i7core_edac.c 63.9 KB
Newer Older
1 2
/* Intel i7 core/Nehalem Memory Controller kernel module
 *
D
David Sterba 已提交
3
 * This driver supports the memory controllers found on the Intel
4 5 6
 * processor families i7core, i7core 7xx/8xx, i5core, Xeon 35xx,
 * Xeon 55xx and Xeon 56xx also known as Nehalem, Nehalem-EP, Lynnfield
 * and Westmere-EP.
7 8 9 10
 *
 * This file may be distributed under the terms of the
 * GNU General Public License version 2 only.
 *
11
 * Copyright (c) 2009-2010 by:
12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
 *	 Mauro Carvalho Chehab <mchehab@redhat.com>
 *
 * Red Hat Inc. http://www.redhat.com
 *
 * Forked and adapted from the i5400_edac driver
 *
 * Based on the following public Intel datasheets:
 * Intel Core i7 Processor Extreme Edition and Intel Core i7 Processor
 * Datasheet, Volume 2:
 *	http://download.intel.com/design/processor/datashts/320835.pdf
 * Intel Xeon Processor 5500 Series Datasheet Volume 2
 *	http://www.intel.com/Assets/PDF/datasheet/321322.pdf
 * also available at:
 * 	http://www.arrownac.com/manufacturers/intel/s/nehalem/5500-datasheet-v2.pdf
 */

#include <linux/module.h>
#include <linux/init.h>
#include <linux/pci.h>
#include <linux/pci_ids.h>
#include <linux/slab.h>
R
Randy Dunlap 已提交
33
#include <linux/delay.h>
N
Nils Carlson 已提交
34
#include <linux/dmi.h>
35 36
#include <linux/edac.h>
#include <linux/mmzone.h>
37
#include <linux/smp.h>
38
#include <asm/mce.h>
39
#include <asm/processor.h>
40
#include <asm/div64.h>
41 42 43

#include "edac_core.h"

44 45 46 47 48
/* Static vars */
static LIST_HEAD(i7core_edac_list);
static DEFINE_MUTEX(i7core_edac_lock);
static int probed;

49 50 51
static int use_pci_fixup;
module_param(use_pci_fixup, int, 0444);
MODULE_PARM_DESC(use_pci_fixup, "Enable PCI fixup to seek for hidden devices");
52 53 54 55 56 57 58 59 60
/*
 * This is used for Nehalem-EP and Nehalem-EX devices, where the non-core
 * registers start at bus 255, and are not reported by BIOS.
 * We currently find devices with only 2 sockets. In order to support more QPI
 * Quick Path Interconnect, just increment this number.
 */
#define MAX_SOCKET_BUSES	2


61 62 63
/*
 * Alter this version for the module when modifications are made
 */
M
Michal Marek 已提交
64
#define I7CORE_REVISION    " Ver: 1.0.0"
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
#define EDAC_MOD_STR      "i7core_edac"

/*
 * Debug macros
 */
#define i7core_printk(level, fmt, arg...)			\
	edac_printk(level, "i7core", fmt, ##arg)

#define i7core_mc_printk(mci, level, fmt, arg...)		\
	edac_mc_chipset_printk(mci, level, "i7core", fmt, ##arg)

/*
 * i7core Memory Controller Registers
 */

80 81 82
	/* OFFSETS for Device 0 Function 0 */

#define MC_CFG_CONTROL	0x90
83 84
  #define MC_CFG_UNLOCK		0x02
  #define MC_CFG_LOCK		0x00
85

86 87 88 89 90 91
	/* OFFSETS for Device 3 Function 0 */

#define MC_CONTROL	0x48
#define MC_STATUS	0x4c
#define MC_MAX_DOD	0x64

92 93 94 95 96 97 98 99 100 101 102 103
/*
 * OFFSETS for Device 3 Function 4, as inicated on Xeon 5500 datasheet:
 * http://www.arrownac.com/manufacturers/intel/s/nehalem/5500-datasheet-v2.pdf
 */

#define MC_TEST_ERR_RCV1	0x60
  #define DIMM2_COR_ERR(r)			((r) & 0x7fff)

#define MC_TEST_ERR_RCV0	0x64
  #define DIMM1_COR_ERR(r)			(((r) >> 16) & 0x7fff)
  #define DIMM0_COR_ERR(r)			((r) & 0x7fff)

104
/* OFFSETS for Device 3 Function 2, as inicated on Xeon 5500 datasheet */
105 106 107 108 109 110 111
#define MC_SSRCONTROL		0x48
  #define SSR_MODE_DISABLE	0x00
  #define SSR_MODE_ENABLE	0x01
  #define SSR_MODE_MASK		0x03

#define MC_SCRUB_CONTROL	0x4c
  #define STARTSCRUB		(1 << 24)
N
Nils Carlson 已提交
112
  #define SCRUBINTERVAL_MASK    0xffffff
113

114 115 116 117 118 119 120 121 122 123 124
#define MC_COR_ECC_CNT_0	0x80
#define MC_COR_ECC_CNT_1	0x84
#define MC_COR_ECC_CNT_2	0x88
#define MC_COR_ECC_CNT_3	0x8c
#define MC_COR_ECC_CNT_4	0x90
#define MC_COR_ECC_CNT_5	0x94

#define DIMM_TOP_COR_ERR(r)			(((r) >> 16) & 0x7fff)
#define DIMM_BOT_COR_ERR(r)			((r) & 0x7fff)


125 126
	/* OFFSETS for Devices 4,5 and 6 Function 0 */

127 128 129 130 131 132
#define MC_CHANNEL_DIMM_INIT_PARAMS 0x58
  #define THREE_DIMMS_PRESENT		(1 << 24)
  #define SINGLE_QUAD_RANK_PRESENT	(1 << 23)
  #define QUAD_RANK_PRESENT		(1 << 22)
  #define REGISTERED_DIMM		(1 << 15)

133 134 135 136
#define MC_CHANNEL_MAPPER	0x60
  #define RDLCH(r, ch)		((((r) >> (3 + (ch * 6))) & 0x07) - 1)
  #define WRLCH(r, ch)		((((r) >> (ch * 6)) & 0x07) - 1)

137 138 139
#define MC_CHANNEL_RANK_PRESENT 0x7c
  #define RANK_PRESENT_MASK		0xffff

140
#define MC_CHANNEL_ADDR_MATCH	0xf0
141 142 143 144 145 146 147 148 149 150
#define MC_CHANNEL_ERROR_MASK	0xf8
#define MC_CHANNEL_ERROR_INJECT	0xfc
  #define INJECT_ADDR_PARITY	0x10
  #define INJECT_ECC		0x08
  #define MASK_CACHELINE	0x06
  #define MASK_FULL_CACHELINE	0x06
  #define MASK_MSB32_CACHELINE	0x04
  #define MASK_LSB32_CACHELINE	0x02
  #define NO_MASK_CACHELINE	0x00
  #define REPEAT_EN		0x01
151

152
	/* OFFSETS for Devices 4,5 and 6 Function 1 */
153

154 155 156 157 158 159 160
#define MC_DOD_CH_DIMM0		0x48
#define MC_DOD_CH_DIMM1		0x4c
#define MC_DOD_CH_DIMM2		0x50
  #define RANKOFFSET_MASK	((1 << 12) | (1 << 11) | (1 << 10))
  #define RANKOFFSET(x)		((x & RANKOFFSET_MASK) >> 10)
  #define DIMM_PRESENT_MASK	(1 << 9)
  #define DIMM_PRESENT(x)	(((x) & DIMM_PRESENT_MASK) >> 9)
161 162 163 164
  #define MC_DOD_NUMBANK_MASK		((1 << 8) | (1 << 7))
  #define MC_DOD_NUMBANK(x)		(((x) & MC_DOD_NUMBANK_MASK) >> 7)
  #define MC_DOD_NUMRANK_MASK		((1 << 6) | (1 << 5))
  #define MC_DOD_NUMRANK(x)		(((x) & MC_DOD_NUMRANK_MASK) >> 5)
165
  #define MC_DOD_NUMROW_MASK		((1 << 4) | (1 << 3) | (1 << 2))
166
  #define MC_DOD_NUMROW(x)		(((x) & MC_DOD_NUMROW_MASK) >> 2)
167 168
  #define MC_DOD_NUMCOL_MASK		3
  #define MC_DOD_NUMCOL(x)		((x) & MC_DOD_NUMCOL_MASK)
169

170 171
#define MC_RANK_PRESENT		0x7c

172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
#define MC_SAG_CH_0	0x80
#define MC_SAG_CH_1	0x84
#define MC_SAG_CH_2	0x88
#define MC_SAG_CH_3	0x8c
#define MC_SAG_CH_4	0x90
#define MC_SAG_CH_5	0x94
#define MC_SAG_CH_6	0x98
#define MC_SAG_CH_7	0x9c

#define MC_RIR_LIMIT_CH_0	0x40
#define MC_RIR_LIMIT_CH_1	0x44
#define MC_RIR_LIMIT_CH_2	0x48
#define MC_RIR_LIMIT_CH_3	0x4C
#define MC_RIR_LIMIT_CH_4	0x50
#define MC_RIR_LIMIT_CH_5	0x54
#define MC_RIR_LIMIT_CH_6	0x58
#define MC_RIR_LIMIT_CH_7	0x5C
#define MC_RIR_LIMIT_MASK	((1 << 10) - 1)

#define MC_RIR_WAY_CH		0x80
  #define MC_RIR_WAY_OFFSET_MASK	(((1 << 14) - 1) & ~0x7)
  #define MC_RIR_WAY_RANK_MASK		0x7

195 196 197 198 199
/*
 * i7core structs
 */

#define NUM_CHANS 3
200 201 202
#define MAX_DIMMS 3		/* Max DIMMS per channel */
#define MAX_MCR_FUNC  4
#define MAX_CHAN_FUNC 3
203 204 205 206 207

struct i7core_info {
	u32	mc_control;
	u32	mc_status;
	u32	max_dod;
208
	u32	ch_map;
209 210
};

211 212 213 214 215 216 217 218 219 220 221 222

struct i7core_inject {
	int	enable;

	u32	section;
	u32	type;
	u32	eccmask;

	/* Error address mask */
	int channel, dimm, rank, bank, page, col;
};

223
struct i7core_channel {
224 225 226
	bool		is_3dimms_present;
	bool		is_single_4rank;
	bool		has_4rank;
227
	u32		dimms;
228 229
};

230
struct pci_id_descr {
231 232 233
	int			dev;
	int			func;
	int 			dev_id;
234
	int			optional;
235 236
};

237
struct pci_id_table {
238 239
	const struct pci_id_descr	*descr;
	int				n_devs;
240 241
};

242 243 244 245
struct i7core_dev {
	struct list_head	list;
	u8			socket;
	struct pci_dev		**pdev;
246
	int			n_devs;
247 248 249
	struct mem_ctl_info	*mci;
};

250
struct i7core_pvt {
251
	struct device *addrmatch_dev, *chancounts_dev;
252

253 254 255 256 257
	struct pci_dev	*pci_noncore;
	struct pci_dev	*pci_mcr[MAX_MCR_FUNC + 1];
	struct pci_dev	*pci_ch[NUM_CHANS][MAX_CHAN_FUNC + 1];

	struct i7core_dev *i7core_dev;
258

259
	struct i7core_info	info;
260
	struct i7core_inject	inject;
261
	struct i7core_channel	channel[NUM_CHANS];
262

263
	int		ce_count_available;
264 265

			/* ECC corrected errors counts per udimm */
266 267
	unsigned long	udimm_ce_count[MAX_DIMMS];
	int		udimm_last_ce_count[MAX_DIMMS];
268
			/* ECC corrected errors counts per rdimm */
269 270
	unsigned long	rdimm_ce_count[NUM_CHANS][MAX_DIMMS];
	int		rdimm_last_ce_count[NUM_CHANS][MAX_DIMMS];
271

272
	bool		is_registered, enable_scrub;
273

274
	/* Fifo double buffers */
275
	struct mce		mce_entry[MCE_LOG_LEN];
276 277 278 279 280 281 282
	struct mce		mce_outentry[MCE_LOG_LEN];

	/* Fifo in/out counters */
	unsigned		mce_in, mce_out;

