impediment yet.
 */
static int threads_per_vcore(void)
{
	if (cpu_has_feature(CPU_FTR_ARCH_300))
		return 1;
	return threads_per_subcore;
}

1606 1607 1608 1609 1610 1611 1612 1613 1614 1615
static struct kvmppc_vcore *kvmppc_vcore_create(struct kvm *kvm, int core)
{
	struct kvmppc_vcore *vcore;

	vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL);

	if (vcore == NULL)
		return NULL;

	spin_lock_init(&vcore->lock);
1616
	spin_lock_init(&vcore->stoltb_lock);
1617
	init_swait_queue_head(&vcore->wq);
1618 1619
	vcore->preempt_tb = TB_NIL;
	vcore->lpcr = kvm->arch.lpcr;
1620
	vcore->first_vcpuid = core * threads_per_vcore();
1621
	vcore->kvm = kvm;
1622
	INIT_LIST_HEAD(&vcore->preempt_list);
1623 1624 1625 1626

	return vcore;
}

1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774
#ifdef CONFIG_KVM_BOOK3S_HV_EXIT_TIMING
static struct debugfs_timings_element {
	const char *name;
	size_t offset;
} timings[] = {
	{"rm_entry",	offsetof(struct kvm_vcpu, arch.rm_entry)},
	{"rm_intr",	offsetof(struct kvm_vcpu, arch.rm_intr)},
	{"rm_exit",	offsetof(struct kvm_vcpu, arch.rm_exit)},
	{"guest",	offsetof(struct kvm_vcpu, arch.guest_time)},
	{"cede",	offsetof(struct kvm_vcpu, arch.cede_time)},
};

#define N_TIMINGS	(sizeof(timings) / sizeof(timings[0]))

struct debugfs_timings_state {
	struct kvm_vcpu	*vcpu;
	unsigned int	buflen;
	char		buf[N_TIMINGS * 100];
};

static int debugfs_timings_open(struct inode *inode, struct file *file)
{
	struct kvm_vcpu *vcpu = inode->i_private;
	struct debugfs_timings_state *p;

	p = kzalloc(sizeof(*p), GFP_KERNEL);
	if (!p)
		return -ENOMEM;

	kvm_get_kvm(vcpu->kvm);
	p->vcpu = vcpu;
	file->private_data = p;

	return nonseekable_open(inode, file);
}

static int debugfs_timings_release(struct inode *inode, struct file *file)
{
	struct debugfs_timings_state *p = file->private_data;

	kvm_put_kvm(p->vcpu->kvm);
	kfree(p);
	return 0;
}

static ssize_t debugfs_timings_read(struct file *file, char __user *buf,
				    size_t len, loff_t *ppos)
{
	struct debugfs_timings_state *p = file->private_data;
	struct kvm_vcpu *vcpu = p->vcpu;
	char *s, *buf_end;
	struct kvmhv_tb_accumulator tb;
	u64 count;
	loff_t pos;
	ssize_t n;
	int i, loops;
	bool ok;

	if (!p->buflen) {
		s = p->buf;
		buf_end = s + sizeof(p->buf);
		for (i = 0; i < N_TIMINGS; ++i) {
			struct kvmhv_tb_accumulator *acc;

			acc = (struct kvmhv_tb_accumulator *)
				((unsigned long)vcpu + timings[i].offset);
			ok = false;
			for (loops = 0; loops < 1000; ++loops) {
				count = acc->seqcount;
				if (!(count & 1)) {
					smp_rmb();
					tb = *acc;
					smp_rmb();
					if (count == acc->seqcount) {
						ok = true;
						break;
					}
				}
				udelay(1);
			}
			if (!ok)
				snprintf(s, buf_end - s, "%s: stuck\n",
					timings[i].name);
			else
				snprintf(s, buf_end - s,
					"%s: %llu %llu %llu %llu\n",
					timings[i].name, count / 2,
					tb_to_ns(tb.tb_total),
					tb_to_ns(tb.tb_min),
					tb_to_ns(tb.tb_max));
			s += strlen(s);
		}
		p->buflen = s - p->buf;
	}

	pos = *ppos;
	if (pos >= p->buflen)
		return 0;
	if (len > p->buflen - pos)
		len = p->buflen - pos;
	n = copy_to_user(buf, p->buf + pos, len);
	if (n) {
		if (n == len)
			return -EFAULT;
		len -= n;
	}
	*ppos = pos + len;
	return len;
}

static ssize_t debugfs_timings_write(struct file *file, const char __user *buf,
				     size_t len, loff_t *ppos)
{
	return -EACCES;
}

static const struct file_operations debugfs_timings_ops = {
	.owner	 = THIS_MODULE,
	.open	 = debugfs_timings_open,
	.release = debugfs_timings_release,
	.read	 = debugfs_timings_read,
	.write	 = debugfs_timings_write,
	.llseek	 = generic_file_llseek,
};

/* Create a debugfs directory for the vcpu */
static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id)
{
	char buf[16];
	struct kvm *kvm = vcpu->kvm;

	snprintf(buf, sizeof(buf), "vcpu%u", id);
	if (IS_ERR_OR_NULL(kvm->arch.debugfs_dir))
		return;
	vcpu->arch.debugfs_dir = debugfs_create_dir(buf, kvm->arch.debugfs_dir);
	if (IS_ERR_OR_NULL(vcpu->arch.debugfs_dir))
		return;
	vcpu->arch.debugfs_timings =
		debugfs_create_file("timings", 0444, vcpu->arch.debugfs_dir,
				    vcpu, &debugfs_timings_ops);
}

#else /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id)
{
}
#endif /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */

1775 1776
static struct kvm_vcpu *kvmppc_core_vcpu_create_hv(struct kvm *kvm,
						   unsigned int id)
1777 1778
{
	struct kvm_vcpu *vcpu;
1779 1780 1781
	int err = -EINVAL;
	int core;
	struct kvmppc_vcore *vcore;
1782

1783
	core = id / threads_per_vcore();
1784 1785 1786 1787
	if (core >= KVM_MAX_VCORES)
		goto out;

	err = -ENOMEM;
1788
	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
1789 1790 1791 1792 1793 1794 1795 1796
	if (!vcpu)
		goto out;

	err = kvm_vcpu_init(vcpu, kvm, id);
	if (err)
		goto free_vcpu;

	vcpu->arch.shared = &vcpu->arch.shregs;
1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807
#ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
	/*
	 * The shared struct is never shared on HV,
	 * so we can always use host endianness
	 */
#ifdef __BIG_ENDIAN__
	vcpu->arch.shared_big_endian = true;
#else
	vcpu->arch.shared_big_endian = false;
#endif
#endif
1808 1809 1810
	vcpu->arch.mmcr[0] = MMCR0_FC;
	vcpu->arch.ctrl = CTRL_RUNLATCH;
	/* default to host PVR, since we can't spoof it */
1811
	kvmppc_set_pvr_hv(vcpu, mfspr(SPRN_PVR));
1812
	spin_lock_init(&vcpu->arch.vpa_update_lock);
1813 1814
	spin_lock_init(&vcpu->arch.tbacct_lock);
	vcpu->arch.busy_preempt = TB_NIL;
1815
	vcpu->arch.intr_msr = MSR_SF | MSR_ME;
1816 1817 1818

	kvmppc_mmu_book3s_hv_init(vcpu);

1819
	vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
1820 1821 1822 1823 1824 1825

	init_waitqueue_head(&vcpu->arch.cpu_run);

	mutex_lock(&kvm->lock);
	vcore = kvm->arch.vcores[core];
	if (!vcore) {
1826
		vcore = kvmppc_vcore_create(kvm, core);
1827
		kvm->arch.vcores[core] = vcore;
1828
		kvm->arch.online_vcores++;
1829 1830 1831 1832 1833 1834 1835 1836 1837 1838
	}
	mutex_unlock(&kvm->lock);

	if (!vcore)
		goto free_vcpu;

	spin_lock(&vcore->lock);
	++vcore->num_threads;
	spin_unlock(&vcore->lock);
	vcpu->arch.vcore = vcore;
1839
	vcpu->arch.ptid = vcpu->vcpu_id - vcore->first_vcpuid;
1840
	vcpu->arch.thread_cpu = -1;
1841

1842 1843 1844
	vcpu->arch.cpu_type = KVM_CPU_3S_64;
	kvmppc_sanity_check(vcpu);

1845 1846
	debugfs_vcpu_init(vcpu, id);

1847 1848 1849
	return vcpu;

free_vcpu:
1850
	kmem_cache_free(kvm_vcpu_cache, vcpu);
1851 1852 1853 1854
out:
	return ERR_PTR(err);
}

1855 1856 1857 1858 1859 1860 1861
static void unpin_vpa(struct kvm *kvm, struct kvmppc_vpa *vpa)
{
	if (vpa->pinned_addr)
		kvmppc_unpin_guest_page(kvm, vpa->pinned_addr, vpa->gpa,
					vpa->dirty);
}

1862
static void kvmppc_core_vcpu_free_hv(struct kvm_vcpu *vcpu)
1863
{
1864
	spin_lock(&vcpu->arch.vpa_update_lock);
1865 1866 1867
	unpin_vpa(vcpu->kvm, &vcpu->arch.dtl);
	unpin_vpa(vcpu->kvm, &vcpu->arch.slb_shadow);
	unpin_vpa(vcpu->kvm, &vcpu->arch.vpa);
1868
	spin_unlock(&vcpu->arch.vpa_update_lock);
1869
	kvm_vcpu_uninit(vcpu);
1870
	kmem_cache_free(kvm_vcpu_cache, vcpu);
1871 1872
}

1873 1874 1875 1876 1877 1878
static int kvmppc_core_check_requests_hv(struct kvm_vcpu *vcpu)
{
	/* Indicate we want to get back into the guest */
	return 1;
}

1879
static void kvmppc_set_timer(struct kvm_vcpu *vcpu)
1880
{
1881
	unsigned long dec_nsec, now;
1882

