vmscan.c 124.0 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
L
Linus Torvalds 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14
/*
 *  linux/mm/vmscan.c
 *
 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 *
 *  Swap reorganised 29.12.95, Stephen Tweedie.
 *  kswapd added: 7.1.96  sct
 *  Removed kswapd_ctl limits, and swap out as many pages as needed
 *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
 *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
 *  Multiqueue VM started 5.8.00, Rik van Riel.
 */

15 16
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

L
Linus Torvalds 已提交
17
#include <linux/mm.h>
18
#include <linux/sched/mm.h>
L
Linus Torvalds 已提交
19
#include <linux/module.h>
20
#include <linux/gfp.h>
L
Linus Torvalds 已提交
21 22 23 24 25
#include <linux/kernel_stat.h>
#include <linux/swap.h>
#include <linux/pagemap.h>
#include <linux/init.h>
#include <linux/highmem.h>
26
#include <linux/vmpressure.h>
27
#include <linux/vmstat.h>
L
Linus Torvalds 已提交
28 29 30 31 32 33 34 35 36 37 38
#include <linux/file.h>
#include <linux/writeback.h>
#include <linux/blkdev.h>
#include <linux/buffer_head.h>	/* for try_to_release_page(),
					buffer_heads_over_limit */
#include <linux/mm_inline.h>
#include <linux/backing-dev.h>
#include <linux/rmap.h>
#include <linux/topology.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
39
#include <linux/compaction.h>
L
Linus Torvalds 已提交
40 41
#include <linux/notifier.h>
#include <linux/rwsem.h>
42
#include <linux/delay.h>
43
#include <linux/kthread.h>
44
#include <linux/freezer.h>
45
#include <linux/memcontrol.h>
46
#include <linux/delayacct.h>
47
#include <linux/sysctl.h>
48
#include <linux/oom.h>
49
#include <linux/prefetch.h>
50
#include <linux/printk.h>
51
#include <linux/dax.h>
52
#include <linux/psi.h>
L
Linus Torvalds 已提交
53 54 55 56 57

#include <asm/tlbflush.h>
#include <asm/div64.h>

#include <linux/swapops.h>
58
#include <linux/balloon_compaction.h>
L
Linus Torvalds 已提交
59

60 61
#include "internal.h"

62 63 64
#define CREATE_TRACE_POINTS
#include <trace/events/vmscan.h>

L
Linus Torvalds 已提交
65
struct scan_control {
66 67 68
	/* How many pages shrink_list() should reclaim */
	unsigned long nr_to_reclaim;

69 70 71 72 73
	/*
	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
	 * are scanned.
	 */
	nodemask_t	*nodemask;
74

75 76 77 78 79
	/*
	 * The memory cgroup that hit its limit and as a result is the
	 * primary target of this reclaim invocation.
	 */
	struct mem_cgroup *target_mem_cgroup;
80

81
	/* Writepage batching in laptop mode; RECLAIM_WRITE */
82 83 84 85 86 87 88 89
	unsigned int may_writepage:1;

	/* Can mapped pages be reclaimed? */
	unsigned int may_unmap:1;

	/* Can pages be swapped as part of reclaim? */
	unsigned int may_swap:1;

90 91 92 93 94 95 96
	/*
	 * Cgroups are not reclaimed below their configured memory.low,
	 * unless we threaten to OOM. If any cgroups are skipped due to
	 * memory.low and nothing was reclaimed, go back for memory.low.
	 */
	unsigned int memcg_low_reclaim:1;
	unsigned int memcg_low_skipped:1;
97

98 99 100 101 102
	unsigned int hibernation_mode:1;

	/* One of the zones is ready for compaction */
	unsigned int compaction_ready:1;

G
Greg Thelen 已提交
103 104 105 106 107 108 109 110 111 112 113 114
	/* Allocation order */
	s8 order;

	/* Scan (total_size >> priority) pages at once */
	s8 priority;

	/* The highest zone to isolate pages for reclaim from */
	s8 reclaim_idx;

	/* This context's GFP mask */
	gfp_t gfp_mask;

115 116 117 118 119
	/* Incremented by the number of inactive pages that were scanned */
	unsigned long nr_scanned;

	/* Number of pages freed so far during a call to shrink_zones() */
	unsigned long nr_reclaimed;
120 121 122 123 124 125 126 127 128 129

	struct {
		unsigned int dirty;
		unsigned int unqueued_dirty;
		unsigned int congested;
		unsigned int writeback;
		unsigned int immediate;
		unsigned int file_taken;
		unsigned int taken;
	} nr;
L
Linus Torvalds 已提交
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
};

#ifdef ARCH_HAS_PREFETCH
#define prefetch_prev_lru_page(_page, _base, _field)			\
	do {								\
		if ((_page)->lru.prev != _base) {			\
			struct page *prev;				\
									\
			prev = lru_to_page(&(_page->lru));		\
			prefetch(&prev->_field);			\
		}							\
	} while (0)
#else
#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
#endif

#ifdef ARCH_HAS_PREFETCHW
#define prefetchw_prev_lru_page(_page, _base, _field)			\
	do {								\
		if ((_page)->lru.prev != _base) {			\
			struct page *prev;				\
									\
			prev = lru_to_page(&(_page->lru));		\
			prefetchw(&prev->_field);			\
		}							\
	} while (0)
#else
#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
#endif

/*
 * From 0 .. 100.  Higher means more swappy.
 */
int vm_swappiness = 60;
164 165 166 167 168
/*
 * The total number of pages which are beyond the high watermark within all
 * zones.
 */
unsigned long vm_total_pages;
L
Linus Torvalds 已提交
169 170 171 172

static LIST_HEAD(shrinker_list);
static DECLARE_RWSEM(shrinker_rwsem);

173
#ifdef CONFIG_MEMCG
174 175 176 177 178 179 180 181 182 183 184 185 186
/*
 * We allow subsystems to populate their shrinker-related
 * LRU lists before register_shrinker_prepared() is called
 * for the shrinker, since we don't want to impose
 * restrictions on their internal registration order.
 * In this case shrink_slab_memcg() may find corresponding
 * bit is set in the shrinkers map.
 *
 * This value is used by the function to detect registering
 * shrinkers and to skip do_shrink_slab() calls for them.
 */
#define SHRINKER_REGISTERING ((struct shrinker *)~0UL)

187 188 189 190 191 192 193 194 195
static DEFINE_IDR(shrinker_idr);
static int shrinker_nr_max;

static int prealloc_memcg_shrinker(struct shrinker *shrinker)
{
	int id, ret = -ENOMEM;

	down_write(&shrinker_rwsem);
	/* This may call shrinker, so it must use down_read_trylock() */
196
	id = idr_alloc(&shrinker_idr, SHRINKER_REGISTERING, 0, 0, GFP_KERNEL);
197 198 199
	if (id < 0)
		goto unlock;

200 201 202 203 204 205
	if (id >= shrinker_nr_max) {
		if (memcg_expand_shrinker_maps(id)) {
			idr_remove(&shrinker_idr, id);
			goto unlock;
		}

206
		shrinker_nr_max = id + 1;
207
	}
208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
	shrinker->id = id;
	ret = 0;
unlock:
	up_write(&shrinker_rwsem);
	return ret;
}

static void unregister_memcg_shrinker(struct shrinker *shrinker)
{
	int id = shrinker->id;

	BUG_ON(id < 0);

	down_write(&shrinker_rwsem);
	idr_remove(&shrinker_idr, id);
	up_write(&shrinker_rwsem);
}

226 227
static bool global_reclaim(struct scan_control *sc)
{
228
	return !sc->target_mem_cgroup;
229
}
230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250

/**
 * sane_reclaim - is the usual dirty throttling mechanism operational?
 * @sc: scan_control in question
 *
 * The normal page dirty throttling mechanism in balance_dirty_pages() is
 * completely broken with the legacy memcg and direct stalling in
 * shrink_page_list() is used for throttling instead, which lacks all the
 * niceties such as fairness, adaptive pausing, bandwidth proportional
 * allocation and configurability.
 *
 * This function tests whether the vmscan currently in progress can assume
 * that the normal dirty throttling mechanism is operational.
 */
static bool sane_reclaim(struct scan_control *sc)
{
	struct mem_cgroup *memcg = sc->target_mem_cgroup;

	if (!memcg)
		return true;
#ifdef CONFIG_CGROUP_WRITEBACK
251
	/* Cloud Kernel has cgroup writeback support for v1 */
252 253
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) ||
	    cgwb_v1)
254 255 256 257
		return true;
#endif
	return false;
}
258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278

static void set_memcg_congestion(pg_data_t *pgdat,
				struct mem_cgroup *memcg,
				bool congested)
{
	struct mem_cgroup_per_node *mn;

	if (!memcg)
		return;

	mn = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
	WRITE_ONCE(mn->congested, congested);
}

static bool memcg_congested(pg_data_t *pgdat,
			struct mem_cgroup *memcg)
{
	struct mem_cgroup_per_node *mn;

	mn = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
	return READ_ONCE(mn->congested);
279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
}

static void set_memcg_dirty(pg_data_t *pgdat,
				struct mem_cgroup *memcg,
				bool dirty)
{
	struct mem_cgroup_per_node *mn;

	if (!memcg)
		return;

	mn = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
	WRITE_ONCE(mn->dirty, dirty);
}

static bool memcg_dirty(pg_data_t *pgdat,
			struct mem_cgroup *memcg)
{
	struct mem_cgroup_per_node *mn;

	mn = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
	return READ_ONCE(mn->dirty);
}

static void set_memcg_writeback(pg_data_t *pgdat,
				struct mem_cgroup *memcg,
				bool writeback)
{
	struct mem_cgroup_per_node *mn;
308

309 310 311 312 313 314 315 316 317 318 319 320 321 322
	if (!memcg)
		return;

	mn = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
	WRITE_ONCE(mn->writeback, writeback);
}

static bool memcg_writeback(pg_data_t *pgdat,
				struct mem_cgroup *memcg)
{
	struct mem_cgroup_per_node *mn;

	mn = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
	return READ_ONCE(mn->writeback);
323
}
324
#else
325 326 327 328 329 330 331 332 333
static int prealloc_memcg_shrinker(struct shrinker *shrinker)
{
	return 0;
}

static void unregister_memcg_shrinker(struct shrinker *shrinker)
{
}

334 335 336 337
static bool global_reclaim(struct scan_control *sc)
{
	return true;
}
338 339 340 341 342

static bool sane_reclaim(struct scan_control *sc)
{
	return true;
}
343 344 345 346 347 348 349 350 351 352

static inline void set_memcg_congestion(struct pglist_data *pgdat,
				struct mem_cgroup *memcg, bool congested)
{
}

static inline bool memcg_congested(struct pglist_data *pgdat,
			struct mem_cgroup *memcg)
{
	return false;
353 354 355 356 357 358 359 360 361 362 363 364
}

static inline void set_memcg_dirty(struct pglist_data *pgdat,
				struct mem_cgroup *memcg, bool dirty)
{
}

static inline bool memcg_dirty(struct pglist_data *pgdat,
			struct mem_cgroup *memcg)
{
	return false;
}
365

366 367 368 369 370 371 372 373 374
static inline void set_memcg_writeback(struct pglist_data *pgdat,
				struct mem_cgroup *memcg, bool writeback)
{
}

static inline bool memcg_writeback(struct pglist_data *pgdat,
			struct mem_cgroup *memcg)
{
	return false;
375
}
376 377
#endif

378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395
/*
 * This misses isolated pages which are not accounted for to save counters.
 * As the data only determines if reclaim or compaction continues, it is
 * not expected that isolated pages will be a dominating factor.
 */
unsigned long zone_reclaimable_pages(struct zone *zone)
{
	unsigned long nr;

	nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
		zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
	if (get_nr_swap_pages() > 0)
		nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
			zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);

	return nr;
}

396 397 398 399 400 401 402
/**
 * lruvec_lru_size -  Returns the number of pages on the given LRU list.
 * @lruvec: lru vector
 * @lru: lru to use
 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
 */
unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx)
403
{
404 405 406
	unsigned long lru_size;
	int zid;

407
	if (!mem_cgroup_disabled())
408 409 410
		lru_size = mem_cgroup_get_lru_size(lruvec, lru);
	else
		lru_size = node_page_state(lruvec_pgdat(lruvec), NR_LRU_BASE + lru);
411

412 413 414
	for (zid = zone_idx + 1; zid < MAX_NR_ZONES; zid++) {
		struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
		unsigned long size;
415

416 417 418 419 420 421 422 423 424 425 426 427
		if (!managed_zone(zone))
			continue;

		if (!mem_cgroup_disabled())
			size = mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
		else
			size = zone_page_state(&lruvec_pgdat(lruvec)->node_zones[zid],
				       NR_ZONE_LRU_BASE + lru);
		lru_size -= min(size, lru_size);
	}

	return lru_size;
428 429 430

}

L
Linus Torvalds 已提交
431
/*
G
Glauber Costa 已提交
432
 * Add a shrinker callback to be called from the vm.
L
Linus Torvalds 已提交
433
 */
434
int prealloc_shrinker(struct shrinker *shrinker)
L
Linus Torvalds 已提交
435
{
G
Glauber Costa 已提交
436 437 438 439 440 441 442 443
	size_t size = sizeof(*shrinker->nr_deferred);

	if (shrinker->flags & SHRINKER_NUMA_AWARE)
		size *= nr_node_ids;

	shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
	if (!shrinker->nr_deferred)
		return -ENOMEM;
444 445 446 447 448 449

	if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
		if (prealloc_memcg_shrinker(shrinker))
			goto free_deferred;
	}

450
	return 0;
451 452 453 454 455

free_deferred:
	kfree(shrinker->nr_deferred);
	shrinker->nr_deferred = NULL;
	return -ENOMEM;
456 457 458 459
}

void free_prealloced_shrinker(struct shrinker *shrinker)
{
460 461 462 463 464 465
	if (!shrinker->nr_deferred)
		return;

	if (shrinker->flags & SHRINKER_MEMCG_AWARE)
		unregister_memcg_shrinker(shrinker);

466 467 468
	kfree(shrinker->nr_deferred);
	shrinker->nr_deferred = NULL;
}
G
Glauber Costa 已提交
469

470 471
void register_shrinker_prepared(struct shrinker *shrinker)
{
472 473
	down_write(&shrinker_rwsem);
	list_add_tail(&shrinker->list, &shrinker_list);
474
#ifdef CONFIG_MEMCG_KMEM
475 476
	if (shrinker->flags & SHRINKER_MEMCG_AWARE)
		idr_replace(&shrinker_idr, shrinker, shrinker->id);
477
#endif
478
	up_write(&shrinker_rwsem);
479 480 481 482 483 484 485 486 487
}

int register_shrinker(struct shrinker *shrinker)
{
	int err = prealloc_shrinker(shrinker);

	if (err)
		return err;
	register_shrinker_prepared(shrinker);
G
Glauber Costa 已提交
488
	return 0;
L
Linus Torvalds 已提交
489
}
490
EXPORT_SYMBOL(register_shrinker);
L
Linus Torvalds 已提交
491 492 493 494

/*
 * Remove one
 */
495
void unregister_shrinker(struct shrinker *shrinker)
L
Linus Torvalds 已提交
496
{
497 498
	if (!shrinker->nr_deferred)
		return;
499 500
	if (shrinker->flags & SHRINKER_MEMCG_AWARE)
		unregister_memcg_shrinker(shrinker);
L
Linus Torvalds 已提交
501 502 503
	down_write(&shrinker_rwsem);
	list_del(&shrinker->list);
	up_write(&shrinker_rwsem);
504
	kfree(shrinker->nr_deferred);
505
	shrinker->nr_deferred = NULL;
L
Linus Torvalds 已提交
506
}
507
EXPORT_SYMBOL(unregister_shrinker);
L
Linus Torvalds 已提交
508 509

#define SHRINK_BATCH 128
G
Glauber Costa 已提交
510

511
static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
512
				    struct shrinker *shrinker, int priority)
G
Glauber Costa 已提交
513 514 515 516
{
	unsigned long freed = 0;
	unsigned long long delta;
	long total_scan;
517
	long freeable;
G
Glauber Costa 已提交
518 519 520 521 522
	long nr;
	long new_nr;
	int nid = shrinkctl->nid;
	long batch_size = shrinker->batch ? shrinker->batch
					  : SHRINK_BATCH;
523
	long scanned = 0, next_deferred;
G
Glauber Costa 已提交
524

525 526 527
	if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
		nid = 0;

528
	freeable = shrinker->count_objects(shrinker, shrinkctl);
529 530
	if (freeable == 0 || freeable == SHRINK_EMPTY)
		return freeable;
G
Glauber Costa 已提交
531 532 533 534 535 536 537 538 539

	/*
	 * copy the current shrinker scan count into a local variable
	 * and zero it so that other concurrent shrinker invocations
	 * don't also do this scanning work.
	 */
	nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);

	total_scan = nr;
540 541 542
	delta = freeable >> priority;
	delta *= 4;
	do_div(delta, shrinker->seeks);
543

G
Glauber Costa 已提交
544 545
	total_scan += delta;
	if (total_scan < 0) {
546
		pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n",
D
Dave Chinner 已提交
547
		       shrinker->scan_objects, total_scan);
548
		total_scan = freeable;
549 550 551
		next_deferred = nr;
	} else
		next_deferred = total_scan;
G
Glauber Costa 已提交
552 553 554 555 556 557 558

	/*
	 * We need to avoid excessive windup on filesystem shrinkers
	 * due to large numbers of GFP_NOFS allocations causing the
	 * shrinkers to return -1 all the time. This results in a large
	 * nr being built up so when a shrink that can do some work
	 * comes along it empties the entire cache due to nr >>>
559
	 * freeable. This is bad for sustaining a working set in
G
Glauber Costa 已提交
560 561 562 563 564
	 * memory.
	 *
	 * Hence only allow the shrinker to scan the entire cache when
	 * a large delta change is calculated directly.
	 */
565 566
	if (delta < freeable / 4)
		total_scan = min(total_scan, freeable / 2);
G
Glauber Costa 已提交
567 568 569 570 571 572

	/*
	 * Avoid risking looping forever due to too large nr value:
	 * never try to free more than twice the estimate number of
	 * freeable entries.
	 */
573 574
	if (total_scan > freeable * 2)
		total_scan = freeable * 2;
G
Glauber Costa 已提交
575 576

	trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
577
				   freeable, delta, total_scan, priority);
G
Glauber Costa 已提交
578

579 580 581 582 583 584 585 586 587 588 589
	/*
	 * Normally, we should not scan less than batch_size objects in one
	 * pass to avoid too frequent shrinker calls, but if the slab has less
	 * than batch_size objects in total and we are really tight on memory,
	 * we will try to reclaim all available objects, otherwise we can end
	 * up failing allocations although there are plenty of reclaimable
	 * objects spread over several slabs with usage less than the
	 * batch_size.
	 *
	 * We detect the "tight on memory" situations by looking at the total
	 * number of objects we want to scan (total_scan). If it is greater
590
	 * than the total number of objects on slab (freeable), we must be
591 592 593 594
	 * scanning at high prio and therefore should try to reclaim as much as
	 * possible.
	 */
	while (total_scan >= batch_size ||
595
	       total_scan >= freeable) {
D
Dave Chinner 已提交
596
		unsigned long ret;
597
		unsigned long nr_to_scan = min(batch_size, total_scan);
G
Glauber Costa 已提交
598

599
		shrinkctl->nr_to_scan = nr_to_scan;
600
		shrinkctl->nr_scanned = nr_to_scan;
D
Dave Chinner 已提交
601 602 603 604
		ret = shrinker->scan_objects(shrinker, shrinkctl);
		if (ret == SHRINK_STOP)
			break;
		freed += ret;
G
Glauber Costa 已提交
605

606 607 608
		count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
		total_scan -= shrinkctl->nr_scanned;
		scanned += shrinkctl->nr_scanned;
G
Glauber Costa 已提交
609 610 611 612

		cond_resched();
	}

613 614 615 616
	if (next_deferred >= scanned)
		next_deferred -= scanned;
	else
		next_deferred = 0;
G
Glauber Costa 已提交
617 618 619 620 621
	/*
	 * move the unused scan count back into the shrinker in a
	 * manner that handles concurrent updates. If we exhausted the
	 * scan, there is no need to do an update.
	 */
622 623
	if (next_deferred > 0)
		new_nr = atomic_long_add_return(next_deferred,
G
Glauber Costa 已提交
624 625 626 627
						&shrinker->nr_deferred[nid]);
	else
		new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);

628
	trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
G
Glauber Costa 已提交
629
	return freed;
630 631
}