	/* Count indicator to show errors not got */
	unsigned		mce_overrun;
283

N
Nils Carlson 已提交
284 285 286
	/* DCLK Frequency used for computing scrub rate */
	int			dclk_freq;

287 288
	/* Struct to control EDAC polling */
	struct edac_pci_ctl_info *i7core_pci;
289 290
};

291 292 293 294 295
#define PCI_DESCR(device, function, device_id)	\
	.dev = (device),			\
	.func = (function),			\
	.dev_id = (device_id)

296
static const struct pci_id_descr pci_dev_descr_i7core_nehalem[] = {
297 298 299
		/* Memory controller */
	{ PCI_DESCR(3, 0, PCI_DEVICE_ID_INTEL_I7_MCR)     },
	{ PCI_DESCR(3, 1, PCI_DEVICE_ID_INTEL_I7_MC_TAD)  },
300
			/* Exists only for RDIMM */
301
	{ PCI_DESCR(3, 2, PCI_DEVICE_ID_INTEL_I7_MC_RAS), .optional = 1  },
302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
	{ PCI_DESCR(3, 4, PCI_DEVICE_ID_INTEL_I7_MC_TEST) },

		/* Channel 0 */
	{ PCI_DESCR(4, 0, PCI_DEVICE_ID_INTEL_I7_MC_CH0_CTRL) },
	{ PCI_DESCR(4, 1, PCI_DEVICE_ID_INTEL_I7_MC_CH0_ADDR) },
	{ PCI_DESCR(4, 2, PCI_DEVICE_ID_INTEL_I7_MC_CH0_RANK) },
	{ PCI_DESCR(4, 3, PCI_DEVICE_ID_INTEL_I7_MC_CH0_TC)   },

		/* Channel 1 */
	{ PCI_DESCR(5, 0, PCI_DEVICE_ID_INTEL_I7_MC_CH1_CTRL) },
	{ PCI_DESCR(5, 1, PCI_DEVICE_ID_INTEL_I7_MC_CH1_ADDR) },
	{ PCI_DESCR(5, 2, PCI_DEVICE_ID_INTEL_I7_MC_CH1_RANK) },
	{ PCI_DESCR(5, 3, PCI_DEVICE_ID_INTEL_I7_MC_CH1_TC)   },

		/* Channel 2 */
	{ PCI_DESCR(6, 0, PCI_DEVICE_ID_INTEL_I7_MC_CH2_CTRL) },
	{ PCI_DESCR(6, 1, PCI_DEVICE_ID_INTEL_I7_MC_CH2_ADDR) },
	{ PCI_DESCR(6, 2, PCI_DEVICE_ID_INTEL_I7_MC_CH2_RANK) },
	{ PCI_DESCR(6, 3, PCI_DEVICE_ID_INTEL_I7_MC_CH2_TC)   },
321 322 323 324 325 326 327 328 329 330

		/* Generic Non-core registers */
	/*
	 * This is the PCI device on i7core and on Xeon 35xx (8086:2c41)
	 * On Xeon 55xx, however, it has a different id (8086:2c40). So,
	 * the probing code needs to test for the other address in case of
	 * failure of this one
	 */
	{ PCI_DESCR(0, 0, PCI_DEVICE_ID_INTEL_I7_NONCORE)  },

331
};
332

333
static const struct pci_id_descr pci_dev_descr_lynnfield[] = {
334 335 336 337 338 339 340 341 342
	{ PCI_DESCR( 3, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MCR)         },
	{ PCI_DESCR( 3, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_TAD)      },
	{ PCI_DESCR( 3, 4, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_TEST)     },

	{ PCI_DESCR( 4, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_CTRL) },
	{ PCI_DESCR( 4, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_ADDR) },
	{ PCI_DESCR( 4, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_RANK) },
	{ PCI_DESCR( 4, 3, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_TC)   },

343 344 345 346
	{ PCI_DESCR( 5, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_CTRL) },
	{ PCI_DESCR( 5, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_ADDR) },
	{ PCI_DESCR( 5, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_RANK) },
	{ PCI_DESCR( 5, 3, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_TC)   },
347 348 349 350 351 352

	/*
	 * This is the PCI device has an alternate address on some
	 * processors like Core i7 860
	 */
	{ PCI_DESCR( 0, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE)     },
353 354
};

355
static const struct pci_id_descr pci_dev_descr_i7core_westmere[] = {
356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379
		/* Memory controller */
	{ PCI_DESCR(3, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MCR_REV2)     },
	{ PCI_DESCR(3, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_TAD_REV2)  },
			/* Exists only for RDIMM */
	{ PCI_DESCR(3, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_RAS_REV2), .optional = 1  },
	{ PCI_DESCR(3, 4, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_TEST_REV2) },

		/* Channel 0 */
	{ PCI_DESCR(4, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_CTRL_REV2) },
	{ PCI_DESCR(4, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_ADDR_REV2) },
	{ PCI_DESCR(4, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_RANK_REV2) },
	{ PCI_DESCR(4, 3, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_TC_REV2)   },

		/* Channel 1 */
	{ PCI_DESCR(5, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_CTRL_REV2) },
	{ PCI_DESCR(5, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_ADDR_REV2) },
	{ PCI_DESCR(5, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_RANK_REV2) },
	{ PCI_DESCR(5, 3, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_TC_REV2)   },

		/* Channel 2 */
	{ PCI_DESCR(6, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH2_CTRL_REV2) },
	{ PCI_DESCR(6, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH2_ADDR_REV2) },
	{ PCI_DESCR(6, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH2_RANK_REV2) },
	{ PCI_DESCR(6, 3, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH2_TC_REV2)   },
380 381 382 383

		/* Generic Non-core registers */
	{ PCI_DESCR(0, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE_REV2)  },

384 385
};

386 387
#define PCI_ID_TABLE_ENTRY(A) { .descr=A, .n_devs = ARRAY_SIZE(A) }
static const struct pci_id_table pci_dev_table[] = {
388 389 390
	PCI_ID_TABLE_ENTRY(pci_dev_descr_i7core_nehalem),
	PCI_ID_TABLE_ENTRY(pci_dev_descr_lynnfield),
	PCI_ID_TABLE_ENTRY(pci_dev_descr_i7core_westmere),
391
	{0,}			/* 0 terminated list. */
392 393
};

394 395 396
/*
 *	pci_device_id	table for which devices we are looking for
 */
397
static DEFINE_PCI_DEVICE_TABLE(i7core_pci_tbl) = {
398
	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_X58_HUB_MGMT)},
399
	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_LYNNFIELD_QPI_LINK0)},
400 401 402
	{0,}			/* 0 terminated list. */
};

403 404 405 406 407
/****************************************************************************
			Anciliary status routines
 ****************************************************************************/

	/* MC_CONTROL bits */
408 409
#define CH_ACTIVE(pvt, ch)	((pvt)->info.mc_control & (1 << (8 + ch)))
#define ECCx8(pvt)		((pvt)->info.mc_control & (1 << 1))
410 411

	/* MC_STATUS bits */
412
#define ECC_ENABLED(pvt)	((pvt)->info.mc_status & (1 << 4))
413
#define CH_DISABLED(pvt, ch)	((pvt)->info.mc_status & (1 << ch))
414 415

	/* MC_MAX_DOD read functions */
416
static inline int numdimms(u32 dimms)
417
{
418
	return (dimms & 0x3) + 1;
419 420
}

421
static inline int numrank(u32 rank)
422 423 424
{
	static int ranks[4] = { 1, 2, 4, -EINVAL };

425
	return ranks[rank & 0x3];
426 427
}

428
static inline int numbank(u32 bank)
429 430 431
{
	static int banks[4] = { 4, 8, 16, -EINVAL };

432
	return banks[bank & 0x3];
433 434
}

435
static inline int numrow(u32 row)
436 437 438 439 440 441
{
	static int rows[8] = {
		1 << 12, 1 << 13, 1 << 14, 1 << 15,
		1 << 16, -EINVAL, -EINVAL, -EINVAL,
	};

442
	return rows[row & 0x7];
443 444
}

445
static inline int numcol(u32 col)
446 447 448 449
{
	static int cols[8] = {
		1 << 10, 1 << 11, 1 << 12, -EINVAL,
	};
450
	return cols[col & 0x3];
451 452
}

453
static struct i7core_dev *get_i7core_dev(u8 socket)
454 455 456 457 458 459 460 461 462 463 464
{
	struct i7core_dev *i7core_dev;

	list_for_each_entry(i7core_dev, &i7core_edac_list, list) {
		if (i7core_dev->socket == socket)
			return i7core_dev;
	}

	return NULL;
}

465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487
static struct i7core_dev *alloc_i7core_dev(u8 socket,
					   const struct pci_id_table *table)
{
	struct i7core_dev *i7core_dev;

	i7core_dev = kzalloc(sizeof(*i7core_dev), GFP_KERNEL);
	if (!i7core_dev)
		return NULL;

	i7core_dev->pdev = kzalloc(sizeof(*i7core_dev->pdev) * table->n_devs,
				   GFP_KERNEL);
	if (!i7core_dev->pdev) {
		kfree(i7core_dev);
		return NULL;
	}

	i7core_dev->socket = socket;
	i7core_dev->n_devs = table->n_devs;
	list_add_tail(&i7core_dev->list, &i7core_edac_list);

	return i7core_dev;
}

488 489 490 491 492 493 494
static void free_i7core_dev(struct i7core_dev *i7core_dev)
{
	list_del(&i7core_dev->list);
	kfree(i7core_dev->pdev);
	kfree(i7core_dev);
}

495 496 497
/****************************************************************************
			Memory check routines
 ****************************************************************************/
498

499
static int get_dimm_config(struct mem_ctl_info *mci)
500 501
{
	struct i7core_pvt *pvt = mci->pvt_info;
502
	struct pci_dev *pdev;
503
	int i, j;
504
	enum edac_type mode;
505
	enum mem_type mtype;
506
	struct dimm_info *dimm;
507

508
	/* Get data from the MC register, function 0 */
509
	pdev = pvt->pci_mcr[0];
510
	if (!pdev)
511 512
		return -ENODEV;

513
	/* Device 3 function 0 reads */
514 515 516 517
	pci_read_config_dword(pdev, MC_CONTROL, &pvt->info.mc_control);
	pci_read_config_dword(pdev, MC_STATUS, &pvt->info.mc_status);
	pci_read_config_dword(pdev, MC_MAX_DOD, &pvt->info.max_dod);
	pci_read_config_dword(pdev, MC_CHANNEL_MAPPER, &pvt->info.ch_map);
518

519
	debugf0("QPI %d control=0x%08x status=0x%08x dod=0x%08x map=0x%08x\n",
520
		pvt->i7core_dev->socket, pvt->info.mc_control, pvt->info.mc_status,
521
		pvt->info.max_dod, pvt->info.ch_map);
522

523
	if (ECC_ENABLED(pvt)) {
524
		debugf0("ECC enabled with x%d SDCC\n", ECCx8(pvt) ? 8 : 4);
525 526 527 528 529
		if (ECCx8(pvt))
			mode = EDAC_S8ECD8ED;
		else
			mode = EDAC_S4ECD4ED;
	} else {
530
		debugf0("ECC disabled\n");
531 532
		mode = EDAC_NONE;
	}
533 534

	/* FIXME: need to handle the error codes */
535 536
	debugf0("DOD Max limits: DIMMS: %d, %d-ranked, %d-banked "
		"x%x x 0x%x\n",
537 538
		numdimms(pvt->info.max_dod),
		numrank(pvt->info.max_dod >> 2),
539
		numbank(pvt->info.max_dod >> 4),
540 541
		numrow(pvt->info.max_dod >> 6),
		numcol(pvt->info.max_dod >> 9));
542

543
	for (i = 0; i < NUM_CHANS; i++) {
544
		u32 data, dimm_dod[3], value[8];
545

546 547 548
		if (!pvt->pci_ch[i][0])
			continue;

549 550 551 552 553 554 555 556 557
		if (!CH_ACTIVE(pvt, i)) {
			debugf0("Channel %i is not active\n", i);
			continue;
		}
		if (CH_DISABLED(pvt, i)) {
			debugf0("Channel %i is disabled\n", i);
			continue;
		}