1883 1884 1885 1886
	now = get_tb();
	if (now > vcpu->arch.dec_expires) {
		/* decrementer has already gone negative */
		kvmppc_core_queue_dec(vcpu);
1887
		kvmppc_core_prepare_to_enter(vcpu);
1888
		return;
1889
	}
1890 1891 1892 1893 1894
	dec_nsec = (vcpu->arch.dec_expires - now) * NSEC_PER_SEC
		   / tb_ticks_per_sec;
	hrtimer_start(&vcpu->arch.dec_timer, ktime_set(0, dec_nsec),
		      HRTIMER_MODE_REL);
	vcpu->arch.timer_running = 1;
1895 1896
}

1897
static void kvmppc_end_cede(struct kvm_vcpu *vcpu)
1898
{
1899 1900 1901 1902 1903
	vcpu->arch.ceded = 0;
	if (vcpu->arch.timer_running) {
		hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
		vcpu->arch.timer_running = 0;
	}
1904 1905
}

1906
extern void __kvmppc_vcore_entry(void);
1907

1908 1909
static void kvmppc_remove_runnable(struct kvmppc_vcore *vc,
				   struct kvm_vcpu *vcpu)
1910
{
1911 1912
	u64 now;

1913 1914
	if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
		return;
1915
	spin_lock_irq(&vcpu->arch.tbacct_lock);
1916 1917 1918 1919 1920
	now = mftb();
	vcpu->arch.busy_stolen += vcore_stolen_time(vc, now) -
		vcpu->arch.stolen_logged;
	vcpu->arch.busy_preempt = now;
	vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
1921
	spin_unlock_irq(&vcpu->arch.tbacct_lock);
1922
	--vc->n_runnable;
1923
	WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], NULL);
1924 1925
}

1926 1927 1928
static int kvmppc_grab_hwthread(int cpu)
{
	struct paca_struct *tpaca;
1929
	long timeout = 10000;
1930 1931 1932 1933

	tpaca = &paca[cpu];

	/* Ensure the thread won't go into the kernel if it wakes */
1934
	tpaca->kvm_hstate.kvm_vcpu = NULL;
1935
	tpaca->kvm_hstate.kvm_vcore = NULL;
1936 1937 1938
	tpaca->kvm_hstate.napping = 0;
	smp_wmb();
	tpaca->kvm_hstate.hwthread_req = 1;
1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966

	/*
	 * If the thread is already executing in the kernel (e.g. handling
	 * a stray interrupt), wait for it to get back to nap mode.
	 * The smp_mb() is to ensure that our setting of hwthread_req
	 * is visible before we look at hwthread_state, so if this
	 * races with the code at system_reset_pSeries and the thread
	 * misses our setting of hwthread_req, we are sure to see its
	 * setting of hwthread_state, and vice versa.
	 */
	smp_mb();
	while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) {
		if (--timeout <= 0) {
			pr_err("KVM: couldn't grab cpu %d\n", cpu);
			return -EBUSY;
		}
		udelay(1);
	}
	return 0;
}

static void kvmppc_release_hwthread(int cpu)
{
	struct paca_struct *tpaca;

	tpaca = &paca[cpu];
	tpaca->kvm_hstate.hwthread_req = 0;
	tpaca->kvm_hstate.kvm_vcpu = NULL;
1967 1968
	tpaca->kvm_hstate.kvm_vcore = NULL;
	tpaca->kvm_hstate.kvm_split_mode = NULL;
1969 1970
}

1971
static void kvmppc_start_thread(struct kvm_vcpu *vcpu, struct kvmppc_vcore *vc)
1972 1973 1974
{
	int cpu;
	struct paca_struct *tpaca;
1975
	struct kvmppc_vcore *mvc = vc->master_vcore;
1976

1977 1978 1979 1980 1981 1982 1983 1984 1985
	cpu = vc->pcpu;
	if (vcpu) {
		if (vcpu->arch.timer_running) {
			hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
			vcpu->arch.timer_running = 0;
		}
		cpu += vcpu->arch.ptid;
		vcpu->cpu = mvc->pcpu;
		vcpu->arch.thread_cpu = cpu;
1986
	}
1987
	tpaca = &paca[cpu];
1988
	tpaca->kvm_hstate.kvm_vcpu = vcpu;
1989 1990
	tpaca->kvm_hstate.ptid = cpu - mvc->pcpu;
	/* Order stores to hstate.kvm_vcpu etc. before store to kvm_vcore */
1991
	smp_wmb();
1992
	tpaca->kvm_hstate.kvm_vcore = mvc;
1993
	if (cpu != smp_processor_id())
1994
		kvmppc_ipi_thread(cpu);
1995
}
1996

1997
static void kvmppc_wait_for_nap(void)
1998
{
1999 2000
	int cpu = smp_processor_id();
	int i, loops;
2001
	int n_threads = threads_per_vcore();
2002

2003 2004
	if (n_threads <= 1)
		return;
2005 2006 2007
	for (loops = 0; loops < 1000000; ++loops) {
		/*
		 * Check if all threads are finished.
2008
		 * We set the vcore pointer when starting a thread
2009
		 * and the thread clears it when finished, so we look
2010
		 * for any threads that still have a non-NULL vcore ptr.
2011
		 */
2012
		for (i = 1; i < n_threads; ++i)
2013
			if (paca[cpu + i].kvm_hstate.kvm_vcore)
2014
				break;
2015
		if (i == n_threads) {
2016 2017
			HMT_medium();
			return;
2018
		}
2019
		HMT_low();
2020 2021
	}
	HMT_medium();
2022
	for (i = 1; i < n_threads; ++i)
2023
		if (paca[cpu + i].kvm_hstate.kvm_vcore)
2024
			pr_err("KVM: CPU %d seems to be stuck\n", cpu + i);
2025 2026 2027 2028
}

/*
 * Check that we are on thread 0 and that any other threads in
2029 2030
 * this core are off-line.  Then grab the threads so they can't
 * enter the kernel.
2031 2032 2033 2034
 */
static int on_primary_thread(void)
{
	int cpu = smp_processor_id();
2035
	int thr;
2036

2037 2038
	/* Are we on a primary subcore? */
	if (cpu_thread_in_subcore(cpu))
2039
		return 0;
2040 2041 2042

	thr = 0;
	while (++thr < threads_per_subcore)
2043 2044
		if (cpu_online(cpu + thr))
			return 0;
2045 2046

	/* Grab all hw threads so they can't go into the kernel */
2047
	for (thr = 1; thr < threads_per_subcore; ++thr) {
2048 2049 2050 2051 2052 2053 2054 2055
		if (kvmppc_grab_hwthread(cpu + thr)) {
			/* Couldn't grab one; let the others go */
			do {
				kvmppc_release_hwthread(cpu + thr);
			} while (--thr > 0);
			return 0;
		}
	}
2056 2057 2058
	return 1;
}

2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087
/*
 * A list of virtual cores for each physical CPU.
 * These are vcores that could run but their runner VCPU tasks are
 * (or may be) preempted.
 */
struct preempted_vcore_list {
	struct list_head	list;
	spinlock_t		lock;
};

static DEFINE_PER_CPU(struct preempted_vcore_list, preempted_vcores);

static void init_vcore_lists(void)
{
	int cpu;

	for_each_possible_cpu(cpu) {
		struct preempted_vcore_list *lp = &per_cpu(preempted_vcores, cpu);
		spin_lock_init(&lp->lock);
		INIT_LIST_HEAD(&lp->list);
	}
}

static void kvmppc_vcore_preempt(struct kvmppc_vcore *vc)
{
	struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);

	vc->vcore_state = VCORE_PREEMPT;
	vc->pcpu = smp_processor_id();
2088
	if (vc->num_threads < threads_per_vcore()) {
2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099
		spin_lock(&lp->lock);
		list_add_tail(&vc->preempt_list, &lp->list);
		spin_unlock(&lp->lock);
	}

	/* Start accumulating stolen time */
	kvmppc_core_start_stolen(vc);
}

static void kvmppc_vcore_end_preempt(struct kvmppc_vcore *vc)
{
2100
	struct preempted_vcore_list *lp;
2101 2102 2103

	kvmppc_core_end_stolen(vc);
	if (!list_empty(&vc->preempt_list)) {
2104
		lp = &per_cpu(preempted_vcores, vc->pcpu);
2105 2106 2107 2108 2109 2110 2111
		spin_lock(&lp->lock);
		list_del_init(&vc->preempt_list);
		spin_unlock(&lp->lock);
	}
	vc->vcore_state = VCORE_INACTIVE;
}

2112 2113 2114 2115
/*
 * This stores information about the virtual cores currently
 * assigned to a physical core.
 */
2116
struct core_info {
2117 2118
	int		n_subcores;
	int		max_subcore_threads;
2119
	int		total_threads;
2120 2121 2122
	int		subcore_threads[MAX_SUBCORES];
	struct kvm	*subcore_vm[MAX_SUBCORES];
	struct list_head vcs[MAX_SUBCORES];
2123 2124
};

2125 2126 2127 2128 2129 2130
/*
 * This mapping means subcores 0 and 1 can use threads 0-3 and 4-7
 * respectively in 2-way micro-threading (split-core) mode.
 */
static int subcore_thread_map[MAX_SUBCORES] = { 0, 4, 2, 6 };

2131 2132
static void init_core_info(struct core_info *cip, struct kvmppc_vcore *vc)
{
2133 2134
	int sub;

2135
	memset(cip, 0, sizeof(*cip));
2136 2137
	cip->n_subcores = 1;
	cip->max_subcore_threads = vc->num_threads;
2138
	cip->total_threads = vc->num_threads;
2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160
	cip->subcore_threads[0] = vc->num_threads;
	cip->subcore_vm[0] = vc->kvm;
	for (sub = 0; sub < MAX_SUBCORES; ++sub)
		INIT_LIST_HEAD(&cip->vcs[sub]);
	list_add_tail(&vc->preempt_list, &cip->vcs[0]);
}

static bool subcore_config_ok(int n_subcores, int n_threads)
{
	/* Can only dynamically split if unsplit to begin with */
	if (n_subcores > 1 && threads_per_subcore < MAX_SMT_THREADS)
		return false;
	if (n_subcores > MAX_SUBCORES)
		return false;
	if (n_subcores > 1) {
		if (!(dynamic_mt_modes & 2))
			n_subcores = 4;
		if (n_subcores > 2 && !(dynamic_mt_modes & 4))
			return false;
	}

	return n_subcores * roundup_pow_of_two(n_threads) <= MAX_SMT_THREADS;
2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171
}

static void init_master_vcore(struct kvmppc_vcore *vc)
{
	vc->master_vcore = vc;
	vc->entry_exit_map = 0;
	vc->in_guest = 0;
	vc->napping_threads = 0;
	vc->conferring_threads = 0;
}