632
#ifdef CONFIG_MEMCG
633 634 635 636
static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
			struct mem_cgroup *memcg, int priority)
{
	struct memcg_shrinker_map *map;
637 638
	unsigned long ret, freed = 0;
	int i;
639

640
	if (!mem_cgroup_online(memcg))
641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659
		return 0;

	if (!down_read_trylock(&shrinker_rwsem))
		return 0;

	map = rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_map,
					true);
	if (unlikely(!map))
		goto unlock;

	for_each_set_bit(i, map->map, shrinker_nr_max) {
		struct shrink_control sc = {
			.gfp_mask = gfp_mask,
			.nid = nid,
			.memcg = memcg,
		};
		struct shrinker *shrinker;

		shrinker = idr_find(&shrinker_idr, i);
660 661 662
		if (unlikely(!shrinker || shrinker == SHRINKER_REGISTERING)) {
			if (!shrinker)
				clear_bit(i, map->map);
663 664 665
			continue;
		}

666 667 668 669 670
		/* Call non-slab shrinkers even though kmem is disabled */
		if (!memcg_kmem_enabled() &&
		    !(shrinker->flags & SHRINKER_NONSLAB))
			continue;

671
		ret = do_shrink_slab(&sc, shrinker, priority);
672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695
		if (ret == SHRINK_EMPTY) {
			clear_bit(i, map->map);
			/*
			 * After the shrinker reported that it had no objects to
			 * free, but before we cleared the corresponding bit in
			 * the memcg shrinker map, a new object might have been
			 * added. To make sure, we have the bit set in this
			 * case, we invoke the shrinker one more time and reset
			 * the bit if it reports that it is not empty anymore.
			 * The memory barrier here pairs with the barrier in
			 * memcg_set_shrinker_bit():
			 *
			 * list_lru_add()     shrink_slab_memcg()
			 *   list_add_tail()    clear_bit()
			 *   <MB>               <MB>
			 *   set_bit()          do_shrink_slab()
			 */
			smp_mb__after_atomic();
			ret = do_shrink_slab(&sc, shrinker, priority);
			if (ret == SHRINK_EMPTY)
				ret = 0;
			else
				memcg_set_shrinker_bit(memcg, nid, i);
		}
696 697 698 699 700 701 702 703 704 705 706
		freed += ret;

		if (rwsem_is_contended(&shrinker_rwsem)) {
			freed = freed ? : 1;
			break;
		}
	}
unlock:
	up_read(&shrinker_rwsem);
	return freed;
}
707
#else /* CONFIG_MEMCG */
708 709 710 711 712
static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
			struct mem_cgroup *memcg, int priority)
{
	return 0;
}
713
#endif /* CONFIG_MEMCG */
714

715
/**
716
 * shrink_slab - shrink slab caches
717 718
 * @gfp_mask: allocation context
 * @nid: node whose slab caches to target
719
 * @memcg: memory cgroup whose slab caches to target
720
 * @priority: the reclaim priority
L
Linus Torvalds 已提交
721
 *
722
 * Call the shrink functions to age shrinkable caches.
L
Linus Torvalds 已提交
723
 *
724 725
 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
 * unaware shrinkers will receive a node id of 0 instead.
L
Linus Torvalds 已提交
726
 *
727 728
 * @memcg specifies the memory cgroup to target. Unaware shrinkers
 * are called only if it is the root cgroup.
729
 *
730 731
 * @priority is sc->priority, we take the number of objects and >> by priority
 * in order to get the scan target.
732
 *
733
 * Returns the number of reclaimed slab objects.
L
Linus Torvalds 已提交
734
 */
735 736
static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
				 struct mem_cgroup *memcg,
737
				 int priority)
L
Linus Torvalds 已提交
738
{
739
	unsigned long ret, freed = 0;
L
Linus Torvalds 已提交
740 741
	struct shrinker *shrinker;

742 743 744 745 746 747 748 749
	/*
	 * The root memcg might be allocated even though memcg is disabled
	 * via "cgroup_disable=memory" boot parameter.  This could make
	 * mem_cgroup_is_root() return false, then just run memcg slab
	 * shrink, but skip global shrink.  This may result in premature
	 * oom.
	 */
	if (!mem_cgroup_disabled() && !mem_cgroup_is_root(memcg))
750
		return shrink_slab_memcg(gfp_mask, nid, memcg, priority);
751

752
	if (!down_read_trylock(&shrinker_rwsem))
753
		goto out;
L
Linus Torvalds 已提交
754 755

	list_for_each_entry(shrinker, &shrinker_list, list) {
756 757 758
		struct shrink_control sc = {
			.gfp_mask = gfp_mask,
			.nid = nid,
759
			.memcg = memcg,
760
		};
761

762 763 764 765
		ret = do_shrink_slab(&sc, shrinker, priority);
		if (ret == SHRINK_EMPTY)
			ret = 0;
		freed += ret;
766 767 768 769 770 771 772 773 774
		/*
		 * Bail out if someone want to register a new shrinker to
		 * prevent the regsitration from being stalled for long periods
		 * by parallel ongoing shrinking.
		 */
		if (rwsem_is_contended(&shrinker_rwsem)) {
			freed = freed ? : 1;
			break;
		}
L
Linus Torvalds 已提交
775
	}
776

L
Linus Torvalds 已提交
777
	up_read(&shrinker_rwsem);
778 779
out:
	cond_resched();
D
Dave Chinner 已提交
780
	return freed;
L
Linus Torvalds 已提交
781 782
}

783 784 785 786 787 788 789 790
void drop_slab_node(int nid)
{
	unsigned long freed;

	do {
		struct mem_cgroup *memcg = NULL;

		freed = 0;
791
		memcg = mem_cgroup_iter(NULL, NULL, NULL);
792
		do {
793
			freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
794 795 796 797 798 799 800 801 802 803 804 805
		} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
	} while (freed > 10);
}

void drop_slab(void)
{
	int nid;

	for_each_online_node(nid)
		drop_slab_node(nid);
}

L
Linus Torvalds 已提交
806 807
static inline int is_page_cache_freeable(struct page *page)
{
808 809 810 811 812
	/*
	 * A freeable page cache page is referenced only by the caller
	 * that isolated the page, the page cache radix tree and
	 * optional buffer heads at page->private.
	 */
813 814 815
	int radix_pins = PageTransHuge(page) && PageSwapCache(page) ?
		HPAGE_PMD_NR : 1;
	return page_count(page) - page_has_private(page) == 1 + radix_pins;
L
Linus Torvalds 已提交
816 817
}

818
static int may_write_to_inode(struct inode *inode, struct scan_control *sc)
L
Linus Torvalds 已提交
819
{
820
	if (current->flags & PF_SWAPWRITE)
L
Linus Torvalds 已提交
821
		return 1;
822
	if (!inode_write_congested(inode))
L
Linus Torvalds 已提交
823
		return 1;
824
	if (inode_to_bdi(inode) == current->backing_dev_info)
L
Linus Torvalds 已提交
825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843
		return 1;
	return 0;
}

/*
 * We detected a synchronous write error writing a page out.  Probably
 * -ENOSPC.  We need to propagate that into the address_space for a subsequent
 * fsync(), msync() or close().
 *
 * The tricky part is that after writepage we cannot touch the mapping: nothing
 * prevents it from being freed up.  But we have a ref on the page and once
 * that page is locked, the mapping is pinned.
 *
 * We're allowed to run sleeping lock_page() here because we know the caller has
 * __GFP_FS.
 */
static void handle_write_error(struct address_space *mapping,
				struct page *page, int error)
{
J
Jens Axboe 已提交
844
	lock_page(page);
845 846
	if (page_mapping(page) == mapping)
		mapping_set_error(mapping, error);
L
Linus Torvalds 已提交
847 848 849
	unlock_page(page);
}

850 851 852 853 854 855 856 857 858 859 860 861
/* possible outcome of pageout() */
typedef enum {
	/* failed to write page out, page is locked */
	PAGE_KEEP,
	/* move page to the active list, page is locked */
	PAGE_ACTIVATE,
	/* page has been sent to the disk successfully, page is unlocked */
	PAGE_SUCCESS,
	/* page is clean and locked */
	PAGE_CLEAN,
} pageout_t;

L
Linus Torvalds 已提交
862
/*
A
Andrew Morton 已提交
863 864
 * pageout is called by shrink_page_list() for each dirty page.
 * Calls ->writepage().
L
Linus Torvalds 已提交
865
 */
866
static pageout_t pageout(struct page *page, struct address_space *mapping,
867
			 struct scan_control *sc)
L
Linus Torvalds 已提交
868 869 870 871 872 873 874 875
{
	/*
	 * If the page is dirty, only perform writeback if that write
	 * will be non-blocking.  To prevent this allocation from being
	 * stalled by pagecache activity.  But note that there may be
	 * stalls if we need to run get_block().  We could test
	 * PagePrivate for that.
	 *
876
	 * If this process is currently in __generic_file_write_iter() against
L
Linus Torvalds 已提交
877 878 879 880 881 882 883 884 885 886 887 888 889 890 891
	 * this page's queue, we can perform writeback even if that
	 * will block.
	 *
	 * If the page is swapcache, write it back even if that would
	 * block, for some throttling. This happens by accident, because
	 * swap_backing_dev_info is bust: it doesn't reflect the
	 * congestion state of the swapdevs.  Easy to fix, if needed.
	 */
	if (!is_page_cache_freeable(page))
		return PAGE_KEEP;
	if (!mapping) {
		/*
		 * Some data journaling orphaned pages can have
		 * page->mapping == NULL while being dirty with clean buffers.
		 */
892
		if (page_has_private(page)) {
L
Linus Torvalds 已提交
893 894
			if (try_to_free_buffers(page)) {
				ClearPageDirty(page);
895
				pr_info("%s: orphaned page\n", __func__);
L
Linus Torvalds 已提交
896 897 898 899 900 901 902
				return PAGE_CLEAN;
			}
		}
		return PAGE_KEEP;
	}
	if (mapping->a_ops->writepage == NULL)
		return PAGE_ACTIVATE;
903
	if (!may_write_to_inode(mapping->host, sc))
L
Linus Torvalds 已提交
904 905 906 907 908 909 910
		return PAGE_KEEP;

	if (clear_page_dirty_for_io(page)) {
		int res;
		struct writeback_control wbc = {
			.sync_mode = WB_SYNC_NONE,
			.nr_to_write = SWAP_CLUSTER_MAX,
911 912
			.range_start = 0,
			.range_end = LLONG_MAX,
L
Linus Torvalds 已提交
913 914 915 916 917 918 919
			.for_reclaim = 1,
		};

		SetPageReclaim(page);
		res = mapping->a_ops->writepage(page, &wbc);
		if (res < 0)
			handle_write_error(mapping, page, res);
920
		if (res == AOP_WRITEPAGE_ACTIVATE) {
L
Linus Torvalds 已提交
921 922 923
			ClearPageReclaim(page);
			return PAGE_ACTIVATE;
		}
924

L
Linus Torvalds 已提交
925 926 927 928
		if (!PageWriteback(page)) {
			/* synchronous write or broken a_ops? */
			ClearPageReclaim(page);
		}
929
		trace_mm_vmscan_writepage(page);
930
		inc_node_page_state(page, NR_VMSCAN_WRITE);
L
Linus Torvalds 已提交
931 932 933 934 935 936
		return PAGE_SUCCESS;
	}

	return PAGE_CLEAN;
}

937
/*
N
Nick Piggin 已提交
938 939
 * Same as remove_mapping, but if the page is removed from the mapping, it
 * gets returned with a refcount of 0.
940
 */
941 942
static int __remove_mapping(struct address_space *mapping, struct page *page,
			    bool reclaimed)
943
{
944
	unsigned long flags;
945
	int refcount;
946

947 948
	BUG_ON(!PageLocked(page));
	BUG_ON(mapping != page_mapping(page));
949

M
Matthew Wilcox 已提交
950
	xa_lock_irqsave(&mapping->i_pages, flags);
951
	/*
N
Nick Piggin 已提交
952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970
	 * The non racy check for a busy page.
	 *
	 * Must be careful with the order of the tests. When someone has
	 * a ref to the page, it may be possible that they dirty it then
	 * drop the reference. So if PageDirty is tested before page_count
	 * here, then the following race may occur:
	 *
	 * get_user_pages(&page);
	 * [user mapping goes away]
	 * write_to(page);
	 *				!PageDirty(page)    [good]
	 * SetPageDirty(page);
	 * put_page(page);
	 *				!page_count(page)   [good, discard it]
	 *
	 * [oops, our write_to data is lost]
	 *
	 * Reversing the order of the tests ensures such a situation cannot
	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
971
	 * load is not satisfied before that of page->_refcount.
N
Nick Piggin 已提交
972 973
	 *
	 * Note that if SetPageDirty is always performed via set_page_dirty,
M
Matthew Wilcox 已提交
974
	 * and thus under the i_pages lock, then this ordering is not required.
975
	 */
976 977 978 979 980
	if (unlikely(PageTransHuge(page)) && PageSwapCache(page))
		refcount = 1 + HPAGE_PMD_NR;
	else
		refcount = 2;
	if (!page_ref_freeze(page, refcount))
981
		goto cannot_free;
982
	/* note: atomic_cmpxchg in page_ref_freeze provides the smp_rmb */
N
Nick Piggin 已提交
983
	if (unlikely(PageDirty(page))) {
984
		page_ref_unfreeze(page, refcount);
985
		goto cannot_free;
N
Nick Piggin 已提交
986
	}
987 988 989

	if (PageSwapCache(page)) {
		swp_entry_t swap = { .val = page_private(page) };
990
		mem_cgroup_swapout(page, swap);
991
		__delete_from_swap_cache(page);
M
Matthew Wilcox 已提交
992
		xa_unlock_irqrestore(&mapping->i_pages, flags);
993
		put_swap_page(page, swap);
N
Nick Piggin 已提交
994
	} else {
995
		void (*freepage)(struct page *);
996
		void *shadow = NULL;
997 998

		freepage = mapping->a_ops->freepage;
999 1000 1001 1002 1003 1004 1005 1006 1007
		/*
		 * Remember a shadow entry for reclaimed file cache in
		 * order to detect refaults, thus thrashing, later on.
		 *
		 * But don't store shadows in an address space that is
		 * already exiting.  This is not just an optizimation,
		 * inode reclaim needs to empty out the radix tree or
		 * the nodes are lost.  Don't plant shadows behind its
		 * back.
1008 1009 1010 1011 1012
		 *
		 * We also don't store shadows for DAX mappings because the
		 * only page cache pages found in these are zero pages
		 * covering holes, and because we don't want to mix DAX
		 * exceptional entries and shadow exceptional entries in the
M
Matthew Wilcox 已提交
1013
		 * same address_space.
1014 1015
		 */
		if (reclaimed && page_is_file_cache(page) &&
1016
		    !mapping_exiting(mapping) && !dax_mapping(mapping))
1017
			shadow = workingset_eviction(mapping, page);
J
Johannes Weiner 已提交
1018
		__delete_from_page_cache(page, shadow);
M
Matthew Wilcox 已提交
1019
		xa_unlock_irqrestore(&mapping->i_pages, flags);
1020 1021 1022

		if (freepage != NULL)
			freepage(page);
1023 1024 1025 1026 1027
	}

	return 1;

cannot_free:
M
Matthew Wilcox 已提交
1028
	xa_unlock_irqrestore(&mapping->i_pages, flags);
1029 1030 1031
	return 0;
}

N
Nick Piggin 已提交
1032 1033 1034 1035 1036 1037 1038 1039
/*
 * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
 * someone else has a ref on the page, abort and return 0.  If it was
 * successfully detached, return 1.  Assumes the caller has a single ref on
 * this page.
 */
int remove_mapping(struct address_space *mapping, struct page *page)
{
1040
	if (__remove_mapping(mapping, page, false)) {
N
Nick Piggin 已提交
1041 1042 1043 1044 1045
		/*
		 * Unfreezing the refcount with 1 rather than 2 effectively
		 * drops the pagecache ref for us without requiring another
		 * atomic operation.
		 */
1046
		page_ref_unfreeze(page, 1);
N
Nick Piggin 已提交
1047 1048 1049 1050 1051
		return 1;
	}
	return 0;
}

L
Lee Schermerhorn 已提交
1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062
/**
 * putback_lru_page - put previously isolated page onto appropriate LRU list
 * @page: page to be put back to appropriate lru list
 *
 * Add previously isolated @page to appropriate LRU list.
 * Page may still be unevictable for other reasons.
 *
 * lru_lock must not be held, interrupts must be enabled.
 */
void putback_lru_page(struct page *page)
{
1063
	lru_cache_add(page);
L
Lee Schermerhorn 已提交
1064 1065 1066
	put_page(page);		/* drop ref from isolate */
}

1067 1068 1069
enum page_references {
	PAGEREF_RECLAIM,
	PAGEREF_RECLAIM_CLEAN,
1070
	PAGEREF_KEEP,
1071 1072 1073 1074 1075 1076
	PAGEREF_ACTIVATE,
};

static enum page_references page_check_references(struct page *page,
						  struct scan_control *sc)
{
1077
	int referenced_ptes, referenced_page;
1078 1079
	unsigned long vm_flags;

1080 1081
	referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
					  &vm_flags);
1082
	referenced_page = TestClearPageReferenced(page);
1083 1084 1085 1086 1087 1088 1089 1090

	/*
	 * Mlock lost the isolation race with us.  Let try_to_unmap()
	 * move the page to the unevictable list.
	 */
	if (vm_flags & VM_LOCKED)
		return PAGEREF_RECLAIM;

1091
	if (referenced_ptes) {
1092
		if (PageSwapBacked(page))
1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109
			return PAGEREF_ACTIVATE;
		/*
		 * All mapped pages start out with page table
		 * references from the instantiating fault, so we need
		 * to look twice if a mapped file page is used more
		 * than once.
		 *
		 * Mark it and spare it for another trip around the
		 * inactive list.  Another page table reference will
		 * lead to its activation.
		 *
		 * Note: the mark is set for activated pages as well
		 * so that recently deactivated but used pages are
		 * quickly recovered.
		 */
		SetPageReferenced(page);

1110
		if (referenced_page || referenced_ptes > 1)
1111 1112
			return PAGEREF_ACTIVATE;

1113 1114 1115 1116 1117 1118
		/*
		 * Activate file-backed executable pages after first usage.
		 */
		if (vm_flags & VM_EXEC)
			return PAGEREF_ACTIVATE;

1119 1120
		return PAGEREF_KEEP;
	}
1121 1122

	/* Reclaim if clean, defer dirty pages to writeback */
1123
	if (referenced_page && !PageSwapBacked(page))
1124 1125 1126
		return PAGEREF_RECLAIM_CLEAN;

	return PAGEREF_RECLAIM;
1127 1128
}

1129 1130 1131 1132
/* Check if a page is dirty or under writeback */
static void page_check_dirty_writeback(struct page *page,
				       bool *dirty, bool *writeback)
{
1133 1134
	struct address_space *mapping;

1135 1136 1137 1138
	/*
	 * Anonymous pages are not handled by flushers and must be written
	 * from reclaim context. Do not stall reclaim based on them
	 */
S
Shaohua Li 已提交
1139 1140
	if (!page_is_file_cache(page) ||
	    (PageAnon(page) && !PageSwapBacked(page))) {
1141 1142 1143 1144 1145 1146 1147 1148
		*dirty = false;
		*writeback = false;
		return;
	}

	/* By default assume that the page flags are accurate */
	*dirty = PageDirty(page);
	*writeback = PageWriteback(page);
1149 1150 1151 1152 1153 1154 1155 1156

	/* Verify dirty/writeback state if the filesystem supports it */
	if (!page_has_private(page))
		return;

	mapping = page_mapping(page);
	if (mapping && mapping->a_ops->is_dirty_writeback)
		mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
1157 1158
}

1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176
static bool pgdat_memcg_congested(pg_data_t *pgdat, struct mem_cgroup *memcg)
{
	return test_bit(PGDAT_CONGESTED, &pgdat->flags) ||
		(memcg && memcg_congested(pgdat, memcg));
}

static bool pgdat_memcg_dirty(pg_data_t *pgdat, struct mem_cgroup *memcg)
{
	return test_bit(PGDAT_DIRTY, &pgdat->flags) ||
		(memcg && memcg_dirty(pgdat, memcg));
}

static bool pgdat_memcg_writeback(pg_data_t *pgdat, struct mem_cgroup *memcg)
{
	return test_bit(PGDAT_WRITEBACK, &pgdat->flags) ||
		(memcg && memcg_writeback(pgdat, memcg));
}