558
		/* Devices 4-6 function 0 */
559
		pci_read_config_dword(pvt->pci_ch[i][0],
560 561
				MC_CHANNEL_DIMM_INIT_PARAMS, &data);

562 563 564 565 566 567 568 569 570

		if (data & THREE_DIMMS_PRESENT)
			pvt->channel[i].is_3dimms_present = true;

		if (data & SINGLE_QUAD_RANK_PRESENT)
			pvt->channel[i].is_single_4rank = true;

		if (data & QUAD_RANK_PRESENT)
			pvt->channel[i].has_4rank = true;
571

572 573
		if (data & REGISTERED_DIMM)
			mtype = MEM_RDDR3;
574
		else
575 576 577
			mtype = MEM_DDR3;

		/* Devices 4-6 function 1 */
578
		pci_read_config_dword(pvt->pci_ch[i][1],
579
				MC_DOD_CH_DIMM0, &dimm_dod[0]);
580
		pci_read_config_dword(pvt->pci_ch[i][1],
581
				MC_DOD_CH_DIMM1, &dimm_dod[1]);
582
		pci_read_config_dword(pvt->pci_ch[i][1],
583
				MC_DOD_CH_DIMM2, &dimm_dod[2]);
584

585
		debugf0("Ch%d phy rd%d, wr%d (0x%08x): "
586
			"%s%s%s%cDIMMs\n",
587 588 589
			i,
			RDLCH(pvt->info.ch_map, i), WRLCH(pvt->info.ch_map, i),
			data,
590 591 592
			pvt->channel[i].is_3dimms_present ? "3DIMMS " : "",
			pvt->channel[i].is_3dimms_present ? "SINGLE_4R " : "",
			pvt->channel[i].has_4rank ? "HAS_4R " : "",
593
			(data & REGISTERED_DIMM) ? 'R' : 'U');
594 595 596

		for (j = 0; j < 3; j++) {
			u32 banks, ranks, rows, cols;
597
			u32 size, npages;
598 599 600 601

			if (!DIMM_PRESENT(dimm_dod[j]))
				continue;

602 603
			dimm = EDAC_DIMM_PTR(mci->layers, mci->dimms, mci->n_layers,
				       i, j, 0);
604 605 606 607 608
			banks = numbank(MC_DOD_NUMBANK(dimm_dod[j]));
			ranks = numrank(MC_DOD_NUMRANK(dimm_dod[j]));
			rows = numrow(MC_DOD_NUMROW(dimm_dod[j]));
			cols = numcol(MC_DOD_NUMCOL(dimm_dod[j]));

609 610 611
			/* DDR3 has 8 I/O banks */
			size = (rows * cols * banks * ranks) >> (20 - 3);

612 613 614
			debugf0("\tdimm %d %d Mb offset: %x, "
				"bank: %d, rank: %d, row: %#x, col: %#x\n",
				j, size,
615 616 617
				RANKOFFSET(dimm_dod[j]),
				banks, ranks, rows, cols);

618
			npages = MiB_TO_PAGES(size);
619

620 621
			dimm->nr_pages = npages;

622 623
			switch (banks) {
			case 4:
624
				dimm->dtype = DEV_X4;
625 626
				break;
			case 8:
627
				dimm->dtype = DEV_X8;
628 629
				break;
			case 16:
630
				dimm->dtype = DEV_X16;
631 632
				break;
			default:
633
				dimm->dtype = DEV_UNKNOWN;
634 635
			}

636 637 638 639 640 641
			snprintf(dimm->label, sizeof(dimm->label),
				 "CPU#%uChannel#%u_DIMM#%u",
				 pvt->i7core_dev->socket, i, j);
			dimm->grain = 8;
			dimm->edac_mode = mode;
			dimm->mtype = mtype;
642
		}
643

644 645 646 647 648 649 650 651
		pci_read_config_dword(pdev, MC_SAG_CH_0, &value[0]);
		pci_read_config_dword(pdev, MC_SAG_CH_1, &value[1]);
		pci_read_config_dword(pdev, MC_SAG_CH_2, &value[2]);
		pci_read_config_dword(pdev, MC_SAG_CH_3, &value[3]);
		pci_read_config_dword(pdev, MC_SAG_CH_4, &value[4]);
		pci_read_config_dword(pdev, MC_SAG_CH_5, &value[5]);
		pci_read_config_dword(pdev, MC_SAG_CH_6, &value[6]);
		pci_read_config_dword(pdev, MC_SAG_CH_7, &value[7]);
652
		debugf1("\t[%i] DIVBY3\tREMOVED\tOFFSET\n", i);
653
		for (j = 0; j < 8; j++)
654
			debugf1("\t\t%#x\t%#x\t%#x\n",
655 656
				(value[j] >> 27) & 0x1,
				(value[j] >> 24) & 0x7,
657
				(value[j] & ((1 << 24) - 1)));
658 659
	}

660 661 662
	return 0;
}

663 664 665 666
/****************************************************************************
			Error insertion routines
 ****************************************************************************/

667 668
#define to_mci(k) container_of(k, struct mem_ctl_info, dev)

669 670 671 672 673 674 675
/* The i7core has independent error injection features per channel.
   However, to have a simpler code, we don't allow enabling error injection
   on more than one channel.
   Also, since a change at an inject parameter will be applied only at enable,
   we're disabling error injection on all write calls to the sysfs nodes that
   controls the error code injection.
 */
676
static int disable_inject(const struct mem_ctl_info *mci)
677 678 679 680 681
{
	struct i7core_pvt *pvt = mci->pvt_info;

	pvt->inject.enable = 0;

682
	if (!pvt->pci_ch[pvt->inject.channel][0])
683 684
		return -ENODEV;

685
	pci_write_config_dword(pvt->pci_ch[pvt->inject.channel][0],
686
				MC_CHANNEL_ERROR_INJECT, 0);
687 688

	return 0;
689 690 691 692 693 694 695 696 697
}

/*
 * i7core inject inject.section
 *
 *	accept and store error injection inject.section value
 *	bit 0 - refers to the lower 32-byte half cacheline
 *	bit 1 - refers to the upper 32-byte half cacheline
 */
698 699
static ssize_t i7core_inject_section_store(struct device *dev,
					   struct device_attribute *mattr,
700 701
					   const char *data, size_t count)
{
702
	struct mem_ctl_info *mci = to_mci(dev);
703 704 705 706 707
	struct i7core_pvt *pvt = mci->pvt_info;
	unsigned long value;
	int rc;

	if (pvt->inject.enable)
708
		disable_inject(mci);
709 710 711

	rc = strict_strtoul(data, 10, &value);
	if ((rc < 0) || (value > 3))
712
		return -EIO;
713 714 715 716 717

	pvt->inject.section = (u32) value;
	return count;
}

718 719 720
static ssize_t i7core_inject_section_show(struct device *dev,
					  struct device_attribute *mattr,
					  char *data)
721
{
722
	struct mem_ctl_info *mci = to_mci(dev);
723 724 725 726 727 728 729 730 731 732 733 734
	struct i7core_pvt *pvt = mci->pvt_info;
	return sprintf(data, "0x%08x\n", pvt->inject.section);
}

/*
 * i7core inject.type
 *
 *	accept and store error injection inject.section value
 *	bit 0 - repeat enable - Enable error repetition
 *	bit 1 - inject ECC error
 *	bit 2 - inject parity error
 */
735 736
static ssize_t i7core_inject_type_store(struct device *dev,
					struct device_attribute *mattr,
737 738
					const char *data, size_t count)
{
739 740
	struct mem_ctl_info *mci = to_mci(dev);
struct i7core_pvt *pvt = mci->pvt_info;
741 742 743 744
	unsigned long value;
	int rc;

	if (pvt->inject.enable)
745
		disable_inject(mci);
746 747 748

	rc = strict_strtoul(data, 10, &value);
	if ((rc < 0) || (value > 7))
749
		return -EIO;
750 751 752 753 754

	pvt->inject.type = (u32) value;
	return count;
}

755 756 757
static ssize_t i7core_inject_type_show(struct device *dev,
				       struct device_attribute *mattr,
				       char *data)
758
{
759
	struct mem_ctl_info *mci = to_mci(dev);
760
	struct i7core_pvt *pvt = mci->pvt_info;
761

762 763 764 765 766 767 768 769 770 771 772 773 774
	return sprintf(data, "0x%08x\n", pvt->inject.type);
}

/*
 * i7core_inject_inject.eccmask_store
 *
 * The type of error (UE/CE) will depend on the inject.eccmask value:
 *   Any bits set to a 1 will flip the corresponding ECC bit
 *   Correctable errors can be injected by flipping 1 bit or the bits within
 *   a symbol pair (2 consecutive aligned 8-bit pairs - i.e. 7:0 and 15:8 or
 *   23:16 and 31:24). Flipping bits in two symbol pairs will cause an
 *   uncorrectable error to be injected.
 */
775 776 777
static ssize_t i7core_inject_eccmask_store(struct device *dev,
					   struct device_attribute *mattr,
					   const char *data, size_t count)
778
{
779
	struct mem_ctl_info *mci = to_mci(dev);
780 781 782 783 784
	struct i7core_pvt *pvt = mci->pvt_info;
	unsigned long value;
	int rc;

	if (pvt->inject.enable)
785
		disable_inject(mci);
786 787 788

	rc = strict_strtoul(data, 10, &value);
	if (rc < 0)
789
		return -EIO;
790 791 792 793 794

	pvt->inject.eccmask = (u32) value;
	return count;
}

795 796 797
static ssize_t i7core_inject_eccmask_show(struct device *dev,
					  struct device_attribute *mattr,
					  char *data)
798
{
799
	struct mem_ctl_info *mci = to_mci(dev);
800
	struct i7core_pvt *pvt = mci->pvt_info;
801

802 803 804 805 806 807 808 809 810 811 812 813 814 815
	return sprintf(data, "0x%08x\n", pvt->inject.eccmask);
}

/*
 * i7core_addrmatch
 *
 * The type of error (UE/CE) will depend on the inject.eccmask value:
 *   Any bits set to a 1 will flip the corresponding ECC bit
 *   Correctable errors can be injected by flipping 1 bit or the bits within
 *   a symbol pair (2 consecutive aligned 8-bit pairs - i.e. 7:0 and 15:8 or
 *   23:16 and 31:24). Flipping bits in two symbol pairs will cause an
 *   uncorrectable error to be injected.
 */

816 817
#define DECLARE_ADDR_MATCH(param, limit)			\
static ssize_t i7core_inject_store_##param(			\
818 819 820
	struct device *dev,					\
	struct device_attribute *mattr,				\
	const char *data, size_t count)				\
821
{								\
822
	struct mem_ctl_info *mci = to_mci(dev);			\
823
	struct i7core_pvt *pvt;					\
824 825 826
	long value;						\
	int rc;							\
								\
827 828 829
	debugf1("%s()\n", __func__);				\
	pvt = mci->pvt_info;					\
								\
830 831 832
	if (pvt->inject.enable)					\
		disable_inject(mci);				\
								\
833
	if (!strcasecmp(data, "any") || !strcasecmp(data, "any\n"))\
834 835 836 837 838 839 840 841 842 843 844 845 846
		value = -1;					\
	else {							\
		rc = strict_strtoul(data, 10, &value);		\
		if ((rc < 0) || (value >= limit))		\
			return -EIO;				\
	}							\
								\
	pvt->inject.param = value;				\
								\
	return count;						\
}								\
								\
static ssize_t i7core_inject_show_##param(			\
847 848 849
	struct device *dev,					\
	struct device_attribute *mattr,				\
	char *data)						\
850
{								\
851
	struct mem_ctl_info *mci = to_mci(dev);			\
852 853 854 855
	struct i7core_pvt *pvt;					\
								\
	pvt = mci->pvt_info;					\
	debugf1("%s() pvt=%p\n", __func__, pvt);		\
856 857 858 859
	if (pvt->inject.param < 0)				\
		return sprintf(data, "any\n");			\
	else							\
		return sprintf(data, "%d\n", pvt->inject.param);\
860 861
}