2172 2173 2174 2175 2176 2177 2178 2179 2180 2181
static bool can_dynamic_split(struct kvmppc_vcore *vc, struct core_info *cip)
{
	int n_threads = vc->num_threads;
	int sub;

	if (!cpu_has_feature(CPU_FTR_ARCH_207S))
		return false;

	if (n_threads < cip->max_subcore_threads)
		n_threads = cip->max_subcore_threads;
2182
	if (!subcore_config_ok(cip->n_subcores + 1, n_threads))
2183
		return false;
2184
	cip->max_subcore_threads = n_threads;
2185 2186 2187 2188 2189 2190 2191

	sub = cip->n_subcores;
	++cip->n_subcores;
	cip->total_threads += vc->num_threads;
	cip->subcore_threads[sub] = vc->num_threads;
	cip->subcore_vm[sub] = vc->kvm;
	init_master_vcore(vc);
2192
	list_move_tail(&vc->preempt_list, &cip->vcs[sub]);
2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206

	return true;
}

/*
 * Work out whether it is possible to piggyback the execution of
 * vcore *pvc onto the execution of the other vcores described in *cip.
 */
static bool can_piggyback(struct kvmppc_vcore *pvc, struct core_info *cip,
			  int target_threads)
{
	if (cip->total_threads + pvc->num_threads > target_threads)
		return false;

2207
	return can_dynamic_split(pvc, cip);
2208 2209
}

2210 2211
static void prepare_threads(struct kvmppc_vcore *vc)
{
2212 2213
	int i;
	struct kvm_vcpu *vcpu;
2214

2215
	for_each_runnable_thread(i, vcpu, vc) {
2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228
		if (signal_pending(vcpu->arch.run_task))
			vcpu->arch.ret = -EINTR;
		else if (vcpu->arch.vpa.update_pending ||
			 vcpu->arch.slb_shadow.update_pending ||
			 vcpu->arch.dtl.update_pending)
			vcpu->arch.ret = RESUME_GUEST;
		else
			continue;
		kvmppc_remove_runnable(vc, vcpu);
		wake_up(&vcpu->arch.cpu_run);
	}
}

2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260
static void collect_piggybacks(struct core_info *cip, int target_threads)
{
	struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
	struct kvmppc_vcore *pvc, *vcnext;

	spin_lock(&lp->lock);
	list_for_each_entry_safe(pvc, vcnext, &lp->list, preempt_list) {
		if (!spin_trylock(&pvc->lock))
			continue;
		prepare_threads(pvc);
		if (!pvc->n_runnable) {
			list_del_init(&pvc->preempt_list);
			if (pvc->runner == NULL) {
				pvc->vcore_state = VCORE_INACTIVE;
				kvmppc_core_end_stolen(pvc);
			}
			spin_unlock(&pvc->lock);
			continue;
		}
		if (!can_piggyback(pvc, cip, target_threads)) {
			spin_unlock(&pvc->lock);
			continue;
		}
		kvmppc_core_end_stolen(pvc);
		pvc->vcore_state = VCORE_PIGGYBACK;
		if (cip->total_threads >= target_threads)
			break;
	}
	spin_unlock(&lp->lock);
}

static void post_guest_process(struct kvmppc_vcore *vc, bool is_master)
2261
{
2262
	int still_running = 0, i;
2263 2264
	u64 now;
	long ret;
2265
	struct kvm_vcpu *vcpu;
2266

2267
	spin_lock(&vc->lock);
2268
	now = get_tb();
2269
	for_each_runnable_thread(i, vcpu, vc) {
2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284
		/* cancel pending dec exception if dec is positive */
		if (now < vcpu->arch.dec_expires &&
		    kvmppc_core_pending_dec(vcpu))
			kvmppc_core_dequeue_dec(vcpu);

		trace_kvm_guest_exit(vcpu);

		ret = RESUME_GUEST;
		if (vcpu->arch.trap)
			ret = kvmppc_handle_exit_hv(vcpu->arch.kvm_run, vcpu,
						    vcpu->arch.run_task);

		vcpu->arch.ret = ret;
		vcpu->arch.trap = 0;

2285 2286 2287 2288
		if (is_kvmppc_resume_guest(vcpu->arch.ret)) {
			if (vcpu->arch.pending_exceptions)
				kvmppc_core_prepare_to_enter(vcpu);
			if (vcpu->arch.ceded)
2289
				kvmppc_set_timer(vcpu);
2290 2291 2292
			else
				++still_running;
		} else {
2293 2294 2295 2296
			kvmppc_remove_runnable(vc, vcpu);
			wake_up(&vcpu->arch.cpu_run);
		}
	}
2297 2298
	list_del_init(&vc->preempt_list);
	if (!is_master) {
2299
		if (still_running > 0) {
2300
			kvmppc_vcore_preempt(vc);
2301 2302 2303 2304 2305 2306
		} else if (vc->runner) {
			vc->vcore_state = VCORE_PREEMPT;
			kvmppc_core_start_stolen(vc);
		} else {
			vc->vcore_state = VCORE_INACTIVE;
		}
2307 2308
		if (vc->n_runnable > 0 && vc->runner == NULL) {
			/* make sure there's a candidate runner awake */
2309 2310
			i = -1;
			vcpu = next_runnable_thread(vc, &i);
2311 2312 2313 2314
			wake_up(&vcpu->arch.cpu_run);
		}
	}
	spin_unlock(&vc->lock);
2315 2316
}

2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356
/*
 * Clear core from the list of active host cores as we are about to
 * enter the guest. Only do this if it is the primary thread of the
 * core (not if a subcore) that is entering the guest.
 */
static inline void kvmppc_clear_host_core(int cpu)
{
	int core;

	if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
		return;
	/*
	 * Memory barrier can be omitted here as we will do a smp_wmb()
	 * later in kvmppc_start_thread and we need ensure that state is
	 * visible to other CPUs only after we enter guest.
	 */
	core = cpu >> threads_shift;
	kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 0;
}

/*
 * Advertise this core as an active host core since we exited the guest
 * Only need to do this if it is the primary thread of the core that is
 * exiting.
 */
static inline void kvmppc_set_host_core(int cpu)
{
	int core;

	if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
		return;

	/*
	 * Memory barrier can be omitted here because we do a spin_unlock
	 * immediately after this which provides the memory barrier.
	 */
	core = cpu >> threads_shift;
	kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 1;
}

2357 2358 2359 2360
/*
 * Run a set of guest threads on a physical core.
 * Called with vc->lock held.
 */
2361
static noinline void kvmppc_run_core(struct kvmppc_vcore *vc)
2362
{
2363
	struct kvm_vcpu *vcpu;
2364
	int i;
2365
	int srcu_idx;
2366 2367
	struct core_info core_info;
	struct kvmppc_vcore *pvc, *vcnext;
2368 2369 2370 2371 2372
	struct kvm_split_mode split_info, *sip;
	int split, subcore_size, active;
	int sub;
	bool thr0_done;
	unsigned long cmd_bit, stat_bit;
2373 2374
	int pcpu, thr;
	int target_threads;
2375
	int controlled_threads;
2376

2377 2378 2379 2380 2381 2382 2383 2384 2385
	/*
	 * Remove from the list any threads that have a signal pending
	 * or need a VPA update done
	 */
	prepare_threads(vc);

	/* if the runner is no longer runnable, let the caller pick a new one */
	if (vc->runner->arch.state != KVMPPC_VCPU_RUNNABLE)
		return;
2386 2387

	/*
2388
	 * Initialize *vc.
2389
	 */
2390
	init_master_vcore(vc);
2391
	vc->preempt_tb = TB_NIL;
2392

2393 2394 2395 2396 2397 2398 2399
	/*
	 * Number of threads that we will be controlling: the same as
	 * the number of threads per subcore, except on POWER9,
	 * where it's 1 because the threads are (mostly) independent.
	 */
	controlled_threads = threads_per_vcore();

2400
	/*
2401 2402 2403
	 * Make sure we are running on primary threads, and that secondary
	 * threads are offline.  Also check if the number of threads in this
	 * guest are greater than the current system threads per guest.
2404
	 */
2405
	if ((controlled_threads > 1) &&
2406
	    ((vc->num_threads > threads_per_subcore) || !on_primary_thread())) {
2407
		for_each_runnable_thread(i, vcpu, vc) {
2408
			vcpu->arch.ret = -EBUSY;
2409 2410 2411
			kvmppc_remove_runnable(vc, vcpu);
			wake_up(&vcpu->arch.cpu_run);
		}
2412 2413 2414
		goto out;
	}

2415 2416 2417 2418 2419 2420
	/*
	 * See if we could run any other vcores on the physical core
	 * along with this one.
	 */
	init_core_info(&core_info, vc);
	pcpu = smp_processor_id();
2421
	target_threads = controlled_threads;
2422 2423 2424 2425
	if (target_smt_mode && target_smt_mode < target_threads)
		target_threads = target_smt_mode;
	if (vc->num_threads < target_threads)
		collect_piggybacks(&core_info, target_threads);
2426

2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456
	/* Decide on micro-threading (split-core) mode */
	subcore_size = threads_per_subcore;
	cmd_bit = stat_bit = 0;
	split = core_info.n_subcores;
	sip = NULL;
	if (split > 1) {
		/* threads_per_subcore must be MAX_SMT_THREADS (8) here */
		if (split == 2 && (dynamic_mt_modes & 2)) {
			cmd_bit = HID0_POWER8_1TO2LPAR;
			stat_bit = HID0_POWER8_2LPARMODE;
		} else {
			split = 4;
			cmd_bit = HID0_POWER8_1TO4LPAR;
			stat_bit = HID0_POWER8_4LPARMODE;
		}
		subcore_size = MAX_SMT_THREADS / split;
		sip = &split_info;
		memset(&split_info, 0, sizeof(split_info));
		split_info.rpr = mfspr(SPRN_RPR);
		split_info.pmmar = mfspr(SPRN_PMMAR);
		split_info.ldbar = mfspr(SPRN_LDBAR);
		split_info.subcore_size = subcore_size;
		for (sub = 0; sub < core_info.n_subcores; ++sub)
			split_info.master_vcs[sub] =
				list_first_entry(&core_info.vcs[sub],
					struct kvmppc_vcore, preempt_list);
		/* order writes to split_info before kvm_split_mode pointer */
		smp_wmb();
	}
	pcpu = smp_processor_id();
2457
	for (thr = 0; thr < controlled_threads; ++thr)
2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472
		paca[pcpu + thr].kvm_hstate.kvm_split_mode = sip;