L
Linus Torvalds 已提交
1177
/*
A
Andrew Morton 已提交
1178
 * shrink_page_list() returns the number of reclaimed pages
L
Linus Torvalds 已提交
1179
 */
A
Andrew Morton 已提交
1180
static unsigned long shrink_page_list(struct list_head *page_list,
M
Mel Gorman 已提交
1181
				      struct pglist_data *pgdat,
1182
				      struct scan_control *sc,
1183
				      enum ttu_flags ttu_flags,
1184
				      struct reclaim_stat *stat,
1185
				      bool ignore_references)
L
Linus Torvalds 已提交
1186 1187
{
	LIST_HEAD(ret_pages);
1188
	LIST_HEAD(free_pages);
L
Linus Torvalds 已提交
1189
	int pgactivate = 0;
1190 1191 1192 1193 1194 1195
	unsigned nr_unqueued_dirty = 0;
	unsigned nr_dirty = 0;
	unsigned nr_congested = 0;
	unsigned nr_reclaimed = 0;
	unsigned nr_writeback = 0;
	unsigned nr_immediate = 0;
1196 1197
	unsigned nr_ref_keep = 0;
	unsigned nr_unmap_fail = 0;
L
Linus Torvalds 已提交
1198 1199 1200 1201 1202 1203 1204

	cond_resched();

	while (!list_empty(page_list)) {
		struct address_space *mapping;
		struct page *page;
		int may_enter_fs;
1205
		enum page_references references = PAGEREF_RECLAIM;
1206
		bool dirty, writeback;
L
Linus Torvalds 已提交
1207 1208 1209 1210 1211 1212

		cond_resched();

		page = lru_to_page(page_list);
		list_del(&page->lru);

N
Nick Piggin 已提交
1213
		if (!trylock_page(page))
L
Linus Torvalds 已提交
1214 1215
			goto keep;

1216
		VM_BUG_ON_PAGE(PageActive(page), page);
L
Linus Torvalds 已提交
1217 1218

		sc->nr_scanned++;
1219

1220
		if (unlikely(!page_evictable(page)))
M
Minchan Kim 已提交
1221
			goto activate_locked;
L
Lee Schermerhorn 已提交
1222

1223
		if (!sc->may_unmap && page_mapped(page))
1224 1225
			goto keep_locked;

L
Linus Torvalds 已提交
1226
		/* Double the slab pressure for mapped and swapcache pages */
S
Shaohua Li 已提交
1227 1228
		if ((page_mapped(page) || PageSwapCache(page)) &&
		    !(PageAnon(page) && !PageSwapBacked(page)))
L
Linus Torvalds 已提交
1229 1230
			sc->nr_scanned++;

1231 1232 1233
		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));

1234
		/*
1235
		 * The number of dirty pages determines if a node is marked
1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246
		 * reclaim_congested which affects wait_iff_congested. kswapd
		 * will stall and start writing pages if the tail of the LRU
		 * is all dirty unqueued pages.
		 */
		page_check_dirty_writeback(page, &dirty, &writeback);
		if (dirty || writeback)
			nr_dirty++;

		if (dirty && !writeback)
			nr_unqueued_dirty++;

1247 1248 1249 1250 1251 1252
		/*
		 * Treat this page as congested if the underlying BDI is or if
		 * pages are cycling through the LRU so quickly that the
		 * pages marked for immediate reclaim are making it to the
		 * end of the LRU a second time.
		 */
1253
		mapping = page_mapping(page);
1254
		if (((dirty || writeback) && mapping &&
1255
		     inode_write_congested(mapping->host)) ||
1256
		    (writeback && PageReclaim(page)))
1257 1258
			nr_congested++;

1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269
		/*
		 * If a page at the tail of the LRU is under writeback, there
		 * are three cases to consider.
		 *
		 * 1) If reclaim is encountering an excessive number of pages
		 *    under writeback and this page is both under writeback and
		 *    PageReclaim then it indicates that pages are being queued
		 *    for IO but are being recycled through the LRU before the
		 *    IO can complete. Waiting on the page itself risks an
		 *    indefinite stall if it is impossible to writeback the
		 *    page due to IO error or disconnected storage so instead
1270 1271
		 *    note that the LRU is being scanned too quickly and the
		 *    caller can stall after page list has been processed.
1272
		 *
1273
		 * 2) Global or new memcg reclaim encounters a page that is
1274 1275 1276
		 *    not marked for immediate reclaim, or the caller does not
		 *    have __GFP_FS (or __GFP_IO if it's simply going to swap,
		 *    not to fs). In this case mark the page for immediate
1277
		 *    reclaim and continue scanning.
1278
		 *
1279 1280
		 *    Require may_enter_fs because we would wait on fs, which
		 *    may not have submitted IO yet. And the loop driver might
1281 1282 1283 1284 1285
		 *    enter reclaim, and deadlock if it waits on a page for
		 *    which it is needed to do the write (loop masks off
		 *    __GFP_IO|__GFP_FS for this reason); but more thought
		 *    would probably show more reasons.
		 *
1286
		 * 3) Legacy memcg encounters a page that is already marked
1287 1288 1289 1290
		 *    PageReclaim. memcg does not have any dirty pages
		 *    throttling so we could easily OOM just because too many
		 *    pages are in writeback and there is nothing else to
		 *    reclaim. Wait for the writeback to complete.
1291 1292 1293 1294 1295 1296 1297 1298 1299
		 *
		 * In cases 1) and 2) we activate the pages to get them out of
		 * the way while we continue scanning for clean pages on the
		 * inactive list and refilling from the active list. The
		 * observation here is that waiting for disk writes is more
		 * expensive than potentially causing reloads down the line.
		 * Since they're marked for immediate reclaim, they won't put
		 * memory pressure on the cache working set any longer than it
		 * takes to write them to disk.
1300
		 */
1301
		if (PageWriteback(page)) {
1302 1303 1304
			/* Case 1 above */
			if (current_is_kswapd() &&
			    PageReclaim(page) &&
1305
			    pgdat_memcg_writeback(pgdat, sc->target_mem_cgroup)) {
1306
				nr_immediate++;
1307
				goto activate_locked;
1308 1309

			/* Case 2 above */
1310
			} else if (sane_reclaim(sc) ||
1311
			    !PageReclaim(page) || !may_enter_fs) {
1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323
				/*
				 * This is slightly racy - end_page_writeback()
				 * might have just cleared PageReclaim, then
				 * setting PageReclaim here end up interpreted
				 * as PageReadahead - but that does not matter
				 * enough to care.  What we do want is for this
				 * page to have PageReclaim set next time memcg
				 * reclaim reaches the tests above, so it will
				 * then wait_on_page_writeback() to avoid OOM;
				 * and it's also appropriate in global reclaim.
				 */
				SetPageReclaim(page);
1324
				nr_writeback++;
1325
				goto activate_locked;
1326 1327 1328

			/* Case 3 above */
			} else {
1329
				unlock_page(page);
1330
				wait_on_page_writeback(page);
1331 1332 1333
				/* then go back and try same page again */
				list_add_tail(&page->lru, page_list);
				continue;
1334
			}
1335
		}
L
Linus Torvalds 已提交
1336

1337
		if (!ignore_references)
1338 1339
			references = page_check_references(page, sc);

1340 1341
		switch (references) {
		case PAGEREF_ACTIVATE:
L
Linus Torvalds 已提交
1342
			goto activate_locked;
1343
		case PAGEREF_KEEP:
1344
			nr_ref_keep++;
1345
			goto keep_locked;
1346 1347 1348 1349
		case PAGEREF_RECLAIM:
		case PAGEREF_RECLAIM_CLEAN:
			; /* try to reclaim the page below */
		}
L
Linus Torvalds 已提交
1350 1351 1352 1353

		/*
		 * Anonymous process memory has backing store?
		 * Try to allocate it some swap space here.
S
Shaohua Li 已提交
1354
		 * Lazyfree page could be freed directly
L
Linus Torvalds 已提交
1355
		 */
1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380
		if (PageAnon(page) && PageSwapBacked(page)) {
			if (!PageSwapCache(page)) {
				if (!(sc->gfp_mask & __GFP_IO))
					goto keep_locked;
				if (PageTransHuge(page)) {
					/* cannot split THP, skip it */
					if (!can_split_huge_page(page, NULL))
						goto activate_locked;
					/*
					 * Split pages without a PMD map right
					 * away. Chances are some or all of the
					 * tail pages can be freed without IO.
					 */
					if (!compound_mapcount(page) &&
					    split_huge_page_to_list(page,
								    page_list))
						goto activate_locked;
				}
				if (!add_to_swap(page)) {
					if (!PageTransHuge(page))
						goto activate_locked;
					/* Fallback to swap normal pages */
					if (split_huge_page_to_list(page,
								    page_list))
						goto activate_locked;
1381 1382 1383
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
					count_vm_event(THP_SWPOUT_FALLBACK);
#endif
1384 1385 1386
					if (!add_to_swap(page))
						goto activate_locked;
				}
1387

1388
				may_enter_fs = 1;
L
Linus Torvalds 已提交
1389

1390 1391 1392
				/* Adding to swap updated mapping */
				mapping = page_mapping(page);
			}
1393 1394 1395 1396
		} else if (unlikely(PageTransHuge(page))) {
			/* Split file THP */
			if (split_huge_page_to_list(page, page_list))
				goto keep_locked;
1397
		}
L
Linus Torvalds 已提交
1398 1399 1400 1401 1402

		/*
		 * The page is mapped into the page tables of one or more
		 * processes. Try to unmap it here.
		 */
S
Shaohua Li 已提交
1403
		if (page_mapped(page)) {
1404 1405 1406 1407 1408
			enum ttu_flags flags = ttu_flags | TTU_BATCH_FLUSH;

			if (unlikely(PageTransHuge(page)))
				flags |= TTU_SPLIT_HUGE_PMD;
			if (!try_to_unmap(page, flags)) {
1409
				nr_unmap_fail++;
L
Linus Torvalds 已提交
1410 1411 1412 1413 1414
				goto activate_locked;
			}
		}

		if (PageDirty(page)) {
1415
			/*
1416 1417 1418 1419 1420 1421 1422 1423
			 * Only kswapd can writeback filesystem pages
			 * to avoid risk of stack overflow. But avoid
			 * injecting inefficient single-page IO into
			 * flusher writeback as much as possible: only
			 * write pages when we've encountered many
			 * dirty pages, and when we've already scanned
			 * the rest of the LRU for clean pages and see
			 * the same dirty pages again (PageReclaim).
1424
			 */
1425
			if (page_is_file_cache(page) &&
1426
			    (!current_is_kswapd() || !PageReclaim(page) ||
1427
			     !pgdat_memcg_dirty(pgdat, sc->target_mem_cgroup))) {
1428 1429 1430 1431 1432 1433
				/*
				 * Immediately reclaim when written back.
				 * Similar in principal to deactivate_page()
				 * except we already have the page isolated
				 * and know it's dirty
				 */
1434
				inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
1435 1436
				SetPageReclaim(page);

1437
				goto activate_locked;
1438 1439
			}

1440
			if (references == PAGEREF_RECLAIM_CLEAN)
L
Linus Torvalds 已提交
1441
				goto keep_locked;
1442
			if (!may_enter_fs)
L
Linus Torvalds 已提交
1443
				goto keep_locked;
1444
			if (!sc->may_writepage)
L
Linus Torvalds 已提交
1445 1446
				goto keep_locked;

1447 1448 1449 1450 1451 1452
			/*
			 * Page is dirty. Flush the TLB if a writable entry
			 * potentially exists to avoid CPU writes after IO
			 * starts and then write it out here.
			 */
			try_to_unmap_flush_dirty();
1453
			switch (pageout(page, mapping, sc)) {
L
Linus Torvalds 已提交
1454 1455 1456 1457 1458
			case PAGE_KEEP:
				goto keep_locked;
			case PAGE_ACTIVATE:
				goto activate_locked;
			case PAGE_SUCCESS:
1459
				if (PageWriteback(page))
1460
					goto keep;
1461
				if (PageDirty(page))
L
Linus Torvalds 已提交
1462
					goto keep;
1463

L
Linus Torvalds 已提交
1464 1465 1466 1467
				/*
				 * A synchronous write - probably a ramdisk.  Go
				 * ahead and try to reclaim the page.
				 */
N
Nick Piggin 已提交
1468
				if (!trylock_page(page))
L
Linus Torvalds 已提交
1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487
					goto keep;
				if (PageDirty(page) || PageWriteback(page))
					goto keep_locked;
				mapping = page_mapping(page);
			case PAGE_CLEAN:
				; /* try to free the page below */
			}
		}

		/*
		 * If the page has buffers, try to free the buffer mappings
		 * associated with this page. If we succeed we try to free
		 * the page as well.
		 *
		 * We do this even if the page is PageDirty().
		 * try_to_release_page() does not perform I/O, but it is
		 * possible for a page to have PageDirty set, but it is actually
		 * clean (all its buffers are clean).  This happens if the
		 * buffers were written out directly, with submit_bh(). ext3
L
Lee Schermerhorn 已提交
1488
		 * will do this, as well as the blockdev mapping.
L
Linus Torvalds 已提交
1489 1490 1491 1492 1493 1494 1495 1496 1497 1498
		 * try_to_release_page() will discover that cleanness and will
		 * drop the buffers and mark the page clean - it can be freed.
		 *
		 * Rarely, pages can have buffers and no ->mapping.  These are
		 * the pages which were not successfully invalidated in
		 * truncate_complete_page().  We try to drop those buffers here
		 * and if that worked, and the page is no longer mapped into
		 * process address space (page_count == 1) it can be freed.
		 * Otherwise, leave the page on the LRU so it is swappable.
		 */
1499
		if (page_has_private(page)) {
L
Linus Torvalds 已提交
1500 1501
			if (!try_to_release_page(page, sc->gfp_mask))
				goto activate_locked;
N
Nick Piggin 已提交
1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517
			if (!mapping && page_count(page) == 1) {
				unlock_page(page);
				if (put_page_testzero(page))
					goto free_it;
				else {
					/*
					 * rare race with speculative reference.
					 * the speculative reference will free
					 * this page shortly, so we may
					 * increment nr_reclaimed here (and
					 * leave it off the LRU).
					 */
					nr_reclaimed++;
					continue;
				}
			}
L
Linus Torvalds 已提交
1518 1519
		}

S
Shaohua Li 已提交
1520 1521 1522 1523 1524 1525 1526 1527
		if (PageAnon(page) && !PageSwapBacked(page)) {
			/* follow __remove_mapping for reference */
			if (!page_ref_freeze(page, 1))
				goto keep_locked;
			if (PageDirty(page)) {
				page_ref_unfreeze(page, 1);
				goto keep_locked;
			}
L
Linus Torvalds 已提交
1528

S
Shaohua Li 已提交
1529
			count_vm_event(PGLAZYFREED);
1530
			count_memcg_page_event(page, PGLAZYFREED);
S
Shaohua Li 已提交
1531 1532
		} else if (!mapping || !__remove_mapping(mapping, page, true))
			goto keep_locked;
N
Nick Piggin 已提交
1533 1534 1535 1536 1537 1538 1539
		/*
		 * At this point, we have no other references and there is
		 * no way to pick any more up (removed from LRU, removed
		 * from pagecache). Can use non-atomic bitops now (and
		 * we obviously don't have to worry about waking up a process
		 * waiting on the page lock, because there are no references.
		 */
1540
		__ClearPageLocked(page);
N
Nick Piggin 已提交
1541
free_it:
1542
		nr_reclaimed++;
1543 1544 1545 1546 1547

		/*
		 * Is there need to periodically free_page_list? It would
		 * appear not as the counts should be low
		 */
1548
		if (unlikely(PageTransHuge(page)))
1549
			(*get_compound_page_dtor(page))(page);
1550
		else
1551
			list_add(&page->lru, &free_pages);
L
Linus Torvalds 已提交
1552 1553 1554
		continue;

activate_locked:
1555
		/* Not a candidate for swapping, so reclaim swap space. */
M
Minchan Kim 已提交
1556 1557
		if (PageSwapCache(page) && (mem_cgroup_swap_full(page) ||
						PageMlocked(page)))
1558
			try_to_free_swap(page);
1559
		VM_BUG_ON_PAGE(PageActive(page), page);
M
Minchan Kim 已提交
1560 1561 1562
		if (!PageMlocked(page)) {
			SetPageActive(page);
			pgactivate++;
1563
			count_memcg_page_event(page, PGACTIVATE);
M
Minchan Kim 已提交
1564
		}
L
Linus Torvalds 已提交
1565 1566 1567 1568
keep_locked:
		unlock_page(page);
keep:
		list_add(&page->lru, &ret_pages);
1569
		VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
L
Linus Torvalds 已提交
1570
	}
1571

1572
	mem_cgroup_uncharge_list(&free_pages);
1573
	try_to_unmap_flush();
1574
	free_unref_page_list(&free_pages);
1575

L
Linus Torvalds 已提交
1576
	list_splice(&ret_pages, page_list);
1577
	count_vm_events(PGACTIVATE, pgactivate);
1578

1579 1580 1581 1582 1583 1584
	if (stat) {
		stat->nr_dirty = nr_dirty;
		stat->nr_congested = nr_congested;
		stat->nr_unqueued_dirty = nr_unqueued_dirty;
		stat->nr_writeback = nr_writeback;
		stat->nr_immediate = nr_immediate;
1585 1586 1587
		stat->nr_activate = pgactivate;
		stat->nr_ref_keep = nr_ref_keep;
		stat->nr_unmap_fail = nr_unmap_fail;
1588
	}
1589
	return nr_reclaimed;
L
Linus Torvalds 已提交
1590 1591
}

1592 1593 1594 1595 1596 1597 1598 1599
unsigned long reclaim_clean_pages_from_list(struct zone *zone,
					    struct list_head *page_list)
{
	struct scan_control sc = {
		.gfp_mask = GFP_KERNEL,
		.priority = DEF_PRIORITY,
		.may_unmap = 1,
	};
1600
	unsigned long ret;
1601 1602 1603 1604
	struct page *page, *next;
	LIST_HEAD(clean_pages);

	list_for_each_entry_safe(page, next, page_list, lru) {
1605
		if (page_is_file_cache(page) && !PageDirty(page) &&
1606
		    !__PageMovable(page) && !PageUnevictable(page)) {
1607 1608 1609 1610 1611
			ClearPageActive(page);
			list_move(&page->lru, &clean_pages);
		}
	}

M
Mel Gorman 已提交
1612
	ret = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
S
Shaohua Li 已提交
1613
			TTU_IGNORE_ACCESS, NULL, true);
1614
	list_splice(&clean_pages, page_list);
M
Mel Gorman 已提交
1615
	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -ret);
1616 1617 1618
	return ret;
}

A
Andy Whitcroft 已提交
1619 1620 1621 1622 1623 1624 1625 1626 1627 1628
/*
 * Attempt to remove the specified page from its LRU.  Only take this page
 * if it is of the appropriate PageActive status.  Pages which are being
 * freed elsewhere are also ignored.
 *
 * page:	page to consider
 * mode:	one of the LRU isolation modes defined above
 *
 * returns 0 on success, -ve errno on failure.
 */
1629
int __isolate_lru_page(struct page *page, isolate_mode_t mode)
A
Andy Whitcroft 已提交
1630 1631 1632 1633 1634 1635 1636
{
	int ret = -EINVAL;

	/* Only take pages on the LRU. */
	if (!PageLRU(page))
		return ret;

M
Minchan Kim 已提交
1637 1638
	/* Compaction should not handle unevictable pages but CMA can do so */
	if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
L
Lee Schermerhorn 已提交
1639 1640
		return ret;

A
Andy Whitcroft 已提交
1641
	ret = -EBUSY;
K
KAMEZAWA Hiroyuki 已提交
1642

1643 1644 1645 1646 1647 1648 1649 1650
	/*
	 * To minimise LRU disruption, the caller can indicate that it only
	 * wants to isolate pages it will be able to operate on without
	 * blocking - clean pages for the most part.
	 *
	 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
	 * that it is possible to migrate without blocking
	 */
1651
	if (mode & ISOLATE_ASYNC_MIGRATE) {
1652 1653 1654 1655 1656 1657
		/* All the caller can do on PageWriteback is block */
		if (PageWriteback(page))
			return ret;

		if (PageDirty(page)) {
			struct address_space *mapping;
1658
			bool migrate_dirty;
1659 1660 1661 1662