862
#define ATTR_ADDR_MATCH(param)					\
863 864 865
	static DEVICE_ATTR(param, S_IRUGO | S_IWUSR,		\
		    i7core_inject_show_##param,			\
		    i7core_inject_store_##param)
866

867 868 869 870 871 872
DECLARE_ADDR_MATCH(channel, 3);
DECLARE_ADDR_MATCH(dimm, 3);
DECLARE_ADDR_MATCH(rank, 4);
DECLARE_ADDR_MATCH(bank, 32);
DECLARE_ADDR_MATCH(page, 0x10000);
DECLARE_ADDR_MATCH(col, 0x4000);
873

874 875 876 877 878 879 880
ATTR_ADDR_MATCH(channel);
ATTR_ADDR_MATCH(dimm);
ATTR_ADDR_MATCH(rank);
ATTR_ADDR_MATCH(bank);
ATTR_ADDR_MATCH(page);
ATTR_ADDR_MATCH(col);

881
static int write_and_test(struct pci_dev *dev, const int where, const u32 val)
882 883 884 885
{
	u32 read;
	int count;

886 887 888 889
	debugf0("setting pci %02x:%02x.%x reg=%02x value=%08x\n",
		dev->bus->number, PCI_SLOT(dev->devfn), PCI_FUNC(dev->devfn),
		where, val);

890 891
	for (count = 0; count < 10; count++) {
		if (count)
892
			msleep(100);
893 894 895 896 897 898 899
		pci_write_config_dword(dev, where, val);
		pci_read_config_dword(dev, where, &read);

		if (read == val)
			return 0;
	}

900 901 902 903
	i7core_printk(KERN_ERR, "Error during set pci %02x:%02x.%x reg=%02x "
		"write=%08x. Read=%08x\n",
		dev->bus->number, PCI_SLOT(dev->devfn), PCI_FUNC(dev->devfn),
		where, val, read);
904 905 906 907

	return -EINVAL;
}

908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925
/*
 * This routine prepares the Memory Controller for error injection.
 * The error will be injected when some process tries to write to the
 * memory that matches the given criteria.
 * The criteria can be set in terms of a mask where dimm, rank, bank, page
 * and col can be specified.
 * A -1 value for any of the mask items will make the MCU to ignore
 * that matching criteria for error injection.
 *
 * It should be noticed that the error will only happen after a write operation
 * on a memory that matches the condition. if REPEAT_EN is not enabled at
 * inject mask, then it will produce just one error. Otherwise, it will repeat
 * until the injectmask would be cleaned.
 *
 * FIXME: This routine assumes that MAXNUMDIMMS value of MC_MAX_DOD
 *    is reliable enough to check if the MC is using the
 *    three channels. However, this is not clear at the datasheet.
 */
926 927 928
static ssize_t i7core_inject_enable_store(struct device *dev,
					  struct device_attribute *mattr,
					  const char *data, size_t count)
929
{
930
	struct mem_ctl_info *mci = to_mci(dev);
931 932 933 934 935 936
	struct i7core_pvt *pvt = mci->pvt_info;
	u32 injectmask;
	u64 mask = 0;
	int  rc;
	long enable;

937
	if (!pvt->pci_ch[pvt->inject.channel][0])
938 939
		return 0;

940 941 942 943 944 945 946 947 948 949 950 951 952
	rc = strict_strtoul(data, 10, &enable);
	if ((rc < 0))
		return 0;

	if (enable) {
		pvt->inject.enable = 1;
	} else {
		disable_inject(mci);
		return count;
	}

	/* Sets pvt->inject.dimm mask */
	if (pvt->inject.dimm < 0)
953
		mask |= 1LL << 41;
954
	else {
955
		if (pvt->channel[pvt->inject.channel].dimms > 2)
956
			mask |= (pvt->inject.dimm & 0x3LL) << 35;
957
		else
958
			mask |= (pvt->inject.dimm & 0x1LL) << 36;
959 960 961 962
	}

	/* Sets pvt->inject.rank mask */
	if (pvt->inject.rank < 0)
963
		mask |= 1LL << 40;
964
	else {
965
		if (pvt->channel[pvt->inject.channel].dimms > 2)
966
			mask |= (pvt->inject.rank & 0x1LL) << 34;
967
		else
968
			mask |= (pvt->inject.rank & 0x3LL) << 34;
969 970 971 972
	}

	/* Sets pvt->inject.bank mask */
	if (pvt->inject.bank < 0)
973
		mask |= 1LL << 39;
974
	else
975
		mask |= (pvt->inject.bank & 0x15LL) << 30;
976 977 978

	/* Sets pvt->inject.page mask */
	if (pvt->inject.page < 0)
979
		mask |= 1LL << 38;
980
	else
981
		mask |= (pvt->inject.page & 0xffff) << 14;
982 983 984

	/* Sets pvt->inject.column mask */
	if (pvt->inject.col < 0)
985
		mask |= 1LL << 37;
986
	else
987
		mask |= (pvt->inject.col & 0x3fff);
988

989 990 991 992 993 994 995 996 997 998 999 1000
	/*
	 * bit    0: REPEAT_EN
	 * bits 1-2: MASK_HALF_CACHELINE
	 * bit    3: INJECT_ECC
	 * bit    4: INJECT_ADDR_PARITY
	 */

	injectmask = (pvt->inject.type & 1) |
		     (pvt->inject.section & 0x3) << 1 |
		     (pvt->inject.type & 0x6) << (3 - 1);

	/* Unlock writes to registers - this register is write only */
1001
	pci_write_config_dword(pvt->pci_noncore,
1002
			       MC_CFG_CONTROL, 0x2);
1003

1004
	write_and_test(pvt->pci_ch[pvt->inject.channel][0],
1005
			       MC_CHANNEL_ADDR_MATCH, mask);
1006
	write_and_test(pvt->pci_ch[pvt->inject.channel][0],
1007 1008
			       MC_CHANNEL_ADDR_MATCH + 4, mask >> 32L);

1009
	write_and_test(pvt->pci_ch[pvt->inject.channel][0],
1010 1011
			       MC_CHANNEL_ERROR_MASK, pvt->inject.eccmask);

1012
	write_and_test(pvt->pci_ch[pvt->inject.channel][0],
1013
			       MC_CHANNEL_ERROR_INJECT, injectmask);
1014

1015
	/*
1016 1017 1018
	 * This is something undocumented, based on my tests
	 * Without writing 8 to this register, errors aren't injected. Not sure
	 * why.
1019
	 */
1020
	pci_write_config_dword(pvt->pci_noncore,
1021
			       MC_CFG_CONTROL, 8);
1022

1023 1024
	debugf0("Error inject addr match 0x%016llx, ecc 0x%08x,"
		" inject 0x%08x\n",
1025 1026
		mask, pvt->inject.eccmask, injectmask);

1027

1028 1029 1030
	return count;
}

1031 1032 1033
static ssize_t i7core_inject_enable_show(struct device *dev,
					 struct device_attribute *mattr,
					 char *data)
1034
{
1035
	struct mem_ctl_info *mci = to_mci(dev);
1036
	struct i7core_pvt *pvt = mci->pvt_info;
1037 1038
	u32 injectmask;

1039 1040 1041
	if (!pvt->pci_ch[pvt->inject.channel][0])
		return 0;

1042
	pci_read_config_dword(pvt->pci_ch[pvt->inject.channel][0],
1043
			       MC_CHANNEL_ERROR_INJECT, &injectmask);
1044 1045 1046 1047 1048 1049

	debugf0("Inject error read: 0x%018x\n", injectmask);

	if (injectmask & 0x0c)
		pvt->inject.enable = 1;

1050 1051 1052
	return sprintf(data, "%d\n", pvt->inject.enable);
}

1053 1054
#define DECLARE_COUNTER(param)					\
static ssize_t i7core_show_counter_##param(			\
1055 1056 1057
	struct device *dev,					\
	struct device_attribute *mattr,				\
	char *data)						\
1058
{								\
1059
	struct mem_ctl_info *mci = to_mci(dev);			\
1060 1061
	struct i7core_pvt *pvt = mci->pvt_info;			\
								\
1062
	debugf1("%s()\n", __func__);				\
1063 1064 1065 1066 1067
	if (!pvt->ce_count_available || (pvt->is_registered))	\
		return sprintf(data, "data unavailable\n");	\
	return sprintf(data, "%lu\n",				\
			pvt->udimm_ce_count[param]);		\
}
1068

1069
#define ATTR_COUNTER(param)					\
1070 1071 1072
	static DEVICE_ATTR(udimm##param, S_IRUGO | S_IWUSR,	\
		    i7core_show_counter_##param,		\
		    NULL)
1073

1074 1075 1076
DECLARE_COUNTER(0);
DECLARE_COUNTER(1);
DECLARE_COUNTER(2);
1077

1078 1079 1080 1081
ATTR_COUNTER(0);
ATTR_COUNTER(1);
ATTR_COUNTER(2);

1082
/*
1083
 * inject_addrmatch device sysfs struct
1084
 */
1085

1086 1087 1088 1089 1090 1091 1092 1093
static struct attribute *i7core_addrmatch_attrs[] = {
	&dev_attr_channel.attr,
	&dev_attr_dimm.attr,
	&dev_attr_rank.attr,
	&dev_attr_bank.attr,
	&dev_attr_page.attr,
	&dev_attr_col.attr,
	NULL
1094 1095
};

1096 1097
static struct attribute_group addrmatch_grp = {
	.attrs	= i7core_addrmatch_attrs,
1098 1099
};

1100 1101 1102
static const struct attribute_group *addrmatch_groups[] = {
	&addrmatch_grp,
	NULL
1103 1104
};

1105 1106 1107
static void addrmatch_release(struct device *device)
{
	debugf1("Releasing device %s\n", dev_name(device));
1108
	kfree(device);
1109 1110 1111 1112 1113
}

static struct device_type addrmatch_type = {
	.groups		= addrmatch_groups,
	.release	= addrmatch_release,
1114 1115
};

1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128
/*
 * all_channel_counts sysfs struct
 */

static struct attribute *i7core_udimm_counters_attrs[] = {
	&dev_attr_udimm0.attr,
	&dev_attr_udimm1.attr,
	&dev_attr_udimm2.attr,
	NULL
};

static struct attribute_group all_channel_counts_grp = {
	.attrs	= i7core_udimm_counters_attrs,
1129 1130
};

1131 1132 1133
static const struct attribute_group *all_channel_counts_groups[] = {
	&all_channel_counts_grp,
	NULL
1134 1135
};

1136 1137 1138
static void all_channel_counts_release(struct device *device)
{
	debugf1("Releasing device %s\n", dev_name(device));
1139
	kfree(device);
1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181
}

static struct device_type all_channel_counts_type = {
	.groups		= all_channel_counts_groups,
	.release	= all_channel_counts_release,
};

/*
 * inject sysfs attributes
 */

static DEVICE_ATTR(inject_section, S_IRUGO | S_IWUSR,
		   i7core_inject_section_show, i7core_inject_section_store);

static DEVICE_ATTR(inject_type, S_IRUGO | S_IWUSR,
		   i7core_inject_type_show, i7core_inject_type_store);


static DEVICE_ATTR(inject_eccmask, S_IRUGO | S_IWUSR,
		   i7core_inject_eccmask_show, i7core_inject_eccmask_store);

static DEVICE_ATTR(inject_enable, S_IRUGO | S_IWUSR,
		   i7core_inject_enable_show, i7core_inject_enable_store);

static int i7core_create_sysfs_devices(struct mem_ctl_info *mci)
{
	struct i7core_pvt *pvt = mci->pvt_info;
	int rc;

	rc = device_create_file(&mci->dev, &dev_attr_inject_section);
	if (rc < 0)
		return rc;
	rc = device_create_file(&mci->dev, &dev_attr_inject_type);
	if (rc < 0)
		return rc;
	rc = device_create_file(&mci->dev, &dev_attr_inject_eccmask);
	if (rc < 0)
		return rc;
	rc = device_create_file(&mci->dev, &dev_attr_inject_enable);
	if (rc < 0)
		return rc;