	/* Initiate micro-threading (split-core) if required */
	if (cmd_bit) {
		unsigned long hid0 = mfspr(SPRN_HID0);

		hid0 |= cmd_bit | HID0_POWER8_DYNLPARDIS;
		mb();
		mtspr(SPRN_HID0, hid0);
		isync();
		for (;;) {
			hid0 = mfspr(SPRN_HID0);
			if (hid0 & stat_bit)
				break;
			cpu_relax();
2473
		}
2474
	}
2475

2476 2477
	kvmppc_clear_host_core(pcpu);

2478 2479 2480 2481 2482 2483 2484 2485
	/* Start all the threads */
	active = 0;
	for (sub = 0; sub < core_info.n_subcores; ++sub) {
		thr = subcore_thread_map[sub];
		thr0_done = false;
		active |= 1 << thr;
		list_for_each_entry(pvc, &core_info.vcs[sub], preempt_list) {
			pvc->pcpu = pcpu + thr;
2486
			for_each_runnable_thread(i, vcpu, pvc) {
2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501
				kvmppc_start_thread(vcpu, pvc);
				kvmppc_create_dtl_entry(vcpu, pvc);
				trace_kvm_guest_enter(vcpu);
				if (!vcpu->arch.ptid)
					thr0_done = true;
				active |= 1 << (thr + vcpu->arch.ptid);
			}
			/*
			 * We need to start the first thread of each subcore
			 * even if it doesn't have a vcpu.
			 */
			if (pvc->master_vcore == pvc && !thr0_done)
				kvmppc_start_thread(NULL, pvc);
			thr += pvc->num_threads;
		}
2502
	}
2503

2504 2505 2506 2507 2508 2509 2510 2511
	/*
	 * Ensure that split_info.do_nap is set after setting
	 * the vcore pointer in the PACA of the secondaries.
	 */
	smp_mb();
	if (cmd_bit)
		split_info.do_nap = 1;	/* ask secondaries to nap when done */

2512 2513 2514 2515 2516 2517 2518 2519 2520
	/*
	 * When doing micro-threading, poke the inactive threads as well.
	 * This gets them to the nap instruction after kvm_do_nap,
	 * which reduces the time taken to unsplit later.
	 */
	if (split > 1)
		for (thr = 1; thr < threads_per_subcore; ++thr)
			if (!(active & (1 << thr)))
				kvmppc_ipi_thread(pcpu + thr);
2521

2522
	vc->vcore_state = VCORE_RUNNING;
2523
	preempt_disable();
2524 2525 2526

	trace_kvmppc_run_core(vc, 0);

2527 2528 2529
	for (sub = 0; sub < core_info.n_subcores; ++sub)
		list_for_each_entry(pvc, &core_info.vcs[sub], preempt_list)
			spin_unlock(&pvc->lock);
2530

2531
	guest_enter();
2532

2533
	srcu_idx = srcu_read_lock(&vc->kvm->srcu);
2534

2535
	__kvmppc_vcore_entry();
2536

2537 2538 2539
	srcu_read_unlock(&vc->kvm->srcu, srcu_idx);

	spin_lock(&vc->lock);
2540
	/* prevent other vcpu threads from doing kvmppc_start_thread() now */
2541
	vc->vcore_state = VCORE_EXITING;
2542

2543
	/* wait for secondary threads to finish writing their state to memory */
2544
	kvmppc_wait_for_nap();
2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566

	/* Return to whole-core mode if we split the core earlier */
	if (split > 1) {
		unsigned long hid0 = mfspr(SPRN_HID0);
		unsigned long loops = 0;

		hid0 &= ~HID0_POWER8_DYNLPARDIS;
		stat_bit = HID0_POWER8_2LPARMODE | HID0_POWER8_4LPARMODE;
		mb();
		mtspr(SPRN_HID0, hid0);
		isync();
		for (;;) {
			hid0 = mfspr(SPRN_HID0);
			if (!(hid0 & stat_bit))
				break;
			cpu_relax();
			++loops;
		}
		split_info.do_nap = 0;
	}

	/* Let secondaries go back to the offline loop */
2567
	for (i = 0; i < controlled_threads; ++i) {
2568 2569 2570 2571 2572
		kvmppc_release_hwthread(pcpu + i);
		if (sip && sip->napped[i])
			kvmppc_ipi_thread(pcpu + i);
	}

2573 2574
	kvmppc_set_host_core(pcpu);

2575
	spin_unlock(&vc->lock);
2576

2577 2578
	/* make sure updates to secondary vcpu structs are visible now */
	smp_mb();
2579
	guest_exit();
2580

2581 2582 2583 2584
	for (sub = 0; sub < core_info.n_subcores; ++sub)
		list_for_each_entry_safe(pvc, vcnext, &core_info.vcs[sub],
					 preempt_list)
			post_guest_process(pvc, pvc == vc);
2585

2586
	spin_lock(&vc->lock);
2587
	preempt_enable();
2588 2589

 out:
2590
	vc->vcore_state = VCORE_INACTIVE;
2591
	trace_kvmppc_run_core(vc, 1);
2592 2593
}

2594 2595 2596 2597
/*
 * Wait for some other vcpu thread to execute us, and
 * wake us up when we need to handle something in the host.
 */
2598 2599
static void kvmppc_wait_for_exec(struct kvmppc_vcore *vc,
				 struct kvm_vcpu *vcpu, int wait_state)
2600 2601 2602
{
	DEFINE_WAIT(wait);

2603
	prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state);
2604 2605
	if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
		spin_unlock(&vc->lock);
2606
		schedule();
2607 2608
		spin_lock(&vc->lock);
	}
2609 2610 2611
	finish_wait(&vcpu->arch.cpu_run, &wait);
}

2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647
static void grow_halt_poll_ns(struct kvmppc_vcore *vc)
{
	/* 10us base */
	if (vc->halt_poll_ns == 0 && halt_poll_ns_grow)
		vc->halt_poll_ns = 10000;
	else
		vc->halt_poll_ns *= halt_poll_ns_grow;

	if (vc->halt_poll_ns > halt_poll_max_ns)
		vc->halt_poll_ns = halt_poll_max_ns;
}

static void shrink_halt_poll_ns(struct kvmppc_vcore *vc)
{
	if (halt_poll_ns_shrink == 0)
		vc->halt_poll_ns = 0;
	else
		vc->halt_poll_ns /= halt_poll_ns_shrink;
}

/* Check to see if any of the runnable vcpus on the vcore have pending
 * exceptions or are no longer ceded
 */
static int kvmppc_vcore_check_block(struct kvmppc_vcore *vc)
{
	struct kvm_vcpu *vcpu;
	int i;

	for_each_runnable_thread(i, vcpu, vc) {
		if (vcpu->arch.pending_exceptions || !vcpu->arch.ceded)
			return 1;
	}

	return 0;
}

2648 2649 2650 2651 2652 2653
/*
 * All the vcpus in this vcore are idle, so wait for a decrementer
 * or external interrupt to one of the vcpus.  vc->lock is held.
 */
static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc)
{
2654
	ktime_t cur, start_poll, start_wait;
2655 2656
	int do_sleep = 1;
	u64 block_ns;
2657
	DECLARE_SWAITQUEUE(wait);
2658

2659
	/* Poll for pending exceptions and ceded state */
2660
	cur = start_poll = ktime_get();
2661
	if (vc->halt_poll_ns) {
2662 2663
		ktime_t stop = ktime_add_ns(start_poll, vc->halt_poll_ns);
		++vc->runner->stat.halt_attempted_poll;
2664

2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678
		vc->vcore_state = VCORE_POLLING;
		spin_unlock(&vc->lock);

		do {
			if (kvmppc_vcore_check_block(vc)) {
				do_sleep = 0;
				break;
			}
			cur = ktime_get();
		} while (single_task_running() && ktime_before(cur, stop));

		spin_lock(&vc->lock);
		vc->vcore_state = VCORE_INACTIVE;

2679 2680
		if (!do_sleep) {
			++vc->runner->stat.halt_successful_poll;
2681
			goto out;
2682
		}
2683 2684
	}

2685 2686 2687
	prepare_to_swait(&vc->wq, &wait, TASK_INTERRUPTIBLE);

	if (kvmppc_vcore_check_block(vc)) {
2688
		finish_swait(&vc->wq, &wait);
2689
		do_sleep = 0;
2690 2691 2692
		/* If we polled, count this as a successful poll */
		if (vc->halt_poll_ns)
			++vc->runner->stat.halt_successful_poll;
2693
		goto out;
2694 2695
	}

2696 2697
	start_wait = ktime_get();

2698
	vc->vcore_state = VCORE_SLEEPING;
2699
	trace_kvmppc_vcore_blocked(vc, 0);
2700
	spin_unlock(&vc->lock);
2701
	schedule();
2702
	finish_swait(&vc->wq, &wait);
2703 2704
	spin_lock(&vc->lock);
	vc->vcore_state = VCORE_INACTIVE;
2705
	trace_kvmppc_vcore_blocked(vc, 1);
2706
	++vc->runner->stat.halt_successful_wait;
2707 2708 2709 2710

	cur = ktime_get();

out:
2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728
	block_ns = ktime_to_ns(cur) - ktime_to_ns(start_poll);