			/*
			 * Only pages without mappings or that have a
			 * ->migratepage callback are possible to migrate
1663 1664 1665 1666 1667
			 * without blocking. However, we can be racing with
			 * truncation so it's necessary to lock the page
			 * to stabilise the mapping as truncation holds
			 * the page lock until after the page is removed
			 * from the page cache.
1668
			 */
1669 1670 1671
			if (!trylock_page(page))
				return ret;

1672
			mapping = page_mapping(page);
1673
			migrate_dirty = !mapping || mapping->a_ops->migratepage;
1674 1675
			unlock_page(page);
			if (!migrate_dirty)
1676 1677 1678
				return ret;
		}
	}
1679

1680 1681 1682
	if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
		return ret;

A
Andy Whitcroft 已提交
1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695
	if (likely(get_page_unless_zero(page))) {
		/*
		 * Be careful not to clear PageLRU until after we're
		 * sure the page is not being freed elsewhere -- the
		 * page release code relies on it.
		 */
		ClearPageLRU(page);
		ret = 0;
	}

	return ret;
}

1696 1697 1698 1699 1700 1701

/*
 * Update LRU sizes after isolating pages. The LRU size updates must
 * be complete before mem_cgroup_update_lru_size due to a santity check.
 */
static __always_inline void update_lru_sizes(struct lruvec *lruvec,
1702
			enum lru_list lru, unsigned long *nr_zone_taken)
1703 1704 1705 1706 1707 1708 1709 1710 1711
{
	int zid;

	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
		if (!nr_zone_taken[zid])
			continue;

		__update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
#ifdef CONFIG_MEMCG
1712
		mem_cgroup_update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1713
#endif
1714 1715
	}

1716 1717
}

L
Linus Torvalds 已提交
1718
/*
1719
 * zone_lru_lock is heavily contended.  Some of the functions that
L
Linus Torvalds 已提交
1720 1721 1722 1723 1724 1725 1726 1727
 * shrink the lists perform better by taking out a batch of pages
 * and working on them outside the LRU lock.
 *
 * For pagecache intensive workloads, this function is the hottest
 * spot in the kernel (apart from copy_*_user functions).
 *
 * Appropriate locks must be held before calling this function.
 *
1728
 * @nr_to_scan:	The number of eligible pages to look through on the list.
1729
 * @lruvec:	The LRU vector to pull pages from.
L
Linus Torvalds 已提交
1730
 * @dst:	The temp list to put pages on to.
H
Hugh Dickins 已提交
1731
 * @nr_scanned:	The number of pages that were scanned.
1732
 * @sc:		The scan_control struct for this reclaim session
A
Andy Whitcroft 已提交
1733
 * @mode:	One of the LRU isolation modes
1734
 * @lru:	LRU list id for isolating
L
Linus Torvalds 已提交
1735 1736 1737
 *
 * returns how many pages were moved onto *@dst.
 */
1738
static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1739
		struct lruvec *lruvec, struct list_head *dst,
1740
		unsigned long *nr_scanned, struct scan_control *sc,
1741
		isolate_mode_t mode, enum lru_list lru)
L
Linus Torvalds 已提交
1742
{
H
Hugh Dickins 已提交
1743
	struct list_head *src = &lruvec->lists[lru];
1744
	unsigned long nr_taken = 0;
M
Mel Gorman 已提交
1745
	unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
1746
	unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
1747
	unsigned long skipped = 0;
1748
	unsigned long scan, total_scan, nr_pages;
1749
	LIST_HEAD(pages_skipped);
L
Linus Torvalds 已提交
1750

1751 1752 1753 1754
	scan = 0;
	for (total_scan = 0;
	     scan < nr_to_scan && nr_taken < nr_to_scan && !list_empty(src);
	     total_scan++) {
A
Andy Whitcroft 已提交
1755 1756
		struct page *page;

L
Linus Torvalds 已提交
1757 1758 1759
		page = lru_to_page(src);
		prefetchw_prev_lru_page(page, src, flags);

1760
		VM_BUG_ON_PAGE(!PageLRU(page), page);
N
Nick Piggin 已提交
1761

1762 1763
		if (page_zonenum(page) > sc->reclaim_idx) {
			list_move(&page->lru, &pages_skipped);
1764
			nr_skipped[page_zonenum(page)]++;
1765 1766 1767
			continue;
		}

1768 1769 1770 1771 1772 1773 1774
		/*
		 * Do not count skipped pages because that makes the function
		 * return with no isolated pages if the LRU mostly contains
		 * ineligible pages.  This causes the VM to not reclaim any
		 * pages, triggering a premature OOM.
		 */
		scan++;
1775
		switch (__isolate_lru_page(page, mode)) {
A
Andy Whitcroft 已提交
1776
		case 0:
M
Mel Gorman 已提交
1777 1778 1779
			nr_pages = hpage_nr_pages(page);
			nr_taken += nr_pages;
			nr_zone_taken[page_zonenum(page)] += nr_pages;
A
Andy Whitcroft 已提交
1780 1781 1782 1783 1784 1785 1786
			list_move(&page->lru, dst);
			break;

		case -EBUSY:
			/* else it is being freed elsewhere */
			list_move(&page->lru, src);
			continue;
1787

A
Andy Whitcroft 已提交
1788 1789 1790
		default:
			BUG();
		}
L
Linus Torvalds 已提交
1791 1792
	}

1793 1794 1795 1796 1797 1798 1799
	/*
	 * Splice any skipped pages to the start of the LRU list. Note that
	 * this disrupts the LRU order when reclaiming for lower zones but
	 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
	 * scanning would soon rescan the same pages to skip and put the
	 * system at risk of premature OOM.
	 */
1800 1801 1802
	if (!list_empty(&pages_skipped)) {
		int zid;

1803
		list_splice(&pages_skipped, src);
1804 1805 1806 1807 1808
		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
			if (!nr_skipped[zid])
				continue;

			__count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1809
			skipped += nr_skipped[zid];
1810 1811
		}
	}
1812
	*nr_scanned = total_scan;
1813
	trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
1814
				    total_scan, skipped, nr_taken, mode, lru);
1815
	update_lru_sizes(lruvec, lru, nr_zone_taken);
L
Linus Torvalds 已提交
1816 1817 1818
	return nr_taken;
}

1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829
/**
 * isolate_lru_page - tries to isolate a page from its LRU list
 * @page: page to isolate from its LRU list
 *
 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
 * vmstat statistic corresponding to whatever LRU list the page was on.
 *
 * Returns 0 if the page was removed from an LRU list.
 * Returns -EBUSY if the page was not on an LRU list.
 *
 * The returned page will have PageLRU() cleared.  If it was found on
L
Lee Schermerhorn 已提交
1830 1831 1832
 * the active list, it will have PageActive set.  If it was found on
 * the unevictable list, it will have the PageUnevictable bit set. That flag
 * may need to be cleared by the caller before letting the page go.
1833 1834 1835 1836 1837
 *
 * The vmstat statistic corresponding to the list on which the page was
 * found will be decremented.
 *
 * Restrictions:
1838
 *
1839 1840 1841 1842 1843 1844 1845 1846 1847 1848
 * (1) Must be called with an elevated refcount on the page. This is a
 *     fundamentnal difference from isolate_lru_pages (which is called
 *     without a stable reference).
 * (2) the lru_lock must not be held.
 * (3) interrupts must be enabled.
 */
int isolate_lru_page(struct page *page)
{
	int ret = -EBUSY;

1849
	VM_BUG_ON_PAGE(!page_count(page), page);
1850
	WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
1851

1852 1853
	if (PageLRU(page)) {
		struct zone *zone = page_zone(page);
1854
		struct lruvec *lruvec;
1855

1856
		spin_lock_irq(zone_lru_lock(zone));
M
Mel Gorman 已提交
1857
		lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
1858
		if (PageLRU(page)) {
L
Lee Schermerhorn 已提交
1859
			int lru = page_lru(page);
1860
			get_page(page);
1861
			ClearPageLRU(page);
1862 1863
			del_page_from_lru_list(page, lruvec, lru);
			ret = 0;
1864
		}
1865
		spin_unlock_irq(zone_lru_lock(zone));
1866 1867 1868 1869
	}
	return ret;
}

1870
/*
F
Fengguang Wu 已提交
1871 1872 1873 1874 1875
 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
 * then get resheduled. When there are massive number of tasks doing page
 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
 * the LRU list will go small and be scanned faster than necessary, leading to
 * unnecessary swapping, thrashing and OOM.
1876
 */
M
Mel Gorman 已提交
1877
static int too_many_isolated(struct pglist_data *pgdat, int file,
1878 1879 1880 1881 1882 1883 1884
		struct scan_control *sc)
{
	unsigned long inactive, isolated;

	if (current_is_kswapd())
		return 0;

1885
	if (!sane_reclaim(sc))
1886 1887 1888
		return 0;

	if (file) {
M
Mel Gorman 已提交
1889 1890
		inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
		isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
1891
	} else {
M
Mel Gorman 已提交
1892 1893
		inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
		isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
1894 1895
	}

1896 1897 1898 1899 1900
	/*
	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
	 * won't get blocked by normal direct-reclaimers, forming a circular
	 * deadlock.
	 */
1901
	if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
1902 1903
		inactive >>= 3;

1904 1905 1906
	return isolated > inactive;
}

1907
static noinline_for_stack void
H
Hugh Dickins 已提交
1908
putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1909
{
1910
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
M
Mel Gorman 已提交
1911
	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1912
	LIST_HEAD(pages_to_free);
1913 1914 1915 1916 1917

	/*
	 * Put back any unfreeable pages.
	 */
	while (!list_empty(page_list)) {
1918
		struct page *page = lru_to_page(page_list);
1919
		int lru;
1920

1921
		VM_BUG_ON_PAGE(PageLRU(page), page);
1922
		list_del(&page->lru);
1923
		if (unlikely(!page_evictable(page))) {
M
Mel Gorman 已提交
1924
			spin_unlock_irq(&pgdat->lru_lock);
1925
			putback_lru_page(page);
M
Mel Gorman 已提交
1926
			spin_lock_irq(&pgdat->lru_lock);
1927 1928
			continue;
		}
1929

M
Mel Gorman 已提交
1930
		lruvec = mem_cgroup_page_lruvec(page, pgdat);
1931

1932
		SetPageLRU(page);
1933
		lru = page_lru(page);
1934 1935
		add_page_to_lru_list(page, lruvec, lru);

1936 1937
		if (is_active_lru(lru)) {
			int file = is_file_lru(lru);
1938 1939
			int numpages = hpage_nr_pages(page);
			reclaim_stat->recent_rotated[file] += numpages;
1940
		}
1941 1942 1943
		if (put_page_testzero(page)) {
			__ClearPageLRU(page);
			__ClearPageActive(page);
1944
			del_page_from_lru_list(page, lruvec, lru);
1945 1946

			if (unlikely(PageCompound(page))) {
M
Mel Gorman 已提交
1947
				spin_unlock_irq(&pgdat->lru_lock);
1948
				(*get_compound_page_dtor(page))(page);
M
Mel Gorman 已提交
1949
				spin_lock_irq(&pgdat->lru_lock);
1950 1951
			} else
				list_add(&page->lru, &pages_to_free);
1952 1953 1954
		}
	}

1955 1956 1957 1958
	/*
	 * To save our caller's stack, now use input list for pages to free.
	 */
	list_splice(&pages_to_free, page_list);
1959 1960
}

1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973
/*
 * If a kernel thread (such as nfsd for loop-back mounts) services
 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
 * In that case we should only throttle if the backing device it is
 * writing to is congested.  In other cases it is safe to throttle.
 */
static int current_may_throttle(void)
{
	return !(current->flags & PF_LESS_THROTTLE) ||
		current->backing_dev_info == NULL ||
		bdi_write_congested(current->backing_dev_info);
}

L
Linus Torvalds 已提交
1974
/*
1975
 * shrink_inactive_list() is a helper for shrink_node().  It returns the number
A
Andrew Morton 已提交
1976
 * of reclaimed pages
L
Linus Torvalds 已提交
1977
 */
1978
static noinline_for_stack unsigned long
1979
shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1980
		     struct scan_control *sc, enum lru_list lru)
L
Linus Torvalds 已提交
1981 1982
{
	LIST_HEAD(page_list);
1983
	unsigned long nr_scanned;
1984
	unsigned long nr_reclaimed = 0;
1985
	unsigned long nr_taken;
1986
	struct reclaim_stat stat = {};
1987
	isolate_mode_t isolate_mode = 0;
1988
	int file = is_file_lru(lru);
M
Mel Gorman 已提交
1989
	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1990
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1991
	bool stalled = false;
1992

M
Mel Gorman 已提交
1993
	while (unlikely(too_many_isolated(pgdat, file, sc))) {
1994 1995 1996 1997 1998 1999
		if (stalled)
			return 0;

		/* wait a bit for the reclaimer. */
		msleep(100);
		stalled = true;
2000 2001 2002 2003 2004 2005

		/* We are about to die and free our memory. Return now. */
		if (fatal_signal_pending(current))
			return SWAP_CLUSTER_MAX;
	}

L
Linus Torvalds 已提交
2006
	lru_add_drain();
2007 2008

	if (!sc->may_unmap)
2009
		isolate_mode |= ISOLATE_UNMAPPED;
2010

M
Mel Gorman 已提交
2011
	spin_lock_irq(&pgdat->lru_lock);
2012

2013 2014
	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
				     &nr_scanned, sc, isolate_mode, lru);
2015

M
Mel Gorman 已提交
2016
	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2017
	reclaim_stat->recent_scanned[file] += nr_taken;
2018

2019 2020
	if (current_is_kswapd()) {
		if (global_reclaim(sc))
M
Mel Gorman 已提交
2021
			__count_vm_events(PGSCAN_KSWAPD, nr_scanned);
2022 2023 2024 2025
		count_memcg_events(lruvec_memcg(lruvec), PGSCAN_KSWAPD,
				   nr_scanned);
	} else {
		if (global_reclaim(sc))
M
Mel Gorman 已提交
2026
			__count_vm_events(PGSCAN_DIRECT, nr_scanned);
2027 2028
		count_memcg_events(lruvec_memcg(lruvec), PGSCAN_DIRECT,
				   nr_scanned);
2029
	}
M
Mel Gorman 已提交
2030
	spin_unlock_irq(&pgdat->lru_lock);
2031

2032
	if (nr_taken == 0)
2033
		return 0;
A
Andy Whitcroft 已提交
2034

S
Shaohua Li 已提交
2035
	nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, 0,
2036
				&stat, false);
2037

M
Mel Gorman 已提交
2038
	spin_lock_irq(&pgdat->lru_lock);
2039

2040 2041
	if (current_is_kswapd()) {
		if (global_reclaim(sc))
M
Mel Gorman 已提交
2042
			__count_vm_events(PGSTEAL_KSWAPD, nr_reclaimed);
2043 2044 2045 2046
		count_memcg_events(lruvec_memcg(lruvec), PGSTEAL_KSWAPD,
				   nr_reclaimed);
	} else {
		if (global_reclaim(sc))
M
Mel Gorman 已提交
2047
			__count_vm_events(PGSTEAL_DIRECT, nr_reclaimed);
2048 2049
		count_memcg_events(lruvec_memcg(lruvec), PGSTEAL_DIRECT,
				   nr_reclaimed);
Y
Ying Han 已提交
2050
	}
N
Nick Piggin 已提交
2051

2052
	putback_inactive_pages(lruvec, &page_list);
2053

M
Mel Gorman 已提交
2054
	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2055

M
Mel Gorman 已提交
2056
	spin_unlock_irq(&pgdat->lru_lock);
2057

2058
	mem_cgroup_uncharge_list(&page_list);
2059
	free_unref_page_list(&page_list);
2060

2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074
	/*
	 * If dirty pages are scanned that are not queued for IO, it
	 * implies that flushers are not doing their job. This can
	 * happen when memory pressure pushes dirty pages to the end of
	 * the LRU before the dirty limits are breached and the dirty
	 * data has expired. It can also happen when the proportion of
	 * dirty pages grows not through writes but through memory
	 * pressure reclaiming all the clean cache. And in some cases,
	 * the flushers simply cannot keep up with the allocation
	 * rate. Nudge the flusher threads in case they are asleep.
	 */
	if (stat.nr_unqueued_dirty == nr_taken)
		wakeup_flusher_threads(WB_REASON_VMSCAN);

2075 2076 2077 2078 2079 2080 2081 2082
	sc->nr.dirty += stat.nr_dirty;
	sc->nr.congested += stat.nr_congested;
	sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
	sc->nr.writeback += stat.nr_writeback;
	sc->nr.immediate += stat.nr_immediate;
	sc->nr.taken += nr_taken;
	if (file)
		sc->nr.file_taken += nr_taken;
2083

M
Mel Gorman 已提交
2084
	trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
2085
			nr_scanned, nr_reclaimed, &stat, sc->priority, file);
2086
	return nr_reclaimed;
L
Linus Torvalds 已提交
2087 2088 2089 2090 2091 2092 2093 2094 2095
}

/*
 * This moves pages from the active list to the inactive list.
 *
 * We move them the other way if the page is referenced by one or more
 * processes, from rmap.
 *
 * If the pages are mostly unmapped, the processing is fast and it is
2096
 * appropriate to hold zone_lru_lock across the whole operation.  But if
L
Linus Torvalds 已提交
2097
 * the pages are mapped, the processing is slow (page_referenced()) so we
2098
 * should drop zone_lru_lock around each page.  It's impossible to balance
L
Linus Torvalds 已提交
2099 2100 2101 2102
 * this, so instead we remove the pages from the LRU while processing them.
 * It is safe to rely on PG_active against the non-LRU pages in here because
 * nobody will play with that bit on a non-LRU page.
 *
2103
 * The downside is that we have to touch page->_refcount against each page.
L
Linus Torvalds 已提交
2104
 * But we had to alter page->flags anyway.
2105 2106
 *
 * Returns the number of pages moved to the given lru.
L
Linus Torvalds 已提交
2107
 */
2108

2109
static unsigned move_active_pages_to_lru(struct lruvec *lruvec,
2110
				     struct list_head *list,
2111
				     struct list_head *pages_to_free,
2112 2113
				     enum lru_list lru)
{
M
Mel Gorman 已提交
2114
	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2115
	struct page *page;
2116
	int nr_pages;
2117
	int nr_moved = 0;
2118 2119 2120

	while (!list_empty(list)) {
		page = lru_to_page(list);
M
Mel Gorman 已提交
2121
		lruvec = mem_cgroup_page_lruvec(page, pgdat);
2122

2123
		VM_BUG_ON_PAGE(PageLRU(page), page);
2124 2125
		SetPageLRU(page);

2126
		nr_pages = hpage_nr_pages(page);
M
Mel Gorman 已提交
2127
		update_lru_size(lruvec, lru, page_zonenum(page), nr_pages);
2128
		list_move(&page->lru, &lruvec->lists[lru]);
2129

2130 2131 2132
		if (put_page_testzero(page)) {
			__ClearPageLRU(page);
			__ClearPageActive(page);
2133
			del_page_from_lru_list(page, lruvec, lru);
2134 2135

			if (unlikely(PageCompound(page))) {
M
Mel Gorman 已提交
2136
				spin_unlock_irq(&pgdat->lru_lock);
2137
				(*get_compound_page_dtor(page))(page);
M
Mel Gorman 已提交
2138
				spin_lock_irq(&pgdat->lru_lock);
2139 2140
			} else
				list_add(&page->lru, pages_to_free);
2141 2142
		} else {
			nr_moved += nr_pages;
2143 2144
		}
	}
2145

2146
	if (!is_active_lru(lru)) {
2147
		__count_vm_events(PGDEACTIVATE, nr_moved);
2148 2149 2150
		count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE,
				   nr_moved);
	}
2151 2152

	return nr_moved;
2153
}
2154

H
Hugh Dickins 已提交
2155
static void shrink_active_list(unsigned long nr_to_scan,
2156
			       struct lruvec *lruvec,
2157
			       struct scan_control *sc,
2158
			       enum lru_list lru)
L
Linus Torvalds 已提交
2159
{
2160
	unsigned long nr_taken;
H
Hugh Dickins 已提交
2161
	unsigned long nr_scanned;
2162
	unsigned long vm_flags;
L
Linus Torvalds 已提交
2163
	LIST_HEAD(l_hold);	/* The pages which were snipped off */
2164
	LIST_HEAD(l_active);
2165
	LIST_HEAD(l_inactive);
L
Linus Torvalds 已提交
2166
	struct page *page;
2167
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
2168 2169
	unsigned nr_deactivate, nr_activate;
	unsigned nr_rotated = 0;
2170
	isolate_mode_t isolate_mode = 0;
2171
	int file = is_file_lru(lru);
M
Mel Gorman 已提交
2172
	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
L
Linus Torvalds 已提交
2173 2174

	lru_add_drain();
2175 2176

	if (!sc->may_unmap)
2177
		isolate_mode |= ISOLATE_UNMAPPED;
2178

M
Mel Gorman 已提交
2179
	spin_lock_irq(&pgdat->lru_lock);
2180

2181 2182
	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
				     &nr_scanned, sc, isolate_mode, lru);
2183