1182 1183 1184 1185 1186 1187 1188 1189 1190 1191
	pvt->addrmatch_dev = kzalloc(sizeof(*pvt->addrmatch_dev), GFP_KERNEL);
	if (!pvt->addrmatch_dev)
		return rc;

	pvt->addrmatch_dev->type = &addrmatch_type;
	pvt->addrmatch_dev->bus = mci->dev.bus;
	device_initialize(pvt->addrmatch_dev);
	pvt->addrmatch_dev->parent = &mci->dev;
	dev_set_name(pvt->addrmatch_dev, "inject_addrmatch");
	dev_set_drvdata(pvt->addrmatch_dev, mci);
1192 1193

	debugf1("%s(): creating %s\n", __func__,
1194
		dev_name(pvt->addrmatch_dev));
1195

1196
	rc = device_add(pvt->addrmatch_dev);
1197 1198 1199 1200
	if (rc < 0)
		return rc;

	if (!pvt->is_registered) {
1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214
		pvt->chancounts_dev = kzalloc(sizeof(*pvt->chancounts_dev),
					      GFP_KERNEL);
		if (!pvt->chancounts_dev) {
			put_device(pvt->addrmatch_dev);
			device_del(pvt->addrmatch_dev);
			return rc;
		}

		pvt->chancounts_dev->type = &all_channel_counts_type;
		pvt->chancounts_dev->bus = mci->dev.bus;
		device_initialize(pvt->chancounts_dev);
		pvt->chancounts_dev->parent = &mci->dev;
		dev_set_name(pvt->chancounts_dev, "all_channel_counts");
		dev_set_drvdata(pvt->chancounts_dev, mci);
1215 1216

		debugf1("%s(): creating %s\n", __func__,
1217
			dev_name(pvt->chancounts_dev));
1218

1219
		rc = device_add(pvt->chancounts_dev);
1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237
		if (rc < 0)
			return rc;
	}
	return 0;
}

static void i7core_delete_sysfs_devices(struct mem_ctl_info *mci)
{
	struct i7core_pvt *pvt = mci->pvt_info;

	debugf1("\n");

	device_remove_file(&mci->dev, &dev_attr_inject_section);
	device_remove_file(&mci->dev, &dev_attr_inject_type);
	device_remove_file(&mci->dev, &dev_attr_inject_eccmask);
	device_remove_file(&mci->dev, &dev_attr_inject_enable);

	if (!pvt->is_registered) {
1238 1239
		put_device(pvt->chancounts_dev);
		device_del(pvt->chancounts_dev);
1240
	}
1241 1242
	put_device(pvt->addrmatch_dev);
	device_del(pvt->addrmatch_dev);
1243 1244
}

1245 1246 1247 1248 1249
/****************************************************************************
	Device initialization routines: put/get, init/exit
 ****************************************************************************/

/*
1250
 *	i7core_put_all_devices	'put' all the devices that we have
1251 1252
 *				reserved via 'get'
 */
1253
static void i7core_put_devices(struct i7core_dev *i7core_dev)
1254
{
1255
	int i;
1256

1257
	debugf0(__FILE__ ": %s()\n", __func__);
1258
	for (i = 0; i < i7core_dev->n_devs; i++) {
1259 1260 1261 1262 1263 1264 1265 1266
		struct pci_dev *pdev = i7core_dev->pdev[i];
		if (!pdev)
			continue;
		debugf0("Removing dev %02x:%02x.%d\n",
			pdev->bus->number,
			PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
		pci_dev_put(pdev);
	}
1267
}
1268

1269 1270
static void i7core_put_all_devices(void)
{
1271
	struct i7core_dev *i7core_dev, *tmp;
1272

1273
	list_for_each_entry_safe(i7core_dev, tmp, &i7core_edac_list, list) {
1274
		i7core_put_devices(i7core_dev);
1275
		free_i7core_dev(i7core_dev);
1276
	}
1277 1278
}

1279
static void __init i7core_xeon_pci_fixup(const struct pci_id_table *table)
1280 1281 1282
{
	struct pci_dev *pdev = NULL;
	int i;
1283

1284
	/*
D
David Sterba 已提交
1285
	 * On Xeon 55xx, the Intel Quick Path Arch Generic Non-core pci buses
1286 1287 1288
	 * aren't announced by acpi. So, we need to use a legacy scan probing
	 * to detect them
	 */
1289 1290 1291 1292 1293 1294
	while (table && table->descr) {
		pdev = pci_get_device(PCI_VENDOR_ID_INTEL, table->descr[0].dev_id, NULL);
		if (unlikely(!pdev)) {
			for (i = 0; i < MAX_SOCKET_BUSES; i++)
				pcibios_scan_specific_bus(255-i);
		}
1295
		pci_dev_put(pdev);
1296
		table++;
1297 1298 1299
	}
}

1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316
static unsigned i7core_pci_lastbus(void)
{
	int last_bus = 0, bus;
	struct pci_bus *b = NULL;

	while ((b = pci_find_next_bus(b)) != NULL) {
		bus = b->number;
		debugf0("Found bus %d\n", bus);
		if (bus > last_bus)
			last_bus = bus;
	}

	debugf0("Last bus %d\n", last_bus);

	return last_bus;
}

1317
/*
1318
 *	i7core_get_all_devices	Find and perform 'get' operation on the MCH's
1319 1320 1321 1322
 *			device/functions we want to reference for this driver
 *
 *			Need to 'get' device 16 func 1 and func 2
 */
1323 1324 1325 1326
static int i7core_get_onedevice(struct pci_dev **prev,
				const struct pci_id_table *table,
				const unsigned devno,
				const unsigned last_bus)
1327
{
1328
	struct i7core_dev *i7core_dev;
1329
	const struct pci_id_descr *dev_descr = &table->descr[devno];
1330

1331
	struct pci_dev *pdev = NULL;
1332 1333
	u8 bus = 0;
	u8 socket = 0;
1334

1335
	pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
1336
			      dev_descr->dev_id, *prev);
1337

1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351
	/*
	 * On Xeon 55xx, the Intel Quckpath Arch Generic Non-core regs
	 * is at addr 8086:2c40, instead of 8086:2c41. So, we need
	 * to probe for the alternate address in case of failure
	 */
	if (dev_descr->dev_id == PCI_DEVICE_ID_INTEL_I7_NONCORE && !pdev)
		pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
				      PCI_DEVICE_ID_INTEL_I7_NONCORE_ALT, *prev);

	if (dev_descr->dev_id == PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE && !pdev)
		pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
				      PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE_ALT,
				      *prev);

1352 1353 1354 1355
	if (!pdev) {
		if (*prev) {
			*prev = pdev;
			return 0;
1356 1357
		}

1358
		if (dev_descr->optional)
1359
			return 0;
1360

1361 1362 1363
		if (devno == 0)
			return -ENODEV;

1364
		i7core_printk(KERN_INFO,
1365
			"Device not found: dev %02x.%d PCI ID %04x:%04x\n",
1366 1367
			dev_descr->dev, dev_descr->func,
			PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1368

1369 1370 1371 1372
		/* End of list, leave */
		return -ENODEV;
	}
	bus = pdev->bus->number;
1373

1374
	socket = last_bus - bus;
1375

1376 1377
	i7core_dev = get_i7core_dev(socket);
	if (!i7core_dev) {
1378
		i7core_dev = alloc_i7core_dev(socket, table);
1379 1380
		if (!i7core_dev) {
			pci_dev_put(pdev);
1381
			return -ENOMEM;
1382
		}
1383
	}
1384

1385
	if (i7core_dev->pdev[devno]) {
1386 1387 1388
		i7core_printk(KERN_ERR,
			"Duplicated device for "
			"dev %02x:%02x.%d PCI ID %04x:%04x\n",
1389 1390
			bus, dev_descr->dev, dev_descr->func,
			PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1391 1392 1393
		pci_dev_put(pdev);
		return -ENODEV;
	}
1394

1395
	i7core_dev->pdev[devno] = pdev;
1396 1397

	/* Sanity check */
1398 1399
	if (unlikely(PCI_SLOT(pdev->devfn) != dev_descr->dev ||
			PCI_FUNC(pdev->devfn) != dev_descr->func)) {
1400 1401 1402
		i7core_printk(KERN_ERR,
			"Device PCI ID %04x:%04x "
			"has dev %02x:%02x.%d instead of dev %02x:%02x.%d\n",
1403
			PCI_VENDOR_ID_INTEL, dev_descr->dev_id,
1404
			bus, PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
1405
			bus, dev_descr->dev, dev_descr->func);
1406 1407
		return -ENODEV;
	}
1408

1409 1410 1411 1412 1413
	/* Be sure that the device is enabled */
	if (unlikely(pci_enable_device(pdev) < 0)) {
		i7core_printk(KERN_ERR,
			"Couldn't enable "
			"dev %02x:%02x.%d PCI ID %04x:%04x\n",
1414 1415
			bus, dev_descr->dev, dev_descr->func,
			PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1416 1417
		return -ENODEV;
	}
1418

1419
	debugf0("Detected socket %d dev %02x:%02x.%d PCI ID %04x:%04x\n",
1420 1421 1422
		socket, bus, dev_descr->dev,
		dev_descr->func,
		PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1423

1424 1425 1426 1427 1428 1429 1430
	/*
	 * As stated on drivers/pci/search.c, the reference count for
	 * @from is always decremented if it is not %NULL. So, as we need
	 * to get all devices up to null, we need to do a get for the device
	 */
	pci_dev_get(pdev);

1431
	*prev = pdev;
1432

1433 1434
	return 0;
}
1435

1436
static int i7core_get_all_devices(void)
1437
{
1438
	int i, rc, last_bus;
1439
	struct pci_dev *pdev = NULL;
1440
	const struct pci_id_table *table = pci_dev_table;
1441

1442 1443
	last_bus = i7core_pci_lastbus();

1444
	while (table && table->descr) {
1445 1446 1447
		for (i = 0; i < table->n_devs; i++) {
			pdev = NULL;
			do {
1448
				rc = i7core_get_onedevice(&pdev, table, i,
1449
							  last_bus);
1450 1451 1452 1453 1454 1455 1456 1457 1458 1459
				if (rc < 0) {
					if (i == 0) {
						i = table->n_devs;
						break;
					}
					i7core_put_all_devices();
					return -ENODEV;
				}
			} while (pdev);
		}
1460
		table++;
1461
	}
1462

1463 1464 1465
	return 0;
}

1466 1467
static int mci_bind_devs(struct mem_ctl_info *mci,
			 struct i7core_dev *i7core_dev)
1468 1469 1470
{
	struct i7core_pvt *pvt = mci->pvt_info;
	struct pci_dev *pdev;
1471
	int i, func, slot;
1472
	char *family;
1473

1474 1475
	pvt->is_registered = false;
	pvt->enable_scrub  = false;
1476
	for (i = 0; i < i7core_dev->n_devs; i++) {
1477 1478
		pdev = i7core_dev->pdev[i];
		if (!pdev)
1479 1480
			continue;

1481 1482 1483 1484 1485 1486 1487 1488
		func = PCI_FUNC(pdev->devfn);
		slot = PCI_SLOT(pdev->devfn);
		if (slot == 3) {
			if (unlikely(func > MAX_MCR_FUNC))
				goto error;
			pvt->pci_mcr[func] = pdev;
		} else if (likely(slot >= 4 && slot < 4 + NUM_CHANS)) {
			if (unlikely(func > MAX_CHAN_FUNC))
1489
				goto error;
1490
			pvt->pci_ch[slot - 4][func] = pdev;
1491
		} else if (!slot && !func) {
1492
			pvt->pci_noncore = pdev;
1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521

			/* Detect the processor family */
			switch (pdev->device) {
			case PCI_DEVICE_ID_INTEL_I7_NONCORE:
				family = "Xeon 35xx/ i7core";
				pvt->enable_scrub = false;
				break;
			case PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE_ALT:
				family = "i7-800/i5-700";
				pvt->enable_scrub = false;
				break;
			case PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE:
				family = "Xeon 34xx";
				pvt->enable_scrub = false;
				break;
			case PCI_DEVICE_ID_INTEL_I7_NONCORE_ALT:
				family = "Xeon 55xx";
				pvt->enable_scrub = true;
				break;
			case PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE_REV2:
				family = "Xeon 56xx / i7-900";
				pvt->enable_scrub = true;
				break;
			default:
				family = "unknown";
				pvt->enable_scrub = false;
			}
			debugf0("Detected a processor type %s\n", family);
		} else
1522
			goto error;
1523