	/* Attribute wait time */
	if (do_sleep) {
		vc->runner->stat.halt_wait_ns +=
			ktime_to_ns(cur) - ktime_to_ns(start_wait);
		/* Attribute failed poll time */
		if (vc->halt_poll_ns)
			vc->runner->stat.halt_poll_fail_ns +=
				ktime_to_ns(start_wait) -
				ktime_to_ns(start_poll);
	} else {
		/* Attribute successful poll time */
		if (vc->halt_poll_ns)
			vc->runner->stat.halt_poll_success_ns +=
				ktime_to_ns(cur) -
				ktime_to_ns(start_poll);
	}
2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744

	/* Adjust poll time */
	if (halt_poll_max_ns) {
		if (block_ns <= vc->halt_poll_ns)
			;
		/* We slept and blocked for longer than the max halt time */
		else if (vc->halt_poll_ns && block_ns > halt_poll_max_ns)
			shrink_halt_poll_ns(vc);
		/* We slept and our poll time is too small */
		else if (vc->halt_poll_ns < halt_poll_max_ns &&
				block_ns < halt_poll_max_ns)
			grow_halt_poll_ns(vc);
	} else
		vc->halt_poll_ns = 0;

	trace_kvmppc_vcore_wakeup(do_sleep, block_ns);
2745
}
2746

2747 2748
static int kvmppc_run_vcpu(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
{
2749
	int n_ceded, i;
2750
	struct kvmppc_vcore *vc;
2751
	struct kvm_vcpu *v;
2752

2753 2754
	trace_kvmppc_run_vcpu_enter(vcpu);

2755 2756 2757
	kvm_run->exit_reason = 0;
	vcpu->arch.ret = RESUME_GUEST;
	vcpu->arch.trap = 0;
2758
	kvmppc_update_vpas(vcpu);
2759 2760 2761 2762 2763 2764

	/*
	 * Synchronize with other threads in this virtual core
	 */
	vc = vcpu->arch.vcore;
	spin_lock(&vc->lock);
2765
	vcpu->arch.ceded = 0;
2766 2767
	vcpu->arch.run_task = current;
	vcpu->arch.kvm_run = kvm_run;
2768
	vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb());
2769
	vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
2770
	vcpu->arch.busy_preempt = TB_NIL;
2771
	WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], vcpu);
2772 2773
	++vc->n_runnable;

2774 2775 2776 2777 2778
	/*
	 * This happens the first time this is called for a vcpu.
	 * If the vcore is already running, we may be able to start
	 * this thread straight away and have it join in.
	 */
2779
	if (!signal_pending(current)) {
2780 2781 2782 2783 2784 2785
		if (vc->vcore_state == VCORE_PIGGYBACK) {
			struct kvmppc_vcore *mvc = vc->master_vcore;
			if (spin_trylock(&mvc->lock)) {
				if (mvc->vcore_state == VCORE_RUNNING &&
				    !VCORE_IS_EXITING(mvc)) {
					kvmppc_create_dtl_entry(vcpu, vc);
2786
					kvmppc_start_thread(vcpu, vc);
2787 2788 2789 2790 2791 2792
					trace_kvm_guest_enter(vcpu);
				}
				spin_unlock(&mvc->lock);
			}
		} else if (vc->vcore_state == VCORE_RUNNING &&
			   !VCORE_IS_EXITING(vc)) {
2793
			kvmppc_create_dtl_entry(vcpu, vc);
2794
			kvmppc_start_thread(vcpu, vc);
2795
			trace_kvm_guest_enter(vcpu);
2796
		} else if (vc->vcore_state == VCORE_SLEEPING) {
2797
			swake_up(&vc->wq);
2798 2799
		}

2800
	}
2801

2802 2803
	while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
	       !signal_pending(current)) {
2804 2805 2806
		if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
			kvmppc_vcore_end_preempt(vc);

2807
		if (vc->vcore_state != VCORE_INACTIVE) {
2808
			kvmppc_wait_for_exec(vc, vcpu, TASK_INTERRUPTIBLE);
2809 2810
			continue;
		}
2811
		for_each_runnable_thread(i, v, vc) {
2812
			kvmppc_core_prepare_to_enter(v);
2813 2814 2815 2816 2817 2818 2819 2820
			if (signal_pending(v->arch.run_task)) {
				kvmppc_remove_runnable(vc, v);
				v->stat.signal_exits++;
				v->arch.kvm_run->exit_reason = KVM_EXIT_INTR;
				v->arch.ret = -EINTR;
				wake_up(&v->arch.cpu_run);
			}
		}
2821 2822 2823
		if (!vc->n_runnable || vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
			break;
		n_ceded = 0;
2824
		for_each_runnable_thread(i, v, vc) {
2825 2826
			if (!v->arch.pending_exceptions)
				n_ceded += v->arch.ceded;
2827 2828 2829
			else
				v->arch.ceded = 0;
		}
2830 2831
		vc->runner = vcpu;
		if (n_ceded == vc->n_runnable) {
2832
			kvmppc_vcore_blocked(vc);
2833
		} else if (need_resched()) {
2834
			kvmppc_vcore_preempt(vc);
2835 2836
			/* Let something else run */
			cond_resched_lock(&vc->lock);
2837 2838
			if (vc->vcore_state == VCORE_PREEMPT)
				kvmppc_vcore_end_preempt(vc);
2839
		} else {
2840
			kvmppc_run_core(vc);
2841
		}
2842
		vc->runner = NULL;
2843
	}
2844

2845 2846
	while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
	       (vc->vcore_state == VCORE_RUNNING ||
2847 2848
		vc->vcore_state == VCORE_EXITING ||
		vc->vcore_state == VCORE_PIGGYBACK))
2849
		kvmppc_wait_for_exec(vc, vcpu, TASK_UNINTERRUPTIBLE);
2850

2851 2852 2853
	if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
		kvmppc_vcore_end_preempt(vc);

2854 2855 2856 2857 2858 2859 2860 2861 2862
	if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
		kvmppc_remove_runnable(vc, vcpu);
		vcpu->stat.signal_exits++;
		kvm_run->exit_reason = KVM_EXIT_INTR;
		vcpu->arch.ret = -EINTR;
	}

	if (vc->n_runnable && vc->vcore_state == VCORE_INACTIVE) {
		/* Wake up some vcpu to run the core */
2863 2864
		i = -1;
		v = next_runnable_thread(vc, &i);
2865
		wake_up(&v->arch.cpu_run);
2866 2867
	}

2868
	trace_kvmppc_run_vcpu_exit(vcpu, kvm_run);
2869 2870
	spin_unlock(&vc->lock);
	return vcpu->arch.ret;
2871 2872
}

2873
static int kvmppc_vcpu_run_hv(struct kvm_run *run, struct kvm_vcpu *vcpu)
2874 2875
{
	int r;
2876
	int srcu_idx;
2877

2878 2879 2880 2881 2882
	if (!vcpu->arch.sane) {
		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
		return -EINVAL;
	}

2883 2884
	kvmppc_core_prepare_to_enter(vcpu);

2885 2886 2887 2888 2889 2890
	/* No need to go into the guest when all we'll do is come back out */
	if (signal_pending(current)) {
		run->exit_reason = KVM_EXIT_INTR;
		return -EINTR;
	}

2891
	atomic_inc(&vcpu->kvm->arch.vcpus_running);
2892
	/* Order vcpus_running vs. hpte_setup_done, see kvmppc_alloc_reset_hpt */
2893 2894
	smp_mb();

2895
	/* On the first time here, set up HTAB and VRMA */
2896
	if (!vcpu->kvm->arch.hpte_setup_done) {
2897
		r = kvmppc_hv_setup_htab_rma(vcpu);
2898
		if (r)
2899
			goto out;
2900
	}
2901

2902 2903
	flush_all_to_thread(current);

2904
	vcpu->arch.wqp = &vcpu->arch.vcore->wq;
2905
	vcpu->arch.pgdir = current->mm->pgd;
2906
	vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
2907

2908 2909 2910 2911 2912
	do {
		r = kvmppc_run_vcpu(run, vcpu);

		if (run->exit_reason == KVM_EXIT_PAPR_HCALL &&
		    !(vcpu->arch.shregs.msr & MSR_PR)) {
2913
			trace_kvm_hcall_enter(vcpu);
2914
			r = kvmppc_pseries_do_hcall(vcpu);
2915
			trace_kvm_hcall_exit(vcpu, r);
2916
			kvmppc_core_prepare_to_enter(vcpu);
2917 2918 2919 2920 2921
		} else if (r == RESUME_PAGE_FAULT) {
			srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
			r = kvmppc_book3s_hv_page_fault(run, vcpu,
				vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
			srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
2922 2923
		} else if (r == RESUME_PASSTHROUGH)
			r = kvmppc_xics_rm_complete(vcpu, 0);
2924
	} while (is_kvmppc_resume_guest(r));
2925 2926

 out:
2927
	vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
2928
	atomic_dec(&vcpu->kvm->arch.vcpus_running);
2929 2930 2931
	return r;
}

2932 2933 2934 2935 2936 2937 2938 2939 2940 2941
static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps,
				     int linux_psize)
{
	struct mmu_psize_def *def = &mmu_psize_defs[linux_psize];

	if (!def->shift)
		return;
	(*sps)->page_shift = def->shift;
	(*sps)->slb_enc = def->sllp;
	(*sps)->enc[0].page_shift = def->shift;
2942
	(*sps)->enc[0].pte_enc = def->penc[linux_psize];
2943 2944 2945 2946 2947 2948 2949
	/*
	 * Add 16MB MPSS support if host supports it
	 */
	if (linux_psize != MMU_PAGE_16M && def->penc[MMU_PAGE_16M] != -1) {
		(*sps)->enc[1].page_shift = 24;
		(*sps)->enc[1].pte_enc = def->penc[MMU_PAGE_16M];
	}
2950 2951 2952
	(*sps)++;
}

2953 2954
static int kvm_vm_ioctl_get_smmu_info_hv(struct kvm *kvm,
					 struct kvm_ppc_smmu_info *info)
2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971
{
	struct kvm_ppc_one_seg_page_size *sps;

	info->flags = KVM_PPC_PAGE_SIZES_REAL;
	if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
		info->flags |= KVM_PPC_1T_SEGMENTS;
	info->slb_size = mmu_slb_size;