M
Mel Gorman 已提交
2184
	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2185
	reclaim_stat->recent_scanned[file] += nr_taken;
2186

M
Mel Gorman 已提交
2187
	__count_vm_events(PGREFILL, nr_scanned);
2188
	count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
2189

M
Mel Gorman 已提交
2190
	spin_unlock_irq(&pgdat->lru_lock);
L
Linus Torvalds 已提交
2191 2192 2193 2194 2195

	while (!list_empty(&l_hold)) {
		cond_resched();
		page = lru_to_page(&l_hold);
		list_del(&page->lru);
2196

2197
		if (unlikely(!page_evictable(page))) {
L
Lee Schermerhorn 已提交
2198 2199 2200 2201
			putback_lru_page(page);
			continue;
		}

2202 2203 2204 2205 2206 2207 2208 2209
		if (unlikely(buffer_heads_over_limit)) {
			if (page_has_private(page) && trylock_page(page)) {
				if (page_has_private(page))
					try_to_release_page(page, 0);
				unlock_page(page);
			}
		}

2210 2211
		if (page_referenced(page, 0, sc->target_mem_cgroup,
				    &vm_flags)) {
2212
			nr_rotated += hpage_nr_pages(page);
2213 2214 2215 2216 2217 2218 2219 2220 2221
			/*
			 * Identify referenced, file-backed active pages and
			 * give them one more trip around the active list. So
			 * that executable code get better chances to stay in
			 * memory under moderate memory pressure.  Anon pages
			 * are not likely to be evicted by use-once streaming
			 * IO, plus JVM can create lots of anon VM_EXEC pages,
			 * so we ignore them here.
			 */
2222
			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
2223 2224 2225 2226
				list_add(&page->lru, &l_active);
				continue;
			}
		}
2227

2228
		ClearPageActive(page);	/* we are de-activating */
2229
		SetPageWorkingset(page);
L
Linus Torvalds 已提交
2230 2231 2232
		list_add(&page->lru, &l_inactive);
	}

2233
	/*
2234
	 * Move pages back to the lru list.
2235
	 */
M
Mel Gorman 已提交
2236
	spin_lock_irq(&pgdat->lru_lock);
2237
	/*
2238 2239 2240
	 * Count referenced pages from currently used mappings as rotated,
	 * even though only some of them are actually re-activated.  This
	 * helps balance scan pressure between file and anonymous pages in
2241
	 * get_scan_count.
2242
	 */
2243
	reclaim_stat->recent_rotated[file] += nr_rotated;
2244

2245 2246
	nr_activate = move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
	nr_deactivate = move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
M
Mel Gorman 已提交
2247 2248
	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
	spin_unlock_irq(&pgdat->lru_lock);
2249

2250
	mem_cgroup_uncharge_list(&l_hold);
2251
	free_unref_page_list(&l_hold);
2252 2253
	trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
			nr_deactivate, nr_rotated, sc->priority, file);
L
Linus Torvalds 已提交
2254 2255
}

M
Minchan Kim 已提交
2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311
unsigned long reclaim_pages(struct list_head *page_list)
{
	int nid = -1;
	unsigned long nr_reclaimed = 0;
	LIST_HEAD(node_page_list);
	struct reclaim_stat dummy_stat;
	struct page *page;
	struct scan_control sc = {
		.gfp_mask = GFP_KERNEL,
		.priority = DEF_PRIORITY,
		.may_writepage = 1,
		.may_unmap = 1,
		.may_swap = 1,
	};

	while (!list_empty(page_list)) {
		page = lru_to_page(page_list);
		if (nid == -1) {
			nid = page_to_nid(page);
			INIT_LIST_HEAD(&node_page_list);
		}

		if (nid == page_to_nid(page)) {
			ClearPageActive(page);
			list_move(&page->lru, &node_page_list);
			continue;
		}

		nr_reclaimed += shrink_page_list(&node_page_list,
						NODE_DATA(nid),
						&sc, 0,
						&dummy_stat, false);
		while (!list_empty(&node_page_list)) {
			page = lru_to_page(&node_page_list);
			list_del(&page->lru);
			putback_lru_page(page);
		}

		nid = -1;
	}

	if (!list_empty(&node_page_list)) {
		nr_reclaimed += shrink_page_list(&node_page_list,
						NODE_DATA(nid),
						&sc, 0,
						&dummy_stat, false);
		while (!list_empty(&node_page_list)) {
			page = lru_to_page(&node_page_list);
			list_del(&page->lru);
			putback_lru_page(page);
		}
	}

	return nr_reclaimed;
}

2312 2313 2314
/*
 * The inactive anon list should be small enough that the VM never has
 * to do too much work.
2315
 *
2316 2317 2318
 * The inactive file list should be small enough to leave most memory
 * to the established workingset on the scan-resistant active list,
 * but large enough to avoid thrashing the aggregate readahead window.
2319
 *
2320 2321
 * Both inactive lists should also be large enough that each inactive
 * page has a chance to be referenced again before it is reclaimed.
2322
 *
2323 2324
 * If that fails and refaulting is observed, the inactive list grows.
 *
2325
 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
2326
 * on this LRU, maintained by the pageout code. An inactive_ratio
2327
 * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
2328
 *
2329 2330 2331 2332 2333 2334 2335 2336 2337 2338
 * total     target    max
 * memory    ratio     inactive
 * -------------------------------------
 *   10MB       1         5MB
 *  100MB       1        50MB
 *    1GB       3       250MB
 *   10GB      10       0.9GB
 *  100GB      31         3GB
 *    1TB     101        10GB
 *   10TB     320        32GB
2339
 */
2340
static bool inactive_list_is_low(struct lruvec *lruvec, bool file,
2341
				 struct scan_control *sc, bool trace)
2342
{
2343
	enum lru_list active_lru = file * LRU_FILE + LRU_ACTIVE;
2344 2345 2346 2347 2348
	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
	enum lru_list inactive_lru = file * LRU_FILE;
	unsigned long inactive, active;
	unsigned long inactive_ratio;
	unsigned long refaults;
2349
	unsigned long gb;
2350

2351 2352 2353 2354 2355 2356
	/*
	 * If we don't have swap space, anonymous page deactivation
	 * is pointless.
	 */
	if (!file && !total_swap_pages)
		return false;
2357

2358 2359
	inactive = lruvec_lru_size(lruvec, inactive_lru, sc->reclaim_idx);
	active = lruvec_lru_size(lruvec, active_lru, sc->reclaim_idx);
2360

2361 2362 2363 2364 2365
	/*
	 * When refaults are being observed, it means a new workingset
	 * is being established. Disable active list protection to get
	 * rid of the stale workingset quickly.
	 */
2366
	refaults = lruvec_page_state(lruvec, WORKINGSET_ACTIVATE);
2367
	if (file && lruvec->refaults != refaults) {
2368 2369 2370 2371 2372 2373 2374 2375
		inactive_ratio = 0;
	} else {
		gb = (inactive + active) >> (30 - PAGE_SHIFT);
		if (gb)
			inactive_ratio = int_sqrt(10 * gb);
		else
			inactive_ratio = 1;
	}
2376

2377
	if (trace)
2378 2379 2380 2381
		trace_mm_vmscan_inactive_list_is_low(pgdat->node_id, sc->reclaim_idx,
			lruvec_lru_size(lruvec, inactive_lru, MAX_NR_ZONES), inactive,
			lruvec_lru_size(lruvec, active_lru, MAX_NR_ZONES), active,
			inactive_ratio, file);
2382

2383
	return inactive * inactive_ratio < active;
2384 2385
}

2386
static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2387
				 struct lruvec *lruvec, struct scan_control *sc)
2388
{
2389
	if (is_active_lru(lru)) {
2390
		if (inactive_list_is_low(lruvec, is_file_lru(lru), sc, true))
2391
			shrink_active_list(nr_to_scan, lruvec, sc, lru);
2392 2393 2394
		return 0;
	}

2395
	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2396 2397
}

2398 2399 2400 2401 2402 2403 2404
enum scan_balance {
	SCAN_EQUAL,
	SCAN_FRACT,
	SCAN_ANON,
	SCAN_FILE,
};

2405 2406 2407 2408 2409 2410
/*
 * Determine how aggressively the anon and file LRU lists should be
 * scanned.  The relative value of each set of LRU lists is determined
 * by looking at the fraction of the pages scanned we did rotate back
 * onto the active list instead of evict.
 *
W
Wanpeng Li 已提交
2411 2412
 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
2413
 */
2414
static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg,
2415 2416
			   struct scan_control *sc, unsigned long *nr,
			   unsigned long *lru_pages)
2417
{
2418
	int swappiness = mem_cgroup_swappiness(memcg);
2419 2420 2421
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
	u64 fraction[2];
	u64 denominator = 0;	/* gcc */
M
Mel Gorman 已提交
2422
	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2423
	unsigned long anon_prio, file_prio;
2424
	enum scan_balance scan_balance;
2425
	unsigned long anon, file;
2426
	unsigned long ap, fp;
H
Hugh Dickins 已提交
2427
	enum lru_list lru;
2428 2429

	/* If we have no swap space, do not bother scanning anon pages. */
2430
	if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
2431
		scan_balance = SCAN_FILE;
2432 2433
		goto out;
	}
2434

2435 2436 2437 2438 2439 2440 2441
	/*
	 * Global reclaim will swap to prevent OOM even with no
	 * swappiness, but memcg users want to use this knob to
	 * disable swapping for individual groups completely when
	 * using the memory controller's swap limit feature would be
	 * too expensive.
	 */
2442
	if (!global_reclaim(sc) && !swappiness) {
2443
		scan_balance = SCAN_FILE;
2444 2445 2446 2447 2448 2449 2450 2451
		goto out;
	}

	/*
	 * Do not apply any pressure balancing cleverness when the
	 * system is close to OOM, scan both anon and file equally
	 * (unless the swappiness setting disagrees with swapping).
	 */
2452
	if (!sc->priority && swappiness) {
2453
		scan_balance = SCAN_EQUAL;
2454 2455 2456
		goto out;
	}

2457 2458 2459 2460 2461 2462 2463 2464 2465 2466
	/*
	 * Prevent the reclaimer from falling into the cache trap: as
	 * cache pages start out inactive, every cache fault will tip
	 * the scan balance towards the file LRU.  And as the file LRU
	 * shrinks, so does the window for rotation from references.
	 * This means we have a runaway feedback loop where a tiny
	 * thrashing file LRU becomes infinitely more attractive than
	 * anon pages.  Try to detect this based on file LRU size.
	 */
	if (global_reclaim(sc)) {
M
Mel Gorman 已提交
2467 2468 2469 2470
		unsigned long pgdatfile;
		unsigned long pgdatfree;
		int z;
		unsigned long total_high_wmark = 0;
2471

M
Mel Gorman 已提交
2472 2473 2474 2475 2476 2477
		pgdatfree = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
		pgdatfile = node_page_state(pgdat, NR_ACTIVE_FILE) +
			   node_page_state(pgdat, NR_INACTIVE_FILE);

		for (z = 0; z < MAX_NR_ZONES; z++) {
			struct zone *zone = &pgdat->node_zones[z];
2478
			if (!managed_zone(zone))
M
Mel Gorman 已提交
2479 2480 2481 2482
				continue;

			total_high_wmark += high_wmark_pages(zone);
		}
2483

M
Mel Gorman 已提交
2484
		if (unlikely(pgdatfile + pgdatfree <= total_high_wmark)) {
2485 2486 2487 2488 2489
			/*
			 * Force SCAN_ANON if there are enough inactive
			 * anonymous pages on the LRU in eligible zones.
			 * Otherwise, the small LRU gets thrashed.
			 */
2490
			if (!inactive_list_is_low(lruvec, false, sc, false) &&
2491 2492 2493 2494 2495
			    lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, sc->reclaim_idx)
					>> sc->priority) {
				scan_balance = SCAN_ANON;
				goto out;
			}
2496 2497 2498
		}
	}

2499
	/*
2500 2501 2502 2503 2504 2505 2506
	 * If there is enough inactive page cache, i.e. if the size of the
	 * inactive list is greater than that of the active list *and* the
	 * inactive list actually has some pages to scan on this priority, we
	 * do not reclaim anything from the anonymous working set right now.
	 * Without the second condition we could end up never scanning an
	 * lruvec even if it has plenty of old anonymous pages unless the
	 * system is under heavy pressure.
2507
	 */
2508
	if (!inactive_list_is_low(lruvec, true, sc, false) &&
2509
	    lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, sc->reclaim_idx) >> sc->priority) {
2510
		scan_balance = SCAN_FILE;
2511 2512 2513
		goto out;
	}

2514 2515
	scan_balance = SCAN_FRACT;

2516 2517 2518 2519
	/*
	 * With swappiness at 100, anonymous and file have the same priority.
	 * This scanning priority is essentially the inverse of IO cost.
	 */
2520
	anon_prio = swappiness;
H
Hugh Dickins 已提交
2521
	file_prio = 200 - anon_prio;
2522

2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533
	/*
	 * OK, so we have swap space and a fair amount of page cache
	 * pages.  We use the recently rotated / recently scanned
	 * ratios to determine how valuable each cache is.
	 *
	 * Because workloads change over time (and to avoid overflow)
	 * we keep these statistics as a floating average, which ends
	 * up weighing recent references more than old ones.
	 *
	 * anon in [0], file in [1]
	 */
2534

2535 2536 2537 2538
	anon  = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON, MAX_NR_ZONES) +
		lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, MAX_NR_ZONES);
	file  = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE, MAX_NR_ZONES) +
		lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, MAX_NR_ZONES);
2539

M
Mel Gorman 已提交
2540
	spin_lock_irq(&pgdat->lru_lock);
2541 2542 2543
	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
		reclaim_stat->recent_scanned[0] /= 2;
		reclaim_stat->recent_rotated[0] /= 2;
2544 2545
	}

2546 2547 2548
	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
		reclaim_stat->recent_scanned[1] /= 2;
		reclaim_stat->recent_rotated[1] /= 2;
2549 2550 2551
	}

	/*
2552 2553 2554
	 * The amount of pressure on anon vs file pages is inversely
	 * proportional to the fraction of recently scanned pages on
	 * each list that were recently referenced and in active use.
2555
	 */
2556
	ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
2557
	ap /= reclaim_stat->recent_rotated[0] + 1;
2558

2559
	fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
2560
	fp /= reclaim_stat->recent_rotated[1] + 1;
M
Mel Gorman 已提交
2561
	spin_unlock_irq(&pgdat->lru_lock);
2562

2563 2564 2565 2566
	fraction[0] = ap;
	fraction[1] = fp;
	denominator = ap + fp + 1;
out:
2567 2568 2569 2570 2571
	*lru_pages = 0;
	for_each_evictable_lru(lru) {
		int file = is_file_lru(lru);
		unsigned long size;
		unsigned long scan;
2572

2573 2574 2575 2576 2577 2578 2579 2580
		size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
		scan = size >> sc->priority;
		/*
		 * If the cgroup's already been deleted, make sure to
		 * scrape out the remaining cache.
		 */
		if (!scan && !mem_cgroup_online(memcg))
			scan = min(size, SWAP_CLUSTER_MAX);
2581

2582 2583 2584 2585 2586
		switch (scan_balance) {
		case SCAN_EQUAL:
			/* Scan lists relative to size */
			break;
		case SCAN_FRACT:
2587
			/*
2588 2589
			 * Scan types proportional to swappiness and
			 * their relative recent reclaim efficiency.
2590 2591
			 * Make sure we don't miss the last page
			 * because of a round-off error.
2592
			 */
2593 2594
			scan = DIV64_U64_ROUND_UP(scan * fraction[file],
						  denominator);
2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606
			break;
		case SCAN_FILE:
		case SCAN_ANON:
			/* Scan one type exclusively */
			if ((scan_balance == SCAN_FILE) != file) {
				size = 0;
				scan = 0;
			}
			break;
		default:
			/* Look ma, no brain */
			BUG();
2607
		}
2608 2609 2610

		*lru_pages += size;
		nr[lru] = scan;
2611
	}
2612
}
2613

2614
/*
2615
 * This is a basic per-node page freer.  Used by both kswapd and direct reclaim.
2616
 */
2617
static void shrink_node_memcg(struct pglist_data *pgdat, struct mem_cgroup *memcg,
2618
			      struct scan_control *sc, unsigned long *lru_pages)
2619
{
2620
	struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
2621
	unsigned long nr[NR_LRU_LISTS];
2622
	unsigned long targets[NR_LRU_LISTS];
2623 2624 2625 2626 2627
	unsigned long nr_to_scan;
	enum lru_list lru;
	unsigned long nr_reclaimed = 0;
	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
	struct blk_plug plug;
2628
	bool scan_adjusted;
2629

2630
	get_scan_count(lruvec, memcg, sc, nr, lru_pages);
2631

2632 2633 2634
	/* Record the original scan target for proportional adjustments later */
	memcpy(targets, nr, sizeof(nr));

2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648
	/*
	 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
	 * event that can occur when there is little memory pressure e.g.
	 * multiple streaming readers/writers. Hence, we do not abort scanning
	 * when the requested number of pages are reclaimed when scanning at
	 * DEF_PRIORITY on the assumption that the fact we are direct
	 * reclaiming implies that kswapd is not keeping up and it is best to
	 * do a batch of work at once. For memcg reclaim one check is made to
	 * abort proportional reclaim if either the file or anon lru has already
	 * dropped to zero at the first pass.
	 */
	scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
			 sc->priority == DEF_PRIORITY);

2649 2650 2651
	blk_start_plug(&plug);
	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
					nr[LRU_INACTIVE_FILE]) {
2652 2653 2654
		unsigned long nr_anon, nr_file, percentage;
		unsigned long nr_scanned;

2655 2656 2657 2658 2659 2660
		for_each_evictable_lru(lru) {
			if (nr[lru]) {
				nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
				nr[lru] -= nr_to_scan;

				nr_reclaimed += shrink_list(lru, nr_to_scan,
2661
							    lruvec, sc);
2662 2663
			}
		}
2664

2665 2666
		cond_resched();

2667 2668 2669 2670 2671
		if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
			continue;

		/*
		 * For kswapd and memcg, reclaim at least the number of pages
2672
		 * requested. Ensure that the anon and file LRUs are scanned
2673 2674 2675 2676 2677 2678 2679
		 * proportionally what was requested by get_scan_count(). We
		 * stop reclaiming one LRU and reduce the amount scanning
		 * proportional to the original scan target.
		 */
		nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
		nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];

2680 2681 2682 2683 2684 2685 2686 2687 2688
		/*
		 * It's just vindictive to attack the larger once the smaller
		 * has gone to zero.  And given the way we stop scanning the
		 * smaller below, this makes sure that we only make one nudge
		 * towards proportionality once we've got nr_to_reclaim.
		 */
		if (!nr_file || !nr_anon)
			break;

2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719
		if (nr_file > nr_anon) {
			unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
						targets[LRU_ACTIVE_ANON] + 1;
			lru = LRU_BASE;
			percentage = nr_anon * 100 / scan_target;
		} else {
			unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
						targets[LRU_ACTIVE_FILE] + 1;
			lru = LRU_FILE;
			percentage = nr_file * 100 / scan_target;
		}

		/* Stop scanning the smaller of the LRU */
		nr[lru] = 0;
		nr[lru + LRU_ACTIVE] = 0;

		/*
		 * Recalculate the other LRU scan count based on its original
		 * scan target and the percentage scanning already complete
		 */
		lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
		nr_scanned = targets[lru] - nr[lru];
		nr[lru] = targets[lru] * (100 - percentage) / 100;
		nr[lru] -= min(nr[lru], nr_scanned);

		lru += LRU_ACTIVE;
		nr_scanned = targets[lru] - nr[lru];
		nr[lru] = targets[lru] * (100 - percentage) / 100;
		nr[lru] -= min(nr[lru], nr_scanned);

		scan_adjusted = true;
2720 2721 2722 2723 2724 2725 2726 2727
	}
	blk_finish_plug(&plug);
	sc->nr_reclaimed += nr_reclaimed;