1524 1525 1526
		debugf0("Associated fn %d.%d, dev = %p, socket %d\n",
			PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
			pdev, i7core_dev->socket);
1527

1528 1529
		if (PCI_SLOT(pdev->devfn) == 3 &&
			PCI_FUNC(pdev->devfn) == 2)
1530
			pvt->is_registered = true;
1531
	}
1532

1533
	return 0;
1534 1535 1536 1537 1538 1539

error:
	i7core_printk(KERN_ERR, "Device %d, function %d "
		      "is out of the expected range\n",
		      slot, func);
	return -EINVAL;
1540 1541
}

1542 1543 1544
/****************************************************************************
			Error check routines
 ****************************************************************************/
1545
static void i7core_rdimm_update_errcount(struct mem_ctl_info *mci,
1546 1547 1548
				      const int chan,
				      const int dimm,
				      const int add)
1549
{
1550
	int i;
1551 1552

	for (i = 0; i < add; i++) {
1553 1554
		edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, 0, 0, 0,
				     chan, dimm, -1, "error", "", NULL);
1555 1556 1557 1558
	}
}

static void i7core_rdimm_update_ce_count(struct mem_ctl_info *mci,
1559 1560 1561 1562
					 const int chan,
					 const int new0,
					 const int new1,
					 const int new2)
1563 1564 1565 1566
{
	struct i7core_pvt *pvt = mci->pvt_info;
	int add0 = 0, add1 = 0, add2 = 0;
	/* Updates CE counters if it is not the first time here */
1567
	if (pvt->ce_count_available) {
1568 1569
		/* Updates CE counters */

1570 1571 1572
		add2 = new2 - pvt->rdimm_last_ce_count[chan][2];
		add1 = new1 - pvt->rdimm_last_ce_count[chan][1];
		add0 = new0 - pvt->rdimm_last_ce_count[chan][0];
1573 1574 1575

		if (add2 < 0)
			add2 += 0x7fff;
1576
		pvt->rdimm_ce_count[chan][2] += add2;
1577 1578 1579

		if (add1 < 0)
			add1 += 0x7fff;
1580
		pvt->rdimm_ce_count[chan][1] += add1;
1581 1582 1583

		if (add0 < 0)
			add0 += 0x7fff;
1584
		pvt->rdimm_ce_count[chan][0] += add0;
1585
	} else
1586
		pvt->ce_count_available = 1;
1587 1588

	/* Store the new values */
1589 1590 1591
	pvt->rdimm_last_ce_count[chan][2] = new2;
	pvt->rdimm_last_ce_count[chan][1] = new1;
	pvt->rdimm_last_ce_count[chan][0] = new0;
1592 1593 1594

	/*updated the edac core */
	if (add0 != 0)
1595
		i7core_rdimm_update_errcount(mci, chan, 0, add0);
1596
	if (add1 != 0)
1597
		i7core_rdimm_update_errcount(mci, chan, 1, add1);
1598
	if (add2 != 0)
1599
		i7core_rdimm_update_errcount(mci, chan, 2, add2);
1600 1601 1602

}

1603
static void i7core_rdimm_check_mc_ecc_err(struct mem_ctl_info *mci)
1604 1605 1606 1607 1608 1609
{
	struct i7core_pvt *pvt = mci->pvt_info;
	u32 rcv[3][2];
	int i, new0, new1, new2;

	/*Read DEV 3: FUN 2:  MC_COR_ECC_CNT regs directly*/
1610
	pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_0,
1611
								&rcv[0][0]);
1612
	pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_1,
1613
								&rcv[0][1]);
1614
	pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_2,
1615
								&rcv[1][0]);
1616
	pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_3,
1617
								&rcv[1][1]);
1618
	pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_4,
1619
								&rcv[2][0]);
1620
	pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_5,
1621 1622 1623 1624 1625
								&rcv[2][1]);
	for (i = 0 ; i < 3; i++) {
		debugf3("MC_COR_ECC_CNT%d = 0x%x; MC_COR_ECC_CNT%d = 0x%x\n",
			(i * 2), rcv[i][0], (i * 2) + 1, rcv[i][1]);
		/*if the channel has 3 dimms*/
1626
		if (pvt->channel[i].dimms > 2) {
1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637
			new0 = DIMM_BOT_COR_ERR(rcv[i][0]);
			new1 = DIMM_TOP_COR_ERR(rcv[i][0]);
			new2 = DIMM_BOT_COR_ERR(rcv[i][1]);
		} else {
			new0 = DIMM_TOP_COR_ERR(rcv[i][0]) +
					DIMM_BOT_COR_ERR(rcv[i][0]);
			new1 = DIMM_TOP_COR_ERR(rcv[i][1]) +
					DIMM_BOT_COR_ERR(rcv[i][1]);
			new2 = 0;
		}

1638
		i7core_rdimm_update_ce_count(mci, i, new0, new1, new2);
1639 1640
	}
}
1641 1642 1643 1644 1645 1646 1647

/* This function is based on the device 3 function 4 registers as described on:
 * Intel Xeon Processor 5500 Series Datasheet Volume 2
 *	http://www.intel.com/Assets/PDF/datasheet/321322.pdf
 * also available at:
 * 	http://www.arrownac.com/manufacturers/intel/s/nehalem/5500-datasheet-v2.pdf
 */
1648
static void i7core_udimm_check_mc_ecc_err(struct mem_ctl_info *mci)
1649 1650 1651 1652 1653
{
	struct i7core_pvt *pvt = mci->pvt_info;
	u32 rcv1, rcv0;
	int new0, new1, new2;

1654
	if (!pvt->pci_mcr[4]) {
1655
		debugf0("%s MCR registers not found\n", __func__);
1656 1657 1658
		return;
	}

1659
	/* Corrected test errors */
1660 1661
	pci_read_config_dword(pvt->pci_mcr[4], MC_TEST_ERR_RCV1, &rcv1);
	pci_read_config_dword(pvt->pci_mcr[4], MC_TEST_ERR_RCV0, &rcv0);
1662 1663 1664 1665 1666 1667 1668

	/* Store the new values */
	new2 = DIMM2_COR_ERR(rcv1);
	new1 = DIMM1_COR_ERR(rcv0);
	new0 = DIMM0_COR_ERR(rcv0);

	/* Updates CE counters if it is not the first time here */
1669
	if (pvt->ce_count_available) {
1670 1671 1672
		/* Updates CE counters */
		int add0, add1, add2;

1673 1674 1675
		add2 = new2 - pvt->udimm_last_ce_count[2];
		add1 = new1 - pvt->udimm_last_ce_count[1];
		add0 = new0 - pvt->udimm_last_ce_count[0];
1676 1677 1678

		if (add2 < 0)
			add2 += 0x7fff;
1679
		pvt->udimm_ce_count[2] += add2;
1680 1681 1682

		if (add1 < 0)
			add1 += 0x7fff;
1683
		pvt->udimm_ce_count[1] += add1;
1684 1685 1686

		if (add0 < 0)
			add0 += 0x7fff;
1687
		pvt->udimm_ce_count[0] += add0;
1688 1689 1690 1691 1692

		if (add0 | add1 | add2)
			i7core_printk(KERN_ERR, "New Corrected error(s): "
				      "dimm0: +%d, dimm1: +%d, dimm2 +%d\n",
				      add0, add1, add2);
1693
	} else
1694
		pvt->ce_count_available = 1;
1695 1696

	/* Store the new values */
1697 1698 1699
	pvt->udimm_last_ce_count[2] = new2;
	pvt->udimm_last_ce_count[1] = new1;
	pvt->udimm_last_ce_count[0] = new0;
1700 1701
}

1702 1703 1704
/*
 * According with tables E-11 and E-12 of chapter E.3.3 of Intel 64 and IA-32
 * Architectures Software Developer’s Manual Volume 3B.
1705 1706 1707
 * Nehalem are defined as family 0x06, model 0x1a
 *
 * The MCA registers used here are the following ones:
1708
 *     struct mce field	MCA Register
1709 1710 1711
 *     m->status	MSR_IA32_MC8_STATUS
 *     m->addr		MSR_IA32_MC8_ADDR
 *     m->misc		MSR_IA32_MC8_MISC
1712 1713 1714
 * In the case of Nehalem, the error information is masked at .status and .misc
 * fields
 */
1715
static void i7core_mce_output_error(struct mem_ctl_info *mci,
1716
				    const struct mce *m)
1717
{
1718
	struct i7core_pvt *pvt = mci->pvt_info;
1719
	char *type, *optype, *err, msg[80];
1720
	enum hw_event_mc_err_type tp_event;
1721
	unsigned long error = m->status & 0x1ff0000l;
1722 1723
	bool uncorrected_error = m->mcgstatus & 1ll << 61;
	bool ripv = m->mcgstatus & 1;
1724
	u32 optypenum = (m->status >> 4) & 0x07;
1725
	u32 core_err_cnt = (m->status >> 38) & 0x7fff;
1726 1727 1728 1729 1730
	u32 dimm = (m->misc >> 16) & 0x3;
	u32 channel = (m->misc >> 18) & 0x3;
	u32 syndrome = m->misc >> 32;
	u32 errnum = find_first_bit(&error, 32);

1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742
	if (uncorrected_error) {
		if (ripv) {
			type = "FATAL";
			tp_event = HW_EVENT_ERR_FATAL;
		} else {
			type = "NON_FATAL";
			tp_event = HW_EVENT_ERR_UNCORRECTED;
		}
	} else {
		type = "CORRECTED";
		tp_event = HW_EVENT_ERR_CORRECTED;
	}
1743

1744
	switch (optypenum) {
1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762
	case 0:
		optype = "generic undef request";
		break;
	case 1:
		optype = "read error";
		break;
	case 2:
		optype = "write error";
		break;
	case 3:
		optype = "addr/cmd error";
		break;
	case 4:
		optype = "scrubbing error";
		break;
	default:
		optype = "reserved";
		break;
1763 1764
	}

1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794
	switch (errnum) {
	case 16:
		err = "read ECC error";
		break;
	case 17:
		err = "RAS ECC error";
		break;
	case 18:
		err = "write parity error";
		break;
	case 19:
		err = "redundacy loss";
		break;
	case 20:
		err = "reserved";
		break;
	case 21:
		err = "memory range error";
		break;
	case 22:
		err = "RTID out of range";
		break;
	case 23:
		err = "address parity error";
		break;
	case 24:
		err = "byte enable parity error";
		break;
	default:
		err = "unknown";
1795 1796
	}

1797
	snprintf(msg, sizeof(msg), "count=%d %s", core_err_cnt, optype);
1798

1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810
	/*
	 * Call the helper to output message
	 * FIXME: what to do if core_err_cnt > 1? Currently, it generates
	 * only one event
	 */
	if (uncorrected_error || !pvt->is_registered)
		edac_mc_handle_error(tp_event, mci,
				     m->addr >> PAGE_SHIFT,
				     m->addr & ~PAGE_MASK,
				     syndrome,
				     channel, dimm, -1,
				     err, msg, m);
1811 1812
}

1813 1814 1815 1816 1817 1818
/*
 *	i7core_check_error	Retrieve and process errors reported by the
 *				hardware. Called by the Core module.
 */
static void i7core_check_error(struct mem_ctl_info *mci)
{
1819 1820 1821
	struct i7core_pvt *pvt = mci->pvt_info;
	int i;
	unsigned count = 0;
1822
	struct mce *m;
1823

1824 1825 1826
	/*
	 * MCE first step: Copy all mce errors into a temporary buffer
	 * We use a double buffering here, to reduce the risk of
L
Lucas De Marchi 已提交
1827
	 * losing an error.
1828 1829
	 */
	smp_rmb();
1830 1831
	count = (pvt->mce_out + MCE_LOG_LEN - pvt->mce_in)
		% MCE_LOG_LEN;
1832
	if (!count)
1833
		goto check_ce_error;
1834

1835
	m = pvt->mce_outentry;
1836 1837
	if (pvt->mce_in + count > MCE_LOG_LEN) {
		unsigned l = MCE_LOG_LEN - pvt->mce_in;
1838