	/* We only support these sizes for now, and no muti-size segments */
	sps = &info->sps[0];
	kvmppc_add_seg_page_size(&sps, MMU_PAGE_4K);
	kvmppc_add_seg_page_size(&sps, MMU_PAGE_64K);
	kvmppc_add_seg_page_size(&sps, MMU_PAGE_16M);

	return 0;
}

2972 2973 2974
/*
 * Get (and clear) the dirty memory log for a memory slot.
 */
2975 2976
static int kvm_vm_ioctl_get_dirty_log_hv(struct kvm *kvm,
					 struct kvm_dirty_log *log)
2977
{
2978
	struct kvm_memslots *slots;
2979 2980 2981 2982 2983 2984 2985
	struct kvm_memory_slot *memslot;
	int r;
	unsigned long n;

	mutex_lock(&kvm->slots_lock);

	r = -EINVAL;
2986
	if (log->slot >= KVM_USER_MEM_SLOTS)
2987 2988
		goto out;

2989 2990
	slots = kvm_memslots(kvm);
	memslot = id_to_memslot(slots, log->slot);
2991 2992 2993 2994 2995 2996 2997
	r = -ENOENT;
	if (!memslot->dirty_bitmap)
		goto out;

	n = kvm_dirty_bitmap_bytes(memslot);
	memset(memslot->dirty_bitmap, 0, n);

2998
	r = kvmppc_hv_get_dirty_log(kvm, memslot, memslot->dirty_bitmap);
2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011
	if (r)
		goto out;

	r = -EFAULT;
	if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
		goto out;

	r = 0;
out:
	mutex_unlock(&kvm->slots_lock);
	return r;
}

3012 3013
static void kvmppc_core_free_memslot_hv(struct kvm_memory_slot *free,
					struct kvm_memory_slot *dont)
3014 3015 3016 3017
{
	if (!dont || free->arch.rmap != dont->arch.rmap) {
		vfree(free->arch.rmap);
		free->arch.rmap = NULL;
3018
	}
3019 3020
}

3021 3022
static int kvmppc_core_create_memslot_hv(struct kvm_memory_slot *slot,
					 unsigned long npages)
3023 3024 3025 3026
{
	slot->arch.rmap = vzalloc(npages * sizeof(*slot->arch.rmap));
	if (!slot->arch.rmap)
		return -ENOMEM;
3027

3028 3029
	return 0;
}
3030

3031 3032
static int kvmppc_core_prepare_memory_region_hv(struct kvm *kvm,
					struct kvm_memory_slot *memslot,
3033
					const struct kvm_userspace_memory_region *mem)
3034
{
3035
	return 0;
3036 3037
}

3038
static void kvmppc_core_commit_memory_region_hv(struct kvm *kvm,
3039
				const struct kvm_userspace_memory_region *mem,
3040 3041
				const struct kvm_memory_slot *old,
				const struct kvm_memory_slot *new)
3042
{
3043
	unsigned long npages = mem->memory_size >> PAGE_SHIFT;
3044
	struct kvm_memslots *slots;
3045 3046
	struct kvm_memory_slot *memslot;

3047 3048 3049 3050 3051 3052 3053 3054 3055
	/*
	 * If we are making a new memslot, it might make
	 * some address that was previously cached as emulated
	 * MMIO be no longer emulated MMIO, so invalidate
	 * all the caches of emulated MMIO translations.
	 */
	if (npages)
		atomic64_inc(&kvm->arch.mmio_update);

3056
	if (npages && old->npages) {
3057 3058 3059 3060 3061 3062
		/*
		 * If modifying a memslot, reset all the rmap dirty bits.
		 * If this is a new memslot, we don't need to do anything
		 * since the rmap array starts out as all zeroes,
		 * i.e. no pages are dirty.
		 */
3063 3064
		slots = kvm_memslots(kvm);
		memslot = id_to_memslot(slots, mem->slot);
3065 3066
		kvmppc_hv_get_dirty_log(kvm, memslot, NULL);
	}
3067 3068
}

3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094
/*
 * Update LPCR values in kvm->arch and in vcores.
 * Caller must hold kvm->lock.
 */
void kvmppc_update_lpcr(struct kvm *kvm, unsigned long lpcr, unsigned long mask)
{
	long int i;
	u32 cores_done = 0;

	if ((kvm->arch.lpcr & mask) == lpcr)
		return;

	kvm->arch.lpcr = (kvm->arch.lpcr & ~mask) | lpcr;

	for (i = 0; i < KVM_MAX_VCORES; ++i) {
		struct kvmppc_vcore *vc = kvm->arch.vcores[i];
		if (!vc)
			continue;
		spin_lock(&vc->lock);
		vc->lpcr = (vc->lpcr & ~mask) | lpcr;
		spin_unlock(&vc->lock);
		if (++cores_done >= kvm->arch.online_vcores)
			break;
	}
}

3095 3096 3097 3098 3099
static void kvmppc_mmu_destroy_hv(struct kvm_vcpu *vcpu)
{
	return;
}

3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115
static void kvmppc_setup_partition_table(struct kvm *kvm)
{
	unsigned long dw0, dw1;

	/* PS field - page size for VRMA */
	dw0 = ((kvm->arch.vrma_slb_v & SLB_VSID_L) >> 1) |
		((kvm->arch.vrma_slb_v & SLB_VSID_LP) << 1);
	/* HTABSIZE and HTABORG fields */
	dw0 |= kvm->arch.sdr1;

	/* Second dword has GR=0; other fields are unused since UPRT=0 */
	dw1 = 0;

	mmu_partition_table_set_entry(kvm->arch.lpid, dw0, dw1);
}

3116
static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu)
3117 3118 3119 3120 3121 3122
{
	int err = 0;
	struct kvm *kvm = vcpu->kvm;
	unsigned long hva;
	struct kvm_memory_slot *memslot;
	struct vm_area_struct *vma;
3123
	unsigned long lpcr = 0, senc;
3124
	unsigned long psize, porder;
3125
	int srcu_idx;
3126 3127

	mutex_lock(&kvm->lock);
3128
	if (kvm->arch.hpte_setup_done)
3129
		goto out;	/* another vcpu beat us to it */
3130

3131 3132 3133 3134 3135 3136 3137 3138 3139
	/* Allocate hashed page table (if not done already) and reset it */
	if (!kvm->arch.hpt_virt) {
		err = kvmppc_alloc_hpt(kvm, NULL);
		if (err) {
			pr_err("KVM: Couldn't alloc HPT\n");
			goto out;
		}
	}

3140
	/* Look up the memslot for guest physical address 0 */
3141
	srcu_idx = srcu_read_lock(&kvm->srcu);
3142
	memslot = gfn_to_memslot(kvm, 0);
3143

3144 3145 3146
	/* We must have some memory at 0 by now */
	err = -EINVAL;
	if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
3147
		goto out_srcu;
3148 3149 3150 3151 3152 3153 3154 3155 3156

	/* Look up the VMA for the start of this memory slot */
	hva = memslot->userspace_addr;
	down_read(&current->mm->mmap_sem);
	vma = find_vma(current->mm, hva);
	if (!vma || vma->vm_start > hva || (vma->vm_flags & VM_IO))
		goto up_out;

	psize = vma_kernel_pagesize(vma);
3157
	porder = __ilog2(psize);
3158 3159 3160

	up_read(&current->mm->mmap_sem);

3161 3162 3163 3164 3165
	/* We can handle 4k, 64k or 16M pages in the VRMA */
	err = -EINVAL;
	if (!(psize == 0x1000 || psize == 0x10000 ||
	      psize == 0x1000000))
		goto out_srcu;
3166

3167 3168 3169 3170 3171
	senc = slb_pgsize_encoding(psize);
	kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
		(VRMA_VSID << SLB_VSID_SHIFT_1T);
	/* Create HPTEs in the hash page table for the VRMA */
	kvmppc_map_vrma(vcpu, memslot, porder);
3172

3173 3174 3175 3176 3177 3178 3179 3180
	/* Update VRMASD field in the LPCR */
	if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
		/* the -4 is to account for senc values starting at 0x10 */
		lpcr = senc << (LPCR_VRMASD_SH - 4);
		kvmppc_update_lpcr(kvm, lpcr, LPCR_VRMASD);
	} else {
		kvmppc_setup_partition_table(kvm);
	}
3181

3182
	/* Order updates to kvm->arch.lpcr etc. vs. hpte_setup_done */
3183
	smp_wmb();
3184
	kvm->arch.hpte_setup_done = 1;
3185
	err = 0;
3186 3187
 out_srcu:
	srcu_read_unlock(&kvm->srcu, srcu_idx);
3188 3189 3190
 out:
	mutex_unlock(&kvm->lock);
	return err;
3191

3192 3193
 up_out:
	up_read(&current->mm->mmap_sem);
3194
	goto out_srcu;
3195 3196
}

3197
#ifdef CONFIG_KVM_XICS
3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227
static int kvmppc_cpu_notify(struct notifier_block *self, unsigned long action,
			void *hcpu)
{
	unsigned long cpu = (long)hcpu;

	switch (action) {
	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
		kvmppc_set_host_core(cpu);
		break;

#ifdef CONFIG_HOTPLUG_CPU
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
		kvmppc_clear_host_core(cpu);
		break;
#endif
	default:
		break;
	}

	return NOTIFY_OK;
}

static struct notifier_block kvmppc_cpu_notifier = {
	    .notifier_call = kvmppc_cpu_notify,
};

3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260
/*
 * Allocate a per-core structure for managing state about which cores are
 * running in the host versus the guest and for exchanging data between
 * real mode KVM and CPU running in the host.
 * This is only done for the first VM.
 * The allocated structure stays even if all VMs have stopped.
 * It is only freed when the kvm-hv module is unloaded.
 * It's OK for this routine to fail, we just don't support host
 * core operations like redirecting H_IPI wakeups.
 */
void kvmppc_alloc_host_rm_ops(void)
{
	struct kvmppc_host_rm_ops *ops;
	unsigned long l_ops;
	int cpu, core;
	int size;