	/*
	 * Even if we did not try to evict anon pages at all, we want to
	 * rebalance the anon lru active/inactive ratio.
	 */
2728
	if (inactive_list_is_low(lruvec, false, sc, true))
2729 2730 2731 2732
		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
				   sc, LRU_ACTIVE_ANON);
}

M
Mel Gorman 已提交
2733
/* Use reclaim/compaction for costly allocs or under memory pressure */
2734
static bool in_reclaim_compaction(struct scan_control *sc)
M
Mel Gorman 已提交
2735
{
2736
	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
M
Mel Gorman 已提交
2737
			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2738
			 sc->priority < DEF_PRIORITY - 2))
M
Mel Gorman 已提交
2739 2740 2741 2742 2743
		return true;

	return false;
}

2744
/*
M
Mel Gorman 已提交
2745 2746 2747 2748 2749
 * Reclaim/compaction is used for high-order allocation requests. It reclaims
 * order-0 pages before compacting the zone. should_continue_reclaim() returns
 * true if more pages should be reclaimed such that when the page allocator
 * calls try_to_compact_zone() that it will have enough free pages to succeed.
 * It will give up earlier than that if there is difficulty reclaiming pages.
2750
 */
2751
static inline bool should_continue_reclaim(struct pglist_data *pgdat,
2752 2753 2754 2755 2756 2757
					unsigned long nr_reclaimed,
					unsigned long nr_scanned,
					struct scan_control *sc)
{
	unsigned long pages_for_compaction;
	unsigned long inactive_lru_pages;
2758
	int z;
2759 2760

	/* If not in reclaim/compaction mode, stop */
2761
	if (!in_reclaim_compaction(sc))
2762 2763
		return false;

2764
	/* Consider stopping depending on scan and reclaim activity */
2765
	if (sc->gfp_mask & __GFP_RETRY_MAYFAIL) {
2766
		/*
2767
		 * For __GFP_RETRY_MAYFAIL allocations, stop reclaiming if the
2768 2769
		 * full LRU list has been scanned and we are still failing
		 * to reclaim pages. This full LRU scan is potentially
2770
		 * expensive but a __GFP_RETRY_MAYFAIL caller really wants to succeed
2771 2772 2773 2774 2775
		 */
		if (!nr_reclaimed && !nr_scanned)
			return false;
	} else {
		/*
2776
		 * For non-__GFP_RETRY_MAYFAIL allocations which can presumably
2777 2778 2779 2780 2781 2782 2783 2784 2785
		 * fail without consequence, stop if we failed to reclaim
		 * any pages from the last SWAP_CLUSTER_MAX number of
		 * pages that were scanned. This will return to the
		 * caller faster at the risk reclaim/compaction and
		 * the resulting allocation attempt fails
		 */
		if (!nr_reclaimed)
			return false;
	}
2786 2787 2788 2789 2790

	/*
	 * If we have not reclaimed enough pages for compaction and the
	 * inactive lists are large enough, continue reclaiming
	 */
2791
	pages_for_compaction = compact_gap(sc->order);
2792
	inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
2793
	if (get_nr_swap_pages() > 0)
2794
		inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
2795 2796 2797 2798 2799
	if (sc->nr_reclaimed < pages_for_compaction &&
			inactive_lru_pages > pages_for_compaction)
		return true;

	/* If compaction would go ahead or the allocation would succeed, stop */
2800 2801
	for (z = 0; z <= sc->reclaim_idx; z++) {
		struct zone *zone = &pgdat->node_zones[z];
2802
		if (!managed_zone(zone))
2803 2804 2805
			continue;

		switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
2806
		case COMPACT_SUCCESS:
2807 2808 2809 2810 2811 2812
		case COMPACT_CONTINUE:
			return false;
		default:
			/* check next zone */
			;
		}
2813
	}
2814
	return true;
2815 2816
}

2817
static bool shrink_node(pg_data_t *pgdat, struct scan_control *sc)
L
Linus Torvalds 已提交
2818
{
2819
	struct reclaim_state *reclaim_state = current->reclaim_state;
2820
	unsigned long nr_reclaimed, nr_scanned;
2821
	bool reclaimable = false;
L
Linus Torvalds 已提交
2822

2823 2824 2825
	do {
		struct mem_cgroup *root = sc->target_mem_cgroup;
		struct mem_cgroup_reclaim_cookie reclaim = {
2826
			.pgdat = pgdat,
2827 2828
			.priority = sc->priority,
		};
2829
		unsigned long node_lru_pages = 0;
2830
		struct mem_cgroup *memcg;
2831

2832 2833
		memset(&sc->nr, 0, sizeof(sc->nr));

2834 2835
		nr_reclaimed = sc->nr_reclaimed;
		nr_scanned = sc->nr_scanned;
L
Linus Torvalds 已提交
2836

2837 2838
		memcg = mem_cgroup_iter(root, NULL, &reclaim);
		do {
2839
			unsigned long lru_pages;
2840
			unsigned long reclaimed;
2841
			unsigned long scanned;
2842

R
Roman Gushchin 已提交
2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856
			switch (mem_cgroup_protected(root, memcg)) {
			case MEMCG_PROT_MIN:
				/*
				 * Hard protection.
				 * If there is no reclaimable memory, OOM.
				 */
				continue;
			case MEMCG_PROT_LOW:
				/*
				 * Soft protection.
				 * Respect the protection only as long as
				 * there is an unprotected supply
				 * of reclaimable memory from other cgroups.
				 */
2857 2858
				if (!sc->memcg_low_reclaim) {
					sc->memcg_low_skipped = 1;
2859
					continue;
2860
				}
2861
				memcg_memory_event(memcg, MEMCG_LOW);
R
Roman Gushchin 已提交
2862 2863 2864
				break;
			case MEMCG_PROT_NONE:
				break;
2865 2866
			}

2867
			reclaimed = sc->nr_reclaimed;
2868
			scanned = sc->nr_scanned;
2869 2870
			shrink_node_memcg(pgdat, memcg, sc, &lru_pages);
			node_lru_pages += lru_pages;
2871

2872 2873
			shrink_slab(sc->gfp_mask, pgdat->node_id,
				    memcg, sc->priority);
2874

2875 2876 2877 2878 2879
			/* Record the group's reclaim efficiency */
			vmpressure(sc->gfp_mask, memcg, false,
				   sc->nr_scanned - scanned,
				   sc->nr_reclaimed - reclaimed);

2880
			/*
2881 2882
			 * Direct reclaim and kswapd have to scan all memory
			 * cgroups to fulfill the overall scan target for the
2883
			 * node.
2884 2885 2886 2887 2888
			 *
			 * Limit reclaim, on the other hand, only cares about
			 * nr_to_reclaim pages to be reclaimed and it will
			 * retry with decreasing priority if one round over the
			 * whole hierarchy is not sufficient.
2889 2890 2891
			 *
			 * Memcg background reclaim would break iter once water
			 * mark is satisfied.
2892
			 */
2893
			if (!global_reclaim(sc) &&
2894 2895
			    ((sc->nr_reclaimed >= sc->nr_to_reclaim) ||
			    (current_is_kswapd() && is_wmark_ok(root, false)))) {
2896 2897 2898
				mem_cgroup_iter_break(root, memcg);
				break;
			}
2899
		} while ((memcg = mem_cgroup_iter(root, memcg, &reclaim)));
2900

2901 2902 2903
		if (reclaim_state) {
			sc->nr_reclaimed += reclaim_state->reclaimed_slab;
			reclaim_state->reclaimed_slab = 0;
2904 2905
		}

2906 2907
		/* Record the subtree's reclaim efficiency */
		vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
2908 2909 2910
			   sc->nr_scanned - nr_scanned,
			   sc->nr_reclaimed - nr_reclaimed);

2911 2912 2913
		if (sc->nr_reclaimed - nr_reclaimed)
			reclaimable = true;

2914
		if (current_is_kswapd()) {
2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931
			/*
			 * If reclaim is isolating dirty pages under writeback,
			 * it implies that the long-lived page allocation rate
			 * is exceeding the page laundering rate. Either the
			 * global limits are not being effective at throttling
			 * processes due to the page distribution throughout
			 * zones or there is heavy usage of a slow backing
			 * device. The only option is to throttle from reclaim
			 * context which is not ideal as there is no guarantee
			 * the dirtying process is throttled in the same way
			 * balance_dirty_pages() manages.
			 *
			 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
			 * count the number of pages under pages flagged for
			 * immediate reclaim and stall if any are encountered
			 * in the nr_immediate check below.
			 */
2932 2933 2934 2935 2936 2937
			if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken) {
				if (global_reclaim(sc))
					set_bit(PGDAT_WRITEBACK, &pgdat->flags);
				else
					set_memcg_writeback(pgdat, root, true);
			}
2938 2939 2940 2941 2942 2943

			/*
			 * Tag a node as congested if all the dirty pages
			 * scanned were backed by a congested BDI and
			 * wait_iff_congested will stall.
			 */
2944 2945
			if (sc->nr.dirty && sc->nr.dirty == sc->nr.congested &&
			    global_reclaim(sc))
2946 2947 2948
				set_bit(PGDAT_CONGESTED, &pgdat->flags);

			/* Allow kswapd to start writing pages during reclaim.*/
2949 2950 2951 2952 2953 2954
			if (sc->nr.unqueued_dirty == sc->nr.file_taken) {
				if (global_reclaim(sc))
					set_bit(PGDAT_DIRTY, &pgdat->flags);
				else
					set_memcg_dirty(pgdat, root, true);
			}
2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965

			/*
			 * If kswapd scans pages marked marked for immediate
			 * reclaim and under writeback (nr_immediate), it
			 * implies that pages are cycling through the LRU
			 * faster than they are written so also forcibly stall.
			 */
			if (sc->nr.immediate)
				congestion_wait(BLK_RW_ASYNC, HZ/10);
		}

2966 2967 2968 2969 2970 2971 2972 2973
		/*
		 * Legacy memcg will stall in page writeback so avoid forcibly
		 * stalling in wait_iff_congested().
		 */
		if (!global_reclaim(sc) && sane_reclaim(sc) &&
		    sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
			set_memcg_congestion(pgdat, root, true);

2974 2975 2976 2977 2978 2979 2980
		/*
		 * Stall direct reclaim for IO completions if underlying BDIs
		 * and node is congested. Allow kswapd to continue until it
		 * starts encountering unqueued dirty pages or cycling through
		 * the LRU too quickly.
		 */
		if (!sc->hibernation_mode && !current_is_kswapd() &&
2981 2982
		   current_may_throttle() && pgdat_memcg_congested(pgdat, root))
			wait_iff_congested(BLK_RW_ASYNC, HZ/10);
2983

2984
	} while (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
2985
					 sc->nr_scanned - nr_scanned, sc));
2986

2987 2988 2989 2990 2991 2992 2993 2994 2995
	/*
	 * Kswapd gives up on balancing particular nodes after too
	 * many failures to reclaim anything from them and goes to
	 * sleep. On reclaim progress, reset the failure counter. A
	 * successful direct reclaim run will revive a dormant kswapd.
	 */
	if (reclaimable)
		pgdat->kswapd_failures = 0;

2996
	return reclaimable;
2997 2998
}

2999
/*
3000 3001 3002
 * Returns true if compaction should go ahead for a costly-order request, or
 * the allocation would already succeed without compaction. Return false if we
 * should reclaim first.
3003
 */
3004
static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
3005
{
M
Mel Gorman 已提交
3006
	unsigned long watermark;
3007
	enum compact_result suitable;
3008

3009 3010 3011 3012 3013 3014 3015
	suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
	if (suitable == COMPACT_SUCCESS)
		/* Allocation should succeed already. Don't reclaim. */
		return true;
	if (suitable == COMPACT_SKIPPED)
		/* Compaction cannot yet proceed. Do reclaim. */
		return false;
3016

3017
	/*
3018 3019 3020 3021 3022 3023 3024
	 * Compaction is already possible, but it takes time to run and there
	 * are potentially other callers using the pages just freed. So proceed
	 * with reclaim to make a buffer of free pages available to give
	 * compaction a reasonable chance of completing and allocating the page.
	 * Note that we won't actually reclaim the whole buffer in one attempt
	 * as the target watermark in should_continue_reclaim() is lower. But if
	 * we are already above the high+gap watermark, don't reclaim at all.
3025
	 */
3026
	watermark = high_wmark_pages(zone) + compact_gap(sc->order);
3027

3028
	return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
3029 3030
}

L
Linus Torvalds 已提交
3031 3032 3033 3034 3035 3036 3037 3038
/*
 * This is the direct reclaim path, for page-allocating processes.  We only
 * try to reclaim pages from zones which will satisfy the caller's allocation
 * request.
 *
 * If a zone is deemed to be full of pinned pages then just give it a light
 * scan then give up on it.
 */
M
Michal Hocko 已提交
3039
static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
L
Linus Torvalds 已提交
3040
{
3041
	struct zoneref *z;
3042
	struct zone *zone;
3043 3044
	unsigned long nr_soft_reclaimed;
	unsigned long nr_soft_scanned;
3045
	gfp_t orig_mask;
3046
	pg_data_t *last_pgdat = NULL;
3047

3048 3049 3050 3051 3052
	/*
	 * If the number of buffer_heads in the machine exceeds the maximum
	 * allowed level, force direct reclaim to scan the highmem zone as
	 * highmem pages could be pinning lowmem pages storing buffer_heads
	 */
3053
	orig_mask = sc->gfp_mask;
3054
	if (buffer_heads_over_limit) {
3055
		sc->gfp_mask |= __GFP_HIGHMEM;
3056
		sc->reclaim_idx = gfp_zone(sc->gfp_mask);
3057
	}
3058

3059
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
3060
					sc->reclaim_idx, sc->nodemask) {
3061 3062 3063 3064
		/*
		 * Take care memory controller reclaiming has small influence
		 * to global LRU.
		 */
3065
		if (global_reclaim(sc)) {
3066 3067
			if (!cpuset_zone_allowed(zone,
						 GFP_KERNEL | __GFP_HARDWALL))
3068
				continue;
3069

3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080
			/*
			 * If we already have plenty of memory free for
			 * compaction in this zone, don't free any more.
			 * Even though compaction is invoked for any
			 * non-zero order, only frequent costly order
			 * reclamation is disruptive enough to become a
			 * noticeable problem, like transparent huge
			 * page allocations.
			 */
			if (IS_ENABLED(CONFIG_COMPACTION) &&
			    sc->order > PAGE_ALLOC_COSTLY_ORDER &&
3081
			    compaction_ready(zone, sc)) {
3082 3083
				sc->compaction_ready = true;
				continue;
3084
			}
3085

3086 3087 3088 3089 3090 3091 3092 3093 3094
			/*
			 * Shrink each node in the zonelist once. If the
			 * zonelist is ordered by zone (not the default) then a
			 * node may be shrunk multiple times but in that case
			 * the user prefers lower zones being preserved.
			 */
			if (zone->zone_pgdat == last_pgdat)
				continue;

3095 3096 3097 3098 3099 3100 3101
			/*
			 * This steals pages from memory cgroups over softlimit
			 * and returns the number of reclaimed pages and
			 * scanned pages. This works for global memory pressure
			 * and balancing, not for a memcg's limit.
			 */
			nr_soft_scanned = 0;
3102
			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
3103 3104 3105 3106
						sc->order, sc->gfp_mask,
						&nr_soft_scanned);
			sc->nr_reclaimed += nr_soft_reclaimed;
			sc->nr_scanned += nr_soft_scanned;
3107
			/* need some check for avoid more shrink_zone() */
3108
		}
3109

3110 3111 3112 3113
		/* See comment about same check for global reclaim above */
		if (zone->zone_pgdat == last_pgdat)
			continue;
		last_pgdat = zone->zone_pgdat;
3114
		shrink_node(zone->zone_pgdat, sc);
L
Linus Torvalds 已提交
3115
	}
3116

3117 3118 3119 3120 3121
	/*
	 * Restore to original mask to avoid the impact on the caller if we
	 * promoted it to __GFP_HIGHMEM.
	 */
	sc->gfp_mask = orig_mask;
L
Linus Torvalds 已提交
3122
}
3123

3124 3125 3126 3127 3128 3129 3130 3131 3132 3133
static void snapshot_refaults(struct mem_cgroup *root_memcg, pg_data_t *pgdat)
{
	struct mem_cgroup *memcg;

	memcg = mem_cgroup_iter(root_memcg, NULL, NULL);
	do {
		unsigned long refaults;
		struct lruvec *lruvec;

		lruvec = mem_cgroup_lruvec(pgdat, memcg);
3134
		refaults = lruvec_page_state(lruvec, WORKINGSET_ACTIVATE);
3135 3136 3137 3138
		lruvec->refaults = refaults;
	} while ((memcg = mem_cgroup_iter(root_memcg, memcg, NULL)));
}

L
Linus Torvalds 已提交
3139 3140 3141 3142 3143 3144 3145 3146
/*
 * This is the main entry point to direct page reclaim.
 *
 * If a full scan of the inactive list fails to free enough memory then we
 * are "out of memory" and something needs to be killed.
 *
 * If the caller is !__GFP_FS then the probability of a failure is reasonably
 * high - the zone may be full of dirty or under-writeback pages, which this
3147 3148 3149 3150
 * caller can't do much about.  We kick the writeback threads and take explicit
 * naps in the hope that some of these pages can be written.  But if the
 * allocating task holds filesystem locks which prevent writeout this might not
 * work, and the allocation attempt will fail.
3151 3152 3153
 *
 * returns:	0, if no pages reclaimed
 * 		else, the number of pages reclaimed
L
Linus Torvalds 已提交
3154
 */
3155
static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
3156
					  struct scan_control *sc)
L
Linus Torvalds 已提交
3157
{
3158
	int initial_priority = sc->priority;
3159 3160 3161
	pg_data_t *last_pgdat;
	struct zoneref *z;
	struct zone *zone;
3162
retry:
3163 3164
	delayacct_freepages_start();

3165
	if (global_reclaim(sc))
3166
		__count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
L
Linus Torvalds 已提交
3167

3168
	do {
3169 3170 3171 3172
		if (current_is_kswapd() && !global_reclaim(sc) &&
		    is_wmark_ok(sc->target_mem_cgroup, false))
			break;

3173 3174
		vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
				sc->priority);
3175
		sc->nr_scanned = 0;
M
Michal Hocko 已提交
3176
		shrink_zones(zonelist, sc);
3177

3178
		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
3179 3180 3181 3182
			break;

		if (sc->compaction_ready)
			break;
L
Linus Torvalds 已提交
3183

3184 3185 3186 3187 3188 3189
		/*
		 * If we're getting trouble reclaiming, start doing
		 * writepage even in laptop mode.
		 */
		if (sc->priority < DEF_PRIORITY - 2)
			sc->may_writepage = 1;
3190
	} while (--sc->priority >= 0);
3191

3192 3193 3194 3195 3196 3197 3198
	last_pgdat = NULL;
	for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
					sc->nodemask) {
		if (zone->zone_pgdat == last_pgdat)
			continue;
		last_pgdat = zone->zone_pgdat;
		snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
3199
		set_memcg_congestion(last_pgdat, sc->target_mem_cgroup, false);
3200 3201 3202 3203 3204
		if (current_is_kswapd() && !global_reclaim(sc)) {
			set_memcg_dirty(last_pgdat, sc->target_mem_cgroup, false);
			set_memcg_writeback(last_pgdat, sc->target_mem_cgroup,
					    false);
		}
3205 3206
	}

3207 3208
	delayacct_freepages_end();

3209 3210 3211
	if (sc->nr_reclaimed)
		return sc->nr_reclaimed;

3212
	/* Aborted reclaim to try compaction? don't OOM, then */
3213
	if (sc->compaction_ready)
3214 3215
		return 1;

3216 3217 3218 3219 3220 3221
	/*
	 * Untapped cgroup reserves?  Don't OOM, retry.
	 *
	 * Memcg kswapd should not break low protection.
	 */
	if (sc->memcg_low_skipped && !current_is_kswapd()) {
3222
		sc->priority = initial_priority;
3223 3224
		sc->memcg_low_reclaim = 1;
		sc->memcg_low_skipped = 0;
3225 3226 3227
		goto retry;
	}

3228
	return 0;
L
Linus Torvalds 已提交
3229 3230
}

3231
static bool allow_direct_reclaim(pg_data_t *pgdat)
3232 3233 3234 3235 3236 3237 3238
{
	struct zone *zone;
	unsigned long pfmemalloc_reserve = 0;
	unsigned long free_pages = 0;
	int i;
	bool wmark_ok;

3239 3240 3241
	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
		return true;