1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855
		memcpy(m, &pvt->mce_entry[pvt->mce_in], sizeof(*m) * l);
		smp_wmb();
		pvt->mce_in = 0;
		count -= l;
		m += l;
	}
	memcpy(m, &pvt->mce_entry[pvt->mce_in], sizeof(*m) * count);
	smp_wmb();
	pvt->mce_in += count;

	smp_rmb();
	if (pvt->mce_overrun) {
		i7core_printk(KERN_ERR, "Lost %d memory errors\n",
			      pvt->mce_overrun);
		smp_wmb();
		pvt->mce_overrun = 0;
	}
1856

1857 1858 1859
	/*
	 * MCE second step: parse errors and display
	 */
1860
	for (i = 0; i < count; i++)
1861
		i7core_mce_output_error(mci, &pvt->mce_outentry[i]);
1862

1863 1864 1865
	/*
	 * Now, let's increment CE error counts
	 */
1866
check_ce_error:
1867 1868 1869 1870
	if (!pvt->is_registered)
		i7core_udimm_check_mc_ecc_err(mci);
	else
		i7core_rdimm_check_mc_ecc_err(mci);
1871 1872
}

1873 1874 1875 1876 1877
/*
 * i7core_mce_check_error	Replicates mcelog routine to get errors
 *				This routine simply queues mcelog errors, and
 *				return. The error itself should be handled later
 *				by i7core_check_error.
1878 1879
 * WARNING: As this routine should be called at NMI time, extra care should
 * be taken to avoid deadlocks, and to be as fast as possible.
1880
 */
1881 1882
static int i7core_mce_check_error(struct notifier_block *nb, unsigned long val,
				  void *data)
1883
{
1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894
	struct mce *mce = (struct mce *)data;
	struct i7core_dev *i7_dev;
	struct mem_ctl_info *mci;
	struct i7core_pvt *pvt;

	i7_dev = get_i7core_dev(mce->socketid);
	if (!i7_dev)
		return NOTIFY_BAD;

	mci = i7_dev->mci;
	pvt = mci->pvt_info;
1895

1896 1897 1898 1899 1900
	/*
	 * Just let mcelog handle it if the error is
	 * outside the memory controller
	 */
	if (((mce->status & 0xffff) >> 7) != 1)
1901
		return NOTIFY_DONE;
1902

1903 1904
	/* Bank 8 registers are the only ones that we know how to handle */
	if (mce->bank != 8)
1905
		return NOTIFY_DONE;
1906

R
Randy Dunlap 已提交
1907
#ifdef CONFIG_SMP
1908
	/* Only handle if it is the right mc controller */
1909
	if (mce->socketid != pvt->i7core_dev->socket)
1910
		return NOTIFY_DONE;
R
Randy Dunlap 已提交
1911
#endif
1912

1913
	smp_rmb();
1914
	if ((pvt->mce_out + 1) % MCE_LOG_LEN == pvt->mce_in) {
1915 1916
		smp_wmb();
		pvt->mce_overrun++;
1917
		return NOTIFY_DONE;
1918
	}
1919 1920 1921

	/* Copy memory error at the ringbuffer */
	memcpy(&pvt->mce_entry[pvt->mce_out], mce, sizeof(*mce));
1922
	smp_wmb();
1923
	pvt->mce_out = (pvt->mce_out + 1) % MCE_LOG_LEN;
1924

1925 1926 1927 1928
	/* Handle fatal errors immediately */
	if (mce->mcgstatus & 1)
		i7core_check_error(mci);

D
David Sterba 已提交
1929
	/* Advise mcelog that the errors were handled */
1930
	return NOTIFY_STOP;
1931 1932
}

1933 1934 1935 1936
static struct notifier_block i7_mce_dec = {
	.notifier_call	= i7core_mce_check_error,
};

N
Nils Carlson 已提交
1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042
struct memdev_dmi_entry {
	u8 type;
	u8 length;
	u16 handle;
	u16 phys_mem_array_handle;
	u16 mem_err_info_handle;
	u16 total_width;
	u16 data_width;
	u16 size;
	u8 form;
	u8 device_set;
	u8 device_locator;
	u8 bank_locator;
	u8 memory_type;
	u16 type_detail;
	u16 speed;
	u8 manufacturer;
	u8 serial_number;
	u8 asset_tag;
	u8 part_number;
	u8 attributes;
	u32 extended_size;
	u16 conf_mem_clk_speed;
} __attribute__((__packed__));


/*
 * Decode the DRAM Clock Frequency, be paranoid, make sure that all
 * memory devices show the same speed, and if they don't then consider
 * all speeds to be invalid.
 */
static void decode_dclk(const struct dmi_header *dh, void *_dclk_freq)
{
	int *dclk_freq = _dclk_freq;
	u16 dmi_mem_clk_speed;

	if (*dclk_freq == -1)
		return;

	if (dh->type == DMI_ENTRY_MEM_DEVICE) {
		struct memdev_dmi_entry *memdev_dmi_entry =
			(struct memdev_dmi_entry *)dh;
		unsigned long conf_mem_clk_speed_offset =
			(unsigned long)&memdev_dmi_entry->conf_mem_clk_speed -
			(unsigned long)&memdev_dmi_entry->type;
		unsigned long speed_offset =
			(unsigned long)&memdev_dmi_entry->speed -
			(unsigned long)&memdev_dmi_entry->type;

		/* Check that a DIMM is present */
		if (memdev_dmi_entry->size == 0)
			return;

		/*
		 * Pick the configured speed if it's available, otherwise
		 * pick the DIMM speed, or we don't have a speed.
		 */
		if (memdev_dmi_entry->length > conf_mem_clk_speed_offset) {
			dmi_mem_clk_speed =
				memdev_dmi_entry->conf_mem_clk_speed;
		} else if (memdev_dmi_entry->length > speed_offset) {
			dmi_mem_clk_speed = memdev_dmi_entry->speed;
		} else {
			*dclk_freq = -1;
			return;
		}

		if (*dclk_freq == 0) {
			/* First pass, speed was 0 */
			if (dmi_mem_clk_speed > 0) {
				/* Set speed if a valid speed is read */
				*dclk_freq = dmi_mem_clk_speed;
			} else {
				/* Otherwise we don't have a valid speed */
				*dclk_freq = -1;
			}
		} else if (*dclk_freq > 0 &&
			   *dclk_freq != dmi_mem_clk_speed) {
			/*
			 * If we have a speed, check that all DIMMS are the same
			 * speed, otherwise set the speed as invalid.
			 */
			*dclk_freq = -1;
		}
	}
}

/*
 * The default DCLK frequency is used as a fallback if we
 * fail to find anything reliable in the DMI. The value
 * is taken straight from the datasheet.
 */
#define DEFAULT_DCLK_FREQ 800

static int get_dclk_freq(void)
{
	int dclk_freq = 0;

	dmi_walk(decode_dclk, (void *)&dclk_freq);

	if (dclk_freq < 1)
		return DEFAULT_DCLK_FREQ;

	return dclk_freq;
}

2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065
/*
 * set_sdram_scrub_rate		This routine sets byte/sec bandwidth scrub rate
 *				to hardware according to SCRUBINTERVAL formula
 *				found in datasheet.
 */
static int set_sdram_scrub_rate(struct mem_ctl_info *mci, u32 new_bw)
{
	struct i7core_pvt *pvt = mci->pvt_info;
	struct pci_dev *pdev;
	u32 dw_scrub;
	u32 dw_ssr;

	/* Get data from the MC register, function 2 */
	pdev = pvt->pci_mcr[2];
	if (!pdev)
		return -ENODEV;

	pci_read_config_dword(pdev, MC_SCRUB_CONTROL, &dw_scrub);

	if (new_bw == 0) {
		/* Prepare to disable petrol scrub */
		dw_scrub &= ~STARTSCRUB;
		/* Stop the patrol scrub engine */
N
Nils Carlson 已提交
2066 2067
		write_and_test(pdev, MC_SCRUB_CONTROL,
			       dw_scrub & ~SCRUBINTERVAL_MASK);
2068 2069 2070 2071 2072 2073

		/* Get current status of scrub rate and set bit to disable */
		pci_read_config_dword(pdev, MC_SSRCONTROL, &dw_ssr);
		dw_ssr &= ~SSR_MODE_MASK;
		dw_ssr |= SSR_MODE_DISABLE;
	} else {
N
Nils Carlson 已提交
2074 2075 2076
		const int cache_line_size = 64;
		const u32 freq_dclk_mhz = pvt->dclk_freq;
		unsigned long long scrub_interval;
2077 2078
		/*
		 * Translate the desired scrub rate to a register value and
N
Nils Carlson 已提交
2079
		 * program the corresponding register value.
2080
		 */
N
Nils Carlson 已提交
2081
		scrub_interval = (unsigned long long)freq_dclk_mhz *
2082 2083
			cache_line_size * 1000000;
		do_div(scrub_interval, new_bw);
N
Nils Carlson 已提交
2084 2085 2086 2087 2088

		if (!scrub_interval || scrub_interval > SCRUBINTERVAL_MASK)
			return -EINVAL;

		dw_scrub = SCRUBINTERVAL_MASK & scrub_interval;
2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114

		/* Start the patrol scrub engine */
		pci_write_config_dword(pdev, MC_SCRUB_CONTROL,
				       STARTSCRUB | dw_scrub);

		/* Get current status of scrub rate and set bit to enable */
		pci_read_config_dword(pdev, MC_SSRCONTROL, &dw_ssr);
		dw_ssr &= ~SSR_MODE_MASK;
		dw_ssr |= SSR_MODE_ENABLE;
	}
	/* Disable or enable scrubbing */
	pci_write_config_dword(pdev, MC_SSRCONTROL, dw_ssr);

	return new_bw;
}

/*
 * get_sdram_scrub_rate		This routine convert current scrub rate value
 *				into byte/sec bandwidth accourding to
 *				SCRUBINTERVAL formula found in datasheet.
 */
static int get_sdram_scrub_rate(struct mem_ctl_info *mci)
{
	struct i7core_pvt *pvt = mci->pvt_info;
	struct pci_dev *pdev;
	const u32 cache_line_size = 64;
N
Nils Carlson 已提交
2115 2116
	const u32 freq_dclk_mhz = pvt->dclk_freq;
	unsigned long long scrub_rate;
2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127
	u32 scrubval;

	/* Get data from the MC register, function 2 */
	pdev = pvt->pci_mcr[2];
	if (!pdev)
		return -ENODEV;

	/* Get current scrub control data */
	pci_read_config_dword(pdev, MC_SCRUB_CONTROL, &scrubval);

	/* Mask highest 8-bits to 0 */
N
Nils Carlson 已提交
2128
	scrubval &=  SCRUBINTERVAL_MASK;
2129 2130 2131 2132
	if (!scrubval)
		return 0;

	/* Calculate scrub rate value into byte/sec bandwidth */
N
Nils Carlson 已提交
2133
	scrub_rate =  (unsigned long long)freq_dclk_mhz *
2134 2135
		1000000 * cache_line_size;
	do_div(scrub_rate, scrubval);
N
Nils Carlson 已提交
2136
	return (int)scrub_rate;
2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165
}

static void enable_sdram_scrub_setting(struct mem_ctl_info *mci)
{
	struct i7core_pvt *pvt = mci->pvt_info;
	u32 pci_lock;

	/* Unlock writes to pci registers */
	pci_read_config_dword(pvt->pci_noncore, MC_CFG_CONTROL, &pci_lock);
	pci_lock &= ~0x3;
	pci_write_config_dword(pvt->pci_noncore, MC_CFG_CONTROL,
			       pci_lock | MC_CFG_UNLOCK);

	mci->set_sdram_scrub_rate = set_sdram_scrub_rate;
	mci->get_sdram_scrub_rate = get_sdram_scrub_rate;
}

static void disable_sdram_scrub_setting(struct mem_ctl_info *mci)
{
	struct i7core_pvt *pvt = mci->pvt_info;
	u32 pci_lock;

	/* Lock writes to pci registers */
	pci_read_config_dword(pvt->pci_noncore, MC_CFG_CONTROL, &pci_lock);
	pci_lock &= ~0x3;
	pci_write_config_dword(pvt->pci_noncore, MC_CFG_CONTROL,
			       pci_lock | MC_CFG_LOCK);
}