	/* Not the first time here ? */
	if (kvmppc_host_rm_ops_hv != NULL)
		return;

	ops = kzalloc(sizeof(struct kvmppc_host_rm_ops), GFP_KERNEL);
	if (!ops)
		return;

	size = cpu_nr_cores() * sizeof(struct kvmppc_host_rm_core);
	ops->rm_core = kzalloc(size, GFP_KERNEL);

	if (!ops->rm_core) {
		kfree(ops);
		return;
	}

3261 3262
	get_online_cpus();

3263 3264 3265 3266 3267 3268 3269 3270
	for (cpu = 0; cpu < nr_cpu_ids; cpu += threads_per_core) {
		if (!cpu_online(cpu))
			continue;

		core = cpu >> threads_shift;
		ops->rm_core[core].rm_state.in_host = 1;
	}

3271 3272
	ops->vcpu_kick = kvmppc_fast_vcpu_kick_hv;

3273 3274 3275 3276 3277 3278 3279 3280 3281 3282
	/*
	 * Make the contents of the kvmppc_host_rm_ops structure visible
	 * to other CPUs before we assign it to the global variable.
	 * Do an atomic assignment (no locks used here), but if someone
	 * beats us to it, just free our copy and return.
	 */
	smp_wmb();
	l_ops = (unsigned long) ops;

	if (cmpxchg64((unsigned long *)&kvmppc_host_rm_ops_hv, 0, l_ops)) {
3283
		put_online_cpus();
3284 3285
		kfree(ops->rm_core);
		kfree(ops);
3286
		return;
3287
	}
3288 3289 3290 3291

	register_cpu_notifier(&kvmppc_cpu_notifier);

	put_online_cpus();
3292 3293 3294 3295 3296
}

void kvmppc_free_host_rm_ops(void)
{
	if (kvmppc_host_rm_ops_hv) {
3297
		unregister_cpu_notifier(&kvmppc_cpu_notifier);
3298 3299 3300 3301 3302 3303 3304
		kfree(kvmppc_host_rm_ops_hv->rm_core);
		kfree(kvmppc_host_rm_ops_hv);
		kvmppc_host_rm_ops_hv = NULL;
	}
}
#endif

3305
static int kvmppc_core_init_vm_hv(struct kvm *kvm)
3306
{
3307
	unsigned long lpcr, lpid;
3308
	char buf[32];
3309

3310 3311 3312
	/* Allocate the guest's logical partition ID */

	lpid = kvmppc_alloc_lpid();
3313
	if ((long)lpid < 0)
3314 3315
		return -ENOMEM;
	kvm->arch.lpid = lpid;
3316

3317 3318
	kvmppc_alloc_host_rm_ops();

3319 3320 3321 3322
	/*
	 * Since we don't flush the TLB when tearing down a VM,
	 * and this lpid might have previously been used,
	 * make sure we flush on each core before running the new VM.
3323 3324
	 * On POWER9, the tlbie in mmu_partition_table_set_entry()
	 * does this flush for us.
3325
	 */
3326 3327
	if (!cpu_has_feature(CPU_FTR_ARCH_300))
		cpumask_setall(&kvm->arch.need_tlb_flush);
3328

3329 3330 3331 3332
	/* Start out with the default set of hcalls enabled */
	memcpy(kvm->arch.enabled_hcalls, default_enabled_hcalls,
	       sizeof(kvm->arch.enabled_hcalls));

3333 3334
	if (!cpu_has_feature(CPU_FTR_ARCH_300))
		kvm->arch.host_sdr1 = mfspr(SPRN_SDR1);
3335

3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346
	/* Init LPCR for virtual RMA mode */
	kvm->arch.host_lpid = mfspr(SPRN_LPID);
	kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR);
	lpcr &= LPCR_PECE | LPCR_LPES;
	lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE |
		LPCR_VPM0 | LPCR_VPM1;
	kvm->arch.vrma_slb_v = SLB_VSID_B_1T |
		(VRMA_VSID << SLB_VSID_SHIFT_1T);
	/* On POWER8 turn on online bit to enable PURR/SPURR */
	if (cpu_has_feature(CPU_FTR_ARCH_207S))
		lpcr |= LPCR_ONL;
3347 3348 3349 3350 3351
	/*
	 * On POWER9, VPM0 bit is reserved (VPM0=1 behaviour is assumed)
	 * Set HVICE bit to enable hypervisor virtualization interrupts.
	 */
	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
3352
		lpcr &= ~LPCR_VPM0;
3353 3354 3355
		lpcr |= LPCR_HVICE;
	}

3356
	kvm->arch.lpcr = lpcr;
3357

3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368
	/*
	 * Work out how many sets the TLB has, for the use of
	 * the TLB invalidation loop in book3s_hv_rmhandlers.S.
	 */
	if (cpu_has_feature(CPU_FTR_ARCH_300))
		kvm->arch.tlb_sets = POWER9_TLB_SETS_HASH;	/* 256 */
	else if (cpu_has_feature(CPU_FTR_ARCH_207S))
		kvm->arch.tlb_sets = POWER8_TLB_SETS;		/* 512 */
	else
		kvm->arch.tlb_sets = POWER7_TLB_SETS;		/* 128 */

3369
	/*
3370 3371
	 * Track that we now have a HV mode VM active. This blocks secondary
	 * CPU threads from coming online.
3372
	 */
3373
	kvm_hv_vm_activated();
3374

3375 3376 3377 3378 3379 3380 3381 3382
	/*
	 * Create a debugfs directory for the VM
	 */
	snprintf(buf, sizeof(buf), "vm%d", current->pid);
	kvm->arch.debugfs_dir = debugfs_create_dir(buf, kvm_debugfs_dir);
	if (!IS_ERR_OR_NULL(kvm->arch.debugfs_dir))
		kvmppc_mmu_debugfs_init(kvm);

3383
	return 0;
3384 3385
}

3386 3387 3388 3389
static void kvmppc_free_vcores(struct kvm *kvm)
{
	long int i;

3390
	for (i = 0; i < KVM_MAX_VCORES; ++i)
3391 3392 3393 3394
		kfree(kvm->arch.vcores[i]);
	kvm->arch.online_vcores = 0;
}

3395
static void kvmppc_core_destroy_vm_hv(struct kvm *kvm)
3396
{
3397 3398
	debugfs_remove_recursive(kvm->arch.debugfs_dir);

3399
	kvm_hv_vm_deactivated();
3400

3401
	kvmppc_free_vcores(kvm);
3402

3403
	kvmppc_free_hpt(kvm);
3404 3405

	kvmppc_free_pimap(kvm);
3406 3407
}

3408 3409 3410
/* We don't need to emulate any privileged instructions or dcbz */
static int kvmppc_core_emulate_op_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
				     unsigned int inst, int *advance)
3411
{
3412
	return EMULATE_FAIL;
3413 3414
}

3415 3416
static int kvmppc_core_emulate_mtspr_hv(struct kvm_vcpu *vcpu, int sprn,
					ulong spr_val)
3417 3418 3419 3420
{
	return EMULATE_FAIL;
}

3421 3422
static int kvmppc_core_emulate_mfspr_hv(struct kvm_vcpu *vcpu, int sprn,
					ulong *spr_val)
3423 3424 3425 3426
{
	return EMULATE_FAIL;
}

3427
static int kvmppc_core_check_processor_compat_hv(void)
3428
{
3429 3430
	if (!cpu_has_feature(CPU_FTR_HVMODE) ||
	    !cpu_has_feature(CPU_FTR_ARCH_206))
3431
		return -EIO;
3432
	/*
3433
	 * Disable KVM for Power9 in radix mode.
3434
	 */
3435
	if (cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled())
3436 3437
		return -EIO;

3438
	return 0;
3439 3440
}

3441 3442 3443 3444 3445 3446 3447
#ifdef CONFIG_KVM_XICS

void kvmppc_free_pimap(struct kvm *kvm)
{
	kfree(kvm->arch.pimap);
}

3448
static struct kvmppc_passthru_irqmap *kvmppc_alloc_pimap(void)
3449 3450 3451
{
	return kzalloc(sizeof(struct kvmppc_passthru_irqmap), GFP_KERNEL);
}
3452 3453 3454 3455 3456 3457 3458 3459 3460

static int kvmppc_set_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
{
	struct irq_desc *desc;
	struct kvmppc_irq_map *irq_map;
	struct kvmppc_passthru_irqmap *pimap;
	struct irq_chip *chip;
	int i;

3461 3462 3463
	if (!kvm_irq_bypass)
		return 1;

3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518
	desc = irq_to_desc(host_irq);
	if (!desc)
		return -EIO;

	mutex_lock(&kvm->lock);

	pimap = kvm->arch.pimap;
	if (pimap == NULL) {
		/* First call, allocate structure to hold IRQ map */
		pimap = kvmppc_alloc_pimap();
		if (pimap == NULL) {
			mutex_unlock(&kvm->lock);
			return -ENOMEM;
		}
		kvm->arch.pimap = pimap;
	}

	/*
	 * For now, we only support interrupts for which the EOI operation
	 * is an OPAL call followed by a write to XIRR, since that's
	 * what our real-mode EOI code does.
	 */
	chip = irq_data_get_irq_chip(&desc->irq_data);
	if (!chip || !is_pnv_opal_msi(chip)) {
		pr_warn("kvmppc_set_passthru_irq_hv: Could not assign IRQ map for (%d,%d)\n",
			host_irq, guest_gsi);
		mutex_unlock(&kvm->lock);
		return -ENOENT;
	}

	/*
	 * See if we already have an entry for this guest IRQ number.
	 * If it's mapped to a hardware IRQ number, that's an error,
	 * otherwise re-use this entry.
	 */
	for (i = 0; i < pimap->n_mapped; i++) {
		if (guest_gsi == pimap->mapped[i].v_hwirq) {
			if (pimap->mapped[i].r_hwirq) {
				mutex_unlock(&kvm->lock);
				return -EINVAL;
			}
			break;
		}
	}

	if (i == KVMPPC_PIRQ_MAPPED) {
		mutex_unlock(&kvm->lock);
		return -EAGAIN;		/* table is full */
	}

	irq_map = &pimap->mapped[i];

	irq_map->v_hwirq = guest_gsi;
	irq_map->desc = desc;

3519 3520 3521 3522 3523 3524 3525
	/*
	 * Order the above two stores before the next to serialize with
	 * the KVM real mode handler.
	 */
	smp_wmb();
	irq_map->r_hwirq = desc->irq_data.hwirq;