3242 3243
	for (i = 0; i <= ZONE_NORMAL; i++) {
		zone = &pgdat->node_zones[i];
3244 3245 3246 3247
		if (!managed_zone(zone))
			continue;

		if (!zone_reclaimable_pages(zone))
3248 3249
			continue;

3250 3251 3252 3253
		pfmemalloc_reserve += min_wmark_pages(zone);
		free_pages += zone_page_state(zone, NR_FREE_PAGES);
	}

3254 3255 3256 3257
	/* If there are no reserves (unexpected config) then do not throttle */
	if (!pfmemalloc_reserve)
		return true;

3258 3259 3260 3261
	wmark_ok = free_pages > pfmemalloc_reserve / 2;

	/* kswapd must be awake if processes are being throttled */
	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
3262
		pgdat->kswapd_classzone_idx = min(pgdat->kswapd_classzone_idx,
3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273
						(enum zone_type)ZONE_NORMAL);
		wake_up_interruptible(&pgdat->kswapd_wait);
	}

	return wmark_ok;
}

/*
 * Throttle direct reclaimers if backing storage is backed by the network
 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
 * depleted. kswapd will continue to make progress and wake the processes
3274 3275 3276 3277
 * when the low watermark is reached.
 *
 * Returns true if a fatal signal was delivered during throttling. If this
 * happens, the page allocator should not consider triggering the OOM killer.
3278
 */
3279
static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
3280 3281
					nodemask_t *nodemask)
{
3282
	struct zoneref *z;
3283
	struct zone *zone;
3284
	pg_data_t *pgdat = NULL;
3285 3286 3287 3288 3289 3290 3291 3292 3293

	/*
	 * Kernel threads should not be throttled as they may be indirectly
	 * responsible for cleaning pages necessary for reclaim to make forward
	 * progress. kjournald for example may enter direct reclaim while
	 * committing a transaction where throttling it could forcing other
	 * processes to block on log_wait_commit().
	 */
	if (current->flags & PF_KTHREAD)
3294 3295 3296 3297 3298 3299 3300 3301
		goto out;

	/*
	 * If a fatal signal is pending, this process should not throttle.
	 * It should return quickly so it can exit and free its memory
	 */
	if (fatal_signal_pending(current))
		goto out;
3302

3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317
	/*
	 * Check if the pfmemalloc reserves are ok by finding the first node
	 * with a usable ZONE_NORMAL or lower zone. The expectation is that
	 * GFP_KERNEL will be required for allocating network buffers when
	 * swapping over the network so ZONE_HIGHMEM is unusable.
	 *
	 * Throttling is based on the first usable node and throttled processes
	 * wait on a queue until kswapd makes progress and wakes them. There
	 * is an affinity then between processes waking up and where reclaim
	 * progress has been made assuming the process wakes on the same node.
	 * More importantly, processes running on remote nodes will not compete
	 * for remote pfmemalloc reserves and processes on different nodes
	 * should make reasonable progress.
	 */
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
3318
					gfp_zone(gfp_mask), nodemask) {
3319 3320 3321 3322 3323
		if (zone_idx(zone) > ZONE_NORMAL)
			continue;

		/* Throttle based on the first usable node */
		pgdat = zone->zone_pgdat;
3324
		if (allow_direct_reclaim(pgdat))
3325 3326 3327 3328 3329 3330
			goto out;
		break;
	}

	/* If no zone was usable by the allocation flags then do not throttle */
	if (!pgdat)
3331
		goto out;
3332

3333 3334 3335
	/* Account for the throttling */
	count_vm_event(PGSCAN_DIRECT_THROTTLE);

3336 3337 3338 3339 3340 3341 3342 3343 3344 3345
	/*
	 * If the caller cannot enter the filesystem, it's possible that it
	 * is due to the caller holding an FS lock or performing a journal
	 * transaction in the case of a filesystem like ext[3|4]. In this case,
	 * it is not safe to block on pfmemalloc_wait as kswapd could be
	 * blocked waiting on the same lock. Instead, throttle for up to a
	 * second before continuing.
	 */
	if (!(gfp_mask & __GFP_FS)) {
		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
3346
			allow_direct_reclaim(pgdat), HZ);
3347 3348

		goto check_pending;
3349 3350 3351 3352
	}

	/* Throttle until kswapd wakes the process */
	wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
3353
		allow_direct_reclaim(pgdat));
3354 3355 3356 3357 3358 3359 3360

check_pending:
	if (fatal_signal_pending(current))
		return true;

out:
	return false;
3361 3362
}

3363
unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
3364
				gfp_t gfp_mask, nodemask_t *nodemask)
3365
{
3366
	unsigned long nr_reclaimed;
3367
	struct scan_control sc = {
3368
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
3369
		.gfp_mask = current_gfp_context(gfp_mask),
3370
		.reclaim_idx = gfp_zone(gfp_mask),
3371 3372 3373
		.order = order,
		.nodemask = nodemask,
		.priority = DEF_PRIORITY,
3374
		.may_writepage = !laptop_mode,
3375
		.may_unmap = 1,
3376
		.may_swap = 1,
3377 3378
	};

G
Greg Thelen 已提交
3379 3380 3381 3382 3383 3384 3385 3386
	/*
	 * scan_control uses s8 fields for order, priority, and reclaim_idx.
	 * Confirm they are large enough for max values.
	 */
	BUILD_BUG_ON(MAX_ORDER > S8_MAX);
	BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
	BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);

3387
	/*
3388 3389 3390
	 * Do not enter reclaim if fatal signal was delivered while throttled.
	 * 1 is returned so that the page allocator does not OOM kill at this
	 * point.
3391
	 */
3392
	if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
3393 3394
		return 1;

3395 3396
	trace_mm_vmscan_direct_reclaim_begin(order,
				sc.may_writepage,
3397
				sc.gfp_mask,
3398
				sc.reclaim_idx);
3399

3400
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3401 3402 3403 3404

	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);

	return nr_reclaimed;
3405 3406
}

A
Andrew Morton 已提交
3407
#ifdef CONFIG_MEMCG
3408

3409
unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
3410
						gfp_t gfp_mask, bool noswap,
3411
						pg_data_t *pgdat,
3412
						unsigned long *nr_scanned)
3413 3414
{
	struct scan_control sc = {
3415
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
3416
		.target_mem_cgroup = memcg,
3417 3418
		.may_writepage = !laptop_mode,
		.may_unmap = 1,
3419
		.reclaim_idx = MAX_NR_ZONES - 1,
3420 3421
		.may_swap = !noswap,
	};
3422
	unsigned long lru_pages;
3423

3424 3425
	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
3426

3427
	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
3428
						      sc.may_writepage,
3429 3430
						      sc.gfp_mask,
						      sc.reclaim_idx);
3431

3432 3433 3434
	/*
	 * NOTE: Although we can get the priority field, using it
	 * here is not a good idea, since it limits the pages we can scan.
3435
	 * if we don't reclaim here, the shrink_node from balance_pgdat
3436 3437 3438
	 * will pick up pages from other mem cgroup's as well. We hack
	 * the priority and make it zero.
	 */
3439
	shrink_node_memcg(pgdat, memcg, &sc, &lru_pages);
3440 3441 3442

	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);

3443
	*nr_scanned = sc.nr_scanned;
3444 3445 3446
	return sc.nr_reclaimed;
}

3447
unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
3448
					   unsigned long nr_pages,
K
KOSAKI Motohiro 已提交
3449
					   gfp_t gfp_mask,
3450
					   bool may_swap)
3451
{
3452
	struct zonelist *zonelist;
3453
	unsigned long nr_reclaimed;
3454
	unsigned long pflags;
3455
	int nid;
3456
	unsigned int noreclaim_flag;
3457
	struct scan_control sc = {
3458
		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3459
		.gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
3460
				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
3461
		.reclaim_idx = MAX_NR_ZONES - 1,
3462 3463 3464 3465
		.target_mem_cgroup = memcg,
		.priority = DEF_PRIORITY,
		.may_writepage = !laptop_mode,
		.may_unmap = 1,
3466
		.may_swap = may_swap,
3467
	};
3468

3469 3470 3471 3472 3473
	/*
	 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
	 * take care of from where we get pages. So the node where we start the
	 * scan does not need to be the current node.
	 */
3474
	nid = mem_cgroup_select_victim_node(memcg);
3475

3476
	zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK];
3477 3478 3479

	trace_mm_vmscan_memcg_reclaim_begin(0,
					    sc.may_writepage,
3480 3481
					    sc.gfp_mask,
					    sc.reclaim_idx);
3482

3483
	psi_memstall_enter(&pflags);
3484
	noreclaim_flag = memalloc_noreclaim_save();
3485

3486
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3487

3488
	memalloc_noreclaim_restore(noreclaim_flag);
3489
	psi_memstall_leave(&pflags);
3490 3491 3492 3493

	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);

	return nr_reclaimed;
3494 3495 3496
}
#endif

3497
static void age_active_anon(struct pglist_data *pgdat,
3498
				struct scan_control *sc)
3499
{
3500
	struct mem_cgroup *memcg;
3501

3502 3503 3504 3505 3506
	if (!total_swap_pages)
		return;

	memcg = mem_cgroup_iter(NULL, NULL, NULL);
	do {
3507
		struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
3508

3509
		if (inactive_list_is_low(lruvec, false, sc, true))
3510
			shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3511
					   sc, LRU_ACTIVE_ANON);
3512 3513 3514

		memcg = mem_cgroup_iter(NULL, memcg, NULL);
	} while (memcg);
3515 3516
}

3517 3518 3519 3520 3521
/*
 * Returns true if there is an eligible zone balanced for the request order
 * and classzone_idx
 */
static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
3522
{
3523 3524 3525
	int i;
	unsigned long mark = -1;
	struct zone *zone;
3526

3527 3528
	for (i = 0; i <= classzone_idx; i++) {
		zone = pgdat->node_zones + i;
3529

3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546
		if (!managed_zone(zone))
			continue;

		mark = high_wmark_pages(zone);
		if (zone_watermark_ok_safe(zone, order, mark, classzone_idx))
			return true;
	}

	/*
	 * If a node has no populated zone within classzone_idx, it does not
	 * need balancing by definition. This can happen if a zone-restricted
	 * allocation tries to wake a remote kswapd.
	 */
	if (mark == -1)
		return true;

	return false;
3547 3548
}

3549 3550 3551 3552 3553 3554 3555 3556
/* Clear pgdat state for congested, dirty or under writeback. */
static void clear_pgdat_congested(pg_data_t *pgdat)
{
	clear_bit(PGDAT_CONGESTED, &pgdat->flags);
	clear_bit(PGDAT_DIRTY, &pgdat->flags);
	clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
}

3557 3558 3559 3560 3561 3562
/*
 * Prepare kswapd for sleeping. This verifies that there are no processes
 * waiting in throttle_direct_reclaim() and that watermarks have been met.
 *
 * Returns true if kswapd is ready to sleep
 */
3563
static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3564
{
3565
	/*
3566
	 * The throttled processes are normally woken up in balance_pgdat() as
3567
	 * soon as allow_direct_reclaim() is true. But there is a potential
3568 3569 3570 3571 3572 3573 3574 3575 3576
	 * race between when kswapd checks the watermarks and a process gets
	 * throttled. There is also a potential race if processes get
	 * throttled, kswapd wakes, a large process exits thereby balancing the
	 * zones, which causes kswapd to exit balance_pgdat() before reaching
	 * the wake up checks. If kswapd is going to sleep, no process should
	 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
	 * the wake up is premature, processes will wake kswapd and get
	 * throttled again. The difference from wake ups in balance_pgdat() is
	 * that here we are under prepare_to_wait().
3577
	 */
3578 3579
	if (waitqueue_active(&pgdat->pfmemalloc_wait))
		wake_up_all(&pgdat->pfmemalloc_wait);
3580

3581 3582 3583 3584
	/* Hopeless node, leave it to direct reclaim */
	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
		return true;

3585 3586 3587
	if (pgdat_balanced(pgdat, order, classzone_idx)) {
		clear_pgdat_congested(pgdat);
		return true;
3588 3589
	}

3590
	return false;
3591 3592
}

3593
/*
3594 3595
 * kswapd shrinks a node of pages that are at or below the highest usable
 * zone that is currently unbalanced.
3596 3597
 *
 * Returns true if kswapd scanned at least the requested number of pages to
3598 3599
 * reclaim or if the lack of progress was due to pages under writeback.
 * This is used to determine if the scanning priority needs to be raised.
3600
 */
3601
static bool kswapd_shrink_node(pg_data_t *pgdat,
3602
			       struct scan_control *sc)
3603
{
3604 3605
	struct zone *zone;
	int z;
3606

3607 3608
	/* Reclaim a number of pages proportional to the number of zones */
	sc->nr_to_reclaim = 0;
3609
	for (z = 0; z <= sc->reclaim_idx; z++) {
3610
		zone = pgdat->node_zones + z;
3611
		if (!managed_zone(zone))
3612
			continue;
3613

3614 3615
		sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
	}
3616 3617

	/*
3618 3619
	 * Historically care was taken to put equal pressure on all zones but
	 * now pressure is applied based on node LRU order.
3620
	 */
3621
	shrink_node(pgdat, sc);
3622

3623
	/*
3624 3625 3626 3627 3628
	 * Fragmentation may mean that the system cannot be rebalanced for
	 * high-order allocations. If twice the allocation size has been
	 * reclaimed then recheck watermarks only at order-0 to prevent
	 * excessive reclaim. Assume that a process requested a high-order
	 * can direct reclaim/compact.
3629
	 */
3630
	if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
3631
		sc->order = 0;
3632

3633
	return sc->nr_scanned >= sc->nr_to_reclaim;
3634 3635
}

L
Linus Torvalds 已提交
3636
/*
3637 3638 3639
 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
 * that are eligible for use by the caller until at least one zone is
 * balanced.
L
Linus Torvalds 已提交
3640
 *
3641
 * Returns the order kswapd finished reclaiming at.
L
Linus Torvalds 已提交
3642 3643
 *
 * kswapd scans the zones in the highmem->normal->dma direction.  It skips
3644
 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3645 3646 3647
 * found to have free_pages <= high_wmark_pages(zone), any page is that zone
 * or lower is eligible for reclaim until at least one usable zone is
 * balanced.
L
Linus Torvalds 已提交
3648
 */
3649
static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx)
L
Linus Torvalds 已提交
3650 3651
{
	int i;
3652 3653
	unsigned long nr_soft_reclaimed;
	unsigned long nr_soft_scanned;
3654
	unsigned long pflags;
3655
	struct zone *zone;
3656 3657
	struct scan_control sc = {
		.gfp_mask = GFP_KERNEL,
3658
		.order = order,
3659
		.priority = DEF_PRIORITY,
3660
		.may_writepage = !laptop_mode,
3661
		.may_unmap = 1,
3662
		.may_swap = 1,
3663
	};
3664

3665
	psi_memstall_enter(&pflags);
3666 3667
	__fs_reclaim_acquire();

3668
	count_vm_event(PAGEOUTRUN);
L
Linus Torvalds 已提交
3669

3670
	do {
3671
		unsigned long nr_reclaimed = sc.nr_reclaimed;
3672
		bool raise_priority = true;
3673
		bool ret;
3674

3675
		sc.reclaim_idx = classzone_idx;
L
Linus Torvalds 已提交
3676

3677
		/*
3678 3679 3680 3681 3682 3683 3684 3685
		 * If the number of buffer_heads exceeds the maximum allowed
		 * then consider reclaiming from all zones. This has a dual
		 * purpose -- on 64-bit systems it is expected that
		 * buffer_heads are stripped during active rotation. On 32-bit
		 * systems, highmem pages can pin lowmem memory and shrinking
		 * buffers can relieve lowmem pressure. Reclaim may still not
		 * go ahead if all eligible zones for the original allocation
		 * request are balanced to avoid excessive reclaim from kswapd.
3686 3687 3688 3689
		 */
		if (buffer_heads_over_limit) {
			for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
				zone = pgdat->node_zones + i;
3690
				if (!managed_zone(zone))
3691
					continue;
3692

3693
				sc.reclaim_idx = i;
A
Andrew Morton 已提交
3694
				break;
L
Linus Torvalds 已提交
3695 3696
			}
		}
3697

3698
		/*
3699 3700 3701
		 * Only reclaim if there are no eligible zones. Note that
		 * sc.reclaim_idx is not used as buffer_heads_over_limit may
		 * have adjusted it.
3702
		 */
3703 3704
		if (pgdat_balanced(pgdat, sc.order, classzone_idx))
			goto out;
A
Andrew Morton 已提交
3705

3706 3707 3708 3709 3710 3711
		/*
		 * Do some background aging of the anon list, to give
		 * pages a chance to be referenced before reclaiming. All
		 * pages are rotated regardless of classzone as this is
		 * about consistent aging.
		 */
3712
		age_active_anon(pgdat, &sc);
3713

3714 3715 3716 3717
		/*
		 * If we're getting trouble reclaiming, start doing writepage
		 * even in laptop mode.
		 */
3718
		if (sc.priority < DEF_PRIORITY - 2)
3719 3720
			sc.may_writepage = 1;

3721 3722 3723
		/* Call soft limit reclaim before calling shrink_node. */
		sc.nr_scanned = 0;
		nr_soft_scanned = 0;
3724
		nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
3725 3726 3727
						sc.gfp_mask, &nr_soft_scanned);
		sc.nr_reclaimed += nr_soft_reclaimed;

L
Linus Torvalds 已提交
3728
		/*
3729 3730 3731
		 * There should be no need to raise the scanning priority if
		 * enough pages are already being scanned that that high
		 * watermark would be met at 100% efficiency.
L
Linus Torvalds 已提交
3732
		 */
3733
		if (kswapd_shrink_node(pgdat, &sc))
3734
			raise_priority = false;
3735 3736 3737 3738 3739 3740 3741

		/*
		 * If the low watermark is met there is no need for processes
		 * to be throttled on pfmemalloc_wait as they should not be
		 * able to safely make forward progress. Wake them
		 */
		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3742
				allow_direct_reclaim(pgdat))
3743
			wake_up_all(&pgdat->pfmemalloc_wait);
3744

3745
		/* Check if kswapd should be suspending */
3746 3747 3748 3749
		__fs_reclaim_release();
		ret = try_to_freeze();
		__fs_reclaim_acquire();
		if (ret || kthread_should_stop())
3750
			break;
3751

3752
		/*
3753 3754
		 * Raise priority if scanning rate is too low or there was no
		 * progress in reclaiming pages
3755
		 */
3756 3757
		nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
		if (raise_priority || !nr_reclaimed)
3758
			sc.priority--;
3759
	} while (sc.priority >= 1);
L
Linus Torvalds 已提交
3760

3761 3762 3763
	if (!sc.nr_reclaimed)
		pgdat->kswapd_failures++;

3764
out:
3765
	snapshot_refaults(NULL, pgdat);
3766
	__fs_reclaim_release();
3767
	psi_memstall_leave(&pflags);
3768
	/*
3769 3770 3771 3772
	 * Return the order kswapd stopped reclaiming at as
	 * prepare_kswapd_sleep() takes it into account. If another caller
	 * entered the allocator slow path while kswapd was awake, order will
	 * remain at the higher level.
3773
	 */
3774
	return sc.order;
L
Linus Torvalds 已提交
3775 3776
}

3777
/*
3778 3779 3780 3781 3782
 * The pgdat->kswapd_classzone_idx is used to pass the highest zone index to be
 * reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is not
 * a valid index then either kswapd runs for first time or kswapd couldn't sleep
 * after previous reclaim attempt (node is still unbalanced). In that case
 * return the zone index of the previous kswapd reclaim cycle.
3783 3784
 */
static enum zone_type kswapd_classzone_idx(pg_data_t *pgdat,
3785
					   enum zone_type prev_classzone_idx)
3786 3787
{
	if (pgdat->kswapd_classzone_idx == MAX_NR_ZONES)
3788 3789
		return prev_classzone_idx;
	return pgdat->kswapd_classzone_idx;
3790 3791
}

3792 3793
static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
				unsigned int classzone_idx)
3794 3795 3796 3797 3798 3799 3800 3801 3802
{
	long remaining = 0;
	DEFINE_WAIT(wait);

	if (freezing(current) || kthread_should_stop())
		return;

	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);

3803 3804 3805 3806 3807 3808 3809
	/*
	 * Try to sleep for a short interval. Note that kcompactd will only be
	 * woken if it is possible to sleep for a short interval. This is
	 * deliberate on the assumption that if reclaim cannot keep an
	 * eligible zone balanced that it's also unlikely that compaction will
	 * succeed.
	 */
3810
	if (prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822
		/*
		 * Compaction records what page blocks it recently failed to
		 * isolate pages from and skips them in the future scanning.
		 * When kswapd is going to sleep, it is reasonable to assume
		 * that pages and compaction may succeed so reset the cache.
		 */
		reset_isolation_suitable(pgdat);