2166 2167 2168 2169 2170 2171
static void i7core_pci_ctl_create(struct i7core_pvt *pvt)
{
	pvt->i7core_pci = edac_pci_create_generic_ctl(
						&pvt->i7core_dev->pdev[0]->dev,
						EDAC_MOD_STR);
	if (unlikely(!pvt->i7core_pci))
2172 2173
		i7core_printk(KERN_WARNING,
			      "Unable to setup PCI error report via EDAC\n");
2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186
}

static void i7core_pci_ctl_release(struct i7core_pvt *pvt)
{
	if (likely(pvt->i7core_pci))
		edac_pci_release_generic_ctl(pvt->i7core_pci);
	else
		i7core_printk(KERN_ERR,
				"Couldn't find mem_ctl_info for socket %d\n",
				pvt->i7core_dev->socket);
	pvt->i7core_pci = NULL;
}

2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204
static void i7core_unregister_mci(struct i7core_dev *i7core_dev)
{
	struct mem_ctl_info *mci = i7core_dev->mci;
	struct i7core_pvt *pvt;

	if (unlikely(!mci || !mci->pvt_info)) {
		debugf0("MC: " __FILE__ ": %s(): dev = %p\n",
			__func__, &i7core_dev->pdev[0]->dev);

		i7core_printk(KERN_ERR, "Couldn't find mci handler\n");
		return;
	}

	pvt = mci->pvt_info;

	debugf0("MC: " __FILE__ ": %s(): mci = %p, dev = %p\n",
		__func__, mci, &i7core_dev->pdev[0]->dev);

2205
	/* Disable scrubrate setting */
2206 2207
	if (pvt->enable_scrub)
		disable_sdram_scrub_setting(mci);
2208

2209
	mce_unregister_decode_chain(&i7_mce_dec);
2210 2211 2212 2213 2214

	/* Disable EDAC polling */
	i7core_pci_ctl_release(pvt);

	/* Remove MC sysfs nodes */
2215
	i7core_delete_sysfs_devices(mci);
2216
	edac_mc_del_mc(mci->pdev);
2217 2218 2219 2220 2221 2222 2223

	debugf1("%s: free mci struct\n", mci->ctl_name);
	kfree(mci->ctl_name);
	edac_mc_free(mci);
	i7core_dev->mci = NULL;
}

2224
static int i7core_register_mci(struct i7core_dev *i7core_dev)
2225 2226 2227
{
	struct mem_ctl_info *mci;
	struct i7core_pvt *pvt;
2228 2229
	int rc;
	struct edac_mc_layer layers[2];
2230 2231

	/* allocate a new MC control structure */
2232 2233 2234 2235 2236 2237 2238

	layers[0].type = EDAC_MC_LAYER_CHANNEL;
	layers[0].size = NUM_CHANS;
	layers[0].is_virt_csrow = false;
	layers[1].type = EDAC_MC_LAYER_SLOT;
	layers[1].size = MAX_DIMMS;
	layers[1].is_virt_csrow = true;
2239
	mci = edac_mc_alloc(i7core_dev->socket, ARRAY_SIZE(layers), layers,
2240
			    sizeof(*pvt));
2241 2242
	if (unlikely(!mci))
		return -ENOMEM;
2243

2244 2245
	debugf0("MC: " __FILE__ ": %s(): mci = %p, dev = %p\n",
		__func__, mci, &i7core_dev->pdev[0]->dev);
2246 2247

	pvt = mci->pvt_info;
2248
	memset(pvt, 0, sizeof(*pvt));
2249

2250 2251 2252 2253
	/* Associates i7core_dev and mci for future usage */
	pvt->i7core_dev = i7core_dev;
	i7core_dev->mci = mci;

2254 2255 2256 2257 2258 2259
	/*
	 * FIXME: how to handle RDDR3 at MCI level? It is possible to have
	 * Mixed RDDR3/UDDR3 with Nehalem, provided that they are on different
	 * memory channels
	 */
	mci->mtype_cap = MEM_FLAG_DDR3;
2260 2261 2262 2263
	mci->edac_ctl_cap = EDAC_FLAG_NONE;
	mci->edac_cap = EDAC_FLAG_NONE;
	mci->mod_name = "i7core_edac.c";
	mci->mod_ver = I7CORE_REVISION;
2264 2265 2266
	mci->ctl_name = kasprintf(GFP_KERNEL, "i7 core #%d",
				  i7core_dev->socket);
	mci->dev_name = pci_name(i7core_dev->pdev[0]);
2267
	mci->ctl_page_to_phys = NULL;
2268

2269
	/* Store pci devices at mci for faster access */
2270
	rc = mci_bind_devs(mci, i7core_dev);
2271
	if (unlikely(rc < 0))
2272
		goto fail0;
2273

2274

2275
	/* Get dimm basic config */
2276
	get_dimm_config(mci);
2277
	/* record ptr to the generic device */
2278
	mci->pdev = &i7core_dev->pdev[0]->dev;
2279 2280
	/* Set the function pointer to an actual operation function */
	mci->edac_check = i7core_check_error;
2281

2282
	/* Enable scrubrate setting */
2283 2284
	if (pvt->enable_scrub)
		enable_sdram_scrub_setting(mci);
2285

2286
	/* add this new MC control structure to EDAC's list of MCs */
2287
	if (unlikely(edac_mc_add_mc(mci))) {
2288 2289 2290 2291 2292
		debugf0("MC: " __FILE__
			": %s(): failed edac_mc_add_mc()\n", __func__);
		/* FIXME: perhaps some code should go here that disables error
		 * reporting if we just enabled it
		 */
2293 2294

		rc = -EINVAL;
2295
		goto fail0;
2296
	}
2297 2298 2299 2300 2301 2302 2303
	if (i7core_create_sysfs_devices(mci)) {
		debugf0("MC: " __FILE__
			": %s(): failed to create sysfs nodes\n", __func__);
		edac_mc_del_mc(mci->pdev);
		rc = -EINVAL;
		goto fail0;
	}
2304

2305
	/* Default error mask is any memory */
2306
	pvt->inject.channel = 0;
2307 2308 2309 2310 2311 2312
	pvt->inject.dimm = -1;
	pvt->inject.rank = -1;
	pvt->inject.bank = -1;
	pvt->inject.page = -1;
	pvt->inject.col = -1;

2313 2314 2315
	/* allocating generic PCI control info */
	i7core_pci_ctl_create(pvt);

N
Nils Carlson 已提交
2316 2317 2318
	/* DCLK for scrub rate setting */
	pvt->dclk_freq = get_dclk_freq();

2319
	mce_register_decode_chain(&i7_mce_dec);
2320

2321 2322 2323 2324 2325
	return 0;

fail0:
	kfree(mci->ctl_name);
	edac_mc_free(mci);
2326
	i7core_dev->mci = NULL;
2327 2328 2329 2330 2331 2332 2333 2334 2335 2336
	return rc;
}

/*
 *	i7core_probe	Probe for ONE instance of device to see if it is
 *			present.
 *	return:
 *		0 for FOUND a device
 *		< 0 for error code
 */
2337

2338 2339 2340
static int __devinit i7core_probe(struct pci_dev *pdev,
				  const struct pci_device_id *id)
{
2341
	int rc, count = 0;
2342 2343
	struct i7core_dev *i7core_dev;

2344 2345 2346
	/* get the pci devices we want to reserve for our use */
	mutex_lock(&i7core_edac_lock);

2347
	/*
2348
	 * All memory controllers are allocated at the first pass.
2349
	 */
2350 2351
	if (unlikely(probed >= 1)) {
		mutex_unlock(&i7core_edac_lock);
2352
		return -ENODEV;
2353 2354
	}
	probed++;
2355

2356
	rc = i7core_get_all_devices();
2357 2358 2359 2360
	if (unlikely(rc < 0))
		goto fail0;

	list_for_each_entry(i7core_dev, &i7core_edac_list, list) {
2361
		count++;
2362
		rc = i7core_register_mci(i7core_dev);
2363 2364
		if (unlikely(rc < 0))
			goto fail1;
2365 2366
	}

2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382
	/*
	 * Nehalem-EX uses a different memory controller. However, as the
	 * memory controller is not visible on some Nehalem/Nehalem-EP, we
	 * need to indirectly probe via a X58 PCI device. The same devices
	 * are found on (some) Nehalem-EX. So, on those machines, the
	 * probe routine needs to return -ENODEV, as the actual Memory
	 * Controller registers won't be detected.
	 */
	if (!count) {
		rc = -ENODEV;
		goto fail1;
	}

	i7core_printk(KERN_INFO,
		      "Driver loaded, %d memory controller(s) found.\n",
		      count);
2383

2384
	mutex_unlock(&i7core_edac_lock);
2385 2386
	return 0;

2387
fail1:
2388 2389 2390
	list_for_each_entry(i7core_dev, &i7core_edac_list, list)
		i7core_unregister_mci(i7core_dev);

2391
	i7core_put_all_devices();
2392 2393
fail0:
	mutex_unlock(&i7core_edac_lock);
2394
	return rc;
2395 2396 2397 2398 2399 2400 2401 2402
}

/*
 *	i7core_remove	destructor for one instance of device
 *
 */
static void __devexit i7core_remove(struct pci_dev *pdev)
{
2403
	struct i7core_dev *i7core_dev;
2404 2405 2406

	debugf0(__FILE__ ": %s()\n", __func__);

2407 2408 2409 2410 2411 2412 2413
	/*
	 * we have a trouble here: pdev value for removal will be wrong, since
	 * it will point to the X58 register used to detect that the machine
	 * is a Nehalem or upper design. However, due to the way several PCI
	 * devices are grouped together to provide MC functionality, we need
	 * to use a different method for releasing the devices
	 */
2414

2415
	mutex_lock(&i7core_edac_lock);
2416 2417 2418 2419 2420 2421

	if (unlikely(!probed)) {
		mutex_unlock(&i7core_edac_lock);
		return;
	}

2422 2423
	list_for_each_entry(i7core_dev, &i7core_edac_list, list)
		i7core_unregister_mci(i7core_dev);
2424 2425 2426 2427

	/* Release PCI resources */
	i7core_put_all_devices();

2428 2429
	probed--;

2430
	mutex_unlock(&i7core_edac_lock);
2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458
}

MODULE_DEVICE_TABLE(pci, i7core_pci_tbl);

/*
 *	i7core_driver	pci_driver structure for this module
 *
 */
static struct pci_driver i7core_driver = {
	.name     = "i7core_edac",
	.probe    = i7core_probe,
	.remove   = __devexit_p(i7core_remove),
	.id_table = i7core_pci_tbl,
};

/*
 *	i7core_init		Module entry function
 *			Try to initialize this module for its devices
 */
static int __init i7core_init(void)
{
	int pci_rc;

	debugf2("MC: " __FILE__ ": %s()\n", __func__);

	/* Ensure that the OPSTATE is set correctly for POLL or NMI */
	opstate_init();

2459 2460
	if (use_pci_fixup)
		i7core_xeon_pci_fixup(pci_dev_table);
2461

2462 2463
	pci_rc = pci_register_driver(&i7core_driver);

2464 2465 2466 2467 2468 2469 2470
	if (pci_rc >= 0)
		return 0;

	i7core_printk(KERN_ERR, "Failed to register device with error %d.\n",
		      pci_rc);

	return pci_rc;
2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493
}

/*
 *	i7core_exit()	Module exit function
 *			Unregister the driver
 */
static void __exit i7core_exit(void)
{
	debugf2("MC: " __FILE__ ": %s()\n", __func__);
	pci_unregister_driver(&i7core_driver);
}

module_init(i7core_init);
module_exit(i7core_exit);

MODULE_LICENSE("GPL");
MODULE_AUTHOR("Mauro Carvalho Chehab <mchehab@redhat.com>");
MODULE_AUTHOR("Red Hat Inc. (http://www.redhat.com)");
MODULE_DESCRIPTION("MC Driver for Intel i7 Core memory controllers - "
		   I7CORE_REVISION);

module_param(edac_op_state, int, 0444);
MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");