3526 3527 3528
	if (i == pimap->n_mapped)
		pimap->n_mapped++;

3529 3530
	kvmppc_xics_set_mapped(kvm, guest_gsi, desc->irq_data.hwirq);

3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541
	mutex_unlock(&kvm->lock);

	return 0;
}

static int kvmppc_clr_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
{
	struct irq_desc *desc;
	struct kvmppc_passthru_irqmap *pimap;
	int i;

3542 3543 3544
	if (!kvm_irq_bypass)
		return 0;

3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566
	desc = irq_to_desc(host_irq);
	if (!desc)
		return -EIO;

	mutex_lock(&kvm->lock);

	if (kvm->arch.pimap == NULL) {
		mutex_unlock(&kvm->lock);
		return 0;
	}
	pimap = kvm->arch.pimap;

	for (i = 0; i < pimap->n_mapped; i++) {
		if (guest_gsi == pimap->mapped[i].v_hwirq)
			break;
	}

	if (i == pimap->n_mapped) {
		mutex_unlock(&kvm->lock);
		return -ENODEV;
	}

3567 3568
	kvmppc_xics_clr_mapped(kvm, guest_gsi, pimap->mapped[i].r_hwirq);

3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616
	/* invalidate the entry */
	pimap->mapped[i].r_hwirq = 0;

	/*
	 * We don't free this structure even when the count goes to
	 * zero. The structure is freed when we destroy the VM.
	 */

	mutex_unlock(&kvm->lock);
	return 0;
}

static int kvmppc_irq_bypass_add_producer_hv(struct irq_bypass_consumer *cons,
					     struct irq_bypass_producer *prod)
{
	int ret = 0;
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

	irqfd->producer = prod;

	ret = kvmppc_set_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi);
	if (ret)
		pr_info("kvmppc_set_passthru_irq (irq %d, gsi %d) fails: %d\n",
			prod->irq, irqfd->gsi, ret);

	return ret;
}

static void kvmppc_irq_bypass_del_producer_hv(struct irq_bypass_consumer *cons,
					      struct irq_bypass_producer *prod)
{
	int ret;
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

	irqfd->producer = NULL;

	/*
	 * When producer of consumer is unregistered, we change back to
	 * default external interrupt handling mode - KVM real mode
	 * will switch back to host.
	 */
	ret = kvmppc_clr_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi);
	if (ret)
		pr_warn("kvmppc_clr_passthru_irq (irq %d, gsi %d) fails: %d\n",
			prod->irq, irqfd->gsi, ret);
}
3617 3618
#endif

3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660
static long kvm_arch_vm_ioctl_hv(struct file *filp,
				 unsigned int ioctl, unsigned long arg)
{
	struct kvm *kvm __maybe_unused = filp->private_data;
	void __user *argp = (void __user *)arg;
	long r;

	switch (ioctl) {

	case KVM_PPC_ALLOCATE_HTAB: {
		u32 htab_order;

		r = -EFAULT;
		if (get_user(htab_order, (u32 __user *)argp))
			break;
		r = kvmppc_alloc_reset_hpt(kvm, &htab_order);
		if (r)
			break;
		r = -EFAULT;
		if (put_user(htab_order, (u32 __user *)argp))
			break;
		r = 0;
		break;
	}

	case KVM_PPC_GET_HTAB_FD: {
		struct kvm_get_htab_fd ghf;

		r = -EFAULT;
		if (copy_from_user(&ghf, argp, sizeof(ghf)))
			break;
		r = kvm_vm_ioctl_get_htab_fd(kvm, &ghf);
		break;
	}

	default:
		r = -ENOTTY;
	}

	return r;
}

3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694
/*
 * List of hcall numbers to enable by default.
 * For compatibility with old userspace, we enable by default
 * all hcalls that were implemented before the hcall-enabling
 * facility was added.  Note this list should not include H_RTAS.
 */
static unsigned int default_hcall_list[] = {
	H_REMOVE,
	H_ENTER,
	H_READ,
	H_PROTECT,
	H_BULK_REMOVE,
	H_GET_TCE,
	H_PUT_TCE,
	H_SET_DABR,
	H_SET_XDABR,
	H_CEDE,
	H_PROD,
	H_CONFER,
	H_REGISTER_VPA,
#ifdef CONFIG_KVM_XICS
	H_EOI,
	H_CPPR,
	H_IPI,
	H_IPOLL,
	H_XIRR,
	H_XIRR_X,
#endif
	0
};

static void init_default_hcalls(void)
{
	int i;
3695
	unsigned int hcall;
3696

3697 3698 3699 3700 3701
	for (i = 0; default_hcall_list[i]; ++i) {
		hcall = default_hcall_list[i];
		WARN_ON(!kvmppc_hcall_impl_hv(hcall));
		__set_bit(hcall / 4, default_enabled_hcalls);
	}
3702 3703
}

3704
static struct kvmppc_ops kvm_ops_hv = {
3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735
	.get_sregs = kvm_arch_vcpu_ioctl_get_sregs_hv,
	.set_sregs = kvm_arch_vcpu_ioctl_set_sregs_hv,
	.get_one_reg = kvmppc_get_one_reg_hv,
	.set_one_reg = kvmppc_set_one_reg_hv,
	.vcpu_load   = kvmppc_core_vcpu_load_hv,
	.vcpu_put    = kvmppc_core_vcpu_put_hv,
	.set_msr     = kvmppc_set_msr_hv,
	.vcpu_run    = kvmppc_vcpu_run_hv,
	.vcpu_create = kvmppc_core_vcpu_create_hv,
	.vcpu_free   = kvmppc_core_vcpu_free_hv,
	.check_requests = kvmppc_core_check_requests_hv,
	.get_dirty_log  = kvm_vm_ioctl_get_dirty_log_hv,
	.flush_memslot  = kvmppc_core_flush_memslot_hv,
	.prepare_memory_region = kvmppc_core_prepare_memory_region_hv,
	.commit_memory_region  = kvmppc_core_commit_memory_region_hv,
	.unmap_hva = kvm_unmap_hva_hv,
	.unmap_hva_range = kvm_unmap_hva_range_hv,
	.age_hva  = kvm_age_hva_hv,
	.test_age_hva = kvm_test_age_hva_hv,
	.set_spte_hva = kvm_set_spte_hva_hv,
	.mmu_destroy  = kvmppc_mmu_destroy_hv,
	.free_memslot = kvmppc_core_free_memslot_hv,
	.create_memslot = kvmppc_core_create_memslot_hv,
	.init_vm =  kvmppc_core_init_vm_hv,
	.destroy_vm = kvmppc_core_destroy_vm_hv,
	.get_smmu_info = kvm_vm_ioctl_get_smmu_info_hv,
	.emulate_op = kvmppc_core_emulate_op_hv,
	.emulate_mtspr = kvmppc_core_emulate_mtspr_hv,
	.emulate_mfspr = kvmppc_core_emulate_mfspr_hv,
	.fast_vcpu_kick = kvmppc_fast_vcpu_kick_hv,
	.arch_vm_ioctl  = kvm_arch_vm_ioctl_hv,
3736
	.hcall_implemented = kvmppc_hcall_impl_hv,
3737 3738 3739 3740
#ifdef CONFIG_KVM_XICS
	.irq_bypass_add_producer = kvmppc_irq_bypass_add_producer_hv,
	.irq_bypass_del_producer = kvmppc_irq_bypass_del_producer_hv,
#endif
3741 3742
};

3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774
static int kvm_init_subcore_bitmap(void)
{
	int i, j;
	int nr_cores = cpu_nr_cores();
	struct sibling_subcore_state *sibling_subcore_state;

	for (i = 0; i < nr_cores; i++) {
		int first_cpu = i * threads_per_core;
		int node = cpu_to_node(first_cpu);

		/* Ignore if it is already allocated. */
		if (paca[first_cpu].sibling_subcore_state)
			continue;

		sibling_subcore_state =
			kmalloc_node(sizeof(struct sibling_subcore_state),
							GFP_KERNEL, node);
		if (!sibling_subcore_state)
			return -ENOMEM;

		memset(sibling_subcore_state, 0,
				sizeof(struct sibling_subcore_state));

		for (j = 0; j < threads_per_core; j++) {
			int cpu = first_cpu + j;

			paca[cpu].sibling_subcore_state = sibling_subcore_state;
		}
	}
	return 0;
}

3775
static int kvmppc_book3s_init_hv(void)
3776 3777
{
	int r;
3778 3779 3780 3781 3782
	/*
	 * FIXME!! Do we need to check on all cpus ?
	 */
	r = kvmppc_core_check_processor_compat_hv();
	if (r < 0)
3783
		return -ENODEV;
3784

3785 3786 3787 3788
	r = kvm_init_subcore_bitmap();
	if (r)
		return r;

3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805
	/*
	 * We need a way of accessing the XICS interrupt controller,
	 * either directly, via paca[cpu].kvm_hstate.xics_phys, or
	 * indirectly, via OPAL.
	 */
#ifdef CONFIG_SMP
	if (!get_paca()->kvm_hstate.xics_phys) {
		struct device_node *np;

		np = of_find_compatible_node(NULL, NULL, "ibm,opal-intc");
		if (!np) {
			pr_err("KVM-HV: Cannot determine method for accessing XICS\n");
			return -ENODEV;
		}
	}
#endif

3806 3807
	kvm_ops_hv.owner = THIS_MODULE;
	kvmppc_hv_ops = &kvm_ops_hv;
3808

3809 3810
	init_default_hcalls();

3811 3812
	init_vcore_lists();

3813
	r = kvmppc_mmu_hv_init();
3814 3815 3816
	return r;
}

3817
static void kvmppc_book3s_exit_hv(void)
3818
{
3819
	kvmppc_free_host_rm_ops();
3820
	kvmppc_hv_ops = NULL;
3821 3822
}

3823 3824
module_init(kvmppc_book3s_init_hv);
module_exit(kvmppc_book3s_exit_hv);
3825
MODULE_LICENSE("GPL");
3826 3827
MODULE_ALIAS_MISCDEV(KVM_MINOR);
MODULE_ALIAS("devname:kvm");
3828