		/*
		 * We have freed the memory, now we should compact it to make
		 * allocation of the requested order possible.
		 */
3823
		wakeup_kcompactd(pgdat, alloc_order, classzone_idx);
3824

3825
		remaining = schedule_timeout(HZ/10);
3826 3827 3828 3829 3830 3831 3832

		/*
		 * If woken prematurely then reset kswapd_classzone_idx and
		 * order. The values will either be from a wakeup request or
		 * the previous request that slept prematurely.
		 */
		if (remaining) {
3833
			pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3834 3835 3836
			pgdat->kswapd_order = max(pgdat->kswapd_order, reclaim_order);
		}

3837 3838 3839 3840 3841 3842 3843 3844
		finish_wait(&pgdat->kswapd_wait, &wait);
		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
	}

	/*
	 * After a short sleep, check if it was a premature sleep. If not, then
	 * go fully to sleep until explicitly woken up.
	 */
3845 3846
	if (!remaining &&
	    prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857
		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);

		/*
		 * vmstat counters are not perfectly accurate and the estimated
		 * value for counters such as NR_FREE_PAGES can deviate from the
		 * true value by nr_online_cpus * threshold. To avoid the zone
		 * watermarks being breached while under pressure, we reduce the
		 * per-cpu vmstat threshold while kswapd is awake and restore
		 * them before going back to sleep.
		 */
		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3858 3859 3860 3861

		if (!kthread_should_stop())
			schedule();

3862 3863 3864 3865 3866 3867 3868 3869 3870 3871
		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
	} else {
		if (remaining)
			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
		else
			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
	}
	finish_wait(&pgdat->kswapd_wait, &wait);
}

L
Linus Torvalds 已提交
3872 3873
/*
 * The background pageout daemon, started as a kernel thread
3874
 * from the init process.
L
Linus Torvalds 已提交
3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886
 *
 * This basically trickles out pages so that we have _some_
 * free memory available even if there is no other activity
 * that frees anything up. This is needed for things like routing
 * etc, where we otherwise might have all activity going on in
 * asynchronous contexts that cannot page things out.
 *
 * If there are applications that are active memory-allocators
 * (most normal use), this basically shouldn't matter.
 */
static int kswapd(void *p)
{
3887 3888
	unsigned int alloc_order, reclaim_order;
	unsigned int classzone_idx = MAX_NR_ZONES - 1;
L
Linus Torvalds 已提交
3889 3890
	pg_data_t *pgdat = (pg_data_t*)p;
	struct task_struct *tsk = current;
3891

L
Linus Torvalds 已提交
3892 3893 3894
	struct reclaim_state reclaim_state = {
		.reclaimed_slab = 0,
	};
3895
	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
L
Linus Torvalds 已提交
3896

R
Rusty Russell 已提交
3897
	if (!cpumask_empty(cpumask))
3898
		set_cpus_allowed_ptr(tsk, cpumask);
L
Linus Torvalds 已提交
3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912
	current->reclaim_state = &reclaim_state;

	/*
	 * Tell the memory management that we're a "memory allocator",
	 * and that if we need more memory we should get access to it
	 * regardless (see "__alloc_pages()"). "kswapd" should
	 * never get caught in the normal page freeing logic.
	 *
	 * (Kswapd normally doesn't need memory anyway, but sometimes
	 * you need a small amount of memory in order to be able to
	 * page out something else, and this flag essentially protects
	 * us from recursively trying to free more memory as we're
	 * trying to free the first piece of memory in the first place).
	 */
3913
	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3914
	set_freezable();
L
Linus Torvalds 已提交
3915

3916 3917
	pgdat->kswapd_order = 0;
	pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
L
Linus Torvalds 已提交
3918
	for ( ; ; ) {
3919
		bool ret;
3920

3921 3922 3923
		alloc_order = reclaim_order = pgdat->kswapd_order;
		classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);

3924 3925 3926
kswapd_try_sleep:
		kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
					classzone_idx);
3927

3928 3929
		/* Read the new order and classzone_idx */
		alloc_order = reclaim_order = pgdat->kswapd_order;
3930
		classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3931
		pgdat->kswapd_order = 0;
3932
		pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
L
Linus Torvalds 已提交
3933

3934 3935 3936 3937 3938 3939 3940 3941
		ret = try_to_freeze();
		if (kthread_should_stop())
			break;

		/*
		 * We can speed up thawing tasks if we don't call balance_pgdat
		 * after returning from the refrigerator
		 */
3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952
		if (ret)
			continue;

		/*
		 * Reclaim begins at the requested order but if a high-order
		 * reclaim fails then kswapd falls back to reclaiming for
		 * order-0. If that happens, kswapd will consider sleeping
		 * for the order it finished reclaiming at (reclaim_order)
		 * but kcompactd is woken to compact for the original
		 * request (alloc_order).
		 */
3953 3954
		trace_mm_vmscan_kswapd_wake(pgdat->node_id, classzone_idx,
						alloc_order);
3955 3956 3957
		reclaim_order = balance_pgdat(pgdat, alloc_order, classzone_idx);
		if (reclaim_order < alloc_order)
			goto kswapd_try_sleep;
L
Linus Torvalds 已提交
3958
	}
3959

3960
	tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
3961
	current->reclaim_state = NULL;
3962

L
Linus Torvalds 已提交
3963 3964 3965 3966
	return 0;
}

/*
3967 3968 3969 3970 3971
 * A zone is low on free memory or too fragmented for high-order memory.  If
 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
 * pgdat.  It will wake up kcompactd after reclaiming memory.  If kswapd reclaim
 * has failed or is not needed, still wake up kcompactd if only compaction is
 * needed.
L
Linus Torvalds 已提交
3972
 */
3973 3974
void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
		   enum zone_type classzone_idx)
L
Linus Torvalds 已提交
3975 3976 3977
{
	pg_data_t *pgdat;

3978
	if (!managed_zone(zone))
L
Linus Torvalds 已提交
3979 3980
		return;

3981
	if (!cpuset_zone_allowed(zone, gfp_flags))
L
Linus Torvalds 已提交
3982
		return;
3983
	pgdat = zone->zone_pgdat;
3984 3985 3986 3987 3988 3989

	if (pgdat->kswapd_classzone_idx == MAX_NR_ZONES)
		pgdat->kswapd_classzone_idx = classzone_idx;
	else
		pgdat->kswapd_classzone_idx = max(pgdat->kswapd_classzone_idx,
						  classzone_idx);
3990
	pgdat->kswapd_order = max(pgdat->kswapd_order, order);
3991
	if (!waitqueue_active(&pgdat->kswapd_wait))
L
Linus Torvalds 已提交
3992
		return;
3993

3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005
	/* Hopeless node, leave it to direct reclaim if possible */
	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
	    pgdat_balanced(pgdat, order, classzone_idx)) {
		/*
		 * There may be plenty of free memory available, but it's too
		 * fragmented for high-order allocations.  Wake up kcompactd
		 * and rely on compaction_suitable() to determine if it's
		 * needed.  If it fails, it will defer subsequent attempts to
		 * ratelimit its work.
		 */
		if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
			wakeup_kcompactd(pgdat, order, classzone_idx);
4006
		return;
4007
	}
4008

4009 4010
	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, classzone_idx, order,
				      gfp_flags);
4011
	wake_up_interruptible(&pgdat->kswapd_wait);
L
Linus Torvalds 已提交
4012 4013
}

4014
#ifdef CONFIG_HIBERNATION
L
Linus Torvalds 已提交
4015
/*
4016
 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
4017 4018 4019 4020 4021
 * freed pages.
 *
 * Rather than trying to age LRUs the aim is to preserve the overall
 * LRU order by reclaiming preferentially
 * inactive > active > active referenced > active mapped
L
Linus Torvalds 已提交
4022
 */
4023
unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
L
Linus Torvalds 已提交
4024
{
4025 4026
	struct reclaim_state reclaim_state;
	struct scan_control sc = {
4027
		.nr_to_reclaim = nr_to_reclaim,
4028
		.gfp_mask = GFP_HIGHUSER_MOVABLE,
4029
		.reclaim_idx = MAX_NR_ZONES - 1,
4030
		.priority = DEF_PRIORITY,
4031
		.may_writepage = 1,
4032 4033
		.may_unmap = 1,
		.may_swap = 1,
4034
		.hibernation_mode = 1,
L
Linus Torvalds 已提交
4035
	};
4036
	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
4037 4038
	struct task_struct *p = current;
	unsigned long nr_reclaimed;
4039
	unsigned int noreclaim_flag;
L
Linus Torvalds 已提交
4040

4041
	fs_reclaim_acquire(sc.gfp_mask);
4042
	noreclaim_flag = memalloc_noreclaim_save();
4043 4044
	reclaim_state.reclaimed_slab = 0;
	p->reclaim_state = &reclaim_state;
4045

4046
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
4047

4048
	p->reclaim_state = NULL;
4049
	memalloc_noreclaim_restore(noreclaim_flag);
4050
	fs_reclaim_release(sc.gfp_mask);
4051

4052
	return nr_reclaimed;
L
Linus Torvalds 已提交
4053
}
4054
#endif /* CONFIG_HIBERNATION */
L
Linus Torvalds 已提交
4055 4056 4057 4058 4059

/* It's optimal to keep kswapds on the same CPUs as their memory, but
   not required for correctness.  So if the last cpu in a node goes
   away, we get changed to run anywhere: as the first one comes back,
   restore their cpu bindings. */
4060
static int kswapd_cpu_online(unsigned int cpu)
L
Linus Torvalds 已提交
4061
{
4062
	int nid;
L
Linus Torvalds 已提交
4063

4064 4065 4066
	for_each_node_state(nid, N_MEMORY) {
		pg_data_t *pgdat = NODE_DATA(nid);
		const struct cpumask *mask;
4067

4068
		mask = cpumask_of_node(pgdat->node_id);
4069

4070 4071 4072
		if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
			/* One of our CPUs online: restore mask */
			set_cpus_allowed_ptr(pgdat->kswapd, mask);
L
Linus Torvalds 已提交
4073
	}
4074
	return 0;
L
Linus Torvalds 已提交
4075 4076
}

4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091
/*
 * This kswapd start function will be called by init and node-hot-add.
 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
 */
int kswapd_run(int nid)
{
	pg_data_t *pgdat = NODE_DATA(nid);
	int ret = 0;

	if (pgdat->kswapd)
		return 0;

	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
	if (IS_ERR(pgdat->kswapd)) {
		/* failure at boot is fatal */
4092
		BUG_ON(system_state < SYSTEM_RUNNING);
4093 4094
		pr_err("Failed to start kswapd on node %d\n", nid);
		ret = PTR_ERR(pgdat->kswapd);
4095
		pgdat->kswapd = NULL;
4096 4097 4098 4099
	}
	return ret;
}

4100
/*
4101
 * Called by memory hotplug when all memory in a node is offlined.  Caller must
4102
 * hold mem_hotplug_begin/end().
4103 4104 4105 4106 4107
 */
void kswapd_stop(int nid)
{
	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;

4108
	if (kswapd) {
4109
		kthread_stop(kswapd);
4110 4111
		NODE_DATA(nid)->kswapd = NULL;
	}
4112 4113
}

L
Linus Torvalds 已提交
4114 4115
static int __init kswapd_init(void)
{
4116
	int nid, ret;
4117

L
Linus Torvalds 已提交
4118
	swap_setup();
4119
	for_each_node_state(nid, N_MEMORY)
4120
 		kswapd_run(nid);
4121 4122 4123 4124
	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
					"mm/vmscan:online", kswapd_cpu_online,
					NULL);
	WARN_ON(ret < 0);
L
Linus Torvalds 已提交
4125 4126 4127 4128
	return 0;
}

module_init(kswapd_init)
4129 4130 4131

#ifdef CONFIG_NUMA
/*
4132
 * Node reclaim mode
4133
 *
4134
 * If non-zero call node_reclaim when the number of free pages falls below
4135 4136
 * the watermarks.
 */
4137
int node_reclaim_mode __read_mostly;
4138

4139
#define RECLAIM_OFF 0
4140
#define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
4141
#define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
4142
#define RECLAIM_UNMAP (1<<2)	/* Unmap pages during reclaim */
4143

4144
/*
4145
 * Priority for NODE_RECLAIM. This determines the fraction of pages
4146 4147 4148
 * of a node considered for each zone_reclaim. 4 scans 1/16th of
 * a zone.
 */
4149
#define NODE_RECLAIM_PRIORITY 4
4150

4151
/*
4152
 * Percentage of pages in a zone that must be unmapped for node_reclaim to
4153 4154 4155 4156
 * occur.
 */
int sysctl_min_unmapped_ratio = 1;

4157 4158 4159 4160 4161 4162
/*
 * If the number of slab pages in a zone grows beyond this percentage then
 * slab reclaim needs to occur.
 */
int sysctl_min_slab_ratio = 5;

4163
static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
4164
{
4165 4166 4167
	unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
	unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
		node_page_state(pgdat, NR_ACTIVE_FILE);
4168 4169 4170 4171 4172 4173 4174 4175 4176 4177

	/*
	 * It's possible for there to be more file mapped pages than
	 * accounted for by the pages on the file LRU lists because
	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
	 */
	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
}

/* Work out how many page cache pages we can reclaim in this reclaim_mode */
4178
static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
4179
{
4180 4181
	unsigned long nr_pagecache_reclaimable;
	unsigned long delta = 0;
4182 4183

	/*
4184
	 * If RECLAIM_UNMAP is set, then all file pages are considered
4185
	 * potentially reclaimable. Otherwise, we have to worry about
4186
	 * pages like swapcache and node_unmapped_file_pages() provides
4187 4188
	 * a better estimate
	 */
4189 4190
	if (node_reclaim_mode & RECLAIM_UNMAP)
		nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
4191
	else
4192
		nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
4193 4194

	/* If we can't clean pages, remove dirty pages from consideration */
4195 4196
	if (!(node_reclaim_mode & RECLAIM_WRITE))
		delta += node_page_state(pgdat, NR_FILE_DIRTY);
4197 4198 4199 4200 4201 4202 4203 4204

	/* Watch for any possible underflows due to delta */
	if (unlikely(delta > nr_pagecache_reclaimable))
		delta = nr_pagecache_reclaimable;

	return nr_pagecache_reclaimable - delta;
}

4205
/*
4206
 * Try to free up some pages from this node through reclaim.
4207
 */
4208
static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4209
{
4210
	/* Minimum pages needed in order to stay on node */
4211
	const unsigned long nr_pages = 1 << order;
4212 4213
	struct task_struct *p = current;
	struct reclaim_state reclaim_state;
4214
	unsigned int noreclaim_flag;
4215
	struct scan_control sc = {
4216
		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
4217
		.gfp_mask = current_gfp_context(gfp_mask),
4218
		.order = order,
4219 4220 4221
		.priority = NODE_RECLAIM_PRIORITY,
		.may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
		.may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
4222
		.may_swap = 1,
4223
		.reclaim_idx = gfp_zone(gfp_mask),
4224
	};
4225 4226

	cond_resched();
4227
	fs_reclaim_acquire(sc.gfp_mask);
4228
	/*
4229
	 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
4230
	 * and we also need to be able to write out pages for RECLAIM_WRITE
4231
	 * and RECLAIM_UNMAP.
4232
	 */
4233 4234
	noreclaim_flag = memalloc_noreclaim_save();
	p->flags |= PF_SWAPWRITE;
4235 4236
	reclaim_state.reclaimed_slab = 0;
	p->reclaim_state = &reclaim_state;
4237

4238
	if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
4239
		/*
4240
		 * Free memory by calling shrink node with increasing
4241 4242 4243
		 * priorities until we have enough memory freed.
		 */
		do {
4244
			shrink_node(pgdat, &sc);
4245
		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
4246
	}
4247

4248
	p->reclaim_state = NULL;
4249 4250
	current->flags &= ~PF_SWAPWRITE;
	memalloc_noreclaim_restore(noreclaim_flag);
4251
	fs_reclaim_release(sc.gfp_mask);
4252
	return sc.nr_reclaimed >= nr_pages;
4253
}
4254

4255
int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4256
{
4257
	int ret;
4258 4259

	/*
4260
	 * Node reclaim reclaims unmapped file backed pages and
4261
	 * slab pages if we are over the defined limits.
4262
	 *
4263 4264
	 * A small portion of unmapped file backed pages is needed for
	 * file I/O otherwise pages read by file I/O will be immediately
4265 4266
	 * thrown out if the node is overallocated. So we do not reclaim
	 * if less than a specified percentage of the node is used by
4267
	 * unmapped file backed pages.
4268
	 */
4269
	if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
4270
	    node_page_state(pgdat, NR_SLAB_RECLAIMABLE) <= pgdat->min_slab_pages)
4271
		return NODE_RECLAIM_FULL;
4272 4273

	/*
4274
	 * Do not scan if the allocation should not be delayed.
4275
	 */
4276
	if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
4277
		return NODE_RECLAIM_NOSCAN;
4278 4279

	/*
4280
	 * Only run node reclaim on the local node or on nodes that do not
4281 4282 4283 4284
	 * have associated processors. This will favor the local processor
	 * over remote processors and spread off node memory allocations
	 * as wide as possible.
	 */
4285 4286
	if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
		return NODE_RECLAIM_NOSCAN;
4287

4288 4289
	if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
		return NODE_RECLAIM_NOSCAN;
4290

4291 4292
	ret = __node_reclaim(pgdat, gfp_mask, order);
	clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
4293

4294 4295 4296
	if (!ret)
		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);

4297
	return ret;
4298
}
4299
#endif
L
Lee Schermerhorn 已提交
4300 4301 4302 4303 4304 4305

/*
 * page_evictable - test whether a page is evictable
 * @page: the page to test
 *
 * Test whether page is evictable--i.e., should be placed on active/inactive
4306
 * lists vs unevictable list.
L
Lee Schermerhorn 已提交
4307 4308
 *
 * Reasons page might not be evictable:
4309
 * (1) page's mapping marked unevictable
N
Nick Piggin 已提交
4310
 * (2) page is part of an mlocked VMA
4311
 *
L
Lee Schermerhorn 已提交
4312
 */
4313
int page_evictable(struct page *page)
L
Lee Schermerhorn 已提交
4314
{
4315 4316 4317 4318 4319 4320 4321
	int ret;

	/* Prevent address_space of inode and swap cache from being freed */
	rcu_read_lock();
	ret = !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
	rcu_read_unlock();
	return ret;
L
Lee Schermerhorn 已提交
4322
}
4323

4324
#ifdef CONFIG_SHMEM
4325
/**
4326 4327 4328
 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
 * @pages:	array of pages to check
 * @nr_pages:	number of pages to check
4329
 *
4330
 * Checks pages for evictability and moves them to the appropriate lru list.
4331 4332
 *
 * This function is only used for SysV IPC SHM_UNLOCK.
4333
 */
4334
void check_move_unevictable_pages(struct page **pages, int nr_pages)
4335
{
4336
	struct lruvec *lruvec;
4337
	struct pglist_data *pgdat = NULL;
4338 4339 4340
	int pgscanned = 0;
	int pgrescued = 0;
	int i;
4341

4342 4343
	for (i = 0; i < nr_pages; i++) {
		struct page *page = pages[i];
4344
		struct pglist_data *pagepgdat = page_pgdat(page);
4345

4346
		pgscanned++;
4347 4348 4349 4350 4351
		if (pagepgdat != pgdat) {
			if (pgdat)
				spin_unlock_irq(&pgdat->lru_lock);
			pgdat = pagepgdat;
			spin_lock_irq(&pgdat->lru_lock);
4352
		}
4353
		lruvec = mem_cgroup_page_lruvec(page, pgdat);
4354

4355 4356
		if (!PageLRU(page) || !PageUnevictable(page))
			continue;
4357

4358
		if (page_evictable(page)) {
4359 4360
			enum lru_list lru = page_lru_base_type(page);

4361
			VM_BUG_ON_PAGE(PageActive(page), page);
4362
			ClearPageUnevictable(page);
4363 4364
			del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
			add_page_to_lru_list(page, lruvec, lru);
4365
			pgrescued++;
4366
		}
4367
	}
4368

4369
	if (pgdat) {
4370 4371
		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
4372
		spin_unlock_irq(&pgdat->lru_lock);
4373 4374
	}
}
4375
#endif /* CONFIG_SHMEM */